Theoretical Computer Science 100 (1992) 365-383 365
Elsevier

Combining angels, demons and
miracles in program specifications

R.J.R. Back

Abo Akademi University, Department of Computer Science, Lemminkdisenkatu 14,
SF-20520 Turku, Finland

J. von Wright

Swedish School of Economics and Business Education, Biblioteksgatan 16, SF-65100 Vasa,
Finland

Communicated by J.W. de Bakker
Received December 1989
Revised November 1990

Abstract

Back, R.J.R., and J. von Wright, Combining angels, demons and miracles in program specifications,
Theoretical Computer Science 100 (1992) 365-383.

The complete lattice of monotonic predicate transformers is interpreted as a command language
with a weakest precondition semantics. This command lattice contains Dijkstra’s guarded com-
mands as well as miracles. It also permits unbounded nondeterminism and angelic nondeterminism.
The language is divided into sublanguages using criteria of demonic and angelic nondeterminism,
termination and absence of miracles. We investigate dualities between the sublanguages and how
they can be generated from simple primitive commands. The notions of total correctness and
refinement are generalized to the command lattice.

1. Introduction

The weakest precondition calculus of Dijkstra [10] identifies the meaning of a
program statement with its weakest precondition predicate transformer. Dijkstra’s
“healthiness conditions’ state that these predicate transformers for executable
program statements are strict (they satisfy the “Law of Excluded Miracle”),
monotonic, conjunctive and continuous.

Extensions to the language of guarded commands that drop some of the healthiness
conditions have subsequently been used to allow treatment of specifications, parallel
programs and data refinement. Back [1, 2] introduces weakest preconditions for
specifications. He permits unbounded nondeterminism, thus dropping the continuity

0304-3975/92/$05.00 © 1992—Elsevier Science Publishers B.V. All rights reserved

366 R.J.R. Back, J. von Wright

requirement. Further, a refinement relation on statements is introduced, such that
S is refined by S’ iff

VQ.(wps(Q)=wps(Q))

where wpg is the weakest precondition predicate transformer for S. The refinement
relation is a preorder, and S< S’ means that S’ preserves the total correctness of
S. The refinement calculus, based on this notion of refinement, gives a framework
for the stepwise refinement of programs [1, 2, 4]. An initial specification S, is refined
in small steps,

So51--~$5,,

where each step preserves the total correctness of the previous one. The transitivity
of the refinement relation guarantees that the final program S, satisfies the initial
specification S,.

The weakest precondition calculus was extended by de Bakker [9] to cover partial
state transformers, i.e., miraculous statements. Miraculous statements are used in
program refinements by Morgan [17] and Back [6]. The angelic statement of Back
[5], used in nonfunctional data refinement, is not conjunctive but disjunctive. Thus,
in going from a pure programming language to specification languages, most of the
original healthiness conditions have been questioned, in order to gain expressive
power and to develop calculi for program development. In this sense a specification
language is truly more general than a programming language, for which all the
original healthiness conditions are well motivated.

The conjunctivity condition reflects the view that the nondeterminism associated
with the execution of a statement is demonic, i.e., in order for a computation to be
successful, all possible execution paths must lead to a successful result. Dropping
the conjunctivity condition means accepting other kinds of nondeterminism. If the
conjunctivity condition is replaced with a disjunctivity condition, the nondetermin-
ism is angelic, i.e., in order for a computation to be successful it is enough that
there exists a possible successful execution path. Angelic nondeterminism in a
weakest precondition semantics based on state transformers has been considered
by Jacobs and Gries [16], and in another setting by Broy [8].

Hehner [13] and Morris [19] identify statements with weakest precondition
predicate transformers, an approach which we follow in this paper. Thus we write
S(Q) rather than wpg(Q). As a consequence, our theory does not permit reasoning
about partial correctness. Morris [19] notes that the monotonic predicate transfor-
mers form a lattice, with the partial order corresponding to the refinement ordering
of statements. Lattice-like operators on statements have been considered by Gardiner
and Morgan in [11] and by Hoare and others in [12]. An algebraic approach to
weakest preconditions is also investigated by Hesselink in [14, 15].

In an earlier paper [7] we define a specification language € within the complete
lattice of monotonic predicate transformers, using only very simple primitive com-
mands and functional (sequential) composition in addition to meets and joins. It

Combining angels, demons and miracles in program specifications 367

is shown that all monotonic predicate transformers can be generated in this language.
A duality operator dual is introduced in € and the duality properties of the command
lattice are investigated.

This paper extends the work in [7], focusing on the duality between angelic and
demonic nondeterminism together with the duality between nontermination and
miracles. We consider a number of sublanguages of the command lattice €, showing
how they are interrelated and how they can be constructed. We extend the complete-
ness results from [7] to cover these sublanguages. We also generalize the notion of
refinement to € and give an intuitive characterization of what the refinement relation
means in €.

