
Turku Centre for Computer Science

TUCS Dissertations

No 21, December 1999

Leonid Mikhajlov

by

Software Reuse Mechanisms
and Techniques:

Safety Versus Flexibility

T U C S

Software Reuse Mechanisms
and Techniques:

Safety Versus Flexibility

Leonid Mikhajlov

To be presented – with the permission of the Faculty of Mathematics
and Natural Sciences at Åbo Akademi University – for public criticism,
in Auditorium 3102 at the Department of Computer Science at Åbo
Akademi University, on December 17th, 1999, at 14.00.

Department of Computer Science
Åbo Akademi University

ISBN 951-29-1581-2
ISSN 1239-1883

Painosalama Oy

To my parents

ß ñðàçó ñìàçàë êàðòó áóäíÿ,

ïëåñíóâøè êðàñêó èç ñòàêàíà;

ÿ ïîêàçàë íà áëþäå ñòóäíÿ

êîñûå ñêóëû îêåàíà.

Íà ÷åøóå æåñòÿíîé ðûáû

ïðî÷åë ÿ çîâû íîâûõ ãóá.

À âû

íîêòþðí ñûãðàòü

ìîãëè áû

íà ôëåéòå âîäîñòî÷íûõ òðóá?

Âëàäèìèð Ìàÿêîâñêèé

iii

Acknowledgements

I would like to express my gratitude to my supervisors Professor Ralph-
Johan Back and Professor Joakim von Wright for setting one of the highest
standards of quality of research and results presentation that exist in this
scientific field. Learning how to match these standards was challenging but
beneficial in the long run. To a great extent, it is the strength and clarity
of their theory, which is used as a theoretical basis in this dissertation, that
makes this thesis as interesting as it is. I would also like to thank them for
giving me the freedom to study what I wanted and waiting patiently for the
results.

Professor Eric Hehner of the University of Toronto, Canada, and Dr.
David Naumann of Stevens Institute of Technology, USA, kindly agreed to
review this dissertation and proposed several improvements. Their comments
and suggestions are gratefully acknowledged.

Special thanks are due to Dr. Emil Sekerinski (currently at McMaster
University, Canada) who has introduced me to the field of formal studies of
problems in object-oriented programming. Some of the most important re-
sults presented in this dissertation were developed in cooperation with Emil.
Apart from scientific help, Emil’s friendly encouraging advise and kind con-
cern helped me to cope with the feeling of “academic frustration”. For this
I am much obliged.

I would like to thank the board of Turku Centre for Computer Science for
accepting me to study at TUCS and granting me generous financial support
during the period of my PhD studies. Not only did I get the chance to
extend my knowledge of computer science, but also an opportunity to get
immersed into a different culture, which, I believe, was beneficial for me. I am
thankful to my colleagues in the department and fellow students at TUCS for
practical and scientific help. With Linas Laibinis, who co-authored one of the
papers used in this dissertation, I had particularly inspiring and illuminating
discussions.

I would like to thank all professors and lecturers at Taganrog State Uni-
versity of Radio-Engineering, where I studied for my Engineer’s Diploma,
who contributed to my scientific development. Especially, I am grateful to
D.P. Kalachev for getting me interested in software engineering. I also would
like to thank the rector of the University, professor V.G. Zakharevich, and
professor A.N. Melikhov, for giving me recommendations for applying to
TUCS.

iv

Last but not least, I would like to thank my friends and family. Espe-
cially, Tamara Ivanovna for her love and emotional support. My grandmother
Sosja Ihilevna for creating the “need to study” script in my family. My father
Leonid Samojlovich for showing me what it means and takes to be a scientist
and my mother Aleksandra Aleksejevna for letting me feel that, regardless
of anything, I am loved and needed. To Anna, I am grateful for her help,
encouragement, enthusiasm, infinite supply of excellent ideas, and the never-
ending striving for the very best.

Leonid Mikhajlov
November, 1999

Contents

1 Introduction 1
1.1 Layout of the Dissertation . 3

1.2 Mathematical Background . 6

1.2.1 Predicates, Relations, and Predicate Transformers 6

1.2.2 Statements of Refinement Calculus 8

1.2.3 Data Refinement . 12

1.3 Copy&Paste as a Software Reuse Technique 14

2 Functions and Procedures 17
2.1 Modeling Procedures and Procedure Invocation 18

2.2 Are Procedures Safe? . 19

2.3 Are Procedures Flexible? . 20

2.4 Discussion . 21

3 Modules 23
3.1 Modeling Modules . 24

3.2 Are Modules Safe? . 27

3.3 Are Modules Flexible? . 29

3.4 Discussion . 30

4 Objects and Forwarding 31
4.1 Modeling Objects . 34

4.2 Modeling Forwarding . 35

4.3 Is Forwarding Safe? . 36

4.4 Is Forwarding Flexible? . 38

4.5 Discussion and Related Work 40

v

vi CONTENTS

5 Objects and Delegation 43
5.1 Modeling Delegation . 44
5.2 Safety of Delegation . 46
5.3 Safety: A Simple Definition of Object Refinement 48

5.3.1 Modular Reasoning . 48
5.3.2 Discussion . 51

5.4 Safety: An Ad-hoc Definition of Object Refinement 51
5.4.1 An Example of Ad-hoc Informal Reasoning Used in

Practice . 52
5.4.2 The Essence of The Component Re-entrance Problem . . . 54
5.4.3 Restricting Assumptions About Context 54

5.5 Safety: A Definition of Context Object Refinement 56
5.5.1 Modular Reasoning Theorem 57

5.6 Discussion of Safety of Delegation 60
5.7 Check-List for Verifying Delegating Objects 63
5.8 Is Delegation Flexible? . 64
5.9 Discussion, Conclusions, and Related Work 66

6 Classes and Inheritance 71
6.1 Modeling Classes . 72
6.2 Modeling Inheritance . 74
6.3 Refinement on Classes . 78
6.4 Safety of Inheritance . 80

6.4.1 An Example of the Fragile Base Class Problem 81
6.4.2 Aspects of the Problem 83
6.4.3 Conflict Between Safety and Flexibility of Inheritance . . . 89
6.4.4 Disciplining Inheritance 92
6.4.5 Discussion of Safety of Inheritance 99
6.4.6 Check-List for Verifying Disciplined Inheritance 100

6.5 Is Inheritance Flexible? . 101
6.6 Related Work . 105
6.7 Conclusions . 110

7 Conclusions 113

Chapter 1

Introduction

It is widely recognized that we are experiencing a so-called software crisis.
While computer hardware is getting cheaper and more powerful, software
remains almost as expensive as it was 30 years ago [46]. In part this can
be attributed to the fact that software is reinvented almost every time when
something new is needed. To resolve the crisis, it is necessary to foster the
reusability of software with the ultimate goal of creating a market for software
components composable by end users analogous to the market of computer
hardware components.

The oldest software reuse technique of all is the source code Copy&Paste
technique. It is inappropriate for numerous reasons, such as space, efficiency,
and legacy. To alleviate at least some of these problems, a technique based
on the notorious goto statement was used. Unfortunately, this led to an ab-
solutely unmanageable and incomprehensible spaghetti-like code. The need
for better reusability initiated research in the programming language com-
munity on development of software reuse mechanisms and techniques, which
are language-specific constructs and their applications intended to facilitate
software reuse.

The work on new software reuse mechanisms and techniques is still very
active. Practically every new programming language comes with new mech-
anisms and may introduce new techniques. Sometimes a technique or a
mechanism can gain overwhelming popularity, while a systematic study of
its properties may not be concluded yet or has not even been attempted. The
lack of solid foundations can lead to the incorrect use of a particular mech-
anism or application of a particular technique in an inappropriate context.
The effect of these kinds of errors can be very difficult to assess as it can be

1

2 CHAPTER 1. INTRODUCTION

obscure. For example, the application of certain code reuse mechanisms may
hamper the ability of developers to maintain the system.

In this dissertation, we study the properties of a number of popular soft-
ware reuse mechanisms and techniques. Of all the possible properties of
these mechanisms and techniques, in this work we concentrate on two of key
importance: safety and flexibility. We say that a code reuse mechanism or
technique is safe if there exists a modular reasoning method associated with
it. To verify that a client program reusing a particular predefined piece of
code (packaged with a specific code reuse mechanism) is correct, it should be
sufficient to establish that the code candidate for reuse correctly implements
the functionality expected by the client. In this case, we say that a code
reuse mechanism permits modular reasoning. We provide an extensive dis-
cussion of the importance of the safety of reuse mechanisms and techniques
in practical programming.

While for some of the considered mechanisms, modular reasoning is well
understood, for others it remains a research topic. Often ad-hoc modular rea-
soning appeals to the developers’ intuition, but under careful analysis fails
to live up to the promise. In order to be able to analyze reuse techniques
and mechanisms rigorously, we develop customized formal models capturing
essential features of these mechanisms and techniques, relevant to the discus-
sion of their safety. The models of the reuse mechanisms and techniques are
based on the refinement calculus [12, 14, 13]. We formulate a modular rea-
soning property for each mechanism or technique and analyze whether this
property holds. In the cases when the property does not hold, we either for-
mulate requirements restricting the reuse mechanism or identify additional
verification obligations for developers. After that, we formally prove that
the modular reasoning property augmented with the formulated restrictions
and the additional verification conditions holds. Application of formal meth-
ods is beneficial for this kind of analysis, as it permits us to meticulously
study the artifacts of programming languages and to illuminate the features
of the reuse mechanisms and techniques that dramatically influence their
applicability. The choice of the refinement calculus in its higher-order logic
formalization is not incidental – this logical framework permits us to ana-
lyze very different software reuse mechanisms and techniques in a uniform
manner.

In general, a piece of software can rarely be reused in a new context
without prior adaptation. Thus the flexibility of a code reuse mechanism,
i.e., the ability of a developer to adopt a candidate code for reuse in a new

1.1. LAYOUT OF THE DISSERTATION 3

context, is a very important property. All software reuse mechanisms can
be split into two categories, those that allow for inline adaptation of reused
code and those that do not. A reuse mechanism permits inline adaptation
of the reused code if developers can customize this code in a manner that
was not preplanned by its developers. Code inheritance is one example of
a reuse mechanism permitting inline adaptation. In the absence of inline
adaptation, a code fragment can only be reused in its entirety. While inline
adaptation clearly provides extra flexibility, its virtues are a topic of ongoing
discussion [73, 82]. In our opinion, most of the problems associated with
inline adaptation can be traced back to the lack of safety in the existing
mechanisms supporting such inline adaptation.

With the software reuse mechanisms that do not permit inline adaptation,
the degree of reuse that can be achieved depends on the ability of reusable
code developers to anticipate the context in which the possibility to reuse the
code might appear. In many cases, we can speak about the flexibility of one
or another reuse technique, as there can be several techniques based on the
same reuse mechanism. The essence of any kind of the code adaptation is
in keeping parts of code that satisfy certain requirements, while substituting
the irrelevant parts with new ones. Hence the reusability of a reuse tech-
nique largely depends on the granularity of reusable code components. In
general, making components of smaller size generates more opportunities for
reuse. However, this can decrease the efficiency of the resulting system, as
communication through interfaces is more computationally expensive than
communication through common variables. Thus finding the right balance
between the size of code components and the general performance of the re-
sulting systems constitutes the primary challenge for the developers of the
reusable code. In this work, we discuss different issues related to flexibility
of various mechanisms and techniques that we consider and provide exam-
ples illustrating practical application of these mechanisms and techniques
facilitated by their flexibility.

1.1 Layout of the Dissertation

We consider the following software reuse mechanisms and techniques:
Copy&Paste; functions and procedures; modules; objects and two reuse tech-
niques relying on objects: forwarding and delegation; classes and inheritance.
We model the software reuse mechanisms and techniques on a very abstract

4 CHAPTER 1. INTRODUCTION

level, yet we believe that the presented models correctly capture the fea-
tures of the code reuse techniques essential for discussing their safety. The
refinement calculus in the higher-order logic formulation, which we use for
modeling reuse mechanisms and techniques, permits modeling these mecha-
nisms and techniques in a uniform manner. In the next section, we present
a brief introduction to the refinement calculus which serves as the underly-
ing formalism for the models that we present. We conclude the introductory
chapter by considering the most basic technique, Copy&Paste of source code,
and argue that monotonicity of constructs in a programming language is crit-
ical for the use of any reuse mechanism or technique used in this language.

The main body of the dissertation begins with the analysis of functions
and procedures. We present a simplified model of procedures and programs
using procedures, the sole intent of which is to introduce a general idea of the
models presented in this dissertation. Regardless of its apparent simplicity,
the model permits us to show that procedures permit reasoning about the
programs using them in a modular manner. We describe the flexibility of
procedures and discuss the consequences of procedure application in prac-
tical programming. This chapter sets up a general layout which we follow
throughout this dissertation.

In chapter 3, we discuss another basic mechanism – modules. Like for
procedures, we present a model of modules and of a client program using
modules. We formulate a modular reasoning property for modules and prove
that it holds. We discuss the flexibility of modules and discuss the applica-
bility of modules in different software systems.

The next two chapters, 4 and 5, are closely related as they discuss two
software reuse techniques based on objects. In chapter 4, we study objects
and the reuse technique known as forwarding. We argue that objects, unlike
modules, rarely operate in isolation. From a mathematical standpoint, an
object which is not invoking methods on other objects is no different from
a module. We present a model of an interactive object and a model of a
forwarding object composition, with which the structure of object references
can only be acyclic. Then we formulate a modular reasoning property for
forwarding objects and prove that it holds. Next, we discuss the flexibility
of objects and the forwarding technique and conclude by considering the
applicability of forwarding.

In chapter 5, we consider the reuse technique known as delegation, which
permits composing objects in recursive patterns, that is the structure of ob-
ject references can be cyclic. We develop a fixed point model of a delegating

1.1. LAYOUT OF THE DISSERTATION 5

object composition. We formulate a modular reasoning property for delegat-
ing objects and argue that its meaning strongly depends on the definition of
object refinement. We consider a simple definition of object refinement and
show that, while it is definitely safe, it is too inflexible to be used in practice.
Next, we consider an ad-hoc definition of refinement that is often used in
informal reasoning. We present a component re-entrance problem induced
by this definition. Analyzing aspects of the component re-entrance problem,
we formulate two requirements that should be taken into account in order
for the modular reasoning property to hold. We formulate context object
refinement accounting for one of the requirements and reformulate the mod-
ular reasoning property in terms of context object refinement and accounting
for the second requirement. Then we formally prove that this property holds
and present a check-list for informally verifying correctness of a delegating
object against its specification. Next, we discuss the flexibility of delegation
and show how delegation is used in the implementation of distributed com-
ponent platforms. We conclude the chapter by reviewing related work and
discussing the applicability of delegation to different systems. The content
of this chapter is roughly based on a joint work with Emil Sekerinski and
Linas Laibinis as presented in [50]. While [50] focuses on mutually depen-
dent components, here we use a similar model to reason about delegating
objects. The solution to the component re-entrance problem for delegating
objects presented here is also similar to that presented in [50]. The check-list
for verifying delegating objects and the discussion of flexibility of delegation
are original to this dissertation.

Chapter 6 is devoted to classes and inheritance. We present a model of
classes and inheritance and define refinement on classes. Then we discuss
the safety of inheritance and present the semantic fragile base class problem
which plagues the maintenance of object-oriented systems employing code
inheritance as the reuse mechanism. We present a detailed analysis of the
semantic fragile base class problem, discuss how code inheritance can be
disciplined to become a safe software reuse mechanism, and prove the cor-
responding modular reasoning property. Next we illustrate the flexibility of
code inheritance showing an architectural pattern that inheritance facilitates.
Further, we discuss the degree of flexibility attainable with different variants
of inheritance such as interface inheritance, code inheritance, and the disci-
plined inheritance. In the concluding sections, we relate to the work of other
researchers and consider the applicability of classes and inheritance for differ-
ent kinds of software systems, emphasizing a balance between the flexibility

6 CHAPTER 1. INTRODUCTION

and the safety. The semantic fragile base class problem was first studied in
a joint work with Emil Sekerinski in [49]. The formal model of classes and
inheritance and the analysis of the problem presented here follows those in
[49]. However the main result of this chapter – the Modular Reasoning Theo-
rem for Disciplined Inheritance – is original. The other contributions original
to this chapter include a proposal for implementing disciplined inheritance
as a language mechanism, a check-list for verifying disciplined inheritance
in practice, and discussions of safety and flexibility of different inheritance
mechanisms and techniques.

In the concluding chapter, we briefly review the contributions of this
dissertation, discuss the applicability of various reuse mechanisms and tech-
niques to various systems and outline directions of future research.

1.2 Mathematical Background

The refinement calculus is a logical framework for reasoning about correct-
ness and refinement of imperative programs developed by Ralph Back, Caroll
Morgan, Joe Morris, Joakim von Wright, and others [6, 54, 55, 85, 9, 26, 56].
In this section, we present the necessary definitions and rules of the refine-
ment calculus. The models of software reuse mechanisms and techniques
that we present in the following chapters are developed as extensions of the
basic refinement calculus. The material of this section is based on the work
by Back and von Wright as presented in [12, 10, 5, 14, 13].

1.2.1 Predicates, Relations, and Predicate
Transformers

A program state with n components is modeled by a tuple of values, and a
set of states (type) Σ is a product space, Σ = Σ1 × . . . × Σn.

A predicate over Σ is a boolean function p : Σ → Bool which assigns a
truth value to each state. The set of predicates on Σ is denoted PΣ. The
predicates true and false over Σ map every σ : Σ to the boolean values T
and F , respectively. The entailment ordering on predicates is defined by
pointwise extension, so that for p, q : PΣ,

p ⊆ q =̂ (∀σ : Σ • p. σ ⇒ q. σ)

1.2. MATHEMATICAL BACKGROUND 7

Conjunction p ∩ q, disjunction p ∪ q, and negation ¬p of (similarly-typed)
predicates are defined by pointwise extension of the corresponding operations
on Bool . For p, q : PΣ,

p ∩ q =̂ (∀σ : Σ • p. σ ∧ q. σ)

p ∪ q =̂ (∀σ : Σ • p. σ ∨ q. σ)

¬p =̂ (∀σ : Σ • ¬(p. σ))

A relation from Σ to Γ is a function of type Σ → PΓ that maps each state
σ to a predicate on Γ. We write Σ ↔ Γ to denote a set of all relations from
Σ to Γ. This view of relations is isomorphic to viewing them as predicates
on the cartesian space Σ × Γ. For functions f : Σ → Γ, g : Γ → ∆, and
relations P : Σ ↔ Γ, Q : Γ ↔ ∆, functional and relational compositions are
defined in the usual manner:

(f ◦g). σ =̂ g. (f. σ)

(P ;Q). σ. δ =̂ ∃γ • P . σ. γ ∧ Q. γ. δ

Repeated function application fn is defined inductively as follows:

f 0. x = x

fn+1. x = fn. (f. x)

A predicate transformer is a function S : PΓ → PΣ from predicates to
predicates. We write Σ 7→ Γ to denote a set of all predicate transformers
from Σ to Γ (i.e., PΓ → PΣ). We write Ptran(Σ) for the case when initial
and final state spaces are the same. In this dissertation, we often work
with tuples of predicate transformers operating on certain state spaces. We
write Πn(Ptran(Σ)) to denote the type of a tuple of n predicate transformers
operating on the state space Σ. We also write Φm,n(Ptran(Σ)) to denote the
type of functions Πm(Ptran(Σ)) → Πn(Ptran(Σ)).

The refinement ordering on predicate transformers is defined by pointwise
extension from predicates. For S, T : Σ 7→ Γ,

S v T =̂ (∀q : PΓ • S. q ⊆ T . q)

The refinement ordering on tuple of predicate transformers is defined ele-
mentwise:

(S1, ..., Sn) v (T1, ..., Tn) =̂ S1 v T1 ∧ ... ∧ Sn v Tn

8 CHAPTER 1. INTRODUCTION

Product operators combine predicates, relations, and predicate transform-
ers by forming cartesian products of their state spaces. For predicates p : PΣ
and q : PΓ, their product p × q is a predicate of type P(Σ × Γ) defined by

(p × q). (σ, γ) =̂ p. σ ∧ q. γ

A product f × g of two functions f : Σ1 → Γ1 and g : Σ2 → Γ2 is a
function of type (Σ1 × Σ2) → (Γ1 × Γ2) defined by

(f × g). (σ1, σ2) =̂ (f. σ1, g. σ2)

A product P × Q of two relations P : Σ1 ↔ Γ1 and Q : Σ2 ↔ Γ2 is a
relation of type (Σ1 × Σ2) ↔ (Γ1 × Γ2) defined by

(P × Q). (σ1, σ2). (γ1, γ2) =̂ P . σ1. γ1 ∧ Q. σ2. γ2

For predicate transformers S1 : Σ1 7→ Γ1 and S2 : Σ2 7→ Γ2, their product
S1×S2 is a predicate transformer of type Σ1×Σ2 7→ Γ1×Γ2 whose execution
has the same effect as simultaneous execution of S1 and S2:

(S1 × S2). q =̂ (∪q1, q2 | q1 × q2 ⊆ q • S1. q1 × S2. q2)

The product operator is right associative, i.e. p × q × r = p × (q × r),
for predicates p, q, and r. While the product p× (q × r) is not always equal
to (p × q) × r, products with components associated in different ways are
isomorphic to each other with respect to the properties that we consider in
this dissertation. Accordingly, we disregard the associativity of the product
operators; explicitly accounting for this associativity would only clutter the
presentation.

1.2.2 Statements of Refinement Calculus

The language used in the refinement calculus includes executable statements
along with (abstract) specification statements. Every statement has a precise
mathematical meaning as a monotonic predicate transformer. A statement
with initial state in Σ and final state in Γ determines a monotonic predicate
transformer S : Σ 7→ Γ that maps any postcondition q : PΓ to the weakest
precondition p : PΣ such that the statement is guaranteed to terminate in a
final state satisfying q whenever the initial state satisfies p. In the refinement
calculus, statements are identified with the monotonic predicate transformers
that they determine in this manner.

1.2. MATHEMATICAL BACKGROUND 9

Predicate transformers form a complete lattice under the refinement or-
dering. The bottom element is the abort statement, which does not guar-
antee any outcome or termination, therefore, it maps every postcondition to
false. The top element is the statement magic which is miraculous, since
it is always guaranteed to establish any postcondition. As such, magic is
the opposite of the abortion and is not considered to be an error. For any
predicate q : PΣ,

abort. q =̂ false

magic. q =̂ true

Conjunction u and disjunction t of (similarly-typed) predicate trans-
formers are defined pointwise:

(u i ∈ I • Si). q =̂ (∩ i ∈ I • Si. q)

(t i ∈ I • Si). q =̂ (∪ i ∈ I • Si. q)

Both conjunction and disjunction of predicate transformers model nondeter-
ministic choice among executing either of Si. Conjunction models demonic
nondeterministic choice in the sense that nondeterminism is uncontrollable
and each alternative must establish the postcondition. Disjunction, on the
other hand, models angelic nondeterminism, where the choice between alter-
natives is aimed at establishing the postcondition.

Sequential composition of program statements is modeled by functional
composition of predicate transformers. The program statement skip is mod-
eled by the identity predicate transformer and its execution has no effect on
the program state. For S : Σ 7→ Γ, T : Γ 7→ ∆ and q : P∆,

(S; T). q =̂ S. (T . q)

skip. q =̂ q

For a predicate p : PΓ, the assertion {p} behaves as abort if p does not
hold, and as skip otherwise. The guard statement [p] behaves as skip if p
holds, and as magic otherwise. For a predicate q : PΓ,

{p}. q =̂ p ∩ q

[p]. q =̂ p ⊆ q

Given a function f : Σ → Γ and a relation P : Σ ↔ Γ, the functional up-
date statement 〈f〉 : Σ 7→ Γ, the angelic update statement {P} : Σ 7→ Γ, and

10 CHAPTER 1. INTRODUCTION

the demonic update statement [P] : Σ 7→ Γ are defined by

〈f〉. q. σ =̂ q. (f. σ)

{P}. q. σ =̂ (∃γ : Γ • (P . σ. γ) ∧ (q. γ))

[P]. q. σ =̂ (∀γ : Γ • (P . σ. γ) ⇒ (q. γ))

The functional update applies the function f to the state σ to yield the new
state f. σ. When started in a state σ, {P} angelically chooses a new state
γ such that P . σ. γ holds, while [P] demonically chooses a new state γ such
that P . σ. γ holds. If no such state exists, then {P} aborts, whereas [P]
behaves as magic. For the identity function id and the identity relation Id ,
all of 〈id〉, {Id}, and [Id] behave as skip.

The conditional statement is defined by the demonic choice of guarded
alternatives:

if g then S1 else S2 fi =̂ [g]; S1 u [¬g]; S2

Iteration is defined as the least fixpoint of a function on predicate trans-
formers with respect to refinement ordering:

while g do S od =̂ (µ X • if g then S; X else skip fi)

A variant of iteration, the iterative choice introduced in [12], allows the user
to choose repeatedly an alternative that is enabled and have it executed until
the user decides to stop:

do g1 :: S1〈〉 . . . 〈〉 gn :: Sn od =̂
(µ X • {g1}; S1; X t . . . t {gn}; Sn; X t skip)

We will abbreviate g1 :: S1〈〉 . . . 〈〉 gn :: Sn by 〈〉ni=1gi :: Si.
Following [11], we use the notions of assignments, program variables,

and variable declarations based on a simple syntactic extension to the typed
lambda calculus. For a function (λu • t) which replaces the old state u with
the new state t, changing some components x1, . . . , xm of u, while leaving the
others unchanged, the functional assignment describing such a state change
is defined by

(λu • x1, . . . , xm := t1, . . . , tm) =̂ (λu • u[x1, . . . , xm := t1, . . . , tm])

For a relation (λu • λu′ • b), which using the set notation could also be
written as (λu • {u′ | b}), changing a component x of state u to some x′ related
to x via a boolean expression b, the relational assignment is defined by

(λu • x := x′ | b) =̂ (λu • {u[x := x′] | b})

1.2. MATHEMATICAL BACKGROUND 11

As such, the notation for both functional and relational assignments is a
convenient syntactic abbreviation for the corresponding lambda term describ-
ing a certain state change. Lambda terms, unfortunately, do not maintain
consistent naming of state components, due to the possibility of α-conversion
of bound variables. To enforce the clearly desirable naming consistency, we
use the program variable notation, writing, e.g., (var x, y • (x := x+y); (y :=
0)) to express that each function term is to be understood as a lambda ab-
straction over the bound variables x, y:

(var x, y • (x := x + y); (y := 0)) =
(λx, y • x := x + y); (λx, y • y := 0)

Ordinary program statements can be modeled using the basic predicate
transformers and operators presented above, using the program variable no-
tation. For example, the (multiple) assignment statement can be modeled
by the functional update:

(var u • x1, . . . , xm := t1, . . . , tm) =̂ 〈λu • x1, . . . , xm := t1, . . . , tm〉

Our specification language includes specification statements. The de-
monic assignment and the angelic assignment are modeled by the demonic
and the angelic updates respectively:

[var u • x := x′ | b] =̂ [λu • x := x′ | b]
{var u • x := x′ | b} =̂ {λu • x := x′ | b}

Intuitively, the demonic assignment expresses an uncontrollable nondeter-
ministic choice in selecting a new value x′ satisfying b, whereas the angelic
assignment expresses a controllable choice. The angelic assignment can, e.g.,
be understood as a request to the user to supply a new value. The program
variable declaration can be propagated outside statements and distributed
through sequential composition. When the variable declaration is clear from
the context, we will omit it.

