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Abstract

We prove that there exist infinitely many infinite overlap-free binary partial words
containing at least one hole. Moreover, we show that these words cannot contain
more than one hole and the only hole must occur either in the first or in the second
position. We define that a partial word isk-overlap-free if it does not contain a
factor of the formxyxyx where the length ofx is at leastk. We prove that there
exist infinitely many2-overlap-free binary partial words containing an infinite
number of holes.
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1 Introduction

Repetitions, i.e., consecutive occurrences of words within a word and especially
repetition-freeness have been fundamental research subjects in combinatorics on
words since the seminal papers of Thue [21, 22] in the beginning of the 20th cen-
tury; see [4] to learn what Thue exactly proved. In particular, Thue showed that
there exists an infinite wordw over a 3-letter alphabet, which does not contain any
nonempty squaresxx. Moreover, he constructed an infinite binary wordt which
does not contain any overlapsxyxyx for any wordsx andy with x nonempty.
This celebrated word is nowadays called the Thue-Morse word, which has many
surprising and remarkable properties; see [2]. As an example, we mention apply-
ing t for designing an unending play of chess [8, 15] and for solving the Burnside
problem for groups [1] and semigroups [16, 17].

In [14] Manea and Mercaş considered repetition-freeness of partial words.
Partial words are words with “do not know”-symbols called holes and they were
first introduced by Berstel and Boasson in [5]. Motivation for the study of partial
words comes from applications in word algorithms and molecular biology, in par-
ticular; see [6] for using partial words in DNA sequencing and DNA comparison.
The theory of partial words has developed rapidly in the recent years and many
classical topics in combinatorics on words have been revisited. Topics such as pe-
riodicity, primitivity, unbordered word, codes and equations have been considered
in the first book on partial words authored by Blanchet-Sadriin 2007 [7]. See also
related works by Shur and Gamzova [20], Leupold [11] and Lischke [12]. As an-
other approach for modeling missing or uncertain information in words we want
to mention word relations, a generalization of the compatibility of partial words
introduced in [9].

It was shown in [14] that there exist infinitely many cube-free binary partial
words containing an infinite number of holes. In this paper wegive short and
simple proofs that this result can be improved. The key notion is the restricted
square property of infinite words over a three-letter alphabet introduced in Sec-
tion 3. Using it we easily prove in Section 5 that there exist infinitely many binary
partial words with an infinite number of holes which do not contain 2-overlaps,
i.e., factors of the formxyxyx where the length ofx is at least two. We also prove
that there exist infinitely many infinite overlap-free binary partial words with one
hole but none with two or more holes, and that the single hole can only be either
in the first or in the second position of the word.

2 Words, morphisms, and powers

Let A be a finite alphabet. The elements ofA are calledletters. A word w =
a1a2 · · ·an of lengthn over the alphabetA is a mappingw : {1, 2, . . . , n} → A
such thatw(i) = ai. The length of a wordw is denoted by|w|, andε is the
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empty word of length zero. By a (right) infinite wordw = a1a2a3 · · · we mean a
mappingw from the positive integersN+ to the alphabetA such thatw(i) = ai.
The set of all finite words is denoted byA∗ and infinite words are denoted byAω.
Let alsoA+ = A∗ \ {ε}. A finite wordv is afactor of w ∈ A∗ ∪ Aω if w = xvy,
wherex ∈ A∗ andy ∈ A∗ ∪Aω. If x = ε, thenv is aprefixof w. If v ∈ A∗ ∪Aω

andw = xv, thenv is called asuffixof w.
A morphism onA∗ is a mappingϕ : A∗ → A∗ satisfyingϕ(xy) = ϕ(x)ϕ(y)

for all x, y ∈ A∗. Note thatϕ is completely defined by the valuesϕ(a) for every
lettera onA. A morphism is calledprolongable on a lettera if ϕ(a) = aw for
some wordw ∈ A+ such thatϕn(w) 6= ε for all integersn ≥ 1. By the definition,
ϕn(a) is a prefix ofϕn+1(a) for all integersn ≥ 0 and the sequence(ϕn(a))n≥0

