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Chapter 1

Introduction

1.1 Abstract of the Thesis

This dissertation presents new techniques for the mechanised development
of provably correct programs using the stepwise refinement paradigm. Pro-
gram development techniques are described in a completely formal way,
i.e., mathematically defined theories are used to justify the correctness of
program implementations with respect to their specifications. The math-
ematical basis of our work is the refinement calculus theory developed by
Back and von Wright[4, 15].

Tool support for program refinement can increase our confidence in our
refinement theory and also in the correctness of our program derivations.
Our work is performed in the HOL theorem prover[43] which mechanises
a classical higher-order logic. We use this expressive logic to model our
specification language. In addition, the Refinement Calculator tool[24, 26]
built on the top of the HOL system provides a graphical environment for
program development under window inference – a style of formal reasoning
which is known to be especially well-suited for program refinement proofs.
We present most of the contributions of this dissertation in the form of
extensions of the Refinement Calculator tool.

The emphasis of this work is on mechanised formal reasoning about mod-
ular units of programs such as procedures and functions in the refinement
calculus framework. We extend the mechanisation of the refinement calculus
in the HOL system with new constructs for procedure and function calls.
That allows us to actually derive a number of refinement and correctness
properties that were just postulated before. We also show how our method
for modelling procedures can be integrated into the Refinement Calculator

1



2 CHAPTER 1. INTRODUCTION

tool and used for program derivations.
The techniques presented also rely on other mathematical properties of

the program model defined in the refinement calculus theory. We show how
abstract lattice-theoretical properties of the program model can be used in
program development, and also how program context information can be
introduced and taken into account in program refinement proofs. These
contributions are presented as the extensions of the Refinement Calculator
as well. We also investigate the relationship between correctness assertions
and specification statements of the refinement calculus, and show how our
results can be applied to the derivation of proof rules for correctness of
procedure calls.

1.2 Motivation

“Buggy” software It is no secret that most software contain errors. One
has become used to the fact that every major software system that is released
is virtually guaranteed to contain so called “bugs” and is followed by sub-
sequent releases where some (most obvious) of them are fixed. Occasional
collapses of software systems are often considered as an inevitable evil that
must be endured. In a society which becomes more and more computerised
and, therefore, dependent on the quality of computer software, the fact that
erroneous software is so commonplace is worrying.

Why is such a situation tolerated? The reason is that it is impossible
to actually create perfect software of the size and complexity desired, using
the current technology of testing to detect errors. The tester usually treats
a piece of software as a “black box” which produces some results/responses
for given inputs/circumstances. The responses are then compared to the
expected ones. However, even with some knowledge of the internal program
structure, it is very difficult in many cases to exhaustively test all possible
paths through the software, or all combinations of circumstances in which
the software will be expected to function. The core of the problem remains,
as expressed by Dijkstra[34]: “Program testing can be used to show the
presence of bugs, but never to show their absence!”.

Use of formal methods In order to cope with the problem of erroneous
software, formal methods were proposed as a way of development of error-
free software. The idea of formal methods is to prove mathematically that
the software being developed will function as expected. The “expectations”
are written in the form of a formal specification – a precise mathematical
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description of the system. The proof then shows that the specification and
the program, two forms of representing the same system, are consistent
with each other. Thus, if the specification is complete and correct, then the
program is guaranteed to perform correctly as well.

Formal methods use logic and mathematics to represent systems or lan-
guages. Therefore, to write a formal specification of a system requires much
more precision than to give it an informal description. However, this very
difficulty encourages a clearer and more meticulous analysis of the system.

Of course, one obvious limitation of this approach should be recognized.
Deriving a complete and correct specification for a problem from the vague
and nuanced words of a description in English (or any other language) is a
difficult and uncertain process in itself. If the formal specification arrived
at is not what was truly intended, then the entire proof activity may be
considered as an exercise of redundancy. However, the main reason why it
is so difficult to eradicate all errors in a large software system is an explosion
of complexity. A specification as an abstract mathematical description of a
system is much more concise which makes it easier to avoid errors.

Program verification vs. program refinement There are two dif-
ferent formal approaches for developing correct software – program verifi-
cation and program refinement. The program verification approach allows
us to prove that a given program has the desired properties, i.e., is consis-
tent with its specification. Typically, programs are written in some prede-
fined programming notation which has a precise semantics. The program
verification task then amounts to proving that a given specification and a
given program are logically related. For example, Hoare’s classical approach
(when one proves that a given program is correct with respect to a given
pre/postcondition pair) falls into this category.

In refinement-based approaches one does not have a program to prove
properties about. Instead, an executable program is derived from its speci-
fication by a series of transformations called refinements. The result of each
refinement step is logically proved to be consistent with the initial specifi-
cation. A specification language used in refinement-based approaches usu-
ally represents both imperative programming statements and non-executable
specification constructs. Specification constructs abstract implementation
details, and therefore contain nondeterminism that should be resolved during
the program development. A refinement step in the program development
then corresponds to preserving functional correctness while decreasing non-
determinism. Ultimately, an executable program which is provably correct
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with respect to the given high-level specification is derived. The refinement
calculus theory[4, 15] which serves as the mathematical basis of the thesis
is an example of a refinement-based approach for program development.

Need for tool support Application of formal methods to sample pro-
grams has shown that for even moderately sized programs, the proofs are
often very long and involved, and full of complex details. This raises the
possibility of errors occurring in the proof itself, and brings its credibility
into question.

Assistance may be provided by a tool which records and maintains the
proof as it is constructed step by step, and ensures its soundness. The tool
then becomes an agent which mechanically verifies correctness of the proof.
Such a tool can provide the high accuracy needed in complex mathematical
proofs, while handling the increasing amount of detail at the same time.
Of course, the tool itself should satisfy basic requirements – be reliable and
secure, i.e., perform only sound logical inferences. Moreover, the logic of the
tool should be expressive enough to represent all statements of a program
specification language of our model.

The Higher Order Logic[43] (HOL) proof assistant is an example of such
a reliable and expressive tool. It is an interactive theorem-proving environ-
ment for higher-order logic, based on the LCF[78] approach to mechanical
theorem proving developed by Milner. The HOL system is “open”, i.e., the
user can extend its functionality by constructing programs which automate
whatever theorem-proving strategy he/she prefers. This programmability
makes it especially suitable to serve as the basis for creation of new experi-
mental tools.

1.3 Outline of the Thesis

Chapters 2 and 3 contain the material which constitutes the background of
this thesis. Chapter 2 describes the refinement calculus theory which forms
the mathematical basis of our work. We explain here the main notions
of the refinement calculus such as the stepwise refinement paradigm, the
weakest precondition semantics, program correctness etc. We also introduce
the constructs of a program specification language that we use throughout
the thesis, and give their semantic interpretations.

Chapter 3 reviews mechanical tools and techniques that are exploited
in our work. It briefly describes the HOL theorem prover, its logic and
implemented styles of formal reasoning. The window inference style of rea-
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soning (implemented as the HOL window Library) turns out to be especially
convenient when developing programs in a stepwise refinement fashion. The
mechanisation of the refinement calculus is presented as a theory of the HOL
system. Finally, we give a short description of the Refinement Calculator
– a program refinement tool built on the top of the HOL system and its
window Library.

In chapters 4–6 we present our contributions in the form of extensions
of the Refinement Calculator. They cover different mathematical aspects of
the program development by program refinement. Chapter 4 explains how
abstract lattice-theoretical properties can be used when reasoning about
programs. Once proved in a HOL theory, the properties of abstract lattices
can later be automatically instantiated and used in different concrete do-
mains that have been proved to be lattices. Chapter 5 describes formally
the notion of program context and shows how it can be used in program
refinement. In this chapter we also present two approaches for propagating
of context information from one program place to another.

The main part of the thesis is devoted to mechanised formal reasoning
about procedures and procedure calls. In Chapter 6 we show how procedures
and procedure calls can be modelled in the refinement calculus, and explain
the implementation of the approach in the HOL theory of the refinement
calculus and in the Refinement Calculator tool. Chapter 7 illustrates the
ideas presented with a bigger example. Using context information for prov-
ing refinement or correctness properties of procedures and procedure calls
is discussed in Chapter 8. Chapter 9 shows how we can deal with recursive
procedures and their calls. In Chapter 10 we discuss the use of procedure
variables in our implementation. Reasoning about procedures defined by
correctness assertions is described in Chapter 11, while Chapter 12 presents
a new approach for modelling functional procedures and their calls.

Finally, Chapter 13 concludes with a summary of the thesis and discusses
possible future extensions of the work presented.

Some of the work presented in this thesis was earlier published in the
proceedings of scientific conferences or as technical reports of Turku Centre
for Computer Science. The list of publications is as follows:

1. L. Laibinis.
Using Lattice Theory in Higher Order Logic.
In J. von Wright, J. Grundy, J. Harrison (Eds.), Proceedings of the
9th International Conference on Theorem Proving in Higher Order
Logics, August 1996, Turku, Finland. Springer-Verlag, Lecture Notes
in Computer Science 1125, pg. 315–330, 1996.
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2. L. Laibinis and J.von Wright.
Context handling in the Refinement Calculus framework.
In U. M. Haveraaen, O. Owe (Eds.), Proceedings of the 8th Nordic
Workshop on Programming Theory, December 1996, Oslo, Norway.
Research Report 248, Department of Informatics, University of Oslo.

3. L. Laibinis and J.von Wright.
What’s in a Specification?
In J.Grundy, M.Schwenke, T.Vickers (Eds.), Proceedings of Interna-
tional Refinement Workshop & Formal Methods Pacific’98, September
1998, Canberra, Australia. Springer-Verlag, pg. 180–192, 1998.

4. L. Laibinis and J.von Wright.
Functional Procedures in Higher-Order Logic.
TUCS technical report No.252, 1999.

5. L. Laibinis.
Mechanising Procedures in HOL.
TUCS technical report No.253, 1999.



Chapter 2

The Refinement Calculus
theory

2.1 Introduction

Program Specification and Refinement The purpose of using formal
methods for program development is to prove mathematically that programs
behave in certain well-defined ways. However, in order to be able to reason
formally about programs, one needs to have a starting point. Such a starting
point is a specification – a precise high-level mathematical description of the
intended behaviour of a system. A specification usually contains only essen-
tial properties or requirements that a system should satisfy, and therefore
allows for different implementations.

The stepwise refinement method for program construction allows deriva-
tion of an executable program from its specification by a series of small
transformations (refinements). Each refinement is proved to be correct with
respect to the initial specification, i.e., it preserves the semantic system
properties encoded in the specification. In programming theory two notions
of correctness have been used: partial correctness and total correctness. Par-
tial correctness means that every result that the program yields is consistent
with what is specified. However, partial correctness admits the possibility of
not producing any result at all, in case when the program does not terminate.
Thus, any non-terminating program is still partially correct. Compared with
partial correctness, total correctness is a stronger requirement. It signifies
that every run of the program will in fact terminate and the obtained result
is consistent with what is specified.

An initial specification abstracts implementation details and, therefore,

7
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is typically highly nondeterministic. As such, it may not be executable.
However, the nondeterminism contained in a specification leaves an imple-
mentor freedom to make his/her design decisions. A refinement step then
usually corresponds to a certain implementation decision in the “top-down”
style of system development. Hence, in general, refinement makes a program
more deterministic. Another reason for refinement could be making a pro-
gram more efficient while preserving correctness. In both cases refinement
as a process (of making a program more deterministic or more efficient) in-
tuitively can be understood as a program improvement. The ultimate goal
for this process is to develop a detailed executable program.

2.2 The Refinement Calculus

The notion of refinement constitutes the basis of several formalisms for pro-
gram development and verification[4, 86, 84]. In our thesis the refinement
calculus theory developed by Ralph Back and Joakim von Wright[4, 6, 12, 15]
is used. This theory presents a framework for development of programs that
are totally correct by construction. Lattice theory and higher-order logic to-
gether form the mathematical basis for the calculus. This allows us to prove
correctness of programs and to calculate program refinements in a rigorous,
mathematically precise manner.

The focus of the theory is imperative state based programs. The lan-
guage used to express programs and specifications is essentially Dijkstra’s
language of guarded commands, with some extensions.

The refinement calculus is based on Dijkstra’s weakest precondition se-
mantics for programs[35]. The meaning of different program statements is
defined by means of predicates over the program variables (the program
state). Given a statement and a predicate describing the intended result
(a postcondition), the weakest precondition semantics defines the weakest
initial predicate (a precondition) that guarantees that the intended result
is achieved. Therefore, program statements are modelled as functions that
map postconditions to preconditions.

Mathematically, the weakest precondition semantics can be defined as a
function wp which takes two arguments – a statement and a postcondition.
The semantic meaning of a statement S for a given postcondition p is the
value wp(S, p). The wp semantics of programs is compositional in the sense
that the semantics of program constructs composed from several “atomic”
statements is defined via wp of composing statements. For example, the
weakest precondition of sequential composition of statements S1 and S2
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(denoted as S1; S2) is defined as follows:

wp(S1; S2, p) = wp(S1, wp(S2, p))

The refinement calculus theory extends Dijkstra’s work by introducing
a refinement relation between programs. The refinement relation between
programs S and S′ is defined using their weakest precondition semantics:
we say that a program (a statement) S is refined by S′, written S v S′, iff
whenever S establishes a certain postcondition, so does S′1:

∀q. wp(S, q) ⇒ wp(S′, q)

The refinement relation is a preorder, i.e., a reflexive and transitive re-
lation. Transitivity of the relation justifies program development in a linear
fashion by a series of refinement steps: verifying refinements

S1 v S2 v ... v Sn

we, in fact, by transitivity establish the refinement S1 v Sn.
Dijkstra’s language of guarded commands originally contained only ex-

ecutable program constructs. An introduction of unimplementable spec-
ification statements into the language have led to a partial relaxation of
this requirement[4]. However, it enriched the language with the useful ab-
straction mechanism: constructing a program as a mixture of abstract and
executable statements makes it possible to conduct program development
from an abstract specification to an executable program within a single
framework.

The total correctness of programs (or program statements) may be ex-
pressed by logical formulae called Hoare triples, each containing a precondi-
tion p that may be assumed to hold in the initial state, program (statement)
S, and postcondition q that is required to hold in the final state. We denote
such a Hoare triple as {p} S {q}. The program S is said to be correct with
respect to this Hoare triple specification, if the final state computed by the
program satisfies q whenever the initial state satisfies p.

Program refinement can then be understood as modifying the program
while preserving correctness. Alternatively, we say that statement S is re-
fined by statement S′, if S′ is correct with respect to any pre-postcondition
pair (p, q) whenever S is correct with respect to (p, q).

1The implication in the definition really should be read as “everywhere implies” (see
Section 2.4).
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Since programs tend to become very large and complex, it is usually too
difficult to prove the correctness of a whole program directly. Instead, one
can construct correct programs by a sequence of small incremental refine-
ments. Each refinement is focused on some small component of the program
and essentially means replacing this component with another component in
a way that improves the original program.

This can be done without compromising correctness because all state-
ment constructors of the refinement calculus language are monotonic with
respect to refinement. For example, we can show that the following holds:

S1 v S′
1 ∧ S2 v S′

2 ⇒ S1; S2 v S′
1; S

′
2

i.e., sequential composition is monotonic in both arguments.
Thus one can refine the whole program by focusing on a small component

and refining it in isolation from the context.

2.3 Underlying Logic

The logical basis of the refinement calculus is a classical higher-order
logic[3, 43]. This is an extension of the simply typed lambda calculus orig-
inally developed by Church[31]. In this logic all variables are given types,
and quantification is over the values of a type. Being “higher-order logic”
means that quantification is allowed over predicates and functions of any
order. Polymorphic types containing type variables are also permitted in
the logic. All this makes it possible to reason logically about such higher-
order entities as predicates, relations, predicate transformers etc. which is
necessary when dealing with program correctness and refinement.