A pre- and postcondition specification (pre p,post q), where p is a boolean
expression on initial values of program variables x, and q is a boolean ex-
pression on initial and final values of x, can be expressed in the refinement
calculus as follows:

(pre p,post q) =̂ {p}; [x := x′ | q]

12 CHAPTER 1. INTRODUCTION

The language also supports blocks with local variables. Block beginning
and end are modeled by demonic and functional updates respectively:

begin (var x, u • b) =̂ [λu • λ(x, u′) • b ∧ u = u′]
end =̂ 〈λ(x, u) • u〉

The begin statement introduces a new variable x which is initialized ac-
cording to the boolean expression b. The global variable u can occur in b,
but it must retain its value as indicated by the conjunct u = u′. When the
variable declaration is clear from the context, we will, for simplicity, write
just begin var x • b; S; end.

All statements in the language of refinement calculus are monotonic and
all statement constructors preserve monotonicity.

1.2.3 Data Refinement

Data refinement, as introduced by C.A.R. Hoare [32], is a general technique
by which one can systematically change a state space in a refinement. Data
refinement has been the subject of many detailed studies. A good overview
of different methods and theories of data refinement can be found in [22].

For statements S : Ptran(Σ) and S ′ : Ptran(Σ′), let R : Σ′ ↔ Σ be a
relation between the state spaces Σ and Σ′. According to [8], the statement
S is said to be data refined by S ′ via R, denoted S vR S ′, if

{R}; S v S ′; {R}

This method of data refinement is often referred to as forward data refinement
or downward simulation, and is the one most widely used. Although it was
shown to be incomplete, this method of proving data refinement is sufficient
for most cases in practical program development. Alternative and equivalent
characterizations of data refinement using the inverse relation R−1 are then

S; [R−1] v [R−1]; S ′ S v [R−1]; S ′; {R} {R}; S; [R−1] v S ′

These characterizations follow from the fact that {R} and [R−1] form a Galois
connection, in the sense that {R}; [R−1] v skip and skip v [R−1]; {R}.

In general, different state spaces can be coerced using encoding and decod-
ing operators [13, 33, 70]. Statements S and S ′ operating on state spaces Σ
and Σ′ respectively can be combined using a relation R : Σ′ ↔ Σ which, when
lifted to predicate transformers, gives the update statements {R} : Σ′ 7→ Σ

1.2. MATHEMATICAL BACKGROUND 13

and [R−1] : Σ 7→ Σ′. These statements are used to define encoding ↓ and
decoding ↑ operators as follows:

S↓R =̂ {R}; S; [R−1]

S ′↑R =̂ [R−1]; S ′; {R}

Thus, we have that the statements S↓R and S ′↑R operate on the state spaces
Σ′ and Σ respectively. Encoding and decoding operators can be extended to
work with tuples of statements:

(S1, ..., Sn)↓R =̂ (S1↓R, ..., Sn↓R)

(S ′
1, ..., S

′
n)↑R =̂ (S ′

1↑R, ..., S ′
n↑R)

The encoding and decoding operators are left associative and have higher
precedence than function application.

The refinement calculus provides rules for transforming more abstract
program structures into more concrete ones based on the notion of refinement
of predicate transformers presented above. A large collection of algorithmic
and data refinement rules is given, for instance, in [12, 54]. Let us briefly
present a few of these rules which will be later used in proofs.

Further on, we make use of the following rules:

S↑R↓R v S (1.1)

S ′ v S ′↓R↑R (1.2)

The sequential composition rule states that the data refinement of a se-
quential composition is refined by a sequential composition of the data refined
components:

(S1; S2)↓R v (S1↓R); (S2↓R) (1.3)

The demonic update rule states that data refinement of demonic updates
follows from inclusion of the coerced corresponding relations:

R−1; Q′ ⊆ Q; R−1 ⇒ [Q] vR [Q′] (1.4)

Demonic assignments are subject to the following demonic assignment
rule:

(b′ ⇒ b) ⇒ [x := x′ | b] v [x := x′ | b′] (1.5)

14 CHAPTER 1. INTRODUCTION

The iterative choice rule states that for state predicates g1 : PΣ, ..., gn :
PΣ, statements S1 : Ptran(Σ), ..., Sn : Ptran(Σ) and a relation R : Σ′ ↔ Σ
the following holds:

do 〈〉ni=1qi :: Si od↓R v do 〈〉ni=1({R}. qi) :: Si↓R od (1.6)

We say that a statement is indifferent to data refinement if the statement
effectively operates only on the part of the state not affected by a state
change. Indifferent statements are subject to the following rules:

(skip × S)↓(R × Id) v skip × S (1.7)

(S × skip)↓(Id × R) v S × skip (1.8)

(skip × S ′) v (skip × S ′)↑(R × Id) (1.9)

(S ′ × skip) v (S ′ × skip)↑(Id × R) (1.10)

In the proofs presented in this dissertation, we will use the following easily
verifiable rules. For a statement S : Ptran(Σ × Γ) and relations R : Σ′ ↔ Σ
and P : Γ′ ↔ Γ,

S↓(R × P) = S↓(Id × P)↓(R × Id) (1.11)

S↓(R × Id)↓(Id × P) = S↓(Id × P)↓(R × Id) (1.12)

For a statement S : α×Σ×γ× δ, a relation R : Σ′ ↔ Σ, and the relation
P = λ(x′, y′, z′, u′) • λ(z, y, u) • (y′ = y ∧ z′ = z ∧ u′ = u), we have the
following rule:

S↑(Id × R × Id × Id)↑P = S↑P↑(Id × R × Id) (1.13)

When a predicate effectively operates only on the part of the state not af-
fected by a state change then this predicate remains unchanged, as expressed
by the rule:

{Id × R}. (g × true) ⊆ (g × true) (1.14)

1.3 Copy&Paste as a Software Reuse

Technique

As we mentioned above, Copy&Paste is the most primitive and the oldest
known software reuse technique. While it is unsatisfactory as far as space,

1.3. COPY&PASTE AS A SOFTWARE REUSE TECHNIQUE 15

efficiency, and legacy are concerned, from practical experience it is well-
known that copying and pasting source code is safe. This empirical knowledge
is backed up by the fact that in theory the following monotonicity property
holds:

(∃R • S vR S ′) ⇒ (∃P • T |[S]| vP T |[S ′]|)

Here T |[S]| represents a statement T with at least one occurrence of the state-
ment S. The statement S represents a specification of a desired functionality
at a certain point in the context T . This specification can be substituted with
the statement S ′ under the condition that S ′ refines S. Data refinement is
necessary, because S, S ′, and T can operate on different state spaces. Note
that this formula models a “smart” Copy&Paste, i.e. if the pasted statement
uses a variable that would be captured in the new context, it should be re-
named first. This property is essentially monotonicity of the statement T
with respect to data refinement. If all statements of a given programming
language are monotonic and all statement constructors preserve monotonic-
ity then applying Copy&Paste as a software reuse technique is safe in this
language.

We believe that the monotonicity of constructs in a programming lan-
guage is of paramount importance for the safety of software reuse mechanisms
and techniques that can be used in this language. It is important to note
that almost all programming languages contain some non-monotonic con-
structs. If non-monotonic constructs of a programming language are used,
then even such a basic reuse technique as Copy&Paste is not guaranteed to
always deliver the expected behavior. In the discussions of different software
reuse mechanisms and techniques we always assume that all constructs other
than the one under consideration are monotonic, because we model them in
the refinement calculus whose constructs are monotonic.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Functions and Procedures

Functions and procedures are two of the most basic software reuse mech-
anisms. They were introduced in the programming language Fortran [36].
These code reuse mechanisms separate code intended for reuse into imme-
diately executable sequences of statements. Code reuse is achieved through
invoking a function or a procedure from the client code. Information can be
passed in and out of a function or a procedure through input and output
parameters and, in the case of procedures, through global variables existing
in the scope the procedure is invoked in. From the mathematical standpoint,
the ability of procedures to access and modify global variables constitutes the
primary difference between functions and procedures. In some imperative
programming languages, these two mechanisms are unified into procedures
that can access and modify global variables, but have functional syntax, i.e.,
can participate in expressions of the form a := proc(b), where a and b are
some variables (b can also be an expression) and proc is the name of the pro-
cedure. Accordingly, further on in this chapter, we speak about procedures
as this is a more general concept.

The arrival of procedures dramatically changed software architecture and
the way software was constructed. The technical ability to separate mono-
lithic code into clearly defined sections immediately stimulated a more logi-
cal hierarchical organization of programs. Procedures promoted a so-called
structural programming style, focused on the functionality of the system
and organized around global data structures. In the presence of procedures,
the goto statement, which was often used as a primary code reuse mecha-
nism, became obsolete. This greatly improved the clarity of the programs,
indirectly contributing to their correctness. The emergence of a procedural

17

18 CHAPTER 2. FUNCTIONS AND PROCEDURES

architecture has dramatically changed the process of software development
as well. With a system separated into logically independent parts, it became
possible to split an entire software project among independent development
teams, enabling them to cope with much larger projects.

Many languages provide for separate compilation capabilities, with a pro-
cedure declared in two stages, first declaring a signature of the procedure,
i.e., the name and the list of input and output parameters, and declaring the
body of the procedure implementing this signature. With separate compi-
lation to compile client code invoking a procedure, it is only necessary that
the header of the procedure be within the scope of the client code. After
the compilation, the linker will bind invocations of all procedures to their
implementations in the client code.

Separate compilation permitted creation of large procedure libraries which
until now remain one of the most often used ways of distributing software for
reuse. In procedure libraries, code is stored in binary form, thus permitting
code developers to protect their intellectual property.

2.1 Modeling Procedures and Procedure

Invocation

Procedures have been extensively studied by the formal methods community
[31, 7, 54, 53, 12, 56]. The purpose of our simple abstract model of procedures
is to establish a general modeling framework which we follow throughout the
dissertation.

For simplicity, we model parameters of procedures with global variables.
We say that for every input and output procedure parameter, there exists a
distinct global variable in the scope of procedure invocation through which
parameters are passed in and out of the procedure. We assume that a pro-
cedure does not operate on any other global variables, except those which
represent procedure parameters. A non-recursive procedure can be modeled
as a statement:

P =̂ (skip × S) : Ptran(α × ∆ × Γ)

As the procedure can be executed in different contexts, the type of the global
variables is not known in advance and therefore is represented with the type
variable α. The statement S operates on the procedure parameters, modeled
with global variables with the type ∆ and on its local state of the type Γ.

2.2. ARE PROCEDURES SAFE? 19

Let us now consider an operator modeling application of the procedure
reuse mechanism. Code reuse with procedures is achieved through procedure
invocation. In general, a program can invoke different procedures. However,
for our purposes, it is sufficient to consider one procedure, as the same mod-
eling principles would apply in the case of many procedures.

A program using a procedure can be thought of as a context in which this
procedure can be used. Such a context, with an arbitrary but finite number
of occurrences of a call to the procedure, can be modeled as a function of the
procedure, returning a program in which that procedure is used:

C =̂ λP • program

We assume that C is a monotonic function. In the case when the procedure
is invoked in a program operating on the state space Σ, the function C has
the type Ptran(Σ×∆×β) → Ptran(Σ×∆×β). As the type of the internal
state of a procedure cannot be known in advance, it is represented with a
type variable β.

To model procedure invocation, we use an infix operator call which
takes two parameters: a context C in which a procedure P is invoked and
the procedure itself, and returns a program resulting from invoking P in C:

C call P =̂ C. P

Thus, call is a function of the type (Ptran(Σ × ∆ × β) → Ptran(Σ × ∆ ×
β)) → Ptran(α × ∆ × Γ) → Ptran(Σ × ∆ × Γ).

2.2 Are Procedures Safe?

As we stipulated in the introduction chapter, a safe code reuse mechanism
is accompanied by a modular verification method. Namely, to prove the
correctness of a program invoking a procedure, it is sufficient to prove that
the procedure correctly implements the expected functionality.

Suppose that at some point in a client program it is necessary to execute
a sequence of statements whose cumulative effect on the state of the program
can be described by a specification P . Suppose also that at our disposal there
is a procedure P ′, which appears to implement the specification P correctly.
This can be established by verifying that P ′ refines P . For procedures P :

20 CHAPTER 2. FUNCTIONS AND PROCEDURES

Ptran(α × ∆ × Γ) and P ′ : Ptran(α × ∆ × Γ′), the refinement on procedures
can be defined as follows:

P v P ′ =̂ ∃R : Γ′ ↔ Γ • P vId×Id×R P ′

If procedures are a safe code reuse mechanism, to establish that client
code can safely invoke P ′ in place of P , it should be sufficient to verify that
P ′ is a correct refinement of P . Mathematically, it is necessary to show that
the operator call is monotonic in its second argument, i.e.,

P v P ′ ⇒ (C call P) v (C call P ′)

Modular Reasoning Theorem for Procedures. For procedures P :
Ptran(α×∆×Γ) and P ′ : Ptran(α×∆×Γ′) and the context C : Ptran(Σ×
∆ × β) → Ptran(Σ × ∆ × β), the following holds:

P v P ′ ⇒ ∃R : Γ′ ↔ Γ • (C call P) vId×Id×R (C call P ′)

Proof The proof follows directly from monotonicity of programming lan-
guage constructs and monotonicity of the function C. 2

This result has been presented earlier by other researchers in the formal
methods community, perhaps in a slightly different formulation. Based on
the modular reasoning theorem for procedures, we conclude that procedures
are a safe software reuse mechanism.

2.3 Are Procedures Flexible?

Procedures do not support inline adaptation, yet there exist a number of soft-
ware reuse techniques relying on procedures which allow for significant degree
of flexibility. As with other code reuse techniques, the size of procedures is a
major factor. A standard recommendation is that a procedure should encap-
sulate a piece of code that constitutes a certain semantic entity and should
not exceed one page of code. On the one hand, making procedures to im-
plement smaller units of functionality increases the chances of reuse. On the
other hand, communication by sending and receiving method parameters is
more computationally expensive then communication through common vari-
ables. Having an excessive number of procedures in a program might be
undesirable for performance reasons. Accordingly, finding the right balance
between the reusability of procedures and the efficiency of the programs in
which they are used poses the main challenge for procedure developers.

2.4. DISCUSSION 21

2.4 Discussion

Procedures are one of the basic and the most established code reuse mech-
anisms. The methods for modular reasoning about procedures have been
studied extensively in the literature [31, 7, 54, 53, 12, 16, 56, 66, 60]. Modu-
lar reasoning is only possible in programming languages consisting of mono-
tonic constructs. However, not all constructs of contemporary programming
languages are monotonic.

A number of imperative programming languages such as Pascal [88] and
C [67] support so-called procedure variables. A procedure variable is a vari-
able which can store a procedure as a value. Procedure variables allow for
achieving an even higher degree of flexibility as compared to simple vari-
ables. The added flexibility comes from the fact that the resulting software
becomes dynamically configurable. Imagine that a client program has a vari-
able a which is a procedure variable. Which procedure will be called from the
client depends on the value the variable a has at the moment of invocation.
Thus it becomes possible to alter the behavior of a program dynamically
during its execution. Obviously, in compiled languages relying exclusively on
usual procedures such a degree of flexibility is unachievable, because every
time developers substitute the called procedure in a client, it is necessary to
recompile it. Methods of reasoning about the programs employing procedure
variables were extensively studied by David Naumann [56, 58, 57].

In some languages, it is possible to compare two procedure variables for
equality (usually only memory addresses of the corresponding procedures
are compared). Although rather useful, a statement expressing such a com-
parison is not monotonic, as refining procedures does not imply that the
client using the procedure variable comparison gets refined. As an example,
consider the following program fragment in an Oberon-like syntax.

TYPE ReadingProcedure = PROCEDURE(VAR x : CHAR);

PROCEDURE ReadFromFile1(VAR Next : CHAR);

...

END ReadFromFile1;

PROCEDURE ReadFromFile2(VAR Next : CHAR);

...

END ReadFromFile2;

22 CHAPTER 2. FUNCTIONS AND PROCEDURES

PROCEDURE Read(p : ReadingProcedure)

BEGIN

IF p = ReadFromFile1 THEN

S1;

ELSE

S2;

END;

END Read;

Suppose that the procedure ReadFromFile1 is refined by the procedure
ReadFromFile2, e.g., it can be an alternative more efficient implementation.
A call to the procedure Read with the argument ReadFromFile1 results in
an execution of the statement S1, while calling this procedure with the argu-
ment ReadFromFile2 results in an execution of the statement S2. Obviously,
in general, S1 is not refined by S2. Therefore, Read(ReadFromFile1) is not
refined by Read(ReadFromFile2). Accordingly, the extra flexibility achieved
with the use of procedure variables can undermine safety.

Chapter 3

Modules

Procedures promote the structural programming style. Programs developed
following this style have clear separation between algorithms and the data
structures that these algorithms operate on. Data structures are usually de-
fined in the global scope of a program. Since different procedures usually
operate on different global variables, it gradually became clear that group-
ing variables and procedures operating on them together can lead to better
structured programs.

In 1972, David Parnas published an influential work on modularization
[62], in which he demonstrated the value of decomposing a system into a
collection of modules. To promote a modular programming style, a language
support for modules limiting access to the internal representation from out-
side of the module is clearly desirable.

Protection of the module’s internal representation from external access
(i.e., encapsulation) can be achieved through type abstraction or procedural
data abstraction [18]. For example, in SML [63] a construct structure allows
for defining modules in an algebraic manner. With an algebraic approach,
every module’s function is defined in terms of the constructors of a type im-
plementing the module’s internal representation. By default, constructors of
the internal module representation type are exposed to clients of the module.
This permits a client program to tamper with the internal representation of
the module, which might lead to invalidation of the module invariant. To
avoid such an exposure, a module can be constrained by an opaque signature
constraint, which makes only module constructors visible from outside, while
constructors of the internal representation type remain completely hidden.
Thus internal representation of the module is protected by abstracting from

23

24 CHAPTER 3. MODULES

the type of internal representation.
Alternatively, access to the module’s internal representation can be re-

stricted using an export facility, as, for example, is done in Oberon [89].
Variables and procedures declared in a module can be marked with an aster-
isk to indicate which declarations are visible from outside the module. An
attempt to access a module’s attribute not marked with an asterisk from
outside of the module is a compiler error. A programmer can protect the
module’s internal representation by not exporting it and providing access
to it exclusively through module’s procedures. Thus a client can abstract
from particular module’s implementation by viewing it exclusively through
its procedural interface.

An important characteristic feature of modules is that they are usually
not first-class values of a programming language. This means that modules
cannot be passed as arguments or returned as values to and from procedures.

Modules can invoke procedures on other modules. Usually there exists
a restriction stipulating that a graph of procedure invocations on modules
be acyclic, i.e., if a module A invokes procedures on another module B, the
latter should not invoke procedures on the former. Depending on a par-
ticular implementation language, this restriction can be enforced in various
ways. In languages in which a module is a compilation unit (like in Oberon),
this restriction can be enforced by prohibiting a cyclic importing structure.
We believe that this restriction constitutes a major distinguishing feature
of modules as compared to other software reuse mechanisms concerned with
grouping of data and algorithms.

3.1 Modeling Modules

As the structure of procedure invocations on modules is acyclic, it is always
possible to flatten the structure of procedure calls by first extending the
state space of a module with state spaces of the called modules and then
substituting the bodies of invoked procedures for procedure calls. Therefore,
a module M with an internal state and n non-recursive procedures can be
represented by

M =̂ (m0,Mp),

where m0 : Γ is an initial value of the internal state, and Mp is a tuple of
procedures (P1, ..., Pn) modifying this internal state. For simplicity, we model

3.1. MODELING MODULES 25

parameters of module procedures with global variables. We say that for every
input and output procedure parameter, there exists a distinct global variable
in the scope of procedure invocation through which parameters are passed
in and out of the procedure. As, in general, a module can be used by an
arbitrary client program, we assume that a module does not refer to global
variables. Therefore, the tuple of procedures Mp is of type Πn(α × ∆ × Γ),
where α is a type variable representing the state space of the client program
and ∆ is the state space component representing all the parameters of all
procedures.

Methods of refining modules were thoroughly studied in the literature
[32, 8, 27]. We make a simplification that a refining module has the same
number of methods as the refined one. We can define refinement on modules
as follows: the module M = (m0 : Γ,Mp : Πn(Ptran(α × ∆ × Γ))) is refined
by a module M′ = (m′

0 : Γ′,Mp ′ : Πn(Ptran(α × ∆ × Γ′))), if there exists a
relation R : Γ′ ↔ Γ connecting the initial values m′

0 and m0 and it is possible
to show that all procedures in Mp are data refined by the corresponding
procedures in Mp ′ via the relation Id × Id × R. Formally,

M v M′ =̂ ∃R • R. m′
0.m0 ∧ Mp vId×Id×R Mp ′

A program using a module can be modeled using the iterative choice
statement as proposed in [5]. Every time the program has the choice as to
which procedure to choose for execution. In general, each option is preceded
with an assertion which determines whether the option is enabled in a par-
ticular state. While at least one of the assertions holds, the program may
repeatedly choose a particular option which is enabled and have it executed.
The program decides on its own when it is willing to stop choosing options.
Such an iterative choice of procedure calls, followed by arbitrary statements
operating only on a local state of the program, describes all possible interac-
tions the program might have with the module:

Program =̂

 var l, d,m •

[l, d,m := l, d,m | p ∧ m = m0];

do q̂1 :: P1; T̂1〈〉 . . . 〈〉q̂n :: Pn; T̂n od

Variables l : Σ are some variables local to the program, while variables d : ∆
represent procedure arguments. The variable m holds the internal state
of the used module. The variables l and d are initialized according to the
condition p expressed in terms of l, d, which permits to specify the arguments

26 CHAPTER 3. MODULES

passed to procedures. Before the module can be used, its internal state must
be initialized. The condition m = m0 of the nondeterministic assignment,
where m0 is the initial state of the module, models this initialization. The
predicates q̂ : P(Σ×∆×Γ) are the asserted conditions on the program state
and the procedure arguments. As the state of the module is encapsulated, the
predicates q̂ do not refer to the module’s internal variables, i.e., q̂ = q× true.
We assume that procedures P do not refer to the program’s global variables.
Accordingly, as defined in Chapter 2, procedures have a structure skip× S,
where S has a type Ptran(∆ × Γ). Statements T̂ operate on the state space
Σ × ∆ and model the arbitrary actions a program can do on its local state
and procedure parameters in between procedure calls. Accordingly, T̂ =
(T × skip). Opening up all the abbreviations, the program can be rewritten
as follows:

Program =

 var l, d,m •

[l, d,m := l, d,m | p ∧ m = m0];
do 〈〉ni=1(qi × true) :: (skip × Si); (Ti × skip) od

A program can use any module under the condition that signatures of
module’s procedures match those expected by the program. Accordingly, a
context in which a module is used can be described as follows:

Context =̂ λ(X1, ..., Xn) •

 var l, d,m •

[l, d,m := l, d,m | p ∧ m = m0];

do 〈〉ni=1q̂i :: Xi; T̂i od

Note that as the type of the internal state of the module is not yet known, it
is modeled with the type variable β. On a more abstract level, a context can
be modeled as a function of module procedures, returning a program where
that module is used:

Context = λMp • Program

Note that Context is a monotonic function of the type Πn(Ptran(Σ × ∆ ×
β)) → Ptran(Σ × ∆ × β).

Now a program calling module procedures can be described using an infix
operator uses which takes two parameters, a context C in which invocations
of the procedures of the module M occur an arbitrary but finite number of
times and the module itself, and returns a program which invokes procedures
of M from the context C:

(C uses M) =̂ C. (snd . M)

3.2. ARE MODULES SAFE? 27

During the function application all type variables get instantiated with the
corresponding types, and therefore the resulting program has the type
Ptran(Σ × ∆ × Γ).

3.2 Are Modules Safe?

As was already mentioned above, a code reuse mechanism or technique per-
mits modular reasoning if it is sufficient to verify that the code candidate
for reuse correctly implements the functionality expected by the client. For
modules, we can express the modular reasoning property as the following
theorem:

Modular Reasoning Theorem for Modules. For modules M, M′ defined
by

M = (m0 : Γ,Mp : Πn(Ptran(α × ∆ × Γ)))

M′ = (m′
0 : Γ′,Mp ′ : Πn(Ptran(α × ∆ × Γ′)))

and a context C of type Πn(Ptran(Σ × ∆ × β)) → Ptran(Σ × ∆ × β), the
following holds:

M v M′ ⇒ ∃R • (C uses M) vId×Id×R (C uses M′)

Proof The goal can be rewritten as follows:

(∃R • R.m′
0.m0 ∧ (P1, ..., Pn) vId×Id×R (P ′

1, ..., P
′
n)) ⇒

∃R • (var l, d,m • [l, d,m := l, d,m | p ∧ m = m0];

do 〈〉ni=1q̂i :: Pi; Ŝi od)
vId×Id×R

(var l, d,m′ • [l, d,m′ := l, d,m′ | p ∧ m′ = m′
0];

do 〈〉ni=1q̂i :: P ′
i ; Ŝi od)

(3.1)

The proof of this goal is similar to the proof of Theorem 1 in [10]. To
prove the goal, we need the following lemma:

Lemma. For a relation R : Γ′ ↔ Γ,

(var l, d,m • [l, d,m := l, d,m | p ∧ m = m0]) vId×Id×R

(var l, d,m′ • [l, d,m′ := l, d,m′ | p ∧ R.m′.m0])

28 CHAPTER 3. MODULES

Proof Using the demonic update rule 1.4, this goal can be reduced as follows:

(Id × Id × R)−1;
(λ l′, d′,m′ • λ l′, d′,m′ • p[l, d, l, d := l′, d′, l′, d′] ∧ R. m′m0) ⊆

(λ l, d,m • λ l, d,m • p ∧ m = m0);(Id × Id × R)−1

Applying the definition of relational inclusion, this can further be reduced
to:

((Id × Id × R)−1;
(λ l′, d′,m′ • λ l′, d′,m′ • p[l, d := l′, d′] ∧ R. m′. m0)).

(l, d,m). (l′, d′,m′) ⇒
((λ l, d,m • λ l, d,m • p ∧ m = m0);
(Id × Id × R)−1). (l, d,m). (l′, d′,m′)

Using the definition of relational composition and simple logical transforma-
tions, this goal can be reduced to true. 2

To prove our main goal 3.1, we first discharge the existential quantification
and assume the antecedent. Now the goal looks as follows:

∃R • (var l, d,m • [l, d,m := l, d,m | p ∧ m = m0];

do 〈〉ni=1q̂i :: Pi; Ŝi od)↓(Id × Id × R) v
(var l, d,m′ • [l, d,m′ := l, d,m′ | p ∧ m′ = m′

0];

do 〈〉ni=1q̂i :: P ′
i ; Ŝi od)

Choosing the quantified relation to be the same as the relation in the
assumption, we start with the left-hand side and reduce it to the right-hand
side as follows:

(var l, d,m • [l, d,m := l, d,m | p ∧ m = m0];

do 〈〉ni=1q̂i :: Pi; Ŝi od)↓(Id × Id × R)

v {sequential composition rule 1.3 }
(var l, d,m • [l, d,m := l, d,m | p ∧ m = m0])↓(Id × Id × R);

(var l, d,m • do 〈〉ni=1q̂i :: Pi; Ŝi od)↓(Id × Id × R)

v {lemma above }
(var l, d,m′ • [l, d,m′ := l, d,m′ | p ∧ R. m′.m0]);

(var l, d,m • do 〈〉ni=1q̂i :: Pi; Ŝi od)↓(Id × Id × R)

v {iterative choice rule 1.6 }

3.3. ARE MODULES FLEXIBLE? 29

(var l, d,m′ • [l, d,m′ := l, d,m′ | p ∧ R.m′. m0]);

(var l, d,m′ •

do 〈〉ni=1({Id × Id × R}. q̂i) :: (Pi; Ŝi)↓(Id × Id × R) od)

v {rules 1.14, 1.3 }
(var l, d,m′ • [l, d,m′ := l, d,m′ | p ∧ R.m′. m0]);

(var l, d,m′ •

do 〈〉ni=1q̂i :: Pi↓(Id × Id × R); Ŝi↓(Id × Id × R) od)

v {rules for indifferent statements 1.7 }
(var l, d,m′ • [l, d,m′ := l, d,m′ | p ∧ R.m′. m0]);

(var l, d,m′ • do 〈〉ni=1q̂i :: Pi↓(Id × Id × R); Ŝi od)

v {demonic assignment rule 1.5 and assumption (R.m′
0.m0),

assumption (P1, ..., Pn) vId×Id×R (P ′
1, ..., P

′
n)}

(var l, d,m′ • [l, d,m′ := l, d,m′ | p ∧ m′ = m′
0];

do 〈〉ni=1q̂i :: P ′
i ; Ŝi od)

2

A similar result, in a slightly different formulation, was shown in [54].
Accordingly, we conclude that modules are a safe software reuse mechanism.