converges to the unique infinite word generated byϕ,

ϕω(a) := lim
n→∞

ϕn(a) = awϕ(w)ϕ2(w) · · · ,

which is a fixed point ofϕ.
A kth powerof a wordu 6= ε is the worduk. It is the prefix of lengthk · |u|

of uω, whereuω denotes the infinite catenation of the wordu andk is a rational
number such thatk · |u| is an integer. A wordw is calledk-free if there does not
exist a wordx such thatxk is a factor ofw. If k = 2 or k = 3, then we talk about
square-freeor cube-freewords, respectively. Anoverlap is a word of the form
xyxyx wherex ∈ A+ andy ∈ A∗. A word is calledoverlap-freeor 2+-free if it
does not contain overlaps or, equivalently, if it does not containkth powers for any
k > 2. Hence, it can contain squares but it cannot contain any longer repetitions
such as overlaps or cubes. For example, over the alphabet{a, b} the wordabbabaa
is overlap-free but it contains squaresbb, aa andbaba. It is easy to verify that there
does not exist an infinite square-free word over a binary alphabet but, as we will
see in the next section, there exist infinite overlap-free binary words.

We generalize the notion of an overlap as follows.

Definition 1. A k-overlap is a word of the formxyxyx wherex andy are two
words with|x| = k. A word isk-overlap-free1if it does not containk-overlaps.

For example, the wordbaabaab is not overlap-free but it is 2-overlap-free
while the wordbaabaaba is not. By the definition, it is evident that anyk-overlap-
free word is alsok′-overlap-free fork′ ≥ k. Note that a word is1-overlap-free if
and only if it is overlap-free.

Remark 1. Another possible definition fork-overlap-freeness is to require that a
k-overlap-free word must also be cube-free. In the case of2-overlap-free words,
this new definition just means that in addition to2-overlaps a word cannot contain
short cubesaaa, wherea is a letter. We want to stress that all the results in this
paper are also valid for this alternative definition of2-overlap-freeness.

1While it is not exactly the same, this notion ofk-overlap-freeness resembles that ofk-bounded
overlaps introduced by Thue in [22].
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3 Preliminary results

Let us consider two alphabetsA = {a, b} andB = {0, 1, 2}.

3.1 Overlap-free binary words

In [22] Thue introduced the following morphismµ : A∗ → A∗,

a 7→ ab, b 7→ ba.

The Thue-Morse word is the infinite overlap-free binary word

t := lim
n→∞

µn(a) = abbabaabbaababbaba · · ·

generated byµ; see, e.g., [2] for other definitions and properties.
Proposition 1 below gives a useful property of the Thue-Morse word t. Its

proof uses two already known lemmata.
The first lemma is due to Thue [22] himself; see [13] for a proof.

Lemma 1. LetX = {ab, ba}. If x ∈ X∗, thenaxa /∈ X∗ andbxb /∈ X∗.

The second lemma is a part of Proposition 1.7.5 in [3]; see also [18].

Lemma 2. If x is an infinite overlap-free binary word overA, then there exist
v ∈ {ε, a, b, aa, bb} and an infinite overlap-free binary wordy such thatx =
uµ(y).

Proposition 1. Lett′ be a suffix of the Thue-Morse wordt beginning withµ(abaabb).
Then the wordbbt′ is overlap-free.

Proof. The wordt′ is overlap-free sincet is overlap-free. Let us first prove that
bt′ is also overlap-free. Suppose thatbt′ contains an overlap. Sincet′ is overlap-
free and begins with the lettera, this means thatbt′ begins withbubub for a word
u ∈ A+. By the definition oft′, we must havev = ε in Lemma 2 andt′ = µ(t′′)
for some infinite wordt′′. This implies thatt′ decomposes over{ab, ba}. Thus,
if |u| is even, thenu andbub are images of words byµ, which contradicts with
Lemma 1.