The logic can be extended in two ways, namely, by the definition of new
types and type constructors, and by the definition of new constants (includ-
ing new functions and predicates). However, the syntax of the higher-order
logic is fixed. A type can be either a type variable or a type operator applied
to n other well-defined types. If the operator arity n equals 0, then we have
a constant type (like truth values or integer numbers). The function type
operator → is considered basic and often included explicitly describing the
type syntax. The latter can be then expressed with the following grammar:

τ ::= α | opn(τ1, ..., τn) | τ1 → τ2

where α is a type variable and opn is some type operator with arity n.
A term (expression) can be either a variable, a constant symbol, a func-

tion application or an abstraction. This can be expressed with the following
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grammar:
t ::= x | c | t. t′ | (λx • t)

where x is a variable and c is a constant.
In the refinement calculus, the type structure of higher-order logic is

extended with product types, which stand for Cartesian product of types.
New product types are formed using a binary infix type operator × which
is associated to the right. Therefore, a type Σ1 × Σ2 × Σ3 actually stands
for Σ1 × (Σ2 × Σ3).

We also use special paired (tupled) abstraction for products. This is
syntactic sugaring:

(λu : Σ, v : Γ • t) =̂ (λw : Σ × Γ • t[u, v/fst . w, snd . w])

where fst and snd are the corresponding projection functions returning the
first and the second components of a tupled variable. The paired abstraction
introduces names for the components of the product, which then can be used
inside the term. For example, a lambda abstraction

(λ(x : Int, y : Int) • x + y)

actually stands for

(λw : Int × Int • fst . w + snd . w)

2.4 State Predicates, Relations, and Predicate
Transformers

In this section we quickly review mathematical structures and notation that
we use throughout the thesis.

In the refinement calculus the program state is modelled as a polymor-
phic type Σ or Γ which for concrete programs can be instantiated in different
ways. In this thesis we consider a state to be a tuple (i.e., of product type)
where every component corresponds to a program variable. In the recent
textbook[15] Back and von Wright use a more abstract axiomatic model of
the program state and program variables. However, modelling the program
state as a tuple can be shown to be a special case of the approach presented
in the book.

State functions are just functions of type Σ → Γ (for a given state they
yield the new state that may be of a different type). The predicates over a
state space (type) Σ are functions from Σ to Bool , denoted by PΣ. The state
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relations from Σ to Γ are functions from Σ to a predicate (set of values) over
Γ, denoted by Σ ↔ Γ. The predicate transformers from Σ to Γ are functions
mapping predicates over Γ to predicates over Σ, denoted by Σ 7→ Γ (note
the reversion of the direction), or by Ptran(Σ) in the case of Σ 7→ Σ.

Function application is denoted by a dot, for example f. x. Function
composition is denoted by infix operator ◦ and is defined in the following
way:

(f ◦ g). x =̂ f. (g. x)

Since a state predicate p corresponds to the set of states that p maps to
the boolean value T, we find it justified to use set notation for operations
on predicates (intersection, union, subset). These operations are pointwise
extensions of the corresponding operations on booleans. For example, the
intersection operation is defined as a lifted conjunction:

p ∩ q =̂ (λσ • p. σ ∧ q. σ)

The entailment (subset) ordering p ⊆ q on predicates p, q : PΣ is defined
as the universal implication on booleans, i.e.,

p ⊆ q =̂ (∀σ : Σ • p. σ ⇒ q. σ)

The predicates true and false over Σ map every σ : Σ to the boolean values
T and F, respectively. Also, σ ∈ p and p. σ say the same thing (that p holds
in state σ).

The refinement ordering S v S′, read S is refined by S′, on statements
S, S′ : Σ 7→ Γ is defined by universal entailment:

S v S′ =̂ (∀q : PΓ • S. q ⊆ S′. q)

A predicate transformer S : Σ 7→ Γ is said to be monotonic if for all
predicates p and q, p ⊆ q implies S. p ⊆ S. q.

A predicate transformer S : Σ 7→ Γ is called conjunctive if it satisfies the
following property:

S. (∩i | i ∈ I • qi) = (∩i | i ∈ I • S. qi)

for an arbitrary nonempty collection {qi | i ∈ I} of predicates.

Notation The result of substituting a term t for all free occurrences of
a variable x in a term s (with suitable renaming of bound variables to
avoid variable capture) is denoted by sx

t or s[x/t]. We allow the bounded
quantification format (∀x | s • t) as equivalent to (∀x • s ⇒ t). The same
format is also used for intersection and union over sets. Thus (∩i | i ∈ I • ti)
is the intersection of all ti where i ranges over the set I.
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2.5 Language of Program Statements

The refinement calculus specification language we use in the thesis has the
following syntax:

S ::= skip | abort | magic | {p} | [p] | 〈f〉 | {P} | [P ] |
S1; S2 | S1 t S2 | S1 u S2 | if g then S1 else S2 fi |
do g → S od | block p S | S1‖S2

Here p is a state predicate, f is a state function and P is a state relation. The
syntax presented above is not closed; new derived constructs can be added
later. Below we give the semantic definitions of the language constructs
presented above.

Statements from Σ to Γ are identified with monotonic predicate trans-
formers in Σ 7→ Γ. They are defined according to their weakest precondition
semantics, i.e., application of statement S to postcondition q, written as
S. q, corresponds to wp(S, q). Statements of this kind may be concrete, i.e.,
executable, or abstract, i.e., specifications. The refinement calculus includes
all standard program statements, such as assignments, conditionals, and
loops.

The statement abort does not guarantee any outcome or termination,
therefore, it maps every postcondition to false. The statement magic is
miraculous, since it is always guaranteed to establish any postcondition.
The statement skip leaves the state unchanged. The definitions of these
statements are as follows:

abort. q =̂ false magic. q =̂ true skip. q =̂ q

The assertion statement {p} indicates that the predicate p is known to
hold at a certain point in the program. The assertion {p} behaves as abort
if p does not hold, and as skip otherwise. Formally, it is defined as follows:

{p}. q =̂ p ∩ q

As an example, let us consider the assertion {λ(x, y) • x > y}. The program
state here consists of two integer components (variables) x and y. The
assertion then states that the value of x should be greater than the value of
y at the particular place of a program where this assertion occurs. As we
show later, assertion predicates can provide additional context information
for program refinements.

In our model program variables are defined as state projection func-
tions, i.e., they indicate positions in the state tuple. In order to obtain the
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value of a program variable in the current state, one has to apply the pro-
gram variable (as a projection function) to this state, extracting in this way
the corresponding state component. For example, the assertion statement
{λ(x, y) • x > y} presented above actually stands for

{λ s : Int × Int • x. s > y. s}

where x and y are defined as the corresponding projection functions fst and
snd . However, for the sake of simplicity, in our examples we continue to use
tupled λ-abstraction of the program state.

The assumption (or guard) statement [p] indicates that the predicate p
is assumed (but not known) to hold at a certain point in the program. The
assumption [p] behaves as magic if p does not hold, and as skip otherwise.
Formally, it is defined in the following way:

[p]. q =̂ p ⊆ q

The functional update statement 〈f〉 where f is a state function of type
Σ → Γ describes a functional state change and is defined as follows:

〈f〉. q. σ =̂ q. (f. σ)

Working with concrete programs, we often use the commonly accepted as-
signment syntax for functional updates as well. For example, in the pro-
gram state consisting of two program variables x and y the assignment
x := e (where e is some expression over program variables) corresponds to
the functional update 〈λ(x, y). (e, y)〉.

The language supports two kinds of non-deterministic updates which,
in fact, represent specification statements. Given a relation P : Σ ↔ Γ, the
angelic update {P} : Σ 7→ Γ, and the demonic update [P ] : Σ 7→ Γ are defined
by

{P}. q. σ =̂ (∃ γ : Γ • P . σ. γ ∧ q. γ)
[P ]. q. σ =̂ (∀γ : Γ • P . σ. γ ⇒ q. γ)

When started in a state σ, both {P} and [P ] choose, if possible, a new
state γ such that P. σ. γ holds. The difference between them is that {P}
chooses “angelically”, i.e., trying at the same time to establish the desired
postcondition q, while [P ] chooses “demonically”, i.e., trying to avoid estab-
lishing q, if possible. If no such state exists, then {P} aborts, whereas [P ]
behaves as magic.
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For demonic updates, we also use more a common syntax of nondeter-
ministic assignment x := x′.P where x is a list of state variables that can
be changed during execution of this statement. The relation P describes re-
lationship between new values of x (denoted x′) and the values of program
variables before execution. For example, the nondeterministic assignment
x := x′.x′ ≥ y states that the variable x can get any value which is greater
than or equal to the value of y. The variables that are not mentioned in
the left hand side of a (nondeterministic) assignment statement are assumed
to stay unchanged. Therefore, in the program state consisting of two vari-
ables x and y the nondeterministic assignment x := x′. x′ ≥ y is actually a
shorthand for x, y := x′, y′. (x′ ≥ y) ∧ (y′ = y).

The sequential composition of statements S1 : Σ 7→ Γ and S2 : Γ 7→ ∆ is
modeled by their functional composition, for q : P∆,

(S1; S2). q =̂ S1. (S2. q)

Conjunction u and disjunction t of predicate transformers are defined
pointwise:

(ui ∈ I • Si). q =̂ (∩i ∈ I • Si. q)
(ti ∈ I • Si). q =̂ (∪i ∈ I • Si. q)

Both conjunction and disjunction of predicate transformers model nonde-
terministic choice among executions of Si. Conjunction models demonic
nondeterministic choice in the sense that nondeterminism is uncontrollable
and each alternative must establish the postcondition. Disjunction, dually,
models angelic nondeterministic choice, where choice is free and aimed at
establishing the postcondition. For the special case I = {1, 2}, we have
binary choice operators denoted as S1 u S2 and S1 t S2.

The predicate transformers (of the given type Σ 7→ Γ) ordered by the
refinement relation form a complete lattice. Angelic and demonic choices
are the join and meet operations on lattice elements. The top element in
this lattice is magic and the bottom element is abort.

The conditional statement is defined as the demonic choice of guarded
alternatives:

if g then S1 else S2 fi =̂ [g]; S1 u [¬g]; S2

Iteration is defined as the least fixpoint of a function on predicate trans-
formers with respect to the refinement ordering:

do g → S od =̂ (µX • if g then S; X else skip fi)
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Here µ denotes the least fixpoint operator.
According to the theorem of Knaster-Tarski[100], a monotonic function

has a unique least fixpoint in a complete lattice. Predicate transformers form
a complete lattice, and, therefore, the least fixpoint of monotonic functions
on predicate transformers always exist and is unique. The least fixpoint
operator µ is defined according to its characterisation given in the Knaster-
Tarski theorem:

µf =̂ (ux | f. x v x • x)

where f is a monotonic function on predicate transformers.
The definition presented above is difficult to use in practice. Instead, we

use the following characteristic properties of the least fixpoint operator:

f. (µf) = µf µ folding (unfolding)
f. x v x ⇒ µf v x µ induction

The statement block p S introduces a block with a new local state com-
ponent initialised according to the predicate p and a block body S working
on the extended state. The new state component is added as the first com-
ponent of the state. A block statement is defined in the following way:

block p S =̂ begin p; S; end

where the block beginning and end operators are modeled by demonic and
functional updates respectively:

begin p =̂ [λu • λ(x, u′) • p. (x, u) ∧ (u = u′)];
end =̂ 〈λ(x, u) • u〉

The begin operator introduces a new state component and initialises it ac-
cording to the predicate p. Global variables remain unchanged as indicated
by the conjunct u = u′. The end operator ends the block by removing
the local component from the state. For blocks, we also use the following
syntax – |[var x | p • S]|. Here x is an explicit list of local variables that are
introduced by the block.

Finally, the parallel composition of two statements S1‖S2 of the type
Σ1×Σ2 7→ Γ1×Γ2 models parallel execution of the statements S1 : Σ1 7→ Γ1

and S2 : Σ2 7→ Γ2 on disjoint state spaces. It is defined in the following
way[14]:

(S1 ‖ S2). q. (σ1, σ2) =̂ (∃q1 q2 • (q1 × q2 ⊆ q) ∧ S1. q1. σ1 ∧ S2. q2. σ2)
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where × denotes the product operation on predicates defined as follows:

(q1 × q2). (σ1, σ2) =̂ q1. σ1 ∧ q2. σ2

Intuitively, this definition means that S1‖S2 establishes postcondition
q : Pred(Γ1 × Γ2) in initial state (σ1, σ2), if there exists a subset q1 × q2

of q such that S1 establishes q1 in σ1 and S2 establishes q2 in σ2 indepen-
dently.

2.6 Data Refinement

Data refinement is a special case of refinement where abstract data structures
are replaced with more concrete ones. Typically, “more concrete” means
more easily or efficiently implemented. Data refinement is formally defined
in terms of ordinary refinement as follows. For statements S : Ptran(Σ)
and S′ : Ptran(Σ′), let R : Σ′ ↔ Σ be a relation between the state spaces
Σ and Σ′. The relation R is called an abstraction relation. According to
[17], the statement S is said to be data refined by S′ via relation R, denoted
S vR S′, if

{R}; S v S′; {R}
Alternative equivalent characterisations of data refinement (for monotonic
predicate transformers) using the inverse relation R−1 are then

S; [R−1] v [R−1]; S′ S v [R−1]; S′; {R} {R}; S; [R−1] v S′

Data refinement defined in this way is called forward data refinement.
The calculational approach to data refinement[38, 108] allows us to avoid

inventing the new program in a data refinement step. The calculational rules
for different programming constructs directly yield a new concrete program
for a given abstract program and an abstraction relation. In the thesis we
use techniques of calculational data refinement for transformation of blocks
where abstract local variables are replaced with concrete ones. In other
words, we are interested in refinement of the form:

|[var a | ini. S ]| v |[var c | DIR(ini). DR(S) ]|
Here DIR and DR are functions for calculation of the new initialisation
predicate and the new body of a concrete block. They are defined in the
following way:

DIR (ini) =̂ (λσ′ • ∃σ • R. σ′. σ ∧ ini. σ′)
DR (S) =̂ {R}; S; [R−1]
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In order to calculate the expression DR (S), the refinement calculus pro-
vides a number of special calculational rules for different statements and
constructs of the specification language.

2.7 History

The origins of stepwise refinement method were presented in the works of
Dijkstra and Wirth[34, 106], and in the program transformation approach
of Gerhart[40] and Burstall and Darlington[23].

The stepwise refinement method[34, 106] was formalised into the refine-
ment calculus by Back in his thesis[4], using the weakest precondition se-
mantics proposed by Dijkstra[35]. The basic ideas of the refinement calculus
such as an introduction of the program refinement relation, the emphasis on
total correctness, modelling program statements as predicate transformers,
using specifications as primitive program statements etc. were formulated
in Back’s seminal work.

Morgan[82, 81, 83] and Morris[86] have extended the Back’s original
formulation with different specification statements. Morgan has proposed
miraculous statements (assumptions in the refinement calculus) in [82]. Mor-
gan together with Gardiner[82, 38, 39] have studied data refinement tech-
niques (the idea of data refinement was originally introduced by Hoare[56]).

In his influential book Morgan[84] has presented a more practical ap-
proach for the refinement calculus with pre-post specification statements, a
simple set of refinement rules and checklists, and syntactical treatment of
the program state and variables.

In later works Back and von Wright[11, 12, 13, 15] have reengineered the
mathematical basis for the refinement calculus, studying lattice-theoretical
properties of program refinement in higher-order logic. This have made the
theory much more general and simple at the same time.

In recent years the refinement calculus theory has been applied to new
areas such as stepwise derivation of parallel and reactive programs[7, 10],
object-oriented programs[89, 101], and probabilistic programs[85].



Chapter 3

Mechanisation of the
Refinement Calculus

3.1 Introduction

Proofs of program refinement, even for moderately sized programs, can be-
come long and involved, full of complex details. The terms that one has to
work with in proofs are usually quite big. Therefore, they can be difficult
to manage and error-prone. Effects of even simple typing errors can prop-
agate throughout the development causing annoying “backtracking” when
noticed. In the case of more realistic programs, proofs are obviously much
longer and, therefore, the possibility of errors is even bigger.