The rest of the paper is organized as follows: Section 2 contains background
material on lattices and predicate transformers. Section 3 decribes how the complete
lattice of monotonic predicate transformers is interpreted as a command language
€. Section 4 describes some interesting sublanguages of € and their interrelations.
In particular, we consider languages permitting nontermination and permitting
demonic and/or angelic nondeterminism. We show that many sublanguages of 6
are complete lattices. The language of nonmiraculous conjunctive commands (i.e.,
the language where Dijkstra’s guarded commands are embedded) is shown to have
a more irregular structure. In Section 5, we show how the languages described in
the preceding sections can be generated from very simple primitive commands (again
with the language of nonmiraculous conjunctive commands as a notable exception).
In Section 6 we give a characterization of the refinement relation in 4. Finally, we
end with some concluding remarks in Section 7.

2. Prerequisites

2.1. Lattice theory

We assume that the concepts of partial orders and lattices (complete, distributive,
boolean and atomic lattices) are familiar, as well as the weakest precondition
technique of [10].

Function lattices. If L is a lattice and K any set, then the set of total functions from
K to L is a lattice, with the pointwise extension of the partial order < on L,

f=g ¥ vx(f(x)=g(x)).

The monotonic (order-preserving) functions from one lattice L to another lattice
L' form a lattice, denoted [L— L']. It is complete whenever L’ is complete.

Proving orderings in a complete boolean lattice. The following important fact about
complete boolean lattices will be used in many proofs: if x and y are arbitrary
elements in L and —y denotes the inverse of y, then

XEYVZI O XATIYSZ (1)

368 R.J.R. Back, J. von Wright

Semilattices. Semilattices are partially ordered sets where finite meets or joins exist.
A \/-semilattice is a partially ordered set H such that x v y (the least upper bound
of {x, y}) exists for all x, y in H. We say that H is complete if \/ H' exists for all
nonempty subsets H' of H. The concept of A-semilattice is defined dually.

2.2. Basic programming concepts

Let Bool be the complete lattice of truth values for a two-valued logic, Bool =
{ff, t1}, ordered so that ff< 1t (the implication ordering).

Variables, values and states. We assume that Var is a nonempty countable set of
program variables with typical list of distinct elements v (lists can be finite or infinite).
Sometimes we will need to consider all the elements of Var as a list, which we will
then denote V.

We further assume a nonempty set D of values, with typical list of elements d.
The length of the list d is assumed to be clear from the context. A state is an
assignment of a value to each variable, i.e., a (total) function from Var to D. We
assume that there are no undefined values. The set of all states is called the state
space and is denoted 3. A typical element of X is denoted o.

A (semantic) substitution in X is defined in the following way. The state o with
¢ (semantically) substituted for u, denoted o[c/u], is the state which differs from
o only in that it assigns the value ¢ to the variable w. Substitutions of lists of values
for lists of distinct variables are defined similarly.

Predicates. A predicate is a (total) function from X to Bool We denote the set of
all predicates Pred; typical predicates are denoted P and Q. Instead of P(o)=1t
we often write just P(o), saying that P holds in the state o.

Pred is a complete boolean lattice with the pointwise extended partial order from
Bool:

P<Q ¥ Yo (P(o)=Q(a)).

Note that we can interpret P<Q a “P implies Q (everywhere)” and that we allow
infinite conjunction (meets) and disjunctions (joins) of predicates.

The bottom element of Pred is called false while the top element is called true.
The inverse of a predicate P is =P and P=Q is an abbreviation for =P v Q. The
lattice Pred is atomic. Its atoms are the one-state predicates b,, defined by

b,(cYy=1tt iff ' =0. (2)
Semantic substitutions are extended to predicates, with P[d/v] assigning the
same truth value to o as P assigns to o[d/v], i.e., P[d/v](o)=P(old/v]).
2.3. Predicate transformers

Predicate transformers are (total) functions from predicates to predicates. Predicate
transformers are typically denoted S. The set of all predicate transformers is a

Combining angels, demons and miracles in program specifications 369

complete boolean lattice with the pointwise extension of the partial order on Pred:
S=S" ¥ YQ(S(Q)=5(Q)).

Actually, we are only interested in the complete lattice of monotonic predicate
transformers, [Pred » Pred]. Its bottom element is the predicate transformer which
maps every predicate to the predicate false, called abort. The top element, which
maps every predicate to the predicate frue, is called magic. Note that abort is the
unit element of the join operator while magic is the unit element of the meet operator.

Functional composition of predicate transformers is called sequential composition
and denoted by the symbol ;. The unit element of sequential composition is the
identity predicate transformer skip.

3. The lattice of commands

We now define the command language 4. Our definition is semantic: we define
every monotonic predicate transformer to be a command (thus € ={ Pred - Pred]).

€ is a command lattice, with the basic operators A (meet), v (join) and ; (sequential
composition). The bottom element of € is abort, and the top element is magic.
Commands are given a weakest precondition interpretation. The meaning of a
command S is described with respect to a final condition Q that it is intended to
establish. Assume that the command S is executed in an initial state o,. Then S(Q)
is a predicate which holds in o, if and only if the execution succeeds in establishing
the postcondition Q (i.e., it reaches a final state where Q holds).

