Acta Informatica 25, 593624 (1988) ME@@_

© Springer-Verlag 1988

A Calculus of Refinements for Program Derivations

R.J.R. Back
Abo Akademi, Department of Computer Science, Lemminkaisenk. 4, SF-20520, Turku, Finland

Summary. A calculus of program refinements is described, to be used as
a tool for the step-by-step derivation of correct programs. A derivation step
is considered correct if the new program preserves the total correctness of
the old program. This requirement is expressed as a relation of (correct)
refinement between nondeterministic program statements. The properties of
this relation are studied in detail. The usual sequential statement constructors
are shown to be monotone with respect to this relation and it is shown
how refinement between statements can be reduced to a proof of total correct-
ness of the refining statement. A special emphasis is put on the correctness
of replacement steps, where some component of a program is replaced by
another component. A method by which assertions can be added to state-
ments to justify replacements in specific contexts is developed. The paper
extends the weakest precondition technique of Dijkstra to proving correct-
ness of larger program derivation steps, thus providing a unified framework
for the axiomatic, the stepwise refinement and the transformational approach
to program construction and verification.

1. Introduction

Research in programming methodology has been very fruitful in the last twenty
years. Early work on program verification by Floyd [F167], Naur [Na66] and
Hoare [Ho69] established a mathematically sound basis for studying program
construction methods. Stepwise refinement was proposed as a systematic pro-
gram derivation method by Dijkstra and Wirth in the early seventies [Di71,
Wi71]. Other paradigms were the program transformation approach, which
grew out of this, by Gerhart [Ge75] and Burstall and Darlington [BuDa77].
A third approach, based on identifying the invariant and termination function
of loops, was inspired by Hoare’s axiomatization of partial correctness [Ho71]
and Dijkstra’s work on the weakest precondition calculus [Di76] and has been
further studied and developed by Gries [Gr81], Reynolds [Re81] and Hehner
[He84], among others.

The refinement calculus is an attempt to unify the stepwise refinement and
program transformation approaches with the invariant-based approach to pro-
gram construction. The basic notion in this calculus is the relation of (correct)

594 R.J.R. Back

refinement between programs. A program S is said to be correctly refined by
another program S’ if S’ preserves the correctness of S, in the sense that §
satisfies any specification that S satisfies.

Specifications are treated as program statements in the refinement calculus.
They may not necessarily be executable, but they determine a well-defined effect
on the program state. A specification need not determine the required effect
uniquely, it may only state some properties that the result must satisfy. Hence
specifications are nondeterministic statements.

Treating specifications as program statements is a conceptual simplification,
since there is then only one kind of entity to work with. It does introduce
some complications in the semantics and proof theory, since certain usual
assumptions about statements are no longer necessarily valid. The assumption
of bounded nondeterminacy is probably the most important one. This says
that any nondeterministic program that can have an infinite number of possible
final states must also be potentially nonterminating. This property, initially iden-
tified in [Di76], is an inherent property of executable nondeterministic program
statements. Specifications need not, however, have this property, so programs
of unbounded nondeterminism are permitted in the refinement calculus.

The refinement calculus is thus concerned with the relationship of correct
refinement between nondeterministic program statements. The notion of correct
refinement is applicable to any kind of program derivation step in which a
new version of a program is produced that must be logically consistent with
the previous version. A derivation step can for instance consist of implementing
an input-output specification by a program, applying a program transformation
rule, removing recursion from a program or changing the data representation
in the program. A derivation step can be applied to the whole program or
to only some part of it. The refinement calculus provides a framework in which
the correctness of specific derivation steps can be established and in which
general methods and rules of inference for program derivations can be proved
correct.

The refinement calculus was originally described in [Ba78, Ba80, Ba81b],
where a simple base language for programs and specifications was proposed
and the relation of correct refinement was defined and studied. Our aim in
this paper is to study the relation of correct refinement between nondeterministic
statements further and in more detail. We will not be concerned with the different
methods by which derivation steps can be carried out and their formalization
in the refinement calculus, as this topic is covered quite extensively in [Ba80],
but concentrate on developing the mathematical basis for this calculus.

The notion of correct refinement can be defined generally for any class of
programs and specifications as follows [Ba81b]. Let Stat be a set of program
statements and Spec the set of specifications to which these statements can
be compared. Let sat be the satisfaction relation: if S is in Stat and R in Spec,
then S sat R means that statement S satisfies specification R.

Let S be some statement and S’ another statement produced by a derivation
step from S. The derivation step preserves correctness if S’ satisfies any specifica-
tion that § satisfies:

Ssat R==S'sat R, forany ReSpec.

A Calculus of Refinements for Program Derivations 595

We say that S is (correctly) refined by S, denoted by S ref §', if this condition
holds.

It follows immediately from the definition that ref is reflexive and transitive,
ie. it is a preorder. Hence, successive refinements can be carried out on some
initial program statement: if S, is the original program statement and S,,
S5, ..., S, are successive refinements, then

Soref S, ref...refS, implies S, refS,,.

To be useful in program derivation, the constructs for combining statements
into larger statements must be monotonic with respect to ref: if S[T] is some
program statement containing substatement T, then

Tref T'=S[T]refS'[T7] forany statement 7'

A substatement can thus always be replaced by its refinement. This means that
program derivation can be carried out in a top-down manner: a derivation
step is applied to some part of the program, and if this step is correct, then
the original part may be replaced by the result of the derivation. Monotonicity
depends on the class of program statements and program specifications consid-
ered and on the way in which the satisfaction relation is defined; it may or
many not hold for a specific choice of these.

The refinement calculus considers the relation of correct refinement for a
particular choice of program statements, nondeterministic statements with recur-

sion, and uses total correctness as the criteria of correctness. With these choices,
Srefs’, if -

P{S)Q=P<(55Q

holds for any pre-postcondition pair (P, Q). Here P{S) Q states that statement
S is totally correct with respect to precondition P and postcondition Q.

The contents of the paper is as follows. We present the necessary background
on weakest preconditions and strongest postconditions in Sect. 2.

A simple programming language is introduced in Sect. 3. This language gen-
eralizes the guarded commands of Dijkstra [Di76] by adding recursion and
permitting basic statements of unbounded non-determinism. Predicate trans-
formers are defined for these constructs.

The notion of correct refinement is studied in Sect. 4. The relation is defined
in such a way that it permits introducing auxiliary variables during program
derivation. In Sect. 5 we prove that our statement are indeed monotone with
respect to the refinement relation.

In Sect. 6 we show how refinement between statements can be proved in
the weakest precondition calculus. We derive a proof rule that reduces the task
of proving that a statement S is refined by another statement S’ to proving
that S’ is totally correct with respect to a specific pre-postcondition pair, which
depends on the statement S being refined. This also provides us with an alterna-
tive characterization of refinement.

596 R.J.R. Back

In Sect. 7 we consider a subclass of refinements called conservative refine-
ments. These are simpler to use, but do not permit the free introduction of
auxiliary variables.

In Sect. 8 we study context dependent replacements. These are replacements
that are correct in some contexts but not in all. Such replacements cannot
therefore be justified by monotonicity alone. We show how the context of a
replacement can be taken into account by introducing context assertions into
statements.

The method of introducing context assertions is related to the techniques
for proving partial and total correctness of programs. We study the relationship
between these notions in Sect. 9 and relate the method to the use of proof
outlines in program derivations.

The use of the refinement calculus is illustrated in Sect. 10 with the derivation
of a small example program. The example is intended only to illustrate the
main ideas of the paper, without being too big. A more substantial application
is described in [Ba88], where the method is applied to the formal derivation
of a marking algorithm originally constructed by informal derivations in
[BaMaRa83].

The basic ideas of the refinement calculus were originally presented in [Ba78,
Ba80]. In this paper, we develop further the basic foundations of this calculus.
The method is improved in a number of ways, and most results are either
new or substantial generalizations of the previous results. The language is
extended to include full recursion, and unbounded nondeterminism is permitted
without restriction. The connection with the predicate transformer approach
is further emphasized, and strongest postconditions are introduced into the
theory. The characterization and proof rule for refinement of Sect. 6 is new.
It provides a simple bridge between the refinement and the weakest precondition
calculi. The definition of refinement is extended to permit the introduction of
auxiliary variables. The method for context-dependent replacements has been
reworked completely, and its connection with partial and total correctness is
studied in detail.

The general criteria for correctness preserving refinement is defined and stud-
ied also for correctness criteria other than total correctness in [Ba81b]. The
connection between weakest preconditions and unbounded nondeterminism was
previously studied in [Ba81a].