Consequently,|u| is odd. Thus,ub = µ(u′a) for some wordu′ ∈ A∗ andt′

begins withµ(u′au′a) which implies thatt containsu′au′a as a factor. From the
definition of t′ one has that|u′| ≥ 6 andu′ begins withabaa. Sou′ = abaau′′

for some wordu′′ ∈ A+ andu′au′a = abaau′′aabaau′′a. If u′′ begins or ends
with a thenu′au′a containsaaa as a factor. Otherwiseu′′ begins and ends with
b andu′au′a contains the factorbaabaab. In both cases this contradicts with the
overlap-freeness oft.

Now we prove thatbbt′ is overlap-free. Suppose thatbbt′ contains an overlap.
Sincebt′ is overlap-free, this means thatbbt′ begins withbubub for a wordu ∈ A+,
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andubub is overlap-free. Suppose that|u| is odd. Sincet′ = µ(t′′) for some
infinite word t′′, we haveu = bµ(u′) for some wordu′ ∈ A+. But in this case
bt′, which begins withubu, has the prefixbµ(u′)bb. This means thatt′ begins
with µ(u′)bb, which contradicts witht′ = µ(t′′).

Thus,|u| is even. Letu′ ∈ A+ be such thatu = bu′. Now bbt′ begins with
bbu′bbu′b. Sincet′ = µ(t′′), there exist two wordsu1 andu2 in A+ such that
u′b = µ(u1) andbu′ = µ(u2). Sinceu′bbu′b is overlap-free, the wordu′ begins
and ends witha. This implies thatu1 = au′

1a andu2 = bu′
2b for some wordsu′

1, u
′
2

overA. Consequently,bbu′bbu′b = bbµ(u1)µ(u2)b = bbabµ(u′
1)abbaµ(u′

2)bab,
which implies thatu′

1 begins withb andu′
2 ends witha. But in this caseubub =

bu′bbu′b = µ(u2)bbµ(u1) containsµ(ab)bbµ(ab) = abbabbabba, which contradicts
with the overlap-freeness ofubub.

3.2 The restricted square property

In order to prove the existence of infinite cube-free words over a two-letter alpha-
bet from the existence of square-free words over three letters, Thue used in [21]
the following morphismδ : B∗ → A∗,

0 7→ a, 1 7→ ab, 2 7→ abb.

Six years later he proved the following

Proposition 2 ([22]). Letu ∈ Aω andv ∈ Bω be such thatδ(v) = u. The wordu
is overlap-free if and only ifv is square-free and does not contain010 nor 212 as
a factor.

Here we will use the morphismδ to prove the existence of infinite 2-overlap-
free binary words that are not overlap-free.2 We need the following new notion
introduced in [19].

Definition 2. An infinite wordv overB has therestricted square propertyif, for
every nonempty factorrr of v, the wordr does not begin nor end with the letter 0
and the factorrr is preceded and followed by the letter 0.

Notice that if a wordv ∈ Bω has the restricted square property thenv does not
begin with a square,v is overlap-free, andv does not contain00 as a factor.

The following result is a useful analogue of Proposition 2.

Theorem 1. Let v be an infinite word overB such that it does not begin with a
square and the infinite wordu = δ(v) overA does not contain the factoraaa.
Then the wordu is 2-overlap-free if and only ifv has the restricted square prop-
erty.

2Thue [22] already remarked that a wordδ(w), wherew is square-free, may have overlaps, but
if xyxyx is an overlap, thenx is a letter.
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Note that here the wordu is also cube-free.

Proof. Let u andv be as in the statement. Sinceu does not contain the factor
aaa, v does not contain the factor00. Let rr be a factor ofv with r 6= ε. By the
hypothesis,rr is not at the beginning ofv. This means that inv the factorrr is
preceded (and followed) by at least one letter.

If r begins with the letter0, then it does not end with0 (because00 is not
a factor ofv) and it is preceded by the letter1 or the letter2. Consequently,
δ(r) = asb andδ(rr) is necessarily preceded byb and followed bya. This means
that u contains the factorbδ(rr)a = basbasba, which implies thatu is not 2-
overlap-free. The argument is the same ifr ends with the letter0.

