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Abstract

We prove that there exist infinitely many infinite overlapdiinary partial words
containing at least one hole. Moreover, we show that thesdsa@annot contain
more than one hole and the only hole must occur either in thiediiin the second
position. We define that a partial word Asoverlap-free if it does not contain a
factor of the formzyzyx where the length of is at leastt. We prove that there

exist infinitely many2-overlap-free binary partial words containing an infinite
number of holes.
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1 Introduction

Repetitions, i.e., consecutive occurrences of words wiéhword and especially
repetition-freeness have been fundamental researchcssiimjecombinatorics on
words since the seminal papers of Thue [21, 22] in the beggoi the 20th cen-
tury; see [4] to learn what Thue exactly proved. In particuldaue showed that
there exists an infinite word over a 3-letter alphabet, which does not contain any
nonempty squaresr. Moreover, he constructed an infinite binary wengthich
does not contain any overlapgzyx for any wordsx andy with =z nonempty.
This celebrated word is nowadays called the Thue-Morse welnich has many
surprising and remarkable properties; see [2]. As an examn@ mention apply-
ing ¢ for designing an unending play of chess [8, 15] and for sagjtire Burnside
problem for groups [1] and semigroups [16, 17].

In [14] Manea and Mercas considered repetition-freenégsadial words.
Partial words are words with “do not know”-symbols calledgsoand they were
first introduced by Berstel and Boasson in [5]. Motivationtloe study of partial
words comes from applications in word algorithms and mdkaduiology, in par-
ticular; see [6] for using partial words in DNA sequencingl&NA comparison.
The theory of partial words has developed rapidly in the megears and many
classical topics in combinatorics on words have been tedsilopics such as pe-
riodicity, primitivity, unbordered word, codes and eqoas have been considered
in the first book on partial words authored by Blanchet-Saxd2007 [7]. See also
related works by Shur and Gamzova [20], Leupold [11] andiiksed12]. As an-
other approach for modeling missing or uncertain infororatn words we want
to mention word relations, a generalization of the compléytof partial words
introduced in [9].

It was shown in [14] that there exist infinitely many cubeefi@nary partial
words containing an infinite number of holes. In this papergne short and
simple proofs that this result can be improved. The key moisothe restricted
square property of infinite words over a three-letter alghaftroduced in Sec-
tion 3. Using it we easily prove in Section 5 that there exifhitely many binary
partial words with an infinite number of holes which do not t@dm 2-overlaps,
i.e., factors of the formyxzyx where the length of is at least two. We also prove
that there exist infinitely many infinite overlap-free bipngartial words with one
hole but none with two or more holes, and that the single hateanly be either
in the first or in the second position of the word.

2 Words, morphisms, and powers

Let A be a finite alphabet. The elements.fare calledetters A word w =
ajasy - - - a, Of lengthn over the alphabetl is a mappingv: {1,2,...,n} — A
such thatw(i) = a;. The length of a wordv is denoted byw|, ande is the
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empty word of length zero. By a (right) infinite wotd = a,asas - - - we mean a
mappingw from the positive integerdl, to the alphabe#d such thatw(i) = a;.
The set of all finite words is denoted by and infinite words are denoted bir.
LetalsoA™ = A*\ {e}. A finite wordv is afactorof w € A* U A if w = avy,
wherex € A* andy € A* U A“. If x = ¢, thenv is aprefixof w. If v € A*U A
andw = zv, thenv is called asuffixof w.

A morphism on4* is a mappingp: A* — A* satisfyingy(zy) = ¢(x)e(y)
for all z,y € A*. Note thatp is completely defined by the valuesa) for every
lettera on A. A morphism is callegprolongable on a lettet: if ¢(a) = aw for
some wordv € A" such thatp™(w) # ¢ for all integersn > 1. By the definition,
©"(a) is a prefix ofp"™!(a) for all integersn > 0 and the sequende™(a)),>o
converges to the unique infinite word generatedby

p?(a) = lim ¢"(a) = awp(w)e*(w) -,

which is a fixed point ofp.