3.3 Are Modules Flexible?

Modules do not allow inline code modification, meaning that a module can
only be reused as is. A client of a module cannot customize the module, unless
facilities for module customization were incorporated in its design. However,
modules have many useful properties contributing to their flexibility.

Often module interfaces are specified separately from module implemen-
tations. Different modules can therefore be coded by different members of a
project team. The compiler can check that each module meets its syntactic
interface specification. In many programming languages and systems, a mod-
ule is the smallest compilation unit and separate compilation of modules is
supported. This helps to reduce compilation time, as only recently modified
modules have to be recompiled.

Modules are easily combined with other software reuse mechanisms. A
module may contain pieces of code packaged for reuse employing, e.g., proce-
dures, objects, or classes. Usually, modules export definitions of procedures

30 CHAPTER 3. MODULES

so that they can be used from outside the exporting modules. When mod-
ules are combined with object-oriented software reuse mechanisms, classes
and objects can also be exported from the incorporating modules.

To a large extent, the flexibility of modules is determined by their gran-
ularity. The smaller the modules are the higher is the possibility of their
reuse. However, communication overhead has its costs, as communicating
through procedure invocations is more computationally expensive than com-
municating through shared variables. Finding the right balance between the
granularity of modules and the efficiency of programs that use these modules
is a primary challenge for module designers.

3.4 Discussion

Before the arrival of modules, programs were structured into “subprograms”
that were procedures or functions. It is arguable that procedures and func-
tions are too fine-grained structuring units. According to Lawrence Paulson
[63], structuring programs into procedures and functions “is like regarding
[a] bicycle as composed of thousands of metal shapes”. The procedural style
of programming allows building programs in a hierarchical manner, starting
with fine-grained low-level procedures, which are called by procedures on the
next layer of the hierarchy and so forth. While modules do not change the
style of programming, they permit extra structuring of programs which is
orthogonal to the style of programming. This extra structuring is achieved
through composition of procedures into logically connected units. The re-
sulting modules usually incorporate program fragments with high cohesion,
i.e., a high degree of coupling between its parts.

Not only can modules help better structuring of monolithic programs,
but they also can be used for creating module libraries. Some facility can be
so useful that it is worthwhile extracting it into a general purpose solution
applicable in other programs as well. Such a solution is a software component
and it can be packaged using the module mechanism.

Partitioning programs into modules, in addition to the benefits listed
above, allows reasoning about program properties, including correctness, in
a modular fashion. Therefore, modules can also be seen as a mechanism of
structuring proofs about program properties.

Chapter 4

Objects and Forwarding

Although Parnas recognized that modules with compatible interfaces can
be used interchangeably, he did not develop this possibility. As a result,
modules cannot be passed as arguments or returned as values, so they are
not first-class values in programming languages.

There are two kinds of module-like constructs that are the first-class val-
ues in modern programming languages. Like modules, an abstraction barrier
between a client and data can be achieved in these constructs via type ab-
straction or procedural abstraction. The language constructs are referred to
respectively as objects and ADTs.

Objects were introduced in the programming language Simula of Ole-
Johan Dahl and Kristen Nygaard [21]. Another early reference is [90]. In
this paper, Stephen Zilles showed “how procedures can be used to represent
another class of system components, data objects, which are not normally
expressed as programs”. Objects in Smalltalk exemplify the first kind of
internal representation’s protection via procedural abstraction. The built-in
language mechanism hides the internal representation of an object permitting
access to it only through object methods.

Protecting internal representation by type abstraction was first discussed
by Barbara Liskov and Stephen Zilles in [45]. The construct abstype in the
programming language SML [63] can serve as the example. It allows creating
a new programming type, which permits instantiating values of this type.
This type is abstract, because internal representation of the type’s values
can be observed or modified from the outside only by accessing the type’s
constructors and operations. The mechanism of achieving this is analogous
to that of SML’s structure construct, as described in Chapter 3.

31

32 CHAPTER 4. OBJECTS AND FORWARDING

While the difference in achieving encapsulation of internal representation
is traditionally considered to be the main feature distinguishing between
objects, ADTs, and modules, we maintain that the ability to be passed and
received as procedure arguments is the main differentiating factor. This point
of view determines the structure of the dissertation, namely, we consider
objects and ADTs together and separately from modules. As most of the
arguments and results that we present here apply to both objects and ADTs,
further on, when speaking about objects, we mean both objects and ADTs.

The main characteristic feature of objects is their dynamic nature. Ob-
jects can be substituted for other objects dynamically, at run-time, which
greatly increases the flexibility of programs. Dynamic object substitutability
allows one to reconfigure a program without having to recompile it.

As modules are usually a supplementary construct in programming lan-
guages, helping to group data structures and procedures operating on them,
introduction of modules did not lead to changes in the programming style.
The introduction of objects, on the other hand, changed the entire program-
ming paradigm. Instead of focusing on the procedures modifying passive
data, the new programming style focused on the objects encapsulating rele-
vant data structures and communicating with other objects by invoking their
procedures (or methods, in object-oriented terms).

From the formal standpoint, an object differs from a module because an
object rarely operates in isolation. Usually, at run-time, an OO system can
be seen as a network of communicating objects which cooperate to achieve
an overall functionality of the system. Thus an object is usually dependent
on other objects.

In object-oriented programming (and especially in the Smalltalk program-
ming jargon), invoking a method on an object is often referred to as sending
a message to the object. The well-known error “message is not understood”
means, in fact, that the object does not have the method that client of the
object tries to invoke. It is interesting to note that this error usually occurs
when programming with untyped languages lacking static typechecking, e.g.,
Smalltalk; with statically-typed languages such an error in most cases would
be detected by a compiler.

Object-oriented programming languages can be divided into two broad
categories – those that employ classes and those relying on prototypical ob-
jects. This differentiation, as it appears, stems from two fundamental knowl-
edge representation models, as studied in artificial intelligence [43].

The first category uses a syntactic notion of a class, which is a stencil

33

describing a particular type of objects created by instantiating this class.
Classes and related software reuse mechanisms and techniques are studied
in detail in Chapter 6. The second category of programming languages uses
prototypical objects, i.e., objects representing a stereotype of a particular
behavior. When this stereotype behavior is insufficient for describing some
subtleties, an extension object providing the additional behavior can be cre-
ated and linked to the prototypical object. This approach to sharing knowl-
edge in object-oriented systems first appeared in actor languages, and several
Lisp-based object-oriented systems such as Director [37], T [65], Orbit [76],
and others. When the extension object receives a message, it first attempts
to respond to the message using its own behavior. If the object’s charac-
teristics are not relevant for answering the message, the object sends the
message on to its prototype(s) to see if one can respond to the message. In
the programming language community, this message sending is referred to
as being carried through forwarding or delegation. The names of these reuse
techniques can be interpreted as follows: when an object receives a message
that it does not know how to process, it forwards the message or delegates
the task of responding to this message to another object which knows how
to handle it.

The terms forwarding and delegation are often used interchangeably, as
synonyms. However, as noted by Clemens Szyperski in [81], “the difference
is of such a fundamental nature that the price for this imprecision is a re-
sulting lack of understanding”. While in rare discussions of the differences
between these two object-based software reuse techniques the treatment of
self references was elevated as the major differentiation factor, we believe that
this issue is secondary. Forwarding and delegation reflect the two reoccurring
patterns of object communication through message sending. Forwarding cor-
responds to the push pattern – all the data that might be needed for another
object is passed as parameters. Delegation corresponds to the pull pattern,
with which a reference to the original object is established, e.g., by passing
the reference to this object as one of method parameters, and the other ob-
ject pulls all the data it needs from the original object by calling back its
methods. We consider the difference in object communication patterns to be
the main factor differentiating between these reuse techniques. Namely, with
forwarding, the structure of object method invocations is acyclic, i.e., asso-
ciations between communicating objects represent a directed acyclic graph.
With delegation, objects can refer to each other, i.e., associations between
communicating objects represent an undirected graph. Most of the results

34 CHAPTER 4. OBJECTS AND FORWARDING

D

A B C

Figure 4.1: Three objects participating in forwarding

and discussions in this and the following chapters apply not only to soft-
ware reuse techniques alone but also to the corresponding communication
patterns.

In this chapter, we present a model of objects and a model of forwarding.
Then we focus on the safety and flexibility of this software reuse technique
and finish with drawing some conclusions and discussing related work.

4.1 Modeling Objects

Without loss of generality, we can consider the case when only two objects
participate in the forwarding relation. For justification of this simplification
consider figure 4.1. In this figure, the program consisting of objects A, B, and
C such that A forwards to B which in turn forwards to C can be considered
as consisting of only two objects A and D such that D is the object resulting
from forwarding messages from B to C. The case when an object forwards
messages to several other objects can be modeled in a similar manner.

Consider two objects A and B such that A forwards to B. The definition
of methods in A depends on the definition of methods in B that they invoke.
As B does not call back on methods of A, from the mathematical standpoint
B is no different from a module and therefore can be modeled by a pair of
the initial state value and the tuple of procedures.1

Let us now consider a model of a dependable object, such as A. The
object A communicates with B by invoking its methods and passing parame-
ters. Here we only consider objects which do not have recursive and mutually
recursive methods. For simplicity, we model method parameters by global
variables that methods of both A and B can access. For every formal param-
eter of a method, we introduce a separate global variable which is used for
passing values in and out of objects. It is easy to see that parameter passing

1This explains the difference in typesetting the object names.

4.2. MODELING FORWARDING 35

by value and by reference can be modeled in this way.
As, the type of the internal state of the other object is not known due to

encapsulation, we say that the body of a method of A has the type Ptran(Σ×
∆ × β), where Σ is the type of A’s internal state, ∆ is the type of global
variables modeling method parameters, and β is the type variable to be
instantiated with the type of the internal state of the other object during
composition. As the internal state of the other object is not accessible, we
assume that methods of A operate only on their internal state and the state
representing method parameters, and are therefore of the form S × skip.
Similarly, methods of B have bodies that are of the form skip×S and of the
type Ptran(α × ∆ × Γ), where α is a type variable.

The behavior of an object’s method depends on the behavior of the meth-
ods it invokes. We can model a method ai of the object A as a function of a
list of method bodies returning a method body: 2

ai =̂ λBb • abi

The type of ai can be written out as Πm(Ptran(Σ × ∆ × β)) → Ptran(Σ ×
∆ × β), where m is the number of methods of B.

We assume that every method is monotonic in its argument. Accordingly,
we can collectively describe all methods a1, ..., an of A as a function A given
as follows:

A =̂ (λBb • (ab1, ..., abn)) : Φm,n(Ptran(Σ × ∆ × β))

Therefore, the object A can be defined by

A =̂ (a0, A),

where a0 : Σ is an initial value of the internal state and A is the function
defined above.

4.2 Modeling Forwarding

As we already mentioned, the structure of method invocations between the
objects participating in forwarding is acyclic. For the case of two objects

2We accept the following scheme for naming variables: a variable starting with a capital
letter represents a tuple of variables; the second letter b in the name of a variable means
that it represents a method body (statement) or a tuple of method bodies.

36 CHAPTER 4. OBJECTS AND FORWARDING

involved in forwarding, this means that A invokes methods on B which does
not call-back on A. From a formal perspective, an object which does not
invoke methods on any other object is no different from a module.

Suppose that the object B is defined as follows:

B =̂ (b0 : Γ,Bp : Πm(Ptran(α × ∆ × Γ)))

An infix operator forw is defined according to the following formula:

(A forw B) =̂ ((a0, b0), (A. (snd . B)))

It is easy to see that from a formal standpoint (A forw B) is a module, as
it is a pair of an initial value and a tuple of procedures.

4.3 Is Forwarding Safe?

As we already explained, a code reuse technique is safe if there is a modular
reasoning method associated with it. A reasoning method is modular if it
allows for establishing the correctness of a client program reusing a piece
of code only through verifying that the code candidate for reuse correctly
implements the functionality expected by the client. Since an object that
does not invoke methods of other objects is essentially a module, we can
abstract the functionality expected by the client as a module.

In the previous chapter, we have shown that by refining a module we re-
fine a client program using this module. In particular, if we refine a module
D to a module D′, then a client program C using D is refined to C ′ through
using D′ instead of D. Suppose now that D results from forwarding from an
object A to an object B, and D′ from forwarding from the object A to an
object B′. A natural question arises whether forwarding supports modular
reasoning. In other words, is it possible by refining B to B′ to establish refine-
ment between the modules (A forw B) and (A forw B′)? Obviously, this
is a desirable property, because by combining it with the modular reasoning
property for modules we get, by transitivity, that for establishing the refine-
ment between the clients C and C ′ it is sufficient to prove the refinement
between the objects B and B′. Fortunately, this property holds as proved by
the following theorem.

4.3. IS FORWARDING SAFE? 37

Modular Reasoning Theorem for Forwarding. For an object A and
modules B, and B′ defined by

A = (a0 : Σ, A : Φm,n(Ptran(Σ × ∆ × β)))

B = (b0 : Γ,Bp : Πm(Ptran(α × ∆ × Γ)))

B′ = (b′0 : Γ′,Bp : Πm(Ptran(α × ∆ × Γ′)))

the following holds:

B v B′ ⇒ (A forw B) v (A forw B′)

Proof To prove the theorem, we need to prove the following two goals:

(∃Q • Q. b′0. b0) ⇒ ∃Q • (Id × Q). (a0, b
′
0). (a0, b0) (4.1)

(∃Q • Bp↓(Id × Id × Q) v Bp ′) ⇒
∃Q • (A.Bp)↓(Id × Id × Q) v A.Bp ′ (4.2)

The goal 4.1 is obviously true. Let us consider a proof of the goal 4.2.
Applying the function A, representing methods of the object A, to the tuple
of method bodies Bp of another object, results in a tuple of method bodies of
A with the method bodies in Bp substituted for the corresponding method
calls. Accordingly, A.Bp can be modeled in a manner similar to that used
for modeling module clients as presented in Chapter 3.

A.Bp =

var l1, d1, k1 •

[l1, d1, k1 := l1, d1, k1 | p ∧ k1 = k1
0];

do 〈〉mi=1q̂
1
i :: Pi; T̂

1
i od,

...,
var ln, dn, kn •

[ln, dn, kn := ln, dn, kn | p ∧ kn = kn
0];

do 〈〉mi=1q̂
n
i :: Pi; T̂

n
i od

Therefore, after discharging the existential quantifications, the goal 4.2
can be rewritten as follows:

(P1, ..., Pn)↓(Id × Id × Q) v (P ′
1, ..., P

′
n) ⇒

38 CHAPTER 4. OBJECTS AND FORWARDING

var l1, d1, k1 •

[l1, d1, k1 := l1, d1, k1 | p ∧ k1 = k1
0];

do 〈〉mi=1q̂
1
i :: Pi; T̂

1
i od,

...,
var ln, dn, kn •

[ln, dn, kn := ln, dn, kn | p ∧ kn = kn
0];

do 〈〉mi=1q̂
n
i :: Pi; T̂

n
i od

↓(Id × Id × Q) v

var l1, d1, k1′ •

[l1, d1, k1′ := l1, d1, k1′ | p ∧ k1′ = k1
0
′
];

do 〈〉mi=1q̂
1
i :: P ′

i ; T̂
1
i od,

...,
var ln, dn, kn′ •

[ln, dn, kn′ := ln, dn, kn′ | p ∧ kn′ = kn
0
′];

do 〈〉mi=1q̂
n
i :: P ′

i ; T̂
n
i od

Applying the definitions of the encoding operator and refinement on tu-
ples of statements, the goal can be reduced to n subgoals of the form:

(P1, ..., Pn)↓(Id × Id × Q) v (P ′
1, ..., P

′
n) ⇒

 var lj, dj, kj •

[lj, dj, kj := lj, dj, kj | p ∧ kj = kj
0];

do 〈〉mi=1q̂
j
i :: Pi; T̂

j
i od

↓(Id × Id × Q) v

 var lj, dj, kj •

[lj, dj, kj ′ := lj, dj, kj ′ | p ∧ kj ′ = kj
0

′
];

do 〈〉mi=1q̂
j
i :: P ′

i ; T̂
j
i od

Proofs of these subgoals are similar to the proof of the Modular Reasoning
Theorem for Modules in Chapter 3.3 2

4.4 Is Forwarding Flexible?

The purpose of a software reuse technique is to permit multiple applications
of a particular fragment of software packaged with the corresponding code
reuse mechanism. As with most software reuse techniques, to a large extent,

3Note that this theorem could have been proved in terms of the theorem for modules,
but we believe that this would introduce more confusion than clarity.

4.4. IS FORWARDING FLEXIBLE? 39

flexibility depends on the level of granularity. As compared to the technique
based on modules, forwarding is more flexible, because it permits finer gran-
ularity of the code packaged for reuse. To illustrate this idea, let us consider
the setting shown on figure 4.2(a). In this setting, the object A forwards to
the object B and the client program C uses the resulting module. Suppose
that a developer wants to alter the behavior of the module used by C so
that the part B of this module behaves like B′ instead. With modules, the
developer would need to reimplement the entire module used by C, whereas
with forwarding it will only be necessary to reimplement B′.

Figure 4.2(b) shows how forwarding can aid with reuse in another situ-
ation. Suppose that the module D captures the functionality expected by
the client program C, and there exists an object B which almost conforms
to this specification, but has a slightly different interface or lacks a minor
part of the functionality. With modules, it would be impossible to reuse B,
but forwarding permits a developer to construct the object A adjusting the
interface or complementing the missing functionality. Objects such as A are
known as wrappers and are pervasively used in object-oriented programming.

We do not intend to enumerate here all useful applications of the for-
warding technique. However, there is one application which deserves to be
mentioned, as it clearly illustrates the possibilities of programming with ob-
jects and the use of forwarding. This application of the forwarding technique
is listed in the catalog of object-oriented design patterns [25] as the Decorator
pattern.

Imagine that we are designing a graphical user interface toolkit in which
properties like different borders and services like scrolling should all be freely
attachable to any user interface component. One possible implementation

C A B

A B'

a)

DC

A B

b)

Figure 4.2: Flexibility of forwarding

40 CHAPTER 4. OBJECTS AND FORWARDING

(BorderWrapper)

component (ScrollWrapper)

component (TextView)

Figure 4.3: Object references in a program implementing Decorator

is to have all possible combinations of all user interface components and all
borders and scrolling facilities, etc; but this might lead to a combinatorial
explosion of the number of resulting objects.

There exists a more flexible way of achieving the goal. The user inter-
face component represented by an object can be decorated with a border, a
shadow, or a scroll bar by enclosing this object in another object that adds
the corresponding decoration. The enclosing object (a wrapper) must be
transparent for users of the object and should therefore support the original
interface of the graphical user interface object. The transparency of wrap-
pers permits constructing complex user interface objects that can have arbi-
trary combinations of borders, shadows, zooming and scrolling functionali-
ties. Such a wrapper in the context of this pattern is referred to as Decorator.
Figure 4.3 illustrates the composition of a TextView with a BorderWrapper
and a ScrollWrapper to produce a bordered scrollable TextView.

4.5 Discussion and Related Work

The popularity of objects can be explained by the fact that they permit
conceptualizing real world abstractions in a natural manner. This permits
designing software systems uniformly, starting from a very abstract concep-
tual model of the system and gradually proceeding to its implementation,
while adding new abstractions introducing additional functionality. New ab-
stractions emerging during design do not necessarily directly correspond to
real world entities, but may represent concepts existing only in the virtual
world of a software system. Objects help focus a design on system structure
rather than algorithms. The procedural style of programming follows a pas-
sive view of system design, in which passive data structures are modified by
algorithms. The object-oriented style of programming promotes an active

4.5. DISCUSSION AND RELATED WORK 41

view, in which the functionality of the system is achieved through commu-
nication of active objects. Objects are naturally organized into hierarchical
structures during analysis, design, and implementation. This hierarchical or-
ganization encourages the reuse of methods and data that are located higher
in the hierarchy.

The need to better understand objects and their complex collaborations
has initiated active research on foundations of object-oriented languages and
systems. Most of the research concentrated on developing type theories for
reasoning about correct syntactic compatibility of objects. An influential
book [1] by Mart́ın Abadi and Luca Cardelli systematically develops a type-
theoretic model of objects and various object-oriented constructs and mech-
anisms. In general, the type-theoretic research significantly contributed to
improving correctness of object-oriented software, by permitting compilers to
find syntactic incompatibilities of objects. Ensuring syntactic compatibility
is a prerequisite for establishing the complete compatibility of objects which,
in turn, is the key issue in verifying correctness of object-oriented systems.

The forwarding technique is pervasive in object-oriented programming. In
languages using prototypical objects forwarding is implemented as one of the
main reuse mechanisms [15, 43]. In the component framework of BlackBox
Component Builder by Oberon Microsystems [59] forwarding is used as a
primary software reuse technique. Developers of Microsoft COM [68] went
one step further and implemented forwarding as a reuse mechanism known
as containment. Our study of the safety and flexibility of forwarding shows
that the balance between the safety and flexibility of forwarding leans towards
the safety. This, perhaps, explains the wide acceptance of forwarding as a
primary reuse technique in open systems, such as object-oriented frameworks
and component platforms.

Forwarding is also used for dealing with different kinds of problems that
might obstruct reuse. For example, as we discussed above, an object with a
slightly inappropriate interface can be used by a client employing forwarding.
A special wrapper object, providing the appropriate interface and forward-
ing client messages to the reused object, should be created. In fact, it is
even possible to slightly adjust the behavior of the reused object adopting it
for particular client needs. In the formal literature on this topic, a similar
technique is referred to as interface refinement [52] and it permits verifying
behavioral conformance in such an interface transformation.

42 CHAPTER 4. OBJECTS AND FORWARDING

Chapter 5

Objects and Delegation

In this chapter we study delegation – a widely used software reuse technique
relying on objects. The discussion and the model of objects presented in the
previous chapter remain unchanged in this chapter.

Objects in real-life programs are composed via both delegation and for-
warding. We present an example of this setting in section 5.8. As was
already mentioned in the previous chapter, delegation is essentially similar
to forwarding: when an object receives a message that it does not know how
to process, it delegates the task of responding to this message to another ob-
ject that knows how to handle it. Unlike in the case of forwarding, however,
the object processing the message can send a message back to the original
object, if the need arises. In other words, with delegation the structure of
method calls on objects can be cyclic.

Delegation corresponds to the pull object communication pattern, with
which a backward reference to an object initiating communication is estab-
lished, e.g., by passing the reference to this object as one of method argu-
ments, when invoking a method on another object. This other object then
pulls all the data it needs from the original object by calling back its meth-
ods. Thus, in this chapter, we consider delegation in a broader sense, i.e.,
not only as a software reuse mechanism, but also as a pervasive pattern of
object composition. In our opinion, the recursive structure of object refer-
ences distinctly differentiates delegation from forwarding and, as we discuss
in this chapter, dramatically influences its safety and flexibility.

This chapter is organized as follows. First, we present a model of delega-
tion. We formulate a modular reasoning property for delegation and study
whether it can be established in the general case in a manner feasible from

43

44 CHAPTER 5. OBJECTS AND DELEGATION

C A B

Figure 5.1: Delegation between three objects.

the perspective of practical programming. Clearly, definition of the modular
reasoning property depends on the definition of refinement on objects.

First, we consider a simple definition of object refinement and prove that
in theory this definition permits reasoning about delegating objects in a
modular manner. We argue that this definition of object refinement is too
restrictive to be of practical interest.

Next, we show that the intuitive definition of refinement used for ad-hoc
reasoning about programs using delegation is not modular. The effects of
such non-modular definitions of object refinement are known in practice to
cause the component re-entrance problem [50]. We study the essence of the
component re-entrance problem and formulate two requirements that should
be respected to make the property hold. The contents of sections 5.1, 5.2,
5.4, and 5.5 are based on [50].

We give a definition of object refinement in context which accounts for
our first requirement, and prove that if assumptions of the modular reasoning
property are reinforced according to the second requirement, the property
holds.

We then discuss the safety of delegation, consider how our results can be
applied in practice for informal reasoning about delegation, and review the
related literature.

In section 5.8, we discuss the flexibility of delegation and, finally, in sec-
tion 5.9, we present some concluding remarks pertaining to delegation.

5.1 Modeling Delegation

Without loss of generality, we can consider the case when only two objects
delegate messages to each other. To justify this statement, consider figure
5.1. All three objects A, B, and C have the form as described in the previous
chapter, e.g., B = (b0, B), where b0 is an initial value of the object’s state
and B is a function representing its methods. The object A invokes methods
on B, which invokes methods on C, which, in turn, calls back on A. We

5.1. MODELING DELEGATION 45

can define an operator comb that given two dependable objects returns a
dependable object resulting from combining the two in the following manner:

(A comb B) =̂ ((a0, b0), (A◦B))

Thus, instead of considering delegation between the objects A, B, and C we
can consider delegation between the objects (A comb B) and C that invoke
each other’s methods.

Let us now consider the case when two objects A and B participate in
the delegation relation. Unlike in the case of forwarding, object B can invoke
methods back on A. Therefore, the objects A and B are defined in a manner
similar to the definition of a dependable object in the previous chapter:

A =̂ (a0, A)

B =̂ (b0, B)

where a0 : Σ and b0 : Γ are initial values of the internal states, and A and B
are functions defined as follows:

A =̂ (λBb • (ab1, ..., abn)) : Φm,n(Ptran(Σ × ∆ × β))
B =̂ (λAb • (bb1, ..., bbm)) : Φn,m(Ptran(α × ∆ × Γ))

Delegating messages from the object A to the object B, from a mathe-
matical standpoint, results in a module (A deleg B) having all methods of
A and B with all method calls to and from the corresponding counterpart
object resolved. In other words, methods in (A deleg B) do not contain
method calls, as all the calls are substituted with the bodies of the called
methods. The methods of A in the module resulting from delegating from
A to B can be approximated by A. B.Abort, where Abort is a tuple of
abort statements. Using functional composition, this can be rewritten as
(A◦B).Abort. The methods in such an approximation behave as the meth-
ods of A with all external calls redirected to B, but with external calls of
B aborting rather than going back to A. Hence, a better approximation of
the methods of A in the composed system would be (A◦B◦A◦B).Abort,
and yet a better one (A◦B◦A◦B◦A◦B).Abort, etc. The desired result is
then the limit of this sequence. This limit can be expressed as the least fixed
point (µ A◦B), which is the least Xb with respect to the refinement order-
ing on tuples of statements such that Xb = (A◦B).Xb. Choosing the least
fixed point means that a non-terminating sequence of calls from A to B and
back is equivalent to abort, which is the meaning of a non-terminating loop.