Now if r begins with1 or 2, ends with1 or 2, andrr is not followed by0, then
δ(r) begins withab andδ(rr) is followed byab. Hence,u is not 2-overlap-free.

To end, ifr ends with1 or 2 and is not preceded by0, thenδ(r) begins with
a and ends withb, andδ(rr) is preceded byb. Sinceδ(rr) is followed bya, this
implies thatu is not 2-overlap-free.

Consequently, ifu is 2-overlap-free, thenv has the restricted square property.
Conversely, suppose thatu is not 2-overlap-free. There are four possible cases:

1. If u contains a factoraaxaaxaa, then the wordv contains a square begin-
ning with0;

2. If u contains a factorabxabxab, then there exists necessarilyy ∈ B+ such
thatabx = δ(y). Thus,v contains a squareyy followed by a letter1 or 2;

3. If u contains a factorbaxbaxba, then there exists necessarilyy ∈ B+ such
thataxb = δ(y). Thus,v contains a squareyy preceded by a letter1 or 2;

4. If u contains a factorbbxbbxbb, then there exists necessarilyy ∈ B+ such
thatxbb = δ(y). Thus,v contains a squareyy preceded by a letter2.

In the four casesv does not have the restricted square property.

3.3 2-overlap-free binary words

We consider another morphism introduced by Thue [22]:τ : B∗ → B∗,

0 7→ 01201, 1 7→ 020121, 2 7→ 0212021.

Proposition 3 ([22]). The infinite wordτω(0) is square-free.

Sinceτ(2) = 0212021, the infinite wordτω(0) contains the factor212. Hence,
by Proposition 2, the wordδ(τω(0)) is not overlap-free. However, by Proposi-
tion 3, τω(0) has the restricted square property. Now, by the construction, the
word τω(0) contains an infinite number of occurrences ofτ(01):

τω(0) = u1τ(01)u2τ(01) · · ·ukτ(01) · · · , ui ∈ B+

=
∏∞

k=1
ukτ(01)

=
∏∞

k=1
uk01201020121.
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Let n ∈ N and let us denote byYn the word obtained fromτω(0) by replacing102
by 22 in n (not necessarily consecutive) occurrences ofτ(01).

Proposition 4. For everyn ∈ N, the wordYn has the restricted square property.

Proof. We will prove that the occurrences of22 are the only squares in the word
Yn.3

Suppose thatYn contains another squarerr 6= 22. Since the only difference
betweenτω(0) andYn comes from the occurrences of10 replaced by the letter2
and sinceτω(0) is square-free, the squarerr must have a common factor with at
least one factor22.

If r contains some full occurrences of22, then replacing each of these occur-
rences by102 does not change the fact thatrr is a square. Hence, if there are no
other occurrences of22 intersecting withrr, then this square is a factor ofτω(0),
which is impossible.

Thus, we haver = 2u2 for someu ∈ B+. By the construction,u ends with
0120. Since01202 is not a factor ofτω(0), the only solution is that the factorrr is
followed inYn by the letter2. Thenu22u22 is a factor ofYn and the corresponding
factor ofτω(0) (which, by the construction, is obtained by replacing inu22u22 all
the occurrences of22 by 102) is also a square; a contradiction.

Consequently,Yn contains no squares but those22 obtained fromτω(0) by re-
placing the factor102 by 22 in n occurrences ofτ(01). Since, by the construction
of τω(0), each of these22 is preceded and followed by the letter0, the wordYn

has the restricted square property.

Theorem 1 implies the following useful corollary.

Corollary 1. The wordsδ(τω(0)) andδ(Yn) for everyn ∈ N are2-overlap-free.

Proof. We have seen that the wordsτω(0) andYn have the restricted square prop-
erty. Sinceτω(0) is square-free, it does not begin with a square. By the proof of
Proposition 4, the only squares inYn are occurrences of22. Thus,Yn does not
begin with a square. To end, sinceτω(0) andYn do not contain00 as a factor, the
wordsδ(τω(0)) andδ(Yn) do not contain the factoraaa. Thus, Theorem 1 implies
that the wordsδ(τω(0)) andδ(Yn) are 2-overlap-free.