A kth powerof a wordu # ¢ is the wordu”. It is the prefix of lengthk - |u|
of u¥, whereu® denotes the infinite catenation of the waréndk is a rational
number such that - |u| is an integer. A wordyv is calledk-freeif there does not
exist a wordr such that:* is a factor ofw. If k = 2 or k = 3, then we talk about
square-freeor cube-freewords, respectively. Amverlapis a word of the form
ryryr wherexr € AT andy € A*. A word is calledoverlap-freeor 2" -freeif it
does not contain overlaps or, equivalently, if it does nottamAth powers for any
k > 2. Hence, it can contain squares but it cannot contain anyelorgpetitions
such as overlaps or cubes. For example, over the alpkakigtthe wordabbabaa
is overlap-free but it contains squatésaa andbaba. Itis easy to verify that there
does not exist an infinite square-free word over a binaryaphbut, as we will
see in the next section, there exist infinite overlap-freaty words.

We generalize the notion of an overlap as follows.

Definition 1. A k-overlapis a word of the formeyzyx wherex andy are two
words with|z| = k. A word is k-overlap-freéif it does not contairk-overlaps.

For example, the wordaabaab is not overlap-free but it is 2-overlap-free
while the wordbaabaaba is not. By the definition, it is evident that aiyoverlap-
free word is alsd’-overlap-free fort’ > k. Note that a word ig-overlap-free if
and only if it is overlap-free.

Remark 1. Another possible definition fak-overlap-freeness is to require that a
k-overlap-free word must also be cube-free. In the casemferlap-free words,
this new definition just means that in additior2t@verlaps a word cannot contain
short cubesiaa, wherea is a letter. We want to stress that all the results in this
paper are also valid for this alternative definitiorRedverlap-freeness.

Iwhile it is not exactly the same, this notion/ebverlap-freeness resembles thakdfounded
overlaps introduced by Thue in [22].



3 Preliminary results

Let us consider two alphabets= {a, b} andB = {0, 1, 2}.

3.1 Overlap-free binary words
In [22] Thue introduced the following morphism A* — A*,

a v+ ab, b ba.
The Thue-Morse word is the infinite overlap-free binary word

t:= lim p"(a) = abbabaabbaababbaba - - -
generated by:; see, e.g., [2] for other definitions and properties.
Proposition 1 below gives a useful property of the Thue-Mos®rdt. Its
proof uses two already known lemmata.
The first lemma is due to Thue [22] himself; see [13] for a proof

Lemma 1. Let X = {ab, ba}. If z € X*, thenaza ¢ X* andbzb ¢ X*.
The second lemma is a part of Proposition 1.7.5 in [3]; sez[4R&)].

Lemma 2. If z is an infinite overlap-free binary word oved, then there exist
v € {¢g,a,b,aa,bb} and an infinite overlap-free binary worg such thatx =

upi(y).

Proposition 1. Lett’ be a suffix of the Thue-Morse warbeginning with.(abaabb).
Then the wordbt’ is overlap-free.

Proof. The wordt’ is overlap-free sinceis overlap-free. Let us first prove that
bt' is also overlap-free. Suppose tihdtcontains an overlap. Sincéis overlap-
free and begins with the letter this means thait’ begins withbubub for a word

u € A*. By the definition oft’, we must have = ¢ in Lemma 2 and’ = p(t")
for some infinite word”. This implies that’ decomposes oveab, ba}. Thus,

if |u| is even, then, andbub are images of words by, which contradicts with
Lemma 1.

Consequentlyju| is odd. Thusub = p(v'a) for some worduw’ € A* andt’
begins withu(v'au’a) which implies that containsu’au’a as a factor. From the
definition oft’ one has thafu’| > 6 andu’ begins withabaa. Sou’ = abaau”
for some wordu” € A" andv/av’'a = abaau”aabaau”a. If u” begins or ends
with a thenv’au’a containsaaa as a factor. Otherwise” begins and ends with
b andu’au’a contains the factobaabaab. In both cases this contradicts with the
overlap-freeness af

Now we prove thabbt’ is overlap-free. Suppose thiditt’ contains an overlap.
Sincebt’ is overlap-free, this means that’ begins withbubub for awordu € AT,
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and ubub is overlap-free. Suppose that| is odd. Sincet’ = p(t”) for some
infinite word ¢”, we haveu = bu(u’) for some wordu’ € A™. But in this case
bt’, which begins withubu, has the prefi¥u(u’')bb. This means that’ begins
with u(u’)bb, which contradicts with’ = p(t”).

