
Ensuring Correctness
of Object and Component
Systems

Turku Centre for Computer Science

TUCS Dissertations

No 18, October 1999T U C S

by

Anna Mikhajlova

Ensuring Correctness
of Object and Component
Systems

Ensuring Correctness of
Object and Component
Systems

Anna Mikhajlova

Department of Computer Science
Åbo Akademi University

Ensuring Correctness of
Object and Component
Systems

Anna Mikhajlova

To be presented – with the permission of the Faculty of Mathematics
and Natural Sciences at Åbo Akademi University – for public criticism,
in Auditorium 3102 at the Department of Computer Science at Åbo
Akademi University, on October 14th, 1999, at 12 noon.

Department of Computer Science
Åbo Akademi University

ISBN 952-12-0518-0
ISSN 1239-1883

Painosalama Oy

To my mother,
for making this possible

ß è ñàäîâíèê, ÿ æå è öâåòîê,

Â òåìíèöå ìèðà ÿ íå îäèíîê.

Íà ñòåêëà âå÷íîñòè óæå ëåãëî

Ìî¸ äûõàíèå, ìî¸ òåïëî.

Îñèï Ìàíäåëüøòàì

Acknowledgements

First, I would like to thank my supervisors, Professor Ralph-Johan Back
and Professor Joakim von Wright, for establishing the highest standards of
quality and for setting perfect examples of how to do science. It is their
light that I reflect. I also want to express my gratitude to them for letting
me do what I wanted.

Dr. Pierre America of Philips Research Laboratories, The Netherlands,
and Dr. Michael Butler of the University of Southampton, United Kingdom,
kindly agreed to review this dissertation. Their comments and suggestions
on improving the introductory part and some of the papers are appreciated
and gratefully acknowledged.

Dr. Emil Sekerinski, currently at McMaster University, Canada, con-
tributed greatly by teaching me how to do PhD-level research. His friendly
guidance and support helped me to take the first step which eventually led
to this dissertation.

Dr. Jim Grundy, currently at The Australian National University, and
Dr. John Harrison, currently at Intel Corporation, USA, have not only been
senior colleagues, answering my numerous questions and carefully explain-
ing difficult issues, but also good friends, providing emotional support and
encouragement.

I would like to thank many people who taught me, at different stages
of my life, not only the sciences but also important life values. My elemen-
tary school teacher A. T. Belokobylskaya, my mathematics teacher V. V.
Skripnikova, and my English teacher G. V. Kutuzova have been remarkable
teachers and excellent people who have had a profound influence on me. I
am also grateful to professors and instructors at my alma mater, Taganrog
State University of Radio-Engineering. Most notably, I would like to thank
B. I. Orekhov, A. F. Olkhovoy, A. N. Garmash, Professor I. A. Tsaturova,
Professor A. N. Melikhov, and Professor L. S. Berstein.

Also, I want to thank many wonderful people in the Department of
Computing and Information Sciences at Kansas State University, where
I studied in 1992-93 as an exchange student. Professor David Schmidt,
Professor Elizabeth Unger, and Dr. Olivier Danvy, to name just a few, made
my studies in the department interesting and fruitful, and my time in the
United States eventful and full of pleasant memories. Olivier Danvy (cur-
rently at the University of Århus, Denmark) deserves special thanks for
instilling in me the desire to be a scientist and making me believe that I was
capable of becoming a Philosophiae Doctor in Computer Science.

I would like to thank the Department of Computer Science at Åbo

Akademi University and Turku Centre for Computer Science, where I carried
out my PhD studies, for providing generous financial support and excellent
working conditions. I am also grateful to my colleagues in the department
for practical and scientific assistance.

And finally, I would like to thank my friends and family. Especially,
Aleksandra Aleksejevna and Leonid Samojlovich for their love and patience.
My mother, Tamara Ivanovna, to whom this dissertation is dedicated, for
letting me become who I am. Ira, Yura, Sasha, and Andrei for bringing
more joy and sunshine to my life. And Leonid for his help, encouragement,
enthusiasm, infinite supply of excellent ideas, and the never-ending striving
for the very best.

Åbo, August 1999
Anna Mikhajlova

1 Introduction

Object-oriented style of programming has become the prime technology of
software development in the past few decades. The main reasons for the
overwhelming popularity of this programming paradigm are better structur-
ing and modularization as well as a high degree of polymorphic reuse that
it supports. Component-based programming takes the benefits of object-
orientation to an even higher level by allowing development of light-weight,
highly-customized, independently extensible applications. Component-based
systems consisting of loosely-bound highly configurable components and ca-
pable of accommodating continuous evolution can provide software devel-
opers and users with the same levels of plug-and-play interoperability that
are available to manufacturers and consumers of electronic parts or custom
integrated circuits. Establishing a software component market similar to
the market of hardware components is the ultimate goal of the software
industry.

The issue of correctness of object-oriented and component-based sys-
tems deserves close consideration in view of the present and ever-growing
popularity of the corresponding programming styles and the necessity to en-
hance reliability of programs. Traditionally, correctness has been considered
as a crucial requirement mainly for safety-critical systems, but nowadays,
the need for ensuring correctness of object-oriented and component-based
systems is becoming more widely recognized. In open systems, which are
composed and extended by end users and characterized by a late integra-
tion phase, it is impossible to conduct a global integrity check. Therefore, it
should be possible to guarantee error-free operation of resulting applications
by establishing correctness of constituting components.

In general, correctness of a system T is always determined with respect
to another system S, which can be an original system whose functionality
we want to improve in T , or a specification of the behavior we want to
achieve in T . The ability to substitute more concrete, more specialized, and
efficient entities for more abstract and general ones is the essence of poly-
morphic reuse, which is the defining feature of both the object-oriented and
the component-based approaches. Correctness of such substitution deter-
mines correctness of the system using new entities revising and extending
the functionality of the original entities. If an object or a component c′

preserves and improves the behavior of an object or a component c then
substituting c′ for c in a system is guaranteed to be correct. Imposing se-
mantics constraints on objects and components, requiring that they preserve
the behavior of the entities they can be substituted for, allows us to build

1

systems that are correct by construction.
In this dissertation we develop a mathematical foundation for reasoning

about correctness of object-oriented and component-based systems. The
logical framework that we build is based on the refinement calculus [4, 17, 6],
which is used for reasoning about correctness and refinement of imperative
programs. The contribution of this dissertation is supported by the following
publications.

List of Publications

1. A. Mikhajlova and E. Sekerinski. Class Refinement and Interface Re-
finement in Object-Oriented Programs. In Proceedings of the 4th In-
ternational Formal Methods Europe Symposium (FME’97), edited by
J. Fitzgerald, C. B. Jones, and P. Lucas, Lecture Notes in Computer
Science 1313, Springer-Verlag, pp. 82–101, September 1997.

2. A. Mikhajlova. Refinement of Generic Classes as Semantics of Correct
Polymorphic Reuse. In Proceedings of the International Refinement
Workshop and Formal Methods Pacific (IRW/FMP’98), edited by J.
Grundy, M. Schwenke, and T. Vickers, Springer Series in Discrete
Mathematics and Theoretical Computer Science, pp. 266–285, July
1998, Springer-Verlag.

3. R. J. R. Back, A. Mikhajlova, and J. von Wright. Reasoning About
Interactive Systems. To appear in Proceedings of the World Congress
on Formal Methods (FM’99), Lecture Notes in Computer Science,
September 1999, Springer-Verlag.

4. R. J. R. Back, A. Mikhajlova, and J. von Wright. Class Refinement
as Semantics of Correct Object Substitutability. Extends Paper 1,
previous version published as a technical report of Turku Centre for
Computer Science, TUCS-TR-147, December 1997.
Submitted to Formal Aspects of Computing.

5. A. Mikhajlova. Consistent Extension of Components in the Pres-
ence of Explicit Invariants. In Proceedings of the 29th International
Conference on Technology of Object-Oriented Languages and Systems
(TOOLS 29), IEEE Computer Society Press, pp. 76–85, Nancy, France,
June 1999.
Previous version appeared in Proceedings of the Third International
Workshop on Component-Oriented Programming (WCOP’98) held in
conjunction with ECOOP’98, October 1998.

2

6. A. Mikhajlova and E. Sekerinski. Ensuring Correctness of Java Frame-
works: A Formal Look at JCF. Technical Report of Turku Centre for
Computer Science, TUCS-TR-250, March 1999.
A shorter version of this paper by Anna Mikhajlova appeared in Pro-
ceedings of the 30th International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS 30), IEEE Computer Soci-
ety Press, pp. 136–145, Santa Barbara, USA, August 1999.

3

2 Objects, Components, and Subtyping

In this section we present the basic concepts of the object-oriented and
component-based paradigms, and explain which of the papers 1–6 present
models of the corresponding constructs and mechanisms.

2.1 Objects, Components, and Interaction

Objects are entities that live in a program and have an identity, a local
state, and methods. The methods can reveal the object state to the outside
world and modify it. As objects do not exist in isolation, collaboration or
interaction with other objects can also be encoded in the methods: objects
interact with each other by calling each other’s methods. The backbone of
interaction between objects is their interfaces, i.e. the names of methods
and the types of their parameters.1

The notion of a component does not have a standardized meaning and
various researchers and practitioners understand fairly different things with
components. A component can be a distributed object whose methods are
subject to remote procedure calls, or an object having a graphical user
interface that can be used to graphically compose it with other components
in an application and graphically manipulate it.

On the conceptual level objects and components are rather similar: both
encapsulate their local state and have methods visible to the environment
through a public interface. It is the way of composing and using objects and
components that distinguishes between them. An object is a unit of imple-
mentation which may not be a semantic entity on its own and may deliver
certain functionality only in collaboration with other objects. A component,
on the other hand, is an architectural building block, a unit of independent
deployment subject to composition by users rather than developers. Many
practitioners and researchers consider the heterogeneous nature of compo-
nents to be their defining feature. Namely, components are often defined
as entities that are not bound to a particular program, language, or im-
plementation [19]. As such, components can be implemented as objects or
compositions of collaborating objects, and packaged as independent pieces
of code.

Both objects and components encapsulate their local state and behav-
ior, exposing only interfaces to the outside world. For reasoning about the
behavior of both objects and components, it is therefore sufficient to model

1Interfaces are often identified with object types, and we will follow this convention in
this introduction, unless specifically stating the opposite.

4

number

owner

balance

interest

paymentDate

payed

number

owner

balance

interest

paymentDate

payed

aSavingsAccount

SavingsAccount

Deposit(Currency)

Withdraw(Currency)

Number() : Number

Owner() : Person

Balance() : Currency

PayInterest()

number

owner

balance

interest

paymentDate

payed

...

Deposit(Account a, Currency s)=

if ValidAccount(a) then

a.Deposit(s)

else PrintErrorMsg;

anAccount

number

owner

balance

Account

Deposit(Currency)

Withdraw(Currency)

Number() : Number

Owner() : Person

Balance() : Currency

name

number

...

aBank

Bank

OpenAccount(Person, Currency)

ValidAccount(Account) : Boolean

Deposit(Account, Currency)

Withdraw(Account, Currency)

WhichAccount(Number) : Account

Figure 1: Objects, interfaces, and collaboration among objects

both as entities with local state represented by attributes, and methods
accessible to the environment through interfaces.

Let us illustrate all the concepts that we present and discuss here with
an example. Figure 1 illustrates a group of collaborating objects; in this and
other diagrams objects are depicted as rounded boxes and method defini-
tions are depicted as sharp-edged boxes with shadow. The object anAccount
has a local state, represented by the attributes number, owner, and balance,
and the methods Deposit, Withdraw, Number, Owner, and Balance. The first
two methods allow clients of anAccount to modify its state, whereas the re-
maining methods let the clients find out the state of the respective attributes
at a given point in time.2 Another object in this figure, aBank, is a client
of anAccount using it through invoking its methods. In the diagram, the
interfaces of the objects are shown in grey, e.g., the object anAccount has
the interface Account.

Note that anAccount and aBank can be implemented as distributed ob-
jects, with anAccount residing on the computer of its owner rather than
in the same address space as aBank. Alternatively, these objects can be
implemented as widgets in a financial organizer desktop application that

2The functionality of this bank account is somewhat simplistic, but is sufficient for
illustrating required concepts.

5

can be graphically composed and manipulated by end users. Conceptually,
anAccount and aBank can therefore be thought of as components that are
developed and composed by independent parties. What is important for our
purposes is that we can reason about their behavior the same way we reason
about the behavior of objects.

We present a mathematical model of objects, their attributes and meth-
ods in Paper 1. We model these object-oriented constructs in the refinement
calculus [4, 17, 6], which is a logical framework for reasoning about correct-
ness and refinement of imperative programs in a rigorous, mathematically
precise manner. In papers 3 and 5, we also present a mathematical model
of components.

Just like objects, components do not operate in isolation but rather co-
operate with other components by interacting with them. For each compo-
nent all the other components it interacts with can be collectively considered
as its environment. Paper 3 focuses on modelling component environments,
and studies various embodiments of interaction and methods for reasoning
about it in a formal framework. In particular, it is observed that on the
conceptual level interaction between a component and a human user and in-
teraction between a component and its environment work according to the
same principles. Moreover, for components in a component-based system
their environment can be transparent: they interact with this environment
in the same way, regardless of whether it is another component or a hu-
man user. For example, the user can deposit and withdraw money from
anAccount without going to aBank but directly, e.g., through the Internet.
For anAccount it will then be transparent which environment deposits or
withdraws the money from it, aBank or the user. In Paper 3, we describe
a uniform logical framework in which one can reason about interactions of
various kinds.

Invariants binding values of component attributes play an important rôle
in maintaining correctness of component-based systems. Invariants can be
implicit and explicit. The implicit, or the strongest, invariant characterizes
exactly all reachable states of the component, whereas the explicit invariant
restricts the values the component might have. The implicit invariant is es-
tablished by component initialization, preserved by all its methods, and can
be calculated from the component specification. As suggested by its name,
the explicit invariant, on the other hand, is stated explicitly in the compo-
nent specification, being part of the general description of the behavior the
component promises to deliver to its clients. The model of components pre-
sented in Paper 5 includes explicit invariants, stating the properties that can
be safely assumed about components’ behavior during their entire lifetime.

6

2.2 Subtyping and Polymorphic Substitutability

As was already mentioned above, interaction between objects is carried
through interfaces of these objects. Many account objects can have the
same interface and clients can use all of them uniformly when trying to
achieve the same functionality. For example, the method Deposit of aBank
gets the account a to which the money is to be deposited as a parameter,
and, regardless of which particular account it is, checks that it is a valid one,
i.e. registered with this bank, and calls the method Deposit on this account,
passing it the amount of money s to be deposited as an input argument.

Moreover, aBank can work uniformly not only with different accounts
of one kind, it can work the same way with aSavingsAccount as well. As
suggested by its name, aSavingsAccount is a special kind of account with
interest on a deposited sum accumulating with time. As such, it has the
interface SavingsAccount which is the same as Account extended with the new
method signature specific to savings accounts, PayInterest(). In general, this
kind of interface extension, which is also known as subtyping and interface
inheritance and usually written as SavingsAccount <: Account, is the key
mechanism supporting polymorphic substitutability of objects in clients.
The essence of polymorphic substitutability is that objects with the extended
interface (subtype) can be used by clients in the same way as objects with
an original interface (supertype). Clients can work with objects with the
extended interface as if they were objects with the original interface, because
the objects “understand” all client requests for method invocation, having
all the methods in the original interface which is known to the client.

In our example, aSavingsAccount can be passed as an argument to the
method Deposit of aBank, and, since aSavingsAccount is a valid account, this
will result in invoking the method Deposit defined in aSavingsAccount. For
the client aBank it is only important that the object passed as an input argu-
ment has all the methods in the interface Account, including Deposit, which
aSavingsAccount certainly does, having an interface that extends Account.
In general, selecting a method for invocation based on the actual type of
object rather than the declared type of the variable carrying this object is
known as dynamic binding. The ability to substitute supertype objects with
subtype objects in clients is referred to as subtype polymorphism.

The subtyping relation, in fact, does not have to be a simple extension,
but can be more permissive in the sense that inherited method signatures
can be modified in a subtype so that the types of method input parameters
become contravariant and the types of method output parameters become
covariant. Contravariance means that subtyping on the types of method

7

parameters is in the opposite direction from subtyping on the interfaces
having these methods. Respectively, covariance means that subtyping on
the types of method parameters is in the same direction as subtyping on the
interfaces having these methods. Contravariance in input parameter types
and covariance in output parameter types are the basic subtyping properties
of function types [1]. As methods are essentially (object state modifying)
functions of input parameters returning output parameters, they naturally
have these properties as well.

Suppose that we have an interface Bank′ which has the same method
signatures as Bank, but with the difference that the methods OpenAccount,
ValidAccount, Deposit, and Withdraw have the input parameter of type
SavingsAccount rather than Account, as shown in Fig. 2(a). As we know,
SavingsAccount is a subtype of Account, written SavingsAccount <: Account,
and hence a SavingsAccount object can be passed where an object of type
Account is expected. In particular, passing it to the methods of Bank ex-
pecting an input parameter of type Account will be type-correct. According
to the typing rules, Bank is therefore a subtype of Bank′, i.e. Bank <: Bank′.
Covariance in output parameter types is illustrated in Fig. 2(b). Of the two

Bank

name

number

...

OpenAccount(Person, Currency)

ValidAccount(Account) : Boolean

Deposit(Account, Currency)

Withdraw(Account, Currency)

WhichAccount(Number) : Account

Bank'

name

number

...

OpenAccount(Person, Currency)

ValidAccount(SavingsAccount) : Boolean

Deposit(SavingsAccount, Currency)

Withdraw(SavingsAccount, Currency)

WhichAccount(Number) : Account

Bank''

name

number

...

OpenAccount(Person, Currency)

ValidAccount(Account) : Boolean

Deposit(Account, Currency)

Withdraw(Account, Currency)

WhichAccount(Number) : SavingsAccount

Bank

name

number

...

OpenAccount(Person, Currency)

ValidAccount(Account) : Boolean

Deposit(Account, Currency)

Withdraw(Account, Currency)

WhichAccount(Number) : Account

a) b)

Figure 2: Contravariance in input type parameters a) and covariance in
output type parameters b)

8

methods having output parameters, ValidAccount has the same output pa-
rameter type in both Bank and Bank′′, whereas WhichAccount in Bank′′ has
the output parameter type which is a subtype of the corresponding output
parameter type in Bank. Any output produced by Bank′′ is a valid out-
put of Bank, because SavingsAccount objects are Account objects as well.
Therefore, Bank′′ is a subtype of Bank, i.e. Bank′′ <: Bank.

When one interface is the same as the other, except that it can specify
new method signatures, redefine contravariantly value parameter types and
covariantly result parameter types, this interface is said to conform to the
original one. For example, Bank′′ conforms to Bank which, in turn, conforms
to Bank′.

In Paper 1, we show how to model within the refinement calculus subtyp-
ing and dynamic binding of method calls with coercions of contravariant and
covariant arguments. A slightly updated version permitting, for example,
subtype objects to have new methods appears in Paper 4.

3 Classes and Code Reuse

Class-based object-oriented languages constitute the mainstream in object-
oriented programming. In these languages objects are instantiated by classes,
as illustrated in Fig. 3; classes are depicted by sharp-edged boxes and a
dashed arrow means “instantiates”. Classes define the behavior of objects
they instantiate by specifying their interface. As classes are templates for
creating objects, apart from defining object attributes and methods, they
provide class constructors specifying the way the objects are created and ini-
tializing their attributes. One class can have more than one constructor with
the same name, which is usually the same as the name of the class, but dif-
ferent input parameters. Typically, class constructors are not part of the in-
terface specified by their class, and hence different classes with different class
constructors can still have conforming interfaces. For example, the interface
SavingsAccount specified by SavingsAccountClass conforms to the interface
Account specified by AccountClass, i.e. SavingsAccount <: Account, despite
the fact that class constructors of AccountClass and SavingsAccountClass
have different signatures. Finally, similar to components, classes can have
explicit invariants stating the properties that can be safely assumed about
the behavior of objects that these classes instantiate.

The strength of object technology comes not only from the better struc-
turing and modularization that it provides, but also from the multitude of
possibilities for code reuse that it offers. As we already mentioned, client

9

number : Number

owner : Person

balance : Currency

interest : Currency

paymentDate : Date

paid : Boolean

SavingsAccountClass

SavingsAccountClass (o : Person,

s, i : Currency)

Deposit(s : Currency)

Withdraw(s : Currency)

Number() : Number

Owner() : Person

Balance() : Currency

PayInterest()

number : Number

owner : Person

balance : Currency

AccountClass

AccountClass(o : Person, s : Currency)

Deposit(s : Currency)

Withdraw(s : Currency)

Number() : Number

Owner() : Person

Balance() : Currency

anAccount

number

owner

balance

Account

Deposit(Currency)

Withdraw(Currency)

Number() : Number

Owner() : Person

Balance() : Currency

anAccount

number

owner

balance

Account

Deposit(Currency)

Withdraw(Currency)

Number() : Number

Owner() : Person

Balance() : Currency

anAccount

number

owner

balance

Account

Deposit(Currency)

Withdraw(Currency)

Number() : Number

Owner() : Person

Balance() : Currency

number

owner

balance

interest

paymentDate

payed

number

owner

balance

interest

paymentDate

payed

aSavingsAccount

SavingsAccount

Deposit(Currency)

Withdraw(Currency)

Number() : Number

Owner() : Person

Balance() : Currency

PayInterest()

number

owner

balance

interest

paymentDate

payed

number

owner

balance

interest

paymentDate

payed

number

owner

balance

interest

paymentDate

payed

aSavingsAccount

SavingsAccount

Deposit(Currency)

Withdraw(Currency)

Number() : Number

Owner() : Person

Balance() : Currency

PayInterest()

number

owner

balance

interest

paymentDate

payed

number

owner

balance

interest

paymentDate

payed

number

owner

balance

interest

paymentDate

payed

aSavingsAccount

SavingsAccount

Deposit(Currency)

Withdraw(Currency)

Number() : Number

Owner() : Person

Balance() : Currency

PayInterest()

number

owner

balance

interest

paymentDate

payed

Figure 3: Classes and their instances

code reuse can be achieved through polymorphic substitution of subtype
objects for supertype objects in clients. In addition, there are various tech-
niques and mechanisms for reusing code in objects and classes, among them
implementation inheritance (or subclassing) is the most well-known and
widely used mechanism. We illustrate inheritance in Fig. 4 using the OMT
notation. The classes AccountClass and SavingsAccountClass instantiate the
corresponding account and savings account objects. Since most of the func-
tionality specified in AccountClass remains the same in SavingsAccountClass,
the latter inherits from the former, adding new parts, and overriding cer-
tain inherited parts customizing them to express the specifics of the savings
account behavior. For example, SavingsAccountClass inherits all attributes
of AccountClass while adding the attributes interest, paymentDate, and paid
to hold the value of interest specific to this kind of a savings account, the
date on which the interest is to be paid, and the interest payment sta-
tus. The methods Number and Owner are inherited as a whole, the methods
Deposit, Withdraw, and Balance are redefined to account for interest payment

10

number : Number

owner : Person

balance : Currency

AccountClass

AccountClass(o : Person, s : Currency)

Deposit(s : Currency)

Withdraw(s : Currency)

Number() : Number

Owner() : Person

Balance() : Currency

balance:= balance + sum;

if s � Balance() then

balance:= balance - s

else PrintErrorMsg;

return balance;

PayInterest();

super.Deposit();

if

currentDate.LaterThan(paymentDate)

then

super.Withdraw(s)

else skip;

PayInterest();

return super.Balance();

if

(currentDate.LaterThan(paymentDate)

and !payed)

then

super.Deposit(balance*interest)

else skip;

number : Number

owner : Person

balance : Currency

interest : Currency

paymentDate : Date

paid : Boolean

SavingsAccountClass

SavingsAccountClass (o : Person,

s, i : Currency)

Deposit(s : Currency)

Withdraw(s : Currency)

Number() : Number

Owner() : Person

Balance() : Currency

PayInterest()

Figure 4: Inheritance

at the due time, and the method PayInterest defines new functionality.
Apart from inheriting methods as a whole, the inheriting class can reuse

methods of its superclass through super-calling them from the overriding
methods. For example, Deposit of SavingsAccountClass is specified to first
pay the interest on the original balance if the contract requirements are
satisfied and then super-call the method Deposit of AccountClass, delegating
it the task of actual money depositing.

Inheritance is known to be a flexible reuse mechanism, because in com-
bination with dynamic binding of self-referential methods it allows fine-
tuning reused code for specific needs. Consider, for example, the definition
of method Withdraw in SavingsAccountClass. Provided that the terms of
the contract are met (the current date is past the interest payment date),
it is possible to withdraw the money through super-calling the method
Withdraw defined in AccountClass. The latter calls the method Balance to
check whether the current balance is greater than the sum requested to
be withdrawn. The effect of dynamic binding is that the method call to

11

Balance is redirected back to SavingsAccountClass rather than remaining in
AccountClass. In other words, the body of method Balance as defined in
SavingsAccountClass is executed when this method is called in Withdraw of
AccountClass, which is in turn super-called from SavingsAccountClass. This
kind of call-backs is instrumental in making fine dynamic adjustments in
the code of methods defined in a superclass when super-calling them from
a subclass. In the case of our example this is important, because calling
Balance of SavingsAccountClass results in paying the interest, if the contract
conditions are met, before returning the current balance value. If the call to
Balance remained in AccountClass, only the sum not exceeding the balance
could be withdrawn even after the interest payment date.

With the reuse mechanism known as multiple inheritance a class can
inherit attributes and methods from more than one superclass. Multiple
inheritance is a controversial reuse mechanism because on the one hand it
permits more flexibility in code reuse and on the other hand suffers from
various problems like potential name clashes, diamond structure, complex
class libraries, and additional run-time costs [18]. This controversy is re-
flected in the fact that some programming languages, such as C++ and
Eiffel, support multiple inheritance while others, e.g., Java and Oberon-2,
choose to abandon it.

In Paper 1, we present a mathematical model of classes and inheritance.
For simplicity, we do not consider multiple inheritance; yet we outline how
it can be handled in the framework we present. An extended model of
classes and (single) inheritance permitting, for example, subtype objects to
have new methods appears in Paper 4. Also, in Paper 1 we model dynamic
binding of only external method calls, while self-referential method calls are
modeled as being statically resolved. In Paper 4, we present an improved
model, where self-referential method invocations as well as external method
invocations are dynamically-bound.

4 Ensuring Correctness of Object-Oriented and
Component-Based Systems

4.1 Class Refinement

In most object-oriented languages, such as Simula, Eiffel, and C++, sub-
classing forms a basis for subtype polymorphism, i.e. signatures of subclass
methods automatically conform to those of superclass methods, and syntac-
tically subclass instances can be substituted for superclass instances. As the

12

a) b)

AccountClass

SavingsAccountClass

subclassing

implements
Account

SavingsAccount

subtyping

implements

AccountClass

SavingsAccountClass

subclassingsubtyping

Figure 5: Subtyping and subclassing hierarchies: separate a) and unified b)

mechanism of polymorphic substitutability is, to a great extent, independent
of the mechanism of implementation reuse, languages like Java and Sather
separate the subtyping and subclassing hierarchies. These two approaches
are illustrated in Fig. 5.

With both approaches, typechecking can be used to verify syntactic con-
formance of subtype objects to their supertype objects. Verifying syntactic
conformance is necessary to ensure that, when substituting subtype objects
for supertype objects in clients, all client requests for method invocations
earlier directed to supertype objects “are understood” by subtype objects
as well. However, it has been recognized that, while certainly very useful,
typechecking alone is insufficient to guarantee correctness of object substi-
tutability. Consider the example in Fig. 6. Here subclassing forms a ba-
sis for subtype polymorphism and instances of SavingsAccountClass′ can be
substituted for instances of AccountClass in all clients. A customer using
an ordinary account and having his balance increased whenever deposit-
ing money, can decide to open a savings account, expecting to get some
interest on the savings. After depositing money on his savings account,
the customer can become very disappointed when finding out that not only
wouldn’t he get any interest on the deposited sum, but also that the de-
posited money are missing on his savings account: they were transferred to
a certain specialAccount instead.

To prevent this and similar kinds of errors, it is necessary to verify
behavioral conformance between classes whose instances are intended for
polymorphic substitution. Instances of one class are guaranteed to behave
as expected from instances of another (usually more abstract) class if the
more concrete class is a refinement of the more abstract. Refinement means
preservation of observable behavior, while decreasing nondeterminism. In
Paper 1, we give a definition of class refinement stating that a class C is
refined by a class C ′, written C � C ′, if a constructor of C is refined by a con-
structor of C ′ and methods of C are refined by the corresponding methods of
C ′. We prove that class refinement is a reflexive and transitive relation. In

13

?

...

AccountClass

AccountClass(o : Person, s : Currency)

Deposit(s : Currency)

...

SavingsAccountClass (o : Person,

s, i : Currency)

Deposit(s : Currency)

...

...

SavingsAccountClass'

balance:= balance + s;

specialAccount.Deposit(s);

Figure 6: Illustration of the necessity to establish behavioral conformance
between AccountClass and SavingsAccountClass′

Paper 4, we present the definition of class refinement in a slightly improved
formulation and relate it to correctness of polymorphic object substitutabil-
ity in clients. Modelling object clients as described in Paper 3 and using
theoretical results developed in the same paper, allow us to reason about the
effect that substituting instances of one class for instances of another class
has on clients. In particular, we prove that when class C ′ refines class C,
substituting instances of C ′ for instances of C is refinement for the clients.
This property allows us to regard class refinement as semantics of correct
object substitutability.

Furthermore, in Paper 4 we extend the definition of class refinement to
account for new methods added in a refined class. Formal treatment of be-
havioral conformance in the presence of new methods is a non-trivial issue
because of inconsistencies possibly introduced by new methods and becom-
ing apparent in the presence of subtype aliasing as well as in the general
computational environment that allows sharing of objects by multiple users.
Our treatment of new methods follows that of Barbara Liskov and Jeannette
Wing, who originally identified this problem in [16], but is more formal and
more permissive.

As we developed the theory of class refinement in the period between
writing Paper 1 and Paper 4, our perception of this fundamental concept
has evolved. If in Paper 1 we considered it to be the semantics of correct
subclassing only, by the time Paper 4 has been written we realized that it is
orthogonal to subclassing and is much more general. In particular, a class

14

and its subclass may not be in refinement, and two classes can be in refine-
ment even if one of them is not declared to be a subclass of the other. With
separate interface inheritance and implementation inheritance hierarchies a
subclass may not even be intended for behavioral conformance with its su-
perclass, as the substitution mechanism is completely independent of the
reuse mechanism. Syntactic conformance of method signatures, however, is
a prerequisite for class refinement, as it is meaningless to compare behavior
of classes whose instances are not intended for substitution.

To illustrate application of our theory, we specify in Paper 6 the Java Col-
lections Framework [7], which is a part of the standard distribution package
of Java Development Kit 2.0. As interface inheritance is separated from im-
plementation inheritance in Java, behavior of classes implementing a certain
extended interface should conform to the behavior of classes implementing
the original interface. Moreover, behavior of classes implementing some in-
terface should conform to the “intended” behavior of this interface, as stated
in its specification. In the Java Collections Framework, specifications of in-
terface behavior are given informally. We provide formal specifications and
highlight their advantages by comparing them to the informal descriptions,
which are at times imprecise and ambiguous. We also demonstrate how one
can prove that specifications of extended interfaces refine specifications of
original interfaces.

4.2 Interface Refinement

In the process of system development or sometimes also maintenance, when
feedback from the actual use of the system is taken into account, a change
in user requirements or better understanding of these requirements by a
developer may inflict an interface change in classes designed as refinements
of other classes in the system. For example, suppose that the financial
management application, whose part we described earlier, has been released
on the market and gained substantial success. The owners of the software
development company realized that they can expand the market, if they
adjust the system to provide banking services to corporate customers as
well as private ones. In response to these new requirements, developers can
construct a class CorporateAccountClass with owner of type Company rather
than Person and with the same (or improved) functionality as AccountClass,
(see Fig. 7). However, aBank cannot handle both kinds of accounts in a
uniform manner, because the interface of CorporateAccountClass does not
conform to that of AccountClass: the result type returned by the method
Owner is no longer Person but Company. If Company were a subtype of

15

number : Number

owner : Person

balance : Currency

AccountClass

AccountClass(o : Person, s : Currency)

Deposit(s : Currency)

Withdraw(s : Currency)

Number() : Number

Owner() : Person

Balance() : Currency

CorporateAccountClass

CorporateAccountClass (c : Company,

s : Currency)

Deposit(s : Currency)

Withdraw(s : Currency)

Number() : Number

Owner() : Company

Balance() : Currency

number : Number

owner : Company

balance : Currency

Figure 7: Illustration of interface refinement

Person, the problem would be avoided, as the type of method return param-
eters can be covariant in subtypes. But people are not just generalizations
of companies, and the developers must find a way for aBank to use in-
stances of CorporateAccountClass along with instances of AccountClass and
SavingsAccountClass.

In Paper 1, we introduce a notion of interface refinement, capturing
behavioral conformance between classes with similar yet slightly different
interfaces, and provide a solution to the problem of mismatching interfaces
based on a technique known as forwarding. Suppose we have two classes,
OldClass and NewClass, such that NewClass refines the behavior of OldClass
but has a slightly different interface. If we want to use instances of NewClass
instead of instances of OldClass, we can introduce a class Wrapper aggre-
gating an instance of NewClass and forwarding OldClass method calls to
NewClass through this instance, as illustrated in Fig. 8. As Wrapper has an
interface conforming to that of OldClass, clients of OldClass can work via
Wrapper with NewClass the way they would work with OldClass. Apart from
describing how clients such as aBank can benefit from the interface refine-
ment of their server classes without having to be changed in any way, we

16

OldClass

Wrapper NewClass

Figure 8: Illustration of forwarding

also establish conditions under which clients can be systematically changed
to use the refined server classes.

In fact, forwarding, which was used in Paper 1 to resolve the problem
of mismatching interfaces, is a well-known code reuse technique employed
along with inheritance to create new classes from existing ones by reusing
their functionality. As compared to inheritance, forwarding is less flexible,
as it does not allow making fine adjustments to the inherited code but rather
requires reusing code in its entirety. On the other hand, the flexibility of
inheritance, despite the numerous benefits that it offers, can be rather prob-
lematic, especially in the presence of explicit invariants. In Paper 5, we study
ways of ensuring behavioral consistency of extensions in component-based
systems in the presence of explicit invariants. Our analysis indicates that
ensuring correctness in this setting is easier with forwarding than with inher-
itance. We describe consistency problems that can occur when constructing
an extension of a component having an explicit invariant, and formulate
requirements that must be imposed on components and their extensions to
avoid these problems.

4.3 Generic Class Refinement

To enhance reuse for different types and increase flexibility of class con-
struction, parametric polymorphism is usually combined with object-oriented
reuse mechanisms and techniques. Consider again our example of financial
management application. To manage all accounts held by its customers,
aBank should aggregate a collection of these accounts. Such a collection
should be a set, as accounts cannot be duplicated. Moreover, aBank should
also maintain a set of its customers. We can define a data structure general
enough to represent both kinds of sets as shown in Fig. 9(a). The parameter-
ized class Set [Elem] is a construct representing the collection of classes that
can be constructed by substituting concrete types for the type parameter
Elem. In various programming languages parameterized classes are referred
to by different names, e.g., C++ calls it a template, while Eiffel – a generic
class. We follow the terminology of Eiffel, referring to parameterized classes

17

Set

elems : set of Elem

Set[Elem]()

Empty() : Boolean

NumOfElems() : Number

AddElem(e : Elem)

RemoveElem(e: Elem)

...

[Elem <: Account]
Set

elems : set of Elem

Set[Elem]()

Empty() : Boolean

NumOfElems() : Number

AddElem(e : Elem)

RemoveElem(e: Elem)

...

[Elem]

a) b)

Figure 9: Generic classes: unbounded generic class a) and bounded generic
class b)

as generic classes, and to classes produced from generic by substituting
concrete types for formal parameters as generically derived classes.

By substituting concrete object types, such as Account, Person, and even
Bank for Elem, we get the corresponding classes Set [Account], Set [Person],
and Set [Bank] instantiating sets of accounts, sets of persons, and sets of
banks respectively. In defining the behavior of methods in a generic class,
it is often necessary to make sure that all concrete object types that can
be substituted for the type parameter have certain methods, because for
defining the functionality of the generic class it can be necessary to call
these methods. For example, in the definition of AddElem we might want
to invoke the method Equal on e, checking that e is not equal to one of the
elements in elems. For this to work, we would like to ensure that any object
type that can be substituted for Elem has at least the method Equal. To
impose this kind of constraints on generic type parameters, one can employ
a mechanism known as bounded parameterization. Essentially, a generic type
parameter is restricted to be a subtype of some object type. For example, a
generic class of account sets can be declared as shown in Fig. 9(b). In can be
reasonable to construct this kind of a generic class if we want sets of accounts
to have functionality different from that of sets of ordinary elements. For
instance, before adding a new account e we may want to check that its
number, returned by the method Number, is not the same as the number of
some other account in the set of accounts elems.

In addition to generic derivation, type parameterization can be used to
maximize code reuse through combining it with implementation inheritance.
Consider an illustration of this combination in Fig. 10. In this diagram, the
class SavingsAccountClass is constructed from the class AccountClass by sub-

18

+ =

Set
[Elem]

Set

[Account]

SortedSet

[Account]

Set

[Savings

Account]

SortedSet

[Savings

Account]

SortedSet

[Elem]

Set
[Elem]

Set

[Savings

Account]

Set

[Account]

...

Account

Savings
Account

AccountClass

Savings
AccountClass

Figure 10: Combining subclassing with type parameterization

classing, whereas the classes Set [Account] and Set [SavingsAccount] are con-
structed from the generic class Set [Elem] by substituting the concrete types
Account and SavingsAccount for the type parameter Elem. Combining the
two mechanisms allows us to increase flexibility of class construction, pro-
ducing the new generic class SortedSet [Elem] by (generic) subclassing from
Set [Elem] and deriving concrete classes by instantiating the object types
Account and SavingsAccount for the type parameter Elem in both Set [Elem]
and SortedSet [Elem].

Paper 2 focuses on the correctness of a reuse mechanism based on the
combination of subclassing and type parameterization. We give semantics of
subclassing for generic classes, and study the conditions for correct generic
subclassing based on the notion of class refinement. The results of this study
reveal that relying on certain properties of generic classes, which may seem
plausible, can lead to problems. Accordingly, we give a definition of generic
class refinement, extending the definition of (ordinary) class refinement, to
circumvent these problems and ensure that instances of a generically de-
rived subclass will behave as expected from instances of the corresponding
generically derived superclass. We also consider special cases in which class
refinement is guaranteed to hold between generically derived classes.

5 Related Work

As practically every paper included in this dissertation contains comparison
with related work, in this introduction we only focus on the specific features
of our formalism and compare our approach to that of behavioral subtyping,

19

which is most closely related. The discussion presented here is a combination
of ideas that were omitted from the papers 1–6 (mostly because of limited
space considerations) but are nevertheless important, and of parts already
presented in the papers but deserving to be included here for completeness
of exposition.

5.1 Refinement Calculus and Higher-Order Logic Founda-
tion

The logical framework for reasoning about object-oriented and component-
based systems which is described in the papers constituting this dissertation
is built as an extension of the refinement calculus of Ralph Back and Joakim
von Wright [6]. We chose to extend an existing and profoundly developed
logical framework used for reasoning about correctness and refinement of
imperative programs, rather than building a new logic from scratch. This
decision has many advantages and echoes that made by the programming
language community in constructing object-oriented languages as extensions
of imperative languages. The advantages in our case include inheriting all
meta-logical properties of the underlying formalism such as soundness.

The choice of the refinement calculus as the underlying logical framework
is justified by many factors. Primarily, it is particularly suited for describing
object-oriented and component-based systems because it allows us to reason
about the behavior of objects and components at various abstraction lev-
els. Versatility of the specification language used in the refinement calculus
permits treating specifications and implementations in a uniform manner
considering implementations to be just deterministic specifications. The no-
tion of an abstract class, specifying behavior common to its subclasses, can
be fully elaborated in this formalization, since the state of class instances
can be given using abstract mathematical structures, like sets and sequences,
and class methods can be described in terms of nondeterministic statements,
abstractly but precisely specifying the intended behavior.

The refinement calculus itself is formalized in higher-order logic. The
expressiveness of the latter allows us to model complex method invocation
mechanisms, such as dynamic binding, and define relations between classes,
such as class refinement, entirely within the logic. Reasoning about such
higher-order abstractions and relations can therefore be carried out com-
pletely formally, whereas formalizations based on first-order logic can only
allow informal reasoning. The benefits of formalizing imperative program-
ming languages in frameworks based on higher-order logic have been pointed
out by many researchers, both in the areas of programming methodology and

20

logics. For example, Daniel Leivant in [15] notes: “Higher order functions,
in the form of procedures, are at the core of higher level programming lan-
guages, whether imperative or applicative.” Reasoning about data types
and their elements is central to reasoning about imperative programs op-
erating on these elements, and in higher-order logic one can define data
types, including natural numbers, in a straightforward manner. Object-
oriented languages emphasize data abstraction and procedural abstraction
even more than ordinary imperative languages, and therefore using higher-
order logic as the basis for formalizing object-oriented programs appears to
be only natural.

Formalization of object-oriented constructs within a formal logic not
only associates with them precise mathematical meanings but also opens a
possibility for mechanized reasoning. A formal theory of correctness and
refinement can also, in this case, be formalized within a theorem proving
environment such as HOL [10] or PVS [20], permitting mechanized if not
mechanical verification.

One of the important features of the refinement calculus is that it uses
the same constructs for programming statements and mathematical enti-
ties (monotonic predicate transformers) that they determine. Identifying
statements with their mathematical counterparts allows a purely algebraic
treatment of statements, where the specific syntax chosen for expressing
statements is irrelevant. No distinction needs to be made between syntax,
semantics, and proof theory, as is traditional in programming logics. Be-
ing a conservative extension of higher-order logic, the refinement calculus is
consistent and its proof theory is sound, because higher-order logic is con-
sistent and sound with respect to a standard set-theoretic semantics. Our
logical framework of reasoning about object-oriented and component-based
systems inherits all these fundamental metalogical properties from the re-
finement calculus.

5.2 Relation to Behavioral Subtyping

The general idea behind our approach and the research direction known as
behavioral subtyping is essentially the same – to develop a specification and
verification methodology for reasoning about correctness of object-oriented
programs. Our work has been to a great extent inspired by works of Pierre
America, Barbara Liskov, Jeannette Wing, Gary Leavens, and others [2,
16, 14, 9]. However, our approach differs in a number of ways both on the
conceptual and the technical level.

The essence of behavioral subtyping is to associate behavior with type

21

signatures and to identify subtypes that conform to their supertypes not only
syntactically but also semantically. In our view subtyping is a mechanism for
substituting objects with certain method signatures for other objects with
conforming method signatures and, as such, is a purely syntactic concept.
Behavior of objects, on the other hand, has little to do with their syntactic
interfaces and is expressed in the specification of the objects’ methods ma-
nipulating the objects’ attributes. Most importantly, syntactic subtyping
is decidable and can be checked by a computer, while behavior-preserving
subtyping is undecidable. Hence, in our approach we separate syntactic sub-
typing from behavioral conformance of subtype objects to supertype objects.
We use classes to express (at different abstraction levels) the behavior of ob-
jects and class refinement to express behavioral conformance. Our model of
classes, subclassing, and subtyping, as well as the definition of class refine-
ment, can be used to reason about the correctness of programs using both
unified and separate subclassing and subtyping hierarchies.

When used in the context of separate subclassing and subtyping hier-
archies, class refinement is very similar to behavioral subtyping. Consider
a graphical representation of the corresponding settings in Fig. 11. In both
cases I and I ′ are certain interfaces (types) such that I ′ is a syntactic sub-
type of I. In the case of behavioral subtyping in Fig. 11 (a), the behavior of
methods is specified in terms of pre- and post-conditions. To verify that I ′

is a behavioral subtype of I, written I ′ < I, America, Liskov, and Wing re-
quire proving that every precondition prei is stronger than the corresponding
pre′i and every postcondition posti is weaker than the corresponding post′i,
while Dhara and Leavens in [9] weaken the requirement for postconditions.
In addition to proving behavioral subtyping, one must also verify that the
classes C and D claiming to implement the types I and I ′ respectively really

class S' specifies I'

Meth
1
() = S'

1
...
Meth

n
() = S'

n

Meth
1
() = S

1
...
Meth

n
() = S

n

class S specifies I

Meth
1
() = T

1
...
Meth

n
() = T

n

class C

Meth
1
() = T'

1
...
Meth

n
() = T'

n

class D

b)

implements Meth
1
() = T

1
...
Meth

n
() = T

n

class C

Meth
1
() = T'

1
...
Meth

n
() = T'

n

class D

implements

a)

{pre
1
} Meth

1
() {post

1
}

...
{pre

n
} Meth

n
() {post

n
}

type I

>

type I'

{pre'
1
} Meth

1
() {post'

1
}

...
{pre'

n
} Meth

n
() {post'

n
}

Figure 11: Behavioral subtyping a) and class refinement b) in the case of
separate interface and implementation inheritance hierarchies

22

do so. America in [3] proposes a rigorous verification method that can be
used for this purpose. For verifying, e.g., that C implements I, he uses a
representation function mapping concrete states of C to the set of abstract
states associated with I as well as a representation invariant constraining
the values of attributes in C, and requires proving that every method Ti of
C preserves the representation invariant and establishes posti coerced to the
state space of C when prei also coerced to the state space of C holds. Since
in [3] and other works on behavioral subtyping no formal semantics is given
to implementation constructs and mechanisms, such as, e.g., super-calls or
dynamic binding, this verification can only be done semi-formally.

Consider now the diagram (b) of Fig. 11 illustrating class refinement.
First of all, we can reason about specification classes S and S′ and im-
plementation classes C and D in a uniform manner, and the behavioral
conformance between the participating classes is the class refinement. Since
class refinement is transitive, we get directly that D, implementing I ′ by
refining its specification S′, also refines the specification S of I.

Class refinement can be used to verify correctness even if D happens
to be a subclass of C. Dynamic binding of self-referential methods, which
becomes possible in this case, can be resolved as described in Paper 4, and
then we can prove that, e.g., S′ � D using the definition of class refinement.
With behavioral subtyping, however, it is not clear how one can prove that a
method satisfies certain pre- and postconditions in the presence of dynamic
binding of self-referential methods.

When used for reasoning about systems with unified subclassing and
subtyping, our methodology eliminates a significant amount of proof obli-
gations as compared to behavioral subtyping. We do not need to prove
separately that a class and its subclass implement the corresponding type
and its behavioral subtype, all that needs to be proved is class refinement
between the subclass and the superclass.

Several researchers have developed formal and semi-formal theories of
behavioral compatibility based on behavioral subtyping. Raymie Stata and
John Guttag in [21] use specialization specifications in the style of behav-
ioral subtyping and require that specification of subclasses be constrained.
They informally define correctness of a class with respect to its specialization
specification, and require verification of correctness as well as verification of
specification constraining, using standard simulation techniques. Stata and
Guttag, following America in [3], maintain that declarative specifications
are more abstract and easier to understand than operational ones captur-
ing method invocation order. We, on the contrary, feel that the essence of
object-oriented programs is in invoking methods on objects, and it might be

23

necessary to specify explicitly that a certain method calls other methods. As
pointed out by Clemens Szyperski in [22], specifications in terms of pre- and
postconditions fail to capture subtle interdependencies which arise due to a
specific order of method invocations, especially in the presence of callbacks,
i.e. self-referential method calls that get redirected to subclasses of the class
that originated the call. Our specification language includes method calls
and, therefore, allows specifying callbacks as well as fixing an invocation of
a method or a certain order of method invocations. Richard Helm et al.
in [11], recognizing the need to express behavioral dependencies between
co-operating objects, also include method calls in abstract specifications of
contracts. No less important, as noted by several authors including Szyper-
ski in [22], specifications of object-oriented programs in terms of pre- and
postconditions have only semi-formal semantics, which excludes formal (ul-
timately, computer-assisted) verification. Finally, pre- and postconditions
on methods specify only partial correctness, i.e. state the postcondition for
a given precondition under the assumption that the method terminates. Our
approach guarantees total correctness, i.e. no termination assumption has
to be made. In general, we shift the focus from correctness reasoning to
establishing refinements between methods.

Behavioral dependencies in the presence of subclassing have also been
studied in various extensions of Z specification languages, e.g., [13, 8], but
only between class specifications and not implementations. By having spec-
ification constructs as part of the (extended) programming language, this
distinction becomes unnecessary.

6 Conclusions and Future Work

We hope that the method of reasoning about correctness of object-oriented
and component-based systems supported by the mathematical foundation
that we develop in this dissertation can be adopted by practitioners and
be used to specify, document, and assist in the development of more reli-
able systems. As future work we envision development of a tool support-
ing mechanized verification of behavioral conformance between classes and
components. A tool supporting verification of correctness and refinement of
imperative programs and known as the Refinement Calculator [12] already
exists, and extending it to handling object-oriented and component-based
systems appears to be rather natural.

Another direction of developing this work includes extending our spec-
ification and verification method to handling concurrent systems. The re-

24

finement calculus supports reasoning about concurrent systems as reported
in [5], and therefore extending it to handling object-oriented concurrency
appears to be a challenging yet feasible task.

25

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] P. America. Inheritance and subtyping in a parallel object-oriented
language. In Proceedings of ECOOP’87, LNCS 276, pages 234–242,
Paris, France, 1987. Springer-Verlag.

[3] P. America. Designing an object-oriented programming language
with behavioral subtyping. In J. de Bakker, W. P. de Roever, and
G. Rozenberg, editors, Foundations of Object-Oriented Languages,
REX School/Workshop, Noordwijkerhout, The Netherlands, May/June
1990, LNCS 489, pages 60–90, New York, N.Y., 1991. Springer-Verlag.