This situation naturally calls for some kind of automation. Assistance
may be provided by a tool which records and maintains the proof as it is
constructed step by step. Such a tool can provide high accuracy needed in
complex detailed mathematical proofs. This way, for example, errors result-
ing from bad typing can be effectively eliminated. Furthermore, mechanised
logics cannot rely upon any “hand-waving” over matters of syntax or seman-
tics. Thus, a higher level of precision is needed which encourages a clearer
analysis of the system. Finally, the use of tools facilitates the practice of
formal methods by increasing their scalability since the automation provided
allows us to handle the increasing detail, and, therefore, larger systems can
be addressed.

Tool support for program refinement can increase our confidence in the
soundness of our refinement theory and in the correctness of our program
derivations. However, a refinement tool should satisfy a number of require-
ments. It should be expressive enough to represent all statements in our
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specification and programming language, it must allow us to use standard
results in classical mathematics, and it should be flexible enough to support
program development using the stepwise refinement paradigm. The Higher
Order Logic (HOL) theorem prover[41, 43] is such a mechanical proof as-
sistant. It is an interactive theorem proving environment for higher-order
logic, based on the LCF approach for general theorem proving developed by
R.Milner[78].

In this chapter we give brief description of the HOL theorem prover and
its most important features, and explain how it could be extended to be an
effective and convenient tool for derivation of provably correct programs.

3.2 The HOL Proof Assistant

Why HOL? The HOL proof assistant mechanizes a higher-order logic,
and provides an environment for defining theories and proving statements
about them. HOL is secure in the sense that only true theorems can be
proven, and this security is ensured at each point that a theorem is con-
structed.

HOL is called a proof assistant because it does not attempt to automat-
ically prove theorems but rather provides an environment to the user to en-
able him/her to prove theorems. It is, however, powerfully programmable.
The user is free to construct programs which automate whatever proving
strategy he/she prefers.

HOL has been applied in many areas. The first and still very popular
area is hardware verification, where it has been used to verify correctness of
several microprocessors. In the area of software, HOL has been applied to
Hoare logic[42], Lamport’s Temporal Logic of Actions (TLA)[68], Chandy
and Misra’s UNITY language[2], Hoare’s CSP[28], Milner’s CCS and π-
calculus[76, 79].

HOL is one of the oldest and most mature mechanical proof assistants
available. Many other proof assistants have been introduced more recently
that in some ways surpass HOL, but HOL has one of the largest user com-
munities and history of experience. Moreover, the extensibility of the HOL
logic and the programmability of its proving environment makes the HOL
system a good choice when implementing your own mechanical tool. We
therefore consider it most suitable for this work.

HOL Logic The logic of the HOL system is a higher-order logic which
was briefly described in Section 2.3. Recall that this logic can be extended
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in two ways: by the definition of new types and type constructors, and by
the definition of new constants.

The HOL logic is based on eight rules of inference and five axioms. These
are the core of the logical system. Each rule is sound, so one can only derive
true results from applying them to true theorems. As the HOL system is
built up, each new inference rule consists of calls to previously defined ones.
Therefore the HOL proof system is fundamentally sound, in that only true
results can be proven.

The HOL system provides the user a logic that can be easily extended.
These extensions are organized into units called theories. A HOL theory is
closely related to the familiar notion of theories in mathematics and logics,
thus theories consists of a number of constants, definitions and axioms. Fur-
thermore, theories usually contain theorems that have been proven (within
HOL) using the axioms and previously proven theorems. Once created, a
theory can be saved into a theory file on the disk and be loaded and extended
later on.

In the implementation of the HOL logic, there is also the possibility
to introduce new axioms. However, in this case the user bears complete
responsibility for possible inconsistencies which may be introduced. In our
use of HOL system, we restrict ourselves to never using the ability to assert
new axioms. This style of using HOL is called “conservative extension”.
In a conservative extension, the security of HOL is not compromised, and
hence the basic soundness of HOL is maintained.

HOL Meta Language When the HOL system is started, it presents to
the user an interactive programming environment using the programming
language SML, the Meta Language of HOL. Terms and theorems of the
HOL logic are represented by the corresponding SML data types term and
thm. SML functions are provided to construct and deconstruct HOL terms.
Theorems, however, can only be created by means of a HOL proof, by using
inference rules provided by the HOL system. Thus the security of HOL is
maintained by implementing thm as an abstract data type in SML.

Additional rules, called derived rules of inference, can be written as new
SML functions. Each rule typically takes a number of theorems and/or
terms as arguments and produces a theorem as a result. This method of
producing new theorems by calling functions is called forward proof.

The HOL system also supports backward proof, where one sets up a goal
to be proved, and then breaks that goal into a number of subgoals, each of
which can be reduced further, until every subgoal is resolved, at which point
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the original goal is established as a theorem. At each step, the operation that
is applied is called in HOL a tactic, which is a SML function of a particular
type. The effect of of applying a tactic is to replace a current goal with
a set of subgoals which if proven are sufficient to prove the original goal.
Intuitively, a tactic can be understood as the inversion of an inference rule.

Functions in SML are provided to create new types, make new defini-
tions, prove new theorems, and store the results into theories on disk. These
may then be used to support further extensions. In this incremental way a
large system may be constructed.

Formal Embeddings of Languages In order to reason formally about
systems or languages in a theorem prover, one should represent or “embed”
them into the underlying logic of the tool. There are two styles of embedding
used in the HOL system: shallow embedding and deep embedding[21].

In a shallow embedding, each language construct is introduced as a sepa-
rate HOL constant which defines a function directly denoting the construct’s
semantic meaning. Thus, terms of the embedded language are identified with
corresponding terms of the HOL logic. However, the interpretation of the
abstract syntax of a language is outside of the logic. That makes it impos-
sible to reason about such syntactic notions as, for example, substitution.

In a deep embedding, a language is introduced into the HOL logic as a
new HOL type. The new type inductively defines the given abstract syntax
of a language to be embedded. The semantics of a language is defined as a
separate function interpreting each syntactic language phrase in a structural
way. This allows us to reason within HOL about the semantics of purely
syntactic manipulations.

In the choice between deep and shallow embedding, there is a trade-off
between expressiveness and ease of use. A deep embedding may allow more
meta-properties to be stated and proved about a language. However, it is
much easier to work with the semantics of shallowly embedded languages
since one can can work on the semantics directly. That is especially true
in cases when one needs to extend a language incrementally. In a shallow
embedding this merely amounts to defining a new semantic abbreviation
and proving the necessary properties about it. In a deep embedding, how-
ever, one needs to redefine the underlying HOL type and its interpretation
(semantics) function as well as to re-prove all old results.
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3.3 The Refinement Calculus as a Theory of the
HOL Theorem Prover

The expressiveness of the HOL logic makes it a good choice for formalising
program refinement. The weakest precondition semantics is easily modelled
in higher-order logic. Program statements as predicate transformers can be
defined as constants in the HOL system. As a result, it is possible to safely
define the predicate transformer semantics of our programming language
as a conservative extension of higher-order logic. Overall, the HOL logic
has sufficient abstraction mechanisms to specify both complex refinement
problems and the data-types needed to solve them.

The formalisation of the refinement calculus in higher order logic was
implemented as a HOL theory by von Wright[108]. This mechanised theory
forms the basis for our work.

The HOL theory of refinement is a shallow embedding. The choice of
a shallow embedding was made for the following practical reasons. Shallow
embedding makes the embedded programming language strongly typed by
inheriting the HOL type system rather than constructing its own. It also
allows easy reuse of existing HOL theories describing numbers, arrays, lists,
and other data types for the types of program variables. Finally, the em-
bedded programming language can be easily redefined or extended with new
constructs which is an important factor while developing an experimental
theory.

In this theory the program state is modelled as a polymorphic type
variable α or β. For any given program, this type is instantiated to a
product where each component corresponds to some program variable. If,
for example, a program works on two natural number variables x and y and
a boolean type variable b, then the state space has the type num#num#bool
where # is the HOL product type constructor. The names of program
variables are handled using a let-construction1. Thus, in our example the
term representing the program is of the form

let x = FST in let y = FST o SND in let b = SND o SND in ...

Therefore, program variables are projection functions; they indicate posi-
tions in the state tuple. The Typewriter font we are using here indicates
that a particular expression (term, type, theorem, inference rule etc.) is
associated with the HOL system. We use this font convention throughout
the thesis.

1In the HOL system the term let x = y in t stands for the functional application
(λx.t) y.
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Mathematical structures used in the theory include state predicates
(functions α → bool), state relations (functions α → β → bool), state func-
tions (functions α → β) and predicate transformers (functions (β → bool) →
(α → bool)). The latter are used to model program statements as functions
that map postconditions to preconditions.

Here we only show HOL definitions that are used later in the thesis.
We start with operations on predicates which are defined by lifting the
corresponding operations on truth values.

`def true = (λ v. T)

`def false = (λ v. F)

`def ∀ p q. p imp q = (λ v. p v ⇒ q v)

`def ∀ p q. p andd q = (λ v. p v ∧ q v)

`def ∀ p q. p or q = (λ v. p v ∨ q v)

`def ∀ p. not p = (λ v. ¬(p v))

Greatest lower bound (generalized conjunction) and least upper bound
(generalized disjunction) over sets of predicates are defined as follows:

`def ∀ P. glb P = (λ s. ∀ p. P p ⇒ p s)

`def ∀ P. lub P = (λ s. ∃ p. P p ∧ p s)

Universal implication (subset) relation on predicates is defined in the
following way:

`def ∀ p q. p implies q = (∀ v. p v ⇒ q v)

Each statement of our language is defined in this theory according to its
weakest precondition semantics given in the previous chapter. For example,
the assignment statement has the following definition:

`def ∀ f q. assign f q = (λ s. q(f s))

where f is a state function of type α → β, q is a postcondition and s is an
initial state.

Other commands are defined similarly.

`def ∀ q. skip q = q

`def ∀ q. abort q = false

`def ∀ q. magic q = true

`def ∀ p. assert p q = p andd q

`def ∀ b q. guard b q = b imp q

`def ∀ P q. nondass P q = (λ v. ∀ v′. P v v′ ⇒ q v′)
`def ∀ c1 c2 q. (c1 seq c2) q = c1 (c2 q)

`def ∀ C q. Dch C q = glb (λ p. ∃ c. C c ∧ (p = c q))

`def ∀ C q. Ach C q = lub (λ p. ∃ c. C c ∧ (p = c q))

`def ∀ g c1 c2 q. cond g c1 c2 q = (g andd c1 q) or (not g andd c2 q)

`def ∀ g c. do g c = mu (λ x. cond g (c seq x) skip)

`def ∀ p c q. block p c q = (λ u. ∀ x. p (x,u) ⇒ c (λ v. q (SND v)) (x,u))
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Here nondass is the nondeterministic assignment (demonic update) state-
ment, seq is the infix operator denoting sequential composition of two state-
ments, and Dch and Ach are the demonic and angelic choice operators defined
over sets of statements.

The least fixpoint operator mu is defined according to its characterisation
given in Section 2.5:

`def ∀ f. mu f = Dch (λ c. monotonic c ∧ (f c ref c))

In this definition we explicitly state that we consider only monotonic predi-
cate transformers.

We also use the following characteristic properties of this operator:

` ∀ f. regular f ⇒ (f (mu f) = mu f)

` ∀ f c. monotonic c ∧ (f c ref c) ⇒ mu f ref c

where function regularity is defined in the following way:

`def regular f =
monotonic c ∧ monotonic c′ ∧ c ref c′ ⇒
f c ref f c′

The regularity property means that the restriction of function f to mono-
tonic predicate transformers should be monotonic with respect to the refine-
ment relation.

In our proofs, we use the fact that all statements of our language are
monotonic and conjunctive. In HOL, monotonicity and conjunctivity prop-
erties are defined as follows:

`def monotonic c = (∀ p q. p implies q ⇒ (c p) implies (c q))

`def conjunctive c = (∀ P. c (glb P) = glb(λ q. ∃ p. P p ∧ (q = c p)))

However, since the HOL type that we are using for modelling statements
also includes non-monotonic and non-conjunctive predicate transformers,
assumptions about statement monotonicity and/or conjunctivity must be
stated explicitly in HOL definitions and theorems.

The refinement relation on predicate transformers is defined in the fol-
lowing way:

`def ∀ c1 c2. c1 ref c2 = (∀ q. c1 q implies c2 q)

The refinement relation is then easily proved to be a partial order. A
large number of useful refinement rules can be proved directly from the
definitions. For example,
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` ∀ p p′. p implies p′ ⇒ (assert p) ref (assert p′)

This theorem states that the assertion statement is monotonic with respect
to its predicate parameter.

A correctness assertion (correctness triple) for some statement c is de-
fined as follows:

`def correct p c q = p implies c q

where p is a precondition and q is a postcondition.
Parallel execution of two statements on disjoint state spaces has the

following definition:

`def ∀ c1 c2 q s1 s2.

par c1 c2 q (s1,s2) =
(∃ q1 q2.

(∀ s1′ s2′. q1 s1′ ∧ q2 s2′ ⇒ q (s1′,s2′)) ∧
c1 q1 s1 ∧ c2 q2 s2)

Note that the program state in the definition is modelled as a pair (s1, s2).
In the thesis we make use of a special kind of parallel execution called

lifting. Lifting models parallel execution of the form skip‖c, where c is the
statement operating on the second part (projection) of the state. The lift
operation is defined in the following way [14]:

`def lift c q u = c (λ v. q (FST u,v)) (SND u)

where q is a postcondition, u is an initial state, and FST and SND are the HOL
operators returning correspondingly the first and the second component of a
tuple . The relationship between this definition and the definition of parallel
execution is proved as the following theorem:

` ∀ c. monotonic c ⇒ (lift c = par skip c)

The syntax used in the formalisation is sometimes hard to read. There-
fore, presenting HOL terms we try as much as possible to use the syntax
described earlier rather than the actual syntax described in corresponding
HOL definitions. For example, we write

` {p};skip ref skip;{p}

rather than

` (assert p seq skip) ref (skip seq assert p)
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3.4 Using Window Inference

Supporting program refinement proofs The HOL formalisation of
the refinement calculus provides us with the basis for creating a formal
framework for program development. However, some additional support for
refinement proofs is needed. The problem is that the proof styles supported
by the HOL system – forward proof and backward proof – are not convenient
for proving program developments in a stepwise refinement fashion.

The stepwise refinement method can be seen as a combination of both
proof styles. Externally, a refinement process is a program development
in a linear way: S1 v S2 v ... v Sn which can be easily implemented
as a forward proof. However, the proof of each particular refinement step
Si v Si+1 usually reduces to a refinement proof on some subcomponent T
of program Si:

T v T ′

Si[T ] v Si[T ′]

which in turn can be reduced to the proof of some property on state predi-
cates or relations. Here the backward proof style is more suitable.

Grundy[49] in his PhD thesis proposed using the HOL Window library
(implemented by him) to support refinement proofs. The HOL window
library implements a new proof style based on window inference. However,
he used a simpler relational semantics to model program statements. von
Wright in [108] showed how the HOL Window library can also be used for
reasoning about programs modelled in the weakest precondition semantics.
Below we give a brief introduction to window inference and explain why it
is well-suited for refinement proofs.

General idea of window inference Window inference is based on the
idea of proofs by contextual transformation proposed by Robinson and
Staples[94] and was extended and implemented as a HOL library by
Grundy[48].

Window inference is a style of reasoning where the user may transform an
expression by restricting attention to a subexpression (which is called “open-
ing a window”) and transforming it. A transformation of a subexpression is
a transformation of the whole expression provided certain context-dependent
monotonicity conditions hold. Also, while transforming a subexpression, the
user can use assumptions that are based on the context of the subexpression.

In the window inference style of proof, a user starts with an expression
s and transforms it to t such that s R t holds for some relation R, thus
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creating a proof of the theorem ` s R t. The relation must be preorder.
The number of intermediate steps in the transformation of s to t does not
matter, since R is transitive. Each such intermediate transformation step
can be presented as an inference rule of the following form:

H ∪ H ′ ` e R′ e′

H ` sk[e] R sk[e′]

Note that the relation in a subderivation (R′) can be different from the
relation of the main derivation (R). H ′ here denotes a list of additional
assumptions of a subderivation which are based on the context in which the
subexpression e occurs in the main expression sk[e]. This proof decomposi-
tion process can be continued by focusing on some subexpression of e and,
as a result, starting a new subderivation and so on.