Thus, |u| is even. Letu’ € AT be such that = bu’. Now bbt’ begins with
bbu'bbu'b. Sincet’ = u(t"), there exist two words;; andu, in A* such that
u'b = p(uy) andbu’ = u(usz). Sinceu'bbu’b is overlap-free, the word’ begins
and ends witla. This implies that:; = au)a anduy = bul,b for some words), ),
over A. Consequentlybbu'bbu’b = bbu(uy)u(ug)b = bbabu(u})abbau(us)bab,
which implies that:| begins withb andu!, ends witha. But in this casebub =
bu'bbu'b = p(ug)bbu(uy) containgu(ab)bbu(ab) = abbabbabba, which contradicts
with the overlap-freeness abub. 0J

3.2 The restricted square property

In order to prove the existence of infinite cube-free wordsr@aitwo-letter alpha-
bet from the existence of square-free words over threeréetidue used in [21]
the following morphismy: B* — A*,

O—a, 1w ab, 2+ abb.

Six years later he proved the following

Proposition 2 ([22]). Letu € A andv € B¥ be such thabt(v) = u. The wordu
is overlap-free if and only it is square-free and does not contaii) nor 212 as
a factor.

Here we will use the morphisinto prove the existence of infinite 2-overlap-
free binary words that are not overlap-fredVe need the following new notion
introduced in [19].

Definition 2. An infinite word v over B has therestricted square property, for
every nonempty factatr of v, the wordr does not begin nor end with the letter O
and the factorr is preceded and followed by the letter O.

Notice that if a wordy € B“ has the restricted square property thetoes not
begin with a square; is overlap-free, and does not contaifi0 as a factor.
The following result is a useful analogue of Proposition 2.

Theorem 1. Let v be an infinite word ove3 such that it does not begin with a
square and the infinite word = §(v) over .4 does not contain the factaraa.
Then the word: is 2-overlap-free if and only ib has the restricted square prop-
erty.

2Thue [22] already remarked that a waidv), wherew is square-free, may have overlaps, but
if zyxyz is an overlap, them is a letter.



Note that here the word is also cube-free.

Proof. Let v andv be as in the statement. Sineedoes not contain the factor
aaa, v does not contain the facton. Letrr be a factor ofv with » # <. By the
hypothesisyr is not at the beginning af. This means that im the factorrr is
preceded (and followed) by at least one letter.

If » begins with the letted, then it does not end with (because0 is not
a factor ofv) and it is preceded by the lettéror the letter2. Consequently,
d(r) = asb andd(rr) is necessarily preceded bynd followed bya. This means
that . contains the factobd(rr)a = basbasba, which implies thatu is not 2-
overlap-free. The argument is the same &@nds with the lettep.

Now if » begins withl or 2, ends withl or 2, andrr is not followed by0, then
d(r) begins withab andd(rr) is followed byab. Henceu is not 2-overlap-free.

To end, ifr ends withl or 2 and is not preceded ki, thenj(r) begins with
a and ends withh, andd(rr) is preceded by. Sinced(rr) is followed bya, this
implies thatu is not 2-overlap-free.

Consequently, it: is 2-overlap-free, then has the restricted square property.

Conversely, suppose thats not 2-overlap-free. There are four possible cases:

1. If u contains a factotaxraazraa, then the wordy contains a square begin-
ning with 0;

2. If u contains a factoubrabrab, then there exists necessarilye B such
thatabx = §(y). Thus,v contains a squargy followed by a letterl or 2;

3. If u contains a factobaxbaxba, then there exists necessarilye B such
thatazb = §(y). Thus,v contains a squargy preceded by a lettdror 2;

4. If u contains a factobbzbbxbb, then there exists necessarilye B+ such
thatzbb = §(y). Thus,v contains a squargy preceded by a lettex.

In the four cases does not have the restricted square property. O

3.3 2-overlap-free binary words

We consider another morphism introduced by Thue [22]B5* — B*,
0~ 01201, 1+~ 020121, 2+ 0212021.

Proposition 3([22]). The infinite wordr“'(0) is square-free.

Sincer(2) = 0212021, the infinite wordr* (0) contains the factd?12. Hence,
by Proposition 2, the word(7(0)) is not overlap-free. However, by Proposi-
tion 3, 7(0) has the restricted square property. Now, by the constmctie
word 7¢(0) contains an infinite number of occurrences-¢f1):

7(0) = wT(01)usr(01) -+ - up7(01)--- ,u; € Bt

= [I[i=; wer(01)
=TI, 01201020121,
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Letn € N and let us denote by, the word obtained from*(0) by replacingl 02
by 22 in n (not necessarily consecutive) occurrences(ofl).