46 CHAPTER 5. OBJECTS AND DELEGATION

According to the theorem of Knaster-Tarski [84], a monotonic function has
a unique least fixed point in a complete lattice. Statements form a complete
lattice with the refinement ordering v, and the function A◦B is monotonic
in its argument, therefore, (µ A◦B) exists and is unique. The methods of B
in (A deleg B) can be described in a similar manner.

The module resulting from the composition of the object A with the
object B through delegation can be defined as follows:

(AdelegB) =̂ ((a0, b0), (µ A◦B, µ B◦A))

Delegation is symmetric in the sense that delegating from A to B and dele-
gating from B to A results in the same module.

Note that during composition, the type variables α and β, representing
unknown state spaces of the objects B and A, get instantiated with Σ and
Γ respectively, so that the composed system has methods operating on the
state space Σ × ∆ × Γ.

5.2 Safety of Delegation

Let us consider how we can formulate the corresponding modular reasoning
property for delegating objects. Suppose that we have two delegating objects
A and B, invoking each other’s methods. Ultimately, developers of revised
objects A′ and B′ would like to achieve that the module resulting from com-
posing these objects via delegation be a refinement of the composition of the
original objects A and B, namely,

(AdelegB) is refined by (A′ delegB′)

To provide for modular reasoning, developers of the revised objects A′ and B′

should be able to establish this goal only by considering the original objects
A and B, as illustrated in figure 5.2. Therefore, for the case of delegation,
the modular reasoning property looks as follows:

if A is refined by A′ and
B is refined by B′

then (AdelegB) is refined by (A′ delegB′)

Obviously, the correctness of the formula above (and therefore of the
safety of delegation) depends on the definition of refinement on objects

5.2. SAFETY OF DELEGATION 47

A B

A' B'

Figure 5.2: Modular reasoning for delegating objects.

and modules. As we mentioned in the previous section, composing objects
through delegation returns a module. The refinement on modules was defined
in section 3.1. We can slightly adjust the definition of module refinement to
account for the fact that modules are created by the composition of objects.
We say that the module (AdelegB) is refined by the module (A′ delegB′),
if there exist such relations R and P that initial values of these modules are
related via the relation R× P and lists of method bodies are related via the
relation R × Id × P . Formally, we have:

(AdelegB) v (A′ delegB′) =̂

(∃R,P • (R × P). (a′
0, b

′
0). (a0, b0) ∧

(µ A◦B)↓(R × Id × P) v (µ A′◦B′) ∧
(µ B◦A)↓(R × Id × P) v (µ B′◦A′))

In order to be able to study delegation mathematically, we make a num-
ber of restrictions on the object model. In particular, we have assumed
that objects do not have self-calls and revised objects do not introduce new
methods. We would like to note, that while these restrictions of the object
model are important from the perspective of practical programming, they do
not reduce the generality of our results. Relaxing these restrictions would
not invalidate any of our conclusions, but would only introduce additional
verification obligations.

We proceed by considering different definitions of refinement on depend-
able objects and study theoretical and practical consequences of these defi-
nitions. First, we consider a simple definition of object refinement.

48 CHAPTER 5. OBJECTS AND DELEGATION

5.3 Safety: A Simple Definition of Object

Refinement

Refinement on objects can be defined in a straightforward manner. We say
that the object A = (a0 : Σ, A : Φm,n(Ptran(Σ × ∆ × β))) is refined by the
object A′ = (a′

0 : Σ′, A′ : Φm,n(Ptran(Σ′ × ∆ × β))), if there exists a relation
R : Σ′ ↔ Σ such that this relation holds between the initial values, and data
refinement via the relation R × Id × Id holds between the lists of method
bodies constructed by applying A and A′ to the list of method bodies of an
arbitrary object X . Formally,

A v A′ =̂ ∃R · (R. a′
0. a0) ∧

∀Xb • (A.Xb)↓(R × Id × Id) v A′.Xb↓(R × Id × Id)

5.3.1 Modular Reasoning

Let us now consider how the modular reasoning property can be formalized
and proved using the simple definition of object refinement. In the proof of
the theorem, we use the following lemma.

Encoding Propagation Lemma. For object methods A : Φm,n(Ptran(Σ×
∆ × β)), B : Φn,m(Ptran(α × ∆ × Γ)), A′ : Φm,n(Ptran(Σ′ × ∆ × β)), and
B′ : Φn,m(Ptran(α × ∆ × Γ′)) and relations R : Σ′ ↔ Σ and P : Γ′ ↔ Γ, the
following holds:

(A.Xb)↓(Id × Id × P) v A.Xb↓(Id × Id × P)

(B.Yb)↓(R × Id × Id) v B.Yb↓(R × Id × Id)

(A′.Xb)↓(Id × Id × P) v A′.Xb↓(Id × Id × P)

(B′.Yb)↓(R × Id × Id) v B′.Yb↓(R × Id × Id)

Proof The proof of this lemma is similar to the proof of Modular Reasoning
Theorem for Forwarding. 2

Theorem. Let objects A, B, A′, and B′ be given as follows:

A = (a0 : Σ, A : Φm,n(Ptran(Σ × ∆ × β)))

B = (b0 : Γ, B : Φn,m(Ptran(α × ∆ × Γ)))

A′ = (a′
0 : Σ′, A′ : Φm,n(Ptran(Σ′ × ∆ × β)))

B′ = (b′0 : Γ′, B′ : Φn,m(Ptran(α × ∆ × Γ′)))

5.3. SAFETY: A SIMPLE DEFINITION OF OBJECT REFINEMENT 49

Then we have:

A v A′ ∧ B v B′ ⇒ (AdelegB) v (A′ delegB′)

Proof According to the definitions of refinement on objects and modules,
our goal can be rewritten as follows:

(∃R · (R. a′
0. a0) ∧

∀Xb • (A.Xb)↓(R × Id × Id) v A′.Xb↓(R × Id × Id)) ∧
(∃P · (P . b′0. b0) ∧

∀Yb • (B.Yb)↓(Id × Id × P) v B′.Yb↓(Id × Id × P)) ⇒
(∃R,P · (R × P). (a′

0, b
′
0). (a0, b0) ∧

(µ A◦B)↓(R × Id × P) v (µ A′◦B′) ∧
(µ B◦A)↓(R × Id × P) v (µ B′◦A′))

After some logical transformations, we have two subgoals to prove. The
first one states that, under the assumptions that the initial values of A and
B are connected by arbitrary relations R and P , initial values of the resulting
modules will be connected by the compositions of these relations, namely,

R. a′
0. a0 ∧ P . b′0. b0 ⇒ (R × P). (a′

0, b
′
0). (a0, b0)

The proof of this subgoal follows directly from the definition of relational
product.

The second subgoal states that, under the assumptions that methods of A
are data refined by methods of A′ via the relation (R× Id × Id) and methods
of B are data refined by methods of B′ via the relation (Id×Id×P), methods
of the resulting modules are data refined through the relation (R× Id × P).
The goal we have to prove is as follows:

∀Xb • (A.Xb)↓(R × Id × Id) v A′.Xb↓(R × Id × Id) ∧
∀Yb • (B.Yb)↓(Id × Id × P) v B′.Yb↓(Id × Id × P) ⇒

(µ A◦B)↓(R × Id × P) v (µ A′◦B′) ∧
(µ B◦A)↓(R × Id × P) v (µ B′◦A′)

According to the classical fixed point theory [84], if two functions on a
complete lattice are in the partial order relation, their fixed points preserve
this partial order. Therefore, we need to prove that under the assumptions
as in the goal above functions A◦B and B◦A are data refined with respect

50 CHAPTER 5. OBJECTS AND DELEGATION

to the relation R × Id × P , i.e.,

∀Xb • (A.Xb)↓(R × Id × Id) v A′.Xb↓(R × Id × Id) ∧
∀Yb • (B.Yb)↓(Id × Id × P) v B′.Yb↓(Id × Id × P) ⇒

∀Yb • ((A◦B).Yb)↓(R × Id × P) v
(A′◦B′).Yb↓(R × Id × P)

∀Xb • (A.Xb)↓(R × Id × Id) v A′.Xb↓(R × Id × Id) ∧
∀Yb • (B.Yb)↓(Id × Id × P) v B′.Yb↓(Id × Id × P) ⇒

∀Xb • ((B◦A).Xb)↓(R × Id × P) v
(B′◦A′).Xb↓(R × Id × P)

To prove the first of these subgoals, we assume its antecedent and prove
the consequent. For arbitrary Ab, the consequent can be rewritten to

((A◦B).Ab)↓(R × Id × P) v (A′◦B′).Ab↓(R × Id × P)

We start with the left-hand side of the consequent and refine it to the right-
hand side:

((A◦B).Ab)↓(R × Id × P)

= {definition of composition of functions, rule 1.11}
(A. (B.Ab))↓(Id × Id × P)↓(R × Id × Id)

v {encoding propagation lemma}
(A. (B.Ab)↓(Id × Id × P))↓(R × Id × Id)

v {second assumption}
(A. (B′.Ab↓(Id × Id × P)))↓(R × Id × Id)

v {first assumption}
A′. (B′.Ab↓(Id × Id × P))↓(R × Id × Id)

v {encoding propagation lemma}
A′. B′.Ab↓(Id × Id × P)↓(R × Id × Id)

= {definition of composition of functions, rule 1.11}
(A′◦B′).Ab↓(R × Id × P)

The proof of the second subgoal is analogous. 2

5.4. SAFETY: AN AD-HOC DEFINITION OF OBJECT REFINEMENT 51

5.3.2 Discussion

Unfortunately, this definition of refinement is too restrictive to be used in
practice. According to this definition, a developer of a revised object is
not allowed to look at the definitions of other objects, neither the revised
definitions nor even the original ones. In fact, the developers can only refine
bodies of methods around method invocations, without being able either to
remove or introduce method invocations, or to assume anything about the
called methods.

For the definition of object refinement to be useful in practice, it should
allow for making assumptions about the context in which the revised object
will operate. When an object A delegates to an object B, the latter can
be seen as a specification of the context in which the revised object A′ will
operate. Since delegation is symmetric, A can also be seen as a specification
of the context for the revised object B′. Accordingly, a practically useful
modular reasoning property can be formulated as follows:

if A is refined by A′ in context of B and
B is refined by B′ in context of A

then (AdelegB) is refined by (A′ delegB′)

In the following section, we consider an ad-hoc definition of object refine-
ment which is often used in practical programming while reasoning informally
about delegating objects. First, we consider an example illustrating such ad-
hoc reasoning and the component re-entrance problem [50] that it can induce.
Then we analyze this problem and formulate requirements which should be
taken into account while reasoning about delegating objects.

5.4 Safety: An Ad-hoc Definition of Object

Refinement

To illustrate the way informal reasoning is done in practice, let us consider
the following example.

52 CHAPTER 5. OBJECTS AND DELEGATION

object Model

s : seq of char :=<>,

get_s() × return s,

get_num() × return #s,

append(val t : seq of char) ×

s := s^t; View-update()

end

object View

update() ×

print(#Model-get_s())

end

Figure 5.3: Specification of the Model-View object system. The operator
returns the length of a sequence and the operator ̂ concatenates two
sequences.

5.4.1 An Example of Ad-hoc Informal Reasoning Used
in Practice

The example in figure 5.3 follows the Observer pattern [25], which allows
separating the presentational aspects of the user interface from the underly-
ing application data, by defining two objects Model and View . The objects
Model and View delegate messages to each other. Note that we deliberately
abstract away from the mechanism by which mutual reference between ob-
jects can be achieved, because a particular reference mechanism is irrelevant
for the presentation of the problem. For example, such mutual reference can
be achieved by passing pointers to objects as method parameters.

The object Model maintains a string s, represented by a sequence of
characters and initialized with an empty sequence. Every time a new string
is appended to the string in Model , the method update of View is called. In
turn, update calls back Model ’s get s() method and prints out the number of
elements in the received string.

Suppose that a developer decides to improve the efficiency of the object
Model . To avoid counting characters in the method get num, the developer
introduces an integer attribute n to represent the number of characters in
the sequence. Accordingly, an object Model ′ is implemented as follows:

object Model ′

s : seq of char := 〈〉,
n : int := 0,

get s() =̂ return s,

5.4. SAFETY: AN AD-HOC DEFINITION OF OBJECT REFINEMENT 53

get num() =̂ return n,

append(val t : seq of char) =̂

s := s ̂ t;View−Bupdate(); n := n + #t

end

Note that the developer made an assumption about the context in which
Model ′ will be used. In particular, in append the developer assumed that to
retrieve the number of characters in s the object View will invoke the method
get s back on Model ′.1 This implementation of the method append appears
to be perfectly valid. In fact, updating the screen as early as possible is a
reasonable policy.2

Now suppose that the developer decides to revise the object View to
construct an object View ′. To make such a revision in a modular manner,
the developer can make assumptions about the future context of View ′ based
only on the original definition of Model . To avoid passing a sequence of
characters as a parameter, the developer implements the method update to
invoke the method get num of Model :

object View ′

update() =̂ print(Model−Bget num())

end

Here the developer faces a problem. Even though the revised objects
Model ′ and View ′ appear to reimplement the original objects correctly, the
composition of the revised objects behaves incorrectly: the number of ele-
ments in the string s that update prints out is wrong. Further on we refer to
this problem as the component re-entrance problem. This name can be justi-
fied by the following observation: the problem occurs when a thread of control
leaves an object (with the method invocation on another object) and then
re-enters the initial object (with the call-back on this object). Traditionally,
the source of the problem is attributed to the fact that an intermediary state
of the initial object can be observed by others through re-entrance before it
reaches consistency.

1In the absence of this assumption the implementation of append in Model ′ is rather
meaningless, as the other option of retrieving the number of characters in s is by calling
get num.

2A discussion of the well-known recommendation to always re-establish an object’s
invariant before invoking an external method follows in section 5.6.

54 CHAPTER 5. OBJECTS AND DELEGATION

5.4.2 The Essence of The Component Re-entrance
Problem

As we have already mentioned, when reasoning about the conformance of
the object A′ to the object A, the developers need to make assumptions
about the behavior of the object(s) to which A delegates messages. The ad-
hoc method for taking such assumptions into account is to reason about the
refinement between the results of composing A with its context B and the
revised object A′ with the same context. Therefore, the intuitive definition of
object refinement in context that developers informally used in the example
is

A
B
4 A′ =̂ (AdelegB) v (A′ delegB),

where B is a known object. This definition permits making assumptions
about the entire possible context of an object while refining it.

Unfortunately, this definition does not support modular reasoning, as
was demonstrated by the previous example. In other words, the modular
reasoning property does not hold, i.e.,

A
B
4 A′ ∧ B

A
4 B′ 6⇒ (AdelegB) v (A′ delegB′)

We believe that this fact constitutes the essence of the component re-entrance
problem. The problem occurs due to the conflict of assumptions the devel-
opers of objects make about the behavior of other objects in the system. In
the previous example, the developer of the object View ′ assumed that at the
moment when the method update was called the invariant of the implemen-
tation of Model would have held. Similarly, when developing Model ′, the
developer assumed that it was not necessary to establish the invariant before
invoking update, because the definition of this method in Model did not rely
on it. These conflicting assumptions led to the problem after composition.

This consideration brings us to the question how, while developing an
object, one can make assumptions about the behavior of the other objects
participating in delegation in a consistent manner.

5.4.3 Restricting Assumptions About Context

In order to establish the modular reasoning property, it is necessary to restrict
the assumptions that object developers can make about the context in which
the object is going to operate.

5.4. SAFETY: AN AD-HOC DEFINITION OF OBJECT REFINEMENT 55

No Call-Back Assumptions Requirement

To identify the first restriction that should be imposed on the assumptions
about the object context, let us consider a counter example invalidating the
modular reasoning property.

object A1 object B1

m1(valres x : int) =̂ {x > 5}; x := 5, n(valres x : int) =̂
m2(valres x : int) =̂ {x > 0}; x := 5 A−Bm1(x)

end end

object A2 object B2

m1(valres x : int) =̂ {x > 0}; x := 5, n(valres x : int) =̂
m2(valres x : int) =̂ B−Bn(x) {x > 5}; x := 5

end end

If we expand the bodies of the method m2 in the composed systems, then
we have:

(A1 delegB1) :: m2 = (A2 delegB1) :: m2 =
{x > 0}; x := 5 {x > 0}; x := 5

(A1 delegB2) :: m2 = (A2 delegB2) :: m2 =
{x > 0}; x := 5 {x > 5}; x := 5

where :: selects a method of the corresponding module. Therefore, we have:

(A1 delegB1) :: m2 v (A2 delegB1) :: m2 and

(A1 delegB1) :: m2 v (A1 delegB2) :: m2

However, it is not the case that

(A1 delegB1) :: m2 v (A2 delegB2) :: m2

Due to the presence of assertions, the precondition x > 5 of (A2 delegB2) ::
m2 is stronger than the precondition x > 0 of (A1 delegB1) :: m2, while to
preserve refinement, preconditions can only be weakened.

This example motivates us to formulate the following requirement.

“No call-back assumptions”:

While developing a revised implementation of a method, re-
vised implementations of other methods in the same object
cannot be assumed; their definitions in the original object
should be considered instead.

56 CHAPTER 5. OBJECTS AND DELEGATION

As the behavior of the object serving as a context depends on the behavior
of the object under consideration, assuming that the context object is going
to call back on the refined object would implicitly modify the specification.

No Infinite Recursion Requirement

However, there exists another aspect of the component re-entrance problem
that cannot be handled by simply restricting the context for refinement. The
following rather trivial example illustrates this aspect of the problem:

object A1 object B1

m(res r : int) =̂ r := 5 n(res r : int) =̂ r := 5
end end

object A2 object B2

m(res r : int) =̂ B−Bn(r) n(res r : int) =̂ A−Bm(r)
end end

It is easy to see that a call to the method m in the object A2 delegB2 leads
to a never terminating recursion of method invocations. Obviously, such a
behavior does not refine the behavior of the original system. In fact, a similar
problem was described by Carroll Morgan in [54]. He mentions that in the
case of mutually dependent modules, their independent refinements can ac-
cidentally introduce mutual recursion. Based on the example, we formulate
the following requirement:

“No infinite recursion”:

The invocation of a method on the revised object participat-
ing in delegation should not lead to an infinite recursion of
method invocations between the revised delegating objects.

5.5 Safety: A Definition of Context Object

Refinement

Let us now consider how we can define object refinement in context, taking
into account the “no call-back assumptions” requirement. As stipulated by
this requirement, when refining the object A to A′, we should not assume that
the object B calls back methods of A′, because in doing so we would implicitly

5.5. SAFETY: A DEFINITION OF CONTEXT OBJECT REFINEMENT 57

modify the definition of B. The method bodies of A are mathematically
defined by (µ A◦B), whereas the method bodies of B are defined by (µ B◦A).
Relying on the fact that B calls back methods of A amounts to considering A′

applied to the method bodies (µ B◦A) rather than considering A′ applied to
(µ B◦A′). Taking into account the “no call-back assumptions” requirement,
refinement between the methods of A and the methods of A′ in context of
B can then be defined in terms of the refinement between (µ A◦B) and A′

applied to (µ B◦A).
Let A : Φm,n(Ptran(Σ × ∆ × β)) and A′ : Φm,n(Ptran(Σ′ × ∆ × β)) be

methods of objects A and A′, respectively. Data refinement between A and

A′ in the context of B via a relation R : Σ′ ↔ Σ is denoted by A
B
vRA′ and

defined as follows:

A
B
vRA′ =̂ (µ A◦B)↓(R × Id × Id) v A′. (µ B◦A)↓(R × Id × Id)

Here the encoding operators are necessary for adjusting the state spaces of
the participating objects. For methods of objects B and B′, we have a similar
definition but via a relation Id × Id × P , with P : Γ′ ↔ Γ.

We say that A = (a0 : Σ, A : Φm,n(Ptran(Σ × ∆ × β))) is refined by
A′ = (a′

0 : Σ′, A′ : Φm,n(Ptran(Σ′ × ∆ × β))) in the context of B, if there
exists a relation R : Σ′ ↔ Σ such that this relation holds between the initial
values, and methods of A are data refined by methods of A′ in the context
of B via the relation R × Id × Id . Formally,

A
B
v A′ =̂ (∃R • (R. a′

0. a0) ∧ A
B
vRA′)

For the objects B = (b0 : Γ, B : Φn,m(Ptran(α × ∆ × Γ)) and B′ = (b′0 :
Γ′, B′ : Φn,m(Ptran(α×∆× Γ′)), the definition of refinement is similar, only
that the initial values are connected via a relation P : Γ′ ↔ Γ and the lists
of method bodies are connected via Id × Id × P .

5.5.1 Modular Reasoning Theorem

Our objective is to prove that the modular reasoning property holds for
objects delegating messages to each other if the “no call-back assumptions”
and “no infinite recursion” requirements are satisfied.

As we have just demonstrated the “no call-back assumptions” require-
ment is captured in the definition of context object refinement. To be able

58 CHAPTER 5. OBJECTS AND DELEGATION

to take into account the “no infinite recursion” requirement, we need to
strengthen assumptions of the modular reasoning property with additional
assumptions. This requirement can be captured with the following formula:

∃n • ∀Yb • (A′◦B′)n.Yb v (µ A′◦B′)

In this formula, (A′◦B′)n is the function resulting from composing the func-
tion (A′◦B′) with itself n − 1 times. The intuition behind this formula is as
follows: if the result of applying the function (A′◦B′) to an arbitrary list of
method bodies a finite number of times is refined by the result of the com-
plete unfolding of method invocations between A′ and B′, then the bodies
of methods of A′ are completely defined. This can only be achieved if the
unfolding terminates, i.e., there is no infinite mutual recursion.

Now we are all set for formulating and proving the modular reasoning
property for delegating objects.

Modular Reasoning Theorem for Delegation. Let objects A, B, A′,
and B′ be given as follows:

A = (a0 : Σ, A : Φm,n(Ptran(Σ × ∆ × β)))

B = (b0 : Γ, B : Φn,m(Ptran(α × ∆ × Γ)))

A′ = (a′
0 : Σ′, A′ : Φm,n(Ptran(Σ′ × ∆ × β)))

B′ = (b′0 : Γ′, B′ : Φn,m(Ptran(α × ∆ × Γ′)))

Then we have:

A
B
v A′ ∧ (a)

B
A
v B′ ∧ (b)

(∃k • ∀Yb • (A′◦B′)k.Yb v (µ A′◦B′)) ∧ (c)
(∃l • ∀Xb • (B′◦A′)l.Xb v (µ B′◦A′)) ⇒ (d)

(AdelegB) v (A′ delegB′)

Proof Expanding the definitions and making simple logical transformations,
we get three subgoals:

(R. a′
0. a0) ∧ (P . b′0. b0) ⇒
(R × P). (a′

0, b
′
0). (a0, b0) ∧ (P × R). (b′0, a

′
0). (b0, a0)

(5.1)

A
B
vRA′ ∧ B

A
vP B′ ∧ (c) ∧ (d) ⇒

(µ A◦B)↓(R × Id × P) v (µ A′◦B′)
(5.2)

5.5. SAFETY: A DEFINITION OF CONTEXT OBJECT REFINEMENT 59

A
B
vRA′ ∧ B

A
vP B′ ∧ (c) ∧ (d) ⇒

(µ B◦A)↓(R × Id × P) v (µ B′◦A′)
(5.3)

where R and P are fixed but arbitrary relations. The first subgoal is obvi-
ously true. To prove the second and the third subgoals, we first prove the
following lemma.

Lemma. For functions A : Φm,n(Ptran(Σ × ∆ × β)), B : Φn,m(Ptran(α ×
∆ × Γ)), A′ : Φm,n(Ptran(Σ′ × ∆ × β)), and B′ : Φn,m(Ptran(α × ∆ × Γ′))
defined as above, relations R : Σ′ ↔ Σ and P : Γ′ ↔ Γ, and any natural
number k, we have:

A
B
vRA′ ∧ B

A
vP B′ ⇒

(µ A◦B)↓(R × Id × P) v (A′◦B′)k. (µ A◦B)↓(R × Id × P)

Proof We prove this lemma by induction over k.
Base case:

(A′◦B′)0. (µ A◦B)↓(R × Id × P)

= {definition of f 0}
(µ A◦B)↓(R × Id × P)

Inductive case:
The goal for the inductive case is as follows:

A
B
vRA′ ∧ B

A
vP B′ ∧

(µ A◦B)↓(R × Id × P) v (A′◦B′)k. (µ A◦B)↓(R × Id × P) ⇒
(µ A◦B)↓(R × Id × P) v (A′◦B′)k+1. (µ A◦B)↓(R × Id × P)

Assuming the antecedent, we calculate:

(µ A◦B)↓(R × Id × P)

v {induction assumption}
(A′◦B′)k. (µ A◦B)↓(R × Id × P)

= {rule 1.11}
(A′◦B′)k. (µ A◦B)↓(R × Id × Id)↓(Id × Id × P)

v {assumption of A
B
vRA′}

60 CHAPTER 5. OBJECTS AND DELEGATION

(A′◦B′)k. (A′. (µ B◦A)↓(R × Id × Id))↓(Id × Id × P)

v {encoding propagation lemma }
(A′◦B′)k. A′. (µ B◦A)↓(R × Id × Id)↓(Id × Id × P)

= {rule 1.12}
(A′◦B′)k. A′. (µ B◦A)↓(Id × Id × P)↓(R × Id × Id)

v {assumption of B
A
vP B′}

(A′◦B′)k. A′. (B′. (µ A◦B)↓(Id × Id × P))↓(R × Id × Id)

v {encoding propagation lemma }
(A′◦B′)k. A′. B′. (µ A◦B)↓(Id × Id × P)↓(R × Id × Id)

= {rule 1.11}
(A′◦B′)k. A′. B′. (µ A◦B)↓(R × Id × P)

= {fk+1. x = fk. (f. x), definition of composition}
(A′◦B′)k+1. (µ A◦B)↓(R × Id × P) 2

Using this lemma, we can now prove the subgoal 5.2. Assume A
B
vRA′,

B
A
vP B′, and ∀Yb • (A′◦B′)k.Yb v (µ A′◦B′), for fixed but arbitrary k. The

conclusion is then proved as follows:

(µ A◦B)↓(R × Id × P)

v {Lemma}
(A′◦B′)k. (µ A◦B)↓(R × Id × P)

= {the third assumption, instantiating Yb with

(µ A◦B)↓(R × Id × P)}
(µ A′◦B′)

The proof of the third subgoal is similar. 2

5.6 Discussion of Safety of Delegation

As we have stipulated above, the software reuse technique is safe if it is pos-
sible to establish the corresponding modular reasoning property. We have
demonstrated that in theory the property can be established if the objects
are refined according to the simple definition of refinement, as presented in
section 5.3. Unfortunately, this definition is too restrictive to be interesting

5.6. DISCUSSION OF SAFETY OF DELEGATION 61

in practice, as it does not permit making assumptions about the context
of an object under refinement. To circumvent this limitation of the simple
definition, we defined the context object refinement. However, the context
object refinement is insufficient for establishing the modular reasoning prop-
erty, and the assumptions of the property should be strengthened with the
additional assumptions (c) and (d) according to the “no infinite recursion of
method invocations” requirement. Unfortunately, this requirement is non-
modular, in the sense that it requires that the module resulting from the
composition of two objects by delegation have no infinite mutual recursion,
but does not state how this can be achieved by looking exclusively at the
specifications of these objects. The simplicity of the “no infinite recursion”
requirement hints at the fact that it is a necessary requirement, in the sense
that if assumptions of the modular reasoning property are not strengthened
according to this requirement, the property cannot be established. From this
we make a conclusion that in the general case unrestricted delegation does
not allow for modular reasoning and thus, as a software reuse technique, is
unsafe.