There has been relatively little work on general relations of refinement be-
tween programs. In most papers on program transformations, correctness is
simply taken to be semantic equivalence of programs. This is the approach
used in [BuDa77]. The approach closest to ours is the one used in the CIP
project [BBPW79], where the program derivations are studied within a function-
al framework, based on the algebraic semantics. Nondeterministic functions are
permitted, and the nondeterminism may be unbounded. However, the criteria
for correctness of a refinement step is different. There is also no connection
with the weakest precondition approach in their work. In [BrPeWi80] a number
of possible relations between programs are defined, but the specific relation
of refinement used here is not included. An approach that is close in spirit
to ours is that by Hoare and Hehner on programs as specifications [He84b,

A Calculus of Refinements for Program Derivations 597

Ho85]. Their approach is in a sense dual to the one taken here: we treat specifica-
tions as programs, they treat programs as specifications. The resulting calculi
are, however, very different. Our refinement relation turns out to be essentially
the same as the Smyth order [Sm78], which was used to provide a denotational
semantics for bounded nondeterminism. The purpose and applications of that
work is very different from ours, although it is interesting that essentially the
same basic notion works both in the semantics of nondeterminism and in the
theory of correct program refinements (see [P179, Ba81b] for further details
of this connection).

2. Predicate Transformers

We base our approach to correct refinement on predicate transformers. Since
we are primarily interested in the total correctness of statements, weakest precon-
ditions will be central in our study. However, strongest postconditions turn
out to be useful also, because of their nature as forward predicate transformers.
The weakest precondition approach is due to Dijkstra [Di76], and is also
explained and further developed in [Gr81, He84, JaGr85].

2.1 Semantics of Statements and Predicates

Assume that an infinite set of (program) variables Var is given, each variable
taking its value in a fixed set Val of values. Let v be some set of program
variables. A state of v is an assignment of values to the variables in v, ie.
a function g: v—Val. We write X, for the set of all states of v (the state space
of v).

A (nondeterministic) state transformation on v assigns to cach initial state
¢ of v a nonempty set of possible final states. A final state is either a state
of v or the special undefined state L. A state transformation on v is thus a
function f: ¥,—»P(Z,u{L}), where f(5) is nonempty for each initial state o.
A state condition on v is a subset p< X,

The nondeterminism of a state transformation f is said to be bounded if
for each initial state o, either f(o) is finite or L ef(s). Otherwise, the nondeter-
minism of f is unbounded.

Let S be a program statement and let var(S) denote the set of program
variables of S. We write S: v for the restriction of statement S to the variable
environment v, where var (S)<uv, i.e. S is considered as a statement on the variables
v only. The meaning of a (restricted) statement S: v is a state transformation
fs., on v, which describes the effect of executing S in an environment with
program variables v. For an initial assignment of values ¢ to v, f5 ,(0) is the
set of possible final assignments of values to these same program variables,
when the execution of S terminates. In addition, fs ,(¢) contains the undefined
state L if and only if it is possible that execution does not terminate for this
initial state.

598 R.J.R. Back

Let R be a predicate (logical formula), and let var(R) denote the free variables
of R. We write R: v for the restriction of R to the variable environment v,
where var(S)<v, i.e. R is considered as a condition on the variables v only.
The meaning of a (restricted) predicate R: v is a state condition pg , on v.
This is the set of all states of v that satisfy R.

For notational simplicity, we sometimes identify a statement S: v with the
state transformation fg , that it denotes and a predicate R: v with the state
condition pg , that it denotes. A state ¢ of v is identified with the list of values
assigned to the variables in v. Thus, we talk about the initial state v, of v,
where v, i1s a list of values, and about the set of final states S(vy) of S for
this initial state.

2.2 Weakest Preconditions and Strongest Postconditions

Weakest Preconditions. Let S be a program statement and Q a predicate. The
predicate wp(S, Q) is the weakest precondition that guarantees that execution
of S will terminate in a final state that satisfies Q. We assume that var(wp(S, @)) <
v if var(S)=v and var(Q)<v, for any set of program variables v. Hence, if S
and Q are restricted to variable environment v, then wp(S, Q) may also be re-
stricted to v. The meaning of the weakest precondition is then given by

wp(S, Q) (vg) <+ S(vy)=Q foreachstate vy of v.

Note that Q@ does not contain the element L, so S(v,) does not contain L
either, i.e. termination of S for initial state v, is guaranteed.

The following properties hold for the weakest precondition of the statement
S: v, where P, Q: v are arbitrary conditions [Di76]:

(S false)<>false (1)
v-(P=Q)=(wp(S, P)=wp(S, Q) 2
wp(S,)AWp(S Q)<>wp(S, P A Q) 3)
wp(S, P)vwp(S, Q)=wp(S,P v Q) (4)

The last two properties generalize to arbitrary disjunctions and conjunctions
(even infinite). We do not assume the continuity property for weakest precondi-
tions, since it is only valid if the nondeterminism is bounded.

Weakest preconditions are used to formalize the notation of total correctness:
A statement S: v is totally correct with respect to precondition P: v and postcon-
dition Q: v, denoted by P<{S) @, if P=wp(S, Q).

Strongest Postcondition. Given a program statement S and a predicate P, the
predicate sp(S, P) is the strongest (liberal) postcondition that holds of the final
state of an execution of S when the execution terminates, if the execution is
started in some initial state that satisfles P. We assume that var(sp(S, P))Sv,
if var(S)=v and var(P)<v, for any set of program variables v. Hence, if S and

A Calculus of Refinements for Program Derivations 599

P are restricted to the variable environment v, then sp(S, P) may also be restricted
to it. The meaning of the strongest postcondition is then given by

sp(S, P)(vy) <+ JvgeP-v,€S(vy), foreachstate v, ofv.

The strongest postcondition does not say anything about termination of
S. In this sense it is similar to the weakest liberal precondition wip(S, Q) of
[Di76], which does not require termination either. The strongest liberal postcon-
dition used here is often denoted by slp(S, P), in analogy with the weakest
liberal precondition. We prefer the notation sp(S, P), because it shows a symme-
try with the corresponding notation for the weakest precondition.

The strongest postcondition for a statement S: v satisfies the following prop-
erties, for arbitrary conditions P, Q: v:

sp(S, false)<>false)
Vo (P=Q)=(sp(S, P)=>sp(S, Q)) (6)
sp(S, P A Q)=>sp(S, P) Asp(S, Q) (7)
sp(S, P v Q)<>sp(S, P) v sp(S, Q) (8)

The last two rules generalize to arbitrary (even infinite) disjunctions and conjunc-
tions.

The strongest postcondition is used to define partial correctness of program
statements: statement S is partially correct with respect to precondition P and
postcondition Q, denoted by P{S} Q, if sp(S, P)=0Q.

Relationship between wp and sp. Weakest precondition and strongest postcondi-
tion are related as follows. Let S: v be a statement and P, Q: v be conditions.
We then have

sp(S, wp(S, 0)=0 &)
If P=wp(S, true), then P=wp(S,sp(S, P)) (10)

The validity of these properties is seen as follows. Consider first property (9).
Assume that the left hand side holds for state v,. Then there is a state v,
such that v,€S(vy) and wp(S, Q) (v,) holds. Hence, Q(v}) holds for any v’ € S(vy).
In particular, Q(v,) holds, i.e. the right hand side holds.

For property (10) we argue as follows. Assume that P=>wp(S, true). As-
sume further that P(vy) holds, for some arbitrary v,. Then, by assumption,
wp(S, true)(vy) holds, so L ¢S(vy). For any v, in S(v,), sp(S, P)(v,) holds. Hence
wp(S, sp(S, P)) (vy) holds. (These relationships between the weakest precondition
and the strongest postconditions are also mentioned in [BeBi86].)

Frame Axiom. The following frame axioms for weakest preconditions and stron-
gest postconditions are needed later. Let S: v be a statement and let P: v and
R: w be two predicates, where vnw=0. Then the weakest preconditions and

600 R.J.R. Back
strongest postconditions for statement S: v w, which in the sequel we write
as S: v, w, satisfies

wp(S, P A R)<wp(S, P)AR (11)

sp(S, P A R)<>sp(S, P)AR (12)
By assumption, S can be restricted to the variables v, so all variables of S
are contained in v. Hence, restricted to the variables v and w, S: v leaves the
state component w unchanged. In other words, (v, w;}eS (v, Wo) iff v1€S(vg)

and w, =w,. The justification of the axioms is now straightforward, given this
property.

3. Program Statements

We define the language of program statements by

S::={B) (assert statement)
|4 (primitive statement)
| X (statement variable)
[S1;S, (sequential composition)
{if By~ S;0B,—S,fi (conditional composition)
|uX-S (recursion).

Here B, B; are predicates, X is a statement variable and S, S; are program
statements.