Proposition 4. For everyn € N, the wordY,, has the restricted square property.

Proof. We will prove that the occurrences 22 are the only squares in the word
Y,3

Suppose that,, contains another square # 22. Since the only difference
betweenr(0) andY,, comes from the occurrences tif replaced by the lettex
and sincer“(0) is square-free, the square must have a common factor with at
least one facto?2.

If » contains some full occurrences 2, then replacing each of these occur-
rences byl02 does not change the fact thatis a square. Hence, if there are no
other occurrences @R intersecting with-r, then this square is a factor of (0),
which is impossible.

Thus, we have = 2u2 for someu € B*. By the constructiony ends with
0120. Since01202 is not a factor of(0), the only solution is that the factor is
followed inY,, by the letteR. Thenu22u22 is a factor ofY,, and the corresponding
factor of7#(0) (which, by the construction, is obtained by replacing 22«22 all
the occurrences a2 by 102) is also a square; a contradiction.

Consequentlyy;, contains no squares but thaseobtained fromr(0) by re-
placing the facto 02 by 22 in n occurrences of (01). Since, by the construction
of 7(0), each of thes@2 is preceded and followed by the lettgrthe wordY,
has the restricted square property. O

Theorem 1 implies the following useful corollary.
Corollary 1. The wordsi(7¢(0)) andé(Y;,) for everyn € N are 2-overlap-free.

Proof. We have seen that the word$(0) andY;, have the restricted square prop-
erty. Sincer“(0) is square-free, it does not begin with a square. By the prbof o
Proposition 4, the only squares ¥ are occurrences df2. Thus,Y,, does not
begin with a square. To end, sincg(0) andY,, do not contaird0 as a factor, the
wordsd(7¢(0)) andé(Y;,) do not contain the factaraa. Thus, Theorem 1 implies
that the wordg(7+(0)) andd(Y,,) are 2-overlap-free. O

4 Partial words

A partial word « of length n over an alphabetd is a partial function
u: {1,2,...,n} — A. This means that in some positions the wardontain
holes i.e., “do not know”-letters. The holes are representee by symbol that

3In [10] the same technique was used to prove that there existuntably many almost square-
free partial words over a ternary alphabet with an infinitenber of holes.
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does not belong ted. Classical words (calletlll words) are only partial words
without holes.

Similarly to finite words, we define that infinite partial wardre partial func-
tions fromN, to .A. We denote byd} and.AY the sets of finite and infinite partial
words, respectively.

A partial wordu € A} is afactor of a partial wordv € A% U AY if there
exist wordsz, v’ € A} andy € A} U AY such that = zu'y with «/(i) = u(7)
whenever neitheu (i) nor«/'(7) is a holeo. Prefixes and suffixes are defined in the
same way.

For example, leit = abobbaca. The length ofu is |u| = 8, andu contains
two holes in positions 3 and 7. Let= aacbbobacabbaas. The wordv contains
the wordu as a factor in positions 3 and 8. The wards a suffix of the word.

Note that a partial word is a factor of all the (full) words bktsame length
in which eacho is replaced by any letter ofl. We call these (full) words the
completion®f the partial word. In the previous examplef= {a, b}, the partial
word u has four completionsibabbaaa, ababbaba, abbbbaaa, andabbbbaba.

Let k£ be a rational number. A partial wordis k-freeif all its completions are
k-free. Overlapsk-overlaps, overlap-freeness, akabverlap-freeness of partial
words are defined in the same manner.

5 The overlap-freeness of binary partial words

In this section we again havé = {a, b}.

In [14] Manea and Mercas proved that there exist infinitegng cube-free
binary partial words containing infinitely many holes. Here prove a stronger
result about 2-overlap-free binary partial words.

Theorem 2. There exist infinitely mand-overlap-free binary partial words con-
taining infinitely many holes.