It is easy to see that the window inference style of proof directly corre-
sponds to the way in which refinement steps are carried out. In refinement
proofs the relation to be preserved is program refinement. Since it is a
preorder, the refinement relation can be used in the window inference sys-
tem. The usual technique for proving program refinement is to focus on
some program component and to refine it using the fact that the context is
monotonic with respect to the refinement relation. That is exactly how the
window inference mechanism works.

The idea of using the contextual transformation method for program
refinement is not new. For example, a similar approach using refinement
diagrams was proposed by Back[8]. However, his approach is more restrictive
since it does not allow use of different relations in subderivations.

HOL Window Inference As indicated above, the window inference style
of reasoning was implemented as a HOL library by Grundy. Within the
HOL window inference system, reasoning is conducted with a stack of win-
dows. Each window has a focus (the expression to be transformed), a set
of formulae Γ that can be assumed true in the context of the window (the
assumptions), and a relation R that must be preserved. It can also have a
set of goals (conjectures or proof obligations).

By default, the window inference system supports three relations – equal-
ity, forward implication and backward implication, but the user can add new
relations to the system. New relations are added by providing theorems
about their reflexivity and transitivity.

In order to transform the focus in the window inference system, the user
must provide special ML functions called transformation rules. A transfor-
mation rule takes the focus s and the current relation R as arguments and
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returns the theorem that s R t holds for some t that has been computed by
the rule. The system then automatically transforms the focus s to t.

When opening a window on some subterm of the current focus, the sys-
tem uses the information that the focus is monotonic in the position where
the subterm occurs. This information must be provided by general inference
rules for monotonicity. These rules are called window rules, and the system
keeps them in a database together with information about applicability con-
ditions. The user does not have to know names or other details of these rules
since the choice of a suitable rule is done automatically. When needed, the
system chains several window rules on behalf of the user, allowing to focus
deep inside a term in a single window opening.

After opening the window on a subterm of the focus, the system starts
a subderivation transforming the subterm while preserving some relation.
After finishing the subderivation (closing the window), the system uses the
monotonicity inference rule to prove the theorem for transforming the focus
of the main window. Finally, the system transforms the focus according to
the proved theorem.

Refinement under window inference In order to use the HOL refine-
ment calculus formalisation together with the window inference library, one
needs to do a number of steps. This is explained in great detail by von
Wright in [108]. First, one needs to prove that the refinement relation is a
preorder. Second, a number of window rules have to be added. The two
rules presented below are given as examples. The first rule shows how we
can refine the left statement of the sequential composition of two statements
by first opening a window on it.

` S1 v S′
1

` S1; S2 v S′
1; S2

The second rule allows us to focus and transform the relation of the demonic
update (nondeterministic assignment) statement.

` ∀s s′ • R. s. s′ ⇐ Q. s. s′

` [R] v [Q]

Note that in this rule the relation to be preserved in the subderivation is
different from the one in the main derivation.

All window rules are based on the appropriate HOL theorems expressing
monotonicity properties of programming language constructs. For the rules
given above, the following theorems are proved beforehand:
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` ∀ c c1 c2. c1 ref c2 ⇒ c1;c ref c2;c

` ∀ P Q. (∀ s s′. Q s s′ ⇒ R s s′) ⇒ (nondass P) ref (nondass Q)

Furthermore, a number of theory-specific transformation rules have to
be added to the window inference system. These rules are used to transform
a given focus. For example, the transformation rule Merge can be used to
merge two assignment statements into one. The rule expects the focus to be
of the form x := e; y := e′ where x and y are lists of program variables. As
a result, the rule produces a theorem of the form x := e; y := e′ ref z := e′′

and then uses the window inference system to transform the focus according
to the proved theorem.

3.5 The Refinement Calculator Tool

Need for graphical interface The HOL system is very useful as a proof
assistant when working with general concepts of program refinement. How-
ever, the standard command line interface of HOL is not very convenient for
transformational reasoning about programs in the style of window inference.

In window inference, the user indicates what transformation is desired
and provides information describing the path to the subterm to be trans-
formed. The path indicates the position of the subterm in the abstract
syntax tree of the current focus. The fact that subterms have to be iden-
tified by their paths is a major inconvenience. Computing paths can be
tedious for an ordinary user, especially when terms are large and contain
a mixture of prefix and postfix operators. By providing a graphical user
interface (GUI), it is possible to automate this process, allowing the user to
select data by simply pointing and clicking with the mouse.

The Refinement Calculator The Refinement Calculator tool[70, 24]
was developed in order to support the derivation of provably correct pro-
grams within the refinement calculus framework. This tool provides a graph-
ical user interface for transformational reasoning in the style of window in-
ference. It consists of a number of layers built on top of the HOL system
and its window Library. These layers include the HOL formalisation of the
refinement calculus, transformation rules for program refinement and an X
Windows based graphical user interface.

The latter layer has its own name – TkWinHOL[70]. TkWinHOL serves
as a graphical frontend to the HOL window Library. The GUI provided
improves the usability of the HOL window Library and the HOL theory
of the refinement calculus considerably by providing visually-based access
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to subterms and context assumptions as well as a programming language
syntax, and menus and dialogue boxes for the application of transformations.
TkWinHOL is a tool in its own right and can be used to develop proofs under
window inference. It was, however, designed with the intension of being used
as a basis for the Refinement Calculator.

While developing the Refinement Calculator, the emphasis has been on
making the tool easy to customise for the needs of particular HOL theories
(like program refinement or lattice theory). In such specific theories one
usually wants to use higher-level notation (concrete syntax) for the inter-
action with HOL. This is achieved in the Refinement Calculator by adding
a theory specific parser and pretty-printer. That makes it possible, when
developing refinement proofs, to use a more common programming language
syntax rather than the syntax used in the underlying HOL theory.

The Refinement Calculator tool has been already applied for derivation
of simple programs[25], program data refinement[95], development of reac-
tive systems[71].

The basic appearance of the Refinement Calculator When the Re-
finement Calculator is started, three windows appear on the screen. The
first one is a simple text editor that offers a small set of menu commands for
file and edit operations. The second window (the HOL window) is similar
to a terminal window. Commands can be typed directly (or selected by a
mouse) to the HOL window and executed. The text string is sent verba-
tim to the HOL process running in the background and the HOL reply is
presented in the HOL window.

The most important is the third window called the focus window. This
window displays the status of the current window stack. As seen in Figure
3.5, the window is divided into parts. At the top of the window there is
a menubar from which the user can select operations that transform the
current focus. Below the menubar there is a field that presents the relation
that is currently preserved by the window inference system.

The top subwindow presents a pretty-printed version of the current focus.
Every time a transformation is applied to the current (syntactic) focus,
the interface sends a command to SML which performs the transformation
on the semantic level (using window inference) and then computes (using
the pretty-printer) the syntactic form of the new focus. The new focus is
returned to the interface and presented on the screen.

If the user selects some subexpression of the current focus with the mouse
and presses a special window opening button, then the system computes the
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Figure 3.1: The focus window of the Refinement Calculator

path to the subexpression and executes the appropriate window opening
command, and a subderivation starts. By closing a window the user ends
the subderivation and the focus is transformed according to the appropriate
monotonicity rule.

The middle subwindow presents context assumptions that can be used
when transforming the current focus. What assumptions should be pre-
sented are determined by appropriate window rules. While opening a win-
dow on some subexpression, context assumptions (if any) are automatically
generated and added into this window.

Some transformation rules are conditional – they can be applied provided
that certain conditions hold. Such conditions in the window inference system
are called conjectures or proof obligations; they should be discharged (proved
to be true) before the end of a derivation. Proof obligations of the current
focus are also presented in the middle subwindow. Clicking on a proof
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obligation and selecting the Establish command from the Window menu, the
user can start a subderivation transforming the proof obligation into truth
under the backward implication relation.

Finally, the bottom subwindow contains the theorem that was actually
proved in the current derivation. The theorem is of the form s R t where R
is the relation to be preserved.

3.6 Extensions of the Refinement Calculator

The Refinement Calculator was developed to be easily extended. New func-
tionality can be added by loadable libraries called extensions. An extension
includes HOL theories, SML code for new transformation and window rules,
and descriptions of new menu choices and their bindings to particular HOL
commands.

Though the Refinement Calculator was primarily designed to support
program refinement proofs, it can also be used as a plain TkWinHOL (the
graphical interface to window Library) to support any logical transforma-
tions in the style of window inference. The extensions that are not directly
related to program refinement are General Logic and Lattice. The General
Logic extension adds general logic transformation rules for work with boolean
expressions, and the Lattice extension allows to use abstract lattice proper-
ties in various concrete domains that have been proved to be lattices.

The current refinement-oriented extensions are:

1. Refinement, basic program refinement,

2. Context, handling context information in programs,

3. Dataref, calculational data refinement of blocks,

4. Correctness, verification of total correctness conditions,

5. Procedure, working with procedures and procedure calls.

The Context and Procedure extensions are explained in detail in Chapters
5 and 6. Here we briefly describe the other three extensions.

The Refinement extension provides basic transformations for program
refinement such as merging/splitting of assignment statements, introduc-
tion/elimination of a block, introduction of a while-loop etc. The complete
list of transformation rules may be seen in Figure 3.1. The detailed descrip-
tions of these rules can be found in [26].
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The data refinement extension Dataref[95] supports transformation of
local blocks using calculational data refinement approach briefly described
in Section 2.6. The transformation is implemented using a function DR such
that

|[var a | ini. S ]| v |[var c | (∃a. R ∧ ini). DR(S) ]|
where the abstract statement S refers to the variables v, a, and the concrete
statement DR(S) to v, c. Here variables v are the variables that are not
affected by the transformation. R(a, c, v) is an abstraction relation, relating
the abstract (i.e., (a, v)) and concrete (i.e., (c, v)) variables. The function DR

is defined recursively over the structure of programming language notation.
Using the Correctness extension, the user can prove correctness goals, i.e.,

that certain program (or program fragment) is correct with respect to a given
precondition and a postcondition. The user can start a separate correctness
derivation, or to prove a correctness goal generated as a proof obligation
(for example, after a loop introduction). The relation to be preserved in a
derivation is the backward implication. The extension presents a number of
transformation rules for reducing a correctness goal. After several reduction
steps the goal is usually transformed into a boolean expression which can
be transformed to truth using common logical transformations.

3.7 Conclusions

In this chapter we have described in very general terms the hierarchical in-
frastructure needed to support mechanical program development in a step-
wise refinement fashion. This infrastructure is used as the background of
our work presented in this thesis. In the next three chapters we present our
implementations of three extensions of the Refinement Calculator (Lattice,
Context, and Procedure) in more detail. These extensions demonstrate a va-
riety of different mathematical problems that one has to cope with in order
to develop provably correct programs.

Independently of the Refinement Calculator tool described in this chap-
ter, a refinement tool called PRT[29, 30] has been developed by a group at
the University of Queensland. PRT is built on top of the Ergo[102] theorem
prover which also supports the window inference style of reasoning. The
underlying logic of the PRT tool is a purpose-built modal logic. Program
statements, predicates, program variables and logic variables are treated as
separate syntactic classes in this logic. In some aspects PRT surpasses the
Refinement Calculator, like

• better visualisation and management of a proof tree;
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• automatic selection of a subset of transformation rules that are appli-
cable to the current focus;

• the use of meta-variables in refinement proofs.

However, the main advantage of the Refinement Calculator comparing
to PRT is its better reliability. This is related to the fact that its underlying
logic (higher-order logic) can be incrementally extended in a secure way, i.e.,
by making conservative extensions. The predicate transformer semantics of
the programming language used in the Refinement Calculator is described
as such a definitional (conservative) extension of higher-order logic. In the
modal logic used in PRT, the only way to achieve the same effect is by
assertion of new axioms. Therefore, using the Refinement Calculator for
refinement proofs gives us a higher degree of confidence in their soundness.
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Chapter 4

The Lattice Extension

4.1 Introduction

In this chapter we describe the implementation of the Lattice extension of the
Refinement Calculator. This extension provides the necessary infrastructure
for using properties of abstract lattices when working with concrete domains
that have been proved to be instances of lattices.

What is the motivation behind this work? Working with formalised
concepts of program refinement [12, 108], we have encountered structures
that are instances of lattices on different abstraction levels of the theory. In
this chapter we show how it is possible to create a single abstract theory of
lattices in HOL, which can then be instantiated in different ways and used
efficiently when reasoning within these structures. Thus we prove properties
of lattices once and for all in the abstract theory. When one has an instance
of a lattice (i.e., when a certain structure is shown to satisfy the defining
properties of lattices), then the theorems are easily shown to hold for this
instance as well. The basic principles of abstract theories are taken from
Gunter’s work[50] on abstract group theory in HOL.

In this chapter we also explain how lattice properties can be used in
derivations using the window inference style of formal reasoning[48]. We
extend window inference with new transformation and window rules for
working with lattices. The transformation rules for lattices allow us to
introduce and eliminate lattice constructs in the style of natural deduction,
while the window rules for lattices allow us to focus on some subcomponent
and do local transformations using context monotonicity properties of lattice
constructs.

Furthermore, we show how our transformation rules and other infras-

37
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tructure for transformational reasoning work together with the Refinement
Calculator tool. The implementation is extensible; users can add new in-
stances of lattices and all the existing transformation rules are then available
for the added structures.

4.2 Formalising Lattice Theory in HOL

We start by considering what lattices are and how they can be formalized in
HOL. The basic ideas of formalising lattice theory in HOL are described in
more detail by von Wright[107]. We reuse most of the basic definitions and
some of the theorems presented in this work. Our additions include some
new properties of general meets and joins, and also of fixpoint constructs
proved as HOL theorems. In the second part of this section, we present our
implementation of inference rules for lattices that allow us to use abstract
lattice properties conveniently in the style of natural deduction.

4.2.1 Doing Algebra in HOL

Theories of algebra generally assume an underlying set of anonymous ele-
ments and operators that work on these elements. Examples of algebraic
theories are the theories of groups and lattices. Group theory in HOL is de-
scribed by Gunter [50], with the underlying set represented by its character-
istic function and n-ary operators represented by n-ary (curried) functions.
The same approach can be used for other theories of algebra as well.

Consider the theory of posets (partially ordered sets) as an example. As-
sume that (A,v) is a poset, where the elements of A belong to an unspecified
type α. The partial order v is formalised as a function po : α → α → bool
with the following interpretation: if x and y are elements of A then po x y
holds if and only if x v y. In HOL, we define the predicate POSET so that
POSET(A,po) holds if and only if po satisfies the properties of reflexivity,
antisymmetry and transitivity on A. In HOL the definitional theorem is as
follows:

POSET_DEF =
`def POSET(A,po) =

(∀ x. A x ⇒po x x) ∧
(∀ x y. A x ∧ A y ⇒(po x y ∧ po y x ⇒ (x=y))) ∧
(∀ x y z. A x ∧ A y ∧ A z ⇒(po x y ∧ po y z ⇒ po x z))

Theorems proved in the theory of posets will generally have an assumption
stating that the set under consideration is a poset.
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From now on we consistently work with structures where the underlying
set is a whole type, i.e., universal set U = (λx : α • T ). Everything we
do could also be done with subsets of U , but this would add membership
conditions to almost all definitions and theorems which would make them
(even) harder to read.

4.2.2 What is a Lattice?

We show now how basic definitions and properties of lattices are formalised
in HOL. We first recall some basic concepts of lattices. Then we explain
how to define lattices, meets, joins etc. in the HOL system.

We assume that the reader is familiar with the concepts of partial orders,
meets (greatest lower bounds) and joins (least upper bounds).