However, we envision several approaches to satisfying the “no infinite
recursion” requirement in a modular manner, by restricting the delegation
technique. For example, object methods in the original specification can be
marked as atomic if they do not call other methods. While refining the object,
atomic methods must remain atomic and non-atomic ones can introduce new
calls only to the atomic methods. Although restrictive, this approach guar-
antees the absence of accidental mutual recursion in the refined composed
system. With another approach, we can assign an index to every method
which indicates the maximal depth of method calls that this method is al-
lowed to make. This approach only works if the original specification does not
have mutually recursive method calls. For example, a method m that does
not invoke any other method will have index 0, whereas a method n invoking
m will have index 1. If a method invokes several methods with different in-
dices, it is assigned the maximal of these indices plus one. With the original
specification annotated in this manner, we can require that, while refining a
method, calls to methods with indices higher than the indices of the methods
that were called before cannot be introduced. However, the detailed analy-
sis of different methods for establishing the “no infinite recursion of method
invocations” requirement in a modular manner is outside the scope of this
dissertation. Our conclusion is therefore that delegation restricted to account
for the “no infinite recursion” requirement allows for modular reasoning and

62 CHAPTER 5. OBJECTS AND DELEGATION

is a safe code reuse technique.
The common recommendation [81] for ensuring safe composition through

delegation of the refined objects is to always establish an object’s invariant
before invoking any external method. It is interesting to note that this rec-
ommendation does not follow from the specification and is rather motivated
by empirical expertise. As we argued in section 5.4, the informal reasoning
which is usually done while developing an object is captured as the ad-hoc
definition of object refinement. As we demonstrated by the counter examples
introducing the requirements, this definition of refinement is simply inappro-
priate to ensure the desired conclusion. In these examples, participating
objects do not have internal state, thus re-establishing invariant cannot help.
However, the problem persists. We believe that the recommendation to al-
ways establish an object’s invariant before invoking any external method,
although being necessary, is not sufficient in the general case.

In fact, our definition of context object refinement takes this recommen-
dation into account. Let us reconsider our first example. According to the
Modular Reasoning Theorem for Delegation, to demonstrate that Model ′ is
a valid implementation of Model in the context of View , we would need to
show that every method of Model ′ calling methods of View composed with
methods of Model refines the corresponding methods of Model composed with
methods of View . Since Model and Model ′ operate on different attributes, to
express, for example, in the method append of Model ′ the behavior of a call
to View .update, which calls get s of Model , we need to coerce this call using
an abstraction relation. Such an abstraction relation usually includes com-
ponent invariants, and in this case includes the object invariant n = #s of
Model ′, i.e., R. (s′, n′). s =̂ s′ = s ∧ n′ = #s′. Note that in the definition of
R, the attributes of Model ′ are primed in order to distinguish them from the
attributes of Model . According to the definition of refinement in context, the
proof obligation for the method append after expansion and simplification is

(s := s ̂ t; print(#s))↓R v s := s ̂ t; (print(#s))↓R; n := n + #t

The right hand side can be expanded to s := ŝt; {R}; print(#s); [R−1]; n :=
n + #t. The abstraction statement preceding the invocation of print aborts,
because it tries to find an abstract value of a sequence s satisfying the in-
variant #s = n, which obviously does not hold at this point. Certainly, an
aborting method is not a refinement of a non-aborting one, and therefore
Model ′ fails to correctly implement Model in the context of View , breaching
our requirement.

5.7. CHECK-LIST FOR VERIFYING DELEGATING OBJECTS 63

5.7 Check-List for Verifying Delegating

Objects

Based on the Modular Reasoning Theorem for Delegation, we can formulate
a check-list for informally verifying correctness of an object implementation
against its specification. A developer of an object participating in delegation
should verify that the following conditions are satisfied:

• The initial values of the implementation instance variables correspond
to the initial values of the instance variables of the object’s specifica-
tion.

• Before every external method invocation the object’s invariant is es-
tablished.

• For every method, the precondition p of the method’s specification as
expressed on the instance variables of its implementation is stronger
than or equal to the precondition p′ of the method’s implementation,
i.e. p ⊆ p′.

• For every method, one must consider the postcondition q of the method’s
specification as expressed on the instance variables of the method’s
implementation, the instance variables of the specifications of objects
called from the method’s specification, and the result and value-result
method parameters. One must also consider the postcondition q′ of
the method body constructed by substituting in the corresponding
method’s implementation the bodies of the call-backed methods of the
same object with their specifications expressed on the implementation
instance variables. Then, q′ must be stronger than or equal to q, i.e.,
q′ ⊆ q.

• For every method, one must make certain that after composing refined
objects an invocation of the method would not result in infinite recur-
sion of method invocations between objects participating in delegation.

The last item in this list can be established by either applying an approach to
specifying objects similar to those discussed above or, if possible, by verifying
the corresponding condition in the module resulting from the composition of
objects.

64 CHAPTER 5. OBJECTS AND DELEGATION

5.8 Is Delegation Flexible?

The high degree of flexibility of delegation determines its wide acceptance
and application in practice. During the development period, a system is con-
stantly evolving. In early stages of system development, it is usually rather
difficult to predict various changes that the system will undergo. Therefore,
developers usually try to build a very general foundation of the system per-
mitting the widest range of possible changes. In this respect, delegation has
proved to be very useful as it allows for the creation of very general object
interfaces. With delegation, an object can pass a reference to itself as an
argument to a method of another object, which can then establish a back
reference to the original object and request all of the needed data by querying
its interface. The same degree of flexibility can be achieved with forwarding
only if an object would pass all possible data as arguments when invoking a
method on another object. Clearly, this is not desirable.

Let us now consider an example of applying delegation in practice. In
most of the distributed object platforms such as CORBA [61], Java RMI
[79], and COM/DCOM [69] communication between distributed objects is
arranged according to a composition of two object-oriented design patterns
[64], Broker and Proxy [25].

In distributed environments, objects reside in separate address spaces and
their methods can be subject to remote method calls (a remote method call
is issued in an address space different from the address space where the tar-
get object resides). By convention, the object issuing a call is referred to as
the client; the target object is referred to as the server. For remote method
calls to be possible, a platform should support remote object referencing.
A remote reference identifies an object over the network and the particular
interface that this object implements. To bridge the conceptual gap between
the remote and local style of references, both in the client and in the server
code, the actual manipulation with remote references is typically encapsu-
lated in wrapper-like objects, known as client-side and server-side proxies.
The key idea behind proxies [71] is that the client-side proxy can be con-
sidered as the local representative of the corresponding remote object and
the server-side proxy can be considered as the representative of all potential
clients of the remote object. The client-side proxy and the server-side proxy
communicate with each other to transmit requests and responses. In general,
clients and severs do not necessarily know about each other at compile time,
and an intermediary, the Broker [25], is needed to dynamically relate the two

5.8. IS DELEGATION FLEXIBLE? 65

Broker
Server-side

Proxy
SeverClient

call_server

Client-side

Proxy

pack_data
send_request

forward_request
find_server

call_service
unpack_data

run_service

pack_data

forward_responce

find_client

return

unpack_data

result
possible

process

boundary

possible

process

boundary

Figure 5.4: Request delivery scenario.

parties.
Figure 5.4 demonstrates a typical scenario of object interaction for deliv-

ering a request and receiving a response in a distributed setting on a message
sequence chart. Note that solid arrows represent method invocation, while
dashed arrows stand for return of control. When Client wants to obtain a
certain service, it sends a request to Client-side Proxy which packs the re-
quest data for transferring it over the network and then forwards the request
to Broker. Broker finds a server which has registered with it the service re-
quested by Client and calls the service. The request for the service goes to

66 CHAPTER 5. OBJECTS AND DELEGATION

Server-side Proxy. The latter unpacks the data, runs the service on Server,
packs the response data for transmitting over the network, and then forwards
the packed response data to Broker. Broker finds Client who requested the
service in the first place, returns the response data to its Client-side Proxy
which, in turn, unpacks the data and returns the results to Client.

Analyzing the diagram, one can see that Client-side Proxy and Broker, as
well as Broker and Server-side Proxy invoke methods on each other and are,
therefore, composed via delegation. Client and Client-side Proxy, as well as
Server-side Proxy and Server are composed via forwarding, as solid arrows
go only in one direction. The delegation technique permits us to dynamically
register services with a broker and to dynamically find servers providing the
services requested by clients.

5.9 Discussion, Conclusions, and

Related Work

Even though delegation in this chapter is presented as a software reuse tech-
nique which relies on objects as an ultimate software reuse mechanism, most
of the results and discussions presented here concern a very general layout
of composition of software components permitting mutual reference between
components.

Based on our discussion of the safety and flexibility of delegation, we can
now consider the advantages and disadvantages of using this software reuse
technique in various kinds of systems.

Delegation is heavily used in open distributed component systems. One
of the characteristic features of distributed component systems and platforms
is the fact that components can be developed by independent developers and
an integration phase is either completely absent or minimized. When the
integration phase is missing, as in the case of CI Labs OpenDoc [24], compo-
nents are composed by end users. When the integration phase is postponed,
as in the case of Sun Java Beans [80] and Microsoft COM [68], components
are composed by application developers. Due to the missing or postponed
integration phase, it is impossible to analyze semantic integrity of the result-
ing composed system. Therefore, a specification and verification method for
distributed component systems needs to be modular, i.e., verifying that par-
ticipating components meet their contractual obligations should be sufficient

5.9. DISCUSSION, CONCLUSIONS, AND RELATED WORK 67

to guarantee that the composed system operates correctly. As was argued
above, unrestricted delegation is not safe in general, thus special measures
(as we discussed) should be taken for restricting delegation and in this way
avoiding an infinite recursion.

The delegation technique is, of course, often used for developing ordinary
closed systems. In a closed environment, the final composed system can be
verified to correctly implement the specification. However, in a large project
application of modular reasoning is of crucial importance, as the complexity
of the system can quickly become overwhelming. It seems that an incidental
introduction of infinite recursion is unlikely to occur. Thus the last item in
the check-list can be verified after composing the components.

Problems with re-entrance are also often discussed in the context of con-
current programming. In a multithreaded environment, several instances of
the same procedure modifying global variables can be executed simultane-
ously. One thread of control can enter the procedure and, before the end of
the procedure is reached, a second thread of control can re-enter the same
procedure. Obviously, such a situation is problematic, because the second
instance of the procedure might observe the global variables in an inconsis-
tent state, or it can modify these global variables and then the first instance
will observe them in an inconsistent state. The problem that we consider
is sufficiently different from the re-entrance problem as known in concurrent
programming to deserve a separate name, the “component re-entrance prob-
lem”. There are two scenarios in which this problem can occur; firstly, when
components are independently developed from specifications and, secondly,
during independent maintenance of components.

One of the recommendations in concurrent programming is to circum-
vent the re-entrance problem by avoiding the re-entrant setting, which can
be achieved using various locking mechanisms. In object-oriented and compo-
nent-based programming, the re-entrant setting can be avoided by refusing
to use delegation and instead relying exclusively on forwarding. However, as
we discussed above, forwarding is less flexible than delegation, thus the de-
sign decision to refrain from applying delegation significantly reduces design
options.

Problems occurring during maintenance of mutually dependent compo-
nents similar to the component re-entrance problem have been mentioned by
several researchers, e.g., Bertrand Meyer in [47] and Clemens Szyperski in
[81]. Meyer considers the setting with two mutually dependent classes whose
invariants include each other’s attributes. His method for verification of con-

68 CHAPTER 5. OBJECTS AND DELEGATION

formance between two implementations of one class requires that the new
implementation respect the invariant of the original implementation. He no-
tices that this requirement alone is not sufficient for establishing correctness
of the composed system and refers to this problem as “indirect invariant ef-
fect”. He then makes a conjecture that mirroring such interclass invariants in
the participating classes would be sufficient to avoid the problem. Although
we disagree with the practice of stating interclass invariants, it seems that
the problem considered by Meyer is just a special case of the component re-
entrance problem as formulated in this paper. As our examples demonstrate,
preserving invariants, taken alone, does not eliminate the problem.

Szyperski describes a similar problem, but sees it rather as an instance
of the re-entrance problem as occurring in concurrent systems. He reiterates
the common recommendation for avoiding the problem, which recommends
establishing a component invariant before invoking any external method.
Interestingly enough, the recommendation to re-establish the invariant before
all external method calls does not follow from the specification and is rather
motivated by empirical expertise. As demonstrated by our examples, this
recommendation, although necessary, is insufficient.

The requirement to re-establish a component invariant before all external
calls is rather restrictive, because re-establishing the invariant might require
a sequence of method calls to this and other components. Besides, it is not
always necessary to establish the entire component invariant before exter-
nal calls, because clients of the component can depend on some parts of
the component invariant while being indifferent to the other parts. In [81],
Szyperski proposes to “weaken invariants conditionally and make the condi-
tions available to clients through test functions”. In a way, he proposes to
make assumptions that component developers make about other components
more explicit. This idea can be elaborated through augmenting specifications
of components with require/ensure statements stipulating assumptions and
guarantees that the components make. To avoid a conflict of assumptions,
a component specification can make explicit the information the component
relies on and provides to other components. For instance, every method can
begin with a require condition and end with an ensure condition. Also every
method invocation can be surrounded by an ensure/require couple. Then,
while implementing a method, the developer can assume the information as
stipulated in the require condition and ought to establish the ensure condi-
tion. Such an explicit statement of mutual assumptions and guarantees be-
tween components would reduce the need to unfold method invocations when

5.9. DISCUSSION, CONCLUSIONS, AND RELATED WORK 69

verifying refinement in context. Note that the theoretical underpinning of
such an approach to specifying component systems is an interpretation of the
results presented in this paper, as the refinement calculus includes constructs
for expressing the require/ensure statements.

A specification and verification method for component systems based on
such an approach should additionally provide for satisfying the “no acci-
dental mutual recursion” requirement in a modular manner. The detailed
elaboration of such a method represents the subject of current research.

As was already mentioned, we have made a number of simplifications
in the component model. In particular, we have assumed that components
do not have self-calls and component implementations do not introduce new
methods. Relaxing these restrictions on the component model is the subject
of future work.

70 CHAPTER 5. OBJECTS AND DELEGATION

Chapter 6

Classes and Inheritance

As we already mentioned, object-oriented programming languages can be
divided into two broad categories – those employing classes and those relying
on prototypical objects. The first category includes all mainstream object-
oriented languages most widely used in practice, C++ [78], Smalltalk [28],
and Java [29], to name just a few. A class is a language construct representing
a syntactic stencil that describes a particular kind of objects.

In many strongly-typed object-oriented languages, the class construct is
tightly bound with the notion of an object type – instances of the same class
usually have the same type.1 An object type describes a syntactic interface
of the object including signatures of object methods and sometimes also
constructors. The object type is used for typechecking programs which, in the
case of compiled languages, is done by a compiler. Typechecking is very useful
as it permits finding mechanically certain kinds of programming errors, e.g.,
the “message not understood” error occasionally encountered in programs
written in the untyped programming language Smalltalk. Further on we do
not discuss the syntactic compatibility of object types, as we consider it a
prerequisite for semantic compatibility of the corresponding objects.

A user can create an object by instantiating a class or can extend the
functionality of the class by creating an extension class. The latter can be
achieved through inheritance, which is a software reuse mechanism present in
most class-based object-oriented languages. Not only can the extension class
inherit attributes, i.e., instance variables and methods of the base class, it
can also modify the inherited behavior and provide new attributes. The high

1In the programming language Java a type of an object can be declared separately.

71

72 CHAPTER 6. CLASSES AND INHERITANCE

degree of flexibility of inheritance explains its wide acceptance in practical
programming.

In this chapter, we present a model of classes and inheritance and de-
fine refinement on classes. Then we discuss the safety of inheritance and
present the semantic fragile base class problem that plagues maintenance
of object systems relying on inheritance. We present a detailed analysis of
the semantic fragile base class problem, discuss how code inheritance can
be disciplined to become a safe software reuse mechanism, and prove the
corresponding modular reasoning property. Next we illustrate the flexibility
of code inheritance, showing an architectural pattern that inheritance facil-
itates. Further, we discuss the degree of flexibility attainable with different
variants of inheritance, such as interface inheritance, code inheritance, and
the disciplined inheritance. In the concluding sections we relate to the work
of other researchers and consider the applicability of classes and inheritance
for various kinds of software systems, emphasizing the balance between the
flexibility and the safety.

6.1 Modeling Classes

We model classes as self-referential structures, as proposed by William Cook
and Jens Palsberg in [17]. However, unlike in their model, classes can have
instance variables in our formalization. A similar but more restricted model
of classes and inheritance was first developed in [49].

We make the following simplifications in the model of classes. We consider
only the classes that do not invoke methods on other classes. Modeling this
feature can be done in a straightforward manner, but would only introduce
an unnecessary complication, as this feature is irrelevant for considering the
safety and flexibility of inheritance. We also consider only the classes that
do not have recursive and mutually recursive methods. We model method
parameters by global variables that both methods of a class and its clients
can access. For every formal parameter of a method, we introduce a separate
global variable used for passing values in and out of objects. It is easy to
see that parameter passing by value and by reference can be modeled in this
way. We mark a formal method parameter with a keyword val to indicate
that the method only reads the value of this parameter without changing it.
Similarly, we mark a formal parameter with a keyword res to indicate that
the method returns a value in this parameter.

6.1. MODELING CLASSES 73

C
self

Figure 6.1: Illustration of a class.

In practice, a call to a method mj from a method mi of the same class
has the form self .mj. Due to inheritance and dynamic binding, such a call
can get redirected to the definition of mj in an extension class. Accordingly,
we model the method mi as a function of the called method. As, in general,
a class method may invoke all other methods of the same class, in the case
of n methods we have

mi = λ(x1, ..., xn) • ci

where x1, ..., xn represent bodies of the methods of the class, and ci is a
statement representing the body of the method mi. Accordingly, methods of
a class C can be defined by

C = λself • (c1, ..., cn)

where self is an abbreviation for the tuple (x1, ..., xn). We assume that C is
monotonic in the self parameter with respect to the refinement relation.

A class C with an initial value of the internal state c0 : Σ and methods
C can be given by

C = (c0, C)

and declared as follows:

C = class c := c0, m1 =̂ c1, ..., mn =̂ cn end

A class can be depicted as shown in figure 6.1. The incoming arrow represents
external calls to the class C, the outgoing arrow stands for self-calls of C.

As we have stated before, some global variables d1 : ∆1, ..., dk : ∆k are
used for parameter passing. Due to dynamic binding, methods of C operate
not only on the state space Σ × ∆, where ∆ = ∆1 × ... × ∆k, but also on
the state space of some modifier whose type is unknown until the modifier
is applied. Thus C has the type Φn,n(Ptran(α × Σ × ∆)), where α is a type
variable which is instantiated with the type of modifier instance variables at
modifier application. We assume that methods of the base class C have the

74 CHAPTER 6. CLASSES AND INHERITANCE

C

self

Figure 6.2: Illustration of creating an instance of C.

structure skip× S, where skip is executed on the component α of the state
and S is executed on the component Σ × ∆.

In our model, classes are used as templates for creating objects. Objects
have all self-calls resolved with methods of the same object. Modeling this
formally amounts to taking the least fixed point of the function C. State-
ment tuples form a complete lattice with the refinement ordering. Also C
is required to be monotonic in its self argument. These two conditions are
sufficient to guarantee that the least fixed point of the function C exists and
is unique. As we argued in Chapter 4, from the mathematical standpoint, an
object that does not invoke methods on other objects is similar to a module,
i.e., it is a pair consisting of the initial state of its instance variables and the
tuple of statements representing its methods. We can define an operation of
creating an object from its class as follows:

create C =̂ (c0 : Σ, (µ C) : Πn(Ptran(α × Σ × ∆)))

Figure 6.2 illustrates creating an instance of the class C.

6.2 Modeling Inheritance

Imagine that there exists a class C which implements a certain functional-
ity. With the use of inheritance, C can be adjusted and extended into an
extension class E. Not only the extension class can inherit attributes, i.e.,
instance variables and methods of the base class C, but also it can modify
the inherited behavior and provide new attributes. Modification of inher-
ited behavior is achieved through overriding inherited methods with the new
definitions in the extension class. For such method overriding to take place,
not only the external method invocations should be redirected to the new
definitions of the methods, but also all internal calls, known as self-calls, in
the base class should be resolved similarly. The most often referred definition
of inheritance is the “method lookup” algorithm of Smalltalk [28]:

6.2. MODELING INHERITANCE 75

“When a message is sent, the methods in the receiver’s class are searched
for one with a matching selector. If none is found, the methods in that class’s
superclass are searched next. The search continues up the superclass chain
until a matching method is found. [...]

When a method contains a message whose receiver is self , the search for
the method for this message begins in the instance’s class, regardless of which
class contains the method containing self . [...]

When a message is sent to super , the search for a method [...] begins in
the superclass of the class containing the method. The use of super allows a
method to access methods defined in a superclass even if the methods have
been overridden in the subclasses.”

Unfortunately, such an operational definition does not aid the intuitive
understanding. For modeling single inheritance, we adopt the notion of mod-
ifiers as proposed by Cook and Palsberg in [19].2 This model of inheritance
was proved to correspond to the form of inheritance used in object-oriented
systems.

Assume that we have a base class C and an extension class E inheriting
from it. We say that E is equivalent to (L mod C)3, where L corresponds
to the extending part of the definition of E, and the operator mod combines
L with the inherited part C. We refer to L as a modifier [86].

We make a number of restrictions on inheritance. We consider only single
inheritance, and an extension class created through inheritance from a base
class cannot have additional methods. Moreover, methods in a modifier
cannot be recursive and mutually recursive. Modeling classes and inheritance
without making these restrictions is possible along the same lines, however it
would significantly complicate the presentation. It suffices to consider only
those modifiers that redefine all methods of the base class. In case some
method should remain unchanged, the corresponding method of the modifier
calls the former via super .

A modifier declared by

L = modifier l := l0, m1 =̂ l1, ..., mn =̂ ln end

is modeled by a pair

L = (l0, L), where L = λself • λsuper • (l1, ..., ln)

2In their paper, modifiers are referred to as wrappers. We prefer the term modifier,
because the term wrapper is usually used in the context of object aggregation.

3We read mod as modifies.

76 CHAPTER 6. CLASSES AND INHERITANCE

L
super

self

Figure 6.3: Illustration of modifiers.

Here l0 : Γ are initial values of new instance variables l, L is a function
representing methods of the modifier, the bounded variables self and super
are abbreviations of the tuples (x1, ..., xn) and (y1, ..., yn) respectively, and
(l1, ..., ln) are the bodies of the overriding methods. We assume that L is
monotonic in both arguments. See figure 6.3 for an illustration of modifiers.
As with the class diagram, the incoming arrow represents external calls to
methods of the modifier, whereas outgoing arrows stand for self and super-
calls of the modifier.

Under the condition that signatures of overriding methods in the modifier
match the corresponding method signatures in the base class, the modifier
can be applied to an arbitrary base class. We make a restriction that mod-
ifier methods are not allowed to access the instance variables of the base
class directly, but only by making super-calls. As was pointed out by Alan
Snyder in [72], “Because the instance variables are accessible to clients of
the class, they are (implicitly) part of the contract between the designer of
the class and the designers of descendant classes. Thus, the freedom of the
designer to change the implementation of a class is reduced”. In general,
accessing the base class state from the modifier directly is recognized as a
poor programming practice.

As the state space of the base class is unknown until modifier application,
we say that the methods L of the modifier L operate on the state space
α′ × β × Γ × ∆, where β is a type variable to be instantiated with the type
of base class instance variables while modifier application, and ∆ is the type
of the state component representing all parameters of all modifier methods.
The role of the type variable α′ will become clear after we define the creation
of new classes by applying modifiers. Hence, the type of the function L
representing the methods of the modifier is as follows:

Πn(Ptran(α′ × β × Γ × ∆)) → Φn,n(Ptran(α′ × β × Γ × ∆))

We assume that the methods of the modifier L have the structure skip × S,
where skip is executed on the component α′×β of the state and S is executed
on the component Γ × ∆.

6.2. MODELING INHERITANCE 77

L
super

self

C
self

L mod C

self L
super

self

C

self

L upcalls C

self

Figure 6.4: Illustration of the operators mod and upcalls.

Inheritance can be modeled by means of the operator mod which applies
a modifier L = (l0, L) to a base class C = (c0, C) in the following manner:

(L mod C) =̂ ((c0, l0), λself • L. self . (C. self ↓Q)↑Q)

Here Q is a state rearranging relation swapping the second and the third
elements of the state:

Q. (x′, y′, z′, u′). (x, z, y, u) = x′ = x ∧ y′ = y ∧ z′ = z ∧ u′ = u

Figure 6.4 illustrates application of the modifier L to the base class C to
construct the class (L mod C). Note that in the resulting class self-calls of
C are redirected to the methods of the modifier L due to dynamic binding.
Both external and internal method calls are thus resolved dynamically.

Let us now consider a restricted form of inheritance in which external
method calls are resolved dynamically whereas internal calls are resolved
statically. This form of inheritance can be modeled using an operator upcalls
which applies the modifier L = (l0, L) to the base class C = (c0, C) as follows:

(L upcalls C) =̂ ((c0, l0), λself • L. self . (µ C)↓P)

Here the relation P discards the first element of the state and swaps the
second and the third elements of the state:

P . (x′, y′, z′, u′). (z, y, u) = y′ = y ∧ z′ = z ∧ u′ = u

See figure 6.4 for an illustration of modifier application with the operator
upcalls. Note that in the resulting class self-calls of C remain in C ignoring
dynamic binding.

78 CHAPTER 6. CLASSES AND INHERITANCE

!f&*'

*' !

* & !

+ f

Figure 6.5: Illustration of type variables instantiation.

Application of the modifier L using both mod and upcalls instantiates
its type variable β with the type Σ of the base class C. Simultaneously, the
type variable α of C is instantiated with the type Γ of the modifier L. Hence,
after the corresponding state space rearrangement, the constructed classes
(L mod C) and (L upcalls C) have methods operating on α′ × Σ × Γ × ∆,
where α′ is a type variable to be instantiated in the next modifier application,
Σ × Γ is the type of instance variables of the resulting classes, and ∆ is the
type of parameters of all methods of the resulting classes. Instantiation of
type variables is illustrated in figure 6.5.

Further on we say that an up-call occurs when an extension class invokes
a base class method; when a base class invokes a method of a class derived
from it, we refer to such an invocation as a down-call. Figure 6.6 justifies
these terms.

6.3 Refinement on Classes

We consider only refinement between classes with identical interfaces. As
was mentioned before, from a mathematical perspective, an object that does
not invoke methods on other objects is similar to a module. Before defining

up-call

C
down-call

L mod C

Figure 6.6: Up-calls and down-calls.

6.3. REFINEMENT ON CLASSES 79

refinement on classes, we need to slightly adjust the definition of module
refinement (which was first presented in section 3.1) to take into account a
different layout of state spaces in class instances. For class instances C = (c0 :
Σ,Cp : Πn(Ptran(α×Σ×∆))) and D = (d0 : Σ′,Dp ′ : Πn(Ptran(α×Σ′×∆)))
refinement is defined as follows:

C v D =̂ ∃R • R. d0. c0 ∧ Cp vR̂ Dp

While it is possible to give different definitions of refinement on classes,
we believe that the following definition captures the intuition used by pro-
grammers when reasoning informally about behavioral conformance between
the objects these classes instantiate. This definition strongly relates to the
notion of behavioral subtyping [2, 3, 44, 40, 23]. The paper “A behavioral no-
tion of subtyping” by Barbara Liskov and Jeannette Wing [44] starts with the
following informal definition of behavioral subtyping: “What does it mean
for one type to be a subtype of another? We argue that this is a semantic
question having to do with the behavior of the objects of the two types: the
objects of the subtype ought to behave the same as those of the supertype
as far as anyone or any program using supertype objects can tell.” Following
[51], we prefer to separate the decidable syntactic descriptions of objects,
as described by object types, and the undecidable semantic specifications of
objects, as described by classes instantiating these objects. Accordingly, the
above informal definition can be rewritten as follows: a class C is refined
by another class D, if all objects instantiated by C are substitutable with
the objects instantiated by D in any context. Note that after creating an
instance of a class all self-calls in the methods of this instance are already
resolved, i.e. they necessarily refer to the methods of the same instance.
Let C = (c0, C), where C = λself • (c1, ..., cn), and D = (d0, D), where
D = λself • (d1, ..., dn), be classes, then refinement on these classes can be
expressed through refinement on modules as follows:

C v D =̂ (create C) v (create D)

This notion of class refinement is very general. The class D can be an
extension of the class C or be completely independent. If D is an extension of
C, instance variables of D can extend those of C or be completely different.
The refinement relation can be also applied to pairs of abstract and concrete
classes.