A meet of commands AS; is interpreted as a demonic choice between the com-
mands, i.e. it establishes a postcondition Q iff all commands S; establish Q. Similarly,
a join of commands VS, can be interpreted as an angelic choice between the
commands, i.e., it establishes a postcondition Q iff one of the commands S; estab-
lishes Q.

A sequential composition S; S’ is interpreted as executing the commands S and
S’ in sequence. However, if S fails (does not terminate) or it succeeds miraculously
(see below), then S’ is not executed, as it is never reached.

The abort command always fails; it never succeeds in establishing any postcondi-
tion. On the other hand, magic always succeeds. It even establishes the postcondition
false, thus it is miraculous.

3.1. Characterizing properties

The command language introduces a number of new features into the weakest
precondition approach which are not present in the original guarded command
language of [10]. We will now characterize these features in somewhat more detail
and identify a number of sublanguages of € based on these features.

Dijkstra originally proposed five healthiness conditions that every statement
language would have to satisfy. Of these, only the monotonicity condition is satisfied

370 R.J.R. Back, J. von Wright

by all commands in € it is the defining characteristics for the predicate transformers
considered to be commands. The fact that we permit arbitrary meets means that the
assumption of bounded nondeterminism is not satisfied, the miraculous commands
violate the “Law of Excluded Miracles” and the angelic choice violates the conjunc-
tivity condition. We define a command S to be

(L) nonmiraculous if S(false)= false,

(T) always terminating if S(true) = true,

(n) conjunctive if S(\,.; Q))=A,., S(Q)

for any nonempty family {Q;};.; of predicates,
(v) disjunctive if S(V/,_, Q))=V,., S(Q)
for any nonempty family {Q;};., of predicates.

We call S(false) the domain of miracles and S(true) the domain of termination of S.

A command which is both nonmiraculous and always terminating is said to be
total and a command which is both conjunctive and disjunctive is said to be
deterministic. The definition of determinism is motivated by the following argument,
showing a correspondence between deterministic commands and deterministic state
transformers. A deterministic state transformer is a function from the state space 2
to the augmented state space X, =3 u{L, T} where 1 stands for nontermination
and T for miraculous termination. For every deterministic command S we define
the state transformer f5 by

T if o ¢ S(false),
Ss(o)=11L if o ¢ S(true),
(M {Qloe S(Q)} otherwise,

where o € Q means that Q holds in the state o. It is then straightforward to show
that fs is deterministic (i.e., that f(o) is always singleton). One can show that every
deterministic state transformer corresponds to a unique deterministic command and
that the following holds:

geS(Q) & fs(o)eQ,

i.e., S(Q) holds in a state o if and only if execution of S in the initial state ¢ can
terminate only in one final state and Q holds in that final state. Thus execution of
S can be intuitively interpreted as being deterministic.

It should be noted that by introducing the “miracle state” T we do not require
that deterministic commands be nonmiraculous. In this respect our definition is
different from the definition in e.g., [14].

Refinement of commands. Since the commands are given a weakest precondition
interpretation, the partial order on € is the refinement relation introduced by Back
[1, 2] and later used in [19, 11]. We define rotal correctness of a command S with
respect to precondition P and postcondition Q, written P[S]Q, as follows:

P[S]1Q & P=5S(Q).

Combining angels, demons and miracles in program specifications n

Then §$= S’ holds if and only if S’ preserves the total correctness of S. Thus S’ is
a refinement of S, in the sense that S’ satisfies any specification that S satisfies. In
the restricted context of conjunctive nonmiraculous commands and bounded non-
determinism the refinement order is essentially the same as the Smyth order [21],
as pointed out by Back [3] and Plotkin [20].

3.2, Extreme cases of command lattices

We have assumed that both the set of variables Var and the set of variable values
D are nonempty. Otherwise the state space 2 would be empty and Pred would
contain only one predicate (thus we would have false = true). This would also mean
that € would contain only one element. By assuming that D is nonempty we avoid
this degenerate case.

If D contains exactly one element, then X also contains one element and Pred
consists of the two distinct elements false and true. In this case € contains exactly
the three distinct elements abort, skip and magic, with

abort < skip < magic.

If D contains two or more elements, then € is no longer totally ordered. In the rest
of this paper, we assume that D contains at least two elements.

4. Sublanguages of €

We return to the four characterizing properties defined in Section 3. These
properties are independent of each other, thus there are sixteen different ways of
combining them. We will use the symbols L, T, A, v for the properties as indicated
in Section 3.1 and we will index the name % with these symbols to denote a
sublanguage where all commands are required to have the property in question.
Thus, for example, €¢ is the set of all disjunctive, nonmiraculous commands.
Dijkstra's language of guarded commands is a subset of €., where conjunctivity
and nonmiraculousness are required to hold.

Geometrically, we can view the sixteen languages as corners of a unit 4-
dimensional hypercube. Each property corresponds to a dimension and the value
0 corresponds to not requiring the property while the value 1 corresponds to requiring
the property. At the corner (0,0,0,0) we have the language %, and at the corner

(1,1,1, 1) we have the language 4., containing all deterministic total commands.