A partially ordered set (A,v) is a lattice if the meet (greatest lower
bound) x u y and the join (least upper bound) x t y exist for arbitrary
elements x and y in A. If every subset B of the set A has the meet uB and
the join tB in A we say that (A,v) is a complete lattice. The least (bottom)
element of a complete lattice is denoted ⊥ and the greatest (top) element
is denoted >. If (A,v) is a complete lattice where the following conditions
hold for arbitrary x ∈ A and B ⊆ A:

x u (tB) = (ty ∈ B • x u y)
x t (uB) = (uy ∈ B • x t y)

we say that (A,v) is infinitely distributive. Finally, a (complete) boolean
lattice is an infinitely distributive lattice where every element x has an unique
inverse x−1 satisfying

x u x−1 = ⊥ and x t x−1 = >

4.2.3 Definitions

We define lattices in the same way as we defined posets above; the defining
theorem states that in order to be a lattice, a set must be a poset and every
pair of elements must have a greatest lower bound (meet) and a least upper
bound (join):

LAT_DEF =
`def LAT(U,po) =

POSET(U,po) ∧
(∀ a b. (∃ m. po m a ∧ po m b ∧

(∀ m′. po m′ a ∧ po m′ b ⇒ po m′ m)) ∧
(∃ j. po a j ∧ po b j ∧

(∀ j′. po a j′ ∧ po b j′ ⇒ po j j′))
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The (binary) meet and join operators can now be defined using Hilbert’s
choice operator ε. The defining theorem for a binary meet is as follows:

meet2_DEF =
`def meet2(U,po) a b =

(ε m. po m a ∧ po m b ∧
(∀ m′. po m′ a ∧ po m′ b ⇒ po m′ m))

and a binary join, join2, is defined dually. Note that the first argument
of the constants POSET, LAT and meet2 is a pair (U,po) which indicates
the lattice under consideration. Note also that the universal set U in the
definitions is redundant in the sense that it can easily be inferred from the
type of the ordering po. We left it here only for the sake of clarity.

4.2.4 Basic Properties

The definitions of meet2 and join2 are hard to work with in practice, due to
the occurrences of the choice operator ε. We want to reason about lattices
in the ordinary mathematical way, relying on the characteristic properties of
meets and joins: idempotency, commutativity, associativity and absorption,
as well as on the identities relating meets and joins to the partial order.
Once these properties are proved, we can reason about lattices much as we
do in ordinary mathematics.

The proofs of the characteristic properties of the meet and join operators
are quite straightforward. We show as examples the theorems about idem-
potence and commutativity of a binary meet (other properties are defined
similarly):

meet2_idemp =
LAT(U,po) ` meet2(U,po) a a = a

meet2_comm =
LAT(U,po) ` meet2(U,po) a b = meet2(U,po) b a

4.2.5 Complete and Boolean Lattices

We define complete lattices, infinitely distributive lattices and boolean lat-
tices using the same principles as above. We show only definitions of com-
plete, distributive and boolean lattices, general meets and bottom elements
(general joins and top elements are defined dually):
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CLAT_DEF =
`def CLAT(U,po) =

LAT(U,po) ∧
(∀ B. (∃ m. (∀ x. B x ⇒ po m x) ∧

(∀ m′. (∀ x. B x ⇒ po m′ x) ⇒ po m′ m)) ∧
(∃ j. (∀ x. B x ⇒ po x j) ∧

(∀ j′. (∀ x. B x ⇒ po x j′) ⇒ po j j′)))

meet_DEF =
`def meet(U,po) B =

(ε m. (∀ x. B x ⇒ po m x) ∧
(∀ m′. (∀ x. B x ⇒ po m′ x) ⇒ po m′ m))

bot_DEF =
`def bot(U,po) = (ε b. ∀ x. po b x)

Now we can define infinitely distributive and boolean lattices:

DLAT_DEF =
`def DLAT(U,po) =

CLAT(U,po) ∧
(∀ a. ∀ B.

(meet2(U,po) a (join(U,po) B) =
join(U,po) (λ x.∃ y. B y ∧ (x = meet2(U,po) a y))) ∧

(join2(U,po) a (meet(U,po) B) =
meet(U,po) (λ x.∃ y. B y ∧ (x = join2(U,po) a y))))

BLAT_DEF =
`def BLAT(U,po) =

DLAT(U,po) ∧
(∀ a. ∃ a′. (meet2(U,po) a a′ = bot(U,po)) ∧

(join2(U,po) a a′ = top(U,po)))

Inverses are defined in the obvious way (the definition of BLAT guarantees
that inverses exist in boolean lattices). The HOL-proof that inverses are
unique is quite complicated; it involves both the basic properties of meets
and joins and the infinite distributivity properties.

4.2.6 Fixpoints

Monotonicity of a function over a complete lattice guarantees the existence of
(least and greatest) fixpoints which can be very useful for defining recursion
and iteration. Recall that the fixpoints of a function f : α → α are the
solutions of the equation f. x = x.
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The Knaster-Tarski theorem[100] gives the following explicit construc-
tions of the least (µf) and the greatest (νf) fixpoints:

µf = (ux ∈ A | f x v x • x)
νf = (tx ∈ A | x v f x • x)

where (A,v) is a complete lattice and f is a monotonic function on A.
First we define the monotonicity property of functions on lattice:

Lmono_DEF =
`def Lmono(U,po) f =

(∀ x y. po x y ⇒ po (f x) (f y))

Then we define the least fixpoint using the characterisation given above
(the definition of the greatest fixpoint is dual):

lfix_DEF =
`def lfix(U,po) f =

meet (U,po) (λ x. po (f x) x)

Using these definition we can prove basic properties of fixpoints. Each
such theorem will have assumptions stating that the type under considera-
tion is a complete lattice and the function is monotonic on this lattice.

4.2.7 Inference Rules for Lattices

Abstract lattices introduce special constructs to operate with – binary meets
and joins, general meets and joins, tops and bottoms. It is convenient to
work with them using the style of natural deduction, with special inference
rules for introduction and elimination of different lattice constructs. Such
rules are useful when the aim is to prove a theorem of the form ` t v t′

by stepwise transformational reasoning, i.e., by proving first ` t v t1, then
` t1 v t2 etc. up to ` tn v t′.

Our inference rules for introducing and eliminating lattice constructs
differ slightly from the traditional rules for logical connectives. This is be-
cause we want to express the rules as properties of the lattice ordering. The
names “introduction” and “elimination” here refer to the fact that the spe-
cific construct is introduced (or eliminated) when we move from the left to
the right hand side of the ordering. The advantages of this approach will
become clear in Section 4 where we consider reasoning about lattices using
the window Library of the HOL system.
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Below we present the inference rules for the basic lattice constructs[15].
For a binary meet we have the following rules:

Φ ` s v t Φ′ ` s v t′

Φ ∪ Φ′ ` s v t u t′
(binary u introduction)

` t u t′ v t ` t u t′ v t′ (binary u elimination)

For a general meet the rules are as follows:

Φ, v ∈ I ` s v t

Φ ` s v (uv ∈ I • t)
• v not free in s, I or Φ

(general u introduction)

t′ ∈ I ` (uv ∈ I • t) v t[v/t′]
• t′ is free for v in t

(general u elimination)

The rules for joins are dual.
For the least fixpoint we have the following introduction and elimination

rules: ∀i • Ci v f(tj | j < i • Cj)
(ti ∈ Nat • Ci) v µf

(µ introduction)

f x v x

µf v x
(µ elimination)

where C1, C2, ... is a sequence of lattice elements and f is a monotonic func-
tion on complete lattice. The first rule is very useful for recursion introduc-
tion on concrete domains that turn out to be complete lattices. We show
later that, for example, the do-loop introduction rule can be derived from a
specialisation of this rule. The rules for the greatest fixpoint are dual.
For bottom and top the rules are as follows:

Φ ` ⊥ v t (bottom elimination)

Φ ` t v > (top introduction)

In addition to these rules, there are inference rules expressing mono-
tonicity properties of lattice constructs. For example, the rule stating that
a binary meet is monotonic in its left argument is:

Φ ` t v t′

Φ ` t u s v t′ u s
(left monotonicity of binary u)

Similar rules exist for the right argument of a binary meet as well as for
both arguments of a binary join.



44 CHAPTER 4. THE LATTICE EXTENSION

For general meets (uv ∈ I • s), we have monotonicity in the body s and
antimonotonicity in the index set I of the argument (as a set, I belongs to
a powerset lattice ordered by set inclusion):

Φ, v ∈ I ` s v s′

Φ ` (uv ∈ I • s) v (uv ∈ I • s′)
• v not free in s, I or Φ

(monotonicity of body of u)

Φ ` I ⊇ I ′

Φ ` (uv ∈ I • s) v (uv ∈ I ′ • s)
(antimonotonicity of index set of u)

For general joins (tv ∈ I • s), we have monotonicity in both the body s
and the index set I of the the argument.

All these rules are implemented in HOL as SML functions taking as
arguments a term (representing the left hand side of the ordering in the
conclusion expression) and one or several theorems (hypotheses of the in-
ference rule) and returning the theorem in the conclusion of the rule. For
example, the inference rule for the left monotonicity of the binary meet op-
erator is implemented as the SML function MEET2 MONO LEFT which takes a
term of the form t u s and a theorem of the form ` t v t′ and produces
the new theorem of the form ` t u s v t′ u s.

In Section 4.4 we show how the rules presented here can be used in
transformational reasoning in the style of window inference.

4.3 Using Lattice Properties in Various Domains

We now consider concrete examples of lattices encountered in various do-
mains and show how abstract lattices (as they were formalised in the pre-
ceding section) can be instantiated in the HOL system.

4.3.1 Concrete Instances of Lattices

We can encounter concrete lattices in various contexts. We start with the
most commonplace domain in classical logic - truth values.

The truth values with implication as the ordering form a complete,
boolean and totally ordered lattice. Other logical connectives can be treated
as lattice operations as well (conjunction is a binary meet, disjunction is a
binary join, and negation is an inverse). The constants F and T are the bot-
tom and top elements of the lattice. The bounded universal quantification
(∀v ∈ I • t) stands for a general meet, and bounded existential quantification
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(∃v ∈ I • t) for a general join. Thus the truth values form a very specific
and restricted lattice structure with many useful properties.

Pointwise extension is a general method by which operations on a type
α can be lifted to operations on functions from some type β to α. If we
introduce an ordering on this new type β → α by pointwise extension, i.e.,

f vβ→α g = (∀x : β • f. x vα g. x)

then the new type β → α inherits the property of being a lattice, as well
as completeness, distributivity, and the property of being a boolean lattice.
The lattice operations in β → α are defined in terms of the corresponding
operations on α by pointwise extension.

As we know, bool is a complete boolean lattice. Using pointwise exten-
sion, we derive that α → bool (predicates or subsets of α) is a complete
boolean lattice, for arbitrary type α. The ordering in this lattice is defined
by pointwise extension:

p ⊆ q = (∀x : α • p. x ⇒ q. x)

Other lattice operations are also lifted to the new lattice by pointwise
extension. For example, binary meet in the predicate lattice is defined as

p ∩ q = (λx : α • p. x ∧ q. x)

Doing one more step, we derive that relations (as functions β → α →
bool) form a complete boolean lattice as well.

As the last example of concrete lattices, we take a lattice that is not
constructed by pointwise extension. Consider finite sequences of natural
numbers (or finite sequences of some other ordered type). The ordering is
defined as a lexicographic ordering:

s v s′ = (s =<>)
∨ ((s′ 6=<>) ∧ (hd. s ≤ hd. s′))
∨((s′ 6=<>) ∧ (hd. s = hd. s′) ∧ (tail. s v tail. s′))

It is easy to show that this yields a lattice but not a complete lattice
because it is unbounded from the top, and, therefore, general joins need not
exist.
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4.3.2 Refinement Calculus Theory

Predicates are only one of many interesting lattice structures, others in-
clude imperative programs ordered by program refinement. In particular,
we consider lattice structures found in the refinement calculus theory.

Recall that the program state in the theory is modelled as a polymorphic
type α. Above, we showed that state predicates (functions α → bool) and
state relations (functions β → α → bool) are complete boolean lattices.
Using pointwise extension for state predicates once again results in the type
(β → bool) → (α → bool) (predicate transformers) which is also a complete
boolean lattice. The ordering on this lattice is program refinement ordering
defined in the usual way:

S v T = (∀q : β → bool • S. q ⊆ T . q)

Note that we have constructed a pointwise extension hierarchy of types
starting from bool. At all levels of this hierarchy we have complete boolean
lattices and we can use all properties of abstract lattices of this kind that
were mentioned in Section 4.2.

4.3.3 Instantiation of the Abstract Lattice Theory

In Section 4.2 we showed how the HOL theory of abstract lattices can be
created. Just above we presented several concrete domains which turned
out to be lattices of some kind. How can the properties of abstract lattices
be used in the concrete domains?

In order to instantiate the abstract lattice theory, one needs a partial
order on a type satisfying the defining property of lattices (complete lattices
etc.). As our example, we take predicates defined as functions of the type
α → bool.

The partial order on predicates is the universal implication order (lifted
from the booleans). Recall that the universal implication is defined as the
infix constant implies in our HOL theory (see Section 3.3):

implies_DEF =
`def p implies q = (∀ s. p s ⇒ q s)

The operations on predicates and, or and not are also defined by lifting the
corresponding operations on truth values.

We can now use the HOL system to prove that the predicates of the
given type α → bool are in fact a lattice:
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pred_lat =
` LAT(U,implies)

According to the definition of LAT, one must prove that implies is a partial
order, and both a meet and a join exist for every pair of lattice elements.
Choosing and as the meet operator and or as the join operator, we can easily
prove this theorem.

The predicates are, of course, also a boolean lattice. To prove this, we
first prove that they form a complete lattice with with glb as the meet
operator and lub as the join operator:

pred_clat =
` CLAT(U,implies)

The greatest lower bound glb and the least upper bound lub operations
on sets of predicates are defined as follows (see Section 3.3):

glb_DEF =
`def glb P = (λ s. ∀ p. P p ⇒ p s)

lub_DEF =
`def lub P = (λ s. ∃ p. P p ∧ p s)

The proof in HOL that the predicates satisfy the infinite distributivity
property is tedious but not difficult. Finally, the predicates can be proved
to be a boolean lattice with not as the inverse operator.

The next step would be instantiation and specialisation of inference rules
and general theorems for lattices. But this is not necessary because these
actions are done automatically in the inference rules and special rewrite rules
for lattices, using a database of preproved lattices and lattice instantiations.
The implementation details are described in Section 4.5.

4.4 Using Window Inference

In this section we show how window inference can be used when working
with lattices. Window inference and its HOL implementation were described
in Section 3.4.

4.4.1 Transformation and Window Rules for Lattices

The ordering relation on lattices is a partial order and therefore also a pre-
order. Thus, the lattice ordering can be used as the relation to be preserved
in the window inference system.
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As explained in Section 3.4, in order to transform the focus in the window
inference system, one must provide special SML functions called transfor-
mation rules. We have written a transformation rule for each introduction
and elimination rule presented in Section 4.2.7. Recall that the conclusion
parts of our inference rules are of the form t v t′ where the relation is the
lattice ordering. If the focus expression can be matched to the left hand side
of the conclusion expression, then the conclusion of an inference rule is the
required theorem for transforming the focus.

If the conclusion of an inference rule has hypotheses, then these hypothe-
ses become proof obligations. If some hypothesis can be matched to one of
the contextual assumptions, then it is discharged automatically. All nec-
essary instantiations of the inference rules of an abstract lattice are done
automatically as well.

Window rules of the window inference system allow us to open a window
on some subterm of the current focus and transform it, using the fact that
the focus is monotonic in the position where the subterm occurs. Because
the lattice constructs are monotonic (or antimonotonic) in their arguments
(as explained in Section 4.2.7), we have written one window rule for each
argument position of each lattice operator.

For example, the window rule for opening a window on the left argument
of a binary meet uses the fact that a binary meet is monotonic in its left
argument (see the monotonicity rule for a binary meet in Section 4.2.7).
Similar rules are implemented for the right argument of a binary meet as
well as for both arguments of a binary join.

Similarly, we have implemented two window rules for a general meet
(uv ∈ I • s) (one for the index set I and one for the body expression s) and
also two rules for a general join.