80 CHAPTER 6. CLASSES AND INHERITANCE

6.4 Safety of Inheritance

Most of the work concerning the safety of inheritance concentrated around
the notion of behavioral subtyping. The research was focusing on the question
as to how one can establish that an object of a subtype is safely substitutable
for an object of the supertype in any client. In these works an object’s
behavior is captured in the object’s type. As was already mentioned, we
believe that object behavior should be captured in the object’s class. Thus
in our terms the question can be reformulated as to how one can establish that
an object is safely substitutable for another one in any client by considering
only the classes of the objects. This question can be rewritten as the following
property:

C v D ⇒ (P uses C) v (P uses D)

where P is a client program, and C and D are classes. The property of this
kind has been extensively studied in works on behavioral subtyping and now
also in [51]. In our abstract formalization, this property can be easily estab-
lished, as it directly translates into the corresponding property formulated
and proved for modules.

We, however, believe that other factors also contribute to the safety of
inheritance. In particular, while maintaining a software system built using
code inheritance, it is natural for users to expect that if they use an improved
version of the base class instead of the original class, the resulting extension
class will also become better. Consider the following situation: imagine
that there exists a class C supplied as a part of a class library and that
a developer decides to reuse it. To adjust C for the use of a particular
client, the developer creates a modifier L, applying which to C results in an
extension class (L mod C). After some time, developers of the class library
decide to release a new version of the library containing a new version D of
the class C. As extensions of the library are not available to its developers
(the extensions are usually developed by an independent party), in order to
avoid invalidating the existing extensions, verifying that D is a refinement
of C should be sufficient for ensuring that the extension class (L mod C) is
refined by the extension class resulting from substituting C with D. In other
words, the modular reasoning property for inheritance looks as follows:

C v D ⇒ (L mod C) v (L mod D)

6.4. SAFETY OF INHERITANCE 81

Unfortunately, this property does not hold because of the so-called se-
mantic fragile base class problem, which was first pointed out in [87] and
systematically studied in [49]. To gain an intuitive understanding of this
problem and see how disguised it can be, let us first consider an example.
The contents of sections 6.4.1-6.4.3 are based on [49].

6.4.1 An Example of the Fragile Base Class Problem

Consider the example presented in figure 6.7.4 Suppose that a class Bag is
provided by some object-oriented system, e.g., an extensible container frame-
work. This class has an instance variable b : bag of char initialized with an
empty bag, and methods add inserting a new element into b, addAll invoking
the add method to add a group of elements to the bag simultaneously, and
cardinality returning the number of elements in b.

Suppose now that a user of the framework decides to extend it. To do so,
the user develops a modifier Counting that introduces an instance variable
n, and overrides add to increment n every time a new element is added to
the bag. As the extension class CountingBag resulting from applying the
modifier Counting to the base class Bag will maintain an invariant n = |b|,
the user overrides the method cardinality to return the value of n, as shown
in figure 6.8.

After some time, framework developers decide to improve the efficiency
of the class Bag and release a new version of the system. An “improved”
Bag′ implements addAll without invoking add . Naturally, the framework
developers claim that the new version of the system is fully compatible with
the previous one. It definitely appears to be so if considered separately from
the extensions. However, when trying to use Bag′ instead of Bag as the
base class, the framework user suddenly discovers that the resulting class
CountingBag′ returns the incorrect number of elements in the bag (see
figure 6.8) for the resulting definition of CountingBag′). This happens
because the new implementation of the method addAll in Bag′ does not
invoke add and, therefore, n does not get increased. Here we face the semantic
fragile base class problem. Any system employing code inheritance and self-
recursion is vulnerable to this problem.

The framework developers relied on the following property, which pre-
cisely matches our formulation of the modular reasoning property for inher-

4This example is adopted from [77].

82 CHAPTER 6. CLASSES AND INHERITANCE

Bag = Bag′ =
class class

b : bag of char := b| |c, b : bag of char := b| |c,
cardinality(res r : int) =̂ cardinality(res r : int) =̂

r := |b|, r := |b|,
add(val x : char) =̂ add(val x : char) =̂

b := b ∪ b|x|c, b := b ∪ b|x|c,
addAll(val bs : bag of char) =̂ addAll(val bs : bag of char) =̂

while bs 6= b| |c do b := b ∪ bs
begin var y • y ∈ bs ; end

self −Badd(y);
bs := bs − b|y|c;

end
od

end

Counting = modifier
n : int := 0,

cardinality(res r : int) =̂ r := n,
add(x : char) =̂ n := n + 1; super−Badd(x),
addAll(val bs : bag of char) =̂ super−BaddAll(bs)

end

Figure 6.7: Example of the fragile base class problem.

itance:

Bag v Bag′ ⇒ (Counting mod Bag) v (Counting mod Bag′)

Unfortunately, as demonstrated by the above example, this property does
not hold and, therefore, neither does the modular reasoning property for
inheritance. This leaves us with the question as to whether it is possible to
restrict code inheritance, so that it would be possible to reason about it in a
modular manner.

6.4. SAFETY OF INHERITANCE 83

CountingBag = CountingBag′ =
class class

b : bag of char := b| |c, b : bag of char := b| |c,
n : int := 0, n : int := 0,

cardinality(res r : int) =̂ cardinality(res r : int) =̂
r := n, r := n,

add(val x : char) =̂ add(val x : char) =̂
n := n + 1; b := b ∪ b|x|c, n := n + 1; b := b ∪ b|x|c,

addAll(val bs : bag of char) =̂ addAll(val bs : bag of char) =̂
while bs 6= b| |c do b := b ∪ bs

begin var y • y ∈ bs ; end
self −Badd(y);
bs := bs − b|y|c;

end
od

end

Figure 6.8: CountingBag and CountingBag′.

6.4.2 Aspects of the Problem

Let us now consider five examples invalidating the modular reasoning prop-
erty and illuminating the shortcomings of inheritance. The examples are
orthogonal to each other, meaning that all of them illustrate different as-
pects of the problem.

Direct Access to the Base Class State

Developers of a revision D may want to improve the efficiency of C by mod-
ifying its data representation. The following example demonstrates that, in
general, D cannot change the data representation of C in the presence of
inheritance.

A base class C represents its state by an integer variable x and declares
two methods m and n increasing x by 1 and 2 respectively. A modifier L
provides a harmless (as it appears by looking at C) override of the method n,
which does exactly what the corresponding method of C does, i.e., increases

84 CHAPTER 6. CLASSES AND INHERITANCE

x by 2.

C = class L = modifier
x : int := 0,

m() =̂ x := x + 1, m() =̂ super−Bm(),
n() =̂ x := x + 2 n() =̂ x := x + 2

end end

A revision D introduces an extra instance variable y, initializing it to 0.
The methods m and n increase x and y by 1 and by 2, but indirectly via y.
Therefore, the methods of D implicitly maintain an invariant x = y.

D = class
x : int := 0; y : int := 0,

m() =̂ y := y + 1;x := y,
n() =̂ y := y + 2; x := y

end

Now, if we consider an object obj which is an instance of class (L mod D),
obtained by substituting D for C, and the sequence of method calls
obj−Bn(); obj−Bm(), we face the problem. By looking at C, we could as-
sume that the sequence of method calls makes x equal to 3, whereas, in fact,
x is assigned only 1. Therefore,

C v D 6⇒ (L mod C) v (L mod D)

An analogous problem was described by Alan Snyder in [72]. He notices
that “Because the instance variables are accessible to clients of the class,
they are (implicitly) part of the contract between the designer of the class
and the designers of descendant classes. Thus, the freedom of the designer
to change the implementation of a class is reduced”. In our example, since
L is allowed to modify the instance variables inherited from C directly, it
becomes impossible to change the data representation in D.

Unanticipated Mutual Recursion

Suppose that C describes a class with an instance variable x initialized to 0
and two methods m and n both incrementing x by 1. A modifier L overrides
n so that it calls m. Now, if a revision D reimplements m by calling the

6.4. SAFETY OF INHERITANCE 85

method n, which has an implementation exactly as it had before, we run
into the problem:

C = L = D =
class modifier class

x : int := 0, x : int := 0,

m() =̂ x := x + 1, m() =̂ super−Bm(), m() =̂ self −Bn(),
n() =̂ x := x + 1 n() =̂ self −Bm() n() =̂ x := x + 1

end end end

When the modifier L is applied to D, the methods m and n of the resulting
class (L mod D) become mutually recursive. Clearly, a call to either one
leads to a never terminating loop. Therefore,

C v D 6⇒ (L mod C) v (L mod D)

This example demonstrates that the problem might occur due to the
unexpected appearance of mutual recursion of methods in the resulting class.

Unjustified Assumptions in Revision Class

To illustrate the next shortcoming of inheritance, it is sufficient to provide
only a specification of a base class. The base class C calculates the square
and the fourth roots of a given real number. Its specification is given in
terms of pre- and postconditions which state that, given a non-negative real
number x, methods m and n of C will find such r that its power of two and
four respectively equal x.

A modifier L overrides the method m so that it would return a nega-
tive value.5 Such an implementation of m is a refinement of the original

5By convention,
√

x returns a positive square root of x.

86 CHAPTER 6. CLASSES AND INHERITANCE

specification, because it decreases nondeterminism.

C = L =
class modifier

m(val x : real , res r : real) =̂ m(val x : real , res r : real) =̂
(pre x ≥ 0,

post r2 = x),
r := −√

x,

n(val x : real , res r : real) =̂ n(val x : real , res r : real) =̂
(pre x ≥ 0,

post r4 = x)
super−Bn()

end

A revision D of the base class implements the specification of m by re-
turning a positive square root of x. The implementation of the method n
relies on this fact and merely calls m from itself twice, without checking that
the result of the first application is positive. Note that D is a refinement of
C.

D = class
m(val x : real , res r : real) =̂

r :=
√

x,
n(val x : real , res r : real) =̂

self −Bm(x, r); self −Bm(r, r)
end

Suppose now that we have an instance of a class (L mod D). The call
to n will lead to a failure, because the second application of the square root
will get a negative value as a parameter. Therefore,

C v D 6⇒ (L mod C) v (L mod D)

This example demonstrates that the problem might occur if developers
of a revision class assume that, when self-calling a method, the body of a
method as defined in the revision class is guaranteed to be executed. Due to
inheritance and dynamic binding such an assumption is unjustified.

6.4. SAFETY OF INHERITANCE 87

Unjustified Assumptions in Modifier

To illustrate the next aspect of the semantic fragile base class problem, let
us consider the following example:

C = L =
class modifier

l(val v : int) =̂ {v ≥ 5}, l(val v : int) =̂ skip,
m(val v : int) =̂ self −Bl(v), m(val v : int) =̂ super−Bm(v),
n(val v : int) =̂ skip n(val v : int) =̂ self −Bm(v)

end end

D = class
l(val v : int) =̂ {v ≥ 5},
m(val v : int) =̂ {v ≥ 5}; self −Bl(v),
n(val v : int) =̂ skip

end

Let us compute full definitions of the classes (L mod C) and (L mod D):

(L mod C) = (L mod D) =
class class

l(val v : int) =̂ skip, l(val v : int) =̂ skip,
m(val v : int) =̂ self −Bl(v), m(val v : int) =̂ {v ≥ 5}; self −Bl(v),
n(val v : int) =̂ self −Bl(v) n(val v : int) =̂ {v ≥ 5}; self −Bl(v)

end end

It is easy to see that, while C is refined by D, the class (L mod C) is not
refined by (L mod D). Due to the presence of the assertion {v ≥ 5} in the
methods m and n of (L mod D), their preconditions are stronger than those
of the corresponding methods in (L mod C), while to preserve refinement
their preconditions could have only been weakened. Therefore,

C v D 6⇒ (L mod C) v (L mod D)

To summarize, the problem might occur due to the assumption made in a
modifier that in a particular layout base class self-calls are guaranteed to get
redirected to the modifier itself. However, such an assumption is unjustified,
because the revision class can modify the self-calling structure.

88 CHAPTER 6. CLASSES AND INHERITANCE

Unjustified Assumption of Binding Invariant in Modifier

A class C has an instance variable x. A modifier L introduces a new instance
variable y and binds its value to the value of x of the base class the modifier
is supposed to be applied to. An override of the method n verifies this fact
by first making a super-call to the method l and then asserting that the
returned value is equal to y.

C = L =
class modifier

x : int := 0, y : int := 0,

l(res r : int) =̂ r := x, l(res r : int) =̂ super−Bl(r),
m() =̂ x := x + 1; self −Bn(), m() =̂ y := y + 1; super−Bm(),
n() =̂ skip n() =̂ beginvar r • T ;

end super−Bl(r);
{r = y};

end
end

It is easy to see that before and after execution of any method of
(L mod C) the value of x is equal to the value of y. We can say that
(L mod C) maintains the invariant (x = y). The full definition of the
method m in an instance of the class (L mod C) effectively has the form
y := y + 1; x := x + 1; {x = y}, where the assertion statement skips, since
the preceding statements establish the invariant.

Now, if a revision D reimplements m by first self-calling n and then
incrementing x as illustrated below, we run into the problem.

D = class
x : int := 0,

l(res r : int) =̂ r := x,
m() =̂ self −Bn(); x := x + 1,
n() =̂ skip

end

The body of the method m in an instance of the class (L mod D) is effec-
tively of the form y := y + 1; {x = y}; x := x + 1, and, naturally, it aborts.
Therefore,

C v D 6⇒ (L mod C) v (L mod D)

6.4. SAFETY OF INHERITANCE 89

When creating a modifier, its developer usually intends it for a particular
base class. A common practice is introducing new variables in the modifier
and binding their values with the values of the intended base class instance
variables. Such a binding can be achieved even without explicitly referring
to the base class variables. Thus the resulting extension class maintains an
invariant binding values of inherited instance variables with the new instance
variables. Such an invariant can be violated when the base class is substituted
with its revision, even if the actual modification in the base class code appears
as harmless as a change in the order of statements. If methods of the modifier
rely on the presence of such an invariant, a crash might occur.

6.4.3 Conflict Between Safety and Flexibility of Inher-
itance

The presented examples demonstrate different aspects of the semantic fragile
base class problem. However, this list of aspects is by no means complete.
We have chosen these aspects, because in our opinion they constitute the
core of the problem. Also among these key aspects there are some that
were overlooked by other researchers, as we discuss in the conclusions of this
chapter.

The orthogonality of the considered examples suggests that it might be
possible to formulate requirements that would allow circumventing the as-
pects of the problem illustrated by the examples. These requirements can
be of two kinds, those that can be taken into account by additional verifica-
tion obligations (extra conjuncts in the antecedent of the modular reasoning
property), and those that can only be addressed by restricting the code in-
heritance mechanism. Clearly, the first kind is preferable, as restricting the
inheritance mechanism sacrifices some of its flexibility in favor of safety. Let
us consider what such restrictions can look like and whether they would
enable modular reasoning about inheritance.

As direct access to the base class state is clearly harmful, we can straight-
forwardly formulate the following requirement:

“No direct access to the base class state”:

An extension class should not access the state of its base
class directly, but only through calling base class methods.

This requirement can only be addressed by a restriction on the code in-

90 CHAPTER 6. CLASSES AND INHERITANCE

heritance mechanism. The internal state of the base class should be made
inaccessible to extension classes. For example, in C++ this can be achieved
by declaring instance variables as private.

To capture the unanticipated mutual recursion aspect of the problem we
formulate the following requirement:

“No cycles”:

A base class revision and a modifier should not jointly in-
troduce new cyclic method dependencies.

This requirement is similar to the “no infinite recursion” requirement of
Chapter 5. Accordingly, it can also be handled in a modular manner by in-
dexing the methods according to the depth of possible method invocations,
and requiring that both extension and revision developers preserve the index
order. Thus imposing this requirement amounts to introducing an additional
verification obligation.

The aspect concerning the unjustified assumptions in revision classes can
be captured by the following requirement:

“No revision self-calling assumptions”:

When verifying a method of the revision class, its develop-
ers should not make any additional assumptions about the
behavior of the other methods in the revision class. Only
the behavior described in the base class may be taken into
consideration.

Taking this requirement into account amounts to introducing an extra verifi-
cation obligation that an instance of the base class C is refined by an instance
of the revision class D with all self-calls substituted with the bodies of the
corresponding methods of C.

The aspect concerning the unjustified assumptions in modifiers leads us
to formulating the following requirement:

6.4. SAFETY OF INHERITANCE 91

“No base class down-calling assumptions”:

When constructing a method of the modifier, its developers
should not make additional assumptions about the behavior
of the other methods in the modifier that can get invoked
due to dynamic binding of the base class self-calls. Bodies
of the corresponding methods in the base class should be
considered instead.

This requirement can be addressed by introducing a verification obligation
stipulating that the base class is refined by the class resulting from applying
the modifier to the base class with the operator upcalls.

The example illustrating unjustified assumption of binding invariant in
a modifier is the most surprising of all. This example demonstrates that
an extension class can be invalidated by such an innocent-looking change
in the base class as a modification in the order of statements. This aspect
of the problem is clearly induced by the fact that the developers of the
modifier intended the modifier for a particular base class, assuming the order
in which the base class instance variable is updated and the self-invocation
occurs. Based on this assumption, they created an invariant binding instance
variables of the modifier with those of the base class.

One can think of two proposals for dealing with the problem in this case.
The revision class developers can be blamed for the problem, as they have
changed the order in which the internal state of the base class is updated and
methods on self are invoked. The first proposal then implies that the order
of state changes and method invocations on self cannot be changed. Obvi-
ously, this proposal is infeasible in practice, as classes in real programs work
with complex data structures and have nontrivial self-invocation patterns.
The essence of the second proposal is that modifier developers should not
intentionally create and rely on the presence of the invariant that appears
in the extension class resulting from applying the modifier to the base class.
However, this requirement in combination with the “no direct access to the
base class state” requirement would effectively defeat the flexibility of code
inheritance, as extension developers would be only allowed to either access
the modifier’s own instance variables or make up-calls to the base class.

We believe that it is impossible to formulate verification obligations that
would allow for reasoning about code inheritance in a modular manner and
without defeating its flexibility. To enable modular reasoning, code inher-
itance should be disciplined. The study described above has led us to the

92 CHAPTER 6. CLASSES AND INHERITANCE

observation that a significant part of the problem can be traced back to dy-
namic binding of self-calls in a base class. If an extension class overrides a
particular method of the base class, a self-call to this method in the base
class gets redirected to the overriding definition, due to dynamic binding.
In the following sections we study disciplined inheritance that restricts code
inheritance by prohibiting dynamic binding of self-calls.

6.4.4 Disciplining Inheritance

In section 6.2 we defined the operator upcalls which models a restricted
form of inheritance in which all external calls to a class are resolved dynam-
ically, while internal self-calls are resolved statically. We refer to inheritance
restricted in this manner as disciplined inheritance. The modular reasoning
property for the disciplined inheritance can be formulated as follows:

C v D ⇒ (L upcalls C) v (L upcalls D)

Testing this property on the examples presented above, shows that to
provide for modular reasoning, we still need to strengthen the assumptions
according to the “no direct access to the base class state” and “no revision
self-calling assumptions” requirements. With the disciplined inheritance the
other aspects of the semantic fragile base class problem do not appear. As was
mentioned in section 6.2, our formalization of inheritance does not permit a
direct access to instance variables of the base class from the modifier methods.
According to the “no revision self-calling assumptions” requirement, while
reasoning about the behavior of a revision class method, its developer should
not assume the behavior of the methods it self-calls, but should consider
the behavior described by the base class. The application of a function
D representing methods of the revision class D to properly encoded method
bodies (µ C) of the base class C returns a tuple of methods of D with all self-
calls redirected to the methods of C. Therefore imposing this requirement
amounts to verifying that:

∃R • (R. d0. c0) ∧ (µ C) vR̂ D. (µ C)↓R̂

where R̂ = (Id × R × Id). Accordingly, the modular reasoning property for
disciplined inheritance acquires the following form:

(∃R • (R. d0. c0) ∧ (µ C) vR̂ D. (µ C)↓R̂) ⇒
(L upcalls C) v (L upcalls D)

6.4. SAFETY OF INHERITANCE 93

Now we can formulate the modular reasoning theorem for disciplined in-
heritance:

Modular Reasoning Theorem for Disciplined Inheritance. For
classes C, D, and a modifier L given by

C = (c0 : Σ, C : Φn,n(Ptran(α × Σ × ∆)))

D = (d0 : Σ′, D : Φn,n(Ptran(α × Σ′ × ∆)))

L = (l0 : Γ, L : Πn(Ptran(α′ × β × Γ × ∆)) →
Φn,n(Ptran(α′ × β × Γ × ∆)))

the following holds:

(∃R • (R. d0. c0) ∧ (µ C) vR̂ (D. (µ C)↓R̂)) ⇒
(L upcalls C) v (L upcalls D)

Proof In accordance with the definition of abstract data type refinement,
we first need to show that R. d0. c0 ⇒ (R × Id). (d0, l0). (c0, l0), which is
trivially true.

Next we need to show the following goal:

(µ C) vR̂ D. (µ C)↓R̂ ⇒
(µ λself • L. self . (µ C)↓P) vR̂×Id

(µ λself • L. self . (µ D)↓P)

(6.1)

Recall that the relation P discards the first element of the state and swaps
the second and the third elements of the state.

As was already mentioned, we assume that the classes and the modifier
do not have recursive and mutually recursive methods. Therefore, it is al-
ways possible to rearrange their methods in the linear order in the following
manner. We can assign an index to each method in C, D, and L, according
to the depth of the call graph. That is if a method does not self-call any
other methods, it is assigned index 1. If a method invokes a method with
index i, it receives the index i+1. If a method invokes several methods with
different indexes, its index becomes the maximum of these indexes plus one.
An example presented in figure 6.9 illustrates the assignment of indexes to
methods. Note that implementations of a certain method in C, D, and L
can receive different indexes, as they can introduce or remove self-calls. In
this case, the corresponding methods in C, D, and L are re-assigned the

94 CHAPTER 6. CLASSES AND INHERITANCE

C = L =
class modifier

k1() =̂ S, k1() =̂ super−Bk(); W,
l2() =̂ self −Bm(); self −Bk(), l2() =̂ self −Bm(); self −Bk(),
m1() =̂ T, m1() =̂ super−Bm(),
n3() =̂ self −Bl() n1() =̂ super−Bn()

end end

D = class
k2() =̂ self −Bm(),
l2() =̂ self −Bm(); U,
m1() =̂ V,
n2() =̂ self −Bm()

end

Figure 6.9: Example of method indexing

index which is the maximum of the indexes these methods received in the
previous step. Accordingly, in our example, the methods k, l, m, and n of
C, D, and L receive indexes 2, 2, 1, and 3 respectively. Next the methods
of C, D, and L are sorted according to the received indexes. Without loss
of generality, we can consider the case when for every distinct index there
is only one method and the indexes increase sequentially. We represent the
methods by functions of the methods they invoke:

C1 = λ() • c1, ... Cn = λ(x1, ..., xn−1) • cn

D1 = λ() • d1, ... Dn = λ(x1, ..., xn−1) • dn

L1 = λ() • λ(y1) • l1, ... Ln = λ(x1, ..., xn−1) • λ(y1, ..., yn) • ln

There are no free occurrences of self and super in Ci, Di and Li. Thus, for
example, for the class C we have that

C = λself • (C1. (), C2. (x1), ..., Cn. (x1, ..., xn−1))

Note that in goal 6.1 the data refinement relations connect tuples of
predicate transformers that correspond to the method bodies with all self
and super-calls resolved with the methods of the same class. Thus, we can

6.4. SAFETY OF INHERITANCE 95

rewrite this goal as

(C1, . . . , Cn) vR̂ (D1, . . . ,Dn) ⇒
((L1, . . . ,Ln) vR̂×Id (M1, . . . ,Mn) ∧
(C1, . . . , Cn) vR̂ (T1, . . . , Tn)),

(6.2)

where C, D, L, M, and T are defined as follows:

C1 = C1. (), ... Cn = Cn. (C1, ..., Cn−1)

D1 = D1. ()↓R̂, ... Dn = Dn. (C1, ..., Cn−1)↓R̂
L1 = L1. (). C1↓P, ... Ln = Ln. (L1, ...,Ln−1). (C1, ..., Cn)↓P
M1 = L1. (). T1↓P, ... Mn = Ln. (M1, ...,Mn−1). (T1, ..., Tn)↓P
T1 = D1. (), ... Tn = Dn. (T1, ..., Tn−1)

Here C are the method bodies of the methods C1, ..., Cn with all self-calls
recursively resolved with C, similarly T represents the method bodies (µ D).

The statements D represent (D. (µ C)↓R̂), where each Di is a method body of
the method Di with all self-calls resolved with properly coerced C. Note how
L and C jointly represent the least fixed point of methods of (L upcalls C).
The statements L stand for the methods of the modifier L with calls to self
resolved with L themselves and calls to super resolved with C. Similarly, L
and T jointly represent the least fixed point of methods of (L upcalls D).

In the proof of the theorem, we need the following lemma.

Decoding Propagation Lemma. For a method Ln : Πn−1(Ptran(α′×β×
Γ × ∆) → Φn,n(Ptran(α′ × β × Γ × ∆)), a tuple of statements
(M1, ...,Mn−1) : Πn−1(Ptran(α′ × Σ × Γ × ∆), a tuple of statements
(T1, ..., Tn) : Πn(Ptran(α × Σ′ × ∆)), a relation R : Σ′ ↔ Σ, and a relation
P = λ(x′, y′, z′, u′) • λ(z, y, u) • (y′ = y ∧ z′ = z ∧ u′ = u), the following
holds:

Ln. (M1, . . . ,Mn−1)↑(R̂ × Id). (T1, . . . , Tn)↓P↑(R̂ × Id) v
(Ln. (M1, . . . ,Mn−1). (T1, . . . , Tn)↓P)↑(R̂ × Id)

Proof According to the definition of data refinement, the goal can be rewrit-
ten as follows:

(Ln. (M1, . . . ,Mn−1)↑(R̂ × Id). (T1, . . . , Tn)↓P↑(R̂ × Id))↓(R̂ × Id) v
Ln. (M1, . . . ,Mn−1). (T1, . . . , Tn)↓P

96 CHAPTER 6. CLASSES AND INHERITANCE

A body of the method Ln with bodies of the corresponding methods
substituted for the self and super-called methods can be modeled similarly
to modeling module clients, as presented in Chapter 3. Accordingly, the goal
acquires the following form:

var x,m, l, d • (skip × [l, d := l, d | l = l0 ∧ p]);

do 〈〉n−1
i=1 ĝi :: Mi↑(R̂ × Id); Ŝi 〈〉

〈〉nj=1q̂j :: Tj↓P↑(R̂ × Id); K̂j

od

↓(R̂ × Id) v

var x,m′, l, d • (skip × [l, d := l, d | l = l0 ∧ p]);

do 〈〉n−1
i=1 ĝi :: Mi; Ŝi 〈〉

〈〉nj=1q̂j :: Tj↓P ; K̂j

od

The variables x : α′ are the “place holders” to be substituted with real
instance variables of a modifier in the next modifier application. The vari-
ables m : Σ are the instance variables of the base class, the variables l : Γ
are the instance variables of the modifier, while the variables d : ∆ rep-
resent method parameters. Prior to making self and super-calls, variables
representing method parameters can be assigned values to model parameter
passing, as modeled by the statement (skip× [l, d := l, d | l = l0 ∧ p]). Note
that according to the “no direct access to the base class state” requirement,
this statement skips on the instance variables of the base class (and on the
variables x). The predicates q̂ : P(α′ × β × Γ × ∆) are the asserted condi-
tions on the method arguments and the instance variables of the modifier.
As the state of the base class is encapsulated, the predicates q̂ do not refer
to the instance variables of the base class, i.e., q̂ = (true × q). The state-

ments Ŝ = (skip× S) and K̂ = (skip×K), with S and K operating on the
state Γ×∆, model arbitrary actions the modifier can perform on its instance
variables and method parameters between the method calls.