The assert statement {B} acts as a skip statement if condition B holds and
as an abort statement otherwise. We write skip for {true} and abort for {false}.
The primitive atomic statements A are discussed below. The sequential and
conditional compositions have their usual meaning, the latter being the guarded
conditional statement. The construct X -S(X) denotes recursion. The intended
interpretation is that statement S(X) is executed in such a way that whenever
X is about to be executed, it is replaced by S(X) and execution continues with
this. The iteration statement is defined using recursion as

doB—-Sod=pX-ifB->S; X01B-skipfi

The variables var(S) of a statement S are determined by the variables that
occur in the primitive statements A, in the guards B;, and the assert-statements
{B} of S. We assume that these are always known, so that we may determine
whether a restriction of S to a given variable environment v is permitted (var(S) <=
v must hold).

We will not give an explicit semantic definition of the meaning of statements
here. Such a definition can be given in different ways, e.g. using denotational
semantics [deB80] or operational semantics [PI81]. It is sufficient for our pur-

A Calculus of Refinements for Program Derivations 601

pose to give the rules for computing the weakest precondition and strongest
postcondition for each statement.

We assume that predicates are expressed in a language that permits infinite
disjunctions, i.e. an infinitary logic like L, ,. The properties of this language
are more or less those of ordinary first order logic, and its use simplifies the
treatment of recursion. An overview of this logic is found in e.g. {Sc65], and
its use in connection with weakest preconditions is described in [Ba80, Bag1a].

The theory developed here is independent of the class of primitive statements
used in program statements, as well as of the class of guards in conditional
statements and the assert statements. These syntactic categories are therefore
not fixed here. We assume that the program variables that occur in these con-
structs are known. Furthermore, the rules for computing the weakest precondi-
tion and strongest postcondition for each primitive statement A: v and each
predicate R: v are assumed to be given.

Let us assume first that the nondeterminism of the primitive statements
is bounded. The definitions are extended to primitive statements of unbounded
nondeterminism later. We define the syntactic approximations S"(X) of a formula
S(X) that contains statement variable X follows:

(i) S°(X)=X

(i) S""1(X)=8(S"(X)), for n=0,1,....

Assume that the weakest precondition wp(A4, R) is given for each primitive
statement 4. The weakest preconditions wp(S, R) for the statements S are then
defined inductively by

1. wp({B}, Q)=B A Q
2. wp(S,; S,, Q)=wp(S,, wp(Ss, Q)
3. Wp(if B, —>Sl|:]Bz—’S2 if, Q)=
(By v By) A (Bi=wp(Sy, Q) A (B,=wp(S,, Q)

4. wWp(uX -S(X), Q)= \/ wp(S"(abort), Q).
n=0
Assume that the strongest postcondition sp(A4, P) is given for each primitive
statement A. The strongest postconditions sp(S, P) for the statements S are
then defined inductively by

5. sp({B}, P)=BAP
6. sp(S;; S,, P)=sp(S,, sp(S;, P))
7. sp(if B,—»S,0B,— S, fi, P)=sp(S,, B, A P)vsp(S,, B,A P)

8. sp(uX -S(X), P)=\/ sp(S"(abort), P).
n=0
The rules for computing the weakest preconditions for the statements were
originally formulated by Dijkstra [Di76], except the rule for recursion, which
is due to Hehner [He79]. A treatment of weakest preconditions and strongest
postconditions, both from a semantic and a proof theoretic point of view, is
given by deBakker {deB80].
Even thought we do not make any specific assumptions about the primitive
statement, we still need some primitive statements in our examples. For simplici-

602 R.J.R. Back

ty, we use the multiple assignment statement x:=e as our primitive statement,
where x is a list of distinct variables and e is a list of expressions. The weakest
precondition and strongest postcondition for this construct are

wp(x:=e, Q)=Q[e/x]
sp(x:=e, P)=3y-(PLy/x] A x=e[y/x]).

We assume for simplicity that all functions in e are total, so that there is no
need to consider possible undefined values in the expression.

3.1 Unbounded Nondeterminism

For simplicity, the definition of the weakest precondition for the recursive con-
struct above assumes that the nondeterminism of primitive statements is
bounded. If the nondeterminism of primitive statements is permitted to be
unbounded, then the definition of the weakest precondition for the recursive
construct above does not necessarily agree with the operational meaning that
we want to assign to this construct. This has to do with termination: even
if the recursive (or iterative) construct is guaranteed to terminate, no finite
approximation of it need be guaranteed to terminate. Taking the disjunction
only over the finite approximations does not therefore always give the right
result.

We want to treat program specifications like program statements, so that
there is only one kind of entity in the refinement calculus. In [Ba80] this is
achieved by introducing a nondeterministic assignment statement x:=x"-Q(x, x', y),
where x and y are lists of program variables and x’ is a list of fresh variables
local to this statement. The effect of this statement is to assign to the variables
x some values x’' that make the condition Q(x, x’, y) true. If there is more
than one list of values x’ satisfying @, the choice between these is nondeterminis-
tic. The statement aborts if no such list of values exists.

A specification consisting of a precondition P(x,y) and a postcondition
Q(x, x', y) can be expressed as a nondeterministic assignment x:=x"-(P(x, y) A
Q(x, x', ¥)). For instance, if the purpose is to assign to x some new value that
is larger than its previous value, this can be expressed by the statement x:=x'-
(x’ = x). If we assume that x ranges over the set of integers, then the nondetermin-
1sm of this statement is unbounded. A more detailed study of how specifications
are integrated as part of the program language is outside the scope of this
paper. We refer to [Ba80, Ba81a and Ba87] for further details.

In [Bo82], Boom shows how Dijkstra’s definition of the weakest precondition
for the while loop can be adapted to permit unbounded nondeterminism. We
use the same idea below to adapt the weakest precondition for recursion so
that unbounded nondeterminism is permitted. The basic idea is to take the
infinite disjunction over the set of all ordinals, rather than over just the set
of all finite ordinals, as is done in the definition above.

Define the predicates H (S, @), where a is an ordinal, as follows:

(1) Hy(S, Q)=false

A Calculus of Refinements for Program Derivations 603

(i) H,. (S, Q)= wp(S(X,), Q), where wp(X,, R)= H,(S, R) for any R.
(i) H,(S,0)="\/ H,(S,), when 4 is a limit ordinal.
a<i
Here X, are auxiliary statement variables, for every ordinal «. The weakest
precondition of the recursive construct is then defined as

Sp(.uXS(X): Q) = \/ Ha(S’ Q)

aanordinal

Unbounded nondeterminism makes the weakest precondition transformer
noncontinuous, as observed by Dijkstra [Di76]. For a recent discussion of
unbounded nondeterminism along these lines and a reference to literature, see
[ApPI86]. The effect of unbounded nondeterminism on the proof rule for loops
is discussed also in [DiGa86]. Our results do not depend on the continuity
of the predicate transformers, so in our case this does no harm.

4. Refinement between Statements

We are now ready to give a precise definition of a correct refinement. Basically
a statement S is refined by a statement S’ if S’ preserves the total correctness
of S: any pre-postcondition pair that S satisfies is also satisfied by S§'. We will
not, however, take this directly as a definition of correct refinement. Instead,
we give an equivalent but simpler definition directly in terms of weakest precon-
ditions. We first define refinement for statements that do not contain any state-
ment variables.

Definition 1 (Refinement). Let S: v and S': v’ be statements, where v Sv’. Statement
S is (correctly) refined by statement S’, denoted by S< S, if for all postconditions
Qv

wp(S, Q)=wp(S’, Q)

Note that the variable environment of the refining statement S" may include
variables other than those in the variable environment of S, since v may be
a proper subset of v". This means that a refinement can introduce new auxiliary
variables in order to carry out the required computation. However, each variable
in the environment of S must also be in the environment of S’. (We discuss
this issue in more detail in Sect. 7).

The fact that refinement preserves total correctness, and in fact is equivalent
to the intuitive definition given in the introduction, is established by the following
theorem.

Theorem 1. Let S: v and S': v’ be two statements, where v=v'. Then SZS§' iff
P{S> Q=P8 Q, forany P, Q: v.

Proof. Assume that S<S§'. Assume that P{S) @, for some P: v and Q: v, ie.
P=-wp(S, Q). By the definition of refinement, wp(S, @)=wp(S’, Q). Hence, P=
wp(S’, Q), i.e. P{S’> Q holds. For implication in the other direction, assume
P{S> Q=P<{S"> Q holds for any pre- and postcondition P, Q: v. Assume that

604 R.J.R. Back

wp(S, R) holds, for some R. This means that wp(S, R) {(S) R holds, so wp(S, R)
{S’> R also holds, by assumption. Hence, wp(S, R)=wp(S’, R), by the definition
of total correctness. Therefore S < S, since R was arbitrarily chosen. Q.E.D.

The refinement relation is extended to statements with statement variables
as follows.

Definition 2. Let S(X): v and §'(X): v, where v Sv’, be program statements con-
taining statement variable X. Then S(X)<S'(X) holds if S(T): v<S8(T): v’ for
any substitution of a statement T for statement variable X in S and §’, where
var(T)<v.