[4] R. J. R. Back. Correctness Preserving Program Refinements: Proof
Theory and Applications, volume 131 of Mathematical Center Tracts.
Mathematical Centre, Amsterdam, 1980.

[5] R. J. R. Back. Refinement calculus, part II: Parallel and reactive pro-
grams. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, edi-
tors, Stepwise Refinement of Distributed Systems, volume 430 of Lecture
Notes in Computer Science. Springer-Verlag, 1990.

[6] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic
Introduction. Springer-Verlag, April 1998.

[7] J. Bloch. Java collections framework: Collections 1.2.
http://java.sun.com/docs/books/tutorial/collections/index.html.

[8] E. Cusack. Inheritance in object-oriented Z. In P. America, editor,
Proceedings of ECOOP’91, LNCS 512, pages 167–179, Geneva, Switzer-
land, July 15-19 1991. Springer-Verlag.

[9] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through
specification inheritance. In Proceedings of the 18th International Con-
ference on Software Engineering, pages 258–267, Berlin, Germany,
1996.

[10] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press,
1993.

26

[11] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying
behavioural compositions in object-oriented systems. In Proceedings of
OOPSLA/ECOOP’90, ACM SIGPLAN Notices, pages 169–180, Oct.
1990.

[12] T. L̊angbacka, R. Ruksenas, and J. von Wright. TkWinHOL: A tool for
window inference in HOL. Higher Order Logic Theorem Proving and
its Applications: 8th International Workshop, 971:245–260, September
1995.

[13] K. Lano and H. Haughton. Reasoning and refinement in object-
oriented specification languages. In O. L. Madsen, editor, Proceedings
of ECOOP’92, LNCS 615. Springer-Verlag, 1992.

[14] G. T. Leavens and W. E. Weihl. Reasoning about object-oriented pro-
grams that use subtypes (extended abstract). In Proceedings of OOP-
SLA/ECOOP’90, volume 25(10) of ACM SIGPLAN Notices, pages
212–223, 1990.

[15] D. Leivant. Higher order logic. In D. M. Gabbay, C. J. Hogger, and
J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 1: Deduction Methodologies, pages 229–
322. Oxford University Press, 1994.

[16] B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems, 16(6):1811–
1841, November 1994.

[17] C. C. Morgan. Programming from Specifications. Prentice–Hall, 1990.

[18] H. Mössenböck. Object-Oriented Programming in Oberon-2. Springer-
Verlag, 1993.

[19] R. Orfali, D. Harkey, and J. Edwards. The Essential Distributed Objects
Survival Guide. John Wiley & Sons Inc., 1996.

[20] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification
System. In D. Kapur, editor, 11th International Conference on Auto-
mated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

[21] R. Stata and J. V. Guttag. Modular reasoning in the presence of sub-
classing. In Proceedings of OOPSLA’95, pages 200–214. ACM SIG-
PLAN notices, Oct. 1995.

27

[22] C. Szyperski. Component Software – Beyond Object-Oriented Software.
Addison-Wesley, 1997.

28

Paper 1

Class Refinement and Interface Refinement in Object-Oriented
Programs

A. Mikhajlova and E. Sekerinski

Originally published in Proceedings of the 4th International Formal Methods
Europe Symposium (FME’97), edited by J. Fitzgerald, C. B. Jones, and
P. Lucas, LNCS 1313, Springer-Verlag, pp. 82–101, September 1997.
c©1997 Springer-Verlag. Reprinted with permission.

Class Refinement and Interface Refinement in
Object-Oriented Programs

Anna Mikhajlova1 and Emil Sekerinski2

1 Turku Centre for Computer Science, Åbo Akademi University
Lemminkäisenkatu 14A, Turku 20520, Finland

2 Dept. of Computer Science, Åbo Akademi University
Lemminkäisenkatu 14A, Turku 20520, Finland

Abstract. Constructing new classes from existing ones by inheritance
or subclassing is a characteristic feature of object-oriented development.
Imposing semantic constraints on subclassing allows us to ensure that
the behaviour of superclasses is preserved or refined in their subclasses.
This paper defines a class refinement relation which captures these se-
mantic constraints. The class refinement relation is based on algorithmic
and data refinement supported by Refinement Calculus. Class refinement
is generalized to interface refinement, which takes place when a change
in user requirements causes interface changes of classes designed as re-
finements of other classes. We formalize the interface refinement relation
and present rules for refinement of clients of the classes involved in this
relation.

1 Introduction

It has been widely recognized that design and development of object-oriented
programs is difficult and intricate. The need for formal basis of object-oriented
development was identified by many researchers. We demonstrate how formal
methods, in particular, Refinement Calculus of Back, Morgan, and Morris [4, 20,
21], can be used for constructing more reliable object-oriented programs.

A characteristic feature of object-oriented program development is a uniform
way of structuring all stages of the development by classes. The programming
notation of Refinement Calculus is very convenient for describing object-oriented
development because it allows us to specify classes at various abstraction lev-
els. The specification language we use is based on monotonic predicate trans-
formers, has class constructs, supports subclassing and subtype polymorphism.
Besides usual imperative statements, the language includes specification state-
ments which may appear in method bodies of classes leading to abstract classes.
One of the main benefits offered by this language is that all development stages
can be described in a uniform way starting with a simple abstract specification
and resulting in a concrete program.

We build a logic of object-oriented programs as a conservative extension of
(standard) higher-order logic, in the style of [7]. An alternative approach is un-
dertaken by Abadi and Leino in [2]. They develop a logic of object-oriented

programs in the style of Hoare, prove its soundness, and discuss completeness
issues. Naumann [22] defines the semantics of a simple Oberon-like programming
language with similar specification constructs as here, also based on predicate
transformers. Sekerinski [24, 25] defines a rich object-oriented programming and
specification notation by using a type system with subtyping and type param-
eters, and also using predicate transformers. In both approaches, subtyping is
based on extensions of record types. Here we use sum types instead, as sug-
gested by Back and Butler in [6]. One motivation for moving to sum types is to
avoid the complications in the typing and the logic when reasoning about record
types: the simple typed lambda calculus as the formal basis is sufficient for our
purposes. Another advantage of moving to sum types is that we can directly
express whether an object is of exactly a certain type or of one of its subtypes
(in the record approach, a type contains all the values of its subtypes). Using
summations also allows us to model contravariance and covariance on method
parameters in a simple way. Finally, to allow objects of a subclass to have differ-
ent (private) attributes from those of the superclass, hiding by existential types
was used in [24, 25]. It turned out that this leads to complications when rea-
soning about method calls, which are not present when using the model of sum
types. In the latter, objects of a subclass can always have different attributes
from those of the superclass.

Constructing new classes from existing classes by inheritance, or subclassing,
is one of characteristic features of object-oriented program development. How-
ever, when a subclass overrides some methods of its superclass, there are no
guarantees that its instances will deliver the same or refined behaviour as the
instances of the superclass. We define a class refinement relation and relate the
notion of subclassing to this relation. When a class C ′ is constructed by sub-
classing from C and class refinement holds between them, then it is guaranteed
that any behaviour expected from C will necessarily be delivered by C ′.

Class refinement as defined here is based on data refinement [15, 14, 19, 5].
The definition generalizes that of Sekerinski [24] by allowing contravariance and
covariance in the method parameters, and by considering constructor methods.
Class refinement has also been studied in various extensions of the Z specification
languages, e.g. [16, 17], but only between class specifications and not implemen-
tations. Other approaches on “behavioural subtyping” of classes [3, 18, 10] also
make a distinction between the specification of a class and its implementation.
By having specification constructs as part of the (extended) programming lan-
guage, this distinction becomes unnecessary.

Subclassing requires that parameter types of a method be the same in the sub-
class and in the superclass or, at most, subject to contravariance and covariance
rules, as described in [9, 1]. However, sometimes a change in user requirements
causes interface changes of classes designed as refinements of other classes. We
formalize the interface refinement relation as a generalization of class refinement,
and present rules for refinement of clients of the classes involved in this relation.
Interface refinement has also been considered by Broy in [8], but for networks of
communicating components rather than for classes.

83

Paper Outline: In Section 2 we present the required concepts of the Refine-
ment Calculus formalism. In Section 3 we explain our model of objects, classes,
subclassing, and subtyping polymorphism. Section 4 defines the class refinement
relation. In the following section we generalize class refinement to interface refine-
ment, formalize implicit client refinement, and discuss explicit client refinement.
Finally, we conclude with considering applications of our work.

2 Refinement Calculus

A predicate over a set of states Σ is a boolean function p : Σ → Bool which
assigns a truth value to each state. The set of predicates on Σ is denoted PΣ.
The entailment ordering on predicates is defined by pointwise extension, so that
for p, q : PΣ,

p ⊆ q =̂ (∀σ : Σ · p σ ⇒ q σ)

A relation from Σ to Γ is a function P : Σ → PΓ that maps each state σ to
a predicate on Γ . We write

Σ ↔ Γ =̂ Σ → PΓ
to denote a set of all relations from Σ to Γ . This view of relations is isomorphic
to viewing them as predicates on the cartesian space Σ×Γ . The identity relation
and the composition of relations are defined as follows:

Id x y =̂ x = y
(P ;Q) x z =̂ (∃y · P x y ∧ Q y z)

A predicate transformer is a function S : PΓ → PΣ from predicates to
predicates. We write

Σ �→ Γ =̂ PΓ → PΣ
to denote a set of all predicate transformers from Σ to Γ . Program statements in
Refinement Calculus are identified with weakest-precondition monotonic predi-
cate transformers that map a postcondition q : PΓ to the weakest precondition
p : PΣ such that the program is guaranteed to terminate in a final state satis-
fying q whenever the initial state satisfies p. A program statement S need not
have identical initial and final state spaces, though if it does, we write S : Ξ(Σ)
instead of S : Σ �→ Σ.

The refinement ordering on predicate transformers is defined by pointwise
extension, for S, T : Σ �→ Γ :

S � T =̂ (∀q : PΓ · S q ⊆ T q)
The refinement ordering on predicate transformers models the notion of total-

correctness preserving program refinement. For statements S and T , the relation
S � T holds if and only if T satisfies any specification satisfied by S.

84

The abort statement maps each postcondition to the identically false predi-
cate false, and the magic statement maps each postcondition to the identically
true predicate true. The abort statement is never guaranteed to terminate, while
themagic statement is miraculous since it is always guaranteed to establish any
postcondition.

Sequential composition of program statements is modeled by functional com-
position of predicate transformers. For S : Σ �→ Γ , T : Γ �→ ∆ and q : P∆,

(S;T) q =̂ S (T q)

The program statement skipΣ is modeled by the identity predicate transformer
on PΣ.

Given a relation P : Σ ↔ Γ , the angelic update statement {P} : Σ �→ Γ and
the demonic update statement [P] : Σ �→ Γ are defined by

{P} q σ =̂ (∃γ : Γ · (P σ γ) ∧ (q γ))
[P] q σ =̂ (∀γ : Γ · (P σ γ) ⇒ (q γ))

When started in a state σ, {P} angelically chooses a new state γ such that P σ γ
holds, while [P] demonically chooses a new state γ such that P σ γ holds. If
no such state exists, then {P} aborts, whereas [P] behaves as magic, i.e. can
establish any postcondition.

Ordinary program constructs may be modeled using the basic predicate
transformers and operators presented above. For example, in a state space with
two components (x : T, y : S), an assignment statement may be modeled by the
demonic update:

x := e =̂ [R], where R (x, y)(x′, y′) = (x′ = e) ∧ (y′ = y)

Our specification language includes specification statements. The demonic spec-
ification statement is written [x := x′ · b], and the angelic specification statement
is written {x := x′ · b}, where b is a boolean expression relating x and x′.
The program variable x is assigned a value x′ satisfying b. These statements
correspond to the demonic and the angelic updates respectively:

x := x′ · b =̂ R, where R (x, y)(x′, y′) = b ∧ (y′ = y)

We also have an assertion, written {p}, where p is a predicate stating a
condition on program variables. This assertion behaves as skip if p is satisfied
and as abort otherwise.

Finally, the language supports local variables. The construct |[var z • S]|
states that the program variable z is local to S:

|[var z • S]| =̂ [Enterz];S; [Exitz], where

Enterz(x, y)(x′, y′, z′) =̂ (x′ = x) ∧ (y′ = y) and
Exitz(x, y, z)(x′, y′) =̂ (x′ = x) ∧ (y′ = y)

85

The semantics of other ordinary program constructs, like multiple assign-
ments, if -statements, and do-loops, is given, e.g. in [7].

Data refinement is a general technique by which one can change the state
space in a refinement. For statements S : Ξ(Σ) and S′ : Ξ(Σ′), let R : Σ′ ↔ Σ
be an abstraction relation between the state spaces Σ and Σ′. The statement S
is said to be data refined by S′ via R, denoted S �R S

′, if

{R}; S � S′; {R}

Alternative and equivalent characterizations of data refinement using the inverse
relation R−1, are then

S; [R−1] � [R−1];S′ S � [R−1];S′; {R} {R};S; [R−1] � S′

These characterizations follow from the fact that {R} and [R−1] are each others
inverses, in the sense that {R}; [R−1] � skip and skip � [R−1]; {R}.

Refinement Calculus provides laws for transforming more abstract program
structures into more concrete ones based on the notion of refinement of pred-
icate transformers presented above. A large collection of algorithmic and data
refinement laws is given in [7, 20, 12].

Sum Types and Operators. In our specification language we widely employ
sum types for modeling subtyping polymorphism and dynamic binding. The sum
or disjoint union of two types Σ and Γ is written Σ + Γ . The types Σ and Γ
are called base types of the sum in this case. Associated with the sum types,
are the injection relations1 which map elements of the subsets to elements of the
superset summation:

ιΣ : Σ ↔ Σ + Γ ιΓ : Γ ↔ Σ + Γ

and projection relations which relate elements of summation with elements of
their subsets:

πΣ : Σ + Γ ↔ Σ πΓ : Σ + Γ ↔ Γ

In fact, the projection relation is an inverse of the injection relation for the
corresponding subset of the summation.

We define the subtype relation as follows. The type Σ is a subtype of Σ′,
written Σ <: Σ′, if Σ = Σ′, or Σ <: Γ or Σ <: Γ ′, where Γ + Γ ′ = Σ′. For
example, Γ <: Γ +Γ ′ and, or course, Γ +Γ ′ <: Γ +Γ ′. If Σ is a subtype of Σ′,
we can always construct the appropriate injection ιΣ : Σ ↔ Σ′ and projection
πΣ : Σ′ ↔ Σ. The subtype relation is reflexive, transitive and antisymmetric.

A summation operator combines statements by forming the disjoint union
of their state spaces. This operator is defined in [6] by extension from the
1 In fact, the injections are functions rather than relations, but for our purposes it is
more convenient to treat them as relations.

86

summation of types. For S1 : Σ1 �→ Γ1 and S2 : Σ2 �→ Γ2, the summation
S1 + S2 : Σ1 +Σ2 �→ Γ1 + Γ2 is a predicate transformer such that the effect of
executing it in some initial state σ depends on the base type of σ. If σ : Σ1 then
S1 is executed, while if it is of type Σ2, then S2 is executed.

The summation operator was shown to satisfy a number of useful properties.
The one of interest to us is that it preserves refinement, allowing us to refine
elements of the summation separately:

S1 � S′1 ∧ S2 � S′2 ⇒ (S1 + S2) � (S′1 + S′2)

Product Types and Operators. The cartesian product of two types Σ and
Γ is written Σ × Γ . The product operator combines predicate transformers by
forming the cartesian product of their state spaces. For S1 : Σ1 �→ Γ1 and
S2 : Σ2 �→ Γ2, their product S1 × S2 is a predicate transformer of type Σ1 ×
Σ2 �→ Γ1 × Γ2 whose execution has the same effect as simultaneous execution
of S1 and S2.

In addition to many other useful properties, the product operator preserves
refinement:

S1 � S′1 ∧ S2 � S′2 ⇒ (S1 × S2) � (S′1 × S′2)

For S : Σ �→ Σ we define lifting to a product predicate transformer of type
Σ×Γ �→ Σ×Γ as S× skipΓ . When lifting is obvious from the context, we will
simply write S instead of S × skipΓ .

A product P ×Q of two relations P : Σ1 ↔ Γ1 and Q : Σ2 ↔ Γ2 is a relation
of type (Σ1 ×Σ2) ↔ (Γ1 × Γ2) defined by

(P ×Q) (σ1, σ2)(γ1, γ2) =̂ (P σ1 γ1) ∧ (Q σ2 γ2)

3 Specifying Objects and Classes

Object-oriented systems are characterized by objects, which group together data,
and operations for manipulating that data. The operations, called methods, can
be invoked only by sending messages to the object. The complete set of messages
that the object understands is characterized by the interface of the object. The
interface represents the signatures of object methods, i.e. the name and the types
of input and output parameters. As opposed to the interface, the object type is
the type of object attributes. We consider all attributes as private or hidden, and
all methods as public or visible to clients of the object. Accordingly, two objects
with the same public part, i.e. the same interface, can differ in their private part,
i.e. object types.

We focus on modeling class-based object-oriented languages, which form the
mainstream of object-oriented programming. Accordingly, we take a view that
objects are instantiated by classes. A class is a pattern used to describe objects
with identical behaviour through specifying their interface. Specifically, a class

87

describes what attributes each object will have, the specification for each method,
and the way the objects are created. We declare a class as follows:

C = class
attr1 : Σ1, . . . , attrm : Σm

C (p : Ψ) = S,
Meth1 (g1 : Γ1) : ∆1 = T1,
. . .
Methn (gn : Γn) : ∆n = Tn

end

Class attributes (attr1, . . . , attrm) abbreviated further on as attr have the corre-
sponding types Σ1 through Σm. The type of attr is then Σ = Σ1× . . .×Σm

2. A
class constructor is used to instantiate objects and is distinguished by the same
name as the class. Due to the fact that the constructor concerns object creation
rather than object functionality, it is associated with the class rather than with
the specified interface. We take a view that the constructor signature is not part
of the interface specified by the class. The statement S : Ξ(Σ × Ψ) representing
a body of the constructor initializes the attributes using input p : Ψ .

Methods Meth1 through Methn specified by bodies T1, . . . , Tn operate on
the attributes and realize the object functionality. Every statement Ti is, in
general, of type Ξ(Σ × Γi ×∆i), where Σ is the type of class attributes, Γi and
∆i are the types of input and output parameters respectively. A method may
be parameterless with both Γi and ∆i the unit type (), have only input or only
output parameters. When a method has an output parameter, a special variable
res : ∆i represents the result and assignment to this variable models returning
a value in the output parameter. The signature of every method is part of the
specified interface.

The object type specified by a class can always be extracted from the class
and we do not need to declare it explicitly. We use τ(C) to denote the type of
objects generated by the class C. Naturally, τ(C) is just another name for Σ.

Being declared as such, the class C is modeled by a tuple (K,M1, . . . ,Mn),
where

K = [Enterattr];S; [Exitp]
Mi = [Enterres];Ti; [Exitgi

], for i = 1,. . . , n.

Further on we will refer to K as the constructor and to M1, . . . ,Mn as the
methods, unless stated otherwise.

Instantiating a new variable of object type by class C is modeled by invoking
the corresponding class constructor:

c.C(e) =̂ [Enterp]; p := e;K; c := attr; [Exitattr]

Naturally, a variable of object type can be local to a block:

|[var c : C(e) • S]| =̂ [Enterc]; c.C(e);S; [Exitc]
2 We impose a non-recursiveness restriction on Σ so that none of Σi is equal to Σ.
This restriction allows us to stay within the simple-typed lambda calculus.

88

Often a class aggregates objects of another class, i.e. some attributes can be
of object types. In this case the class declaration states the object types of these
attributes, but only the constructor invocation actually introduces new objects
into the state space and initializes them.

Invocation of a method Methi (gi : Γi) : ∆i on an object c instantiated by
class C is modeled as follows:

d := c.Methi (g) =̂ [Enterattr]; [Entergi
];

attr := c; gi := g;Mi; c := attr; d := res;
[Exitres]; [Exitattr]

As an example of a class specification consider a class of bank accounts. An
account should have an owner, and it should be possible to deposit and withdraw
money in the currency of choice and check the current balance. We present the
specification of the class Account in Fig. 1.

Account = class
owner : Name, balance : Currency

Account (name : Name, sum : Currency) = owner := name; balance := sum,

Deposit (sum : Currency, from : Name,when : Date) =
{sum > 0}; balance := balance+ sum,

Withdraw (sum : Currency, to : Name,when : Date) =
{sum > 0 ∧ sum ≤ balance}; balance := balance− sum,

Owner () : Name = res := owner,

Balance () : Currency = res := balance
end

Fig. 1. Specification of bank account

Obviously, this specification only demonstrates the most general behaviour
of bank accounts. For example, when specifying Deposit, we only state that
balance is increased by sum and leave the changes to the other input parameters
unspecified. We would like to subclass from Account more concrete account
classes. Let us consider specification of subclasses more closely.

3.1 Subclassing

Subclassing 3 is a mechanism for constructing new classes from existing ones by
inheriting some or all of their attributes and methods, possibly overriding some
attributes and methods, and adding extra methods. We limit our consideration
3 We prefer the term subclassing to implementation inheritance because the latter
literally means reuse of existing methods and does not, as such, suggest the possibility
of method overriding.

89

of class construction to inheritance and overriding. Addition of extra methods
is a non-trivial issue because of inconsistencies possibly introduced by extra
methods which become apparent in presence of subtype aliasing, and is treated
in another study.

We describe a subclass of class C as follows:

C ′ = subclass of C
attr′1 : Σ′

1, . . . , attr
′
p : Σ′

p

C ′ (p : Ψ) = S′,
Meth1 (g1 : Γ1) : ∆1 = T ′

1,
. . .
Methk (gk : Γk) : ∆k = T ′

k

end

Class attributes attr′1, . . . , attr
′
p have the corresponding types Σ′

1 through
Σ′

p. Some of these attributes are inherited from the superclass C, others over-
ride attributes of C, and the other ones are new. The class C ′ has its own
class constructor without inheriting the one associated with the superclass. The
bodies T ′

1, . . . , T
′
k override the correspondingMeth1, . . . ,Methk body definitions

defined in C. The bodies of methods named Methk+1, . . . ,Methn are inherited
from the superclass C. The class C ′ is modeled by a tuple (K ′,M ′

1, . . . ,M
′
n),

where the statements K ′ and all M ′
i are related to S′, T ′

1, . . . , T
′
n as described

above.
We view subclassing as a syntactic relation on classes, since subclasses are

distinguished by an appropriate declaration. Syntactic subclassing implies con-
formance of interfaces, in the sense that a subclass specifies an interface con-
forming to the one specified by its superclass. In the simple case the interface
specified by a subclass is the same as that of the superclass. In the next section
we explain how this requirement can be relaxed.

As an example of subclassing consider extending the class Account with a
list of transactions, where every transaction has a sender, a receiver, an amount
of money being transferred, and a date. We specify a record type representing
transactions as follows:

type Transaction = record
from : Name, to : Name, amount : Currency, date : Date

end

Here Name, Currency and Date are simple types. Date is a type of six digit
arrays for representing a day, a month, and a year, for example as ‘251296’ for
December 25, 1996.

Now we can specify in Fig. 2 a class of bank accounts based on sequences
of transactions. Notice that we specify only the overriding methods, Owner and
Balance are inherited from the superclass Account.

90

AccountP lus = subclass of Account
owner : Name, balance : Currency, transactions : seq of Transaction

AccountP lus (name : Name, sum : Currency) =
owner := name; balance := sum; transactions := 〈〉,

Deposit (sum : Currency, from : Name,when : Date) =
{sum > 0}; |[var t : Transaction • t := (from, owner, sum,when);
transactions := transactionŝ 〈t〉; balance := balance+ sum]|,

Withdraw (sum : Currency, to : Name,when : Date) =
{sum > 0 ∧ sum ≤ balance};
|[var t : Transaction • t := (owner, to, sum ∗ (−1), when);
transactions := transactionŝ 〈t〉; balance := balance− sum]|

end

Fig. 2. Specification of account based on transactions

3.2 Modeling Subtyping Polymorphism

To model subtyping polymorphism, we allow object types to be sum types. The
idea is to group together an object type of a certain class and object types
of all its subclasses, to form a polymorphic object type. A variable of such
a sum type can be instantiated to any base type of the summation, in other
words, to any object instantiated by a class whose object type is the base type
of the summation. We will call the object types of only one class ground and
summations of object types polymorphic. Since a ground object type uniquely
identifies the class of objects, we can always tell whether a certain object is an
instance of a certain class.

A sum of object types, denoted by τ(C)+ is defined to be such that its base
types are τ(C) and all the object types of subclasses of C. For example, if D is
the only subclass of C with the object type τ(D), then τ(C)+ = τ(C) + τ(D).
Naturally, we have that

τ(C) <: τ(C)+ and τ(D) <: τ(C)+.

A variable c : τ(C)+ can be instantiated by either C or D. The subsumption
property holds of c, namely, if c : τ(C) and τ(C) <: τ(C)+ then c : τ(C)+. This
property is characteristic of subtype relations, it means that an object of type
τ(C) can be viewed as an object of the supertype τ(C)+.

Suppose a method Methi is specified in both C and D by statements Mi

and M ′
i respectively. An invocation of Methi on an object c of type τ(C)+ is

modeled as follows:

c.Methi() =̂

 [Enterattr];
attr := c;Mi; c := attr;
[Exitattr]

 +

 [Enterattr′];
attr′ := c;M ′

i ; c := attr′;
[Exitattr′]

where attr : Σ and attr′ : Σ′ are attributes of C and D respectively. Modeling
an invocation of a method having input and output parameters is similar to
method invocation on a non-polymorphic object.

91

Being equipped with subtyping polymorphism, we can allow overriding meth-
ods in a subclass to be generalized on the type of input parameters or specialized
on the type of output parameters. In the first case this type redefinition is con-
travariant and in the second covariant4. When one interface is the same as the
other, except that it can redefine contravariantly input parameter types and
covariantly output parameter types, this interface conforms to the original one.

As an example of using polymorphic object types let us consider a client of
the classes Account and AccountP lus, a bank which maintains a sequence of
accounts and can transfer money from one account to another. The specification
of the class Bank is presented in Fig. 3.

Bank = class
accounts : seq of τ(Account)

Transfer (from : τ(Account), to : τ(Account), s : Currency, d : Date) =
{sum > 0};
|[var sender, receiver : Name •
sender := from.Owner(); receiver := to.Owner();
from.Withdraw(s, receiver, d); to.Deposit(s, sender, d)]|

end

Fig. 3. Specification of bank using accounts

A subclass of Bank can redefine the method Transfer with input parameters
of types τ(Account)+ to meet the contravariant constraint. The new bank will be
able to work with bothAccount andAccountP lus instances in this case, provided
that the accounts attribute is redefined to be of type seq of τ(Account)+.

4 Class Refinement

When a subclass overrides some methods of its superclass, there are no guaran-
tees that its instances will deliver the same or refined behaviour as the instances
of the superclass. Unrestricted method overriding in a subclass can lead to an
arbitrary behaviour of its instances. When used in a superclass context, such sub-
class instances may invalidate their clients. For example, the Deposit method of
Account can be overridden so that the money is, in fact, withdrawn from the
account instead of being deposited. Then the owner of the account will actually
be at a loss.

Therefore, we would like to ensure that whenever C ′ is subclassed from C,
any behaviour expected from C will necessarily be delivered by C ′. For this
purpose, we introduce the notion of class refinement between C and C ′.

Consider two classes C = (K,M1, . . . ,Mn) and C ′ = (K ′,M ′
1, . . . ,M

′
n) such

that K : Ψ �→ Σ and K ′ : Ψ ′ �→ Σ′ are the corresponding class construc-
tors, and all Mi : Σ × Γi �→ Σ ×∆i and M ′

i : Σ′ × Γ ′
i �→ Σ′ ×∆′

i are the
4 For a more extensive explanation of covariance and contravariance see, e.g. [1].

92

corresponding methods. The input parameter types of the constructors and the
methods are either the same or contravariant, such that Ψ <: Ψ ′ and Γi <: Γ ′

i .
The output parameter types of the methods are either the same or covariant,
∆′

i <: ∆i.
We define the refinement of class constructors K and K ′ with respect to a

relation R as follows:

K �R K
′ =̂ {πΨ}; K � K ′; {R} (1)

where R : Σ′ ↔ Σ is an abstraction relation coercing attribute types of C ′ to
those of C, and πΨ is the projection relation coercing Ψ ′ to Ψ .

The refinement of all corresponding methods Mi and M ′
i with respect to the

relation R is defined as

Mi �R M
′
i =̂ {R× πΓi

}; Mi � M ′
i ; {R× ι∆′

i
} (2)

Here R is as above, πΓi
: Γ ′

i ↔ Γi projects the corresponding input parameters,
and ι∆′

i
: ∆′

i ↔ ∆i injects the corresponding output parameters. Obviously,
when Γi = Γ ′

i , the projection relation πΓi
is taken to be the identity relation Id.

The same holds when ∆i = ∆′
i, namely, ι∆′

i
= Id.

Now we can define the class refinement relation as follows.

Definition 1 (Class refinement). The class C is refined by the class C ′, writ-
ten C � C ′, if for some abstraction relation R : τ(C ′) ↔ τ(C)

1. The constructor of C ′ refines the constructor of C as defined in (1)
2. Every method of C ′ refines the corresponding method of C as defined in (2).

The class refinement relation shares the properties of statement refinement
and is, thus, reflexive and transitive.

Theorem 1. Let C,C ′ and C ′′ be classes. Then the following properties hold:

1. C � C
2. C � C ′ ∧ C ′ � C ′′ ⇒ C � C ′′

Declaring one class as a subclass of another raises the proof obligation that
the class refinement relation holds between these classes. This is a semantic con-
straint that we impose on subclassing to ensure that behaviour of subclasses
conforms to the behaviour of their superclasses and, respectively, that the sub-
classes can be used in the superclass context.

As an example of class refinement consider the classes Account and
AccountP lus. Since the latter is declared as a subclass of the former, we get
a proof obligation Account � AccountP lus. Under the abstraction relation
R (o′, b′, t′)(o, b) = (o′ = o)∧ (b′ = b), where o, b correspond to owner, balance
of Account and o′, b′, t′ correspond to owner, balance, transactions of
AccountP lus, this proof obligation can be discharged, but we omit the proof
for the lack of space.

93

5 Interface Refinement

Subclassing requires that parameter types of a method be the same in the sub-
class and in the superclass or, at most, subject to contravariance and covari-
ance rules. However, sometimes, a change in user requirements causes interface
changes of classes designed as refinements of other classes.

When the new interface is similar to the old one, we can identify abstraction
relations coercing the new method parameters to the old ones. For every pair
of corresponding methods we need to find two such relations, for input and
output parameters. The rôle of these parameter abstraction relations is crucial
for interface refinement of classes and for refinement of their clients. Let us first
define the interface refinement relation between classes with respect to these
relations.

Consider two classes C = (K,M1, . . . ,Mn) and C ′ = (K ′,M ′
1, . . . ,M

′
n)

with attribute types Σ and Σ′ respectively, such that K : Ψ �→ Σ and
K ′ : Ψ ′ �→ Σ′ are the class constructors, and all Mi : Σ × Γi �→ Σ ×∆i and
M ′

i : Σ′ × Γ ′
i �→ Σ′ ×∆′

i are the corresponding methods.
Let R : Σ′ ↔ Σ be an abstraction relation coercing attribute types of C ′ to

those of C, and I0 : Ψ ′ ↔ Ψ an abstraction relation coercing the corresponding
input parameter types. We define the refinement of class constructors K and K ′

through R and I0 as follows:

K �R,I0 K
′ = {I0}; K � K ′; {R} (3)

Obviously, (3) is a generalization of (1) with I0 = πΨ when the input types are
contravariant.

Let R : Σ′ ↔ Σ be as before, and Ii : Γ ′
i ↔ Γi and Oi : ∆′

i ↔ ∆i be
abstraction relations coercing the corresponding input and output parameter
types. We define the refinement of corresponding methods Mi and M ′

i through
R, Ii and Oi as follows:

Mi �R,Ii,Oi
M ′

i = {R× Ii}; Mi � M ′
i ; {R×Oi} (4)

Obviously, (4) is a generalization of (2) with Ii = πΓi
when the inputs are

contravariant, i.e. Γi <: Γ ′
i , and with Oi = ι∆′

i
when the outputs are covariant,

i.e. ∆′
i <: ∆i.

Definition 2 (Interface refinement). The class C is interface refined by the
class C ′, written C �I,O C

′, with respect to parameter abstraction relations
I = (I0, I1, . . . , In) and O = (O1, . . . , On) if for some abstraction relation
R : τ(C ′) ↔ τ(C)

1. The constructor of C ′ refines the constructor of C as defined in (3)
2. Every method of C ′ refines the corresponding method of C as defined in (4).

Being defined as such, interface refinement of classes is a generalization of
class refinement. When every Ii and Oi is the identity relation or the projection
and injection relations respectively, interface refinement is specialized to class
refinement. The interface refinement relation has the basic properties required
of a refinement relation, i.e. reflexivity and transitivity.

94

Theorem 2. Let C,C ′ and C ′′ be classes. Then the following properties hold:

1. C �Id,Id C
2. C �I,O C

′ ∧ C ′ �I′,O′ C ′′ ⇒ C �I′;I,O′;O C
′′

where the relational compositions I ′; I and O′;O on tuples of relations are taken
elementwise.

Proof. The proof of (1) follows directly from reflexivity of statement refinement
by taking the abstraction relation R to be Id. To prove (2) we assume that
C �I,O C

′ and C ′ �I′,O′ C ′′ hold for abstraction relations R and R′ respectively.
We then show that methods Mi,M

′
i and M ′′

i of the corresponding classes C,C ′

and C ′′ have the property:

{R× Ii};Mi � M ′
i ; {R×Oi} ∧ {R′ × I ′i};M ′

i � M ′′
i ; {R′ ×O′

i} ⇒
{(R′;R) × (I ′i; Ii)};Mi � M ′′

i ; {(R′;R) × (O′
i;Oi)}

The proof of the property is as follows:

{(R′;R) × (I ′i; Ii)};Mi � M ′′
i ; {(R′;R) × (O′

i;Oi)}
= lemma (P ;P ′) × (Q;Q′) = (P ×Q); (P ′ ×Q′)

{(R′ × I ′i); (R× Ii)};Mi � M ′′
i ; {(R′ ×O′

i); (R×Oi)}
= homomorphism of angelic update statement {P}; {Q} = {P ;Q}

{R′ × I ′i}; {R× Ii};Mi � M ′′
i ; {R′ ×O′

i}; {R×Oi}
⇐ assumption {R× Ii};Mi � M ′

i ; {R×Oi}
{R′ × I ′i};M ′

i ; {R×Oi} � M ′′
i ; {R′ ×O′

i}; {R×Oi}
⇐ assumption {R′ × I ′i};M ′

i � M ′′
i ; {R′ ×O′

i}
M ′′

i ; {R′ ×O′
i}; {R×Oi} � M ′′

i ; {R′ ×O′
i}; {R×Oi}

= reflexivity of statement refinement
true

The proof of the corresponding property for constructors is similar. ✷

Theorem 2 follows by specializing I and O appropriately.
As an example of interface refinement consider our previous specification

of transactions, accounts and banks. Suppose that facing the start of the new
century, we’d like to change the type of dates so that it’s possible to specify a
four-digit year:

type NewDate = array [1..8] of Digit

Accordingly, we define a new transaction record type NewTran which is the
same as Transaction except that the date field is now of type NewDate. We
construct a new class of accounts using NewTran transactions as shown in
Fig. 4. We omit specifications ofOwner andBalancemethods which are straight-
forward, and a specification of Withdraw, which is similar to that of Account
with a local variable of type NewTran rather than Transaction.

95

NDAccount = class
owner : Name, balance : Currency, transactions : seq of NewTran

NDAccount (name : Name, initSum : Currency) =
owner := name; balance := initSum; transactions := 〈〉,

Deposit (sum : Currency, from : Name,when : NewDate) =
{sum > 0}; |[var t : NewTran • t := (from, owner, sum,when);
transactions := transactionŝ 〈t〉; balance := balance+ sum]|,

. . .
end

Fig. 4. Specification of account based on NewTran

It can be shown that AccountP lus �I,O NDAccount, where
I = (Id× Id, Id× Id×D, Id× Id×D, Id, Id) and O = (Id, Id, Id, Id). The abstrac-
tion relation D : NewDate ↔ Date is defined so that for constants ‘1’ and ‘9’
of type Digit and for any d : Date and d′ : NewDate:

D(d′)(d) = (d′[1..4] = d[1..4]) ∧ (d′[5..6] = ‘1’‘9’) ∧ (d′[7..8] = d[5..6])

Now let us consider how parameter abstraction relations can be used for
refinement of clients of the interface refined classes. Interface changes in class
methods certainly affect clients of the class. Examining the ways the clients get
affected allows us to discover the situations when the clients can benefit from the
interface refinement of their server classes but need not be changed in any way.
We can also establish conditions under which the clients can be systematically
changed to use the refined server classes. For every OldClass and NewClass,
such that NewClass is designed as a refinement of OldClass but specifies a
different interface, we distinguish two ways clients of OldClass can be affected
and changed.

5.1 Implicit Client Refinement

This kind of client refinement happens when it is impractical or impossible to
redefine clients of OldClass, but is, however, desirable that they work with
NewClass which may offer a more efficient implementation or improved func-
tionality to new clients, like in our example. We can implicitly refine clients by
employing a so-called forwarding scheme illustrated in Fig. 5 using the OMT
notation [23]. In this diagram the link with a triangle relates a superclass with
a subclass with the superclass above. The link with a diamond shows an aggre-
gation relation, i.e. that Wrapper aggregates an instance of NewClass in the
attribute impl.

The idea behind such kind of forwarding is to introduce a subclass of
OldClass, Wrapper, which aggregates an instance of NewClass and forwards
OldClass method calls to NewClass through this instance. This has also been
identified as a reoccuring design pattern by Gamma et al. in [11]. Clients of

96

OldClass

Wrapper NewClass
impl

Fig. 5. Illustration of forwarding

OldClass can work with Wrapper, which is a subclass of OldClass, but have
all the benefits of working with NewClass if

OldClass � Wrapper and Wrapper �I,O NewClass

Consider again our example. The client Bank wants to use NDAccount but
cannot do so since the latter specifies the interface different from that specified by
AccountP lus. We can employ the forwarding scheme by introducing in Fig. 6 a
new class AccountWrapper which aggregates an instance of NDAccount and for-
wards AccountP lus method calls to NDAccount via this instance. Specifications
of Withdraw and Balance are straightforward and we omit them for brevity.
The function ToNewDate (old : Date) : NewDate converts dates from the old
format to the new one. In fact, this function can be modeled by the statement
[D−1], where D : NewDate ↔ Date is as before. Provided that the necessary
proof obligations are discharged, clients of AccountP lus, such as Bank, are im-
plicitly refined to work with NDAccount via AccountWrapper.

Since wrapper classes are of a very specific form, proof obligations can be
considerably simplified. Consider a typical wrapper class as given in Fig. 7. The
demonic specification statements transform the input parameters of OldClass
to the input parameters of NewClass using the corresponding parameter ab-
straction relations Ii, i = 0, . . . , n. Similarly, the angelic specification statements
transform the output parameters of NewClass back to the output parameters
of OldClass. For the classWrapper with such a structure, we have the following
theorem.

AccountWrapper = subclass of AccountP lus
impl : τ(NDAccount)

AccountWrapper (name : Name, initSum : Currency) =
impl.NDAccount(name, initSum),

Deposit (sum : Currency, from : Name,when : Date) =
{sum > 0}; |[var d : NewDate •
d := ToNewDate(when); impl.Deposit(sum, from, d)]|,

Owner () : Name = res := impl.Owner(),
. . .

end

Fig. 6. Specification of wrapper class for implicit interface refinement

97

Wrapper = subclass of OldClass
impl : τ(NewClass)

Wrapper (p : Ψ) = |[var e : Ψ ′ • [e := e′ · I−1
0 p e′]; impl.NewClass(e)]|,

Methi(gi : Γi) : ∆i =
|[var ci : Γ

′
i , di : ∆

′
i • [ci := c′i · I−1

i gi c
′
i];

di := impl.Methi(ci); {res := res′ · Oi di res
′}]|,

. . .
end

Fig. 7. Schema of wrapper class for implicit interface refinement

Theorem 3. For parameter abstraction relations I = (I0, I1, . . . , In) and O =
(O1, . . . , On) the following property holds:

OldClass �I,O NewClass ⇒ OldClass � Wrapper

The form of specification statements gives insight into suitable restrictions
when choosing the parameter abstraction relations Ii and Oi. If I−1

i is partial,
then the corresponding specification statement can be magic and, thus, is not
implementable. Hence, Ii has to be surjective, i.e. relate all possible values of
the old input parameters to some values of the new input parameters. Likewise,
if Oi is non-deterministic (not functional), then the result res : ∆i is chosen
angelically, and is, therefore, not implementable. Hence Oi must be deterministic
(functional), i.e. relate values of the new result parameters di : ∆′

i to at most
one value of the old result parameters res : ∆i.

5.2 Explicit Client Refinement

This kind of client refinement happens quite often in the process of object-
oriented development. After NewClass has been developed, using OldClass
may become impractical and undesirable, and therefore, a client OldClient of
OldClass should be explicitly changed to work with NewClass instead. We can
construct NewClient by refinement from OldClient. Unfortunately, there are no
guarantees that the interface of NewClient will conform to that of OldClient.
Accordingly, we must consider two cases, when NewClient is a subclass of
OldClient and when it is its interface refinement.

When the object type τ(OldClass) and the types causing the interface change
of OldClass to NewClass are not part of OldClient interface, the refinement
of OldClient, NewClient, can be its subclass. In other words, NewClient can
specify the interface conforming to that ofOldClient. Naturally, every class using
OldClient can then use NewClient instead and is implicitly refined without
respecification.

We feel that there is a strong connection between parameter abstraction rela-
tions with respect to which interface refinement is defined and explicit refinement
of clients of the refined classes. Investigating how clients can be explicitly refined
based on the parameter abstraction relations for the server classes remains the
topic of current research.

98

6 Conclusions

Our approach is suited for documenting, constructing, and verifying different
kinds of object-oriented systems because of its uniform way of specifying a pro-
gram at different abstraction levels and the possibility of stepwise development.
We have defined the class refinement relation and the interface refinement re-
lation which allow a developer to construct extensible object-oriented programs
from specifications and assure reliability of the final program.

Our model of classes, subclassing, and subtyping polymorphism can be used
to reason about the meaning of programs constructed using the separate sub-
classing and interface inheritance hierarchies, like in Java [13], Sather [26], and
some other languages. In that approach interface inheritance is the basis for
subtyping polymorphism, whereas subclassing is used only for implementation
reuse. By associating a specification class with every interface type, we can rea-
son about the behaviour of objects having this interface. All classes claiming
to implement a certain interface must refine its specification class. Subclassing,
on the other hand, does not, in general, require establishing class refinement
between the superclass and the subclass.

For simplicity we consider only single inheritance, but multiple inheritance
does not introduce much complication. With a suitable mechanism for resolv-
ing clashes in method names, multiple inheritance has the same semantics as
we give for single inheritance. Namely, ensuring that a subclass D preserves
behaviour of all its declared superclasses C1, . . . , Cn requires proving class re-
finements C1 � D, . . . , Cn � D for every corresponding superclass-subclass pair.

Using formal specification and verification is especially important for open
systems, such as object-oriented frameworks and component-based systems.
Frameworks incorporate a reusable design for a specific class of software and
dictate a particular architecture of potential applications. When building an ap-
plication, the user needs to customize framework classes to specific needs of this
application. To do so, he must understand the message flow in the framework
and the relationship among the framework classes. The intrinsic feature of open
component-based systems is a late integration phase, meaning that components
are developed by different manufacturers and then integrated together by their
users.

A fine-grained specification can accurately describe the fixed behaviour of
classes. In this respect, such a specification is a perfect documentation of a
framework or a component, because the user does not have to decipher ambigu-
ous, incomplete, and often outdated verbal descriptions. Neither is it necessary to
confront the bulk of source code to gain a complete understanding of the system
behaviour. The programming notation we use allows the developer to abstract
from implementation details and specify classes with abstract state space and
non-deterministic behaviour of methods, expressing only the necessary function-
ality. Moreover, a certain implementation can be a commercial secret, whereas
a concise and complete specification distributed instead of source code enables
the user to understand the functionality and protects corporate interests.

99

Formal verification in the form of establishing a class refinement relation
between specifications and their implementations guarantees that any behaviour
expected from the specifications will be delivered by the implementations.

It has been acknowledged that frameworks are usually developed using a
spiral model that takes feedback from actual use of the framework into account.
It can be expected that such development iterations may result in an interface
change of some classes. In this case, interface refinement can be used to verify
behavioural compatibility of the corresponding classes and the rules for interface
refinement of clients can be used to refine the whole framework.

Acknowledgments

We would like to thank Ralph Back for a number of fruitful discussions and
Martin Büchi for useful comments.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In Proceedings

of TAPSOFT’97, LNCS 1214, pages 682–696. Springer, April 1997.
3. P. America. Designing an object-oriented programming language with behavioral

subtyping. In J. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foun-
dations of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout,
The Netherlands, May/June 1990, LNCS 489, pages 60–90, New York, N.Y., 1991.
Springer-Verlag.

4. R. J. R. Back. Correctness Preserving Program Refinements: Proof Theory and
Applications, volume 131 of Mathematical Center Tracts. Mathematical Centre,
Amsterdam, 1980.

5. R. J. R. Back. Changing data representation in the refinement calculus. In 21st
Hawaii International Conference on System Sciences. IEEE, January 1989.

6. R. J. R. Back and M. Butler. Exploring summation and product operators in the
refinement calculus. In B. Möller, editor, Mathematics of Program Construction,
1995, volume 947. Springer-Verlag, 1995.

7. R. J. R. Back and J. von Wright. Refinement calculus I: Sequential nondetermin-
istic programs. In W. P. d. J. W. deBakker and G. Rozenberg, editors, Stepwise
Refinement of Distributed Systems, Lecture Notes in Computer Science, pages 42–
66. Springer-Verlag, 1990.

8. M. Broy. (Inter-)Action Refinement: The Easy Way. In M. Broy, editor, Program
Design Calculi, pages 121–158, Berlin Heidelberg, 1993. Springer-Verlag.

9. L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-
morphism. ACM Computing Surveys, 17(4):471–522, 1985.

10. K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specifica-
tion inheritance. In Proceedings of the 18th International Conference on Software
Engineering, pages 258–267, Berlin, Germany, 1996.

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

12. P. H. Gardiner and C. C. Morgan. Data refinement of predicate transformers.
Theoretical Computer Science, 87(1):143–162, 1991.

100

13. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Sun Microsys-
tems, Mountain View, 1996.

14. J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In B. Robi-
net and R. Wilhelm, editors, European Symposium on Programming, LNCS 213.
Springer-Verlag, 1986.

15. C. A. R. Hoare. Proofs of correctness of data representation. Acta Informatica,
1(4):271–281, 1972.

16. K. Lano and H. Haughton. Reasoning and refinement in object-oriented specifi-
cation languages. In O. L. Madsen, editor, Proceedings of ECOOP’92, LNCS 615.
Springer-Verlag, 1992.

17. K. Lano and H. Haughton. Object-Oriented Specification Case Studies. Prentice–
Hall, New York, 1994.

18. B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, November 1994.

19. C. C. Morgan. Data refinement by miracles. Information Processing Letters,
26:243–246, January 1988.

20. C. C. Morgan. Programming from Specifications. Prentice–Hall, 1990.
21. J. M. Morris. A theoretical basis for stepwise refinement and the programming

calculus. Science of Computer Programming, 9:287–306, 1987.
22. D. A. Naumann. Predicate transformer semantics of an Oberon-like language. In

E.-R. Olderog, editor, Programming Concepts, Methods and Calculi, pages 460–
480, San Miniato, Italy, 1994.

23. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modelling and Design. Prentice Hall, Englewood Cliffs, 1991.

24. E. Sekerinski. Verfeinerung in der Objektorientierten Programmkonstruktion. Dis-
sertation, Universität Karlsruhe, 1994.

25. E. Sekerinski. A type-theoretic basis for an object-oriented refinement calculus. In
S. Goldsack and S. Kent, editors, Formal Methods and Object Technology. Springer-
Verlag, 1996.

26. C. A. Szyperski, S. Omohundro, and S. Murer. Engineering a programming lan-
guage – the type and class system of Sather. In First International Conference
on Programming Languages and System Architectures, LNCS 782, Zurich, Switzer-
land, March 1994. Springer.

101

Paper 2

Refinement of Generic Classes as Semantics of Correct
Polymorphic Reuse

A. Mikhajlova

Originally published in Proceedings of the International Refinement Workshop
and Formal Methods Pacific (IRW/FMP’98), edited by J. Grundy, M. Schwenke,
and T. Vickers, Springer Series in Discrete Mathematics and Theoretical Com-
puter Science, pp. 266–285, July 1998, Springer-Verlag.
c©1998 Springer-Verlag. Reprinted with permission.

Refinement of Generic Classes as
Semantics of Correct Polymorphic Reuse

Anna Mikhajlova

Turku Centre for Computer Science, Åbo Akademi University
Lemminkäisenkatu 14A, Turku 20520, Finland

Abstract. Constructing new classes from existing ones by inheritance or
subclassing is the main reuse mechanism of the object-oriented program-
ming style. Parametric polymorphism is usually combined with object-
orientation to enhance reuse for different types, and increase flexibility
of class construction. The combination of parametric polymorphism and
subtyping polymorphism permits creation of generic classes where the
formal type parameter is constrained (or bounded) to be a subtype of a
certain object type. Generic classes parameterized with unbounded and
bounded type parameters as well as value parameters can be constructed
from existing generic classes by subclassing. This kind of generic sub-
classing allows polymorphic substitutability of generically derived sub-
class instances for generically derived superclass instances in clients, and
raises the issue of behavioural compatibility of the corresponding class
instances. In this paper we consider correctness of the reuse mechanism
based on the combination of subclassing and type parameterization. We
define the notion of refinement for generic classes by extending the defini-
tion of ordinary class refinement, and study special cases when refinement
is guaranteed to hold between generically derived classes.