4.1. Symmetries between sublanguages

There is a symmetry between the nonmiraculousness and the property of always
terminating and another symmetry between conjunctivity and disjunctivity. We can
describe this symmetry in tems of execution mechanisms. Thus, e.g., a command in
%" can be transformed into one in €' by replacing nontermination with miraculous

372 R.J.R. Back, J. von Wright

success. Similarly, a command in 4, can be transformed into one in €, by replacing
demonic resolution of nondeterminism with angelic resolution.

Dual commands and symmetries. In[7], we defined the dual of an arbitrary command
S by

dual($)(Q)="5(1Q)

It was shown that dual is a lattice-isomorphisms from (€, <) to (%€, =) which is
compositional in the sense that dual(S;S’) = dual(S); dual(S’). Thus dualization
interchanges miracles and nontermination on one hand and demonic and angelic
nondeterminism on the other hand. We now investigate how the dual function can
be divided into two parts, separating the two symmetries from each other.

The miracles-nontermination symmetry. We define the function mt (toggling
miraculousness and termination properties) in the following way:

mt(SYQ)="1S(false) rn S(Q) v 1S(true),

(no parentheses are needed on the right-hand side because the expressions are
associative in this case).

The following lemma shows that mt interchanges miracles and nontermination
without affecting the mode of nondeterminism.

Lemma 1. Let S be an arbitrary command in €. Then
(a) mt(mt(S))=S.
(b) mt(S) is conjunctive iff S is conjunctive.
(c) mi(S) is disjunctive iff S is disjunctive.
(d) mt(S) is nonmiraculous iff S is always terminating.
(e) mt(S) is always terminating iff S is nonmiraculous.

Proof. We first prove (a). Let Q be an arbitrary predicate.
mt(mt(S))(Q)

= [definition of mi]

—mt(S)(false} A mt(SH Q) v mt(S)(true)

=[definition of mt; properties of inverse in a boolean lattice]
S(true) A (1S false) n S(Q) v 1S(true)) v S(false)

= [distributivity; property of inverse in a boolean lattice]
(S(true) n1S(false) » S(Q)) v S(false)

=[by monotonicity, S{(Q) =< S(true)]

(mS(false) A S(Q)) v S{ false)

= [distributivity; property of inverse in a boolean lattice]
S(Q) v S(false)

=[monotonicity]

S(Q).

Combining angels, demons and miracles in program specifications 373

Next we prove (b). Let {Q;} be a family of predicates.

S is conjunctive

= [definition of conjunctivity]

SINQ) = A(S(Q))

= [applying same operations to both sides; distributivity in boolean lattice]
—1S(false) A S(NQ;) v 1S(true) = A(1S(false) A S(Q;) v 1S (true))

< [definition of mt, conjunctivity]

mt(S) is conjunctive.

The implication in the opposite direction now follows by (a). The proof of (c) is
exactly like the proof of (b). Now we prove (d) and (e) at the same time.

First assume that S(true) = true. Then rewriting shows that mt(S){ false) = false.
In the same way it is shown that S(false) = false=> mt(S)(true) = true. Both implica-
tions in the opposite direction now follow from (a). O

The junctivity symmetry. We define the function cd (toggling conjunctivity and
disjunctivity) in the following way:

cd (S Q)= S(true) A1 S(1Q) v S(false),

{no parentheses are needed on the right-hand side because the expressions are
associative in this case).

The following lemma shows that cd exchanges demonic and angelic nondetermin-
ism in a command without affecting the termination or miracle properties.

Lemma 2. Let S be an arbitrary command in €. Then
(a) cd(cd(S))=S5.
(b) cd(S) is disjunctive iff S is conjunctive.
(c) ¢d(S) is conjunctive iff S is disjunctive.
(d) ¢d(S) is nonmiraculous iff S is nonmiraculous.
(e) ¢d(S) is always terminating iff S is always terminating.

Proof. The proof is similar to the proof of Lemma 1. [

As an example let us assume that S¢ 4, i.e., S is a nonmiraculous conjunctive
command (it could be a guarded command in the sense of Dijkstra [10]). Then
mt(S) is always terminating and conjunctive, i.e., m{(S)e €, , and ¢d(S) is non-
miraculous and disjunctive, i.e., cd(S) € €. Furthermore, S= mt(S) and S= cd(S),
as the following lemma shows.

Lemma 3. Let S be any command in €.
(a) S=mt(S) ifand only if Se €*.
(b) mi(SY<=Sifand only if Se €".
(c) If Se €, then S= cd(S).

(d) If Se €, then cd(S)=S.

374 R.J.R. Back, J. von Wright

Proof. We first prove (a). For an arbitrary Q € Pred,

S=mt(S)

< [definition of mt]
VQ.(S(Q)=1S(false) n S(Q) v 1S(true))
< [(D)]

VQ.(S(Q) A S(true)<—1S(false) n S(Q))
< [monotonicity]
VQ.(S(Q)="1S(false) r S(Q))

& [properties of complete lattices]
VQ.(S(Q)=S(false))

< [(1) with z = false]

YV Q.(S(Q) A S(false) = false)

& [properties of complete lattices]

S(false) = false.