This definition generalizes in the obvious way to statements containing two
or more statement variables. The following theorem establishes that refinement
is a preorder, i.e. is reflexive and transitive.

Theorem 2. Assume that v, v' and v are sets of program variables, satisfying
vev' =", Then the following conditions hold.

@i S:v=S:0.

(i) S:v=S": v and 8 v <S8": 0" implies S: v <87 v".

The straightforward proof is left to the reader. The first property is actually
slightly stronger than reflexivity.

Refinement is not necessarily antisymmetric, so in general it is not a partial
order. As usual, the preorder induces an equivalence relation between statements.
The statements S: v and S': v are said to be refinement equivalent, denoted
by §=5, if S<§ and S'<S. From the definition of refinement, we see that
two statements are refinement equivalent if and only if their weakest precondi-
tions are equivalent for every postcondition Q: v. In other words, the two state-
ments cannot be distinguished by weakest preconditions.

The assumption v v’ in the definition of refinement is needed for transitivity,
because it guarantees that any condition Q: v is also a condition on the program
variables v', i.e. Q: v'. The following counter example shows that this condition
cannot be omitted.

Let S: {x, z} be the statement x, z:=x, 1, S": {z} be the statement z:=1
and S”: {x, z} be the statement x, z:=0, 1. Then S<§’, because

wp(S, Q(x, 2))=Q(x, 1)=wp(S’, Q(x, 2)),
for any Q(x, z). Also §’ < 8" become
wp(S', Q' (2))=Q' ()=wp(S', Q'(2)),

for any Q'(z). However, S<S” does not hold. Choosing e.g. R(x, z)=(x=z),
refinement would require that

wp(S, R(x, z2))=(x=1)= (0=1)=wp(S", R(x, z2)),

for any value of x. This is, however, false for x=1.

A Calculus of Refinements for Program Derivations 605

Digression. We can also define a notion of partial refinement, similar to refine-
ment, but based on the strongest postcondition, as follows. Statement S: v is
partially refined by §': v/, denoted by S=<§’, is sp(S’, P)=>sp(S, P) for any precon-
dition P: v. Let us say that S and S’ are partially refinement equivalent, denoted
S~§, if S<§ and §'<S.

The refinement relation defined above and the partial refinement relation
together characterize the semantics of a statement uniquely, as follows (these
results are proved in [Ba81b]):

1. S<§'<Siff S approximates S’ in the Egli-Milner ordering [P176].
2. §=8~8§ iff S=§’, in the sense of denoting the same mapping between
initial and final states (i.e. S(vy)=S"(v,) for each vy).

We do not need this unique characterization in this paper, since the coarser
semantics determined by weakest preconditions alone is sufficient for studying
total correctness of programs.

5. Monotonicity

We show now that the basic statement constructors, sequential and conditional
composition, iteration and recursion, are monotonic with respect to the refine-
ment relation.

Sequential Composition. Let S;: v and S;: v’ be statements satisfying S;<S; for
i=1,2. We prove that S;; §,: v=S/; §5: v". Let Q: v be an arbitrary postcondi-
tion. Let w=v"—v. From S, < §’, we have, explicitly quantifying over all program
variables,
5,25,
< {By definition}
Vo, w-(wp(S2, Q)=wp(S3, Q)
<>{wis not free in wp(S,, Q)}
(¥) Vo-(Wp(Sy, Q)=Vw-wp(S3, Q)

We now prove that §;; S,: v<8; 85:v.

wp(Sy;52,0Q)

<>{By definition}
Wp(Sl) Wp(SZs Q))

={Use rule of monotonicity (2) and ()}

={Use §; =S} —wp(S3, Q) has only v as free}
wp(Sy, Vw-wp(S3, Q)

={Use (2)—Vw- R implies R is universally true}
wp(S'y, wp(S5,)

<>{By definition}
wp(S7; 583, Q).

606 R.J.R. Back

Conditional Composition. Let the assumptions be the same as in the previous
case. We prove that

if B,—>S,0B,-8S,fi: v=ifB,-»S,0B,—S,fi: v.

The assumptions, together with the definition of refinement and property (2),
give
wp(if B, > S,0B; - S, fi, 0)
=(By v By) A (B;=-Wp(S,, Q) A (B,=wp(S,, Q)
=(B, v B;) A(B;=>wp(S, Q) A (B,=wp(S3, Q)
=wp(if B, > S 0B, >S5 1i, Q).

Recursion. We prove that for any statements S(X): v and T(X): v, S(X)ZT(X)
implies X -S(X):v=uX-T(X): v

Let us first establish an auxiliary result. We show that if S is monotone,
then S(X)< T(X) implies $"(X) < T"(X), for any n=0. We prove this by induc-
tion. For n=0 the result is trivial. Assume that the refinement holds for n=0.
We then have, by the monotonicity of S, the induction hypothesis and the
definition of refinement, that

S"THX)=SS" X)) SS(THX) S T(TX)=T"" 1 (X),

which proves the case.
The required result is now proved as follows:

S(X)<T(X)
=-{By result above, choosing X =abort}

S"(abort) < T"(abort), forany n =0
<>{By definition of refinement}

wp(S"(abort), Q)=wp(T"(abort), Q), forany n =0, any Q:v
=-{Property of infinite disjunction}

@ wp(S"(abort), Q)= <O/ wp(T"(abort), Q), for any Q: v

n=0 n=0
<{Definition of weakest preconditions for recursion}
wp(uX - S(X), Q)=wp(uX - T(X),Q),forany Q:v
<{Definition of refinement}
pX-S(X)spuX T(X).

Essentially the same proof goes through even if we permit the nondetermin-
ism of the primitive statements to be unbounded. The only difference is that
we have to use transfinite induction to establish the required result. We prove
the monotonicity of the recursive construct for the case of unbounded nondeter-
minism in the appendix.

Iteration. The monotonicity of the iteration statement follows from the monoton-
icity of the above constructs. The iteration statement is defined as

doB—->Sod=pX-ifB->S; X0 B-skipfi.

A Calculus of Refinements for Program Derivations 607

Assume that S: v=<S:v". Since X:v=X:v, S; X:v<S8'; X: v/, by monotoni-
city of sequential composition. We then have

if B—»S; X0 B-skipfi: v < if B—S'; XU B-skipfi:v',

by monotonicity of conditional composition. Hence, by monotonicity of recur-
sion we get the desired result,

doB—Sod: v £doB—-Sod: v.
We can now state the main result of this section.

Theorem 3 (Monotonicity). Let S[T]: v be a statement containing substatement
T: v, and let T': v be some other statement, where v<v'. Replacing T by T’
in S gives a statement S[T"]:v". Then TS T’ implies S[T]1<S[T"].

The proof of this is straightforward, and proceeds by induction on the struc-
ture of statements (mimicking the way in which iteration above is shown to
be monotone). The theorem shows that it is always correct in a program deriva-
tion to replace a substatement with its refinement.

6. Reducing Refinement to Total Correctness

We show how refinement between two statements can be characterized by total
correctness of the refining statement with respect to a specific pre- and postcondi-
tion that depend only on the statement being refined. This gives us a bridge
between the refinement calculus, which works on the level of replacements of
statement parts and relates statements to each other, and the weakest precondi-
tion calculus, which is concerned with the total correctness of specific statements
and relates statements to specifications.

6.1 A Proof Rule for Refinement

The following theorem shows how to reduce refinement between two statements
to a proof of a specific total correctness formula.

Theorem 4. Let S: v and S': v’ be two statements, where v=v'. Then S8’ holds if
wp(S, true) A =0y {S"> sp(S, v ="1y), (13)

where v is some list of fresh program variables corresponding to the list of program
variables v, v vy =0.

Proof. Given (13) and wp(S, Q), we have to prove wp(S’, Q). To begin, we prove
sp(S, v="0y)=0Q:
true
<>{v=v,=>true holds, and wp(S, Q) holds by assumption}
v=0y=wp(S, 0)
={Law of monotonicity (6)}
sp(S, v=vo)=>sp(S, wp(S, Q))
={Use (9), sp(S, wp(S, 0))=Q}
sp(S, v=v,)=0

608 R.J.R. Back

Next, note that wp(S, true) holds, because wp(S, Q) holds by assumption. We
now have:
true
<>{Assume (13), use its definition}
wp(S, true) A v=uv,=>wp(S’, sp(S, v=1,))
<{wp(S, true) =true}
v=0a=wp(S, sp(S, v="0,))
<{Law of monotonicity (2), sp(S, v =)=, proved above}
v=vy=>wp(S’, Q)
<{v, ¢ are unrestricted}
Vo, 00 (v=0o=>wp(S§', Q)
<{Instantiation}
Yo-(v=v=wp(S’, Q)
<>{v=0is universally true, make quantification implicit}
wp(S, Q). Q.E.D.