1 Introduction

Subclassing (or inheritance) is considered to be the reuse mechanism intrinsic
to the object-oriented style of program construction. Parametric polymorphism
is usually combined with object-orientation to enhance reuse for different types,
and increase flexibility of class construction. Reuse for different types is achieved
through parameterizing classes with unconstrained type parameters. Imposing
constraints on generic type parameters, known as bounded parametric polymor-
phism, allows more flexibility in class construction when combined with sub-
classing. In particular, as was noted in [1], this combination can be used to
circumvent some typing difficulties due to contravariance of method value pa-
rameters. Parameterized classes, which are usually referred to as generic classes
or templates, in addition to bounded and unbounded type parameters can also
be parameterized by values. Parameterization by values is used in practice to
“fine-tune” reuse, e.g., to allow dynamic specification of list size. Substituting
formal type and value parameters with concrete ones in generic classes produces
generically derived classes.

The combination of parametric polymorphism and subclassing enables con-
struction of new generic classes from existing ones by inheritance. The combi-
nation of parametric polymorphism and subtyping polymorphism allows poly-
morphic substitutability of generically derived subclass instances for generically
derived superclass instances in clients, which makes reuse “seamless”, but brings
up the issue of behavioural compatibility of the corresponding class instances.
In this paper we consider correctness of the reuse mechanism based on the com-
bination of subclassing and type parameterization.

We formalize classes, subclassing, subtyping polymorphism, bounded and
unbounded type parameterization, and value parameterization of classes in a
logical framework known as the refinement calculus [5, 19]. Our formalization of
object-oriented constructs is based on the simply typed lambda calculus; yet it
is powerful enough to model subtyping polymorphism and dynamic binding. Re-
finement calculus is particularly suited for describing object-oriented programs
because it allows us to describe classes at various abstraction levels, using speci-
fication statements along with ordinary executable statements. The notion of an
abstract class, specifying behaviour common to its subclasses, can be fully elab-
orated in this formalization, since the state of class instances can be given using
abstract mathematical constructions, like sets and sequences, and class meth-
ods can be described as nondeterministic statements, abstractly but precisely
specifying the intended behaviour.

We give semantics of subclassing for generic classes, and study the conditions
for correct generic subclassing based on the notion of class refinement originally
defined in [18]. The results of this study reveal that relying on certain properties
of generic classes, which may seem plausible, may lead to problems. Accordingly,
we give a definition of generic class refinement, extending the definition of (ordi-
nary) class refinement, to circumvent these problems and ensure that instances
of a generically derived subclass will behave as expected from instances of the
corresponding generically derived superclass. We also consider special cases in
which class refinement is guaranteed to hold between generically derived classes.

2 Refinement Calculus Basics

We formalize objects, classes, and relationships between them in the refinement
calculus, which is a logic framework for reasoning about correctness and refine-
ment of imperative programs. Let us briefly introduce the main concepts of this
formalism.

2.1 Predicates, Relations, and Predicate Transformers

A program state with components is modeled by a tuple of values, and a set of
states (type) Σ is a product space, Σ = Σ1 × . . .×Σn. A predicate over Σ is a
boolean function p : Σ → Bool which assigns a truth value to each state. The
set of predicates on Σ is denoted PΣ. The entailment ordering on predicates is
defined by pointwise extension, so that for p, q : PΣ,

p ⊆ q =̂ (∀σ : Σ · p σ ⇒ q σ)

267

A relation from Σ to Γ is a function of type Σ → PΓ that maps each state σ
to a predicate on Γ . We write Σ ↔ Γ to denote a set of all relations from Σ
to Γ . A predicate transformer is a function S : PΓ → PΣ from predicates to
predicates. We write

Σ �→ Γ =̂ PΓ → PΣ

to denote a set of all predicate transformers fromΣ to Γ . The refinement ordering
on predicate transformers is defined by pointwise extension from predicates. For
S, T : Σ �→ Γ ,

S � T =̂ (∀q : PΓ · S q ⊆ T q)

Product operators combine predicates, relations, and predicate transformers
by forming cartesian products of their state spaces. For example, a product
P × Q of two relations P : Σ1 ↔ Γ1 and Q : Σ2 ↔ Γ2 is a relation of type
(Σ1 ×Σ2) ↔ (Γ1 × Γ2) defined by

(P ×Q) (σ1, σ2) (γ1, γ2) =̂ P σ1 γ1 ∧ Qσ2 γ2

For predicate transformers S1 : Σ1 �→ Γ1 and S2 : Σ2 �→ Γ2, their product S1×S2

is a predicate transformer of type Σ1 ×Σ2 �→ Γ1 ×Γ2 whose execution has the
same effect as simultaneous execution of S1 and S2. For S : Σ �→ Σ we define
lifting to a product predicate transformer of type Σ × Γ �→ Σ × Γ as S × skip.
Similarly, lifting S to a product predicate transformer of type Γ ×Σ �→ Γ ×Σ
is defined by skip× S.

For modeling subtyping polymorphism and dynamic binding we employ sum
types. The sum or disjoint union of two types Σ and Γ is written Σ + Γ . The
types Σ and Γ are called base types of the sum in this case. Associated with the
sum types, are the injection functions ι1 : Σ → Σ + Γ and ι2 : Γ → Σ + Γ ,
which map elements of the base type to elements of the summation, and the
projection relations π1 : Σ +Γ ↔ Σ and π2 : Σ +Γ ↔ Γ , which relate elements
of the summation with elements of its base types. The projection is the inverse
of the injection, so that π−1

1 = | ι1 |, where | ι1 | is the injection function lifted to
a relation. Since any element of Σ + Γ comes either from Σ or from Γ , but not
both, the ranges of the injections ran ι1 and ran ι2 partition Σ + Γ .

The type Σ is defined to be a subtype of Σ′, written Σ <: Σ′, if Σ = Σ′, or
Σ <: Σ′

i, where Σ
′ = Σ′

1 + . . .+Σ
′
n. For example, Σ <: Σ +Σ′ and, of course,

Σ+Σ′ <: Σ+Σ′. The subtype relation is reflexive, transitive, and antisymmetric.
For any Σ and Σ′ such that Σ <: Σ′, we can construct the corresponding
injection function ιΣ : Σ → Σ′ and projection relation πΣ : Σ′ ↔ Σ in a
straightforward way.

2.2 Specification Language

The language used in the refinement calculus includes executable statements
along with (abstract) specification statements. Every statement has a precise
mathematical meaning as a monotonic predicate transformer. A statement with
initial state in Σ and final state in Γ determines a monotonic predicate trans-
former S : Σ �→ Γ that maps any postcondition q : PΓ to the weakest pre-
condition p : PΣ such that the statement is guaranteed to terminate in a final

268

state satisfying q whenever the initial state satisfies p. A statement need not
have identical initial and final state spaces, though if it does, we write S : Ξ(Σ)
instead of S : Σ �→ Σ for the corresponding predicate transformer. Following
an established tradition, we identify statements with the monotonic predicate
transformers that they determine.

A statement S is said to be correct with respect to specification (pre, post)
if pre ⊆ S post. The refinement ordering on predicate transformers models the
notion of total-correctness preserving program refinement. For statements S and
T , the relation S � T holds if and only if T satisfies any specification satisfied
by S.

The predicate transformer abort maps each postcondition to the identically
false predicate false. We know nothing about how abort is executed and it
is never guaranteed to terminate. Conjunction 	 and disjunction
 of predi-
cate transformers model nondeterministic choice among executing either of Si.
Conjunction models demonic nondeterministic choice in the sense that nondeter-
minism is uncontrollable and each alternative must establish the postcondition.
Disjunction, on the other hand, models angelic nondeterminism, where the choice
between alternatives is free and aimed at establishing the postcondition.

Sequential composition of program statements is modeled by functional com-
position of predicate transformers. The program statement skip is modeled by
the identity predicate transformer and its execution has no effect on the program
state.

The specification language includes the assertion {b} and the assumption
[b] statements, where b is a predicate stating a condition on program vari-
ables. Both the assertion and the assumption behave as skip if b is satisfied;
otherwise, the assertion aborts, whereas the assumption behaves miraculously,
i.e., is guaranteed to establish any postcondition. The conditional statement
if g then S1 else S2 fi is defined by the demonic choice of guarded alternatives
[g];S1 	 [¬g];S2 or the angelic choice of asserted alternatives {g};S1
 {¬g};S2.

Iteration while g do S od is defined as the least fixpoint of a function
(λX · if g then S;X else skip fi) on predicate transformers with respect to
refinement ordering. A variant of iteration, the iterative choice introduced in [9],
allows the user to choose repeatedly an alternative that is enabled and have it
executed until the user decides to stop:

do g1 :: S1〈〉 . . . 〈〉 gn :: Sn od =̂ (µX · {g1};S1;X � . . . � {gn};Sn;X � skip)

We will abbreviate g1 :: S1〈〉 . . . 〈〉 gn :: Sn by 〈〉ni=1gi :: Si.
Following [8], we use the program variable notation as a simple syntactic ex-

tension to the typed lambda calculus. Let (λu · t) be a function which replaces
the old state u with the new state t, changing some components x1, . . . , xm of
u to t1, . . . , tm, while leaving the others unchanged. The (multiple) assignment
statement may be modeled, using the program variable notation, by the func-
tional update 〈f〉, which is a predicate transformer applying the function f to
the state u to yield the new state f u:

(var u · x1, . . . , xm := t1, . . . , tm) =̂ 〈λu · u[x1, . . . , xm := t1, . . . , tm]〉

269

A relation (λu · λu′ · b) can also be written as (λu · {u′ | b}), using the set
notation. When such a relation changes a component x of state u to some x′
related to x via a boolean expression b, this change can be expressed in the
variable notation as

(var u · x := x′ | b) =̂ (λu · {u[x := x′] | b})

The demonic assignment [var u · x := x′ | b] and the angelic assignment
{var u · x := x′ | b} are the specification statements modeled by the demonic
update [P] and the angelic update {P}, lifting the relation P to the level of
predicate transformers. When started in a state u, [P] demonically chooses a new
state u′ such that P uu′ holds, while {P} angelically chooses a new state u′ such
that P uu′ holds. If no such state exists, then {P} aborts, whereas [P] behaves
miraculously. Intuitively, the demonic assignment expresses an uncontrollable
nondeterministic choice in selecting a new value x′ satisfying b, whereas the
angelic assignment expresses a free choice. The angelic assignment can, e.g., be
understood as a request to the user to supply a new value. For example,

{var u · x, e := x′, e′ | x′ ≥ 0 ∧ e > 0}; [var u · x := x′ | − e < x′2 − x < e]

describes how the user gives as input a value x whose square root is to be
computed, as well as the precision e with which the system is to compute this
square root. The system then computes an approximation to the square root
with precision e, choosing any new value for x that satisfies this precision.

Finally, the language supports blocks with local variables. Entering the local
variables and initializing them according to a certain predicate is modeled by
a demonic update; removing these local variables is modeled by a functional
update:

enter p =̂ [λu · λ(x, u′) · p (x, u′) ∧ u = u′]
exit =̂ 〈λ(x, u) · u〉

Here p is the initializing predicate which will normally be written in terms of
program variables such as p = (var x, u · b), with boolean expression b relating
the new variables x to the old variables u. When the old variables u are clear
from the context, we will simplify the notation writing var x | b for (var x, u · b).
The block construct is then modeled as follows:

(var u · begin var x | b · S end) =̂ (var u · enter var x | b;S; exit)

The program variable declaration can be propagated outside statements and
distributed through sequential composition, so that, e.g.,

(var u · [x := x′ |x′ ≥ 0]; y := x) = [var u · x := x′ |x′ ≥ 0]; (var u · y := x)

When the variable declaration is clear from the context, we will omit it.
Data refinement is a general technique by which one can change the state

space in a refinement. For statements S : Ξ(Σ) and S′ : Ξ(Σ′), let R : Σ′ ↔ Σ
be a relation between the state spaces Σ and Σ′. According to [6], the statement
S is said to be data refined by S′ via R, denoted S �R S′, if {R};S � S′; {R}
or, equivalently, {R};S; [R−1] � S′. Further on we will abbreviate {R};S; [R−1]
by S ↓R.

270

Refinement calculus provides rules for transforming more abstract program
structures into more concrete ones based on the notion of refinement of pred-
icate transformers presented above. A large collection of algorithmic and data
refinement rules is given, for instance, in [9, 19].

3 Modeling Object-Oriented Constructs

We focus on modeling class-based object-oriented languages, and, accordingly,
take a view that objects are instantiated by classes.

3.1 Modeling Classes and Subclasses

A class is a template used to describe objects with identical behaviour through
specifying their interface. The interface represents the signatures of object meth-
ods, i.e., the method name and the types of value and result parameters. We
consider the object type to be the type of object attributes. Without loss of gen-
erality, we consider all attributes as private, i.e., hidden, and all methods as
public, i.e., visible to clients of the object.

New classes can be constructed from existing ones by inheriting some or
all of their attributes and methods, possibly overriding some attributes and
methods, and adding extra methods. This mechanism is known as subclassing
or implementation inheritance. We limit our consideration of class construction
to inheritance and overriding; addition of extra methods constitutes the topic of
current research.1

A class C and a class C ′ constructed from C by subclassing can be given by
the following declarations:

C = class
var attr1 : Σ1, . . . , attrm : Σm

C(val x0 : Γ0) = K,
Meth1(val x1 : Γ1, res y1 : ∆1) = M1,
. . .
Methn(val xn : Γn, res yn : ∆n) = Mn

end

C′ = subclass of C
var attr1 : Σ1, . . . , attri : Σi,

attr′1 : Σ′
1, . . . , attr

′
p : Σ′

p

C′(val x′
0 : Γ ′

0) = K′,
Meth1(val x1 : Γ1, res y1 : ∆1) = M ′

1,
. . .
Methk(val xk : Γk, res yk : ∆k) = M ′

k

end

Both classes specify the interface Meth1 (val : Γ1, res : ∆1), . . . ,Methn (val :
Γn, res : ∆n), where Γi and ∆i are the types of value and result parameters re-
spectively. A method may be parameterless, with both Γi and ∆i being the unit
type (), or have only value or only result parameters. We view subclassing as a
syntactic relation on classes, since subclasses are distinguished by an appropri-
ate declaration. Syntactic subclassing implies conformance of interfaces, in the
sense that a subclass specifies an interface conforming to the one specified by its
superclass. In a simple case the interface specified by a subclass is the same as
1 Addition of extra methods is a non-trivial issue because of inconsistencies possibly
introduced by extra methods in presence of subtype aliasing.

271

that of the superclass. In the next subsection we explain how this requirement
can be relaxed.

The class C describes (possibly abstract) attributes, specifies the way the
objects are created, and gives a (possibly nondeterministic) specification for
each method. Class attributes (attr1, . . . , attrm) have the corresponding types
Σ1 through Σm. We will use an identifier self for the tuple (attr1, . . . , attrm).
The type of self is then Σ = Σ1 × . . .×Σm.2 A subclass may have attributes
different from those of its superclass, inheriting attr1, . . . , attri and overriding
attri+1, . . . , attrm by attr′1, . . . , attr

′
p.

A class constructor is used to instantiate objects and has the same name as
the class. Due to the fact that the constructor concerns object creation rather
than object functionality, it is associated with the class rather than with the
specified interface. The statement K : Γ0 �→ Σ×Γ0, representing the body of the
constructor, introduces the attributes into the state space and initializes them
using the value parameters x0 : Γ0. MethodsMeth1 throughMethn, specified by
bodiesM1, . . . ,Mn, operate on the attributes and realize the object functionality.
Every statementMi is, in general, of type Ξ(Σ×Γi×∆i). The identifier self acts
in this model as an implicit result parameter of the constructor and an implicit
variable parameter of the methods.

The constructor of a subclass is usually redefined without inheriting the
superclass constructor. The value parameters x′0 : Γ ′

0 of the subclass can be
different from the value parameters x0 : Γ0 of the superclass. The statements
M ′

1, . . . ,M
′
k override the corresponding definitions of Meth1, . . . ,Methk given

in C. Methods defined in C and operating only on the attributes inherited by C ′

can be invoked from M ′
1, . . . ,M

′
k using a special identifier super . Methods of the

superclass operating only on the inherited attributes can also be inherited as a
whole. In this case their redefinition in the subclass corresponds to super-calling
them, passing value and result parameters as arguments. Following the standard
convention, we omit such inherited methods from the subclass declaration.

Declared as above, the classes C and C ′ are the tuples (K,M1, . . . ,Mn) and
(K ′,M ′

1, . . . ,M
′
n). The object type specified by a class can always be extracted

from the class and we do not need to declare it explicitly. We use τ(C) to denote
the type of objects generated by the class C. As such, τ(C) is just another name
for Σ.

As an example of specifying classes and their subclasses consider specifica-
tions of Bag and CountingBag presented in Fig.1. The subclass CountingBag
inherits the only attribute of its superclass Bag , representing a bag of charac-
ters, and adds a counter of bag elements. The constructor of Bag initializes the
attribute b to the empty bag, and the constructor of CountingBag in addition
initializes the attribute n to zero. The method Add of CountingBag overrides the
corresponding method of the superclass by incrementing the counter and then
super-calling Add of Bag . The method AddAll joins two bags by self-calling

2 We impose a non-recursiveness restriction on Σ so that none of Σi is equal to Σ.
This restriction allows us to stay within the simple-typed lambda calculus.

272

Bag = class
var b : bag of Char

Bag() = enter var b | b = �||�,
Add(val c : Char) = b := b ∪ �|c|�,
AddAll(val nb : bag of Char) =

while nb �= �||� do
begin var c | c ∈ nb ·

self .Add(c);nb := nb− �|c|�
end

od;
end

CountingBag = subclass of Bag
var b : bag of Char , n : Nat

CountingBag() =
enter var b, n | b = �||� ∧ n = 0,

Add(val c : Char) =
n := n+ 1; super .Add(c)

end

Fig. 1. Specification of Bag and its subclass CountingBag

Add . CountingBag inherits the method AddAll from Bag which corresponds to
super-calling it.

A new variable c of object type τ(C) is initialized by invoking the corre-
sponding class constructor:

create var c.C(e) =̂ enter (var x0, u · x0 = e);K × skip;
enter (var c, (self , x0), u · c = self);Swap; exit

where Swap = 〈λx, y, z · y, x, z〉. A variable x0 : Γ0 is first entered into the state
space and initialized with the value of e. Then the constructor K is “injected”
into the global state space, skipping on the global state component u. The next
statement enters variable c and initializes it to the value of the state compo-
nent self . The state rearranging Swap makes the pair (self , x0) the first state
component before exiting it from the block. Naturally, a variable of object type
initialized in this way can be local to a block:

create var c.C(e) · S end =̂ create var c.C(e);S; exit

Invocation of a method Methi(val xi : Γi, res yi : ∆i) on an object c instan-
tiated by class C is modeled as follows:

(var c, u · c.Methi (gi, di)) =̂ (var c, u · begin var self , xi, yi | self = c ∧ xi = gi ·
Mi × skip; c, di := self , yi

end)

where u : Φ are global variables, including di : ∆i, and gi : Γi is some expression.

3.2 Modeling Subtyping Polymorphism and Dynamic Binding

We model subtyping polymorphism as in [18, 7], permitting object types to be
sum types. Essentially, an object type of a certain class and object types of all its
subclasses are grouped together to form a polymorphic object type. A variable
of such a sum type can be instantiated to any base type of the summation, in

273

other words, to any object instantiated by a class whose object type is the base
type of the summation.

A sum of object types, denoted by τ(C)+ is defined to be such that its base
types are τ(C) and all the object types of subclasses of C. For example, if D is
the only subclass of C with the object type τ(D), then τ(C)+ = τ(C) + τ(D),
and we have that τ(C) <: τ(C)+ and τ(D) <: τ(C)+.

Suppose method Methi (val xi : Γi, res yi : ∆i) is specified in C and D
by statements Mi and M ′

i respectively. An invocation of this method on an
object p of type τ(C)+ is modeled as a choice between two alternatives each
calling Methi, but one assuming that p is instantiated by class C and the other
assuming instantiation by class D:

p.Methi(gi, di) =̂

{p ∈ ran ιτ(C)};
begin var c |πτ(C) p c ·

c.Methi(gi, di);
p := ιτ(C) c

end

 �

{p ∈ ran ιτ(D)};
begin var d |πτ(D) p d ·

d.Methi(gi, di);
p := ιτ(D) d

end

When p is an instance of C, the assertion {p ∈ ran ιτ(C)} skips, and the method
Methi is invoked on the object c corresponding to the projection πτ(C) of p.
Afterwards, the value of c is injected to be of type τ(C)+ and used to update p.
The invocation c.Methi(gi, di) is modeled as above. The assertion that p is an
instance of D is false, aborting the second alternative of the angelic choice, since
for all predicates q, {q} = if q then skip else abort fi, and for all statements
S, abort;S = abort. The angelic choice between the two statements is then
equal to the first alternative, since S
 abort = S. Similarly, when p is an
instance of D, the first alternative aborts, and the choice is equal to the second
alternative. As such, the choice between the alternatives is deterministic.

A polymorphic variable p : τ(C)+ can be instantiated by either class C or its
subclass. In practice we occasionally would like to underspecify which particular
class instantiates p. We can express this by using a demonic choice of possible
instantiations. We write p.C+(e), where e is any expression of type Γ0, for this
kind of polymorphic instantiation:

create var p.C+(e) =̂

create var c.C(e);
enter var p |πτ(C) p c;

Swap;
exit

 �

create var d.D(e);
enter var p |πτ(D) p d;

Swap;
exit

The type of constructor value parameter in the subclass must be the same as that
in the superclass for the polymorphic instantiation to make sense. Intuitively, the
demonic choice can be interpreted as underspecification, which would need to be
eliminated in a refinement. Note, that since the demonic choice is refined by ei-
ther alternative, we have that any concrete instantiation refines the polymorphic
instantiation.

Modeling of both the invocation of a method on a polymorphic variable and
the instantiation of such a variable generalizes to class hierarchies with several
classes in a straightforward way, recursively.

274

Being equipped with subtyping polymorphism, we can allow overriding meth-
ods in a subclass to be generalized on the type of value parameters or specialized
on the type of result parameters. In the first case this type redefinition is con-
travariant and in the second covariant.3 When one interface is the same as the
other, except that it can redefine contravariantly value parameter types and co-
variantly result parameter types, this interface conforms to the original one. For
example, Methi (val xi : Γi, res yi : ∆i) specified in class C could be redefined
in its subclass D so that the value parameters are of type Γ ′

i , such that Γi <: Γ ′
i ,

and the result parameters are of type ∆′
i, such that ∆′

i <: ∆i. An invocation of
such a method would then need to adjust the input arguments and the result
using the corresponding projections and injections. For example, invocation of
Methi (val x′i : Γ

′
i , res y

′
i : ∆

′
i) specified by M ′

i in class D on an object d : τ(D)
with input argument gi : Γi and result argument di : ∆i is modeled as follows:

d.Methi (gi, di) =̂ begin var self , x′
i, y

′
i | self = d ∧ x′

i = ιΓi gi ·
M ′

i × skip; d, di := self , ι∆′
i
y′

i

end

The value parameter x′i is initialized with the value of the input argument in-
jected into the type Γ ′

i . Similarly, the value of the method result y′i, being of
type ∆′

i, cannot be directly assigned to the variable di : ∆i and is injected into
the type ∆i using the corresponding injection function.

Dynamic binding of self-referential methods takes place only when a subclass
inherits all attributes of its superclass without overriding them. Essentially, a
super-call to a method self-calling other methods of the same class resolves the
latter with the definitions of the self-called methods in the class which originated
the super-call. For example, in the specification of Bag and CountingBag , the
body of the method AddAll in CountingBag , which implicitly super-calls the
corresponding method in Bag , is equal to the following statement:

while nb �= �||� do
begin var c | c ∈ nb · n := n+ 1; b := b ∪ �|c|�;nb := nb− �|c|� end

od

Formal treatment of dynamic binding in presence of self-referential methods is
presented in [7].

4 Modeling Parametric Polymorphism

Type parameterization is a general technique for reusing code with different
types. As we have mentioned in the introduction, parametric polymorphism is
usually combined with object-orientation to enhance reuse for different types and
increase flexibility of class construction. In our formalization we model unbounded
type parameterization and then specialize it to bounded type parameterization.
Furthermore, we consider parameterization by values which is used in practice
to “fine-tune” reuse.
3 For a more extensive explanation of covariance and contravariance see, e.g., [1].

275

List [Elem] = class
var elems : seq of Elem

List [Elem] () = enter var elems | elems = 〈〉,
Empty (res r : Bool) = r := (elems = 〈〉),
Nth (val n : Nat , res e : Elem) = [1 ≤ n ≤ #elems]; e := elems n,

NumOfElems (res n : Nat) = n := #elems,

AppendElement (val e : Elem) = elems := elems ̂ 〈e〉,
Equal (val lst : τ(List [Elem]), res r : Bool) =

begin var n, i, e | i = 1 · lst.NumOfElems(n); r := (#elems = n);
while r ∧ i ≤ n do lst.Nth(i, e); r := (elems i = e) od

end
end

Fig. 2. Specification of a generic class List

Let us first present our model of unbounded type parameterization. Consider
class declarations C1 = class . . . Θ1 . . . end and C2 = class . . . Θ2 . . . end
which are the same except that the object type named Θ1 occurs in C1 wherever
the object type named Θ2 occurs in C2. Substituting Θ2 for Θ1 in C1 yields C2,
i.e., C1[Θ1\Θ2] = C2 and, vice versa, C2[Θ2\Θ1] = C1. We will use a construct
C[T] to stand for a collection of all classes C[Θ] obtained by substituting the
type named Θ for the type parameter T . We shall call C[T] a generic class4 and
declare it as follows:

C[T] = class
var self : Σ

C (val x0 : Γ0) = K,
Meth1 (val x1 : Γ1, res y1 : ∆1) = M1,
. . .
Methn (val xn : Γn, res yn : ∆n) = Mn

end

Note, that the type parameter T can occur in any of Σ,Γi and ∆i. However,
the type τ(C[T]) cannot occur in Σ because of our non-recursiveness require-
ment. Every class obtained by instantiating some object type Θ for T specifies
objects of type τ(C[Θ]), and is called a generically derived class, following [17].
Specification of a generic class List in Fig.2 is an example of unbounded type
parameterization. In this specification the local state of a list is expressed as
a sequence of elements, and the behaviour of methods is expressed in terms of
operations on sequences. The method returning the n’th list element assumes
that there are at least n elements in the list, and the client using Nth should as-
sert that this condition holds before the invocation. Note how the method Equal
4 In some programming languages, e.g., C++, a generic class is referred to as a tem-

plate.

276

compares two list instances. Due to the encapsulation assumption, we cannot
access the attributes of the value parameter lst directly, and, instead, describe
the equality comparison in terms of the corresponding method invocations. This
example clearly illustrates the advantages of our approach to modeling classes
as compared to the approaches based on pre- and post-condition specifications,
because this specification describes abstractly (in terms of sequences), but still
precisely (in terms of method invocations) the behaviour of polymorphic list
objects.

To model bounded type parameterization, we use a similar construct,
C[T <: Θ], which is defined by {C[Θi] |Θi <: Θ} and corresponds to a col-
lection of classes C[Θi] with the object type Θi being a subtype of Θ. The type
Θ is called the upper bound on the type parameter T .

If one of the attributes in a generic class C[T <: Θ] is of type T , the construc-
tor of this class can only initialize this attribute to an existing value of type T ,
because it has no way of knowing which class constructor to invoke for creation
of this attribute. Therefore, the initialization of such an attribute can only be
done through a constructor value parameter of type T .

New generic classes can be constructed from existing ones by subclassing. A
declaration C ′[T] = subclass of C[T] represents a collection of all class decla-
rations C ′[Θ] = subclass of C[Θ], obtained by substituting the type named Θ
for the type parameter T . Similarly, a declaration C ′[T <: Θ] = subclass of
C[T <: Θ] stands for a collection of class declarations C ′[Θi] = subclass of
C[Θi], for i = 1..n, with the object types Θ1, . . . , Θn being subtypes of Θ. The
upper bound in the subclassed generic class can be a subtype of the upper bound
in the declaration of the original generic class.

As an example of generic subclassing suppose that Elem is a polymorphic
object type of elements, and IndexedElem is a polymorphic object type of in-
dexed elements, such that IndexedElem <: Elem. Suppose that we would like to
describe indexed lists that can only contain indexed elements. We can subclass
a generic class IndexedList [E <: IndexedElem] from a generic class List [E <:
Elem] as follows:

List [E <: Elem] = class IndexedList [E <: IndexedElem] =
subclass of List [E <: IndexedElem]

.
Nth (val n : Nat , res e : E), Nth (val n : Nat , res e : E),
AppendElement (val e : E), AppendElement (val e : E),
Equal (val l : τ(List [E]), res r : Bool) Equal (val l : τ(List [E])+, res r : Bool)

end end

Here, the possible τ(IndexedList [IndexedElem]) is a valid object type, whereas
the type of indexed lists of possibly non-indexed elements τ(IndexedList [Elem])
is not well-formed. Naturally, we have that

for all E <: IndexedElem, τ(IndexedList [E])+ <: τ(List [E])+

This relation is useful for subtype aliasing: it asserts that all indexed lists are
the lists with indexed elements.

277

Finally, let us consider parameterization of classes with values. We will use
a construct C[x : Φ] to stand for a collection of all classes C[t : Φ] obtained by
substituting the value named t for the parameter named x, both of type Φ.

Value parameterization as well as bounded and unbounded type parameter-
ization generalize in a straightforward way to parameterization by lists of value
parameters and bounded and unbounded type parameters. As an example con-
sider parameterizing the class of lists with the maximal number of elements it can
contain. We can subclass a generic class BoundedList [E <: Elem,max : Nat]
from a class List [E <: Elem] as follows:

BoundedList [E <: Elem,max : Nat] = subclass of List [E <: Elem]
var elems : seq of E

BoundedList [E,max] () = enter var elems | elems = 〈〉,
AppendElement (val e : E) = [#elems < max]; super .AppendElement (e)

end

Here, the method AppendElement checks that the current number of elements in
the list is less than the maximum, and under this assumption adds a new element.
The other methods are inherited from the superclass. Using this generic class,
we can now create, for example, bounded lists of indexed elements of sizes 5 and
10, specifying the size dynamically:

create var lst1.BoundedList [IndexedElem, 5]();
create var lst2.BoundedList [IndexedElem, 10]();

5 Semantics of Correct Polymorphic Reuse

When a subclass overrides some methods of its superclass, there are no guaran-
tees that its instances will deliver the same or refined behaviour as the instances
of the superclass. Unrestricted method overriding in a subclass can lead to arbi-
trary behaviour of its instances. When used in a superclass context, such subclass
instances can invalidate their clients. To avoid such problems, we would like to
ensure that whenever C ′ is subclassed from C, clients using objects instantiated
by C can safely use objects instantiated by C ′ instead.

Moreover, classes derived from generic classes can specify conforming in-
terfaces, and, therefore, allow syntactic substitutability of the corresponding
instances, provided that a suitable substitution mechanism is available in a pro-
gramming language. Then the semantic relationship between such classes is es-
sential for ensuring correct behaviour of the “subclass” instances with respect to
the “superclass” instances. We consider this semantic relationship here as well
as class refinement for generic classes.

Before considering generic class refinement, let us briefly explain the notion
of ordinary class refinement introduced in [18] and further developed in [7].

5.1 Ordinary Class Refinement

Let classes C and C ′ be modeled by tuples (K,M1, . . . ,Mn) and
(K ′,M ′

1, . . . ,M
′
n), where K : Γ0 �→ Σ × Γ0 and K ′ : Γ ′

0 �→ Σ′ × Γ ′
0 are the class

278

constructors, and all Mi : Ξ(Σ × Γi ×∆i) and M ′
i : Ξ(Σ

′ × Γ ′
i ×∆′

i) are the
corresponding methods. The value parameter types of the methods are either
the same or contravariant, Γi <: Γ ′

i , and the result parameter types of the meth-
ods are either the same or covariant, ∆′

i <: ∆i.
The refinement of class constructors K and K ′ with respect to relations

Q : Γ ′
0 ↔ Γ0 and R : Σ′ ↔ Σ, coercing value parameter types and attribute

types of C ′ to those of C, is defined by

K �Q,R K′ =̂ {Q};K � K′; {R×Q} (constructor refinement)

The refinement of all corresponding methods Mi and M ′
i with respect to the

relation R is defined by

Mi �R M ′
i =̂ Mi ↓(R× πΓi × |ι∆′

i
|) � M ′

i (method refinement)

where πΓi
: Γ ′

i ↔ Γi projects the corresponding value parameters, and
|ι∆′

i
| : ∆′

i ↔ ∆i injects the corresponding result parameters. Obviously, when
Γi = Γ ′

i , the projection relation πΓi
is the identity relation Id. The same holds

when ∆i = ∆′
i, namely, |ι∆′

i
| = Id .

Definition 1. For classes C = (K,M1, . . . ,Mn) and C ′ = (K ′,M ′
1, . . . ,M

′
n)

refinement C � C ′ is defined as follows:

C � C′ =̂ ∃Q,R · K �Q,R K′ ∧ (∀i | 1 ≤ i ≤ n · Mi �R M ′
i)

As was proved in [18], the class refinement relation is reflexive and transitive.
Declaring one class as a subclass of another raises the proof obligation that

the class refinement relation holds between these classes. This is, in a way, a
semantic constraint that we impose on subclassing to ensure that behaviour of
subclasses conforms to the behaviour of their superclasses and that subclass
instances can be substituted for superclass instances in all clients.

As it was already mentioned, any concrete instantiation of a polymorphic
variable refines the polymorphic instantiation. It is also interesting to examine
the relationship between method calls of the same method on a variable of some
object type and a variable of its subtype. The following two lemmas, proved in
[7], state the complementing results about such method invocations. The first
lemma states that invoking a method on a variable of a polymorphic object type
refines invocation of the same method on a variable of its subtype with respect to
the corresponding projection. This property may at first seem counterintuitive,
since a client using instances of some subclass of C in a refinement may use
instances of C as well. The intuitive justification behind this property is that a
refined client can do more than the original client by being able to work with
superclass instances along with subclass instances, while the original one worked
with subclass instances only.

Lemma 1. Assume that Methi is specified in class C and all its subclasses. Let
τ(C)+ be a sum type of τ(C) and τ(C ′)+, variables c and c′ be of types τ(C)+

and τ(C ′)+ respectively, a global state u : Φ include a variable di : ∆i, and gi : Γi

be some expression. Then for the projection πτ(C′)+ : τ(C)+ ↔ τ(C ′)+,

279

(var c′, u · c′.Methi(gi, di))↓(πτ(C′)+ × Id) � (var c, u · c.Methi(gi, di))

The second lemma proves a dual result, namely, that invoking a method on
a variable of a polymorphic object type is refined by invocation of the same
method on a variable of its subtype with respect to the corresponding injection
relation.

Lemma 2. Assume that Methi is specified in class C and all its subclasses. Let
τ(C)+ be a sum type of τ(C) and τ(C ′)+, variables c and c′ be of types τ(C)+

and τ(C ′)+ respectively, a global state u : Φ include a variable di : ∆i, and gi : Γi

be some expression. Then for the injection ιτ(C′)+ : τ(C ′)+ → τ(C)+,

(var c, u · c.Methi(gi, di))↓(|ιτ(C′)+ | × Id) � (var c′, u · c′.Methi(gi, di))

5.2 Class Refinement for Generic Classes

Generic classes describe classes of a very similar kind. Naturally, we would like to
study the relationships among these classes and analyze whether we can benefit
from this similarity. First we look at classes derived from one generic class,
and then consider the relationship among generic classes constructed from other
generic classes by subclassing, and the classes generically derived from them.

Consider a generic class C[T <: Θ] and two classes resulting from instantia-
tion of some subtypes of Θ for T , namely C[Θ1] and C[Θ2]. Syntactically, C[Θ2]
can be a “subclass” of C[Θ1], in the sense that the interface specified by C[Θ2]
conforms to the interface specified by C[Θ1]. In this case objects instantiated by
C[Θ2] can be substituted for objects instantiated by C[Θ1] without type errors.
The interface of C[Θ2] conforms to the interface of C[Θ1], making C[Θ2] a valid
syntactic subclass of C[Θ1], if T occurs only in contravariant or only in covariant
positions. When T occurs only in contravariant positions, Θ1 must be a subtype
of Θ2. Correspondingly, when T occurs only in covariant positions, Θ2 must be a
subtype of Θ1. The intuition behind these requirements is quite straightforward.
However, this only gives us a syntactic interface conformance between C[Θ1] and
C[Θ2]. The following theorems state the conditions under which the class C[Θ1]
is refined by the class C[Θ2].

Theorem 1. Let T occur only in contravariant positions in C[T <: Θ], or occur
in constructor value parameter type, or be a component of its attribute type. Then
for any class B and its subclass B′ such that τ(B′)+ <: τ(B)+ <: Θ,

C[τ(B′)+] � C[τ(B)+]

Proof. Let C[τ(B′)+] = (K,M1, . . . ,Mn) and C[τ(B)+] = (K ′,M ′
1, . . . ,M

′
n).

Without loss of generality we assume that attributes c of C[τ(B′)+] are of type
τ(B′)+ and attributes c′ of C[τ(B)+] are of type τ(B)+. We further assume
that the types of constructor and method value parameters in classes C[τ(B′)+]
and C[τ(B)+] are also τ(B′)+ and τ(B)+ respectively. Proving class refinement
C[τ(B′)+] � C[τ(B)+] thus amounts to proving that the constructors are in
refinement with respect to the projection relation πB′ : τ(B)+ ↔ τ(B′)+, i.e.,

280

K �πB′ ,πB′ K
′, and all corresponding methods are in refinement with respect

to the same relation, i.e., Mi �πB′ M
′
i , for i = 1..n.

We prove the desired property by modeling the constructors and the methods
as clients [7] of the attributes and the value parameters, invoking methods defined
in B and B′. Namely, a method working with an attribute a : τ(B)+ and a value
parameter x : τ(B)+ may be modeled as a program iteratively invoking methods
Bmeth1, . . . , Bmethk specified by classes B and B′:

begin var l | p · do 〈〉ki=1qi :: (a.Bmethi(pi, ri) � x.Bmethi(p
′
i, r

′
i));Li od end

In this expression, the local variables l are initialized according to the boolean
expression p; predicates q1, . . . , qk and statements L1, . . . , Lk are arbitrary and
operate on l, pi, ri, p

′
i, r

′
i, and global variables except a and x. This client program

may choose to invoke a method Bmethi on either the attribute or the value
parameter, then do Li, and then iterate the choice until it decides to stop.
Denoting the iterative choice

do 〈〉ki=1qi :: (a.Bmethi(pi, ri) � x.Bmethi(p
′
i, r

′
i));Li od

by M[a, x], we can model the methods Mi and M ′
i of C[τ(B

′)+] and C[τ(B)+]
by

begin var l | p · M[c, xi] end and begin var l | p · M[c′, x′
i] end

respectively, where xi : τ(B′)+ and x′i : τ(B)+ are the corresponding value
parameters and yi : ∆i are the result parameters.

The constructors K and K ′ are modeled as statements which enter the corre-
sponding attributes into the state space, initialize them using the value param-
eter, and then proceed by invoking methods on either the attribute or the value
parameter, and changing some local variables. Thus, K and K ′ are modeled
respectively by

enter var c | c = x0 · begin var l | p · M[c, x0] end and
enter var c′ | c′ = x′

0 · begin var l | p · M[c′, x′
0] end

where x0 : τ(B′)+ and x′0 : τ(B)+ are the corresponding constructor value
parameters. Now the refinement between the corresponding constructors

{πB′}; enter var c | c = x0 · begin var l | p · M[c, x0] end �
enter var c′ | c′ = x′

0 · begin var l | p · M[c′, x′
0] end; {πB′ × πB′}

and the refinement between the corresponding methods

begin var l | p · M[c, xi] end↓(πB′ × πB′ × Id) � begin var l | p · M[c′, x′
i] end

are proved by rewriting with definitions and using refinement laws as given in
[9] and Lemma 1. ✷

The following theorem states a dual and more interesting from a practical
point of view result.

Theorem 2. Let T occur only in covariant positions in C[T <: Θ], or occur in
constructor value parameter type, or be a component of its attribute type. Then
for any class B and its subclass B′ such that τ(B′)+ <: τ(B)+ <: Θ,

C[τ(B)+] � C[τ(B′)+]

281

The proof of this theorem is similar to the previous one and we omit it for the
lack of space. Intuitively, the theorem states that a class derived from a generic
class by substituting a more concrete object type for the type parameter is a
refinement.

Consider now class refinement for different generic classes. Suppose that
C ′[T <: Θ′] is constructed from C[T <: Θ] by subclassing and the object types
Θ and Θ′ are such that Θ′ <: Θ. We know that syntactically for all classes B,
if τ(B) <: Θ′ then τ(C ′[τ(B)]) <: τ(C[τ(B)])+. It is interesting, therefore, to
analyze a semantic relation between classes generically derived from C[T <: Θ]
and C ′[T <: Θ′] by instantiating different object types for T . Unfortunately, it
turns out that even if we know that C[τ(B)] � C ′[τ(B)], we still need to prove
class refinement C[τ(B′)] � C ′[τ(B′)] for any subclass B′ refining B. In other
words, it is invalid to assume that if B � B′ and C[τ(B)] � C ′[τ(B)] then
C[τ(B′)] � C ′[τ(B′)]. The example in Fig. 3 illustrates this case. In this exam-
ple the only method of class B overridden in its subclass is the one calculating the
square root of the attribute. Clearly, the class refinement B � B′ holds because
the method Sqrt of B′ is more deterministic, it returns the negative value of the
square root, whereas its more abstract counterpart returns a value which can be
either positive or negative. Consider now the methods Set of classes C[τ(B)] and
C ′[τ(B)]. After unfolding definitions of method calls, we can see that in C[τ(B)]
the value of c becomes ±v and in C ′[τ(B)] simply v. The method Set defined in
C[τ(B)], being more deterministic, refines its counterpart defined in C ′[τ(B)].
So we have that both B � B′ and C[τ(B)] � C ′[τ(B)] hold. However, the
methods Set of classes C[τ(B′)] and C ′[τ(B′)] do cause problems, because the
one defined in C ′[τ(B′)] results in assigning c the absolute value of v as before,
whereas Set defined in C[τ(B′)] assigns c the negative value. Clearly, refinement
does not hold between the classes C[τ(B′)] and C ′[τ(B′)] in this case.

The analysis of this problem suggests defining class refinement for generic
classes by pointwise extension from refinement on all the classes generically de-
rived from them.

B = class B′ = subclass ofB
var b : Real var b : Real

Sqrt (res r : Real) = Sqrt (res r : Real) =

[b ≥ 0]; [r := r′ | r′2 = b], [b ≥ 0]; r := −√
b,

Sqr () = b := b2, end
Abs (res r : Real) = r := abs(b)

end

C[T <: τ(B)+] = class C′[T <: τ(B)+] = subclass of
C[T <: τ(B)+]

var c : Real var c : Real

Set (val v : T) = v.Sqr(); v.Sqrt(c) Set (val v : T) = v.Abs(c)
end end

Fig. 3. Example of B � B′ ∧ C[τ(B)] � C′[τ(B)] �⇒ C[τ(B′)] � C′[τ(B′)]

282

Definition 2. A generic class C[T <: τ(B)+] is refined by a generic class
C ′[T <: τ(B)+] whenever for all subclasses X of B a class C[τ(X)] is refined
by a class C ′[τ(X)]:

C[T <: τ(B)+] � C′[T <: τ(B)+] =̂ (∀X |B � X · C[τ(X)] � C′[τ(X)])

From this definition we immediately get the following monotonicity property.

Theorem 3. For any class B and any generic classes C[T <: τ(B)+]
and C ′[T <: τ(B)+],

(∀X |B � X · C[T <: τ(B)+] � C′[T <: τ(B)+] ⇒ C[τ(X)] � C′[τ(X)])

The definition of class refinement for generic classes is difficult to use in
practice, and studying its weaker and more useful form represents an interesting
research topic.

Refinement between generic classes involving parameterization by values re-
duces to one of the described cases of class refinement for generic classes. In
particular, in the last example of Sec. 4 refinement holds between List [Element]
and BoundedList [Element ,maxSize] for any object type Element which is a sub-
type of Elem and any constant value maxSize : Nat , since skip is always refined
by an assumption.

6 Conclusions and Related work

We consider correctness of the reuse mechanism based on the combination of
parametric polymorphism with subtyping polymorphism and subclassing. We
define the notion of refinement for generic classes by extending the definition of
ordinary class refinement, and study special cases when refinement is guaran-
teed to hold between generically derived classes. This work is based on [7], but
concentrates on refinement for generic classes.

Related work in formalization of object-oriented concepts includes [10, 20,
21]. Cook and Palsberg in [10] give a denotational semantics of inheritance and
prove its correctness with respect to an operational “method lookup” semantics.
They model dynamic binding of self-referential methods by representing classes
as functions of self-called methods and constructing subclasses using modifying
wrappers. There are only functional methods in their model, whereas we consider
procedural methods as well. Semantics of a simple Oberon-like programming
language with similar specification constructs as here, also based on predicate
transformers, is defined by Naumann in [20]. Sekerinski [21] defines a rich object-
oriented programming and specification notation by using a type system with
subtyping and type parameters, and also using predicate transformers. In both
approaches, subtyping is based on extensions of record types. Here we use sum
types instead, as suggested by Back and Butler in [4] and further elaborated in
[18]. One motivation for moving to sum types is to avoid the complications in
the typing and the logic when reasoning about record types: the simply typed
lambda calculus as the formal basis is sufficient for our purposes. Also, to allow

283

objects of a subclass to have different (private) attributes from those of the
superclass, hiding by existential types was used in [21]. It turned out that this
leads to complications when reasoning about method calls, which are not present
when using the model of sum types.

Our model of classes, subclassing, and subtyping polymorphism can be used
to reason about the meaning of programs constructed using separate subclassing
and interface inheritance hierarchies, like in Java [12]. In that approach interface
inheritance is the basis for subtyping polymorphism, whereas subclassing is used
only for implementation reuse. By associating a specification class with every
interface type, we can reason about the behaviour of objects having this interface.
All classes claiming to implement a certain interface must refine its specification
class. Subclassing, on the other hand, does not, in general, require establishing
class refinement between the superclass and the subclass.

Data refinement of modules, abstract data types, and abstract machines as,
e.g., in [14, 19, 2] forms a basis for class refinement. The latter, however, has spe-
cial features due to subtyping polymorphism and dynamic binding. Behavioural
dependencies in presence of subclassing have also been studied in various exten-
sions of Z specification languages, e.g., in [15], but only between class specifica-
tions and not implementations. Behavioural subtyping is another area of related
work [3, 16, 11] where a distinction is also made between the specification of a
class and its implementation. By having specification constructs as part of the
(extended) programming language, this distinction becomes unnecessary. It is
often claimed, e.g., in [22], that declarative specifications are more abstract and
easier to understand than operational ones capturing method invocation order.
We, on the contrary, feel that the essence of object-oriented programs is in in-
voking methods on objects. Also, when reasoning about correctness, it is often
necessary to know the method invocation order, which is impossible to specify in
terms of pre- and post-conditions. Similar ideas are supported by Helm et al. in
[13]. They include method calls in abstract specifications of contracts to express
behavioural dependencies between cooperating objects.

Models of parametric polymorphism and, in particular, of bounded para-
metric polymorphism have been considered, e.g., in [1, 21], but the semantic
relationship between generic classes and generically derived classes in presence
of subclassing has not, to our knowledge, been studied before.

Acknowledgments

Discussions with Emil Sekerinski have given me further insight and led to a
number of improvements. I also would like to thank Joakim von Wright and
Ralph Back for valuable comments on this paper.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

284

2. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

3. P. America. A behavioural approach to subtyping in object-oriented programming
languages. Technical Report 443, Philips Research Laboratories, Apr. 1989.

4. R. Back and M. Butler. Exploring summation and product operators in the refine-
ment calculus. In B. Möller, editor, Mathematics of Program Construction, 1995,
volume 947. Springer-Verlag, 1995.

5. R. J. R. Back. Correctness Preserving Program Refinements: Proof Theory and
Applications, volume 131 of Mathematical Center Tracts. Mathematical Centre,
Amsterdam, 1980.

6. R. J. R. Back. Changing data representation in the refinement calculus. In 21st
Hawaii International Conference on System Sciences. IEEE, January 1989.

7. R. J. R. Back, A. Mikhajlova, and J. von Wright. Class refinement as semantics
of correct subclassing. Technical Report 147, Turku Centre for Computer Science,
December 1997.

8. R. J. R. Back and J. von Wright. Programs on product spaces. Technical Report
143, Turku Centre for Computer Science, November 1997.

9. R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, April 1998.

10. W. Cook and J. Palsberg. A denotational semantics of inheritance and its correct-
ness. In Proceedings OOPSLA ’89, volume 24, pages 433–443. ACM SIGPLAN
notices, Oct. 1989.

11. K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specifica-
tion inheritance. In Proceedings of the 18th International Conference on Software
Engineering, pages 258–267, Berlin, Germany, 1996.

12. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Sun Microsys-
tems, Mountain View, 1996.

13. R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying behavioural
compositions in object-oriented systems. In Proceedings OOPSLA/ECOOP’90,
ACM SIGPLAN Notices, pages 169–180, Oct. 1990.

14. C. A. R. Hoare. Proofs of correctness of data representation. Acta Informatica,
1(4):271–281, 1972.

15. K. Lano and H. Haughton. Reasoning and refinement in object-oriented specifi-
cation languages. In O. L. Madsen, editor, Proceedings of ECOOP’92, LNCS 615.
Springer-Verlag, 1992.