The proof of (b) is similar. To prove (¢), assume that S is conjunctive and let Q
be an arbitrary predicate. Then ’

S(Q)Aed(S)Q)

= [definition of cd]

S(Q) A (mS(true) v S1Q) A—1S(false))

= [distributivity]

(S(Q)AS(true)) v(S(Q) A S(mQ) A—1S(false))
= [(1); S(Q) = S(rrue)]

S(Q) A S(—Q)A—1S(false)

=[S conjunctive; Pred is a boolean lattice]
false.

Thus, by (1) with z = false it follows that S(Q) <= ¢d(S)(Q). Finally, (d) follows

from (¢) and Lemma 2. (O

From Lemma 3 we see that mt(S)= S if and only if S is total. We also see that
¢d(S)=S if S is deterministic. However, the following example shows that S need
not be deterministic even if cd(S)=S. Let S,, S, and S, be arbitrary commands.
Then conj(S) =S holds for the command

S=(SiAS)Vv(S AS;)v(S,AS;).

However, S is not deterministic if S,, S, and S; are the commands x=0, x:=1 and
x=2.

Symmetries and duals. The mt and cd functions together make up the dual function,
in the following way.

Lemma 4. dual=mtecd = cdeomt.

Proof. We show that mt(c¢d(S))(Q)=-1S(10Q).

Combining angels, demons and miracles in program specifications 375

mt(cd(S))(Q)

= [definitions]

S false) A (S(true) A1S(MQ) v S(false)) v 1S(true)
= [distributivity]

(1S (false) » S(true) n1S(Q)) v (1S(false) » S(false)) v 1S(true)
=[S(—Q)=S(false), properties of inverses]
(S(true) A 1S(1Q)) v 1S(true)

= [distributivity; properties of inverses]

—18(—Q) v 1S(true)

= [monotonicity]

—1S(1Q).

In the same way it is shown that cd(mi(S))(Q)="S(—Q). O
From the above lemmas the following result follows.

Theorem 1. The diagrams in Fig. 1 and Fig. 2 commute. In particular, mt, c¢d and
dual are bijections on €.

The functions mt and cd are not compositional (i.e., it is generally not possible
to compute e.g. mt(S A S'), given only mt(S) and mt(S’)). This limits their usefulness
when reasoning about the symmetries between sublanguages of .

4.2. Self-dual commands and determinism

We say that a command is self-dual if S = dual(S). The concept of self-dualism
is close to the concepts of determinism and totality.

od
C - - C
| dual dual
mt mt
od
C - ~C
Fig. 1. Commuting diagram for €.
L od 1
C C
dual dual
mt mt
TA cd O T
G o

Fig. 2. Commuting diagram for sublanguages.

376 R.J.R. Back, J. von Wright

Lemma 5. Let S be an arbitrary command in €. Then

S=dual(S) & S=mt(S)rS=cd(S).

Proof. First we note that
S<=cd(S) & YQ.(S(Q) A S(—mQ)=S(false)) (3)
(this is easily proved in the same way as Lemma 3(a)). We now have the following:

S = dual(S)

& [definitions]

VQ.($(Q)=71S5(10))

< [(D)]

VQ.(S(Q) r S(1Q) = false)

& [choosing Q = false]

S(false) = false AV Q.(S(Q) A S(mQ) = S(false))
& [Lemma 3(a), (3)]

S=mt(S)rS=cd(S).

The rest of the proof now follows by symmetry. [

From Lemmas 3 and 5 we can see that if S is deterministic and total then S is
self-dual. We also see that self-dual commands are always total. However, the
example following Lemma 3 shows that self-dual commands need not be deter-
ministic.

4.3. Interesting sublanguages and their properties

We are mainly interested in command languages that permit nontermination and
nondeterminism. Thus the sublanguages of main interest are the following:

(a) %, containing all commands,

(b) €*, the nonmiraculous commands,

(¢) %., the conjunctive commands,

(d) €., the disjunctive commands,

(e) €, the nonmiraculous conjunctive commands, and

(f) €7, the nonmiraculous disjunctive commands.
The following theorem gives a general description of these sublanguages of €.

Theorem 2. The six interesting sublanguages of € can be characterized as follows:

(a) € is a complete lattice with bottom element abort and top element magic.

(b) €* is a complete lattice where all nonempty meets and joins give the same result
as in 6. It has bottom element abort and top element serve, which maps false to false
and all other predicates to true.

(c) €, is a complete lattice where all meets give the same result as in 6, but joins
generally do not. It has bottom element abort and top element magic.

(d) €, is a complete lattice where all joins give the same result as in €, but meets
generally do not. It has bottom element abort and top element magic.

Combining angels, demons and miracles in program specifications 377

(e} € is a complete \-semilattice where all meets give the same result as in €. It
has the least element abort and its maximal elements are all the deterministic total
commands.

(f) €y is a complete lattice where all joins give the same result as in €, but meets
generally do not. It has bottom element abort and top element serve.