4 Partial words

A partial word u of length n over an alphabetA is a partial function
u : {1, 2, . . . , n} → A. This means that in some positions the wordu contain
holes, i.e., “do not know”-letters. The holes are represented by⋄, a symbol that

3In [10] the same technique was used to prove that there exist uncountably many almost square-
free partial words over a ternary alphabet with an infinite number of holes.
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does not belong toA. Classical words (calledfull words) are only partial words
without holes.

Similarly to finite words, we define that infinite partial words are partial func-
tions fromN+ toA. We denote byA∗

⋄ andAω

⋄ the sets of finite and infinite partial
words, respectively.

A partial wordu ∈ A∗
⋄ is a factor of a partial wordv ∈ A∗

⋄ ∪ Aω

⋄ if there
exist wordsx, u′ ∈ A∗

⋄ andy ∈ A∗
⋄ ∪ Aω

⋄ such thatv = xu′y with u′(i) = u(i)
whenever neitheru(i) noru′(i) is a hole⋄. Prefixes and suffixes are defined in the
same way.

For example, letu = ab⋄bba⋄a. The length ofu is |u| = 8, andu contains
two holes in positions 3 and 7. Letv = aa⋄bb⋄ba⋄abbaa⋄. The wordv contains
the wordu as a factor in positions 3 and 8. The wordu is a suffix of the wordv.

Note that a partial word is a factor of all the (full) words of the same length
in which each⋄ is replaced by any letter ofA. We call these (full) words the
completionsof the partial word. In the previous example, ifA = {a, b}, the partial
wordu has four completions:ababbaaa, ababbaba, abbbbaaa, andabbbbaba.

Let k be a rational number. A partial wordu is k-free if all its completions are
k-free. Overlaps,k-overlaps, overlap-freeness, andk-overlap-freeness of partial
words are defined in the same manner.

5 The overlap-freeness of binary partial words

In this section we again haveA = {a, b}.
In [14] Manea and Mercaş proved that there exist infinitely many cube-free

binary partial words containing infinitely many holes. Herewe prove a stronger
result about 2-overlap-free binary partial words.

Theorem 2. There exist infinitely many2-overlap-free binary partial words con-
taining infinitely many holes.

Proof. Let n ∈ N. We have seen in Corollary 1 thatδ(τω(0)) andδ(Yn) are 2-
overlap-free (but they are not overlap-free). SinceYn is obtained fromτω(0) by
replacingn factors102 by 22, the only difference betweenδ(τω(0)) andδ(Yn) is
thatn factorsδ(102) = abaabb in δ(τω(0)) are replaced by the factorsδ(22) =
abbabb in δ(Yn). Let us consider the wordXn, which is obtained fromδ(Yn) by
replacingδ(22) by ab⋄abb. Since bothδ(τω(0)) andδ(Yn) are2-overlap-free, also
the wordXn is 2-overlap-free and contains exactlyn holes.

In particular, denote byY the word which is obtained fromτω(0) by replacing
102 with 22 in every occurrence ofτ(01). Let us now consider the wordX where
everyδ(22) in δ(Y ) is replaced byab⋄abb. Assume that the wordX is not 2-
overlap-free. Then a finite prefix ofX contains a2-overlap. This implies that,
for somen, there exists a wordXn which has the same finite prefix asX. By the
above, thisXn is 2-overlap-free; a contradiction.
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Sinceτω(0) contains infinitely many occurrences ofτ(01), the wordX con-
tains infinitely many holes and it is2-overlap-free. Clearly, the wordX remains
2-overlap-free if we replaced any hole by eithera or b. Hence, there exists in-
finitely many2-overlap-free words containing infinitely many holes.

By replacing holes with letters in2-overlap-free binary partial words contain-
ing infinitely many holes we obtain the following corollary.

Corollary 2. For every non-negative integern, there exist infinitely many2-
overlap-free binary partial words containingn holes.