16. B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, November 1994.

17. B. Meyer. Object-Oriented Software Construction. Prentice Hall, New York, N.Y.,
second edition, 1997.

18. A. Mikhajlova and E. Sekerinski. Class refinement and interface refinement in
object-oriented programs. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors,
FME’97, LNCS 1313, pages 82–101. Springer, 1997.

19. C. C. Morgan. Programming from Specifications. Prentice–Hall, 1990.
20. D. A. Naumann. Predicate transformer semantics of an Oberon-like language. In

E.-R. Olderog, editor, Programming Concepts, Methods and Calculi, pages 460–
480, San Miniato, Italy, 1994.

21. E. Sekerinski. A type-theoretic basis for an object-oriented refinement calculus. In
S. Goldsack and S. Kent, editors, Formal Methods and Object Technology. Springer-
Verlag, 1996.

22. R. Stata and J. V. Guttag. Modular reasoning in the presence of subclassing. In
Proceedings of OOPSLA’95, pages 200–214. ACM SIGPLAN notices, Oct. 1995.

285

Paper 3

Reasoning About Interactive Systems

R.J.R. Back, A. Mikhajlova, and J. von Wright

To appear in Proceedings of the World Congress on Formal Methods (FM’99),
Lecture Notes in Computer Science, September 1999, Springer-Verlag.

Reasoning About Interactive Systems

Ralph Back, Anna Mikhajlova, Joakim von Wright

Turku Centre for Computer Science, Åbo Akademi University
Lemminkäisenkatu 14A, Turku 20520, Finland
phone: +358-2-215-4032, fax: +358-2-241-0154

e-mail: backrj, amikhajl, jwright@ abo.fi

Abstract. The unifying ground for interactive programs and compo-
nent-based systems is the interaction between a user and the system
or between a component and its environment. Modeling and reasoning
about interactive systems in a formal framework is critical for ensur-
ing the systems’ reliability and correctness. A mathematical foundation
based on the idea of contracts permits this kind of reasoning. In this
paper we study an iterative choice contract statement which models an
event loop allowing the user to repeatedly choose from a number of ac-
tions an alternative which is enabled and have it executed. We study
mathematical properties of iterative choice and demonstrate its model-
ing capabilities by specifying a component environment which describes
all actions the environment can take on a component, and an interactive
dialog box permitting the user to make selections in a dialog with the
system. We show how to prove correctness of the dialog box with respect
to given requirements, and develop its refinement allowing more complex
functionality and providing wider choice for the user.

1 Introduction

Most of contemporary software systems are inherently interactive: desk-top ap-
plications interact with a user, embedded systems interact with the environment,
system integration software interacts with the systems it integrates, etc. In ad-
dition, in systems constructed using an object-oriented or a component-based
approach objects or components interact with each other.

To be able to verify the behavior of an interactive system in its entirety, it is
first necessary to capture this behavior in a precise specification. Formal methods
have been traditionally weak in capturing the intricacy of interaction. Probably
for this reason, the importance of specifying and verifying program parts de-
scribing interaction with the environment (especially in case of interacting with
a human user) is considered as secondary to the importance of establishing cor-
rectness of some “critical” parts of the program. However, in view of the growing
complexity and importance of various interactive systems, the need for verify-
ing correctness of interaction becomes obvious. For instance, embedded systems,
which are intrinsically interactive and often used in safety-critical environments,
can lead to dramatic consequences if they ignore input from the environment or
deliver wrong output.

Component-oriented approach to software design and development is rapidly
gaining popularity and stimulates research on methods for analysis and con-
struction of reliable and correct components and their compositions. Compo-
nent compositions consist of cooperating or interacting components, and for
each component all the other components it cooperates with can be collectively
considered as the environment. Although various standard methods can be used
for reasoning about separate components, component environments present in
this respect a challenge. The ability to model and reason about component envi-
ronments is critical for reasoning about component-based systems. The designer
of a component should be aware of the behavior of the environment in which
the component is supposed to operate. Knowing the precise behavior of the en-
vironment, it is then possible to analyze the effect a change to the component
will have on the environment, design an appropriate component interface, etc.

Interaction is often multifaceted in the sense that component-based systems
can interact with the user and interactive programs can be component-based.
Moreover, for components in a component-based system their environment can
be transparent, they will interact with this environment in the same way regard-
less of whether it is another component or a human user.

To a large extent the weakness of verification techniques for interactive parts
of programs can be explained by the lack of modeling methods capable of captur-
ing interaction and the freedom of choice that the environment has. Accordingly,
development of a specification and verification method in a formalism expressive
enough to model interaction is of critical importance. The mathematical foun-
dation for reasoning about interactive systems, based on the idea of contracts,
has been introduced in [4, 6]. In particular, Back and von Wright proposed using
an iterative choice contract statement which describes an event loop, allowing
the user to repeatedly choose from a number of actions an alternative which
is enabled and have it executed. In this paper we focus on the iterative choice
statement, examine its modeling capabilities, and develop its mathematical prop-
erties. In particular, we present rules for proving correctness of iterative choice
with respect to given pre- and postconditions, and rules for iterative choice re-
finement through refining the options it presents and adding new alternatives.
We illustrate the expressive power and versatility of iterative choice by specify-
ing a component environment which describes all actions the environment can
take on a component, and an interactive dialog box permitting the user to make
selections in a dialog with the system. We show how to prove correctness of
the dialog box with respect to given requirements, and develop its refinement
allowing more complex functionality and providing wider choice for the user.

Notation: We use simply typed higher-order logic as the logical framework in the
paper. The type of functions from a type Σ to a type Γ is denoted by Σ → Γ
and functions can have arguments and results of function type. Functions can be
described using λ-abstraction, and we write f. x for the application of function
f to argument x.

2

2 Contracts and Refinement

A computation can generally be seen as involving a number of agents (programs,
modules, systems, users, etc.) who carry out actions according to a document
(specification, program) that has been laid out in advance. When reasoning
about a computation, we can view this document as a contract between the
agents involved. In this section we review a notation for contract statements.
A more detailed description as well as operational and weakest precondition
semantics of these statements can be found in [4, 6].

We assume that the world that contracts talk about is described as a state σ.
The state space Σ is the set (type) of all possible states. The state has a number
of program variables x1, . . . , xn, each of which can be observed and changed
independently of the others. A program variable x of type Γ is really a pair of
the value function valx : Σ → Γ and the update function setx : Γ → Σ → Σ.
Given a state σ, valx . σ is the value of x in this state, while σ′ = setx . γ. σ is
the new state that we get by setting the value of x to γ. An assignment like
x := x+ y denotes a state changing function that updates the value of x to the
value of the expression x+ y, i.e. (x := x+ y). σ = setx . (valx . σ+ valy . σ). σ.

A state predicate p : Σ → Bool is a boolean function on the state. Since
a predicate corresponds to a set of states, we use set notation (∪, ⊆, etc.) for
predicates. Using program variables, state predicates can be written as boolean
expressions, for example, (x + 1 > y). Similarly, a state relation R : Σ →
Σ → Bool relates a state σ to a state σ′ whenever R. σ. σ′ holds. We permit a
generalized assignment notation for relations. For example, (x := x′ | x′ > x+y)
relates state σ to state σ′ if the value of x in σ′ is greater than the sum of the
values of x and y in σ and all other variables are unchanged.

2.1 Contract notation

Contracts are built from state changing functions, predicates and relations. The
update 〈f〉 changes the state according to f : Σ → Σ. If the initial state is
σ0 then the agent must produce a final state f. σ0. An assignment statement
is a special kind of update where the state changing function is an assignment.
For example, the assignment statement 〈x := x + y〉 (or just x := x + y when
it is clear from the context that an assignment statement rather than a state
changing function is intended) requires the agent to set the value of program
variable x to the sum of the values of x and y.

The assertion {p} of a state predicate p is a requirement that the agent must
satisfy in a given state. For instance, {x+ y = 0} expresses that the sum of (the
values of variables) x and y in the state must be zero. If the assertion does not
hold, then the agent has breached the contract. The assumption [p] is dual to an
assertion; if the condition p does not hold, then the agent is released from any
obligation to carry out his part of the contract.

In the sequential action S1;S2 the action S1 is carried out first, followed by
S2. A choice S1 	 S2 allows the agent to choose between carrying out S1 or S2.

3

In general, there can be a number of agents that are acting together to change
the world and whose behavior is bound by contracts. We can indicate explicitly
which agent is responsible for each choice. For example, in the contract

S = x := 0; ((y := 1 	b y := 2) 	a x := x+ 1); {y = x}a

the agents involved are a and b. The effect of the update is independent of
which agent carries it out, so this information can be lost when writing contract
statements.

The relational update {R}a is a contract statement that permits an agent
to choose between all final states related by the state relation R to the initial
state (if no such final state exists, then the agent has breached the contract).
For example, the contract statement {x := x′ | x < x′}a is carried out by agent
a by changing the state so that the value of x becomes larger than the current
value, without changing the values of any other variables.

A recursive contract statement of the form (reca X • S) is interpreted as
the contract statement S, but with each occurrence of statement variable X
in S treated as a recursive invocation of the whole contract (reca X • S). A
more convenient way to define a recursive contract is by an equation of the form
X =a S, where S typically contains some occurrences of X. The indicated
agent is responsible for termination; if the recursion unfolds infinitely, then the
agent has breached the contract.

2.2 Using Contracts

Assume that we pick out one or more agents whose side we are taking. These
agents are assumed to have a common goal and to coordinate their choices in
order to achieve this goal. Hence, we can regard this group of agents as a single
agent. The other agents need not share the goals of our agents. To prepare for
the worst, we assume that the other agents try to prevent us from reaching our
goals, and that they coordinate their choices against us. We will make this a
little more dramatic and call our agents collectively the angel and the other
agents collectively the demon. We refer to choices made by our agents as angelic
choices, and to choices made by the other agents as demonic choices.

Having taken the side of certain agents, we can simplify the notation for
contract statements. We write 	 for the angelic choice 	angel and
 for the
demonic choice 	demon . Furthermore, we note that if our agents have breached
the contract, then the other agents are released from it, i.e. {p}angel = [p]demon ,
and vice versa. Hence, we agree to let {p} stand for {p}angel and [p] stand
for {p}demon . This justifies the following syntax, where the explicit indication
of which agent is responsible for the choice, assertion or assumption has been
removed:

S ::= 〈f〉 | {p} | [p] | S1;S2 | S1 	 S2 | S1
 S2

This notation generalizes in the obvious way to generalized choices: we write
	{Si | i ∈ I} for the angelic choice of one of the alternatives in the set {Si | i ∈ I}

4

and we write
{Si | i ∈ I} for the corresponding demonic choice. For relational
update, we write {R} if the next state is chosen by the angel, and [R] if the next
state is chosen by the demon. Furthermore, we write (µX • S) for (recangel X • S)
and (νX • S) for (recdemon X • S); this notation agrees with the predicate
transformer semantics of contracts.

The notation for contracts allows us to express all standard programming
language constructs, like sequential composition, assignments, empty statements,
conditional statements, loops, and blocks with local variables.

2.3 User interaction

Interactive programs can be seen as special cases of contracts, where two agents
are involved, the user and the computer system. The user in this case is the angel,
which chooses between alternatives in order to influence the computation in a
desired manner, and the computer system is the demon, resolving any internal
choices in a manner unknown to the user.

User input during program execution is modeled by an angelic relational
assignment. For example, the contract

{x, e := x′, e′ | x′ ≥ 0 ∧ e > 0}; [x := x′ | − e < x′2 − x < e]

describes how the user gives as input a value x whose square root is to be
computed, as well as the precision e with which the computer is to compute this
square root.

This simple contract specifies the interaction between the user and the com-
puting system. The first statement specifies the user’s responsibility (to give an
input value that satisfies the given conditions) and the second statement speci-
fies the system’s responsibility (to compute a new value for x that satisfies the
given condition).

2.4 Semantics, Correctness, and Refinement of Contracts

Every contract statement has a weakest precondition predicate transformer se-
mantics. A predicate transformer S : (Γ → Bool) → (Σ → Bool) is a function
from predicates on Γ to predicates on Σ. We write

Σ �→ Γ =̂ (Γ → Bool) → (Σ → Bool)

to denote a set of all predicate transformers from Σ to Γ . A contract statement
with initial state in Σ and final state in Γ determines a monotonic predicate
transformer S : Σ �→ Γ that maps any postcondition q : Γ → Bool to the weak-
est precondition p : Σ → Bool such that the statement is guaranteed to terminate
in a final state satisfying q whenever the initial state satisfies p. Following an
established tradition, we identify contract statements with the monotonic pred-
icate transformers that they determine. For details of the predicate transformer
semantics, we refer to [4, 6].

5

The total correctness assertion p {|S |} q is said to hold if the user can use the
contract S to establish the postcondition q when starting in the set of states p.
The pair of state predicates (p, q) is usually referred to as the pre- and postcon-
dition specification of the contract S. The total correctness assertion p {|S |} q,
which is equal to p ⊆ S. q, means that the user can (by making the right choices)
either achieve the postcondition q or be released from the contract, no matter
what the other agents do.

A contract S is refined by a contract S′, written S � S′, if any condition that
we can establish with the first contract can also be established with the second
contract. Formally, S � S′ is defined to hold if p {|S |} q ⇒ p {|S′ |} q, for any p
and q. Refinement is reflexive and transitive. In addition, the contract construc-
tors are monotonic, so a contract can be refined by refining a subcomponent.

The refinement calculus provides rules for transforming more abstract pro-
gram structures into more concrete ones based on the notion of refinement of
contracts presented above. Large collections of refinement rules are given, for
instance, in [6, 10].

3 Iterative Choice and Its Modeling Capabilities

3.1 Modeling Component Environment

To demonstrate how the iterative choice statement can be used to model a
component environment, let us first introduce the notion of a component. We
view a component as an abstract data type with internal state and methods
that can be invoked on the component to carry out certain functionality and
(possibly) change the component’s state.

c = component
x : Σ := x0

m1 (val x1 : Γ1, res y1 : ∆1) = M1,
. . .
mn (val xn : Γn, res yn : ∆n) = Mn

end

Here x : Σ are the variables which carry the internal component’s state. These
variables have some initial values x0. Methods named m1, . . . ,mn are specified
by statements M1, . . . ,Mn respectively. Invocation of a method on a component
has a standard procedure call semantics, with the only difference that the value
of the component itself is passed as a value-result argument. We will denote
invocation of mi on c with value and result arguments v : Γi and r : ∆i by
c.mi(v, r).

An environment using a component c does so by invoking its methods. Every
time the environment has a choice of which method to choose for execution. In
general, each option is preceded with an assertion which determines whether the
option is enabled in a particular state. While at least one of the assertions holds,
the environment may repeatedly choose a particular option which is enabled and

6

have it executed. The environment decides on its own when it is willing to stop
choosing options. Such an iterative choice of method invocations, followed by
arbitrary statements not affecting the component state directly, describes all the
actions the environment program might undertake:

begin var l : Λ • p; do q1 :: c.m1(g1, d1);L1 〈〉 . . . 〈〉 qn :: c.mn(gn, dn);Ln od end

Here the construct inside the keywords do .. od is the iterative choice statement.
The alternatives among which the choice is made at each iteration step are
separated by 〈〉. Variables l : Λ are some local variables initialized according to
p, predicates q1 . . . qn are the asserted conditions on the state, and statements
L1 through Ln are arbitrary. The initialization p, the assertions q1 . . . qn, and
the statements L1, . . . , Ln do not refer to c, which is justified by the assumption
that the component state is encapsulated.

The whole program statement is a contract between the component c and any
environment using c. The method enabledness condition qi corresponds to the
assumptions made by the corresponding method mi, as stated in its subcontract
(the method body definition). For example, in a component EntryField a method
SetLength(val l : Nat) can begin with an assumption that the length l does
not exceed some constant value lmax. An environment invoking SetLength on
EntryField will then have to assert that a specific length does indeed satisfy this
requirement:

do length ≤ lmax :: EntryField .SetLength(length); . . . od

The assumption of this condition in the body of SetLength will pass through, as
{p}; [p] = {p}, for all predicates p.

3.2 Modeling an Interactive Dialog Box

Suppose that we would like to describe a font selection dialog box, where the
user is offered the choice of selecting a particular font and its size. The user can
select a font by typing the font name in the entry field; the selection is accepted
if the entered font name belongs to the set of available fonts. The size of the
font can also be chosen by typing the corresponding number in the entry field.
The user may change the selections of both the font and the size any number
of times before he presses the OK button, which results in closing the dialog
box and changing the corresponding text according to the last selection. We can
model this kind of a dialog box as shown in Fig. 1. In this specification fentry :
String and sentry : Nat are global variables representing current selections of the
font name and its size in the corresponding entry fields of the dialog box. The
constants Fonts : set of String and Sizes : set of Nat represent sets of available
font names and font sizes.

When the user opens the dialog box, he assumes that the default entries for
the font name and size are among those available in the system, as expressed by
the corresponding assumption in DialogBoxSpec. If this assumption is met by the
system, the user may enter new font name, or new font size, or leave the current

7

DialogBoxSpec = [fentry ∈ Fonts ∧ sentry ∈ Sizes];
do true :: {fentry := s | s ∈ Fonts}
〈〉 true :: {sentry := n |n ∈ Sizes}
od

Fig. 1. Specification of a dialog box

selections intact. The user may select any alternative any number of times until
he is satisfied with the choice and decides to stop the iteration. Note that to
model dialog closing, we do not need to explicitly maintain a boolean variable
Ok pressed , have all the options enabled only when ¬Ok pressed holds, and set
it explicitly to true to terminate iteration: all this is implicit in the model.

This is a very general specification of DialogBoxSpec, but still it is a useful
abstraction precisely and succinctly describing the intended behavior. In Sec. 4.3
we will show how one can check correctness of this specification with respect to a
given precondition and postcondition. Also, this specification can be refined to a
more detailed one, specifying an extended functionality, as we will demonstrate
in Sec. 4.5.

4 Definition and Properties of Iterative Choice

We begin with studying mathematical properties of an angelic iteration operator,
which is used to define iterative choice.

4.1 Angelic Iteration and Its Properties

Let S be a monotonic predicate transformer (i.e., the denotation of a contract).
We define an iteration construct over S, angelic iteration, as the following fix-
point:

Sφ =̂ (µX • S;X 	 skip) (Angelic iteration)

As such, this construct is a dual of the weak iteration S∗ defined in [6] by
(νX • S;X
 skip).

Theorem 1. Let S be an arbitrary monotonic predicate transformer. Then

Sφ = ((S◦)∗)◦

Intuitively, the statement Sφ is executed so that S is repeated an angelically
chosen (finite) number of times before the iteration is terminated by choosing
skip. For example, (x := x+1)φ increments x an angelically chosen finite number
of times, and has, therefore, the same effect as the angelic update {x := x′ |x ≤
x′}.

A collection of basic properties of angelic iteration follows by duality from
the corresponding properties of weak iteration proved in [5].

8

Theorem 2. Let S and T be arbitrary monotonic predicate transformers. Then

(a) Sφ is monotonic and terminating

(b) Sφ preserves termination, strictness, and disjunctivity

(c) S � Sφ

(d) (Sφ)φ = Sφ

(e) Sφ;Sφ = Sφ

(f) S � T ⇒ Sφ � Tφ

Here, a predicate transformer S is said to be terminating if S. true = true, strict
if S. false = false, and disjunctive if S. (∪i ∈ I • qi) = (∪i ∈ I • S. qi), for I �= ∅.

To account for tail recursion, angelic iteration can be characterized as follows:

Lemma 1. Let S and T be arbitrary monotonic predicate transformers. Then

Sφ;T = (µX • S;X 	 T)
This lemma provides us with general unfolding and induction rules. For ar-

bitrary monotonic predicate transformers S and T ,

Sφ;T = S;Sφ;T 	 T (unfolding)

S;X 	 T � X ⇒ Sφ;T � X (induction)

From the unfolding rule with T taken to be skip we get the useful property
that doing nothing is refined by angelic iteration:

skip � Sφ

Angelic iteration can also be characterized on the level of predicates:

Lemma 2. Let S : Σ �→ Σ be an arbitrary monotonic predicate transformer
and q : PΣ an arbitrary predicate. Then

Sφ.q = (µx • S. x ∪ q)
When applied to monotonic predicate transformers, the angelic iteration op-

erator has two interesting properties known from the theory of regular languages,
namely, the decomposition property and the leapfrog property.

Lemma 3. Let S and T be arbitrary monotonic predicate transformers. Then

(S 	 T)φ = Sφ; (T ;Sφ)φ (decomposition)

(S;T)φ;S � S; (T ;S)φ (leapfrog)

(if S is disjunctive, then the leapfrog property is an equality).
Lemma 1, Lemma 2, and Lemma 3 follow by duality from the corresponding

properties of weak iteration as given in [6].

9

Let us now study under what conditions the total correctness assertion
p {|Sφ |} q is valid. In lattice theory, the general least fixpoint introduction rule
states that

tw � f. t<w

t � µ f

where {tw | w ∈ W} is a ranked collection of elements (so that W is a well-
founded set and v < w ⇒ tv � tw), t<w is an abbreviation for (v | v < w • tv),
and t = (w ∈W • tw). When used for predicates, with Sφ. q = (µx • S. x∪ q),
this rule directly gives us the correctness rule for angelic iteration

pw ⊆ (S. p<w) ∪ q
p {|Sφ |} q

(angelic iteration
correctness rule)

where {pw | w ∈W} is a ranked collection of predicates and p = (∪w ∈W · pw).
If the ranked predicates are written using an invariant I and a termination
function t, then we have

I ∩ t = w ⊆ S. (I ∩ t < w) ∪ q
I {|Sφ |} q

where w is a fresh variable. Intuitively, this rule says that at every step either
the invariant I is preserved (with t decreasing) or the desired postcondition q is
reached directly and the iteration can terminate. This corresponds to temporal
logic assertions “I until q” and “eventually not I”. Since t cannot decrease
indefinitely, this guarantees that the program eventually reaches q if it started
in I.

4.2 Iterative Choice and Its Properties

Now we consider a derivative of the angelic iteration Sφ, the iterative choice
statement. This specification construct was defined in [6] as follows:

do 〈〉ni=1gi :: Si od =̂ (Iterative choice)
(µX • {g1};S1;X 	 . . . 	 {gn};Sn;X 	 skip)

As such, iterative choice is equivalent to the angelic iteration of the statement
	n

i=1{gi};Si,

do 〈〉ni=1gi :: Si od = (n
i=1{gi};Si)φ

and its properties can be derived from the corresponding properties of the angelic
iteration.

An angelic iteration is refined if every alternative in the old system is refined
by the angelic choice of all the alternatives in the new system.

10

Theorem 3. For arbitrary state predicates g1, . . . , gn and g′1, . . . , g
′
m, and arbi-

trary contract statements S1, . . . , Sn and S′
1, . . . , S

′
m we have that

(∀i | 1 ≤ i ≤ n • {gi};Si � 	m
j=1{g′j};S′

j) ⇒
do 〈〉ni=1gi :: Si od � do 〈〉mj=1g

′
j :: S

′
j od

This can be compared with the rule for Dijkstra’s traditional do-loop, where ev-
ery alternative of the new loop must refine the demonic choice of the alternatives
of the old loop (and the exit condition must be unchanged).

Two useful corollaries state that whenever every option is refined, the itera-
tive choice of these options is a refinement, and also that adding alternatives in
the iterative choice is a refinement.

Corollary 1. For arbitrary state predicates g1, . . . , gn and g′1, . . . , g
′
n, and arbi-

trary contract statements S1, . . . , Sn and S′
1, . . . , S

′
n we have that

g1 ⊆ g′1 ∧ . . . ∧ gn ⊆ g′n ∧ {g1};S1 � S′
1 ∧ . . . ∧ {gn};Sn � S′

n ⇒
do 〈〉ni=1gi :: Si od � do 〈〉ni=1g

′
i :: S

′
i od

Corollary 2. For arbitrary state predicates g1, . . . , gn+1 and arbitrary contract
statements S1, . . . , Sn+1 we have that

do 〈〉ni=1gi :: Si od � do 〈〉n+1
i=1 gi :: Si od

The correctness rule for iterative choice states that for each ranked predicate
which is stronger than the precondition there should be a choice decreasing the
rank of this predicate or the possibility of establishing the postcondition directly:

pw ⊆ ∪n
i=1(gi ∩ Si. p<w) ∪ q

p {| do 〈〉ni=1gi :: Si od |} q
(iterative choice
correctness rule)

When the ranked predicates are written using an invariant I and a termina-
tion function t, this rule becomes

p ⊆ I I ∩ t = w ⊆ ∪n
i=1(gi ∩ Si. (I ∩ t < w)) ∪ q

p {| do 〈〉ni=1gi :: Si od |} q

From the correctness rule we immediately get the iterative choice introduc-
tion rule

pw ⊆ ∪n
i=1(gi ∩ Si. p<w) ∪ q[x′ := x]

{p}; [x := x′ | q] � do 〈〉ni=1gi :: Si od

(iterative choice
introduction rule)

where x does not occur free in q.

11

4.3 Proving Correctness of the Interactive Dialog Box

Suppose that the font “Times” belongs to the set of available fonts, Fonts, and
the size 12 is in the set of available sizes, Sizes. Can the user, by making the
right choices, select this font with this size? The answer to this question can be
given by verifying the following total correctness assertion:

“Times” ∈ Fonts ∩
12 ∈ Sizes {|

do true :: {fentry := s | s in Fonts}
〈〉 true :: {sentry := n |n in Sizes}
od

|} fentry = “Times”∩
sentry = 12

Using the rule for the correctness of iterative choice with the invariant I and
the termination function t such that

I = “Times” ∈ Fonts ∩ 12 ∈ Sizes
t = #({“Times”, 12} \ {fentry , sentry})

we then need to prove two subgoals:

1. “Times” ∈ Fonts ∩ 12 ∈ Sizes ⊆ I
2. I ∩ t = w ⊆ true ∩ {fentry := s | s in Fonts}. (I ∩ t < w) ∪

true ∩ {sentry := n |n in Sizes}. (I ∩ t < w) ∪
fentry = “Times” ∩ sentry = 12

The first subgoal states that the precondition is stronger than the invariant and
is trivially true. The second subgoal states that, when the invariant holds, at least
one of the alternatives will decrease the termination function while preserving
the invariant. It can be proved by using the definition of angelic relational update
and rules of logic.

Being very simple, this example nethertheless demonstrates the essence of
establishing correctness in the presence of iterative choice. By verifying that this
specification is correct with respect to the given pre- and postcondition, we can
guarantee that any refinement of it will preserve the correctness.

4.4 Data Refinement of Iterative Choice

Data refinement is a general technique by which one can change data represen-
tation in a refinement. A contract statement S may begin in a state space Σ and
end in a state space Γ , written S : Σ �→ Γ . Assume that contract statements
S and S′ operate on state spaces Σ and Σ′ respectively, i.e. S : Σ �→ Σ and
S′ : Σ′ �→ Σ′. Let R : Σ′ → Σ → Bool be a relation between the state spaces Σ′

and Σ. Following [3], the statement S is said to be data refined by the statement
S′ via the relation R, denoted S �{R} S′, if {R};S � S′; {R}. An alternative
and equivalent characterization of data refinement using the inverse relation R−1

arises from the fact that {R} and [R−1] are each others inverses, in the sense
that {R}; [R−1] � skip and skip � [R−1]; {R}. Abbreviating {R};S; [R−1] by
S ↓{R} we have that

S �{R} S′ ≡ S ↓{R} � S′

12

We will call D an abstraction statement if D is such that D = {R}, for some
R. In this case, our notion of data refinement is the standard one, often referred
to as forward data refinement or downward simulation.

Data refinement properties of angelic iteration and iterative choice cannot
be proved directly by a duality argument from the corresponding results for the
traditional iteration operators. However, they can still be proved:

Theorem 4. Assume that S and D are monotonic predicate transformers and
that D is an abstraction statement. Then

Sφ ↓D � (S ↓D)φ

As a consequence, the angelic iteration operator preserves data refinement:

Corollary 3. Assume that S, S′ and D are monotonic predicate transformers
and that D is an abstraction statement. Then

S �D S′ ⇒ Sφ �D S′φ

Proofs of Theorem 4 and Corollary 3 can be found in [2].
Data refinement rules for iterative choice also arise from the corresponding

rules for angelic iteration. First, data refinement can be propagated inside iter-
ative choice:

Theorem 5. Assume that g1, . . . , gn are arbitrary state predicates, S1, . . . , Sn

are arbitrary contract statements, and D is an abstraction statement. Then

do 〈〉ni=1gi :: Si od↓D � do 〈〉ni=1D. gi :: Si ↓D od

A more general rule shows how a proof of data refinement between itera-
tive choices can be reduced to proofs of data refinement between the iterated
alternatives.

Theorem 6. Assume that g1, . . . , gn and g′1, . . . , g
′
m are arbitrary state predi-

cates, S1, . . . , Sn and S′
1, . . . , S

′
m are arbitrary contract statements, and D is an

abstraction statement. Then

(∀i | 1 ≤ i ≤ n • {gi};Si �D 	m
j=1{g′j};S′

j) ⇒
do 〈〉ni=1gi :: Si od �D do 〈〉mj=1g

′
j :: S

′
j od

Proofs of Theorems 5 and 6 can be found in [2]. A useful special case of these
theorems is when the number of choices is the same and they are refined one by
one.

Corollary 4. Assume that g1, . . . , gn and g′1, . . . , g
′
n are arbitrary state predi-

cates, S1, . . . , Sn and S′
1, . . . , S

′
n are arbitrary contract statements, and D is an

abstraction statement. Then

D. g1 ⊆ g′1 ∧ . . . ∧ D. gn ⊆ g′n ∧ {g1};S1 �D S′
1 ∧ . . . ∧ {gn};Sn �D S′

n ⇒
do 〈〉ni=1gi :: Si od �D do 〈〉ni=1g

′
i :: S

′
i od

13

4.5 Data Refinement of Interactive Dialog Box

Let us now demonstrate how our original specification of a dialog box can be
data refined to a more concrete one. Suppose that we would like to describe
a dialog box, where the user can select a font by choosing it from the list of
available fonts or by typing the font name in the entry field. The size of the font
can also be chosen either from the list of sizes or by typing the corresponding
number in the entry field. Using the iterative choice statement, we can model
this kind of a dialog box as shown in Fig. 2.

In this specification the arrays fonts : array 1..fmax of String and sizes :
array 1..smax of Nat are used to represent lists of the corresponding items. When
the user opens the dialog box, the system initializes fonts and sizes to contain
elements from the constant sets Fonts and Sizes. The function array to set , used
for this purpose, is given as follows:

array to set = (λ (a, n) . {e | ∃ i • 1 ≤ i ≤ n ∧ a[i] = e})

The initialization conditions #Fonts = fmax and #Sizes = smax state, in ad-
dition, that the arrays contain exactly as many elements as the corresponding
constant sets. Indices fpos : Nat and spos : Nat represent the currently cho-
sen selections in the corresponding arrays and are initialized to index some
items in fonts and sizes; the variables fentry and sentry are initialized with
values of these items. The implicit invariant maintained by DialogBox states
that fonts[fpos] = fentry and sizes[spos] = sentry , i.e. the currently selected
font in the list of available fonts is the same as the one currently typed in the
font entry field, and similarly for font sizes.

The iterative choice statement is the contract stipulating the interaction be-
tween the user making choices and the system reacting to these choices. Consider,

DialogBox = [fentry , sentry , fonts, sizes, fpos, spos :=
fentry ′, sentry ′, fonts ′, sizes ′, fpos ′, spos ′ |

array to set(fonts ′, fmax) = Fonts ∧ #Fonts = fmax ∧
array to set(sizes ′, smax) = Sizes ∧ #Sizes = smax ∧
fentry ′ = fonts ′[fpos ′] ∧ sentry ′ = sizes ′[spos ′]∧
1 ≤ fpos ′ ≤ fmax ∧ 1 ≤ spos ′ ≤ smax];

do true :: {fentry := fentry ′ | ∃ i • 1 ≤ i ≤ fmax ∧ fonts[i] = fentry ′};
[fpos := fpos ′ | fonts[fpos ′] = fentry]

〈〉 true :: {sentry := sentry ′ | ∃ i • 1 ≤ i ≤ smax ∧ sizes[i] = sentry ′};
[spos := spos ′ | sizes[spos ′] = sentry]

〈〉 true :: {fpos := fpos ′ | 1 ≤ fpos ′ ≤ fmax}; fentry := fonts[fpos]
〈〉 true :: {spos := spos ′ | 1 ≤ spos ′ ≤ smax}; sentry := sizes[spos]
od

Fig. 2. Specification of a dialog box refinement

14

for example, the case when the user wants to select a font by directly choosing
it from the list of available fonts, as modeled by the third alternative. First, the
user is offered to pick an index fpos ′, identifying a certain font in the list of
fonts, and then the system updates the variable fentry to maintain the invariant
fonts[fpos] = fentry .

The abstraction relation coercing the state of DialogBox to the state of
DialogBoxSpec is essentially an invariant on the concrete variables:

array to set(fonts, fmax) = Fonts ∧ #Fonts = fmax ∧ 1 ≤ fpos ≤ fmax ∧
array to set(sizes, smax) = Sizes ∧ #Sizes = smax ∧ 1 ≤ spos ≤ smax ∧
fentry = fonts[fpos] ∧ sentry = sizes[spos]
Strictly speaking, we should distinguish between fentry , sentry of

DialogBoxSpec and fentry , sentry of DialogBox ; the abstraction relation also
includes the conditions fentry = fentry0 and sentry = sentry0, where fentry0

and sentry0 denote fentry and sentry of DialogBoxSpec. It can be shown that
DialogBoxSpec �{R} DialogBox , where

R. concrete. abstract = array to set(fonts , fmax) = Fonts ∧ #Fonts = fmax ∧
array to set(sizes, smax) = Sizes ∧ #Sizes = smax ∧
1 ≤ fpos ≤ fmax ∧ 1 ≤ spos ≤ smax ∧
fentry = fonts[fpos] ∧ sentry = sizes[spos]∧
fentry = fentry0 ∧ sentry = sentry0

with concrete = fentry , sentry , fonts , sizes, fpos, spos and abstract = fentry0,
sentry0.

5 Conclusions and Related Work

We have described an interactive computing system in terms of contracts binding
participating agents and stipulating their obligations and assumptions. In par-
ticular, we have focused on the iterative choice contract and studied its algebraic
properties and modeling capabilities. This work extends [4] where Back and von
Wright introduced the notions of correctness and refinement for contracts and
defined their weakest precondition semantics.

The notion of contracts is based on the fundamental duality between demonic
and angelic nondeterminism (choices of different agents), abortion (breaching a
contract), and miracles (being released from a contract). The notion of angelic
nondeterminism goes back to the theory of nondeterministic automata and the
nondeterministic programs of Floyd [8]. Broy in [7] discusses the use of demonic
and angelic nondeterminism with respect to concurrency. Some applications of
angelic nondeterminism are shown by Ward and Hayes in [12]. Abadi, Lamport,
and Wolper in [1] study realizability of specifications, considering them as “de-
termined” games, where the system plays against the environment and wins if
it produces a correct behavior. Specifications are identified with the properties
that they specify, and no assumptions are made about how they are written.

15

Moschovakis in [11] studies non-deterministic interaction in concurrent commu-
nication also considering it from the game-theoretic perspective.

Another direction of related work concentrates on studying the role of interac-
tion in computing systems. Wegner in [13] proposes to use interaction machines
as “a formal framework for interactive models”. Interaction machines are de-
scribed as extensions of Turing machines with unbounded input streams, which
“precisely capture fuzzy concepts like open systems and empirical computer sci-
ence”. The main thesis of work presented in [13] and further developed in [14] is
that “Logic is too weak to model interactive computation” and, instead, empiri-
cal models should be used for this purpose. Apparently, first-order logic is meant
by the author, which is indeed too weak for modeling interaction. However, our
formalization is based on an extension of higher-order logic and, as such, is
perfectly suitable for this purpose. Also, it is claimed in [13] that “Interaction
machines are incomplete in the sense of Gödel: their nonenumerable number of
true statements cannot be enumerated by a set of theorems. [...] The incomplete-
ness of interactive systems implies that proving correctness is not merely hard
but impossible.” We believe that our work presents a proof to the contrary.

As future work we intend to investigate modeling capabilities of iterative
choice further. In particular, its application to modeling client and server proxies
in distributed object-oriented systems appears to be of interest. Various archi-
tectural solutions, such as implicit invocation [9], can also be described in this
framework, and the work on this topic is the subject of current research.

References

1. M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications
of reactive systems. In Proceedings of 16th ICALP, volume 372 of LNCS, pages
1–17, Stresa, Italy, 11–15 July 1989. Springer-Verlag.

2. R. Back, A. Mikhajlova, and J. vonWright. Modeling component environments and
interactive programs using iterative choice. Technical Report 200, Turku Centre
for Computer Science, September 1998.

3. R. J. R. Back. Changing data representation in the refinement calculus. In 21st
Hawaii International Conference on System Sciences. IEEE, January 1989.

4. R. J. R. Back and J. von Wright. Contracts, games and refinement. Technical
Report 138, Turku Centre for Computer Science, October 1997.

5. R. J. R. Back and J. von Wright. Reasoning algebraically about loops. Technical
Report 144, Turku Centre for Computer Science, November 1997.

6. R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, April 1998.

7. M. Broy. A theory for nondeterminism, parallelism, communication, and concur-
rency. Theoretical Computer Science, 45:1–61, 1986.

8. R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Mathemat-
ical aspects of computer science, volume 19, pages 19–31. American Mathematical
Society, 1967.

9. D. Garlan and D. Notkin. Formalizing design spaces: Implicit invocation mecha-
nisms. In VDM 91, Volume 1: Conference Contributions, LNCS 551, pages 31–44.
Springer-Verlag, Oct. 1991.

16

10. C. C. Morgan. Programming from Specifications. Prentice–Hall, 1990.
11. Y. N. Moschovakis. A model of concurrency with fair merge and full recursion.

Information and Computation, 93(1):114–171, July 1991.
12. N. Ward and I. Hayes. Applications of angelic nondeterminism. In P.A.C.Bailes,

editor, 6th Australian Software Engineering Conference, pages 391–404, Sydney,
Australia, 1991.

13. P. Wegner. Interactive software technology. In J. Allen B. Tucker, editor, The
Computer Science and Engineering Handbook. CRC Press, in cooperation with
ACM, 1997.

14. P. Wegner. Interactive foundations of computing. Theoretical Computer Science,
192(2):315–351, Feb. 1998.

17

Paper 4

Class Refinement as Semantics of Correct Object
Substitutability

R.J.R. Back, A. Mikhajlova, and J. von Wright

Extends Paper 1, previous version published as a technical report of
Turku Centre for Computer Science, TUCS-TR-147, December 1997.
Submitted to Formal Aspects of Computing.

Class Refinement as Semantics of Correct
Object Substitutability

Ralph Back, Anna Mikhajlova, Joakim von Wright

Turku Centre for Computer Science, Åbo Akademi University
Lemminkäisenkatu 14A, Turku 20520, Finland

Abstract. Subtype polymorphism, based on syntactic conformance of
objects’ methods and used for substituting subtype objects for supertype
objects, is a characteristic feature of the object-oriented programming
style. While certainly very useful, typechecking of syntactic conformance
of subtype objects to supertype objects is insufficient to guarantee cor-
rectness of object substitutability. In addition, the behaviour of subtype
objects must be constrained to achieve correctness. In class-based sys-
tems classes specify the behaviour of the objects they instantiate. In this
paper we define the class refinement relation which captures the seman-
tic constraints that must be imposed on classes to guarantee correctness
of substitutability in all clients of the objects these classes instantiate.
Clients of class instances are modelled as programs making an iterative
choice over invocation of class methods, and we formally prove that when
a class C′ refines a class C, substituting instances of C′ for instances of
C is refinement for the clients.

1 Introduction

The issue of correctness of object-oriented programs deserves close considera-
tion in view of the popularity of this programming style and the necessity to
enhance reliability of programs. Not only correctness is a crucial requirement
for safety-critical systems, but also it is becoming increasingly important for
distributed object-oriented systems and frameworks, which are composed by in-
dependent users and characterized by a late integration phase. We consider here
a methodology for ensuring correctness of class-based statically-typed object-
oriented systems.

Subtype polymorphism, which is generally recognized as central to object-
orientation, is based on syntactic conformance of objects’ methods and used
for substituting subtype objects for supertype objects. In most object-oriented
languages, such as Simula, Eiffel, and C++, subclassing or implementation in-
heritance forms a basis for subtype polymorphism, i.e. signatures of subclass
methods automatically conform to those of superclass methods, and, syntac-
tically, subclass instances can be substituted for superclass instances. As the
mechanism of polymorphic substitutability is, to a great extent, independent of
the mechanism of implementation reuse, languages like Java and Sather separate
the subtyping and subclassing hierarchies.

With both approaches, typechecking can be used to verify syntactic con-
formance of subtype objects to their supertype objects. However, it has been
recognized that, while certainly very useful, typechecking is insufficient to guar-
antee correctness of object substitutability. An attempt to establish behavioral
conformance along with syntactic one has created a research direction known
as behavioral subtyping [4, 26, 15, 16]. The essence of behavioral subtyping is to
associate behavior with type signatures and to identify subtypes that conform
to their supertypes not only syntactically but also semantically.

In our view subtyping is a mechanism for substituting objects with certain
method signatures for other objects with conforming method signatures and,
as such, is a purely syntactic concept. Behavior of objects, on the other hand,
has little to do with their syntactic interfaces and is expressed in the specifi-
cation of the objects’ methods manipulating the objects’ attributes. Most im-
portantly, syntactic subtyping is decidable and can be checked by a computer,
while behavior-preserving subtyping is undecidable. Hence, in our approach we
separate syntactic subtyping from behavioral conformance of subtype objects to
supertype objects. We consider classes to be the carriers of behavior and com-
pare them for behavioral compatibility. Instances of one class are guaranteed to
behave as expected from instances of another, more abstract, class if the more
concrete class is a refinement of the more abstract. We give a definition of class
refinement, which we regard as semantics of correct substitutability of subclass
instances for superclass instances in clients. We formally prove that when a class
C ′ refines a class C, substituting instances of C ′ for instances of C is refinement
for the clients.

Class refinement is orthogonal to subclassing. A class and its subclass may
not be in refinement, and two classes can be in refinement even if one of them is
not declared to be a subclass of the other. With separate interface inheritance
and implementation inheritance hierarchies, a subclass may not even be intended
for behavioral conformance with its superclass, as the substitution mechanism
is completely independent of the reuse mechanism. Syntactic conformance of
method signatures, however, is a prerequisite for class refinement, as it is mean-
ingless to compare behavior of classes whose instances are not intended for sub-
stitution. For simplicity, we consider subclassing to be the basis for subtyping
and, consequently, require that class refinement be established between a class
and its declared subclasses. However, the same principles also apply to systems
with separate subclassing and interface inheritance hierarchies, as we will explain
in the concluding section.

We build a logical framework for reasoning about object-oriented programs
as a conservative extension of the refinement calculus [30, 10], which is used for
reasoning about correctness and refinement of imperative programs in a rigorous,
mathematically precise manner. The refinement calculus is particularly suited
for describing object-oriented programs because it allows us to describe classes
at various abstraction levels, using specification statements along with ordinary
executable statements. The notion of an abstract class, specifying behavior com-
mon to its subclasses, can be fully elaborated in this formalization, since the

2

state of class instances can be given using abstract mathematical constructions,
like sets and sequences, and class methods can be described as nondeterministic
statements, abstractly but precisely specifying the intended behavior. Versatil-
ity of the specification language that we use permits treating specifications and
implementations in a uniform manner considering implementations to be just
deterministic specifications.

Expressiveness of higher-order logic, which is the formal basis of the refine-
ment calculus, allows us to define relations between classes, such as class re-
finement, entirely within logic. Reasoning about these relations can, therefore,
be carried out completely formally, whereas formalizations based on first-order
logic can only allow informal reasoning. The detailed elaboration of our for-
malization permits mechanized reasoning and mechanical verification, because,
being so precisely defined, every concept can be formalized within a theorem
proving environment such as HOL [18] or PVS [32].

2 Refinement Calculus Basics

We formalize objects, classes, and relationships between them in the refinement
calculus, which is used for reasoning about correctness and refinement of imper-
ative programs. Let us briefly introduce the main concepts of this formalism.

2.1 Predicates, Relations, and Predicate Transformers

A program state with components is modelled by a tuple of values, and a set of
states (type) Σ is a product space, Σ = Σ1 × . . .×Σn.

A predicate over Σ is a boolean function p : Σ → Bool which assigns a truth
value to each state. The set of predicates on Σ is denoted PΣ. The entailment
ordering on predicates is defined by pointwise extension, so that for p, q : PΣ,

p ⊆ q =̂ (∀σ : Σ · p σ ⇒ q σ)

Conjunction ∩ and disjunction ∪ of (similarly-typed) predicates are also defined
pointwise.

A relation from Σ to Γ is a function of type Σ → PΓ that maps each state
σ to a predicate on Γ . We write Σ ↔ Γ to denote a set of all relations from
Σ to Γ . This view of relations is isomorphic to viewing them as predicates on
the cartesian space Σ × Γ . A function f : Σ → Γ can always be lifted to a
(deterministic) relation | f | : Σ ↔ Γ . Functional and relational compositions
are defined in a standard way.

A predicate transformer is a function S : PΓ → PΣ from predicates to
predicates. We write

Σ �→ Γ =̂ PΓ → PΣ
to denote a set of all predicate transformers fromΣ to Γ . The refinement ordering
on predicate transformers is defined by pointwise extension from predicates. For
S, T : Σ �→ Γ ,

S T =̂ (∀q : PΓ · S q ⊆ T q)

3

Product operators combine predicates, functions, relations, and predicate
transformers by forming cartesian products of their state spaces. For example,
a product P ×Q of two relations P : Σ1 ↔ Γ1 and Q : Σ2 ↔ Γ2 is a relation of
type (Σ1 ×Σ2)↔ (Γ1 × Γ2) defined by

(P ×Q) (σ1, σ2) (γ1, γ2) =̂ P σ1 γ1 ∧ Q σ2 γ2

For predicate transformers S1 : Σ1 �→ Γ1 and S2 : Σ2 �→ Γ2, their product
S1×S2 is a predicate transformer of type Σ1×Σ2 �→ Γ1×Γ2 whose execution
has the same effect as simultaneous execution of S1 and S2. In addition to many
other useful properties, presented, e.g., in [8, 9], the product operator preserves
refinement:

S1 S′
1 ∧ S2 S′

2 ⇒ (S1 × S2) (S′
1 × S′

2)

For modelling subtype polymorphism and dynamic binding we employ sum
types. The sum or disjoint union of two types Σ and Γ is written Σ + Γ . The
types Σ and Γ are called base types of the sum in this case. Associated with the
sum types, are the injection functions which map elements of the base type to
elements of the summation

ι1 : Σ → Σ + Γ ι2 : Γ → Σ + Γ

and projection relations which relate elements of the summation with elements
of its base types

π1 : Σ + Γ ↔ Σ π2 : Σ + Γ ↔ Γ

The projection is the inverse of the injection, so that π−1
1 = | ι1 |, where | ι1 |

is the injection function lifted to a relation. Since any element of Σ + Γ comes
either from Σ or from Γ , but not both, the ranges of the injections ran ι1 and
ran ι2 partition Σ+Γ . For σ : Σ+Γ , the projection π1 will relate it to a unique
σ′ : Σ only if σ ∈ ran ι1, and similarly for π2. Sum types, as well as product
types, associate to the right, so that Σ1 +Σ2 +Σ3 = Σ1 + (Σ2 +Σ3).

We define the type Σ to be a subtype of Σ′, written Σ <: Σ′, if Σ = Σ′, or
Σ <: Σ′

i, where Σ
′ = Σ′

1 + . . .+Σ′
n. For example, Σ <: Σ +Σ′ and, of course,

Σ+Σ′ <: Σ+Σ′. The subtype relation is reflexive, transitive, and antisymmetric.
For any Σ and Σ′ such that Σ <: Σ′, we can construct the corresponding
injection function ιΣ : Σ → Σ′ and projection relation πΣ : Σ′ ↔ Σ in a
straightforward way.

2.2 Specification Language

The language used in the refinement calculus includes executable statements
along with (abstract) specification statements. Every statement has a precise
mathematical meaning as a monotonic predicate transformer. A statement with
initial state in Σ and final state in Γ determines a monotonic predicate trans-
former S : Σ �→ Γ that maps any postcondition q : PΓ to the weakest precondi-
tion p : PΣ such that the statement is guaranteed to terminate in a final state

4

satisfying q whenever the initial state satisfies p. A statement need not have iden-
tical initial and final state spaces, though if it does, we write S : Ξ(Σ) instead
of S : Σ �→ Σ for the corresponding predicate transformer. Following an estab-
lished tradition, we will from now on identify statements with the monotonic
predicate transformers that they determine in this manner.

The total correctness assertion p {|S |} q is said to hold if execution of the
statement S establishes the postcondition q when started in the set of states p.
The pair of state predicates (p, q) is usually referred to as the pre- and post-
condition specification of the statement S. Formally, the total correctness asser-
tion p {|S |} q is defined to be p ⊆ S q. The refinement ordering on predicate
transformers models the notion of total-correctness preserving program refine-
ment. For statements S and T , the relation S T holds if and only if T satisfies
any specification satisfied by S.

Predicate transformers form a complete lattice under the refinement order-
ing. The bottom element is the predicate transformer abort that maps each
postcondition to the identically false predicate false, and the top element is the
predicate transformer magic that maps each postcondition to the identically
true predicate true. We know nothing about how abort is executed and it is
never guaranteed to terminate. The magic statement is miraculous since it is
always guaranteed to establish any postcondition; as such, magic is the oppo-
site of the abortion and is not considered to be an error. Intuitively, magic
can be understood as an infinite wait statement, and, although not directly
implementable, it serves as a convenient abstraction in manipulating program
statements.