6.2 A Characterization of Refinement

Actually, the converse of the previous theorem is also true. This gives us the
following characterization of refinement.

Theorem 5. Let S: v and S': V' be two statements, where v=v'. Then S S’ holds
if and only if

wp(S, true) A v="0y{S"> sp(S, v=1g), (14)

where vy is some list of fresh program variables corresponding to the list of program
variables v, v " vy = 0.

Proof. The previous theorem takes care of the if-part. To prove the other direc-
tion, assume that S: v and §’: v’ are two statements, v =v’, such that S<S".
We want to prove that (14) holds. Because wp(S, true) Av=uv,=>wp(S, true),
by property (10) we have

wp(S, true) A v="vy=>wp(S, sp(S, wp(S, true) A v=1u,))
=wp(S, sp(S, v="10))
=wp(S’, sp(S, v=1y)), by assumption,

thus establishing the required conclusion. Q.E.D.

This characterization gives us an intuitive interpretation of the refinement
relation, as follows. The statement S: v is refined by statement S': v iff, for
any initial assignment of values v, to the variables in v,

(i) if execution of S in this initial state is guaranteed to terminate, then
execution of §’ in this initial state is also guaranteed to terminate, and

(i) any assignment of values to the variables v by S’ is also a possible assign-
ment of values to v by S.

A Calculus of Refinements for Program Derivations 609

More precisely, S<§ iff for any initial state v, of v, either LeS(vy) or
5" (vg) =S(vy). Hence, if SZ§', then both the domain of termination and the
determinism of the result are non-decreasing when going from S to §’. When
the variable environment of S’ is an extension of the variable environment of
S, then the same interpretation still holds, except that the values assigned by
S’ to variables not in the invironment of S are disregarded. (This relation turns
out to be essentially equivalent to the Smyth ordering [Sm78] used in the
context of denotational semantics to construct a power domain for bounded
nondeterminism. The refinement relation as defined here was introduced in
[Ba78] independently of the work be Smyth, and for a very different purpose).

7. Conservative Refinements
If statements S and S’ are restricted to the same variable environment v, then
we refer to S8 as a conservative refinement. A conservative refinement does

not introduce new auxiliary variables. We have the following result for conserva-
tive refinements.

Theorem 6. Let z be the set of program variables that occur in S and S’ and
let v be any set of program variables, z=v. Then S:v<S":viff §:z<8": z.

Proof. Assume that S: z<8": z. Then
wp(S, true) A z=1z,{S"> sp<S, z=2zy),

by the characterization theorem for refinement. Assume now that
wp(S,true) Az=zo A y=y,

holds, where y=v—z. This implies that
wp(S',8p(S, z2=20)) A y= Yo

holds, by the assumption. Since y does not occur in §’, this is equivalent to
wp(S',8p(S, 2=20) Ay =yo),

by the frame axiom for weakest preconditions. Since y does not occur in S
either, this is again equivalent to

WP(S’7 Sp(S, Z=ZgA y=)’0)),
by the frame axiom for strongest postconditions. This proves that

WP(S, true) Az=2o A y=yo <S8 sP(S, 2=20 A y= yo).

610 R.J.R. Back

Hence, S: v<S': v, by the characterization theorem for refinement.
The implication in the other direction follows directly from the definition
of refinement. Q.E.D.

The following result follows immediately from this theorem.

Corollary 1. Let S and S’ be program statements. Then S: v<S": v iff S: w<S":
w, for any sets of variables v and w that contain all variables of S and S'.

Let us now consider simplifying the theory presented thus far by dropping
the explicit indication of variable environments for statements. Let us make
the following conventions. If no variable restriction is indicated for a program
statement S or predicate R, then it is said to be unrestricted and is identified
with the (restricted) statement S: Var or (restricted) predicate R: Var, respectively.
In other words, S is considered a statement and R a predicate on all program
variables. By the definition of refinement, S < S’ holds for unrestricted statements
iff

wp(S, R)=wp(S’, R),
for any unrestricted predicate R.

Refinement between unrestricted statements is a special case of conservative
refinement. Hence, we have the following alternative characterization of refine-
ment between unrestricted statements.

Corollary 2. Let S and S’ be unrestricted statements. Then S<S' if [S: z£8":
z, where z is the set of variables that occur in S and S'.

This result shows that to prove refinement between unrestricted statements
by the proof rule of the previous section, one needs only take into account
the initial values of the program variables that occur in S and §'.

In conclusion, we have the following result, which says that conservative
refinement and refinement between unrestricted statements are equivalent
notions:

Corollary 3. The refinement S S’ holds for unrestricted statements iff S: v<S':
v holds, for any set of variables v that includes all variables in S and S'.

We could restrict attention to refinements between unrestricted statements
in program derivations, thus ignoring the variable environment of statements
altogether. This would simplify the theory of refinements, and would also make
program derivations somewhat simpler, since one would not need to keep track
of the variable environments. It would, however, have the disadvantage that
no new auxiliary variables could be introduced by a refinement: If S<S’ is
a refinement between unrestricted program statements, then excecution of §’
may assign new values only to those variables that are explicitly changed by
S. If §’ temporarily changes the values of some variables that do not occur
in S, these variables must have their initial values restored on termination of
§’. This is an awkward and unconventional way of using auxiliary variables.
As we have shown above, it is also an unnecessary restriction. By explicitly
keeping track of the variable environments of program statements, we are free
to introduce new auxiliary variables when needed.

The refinements used in [Ba80] are conservative. The introduction of auxilia-
ry variables is handled there by special primitive statements that can temporarily

A Calculus of Refinements for Program Derivations 611

add new variables to a state or delete variables from the state. This same
approach could have been used here also, e.g. by adding blocks with local
variable declarations. This approach is also taken in [Ba87]. The simple lan-
guage considered here is, however, in some sense the backbone of any real
programming language, and it was considered important to be able to capture
the way in which program derivation is done in this language, including the
use of auxiliary variables in derivations, without adding any unnecessary lan-
guage constructs.

In practice, it is important to be able to introduce auxiliary variables in
the course of program derivation. In most cases, the refinements go from abstract
and conceptually simple statements to concrete and more efficient statements.
Concretness and efficiency is usually achieved by the addition of new auxiliary
variables, by which time is traded for space, or abstract entities are replaced
by more concrete ones.

By distinguishing between different variable environments of program state-
ments, we can combine conservative and non-conservative refinements during
program derivation. The basic rule is to use conservative refinements throughout
the derivation, except for those steps where auxiliary variables are explicitly
needed. Since conservative refinements are equivalent to refinements between
unrestricted variables, we need not consider the variable environments in conser-
vative refinements. When an auxiliary variable is introduced, by a (non-conserva-
tive) refinement T: x < T': x', one only needs to check that the new variables
in x’" do not occur elsewhere in the statement S[7] in which the replacement
of T by T’ is done. Thus, our approach supports and justified the way in which
auxiliary variables are usually employed in program derivations.

8. Replacements in Context

We now consider replacements that are correct in the specific context in which
they occur, but that are not correct in every context. For simplicity, we restrict
ourselves here to refinements between unrestricted program statements. The
results, however, hold for the general case also.

Assume that S[T]<S[T'] holds but T< T’ does not. Replacement cannot
therefore be justified by monotonicity alone. We could in principle prove
S[T]1£S[T7] directly, using the proof rule for refinement given in Sect. 6, but
unless S is a very simple statement, this would be quite tedious. A way to
handle this kind of replacement systematically, within the framework developed
in the previous sections, is now described.

The context-dependent replacement is carried out in two steps:

(1) First prove S[T]1<S[{Q}; T], for some assertion Q.

(2) Then prove {Q}; T<T".

By monotonicity, we then have S[{Q}; T]<S[T'] and by transitivity,
S[T1<S[T].

Intuitively, S[T]1<S[{Q}; T] says that for any initial state in which S is
guaranteed to terminate, during execution of S condition Q holds prior to execut-
ing T If this was not the case, then abortion would occur, so the refinement

612 R.J.R. Back

could not hold (note that {Q}; T and T have the same effect whenever Q holds).
Assertion {Q} in S[{Q};T] thus describes the context in which statement T
is executed, and it is referred to as a context assertion. This context information
is used in the second step, where we prove that {Q}; T<T'. By the definition
of refinement and the rules for computing weakest preconditions, this holds
iff

Q Awp(T, R)=wp(T', R),

for any postcondition R. Thus, the behaviour of T" is restricted only for initial
states that satisfy Q. In this way, the context in which statement T is executed
is taken into account in the replacement.

8.1 Context Introduction and Elimination Rules

We need rules for introducing and eliminating context assertions. Only one
rule is needed for elimination:

If =0, then {Q}<{Q).