Proof. Letn € N. We have seen in Corollary 1 thatr~(0)) andé(Y,,) are 2-
overlap-free (but they are not overlap-free). Sin¢ds obtained fromr(0) by
replacingn factors102 by 22, the only difference betweef{r+(0)) andd(Y,,) is
thatn factorso(102) = abaabb in 6(7¢(0)) are replaced by the factoé$22) =
abbabb in §(Y,,). Let us consider the word,,, which is obtained frond(Y,,) by
replacingd(22) by abeabb. Since bothy(7¢(0)) andi(Y;,) are2-overlap-free, also
the word.X,, is 2-overlap-free and contains exactlyholes.

In particular, denote by the word which is obtained fromt’(0) by replacing
102 with 22 in every occurrence af(01). Let us now consider the wotdl where
every§(22) in 6(Y) is replaced byuboabb. Assume that the word is not 2-
overlap-free. Then a finite prefix of contains &-overlap. This implies that,
for somen, there exists a word’,, which has the same finite prefix & By the
above, thisX,, is 2-overlap-free; a contradiction.
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Sincer¥(0) contains infinitely many occurrences of01), the wordX con-
tains infinitely many holes and it ixoverlap-free. Clearly, the word remains
2-overlap-free if we replaced any hole by eitheor b. Hence, there exists in-
finitely many2-overlap-free words containing infinitely many holes. 0

By replacing holes with letters i2roverlap-free binary partial words contain-
ing infinitely many holes we obtain the following corollary.

Corollary 2. For every non-negative integer, there exist infinitely many-
overlap-free binary partial words containingholes.

In the case of (1-)overlap-free binary partial words, theaation is different,
because it is not possible to construct infinite overlap-toenary partial words
with more than one hole. More precisely, we prove the folfaytheorem.

Theorem 3. An infinite overlap-free binary partial word is either fulk @f the
form ow or zow, wherew is an infinite full word andr is a letter. There are
infinitely many overlap-free words of each type.

Proof. The case of full words follows from the existence of the Thderse infi-
nite overlap-free word.

Now, let x,y be the two different letters of the alphahétand letw be an
infinite partial word overA containing a factor: which begins withzo. If u
begins withzox or xoyy, thenu contains a cube. Thusg,begins withzoyx. If u
begins withzoyzyyy, xoyryyx, xoyryz, or xoyxrrr, then it is not overlap-free.
Hence,u begins withzoyzzy. If v begins withzoyxxyyy or xoyrryx, it is not
overlap-free. Therefore, the only remaining case isthaggins withzoyzzyyz.
But thenyu and zu are not overlap-free, which implies that, if the woudis
overlap-free, then the factarcan only be at the beginning af. Moreover, this
also implies thatv cannot contain more than one hole. To conclude the first ¢laim
note that removing the first letter of a word keeps the wordlapefree.

To complete the proof, it remains to show that there exisnéinite number
of overlap-free binary partial words beginning with sucharav:. Consider any
suffix of the Thue-Morse word beginning withy(babaabb) = bap(abaabd). By
the overlap-freeness af this suffix is overlap-free. On the other hand, if we
replace the second letter of the suffix hywe get a word of the formbt’, where
t'" is a suffix oft beginning withy(abaabb). By Proposition 1, this word is also
overlap-free. Hence, we conclude that the wosd is an infinite overlap-free
binary partial word.

Since the Thue-Morse worglis recurrent, i.e., each factor appears infinitely
often int, it contains an infinite number of suffixes beginning wittbabaabb).
Thus, there exist an infinite number of infinite overlap-fbaeary partial words
beginning withboabbaab. We note that, by the above, the waribaab is the only
possibility that may occur aftér> in an overlap-free word. O
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This theorem has the following corollary, which improvespusition 5 of
Manea and Mercas [14] that there exist infinitely many cfrbe-binary partial
words containing exactly one hole.

Corollary 3. There exist infinitely many infinite overlap-free binary fp@rwords
containing exactly one hole.

6 Conclusion

In this paper we have consideréebverlap-freeness and overlap-freeness of bi-
nary partial words. In Theorem 1 we have proven a connectbnder2-overlap-
free words and the restricted square property. Using tkigirere have shown in
Corollary 1 that certain binary words ateoverlap-free. These words enable us to
prove in Theorem 2 that there exist infinitely matvpverlap-free binary partial
words containing infinitely many holes. Finally, we havewhan Theorem 3 that
an infinite overlap-free binary partial word is either futlaf the formow or xow,
wherew is an infinite full word andr is a letter. Moreover, there are infinitely
many overlap-free words of each type.
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