Proof. Parts (a) and (b) are proved in [7]. Since meets in € preserve conjunctivity
it is obvious that all nonempty meets in %, exist and that they give the same results
as in €. Both abort and magic are conjunctive, thus they must be the bottom and
top elements of ,, respectively. Finally, since any family {S;} of conjunctive
commands has at least one conjunctive upper bound (magic), we can form the meet
(in %) of all conjunctive upper bounds which is a least conjunctive upper bound,
i.e., a least upper bound in %,. Thus (c) is proved. The proof of (d) is dual to the
proof of (c).

Since meets in € preserve both strictness with respect to false and conjunctivity,
nonempty meets in €, give the same results as in %. Since abort is nonmiraculous
and conjunctive, it must be the least element of €. The formal proof of the fact
that the maximal elements of % are exactly the commands in ¢, involves reasoning
about the atoms of Pred. Here we give the following informal argument: From the
refinement calculus [2, 4, 18] it is known that S< S’ holds in €: if S’ is more
terminating or more deterministic than S. However, since the commands in 47, are
always terminating and deterministic we cannot find any command in €, that is
more terminating or more deterministic. Since we assume that the value set D
contains at least two elements, there is more than one maximal element. Thus (e)
is proved.

Finally, the proof of (f) is similar to the proof of (d). [

Note that duality gives similar results for €' as in (b), for €. as in (e) and for
%’ as in (f).

Theorem 2 shows that ¢ differs from the other languages; it is irregular, in the
sense that it is not a lattice. It is interesting to note that Dijkstra’s guarded commands
and other similar languages not permitting miracles are a subset of €, the only
one of the sublanguages considered here that is irregular. Adding miracles extends
the languages into €,, which is a complete lattice. This can be considered an
argument for dropping Dijkstra’s “Law of Excluded Miracle™: it gives the language
a more regular mathematical structure. In the next section we will show that the
language % differs from the other languages in another way: it is not as easily
constructible from simple primitives.

5. Constructing command languages

In this section we show how € and some of its sublanguages can be constructed
using simple primitive commands in addition to the constructors meet, join and

378 R.J.R. Back, J. von Wright

sequential composition. We shall consider those sublanguages that were described
in the preceding section, i.e., those that permit nontermination and nondeterminism.
The primitive commands that we introduce intuitively represent the two most
primitive possible operations that imperative programs are built from: assigning a
value to a variable, and testing whether a variable has a certain value.

5.1. Construction of €

We define three primitive commands, the substitution command {(d/v), the strict
test command {v = d} and the miraculous test command [v =d] (where v is any list
of distinct variables and d a list of values of the same length as v), as in [7].

The primitive commands have the following semantics:

(d/v)(Q) € Q[d/v],
{v=dHQ) ¥ (v=d)rQ,
[v=d](Q) & (v=d)=Q,

(thus the miraculous test command is the dual of the strict test command while the
substitution command is its own dual).

The substitution command {(d/v) assigns values d to the variables v, leaving the
rest of the state unchanged. The strict test {v = d} acts as skip if v = d holds, otherwise
it aborts. The miraculous test [v = d], which is the dual of {v = d}, also acts as skip
if v=d but it succeeds miraculously otherwise. We permit empty lists in the
definitions; (e/e)={e = e} =[e =] = skip where ¢ is the empty list.

Applying the command constructors of € (sequential composition, meet and join)
to the primitive commands defined above, we can generate the whole of €. This is
the completeness theorem for €, proved in [7].

Theorem 3. Every command in € can be generated using the primitive commands
(d/v), {v=d} and [v =d] and the constructors meet, join and sequential composition.

5.2. Construction of €+, €., €., and €+

The primitive commands and constructors of € are connected with the four
properties that characterize the sublanguages of 4. The command {v = d} is possibly
nonterminating, violating property (T) while the command [v=d] is possibly
miraculous, violating property (L1). Joins can introduce angelic nondeterminism,
violating property (A) and meets can introduce demonic nondeterminism, violating
property (v). The substitution command {(d/v) and the sequential composition are
both neutral in the sense that they preserve all four characterizing properties.

We now investigate to what extent the interesting sublanguages of € can be
constructed using those primitive commands and constructors that fit into the
sublanguage in question. It turns out that most languages are constructible in this
way; the only exception is the language €., the one that is not a lattice.

Combining angels, demons and miracles in program specifications 379

In [7] we show that € can be generated in the same way as € by dropping the
primitive command [v = d] which introduces miracles.

Theorem 4. Every command in € can be generated using the primitive commands
(d/v) and [v=d] and the constructors meet, join and sequential composition.

We now show that similar results hold for €, and 4, .

Theorem 5. Every command in €, can be generated using the primitive commands
(d/v), {v=d} and [v=4d] and the constructors join and sequential composition.

Proof. One can show that every command S in €, can be written as

s=v (v tv=a)eonm)

d:Sib,)

V((V {V=d}> ;\/[V=d]) (4)
d : S(false) d

where the notation \/, .S, is used for the qualified join of commands
V(d:Pld/v]=rtue:S,;). O

Since the dual function is compositional, we have a dual construction of all
commands in €, .