4.4.2 Basic Rewrites

Because equality is the smallest preorder relation, it is always possible to
transform the current focus using equational theorems (provided the left
hand side of the equation matches the current focus). For this purpose the
command REWRITE WIN is used in the window inference system. It takes a
window stack and a list of equational theorems and produces the new window
stack where the focus expression is transformed (rewritten) according to the
equational theorems provided.

It is convenient to have a similar rewrite rule for working with lattices
as well. We have implemented such a rule (called LAT REWRITE WIN) which
does all necessary instantiations in order to make an equational theorem ex-
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pressing some basic property of the abstract lattice applicable to the current
focus. LAT REWRITE WIN with the empty list as an argument transforms the
focus using a list of trivial properties of abstract lattices (such as s t s = s
and s u > = s).

4.4.3 Example of a Derivation

Here we show a simple example of a derivation in the window inference
system using general lattice properties. As concrete domain, we take the
predicate lattice instantiated in the way described in Section 4.3.3 (we as-
sume that the relation implies has been added as a relation that is sup-
ported in the window inference system). We set up the window stack with
p or (q and r) as the focus, r implies p as the assumption and implies as
the relation to be preserved. The HOL window Library prints this stack as
follows:

! r implies p
implies * p or (q and r)

Here the first line is the contextual assumption (marked with the excla-
mation mark) and the second line contains the relation to be preserved and
the current focus (separated by the asterisk).

Let us now focus on the right subterm of the focus. The window inference
system allows this because or (the binary join operator) is monotonic in its
right argument and we have added the corresponding window rule for the
abstract case to the system. All necessary instantiations to the concrete
level of predicates are done automatically.

To open a window on a subterm in the window inference system, one has
to use the command OPEN WIN which takes as an argument the path describ-
ing the position of the desired subterm within the focus. A path is a list
made up of the HOL constructors RATOR, RAND and BODY which indicate how
one should navigate in the HOL abstract syntax tree to reach the subterm.
Intuitively RATOR means “take the operator (t1) of a function application
t1 t2”, RAND means “take the operand (t2) of a function application t1 t2”,
and BODY means “take the body (t) of an abstraction (λv. t)”.

The right subterm of the focus can be reached as the operand of the
function application (or p) (q and r) in the internal HOL representation:

- DO(OPEN_WIN [RAND]);
! r implies p

implies * q and r

In the same way we can open a window on r using the fact that a
binary meet is monotonic in its right argument as well. Then the contextual
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assumption can be used to transform the focus. This is done with the
command TRANSFORM WIN. This command takes a theorem of the form s R t,
where R is the transformation relation, and, if the left hand side expression
in the theorem matches the current focus, transforms the focus accordingly:

- DO(OPEN_WIN [RAND]);
- DO(TRANSFORM_WIN (ASSUME (--‘r implies p‘--)));
- DO(CLOSE_WIN);

! r implies p
implies * q and p

Next, we simplify the focus using the transformation rule for binary meet
elimination (a u b v b):

- DO(MEET2_ELIM_WIN2);
! r implies p

implies * p

Closing the window with the command CLOSE WIN gives us the trans-
formed version of our initial expression:

- DO(CLOSE_WIN);
! r implies p

implies * p or p

In the final step, the default rewrite applies the idempotence property
of binary join (a t a = a):

- DO(LAT_REWRITE_WIN[]);
! r implies p

implies * p

With the command WIN THM, we can now retrieve the theorem that has
been proved in the derivation:

- WIN_THM();
val it =

r implies p |- p or (q and r) implies p : thm

Note that our steps in this example are independent of what concrete
lattice we are working with. If we had some other lattice instead of the
predicate one, our actions would be absolutely the same, and the end result
would have been another instance of the theorem r v p ` p t (q u r) v p.
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4.5 Implementation Issues

In the previous section we showed how to use lattice properties in derivations
working with window Library in HOL. However, working with subexpres-
sions (selecting subexpression by path, regrouping expressions by explicit
application of commutativity and associativity, etc.) is very tedious with
the standard command line interface to HOL.

4.5.1 The Refinement Calculator

We have added general lattice transformations to the system and made them
available in a separate menu. When a user chooses a menu alternative, the
appropriate transformation rule is applied to the current focus. If the rule
requires arguments, then a dialog window pops up and the user can type
in them. It is also possible to indicate (by pointing and clicking) that a
transformation should be applied to a specific subterm of the current focus,
rather than to the whole focus.

It should be pointed out that the lattice transformations can also be used
in ordinary proofs, since the booleans with forward or backward implication
as the ordering are a complete boolean lattices. Thus transforming a boolean
expression to truth while preserving backward implication is a special case
of preserving a lattice ordering.

4.5.2 A Database of Concrete Lattices

The window inference system stores information about supported relations
and window rules in a database. Similarly, our lattice tool has a small
database with information about preproved lattices and lattice instantia-
tions. By default, there are theorems that show (among others) that bool,
predicates and predicate transformers are complete boolean lattices. In all
situations, when properties of such concrete lattices are used, correspond-
ing assumptions about being (complete, boolean) lattice are automatically
discharged. The database also contains information about lattice instanti-
ations, i.e., theorems of the form < operator > = < lattice construct >.
For example,

` ∧ = meet2(U,⇒)

is the binary meet instantiation for the lattice bool with the forward impli-
cation ordering.

Before a lattice transformation is applied to the focus, all concrete lattice
operators (i.e., instantiations of a meet, a join etc.) are rewritten into ab-
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stract form. After the transformation is done, the converse rewriting takes
place. Thus one is not forced always to use the abstract form of lattice con-
structs in order to transform expressions according to some lattice property.

The user can add further lattice structures to the database, by supply-
ing the appropriate theorems (i.e., theorems stating that the structure is a
lattice, that a specific operator is a meet etc).

4.5.3 Pretty Printer

We have extended the parser and the pretty-printer to allow traditional
mathematical syntax for binary and general meets and joins: a u b, a t b,
(uv ∈ I • s) and (tv ∈ I • s) rather than the the current HOL syntax which
is hard to read. For example, the HOL syntax for general meet is

meet (U, po) (λx. ∃v. I v ∧ (x = s))

where po is the ordering.
With pretty-printing we can still open subwindows on subexpressions of

the focus and transform them using applicable window rules. The pretty-
printer automatically translates the path to the subexpression on the screen
to the actual path in abstract HOL syntax.

4.5.4 Example of a Refinement

Let us try a simple refinement example using the Refinement Calculator.
Suppose we are refining the program containing as a subcomponent the
nondeterministic assignment statement “x := x′. x′ = 0 ∨ x′ = 1” (x is as-
signed either 0 or 1).

Recall that in the refinement calculus theory a nondeterministic assign-
ment is defined as a predicate transformer in the form

(λq : β → bool • λσ : α • ∀γ : β • R. σ. γ ⇒ q. γ)

where q is a postcondition, σ an initial state, γ a final state and R is a
relation on initial and final states.

We have proved that a nondeterministic assignment in general is equiv-
alent to a general meet on predicate transformers of the form

(u (σ, γ) ∈ R • (λq • λσ′ • (σ′ = σ) ⇒ q. γ) ).

Intuitively, this means a general meet on all such statements (predicate
transformers) which started in any state σ ∈ DomR reach a state γ such
that R. σ. γ holds.
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Therefore, focusing on the body of our nondeterministic assignment

x := x′. x′ = 0 ∨ x′ = 1

we in fact focus on the index set of a general meet (of a special form).
Because a general meet is antimonotonic in its index set (see Section 4.2.7),
we arrive at the following starting expression for the subderivation:

λ(x, x′). x′ = 0 ∨ x′ = 1

The relation to be preserved is implied by - the ordering reverse to
the implies ordering on predicates. The easiest way to refine such an
expression is to focus on the body of the lambda expression, thus moving
from the predicate to the boolean level. In this case the following focus is
constructed:

x′ = 0 ∨ x′ = 1

The relation to be preserved now is ⇐ (backward implication) 1. (bool,⇐
) is a complete boolean lattice dual to the (bool,⇒) lattice. Because of
duality ∨(disjunction) is binary meet in the lattice (bool,⇐). Therefore, we
can apply binary meet elimination rule to simplify the current expression to
the left disjunct. This results in the following focus:

x′ = 0

Closing windows yields the following refinement of the initial subcompo-
nent:

x := x′. x′ = 0.

It is easy to show that such a nondeterministic assignment is equivalent
to the ordinary assignment x:=0. Applying the appropriate transformation
rule we finish our derivation. The final result is shown as the theorem (in
the pretty-printed form):

` (x := x′. x′ = 0 ∨ x′ = 1) ref (x := 0).

The following structured derivation[9] describes the structure of the
proof.

1We could open a window on the boolean expression in one step. The window inference
system would then chain the necessary window rules on our behalf.
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` x := x′. x′ = 0 ∨ x′ = 1
v {focusing on the body expression}

• (λ(x, x′) • x′ = 0 ∨ x′ = 1)
⊇ {focusing inside of the abstraction}

• x′ = 0 ∨ x′ = 1
⇐ {applying meet elimination}

x′ = 0
(λ(x, x′) • x′ = 0)

x := x′. x′ = 0
= {transforming the nondeterministic assignment}

x := 0

Indentations (marked by •) indicate subderivations needed to justify certain
steps in the derivation.

This example shows how the nondeterministic assignment statement can
be refined using lattice properties. The body of the nondeterministic assign-
ment is very simple in the example but the same principles could be applied
for more complex cases as well.

4.6 Conclusions

The work presented in this chapter can be seen as an example of imple-
mentation of abstract theories in the HOL system. Rather than changing
the logic or the system or adding extra layers of syntax, we have created
a general theory of lattices and provided ways of instantiating this theory
to concrete lattices. This means that the same underlying theory can be
used for transformational reasoning in situations that on the surface seem
to have very little in common, such as backward proof (transforming boolean
terms under backward implication) and program development (transforming
programs under a correctness preserving refinement relation).

Similar formalisations of abstract theories were implemented in HOL by
Gunter[51] and Windley[105]. Regensburger[92] has formalised the theory
of complete partial orders (cpo’s) in Isabelle using type classes. His work
is a genuine technical advance over prior work by Agerholm[1] on cpo’s in
HOL. However, Isabelle’s type classes allow a type to be a lattice only in



4.6. CONCLUSIONS 55

one way (with one ordering relation). Our approach is more flexible in this
sense.

Recently Kammüller[60, 61] has presented a method of implementing
abstract algebraic structures in Isabelle using so called dependent types[73,
72]. He constructs dependent types as Isabelle/HOL sets and uses them
to represent modular structures (such as abstract theories) by semantical
embedding. Furthermore, patterns of algebraic structures are represented
using the very recent concept of record types in Isabelle[88]. The main
advantage of Kammüller’s approach comparing to ours is that the algebras
themselves remain first class citizens of the logic. Therefore, it is possible
to define operations on abstract theories as functions of higher-order logic.

The system described in this chapter depends heavily on the Window In-
ference library of the HOL system. The Refinement Calculator tool provides
a good interface and numerous instances of lattices, but it is also possible to
use our system with only the standard HOL system. A moderate amount
of pretty-printing and parsing is still needed to make the system easy to use
for someone who is not familiar with the HOL system.

Throughout the rest of the Thesis we focus on programs formalised
within the refinement calculus framework. We use the properties of abstract
lattices to reason about programs in this formalisation.
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Chapter 5

The Context Extension

5.1 Introduction

In this chapter we describe two approaches for context handling in the re-
finement calculus framework. They show how information relevant for total
correctness can be transported from one place of a program to another and
then used for refinement of program components. Both approaches have
been formalised in the HOL theorem proving system and integrated as a
separate extension of the Refinement Calculator.

Programs can be very large and complex. Therefore, it is usually very
difficult to prove refinement of the whole program directly. Instead, one can
refine a program by focusing on some small subcomponent and replacing it
with another which is a refinement of the first one. Such transformations
are possible whenever the context of the selected component is monotonic
with respect to the refinement relation.

In practice, we usually do not need refinements that are correct in any
context; it is sufficient if the refinement of a subcomponent is correct in
the specific context that it occurs in. Such refinements can be handled
by introducing context information into the program. There are two dual
approaches for handling context information in the refinement calculus - by
propagating context assertions and by propagating context assumptions.

By propagating context assertions in a program we collect information
about the program text surrounding a certain part of a program. Context
information is accumulated in the assertion predicate and can be used for
refinement of the following program subcomponents. The dual approach
with context assumptions allows us to assume facts that are expected to be
true in a certain place of our program. Using this information we can make
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program refinements that are correct provided our introduced assumption
holds. This proviso can then be discharged by propagating the assumption
backwards taking the preceding context into account.

In this chapter we describe how both approaches for handling context
information have been implemented in the Refinement Calculator. We have
extended the Refinement Calculator with special transformation and window
rules for working with program context. The methods of context handling
and their formalisation in the HOL theorem prover are described in the first
half of the chapter, while the second half explains how they can be used for
program derivation within the Refinement Calculator tool.

5.2 Handling Context Information

The general problem of using context information can be described as fol-
lows. Assume that we are working with a program statement C containing a
specific substatement S. We write this as C[S] and refer to C as the context
of S. Since statement constructors are monotonic, we can always replace S
by another statement S′ that refines S, and then we have that C[S] v C[S′]
holds.

However, it may be possible to replace S with a statement S′ that does
not refine S in isolation, but where C[S] v C[S′] does hold. We can do
that in the following way. We can find a (reasonably strong) predicate p
such that C[S] = C[{p}; S]. Intuitively this means that we are collecting
information about the context of statement S in the assert statement {p},
so that we may replace S by any command that is a refinement of {p}; S.
A derivation then has the following structure[15]:

C[S]
= {introduce context assertion}

C[{p}; S]
v {prove {p}; S v S′, monotonicity}

C[S′]

A refinement of the form {p}; S v S′ is called a refinement in context
p. It means that we only have to prove refinement between S and S′ for
those states that satisfy the condition p. This is weaker than S v S′, which
requires refinement between S and S′ for every initial state.

Assertions as the statements carrying context information and a num-
ber of rules for handling assertions were introduced by Back in his original
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formulation of the refinement calculus[4].

5.2.1 Context Assertions

For refinement in context to work in practice, we need to find a way of intro-
ducing assertions at different points of a program. We can always introduce
an assertion {true} anywhere in a program because the predicate true holds
independently of a context (formally, {true} = skip ). We then push (prop-
agate) the introduced assertion step by step towards the point where we
want to collect context information. Each propagation step adds new con-
text information about the statement propagated through into the assertion
predicate. This accumulated information can then be used for refinement of
the selected subcomponent as described above. After the refinement is done
the assertion can be discharged (because {p} v skip always holds).

The following simple derivation illustrates the idea.

x := 0; if z = 1 then y := x + z else skip fi

v {introduction of context assertion}
{true}; x := 0; if z = 1 then y := x + z else skip fi

v {assertion propagation through assignment statement}
x := 0; {x = 0}; if z = 1 then y := x + z else skip fi

v {assertion propagation into conditional statement}
x := 0; if z = 1 then {x = 0 ∧ z = 1}; y := x + z else skip fi

v {refinement in context}
x := 0; if z = 1 then {x = 0 ∧ z = 1}; y := 1 else skip fi

v {elimination of assertion}
x := 0; if z = 1 then y := 1 else skip fi

Note that some of the steps here really preserve equality. However, since
refinement is the relation we are interested, we write v even where we could
write =.

The approach of propagating context assertions relies on special rules
for propagating assertions through various statements of the language. The
rules have the form {p}; S v S; {q} where p and q are predicates and v is
refinement relation.
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Lemma 5.1. Context assertions can be propagated forward according to
the following rules:

{p}; skip v skip ; {p}
{p} ; {q} v {q}; {p ∧ q}
{p}; [q] v [q]; {p ∧ q}

{p}; x := e v x := e; {∃x0 • p[x0/x] ∧ (x = e[x0/x])}
{p}; x := x′.Q v x := x′.Q; {∃x0 • p[x0/x] ∧ Q[x0, x/x, x′]}

{p}; if g then S else S′ fi v if g then {p ∧ g}; S else {p ∧ ¬g}; S′ fi
if g then S; {q} else S′; {q′} fi v if g then S else S′ fi ; {q ∨ q′}

{p}; |[ var x|q • S ]| v |[ var x|q • {p ∧ q}; S ]|
|[ var x|q • S; {r} ]| v |[ var x|q • S ]|; {∃x • r}

Proof The detailed derivation of these rules is presented by Back and von
Wright in [15]. 2

Note that each rule deals with assertion propagation through some par-
ticular statement of the refinement calculus theory. Conditional (if-then-
else) and block statements have two separate rules - for propagation from
the outside (in front) into the statement and from inside out of (past) the
statement.