Conjunction � and disjunction � of (similarly-typed) predicate transformers
are defined pointwise, e.g.,

(� i ∈ I · Si) q =̂ (∩ i ∈ I · Si q)

Both conjunction and disjunction of predicate transformers model nondetermin-
istic choice among executing either of Si. Conjunction models demonic nonde-
terministic choice in the sense that nondeterminism is uncontrollable and each
alternative must establish the postcondition. Disjunction, on the other hand,
models angelic nondeterminism, where the choice between alternatives is free
and aimed at establishing the postcondition.

Sequential composition of program statements is modelled by functional com-
position of predicate transformers and the program statement skip is modelled
by the identity predicate transformer:

(S;T) q =̂ S (T q)
skip q =̂ q

Given a function f : Σ → Γ and a relation P : Σ ↔ Γ , the functional
update 〈f〉 : Σ �→ Γ , the angelic update {P} : Σ �→ Γ , and the demonic update
[P] : Σ �→ Γ are defined by

〈f〉 q σ =̂ q (f σ)
{P} q σ =̂ (∃ γ : Γ · P σ γ ∧ q γ)
[P] q σ =̂ (∀γ : Γ · P σ γ ⇒ q γ)

5

The functional update applies the function f to the state σ to yield the new
state f σ. When started in a state σ, {P} angelically chooses a new state γ such
that P σ γ holds, while [P] demonically chooses a new state γ such that P σ γ
holds. If no such state exists, then {P} aborts, whereas [P] behaves as magic.
For the identity function id and the identity relation Id , all of 〈id〉, {Id}, and
[Id] behave as skip.

Following [9], we use the notions of assignments, program variables, and
variable declarations based on a simple syntactic extension to the typed lambda
calculus. For a function (λu · t) which replaces the old state u with the new state
t, changing some components x1, . . . , xm of u while leaving the others unchanged,
the functional assignment describing such a state change is defined by

(λu · x1, . . . , xm := t1, . . . , tm) =̂ (λu · u[x1, . . . , xm := t1, . . . , tm])

For a relation (λu · λu′ · b), which using the set notation could also be written
as (λu · {u′ | b}), changing a component x of state u to some x′ related to x via
a boolean expression b, the relational assignment is defined by

(λu · x := x′ | b) =̂ (λu · {u[x := x′] | b})
As such, the notation for both functional and relational assignments is a con-

venient syntactic abbreviation for the corresponding lambda term describing a
certain state change. Unfortunately, lambda terms do not maintain consistent
naming of state components, due to the possibility of α-conversion of bound
variables. To enforce the naming consistency, we use the program variable nota-
tion, writing, e.g., (var x, y · (x := x+y); (y := 0)) to express that each function
term is to be understood as a lambda abstraction over the bound variables x, y:

(var x, y · (x := x+ y); (y := 0)) = (λx, y · x := x+ y); (λx, y · y := 0)

Ordinary program statements may be modelled using the basic predicate
transformers and operators presented above, using the program variable nota-
tion. For example, the (multiple) assignment statement may be modelled by the
functional update:

(var u · x1, . . . , xm := t1, . . . , tm) =̂ 〈λu · x1, . . . , xm := t1, . . . , tm〉
Our specification language includes specification statements. The demonic

assignment and the angelic assignment are modelled by the demonic and the
angelic updates respectively:

[var u · x := x′ | b] =̂ [λu · x := x′ | b]
{var u · x := x′ | b} =̂ {λu · x := x′ | b}

Intuitively, the demonic assignment expresses an uncontrollable nondeterministic
choice in selecting a new value x′ satisfying b, whereas the angelic assignment
expresses a free choice. The angelic assignment can, e.g., be understood as a
request to the user to supply a new value.

6

Our specification language also includes the assertion and the assumption
statements, written {b} and [b] respectively, where b is a predicate stating a
condition on program variables. Both the assertion and the assumption behave
as skip if b is satisfied; otherwise, the assertion aborts, whereas the assumption
behaves as magic.

The conditional statement is defined by the demonic choice of guarded alter-
natives or the angelic choice of asserted alternatives:

if g then S1 else S2 fi =̂ [g];S1 � [¬g];S2 = {g};S1 � {¬g};S2

Iteration is defined as the least fixpoint of a function on predicate transform-
ers with respect to the refinement ordering:

while g do S od =̂ (µX · if g then S;X else skip fi)

A variant of iteration, the iterative choice [10, 6], allows the user to choose repeat-
edly an alternative that is enabled and have it executed until the user decides
to stop:

do g1 :: S1〈〉 . . . 〈〉 gn :: Sn od =̂ (µX · {g1};S1;X � . . . � {gn};Sn;X � skip)

We will abbreviate g1 :: S1〈〉 . . . 〈〉 gn :: Sn by 〈〉ni=1gi :: Si.
Finally, the language supports blocks with local variables. Block beginning

and end are modelled by demonic and functional updates respectively:

enter p =̂ [λu · λ(x, u′) · p (x, u′) ∧ u = u′]
exit =̂ 〈λ(x, u) · u〉

Here p is the predicate initializing the local variables. We can define a block
introducing a program variable x initialized according to a boolean expression b
as follows:

(var u · begin (var x, u · b);S; end) =̂ (var u · enter (var x, u · b);S; exit)

When the variable declaration is clear from the context, we will for simplicity
write just begin var x · b;S; end.

The program variable declaration can be propagated outside statements and
distributed through sequential composition, so that, e.g.,

(var u · [x := x′ |x′ ≥ 0]; y := x) = [var u · x := x′ |x′ ≥ 0]; (var u · y := x)

When the variable declaration is clear from the context, we will omit it.

7

As suggested in [10], we can define an interactive executable language, where
a statement is built by the following syntax:

S ::= abort (abortion)
| skip (skip)
| {b} (assertion)
| x1, . . . , xm := t1, . . . , tm (assignment)
| {x := x′ | b} (angelic assignment)
| S1;S2 (sequential composition)
| if g then S1 else S2 fi (conditional statement)
| while g do S od (iteration)
| do g1 :: S1〈〉 . . . 〈〉 gn :: Sn od (iterative choice)
| begin var x · b;S; end (block with local variables)

When extended with miraculous statements, this executable language be-
comes a general specification language:

S ::= . . .
| magic (magic)
| [b] (assumption)
| [x := x′ | b] (demonic assignment)

In the next section we explain how to extend this language with object-
oriented constructs.

2.3 Data Refinement

Data refinement is a general technique by which one can change the state space
in a refinement. For statements S : Ξ(Σ) and S′ : Ξ(Σ′), let R : Σ′ ↔ Σ be a
relation between the state spaces Σ and Σ′. According to [7], the statement S
is said to be data refined by S′ via R, denoted S R S′, if

{R}; S S′; {R}

This notion of data refinement is the standard one, often referred to as forward
data refinement or downward simulation. Alternative and equivalent character-
izations of data refinement using the inverse relation R−1 are then

S; [R−1] [R−1];S′ S [R−1];S′; {R} {R};S; [R−1] S′

These characterizations follow from the fact that {R} and [R−1] are each others
inverses, in the sense that {R}; [R−1] skip and skip [R−1]; {R}. Fur-
ther on we will abbreviate {R};S; [R−1] by S ↓R and [R−1];S′; {R} by S′ ↑R.
The refinement calculus provides rules for transforming more abstract program
structures into more concrete ones based on the notion of refinement of pred-
icate transformers presented above. A large collection of algorithmic and data
refinement rules is given, for instance, in [10, 30].

8

3 Modelling Object-Oriented Constructs

We focus on modelling class-based statically-typed object-oriented languages,
which form the mainstream of object-oriented programming. Accordingly, we
take a view that objects are instances of classes. A class describes objects with
similar behavior through specifying their interface. The interface represents sig-
natures of object methods, i.e. the method name and the types of value and
result parameters. For simplicity, we consider all object attributes as private or
hidden, and all methods as public or visible to clients of the object. We consider
an object type to be the type of object attributes having an additional unique
global identifier distinguishing this object type from the others.

A class can be given by the following declaration:

C = class
var attr1 : Σ1, . . . , attrm : Σm

C (val x0 : Γ0) = K,
Meth1 (val x1 : Γ1, res y1 : ∆1) = M1,
. . .
Methn (val xn : Γn, res yn : ∆n) = Mn

end

This class specifies the interface Meth1 (val : Γ1, res : ∆1), . . . ,Methn (val :
Γn, res : ∆n), where Γi and ∆i are the types of value and result parameters
respectively. A method may be parameterless, with both Γi and ∆i being the
unit type (), or may have only value or only result parameters.

The class C describes (possibly abstract) attributes, specifies the way the
objects are created, and gives a (possibly nondeterministic) specification for
each method. Class attributes (attr1, . . . , attrm) have the corresponding types
Σ1 through Σm. Apart from the declared attributes, every class has an implicit
constant attribute type : String which contains the name of the object type spec-
ified by this class. This constant identifier is unique in every class. We will use
an identifier self for the tuple (attr1, . . . , attrm, type). The type of self is then
Σ = Σ1 × . . .×Σm × String . We impose a non-recursiveness restriction on Σ
so that none of Σi is equal to Σ. This restriction allows us to stay within the
simple-typed lambda calculus.

A class constructor is used to instantiate objects and has the same name as
the class. Due to the fact that the constructor concerns object creation rather
than object functionality, it is associated with the class rather than with the
specified interface. Semantically, the constructor is equivalent to a stand-alone
global procedure which is associated with the class for encapsulation reasons.
The statement K : Γ0 �→ Σ × Γ0, representing the body of the constructor,
introduces the attributes into the state space and initializes them using the
value parameter(s) x0 : Γ0. Methods Meth1 through Methn, specified by bodies
M1, . . . ,Mn, operate on the attributes and realize the object functionality. Every
statement Mi is, in general, of type Ξ(Σ × Γi ×∆i). The identifier self acts in

9

this model as an implicit result parameter of the constructor and an implicit
variable parameter of the methods.

Being declared as such, the class C is a tuple (K,M1, . . . ,Mn). Further on
we will refer to K as the constructor and to M1, . . . ,Mn as the methods, unless
stated otherwise. The object type specified by a class can always be extracted
from the class and we do not need to declare it explicitly. We use τ(C) to denote
the type of objects generated by the class C; as such, τ(C) is just another name
for Σ.

3.1 Object Instantiation and Method Invocations

Initialization of a new variable c of object type τ(C) takes invoking the corre-
sponding class constructor:

create var c.C(e) =̂ enter (var x0, u · x0 = e);K × skip;
enter (var c, (self , x0), u · c = self);Swap; exit

where Swap = 〈λx, y, z · y, x, z〉. A variable x0 : Γ0 is first entered into the state
space and initialized with the value of e. Then the constructor K is “injected”
into the global state space, skipping on the global state component u. The next
statement enters a variable c and initializes it to the value of the state compo-
nent self . The state rearranging Swap makes the pair (self , x0) the first state
component before exiting it from the block. Naturally, a variable of an object
type initialized in this way can be local to a block:

create var c.C(e);S; end =̂ create var c.C(e);S; exit

Invocation of a method Methi(val xi : Γi, res yi : ∆i) on an object c instan-
tiated by class C is modelled by

(var c, u · c.Methi (gi, di)) =̂ begin (var (self , xi, yi), c, u ·
self = c ∧ xi = gi);
Mi × skip; c, di := self , yi;

end

where u : Φ are global variables including di : ∆i, and gi : Γi is some expression.

3.2 Modelling Object Clients

A client program using an object c : τ(C) does so by invoking its methods.
Every time a client has a choice of which method to choose for execution. In
general, each option is preceded with an assertion which determines whether the
option is enabled in a particular state. While at least one of the assertions holds,
the client may repeatedly choose a particular option which is enabled and have
it executed. The client decides on its own when it is willing to stop choosing
options. Such an iterative choice of method invocations, followed by arbitrary

10

statements not affecting the object directly, describes all the actions the client
program might undertake:

(var c, u · begin var l · b;do 〈〉ni=1qi :: c.Methi(gi, di);Li od; end)

Here u : Φ are global variables including di, l : Λ are some local variables
initialized according to b, predicates q1 . . . qn are the asserted conditions on the
state, and statements L1 through Ln are arbitrary. The initialization b, the
assertions q1 . . . qn, and the statements L1, . . . , Ln do not refer to c, which is
justified by the assumption that the object state is encapsulated. Therefore, c is
not free in b, every qi is of the form q′i × true × q′′i , with q′i : PΛ and q′′i : PΦ,
and every Li is of the form L′

i × skip× L′′
i , with L′

i : Ξ(Λ) and L′′
i : Ξ(Φ).

Objects can, of course, be their own clients, and any method of class C can
invoke other methods of C, including itself. The most general behavior of a
method Methj(val xj : Γj , res yj : ∆j) can therefore be described by

(var self , xj , yj · begin var l · b;do 〈〉ni=1qi :: self .Methi(gi, di);Li od; end)

where self is free in b, all qi can directly access self , and all Li can directly
access and modify it. For example, a method self-calling itself is an instance
of this general definition. The meaning of such a recursive method is given by
the least fixpoint of the corresponding function with respect to the refinement
ordering.

3.3 Modelling Dynamic Objects

Following [10], we model pointers to class instances as indices of an array of
these class instances. Natural numbers can be used as the index set of such an
array, and we can declare a program variable heap to contain the whole dynamic
data structure:

var heap : array Nat of τ(C)

The type of pointers to instances of class C can then simply be defined as the
type of natural numbers. The index value 0 can be used as a nil pointer. New
pointer (index) values can be generated dynamically, on demand, by keeping a
separate counter new for the next unused index:

type pointer to τ(C) =̂ Nat ;
var nil ,new : pointer to τ(C) := 0, 1;

Dynamic creation of an object of type τ(C) and association of a pointer
p : pointer to τ(C) with this object are modelled as follows:

p := new C(e) =̂ p,new := new ,new+1; create var c.C(e); heap [p] := c; end

To keep the array of class instances implicit, the notation p↑ is used for the ac-
cess operation heap [p], so that p↑ := e stands for the update operation heap [p] :=
e, and p↑ .Methi(gi, di) stands for the method invocation heap [p].Methi(gi, di).

11

3.4 Example

As an example of class specifications consider a text-editing application in which
a text document may be viewed and possibly changed in several different win-
dows. Whenever the text is changed in any of the windows in response to, e.g.,
user actions, all the other windows displaying the same text are notified of this
change and updated to achieve consistency in presenting the data. We specify
these interactions in Fig. 1. Views are responsible for presenting the textual data
in various windows and providing operations for changing it. A client of a text

TextDoc = class
var text : String ,

views : set of pointer to τ(View)

TextDoc (val t : String) =
enter var text , views ·
text = t ∧ views = {},

AddView (val v : pointer to τ(View)) =
[v �= nil]; views := views ∪ {v},

AddText (val t : String) =
text := text ̂ t; self .Notify(),

GetText (res t : String) = t := text ,

Notify () =
begin var (vs, v) · vs = views;

while vs �= {} do
[v := v′ | v′ ∈ vs];
vs := vs \ v; v↑ .Update()

od;
end

end

View = class
var txt : String ,

doc : pointer to τ(TextDoc)

View (val d : pointer to
τ(TextDoc)) =
[d �= nil];
enter var txt , doc · doc = d;
doc ↑ .GetText(txt),

AddText (val t : String) =
doc ↑ .AddText(t),

Update () = doc ↑ .GetText(txt)
end

TextEditor = class
. . .
OpenTextDoc () =

begin var d : pointer to τ(TextDoc); d := new TextDoc(””);
begin var (v1, v2 : pointer to τ(View));

v1 := new View(d); d↑ .AddView(v1);
v2 := new View(d); d↑ .AddView(v2);

end;
end,

. . .
end

Fig. 1. Example of class specification

12

editor can open a new text document, displayed in two different windows, by in-
voking the method OpenTextDoc. When one of these views is asked to add some
text to the existing one, the method AddText is invoked. This method forwards
the request to the method AddText of the current view’s doc attribute. After the
new text is concatenated to the old one, all views on the document are notified
of the change and asked to update their state.

A point to notice here is that such a specification, although being rather ab-
stract, precisely documents the behavior of the involved parties without resorting
to verbal descriptions. The necessity for a precise documentation was pointed
out in [17] when discussing the Observer pattern which our example follows.
In particular, it was advised to document which Subject (in our case TextDoc)
methods trigger modifications. Also, the place of the Notify method invocation
can be fixed in the specification. We chose to call it from the state-modifying
AddText method of TextDoc after the change. Alternatively, this method could
be called from AddText of View after invoking the corresponding method on
the doc attribute. The advantages and disadvantages of both approaches are
discussed in [17], we only would like to note that fixing the invocation of this
method in the specification helps avoiding the problem of calling this method
at inappropriate times or, even worse, not calling it at all from the overridden
methods in subclasses of TextDoc and View.

3.5 Subclassing

New classes can be constructed from existing ones by inheriting some or all of
their attributes and methods, possibly overriding some attributes and methods,
and adding extra methods. This mechanism is known as subclassing.1

A class constructed from C by subclassing is declared as follows:

C ′ = subclass of C
var attr1 : Σ1, . . . , attri : Σi, attr

′
1 : Σ

′
1, . . . , attr

′
p : Σ′

p

C ′ (val x′
0 : Γ

′
0) = K ′,

Meth1 (val x1 : Γ1, res y1 : ∆1) = M ′
1,

. . .
Methk (val xk : Γk, res yk : ∆k) = M ′

k,
NMeth1 (val u1 : Φ1, res v1 : Ψ1) = N1,
. . .
NMethp (val up : Φp, res vp : Ψp) = Np

A subclass may have attributes different from those of its superclass, inheriting
attr1, . . . , attri and overriding attri+1, . . . , attrm by attr′1, . . . , attr

′
p. The class

constructor is not inherited from the superclass, but rather redefined in every
subclass. The statements M ′

1, . . . ,M
′
k override the corresponding definitions of

1 We prefer the term subclassing to implementation inheritance because the latter
literally means reuse of existing methods and does not, as such, suggest the possibility
of method overriding.

13

Meth1, . . . ,Methk given in C. The methods NMeth1, . . . ,NMethp with bodies
given by N1, . . . , Np are new.

When a subclass C ′ inherits all attributes of its superclass C without over-
riding them, methods defined in the superclass can be invoked from methods
M ′

1, . . . ,M
′
k, N1, . . . , Np using a special identifier super. For example, a method

Methi (val xi : Γi, res yi : ∆i) defined in C by Mi can be super-called inside any
of M ′

1, . . . ,M
′
k, N1, . . . , Np by writing super .Methi(gi, di), where gi and di are

some value and result arguments respectively. Such a super-call corresponds to
executing statement Mi×skip, with skip operating on the additional attributes
of C ′. Methods of the superclass can also be inherited as a whole. In this case
their redefinition in the subclass corresponds to super-calling them, passing value
and result parameters as arguments. Following the standard convention, we omit
such inherited methods from the subclass declaration.

We view subclassing as a syntactic relation on classes, since subclasses are
distinguished by an appropriate declaration. Subclassing implies conformance of
interfaces, meaning that the interface specified by a subclass is an extension of
the interface specified by the superclass, having at least all the method signa-
tures of the latter and possibly introducing new ones. In an extended interface
the inherited method signatures can be modified to allow more flexibility in
polymorphic object substitutability. In the next section we explain this can be
achieved.

3.6 Modelling Subtype Polymorphism and Dynamic Binding

To model subtype polymorphism, we allow object types to be sum types. The
idea is to group together an object type of a certain class and object types of
all its subclasses, to form a polymorphic object type. A variable of such a sum
type can be instantiated to any base type of the summation, in other words,
to any object instantiated by a class whose object type is the base type of the
summation.

A sum of object types, denoted by τ(C)+ is defined to be such that its base
types are τ(C) and all the object types of subclasses of C. For example, if D is
the only subclass of C with the object type τ(D), then τ(C)+ = τ(C) + τ(D),
and we have that

τ(C) <: τ(C)+ and τ(D) <: τ(C)+

The diagram in Fig. 2 illustrates the relationship between subclassing and
subtyping hierarchies. The subclassing hierarchy on the left-hand side corre-
sponds to the subtyping hierarchy on the right-hand side, with the arrows mean-
ing “is the type of instances of”.

Suppose a method Methi (val xi : Γi, res yi : ∆i) is specified in both C and
D. An invocation of this method on an object p of type τ(C)+ is modelled as a
choice between two alternatives each calling Methi, but one assuming that p is
instantiated by class C and the other assuming instantiation by class D:

14

D E

τ(C)+

τ(C) τ(D)+

τ(G)+τ(F)+

τ(E)+

τ(G)

τ(E)

τ(F)

τ(D)

C

F G

Fig. 2. The relationship between subclassing and subtyping hierarchies

p.Methi(gi, di) =̂

{p ∈ ran ιτ(C)};
begin var c · πτ(C) p c;

c.Methi(gi, di);
p := ιτ(C) c;

end

 �

{p ∈ ran ιτ(D)};
begin var d · πτ(D) p d;

d.Methi(gi, di);
p := ιτ(D) d;

end

When p is an instance of C, the assertion {p ∈ ran ιτ(C)} skips, and the method
Methi is invoked on the object c corresponding to the projection πτ(C) of p.
Afterwards, the value of c is injected to be of type τ(C)+ and used to update
p. The invocation c.Methi(gi, di) is modelled as in Sec. 3.1. The assertion that
p is an instance of D is false, aborting the second alternative of the angelic
choice, since for all predicates q, {q} = if q then skip else abort fi, and for all
statements S, abort;S = abort. The angelic choice between the two statements
is then equal to the first alternative, since S � abort = S. Similarly, when p
is an instance of D, the first alternative aborts, and the choice is equal to the
second alternative. As such, the choice between the alternatives is deterministic.

A polymorphic variable p : τ(C)+ can be instantiated by either class C or its
subclass. In practice we occasionally would like to underspecify which particular
class instantiates p. We can express this by using a demonic choice of possible
instantiations. We will write p.C+(e), where e is any expression of type Γ0, for
this kind of polymorphic instantiation:

create var p.C+(e) =̂

create var c.C(e);
begin var p · πτ(C) p c;

Swap;
end

 �

create var d.D(e);
begin var p · πτ(D) p d;

Swap;
end

Intuitively, the demonic choice can be interpreted as underspecification, which
would eventually be eliminated in a refinement. Note that since the demonic
choice is refined by either alternative, we have that any concrete instantiation re-
fines the polymorphic instantiation. Modelling of both the invocation of a method
on a polymorphic variable and the instantiation of such a variable generalizes to
class hierarchies with several classes in a straightforward way, recursively.

15

Being equipped with subtype polymorphism, we can allow overriding meth-
ods in a subclass to be generalized on the type of value parameters or specialized
on the type of result parameters. In the first case this type redefinition is con-
travariant and in the second covariant.2 When one interface is the same as the
other, except that it can redefine contravariantly value parameter types and co-
variantly result parameter types, this interface conforms to the original one. For
example, Methi (val xi : Γi, res yi : ∆i) specified in class C could be redefined
in its subclass D so that the value parameters are of type Γ ′

i , such that Γi <: Γ ′
i ,

and the result parameters are of type ∆′
i, such that ∆′

i <: ∆i. An invocation of
such a method would then need to adjust the input arguments and the result
using the corresponding projections and injections. For example, invocation of
Methi (val x′

i : Γ
′
i , res y

′
i : ∆

′
i) specified by M ′

i in class D on an object d : τ(D)
with input argument gi : Γi and result argument di : ∆i is modelled by

d.Methi (gi, di) =̂ begin var self , x′
i, y

′
i · self = d ∧ x′

i = ιΓi
gi;

M ′
i × skip; d, di := self , ι∆′

i
y′i;

end

Here the value parameter x′
i is initialized with the value of the input argument

injected into the type Γ ′
i . Similarly, the value of the method result y′i, being of

type ∆′
i, cannot be directly assigned to the variable di : ∆i and is injected into

the type ∆′
i using the corresponding injection function.

Subtype polymorphism extends in a natural way to pointer types. A sum of
pointer types pointer to τ(C)+ is defined to be such that its base types are
pointer to τ(C) and all the pointer types to subclasses of C. A variable of such
a polymorphic pointer type cannot be instantiated using new, because the latter
is defined to generate a new index in some array of class instances associated with
a base pointer type. A polymorphic pointer variable can, however, be assigned a
value of an existing index to one of the arrays heapC , heapC1

, . . . , heapCn
, which

keep instances of C and instances of its subclasses C1, . . . , Cn. Before assignment,
this pointer value should be injected into the corresponding sum type.

Dynamic binding of self-referential methods can occur only when a subclass
inherits all attributes of its superclass without overriding them. Essentially, a
super-call to a method self-calling other methods of the same class resolves the
latter with the definitions of the self-called methods in the class which originated
the super-call.

Suppose that class C ′ inherits all attributes of its superclass C and has some
new attributes, so that the first projection of self : Σ × Σ′ in C ′ is equal to
self : Σ in C. The general behavior of a self-referential method Methj(val xj :
Γj , res yj : ∆j) in C can be described by

(var self , xj , yj · begin var l · b;do 〈〉ni=1qi :: self .Methi(gi, di);Li od; end)

2 For a more extensive explanation of covariance and contravariance see, e.g., [1].

16

Bag = class
var b : bag of Char

Bag() = enter var b · b = �||�,
Add(val c : Char) = b := b ∪ �|c|�,
AddAll(val nb : bag of Char) =

while nb �= �||� do
begin var c · c ∈ nb;
self .Add(c);nb := nb − �|c|�;

end
od

end

CountingBag = subclass of Bag
var b : bag of Char , n : Nat

CountingBag() =
enter var b, n · b = �||� ∧ n = 0,

Add(val c : Char) =
n := n + 1; super .Add(c)

end

Fig. 3. Example of subclassing with dynamic binding of self-referential methods

Let the behavior of this method be given in C ′ by super .Methj(xj , yj). Then the
super-call is defined to invoke the self-called methods on the current self object:

(var self , xj , yj · super .Methj(xj , yj)) =̂
(var self , xj , yj · begin 〈ρ〉 (var l, self , xj , yj · b);

do 〈〉ni=1〈ρ〉 qi :: self .Methi(gi, di);Li ↓ | ρ | od;
end)

where ρ = (λx, (y, y′), z · x, y, z) is the projection function removing the extra
attribute of self . Applying the functional update 〈ρ〉 to the predicates
(var l, self , xj , yj · b) and q1, . . . , qn, and wrapping the statements L1, . . . , Ln in
the relation | ρ | , coerces them to operate on the extended state space Λ× (Σ×
Σ′) × Γj ×∆j . As such, this is a technicality not changing the meaning of the
corresponding statements. Self-calls to Meth1, . . . ,Methn are resolved with the
definitions of these methods given in C ′.

As an example consider specifications of Bag and CountingBag presented in
Fig. 3. The subclass CountingBag inherits the only attribute of its superclass
Bag , representing a bag of characters, and adds a counter of bag elements. The
method Add overrides the corresponding method of the superclass by increment-
ing the counter and then super-calling Add of Bag .

The method AddAll joins two bags by self-calling Add . The self-call in the
definition of AddAll in Bag is resolved by substituting the body of Add as defined
in Bag :

Bag :: AddAll(val nb : bag of Char) = while nb �= �||� do
begin var c · c ∈ nb;

b := b ∪ �|c|�;nb := nb− �|c|�;
end

od

17

The definition of the method AddAll in CountingBag exemplifies dynamic
binding of self-referential methods. First of all, inheriting this method from Bag
corresponds to super-calling it:

CountingBag :: AddAll(val nb : bag of Char) = super .AddAll(nb)

According to the definition of a super-called method involving self-calls, we then
have that for self = (b, n), super .AddAll(nb) is equal to

(var (b, n), nb · while 〈ρ〉 (var b, nb · nb �= �||�) do
begin 〈ρ〉 (var c, b, nb · c ∈ nb);

self .Add(c); (var c, b, nb · nb := nb− �|c|�)↓ | ρ | ;
end

od)

which, using the definitions of ρ, ↓, and functional update, is equal to

(var (b, n), nb · while (var (b, n), nb · nb �= �||�) do
begin (var c, (b, n), nb · c ∈ nb);

self .Add(c); (var c, (b, n), nb · nb := nb− �|c|�);
end

od)

The self-call, being on self = (b, n), is resolved with the definition of Add in
CountingBag .

4 Class Refinement

When a subclass overrides some methods of its superclass, there are no guaran-
tees that its instances will deliver the same or refined behavior as the instances
of the superclass. Unrestricted method overriding in a subclass can lead to arbi-
trary behavior of its instances. When used in a superclass context, such subclass
instances can invalidate their clients. To avoid such problems, we would like to
ensure that whenever C ′ is subclassed from C, clients using objects instantiated
by C can safely use objects instantiated by C ′ instead. First we consider class
refinement between two classes having the same number of methods and then
extend the definition to account for additional methods defined in a subclass.

4.1 Class Refinement Without New Methods

Suppose classes C and C ′ specify interfaces

Meth1 (val : Γ1, res : ∆1), . . . ,Methn (val : Γn, res : ∆n) and
Meth1 (val : Γ ′

1, res : ∆′
1), . . . ,Methn (val : Γ ′

n, res : ∆′
n)

respectively. Let C and C ′ be modelled by tuples (K,M1, . . . ,Mn) and
(K ′,M ′

1, . . . ,M
′
n), where K : Γ0 �→ Σ × Γ0 and K ′ : Γ ′

0 �→ Σ′ × Γ ′
0 are the class

18

b)

�'
0

{ �
�0

}

�
0a) � x �

0

�' x �'
0

{ R x �
�0

}

K

K'

{ R x �
�i

x |�
�'i

| }

M'
i

�' x �'
i
x �'

i

M
i

� x �
i
x �

i

{ R x �
�i

x |�
�'i

| }

� x �
i
x �

i

�' x �'
i
x �'

i

Fig. 4. Constructor refinement a) and method refinement b)

constructors, and all Mi : Ξ(Σ × Γi ×∆i) and M ′
i : Ξ(Σ′ × Γ ′

i ×∆′
i) are the

corresponding methods. The value parameter types of the constructors and the
methods in C ′ are either the same or contravariant, so that Γ0 <: Γ ′

0 and
Γi <: Γ ′

i , and the result parameter types of its methods are either the same
or covariant, ∆′

i <: ∆i.
Let R : Σ′ ↔ Σ be a relation coercing attribute types of C ′ to those of C,

so that R is of the form (λc · {a |R c a}). The refinement of class constructors
K and K ′ with respect to R is defined as follows:

K R K ′ =̂ {πΓ0};K K ′; {R× πΓ0} (constructor refinement)

where πΓ0 is the projection relation coercing Γ ′
0 to Γ0. The commuting diagram

in Fig. 4 (a) illustrates constructor refinement.
The refinement of all corresponding methods Mi and M ′

i with respect to the
relation R is defined by

Mi R M ′
i =̂ Mi ↓(R× πΓi

× |ι∆′
i
|) M ′

i (method refinement)

where πΓi
: Γ ′

i ↔ Γi projects the corresponding value parameters, and |ι∆′
i
| :

∆′
i ↔ ∆i injects the corresponding result parameters. Obviously, when Γi = Γ ′

i ,
the projection relation πΓi

is the identity relation Id. The same holds when
∆i = ∆′

i, namely, |ι∆′
i
| = Id . The commuting diagram in Fig. 4 (b) illustrates

method refinement.

Definition 1. For classes C = (K,M1, . . . ,Mn) and C ′ = (K ′,M ′
1, . . . ,M

′
n),

class refinement C C ′ is defined as follows:

C C ′ =̂ (∃R · K R K ′ ∧ (∀i | 1 ≤ i ≤ n · Mi R M ′
i))

The class refinement relation is reflexive and transitive. This definition of class
refinement is constructive in the sense that given two classes we can always
check whether these classes are in refinement. However, from this definition alone
we cannot make any conclusions about the behavior of clients using instances
of classes that are in refinement. Before presenting a theorem which relates
class refinement to object substitutability in clients, let us introduce two useful
lemmas.

Lemma 1. Let classes C and C ′ have constructors K : Γ0 �→ Σ × Γ0 and
K ′ : Γ ′

0 �→ Σ′ × Γ ′
0 with Γ0 <: Γ ′

0. In a global state u : Φ, for any relation
R : Σ′ ↔ Σ, any statement S : Ξ(Σ × Φ), and any constructor input argument
e : Γ0,

19

K R K ′ ⇒
create var c.C(e);S; end create var c′.C ′(e);S ↓(R× Id); end

Lemma 2. Let classes C and C ′ have methods Mi : Ξ(Σ × Γi ×∆i) and
M ′

i : Ξ(Σ′ × Γ ′
i ×∆′

i) with Γi <: Γ ′
i and ∆′

i <: ∆i. In a global state u : Φ in-
cluding a variable di : ∆i, for any relation R : Σ′ ↔ Σ and any input argument
gi : Γi,

Mi R M ′
i ⇒

(var c, u · c.Methi(gi, di))↓(R× Id) (var c′, u · c′.Methi(gi, di))
The following theorem proves that clients using objects instantiated by some

class are refined when using objects instantiated by its refinement.

Theorem 1. For any classes C and C ′, any program K expressible as an iter-
ative choice of invocations of C methods, and any constructor input argument
e : Γ0,

C C ′ ⇒ create var c.C(e);K [c]; end create var c′.C ′(e);K [c′]; end

Proofs of Lemma 1, Lemma 2, and Theorem 1 are presented in the appendix.
Declaring one class as a subclass of another raises the proof obligation that the
class refinement relation holds between these classes. This is, in a way, a semantic
constraint that we impose on subclassing to ensure that behavior of subclasses
conforms to the behavior of their superclasses and that subclass instances can
be substituted for superclass instances in all clients.

4.2 The Problem Introduced by New Methods

As was pointed out in [26] the effects of new methods become visible in the
presence of subsumption (subtype aliasing) as well as in the general computa-
tional environment that allows sharing of objects by multiple users. For example,
when a client is working with an object c′ of a subclass C ′ of C, it may freely
call new methods defined in C ′. Other clients of c′ considering it as an instance
of the polymorphic type τ(C)+ can only anticipate changes to c′ specified by the
methods of the class C. New methods specifying some “unexpected behavior”
could take c′ to (what for C is) an unreachable state, and clients of this object
considering it from the superclass perspective would be damaged.

Let us consider an example illustrating this problem. Suppose that a class
Counter introduces methods Val and Inc2 which, respectively, return the value
of the counter and increment the counter by two. A subclass Counter ′ inherits
these methods and, in addition, defines a method Inc1 incrementing the counter
by one:

Counter = class Counter ′ = subclass of Counter
var n : Nat var n : Nat

Counter () = enter var n · n = 0, Counter ′ () = enter var n · n = 0,
Inc2 () = n := n + 2, Inc1 () = n := n + 1
Val (res r : Nat) = r := n end

end

20

The implicit (or the strongest) invariant established by the class constructor
and preserved by the methods of Counter states that the predicate Even holds
of all states reachable by objects instantiated by Counter . The new method Inc1
defined in the subclass breaks this invariant. A client K of a polymorphic object
c : τ(Counter)+ might assume that this invariant holds of all states reachable
by c and execute some statement S relying on the invariant:

K[c] = if (Even c.Val()) then S else abort fi

When c is instantiated by Counter , other clients in the environment of K will
only be able to call the methods defined in the class Counter which preserve
the strongest invariant. When operating in such an environment, K will always
execute S. However, when c is instantiated by Counter ′, K may also work in
the environment where other clients of c know about its origin and may call the
method Inc1 in addition to the methods Inc2 and Val . Suppose, for example,
that there is a client K′ which sees the class Counter ′, with the new method
Inc1 (), and tries to increase the counter by as little as possible:

K′[c] = if (c is τ(Counter ′)) then c.Inc1 () else c.Inc2 () fi

If objects c and c′ are now instantiated by Counter and Counter ′ respectively and
initialized to zero, executing K′[c];K[c] equals executing S, whereas K′[c′];K[c′]
aborts because the strongest invariant is broken by K′.

To avoid this and similar problems, we want to ensure that invocation of
a new method does not result in any unexpected behavior or, in other words,
that the new method preserves the strongest invariant of its superclass. Let us
formally analyze this consistency property and the requirements that can be
imposed on new methods to enforce this property.

4.3 Ensuring New Method Consistency

Let us first define the notion of the strongest class invariant. As suggested by
its name, the strongest class invariant is the least state predicate established by
the class constructor and preserved by all its methods.

Definition 2. For a class C = (K,M1, . . . ,Mn), a state predicate I is the
strongest class invariant if it is the invariant of C and of all invariants of C
it is the least one:

Inv (C, I) =̂ true {|K |} I ∧ (∀i | 1 ≤ i ≤ n · I {|Mi |} I) ∧
(∀J · true {|K |} J ∧ (∀i | 1 ≤ i ≤ n · J {|Mi |} J) ⇒ I ⊆ J)

Suppose now that a class C = (K,M1, . . . ,Mn) specifies the interface

Meth1 (val : Γ1, res : ∆1), . . . ,Methn (val : Γn, res : ∆n)

and a class C ′ = (K ′,M ′
1, . . . ,M

′
n, N1, . . . , Np) specifies the interface

Meth1 (val : Γ1, res : ∆1), . . . ,Methn (val : Γn, res : ∆n),
NMeth1 (val : Φ1, res : Ψ1), . . . ,NMethp (val : Φp, res : Ψp)

21

For simplicity, we assume that methods Meth1, . . . ,Methn in C ′ have the same
types of value and result parameters as the corresponding methods in C. The case
when the value parameter types are contravariant and the result parameter types
are covariant is treated similarly. We can express the meaning of an invariant I of
C on the attributes of C ′ as {R} I, where R is a relation coercing the attributes
of C ′ to those of C. To guarantee that a new method Nj of C ′ preserves the
strongest class invariant of C, we then need to prove the correctness assertion
{R} I {|Nj |} {R} I for I such that Inv (C, I). By satisfying this correctness
assertion, the new method of C ′ preserves the set of reachable states of C. In
general, preserving a coerced invariant {R} I by a statement S′ : Ξ(Σ′) is the
same as preserving the invariant I by the statement S′ coerced to operate on
the state space Σ, as expressed in the following lemma.

Lemma 3. For a statement S′ : Ξ(Σ′), a relation R : Σ′ ↔ Σ, and a state
predicate I : PΣ, we have

{R} I {|S′ |} {R} I = I {|S′ ↑R |} I

A proof of this lemma is presented in the appendix.
Class refinement between a class C and a class C ′ introducing new methods is

given as an extension of Def. 1 requiring that every new method of C ′ preserves
the strongest class invariant of C.

Definition 3. For a class C = (K,M1, . . . ,Mn) and a class C ′ = (K ′,M ′
1, . . . ,

M ′
n, N1, . . . , Np), class refinement C C ′ is defined as follows:

C C ′ =̂ (∃R · K R K ′ ∧ (∀i | 1 ≤ i ≤ n · Mi R M ′
i) ∧

(∀I · Inv (C, I) ⇒ (∀j | 1 ≤ j ≤ p · {R} I {|Nj |} {R} I)))

As one can expect, Theorem 1, relating class refinement to object substi-
tutability in clients, holds for the extended definition of class refinement as well.
Unfortunately, verifying correctness assertions for new methods can be difficult
in practice, because the strongest invariant of a superclass cannot always be
easily calculated from its specification, e.g., in the case of recursive method in-
vocations. When such verification is infeasible, we could instead verify that new
methods satisfy certain restrictions such that the correctness assertions hold au-
tomatically. Intuitively, a new method preserves the strongest invariant of the
superclass if it does not modify attributes at all, or if it modifies them as the
old methods could have done. More precisely, the strongest invariant of the su-
perclass is preserved in the following cases:

• the new method is an observer, i.e. a non-modifying method
• the subclass adds new attributes without overriding the original attributes
of the superclass and the new method modifies only these new attributes

• the new method is composed of calls to old methods
• the new method is a refinement of (a combination of) old methods

22

Note that in the last case the new method can either data refine the old
method definitions as given in the superclass, or refine the old method definitions
as given in the subclass, or be a refinement of any combination of these.

Formally, weak iteration of a demonic choice of statements S1, . . . , Sn, namely
(�n

i=1 Si)∗, describes all possible combinations of these statements. Any combi-
nation of statements refines this statement, e.g., (�3

i=1 Si)∗ S1;S3;S2;S1. To
be consistent, a new method should data refine an arbitrary combination of old
methods prefixed by enabledness guards and intermixed with arbitrary state-
ments. We require that the arbitrary statements do not update the attributes
and necessarily terminate. A statement S is guaranteed to terminate if it can
establish any postcondition from any initial state, i.e. true = S true.

As old methods and new methods operate on different state spaces, we first
have to adjust them to operate on the common state space. Recall that methods
Mi of C operate on Σ×Γi×∆i, while methods M ′

i of C
′ operate on Σ′×Γi×∆i

and new methods Nj on Σ′ × Φj × Ψj . We can construct a common state space
Π including all value and result parameter types of all methods in C ′ so that

Π = Γ1 ×∆1 × . . .× Γn ×∆n × Φ1 × Ψ1 × . . .× Φp × Ψp

Then a projection function ξi : Π → Γi ×∆i, for i = 1..n, will give us the types
of value and result parameters of method M ′

i . Similarly, a projection function
ξn+j : Π → Φj × Ψj , for j = 1..p, will give us the types of value and result
parameters of method Nj . We can always coerce M ′

i to operate on the state
space Σ′ ×Π using the corresponding projection function.

As methods Mi of C have to operate on the attributes of C ′ rather than C,
they have to be appropriately coerced using the abstraction relation R : Σ′ ↔ Σ.
The resulting statement Mi ↓R, being of type Ξ(Σ′ × Γi ×∆i), still has to be
coerced to operate on the common state space Σ′ ×Π, using the corresponding
projection function.

Putting everything together, we can now define consistency of new methods
as follows.

Definition 4. For classes C = (K,M1, . . . ,Mn) and C ′ = (K ′,M ′
1, . . . ,M

′
n,

N1, . . . , Np), some guards qi, and some terminating statements Ki skipping on
the attributes of C ′, consistency of a new method Nj, for j = 1..p, with respect
to C and an abstraction relation R : Σ′ ↔ Σ is defined as follows:

Consistent (Nj , C,R) =̂
begin var l · b; (�n

i=1 [qi]; (skip×Mi ↓R)↓|ρi|;Ki)∗; end Nj

Here the local block variables l introduce the value and result parameters of all
methods M ′

1, . . . ,M
′
n and all new methods except Nj , whose value and result

parameters are already present in the state. Effectively, the state space inside the
block isΠ ′×Σ′×Φj×Ψj , whereΠ ′ is the same as Π with Φj×Ψj projected away.
The statement skip×Mi ↓R operates on the state space Π ′′×Σ′×Γi×∆i, where
Π ′′ is the same as Π with Γi ×∆i projected away. To coerce this statement to
operate on the state space of the block, which has the same state components but

23

in a slightly different order (unless Mi and Nj happen to have value and result
parameters of the same types), we wrap it in the function ρi : Π ′×Σ′×Φj×Ψj →
Π ′′×Σ′×Γi×∆i. Note that wrappings in the state-reassociating functions ρi are
just technicalities not changing the meaning of the corresponding statements.

Definition 4 allows a new method to be an arbitrary non-modifying method
refining skip, since (�n

i=1 [qi]; (skip×Mi ↓R)↓|ρi|;Ki)∗ skip. No less im-
portant, it follows from Def. 4 that a new method Nj is also consistent if it is
composed of calls to overriding methods intermixed with arbitrary statements
or refines an arbitrary composition of such calls:

Corollary 1. For classes C = (K,M1, . . . ,Mn) and C ′ = (K ′,M ′
1, . . . ,M

′
n,

N1, . . . , Np), some guards qi, and some terminating statements Ki skipping on
the attributes of C ′,

(∀i | 1 ≤ i ≤ n · Mi R M ′
i) ∧

begin var l · b; (�n
i=1 [qi]; (skip×M ′

i)↓|ρi|;Ki)∗; end Nj ⇒
Consistent (Nj , C,R)

If all new methods in a class C ′ are consistent, the constructor of C is refined
by the constructor of C ′ and all old methods of C are refined by the correspond-
ing old methods of C ′, then class refinement between C and C ′ is guaranteed to
hold, as proved by the following theorem.

Theorem 2. For classes C = (K,M1, . . . ,Mn) and C ′ = (K ′,M ′
1, . . . ,M

′
n,

N1, . . . , Np),

(∃R · K R K ′ ∧ (∀i | 1 ≤ i ≤ n · Mi R M ′
i) ∧

(∀j | 1 ≤ j ≤ p · Consistent (Nj , C,R))) ⇒ C C ′

A proof of this theorem is given in the appendix.

5 Conclusions and Related Work

This work is based on [29], but concentrates on class refinement and its relation
to object substitutability. One of the main contributions of the present paper is
in modelling clients of class instances by an iterative choice of method invoca-
tions. In our opinion, polymorphic substitutability of objects in clients is central
to the object-oriented programming style, and, in this respect, the ability to
reason about the behavior of object clients, and not only objects, is very im-
portant. Our model allows us to reason formally about the relationship between
refinement on classes and substitutability of class instances in clients. We prove
that substituting instances of a refined class for instances of the original class is
refinement for the clients.

24

5.1 Related Work in Formalization of Object-Oriented Concepts

Related work in formalization of object-oriented concepts includes [13, 31, 33, 2].
William Cook and Jens Palsberg in [13] give a denotational semantics of inheri-
tance and prove its correctness with respect to an operational “method lookup”
semantics. They model dynamic binding of self-referential methods by represent-
ing classes as functions of self-called methods and constructing subclasses using
modifying wrappers. There are only functional methods in their model, whereas
we consider the methods modifying object state as well.

Mart́ın Abadi and Rustan Leino in [2] develop a logic of object-oriented pro-
grams in the style of Hoare [20], prove its soundness and discuss completeness
issues. Rather than building a new logic, we extend a logic for reasoning about
imperative programs (the refinement calculus) with definitions of classes, sub-
classing, subtyping, and class refinement. Our extension is conservative in the
sense that it does not extend the set of theorems over the original constants in
the underlying logic. Accordingly, our logic of object-oriented programs inherits
all meta-logical properties of the refinement calculus, including soundness. Being
itself a conservative extension of higher-order logic, the refinement calculus has
the syntax of higher-order logic, with some syntactic sugaring, and the simple
set-theoretic semantics of higher-order logic. As the refinement calculus identi-
fies program statements with the monotonic predicate transformers that they
determine, it makes no distinction between syntax, semantics, and proof theory
that is traditional in programming logics [10].

Semantics of a simple imperative Oberon-like programming language with
similar specification constructs as here, also based on predicate transformers, is
defined by David Naumann in [31]. Emil Sekerinski [33] defines a rich object-
oriented programming and specification notation by using a type system with
subtyping and type parameters, and also using predicate transformers. In both
approaches, subtyping is based on extensions of record types. Here we use sum
types instead, as suggested by Ralph Back and Michael Butler in [8] and further
elaborated in [29]. One motivation for moving to sum types is to avoid com-
plications in the typing and the logic when reasoning about record types: the
simply typed lambda calculus as the formal basis is sufficient for our purposes.
Also, to allow objects of a subclass to have different (private) attributes from
those of the superclass, hiding by existential types was used in [33]. It turned
out that this leads to complications when reasoning about method calls, which
are not present when using the model of sum types. Leonid Mikhajlov and Emil
Sekerinski in [27] give semantics to object-oriented constructs in the refinement
calculus, modelling dynamic binding of self-referential methods following [13]
but permitting state-modifying methods as we do here. As their formalization is
tailored for studying a particular problem, namely the fragile base class problem,
they consider a limited set of object-oriented constructs and mechanisms.

The detailed elaboration of our formalization, especially the fact that we de-
fine all object-oriented constructs and mechanisms on the semantic level, within
the logic, rather than by syntactic definitions, opens the possibility of mecha-
nized reasoning and mechanical verification. An interesting recent work by Bart

25

Jacobs et al. in [22] reports a work in progress on building a front-end tool for
translating Java classes to higher-order logic in PVS [32]. The authors state
that “current work involves incorporation of Hoare logic [20], via appropriate
definitions and rules in PVS”, and present in [22] a description of the tool “di-
rectly based on definitions”. We develop a theoretic foundation for reasoning
about object-oriented programs based on the logical framework for reasoning
about imperative programs. A tool supporting verification of correctness and
refinement of imperative programs and known as the Refinement Calculator [23]
already exists and extending it to handling object-oriented programs based on
the formalization presented here appears to be only natural.

5.2 Related Work on Behavioral Compatibility of Objects

The general idea behind our approach and the research direction known as be-
havioral subtyping is essentially the same – to develop a specification and verifi-
cation methodology for reasoning about correctness of object-oriented programs.
Our work has been to a great extent inspired by works of Pierre America, Barbara
Liskov, Jeannette Wing, Gary Leavens, and others [4, 5, 26, 25, 16]. However, our
approach differs in a number of ways. First of all, as was already mentioned in the
introduction, we consider it essential to separate decidable syntactic properties
of interface conformance or subtyping from undecidable but provable properties
of behavioral conformance or refinement. We use classes to express (at different
abstraction levels) the behavior of objects and class refinement to express be-
havioral conformance. Here we for simplicity consider systems where subclassing
forms a basis for subtype polymorphism. However, our model of classes, subclass-
ing, and subtype polymorphism as well as the definition of class refinement can
be used to reason about the meaning of programs using separate subclassing and
interface inheritance hierarchies. By associating a specification class with every
interface type, we can reason about the behavior of objects having this interface.
All classes claiming to implement a certain interface must refine its specification
class. Subclassing in this layout does not, in general, require establishing class
refinement between the superclass and the subclass.