We prove the goal by starting with the left-hand side and refining it to
the right-hand side as follows:

var x,m, l, d • (skip × [l, d := l, d | l = l0 ∧ p]);

do 〈〉n−1
i=1 ĝi :: Mi↑(R̂ × Id); Ŝi 〈〉

〈〉nj=1q̂j :: Tj↓P↑(R̂ × Id); K̂j

od

↓(R̂ × Id)

v {sequential composition rule 1.3 }

6.4. SAFETY OF INHERITANCE 97

var x,m′, l, d • (skip × [l, d := l, d | l = l0 ∧ p])↓(R̂ × Id);
 do 〈〉n−1

i=1 ĝi :: Mi↑(R̂ × Id); Ŝi 〈〉
〈〉nj=1q̂j :: Tj↓P↑(R̂ × Id); K̂j

od

↓(R̂ × Id)

v
{

properties of indifferent statements 1.7,
iterative choice rule 1.6, sequential composition rule 1.3

}
var x,m′, l, d • (skip × [l, d := l, d | l = l0 ∧ p]);

do

〈〉n−1
i=1 ({R̂ × Id}. ĝi) :: Mi↑(R̂ × Id)↓(R̂ × Id); Ŝi↓(R̂ × Id)

〈〉
〈〉nj=1({R̂ × Id}. q̂j) :: Tj↓P↑(R̂ × Id)↓(R̂ × Id); K̂j↓(R̂ × Id)

od

v
{

rules 1.14, 1.1,
properties of indifferent statements 1.7

}
var x,m′, l, d • (skip × [l, d := l, d | l = l0 ∧ p]);

do 〈〉n−1
i=1 ĝi :: Mi; Ŝi 〈〉

〈〉nj=1q̂j :: Tj↓P ; K̂j

od

2

We prove goal 6.2 by induction on the index of methods. Consider first the
base step, when a method in C, D, and L does not self-call other methods.
The proof obligation in this case is as follows:

C1 vR̂ D1 ⇒ (L1 vR̂×Id M1 ∧ C1 vR̂ T1)

Assuming the antecedent, we prove the consequent of this goal as follows:

L1 vR̂×Id M1 ∧ C1 vR̂ T1

= {definitions, definition of data refinement}
L1. (). C1↓P v (L1. (). T1↓P)↑(R̂ × Id) ∧ C1 v T1↑R̂

⇐ {assumption, decoding propagation lemma}
L1. (). C1↓P v L1. ()↑(R̂ × Id). T1↓P↑(R̂ × Id) ∧ C1 v T1↑R̂

⇐ {monotonicity of L1, definition of data refinement}
C1 v T1↓P↑(R̂ × Id)↑P ∧ C1 v T1↑R̂

98 CHAPTER 6. CLASSES AND INHERITANCE

⇐ {rule 1.13, rule 1.2}
C1 v T1↑R̂

⇐ {definitions }
C1. () v (D1. ())↑R̂

⇐ {assumption, definition of data refinement, definitions}
T

Consider now the inductive step. The inductive assumption for the in-
ductive case states that the goal holds for n methods in the participating
entities. After simple logic transformations, our proof obligation for n + 1
methods is:

(C1, . . . , Cn+1) vR̂ (D1, . . . ,Dn+1) ∧ (a)
(L1, . . . ,Ln) vR̂×Id (M1, . . . ,Mn) ∧ (b)
(C1, . . . , Cn) vR̂ (T1, . . . , Tn) ⇒ (c)

Ln+1 vR̂×Id Mn+1 ∧ Cn+1 vR̂ Tn+1

Assuming the antecedent, we prove the consequent of this goal as follows:

Ln+1 vR̂×Id Mn+1 ∧ Cn+1 vR̂ Tn+1

= {definitions, definition of data refinement}
Ln+1. (L1, . . . ,Ln). (C1, . . . , Cn+1)↓P v

(Ln+1. (M1, . . . ,Mn). (T1, . . . , Tn+1)↓P)↑(R̂ × Id) ∧
Cn+1 v (Tn+1)↑R̂

⇐
{

monotonicity of Ln+1, assumption (b),
decoding propagation lemma

}
Ln+1. (M1, . . . ,Mn)↑(R̂ × Id). (C1, . . . , Cn+1)↓P v

Ln+1. (M1, . . . ,Mn)↑(R̂ × Id). (T1, . . . , Tn+1)↓P↑(R̂ × Id) ∧
Cn+1 v Tn+1↑R̂

⇐ {monotonicity of Ln+1, definition of data refinement}
(C1, . . . , Cn+1) v (T1, . . . , Tn+1)↓P↑(R̂ × Id)↑P ∧

Cn+1 v Tn+1↑R̂
⇐ {rule 1.13, rule 1.2}

(C1, . . . , Cn+1) v (T1, . . . , Tn+1)↑R̂ ∧ Cn+1 v Tn+1↑R̂
⇐ {assumption (c)}

6.4. SAFETY OF INHERITANCE 99

Cn+1 v Tn+1↑R̂ ∧ Cn+1 v Tn+1↑R̂
⇐ {assumption (a)}

Dn+1↑R̂ v Tn+1↑R̂
⇐ {definitions, monotonicity of encoding}

Dn+1. (C1, . . . , Cn)↓R̂ v Dn+1. (T1, . . . , Tn)

⇐
{

monotonicity of Dn+1, assumption (c),
definition of data refinement

}
T

2

6.4.5 Discussion of Safety of Inheritance

The study presented in sections 6.4.1-6.4.3 demonstrates that reasoning about
unrestricted inheritance in a modular fashion is infeasible. From this we con-
clude that in general, code inheritance is an unsafe software reuse mecha-
nism. The analysis of the fragile base class problem presented above demon-
strates how tightly code inheritance binds the new code of the modifier with
the inherited code. Even in a very restricted setting, it is impossible to
substitute the base class with its revision without invalidating extensions.

The problems with the safety of code inheritance were recognized by
many researchers [72, 83, 20] and various solutions were proposed. Most
notably, interface inheritance is widely accepted as a less flexible, but still
very useful software reuse technique [4, 3, 34]. Interface inheritance and code
inheritance are closely related. The names of these reuse techniques provide
good intuition on their essence, as they explicitly state which part of a base
class can be inherited by an extension, the interface or the implementation.
With code inheritance, the extension class inherits the implementation of
the base class, i.e., its instance variables and its method definitions. With
interface inheritance the extension inherits exclusively the interface from its
base class. Interface inheritance is primarily used for establishing syntactic
compatibility between objects. This, in turn, permits creating polymorphic
programs that can operate on objects of different but compatible types.

No explicit language support is required to support interface inheritance,
provided that code inheritance is supported. Programs employing interface
inheritance usually define so-called abstract classes whose sole purpose is to
identify interfaces to be inherited by their extensions. Definitions of meth-

100 CHAPTER 6. CLASSES AND INHERITANCE

ods in such abstract classes usually contain only halt statements, which
helps during debugging, should the abstract class accidentally be instanti-
ated. Some object-oriented languages provide explicit support for the inter-
face inheritance technique, while others go even further and incorporate it
as a software reuse mechanism. For example, in C++ one can define an ab-
stract class by marking all of its methods with ‘=0’. An attempt to create an
object of this class will be caught by a compiler as an error. In Java the type
that a class implements is declared separately using the keyword interface.
An interface is, in fact, nothing other than an abstract class.

The model of classes and inheritance presented in this chapter applies
equally well to abstract classes and interface inheritance. An abstract class
is a tuple (arb, λself • (abort1, ..., abortn)), where arb is an arbitrary value
initializing a “ghost” instance variable of the abstract class. The function
λself • (abort1, ..., abortn) represents methods of the abstract class with the
method bodies modeled by the statement abort. Interface inheritance then
is modeled by the application of a modifier to such an abstract class using the
operator mod. The developers of the modifier should define an internal state
and implementations of every method. Obviously, method implementations
in the modifier should not contain super-calls, as otherwise the resulting
methods will also be aborting.

As with interface inheritance it is only the interface of the base class that
gets inherited, the semantic fragile base class problem cannot arise. The
mathematical justification for this observation is that for interface inheritance
the modular reasoning property holds trivially. From this we conclude that
interface inheritance is a safe software reuse technique.

In section 6.4.4 we considered a restricted version of code inheritance
– disciplined inheritance – and proved that it can be reasoned about in a
modular manner. From this we conclude that at least under the restrictions
we imposed in the formal model, the disciplined inheritance is a safe software
reuse mechanism.

6.4.6 Check-List for Verifying Disciplined Inheritance

Based on the modular reasoning theorem for disciplined inheritance, we can
formulate a check-list for informally verifying correctness of a revision class
with respect to the original base class, which preserves correctness of exten-
sions created through disciplined inheritance. Under the assumption that
the original class does not have recursive and mutually recursive methods,

6.5. IS INHERITANCE FLEXIBLE? 101

and overriding methods of the extensions do not access the state of its base
class directly, a developer of the revision should verify that the following
conditions are satisfied:

• The initial values of the revision instance variables correspond to the
initial values of the instance variables of the base class.

• For every method, the precondition p of the method definition as given
in the base class when expressed on the instance variables of the revision
class is stronger than or equal to the precondition p′ of this method
definition as given in the revision class, i.e., p ⊆ p′.

• For every method, one must consider the postcondition q of the base
class method definition as expressed on the instance variables of the
revision class and the result and value-result method parameters. One
must also consider the postcondition q′ of the method definition con-
structed by substituting self-calls in the corresponding definition of the
revision method with the definitions of the corresponding methods of
the base class expressed on the revision instance variables. Then, q′

must be stronger than or equal to q, i.e., q′ ⊆ q.

In the following sections we discuss a possible implementation of the dis-
ciplined inheritance. We also consider the flexibility of code inheritance,
interface inheritance, and disciplined inheritance and discuss the trade-offs
between the safety and flexibility offered by these reuse techniques.

6.5 Is Inheritance Flexible?

The flexibility of inheritance is the main reason for its popularity. Inheri-
tance supports inline modification of code, i.e., unlike other software reuse
mechanisms and techniques, not only a developer can add functionality to
an existing system but also can modify the existing functionality. These
possibilities promoted the construction of semi-finished programs, known as
object-oriented frameworks, providing the core functionality of an application
and expecting user extensions to add the “interesting” parts.

Studies of object-oriented frameworks allowed to extract a number of
recurring class composition patterns [25]. One of these patterns, known
as the “Template Method”, can serve as a good illustration of flexibility
of inheritance. Essentially, this pattern is used for defining the skeleton

102 CHAPTER 6. CLASSES AND INHERITANCE

TemplateMethod()

PrimitiveOperation1()

PrimitiveOperation2()

AbstractClass

PrimitiveOperation1()

PrimitiveOperation2()

ConcreteClass

...

self.PrimitiveOperation1()

...

self.PrimitiveOperation2()

...

Figure 6.10: Class diagram of the Template Method pattern.

of an algorithm in an operation, deferring some steps to subclasses. The
following description of this pattern is based on [25]. Template Method
lets subclasses redefine certain steps of an algorithm without changing the
algorithm’s structure, as illustrated in figure 6.10. The class AbstractClass
implements a template method defining the skeleton of an algorithm, and
defines abstract primitive operations that concrete subclasses must define
to implement steps of the algorithm. The template method of AbstractClass
calls primitive operations as well as other operations defined in AbstractClass.
The class ConcreteClass implements the primitive operations to carry out
subclass-specific steps of the algorithm. As rightfully noted by the authors
of [25], “Template methods are a fundamental technique for code reuse. They
are particularly important in class libraries, because they are the means for
factoring out common behavior in library classes.”

Part of the flexibility of inheritance comes from the fact that an extension
class can access the base class state, thus permitting to reuse the data struc-
ture of the base class. In the example above, the deference of a part of the
algorithm implementation to subclasses is possible exactly because the sub-
classes inherit the data structure of their base class and can define operations
on this data structure. Furthermore, the dynamic binding of self-calls in the
base class allows for a fine degree of adjustment of the inherited behavior,
contributing to the flexibility of inheritance. Unfortunately, as we demon-
strated above, exactly these features appear to be the most troublesome with
respect to safety. Flexibility is at odds with safety.

Interface inheritance is the basis for subtype polymorphism. Subtype
polymorphism allows for combining the flexibility offered by untyped pro-

6.5. IS INHERITANCE FLEXIBLE? 103

A =
class

m() =̂ S1; self −Bn(),
selfbound n() =̂ S2; self −Bl(),

l() =̂ S3

end

B =
class inherits A

m() =̂ T1; super−Bm(),
n() =̂ T2; self −Bl(),
l() =̂ T3

end

Figure 6.11: Example of the method qualifier selfbound.

gramming languages with the advantages of strong typing offered by typed
languages. The flexibility is achieved through permitting client code use ob-
jects of subtypes the way it uses objects of supertypes. In a way, interface
inheritance complements code inheritance in that it allows for reusing client
code, whereas code inheritance allows for reusing class code. Not only is
interface inheritance flexible, but also, as we argued above, it is safe.

Obviously, it would be beneficial to obtain a safe code reuse mechanism
having the flexibility of interface inheritance and providing as much flexibil-
ity of code inheritance as possible. In section 6.4.4 we showed that resolving
self-calls of base classes statically permits one to reason about code inheri-
tance disciplined in this way in a modular fashion. Unlike the proposals of
other researchers that we discuss in section 6.6, our approach to disciplining
inheritance can be easily implemented as a slight modification of the standard
code inheritance mechanism. Disciplined inheritance can be easily superim-
posed on the implementation of ordinary code inheritance, by introducing
an additional class qualifier selfbound. The meaning of this qualifier is that
if a class is marked as selfbound, all self-calls within this class are always
resolved statically, i.e., disregarding the dynamic type of the corresponding
object. Methods of a class declared as selfbound can be overridden in a
subclass and external calls to these methods are resolved dynamically. This
proposal can be further extended by qualifying individual methods rather
than entire classes as selfbound. Qualifying a method as selfbound would
mean that all self-calls to this method are resolved statically, i.e., always
remain within the same class. A class would then be selfbound if all of its
methods are selfbound. Consider figure 6.11 demonstrating the application
of the method qualifier selfbound. Suppose we have an object b which is an

104 CHAPTER 6. CLASSES AND INHERITANCE

instance of the class B. The method call b−Bm() results in the sequence of
statements T1; S1; S2; T3. However, if we assign b to a variable a declared to
hold instances of the class A, an external call to n on a is resolved dynami-
cally, resulting in the sequence of statements T2; T3.

An immediate question arises whether this functionality can be imple-
mented with the currently available facilities of existing programming lan-
guages. A method in a C++ class can be qualified as virtual, which means
that all calls to this method are resolved in accordance with the dynamic type
of the corresponding object. If a method is not qualified as virtual, it is stat-
ically bound, i.e., regardless of whether it is a self-call or an external call, the
dynamic type of the object is disregarded, and only its static type determines
which method is invoked. A subclass can redefine a method of the base class
declared as “non-virtual”, but the new definition cannot be accessed through
subsumption. Thus in C++ there is no explicit method or class qualifier that
would have the functionality of the qualifier selfbound. We are not aware
of a class-based code reuse mechanism in any object-oriented language that
would be similar to the one defined by the upcalls operator.

In C++, however, when invoking a method on an object, it is possible to
explicitly indicate from which class this method should be called: from the
class of the object or one of its superclasses. When invoking a method on
this (which is the counterpart of self in C++), one can indicate that the
method of the current class must be invoked, for example as this->C::m().
Hence, the functionality modeled by the operator upcalls can be directly
implemented in C++. The difference between using the qualifier selfbound
and using the mechanism available in C++ is that the former permits qual-
ification per method, while the latter per method call. We believe that
qualifying methods is advantageous, as it promotes a particular design of
classes.

Functionality similar to that of the upcalls operator can be achieved us-
ing object composition as done in the Microsoft COM code reuse mechanisms
containment and aggregation [87]. It is argued by COM users and developers
that significant software reuse can be achieved through using these mech-
anisms without having to deal with pitfalls of full code inheritance. With
containment, functionality of a COM component can be reused essentially ac-
cording to the forwarding technique: a forwarding component, called an outer
component, holds an exclusive reference to the reused component, called an
inner component, and forwards requests for method calls to this inner object
transparently for the user. In the case when the reused component exhibits

6.6. RELATED WORK 105

exactly the required functionality, in order to avoid a forwarding overhead,
the aggregation mechanism can be used. With this mechanism, the inter-
face of the reused component can be exposed as a part of the interface of
the resulting component. Being essentially object composition mechanisms,
containment and aggregation are implemented through intricate interconnec-
tions of references. Mechanism of memory deallocation in COM is based on
reference counting and, as such, is error-prone and burdensome for users.
We believe that implementing the same functionality as offered by contain-
ment and aggregation as a class composition mechanism using the qualifier
selfbound would drastically simplify resulting programs.

6.6 Related Work

Inheritance is extremely powerful but problematic. Understanding the be-
havior of a class in a class hierarchy is complicated, since this behavior can
depend on the behavior of any other class situated above the considered
class in the hierarchy. When subtyping is unified with subclassing, in the
sense that code inheritance forms the basis for subtype polymorphism, some
form of behavioral compatibility has to be established between subclasses
and their superclasses to permit correct subsumption. Moreover, mainte-
nance and evolution of class hierarchies proved to be a major concern for
the object-oriented community. These problems were recognized by many
researchers who made different proposals for coping with them. The pro-
posals range from informal recommendations based on empirical expertise to
complete theories supporting formal reasoning.

A major part of research concentrated on improving the correctness of
class hierarchies. Gregor Kiczales and John Lamping in [38] proposed to
consider a special interface between a class and its subclasses, referring to
it as the specialization interface. Lamping in [39] observed that informa-
tion about the dependence of methods on other methods of the same class
is crucial for developing correct extensions. He proposed to declare such
dependencies statically and include this information in the type of special-
ization interface of a class for possible verification by a compiler. In the
case of acyclic method dependencies, methods can be arranged in layers.
When methods are recursively dependent, they form a group. Developers
of an extension class are then required to always override the entire group,
should the need arise to override one method of this group. An extension

106 CHAPTER 6. CLASSES AND INHERITANCE

class can redefine dependencies for overridden or new methods, as it offers a
fresh specialization interface to its subclasses. A subclass has to propagate
unmodified parts of the specialization interface where inherited methods are
used. If extension developers want to alter the layering of methods, they have
to redefine all layers above those effected by the change. Although beneficial
for documentation and suitable for compiler typechecking, this proposal was
never developed into a practically applicable method supported by a type
checker.

The most well-known approach to establishing behavioral conformance
along with syntactic one is known as behavioral subtyping and extensively
studied by Pierre America, Barbara Liskov, Jeannette Wing, Gary Leav-
ens, and others [2, 3, 44, 40, 23]. The essence of behavioral subtyping is
to associate behavior of objects with their types (interfaces) and to identify
subtypes that conform to their supertypes not only syntactically, but also
semantically. The behavior is specified in terms of pre- and postconditions
which is a well known and popular approach to formal specification originat-
ing from work of C.A.R. Hoare [30]. Although well-suited for specification
of imperative programs, the approach using pre- and postconditions is less
suitable for specifying object-oriented programs, as pointed out by many
researchers. First of all, specifications in terms of pre- and postconditions
fail to capture subtle interdependencies which arise due to a specific order of
method invocations, especially in the presence of self-referential method calls
that get redirected to subclasses of the class that originated the call. This
is one of the main reasons why this approach could not have been used for
the studies of the kind we have carried out in this dissertation. Our model of
classes and inheritance permits reasoning about method calls and can capture
interdependencies of method invocations. No less important, specifications
of object-oriented programs in terms of pre- and postconditions have only
semi-formal semantics, which would disallow carrying out the proofs with
the necessary level of detail.

In the original works on behavioral subtyping [2, 3, 44, 40, 23], code in-
heritance was not explicitly considered, as it is separated from subtyping
and behavioral conformance is determined between subtypes and supertypes
rather than subclasses and superclasses. Raymie Stata and John Guttag in
[75, 74] elaborate the idea of specialization interfaces of Kiczales and Lamp-
ing [38] by providing a mathematical foundation in the style of behavioral
subtyping. They introduce class components that combine a substate of a
class and a set of methods directly accessing this state, as units of modularity

6.6. RELATED WORK 107

A

C

B

A B

C

Figure 6.12: An instance of a class with several mutually dependent compo-
nents corresponds to a composition of delegating objects.

for the specialization interface. Methods in a class component cannot access
state in other class components directly, but only by invoking their methods.
Such class components constitute a unit of overriding, i.e., if a developer
of an extension class needs to override a method of a particular group, the
developer is obliged to override the entire group. Furthermore, Stata and
Guttag state that, to establish that an extension class is correctly substi-
tutable for the base class, it is sufficient to ensure that a class component of
the extension conforms to the specification of the corresponding base class
component. While verifying an extension class component one can only take
into account the specifications of the other components of the base class. It
is claimed in [75, 74] that in this way one can establish the correctness of
substituting the extensions for their base classes.

In the general case, class components of Stata and Guttag can be mutu-
ally dependent, referring to each other. It is easy to see that at run time,
an instance of a class with several mutually dependent components can be
seen as a composition of delegating objects, as illustrated in figure 6.12. In
fact, this observation was also made by Szyperski in [81]. Accordingly, all
our findings concerning the refinement of delegating objects, as presented in
section 5, apply. Namely, while developing a method of the overriding class
component in the extension, other methods in the same class component can-
not be assumed and their specifications should be used instead. Moreover,
special measures should be taken to prevent problems that might arise due
to the accidental introduction of infinite recursion between the class compo-
nents in the resulting extension class. We believe that these requirements
were overlooked, because the behavioral subtyping approach to specification
of object-oriented languages employs pre- and postconditions and is not ex-
pressive enough to capture complex dependencies of method invocations.

The main idea behind the approach to verifying correctness of class hi-

108 CHAPTER 6. CLASSES AND INHERITANCE

erarchies introduced in [52] and further developed in [51] is essentially the
same as in the behavioral subtyping, but has a number of fundamental differ-
ences. As syntactic subtyping is decidable and can be checked by a computer,
while behavior-preserving subtyping is undecidable, the approach reported
in [52, 51] chooses to associate the specifications of behavior with classes
rather than with types, separating in this way decidable properties from
undecidable ones. Classes are considered to be the carriers of behavior and
compared for behavioral compatibility. The notion of class refinement is first
defined in [52], and the later works [51] relate this notion to correctness of
substitutability of subclass instances for superclass instances in clients. It is
formally proved that when a class C ′ refines a class C, substituting instances
of C ′ for instances of C is refinement for the clients. The model of object-
oriented programs developed in [52, 51] is rather general, as the approach
focuses on correctness of code inheritance when base classes are not intended
to be changed. Our model of classes and inheritance is custom-tailored and
more suited for studying the safety of inheritance.

So far, we have considered the related work on the subject of verification
of class hierarchies disregarding the possible evolution of base classes in these
hierarchies. As we have argued above, class hierarchies are subject to evolu-
tion, and therefore, while considering the safety of inheritance, it is necessary
to take into account the possibility of base class changes. We have encoun-
tered several different interpretations of the fragile base class problem in the
technical literature on this topic. Often, during a discussion of component
standards, the name is used to describe the necessity to recompile extension
and client classes when base classes are changed [35]. While being obviously
important, that problem is only a technical issue. Even if recompilation is
not necessary, system developers can make inconsistent modifications. An-
other interpretation is the necessity to guarantee that objects generated by
an extension class can be safely substituted for objects of the corresponding
base class [87]. Only in this case, can the extension class be safely substituted
for the base class in all clients. However, objects of the extension class can be
perfectly substitutable for objects of the base class but modifying the base
class still can invalidate the extensions. At first glance, the problem might
appear to be caused by inadequate system specification or user assumptions
of undocumented features, but our study reveals that it is more involved.

Rustan Leino in [41] proposes a way of indicating in a specification of
a base class “which program variables [of an extension class] are allowed
to be changed by which methods [of the extension class]”. The proposed

6.6. RELATED WORK 109

specification construct is intended for use with the static program checker
developed at Compaq Systems Research Center. In [42] Leino and Stata
introduce into their specification notation several access control modifiers for
class instance variables, with the intention to aid the program checker with
verifying object invariants. While the proposed specification constructs and
the corresponding restrictions on inheritance can aid to circumvent certain
aspects of the semantic fragile base class problem, they are insufficient to
resolve the problem, even if considered in the restricted setting as presented
in this dissertation. In fact, it is easy to construct an example following the
one presented in the section “Unjustified Assumption of Binding Invariant
in Modifier” that would use all the constructs described by Leino and Stata,
but still invalidate the modular reasoning property for inheritance.

Patrick Steyaert et al. in [77] consider the fragile base class problem in
our formulation (although they do not refer to it by this name). The authors
introduce reuse contracts “that record the protocol between managers and
users of a reusable asset”. Acknowledging that “reuse contracts provide only
syntactic information”, they claim that “this is enough to firmly increase the
likelihood of behaviorally correct exchange of parent classes”. Such syntactic
reuse contracts are, in general, insufficient to guard against the fragile base
class problem.

The example in section 6.4.1 is, in fact, adopted from [77]. The authors
blame the revision Bag′ of the base class for modifying the structure of self-
calls of Bag and therefore causing the problem. They state that, in general,
such method inconsistency can arise only when a revision chooses to eliminate
a self-call to the method which is overridden in a modifier. From this one
could conclude that preserving the structure of self-calls in a revision would
safeguard against inconsistencies. Our examples demonstrate that this is not
the case.

Our analysis reveals different causes of the Bag/CountingBag problem.
The extension class CountingBag relies on the invariant n = |b| binding
values of the instance variable n with the number of elements in the inherited
instance variable b. This invariant is violated when Bag is substituted with
Bag′, and therefore the cardinality method of the resulting class returns the
incorrect value. Clearly, this problem is just an instance of the “unjustified
assumption of the binding invariant in modifier” problem presented in section
6.4.2.

As a potential solution to this problem, one can specify methods add and
addAll as consistent methods, as was first suggested in [38]. This means that

110 CHAPTER 6. CLASSES AND INHERITANCE

the extension developers would be disallowed to overriding one without over-
riding the other. However, the recommendations of Kiczales and Lamping
are based only on empirical expertise, thus it is not clear whether they apply
in the general case. We believe that such methodology should be grounded
on a mathematical basis.

6.7 Conclusions

In this chapter we have considered classes and inheritance, evaluated the
relationship between the safety and flexibility of inheritance, studied the
fragile base class problem, and suggested the way of disciplining inheritance
grounded on this study.

Based on our discussion of the safety and flexibility of inheritance, we can
now consider suitability of inheritance for various kinds of object-oriented sys-
tems. In general, software systems can be divided into two broad categories
– open and closed ones. As suggested by their names, open systems are open
to user extensions during their life cycles, while closed systems are delivered
as completed entities and cannot be extended or modified by the users.