Since Q=>true, this gives us {Q} <skip for any Q. Hence, S[{Q}] < S[skip] =S,
by monotonicity.

Context assertions can be introduced using rules (C0)}~HC6) below. Each rule
has a conclusion of the form

{P};S={P}SH{Q1}, -5 {Qa}]: (15)

This says that the context assertions {Q,}, ..., {Q,} can be inserted at the speci-
fied places in § without affecting its total correctness provided P holds initially.
Going the other way, the assertions can be removed from the right hand side,
without affecting total correctness. Actually, (15) is equivalent to

(P} S=SH{Q1}, . {Qn}]:

The latter implies {P}; S<{P}; S[{Q1}, .--, {Q,}, ---, {Q,}] directly, by the defi-
nition of refinement, while refinement in the other direction follows by the rule
for eliminating context assertions. Hence, in reasoning about context assertions
below, we only consider this kind of refinement.

The rules for introducing context assertions are given below. They are basi-
cally adaptions of corresponding proof rules for partial correctness, except for
the first rule, which has no counterpart in Hoare’s logic.

CO0. Termination. S={wp(S, true)}; S.
C1. Consequence. If {P}; S={P}; S[{Q}], P’=P, and Q=(Q’, then

{P};8={P};SI{Q}]

C2. Assert-statement. {P}; {Q}={P}; {Q}; {PAQ}.
C3. Primitive statements. We can propagate assertions forward and backward
through primitive statement A:

A Calculus of Refinements for Program Derivations 613

{P};A={P}; A;{sp(4,P)} (forward propagation)
A;{0}={wp(4,Q)};4;{Q} (backward propagation).
C4. Sequential composition. If {P}; S, ={P}; S,; {0} and {Q}; S,={0}; S, {R},
then
{P}:8,:8,={P};8,;{Q}: S:: {R}
C5. Conditional composition. If {P A B;}; S;={P A B;};S;; {Q} fori=1, 2, then

{P};if By—»S,0B,—>S,fi
={P};if B, >{PAB,};S5,0B,—>{PAB,};S,fi;{0}

C6. Recursion. If

(P}; X £{P}; X;{Q}={P}; S(X)<{P}; S({P}; X); {0},
then
(P} pX -S(X)={P}; uX -({P}; S({P}; X)); {Q}.

The last rule is somewhat complicated. Intuitively, it says that we may intro-
duce context assertions {P} and {Q} into a recursive construct, { P} at the begin-
ing of the body and immediately before the recursive call and {Q} at the end
of the body, provided that the corresponding context introductions can be done
in the body alone assuming that they are permitted for each recursive call.

These rules can be used either in a top-down or bottom-up manner to intro-
duce assertions at appropriate places. Information about the domain of termina-
tion of a statement can be introduced by rule (CO) and propagated inwards
by the other rules for context introduction. The validity of these rules is given
by the following theorem.

Theorem 7. The context assertion introduction rules (CO}HC6) are valid.

Proof. We prove here the validity for the forward propagation rule for primitive
statements and the rule for recursion. The proof of the other cases are straightfor-
ward.

(C3) We should prove that {P}; A<A; {sp(4, P)}. Choose R arbitrarily.
We have

wp({P}; 4, R)=P A wp(4, R)=wp(4, true).
Hence, we can use rule (10) and (2), to get

P Awp(A, R)=wp(4,sp(4, P Awp(4, R)) AwWp(4,R) by (10)
=wp(A4,sp(4, P)) Awp(4,R) by (2)
=wp(4, sp(4, P) AR)
=>wp(4; {sp(4, P)}, R),
which proves the case.
(C6) Assume, for all X,
P X<{P} X; {0}

614 R.J.R. Back

implies
{PHS(X)={P};S({P}; X); {Q}. (16)
We should prove
{PHuX -S(X)=uX-({P}; S({P}; X)); {Q)- (17)
Let us first prove that for each i >0,
{P}; S(S'(abort) <S({P}; §*(abort); {Q}.

For i =0, this follows from assumption (16), by noting that { P} ; abort < abort; {Q}.
Assume that the property holds for i >0. We then have

{P}; S(S'(abort)) <S({P}; S'(abort)); {Q} <S(S(abort)); {Q],
ie.
{P};S"" ! (abort) < §'* ! (abort); (Q}.
Hence, by (16), we have the desired
{P};S(S"* '(abort)) < S({P}; S* ! (abort)); {Q}.
Let T(X)={P}; S({P}; X). We now show by induction that
{P}; S'(abort) < T'(abort); {Q},
for each i. For i=0, the result is immediate. Assume the result holds for i=0.
Then
{P}; §"* 1 (abort)={P}; S(S'(abort))
<{P};S({P}; S'(abort)); {Q}, by the assumption (16)
<{P}; S({P}; T'(abort); {Q}); {Q}, induction hypothesis
<{P};S({P}; T'(abort)); {Q}
=T '(abort); {Q}.
Now choose an arbitrary R, and calculate the weakest precondition for the
left hand side of (17):

wp({P}; uX-S(X),R)=PA <O/ wp(Si(abort), R)

i=0

- <O/ (P Awp(Si(abort), R))

i=0

- <0/ wp({P}; S*(abort), R)

i=0

= \/ wp(T*(abort); {Q}, R)

i=0
= _/ wp(T"(abort), wp({Q}, R))
< wp(uX-({P}; S({P}; X)), wp({Q}, R))
< wpuX-({P};S{P}; X));{Q},R)).
Thus the conclusion (17) is established. Q.E.D.

A Calculus of Refinements for Program Derivations 615
8.2 Example: Context Introduction in Iteration

As an example of using these rules, we show how to derive the following context
introduction rule for the iteration statement:

C7. Iteration. If {P AB}; S={P A B}; S; {P}, then
{P};do B—»Sod={P};doB—{PAB};S;{P}od;{PA—1B}
We prove this as follows. Assume that
{PAB};S={PAB};S;{P}.

Let us further assume that
P;X<X;PA—1B.

By rule (C4), this gives us
{PAB};S;X={PAB};S;X;{X A1B}.
We also have, by rule (C2),
{P A—1B};skip={P A —1B};skip; {P A1 B}.
Using rule (C5), we get

{P};ifB-S; X1 B—skipfi
={P};if B»{PAB};S; X0 B—{PA—1B};skipfi; {PAr—1B}
<ifB-S;{P}; X0 B-skipfi;{P A B}.

Hence,
{P};uX-f B-S; X0 B-skipfi
={P};uX -{P};if B—S;{P}; X0 B-skipfi; {PA—1B}, (18)

by recursion rule (C6). On the other hand,

{P};if B—S;{P}; X0 B-skipfi
<if B—»{PAB};S;{P}; X0 B-skipfi,

so, by monotonicity of recursion,

uX - -({P};if B—S;{P}; X0 B—skipfi)
SuX-if B>{PAB};S;{P}; X0 B-skipfi

This, together with (18), yields

{P};uX-if B-S; X0 B-skipfi
<{P};uX-if B> {P AB};S;{P}; X0 B—-skipfi;{P A 1B},

616 R.J.R. Back

ie.
{P};do B—>Sod<{P};doB—{PAB};S;{P},od;{PA—1B}.

Refinement in the other direction follows immediately from the elimination rule
for context assertions.

9. Correctness Proofs and Context Introduction

There is a rather close connection between being allowed to introduce a context
assertion in a statement and partial and total correctness of that statement.
Consider the special case {P}; S={P}; S; {Q}. We will prove that this is equiva-
lent to

P Awp(S, true)=wp(S, Q). (19)

This says that if P holds initially and if execution of S is guaranteed to terminate,
then Q holds for the final state upon termination. We have:

{P};5={P};5;{0}
<>{See discussion of (16)}

{P};S<58;{Q}
<>{Definition of refinement}

wp({P}; S, R)=wp(S; {Q},R), forall R
<>{Definition of weakest preconditions}

PAwp(S,R)=wp(S,QAR), forall R
<>{Conjunction rule weakest preconditions}

P Awp(S, R=wp(S, Q) Awp(S,R), forall R
<>{The second conjunct is redundant}

P Awp(S,R)=wp(S5,Q), forall R
<>{Choosing R =true, using wp(S, R)=>wp(S, true) for all R}

P A wp(S, true)=wp(S, Q).

The relationship between context introduction and partial and total correct-
ness 1s given by the following theorem.

Theorem 8. Let S: v be a statement and P, Q: v be assertions. Then

{P};S={P};S;{0Q}

holds if P{S} Q or P(S> Q.

A Calculus of Refinements for Program Derivations 617

Proof. For partial correctness, the result is proved as follows. Assume that
P{S} Q holds, ie. sp(S, P)=Q. We have P Awp(S, true}=wp(S, true). Hence,
we can use (10), and get

P Awp(S, true)=wp(S, sp(S, P A wp(S, true)))
=wp(S,sp(S, P))
=wp(S, Q);

by the assumption, i.e. (19) holds. The result holds for total correctness, because
total correctness implies partial correctness. Q.E.D.