When used in the context of separate subclassing and subtyping hierarchies,
class refinement is very similar to behavioral subtyping. Consider a graphical
representation of the corresponding settings in Fig. 5. In both cases I and I ′

are certain interfaces (types) such that I ′ is a syntactic subtype of I. In the
case of behavioral subtyping in Fig. 5 (a) the behavior of methods is specified
in terms of pre- and postconditions. To verify that I ′ is a behavioral subtype
of I, written I ′ < I, America, Liskov, and Wing require proving that every
precondition prei is stronger than the corresponding pre′i and every postcondition
posti is weaker than the corresponding post′i, while Dhara and Leavens in [16]
weaken the requirement for postconditions. In addition to proving behavioral
subtyping, one must also verify that the classes C and D claiming to implement
the types I and I ′ respectively really do so. America in [5] proposes a rigorous
verification method that can be used for this purpose. For verifying, e.g., that
C implements I, he uses a representation function mapping concrete states of

26

class S' specifies I'

Meth
1
() = S'

1
...
Meth

n
() = S'

n

Meth
1
() = S

1
...
Meth

n
() = S

n

class S specifies I

Meth
1
() = T

1
...
Meth

n
() = T

n

class C

Meth
1
() = T'

1
...
Meth

n
() = T'

n

class D

b)

implements Meth
1
() = T

1
...
Meth

n
() = T

n

class C

Meth
1
() = T'

1
...
Meth

n
() = T'

n

class D

implements

a)

{pre
1
} Meth

1
() {post

1
}

...
{pre

n
} Meth

n
() {post

n
}

type I

>

type I'

{pre'
1
} Meth

1
() {post'

1
}

...
{pre'

n
} Meth

n
() {post'

n
}

Fig. 5. behavioral subtyping (a) and class refinement (b) in the case of separate
interface and implementation inheritance hierarchies

C to the set of abstract states associated with I as well as a representation
invariant constraining the values of attributes in C, and requires proving that
every method Ti of C preserves the representation invariant and establishes posti
coerced to the state space of C when prei also coerced to the state space of C
holds. Since in [5] and other works on behavioral subtyping no formal semantics
is given to implementation constructs and mechanisms, such as, e.g., super-calls
or dynamic binding, this verification can only be done semi-formally.

Consider now the diagram (b) of Fig. 5 illustrating class refinement. First of
all, we can reason about specification classes S and S′ and implementation classes
C and D in a uniform manner, and the behavioral conformance between the
participating classes is the class refinement. Since class refinement is transitive,
we get directly that D, implementing I ′ by refining its specification S′, also
refines the specification S of I.

Class refinement can be used to verify correctness even if D happens to be a
subclass of C. Dynamic binding of self-referential methods, which becomes pos-
sible in this case, can be resolved as described in Sec. 3.6, and then we can prove
that, e.g., S′ D using the definition of class refinement. With behavioral sub-
typing, however, it is not clear how one can prove that a method satisfies certain
pre- and postconditions in the presence of dynamic binding of self-referential
methods.

When used for reasoning about systems with unified subclassing and sub-
typing, our methodology eliminates a significant amount of proof obligations as
compared to behavioral subtyping. We do not need to prove separately that a
class and its subclass implement the corresponding type and its behavioral sub-
type, all that needs to be proved is class refinement between the subclass and
the superclass.

Finally, the formalisms presented in [4, 5, 26, 25, 16] permit verification of
only partial correctness. Essentially, the correctness of a program with respect
to its specification can only be verified under the assumption that the program
terminates. Class refinement defined here guarantees total correctness, i.e. no
termination assumption has to be made. In general, we shift the focus from
correctness reasoning to establishing refinements between methods.

Researchers working in the area of behavioral subtyping, e.g., America in [5],
maintain that specifications in terms of pre- and postconditions are more ab-

27

stract and easier to understand than those in a more operational style, capturing
method invocation order. We feel that the essence of object-oriented programs
is in invoking methods on objects, and, as our TextDoc -View example shows, it
might be necessary to specify explicitly that a certain method calls other meth-
ods. When reasoning about correctness, it is often necessary to know the method
invocation order, which is more difficult to specify in terms of pre- and postcon-
ditions. Therefore, we consider it essential for a specification language to support
both declarative and operational specification styles, permitting abstract speci-
fications when it is desirable to abstract away from implementation details and
also permitting capturing method invocation order when it is essential. Similar
ideas are supported by Richard Helm et al. in [19]. They include method calls in
abstract specifications of contracts to express behavioral dependencies between
co-operating objects. Martin Büchi and Wolfgang Weck in [12] also advocate a
specification language combining specification statements with method calls.

Mark Utting in his PhD thesis [34] extends the refinement calculus to support
a variety of object-oriented programming styles. One of the main contributions
of [34] is a formal definition in the refinement calculus of modular reasoning ad-
vocated by Leavens in [25]. It is assumed that all objects are ordered by a sub-
stitution relation ≤ which must be a preorder but otherwise is unrestricted. An
object-oriented system is defined to support modular reasoning if methods of an
object a, such that a ≤ b, are refined by the corresponding methods of b. Clearly
our methodology of object-oriented system development supports modular rea-
soning, because, if the substitution ordering is chosen so that a ≤ b whenever
the class of a is refined by the class of b, then the corresponding methods are
in refinement. Our definition of class refinement is constructive, meaning that
it can be used to formally verify behavioral conformance between given classes.
Proving refinement between classes guarantees correctness of substitutability in
all clients of the objects these classes instantiate. Utting’s definition of modular
reasoning, on the other hand, is non-constructive; to cite Liskov and Wing’s de-
scription in [26], “it tells you what to look for, but not how to prove that you
got it”.

As it follows the style of behavioral subtyping, the approach reported in
[34] separates implementations and specifications (types) and checks behavioral
conformance of types to their supertypes. Data refinement is only allowed be-
tween the implementation and a specification of an object, although a way of
generalizing data refinement for the (behavioral) subtyping is discussed in the
future work section. Utting’s approach to formalization of object-oriented pro-
grams differs from ours in several aspects, motivated primarily by the fact that
the refinement calculus used as the basis for his object-oriented extensions was
formalized within infinitary rather than higher-order logic. In particular, with
the state space modelled by a product space as we have here, encapsulation is
built-in rather naturally in the model: methods operate only on the instances of
the corresponding class and cannot access or modify instances of other classes.
In [34] the state is not considered to be a tuple of state components, but rather
a function from all variables (including object variables) to all values (including

28

object values) in the program. Methods of all objects operate on the global state
and encapsulation is only assumed.

Behavioral dependencies in the presence of subclassing have also been stud-
ied in various extensions of Z specification languages, e.g., [24, 14], but only
between class specifications and not implementations. By having specification
constructs as part of the (extended) programming language, we do not have to
treat specifications and implementations separately.

Data refinement of modules, abstract data types, and abstract machines as,
e.g., in [21, 30, 3] forms a basis for class refinement. The latter, however, has
special features due to subtype polymorphism and dynamic binding.

Our treatment of new methods follows that of Liskov and Wing as presented
in [26]. They describe two approaches to dealing with new method consistency.
The first approach requires that new methods satisfy the explicit class invariant
and the history constraint, whereas the second approach forces new methods to
preserve the strongest superclass invariant. Here we do not consider explicit class
invariants and refer to [28] for a detailed analysis of consistency requirements
that must be imposed in the presence of explicit invariants. In this paper we
present a formal analysis of the requirements that, when satisfied by new meth-
ods, are guaranteed to preserve the strongest superclass invariant. Our definition
of new method consistency is more permissive than that of Liskov and Wing.
They informally require that “for each extra method an explanation be given
of how its behavior could be effected by just those methods already defined for
the supertype”. Our definition of consistency permits new methods not only to
be composed of calls to existing methods, but also refine an arbitrary combina-
tion of the old methods as defined in the subclass or data refine an arbitrary
combination of the old methods as defined in the superclass.

Applying our methodology in practice represents the subject of current re-
search. In particular, we are trying to specify the Java Collections Framework
which is a part of the standard JDK2.0.

Acknowledgments

The authors would like to thank Emil Sekerinski, Leonid Mikhajlov, Michael
Butler, and Martin Büchi for valuable comments on this paper.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In Proceedings

of TAPSOFT’97, LNCS 1214, pages 682–696. Springer, April 1997.
3. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University

Press, 1996.
4. P. America. Inheritance and subtyping in a parallel object-oriented language.

In Proceedings of ECOOP’87, LNCS 276, pages 234–242, Paris, France, 1987.
Springer-Verlag.

29

5. P. America. Designing an object-oriented programming language with behavioral
subtyping. In J. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foun-
dations of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout,
The Netherlands, May/June 1990, LNCS 489, pages 60–90, New York, N.Y., 1991.
Springer-Verlag.

6. R. Back, A. Mikhajlova, and J. von Wright. Reasoning about interactive systems.
To appear in Proceedings of the World Congress on Formal Methods (FM’99),
LNCS, Springer-Verlag, September 1999. Previous version appeared as Technical
Report No. 200, Turku Centre for Computer Science.
http://www.tucs.abo.fi/publications/techreports/TR200.

7. R. J. R. Back. Changing data representation in the refinement calculus. In 21st
Hawaii International Conference on System Sciences. IEEE, January 1989.

8. R. J. R. Back and M. Butler. Exploring summation and product operators in the
refinement calculus. In B. Möller, editor, Mathematics of Program Construction,
1995, volume 947. Springer-Verlag, 1995.

9. R. J. R. Back and J. von Wright. Programs on product spaces. Technical Report
143, Turku Centre for Computer Science, November 1997.

10. R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, April 1998.

11. R. J. R. Back and J. von Wright. Encoding, decoding and data refinement. Tech-
nical Report 236, Turku Centre for Computer Science, March 1999.

12. M. Büchi and W. Weck. A plea for grey-box components. Technical Report 122,
Turku Center for Computer Science, Presented at the Workshop on Foundations
of Component-Based Systems, Zurich, September 1997.

13. W. Cook and J. Palsberg. A denotational semantics of inheritance and its cor-
rectness. In Proceedings OOPSLA’89, volume 24, pages 433–443. ACM SIGPLAN
notices, Oct. 1989.

14. E. Cusack. Inheritance in object-oriented Z. In P. America, editor, Proceedings
of ECOOP’91, LNCS 512, pages 167–179, Geneva, Switzerland, July 15-19 1991.
Springer-Verlag.

15. K. K. Dhara and G. T. Leavens. Weak behavioral subtyping for types with mutable
objects. In Mathematical Foundations of Programming Semantics, volume 1 of
Electronic Notes in Theoretical Computer Science. Elsevier, 1995.

16. K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specifica-
tion inheritance. In Proceedings of the 18th International Conference on Software
Engineering, pages 258–267, Berlin, Germany, 1996.

17. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

18. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, 1993.

19. R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying behavioural
compositions in object-oriented systems. In Proceedings of OOPSLA/ECOOP’90,
ACM SIGPLAN Notices, pages 169–180, Oct. 1990.

20. C. A. R. Hoare. An axiomatic basis for computer programming. CACM,
12(10):576–583, 1969.

21. C. A. R. Hoare. Proofs of correctness of data representation. Acta Informatica,
1(4):271–281, 1972.

22. B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and H. Tews.
Reasoning about Java classes (preliminary report). In Proceedings of OOPSLA’98,
pages 329–340, Vancouver, Canada, Oct. 1998. Association for Computing Ma-
chinery.

30

23. T. L̊angbacka, R. Ruksenas, and J. von Wright. TkWinHOL: A tool for window
inference in HOL. Higher Order Logic Theorem Proving and its Applications: 8th
International Workshop, 971:245–260, September 1995.

24. K. Lano and H. Haughton. Reasoning and refinement in object-oriented specifi-
cation languages. In O. L. Madsen, editor, Proceedings of ECOOP’92, LNCS 615.
Springer-Verlag, 1992.

25. G. T. Leavens and W. E. Weihl. Reasoning about object-oriented programs that
use subtypes (extended abstract). In Proceedings of OOPSLA/ECOOP’90, volume
25(10) of ACM SIGPLAN Notices, pages 212–223, 1990.

26. B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, November 1994.

27. L. Mikhajlov and E. Sekerinski. A study of the fragile base class problem. In
E. Jul, editor, Proceedings of ECOOP’98, pages 355–382. Springer, July 1998.

28. A. Mikhajlova. Consistent extension of components in the presence of explicit
invariants. In Technology of Object-Oriented Languages and Systems (TOOLS
29), pages 76–85. IEEE Computer Society Press, June 1999.

29. A. Mikhajlova and E. Sekerinski. Class refinement and interface refinement in
object-oriented programs. In Proceedings of the 4th International Formal Methods
Europe Symposium, FME’97, LNCS 1313, pages 82–101. Springer, 1997.

30. C. C. Morgan. Programming from Specifications. Prentice–Hall, 1990.
31. D. A. Naumann. Predicate transformer semantics of an Oberon-like language. In

E.-R. Olderog, editor, Programming Concepts, Methods and Calculi, pages 460–
480, San Miniato, Italy, 1994.

32. S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In
D. Kapur, editor, 11th International Conference on Automated Deduction (CADE),
volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY,
June 1992. Springer-Verlag.

33. E. Sekerinski. A type-theoretic basis for an object-oriented refinement calculus. In
S. Goldsack and S. Kent, editors, Formal Methods and Object Technology. Springer-
Verlag, 1996.

34. M. Utting. An Object-Oriented Refinement Calculus with Modular Reasoning. PhD
thesis, University of New South Wales, Kensington, Australia, 1992.

31

Appendix

Algorithmic Refinement Rules

Let us first present algorithmic refinement rules that will be used in proofs of
Lemmas 1-3, and Theorems 1 and 2. Proofs of these rules can be found in [10,
9].

Skip is unit of sequential composition :
S; skip = S = skip;S

Relational product distribution through composition :
(P1 ×Q1); (P2 ×Q2) = (P1;P2)× (Q1;Q2)

Distribution of sequential composition through updates :

(a) 〈f〉; 〈g〉 = 〈f ; g〉
(b) [P]; [Q] = [P ;Q]
(c) {P}; {Q} = {P ;Q}

Product distribution through updates :

(a) 〈f〉 × 〈g〉 = 〈f × g〉
(b) [P]× [Q] = [P ×Q]
(c) {P} × {Q} = {P ×Q}

Product distribution through sequential composition :

(a) (S1;T1)× (S2;T2) (S1 × S2); (T1 × T2)
(b) (S1 × skip); (S2 × skip) = (S1;S2)× skip
(c) skip× {R}; (S × skip) = S × {R}
(d) [P ×Q] = [P × Id]; [Id×Q] = [Id×Q]; [P × Id]
(e) {P ×Q} = {P × Id}; {Id×Q} = {Id×Q}; {P × Id}

Data Refinement Rules

Proofs of most rules presented here can be found in [11], and the other rules can
easily be derived using definitions of the involved constructs.

The sequential composition rule states that the data refinement of a sequential
composition is refined by a sequential composition of the data refined compo-
nents:

(S1;S2)↓R (S1 ↓R); (S2 ↓R)
Data refinement also distributes through demonic and angelic choice:

(S � T)↓R S ↓R � T ↓R
(S � T)↓R S ↓R � T ↓R

The indifferent block rule reduces data refinement of a block with local vari-
ables to a data refinement of a statement inside that block, retaining the local

32

variables:

begin (p× true);S; end↓R begin (p× true);S ↓(Id ×R); end

When the initializing predicate is effected by the data refinement, the block rule
requires that this predicate is coerced accordingly:

begin p;S; end↓R begin p′;S ↓(Id ×R); end,
where p′ ⊆ (λ(x, y′) · ∃ y · R y′ y ∧ p(x, y))

There are also two auxiliary block begin rules:

(a) begin p; [(R× Id)−1] begin p′,
where p′ ⊆ (λ(x′, y) · ∃x · R x′ x ∧ p(x, y))

(b) {R};begin p begin p′; {Id ×R},
where p′ ⊆ (λ(x, y′) · ∃ y · R y′ y ∧ p(x, y))

Another block-related local variable rule allows us to change local variables in a
refinement. For any S : Ξ(Λ×Σ) and R : Λ′ ↔ Λ,

begin p;S; end begin p′;S ↓(R× Id); end,
where p′ ⊆ (λ(x′, y) · ∃x · R x′ x ∧ p(x, y))

Using the program variable notation, this rule can be expressed as follows:

begin (var l, u · b);S; end
begin (var l′, u · (∃ l · R l′ l ∧ b));

S ↓(R× Id);
end

The indifferent statement rule describes the cases when a statement is not af-
fected by data refinement:

(skip× S)↓(R× Id) skip× S and (S × skip)↓(Id ×R) S × skip

The iterative choice rule states that for any Si : Σ �→ Σ,R : Σ′ ↔ Σ, and any
qi : PΣ indifferent to R,

do 〈〉ni=1qi :: Si od↓R do 〈〉ni=1qi :: Si ↓R od

where indifference means that qi = q′i × true when R is of the form Id ×R′, and
qi = true× q′i when R = R′ × Id .

Finally, the identity of inverse coercion rule states that wrapping the state-
ment S ↓R in ↑R undoes the effect of wrapping S in ↓R:

S (S ↓R)↑R

33

Correctness Rules

Now let us present the rules that can be used for proving correctness assertions.

(a) p {|S1;S2 |} q = (∃r · p {|S1 |} r ∧ r {|S2 |} q)
(b) p {| (�i ∈ I · Si) |} q = (∀i ∈ I · p {|Si |} q)
(c) p {| [r] |} q = p ∩ r ⊆ q

(d) r {|S |} r ⇒ r {|S∗ |} r
(e) r {|S |} r ⇒ (true × r) {| skip× S |} (true × r)
(f) true = S true ⇒ (true × r) {|S × skip |} (true × r)
(g) (true × p) ∩ (var x, u · b) {|S |} (true × q) ⇒

p {|begin (var x, u · b);S; end |} q

Proofs of the rules (a)-(d) can be found in [10], and the rules (e)-(g) can easily
be derived using definitions of the involved constructs. Finally, the following
rule presented in [10] shows that refining a statement is the same as preserving
correctness of the statement:

S S′ = (∀p q · p {|S |} q ⇒ p {|S′ |} q)

Lemma 1. Let classes C and C ′ have constructors K : Γ0 �→ Σ × Γ0 and
K ′ : Γ ′

0 �→ Σ′ × Γ ′
0 with Γ0 <: Γ ′

0. In a global state u : Φ, for any relation
R : Σ′ ↔ Σ, any statement S : Ξ(Σ × Φ), and any constructor input argument
e : Γ0,

K R K ′ ⇒
create var c.C(e);S; end create var c′.C ′(e);S ↓(R× Id); end

Proof. We assume the antecedent and prove the consequent by refining the left-
hand side to the right-hand side:

create var c.C(e);S; end

≡ {
definition of constructor invocation

}
enter (var x0, u · x0 = e);K × skip;
enter (var c, (self , x0), u · c = self);Swap; exit;S; exit

≡ {
definitions

}
[λu · λ(x0, u

′) · x0 = e ∧ u = u′];K × skip;
[λ((self , x0), u) · λ(c, (self ′, x′

0), u
′) · c = self ∧ ((self , x0), u) = ((self ′, x′

0), u
′)];

〈λ(c, (self , x0), u) · ((self , x0), c, u)〉; 〈λ((self , x0), c, u) · (c, u)〉;S; 〈λ(c, u) · u〉

34

≡

demonic update of a functional relation |f | is equal to
a functional update of a function f : [|f |] = 〈f〉,
distribution of sequential composition through functional updates,
definition of functional composition, logic

[λu · λ(x0, u
′) · x0 = e ∧ u = u′];K × skip;

〈λ((self , x0), u) · (self , (self , x0), u)〉;
〈λ(c, (self , x0), u) · (c, u)〉;S; 〈λ(c, u) · u〉

 {
focus on a subexpression

}
[λu · λ(x0, u

′) · x0 = e ∧ u = u′];K × skip;

 {
general rule skip [R−1]; {R}}
[λu · λ(x0, u

′) · x0 = e ∧ u = u′];
[(πΓ0 × Id)−1]; {πΓ0 × Id};K × skip

≡
{
distribution of sequential composition through demonic updates,
definition of relational composition, logic

}
[λu · λ(x′

0, u
′) · x′

0 = ιΓ0 e ∧ u = u′]; {πΓ0 × Id};K × skip

≡
{
product distribution through angelic updates, then
product distribution through sequential composition (b)

}
[λu · λ(x′

0, u
′) · x′

0 = ιΓ0 e ∧ u = u′]; ({πΓ0};K)× skip

 {
assumption

}
[λu · λ(x′

0, u
′) · x′

0 = ιΓ0 e ∧ u = u′]; (K ′; {R× πΓ0})× skip

≡
{
product distribution through sequential composition (b), then
product distribution through angelic updates

}
[λu · λ(x′

0, u
′) · x′

0 = ιΓ0 e ∧ u = u′];K ′ × skip; {(R× πΓ0)× Id}
≡

[λu · λ(x′
0, u

′) · x′
0 = ιΓ0 e ∧ u = u′];K ′ × skip;

{(R× πΓ0)× Id};
〈λ((self , x0), u) · (self , (self , x0), u)〉;
〈λ(c, (self , x0), u) · (c, u)〉;S; 〈λ(c, u) · u〉

{
definition of sequential composition,
definitions of angelic and functional updates, logic

}
[λu · λ(x′

0, u
′) · x′

0 = ιΓ0 e ∧ u = u′];K ′ × skip;
〈λ((self ′, x′

0), u) · (self ′, (self ′, x′
0), u)〉;

{R× (R× πΓ0)× Id};
〈λ(c, (self , x0), u) · (c, u)〉;S; 〈λ(c, u) · u〉

 {
definitions, logic

}

35

[λu · λ(x′
0, u

′) · x′
0 = ιΓ0 e ∧ u = u′];K ′ × skip;

〈λ((self ′, x′
0), u) · (self ′, (self ′, x′

0), u)〉;
〈λ(c′, (self ′, x′

0), u) · (c′, u)〉;
{R× Id};
S; 〈λ(c, u) · u〉

 {
general rule skip [R−1]; {R}, definition of ↓}
[λu · λ(x′

0, u
′) · x′

0 = ιΓ0 e ∧ u = u′];K ′ × skip;
〈λ((self ′, x′

0), u) · (self ′, (self ′, x′
0), u)〉;

〈λ(c′, (self ′, x′
0), u) · (c′, u)〉;

S ↓(R× Id);
{R× Id}; 〈λ(c, u) · u〉

 {
definitions, logic

}
[λu · λ(x′

0, u
′) · x′

0 = ιΓ0 e ∧ u = u′];K ′ × skip;
〈λ((self ′, x′

0), u) · (self ′, (self ′, x′
0), u)〉;

〈λ(c′, (self ′, x′
0), u) · (c′, u)〉;S ↓(R× Id); 〈λ(c′, u) · u〉

≡ {
definitions

}
create var c′.C ′(e);S ↓(R× Id); end

✷

Lemma 2. Let classes C and C ′ have methods Mi : Ξ(Σ × Γi ×∆i) and
M ′

i : Ξ(Σ′ × Γ ′
i ×∆′

i) with Γi <: Γ ′
i and ∆′

i <: ∆i. In a global state di : ∆i, u : Φ,
for any relation R : Σ′ ↔ Σ and any input argument gi : Γi,

Mi R M ′
i ⇒

(var c, di, u · c.Methi(gi, di))↓(R× Id) (var c′, di, u · c′.Methi(gi, di))

Proof. We prove the goal by assuming the antecedent and deriving the right-
hand side from the left-hand side as follows:

(var c, di, u · c.Methi(gi, di))↓(R× Id)

≡ {
definition of method invocation

}
(var c, di, u · begin (var (self , xi, yi), c, di, u · self = c ∧ xi = gi);
Mi × skip; c, di := self , yi; end)↓(R× Id)

≡ {
definitions

}
{R× Id}; [λ(c, di, u) · λ((self , xi, yi), c′, d′i, u

′) ·
self = c ∧ xi = gi ∧ (c, di, u) = (c′, d′i, u

′)];
Mi × skip;
〈λ((self , xi, yi), c, di, u) · ((self , xi, yi), self , yi, u)〉;
〈λ((self , xi, yi), c, di, u) · (c, di, u)〉; [(R× Id)−1]

≡
{
demonic and angelic updates of a functional relation are equal,
distribution of sequential composition through angelic updates

}

36

{R× Id ;λ(c, di, u) · λ((self , xi, yi), c′, d′i, u
′) ·

self = c ∧ xi = gi ∧ (c, di, u) = (c′, d′i, u
′)};

Mi × skip;
〈λ((self , xi, yi), c, di, u) · ((self , xi, yi), self , yi, u)〉;
〈λ((self , xi, yi), c, di, u) · (c, di, u)〉; [(R × Id)−1]

 {
definition of relational composition, logic

}
{λ(c′, di, u) · λ((self ′, x′

i, y
′
i), c

′′, d′i, u
′) ·

self ′ = c′ ∧ x′
i = ιΓi

gi ∧ (c′, di, u) = (c′′, d′i, u
′);

(R× πΓi
× |ι∆′

i
|)×R× Id};

Mi × skip;
〈λ((self , xi, yi), c, di, u) · ((self , xi, yi), self , yi, u)〉;
〈λ((self , xi, yi), c, di, u) · (c, di, u)〉; [(R × Id)−1]

≡
{
distribution of sequential composition through angelic updates,
demonic and angelic updates of a functional relation are equal

}
[λ(c′, di, u) · λ((self ′, x′

i, y
′
i), c

′′, d′i, u
′) ·

self ′ = c′ ∧ x′
i = ιΓi

gi ∧ (c′, di, u) = (c′′, d′i, u
′)];

{(R× πΓi
× |ι∆′

i
|)×R× Id};

Mi × skip;
〈λ((self , xi, yi), c, di, u) · ((self , xi, yi), self , yi, u)〉;
〈λ((self , xi, yi), c, di, u) · (c, di, u)〉; [(R × Id)−1]

≡
{
product distribution through sequential composition
rules (e), (c) then skip is unit of sequential composition

}
[λ(c′, di, u) · λ((self ′, x′

i, y
′
i), c

′′, d′i, u
′) ·

self ′ = c′ ∧ x′
i = ιΓi

gi ∧ (c′, di, u) = (c′′, d′i, u
′)];

{(R× πΓi
× |ι∆′

i
|)} × skip;

(Mi; skip)× (skip; {R× Id});
〈λ((self , xi, yi), c, di, u) · ((self , xi, yi), self , yi, u)〉;
〈λ((self , xi, yi), c, di, u) · (c, di, u)〉; [(R × Id)−1]

{
product distribution through sequential composition
rules (a) then (b)

}
[λ(c′, di, u) · λ((self ′, x′

i, y
′
i), c

′′, d′i, u
′) ·

self ′ = c′ ∧ x′
i = ιΓi

gi ∧ (c′, di, u) = (c′′, d′i, u
′)];

({R× πΓi
× |ι∆′

i
|};Mi)× skip; {Id ×R× Id});

〈λ((self , xi, yi), c, di, u) · ((self , xi, yi), self , yi, u)〉;
〈λ((self , xi, yi), c, di, u) · (c, di, u)〉; [(R × Id)−1]

 {
assumption, using general rule S ↓R S′ = {R};S S′; {R}}
[λ(c′, di, u) · λ((self ′, x′

i, y
′
i), c

′′, d′i, u
′) ·

self ′ = c′ ∧ x′
i = ιΓi

gi ∧ (c′, di, u) = (c′′, d′i, u
′)];

(M ′
i ; {R× πΓi

× |ι∆′
i
|})× skip; {Id ×R× Id});

〈λ((self , xi, yi), c, di, u) · ((self , xi, yi), self , yi, u)〉;
〈λ((self , xi, yi), c, di, u) · (c, di, u)〉; [(R × Id)−1]

37

≡ {
product distribution through sequential composition rule (b), then (e)

}
[λ(c′, di, u) · λ((self ′, x′

i, y
′
i), c

′′, d′i, u
′) ·

self ′ = c′ ∧ x′
i = ιΓi

gi ∧ (c′, di, u) = (c′′, d′i, u
′)];

M ′
i × skip; {(R× πΓi

× |ι∆′
i
|)×R× Id};

〈λ((self , xi, yi), c, di, u) · ((self , xi, yi), self , yi, u)〉;
〈λ((self , xi, yi), c, di, u) · (c, di, u)〉; [(R × Id)−1]

{
definition of sequential composition,
definitions of angelic and functional updates, logic

}
[λ(c′, di, u) · λ((self ′, x′

i, y
′
i), c

′′, d′i, u
′) ·

self ′ = c′ ∧ x′
i = ιΓi

gi ∧ (c′, di, u) = (c′′, d′i, u
′)];

M ′
i × skip;

〈λ((self ′, x′
i, y

′
i), c

′, di, u) · ((self ′, x′
i, y

′
i), self

′, ι∆′
i
yi, u)〉;

{(R× πΓi
× |ι∆′

i
|)×R× Id};

〈λ((self , xi, yi), c, di, u) · (c, di, u)〉; [(R × Id)−1]

{
definition of sequential composition,
definitions of angelic and functional updates, logic

}
[λ(c′, di, u) · λ((self ′, x′

i, y
′
i), c

′′, d′i, u
′) ·

self ′ = c′ ∧ x′
i = ιΓi

gi ∧ (c′, di, u) = (c′′, d′i, u
′)];

M ′
i × skip;

〈λ((self ′, x′
i, y

′
i), c

′, di, u) · ((self ′, x′
i, y

′
i), self

′, ι∆′
i
yi, u)〉;

〈λ((self ′, x′
i, y

′
i), c

′, di, u) · (c′, di, u)〉; {R× Id}; [(R× Id)−1]

 {
general rule {R}; [R−1] skip

}
[λ(c′, di, u) · λ((self ′, x′

i, y
′
i), c

′′, d′i, u
′) ·

self ′ = c′ ∧ x′
i = ιΓi

gi ∧ (c′, di, u) = (c′′, d′i, u
′)];

M ′
i × skip;

〈λ((self ′, x′
i, y

′
i), c

′, di, u) · ((self ′, x′
i, y

′
i), self

′, ι∆′
i
yi, u)〉;

〈λ((self ′, x′
i, y

′
i), c

′, di, u) · (c′, di, u)〉
≡ {

definition of method invocation
}

(var c′, di, u · c′.Methi(gi, di))

✷

Theorem 1. For any classes C and C ′, any program K expressible as an
iterative choice of invocations of C methods, and any constructor input argument
e : Γ0,

C C ′ ⇒ create var c.C(e);K [c]; end create var c′.C ′(e);K [c′]; end

Proof. Rewriting this implication with the definition of class refinement, we get

(∃R · K R K ′ ∧ (∀i | 1 ≤ i ≤ n · Mi R M ′
i)) ⇒

create var c.C(e);K [c]; end create var c′.C ′(e);K [c′]; end

38

Assume that R is a relation that satisfies the antecedent of this implication.
Using the first conjunct of the antecedent and Lemma1, the implication is then
reduced to

(∀i | 1 ≤ i ≤ n · Mi R M ′
i) ⇒

(var c, u · K [c])↓(R× Id) (var c′, u · K [c′])

Assuming the antecedent and expressing K as an iterative choice of method
invocations, we get

begin (var l, c, u · p);do 〈〉ni=1qi :: c.Methi(gi, di);Li od; end↓(R× Id)
begin (var l, c′, u · p);do 〈〉ni=1qi :: c′.Methi(gi, di);Li od; end

The indifferent block rule allows us to reduce this goal to

(var l, c, u · do 〈〉ni=1qi :: c.Methi(gi, di);Li od)↓(Id ×R× Id)
(var l, c′, u · do 〈〉ni=1qi :: c′.Methi(gi, di);Li od)

which we prove by beginning with the left-hand side and refining it to the right-
hand side as follows:

(var l, c, u · do 〈〉ni=1qi :: c.Methi(gi, di);Li od)↓(Id ×R× Id)
 { iterative choice rule, since every qi is of the form q′i × true× q′′i }

(var l, c, u · do 〈〉ni=1qi :: (c.Methi(gi, di);Li)↓(Id ×R× Id) od)

{
sequential composition and indifferent statement rules,
since all statements Li are indifferent to Id ×R× Id

}
(var l, c, u · do 〈〉ni=1qi :: c.Methi(gi, di)↓(Id ×R× Id);Li od)

 { Lemma 2, using the assumption }
(var l, c′, u · do 〈〉ni=1qi :: c′.Methi(gi, di);Li od)

This completes the proof. ✷

Lemma 3. For a statement S′ : Ξ(Σ′), a relation R : Σ′ ↔ Σ, and a state
predicate I : PΣ, we have

{R} I {|S′ |} {R} I = I {|S′ ↑R |} I

Proof. We prove the goal by mutual implication. The first part

{R} I {|S′ |} {R} I ⇒ I {|S′ ↑R |} I

is proved as follows:

39

{R} I {|S′ |} {R} I
≡ {

definition of correctness assertion
}

{R} I ⊆ S′ {R} I
⇒ {

monotonicity of demonic update ∀P p q · p ⊆ q ⇒ [P] p ⊆ [P] q
}

[R−1] {R} I ⊆ [R−1] S′ {R} I
≡ {

definition of sequential composition
}

([R−1]; {R}) I ⊆ ([R−1];S′; {R}) I
⇒ {

general rule skip [R−1]; {R}}
skip I ⊆ ([R−1];S′; {R}) I

≡ {↑R abbreviates [R−1];S′; {R}}
skip I ⊆ (S′ ↑R) I

≡ {
definition of skip, definition of correctness assertion

}
I {|S′ ↑R |} I

The second implication, I {|S′ ↑R |} I ⇒ {R} I {|S′ |} {R} I, is proved sim-
ilarly:

I {|S′ ↑R |} I
≡ {↑R abbreviates [R−1];S′; {R}}

I {| [R−1];S′; {R} |} I
≡ {

definition of correctness assertion
}

I ⊆ ([R−1];S′; {R}) I
⇒ {

monotonicity of angelic update ∀P p q · p ⊆ q ⇒ {P} p ⊆ {P} q }
{R} I ⊆ {R} ([R−1];S′; {R}) I

≡ {
definition of sequential composition

}
{R} I ⊆ ({R}; [R−1]) S′ {R} I

⇒ {
general rule {R}; [R−1] skip

}
{R} I ⊆ S′ {R} I

≡ {
definition of correctness assertion

}
{R} I {|S′ |} {R} I

✷

40

Theorem 2. For classes C = (K,M1, . . . ,Mn) and C ′ = (K ′,M ′
1, . . . ,M

′
n,

N1, . . . , Np),

(∃R · K R K ′ ∧ (∀i | 1 ≤ i ≤ n · Mi R M ′
i) ∧

(∀j | 1 ≤ j ≤ p · Consistent (Nj , C,R))) ⇒ C C ′

Proof. We begin with weakening the antecedent by eliminating the existential
quantification and rewriting the consequent with the definition of class refine-
ment:

K R K ′ ∧ (∀i | 1 ≤ i ≤ n · Mi R M ′
i) ∧

(∀j | 1 ≤ j ≤ p · Consistent (Nj , C,R)) ⇒
(∃R · K R K ′ ∧ (∀i | 1 ≤ i ≤ n · Mi R M ′

i) ∧
(∀I · Inv (C, I) ⇒ (∀j | 1 ≤ j ≤ p · {R} I {|Nj |} {R} I)))

Next, we instantiate the existentially quantified relation variable to R, getting

K R K ′ ∧ (∀i | 1 ≤ i ≤ n · Mi R M ′
i) ∧

(∀j | 1 ≤ j ≤ p · Consistent (Nj , C,R)) ⇒
K R K ′ ∧ (∀i | 1 ≤ i ≤ n · Mi R M ′

i) ∧
(∀I · Inv (C, I) ⇒ (∀j | 1 ≤ j ≤ p · {R} I {|Nj |} {R} I))

Rewriting with the assumptions and simplifying, we get

(∀j | 1 ≤ j ≤ p · Consistent (Nj , C,R)) ⇒
(∀I · Inv (C, I) ⇒ (∀j | 1 ≤ j ≤ p · {R} I {|Nj |} {R} I))

Next, we strip off the universal quantification in the consequent and move
Inv (C, I) to the antecedent:

(∀j | 1 ≤ j ≤ p · Consistent (Nj , C,R)) ∧ Inv (C, I) ⇒
(∀j | 1 ≤ j ≤ p · {R} I {|Nj |} {R} I)

Using standard logical rules for quantifier manipulation, we further reduce this
goal to

Consistent (Nj , C,R) ∧ Inv (C, I) ⇒ {R} I {|Nj |} {R} I
Rewriting with the definition of consistency for new methods and using the rule
S S′ = (∀p q · p {|S |} q ⇒ p {|S′ |} q), we reduce the goal as follows:
Inv (C, I) ⇒
{R} I {|begin var l · b; (�n

i=1 [qi]; (skip×Mi ↓R)↓|ρi|;Ki)∗; end |} {R} I
Using the rule for proving correctness assertions for blocks, we reduce this goal
to

Inv (C, I) ⇒
(true × {R} I) ∩
(var l, self , uj , vj · b) {| (�

n
i=1 [qi]; (skip×Mi ↓R)↓|ρi|;Ki)∗ |} (true × {R} I)

41

Next, we apply the rules for proving correctness assertions for weak iteration
and demonic choice, getting

Inv (C, I) ⇒
(∀i | 1 ≤ i ≤ n ·

(true × {R} I) ∩
(var l, self , uj , vj · b) {| [qi]; (skip×Mi ↓R)↓|ρi|;Ki |} (true × {R} I))

Stripping off the universal quantification in the consequent and discharging the
unnecessary condition 1 ≤ i ≤ n, we get

Inv (C, I) ⇒
(true × {R} I) ∩
(var l, self , uj , vj · b) {| [qi]; (skip×Mi ↓R)↓|ρi|;Ki |} (true × {R} I)

Applying now the rules for proving correctness assertions for sequential compo-
sition, we get

Inv (C, I) ⇒
(∃r · (true × {R} I) ∩ (var l, self , uj , vj · b) {| [qi] |} r ∧

r {| (skip×Mi ↓R)↓|ρi|;Ki |} (true × {R} I))
Next, instantiating r to (true × {R} I), we get

Inv (C, I) ⇒
(true × {R} I) ∩ (var l, self , uj , vj · b) {| [qi] |} (true × {R} I) ∧
(true × {R} I) {| (skip×Mi ↓R)↓|ρi|;Ki |} (true × {R} I)

Applying now the rules for proving correctness assertions for guards and simpli-
fying, we get

Inv (C, I) ⇒
(true × {R} I) {| (skip×Mi ↓R)↓|ρi|;Ki |} (true × {R} I)

Applying again the rule for proving correctness assertions for sequential compo-
sition and instantiating the existentially quantified predicate variable to (true ×
{R} I), we get

Inv (C, I) ⇒
(true × {R} I) {| (skip×Mi ↓R)↓|ρi| |} (true × {R} I) ∧
(true × {R} I) {|Ki |} (true × {R} I)

Using the assumption that everyKi is terminating and skipping on the attributes
of C ′, and applying the rule for proving correctness assertions (f), we reduce this
goal to

Inv (C, I) ⇒ (true × {R} I) {| (skip×Mi ↓R)↓|ρi| |} (true × {R} I)

42

Using the definition of ↓ and then the rule for proving correctness assertions for
sequential composition, we get

Inv (C, I) ⇒ (∃r1 · (true × {R} I) {| {|ρi|} |} r1 ∧
(∃r2 · r1 {| skip×Mi ↓R |} r2 ∧ r2 {| [|ρi|−1] |} (true × {R} I)))

Instantiating both r1 and r2 to (true × {R} I) and using the fact that ρi is a
state-reassociating function not updating any of the state components, we reduce
the goal to

Inv (C, I) ⇒ (true × {R} I) {| skip×Mi ↓R |} (true × {R} I)

Applying the rule for proving correctness assertions (e) and then Lemma3, we
reduce this goal to

Inv (C, I) ⇒ I {| (Mi ↓R)↑R |} I

and then, using the identity of inverse coercion rule, to

Inv (C, I) ⇒ I {|Mi |} I

which holds according to the definition of Inv (C, I). ✷

43

Paper 5

Consistent Extension of Components in the Presence of
Explicit Invariants

A. Mikhajlova

Originally published in Proceedings of the 29th International Conference on Technol-
ogy of Object-Oriented Languages and Systems (TOOLS 29), IEEE Computer Society
Press, pp. 76–85, Nancy, France, June 1999.
c©1999 IEEE. Reprinted with permission.

Consistent Extension of Components
in the Presence of Explicit Invariants �

Anna Mikhajlova

Turku Centre for Computer Science, Åbo Akademi University
Lemminkäisenkatu 14A, Turku 20520, Finland

e-mail: Anna.Mikhajlova@abo.fi

Abstract. Component extensions must semantically conform to the
components they extend to guarantee consistency of the extended sys-
tem. Semantic conformance usually means preservation of observable
properties while decreasing nondeterminism; in the presence of explicit
invariants it also involves preservation of invariants by the extended and
the extending components. Depending on the reuse technique employed
for constructing extensions, the requirements that must be imposed on
components to guarantee consistency vary. We concentrate on the is-
sue of ensuring consistency of extensions with forwarding as the reuse
technique, formulating requirements that allow consistent extension of
components in the presence of explicit invariants. Also, we discuss addi-
tional problems arising with the use of inheritance and propose solutions
to these problems.

1 Introduction

In an open component-based system, the ultimate goal of creating an ex-
tension is to improve and enhance functionality of an existing component
by tuning it for specific needs, making it more concrete, implementing a
faster algorithm, and so on. Effectively, the client of a component bene-
fits from using its extension, only if the extension does not invalidate the
client. Imposing semantic constraints on extensions ensures their consis-
tency from the client perspective.

Explicit invariants binding values of component attributes state the
properties the client of a component may safely assume about the com-
ponent behaviour, and play an important rôle in maintaining consistency
of component extensions. We formulate requirements for components and
their extensions that guarantee consistency of the extended system in the
presence of explicit invariants. We concentrate on the issue of extension
� c©1999 IEEE. Reprinted, with permission, from Proceedings of the 29th International
Conference on Technology of Object-Oriented Languages and Systems (TOOLS 29),
pp. 76–85, Nancy, France, June 1999.

consistency for component-based systems employing forwarding as the
reuse technique, in the style of Microsoft COM [21]. Our analysis indi-
cates that ensuring consistency of component extensions in the presence
of explicit invariants is easier with forwarding than with inheritance, and
we discuss the additional consistency problems that arise with the use of
inheritance. Based on our analysis we present solutions to the described
problems.

2 Components, contracts, and invariants

The notion of a component does not have a standardised meaning and
various researchers and practitioners understand under components fairly
different things. For our purposes it is irrelevant whether a component
conceptually is a distributed object whose methods are subject to remote
procedure calls or an object having a graphical user interface through
which the user can compose it with other components in an application.
We view a component as an abstract data type having an encapsulated
local state, carried in component attributes, and a set of globally visible
methods, which are used to access the attributes and modify them. In
addition, every component usually has a constructor, initialising the at-
tributes. Each component implements a certain interface, which is a set of
method signatures, including the name and the types of value and result
parameters. An extending component implements an interface which in-
cludes all method signatures of the original component and, in addition,
may have new method signatures. This conformance of interfaces forms
a basis for subtype polymorphism and subsumption of components.

We consider a component composition scenario when a component
is delivered to a client, who might also be an extension developer, as a
formal specification with the implementation hidden behind this speci-
fication. For motivation of such an organisation of a component market
see, e.g., [5, 20]. In general, several components can implement the same
specification, and one component can implement several different speci-
fications. We assume that the specification language combines standard
executable statements, such as assignments, conditionals, and loops, with
specification statements including assertions, assumptions, and nondeter-
ministic specification statements, which abstractly yet precisely describe
the intended behaviour. A proposal and motivation for such a language
are given in [5], and formal semantics of the involved constructs may be
found in [18].

2

Essentially, the formal specification of a component is a contract bind-
ing the developer of the implementation and the clients, including exten-
sion developers. Assumptions [p] and assertions {p} of a state predicate
p are the main constituents of such a contract. The assumptions state
expectations of one party that must be met by the other party, whereas
the assertions state promises of one party, that the other party may rely
on. Naturally, the assumptions of one party are the assertions of the other
and vice versa. When a party fails to keep its promise (the asserted pred-
icate does not hold in a state), this party aborts. When the assumptions
of a party are not met (the assumed predicate does not hold in a state),
it is released from the contract and the other party aborts. For a detailed
discussion of contracts and their formal semantics see, e.g., [2].

Invariants binding values of component attributes play an important
rôle in maintaining consistency of component extensions. An implicit, or
the strongest, invariant characterises exactly all reachable states of the
component, whereas an explicit invariant restricts the values the compo-
nent might have. The implicit invariant is established by the component
constructor, preserved by all its methods, and can be calculated from the
component specification. As suggested by its name, the explicit invariant,
on the other hand, is stated explicitly in the component specification,
being part of the contract the component promises to satisfy. The com-
ponent developer is supposed to meet the contract by verifying that the
constructor establishes the explicit invariant and all methods preserve it.

The advantages of stating invariants explicitly in abstract data types
and especially components have been stressed by several researchers, e.g.,
[11, 5, 14]. Indeed, explicit invariants are useful for facilitation of imple-
mentation, consistency checking, and for guiding revisions and extensions.
Namely, component designers might want to guarantee that certain in-
variant holds in all states, and by explicitly stating this fact in the compo-
nent specification, they would allow clients to assume it. In most existing
component frameworks the implicit invariant is not safe to assume, and
clients relying on it may get invalidated. This is especially the case when
one component implements several specifications with different interfaces.
One client, using this component as the implementation of a certain spec-
ification, may take it to a state which is perceived as unreachable from
the perspective of another client having a different specification of this
component’s behaviour. Moreover, the implicit invariant is, in general,
stronger than necessary, and preserving it in client extensions might be
too restrictive. When one component implements several specifications,

3

Extension
invariant J

...

Specification
invariant I

...

Implementation
invariant I'

...

original component

extends

implements

aggregates

Fig. 1. Illustration of component extension layout

ensuring that it preserves the strongest invariants of all these specifica-
tions can be unimplementable.

Explicit invariants are supported by at least one programming lan-
guage, Eiffel [15], and although, to our knowledge, none of the existing
component-based systems supports explicit invariants at present, research
in this direction is underway.

3 Consistent extension of components in the presence of
explicit invariants

When the implementation of a component is hidden behind a formal
specification, with the invariant stated explicitly in the latter, both the
extension and the implementation must satisfy certain requirements with
respect to this invariant to obtain a consistent component composition. In
what follows, we will refer to the component being extended as the original
component, distinguishing when necessary between its specification and
implementation. The corresponding layout is illustrated in Fig. 1.

3.1 Requirements imposed on extensions

When extension is achieved through forwarding, the extending component
plays a dual rôle. On one hand, it offers services to the clients of the
original component, when substituted for that component, and, on the
other hand, it is a client of the original component. This duality requires
that the extension matches in a certain sense the contract of the original
component specification and simultaneously satisfies this contract.

Let us analyse the restrictions that must be imposed on components
and their extensions to guarantee consistency. Consider a component Bag ,
which represents a bag of characters, and its extension CountBag , which
aggregates Bag and has an attribute of its own n : Nat:

4

Bag = component

b : bag of Char

invariant I = #b ≤ max

Bag() = b := �||�
Size(res r : Nat) = r := #b
. . .

end

CountBag = component extends Bag

Bag ; n : Nat

invariant J = #Bag .b ≤ max ∧
#Bag .b = n

CountBag() = Bag();n := 0

Size(res r : Nat) = r := n
. . .

end

As such, Bag is the specification of a component whose implementa-
tion is hidden from the developer of CountBag . By aggregating Bag , the
extension CountBag , in fact, aggregates its implementation which will
be substituted at run-time. The invariant of Bag states that the size of
the bag does not exceed some constant value max , and the invariant of
CountBag in addition stipulates that n is the counter of elements in the
bag. Maintaining the explicit invariant means that the body of the con-
structor Bag is equal to b := �||�; {I}, and the body of the method Size
in the component Bag is equal to [I]; r := #b; {I}. Similarly, bodies of
CountBag and Size in the component CountBag are equal respectively
to Bag();n := 0; {J} and [J]; r := n; {J}. That is, the constructors un-
conditionally assert the corresponding invariant, whereas the methods,
assuming that the invariant holds in the beginning, promise to establish
it in the end.

It is well-known from the theory of abstract data types that to guar-
antee safe substitutability, the invariant in the more concrete ADT must
be stronger than that in the more abstract ADT. Similarly, a client of the
component Bag , assuming the invariant I maintained by Bag , can safely
use the extension CountBag only if the invariant J is at least as strong
as I, written J ⊆ I. Note that by establishing J , the constructor and
the methods of CountBag also establish I, which is a weaker property.
Also, the assumption of the weaker invariant I passes through, whenever
the stronger assumption [J] holds. For example, consider specifications of
method Contains in Bag

Contains(val c : Char, res r : Bool) =
[I]; r := c ∈ b; {I}

and in CountBag

Contains(val c : Char, res r : Bool) =
[J];Bag .Contains(c, r); {J}

5

To facilitate reasoning, we have written out assumptions and assertions
of the corresponding invariants. Substituting the definition of Bag ::
Contains for the method invocation, we have that the body of Contains
in CountBag is equal to

[J]; [I]; r := c ∈ Bag .b; {I}; {J}

Since [J]; [I] = [J] and {I}; {J} = {J}, for all I, J such that J ⊆ I, this
is further equal to

[J]; r := c ∈ Bag .b; {J}
Essentially, this means that, if the assumption [J] holds, then the as-
sumption [I] skips, and also means that establishing J establishes I as
well.