Corollary 1. Every command in €, can be generated using the primitive commands
(d/v), {v=4d} and [v=d] and the constructors meet and sequential composition.

Furthermore, dropping the second disjunct in the construction (4) forces strictness
with respect to false, giving the following corollary.

Corollary 2. Every command in €7 can be generated using the primitive commands
{(d/v) and {v=d} and the constructors join and sequential composition.

Thus we have shown that €*, €, , €, and % can all be constructed by dropping
from the construction of € the constructs that introduce the unwanted properties.
The result for 4, also show that every disjunctive command can be constructed
using only deterministic components and angelic choice. Thus we can interpret
every disjunctive command intuitively as an angelic command. Dually, every conjunc-
tive command can be interpreted as a demonic command.

Summary of constructions. We summarize the construction of this section in Table
1, showing what is sufficient to construct the sublanguages of € considered so far.

380 R.J.R. Back, J. von Wright

Table 1

language (d/v) {lv=d} [v=d] = v)
€ X X X X X
£~ X x X X X
€, x X x X X
€, X X X X X
gL X x X

From the properties of the dual function it follows that dual languages have dual
constructions. Thus, e.g. € can be constructed using the primitive commands {(d / v)
and [v=4d] in addition to meet and sequential composition, since %) is the dual
of €.. However, as noted above, we will not further investigate languages that
exclude nontermination.

5.3. Constructing €

The language €, is different from those considered above, as it is not a lattice
but only a semilattice. One may still ask if every command in € can be constructed
using the corresponding primitives and constructors from %, i.e., {v=d}, (d/v),

66, 99

;77 and “A”. The answer is negative, as the following theorem shows.

Theorem 6. If the value set D contains two or more elements then there are commands
in € that cannot be constructed using only the primitive commands {v=d} and {(d/v)

ITIRRL)

and the constructors ;" and “A”.

Proof. Let o, and o, be two states that differ on every variable in Var. Then b,
and b,, (as defined by (2)) are two atoms of Pred. We now define a command S to
have property (J) if

S(b,)=false or S(b,)=false or §=skip. (J)

One can then show by structural induction that all commands have property (J).
Now let S be the command defined by

true if Q=b, and Q=b,,,
blf7 if Q = b(fl and Q # b(777
S(Q)=¢," . :
b, if Q#b, and Q=b,,
false if Q#b, and Q#b,,.
S is conjunctive and strict with respect to false but it does not have property (J),
hence it cannot be constructed. [J

Thus we have shown that the irregular (see Theorem 2) language € is not
constructible in the same way as the other sublanguages of € considered previously.
The problem is the lack of means to construct conditional commands (e.g., if-else
commands). To construct these we need to combine strict test commands with joins
or to combine miraculous tests with meets.

Combining angels, demons and miracles in program specifications 381
6. Characterizing refinement in the command languages

In the traditional context of nonmiraculous conjunctive commands, a refinement
S = S’ holds when S’ decreases the domain of nontermination of S or S’ decreases
the nondeterminism of S. We shall now generalize this characterization of refinement
to arbitrary commands in €.

We first note the following rules of refinement in €.

Lemma 6. Let v be an arbitrary list of variables, d a list of values of the same length
as v, and let {S;},c; be a family of commands in €. Then

(a) {v=d}=(d/v)=<[v=4d],

(b) abort={v=d}< skip=<[v=d]=< magic,

(C) /\i&l Sfé/\ie:l' S,- when I' < Is

(d) Vo) Si=V,., SiwhenI'c I

Proof. To prove (a) we have to show that
(v=d)rQ=Q[d/v]=(v=d)=Q

holds for all predicates Q. This follows from the one-point rule of predicate calculus.
To prove (b) we have to show that

false=(v=d)rQ=0Q<=(v=d)=> Q= true

which follows from the basic properties of the lattice Pred. Finally, (¢) and (d) are
obvious properties in any complete lattice. [

Cases (a) and (b) of Lemma 6 are examples of refinement by decreasing nontermi-
nation and increasing miracles in commands. Cases (¢) and (d) are examples of
refinement by decreasing the demonic nondeterminism and increasing the angelic
nondeterminism of commands.

The command constructors (meet, join and sequential composition) are monotonic
with respect to subcommand replacement, as shown in [7]. Thus, applying the rules
given in Lemma 6 to any subcomponent of a command S yields a refinement of S.
Also, any refinement S < S’ can be described as a case of the rule of Lemma 6(c),
in the trivial sense of dropping the first conjunct of S A S'. Thus we can give the
following general characterization of refinement in € and all its sublanguages: A
command S is refined by another command S’ if

(a) S’ decreases the domain of nontermination of S, or

(b) S’ increases the domain of miracles of S, or

(¢) S’ decreases the demonic nondeterminism of S, or

(d) S'increases the angelic nondeterminism of S.

Returning to the results in Lemma 3, we see that they verify this characterization
of refinement.