In neither case does the converse hold in general, so context introduction
is strictly weaker than partial and total correctness for nondeterministic state-
ments. It coincides with partial correctness for deterministic statements. Choos-
ing S=abort gives a counterexample for total correctness: We have {true};
abort<abort; {Q}, but true=-wp(abort, Q) does not hold. Choosing S=
if true — skip[Qtrue —»abort fi gives a counterexample for partial correctness.
We have {P}; S<S; {1 P}, but sp (S, P)=1P does not hold.

This theorem allows us to use the results of a previous correctness proof
when introducing context assertions in a statement. In particular, it allows us
to use loop invariants directly as context assertions. Let us consider this in
somewhat more detail.

Assume that we have a statement

S=S,;do B—S, od

and that P{S)> Q has been proved. The proof has been carried out by first
proving

P{So) B, (20)
then proving that I is a loop invariant, i.e.

IABLS I, (21
from which we have deduced (having also proved termination of the loop) that
I{doB—S,0d> I AB,
and finally we have proved that
PB=I1 and IA—1B=Q.
From (21) we conclude by the theorem above that
{IAB};S,={IAB};S,;{I}.
Hence, by rule (C7) for iteration, we conclude that

{I};doB—S,0d={I};do B—»{IAB};S,;{I};0d;{I A B}

618 R.J.R. Back
Similarly, we conclude from (20) that

{P};S0={P};So;{R},
and, using consequence rule (C2), that

{P};So; {R}={P}; So; {I}.

Thus we have
{P};Sy;do B—S, od
={P};S0;{I};d0 B> S, od
={P};S0;{I};d0 B—>{I AB};S,;{I} od;{I A1 B}

This shows how the proof of correctness allows us to introduce the assertions
used in the proof as context assertions. What this means is that we may use
the assertions in a proof outline of a statement as context assertions. Hence,
any invariants established during proof of correctness of a statement can be
used in the subsequent derivation steps as context information. This, of course,
is just in line with the current practice of program transformations. It shows
the double role of a correctness proof: on the one hand to establish that a
statement does in fact satisfy its specification, on the other hand to provide
a detailed analysis of how the statement works, thereby making subsequent
changes to the statement easier.

Although a partial correctness assertion can always be introduced as a con-
text assertion into a statement, the converse does not necessarily hold: there
are context assertions that are not partial correctness assertions. The reason
is that a context assertion need not hold when execution reaches it if there
is another alternative execution path from the same initial state that does not
terminate. If we restrict ourselves to programs for which termination is always
guaranteed, then a context assertions may be introduced if and only if it is
a partial correctness assertion.

10. An Example Derivation

We illustrate the refinement calculus by deriving a program. Let Fac be a state-
ment that specifies the desired behaviour of a procedure for computing the
factorial function. The possibility of overflow is explicitly taken into account
in this specification:

Fac: ifn=20—if n! <max — x:=n!
On!>max — x:=0
fi

fi

The variables of Fac are n,x and max, ie. Fac: {max, n, x}. Overflow is
indicated by x=0.

A Calculus of Refinements for Program Derivations 619
First Version. We implement Fac by Facl: {x, n, max, nn}

Facl: ifn=0vn=1-x:=1
On>1-x:=1;nn:=n;
donn>1AxF0-if xxnn<max - x:=x*nn;nn:=nn—1;
Ox*nn>max — x:=0
fi
od
fi

To prove that this implementation is correct, i.e. that Fac<Facl, we use
the proof rule for refinement in Sect. 6 and prove

wp(Fac, true) A v=v,(Fac1) sp(Fac,v=u,),
where

wp(Fac,true) Av=v, = x=xoAn=ny Amax=max x, An=0
sp(Fac,v=1vy) = n20 An=ny A max=max x5 A

[(n!=max A x=n!) v (n!>max A x=0)}
This can be verified using the following loop invariant I:

I = n=ngAmax=maxogAnn1na

[xxnn!=ny! v (x=0Any!>max)].

Second Version. We now observe that the test x*nn<max will not really prevent
overflow, because the test itself can cause an overflow. Hence, we replace it
with something safer. We want to change the test to x<k, where we have
computed k:=max/nn immediately prior to the test. This, however, will be legal
only if we know that nn+0. Hence, we need to make a context-dependent
replacement.

Because of the correctness proof, we know that preceding the loop body,
the loop test holds, which means that context assertion {nn>1} holds there
also. Program Facl is thus refined by Fac2: {x, n, max, nn}, in which S1 and
S2 stand for the corresponding subparts in Facl.

Fac2: ifn=0vn=1-x:=1
On>1-x:=1;nn:=n;
donn>1Ax£0->{nnx1};
if x*xnn<max -S1
Ox*nn>max —»S2
fi
od
fi

620 R.J.R. Back
Third Version. Consider now the part T1: {x, n, max, nn} of Fac2:

Tl: ifxxnn<max—-S1
Ox*nn>max—S2
fi

We replace {nn=1}; T1 by T2: {x, n,max, nn, k},

T2: k:=max/nn;
ifx<k-S1
Ox>k—>S2
fi

That this replacement is allowed, i.e. that {nn=1}; T1 < T2, is seen as follows.
Choose a postcondition Q (on variables max, n, x, nn) arbitrarily. We have

wp({nn=1};T1,Q)=nn=1 A(xxnn<max=wp(S1, Q) A
(x*nn>max=wp(S2, Q))
wp(T2,Q)=(x=max/nn=wp(S1,Q) A
(x>max/nn=wp(S2, Q)

Obviously the latter is implied by the former. Making the replacement gives
us the final program Fac3: {n, x, max, nn, k}.

Fac3: ifn=0vn=1-x:=1
On>1-x:=1;nn:=n;
donn>1Ax+0-k:=max/nn;
if x<k—ox:=x*nn;nn:=nn—1,
Ox>k—- x:=0
fi
od
fi

This program computes the factorial function as required by the initial specifica-
tion, without the danger of overflow.

The Derivation Steps. Summarizing this derivation gives the following sequence
of steps:

1. Fac<Fac1 (proof rule for refinement)

2. Facl=Facl [{nnz1}; T1] (context introduction rules)

3. {nnz1}; T1 < T2 (definition of refinement)

4. Facl [{nnz1}; T1]<Facl [T2] (monotonicity of refinement)

5. Fac=Facl [T2]=Fac3 (transitivity).

This derivation establishes that the final program Fac3 is a correct implemen-
tation of the original specification Fac. It illustrates how the refinement calculus
allows us to describe the larger structure of a program derivation, and shows
for each individual refinement step what justification is required for this step
to be correct.

A Calculus of Refinements for Program Derivations 621
11. Concluding Remarks

The theory of correct refinements developed in this paper extends our earlier
work [Ba78, Ba80, Ba81b] on the formalization of the stepwise refinement meth-
od. It provides a unified framework within which both the axiomatic, the step-
wise refinement, and the transformational approach to program construction
and verification can be described. The axiomatic approach, represented here
by the weakest precondition calculus for total correctness, works on a lower
level and relates statements to pre- and postconditions, while the stepwise refine-
ment and transformational approach relate statements to each other. We have
in this paper shown how these two levels are connected by the notion of correct
refinement.

The main purpose of the paper has been to study the basic properties of
the refinement relation. We have not considered how to apply this technique
to specific methods for making refinement steps, and no effort has been made
to show how this approach works in the derivation of large and/or complicated
algorithms. In order to use this approach efficiently, we need to introduce a
higher level language for program specifications. This is described in detail in
[Ba80], where the refinement calculus is applied to procedural abstraction
(implementing subprogram specifications), control abstraction (changing control
structures) and data abstractions (changing the representation of program vari-
ables) in program derivation. The use of procedural abstraction is investigated
further in an accompanying paper [Ba87]. The refinement calculus is applied
to the formal derivation of a more intricate program, the marking algorithm
in [BaMaRa], in a forthcoming paper. The technique is extended to handle
derivations of distributed programs in another work currently in progress. The
purpose of this paper has been to provide a foundation for these later develop-
ments and applications.

When finishing the final revision of this paper it became clear that two
other people had started to work on the same notion of refinement that we
describe here, Carroll Morgan [Morg86] and Joseph Morris [Morr87]. Seem-
ingly unaware of the earlier work in [Ba78, Ba80], they introduce essentially
the same kinds of concepts to describe stepwise refinement, including a form
of the nondeterministic assignment statement for procedural abstraction. They
derive a number of results that already were proved in our earlier work, such
as monotonicity of program constructs and proof rules for handling the nonde-
terministic assignment statement. They also note that the refinement relation
can be used to handle data refinement, a technique which is described in detail
in [Ba78, Ba80]. However, both writers also extend some of our earlier results,
e.g. by permitting full recursion with unbounded nondeterminism in the lan-
guage, in a similar way as we have done here, and also introducing interesting
new concepts, such as statements that permit miracles (i.e. do not satisfy the
law (1).