The extension has no way of breaking the invariant of the original
component because it changes the attributes of the latter only by invoking
its methods, which are guaranteed to preserve the invariant. However, if a
component breaks its own invariant before invoking its own methods, then
the assumption of this invariant in the self-called methods will lead to a
crash. Consider, for example, specifications of methods Add and AddSet :

Bag = component

. . .
Add(val c : Char) =

[I]; if #b < max then
b := b ∪ �|c|�

else skip fi;
{I}

AddSet(val nb : set of Char) =
[I];
[b := b′ |#b′ ≤ max ∧

b ⊆ b′ ∧ b′ ⊆ b ∪ nb];
{I}

CountBag = component extends Bag

. . .
Add(val c : Char) =

[J]; if n < max then
n := n + 1;Bag .Add(c)

else skip fi;
{J}

AddSet(val nb : set of Char) =
[J]; if n +#nb > max then

n := max
else n := n +#nb fi;
while nb �= �||� do

begin var c · c ∈ nb;
self .Add(c);nb := nb − �|c|�

end
od;

{J}

Here, the addition of elements from the set nb to the original bag
is specified in Bag using the nondeterministic specification statement [3]
which expresses that b is assigned a nondeterministically chosen value
b′, satisfying the invariant, and also satisfying the conditions that the
previous value of b is included in b′ and that every element in b′ comes

6

either from b or from nb. The extension redefines the method AddSet
by updating the counter and iteratively adding elements from nb to the
bag until nb becomes empty. The method Add , iteratively invoked in
CountBag :: AddSet , adds elements to the bag provided that its size is
smaller than the maximum, and otherwise does nothing. Therefore, it
may seem that everything should work fine, if there are more elements
in nb than can be added to the bag, then the extra elements are sim-
ply discarded. However, only when nb is empty will this method work
correctly, as the method Add promises to carry out its contract under
the assumption that the counter n is equal to the size of the bag, and
this assumption is broken by the conditional statement updating n. The
broken assumption will result in aborting the party which initiated the
self-call, namely, the method AddSet . To fix the problem, it is sufficient
to remove the conditional statement altogether, since then the invariant
J is preserved before all self-calls to Add ; adding (n < max) to the ter-
mination condition of the while-loop would also eliminate unnecessary
iteration steps.

Based on this example, we formulate a requirement that the invariant
must be re-established in a component before every self-call to a method
which makes use of the assumed invariant. Naturally, this requirement
must be satisfied in all components under consideration, including speci-
fication components and implementation components.

Unfortunately, the three requirements we have stated so far, namely,
preserving the corresponding invariants in the original component speci-
fication and its extension, strengthening the specification invariant in the
extension, and re-establishing the corresponding invariants before self-
calls, do not alone guarantee consistency of extensions as seen from the
client perspective. For example, the method AddSet of CountBag could
preserve the invariant, yet add completely arbitrary elements to the Bag .
The client of the original component, when using the extension, could be-
come invalidated if, after passing a certain set of characters to AddSet , it
would suddenly discover that the resulting component contains characters
different from those that it expects.

To avoid this kind of situation, the extension developer should ensure
that the extension E is a refinement of the original component specifi-
cation S, written S � E. Refinement means preservation of observable
behaviour, while decreasing nondeterminism. To verify that E is a refine-
ment of S, one must show that the constructor of E refines the constructor
of S and that the methods of E refine the corresponding methods of S.

7

Usually, this verification will be trivial in case a method is forwarded to
the corresponding method of the aggregated component.

Since the new methods added in the extension may not be invoked
by the client of the original component, there is no danger of breaking
client expectations about their behaviour. The only requirements the new
methods must satisfy are preserving the invariant of the extension and
re-establishing this invariant before self-calls.

3.2 Requirements imposed on implementations

The implementation of a component has the freedom to change the at-
tributes of the specification completely, being hidden behind this specifi-
cation. However, in the presence of an explicit invariant, it must ensure
that the new attributes are such that it is possible to formulate an invari-
ant which is stronger than the specification invariant with respect to an
abstraction relation. Let us illustrate this idea with an example of a bag
implementation using an array to represent a bag.

BagImp = component implements Bag

bag : array [1..max] of Char, size : Nat

invariant I ′ = size ≤ max

BagImp() = size := 0

Add(val c : Char) =
if size < max then

size := size + 1; bag [size] := c
else skip fi;

. . .
end

The attribute size keeps the number of elements in the array bag
which have, so far, been added to this array. Note that the number of all
elements in the array is always max with the elements from size + 1 to
max being arbitrary characters. The invariant I ′ does not, as such, give
us all this information and it has no way of doing so. The implementation
invariant, in general, has to be related to the specification invariant via
an abstraction relation which stipulates how the abstract attributes can
be coerced to the concrete attributes. In the case of our example, the
abstraction relation R is such that

R (bag , size) (b) = (toBag(bag , size) = b), where

toBag(a, 0) = �||�
toBag(a, n) = toBag(a, n − 1) ∪ �|a[n]|�

8

As we have already mentioned, the invariant I ′ of the implementation
must be stronger than the invariant I of the specification with respect to
an abstraction relation R. Namely, for implementation attributes c and
specification attributes a we have,

I ′ ⊆R I = I ′ c ⇒ (∃a · R c a ∧ I a)

Intuitively this means that whenever the attributes c satisfy the invari-
ant I ′ there exist images a of these attributes with respect to R satisfying
the invariant I. The rationale behind this requirement is similar to the one
for the requirement that the extension invariant must be stronger than
the specification invariant. Strictly speaking, the former must be stronger
than the latter also with respect to an abstraction relation which is a pro-
jection. In both the extension and the implementation if the attributes of
the specification are not changed, the abstraction relation is the identity.
The relation between the invariants in our example is expressed by

I ′ ⇒ (∃b′ · R (bag , size) (b′) ∧ I[b ← b′])

where I[b ← b′] stands for I with all occurrences of b substituted with b′.
It is easy to see that this relation is satisfied since instantiating b′ with
toBag(bag , size) reduces it to

size ≤ max ⇒
toBag(bag , size) = toBag(bag , size) ∧ #toBag(bag , size) ≤ max

which obviously holds since #toBag(a, n) = n.
Just as was the case with the specification and the extension, semantic

conformance in the form of refinement must be established between the
specification of the component and its implementation. Namely, it must be
verified that the concrete constructor refines the abstract one with respect
to an abstraction relation, and that every method of the implementation
refines the corresponding method of the specification with respect to the
same relation. For details we refer to [18, 1].

As was mentioned in Sec. 2, one specification can be implemented by
several components, and each component can implement several specifica-
tions with different interfaces. In the latter case the implementation must
semantically conform to every specification it implements. For example,
apart from BagImp, the specification of Bag can also be implemented by,
e.g, EntryField which is a standard widget used in dialog boxes. As such,

9

EntryField must also implement a component specification Widget with
interface including such methods as Move, Resize, HandleKey and so on.

In general, if a component C implements several component specifica-
tions S1, . . . , Sn, maintaining the invariants I1, . . . , In, then the invariant
J of C must be stronger than all of Ii, i = 1..n with respect to the
corresponding abstraction relations: J ⊆R1 I1 ∧ . . . ∧ J ⊆Rn In. The
constructor of C must establish J , all methods must preserve it and re-
establish before self-calls. Moreover, every method of C must refine the
corresponding method of Si with respect to the abstraction relation Ri.

4 Explicit invariants and inheritance

Inheriting attributes of an original component opens a possibility for
method inheritance through super-calling from an extension methods
of the original component. Moreover, self-referential method invocations,
also known as call-backs, become possible in this case. As such, a compo-
nent and its extension become mutual clients, and are required to satisfy
each other’s contracts when invoking methods via self and super. Unfor-
tunately, re-establishing invariants before all self and super-calls does not
solve all problems and does not guarantee consistency. Consider compo-
nents Bag ′ and CountBag ′ inheriting from Bag ′:

Bag ′ = component

b : bag of Char

invariant I = #b ≤ max

. . .
Add(val c : Char) =

[I]; if #b < max then
b := b ∪ �|c|�

else skip fi;
{I}

AddSet(val nb : set of Char) =
[I]; while nb �= �||� do

begin var c · c ∈ nb;
self .Add(c);
nb := nb − �|c|�

end
od;

{I}

CountBag ′ = component inherits Bag ′

n : Nat

invariant J = I ∧ #b = n

. . .
Add(val c : Char) =

[J]; if n < max then
n := n + 1; super .Add(c)

else skip fi;
{J}

AddSet(val nb : set of Char) =
[J]; if n +#nb > max then

n := max
else n := n +#nb fi;
super .AddSet(nb);

{J}

In the specification of method Add in CountBag ′ incrementing n be-
fore the super-call breaks the extending part #b = n of the invariant J .

10

Since Bag ′ :: Add only relies on I which holds before super-calling Add ,
everything works fine and the incoming element is added to the bag. How-
ever, breaking the extending part of the invariant in AddSet before the
super-call leads to a crash, because J does not hold before a self-call to
Add in Bag ′ :: AddSet and this call gets redirected to CountBag ′.

The analysis of this example indicates two solutions to the problem.
Since an original component is, in general, unaware of extensions and
their invariants, there is no possibility of re-establishing such invariants
in the original component before self-calls. The question is then whether
the original component can preserve the extension invariant or not. If
it can preserve the extension invariant then for avoiding the problem it
is sufficient to establish this invariant before super-calls to the original
component; otherwise, another solution is required. The extension invari-
ant can be preserved in the original component if it can be split into the
inherited part and the extending part, with the inherited part being the
invariant of the original component and the extending part placing con-
straints only on new attributes, without relating them to the inherited
attributes.

Most often, however, we would want to relate new attributes to the
inherited ones, like in our example when the invariant J inherits I and
restricts n to be the counter of elements in bag b. Re-establishing the
extension invariant before super-calls would not help in this situation,
because modification of attributes in the original component can break
it and any following call-back would crash. Only if the original and the
extension invariants are equal with respect to an abstraction relation, re-
establishing them before self- and super-calls solves the problem. Namely,
if the original and the extension invariants I and J are such that I =R J ,
then re-establishing I before all self-calls in the original component and
before all self- and super-calls in the extension eliminates the possibility
of crashing.

It may seem that explicit invariants are to be blamed for all these
problems and complications, but even without them inheritance across
component boundaries is known to create a lot of consistency problems.
Also, disciplining inheritance [17] helps to avoid the problems, but reduces
flexibility, which is always advocated as the major advantage of inheri-
tance over forwarding. For instance, our interest in explicit invariants was
initiated when analysing the problems the addition of new methods cre-
ates in the presence of subtype aliasing [13]. Our analysis reveals that
when invariants are not stated explicitly, new methods do not introduce
inconsistencies only if they preserve the strongest invariant maintained

11

by the original component. In practice this means that the new methods
may change the additional attributes of the extension and invoke the old
methods. Obviously, this is no much more flexible than what can be done
with forwarding.

5 Conclusion

Explicit statement of invariant properties benefits in a number of ways in-
dependent component composition and extensibility. However, to achieve
consistency in component composition, including composition of original
components with their extensions, certain requirements must be imposed
on all components. We have analysed the issue of consistent component
composition, illustrating possible consistency problems, and formulated
the requirements that must be imposed on components to avoid such
problems.

Our analysis has focused on the scenario when a client or an extension
developer works with a component seeing only its formal specification, ex-
plicitly stating invariant properties, whereas the actual implementation
is hidden from the client. This layout, which we consider to be the most
promising foundation for a component market, requires that all imple-
mentations of a component semantically conform to the specification of
that component, and so do all extensions. Semantic conformance means
consistency with respect to explicit invariants and preservation of observ-
able properties while decreasing nondeterminism. We also considered the
additional problems which arise with the use of inheritance and proposed
solutions to these problems.

Although the rôle of explicit invariants has been considered before
by various researchers, e.g., [14, 9], we discuss this issue in proper relief,
accenting on details specific to component- and class-based systems with
a particular composition scenario. Meyer’s “Design by Contract” [14, 16]
advocates the use of explicit invariants in classes, and Eiffel [15] even
supports the proposed construct. However, the problems with explicit
invariants in the presence of dynamic binding of self-referential meth-
ods are not discussed in [14, 16]. Neither they are discussed in works on
various extensions of the specification language Z [7, 8, 6, 12], where inher-
itance is considered between class specifications only. As we treat speci-
fications and implementations in a unified logical framework, considering
specifications to be abstract programs and implementations – executable
specifications, we can abstract away from implementation details through
using specification statements and yet express complex behavioural de-

12

pendencies by including method calls in the specifications. This approach
allows us to reason about specifications and implementations in a uniform
manner, identifying the existing problems such as, e.g., the effect of self-
reference in the presence of explicit invariants. Contracts of Helm et al.
[9], as in our approach, are intended to capture behavioural dependencies
and also support invariants. However, they are separated from classes,
which have to be mapped to the contracts via a conformance declaration.
Alternatively, we capture the behavioural dependencies by using specifi-
cation statements and explicitly including method calls in specifications.
As such, class or component methods, on both the abstract and the con-
crete levels, are the contracts themselves. Besides, as contracts in [9] have
no formal semantics, reasoning about conformance and refinement can
only be done informally, whereas in our framework every construct has a
precise mathematical meaning as described in [18, 2].

The related work on abstract data types [10, 11] usually concentrates
on algebraic specifications of methods and procedures, where self-calls are
not present altogether, concealing the problems with re-establishment of
invariants. Treatment of explicit invariants in the presence of dynamic
binding of self-referential methods also requires special consideration,
whereas the classical theory of ADTs does not deal with this issue.

A recently completed work on specification and verification of Java
Collections Framework [4] reported in [19] makes extensive use of explicit
(class) invariants and demonstrates verification of refinement and consis-
tency with respect to explicit invariants. Dealing only with specifications
of Java interfaces and not concrete classes related through inheritance,
the work in [19] does not address the issue of ensuring consistency of ex-
plicit invariants in the presence of self-referential method calls. Verifying
practical applicability of our recommendations in this case as well appears
to be of interest and represents the topic of current research. Perhaps the
restrictions we imposed on components and their extensions can be re-
laxed, and investigating the possibilities for doing so is a topic for future
work.

References

1. R. Back, A. Mikhajlova, and J. von Wright. Class refinement as semantics of
correct subclassing. Technical Report 147, Turku Centre for Computer Science,
December 1997. http://www.tucs.abo.fi/publications/techreports/TR147.html.

2. R. J. R. Back and J. von Wright. Contracts, games and refinement. In 4th Work-
shop on Expressiveness in Concurrency, EXPRESS’97, volume 7 of Electronic
Notes in Theoretical Computer Science. Elsevier, September 1997.

13

3. R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, 1998.

4. J. Bloch. Java Collections Framework: Collections 1.2.
http://java.sun.com/docs/books/tutorial/collections/index.html.

5. M. Büchi and E. Sekerinski. Formal methods for component software: The re-
finement calculus perspective. In Second Workshop on Component-Oriented Pro-
gramming (WCOP’97) held in conjunction with ECOOP’97, pages 23–32. TUCS
General Publication, No. 5, June 1997.

6. D. Carrington, D. Duke, R. Duke, P. King, G. Rose, and G. Smith. Object-Z: An
object-oriented extension to Z. In Formal Description Techniques (FORTE ’89),
Vancouver, pages 281–296. North-Holland Publishing Co., Dec. 1989.

7. E. Cusack. Inheritance in object-oriented Z. In P. America, editor, Proceedings
of ECOOP’91, LNCS 512, pages 167–179, Geneva, Switzerland, July 15-19 1991.
Springer-Verlag.

8. E. Cusack and M. Lai. Object-oriented specification in LOTOS and Z, or my cat
really is object-oriented! In J. W. de Bakker, W. P. de Roever, and G. Rozen-
berg, editors, Foundations of Object-Oriented Languages, REX School/Workshop,
Noordwijkerhout, The Netherlands, May/June 1990, volume 489 of LNCS, pages
179–202. Springer-Verlag, New York, N.Y., 1991.

9. R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying behavioural
compositions in object-oriented systems. In Proceedings of OOPSLA/ECOOP’90,
ACM SIGPLAN Notices, pages 169–180, Oct. 1990.

10. C. A. R. Hoare. Proofs of correctness of data representation. Acta Informatica,
1(4):271–281, 1972.

11. C. Jones. Systematic Software Development Using VDM. Prentice–Hall Interna-
tional, 1986.

12. K. Lano and H. Haughton. Reasoning and refinement in object-oriented specifi-
cation languages. In O. L. Madsen, editor, Proceedings of ECOOP’92, LNCS 615.
Springer-Verlag, 1992.

13. B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions
on Programming Languages and Systems, 16(6):1811–1841, November 1994.

14. B. Meyer. Applying “design by contract”. Computer, 25(10):40–51, Oct. 1992.
15. B. Meyer. Eiffel: The Language. Object-Oriented Series. Prentice Hall, New York,

N.Y., 1992.
16. B. Meyer. Object-Oriented Software Construction. Prentice Hall, New York, N.Y.,

second edition, 1997.
17. L. Mikhajlov and E. Sekerinski. A study of the fragile base class problem. In

E. Jul, editor, Proceedings of ECOOP’98, pages 355–382. Springer, July 1998.
18. A. Mikhajlova and E. Sekerinski. Class refinement and interface refinement in

object-oriented programs. In Proceedings of 4th International Formal Methods
Europe Symposium, FME’97, LNCS 1313, pages 82–101. Springer, 1997.

19. A. Mikhajlova and E. Sekerinski. Ensuring correctness of Java frameworks: A
formal look at JCF. Technical Report 250, Turku Centre for Computer Science,
March 1999.

20. C. Szyperski. Component Software – Beyond Object-Oriented Software. Addison-
Wesley, 1997.

21. S. Williams and C. Kinde. The component object model: Technical overview. Dr.
Dobbs Journal, December 1994.

14

Paper 6

Ensuring Correctness of Java Frameworks: A Formal Look
at JCF

A. Mikhajlova and E. Sekerinski

Published as a technical report of Turku Centre for Computer Science, TUCS-
TR-250, March 1999.
A shorter version of this paper by Anna Mikhajlova appeared in Proceedings of
the 30th International Conference on Technology of Object-Oriented Languages
and Systems (TOOLS 30), IEEE Computer Society Press, pp. 136–145, Santa
Barbara, USA, August 1999.
c©1999 IEEE. Reprinted with permission.

Ensuring Correctness of Java
Frameworks:
A Formal Look at JCF

Anna Mikhajlova
Turku Centre for Computer Science,
Åbo Akademi University
Lemminkäisenkatu 14A, Turku 20520, Finland

Emil Sekerinski
McMaster University,
1280 Main Street West, Hamilton,
Ontario, Canada, L8S4K1

Turku Centre for Computer Science
TUCS Technical Report No 250
March 1999

ISBN 952-12-0402-8
ISSN 1239-1891

Abstract

In this paper we propose a novel approach to specification, development,
and verification of object-oriented frameworks employing separate interface
inheritance and implementation inheritance hierarchies. In particular, we
illustrate how our method of framework specification and verification can
be used to specify the Java Collections Framework, which is a part of the
standard Java Development Kit 2.0, and ensure its correctness. We propose
to associate with Java interfaces formal descriptions of the behavior that
classes implementing these interfaces and their subinterfaces must deliver.
Verifying behavioral conformance of classes implementing given interfaces
to the specifications integrated with these interfaces allows us to ensure
correctness of the system.

The characteristic feature of our specification method is that the specifi-
cation language used combines standard executable statements of the Java
language with possibly nondeterministic specification statements. A speci-
fication of the intended behavior of a particular interface given in this lan-
guage can serve as a precise documentation guiding implementation devel-
opment. Since subtype polymorphism in Java is based on interface inher-
itance, behavioral conformance of subinterfaces to their superinterfaces is
essential for correctness of object substitutability in clients. As we view in-
terfaces augmented with formal specifications as abstract classes, verifying
behavioral conformance amounts to proving class refinement between spec-
ifications of superinterfaces and subinterfaces. Moreover, the logic frame-
work that we use also allows verification of behavioral conformance between
specifications of interfaces and classes implementing these interfaces. The
uniform treatment of specifications and implementations and the relation-
ships between them permits verifying correctness of the whole framework
and its extensions.

Keywords: formal specification, reasoning, object-oriented frameworks,
separate subtyping and subclassing, nondeterminism, correctness, verifica-
tion, class refinement, Java

TUCS Research Group
Programming Methodology Research Group

1 Introduction

One of the defining features of object-oriented frameworks is their extensi-
bility, i.e., the ability of frameworks to call user extensions. In view of this
important characteristic it is critical to build user extensions which behav-
iorally conform to the part of the framework that they extend. Moreover,
frameworks themselves are usually build in a hierarchical manner, starting
with some basic functionality and specializing this functionality in various
directions to meet different demands. Naturally, behavioral conformance
also underlies this hierarchy, with the most general behavior at the top level
and specialized or refined behaviors at the lower levels. Verification of be-
havioral conformance both within a framework and between the framework
and its extensions is critical for ensuring correctness and reliability of the
resulting system.

In this paper we propose a specification and verification method sup-
porting development of provably correct object-oriented frameworks. The
method has been originally described in [19] in application to systems with
unified interface and implementation inheritance hierarchies. Here we focus
on object-oriented frameworks employing separate interface inheritance and
implementation inheritance hierarchies and illustrate how our method of
framework development can be used to specify the Java Collections Frame-
work (JCF) and ensure its correctness. Essentially, we propose to associate
with Java interfaces formal descriptions of the behavior that classes imple-
menting these interfaces and their subinterfaces must deliver. Interfaces
always have an informal semantics as expressed in their names and in the
names and parameter types of their methods, we just make this semantics
explicit and express it mathematically. Such formal specifications can be
distributed as part of the framework documentation, contributing to the
detailed understanding of its functionality and guiding extension develop-
ment. The characteristic feature of our specification method is that the
specification language used combines standard executable statements of the
Java language with possibly nondeterministic specification statements. Ev-
ery statement in this language has a precise mathematical meaning in the
refinement calculus as described in [19, 3]. In this paper we present only
informal explanations of the specification constructs used in specifications
of JCF interfaces.

Since subtype polymorphism in Java is based on interface inheritance,
behavioral conformance of subinterfaces to their superinterfaces is essential
for correctness of object substitutability in clients. Our verification of behav-
ioral conformance is based on the notion of class refinement first described
in [19] and developed in [3]. One class (usually more abstract or nondeter-
ministic) is refined by another class (usually more concrete or deterministic)
if the externally observable behavior of the first class is preserved in the
second class while decreasing nondeterminism. For a detailed description of

1

refinement in the refinement calculus we refer to [21, 6]. Class refinement
per se is based on data refinement [11, 14, 20, 4] which takes place when
a state space is changed in a refinement step. An extensive collection of
“high level” refinement laws that has been developed within the refinement
calculus permits verification of class refinement in practice, and mechanical
verification tools that are currently being developed [9] open the possibility
of mechanized verification.

As we view interfaces augmented with formal specifications as abstract
classes, verifying behavioral conformance amounts to proving class refine-
ment between specifications of superinterfaces and subinterfaces. Moreover,
the logical framework that we use also enables verification of behavioral con-
formance between specifications of interfaces and classes implementing these
interfaces: class refinement must be established between the specification
and the implementation classes. The uniform treatment of specifications
and implementations and the relationships between them permits us to ver-
ify correctness of the original framework and then prove that user extensions
preserve this correctness, ensuring in this way the correctness of the whole
system.

The paper is organized as follows. In Sec. 2 we describe the Java Col-
lections Framework which we use to illustrate our approach, and specify
the interface Collection with its Iterator and the interface List with its
ListIterator . Our specifications are entirely based on informal descriptions
of the interface semantics as described in [7], and we reflect on the clarity and
preciseness of these descriptions. In Sec. 3 we explain the notion of class re-
finement, present a number of refinement laws, and demonstrate verification
of class refinement between the specifications of Iterator and ListIterator .
Finally, in Sec. 4 we draw some conclusions, and describe future work.

Notation. We use simply typed higher-order logic as the logical framework
in the paper. The type of functions from a type Σ to a type Γ is denoted
by Σ → Γ and functions can have arguments and results of function type.
Functions can be described using λ-abstraction and we write f x for the
application of function f to argument x. Whenever necessary to clarify the
argument in the application of a function, especially in the case when the
argument is a tuple of elements, we also use brackets around the argument,
writing f(x).

The use of equality and assignment symbols deserves special attention.
The Java language uses = to denote assignment and == to denote equality
of two values, and we will follow this convention in specifications. How-
ever, being reluctant to redefine the symbol = traditionally used to denote
mathematical equality, we will also use it in logical formulas and defini-
tions, clarifying the intended meaning when necessary. In particular, we
will use = rather than == to represent logical equality on right-hand sides
of definitions and between the two parts of equational rules.

2

int size();
boolean isEmpty();
boolean contains(Object e);
boolean add(Object e);
boolean remove(Object e);
Iterator iterator();
boolean containsAll(Collection c);
boolean addAll(Collection c);
boolean removeAll(Collection c);
boolean retainAll(Collection c);
void clear();
Object[] toArray();
Object[] toArray(Object a[]);

ListSet

SortedSet

CollectionMap

SortedMap

Figure 1: Collection hierarchy

2 Specifying the Java Collections Framework

As was stated in the documentation of JCF [7], “A collections framework is
a unified architecture for representing and manipulating collections.” This
particular framework contains three parts: interfaces, implementations, and
algorithms. In this paper we focus on the interfaces, formalizing their in-
formal descriptions as given in [7] and studying behavioral conformance
between formal specifications of interfaces and formal specifications of their
subinterfaces as we define them. The following description of JCF is based
on [7].

The interfaces at the core of JCF form a hierarchy as shown in Fig. 1.
The root of the hierarchy, the Collection interface, represents a group of
objects, known as its elements. Collection is used to pass collections around
and manipulate them when maximum generality is desired. Some Collection
specializations allow duplicate elements and others do not. Some are ordered
and others are not. For example, Set is an unordered collection that cannot
contain duplicate elements, and List is an ordered collection that can contain
duplicates.

2.1 Specifying the Collection Interface

In the Collection interface the method names suggest the intended func-
tionality, for example, the method size returns the size of the underlying
collection. The interface type Iterator returned by the method iterator is
used to access collection elements and structurally modify the collection.
In Fig. 2 we illustrate the hierarchy formed by Iterator and its subinterface
ListIterator . The methods hasNext ,next , and remove check whether there
are more elements in the collection, return the next element, and remove
the current element respectively. The description of JCF states that the be-
havior of an iterator is unspecified if the underlying collection is structurally
modified while the iteration is in progress in any way other than by calling

3

Iterator boolean hasNext ();
 Object next ();
 void remove ();

ListIterator

Figure 2: Iterator hierarchy

the method remove.
To specify the behavior of Collection methods we must model the under-

lying data structure the methods operate on. It appears to be rather natural
to model this data structure by a bag (multiset) of Object1 elements, as we
want the collection to contain polymorphic elements, possibly duplicated or
unordered. Furthermore, to specify the history of structural modifications,
we will use an integer attribute modified which will be increased whenever
elements are added to the original collection or removed from it. We begin
with specifying the data attributes, the constructor, and the basic operations
of Collection as follows:

public interface Collection {
bag of Object elems;

int modified ;

Collection() {
elems,modified = �||�, 0;

}
int size() {

return min(#elems, Integer.MAX VALUE);

}
boolean isEmpty() {

return (#elems == 0);

}
boolean contains(Object o) {

return (o ∈ elems);
}
boolean add(Object o) {
boolean r | r == false;
if (o ∈ elems){

choose {skip; }
or {elems,modified , r = elems + �|o|�,modified + 1, true; };

}
else {elems,modified , r = elems + �|o|�,modified + 1, true; };

1In Java the standard class Object is a superclass of all other classes, and a variable of
type Object can hold a reference to an object of any other type.

4

return r;

}
boolean remove(Object o) {
boolean r | r == false;
if (o ∈ elems){
elems,modified = elems \ o,modified + 1;

r = true;

}
return r;

}
Iterator iterator() {
Iterator i = new Iterator(this);

return i;

}

In this specification highlighted in bold is the original Collection interface
and the rest is the precise description of the intended behavior. The behavior
of the constructor and the methods is specified in terms of operations on
bags and integers, with # returning the number of elements in a bag, ∈,+,
and \ representing containment of an element in a bag, bag summation,
and element removal respectively:

#b =̂
∑
e • b e

e ∈ b =̂ b e > 0
b1 + b2 =̂ (λe • b1 e+ b2 e)
b \ a =̂ (λe • (e = a) ?max ((b e− 1), 0) : b e)

As bags are functions from elements to the number of their occurrences,
function application b e returns the number of elements e in the bag b. In
the last definition the equality on the right-hand side of definition sign =̂
is the logical equality. The conditional expression b ? e1 : e2 is equal to the
expression e1 if the boolean condition b holds and to e2 otherwise.

Finally, the statement choose S1 or . . . or Sn, used in the specifica-
tion of the method add , represents a nondeterministic choice between the
alternatives S1 through Sn.2

Although the specifications of the constructor and the methods intu-
itively are quite straightforward, a few points are of interest here. First of
all, assignment of a bag to a variable of type bag of Object , as in the con-
structor, results in the corresponding variable containing the value which

2Dijkstra’s nondeterministic choice statement is usually written as S1 [] . . . []Sn or
S1 � . . . � Sn, e.g., in [13, 6]. Here we use the syntax choose S1 or . . . or Sn instead
because we believe that it improves readability.

5

is equal to the value being assigned, in this case �||�, with equality on bags
defined as follows:

b1 == b2 =̂ (∀e • b1 e = b2 e)

The description of method contains in [7] states that this method “re-
turns true if and only if this Collection contains at least one element e such
that (o == null ? e == null : o.equals (e))”. Looking up the description
of method Object .equals, we see that “for any reference values x and y, this
method returns true if and only if x and y refer to the same object (x == y
has the value true)”. Our specification states that the object reference o, be
it a null or a non-null value, is one of the elements in the bag elems, which
directly corresponds to the above description, still being more succinct and
concise.

The description of method add states that it ensures that the current
Collection instance contains the specified element, returning true if Collection
changed as a result of the call and false if it does not permit duplicates and
already contains the specified element. The nondeterministic choice opera-
tor choose used in our specification allows us to express these variations in
the behavior succinctly and precisely: if the element to be added is already
present in the current instance of Collection, this element can either be
added to Collection or the addition of the element can be skipped, with the
choice between the options made nondeterministically. When the element
is not present, it is necessarily added to Collection. The declaration and
initialization of a local variable r is equivalent to the declaration followed by
assigning r the boolean value false. Further on in specifications we will use
this kind of initialization along with nondeterministic initialization where a
local variable is initialized according to some predicate.

The method remove is described as an operation removing an element e
such that (o == null ? e == null : o.equals (e)), if Collection contains one
or more such elements. Further it is stated in [7] that this method “returns
true if the Collection contained the specified element (or equivalently, if the
Collection changed as a result of the call)”. In our specification we stipulate
that if o is present in Collection at least once, its number of occurrences is
decreased by one and the method returns true.

The iterator returned in the identically named method of the interface
Collection is constructed by calling the constructor Iterator and passing it
the reference to the current instance of Collection. Although Iterator is
just an interface which cannot be used to produce instances, we provide
its formal specification in the same way as for Collection, and by giving
the specification of Iterator ’s constructor, we define the precise meaning of
its invocation in the method Iterator of Collection. An implementation of
Iterator will have to define its own constructor, and an implementation of
Collection will then return an instance created by this constructor in the
method Iterator .

6

b c aa

i2

i1

b)

b c aa

i1

i2a)

Figure 3: Simultaneous modification of a collection by different iterators

Before presenting a formal specification of the interface Iterator , let us
consider a collaboration between a collection and iterators attached to it.
As described in [7], “Iterator .remove is the only safe way to modify a col-
lection during iteration; the behavior is unspecified if the underlying col-
lection is modified in any other way while the iteration is in progress.”
Obviously, this description is rather ambiguous, because it is unclear the
behavior of which methods is unspecified, and how modifications are be-
ing monitored, and what it means for an iteration to be in progress. To
get an intuitive understanding of object interaction in this case, let us con-
sider Fig. 3. Suppose that two iterators i1 and i2 are used to iterate over
a collection implemented as a list, as shown in Fig. 3(a). Now, if we exe-
cute i2.next(); i1.next(); i1.remove(), the iterator i2 will be indexing a non-
existing list element, as shown in Fig. 3(b). Further invocations of methods
on i2 will produce erroneous results or simply abort. However, the itera-
tor i1, which has carried out the structural modification of the underlying
collection, will continue to work correctly. Accordingly, we have to specify
the conditions under which iterators can be sure that the underlying data
structure hasn’t been structurally modified. The data attribute modified of
Collection can be used for this purpose. Maintaining in Iterator an invariant
that its own modified data attribute is equal to the one of the underlying
Collection, helps solve the problem. Furthermore, the description of method
remove states that this method can be called only once per call to next . To
reflect this requirement in the specification, we maintain a data attribute
canRemove and set it to true after resetting the next element and to false
after removing the current element. The interface Iterator can, therefore,
be specified as follows:

public interface Iterator {
Collection col ;

bag of Object current ;

boolean canRemove;

int modified ;

Object next ;

invariant I == col != null ∧
(canRemove ⇒ next ∈ current)

interclass invariant intI == current ⊆ col .elems ∧
modified == col .modified

7

Iterator(Collection c) {
assert c != null ;

col , current , canRemove,modified ,next = c, �||�, false, c.modified ,null ;

}
boolean hasNext() {

return current ⊂ col .elems;

}
Object next() {

assert current ⊂ col .elems;

[next = e | e ∈ (col .elems \ current)];
current , canRemove = current + �|next |�, true;
return next ;

}
void remove() {

assert canRemove;

col .elems, col .modified = col .elems \next , col .modified + 1;
current , canRemove,modified = current \next , false,modified + 1;
next = null ;

}
}

As elements in a bag cannot be indexed, we use the data attribute current
to store the elements of the underlying collection that have been returned
by the method next in the current iteration. The attribute next stores the
element returned by the last call to the method next . The class invari-
ant I states that the iterator is always attached to an existing collection
(col != null) and that the next element to be removed is one of the elements
currently “indexed” (canRemove ⇒ next ∈ current). This class invariant
holds of all Iterator instances during their whole life cycle, being established
by the constructor and preserved by all the methods. Apart from the class
invariant, Iterator maintains another invariant intI which captures the in-
variance in the relation between the attributes of Iterator and the attributes
of Collection that it aggregates, stating that the elements returned by the
method next are always in the underlying collection (current ⊆ col .elems)
and that structural modifications made so far have been made by the current
instance of Iterator (modified == col .modified). This invariant is different
from the class invariant proper in that it is maintained mutually by Iterator
and Collection. We choose to call this invariant “interclass invariant” to re-
flect that, on the one hand, it is an invariant established by the constructor
and preserved by all the methods of Iterator , and, on the other hand, it is
the predicate which cannot be assumed to hold of all Iterator instances at
all times because Iterator alone cannot guarantee its preservation between
method calls to its methods. In other words, creating an instance of Iterator
through calling the constructor establishes intI , and, although there are no

8

guarantees that intI holds at all moments in a life cycle of this instance, if
it does then a call to any method of Iterator will preserve it. Note that the
methods add and remove of Collection break intI which suggests potential
behavioral problems with structural modification of the underlying collec-
tion by different iterators. The interclass invariant of a particular Iterator
instance will be preserved only if this instance is used by the underlying
collection to structurally modify itself through calls to Iterator methods. In
this respect, the fact that Collection has the method add , while Iterator
does not, might indicate the possibility of inadequate framework design.

Bertrand Meyer in [17] discusses the problem of interclass invariants,
although in a slightly different setting with two classes maintaining mutual
references to each other, and proposes to do run-time monitoring of these
invariants, effectively adding them to pre- and postconditions of methods in
the classes whose attributes are related through such invariants. We define
the semantics of the interclass invariant construct similarly, by adding it as
the implicit assert condition in the end of the class constructor and the
implicit assume\assert conditions in, respectively, the beginning and the
end of every class method. Proving consistency of a class with respect to its
class invariant and interclass invariant amounts to verifying that both kinds
of invariants are established by the class constructor and preserved by all
its methods.

The additional operations on bags used in the specification of Iterator
are defined as follows:

b1 ⊆ b2 =̂ (∀e • b1 e ≤ b2 e)
b1 ⊂ b2 =̂ b1 ⊆ b2 ∧ #b1 < #b2
b1 \ b2 =̂ (λe • max ((b1 e− b2 e), 0))

Apart from standard Java language constructs we use the multiple assign-
ment statement x1, . . . , xn = e1, . . . , en which stands for a simultaneous
assignment of expressions e1, . . . , en to variables x1, . . . , xn respectively. As-
suming that x1, . . . , xn do not occur free in e1, . . . , en, multiple assignment
can always be rewritten as a sequential composition of the corresponding in-
dividual assignments in arbitrary order. Moreover, we use two specification
statements, assertion and nondeterministic update. The assertion statement
assert p, where p is a boolean-valued expression, skips if p holds in a cur-
rent state and aborts otherwise.3 The nondeterministic update [x = x′ | b]
assigns x a value x′ satisfying a boolean condition b; if such a value cannot
be found, the execution stops.

The constructor creates a new Iterator instance only under the condition
that the collection referred by c is some existing object, as expressed in the

3The syntax of the assertion statement is different in [6] where the semantics of this
statement is defined; it is written as {p} instead of assert p that we use here. Using the
syntax {p} to denote assertions in Java specifications would be confusing, as the curly
brackets are used to delineate blocks.

9

assertion assert c != null ; otherwise, the constructor aborts. The method
next returns a next object in the underlying data structure only under the
condition that the end of the structure hasn’t been reached, as expressed
in the assertion assert current ⊂ col .elems. Note that the element to be
returned by this method is chosen nondeterministically from the elements
in the underlying collection that haven’t been returned by next in the current
iteration run. This element is added to the bag of currently iterated elements
current and the boolean flag canRemove is set to true, permitting removal
of the next element. In turn, the method remove agrees to remove the next
element only if canRemove holds in a state, encoding the requirement that
remove can be called only once per call to next .

Note that in the specification of Iterator we directly modify data at-
tributes of the aggregated collection col . Normally, in object-oriented pro-
gramming such practice is rightfully criticized for breaking encapsulation.
In specifications, however, we will permit such direct access and modifica-
tion because this significantly simplifies specifications, as there is no need
to specify the behavior solely in terms of method calls on the aggregated
objects. There is no danger of breaking encapsulation because implementa-
tions can (and usually will) use completely different attributes for achieving
what is required in the specification, and in the implementations direct ac-
cess to data attributes of another class will be completely eliminated and
substituted with method calls preserving encapsulation.

Now we can continue with specifying the bulk operations of Collection
as follows:

public interface Collection {
. . .

boolean containsAll(Collection c) {
assert c != null ;

return c.elems ⊆ elems;

}
boolean addAll(Collection c) {

assert c != null ∧ (c == this ⇒ c.elems == �||�);
bag of Object old , int cm | old == elems ∧ cm == c.modified ;

[elems,modified = e, m | e == elems + c.elems ∧
m ≥ modified ∧ c.modified == cm];

return old != elems;

}
boolean removeAll(Collection c) {

assert c != null ∧ (c == this ⇒ c.elems == �||�);
boolean r, int cm | r == false ∧ cm == c.modified ;

if (∃e • e ∈ c.elems ∧ e ∈ elems) {
[elems,modified = e, m | e == elems \ toSet(c.elems) ∧

10

m ≥ modified ∧ c.modified == cm];

r = true;

};
return r;

}
boolean retainAll(Collection c) {

assert c != null ∧ (c == this ⇒ c.elems == �||�);
boolean r, int cm | r == false ∧ cm == c.modified ;

if (∃e • e ∈ c.elems ∧ e ∈ elems) {
[elems,modified = e, m | e == elems \ toSet(elems \ toSet(c.elems)) ∧

m ≥ modified ∧ c.modified == cm];

r = true;

};
return r;

}
void clear() {
elems = �||�;
[modified = m |m ≥ modified];

}
}

The specification of method containsAll is quite straightforward: under
the condition that the reference to the incoming Collection is non-null this
method returns true if all elements in the incoming Collection are present
in the current instance of Collection. Note that in the specification it is
assumed that the incoming Collection is an instance of the specification
class Collection whose attribute elems is a bag of Object elements. The
behavior of this method in the case when an instance of some other class
implementing the interface Collection is passed as input is underspecified.
The implementation of containsAll will have to be polymorphic and deliver
the behavior as specified in Collection.containsAll regardless of the dynamic
type of the input argument.

The informal description of method addAll states that the behavior of
this operation is undefined if the incoming Collection is modified while the
operation is in progress. To express this restriction in the specification,
we use the local variable cm to keep the number of modifications made
to c up to the moment it was passed as input to addAll . Elements of c
are guaranteed to be added to the current Collection only if cm remains
equal to c.modified during the whole operation. Also it is mentioned in the
documentation [7] that the behavior of addAll is undefined if the incoming
Collection is the current instance of Collection and is nonempty. We address
this restriction by stating the corresponding assertion in the beginning of
the method specification.

11

Note how this specification of addAll uses specification constructs to
express the required complex functionality. On the one hand, we avoid
unnecessary details, such as checking whether the current Collection gets
modified as a result of each call to add and simply return the result of
comparing the original bag with the resulting one. This specification is inef-
ficient but it succinctly and clearly captures the intended behavior. On the
other hand, we do not oversimplify the specification sacrificing preciseness:
writing just elems = elems + c.elems would certainly make the specification
of this method shorter, but wouldn’t express the necessary requirement that
the collection c cannot be modified during the addition. An implementation
of addAll will add elements iteratively, and in order to meet the requirement
about non-modification of c it will have to check that this requirement is
satisfied before adding each element of c.

Surprisingly, the description of method removeAll in the original docu-
mentation does not stipulate the requirement that the incoming collection
c cannot be modified during its execution. However, based on the state-
ment that “After this call returns, this Collection will contain no elements
in common with the specified Collection” we can justify the need for such
a requirement. Suppose that, while iterating over c, an element which al-
ready has been removed from the current Collection is added again to c
before the iterator used in removeAll . When the execution of removeAll
completes, the current Collection will still have some elements in common
with c. Similarly the result of removeAll can be undefined if some elements
of c are externally removed during the iteration. It is also easy to see that
the behavior of this method becomes undefined if the current Collection is
passed to it as an input argument. In the specification we address all these
requirements using the corresponding assertions and the nondeterministic
assignment statement. The latter states that the new value assigned to
elems is equal to the difference between the current Collection and the set
obtained from converting the bag of elements in c; in addition, it is stip-
ulated that c does not undergo any structural modifications: its modified
attribute remains unchanged. The function toSet used in this specification
is defined for a bag b as follows:

toSet(b) =̂ {e | b e > 0}
The function returning the difference between a bag b and a set s is given
as follows:

b \ s =̂ (λe • (e ∈ s) ? 0 : b e)
In the specification of method retainAll we state that the new value as-

signed to elems contains only the elements that are common to the original
bag elems and the incoming c.elems. The same non-modification require-
ments as in removeAll are imposed on c for similar reasons. Finally, the
method clear results in assigning to elems the empty bag �||�.

12

The next two methods to be specified deal with converting Collection
to an array. The first method toArray is described in [7] as one return-
ing an array containing all of the elements in the current Collection. It is
stated that “the returned array will be ’safe’ in that no references to it are
maintained by Collection”. As such this is a rather vague description of the
behavior, because it is unclear whether elements of the original collection
are copied to the returned array by reference or by value. When writing a
formal specification we must address this issue, and we choose to copy the
collection elements by value rather than by reference, which appears to be
safer than copying by reference.

The behavior of the second toArray method is described as follows: “Re-
turns an array containing all of the elements in this Collection, whose run-
time type is that of the specified array. If Collection fits in the specified ar-
ray, it is returned therein. Otherwise, a new array is allocated with the run-
time type of the specified array and the size of this Collection. If Collection
fits in the specified array with room to spare (i.e., the array has more ele-
ments than Collection), the element in the array immediately following the
end of the collection is set to null.” We specify the two array conversion
methods as follows:

public interface Collection {
. . .

Object[] toArray() {
Object []a = new Object [#elems];

bag of Object be | be == elems;
for (i = 0; i < #elems; i = i+ 1) {
[a[i], be = a, b | a /∈ be ∧ (∃a′ • a′ ∈ be ∧ a↑== a′↑ ∧ b == be \ a′]

};
return a;

}
Object[] toArray(Object a[]) {
Class typeOfArray = a.getClass().getComponentType();

bag of Object be | be == elems;
if (a.length() < #elems) {
Object []c = new typeOfArray [#elems];

for (i = 0; i < #elems; i = i+ 1) {
[c[i], be = c, b | c /∈ be ∧ (∃c′ • c′ ∈ be ∧ c↑== c′↑ ∧

b == be \ c′ ∧ c.getClass() == typeOfArray)]

};
return c;

}
else {

for (i = 0; i < #elems; i = i+ 1) {

13

[a[i], be = a, b | a /∈ be ∧ (∃a′ • a′ ∈ be ∧ a↑== a′↑ ∧
b == be \ a′ ∧ a.getClass() == typeOfArray)]

};
a[#elems] = null ;

return a;

};
}

}

One interesting point to note here is the use of method invocations
getClass and getComponentType. Although the precise definitions of these
methods, supported by the array interface, are not available, we include
these method invocations in the specification of method toArray to indi-
cate that these methods should be called in implementations of Collection.
Being partial, such a specification of the behavior of toArray is neverthe-
less very useful, as it succinctly describes the intended actions and guides
implementation development.

This concludes our specification of Collection and now we can specify
the interface List which extends Collection.

2.2 Specifying List and ListIterator

A List is an ordered Collection sometimes called a sequence. In addition
to the operations inherited from Collection, the interface List includes op-
erations for positional access, search for a specified object in the list, list
iteration, and range operations on the list. In addition to the ordinary
Iterator , List provides a richer ListIterator that allows one to traverse the
list in either direction, modify the list during iteration, and obtain the cur-
rent position of the iterator. The interfaces of List and ListIterator are
shown in Fig. 4.

int size();
boolean isEmpty();
...

ListIterator listIterator();
ListIterator listIterator(int i);
int indexOf(Object o);
int lastIndexOf(Object o);
List subList(int from, int to);
Object get(int i);
Object set(int i, Object o);
void add(int i, Object o);
Object remove(int i);
boolean addAll(int i, Collection c);

List

Collection

Set

SortedSet

Iterator boolean hasNext ();
Object next ();
void remove ();

ListIterator boolean hasPrevious();
Object previous();
int nextIndex();
int previousIndex();
void set(Object o);
void add(Object o);

Figure 4: List and ListIterator interfaces

14

It appears to be natural to model the underlying data structure of List
by a sequence of Object elements. As before, to specify the history of struc-
tural modifications, we will use an integer attribute modified which will be
increased whenever elements are added to the original list or removed from
it. We begin with specifying the data attributes, the constructor, and the
operations inherited from Collection:

public interface List extends Collection {
seq of Object elems;

int modified ;

List() {
elems,modified = 〈〉, 0;

}
int size() {

return min(#elems, Integer.MAX VALUE);

}
boolean isEmpty() {

return (#elems == 0);

}
boolean contains(Object o) {

return (o in elems);

}
boolean add(Object o) {
elems,modified = elems ̂ 〈o〉,modified + 1;
return true;

}
boolean remove(Object o) {
boolean r | r == false;
if (o in elems){
[elems = e | (∃l1, l2 •

l1 ̂ 〈o〉̂ l2 = elems ∧ ¬(o in l1) ∧ l1 ̂ l2 = e)];

modified = modified + 1;

r = true;

}
return r;

}
Iterator iterator() {
Iterator i = new ListIterator(this);

return i;

}

15

Specifications of the constructor and the methods size, isEmpty , and
contains are quite straightforward with the membership operation in on
sequences defined as follows:

e in l =̂ (∃i | 0 ≤ i < #l • l[i] = e)

To improve readability we use the notation l[i] rather than the function
application l i to represent the i’th element of the sequence l.

The method add appends the specified element to the end of List ,
whereas the method remove removes the first occurrence of the specified
element from List . The iterator returned by the identically named method
is an instance of ListIterator which is an extension of Iterator . In addition to
the methods of Iterator , ListIterator provides methods allowing positional
access through an index.