All rules in Lemma 5.1 have been proved as theorems of the HOL theory
of the refinement calculus. Also, we have proved that these rules are “sharp”,
i.e., the assertions on the right hand side of the rules are the strongest
possible. Intuitively this means that the assertion predicates accumulate
the maximum possible amount of context information.

This maximal amount of context information is closely related to the
concept of a strongest postcondition. In fact, for terminating statements
both notions amounts to the same thing. For nonterminating (aborting)
statements the maximal amount of propagated context information is always
the predicate false, while the strongest postcondition is undefined.1

5.2.2 Loops

For loops, a loop invariant can be added as a context assertion. In addition
to the invariant, the guard of the loop gives us information; it always holds

1This is explained by the fact that a strongest postcondition was originally defined in
the partial correctness framework[35].
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when the body is executed and it cannot hold after the loop has terminated.
This is formulated in the following lemma.

Lemma 5.2. Assume that statement S is correct with respect to pre-
postcondition pair (g ∧ p, p). Then context assertion can be added to
while-loop as follows:

{p}; do g → S od v do g → {p ∧ g}; S od; {¬g ∧ p}
This rule works only for a loop invariant, so it cannot be used to prop-

agate an arbitrary context assertion through a loop. The assertion added
into the body of the loop can provide useful context information when the
loop body is refined.

Unfortunately, the context propagation rule presented in Lemma 5.2 is
not sharp, i.e., the predicate of the context assertion after a loop is not
necessarily the strongest possible. The problem of calculating of maxi-
mum possible context information after a loop was investigated earlier by de
Bakker[18] and Back[6]. However, their proposed solution of calculating it
as the disjunction of strongest postconditions over all loop approximations
is impossible to use in practice.

Working with the Refinement Calculator, do-loops are usually intro-
duced using the Loop Introduction transformation rule. At that point the
user is asked to supply (besides other things) the loop guard g and the loop
invariant Inv. Both the loop guard and the invariant are then used to pro-
vide context information (in the form of context assertions) and to formulate
proof obligations necessary to prove correctness of the loop introduction.

Since it is desirable to collect as much context information as possible
via propagation, let us to consider how our results can be improved using
the given loop invariant Inv and loop guard g. First of all, Lemma 5.2 can
be rewritten as an inference rule of the following form:

{g ∧ Inv} c {Inv}
{Inv}; do g → c od v do g → c od; {¬g ∧ Inv} (5.1)

The hypothesis (correctness triple) of this inference rule expresses the fact
that Inv is so called a (strong) invariant of a loop.

Stronger results can be obtained if we ignore initial states from which
the loop body does not terminate (since they lead to the trivial refinement
abort v abort). This is expressed in the following inference rule:

{(c true) ∧ g ∧ Inv} c {Inv}
{Inv}; do g → c od v do g → c od; {¬g ∧ Inv}
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Here, we only require that Inv is a weak invariant of a loop. However, it
can be difficult to calculate the predicate c true so it is often omitted.

In practice, the most typical case of losing context information using
the context propagation rules above is when the given loop invariant is not
strong enough. Let us illustrate this by a simple example. Suppose we are
working with the following program fragment:

{(x = 10) ∧ (y = 0) ∧ (i = 0)};
do i < 20 →

y := y + a[i];
i := i + 1

od

The purpose of the loop in the example is to calculate the sum of all elements
of the subarray a[0..19] and store the value in the variable y. The invariant
sufficient to prove correctness of this loop is

(y = (
∑

j| j < i • a[j])) ∧ (i ≤ 20)

The inference rule (5.1) yields the context assertion

(y = (
∑

j| j < i • a[j])) ∧ (i = 20)

propagated right after the loop. However, this context assertion does not tell
us anything about the possible value of the variable x. Since this variable
is not used in the loop body, it is obvious that x should retain the value it
had before execution of the loop. Therefore, the context assertion after the
loop should include the conjunct x = 10.

This means that the predicate x = 10 itself is an invariant of the loop.
It is known that if Inv1 and Inv2 are invariants of the loop, so is Inv1 ∧
Inv2. The conjunction of all loop invariants would give us the strongest loop
invariant. Therefore, the predicate x = 10 would be part of the strongest
invariant of the loop. However, calculation of the strongest possible invariant
of a loop can be a very difficult task in general.

As an alternative, we consider the problem of propagating additional
context information through a do-loop in cases when the current loop in-
variant is not sufficiently strong. In other words, under what conditions is
the refinement

{p}; do g → c od v do g → c od; {p}
true.
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Let us consider two different cases. In the first case, the predicate can be
propagated through a do-loop, if it is implied by the current loop invariant:

({g ∧ Inv} c {Inv}) ∧ (Inv ⇒ p)
{p}; do g → c od v do g → c od; {p} (5.2)

This rule is the direct consequence of (5.1), using the fact that an assertion
statement is monotonic in its predicate parameter.

In the second case, the predicate is either a loop invariant itself or the
part of a stronger (weak) invariant of a do-loop. This can be formulated as
the following inference rule:

{(c true) ∧ g ∧ Inv ∧ p)} c {p}
{p}; do g → c od v do g → c od; {p} (5.3)

Once again, c true can be omitted.
This rule actually means that the predicate p ∧ Inv is a (weak) invariant

of a loop (though p itself might not be a (weak) invariant), and, therefore,
the predicate p can be propagated through a do-loop according to the rule
(5.2).

The rules (5.2) and (5.3) present two ways to obtain sharper results
by propagating context information through a do-loop. The rule (5.3) is
especially useful since it allows us to propagate any predicate that is part
of the strongest loop invariant. For example, any predicate on program
variables that are unaffected by loop execution can be propagated, according
to this rule.

5.2.3 Refinement in Context

Once context information has been accumulated in the assertion predicate
using the context propagation rules presented above, it can be used for pro-
gram refinement. The general form of refinement in context is C[{p}; S] v
C[S′]. We now present rules for the situations where S has a certain syn-
tactic form.

The rules are given as inference rules. The hypothesis part of each in-
ference rule is of the form p ` e R e′ and the conclusion part is of the form
` {p}; S[e] v {p}; S[e′]. Intuitively, we can understand these rules in the
following way. Suppose we have a statement S containing an expression e as
a subcomponent. In addition, we know that the statement S occurs in the
context p (from the fact that the assertion {p} appears just before S). If in
a separate subderivation we can prove, using the assumption p, that is e is
related to e′ by some (reflexive and transitive) relation R, then we can refine
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our statement S[e] to the statement S[e′]. All the inference rules presented
below are based on the corresponding HOL theorems proved beforehand.

For the assignment statement, we have the following rule:

p ` e = e′

` {p}; x := e v {p}; x := e′

Thus, we can rewrite the right hand side of an assignment statement using
the available context information. The corresponding HOL theorem is as
follows:

` (∀ s. p s ⇒ (e s = e′ s)) ⇒ ({p};(assign e) ref {p};(assign e′))

The rule for the nondeterministic assignment statement is

p ` Q ⊇ R

` {p}; x := x′.Q v {p}; x := x′.R

Thus, we can change the relation of a nondeterministic assignment if we
can prove that the new relation is stronger than the old one, assuming the
accumulated context information.

The rule for the conditional statement is
p ` g = g′

` {p}; if g then S1 else S2 fi v {p}; if g′ then S1 else S2 fi

Using this rule, we can change the guard of a conditional statement. We do
not need additional rules for refining the bodies S1 and S2 of a conditional
statement, since the same results can be achieved by propagating context
information inside the statement using the rules given in the Section 5.2.1.

The rule for the block statement is
p ` q ⊇ q′

` {p}; |[ var x | q. S ]| v {p}; |[ var x | q′. S ]|
Using this rule we can change the initialisation predicate of the block state-
ment, taking context information into account.

Finally, the rule for the while-loop is

p ` g = g′

` {p}; do g → S; {p} od v {p}; do g′ → S; {p} od

This rule states that we can rewrite the loop guard using context information
p only if this predicate is an invariant of the loop.
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5.3 Context Assumptions

The other (dual) approach for handling context information is based on using
assumption statements (this approach was introduced by Morgan [83]). An
assumption statement [p] indicates that predicate p is assumed to be true
at a certain point of the program.

We can always add context assumptions about facts we expect (hope,
guess) to be true in any place of our program (formally, skip v [p] always
holds). This context information can then be used for refinement of the
following program components. However, these refinements will be correct
under the condition that our introduced assumption holds. We usually do
not want to have such assumptions in the final version of our program so
the context assumptions must be discharged. The only way to do this is
to prove that they are in fact true, in the sense that the preceding context
justifies them.

The following method for working with context assumptions is used.
Suppose we want to refine some subcomponent S using the assumption that
predicate p holds. We can then introduce an assume-assert pair using the
following general rule:

S v [p]; {p}; S
(here we really use the rule skip v [p]; {p}). Then we can refine the state-
ment S using the context assertion {p} as described above. Furthermore,
we can propagate the assumption [p] backwards using the rules described
below. Each propagation step tends to weaken the assumption predicate
because the context information about the statement propagated through
is taken into account. If our introduced assumption is in fact legal, then
after a number of propagation steps it will be transformed to [true]. The
statement [true] is equivalent to skip and can therefore be discharged.

Let us try the example from Section 3.1 using the context assumption
approach.

x := 0; if z = 1 then y := x + z else skip fi

v {introduction of context assumption}
x := 0; if z = 1 then [x = 0]; {x = 0}; y := x + z else skip fi

v {refinement in context}
x := 0; if z = 1 then [x = 0]; y := z else skip fi

v {assumption propagation out of the conditional statement}
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x := 0; [x = 0 ∨ z 6= 1]; if z = 1 then y := z else skip fi

v {assumption propagation through assignment statement}
[true]; x := 0; if z = 1 then y := z else skip fi

v {elimination of the assumption}
x := 0; if z = 1 then y := z else skip fi

Similarly, we could assume z = 1 at the same place of the program, use
this assumption for refinement and then get the assumption discharged by
propagating it backwards.

The approach of propagating context assumptions relies on special rules
for propagating assumptions backwards through the various statements of
the language. The rules have the form S; [p] v [p]; S.

Lemma 5.3. Context assumptions can be propagated backwards accord-
ing to the following rules:

skip; [q] v [q]; skip
{p}; [q] v [¬p ∨ q]; {p}
[p]; [q] v [p ∨ q]

x := e; [q] v [ q[e/x] ]; x := e

x := x′.Q; [q] v [∀x′ • Q ⇒ q[x′/x] ]; x := x′.Q
if g then S else S′ fi ; [q] v if g then S; [q] else S′; [q] fi

if g then [q]; S else [q′]; S′ fi v [(g ∧ q) ∨ (¬g ∧ q′)]; if g then S else S′ fi
|[ var x | p • S ]|; [q] v |[ var x | p • S; [q] ]|
|[ var x|p • [q]; S ]| v [∀x • p ⇒ q]; |[ var x|p • S ]|

Proof The detailed derivation of these rules is presented by Back and von
Wright in [15]. 2

Most of these rules are obtained immediately from Lemma 5.1 using the
following general law for conjunctive predicate transformers:

{p}; S v S; {q} ≡ S; [q] v [p]; S

This law shows the duality between context assertions and context assump-
tions.
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Exactly as the rules for assertion propagation, the rules of Lemma 5.3
have been proved as theorems in the HOL system and we have shown that
they are sharp (i.e., the predicates in the propagated context assumptions
are the weakest possible).

For loops, we can propagate a loop invariant backward. Thus, we have

do g → S od; [p] v [p]; do g → S od

provided S is totally correct with respect to precondition g∧p and postcon-
dition p. Unfortunately, this rule does not seem very useful in practice since
it does not give us anything new (by the definition, a loop invariant should
be true before a do-loop anyway).

Propagation of assertions and assumptions easily leads to an explosion
in size of the predicates involved. To achieve more efficiency and flexibility,
we can combine both approaches and make assertions and assumptions meet
“halfway”, cancelling each other. Another way is to modify the predicates
inside assertions and assumptions using monotonicity properties of these
statements:

(p ⊆ q) ⇒ {p} v {q}
(p ⊇ q) ⇒ [ p ] v [ q ]

This makes it possible to rewrite context assertions and assumptions into a
more manageable form.

5.4 Extending the Refinement Calculator

We have implemented the approach for handling context information de-
scribed above as an extension to the Refinement Calculator tool. The ex-
tension includes six transformation rules for working with context assertions
and assumptions as well as a number of window rules that allow us to refine
subcomponents using the accumulated context information.

5.4.1 Transformation Rules for Context Handling

Typically, the work with context assertions (assumptions) within the Refine-
ment Calculus framework can be divided into three separate steps:
1) introduction of a context assertion (assumption) at some place of our
program, 2) propagation of the introduced context assertion (assumption)
through program statements, and 3) elimination of the context assertion
(assumption) after the refinement is done.

For context assertions these three steps are as follows:
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• we introduce a context assertion {true} (usually at the beginning of
the program text);

• we propagate the context assertion forward, accumulating context in-
formation;

• we eliminate the context assertion when it is not needed anymore.

Dually, for context assumptions we have the following steps:

• we introduce a context assumption-assertion pair at some place of our
program;

• we propagate the context assumption backwards taking into account
the preceding context;

• we eliminate the context assumption when it has the form [true].

All these steps are implemented as separate transformation rules. For
context assertions, we have the transformation rules called ADD ASSERTION,
PUSH ASSERTION, and DROP ASSERTION, while, for context assumptions, the
transformation rules are ADD ASSUMPTION, PULL ASSUMPTION, and
DROP ASSUMPTION, respectively. All transformation rules rely on correspond-
ing HOL theorems. For example, the transformation rule for introducing
context assumptions (ADD ASSUMPTION) is derived from the following HOL
theorem, which we have proved in the HOL refinement calculus theory:

` ∀ c p. c ref [p];{p};c

where c is an arbitrary statement and p is a state predicate. The transfor-
mation rule just specialises this theorem according to the current focus (the
statement c) and the context assumption (the predicate p) supplied by the
user.

Similarly, the context assumption eliminating transformation rule
DROP ASSUMPTION relies on the following HOL theorem:

` ∀ c. [true];c = c

The corresponding theorems for context assertions are dual.
The context propagation transformation rules for context assertions and

context assumptions (PUSH ASSERT and PULL ASSUMPTION respectively) use
the propagation rules outlined in Lemmas 5.1-5.3. Each rule is proved as
a separate HOL theorem. For example, the theorems for propagation of
context assertions and context assumptions into conditional (if-then-else)
statement are as follows:
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` ∀ p g c1 c2. {p}; if g then c1 else c2 fi ref

if g then {p andd g};c1 else {p andd not g};c2 fi

` ∀ p g c1 c2. if g then c1 else c2 fi; [p] ref

if g then c1;[p] else c2;[p] fi

The transformation rules PUSH ASSERT and PULL ASSUMPTION analyse
the current focus, distinguishing two basic cases – propagation of the asser-
tion (assumption) through a sequential composition (the focus of the form
{p}; S or S; [p]) and propagation of the assertion (assumption) from inside of
conditional and block statements. After this they try to find suitable instan-
tiations for universally quantified variables in the appropriate propagation
theorems. The result is a HOL theorem that can be used to transform the
current focus according to one of the propagation rules of Lemmas 5.1-5.3.