Acknowledgements. 1 would like to thank David Gries for discussions and a (very) careful reading
of the paper, Viking Hognas, Heikki Mannila and Kaisa Sere for valuable comments on preliminary
versions of this paper, and Rod Burstall for some very illuminating questions. I also want to thank
the two referees for their valuable comments on this paper.

622 R.J.R. Back
Appendix: Monotonicity in Case of Unbounded Nondeterminism

We prove here that the recursive construct is monotonic even in the case that
unbounded nondeterminism is permitted. For convenience, we repeat the defini-
tion of the weakest precondition here.

The predicates H,(S, X, Q), where o is an ordinal, are defined as follows
(we indicate explicitly the specific family X of auxiliary variables that is used):

i) Hy(S, X, Q)=false
(i) H,, (S, X,Q0)=wp(S(X,), Q) where wp(X,, R)=H,(S, X, R) for any R.
(iii) H,(S, X, Q)=\/ H,(S, X, Q), when 4 is a limit ordinal.
a<i

Here X, are auxiliary statement variables, for every ordinal a. The weakest
precondition of the recursive construct is then defined as

wp(uX -S(X),Q)= \/ H,S.X,0Q)

aanordinal

We should prove that S(X) < T(X) implies pX -S(X)<uX-T(X). We prove
first by transfinite induction that H, (S, X, Q)— H (T, Y, Q), for every ordinal «
and every postcondition Q.

For a=0, the result is trivial. For a+ 1, we have that

H,11(5, X, Q)=wp(S(X,), Q),

where wp(X,, R)=H,(S, X, R) for any R. But, by the induction hypothesis,
we have that H,(S, X, R)}=H (T, Y,R), for any R, ie. wp(X,, R)=wp(Y,, R)
for any R. This means that X, <Y,. Thus, we have by monotonicity of S that
S(X,)<5(Y,), s0 we get

wp(S(X,), Q)=wp(S(Y), Q).

On the other hand, S(X)< T(X) by assumption, so we have

wp(S(Y,), Q)= wp(T(Y,), Q).
Altogether, H, (S, X, Q)=H,, (T, ¥, Q) as required.

For a limit ordinal A, we have

HA(S’ X: Q)= \/ Ha(S’ X’ Q)

a<i

By the induction assumption, H,(S, X, Q)= H (T, Y, Q) for every ordinal a< 4,
SO

H,(S,X,0)=\/ H,(T Y, Q),

a<i

for every o < A. This gives us

V Hy(S, X, 0)=\/ (H(T Y, Q),

a<i a<i

A Calculus of Refinements for Program Derivations 623

i.e. the result also holds for the limit ordinal A. Thus the result holds for every
ordinal a.

Essentially the same argument as for the limit ordinal now gives us the
main result. We have H,(S, X, Q)=H,(T, Y, Q) for every ordinal «. Hence,

H,(5,X,0= \/ H,(TYQ),

aordinal

for every ordinal «. Hence,

\V H.(S,X,0= \/ H.TYQ),
aordinal azordinal
1e.
uX-S(X)=pX-T(X).
As seen from this proof, the argumentation is very similar to the argumenta-
tion in the case of bounded nondeterminism, the difference being mainly that

in the latter case, the proof is only carried to the first limit ordinal w. However,
the basic arguments in the proof hold for any ordinal, as shown above.

References

[ApPI86] Apt, K.R., Plotkin, G.D.: Countable nondeterminism and random assignment. J. ACM
33 (4) 724-767 (1986)

[Ba78] Back, R.J.R.: On the correctness of refinement steps in program development (Ph.D.
thesis). Report A-1978-4, Dept. of Computer Science, University of Helsinki, 1978

[Ba80] Back, R.J.R.: Correctness preserving program refinements: proof theory and applica-
tions. Mathematical Center Tracts 131, Mathematical Centre, Amsterdam 1980

[Ba8la] Back, R.J.R.: Proving total correctness of nondeterministic programs in infinitary logic.
Acta Informatica 15 233-250 (1981)

[Ba81b] Back, R.J.R.: On correct refinement of programs. J. Comput. Syst. Sci. 23 (1), 49-68
(1981)

[BaMaRa83] Back, R.J.R., Mannila, H., Raiha, K.J.: Derivation of efficient dag marking algorithms.
ACM Conference on Principles of Programming Languages, Austin, Texas 1983

[Ba87] Back, R.J.R.: Procedural abstraction in the refinement calculus. Reports on Computer
Science and Mathematics no. 55, 1987, Abo Akademi

[Ba88] Back, R.J.R.: Derivation of a dag marking algorithm in the refinement calculus (in
preparation)

[deB80] deBakker, J.: Mathematical theory of program correctness, Englewood Cliffs: Prentice-
Hall 1980

[BBPPW79] Bauer, F.L., Broy, M,, Partsch, H., Pepper, P., Wossner, H.: Systematics of transforma-
tion rules. In: Bauer, F.L., Broy, M. (eds.) Program construction. (Lect. Notes Comput.
Sci., Vol. 69) Berlin Heidelberg New York: Springer 1979

[BeBi86] Berlioux, P., Bizard, P.: Algorithms; the construction, proof and analysis of programs.
New York: Wiley 1986
[Bo82] Boom, H.J.: A weaker precondition for loops. TOPLAS 4 (4), 668-677 (1982)

[BrPeWi80] Broy, M., Pepper, P., Wirsing, M.: On relations between programs. In: Robinet, B.
(ed.). International Symposium on Programming. (Lect. Notes. Comput. Sci., Vol. 83,
pp. 59-78) New York: Springer 1980

[BuDa771] Burstall, R.M., Darlington, J.: Some transformations for developing recursive pro-
grams. J. ACM 24 (1) 44-67 (1977)

624
[Di71]
[Di76]
[DiGa86]

[Gr81]
[He79]

[He84]
[He84b]
[Ho69]
[Ho71]
[Ho85]
[Morg86]
[Morr87]
[JaGr85]
[PaST83]

[PI176]
[PI81]

[Re81]
{Sc65]

[Sm78]
[Wi71]

R.J.R. Back

Dijkstra, E'W.: Notes on structured programming. In: Dahl, O.J., Dijkstra, EW.,
Hoare, C.A.R. (eds.) Structured programming. New York London: Academic Press
1971

Dijkstra, E.W.: A discipline of programming. Englewood Cliffs: Prentice Hall 1976
Dijkstra, EW., Gasteren, A.JM.: A simple fixpoint argument without the restriction
to continuity. Acta Informatica 23 1-7 (1986)

Gries, D.: The science of programming. Berlin Heidelberg New York: Springer 1981
Hehner, E.: Do considered od: a contribution to the programming calculus. Acta
Informatica 11, 287-304 (1979)

Hehner, E.: The logic of programming. Englewood Cliffs: Prentice-Hall 1984

Hehner, E.: Predicative programming, part I. CACM 27 (2) 134-143 (1984)

Hoare, C.A.R.: An axiomatic basis for computer programming. CACM 12 (10) 576-580
(1969)

Hoare, C.A.R.: Proof of a program: FIND. CACM 14, 3945 (1971)

Hoare, C.A.R.: Programs are predicates. In: Hoare, C.A.R., Shepherdson, J.C. (eds.)
Mathematical logic and programming languages. pp. 141-155. Englewood Cliffs:
Prentice-Hall 1985

Morgan, C.: The specification statement. Manuscript 1986

Morris, J.: A theoretical basis for stepwise refinement and the programming calculus.
Sci. Comput. Programming 9 287-306 (1987)

Jacobs, D., Gries, D.: General correctness. A unification of partial and total correctness.
Acta Informatica 22 (1) 67-84 (1985)

Partsch, H., Steinbrugge, R.: Program transformation systems. ACM Comput. Surv.
15, 199-236 (1983)

Plotkin, G.D.: A powerdomain construction. SIAM J. Comput. 5 (3) 452487 (1976)
Plotkin, G.D.: Structural approach to operational semantics. Tech. report DAIMI
FN-19, Comp. Science Department, Aarhus University, 1981

Reynolds, J.C.: The craft of programming. Englewood Cliffs: Prentice-Hall 1981

Scott, D.: Logic with denumerably long formulas and finite strings of quantifiers.
In: Addison, J., Henkin, L., Tarski, A. (eds.) Symposium on the Theory of Models.
North-Holland 1965, 329-341

Smyth, M.B.: Power domains. J. Comput. Syst. Sci. 16, 23-36 (1978)

Wirth, N.: Program development by stepwise refinement. CACM 14 221-227 (1971)

Received August 17, 1987/March 21, 1988