382 R.J.R. Back, J. von Wright
7. Conclusion

We have considered the complete lattice of monotonic predicate transformers €
interpreting it as a command language. Using the properties of nontermination,
miraculousness, conjunctivity and disjunctivity, we have defined a number of sub-
languages of 6. The dual function expresses a symmetry between sublanguages,
interchanging nontermination and miraculous success and also interchanging
demonic and angelic nondeterminism. We divided the dual function into two
components, the functions mt (interchanging nontermination and miraculous suc-
cess) and the function cd (interchanging demonic and angelic nondeterminism).
We considered a number of interesting sublanguages (i.e., sublanguages permitting
nontermination and nondeterminism) of 6. It was shown that they are complete
lattices and that they can be constructed using only very simple primitive commands
as building blocks and the lattice operators and functional composition as construc-
tors. The language of nonmiraculous conjunctive commands (%) was shown to be
an exception; it is not a lattice and it is not constructible in the same simple way
as the other languages without introducing some way of expressing conditional
composition. This is interesting, considering that Dijkstra’s language of guarded
commands is a subset of €. Finally, we extended the notion of refinement between
commands to the command language €, and a general characterization of refinement
was given.

Since we identify commands with their weakest precondition predicate transfor-
mers, our framework does not permit reasoning about programs that are only
partially correct. This is a deliberate choice; we are working within the framework
of the refinement calculus which is a calculus of total correctness. It is possible to
build a similar theory for partial correctness, identifying commands with their
weakest liberal precondition predicate transformers. It is also possible to combine
the two theories, identifying each command S with the pair (wlpg, wps). This is
left as a subject for further study.

Acknowledgment

We thank the anonymous referee for many helpful comments and suggestions.
The work reported here was supported by the Finsoft III program sponsored by
the Technology Development Centre of Finland.

References

[1] R.J.R. Back, Onthe correctness of refinement in program development, PhD. thesis Report A-1978-4,
Department of Computer Science, University of Helsinki, 1978.

[2] R.J.R. Back, Correctness preserving program refinements: proof theory and applications, Math.
Center Tracts 131 (1980).

[3]
[4]
[5]
[6]
(7]
[8]
[9]

[10]
[11]

[12]

[13]
[14]

[15]
[16]
[17]
[18]
[19]
(20]

[21]

Combining angels, demons and miracles in program specifications 383

R.J.R. Back, On correct refinement of programs, J. Comput. System Sci. 23 (1) (1981) 49-68.
R.J.R. Back, A calculus of refinements for program derivations, Acta Inform. 25 (1988) 593-624.
R.J.R. Back, Changing data representation in the refinement calculus, in: Proc. 2Ist Hawaii Internat.
Conf. on System Sciences, January 1989.

R.J.R. Back, Refining atomicity in parallel algorithms, in: Proc. PARLE Conf. on Parallel Architectures
and Languages Europe, Eindhoven, Netherlands, June 1989.

R.J.R. Back and J. von Wright, Duality in specification languages: a lattice-theoretical approach,
Acta Inform. 27 (1990) 583-625.

M. Broy, A theory for nondeterminism, parallellism, communications and concurrency. Theoret.
Comput. Sci. 46 (1986) 1-61.

J1.W. de Bakker, Mathematical Theory of Program Correctness (Prentice-Hall, Englewood Cliffs,
1980).

E.W. Dijkstra, A Discipline of Programming (Prentice-Hall International, London, 1976).

P.H. Gardiner and C.C. Morgan, Data refinement of predicate transformers, manuscript, 1988, (to
appear in Theoretical Computer Science).

1.J. Hayes, C.A.R. Hoare, A.W. Roscoe, Jifeng He, C.C. Morgan, J.M. Spivey, J.W. Sanders, 1.H.
Sorensen and A. Sufrin, Laws of programming, Comm. ACM 30 (8) (1987) 672-686.

E. Hehner, The Logic of Programming (Prentice-Hall, Englewood Cliffs, 1984).

W.H. Hesselink, An algebraic calculus of commands, Report CS 8808, Department of Mathematics
and Computer Science, University of Groningen, 1988.

W.H. Hesselink, Command algebras, recursion and program transformation, Formal Aspects of
Computing 2(1) (1990) 60-104.

D. Jacobs and D. Gries, General correctness: a unification of partial and total correctness, Acta
Inform. 22 (1985) 67-83.

C.C. Morgan, The specification statement, ACM Trans. Programming Languages Systems 10 (3)
(1988) 403-419.

C.C. Morgan, Types and invariants in the refinement calculus, in: Mathematics of Program Construc-
tion, Lecture Notes in Computer Science, Vol. 375 (Springer, Berlin, 1989).

J.M. Morris, A theoretical basis for stepwise refinement and the programming calculus, Sci. Comput.
Programming 9 (1987) 287-306.

G.D. Plotkin, Dijkstra’s weakest preconditions and Smyth's powerdomains, in: Abstract Software
Specifications, Lecture Notes in Computer Science, Vol. 86 (Springer, Berlin, 1979).

M.B. Smyth, Powerdomains, J. Comput. System Sci. 16 (1978) 23-36.