In the case of (1-)overlap-free binary partial words, the situation is different,
because it is not possible to construct infinite overlap-free binary partial words
with more than one hole. More precisely, we prove the following theorem.

Theorem 3. An infinite overlap-free binary partial word is either full or of the
form ⋄w or x⋄w, wherew is an infinite full word andx is a letter. There are
infinitely many overlap-free words of each type.

Proof. The case of full words follows from the existence of the Thue-Morse infi-
nite overlap-free wordt.

Now, let x, y be the two different letters of the alphabetA and letw be an
infinite partial word overA containing a factoru which begins withx⋄. If u
begins withx⋄x or x⋄yy, thenu contains a cube. Thus,u begins withx⋄yx. If u
begins withx⋄yxyyy, x⋄yxyyx, x⋄yxyx, or x⋄yxxx, then it is not overlap-free.
Hence,u begins withx⋄yxxy. If u begins withx⋄yxxyyy or x⋄yxxyx, it is not
overlap-free. Therefore, the only remaining case is thatu begins withx⋄yxxyyx.
But thenyu andxu are not overlap-free, which implies that, if the wordw is
overlap-free, then the factoru can only be at the beginning ofw. Moreover, this
also implies thatw cannot contain more than one hole. To conclude the first claim,
note that removing the first letter of a word keeps the word overlap-free.

To complete the proof, it remains to show that there exist an infinite number
of overlap-free binary partial words beginning with such a word u. Consider any
suffix of the Thue-Morse wordt beginning withµ(babaabb) = baµ(abaabb). By
the overlap-freeness oft, this suffix is overlap-free. On the other hand, if we
replace the second letter of the suffix byb, we get a word of the formbbt′, where
t′ is a suffix oft beginning withµ(abaabb). By Proposition 1, this word is also
overlap-free. Hence, we conclude that the wordb⋄t′ is an infinite overlap-free
binary partial word.

Since the Thue-Morse wordt is recurrent, i.e., each factor appears infinitely
often in t, it contains an infinite number of suffixes beginning withµ(babaabb).
Thus, there exist an infinite number of infinite overlap-freebinary partial words
beginning withb⋄abbaab. We note that, by the above, the wordabbaab is the only
possibility that may occur afterb⋄ in an overlap-free word.
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This theorem has the following corollary, which improves Proposition 5 of
Manea and Mercaş [14] that there exist infinitely many cube-free binary partial
words containing exactly one hole.

Corollary 3. There exist infinitely many infinite overlap-free binary partial words
containing exactly one hole.

6 Conclusion

In this paper we have consideredk-overlap-freeness and overlap-freeness of bi-
nary partial words. In Theorem 1 we have proven a connection between2-overlap-
free words and the restricted square property. Using this result we have shown in
Corollary 1 that certain binary words are2-overlap-free. These words enable us to
prove in Theorem 2 that there exist infinitely many2-overlap-free binary partial
words containing infinitely many holes. Finally, we have shown in Theorem 3 that
an infinite overlap-free binary partial word is either full or of the form⋄w or x⋄w,
wherew is an infinite full word andx is a letter. Moreover, there are infinitely
many overlap-free words of each type.
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du LaCIM, Département de mathématiques et d’informatique, Université du
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[14] F. Manea, R. Mercaş, Freeness of partial words, Theoret. Comput. Sci. 389
(2007) 265–277.

[15] M. Morse, Abstract 360: a solution of the problem of infinite play in chess,
Bull. Amer. Math. Soc. 44 (1938) 632.

[16] M. Morse, G.A. Hedlund, Symbolic dynamics, Amer. J. Math 60 (1938)
815–866.

[17] M. Morse, G.A. Hedlund, Unending chess, symbolic dynamics and a prob-
lem in semigroups, Duke Math. J. 11 (1944) 1–7.

[18] A. Restivo, S. Salemi, Overlap free words on two symbols, in: Nivat, Per-
rin (eds), Automata on infinite words, Lecture Notes in Comput. Sci. 192
(1984) 198–206.
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