Software component platforms and frameworks, which are the focus of
much attention nowadays, are inherently open. Such systems are charac-
terized by the late integration stage, i.e., components are composed by end
users rather than their developers. Therefore, the ability to reason in a mod-
ular manner about properties of composed systems is of critical importance.
Unfortunately, the fragile base class problem interferes with the modular
reasoning.

The name fragile base class problem was introduced while discussing com-
ponent standards [87, 35], since it has critical significance for component sys-
tems. Modification of components by their developers should not affect the
component extensions of their users in any respect. Firstly, recompilation
of derived classes should be avoided if possible [35]. This issue constitutes
a syntactic aspect of the problem. While being important, that problem is
only a technical issue. Even if recompilation is not necessary, component
developers can make inconsistent modifications. The semantic aspect of the
problem was recognized by COM developers [87] and led them to the decision
to abandon code inheritance in favor of the object composition mechanisms,
containment and delegation.6

6Surprisingly, code inheritance is reintroduced in the new release COM++. Perhaps

6.7. CONCLUSIONS 111

Based on our study of the fragile base class problem, we conclude that
unrestricted code inheritance across component boundaries should not be
supported by component standards, as it excludes the possibility of modular
reasoning about component-based systems. However, as we argued in [48],
disciplined inheritance across component boundaries can still be used without
undermining safety.

In contrast with open systems, verification of closed systems can be ac-
complished after the final composition. Although it is not necessary to reason
about classes in a modular manner, the ability to do so is obviously advan-
tageous, as systems can be very large and sophisticated. Unrestricted code
inheritance can be used in closed systems, however, maintaining such sys-
tems becomes more complicated as, after modifying a class, not only this
class needs to be verified, but also all of its extensions.

Practical applicability of the disciplined inheritance represents an inter-
esting research issue. Investigating a balance between the flexibility and the
safety of the approach based on qualifying as selfbound individual methods
rather than classes represents another promising research direction.

the users’ demand has overweighed the developers’ caution.

112 CHAPTER 6. CLASSES AND INHERITANCE

Chapter 7

Conclusions

In this dissertation, we studied the safety and flexibility of different software
reuse mechanisms and techniques. We considered various mechanisms and
techniques, starting with the most trivial – Copy&Paste of source code –
and proceeding with more advanced ones – procedures, modules, objects,
and object-based software reuse techniques, forwarding and delegation, as
well as classes and inheritance. Each mechanism and technique that we con-
sidered was presented in a separate chapter with the presentations structured
similarly. We began by introducing a mechanism or technique, then studied
its safety, and discussed flexibility, illustrating it with examples of known
practical applications. We also analyzed trade-offs between the safety and
flexibility achieved by different mechanisms and techniques, and discussed
their applicability in various kinds of software systems. Finally, in every
chapter we provided an extensive overview of related work.

We argue that a software reuse mechanism or technique is safe if it is
possible to reason about it in a modular manner. The central mathematical
property behind our study of the safety of different mechanisms and tech-
niques is monotonicity. We believe that the monotonicity of constructs in a
programming language is of paramount importance for the safety of software
reuse mechanisms and techniques that can be used in this language. If a
language includes non-monotonic constructs, then even such a trivial and
basic reuse technique as Copy&Paste is not guaranteed to always deliver the
expected behavior. For some older mechanisms and techniques, the ways
to reason modularly are well-known and widely used, while for more recent
ones, the methods for modular reasoning are not yet well established.

For each software reuse mechanism (technique) under consideration, we

113

114 CHAPTER 7. CONCLUSIONS

developed a formal model within a uniform logical framework. These formal
models capture the safety-related features of the mechanisms and techniques
under consideration, and permit reasoning about behavioral substitutability
of code fragments packaged with the corresponding mechanisms. To formal-
ize the ways the modular reasoning is usually done in practice, we formulated
the modular reasoning properties and studied whether these properties held.
When such a property held, we concluded that the corresponding mechanism
or technique was safe. When this was not the case, we identified the problems
that invalidated the property and attempted to formulate requirements elim-
inating these problems. When taken into account as verification obligations,
these requirements would enable modular reasoning about the mechanism
or technique under consideration. For delegation, we succeeded in formulat-
ing such requirements and showed that in their presence it was possible to
reason about delegating objects in a modular manner. Unfortunately, this
approach did not work for inheritance. The requirements necessary to estab-
lish the corresponding modular reasoning property defeat the flexibility of
inheritance, i.e. safety conflicts with flexibility. From this, we conclude that
inheritance is an unsafe mechanism. We proposed a way to discipline inher-
itance through disallowing dynamic binding of self-calls which, according to
our analysis, was the source of the problems. Such a disciplined inheritance
supports modular reasoning and is therefore safe.

To conduct the studies presented in this dissertation, we extended the
refinement calculus of Back and von Wright [12, 14, 13]. The refinement cal-
culus served as an underlying framework in which we uniformly and systemat-
ically studied and compared very different mechanisms and techniques. The
refinement calculus in its higher-order logic formulation is perfectly suitable
for expressing object-oriented constructs that are intrinsically higher-order.
The use of higher-order logic permits expressing the required constructs very
precisely, yet abstracting away irrelevant details. For example, a program
invoking a procedure is formalized simply as a higher-order function of the
procedure which can occur in the body of the function an arbitrary finite
number of times. This enables us, on the one hand, to abstract away from
a particular mechanism of procedure invocation and, on the other hand, to
reason about procedure invocation completely within the logic. Our formal-
ization of delegating objects can serve as another example illustrating the
power of higher-order logic. In practice, mutual reference between objects
can be achieved in various ways. For instance, an object can pass a refer-
ence to itself as a parameter while invoking a method on another object, or

115

objects can maintain constant references to each other established on object
construction. In our formalization of delegating objects, we abstracted away
from a particular mechanism of establishing mutual references by modeling
object methods as functions of methods of the other object. This simple (but
sufficient for our purposes) model was facilitated by higher order logic. Apart
from being very expressive, our formalization permitted conducting proofs in
a calculational style (following the proof style of [12]), which increased the
trustworthiness of our results.

Application of formal methods gave a particular taxonomy of the concepts
we studied in this dissertation, determining the structuring of the material.
Table 7.1 organizes different data-centered code reuse mechanisms according
to two features of the corresponding entities: whether they are implemented
as procedural or data type abstractions, and whether they are first class val-
ues in a programming language. In informal studies of reuse mechanisms,
the difference between abstract data types and procedural data abstraction
(objects) is usually emphasized [18], i.e., the table is partitioned horizon-
tally. We perceive this difference as rather being an implementation issue
and consider the ability to pass a code fragment, packaged with a certain
reuse mechanism, as a parameter as being a more important differentiating
factor. Therefore, we emphasize vertical partitioning of the table. The abil-
ity to treat a code fragment as a first class value changes the programming
style, permitting focusing on functionality rather than algorithms. Also, from
a formal standpoint, this ability permits the creation of cyclic reference pat-
terns which significantly complicates analysis. The formal analysis clearly
distinguishes between forwarding and delegation, a difference which is quite

Yes

Im
p

le
m

e
n

ta
ti
o

n

T
y
p

e

A
b

s
tr

a
c
ti
o

n

P
ro

c
e

d
u

ra
l

A
b

s
tr

a
c
ti
o
n

First Class Value of a Programming Language

No

opaque types of Modula2

abstract types of SML
structures of SML

objects in C++,

Smalltalk, Java...

modules of

Modular2, Oberon...

Table 7.1: Taxonomy of data-centered code reuse mechanisms.

116 CHAPTER 7. CONCLUSIONS

difficult to grasp from the informal literature on the subject.
In contemporary programming languages, all of the mechanisms and tech-

niques that we considered are present and can be used in a complementary
manner. Developers are offered a range of different mechanisms and tech-
niques to be used in the development process. Based on the studies presented
here, we can make the following general recommendation. When developing
an open system or a closed system potentially subject to extensive revi-
sions, adaptations, and customizations, the developers should choose the
mechanisms and techniques which we showed to be safe, namely, procedures,
modules, and forwarding. In applying delegation, care should be exercised
according to the requirements stated in Chapter 5. In particular, the devel-
opers should verify delegating objects according to the check-list developed
in section 5.7. When developing a closed system, i.e., a system which is not
extended by the system’s users, code inheritance can be used, because the
system can be verified in its entirety before delivery to the users.

As future work, we envision lifting the restrictions we imposed on the
mechanisms and techniques that we considered. We also intend to study
other mechanisms and techniques which recently appeared, such as the inner
classes of Java. In another direction, checking the practical applicability of
disciplined inheritance represents an interesting research topic.

Bibliography

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] P. America. Inheritance and subtyping in a parallel object-oriented language. In
J. Bezivin, J.-M. Hullot, P. Cointe, and H. Lieberman, editors, ECOOP’87: European
Conference on Object-Oriented Programming, Lecture Notes in Computer Science
276, pages 234–242, Paris, France, 1987. Springer-Verlag.

[3] P. America. Designing an object-oriented programming language with behavioral
subtyping. In J. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Founda-
tions of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout, The
Netherlands, May/June 1990, Lecture Notes in Computer Science 489, pages 60–90,
New York, N.Y., 1991. Springer-Verlag.

[4] P. America and F. van der Linden. A parallel object-oriented language with inheri-
tance and subtyping. ACM SIGPLAN Notices, 25(10):161–168, Oct. 1990. Proceed-
ings of OOPSLA/ECOOP ’90, N. Meyrowitz (editor).

[5] R. Back, A. Mikhajlova, and J. von Wright. Reasoning about interactive systems.
In J. M. Wing, J. Woodcock, and J. Davis, editors, FM’99 – World Congress On
Formal Methods, LNCS 1709, pages 1460–1476. Springer-Verlag, Sept. 1999.

[6] R. J. R. Back. Correctness Preserving Program Refinements: Proof Theory and
Applications, volume 131 of Mathematical Center Tracts. Mathematical Centre, Am-
sterdam, 1980.

[7] R. J. R. Back. Procedural abstraction in the refinement calculus. Technical Report 55,
Åbo Akademi, Turku, Finland, 1987.

[8] R. J. R. Back. Changing data representation in the refinement calculus. In 21st
Hawaii International Conference on System Sciences. IEEE, January 1989.

[9] R. J. R. Back and M. J. Butler. Exploring summation and product operators in
the refinement calculus. In B. Möller, editor, Mathematics of Program Construction,
1995, volume 947. Springer-Verlag, 1995.

[10] R. J. R. Back, A. Mikhajlova, and J. von Wright. Class refinement as semantics
of correct subclassing. Technical Report 147, Turku Centre for Computer Science,
December 1997.

117

118 BIBLIOGRAPHY

[11] R. J. R. Back and J. von Wright. Programs on product spaces. Technical Report
143, Turku Centre for Computer Science, November 1997.

[12] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, April 1998.

[13] R. J. R. Back and J. von Wright. Encoding, decoding and data refinement. Technical
Report TUCS-TR-236, Turku Centre for Computer Science, Mar. 1, 1999.

[14] R. J. R. Back and J. von Wright. Products in the refinement calculus. Technical
Report TUCS-TR-235, Turku Centre for Computer Science, Feb. 11, 1999.

[15] A. H. Borning. Classes versus prototypes in object-oriented languages. In Proceedings
of the ACM-IEEE Fall Joint Computer Conference, Montvale (NJ), USA, pages 36–
39, 1986.

[16] A. L. C. Cavalcanti, A. Sampaio, and J. C. P. Woodcock. An inconsistency in proce-
dures, parameters, and substitution in the refinement calculus. Science of Computer
Programming, 33(1):87–96, 1999.

[17] W. Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown University,
1989.

[18] W. Cook. Object-oriented programming versus abstract data types. In J. W.
de Bakker et al., editors, Foundations of Object-Oriented Languages, volume 489
of Lecture Notes in Computer Science, pages 151–178. Springer-Verlag, 1991.

[19] W. Cook and J. Palsberg. A denotational semantics of inheritance and its correctness.
In Proceedings OOPSLA ’89, volume 24, pages 433–443. ACM SIGPLAN notices, Oct.
1989.

[20] W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping. In Sev-
enteenth Annual ACM Symposium on Principles of Programming Languages, pages
125–135, San Francisco, CA, Jan. 1990.

[21] O.-J. Dahl and K. Nygaard. Simula Begin. Technical report, Norsk Regnesentral
(Norwegian Computing Center), Oslo/N, 1967.

[22] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods
and their Comparison. Number 47 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1998. With the assistance of Jos Coenen, Karl-
Heinz Buth, Paul Gardiner, Yassine Lakhnech, and Frank Stomp.

[23] K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through specifica-
tion inheritance. In Proceedings of the 18th International Conference on Software
Engineering, pages 258–267, Berlin, Germany, 1996.

[24] J. Feiler and A. Meadow. Essential OpenDoc. Addison-Wesley, 1996.

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[26] P. H. Gardiner, C. E. Martin, and O. de Moor. An algebraic construction of predicate
transformers. Science of Computer Programming, 22:21–44, 1994.

BIBLIOGRAPHY 119

[27] P. H. Gardiner and C. C. Morgan. Data refinement of predicate transformers. Theo-
retical Computer Science, 87(1):143–162, 1991.

[28] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

[29] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Sun Microsystems,
Mountain View, 1996.

[30] C. A. R. Hoare. An axiomatic basis for computer programming. CACM, 12(10):576–
583, 1969.

[31] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In E. Engeler,
editor, Symposium on Semantics of Algorithmic Languages, volume 188 of Lecture
Notes in Mathematics, pages 102–116. Springer Verlag, 1971.

[32] C. A. R. Hoare. Proof of correctness of data representation. Acta Informatica,
1(4):271–281, 1972.

[33] C. A. R. Hoare, J. He, and A. C. A. Sampaio. Normal form approach to compiler
design. Acta Informatica, 30(8):701–739, Nov. 1993.

[34] W. L. Hursch. Should superclasses be abstract? In M. Tokoro and R. Pareschi, edi-
tors, Proceedings of ECOOP ’94, volume 821 of Lecture Notes in Computer Science,
pages 12–31. Springer-Verlag, New York, N.Y., July 1994.

[35] IBM Corporation, Object Technology Products Group. The System Object Model
(SOM) and the Component Object Model (COM): A comparison of the technologies
from a developer’s perspective. White Paper. IBM Corporation, Austin, Texas, 1994.

[36] International Business Machines Corporation. Data Processing Division. FORTRAN.
IBM Corporation, New York, NY, USA, corrected printing edition, 1961.

[37] K. M. Kahn. Creation of computer animation from story descriptions. Technical
Report AITR-540, Massachusetts Institute of Technology, Artificial Intelligence Lab-
oratory, Aug. 1979.

[38] G. Kiczales and J. Lamping. Issues in the design and documentation of class libraries.
ACM SIGPLAN Notices, 27(10):435–451, Oct. 1992. OOPSLA ’92 Proceedings, An-
dreas Paepcke (editor).

[39] J. Lamping. Typing the specialization interface. ACM SIGPLAN Notices, 28(10):201–
214, Oct. 1993. OOPSLA ’93 Proceedings, Andreas Paepcke (editor).

[40] G. T. Leavens and W. E. Weihl. Reasoning about object-oriented programs that
use subtypes (extended abstract). In N. Meyrowitz, editor, Proceedings of OOP-
SLA/ECOOP ’90, volume 25(10) of ACM SIGPLAN Notices, pages 212–223. ACM,
Oct. 1990.

[41] K. R. M. Leino. Data groups: Specifying the modification of extended state. ACM
SIGPLAN Notices, 33(10):144–153, Oct. 1998.

120 BIBLIOGRAPHY

[42] K. R. M. Leino and R. Stata. Checking object invariants. Technical Report 007, Dig-
ital Systems Research Center, Digital Systems Research Center, 130 Lytton Avenue,
Palo Alto, California 94301, January 1997.

[43] H. Lieberman. Using prototypical objects to implement shared behavior in object
oriented systems. ACM SIGPLAN Notices, 21(11):214–214, Nov. 1986.

[44] B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, November 1994.

[45] B. M. Liskov and S. Zilles. Programming with abstract data types. In Very High
Level Languages, pages 50–59, Apr. 1974.

[46] M. D. McIlroy. Mass produced software components. In P. Naur and B. Randell,
editors, Software Engineering, volume 1, pages 138–150. NATO Science Committee,
Jan. 1969.

[47] B. Meyer. Object-Oriented Software Construction. Prentice Hall, New York, N.Y.,
second edition, 1997.

[48] L. Mikhajlov and E. Sekerinski. The fragile base class problem and its impact on
component systems. In J. Bosch and S. Mitchell, editors, ECOOP Workshops 1997,
LNCS 1357, pages 353–358. Springer-Verlag, June 1998.

[49] L. Mikhajlov and E. Sekerinski. A study of the fragile base class problem. In E. Jul,
editor, ECOOP’98, LNCS 1445, pages 355–382. Springer-Verlag, July 1998.

[50] L. Mikhajlov, E. Sekerinski, and L. Laibinis. Developing components in the presence
of re-entrance. In J. M. Wing, J. Woodcock, and J. Davis, editors, FM’99 – World
Congress On Formal Methods, LNCS 1709, pages 1301–1320. Springer-Verlag, Sept.
1999.

[51] A. Mikhajlova. Ensuring Correctness of Object and Component Systems. PhD thesis,
Åbo Akademi University, October 1999.

[52] A. Mikhajlova and E. Sekerinski. Class refinement and interface refinement in object-
oriented programs. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors, FME’97,
LNCS 1313, pages 82–101. Springer, 1997.

[53] C. Morgan. Procedures, parameters and abstraction: separate concerns. In C. Morgan
and T. Vickers, editors, On the Refinement Calculus, Formal approaches of computing
and information technology series, pages 47–58. Springer-Verlag, New York, N.Y.,
1994.

[54] C. C. Morgan. Programming from Specifications. Prentice–Hall, 1990.

[55] J. M. Morris. A theoretical basis for stepwise refinement and the programming cal-
culus. Science of Computer Programming, 9:287–306, 1987.

[56] D. A. Naumann. Predicate transformer semantics of a higher order imperative lan-
guage with record subtypes. Science of Computer Programming. To appear.

[57] D. A. Naumann. Data refinement, call by value, and higher order programs. Formal
Aspects of Computing, 7:652–662, 1995.

BIBLIOGRAPHY 121

[58] D. A. Naumann. Predicate transformers and higher order programs. Theoretical
Computer Science, 150:111–159, 1995.

[59] Oberon microsystems, Inc. BlackBox Component Builder, 1997.
http://www.oberon.ch/.

[60] P. W. O’Hearn and R. D. Tennent, editors. Algol-like Languages. Birkhaüser, Boston,
1997.

[61] OMG. CORBA 2.2 Specification. OMG, February 1998.

[62] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, Dec. 1972.

[63] L. Paulson. ML for the Working Programmer. Cambridge University Press, second
edition, 1992.

[64] F. Plášil and M. Stal. An architectural view of distributed objects and components in
CORBA, Java RMI and COM/DCOM. Software - Concepts and Tools, 19(1):14–28,
1998.

[65] J. Rees. The T manual. Technical Report CS-94-166, Yale University, Jan. 1994.

[66] J. C. Reynolds. The Craft of Programming. Prentice-Hall International, London,
1981.

[67] D. M. Ritchie. The development of the C language. ACM SIGPLAN Notices,
28(3):201–208, Mar. 1993.

[68] D. Rogerson. Inside COM: Microsoft’s Component Object Model. Microsoft Press,
1997.

[69] W. Rubin and M. Brain. Understanding DCOM. Prentice-Hall, 1999.

[70] A. Sampaio. An Algebraic Approach to Compiler Design, volume 4 of AMAST Series
in Computing. World Scientific Publishing Company, April 1997.

[71] M. Shapiro. Structure and encapsulation in distributed systems: The proxy principle.
In Proceedings of the 6th International Conference on Distributed Computer Systems,
pages 198–205, Washington, 1986. IEEE Press.

[72] A. Snyder. Encapsulation and inheritance in object-oriented programming languages.
ACM SIGPLAN Notices, 21(11):38–45, Nov. 1986. OOPSLA ’86 Conference Proceed-
ings, Norman Meyrowitz (editor), September 1986, Portland, Oregon.

[73] A. Snyder. Inheritance and the development of encapsulated software components.
In B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Pro-
gramming, pages 165–188. MIT Press, Cambridge, MA, 1987.

[74] R. Stata. Modularity in the presence of subclassing. Technical Report 145, Digital
Equipment Corporation, Systems Research Center, Apr. 1997.

[75] R. Stata and J. V. Guttag. Modular reasoning in the presence of subclassing. In
Proceedings of OOPSLA’95, pages 200–214. ACM SIGPLAN notices, Oct. 1995.

122 BIBLIOGRAPHY

[76] L. Steels. ORBIT: An applicative view of object oriented programming. In P. Degano
and E. Sandwall, editors, Integrated Interactive Computing Systems - Proceedings of
the European ECICS 82 Conference, Stresa. Elsevier, 1983.

[77] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse contracts: Managing the
evolution of reusable assets. In Proceedings of OOPSLA ’96, pages 268–285. ACM
Press, 1996.

[78] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Mass,
1986.

[79] Sun. Java remote method invocation specification. Technical report, Sun Microsys-
tems, 1997. http://www.javasoft.com/products/jdk/1.1/docs.

[80] Sun Microsystems. Java Beans(TM), July 1997. Graham Hamilton (ed.). Version
1.0.1.

[81] C. Szyperski. Component Software – Beyond Object-Oriented Software. Addison-
Wesley, 1997.

[82] C. A. Szyperski. Independently extensible systems – software engineering potential
and challenges. In Proceedings of the 19th Australasian Computer Science Conference,
Melbourne, 1996.

[83] D. Taenzer, M. Ganti, and S. Podar. Problems in Object-Oriented Software Reuse.
In S. Cook, editor, Proceedings of the ECOOP ’89 European Conference on Object-
oriented Programming, pages 25–38, Nottingham, July 1989. Cambridge University
Press.

[84] A. Tarski. A lattice theoretical fixed point theorem and its applications. Pacific J.
Mathematics, 5:285–309, 1955.

[85] J. von Wright. A Lattice-theoretic Basis for Program Refinement. PhD thesis, Åbo
Akademi University, 1990.

[86] P. Wegner and S. Zdonik. Inheritance as an incremental modification mechanism. In
European Conference on Object Oriented Programming (ECOOP’88), pages 55–77.
Springer, 1988. Lecture Notes in Computer Science, Volume 322.

[87] S. Williams and C. Kinde. The component object model: Technical overview. Dr.
Dobbs Journal, December 1994.

[88] N. Wirth. The programming language Pascal. Acta Informatica, 1:35–63, 1971.

[89] N. Wirth. The programming language Oberon. Software Practice and Experience,
18(7), July 1988.

[90] S. N. Zilles. Procedural encapsulation: a linguistic protection technique. ACM SIG-
PLAN Notices, 8(9):142–146, Sept. 1973.

1. Marjo Lipponen
2. Timo Käkölä
3. Ville Leppänen
4. Cunsheng Ding
5. Sami Viitanen
6. Tapio Salakoski
7. Thomas Långbacka

8. Thomas Finne
9. Valeria Mihalache

10. Marina Waldén
11. Tero Laihonen
12. Lucian Ilie
13. Jukkapekka Hekanaho
14. Jouni Järvinen
15. Tomi Pasanen
16. Mika Johnsson

17. Mats Aspnäs
18. Anna Mikhajlova

21. Leonid Mikhajlov

, On Primitive Solutions of the Post Correspondence Problem
, Dual Information Systems in Hyperknowledge Organizations

, Studies on the Realization of PRAM
, Cryptographic Counter Generators

, Some New Global Optimization Algorithms
, Representative Classification of Protein Structures

, An Interactive Environment Supporting the Development
of Formally Correct Programs

, A Decision Support System for Improving Information Security
, Cooperation, Communication, Control. Investigations on

Grammar Syste ms
, Reasoning About Distributed Algorithms
, Estimates on the Covering Radius When the Dual Distance is Known

, Decision Problems on Orders of Words
, An Evolutionary Approach to Concept Learning

, Knowledge Representation and Rough Sets
, In-Place Algorithms for Sorting Problems
, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
, Multiprocessor Architecture and Programming: The Hathi-2 System

, Ensuring Correctness of Object and Component Systems

Structures
, Software Reuse Mechanisms and Techniques: Safety Versus Flexibility

Formal

,
, Cluster Analysis. A Mathematical Approach with Applications to Protein

19. Vesa Torvinen
20. Jorma Boberg

Construction and Evaluation of the Labour Game Method

Turku Centre for Computer Science

TUCS Dissertations

Turku Centre for Computer Science
Lemminkäisenkatu 14
FIN-20520 Turku
Finland

http://www.tucs.fi

Åbo Akademi University
Department of Computer Science
Institute for Advanced Management Systems Research

!
!

University of Turku
Department of Mathematical Sciences!

Turku School of Economics and Business Administration
Institute of Information Systems Science!

	Software Reuse Mechanisms and Techniques: Safety Versus Flexibility
	Acknowledgements
	Contents
	Chapter 1: Introduction
	1.1 Layout of the Dissertation
	1.2 Mathematical Background
	1.2.1 Predicates, Relations, and Predicate Transformers
	1.2.2 Statements of Refinement Calculus
	1.2.3 Data Refinement

	1.3 Copy&Paste as a Software Reuse Technique

	Chapter 2: Functions and Procedures
	2.1 Modeling Procedures and Procedure Invocation
	2.2 Are Procedures Safe?
	2.3 Are Procedures Flexible?
	2.4 Discussion

	Chapter 3: Modules
	3.1 Modeling Modules
	3.2 Are Modules Safe?
	3.3 Are Modules Flexible?
	3.4 Discussion

	Chapter 4: Objects and Forwarding
	4.1 Modeling Objects
	4.2 Modeling Forwarding
	4.3 Is Forwarding Safe?
	4.4 Is Forwarding Flexible?
	4.5 Discussion and Related Work

	Chapter 5: Objects and Delegation
	5.1 Modeling Delegation
	5.2 Safety of Delegation
	5.3 Safety: A Simple Definition of Object Refinement
	5.3.1 Modular Reasoning
	5.3.2 Discussion
	5.4 Safety: An Ad-hoc Definition of Object Refinement
	5.4.1 An Example of Ad-hoc Informal Reasoning Used in Practice
	5.4.2 The Essence of The Component Re-entrance Problem
	5.4.3 Restricting Assumptions About Context
	No Call-Back Assumptions Requirement
	No Infinite Recursion Requirement

	5.5 Safety: A Definition of Context Object Refinement
	5.5.1 Modular Reasoning Theorem

	5.6 Discussion of Safety of Delegation
	5.7 Check-List for Verifying Delegating Objects
	5.8 Is Delegation Flexible?
	5.9 Discussion, Conclusions, and Related Work

	Chapter 6: Classes and Inheritance
	6.1 Modeling Classes
	6.2 Modeling Inheritance
	6.3 Refinement on Classes
	6.4 Safety of Inheritance
	6.4.1 An Example of the Fragile Base Class Problem
	6.4.2 Aspects of the Problem
	Direct Access to the Base Class State
	Unanticipated Mutual Recursion
	Unjustified Assumptions in Revision Class
	Unjustified Assumptions in Modifier
	Unjustified Assumption of Binding Invariant in Modifier

	6.4.3 Conflict Between Safety and Flexibility of Inheritance
	6.4.4 Disciplining Inheritance
	6.4.5 Discussion of Safety of Inheritance
	6.4.6 Check-List for Verifying Disciplined Inheritance

	6.5 Is Inheritance Flexible?
	6.6 Related Work
	6.7 Conclusions

	Chapter 7: Conclusions
	Bibliography