The bulk operations and the array conversion operations of List are
specified similarly to those of Collection:

public interface List extends Collection {
. . .

boolean containsAll(Collection c) {
assert c != null ;

return c.elems ⊆ toBag(elems);

}
boolean addAll(Collection c) {

assert c != null ∧ (c == this ⇒ c.elems == 〈〉);
seq of Object old , int cm | old == elems ∧ cm == c.modified ;

[elems,modified = e, m | ∃e′ •

toBag(e′) == c.elems ∧ e == elems ̂ e′ ∧
m ≥ modified ∧ c.modified == cm];

return old != elems;

}
boolean removeAll(Collection c) {

assert c != null ∧ (c == this ⇒ c.elems == 〈〉);
boolean r, int cm | r == false ∧ cm == c.modified ;

if (∃e • e ∈ c.elems ∧ e in elems) {
[elems,modified = e, m | e == remAll(elems, toSet(c.elems)) ∧

m ≥ modified ∧ c.modified == cm];

r = true;

};
return r;

}
boolean retainAll(Collection c) {

assert c != null ∧ (c == this ⇒ c.elems == 〈〉);

16

boolean r, int cm | r == false ∧ cm == c.modified ;

if (∃e • e ∈ c.elems ∧ e ∈ elems) {
[elems,modified = e, m |

e == remAll(elems, toSet(elems) \ toSet(c.elems)) ∧
m ≥ modified ∧ c.modified == cm];

r = true;

};
return r;

}
void clear() {
elems = 〈〉;
[modified = m |m ≥ modified];

}
}

The specifications of array conversion methods are similar to those of Collection
and we omit them for the lack of space. The function toBag used in the
specifications of methods containsAll and addAll is given as follows:

toBag(l) =̂

{
�||� if l = 〈〉
toBag(front) + �|e|� if l = front ̂ 〈e〉

The function remAll used in the specifications of methods removeAll and
retainAll is given as follows:

remAll(l, s) =̂

〈〉 if l = 〈〉
remAll(front , s) if l = front ̂ 〈e〉 ∧ e ∈ s
remAll(front , s) ̂ 〈e〉 if l = front ̂ 〈e〉 ∧ e /∈ s

Before proceeding with the specification of the new methods of List ,
let us present the specification of ListIterator . In this specification we use
l[f..t] to denote a subsequence of the given sequence l between indices f
and t inclusive. We define this function to be total, returning a subsequence
starting at index f and ending at index t, if these indices are such that
0 ≤ f < t < #l, returning part of the sequence within range f..#l− 1 if the
lower index f satisfies 0 ≤ f < t but the upper index t is greater than #l−1,
and returning an empty sequence if the indices f and t are misplaced in some
way, being in the wrong order or reaching outside the bounds 0..#l − 1.

l[f..t] =̂

〈l[t]〉 if 0 ≤ f = t < #l
l[f..t− 1] ̂ 〈l[t]〉 if 0 ≤ f < t < #l
l[f..#l − 1] if t ≥ #l − 1
〈〉 otherwise

The specification of ListIterator can now be given as follows:

17

public interface ListIterator extends Iterator {
List lst ;

int ind ;

boolean canModify ;

int modified ;

invariant J == lst != null

interclass invariant intJ == −1 ≤ ind ≤ #lst .elems ∧
(canModify ⇒ 0 ≤ ind < #lst .elems)∧
modified = lst .modified

ListIterator(List l) {
assert l != null ;

lst , ind ,modified , canModify = l,−1, l.modified , false;

}
boolean hasNext() {

return ind < #lst .elems − 1;
}
Object next() {

assert ind < #lst .elems − 1;
ind , canModify = ind + 1, true;
return lst .elems[ind];

}
int nextIndex() {

return min (ind + 1,#lst .elems);
}

boolean hasPrevious() {
return ind > 0;

}
Object previous() {

assert ind > 0;
ind , canModify = ind − 1, true;
return lst .elems[ind];

}
int previousIndex() {

return max (ind − 1,−1);
}

void remove() {
assert canModify ;

lst .elems = lst .elems[0..ind − 1]̂
lst .elems[ind + 1..#lst .elems − 1];

ind ,modified , canModify = ind − 1,modified + 1, false;
lst .modified = modified ;

}
void set(Object o) {

assert canModify ;

lst .elems[ind] = o;

}
void add(Object o) {
ind = ind + 1;

[lst .elems = s | ∃s1, s2
• s == s1 ̂ 〈o〉̂ s2 ∧

lst .elems == s1 ̂ s2 ∧ s[ind] == o];

canModify ,modified = false,modified + 1;

lst .modified = modified ;

}
}

18

Just as Iterator is used to iterate over its aggregated Collection, ListIterator
is used to iterate over List . The class invariant J of ListIterator states that
at all times it aggregates a non-null reference to a List instance. In addition,
the interclass invariant intJ states that the integer-valued index ind is used
to iterate over lst .elems and can range in the interval [−1..#lst .elems], with
valid index values being in the interval [0..#lst .elems − 1]. The data field
canModify is similar to canRemove of Iterator and is used to regulate the
order of calls to next and previous before calls to remove, add , and set .
Finally, the data field modified is used to regulate structural modifications
made to the underlying list.

In the description of List interface in [7] the index is said to always be
between two elements, the one that would be returned by a call to previous
and the one that would be returned by a call to next . With this layout
the index has n + 1 valid positions for the list of size n, starting with 0
and ending with n. In our opinion this intuitive picture is somewhat con-
fusing, especially in the two boundary cases when the index is before the
first element or past the last one. In fact, this layout is so confusing that
we have found contradicting descriptions of method behavior. For example,
in the section describing the interface List the method nextIndex is said
to return list .size() + 1 when the cursor is after the final element, whereas
in the documentation describing ListIterator proper it is stated that this
method “returns list size if the list iterator is at the end of the list”. Ap-
parently, the confusion arises because of the ambiguity of the valid values
of the index pointing between elements rather than at elements. With our
specification the index positions −1 and #lst .elems are boundary, whereas
if the index ind is in the interval [0..#lst .elems − 1] inclusive, it points to
the elements lst .elems[0] through lst .elems[#lst .elems − 1]. Having decided
on the relationship between the index and the list elements, we can spec-
ify the behavior of ListIterator constructor and methods unambiguously.
Namely, in the constructor the index is set to the boundary position −1.
The methods next and previous first check that moving the index to the
next (previous) position would not take it outside the bounds, then incre-
ment (decrement) it and return the currently indexed list element. The
method nextIndex returns the minimum between ind + 1 and the size of
the list, whereas the method previousIndex returns the maximum between
ind − 1 and the boundary value −1. Obviously, the specifications of these
methods are not only unambiguous but also very concise.

The specifications of methods remove and set are quite straightforward
but the specification of add is worthy of a few comments. Let us first
consider it description in [7]: ”The element is inserted immediately before
the next element that would be returned by next, if any, and after the next
element that would be returned by previous, if any. (If the list contains
no elements, the new element becomes the sole element on the list.) The
new element is inserted before the implicit index: a subsequent call to next

19

would be unaffected, and a subsequent call to previous would return the new
element. (This call increases by one the value that would be returned by a
call to nextIndex or previousIndex.)” The first sentence in this description
is somewhat equivocal because it is unclear whether the element is inserted
before the next element that would be returned by next if the inserted
element wouldn’t have been inserted, or it is inserted before the next element
that would be returned by next if we call next after a call to add . In the
first case, the result of add should be insertion of the new element into the
position after the implicit index, whereas in the second case, the element
returned by the method next depends not only on the position where the
new element is inserted but also on the position where the implicit index
is placed as the effect of add . Only the following sentences clarify that the
intention is to place the new element into the position “before the implicit
index”.

Now that we know the exact behavior of ListIterator , we can proceed
with specification of List operations for positional access, search, and range
extraction.

public interface List extends Collection {
. . .

ListIterator listIterator() {
ListIterator itr = new ListIterator(this);

return itr ;

}
ListIterator listIterator(int i) {

assert 0 ≤ i ≤ #elems;
ListIterator itr = new ListIterator(this);

itr .ind = i;

return itr ;

}
int indexOf(Object o) {

return min ({i | elems[i] == o} ∪ {−1});
}
int lastIndexOf(Object o) {

return max ({i | elems[i] == o} ∪ {−1});
}
List subList(int from, int to) {

assert 0 ≤ from ≤ to ≤ #elems;
seq of Object s | (∀i | from ≤ i < to • elems[i] == s[i − from]);
List sub = new List();

sub.elems, sub.modified = s, 0;

return sub;

}

20

Object get(int i) {
assert 0 ≤ i < #elems;

return elems[i];

}
Object set(int i, Object o) {

assert 0 ≤ i < #elems;

Object s | s == elems[i];
[elems = e | ∃s1, s2

• elems == s1 ̂ 〈s〉̂ s2 ∧ #s1 == i ∧ e == s1 ̂ 〈o〉̂ s2];

return s;

}
void add(int i,Object o) {

assert 0 ≤ i ≤ #elems;
[elems = e | ∃s1, s2

• elems == s1 ̂ s2 ∧ #s1 == i ∧ e == s1 ̂ 〈o〉̂ s2];

modified = modified + 1;

}
Object remove(int i) {

assert 0 ≤ i < #elems;

Object o | o == elems[i];
[elems = e | ∃s1, s2

• elems == s1 ̂ 〈o〉̂ s2 ∧ #s1 == i ∧ e == s1 ̂ s2];

modified = modified + 1;

return o;

}
boolean addAll(int i,Collection c) {

assert 0 ≤ i ≤ #elems ∧ (c == this ⇒ c.elems == �||�);
Iterator itr = c.iterator();

int cm, seq of Object s, old | s == 〈〉 ∧ old == elems ∧ cm == c.modified ;

while (itr .hasNext()) {s = ŝ itr .next(); };
[elems,modified = e, m | (∃s1, s2

• elems == s1 ̂ s2 ∧ #s1 == i ∧
e == s1 ̂ ŝ s2) ∧ m ≥ modified ∧ c.modified == cm];

return old != elems;

}
}

The first two methods construct new ListIterator instances, setting their
indices to −1 and the specified index i respectively. The next two methods
indexOf and lastIndexOf return the indices of the first and the last occur-
rence of the specified element in the current List , or −1 if it does not contain
this element. We specify these methods by saying that the returned index
is, respectively, the minimal and the maximal element of the set containing
all indices at which the list element is equal to the specified element or −1,
if this set is empty. The description of method subList , whose specification
is given next, states that the returned list is a portion of the current List

21

between the specified from index, inclusive, and to index, exclusive. We
specify this behavior by constructing a subsequence s of elems such that the
elements of s are equal to the elements of elems starting at index from and
finishing at index to − 1. A new List instance initialized with this subse-
quence is then returned as the result of method subList . The specifications of
methods set , add , and remove are rather straightforward and hardly require
further explanation. The behavior of method addAll adding the specified
Collection at a specified position is very similar to the ordinary addAll . The
only interesting point here is that the informal description of this method
stipulates that the new elements will appear in the current List in the order
that they are returned by the specified Collection’s iterator. We address this
requirement by iteratively constructing from Collection elements a sequence
and adding this sequence at the specified position in the current list.

3 Ensuring Correctness of JCF

As was already mentioned in the introduction, correctness of a framework
can be ensured by verifying behavioral conformance between classes whose
instances are intended for polymorphic substitution in clients. In systems
with separate interface inheritance and implementation inheritance hierar-
chies, such as JCF, subtype polymorphism is based on interface inheritance.
Therefore, there are two ways of achieving polymorphic reuse, through pass-
ing instances of classes implementing an interface where objects with this
interface are expected and through substituting objects of subinterface type
for objects of superinterface type. In the first case, the concrete class must
be shown to refine the specification of the interface it implements. In the
second case, verifying behavioral conformance between the superinterface
objects and the subinterface objects amounts to proving class refinement
between the specification of the original interface and the specification of
its subinterface. These two cases are illustrated in Fig. 5. The classes
AbstractCollection,ConcreteCollection and SpecialCollection are different
implementations of Collection interface and the classes AbstractList and
LinkedList are different implementations of List interface. Both Collection

List

AbstractCollectionCollection

SpecialCollection

AbstractList

LinkedList

ConcreteCollection

Figure 5: Behavioral conformance in systems with separate interface inher-
itance and implementation inheritance hierarchies

22

and List interfaces are augmented with formal specifications of the in-
tended behavior. If we verify that the specification of Collection is re-
fined by its implementations, i.e. if we prove class refinements Collection
� AbstractCollection,Collection � ConcreteCollection and Collection �
SpecialCollection, then clients specified to work with a variable c of type
Collection will continue to work correctly if c is assigned an instance of any
of the classes AbstractCollection,ConcreteCollection and SpecialCollection.
Similarly, using an instance of AbstractList or LinkedList in the context
where it is viewed as an object of type List will be correct if List �
AbstractList and List � LinkedList .

Moreover, since List is a subinterface of Collection, instances of
AbstractList and LinkedList can be used in the context where an object
of type Collection is expected. If we verify that Collection � List then by
transitivity AbstractList and LinkedList , as well as all other correct imple-
mentations of List , will be refinements of Collection.

We will illustrate the verification of class refinement by proving that
Iterator is refined by ListIterator . But first we would like to explain the no-
tion of refinement is more detail. For a formal treatment of class refinement
we refer to [19, 3, 2].

3.1 Formal Background: Class Refinement

3.1.1 Semantics, Correctness and Refinement of Program State-
ments

Every program statement has a weakest precondition predicate transformer
semantics. A predicate transformer S : (Γ → Bool) → (Σ → Bool) is a
function from predicates on Γ to predicates on Σ. We write

Σ �→ Γ =̂ (Γ→ Bool)→ (Σ→ Bool)

to denote the type of all predicate transformers from Σ to Γ. A statement
with initial state in Σ and final state in Γ determines a monotonic predicate
transformer S : Σ �→ Γ that maps any postcondition state predicate q :
Γ → Bool to the weakest precondition state predicate p : Σ → Bool such
that the statement is guaranteed to terminate in a final state satisfying q
whenever the initial state satisfies p. In the refinement calculus program
statements are identified with the monotonic predicate transformers that
they determine. For details of the predicate transformer semantics, we refer
to [6].

The total correctness assertion p {|S |} q is said to hold if the statement S
can be used to establish the postcondition q when starting in the set of states
p. Formally, the total correctness assertion p {|S |} q is defined to be equal
to p ⊆ S q, which means that p is stronger than the weakest precondition
of S with respect to q.

23

A statement S is refined by a statement S′, written S � S′, if any
condition that we can establish with the first statement can also be estab-
lished with the second statement. Formally, S � S′ is defined to hold if
p {|S |} q ⇒ p {|S′ |} q, for any p and q. Refinement is reflexive and transi-
tive.

The refinement calculus provides rules for transforming more abstract
program structures into more concrete ones based on the notion of refine-
ment of statements presented above. For example, we have the following
law for assignment introduction:

assert b1; [x = x′ | b2] � x = e, if b1 ⇒ b2[x′ ← e] (1)

This law states that a nondeterministic assignment to x of a new value
satisfying the boolean expression b2 under the condition that b1 holds ini-
tially is refined by a deterministic assignment of an expression e to x if b1
is stronger than b2 with all variables x′ substituted with e. For example,
[n = n′ |n′2 == n] is refined by n = −√

n because assertion of a universally
true predicate true always skips, so that [n = n′ |n′2 == n] is the same as
assert true; [n = n′ |n′2 == n], and also because true ⇒ ((−√

n)2 == n).
Effectively, this law expresses the fact that decreasing nondeterminism is a
refinement.

3.1.2 Data Refinement of Program Statements

Data refinement is a general technique by which one can change data rep-
resentation in a refinement. Assume that statements S and S′ operate on
state spaces Σ and Σ′ respectively, i.e. S : Σ �→ Σ and S′ : Σ′ �→ Σ′. Let
R : Σ′ → Σ → Bool be a relation between the state spaces Σ′ and Σ. Fol-
lowing [4], the statement S is said to be data refined by the statement S′ via
the relation R, denoted S �R S′, if coercing the concrete state Σ′ to the
abstract state Σ followed by executing S is refined by executing S′ followed
by coercing the concrete state to the abstract:

S �R S
′ =̂ {R};S � S′; {R}

The angelic nondeterministic assignment {R} used here coerces the concrete
state to the abstract. Usually, if the concrete state is represented by the
variable c : Σ′ and the abstract one by the variable a : Σ, the relation R
applied to c and a is equal to some boolean expression t which may refer
to a, c and other program variables over the global state. The abstraction
statement {R} written in terms of program variables will then have the form
{a = a′ | t[a← a′]}, where t[a← a′] is t with all occurrences of a substituted
with a′.

To illustrate data refinement laws, let us present the rule for data refine-
ment of demonic nondeterministic assignment:

assert p; [a, u = a′, u′ | b1] �R assert p′; [c, u = c′, u′ | b2], (2)

24

if p ∧ t ⇒ p′ and p ∧ t ∧ b2 ⇒ (∃a′ • b1 ∧ t′)
Here t stands for R applied to c and a, and t′ is equal to t with all occur-
rences of a, c and u substituted with a′, c′ and u′, i.e. t′ = t[a, c, u← a′, c′, u′].
According to this rule, for example, the nondeterministic assignment to a
variable e of some element of a nonempty set s is refined by the nondeter-
ministic assignment to e of some element of a nonempty sequence l:

assert s != ∅; [s, e = s′, e′ | e′ ∈ s] �R

assert l != 〈〉; [l, e = l′, e′ | ∃i • 0 ≤ i < #l ∧ e′ == l[i]]
Here R l s = (∀e • e ∈ s == e in l) and verification of the necessary
preconditions can be done using the basic properties of sets and sequences.

Presenting other rules of data refinement is outside the scope of this
paper and we refer the interested reader to [6, 21] which contain large col-
lections of refinement rules.

3.1.3 Class Refinement

Class refinement is defined to hold between classes C and D if there exists a
relation R such that the constructor of C is data refined by the constructor
of D with respect to R and every method of C is data refined by the corre-
sponding method of D with respect to R. Suppose that the constructors of
C and D with input parameters g0 and g′0 of types Γ0 and Γ′0 are specified by
statements K and K ′ of types Γ0 �→ Σ× Γ0 and Γ′0 �→ Σ′ × Γ′0 respectively.
Further suppose that a relation R : Σ↔ Σ′ coerces the attributes d of D to
the attributes c of C; if D has the same attributes as C, this relation is the
identity relation Id , if D inherits all the attributes of C and adds some new,
this relation is the projection. Similarly, a relation Q : Γ′0 ↔ Γ0 coerces the
input parameter g′0 to the input parameter g0. In case the input parame-
ters are of the same type, Q is equal to the identity relation. Constructor
refinement with respect to the relations Q and R is defined as follows:

{Q};K � K ′; {R× True}
Here the relational product R×True relates pairs of states (d, g′0) and (c, g0)
so that R holds of d and c and True holds of g′0 and g0. As the values of the
input parameters in the end of the constructors are irrelevant, coercing them
using the relation True will always succeed. In terms of program variables
for the attributes c of C and d of D the rule for constructor refinement can
be expressed as follows:

{g0 = g′ |Q g′0 g′};K � K ′; {c, g0 = c′, g′ |R d c′}
Consider now refinement of statements Mi and M ′

i that specify the be-
havior of some method called Methi in C and D respectively. Formally,
a method with input parameters gi : Γi and an output parameter di of

25

type ∆i, operating on the attributes of type Σ is a statement of type
Σ × Γi × ∆i �→ Σ × Γi × ∆i. As the types of input and return parame-
ters of Methi in C and D are necessarily identical in Java, we can coerce
the parameters using the identity relation. Refinement of methods with the
respect to the relation R coercing the corresponding attributes is then given
as follows:

{R× Id};Mi � M ′
i ; {R× Id}

In terms of program variables for the attributes c of C and d of D the rule
for method refinement can be expressed as follows:

{c = c′ |R d c′};Mi � M ′
i ; {c = c′ |R d c′}

If D has new methods there is an additional proof obligation that every
new method of D preserves the set of reachable states of C. This require-
ment is necessary because if new methods take an instance of D into a
state which is perceived as unreachable in the context of C, clients of D
may get invalidated. In practice, the set of reachable states is preserved by
all non-modifying methods and by modifying methods that refine an arbi-
trary composition of the original methods. For a formal treatment of class
refinement and consistency in the presence of new methods see [2].

When classes have explicit invariants, apart from proving class refine-
ment it is necessary to verify that the classes are consistent with respect to
the corresponding class invariants, and that these class invariants are related
via an abstraction relation. Namely, if I is the invariant of C (in the case
when the interclass invariant of C is different from true, the invariant I is
the conjunction of the class invariant and the interclass invariant, otherwise
it is just the class invariant), we have to prove that the constructor of C
establishes I and all methods of C preserve I. Let the constructor of C be
specified by a statement K, then verification of establishing I by K amounts
to proving that the total correctness assertion true {|K |} I holds. If K has
some precondition p, e.g., places some restrictions on input parameters, then
we have to conjoin p to the precondition of the correctness assertion, getting
to prove p {|K |} I, which means that if p holds in the beginning then K
guarantees to establish I in the end. Similarly, verification of preserving the
invariant I by a method Mi of C requires verifying the correctness asser-
tion I {|Mi |} I. If M itself has a precondition pi, this correctness assertion
becomes I ∧ pi {|Mi |} I.

Coercing an abstract invariant using an abstraction relation produces an
invariant on a concrete state that restricts the possible values of the concrete
state as the abstract invariant restricts the possible values of the abstract
state. More formally, if a and c are the program variables representing an
abstract and a concrete states respectively, I and J are boolean expressions
on a and c representing the corresponding invariants, and R is an abstraction

26

relation, then I can be expressed on the concrete state c as (∃a • R c a∧ I).
In verifying class refinement between C and D, we have to prove that the
invariant J ofD is stronger than or equal to the invariant I of C with respect
to R, i.e. J ⇒ (∃a • R c a ∧ I). Verifying that this relation between the
invariants holds, allows us to make sure that instances of D preserve the
invariant of C with respect to the abstraction relation, which is important if
they are to be dynamically substituted for instances of C. Moreover, if D is
a subclass of C, self-referential method invocations in C can get redirected
to D. To prevent such a down-call of a subclass method from a superclass
method from aborting, the subclass invariant must be equal to the superclass
invariant with respect to the abstraction relation, i.e. J = (∃a • R c a∧ I),
with = standing for logical equality. This condition guarantees that both
C and D preserve mutual invariants, which is a critical requirement in the
presence of subtype polymorphism and possible self-referential calls between
C and D. For a detailed discussion of these issues we refer to [18]. In the
next subsection we will illustrate all these concepts and requirements with
an example of proving class refinement between Iterator and ListIterator ,
both having non-trivial class invariants.

3.2 Proving Class Refinement in Practice

In proving the class refinement Iterator � ListIterator we have to select
an abstraction relation coercing the attributes lst , ind , canModify ,modified
of ListIterator to the attributes col , current , canRemove,modified ,next of
Iterator . To distinguish between the attributes modified in the two classes,
we will call cm the one in Iterator and lm the one in ListIterator . Also, for
convenience we will abbreviate (col , current , canRemove, cm,next) by attr
and (lst , ind , canModify , lm) by attr ′.

The abstraction relation R can now be given as follows:

R attr′ attr = I ′ ∧ J ′ ∧ Q lst col ∧ canModify == canRemove ∧
(canModify ⇒ next == lst .elems[ind]) ∧
toBag(lst .elems[0..ind]) == current

Here I ′ and J ′ are the combined class and interclass invariants of Iterator
and ListIterator with the modified parameter called cm in Iterator and lm
in ListIterator , and Q is an abstraction relation coercing List to Collection:

I ′ = col != null ∧ current ⊆ col .elems ∧ cm == col .modified ∧
(canRemove ⇒ next ∈ current)

J ′ = lst != null ∧ −1 ≤ ind ≤ #lst .elems ∧ lm == lst .modified ∧
(canModify ⇒ 0 ≤ ind < #lst .elems)

Q l c = (l == null ∧ c == null) ∨ (l != null ∧ c != null ∧
toBag(l.elems) == c.elems ∧ l.modified == c.modified)

27

We distinguish the relation Q because it will be used not only as a part of R,
but also as an abstraction relation coercing constructor input parameters.

3.2.1 Proving Constructor and Method Refinement

We begin with proving data refinement between the constructors of Iterator
and ListIterator with respect to the relations Q and R. The goal we have
to prove is as follows:

{c = c′ |Q l c′};
assert c != null ;
col , current , canRemove, cm,next = c, �||�, false, c.modified ,null
�
assert l != null ; lst , ind , canModify , lm = l,−1, false, l.modified ;
{col , current , canRemove, cm,next , c = col ′, cur ′, r′, cm ′, n′, c′ |
R (lst , ind , canModify , lm) (col ′, cur ′, r′, cm ′, n′)}

Deterministic assignment can always be rewritten as angelic nondetermin-
istic assignment, according to the rule

x = e = {x = x′ |x′ == e} (3)

Also, assertion can be propagated inside an adjacent angelic assignment,

assert p; {x = x′ | b} = {x = x′ | p ∧ b} (4)
{x = x′ | b}; assert p = {x = x′ | p[x← x′] ∧ b} (5)

Applying these rules we get

{c = c′ |Q l c′ ∧ c′ != null};
{col , current , canRemove, cm,next = col ′, cur ′, r′, cm ′, n′ |

col ′ == c ∧ cur ′ == �||� ∧ r′ == false ∧ cm ′ == c.modified ∧ n′ == null}
�
{lst , ind , canModify , lm = lst ′, ind ′,m′, lm ′ |
l != null ∧ lst ′ == l ∧ ind ′ == −1 ∧ m′ == false ∧ lm ′ == l.modified};

{col , current , canRemove, cm,next , c = col ′, cur ′, r′, cm ′, n′, c′ |
R (lst , ind , canModify , lm) (col ′, cur ′, r′, cm ′, n′)}

Two angelic assignment statements can be merged together according to the
following rule:

{x = x′ | b}; {y = y′ | c} = {x, y = x′, y′ | b ∧ c[x← x′]} (6)

As the abstraction statement removes concrete attributes, replacing them
with abstract ones, application of the above rule gives us the following:

{col , current , canRemove, cm,next , c = col ′, cur ′, r′, cm ′, n′, c′ |
Q l c′ ∧ c′ != null ∧ col ′ == c′ ∧ cur ′ == �||� ∧
r′ == false ∧ cm ′ == c′.modified ∧ n′ == null}

�
{col , current , canRemove, cm,next , c = col ′, cur ′, r′, cm ′, n′, c′ |
l != null ∧ R (l,−1, false, l.modified) (col ′, cur ′, r′, cm ′, n′)}

28

Using the rule

(b⇒ c) ⇒ {x = x′ | b} � {x = x′ | c} (7)

we can now reduce the proof to

Q l c′ ∧ c′ != null ∧ col ′ == c′ ∧ cur ′ == �||� ∧
r′ == false ∧ cm ′ == c′.modified ∧ n′ == null
⇒
l != null ∧ col ′ != null ∧ cur ′ ⊆ col ′.elems ∧ cm ′ == col ′.modified ∧
(r′ ⇒ n′ ∈ cur ′) ∧ l != null ∧ −1 ≤ −1 ≤ #l.elems ∧
l.modified == l.modified ∧ (false ⇒ 0 ≤ −1 ≤ #l.elems − 1)
Q l col ′ ∧ false == r′ ∧ (false ⇒ n′ == l.elems[−1])∧
toBag(l.elems[0..− 1]) == cur ′

Applying simple logic transformations, we reduce this goal to true, complet-
ing our proof of constructor refinement.

For the proof of method refinement between the methods hasNext as
defined in Iterator and ListIterator , we would need to show that the values
returned in these methods are equal under the abstraction relation R:

R attr ′ attr ⇒ (current ⊂ col .elems = ind < #lst .elems − 1)

We prove the boolean equality by proving mutual implications:

1. R attr ′ attr ⇒ (current ⊂ col .elems ⇒ ind < #lst .elems − 1)
2. R attr ′ attr ⇒ (ind < #lst .elems − 1 ⇒ current ⊂ col .elems)

For the proof of the first subgoal we use a lemma c ⊆ b ⇒ #c < #b,
which can easily be proved for arbitrary bags c and b, to get

R attr ′ attr ⇒ (#current < #col .elems ⇒ ind < #lst .elems − 1)

Using the clause toBag(lst .elems[0..ind]) == current , which is a part of
R attr ′ attr , and then a lemma #toBag(l) == #l, we get

R attr ′ attr ⇒
(#(lst .elems[0..ind]) < #col .elems ⇒ ind < #lst .elems − 1)

Assuming that ind ≥ #lst .elems−1 and using the definition of subsequence
we get

R attr ′ attr ∧ ind ≥ #lst .elems − 1 ⇒
(#lst .elems < #col .elems ⇒ ind < #lst .elems − 1)

Now from R attr ′ attr we get that toBag(lst .elems) == col .elems and,
therefore, #lst .elems == #col .elems, using the above mentioned lemmas.

29

We reach a contradiction in the assumptions, thus proving the goal:

R attr ′ attr ∧ ind ≥ #lst .elems − 1 ∧ #lst .elems == #col .elems ⇒
(#lst .elems < #col .elems ⇒ ind < #lst .elems − 1)

= R attr ′ attr ∧ ind ≥ #lst .elems − 1 ∧ #lst .elems == #col .elems ∧
#lst .elems < #col .elems ⇒ ind < #lst .elems − 1)

= false ⇒ ind < #lst .elems − 1
= true

The second subgoal

R attr ′ attr ⇒ (ind < #lst .elems − 1 ⇒ current ⊂ col .elems)

is proved similarly to the first subgoal, using lemmas

i < #l − 1 ⇒ #l[0..i] < #l and
c ⊆ b ∧ #c < #b ⇒ c ⊂ b

The next method refinement we must prove is between the methods
next in Iterator and ListIterator respectively. Namely, we have to prove the
following data refinement:

assert current ⊂ col .elems; [next = e | e ∈ (col .elems \ current)];
current , canRemove = current + �|next |�, true; return next
�R

assert ind < #lst .elems − 1; ind , canModify = ind + 1, true;
return lst .elems[ind]

First of all, returning a value from a method can be modeled by assign-
ing the returned value to a variable res representing the result parameter.
Therefore, we can rewrite the above data refinement as follows:

assert current ⊂ col .elems; [next = e | e ∈ (col .elems \ current)];
current , canRemove = current + �|next |�, true; res = next
�R

assert ind < #lst .elems − 1; ind , canModify = ind + 1, true;
res = lst .elems[ind]

Two demonic assignment statements can be merged together according to
the following rule:

[x = x′ | b]; [y = y′ | c] = [x, y = x′, y′ | b ∧ c[x← x′]] (8)

Transforming deterministic assignments into demonic assignments and ap-

30

plying this rule, we get

assert current ⊂ col .elems;
[next , current , canRemove, res = n′, cur ′, r′, res ′ |n′ ∈ (col .elems \ current)∧

cur ′ == current + �|n′|� ∧ r′ == true ∧ res ′ == n′]
�R

assert ind < #lst .elems − 1;
[ind , canModify , res = ind ′,m′, res ′ |

ind ′ == ind + 1 ∧ m′ == true ∧ res ′ == lst .elems[ind ′]]

Applying the rule for data refinement of nondeterministic assignment state-
ments, we can reduce the proof of this goal to two subgoals:

1. current ⊂ col .elems ∧ R attr ′ attr ⇒ ind < #lst .elems − 1
2. current ⊂ col .elems ∧ R attr ′ attr ∧

ind ′ == ind + 1 ∧ m′ == true ∧ res ′ == lst .elems[ind ′]
⇒
(∃col ′, cur ′, r′, cm ′, n′ •

n′ ∈ (col .elems \ current) ∧ cur ′ == current + �|n′|� ∧ r′ == true ∧
res ′ == n′ ∧ R (lst , ind ′,m′, lm) (col ′, cur ′, r′, cm ′, n′))

The first subgoal, using the logical shunting rule

p ∧ q ⇒ r = p⇒ (q ⇒ r)

is reduced to the first subgoal in the proof of method refinement between
the methods hasNext and is already proved.

In the proof of the second subgoal we instantiate the existentially quanti-
fied variables by col , current + �|lst .elems[ind ′]|�, true, cm and lst .elems[ind ′]
respectively, getting

current ⊂ col .elems ∧ R attr ′ attr ∧
ind ′ == ind + 1 ∧ m′ == true ∧ res ′ == lst .elems[ind ′]
⇒
lst .elems[ind ′] ∈ (col .elems \ current)∧
current + �|lst .elems[ind ′]|� == current + �|lst .elems[ind ′]|� ∧
true == true ∧ res ′ == lst .elems[ind ′] ∧ col != null ∧
current + �|lst .elems[ind ′]|� ⊆ col .elems ∧ cm == col .modified ∧
(true ⇒ lst .elems[ind ′] ∈ current + �|lst .elems[ind ′]|�)∧
lst != null ∧ −1 ≤ ind ′ ≤ #lst .elems ∧ lm == lst .modified ∧
(m′ ⇒ 0 ≤ ind ′ < #lst .elems) ∧ Q lst col ∧ m′ == true ∧
(m′ ⇒ lst .elems[ind ′] == lst .elems[ind ′])∧
toBag(lst .elems[0..ind ′]) == current + �|lst .elems[ind ′]|�

31

Simplifying and rewriting with the definition of R attr ′ attr , we get

current ⊂ col .elems ∧ R attr ′ attr
⇒
lst .elems[ind + 1] ∈ (col .elems \ current)∧
current + �|lst .elems[ind + 1]|� ⊆ col .elems ∧
lst .elems[ind + 1] ∈ current + �|lst .elems[ind + 1]|� ∧
−1 ≤ ind ≤ #lst .elems − 2∧
toBag(lst .elems[0..ind + 1]) == current + �|lst .elems[ind + 1]|�

To prove this goal, we use the following lemmas:

toBag(〈e〉) = �|e|� (9)
toBag(l1) + toBag(l2) = toBag(l1 ̂ l2) (10)
l[0..i+ 1] = l[0..i] ̂ 〈l[i+ 1]〉 (11)
b1 ⊂ b2 ∧ e ∈ b2 ⇒ b1 + �|e|� ⊆ b2 (12)
(∃i | 0 ≤ i ≤ #l − 1 • l[i] = e) ⇒ e ∈ toBag(l) (13)
e ∈ b1 ∧ b2 e < b1 e ⇒ e ∈ (b1 \ b2) (14)

Proofs of these lemmas are straightforward from the definitions of the corre-
sponding bag and sequence operators. Rewriting the goal with these lemmas
and simplifying, we get

current ⊂ col .elems ∧ R attr ′ attr
⇒
lst .elems[ind + 1] ∈ col .elems ∧ −1 ≤ ind ≤ #lst .elems − 2∧
current (lst .elems[ind + 1]) < (col .elems) (lst .elems[ind + 1])∧
toBag(lst .elems[0..ind]) + �|lst .elems[ind + 1]|� ==

current + �|lst .elems[ind + 1]|�

Finally, using the earlier proved property

current ⊂ col .elems ∧ R attr ′ attr ⇒ ind < #lst .elems − 1

and rewriting with clauses

−1 ≤ ind ≤ #lst .elems
toBag(lst .elems[0..ind]) == current
toBag(lst .elems) == col .elems

from R attr ′ attr , we prove this goal.
We omit the proof of Iterator .remove �R ListIterator .remove which

is carried out in the same manner as the proof of Iterator .next �R

ListIterator .next , using the same lemmas.

32

3.2.2 Proving Preservation of Invariants

While verifying correctness of a class having explicit invariants, we should
prove that constructors of this class establish the (combined class and inter-
class) invariant and all methods preserve it. Here we will only demonstrate
how one can prove that methods preserve the invariant. We show that
the method add of ListIterator preserves the invariant J ′, expressed as the
following correctness assertion:

J ′ {|
ind = ind + 1; [lst .elems = s | ∃s1, s2 •

s == s1 ̂ 〈o〉 ̂ s2 ∧ lst .elems == s1 ̂ s2 ∧ s[ind] == o];
canModify , lm = false, lm + 1; lst .modified = lm

|} J ′

In the proof of this correctness assertion we will use the following rules,
presented and proved in [6]:

p {|S1;S2 |} q = (∃r • p {|S1 |} r ∧ r {|S2 |} q) (15)
p {|x = e |} q = p ⊆ q[x← e] (16)
p {|x = x′ | b |} q = p ⊆ (∀x′ • b⇒ q[x← x′] (17)

Applying rules (15) and (16) and instantiating the existentially quantified
predicate to J1 such that

J1 = lst != null ∧ −1 ≤ ind ≤ #lst .elems + 1 ∧ lm == lst .modified ∧
(canModify ⇒ 0 ≤ ind ≤ #lst .elems)

we get to prove two subgoals

1. J ′ ⇒ J1[ind ← ind + 1]

2. J1 {|
[lst .elems = s | ∃s1, s2 •

s == s1 ̂ 〈o〉 ̂ s2 ∧ lst .elems == s1 ̂ s2 ∧ s[ind] == o];
canModify , lm = false, lm + 1; lst .modified = lm

|} J ′

The first subgoal obviously holds, since −1 ≤ ind ≤ #lst .elems ⇒ −1 ≤
ind + 1 ≤ #lst .elems + 1 and 0 ≤ ind < #lst .elems ⇒ 0 ≤ ind + 1 ≤
#lst .elems. For proving the second subgoal we apply rules (15) and (17),
instantiating the existentially quantified predicate to J ′:

1. lst != null ∧ −1 ≤ ind ≤ #lst .elems + 1 ∧ lm == lst .modified ∧
(canModify ⇒ 0 ≤ ind ≤ #lst .elems)
⇒
(∀s • (∃s1, s2 • s == s1 ̂ 〈o〉 ̂ s2 ∧ lst .elems == s1 ̂ s2 ∧ s[ind] == o)

⇒ lst != null ∧ −1 ≤ ind ≤ #s ∧ lm == lst .modified ∧
(canModify ⇒ 0 ≤ ind ≤ #s− 1))

2. J ′ {| canModify , lm = false, lm + 1; lst .modified = lm |} J ′

33

Using simple logic transformations, the first of these goals can be reduced
to

−1 ≤ ind ≤ #lst .elems + 1 ∧ (canModify ⇒ 0 ≤ ind ≤ #lst .elems)∧
s == s1 ̂ 〈o〉 ̂ s2 ∧ lst .elems == s1 ̂ s2
⇒
−1 ≤ ind ≤ #s ∧ (canModify ⇒ 0 ≤ ind ≤ #s− 1)

and proved using the lemma #(l1 ̂ l2) = #l1 +#l2.
For the proof of the second subgoal, we apply rules (15) and (16) instan-

tiating the existentially quantified predicate to J2 such that

J2 = lst != null ∧ −1 ≤ ind ≤ #lst .elems ∧ lm == lst .modified + 1∧
(canModify ⇒ 0 ≤ ind < #lst .elems)

The resulting subgoals

1. lst != null ∧ −1 ≤ ind ≤ #lst .elems ∧ lm == lst .modified ∧
(canModify ⇒ 0 ≤ ind < #lst .elems)
⇒
lst != null ∧ −1 ≤ ind ≤ #lst .elems ∧ lm + 1 == lst .modified + 1∧
(false ⇒ 0 ≤ ind < #lst .elems)

2. lst != null ∧ −1 ≤ ind ≤ #lst .elems ∧ lm == lst .modified + 1∧
(canModify ⇒ 0 ≤ ind < #lst .elems)
⇒
lst != null ∧ −1 ≤ ind ≤ #lst .elems ∧ lm == lm ∧
(canModify ⇒ 0 ≤ ind < #lst .elems)

hold trivially.
This completes our proof of method ListIterator .add preserving the com-

bined class and interclass invariant of ListIterator . Proofs of invariant pre-
serving for other methods of ListIterator can be carried out in a similar man-
ner. Naturally, the same principles apply to proving consistency of methods
of Iterator with respect to its combined invariant. Moreover, non-modifying
methods, such as hasNext , hasPrevious, nextIndex , and previousIndex , pre-
serve the corresponding invariants automatically.

When proving refinement between two classes having explicit invariants,
we should also verify that the concrete invariant is stronger than or equal to
the abstract invariant with respect to an abstraction relation. As in our case
Iterator and ListIterator are the specifications of the corresponding inter-
faces and ListIterator does not inherit from Iterator , a stronger requirement
that the invariants I ′ and J ′ must be equal does not apply. Therefore, we
have only to prove that J ′ is stronger than or equal to I ′ with respect to R,
i.e.

J ′ ⇒ (∃attr • R attr ′ attr ∧ I ′)

34

where attr abbreviates (col , current , canRemove, cm,next) and attr ′ abbre-
viates (lst , ind , canModify , lm), and also I ′ and J ′ are the combined invari-
ants of Iterator and ListIterator with the modified parameter called cm in
Iterator and lm in ListIterator . Rewriting with the definitions of I ′ and J ′,
we get to prove the following goal:

lst != null ∧ −1 ≤ ind ≤ #lst .elems ∧ lm == lst .modified ∧
(canModify ⇒ 0 ≤ ind < #lst .elems)
⇒
(∃attr • R attr ′ attr ∧ col != null ∧
current ⊆ col .elems ∧ cm == col .modified ∧
(canRemove ⇒ next ∈ current))

Instantiating the existentially quantified variables attr so that col is in-
stantiated with a reference c to an object with elems == toBag(lst .elems)
and modified == lst .modified , canRemove is instantiated with canModify ,
current with toBag(lst .elems[0..ind]), cm with c.modified , and next with
lst .elems[ind], we can prove this goal as well.

4 Conclusions and Related Work

In this paper we present a novel approach to specification and verification
of object-oriented frameworks. The novelty of our approach is in blurring
the difference between specifications and implementations which permits
abstracting away from implementation details in a specification, yet being
precise about important behavioral issues, such as, e.g., a fixed method invo-
cation order or an iterative execution of a particular statement. The benefits
of combining executable statements with specification statements when rea-
soning about object-oriented and component-based systems are described
by Martin Büchi and Emil Sekerinski in [8]. In particular, they note that a
popular form of specification in terms of pre- and postconditions does not
scale well to reasoning about object-oriented and component-based systems,
because pre- and postconditions, being predicates, cannot contain calls to
other methods, except when the latter are pure functions. Therefore, one has
to reinvent the wheel every time when specifying the behavior of a method
implementing some functionality by calling other methods. Specifications in
terms of abstract statements, as pointed out in [8], are not affected by this
scalability problem. Also, Büchi and Sekerinski note that pre- and postcon-
ditions, which are only checked at runtime, help to locate errors but do not
prevent them as does static analysis.

Our specification method is supported by a solid formal foundation: ev-
ery executable statement of the Java language as well as every specification
statement that we use has a precise mathematical meaning as described
in [19, 3]. Moreover, treating specifications and implementations in a uni-
form logical framework permits formal reasoning about their relationship

35

and properties. Of particular interest is the verification of behavioral con-
formance between specifications of interfaces and implementations of these
interfaces. Verifying behavioral conformance of implementations to their
specifications as well as behavioral conformance of subinterface specifications
to the corresponding superinterface specifications permits ensuring correct-
ness of the whole system.

We illustrate our specification method by specifying a part of the Java
Collections Framework. We have developed formal specifications of other
subinterfaces of Collection as well, but omit them for the reasons of limited
space. In the process of specifying JCF interfaces we had to make several
important design decisions resolving the ambiguities and inconsistencies in
the original documentation. The expressiveness of our specification language
and the preciseness that it requires, forced us to deal with the issues that
were overlooked, underspecified, left undefined, or even had contradicting
descriptions. In particular, from analyzing the description of the relation-
ship between structure-modifying methods of Collection and Iterator one
concludes that the methods add and remove of Collection should perform
structural modifications through calls to the identically-named methods of
Iterator . However, the interface Iterator does not even provide a method
add , which either indicates the problems with the informal description of
the behavior or the possibility of inadequate framework design.

Another interesting point to note is that, according to our specification,
iterating several times over a collection can every time return elements in
a different order, which is the most liberal specification describing iteration
over an unordered collection, and which corresponds directly to the descrip-
tion of Collection.iterator in [7] stating: “There are no guarantees concern-
ing the order in which the elements are returned [...]”. This specification
permits both an implementation that imposes no order on the returned ele-
ments, and a more deterministic implementation that guarantees the same
order of elements every time when iterating over the same collection. To
mention just one more place where we have identified inconsistencies in the
original documentation, the method Collection.removeAll does not stipulate
the requirement that the incoming collection cannot be modified during its
execution; however, based on the description of this method’s behavior, one
can conclude that this requirement is absolutely necessary.

The difference in size between the implementation of Collection’s contains
method as given in the class AbstractCollection, which is a part of the stan-
dard JCF implementation, and between our specification of this method is
quite illustrative of the general picture. In AbstractCollection the method
contains is defined by

36

public boolean contains(Object o) {

Iterator e = iterator();

if (o==null) {

while (e.hasNext())

if (e.next()==null) return true;

} else {

while (e.hasNext())

if (o.equals(e.next())) return true;

}

return false;

}

while in our specification it is defined by return (o ∈ elems).
Related work in formal specification of object-oriented systems includes

William Cook’s specification in [12] of Smalltalk-80 collection class library.
Although the library is organized by inheritance, Cook argues that inter-
face inheritance or subtyping is a logical basis for the library organization,
supporting this claim by specifying the interfaces and revealing several prob-
lems with the current organization of the library. With the Java Collections
Framework that we specify here, interface inheritance is separated from the
implementation inheritance and, since the former forms the basis for poly-
morphic object substitutability in client programs, we associate behavioral
specifications with interfaces, as does Cook. One of the main differences of
our work from that of Cook is that his specifications are given in terms of
pre- and postconditions, following Pierre America’s approach in [1], while
we use a specification language combining specification statements with ex-
ecutable ones.

The detailed elaboration of our formalization of object-oriented con-
structs and mechanisms, as described in [19, 3], opens the possibility of
mechanized reasoning and mechanical verification. An interesting recent
work by Bart Jacobs et al. in [15] reports a work in progress on building
a front-end tool for translating Java classes to higher-order logic in PVS
[22]. The authors state that “current work involves incorporation of Hoare
logic [10], via appropriate definitions and rules in PVS”, and present in [15]
a description of the tool “directly based on definitions”. In this work we
test the applicability of the theoretic foundation for reasoning about object-
oriented programs developed in [19, 3]. This theoretic foundation is based
on the logical framework for reasoning about imperative programs. A tool
supporting verification of correctness and refinement of imperative programs
and known as the Refinement Calculator [16] already exists and extending
it to handling object-oriented programs, including Java programs, appears
to be only natural.

There are a few issues that we haven’t addressed in this project, in
particular, the role of exceptions, their relation to assertion statements and
their formal semantics are left as a topic for future work. Method early
returns are treated somewhat informally: we assume that every method

37

returning the result inside the conditional statement or inside the loop can
be rewritten to an equivalent one returning the result as the last operation.
Formal treatment of early returns represents an interesting research topic.

Another important aspect that we haven’t addressed in this work is that
of concurrent execution of method invocations. In the underlying formal-
ism [19, 3] method calls are modelled as being atomic, meaning that once
a method has been invoked on an object, no other method will be invoked
on the same object before the first method has completed execution. How-
ever, our specification of method addAll , for example, clearly indicates the
need for considering non-atomic (concurrent) method invocations as well,
i.e. such invocations that can be interrupted by other method invocations
and resumed only upon their completion. Extending the specification and
verification method described here to handling concurrency represents an
interesting and important research direction. The refinement calculus sup-
ports reasoning about concurrent systems as reported in [5] and, therefore,
extending it to handling object-oriented concurrency appears to be a chal-
lenging yet feasible task.

Acknowledgements

We would like to thank Joakim von Wright, Ralph Back, Gary Leavens, and
Michael Butler for useful comments on this paper.

References

[1] P. America. Designing an object-oriented programming language
with behavioral subtyping. In J. de Bakker, W. P. de Roever, and
G. Rozenberg, editors, Foundations of Object-Oriented Languages,
REX School/Workshop, Noordwijkerhout, The Netherlands, May/June
1990, LNCS 489, pages 60–90, New York, N.Y., 1991. Springer-Verlag.

[2] R. Back, A. Mikhajlova, and J. von Wright. Class refinement as seman-
tics of correct object substitutability. Unpublished monograph extend-
ing [3], submitted for publication.
http://www.abo.fi/~amikhajl/Papers/ClassRefSem.ps.

[3] R. Back, A. Mikhajlova, and J. von Wright. Class refinement as se-
mantics of correct subclassing. Technical Report 147, Turku Centre for
Computer Science, December 1997.

[4] R. J. R. Back. Changing data representation in the refinement calculus.
In 21st Hawaii International Conference on System Sciences. IEEE,
January 1989.

38

[5] R. J. R. Back. Refinement calculus, part II: Parallel and reactive pro-
grams. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, edi-
tors, Stepwise Refinement of Distributed Systems, volume 430 of Lecture
Notes in Computer Science. Springer-Verlag, 1990.

[6] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic
Introduction. Springer-Verlag, April 1998.

[7] J. Bloch. Java Collections Framework: Collections 1.2.
http://java.sun.com/docs/books/tutorial/collections/index.html.

[8] M. Büchi and E. Sekerinski. Formal methods for component soft-
ware: The refinement calculus perspective. In Second Workshop on
Component-Oriented Programming (WCOP’97) held in conjunction
with ECOOP’97, June 1997.

[9] M. Butler, J. Grundy, T. L̊angbacka, R. Rukšėnas, and J. von Wright.
The refinement calculator: Proof support for program refinement. In
L. Groves and S. Reeves, editors, Formal Methods Pacific’97: Pro-
ceedings of FMP’97, Discrete Mathematics & Theoretical Computer
Science, pages 40–61, Wellington, New Zealand, July 1997. Springer-
Verlag.

[10] C. A. R. Hoare. An axiomatic basis for computer programming. CACM,
12(10):576–583, 1969.

[11] C. A. R. Hoare. Proofs of correctness of data representation. Acta
Informatica, 1(4):271–281, 1972.

[12] W. R. Cook. Interfaces and Specifications for the Smalltalk-80 Collec-
tion Classes. In Proceedings of OOPSLA’92, pages 1–15. ACM SIG-
PLAN Notices, 27(10), October 1992.

[13] E. W. Dijkstra. A Discipline of Programming. Prentice–Hall Interna-
tional, 1976.

[14] J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined.
In B. Robinet and R. Wilhelm, editors, European Symposium on Pro-
gramming, LNCS 213. Springer-Verlag, 1986.

[15] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel,
and H. Tews. Reasoning about Java classes (preliminary report). In
Proceedings of OOPSLA’98, pages 329–340, Vancouver, Canada, Oct.
1998. Association for Computing Machinery.

[16] T. L̊angbacka, R. Ruksenas, and J. von Wright. TkWinHOL: A tool for
window inference in HOL. Higher Order Logic Theorem Proving and
its Applications: 8th International Workshop, 971:245–260, September
1995.

39

[17] B. Meyer. Object-Oriented Software Construction. Prentice Hall, New
York, N.Y., second edition, 1997.

[18] A. Mikhajlova. Consistent extension of components in the presence of
explicit invariants. In Technology of Object-Oriented Languages and
Systems (TOOLS 29), pages 76–85. IEEE Computer Society Press,
June 1999.

[19] A. Mikhajlova and E. Sekerinski. Class refinement and interface refine-
ment in object-oriented programs. In Proceedings of the 4th Interna-
tional Formal Methods Europe Symposium, FME’97, LNCS 1313, pages
82–101. Springer, 1997.

[20] C. C. Morgan. Data refinement by miracles. Information Processing
Letters, 26:243–246, January 1988.

[21] C. C. Morgan. Programming from Specifications. Prentice–Hall, 1990.

[22] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification
System. In D. Kapur, editor, 11th International Conference on Auto-
mated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

40

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development

of Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems

Turku Centre for Computer Science

TUCS Dissertations

Turku Centre for Computer Science
Lemminkäisenkatu 14
FIN-20520 Turku
Finland

http://www.tucs.abo.fi

University of Turku
• Department of Mathematical Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Science