5.4.2 Window Rules for Context Handling

In Section 5.2.3 we presented the rules for refinement in context for concrete
statements. These rules were presented as inference rules. The hypothesis
part of such a rule is of the form p ` eR e′ (where R is a reflexive and transi-
tive relation) and the conclusion part is of the form ` {p}; S[e] v {p}; S[e′].
All these rules are implemented as window rules in the Refinement Calcu-
lator. Let us explain how they work.

If our current focus is the expression {p}; S[e] and we want to open a
subwindow on subexpression e, the system starts a subderivation with focus
e, relation R and assumption p. When we finish the subderivation (after
expression e has been transformed to some e′ using the context information
p), the system generates the theorem ` {p}; S[e] v {p}; S[e′] and automat-
ically transforms the current focus to {p}; S[e′]. Thus, window rules allow
us to refine program components using accumulated context information in
a very convenient way.

5.4.3 Example

Let us try a simple program refinement example with the Refinement Cal-
culator using the context assumption technique described above. Our initial
program is entered as a starting point for the derivation (ex is the name of
the derivation):

program ex var x,y:num.
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x:=x’.x’=0 ∨ x’=1; if x>0 then x:=x-1 else skip fi; y:=x+1

Suppose we want to refine the last statement y:=x+1 and we expect
(guess) that the value of x should be 0 at this point of execution. There-
fore, we focus on the last statement and introduce the context assumption
by selecting the command ADD ASSUMPTION from the pull-down menu and
entering x=0 in the dialogue box. This gives us the following focus:

[x=0]; {x=0}; y:=x+1

Now we can refine the assignment statement using the context assertion
x=0. In order to do this, we click on the right-hand side of the assignment
y:=x+1. The system then starts a subderivation using the window rule
for context refinement of an assignment statement. The subderivation has
the focus x+1 and the assumption x=0, while equality is the relation to be
preserved. Using the assumption and basic HOL arithmetics, we can rewrite
the focus to 1. Closing the subderivation, we have the following focus:

[x=0]; y:=1

Closing window once more time yields the following refinement of the initial
program:
program ex var x,y:num.

x:=x’.x’=0 ∨ x’=1;
if x>0 then x:=x-1 else skip fi; [x=0]; y:=1

Now we need to get rid of the introduced context assumption [x = 0]. We try
to do it by propagating it backwards (with the command PULL ASSUMPTION).
The first propagation gives us the focus as follows:

x:=x’.x’=0 ∨ x’=1;
if x>0 then x:=x-1;[x=0] else skip;[x=0] fi; y:=1

Focusing inside the conditional statement, we propagate the assumption
backwards for every branch:

x:=x’.x’=0 ∨ x’=1;
if x>0 then [x-1=0];x:=x-1 else [x=0];skip fi; y:=1

Focusing on the whole conditional statement, we can now propagate the
assumptions to the outside:
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x:=x’.x’=0 ∨ x’=1;
[(x > 0 ∧ (x - 1 = 0)) ∨ (¬(x > 0) ∧ (x = 0))];
if x>0 then x:=x-1 else skip fi; y:=1

Opening a window on the assumption predicate (to do this, the system uses
the appropriate window rule) and using basic HOL arithmetics, we can eas-
ily simplify it to (x = 1) ∨ (x = 0):

x:=x’.x’=0 ∨ x’=1;
[(x = 1) ∨ (x = 0)];
if x>0 then x:=x-1 else skip fi; y:=1

After one more propagation (through the nondeterministic assignment), the
following focus is constructed:

[ !x’. (x’ = 0) ∨ (x’ = 1) ⇒ (x’ = 1) ∨ (x’ = 0) ];
x:=x’.x’=0 ∨ x’=1;
if x>0 then x:=x-1 else skip fi; y:=1

The assumption predicate is obviously true. Therefore, after simplification
(rewriting using built-in theorems of HOL) we have on the screen:

[true];
x:=x’.x’=0 ∨ x’=1;
if x>0 then x:=x-1 else skip fi; y:=1

Finally, in the last step we eliminate the context assumption with the com-
mand DROP ASSUMPTION. After closing window, we arrive at the resulting
program:

program ex var x,y:num.
x:=x’.x’=0 ∨ x’=1;
if x>0 then x:=x-1 else skip fi; y:=1

5.5 Conclusions

In this chapter we have described the HOL mechanisation of two dual ap-
proaches for handling context information within the refinement calculus
framework. They show how information relevant for total correctness and
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refinement can be transported from one place of a program to another.
The idea of using state assertions as a part of the statement language was

introduced in Back’s original formulation of the refinement calculus [4]. The
basic rules for propagating context assertions into subcomponents were also
given there. The approach was extended and generalised considerably by
Back and von Wright in [15], taking also into account the dual notion of con-
text assumption statements. This dual way of handling context information
was originally introduced by Morgan [83].

We have shown how context handling rules are implemented and used
for program derivations within the Refinement Calculator tool. We reuse
the standard feature of the window inference system that permits us to use
context information while transforming a subterm. Storing accumulated
context information in context assertions allows us to easily add this in-
formation while starting a subderivation on some program subcomponent.
The use of context assumptions provides us with additional flexibility while
handling context information in refinement proofs.

Handling context assumptions can also be useful in other situations.
The Refinement Calculator has a tool for data refinement (the Dataref ex-
tension described in Section 3.5) where certain data refinement transforma-
tions introduce explicit assumption statements, rather than proof obliga-
tions. These assumptions can be propagated and discharged using the tool
described here.

Grundy[49] has used window inference to handle refinement by using
a simpler program model proposed by Hehner[53]. This approach treats
programs (including specifications) as predicates and uses implication to
model refinement. All reasoning is effectively carried out in standard pred-
icate calculus. That makes it possible to directly use window hypotheses
to propagate context information through a program. Our approach allows
us to handle context information while working with program statements
modelled as predicate transformers, without having to reduce everything to
predicates.

Our approach of storing context information in assertion statements and
then reusing the window inference system to do the rest is similar to the
approach implemented by Nickson and Hayes[90] in the Ergo theorem prover
developed in Queensland University. However, due to the syntactic nature
of the modelled program state and variables, the information about types
and names of program variables also needs to be stored in context in their
approach. This is not necessary using our approach since strong typing is
maintained by the HOL system and program variables are ordinary (higher-
order) variables of the underlying logic.



Chapter 6

Modelling Procedures

6.1 Introduction

Procedures are basic units of modularisation which permit us to abstract a
certain piece of code and give it a name. Flexibility of procedures is provided
by parametrisation mechanisms that make it possible to adapt the procedure
code in different places of the main program. Procedures are common in
imperative programming languages, since they provide a convenient and
simple way of writing efficient and clearly structured programs.

In this chapter we present an approach for modelling procedures (as
they occur in imperative programs) in the refinement calculus theory. This
allows for formal reasoning about procedures in the weakest precondition
framework. We have implemented this approach in the mechanisation of
the refinement calculus theory in the HOL system. This makes it possible
to prove a number of correctness and refinement properties of procedures as
HOL theorems. Finally, we show how our method for procedure handling
can be integrated into the Refinement Calculator tool. For this purpose we
have extended the Refinement Calculator with the necessary infrastructure
for working with procedures.

6.2 Procedures in the Refinement Calculus

The general purpose of a procedure is to abstract a certain piece of code,
giving it a name and then adapting it (through parameters) in different
places of the program. Therefore, procedures can be seen as fragments of
program code that can be used (and reused) in different contexts.

Let us forget for a while about procedure parametrisation mechanisms.

73
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Then a procedure declaration is nothing more than a way of giving a name
to a piece of a program, and a procedure call is just a way of using this
name as a shorthand for the procedure body. In higher order logic this can
be expressed using the let construct. In our case, a procedure P with no
parameters can be expressed simply as

let P = < procedure body > in < main program >

Parametrisation provides flexibility for procedures because procedure ex-
ecution can be modified by supplying different values for its parameters. In
programming practice, four kinds of parameters are used – value, result,
value-result and reference parameters.

For simplicity (and without losing generality), we restrict ourselves to
value and reference parameters because value-result and result parameters
can always be simulated as reference parameters. For the same reason we
do not allow global variables inside the procedure body. Therefore, the
only means of modifying the execution of a procedure is its parameters.
Modelling procedures in this way, we can reason about them independently
(separately) of the main program.

The procedure body is a fragment of program code, so it can be modelled
as a predicate transformer in the refinement calculus formalisation. The pro-
gram state that a procedure is working on is composed from the procedure
parameters. A procedure call leads to execution of the procedure body on
an “adapted” global state. The actual procedure parameters provide the
necessary information for this adaption.

As mentioned before, a procedure works on its own state consisting of the
value and reference parameters. Its execution can only affect the global state
by changing variables that are present in the reference parameter list of a
procedure call. Other variables of the global state should remain unchanged
(no side effects possible). To achieve this effect, we rearrange the global state
in such a manner that the procedure execution can be expressed as a parallel
execution of skip (on the variables of the global state that are unaffected by
the procedure execution) and the procedure body (on the state composed
from the value and reference parameters). Since the value parameters are
“new” variables they should be created (and initialised according to the
concrete value expressions in the procedure call) by a block construct. So
the call to a procedure P with value expressions x and reference parameters
y can be unfolded in the following way:



6.3. IMPLEMENTING PROCEDURES IN THE HOL SYSTEM 75

call P (val e; var y) =
|[var x | x = e.

< rearrange state >; (skip || S); < restore state order >

]|

Here x are the formal names for the value parameters inside the block and
S is the body of the procedure P . In the case when a procedure does not
have value parameters, unfolding of the procedure call does not produce a
block around the adapted procedure body.

6.3 Implementing Procedures in the HOL System

In this section we show how we can extend the existing formalisation of the
refinement calculus in HOL with procedures. We explain how a procedure
and a procedure call can be defined in the HOL system, and what basic
properties of monotonicity, correctness and refinement can be proved on the
basis of these definitions.

6.3.1 Defining Procedures

As explained before, a procedure declaration can be modelled using the let
construct in higher order logic. There is a corresponding LET constant in the
HOL system. However, in our system LET can be used for different purposes.
For example, variables are also declared by using the LET construct which
associates the variable name with the corresponding state projection func-
tion. In order to distinguish a procedure declaration from other applications
of LET, we copy the definition of LET giving it the new name – PLET.

`def PLET = (λ f x. f x)

So PLET takes two arguments – the first one is a function taking a predicate
transformer (the procedure body) and returning a predicate transformer
(the program which can contain procedure calls), and the second one is the
body of a procedure we are defining. The type of the procedure state is
of the form T1#T2 where T1 and T2 are the types representing the tuples
of value and result parameters respectively. In the case when a procedure
does not have value or reference parameters, the HOL type one1 is used

1The HOL type one contains only one object — the constant one.
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to indicate this. Therefore, the type of the procedure body unambiguously
determines the number and the types of the procedure parameters.

Recursive procedures can be defined using the fixpoint operator µ. In
this case the body of the procedure P is of the form (µP. c[P]) where c[P] is
a program fragment containing recursive calls to P. We explain handling of
recursive procedures in detail in Chapter 9.

Though the PLET construct is used to define only one procedure at a
time, its structure allows for nesting. The result of an application of PLET is
a predicate transformer (a program), so it can be used instead of the main
program in another PLET application. Therefore, by repeated application
of PLET we can define as many procedures as we need. Then the following
nested structure of PLET definitions is constructed:

PLET (λ P1.

PLET (λ P2.

PLET (λ P3. ...)

<P3 body>)

<P2 body>)

<P1 body>

The nesting level of each procedure determines the part of the program where
the procedure is “visible”, i.e., can be called. The outermost procedure has
the biggest scope.

Therefore, procedure bodies can contain calls to other procedures if the
latter ones are in scope. This means that the order of procedure definitions
is very important when determining procedure dependencies. However, no
circular procedure calls are possible in our formalisation.

6.3.2 Adaption and Procedure Call

Before defining a procedure call, we need to define the adaption operator.
This operator adapts a statement c operating on the state Σ to the big-
ger state Γ. Adaption works in the following way: the current state Γ is
rearranged to be of the form Σ′ × Σ, where Σ′ is a state composed from
the state components that should not be affected by execution of c, then
the lifted statement lift c is executed on Σ′ × Σ, and, finally, the state
order is restored back. Adaption is controlled by the state functions (state
reorderings) f and g which are inverses of each other, i.e., g ◦ f = id = f ◦ g.

`def adapt f g c = (assign f); (lift c); (assign g)
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Recall that lifting models parallel execution of the form skip‖c, where
c is a statement operating on the second part (projection) of the program
state. The HOL definitions for lifting and parallel execution are given in
Section 3.3.

The notion of adaption is not novel. It was introduced by vonWright
in [109] and later used for reasoning about reactive systems in HOL[71].
Theoretical properties of adaption are studied in [16].

Now we are ready to define a procedure call. It is defined as a block
which introduces new local variables for each value parameter and initialises
them with the value expressions of the procedure call. The body of the block
contains the adapted procedure body. It is easy to see that this definition
directly corresponds to the intuitive interpretation of a procedure call given
on p.75.

`def call c f g V = block (λ v. FST v = V (SND v)) (adapt f g c)

The additional argument V is an initialisation function for the local variables
of the block, i.e., the value parameters of a procedure. It takes a global state
as argument and returns a tuple of the value parameters initialised according
to the value expressions of a procedure call.

Let us try a trivial example of a small program with a procedure. The
following program just assigns 2 to the first state component (variable z)
by calling the procedure p1. The procedure p1 has one value parameter x
and one reference parameter y. In Pascal-like notation it can be written as
follows:

program test

procedure p1(val x : num; var y : num) =
y := x

in

var z, u : num.

u := 0; p1(u + 2, z)

The internal representation of this program in our formalisation would look
as follows:
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PLET

(λ p1. VLET (λ z. VLET (λ u.

assign (λ s. z s, 0) seq

call p1

(λ s. SND(SND s), FST s, FST(SND s))

(λ s. FST(SND s), SND(SND s), FST s)

(λ s. u s + 2))

SND) FST)

(VLET (λ x. VLET (λ y.

assign (λ s. x s, x s)) SND) FST)

or, using the simpler let syntax, the same term could be presented as:

let p1 = (let x = FST in (let y = SND in assign (λ s. x s, x s)))

in

(let z = FST in

(let u = SND in

assign (λ s. z s, 0) seq

call p1

(λ s. SND(SND s), FST s, FST(SND s))

(λ s. FST(SND s), SND(SND s), FST s)

(λ s. u s + 2))

)

Here we see how the LET construct is used for two different purposes.
VLETs associate variable names with the appropriate state projection func-
tions. PLET connects the declared procedure p1 and the program part con-
taining calls to the procedure p1 into one program.

The functions (λs. SND(SND s), FST s, FST(SND s)) and
(λs. FST(SND s), SND(SND s), FST s) are state adaption functions which
should be supplied to describe the procedure call. Using the tupled
λ-abstraction of the program state, the first function can be rewritten as
(λ(x, z, u). u, x, z) where x is a new local variable representing the value
parameter of the procedure call. The function rearranges the program state
in such a way that the procedure p1 can be executed on its second com-
ponent (i.e., (x, z)) which consists of the value and reference parameters of
the procedure call. The second function restores the order of program state
components.

The state adaption functions do not look very pretty in this example,
and in more realistic examples they tend to become even more ugly. In Sec-
tion 6.4 we show how the Refinement Calculator tool can hide this internal
representation by the use of a parser and a pretty-printer.
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6.3.3 Basic Properties

We shall now show a number of properties of the PLET and call operators
that we have proved as HOL theorems. We start with a few obvious ones.
It is not surprising that the procedure call operator preserves monotonicity.

mono_call =
` ∀ c f g V. monotonic c ⇒ monotonic (call c f g V)

The procedure call operator is also monotonic with respect to refinement
of the procedure body.

mono_call_body =
` ∀ f g c c′ V. c ref c′ ⇒ call c f g V ref call c′ f g V

Another desirable property would be the possibility to refine a proce-
dure body independently of the main program. In other words, we need a
property that states that any refinement of the procedure body leads to a
refinement of a program containing calls to that procedure as well. This
property can be proved as the following theorem:

ref_proc =
` ∀ f c c′.

regular f ⇒
monotonic c ⇒
monotonic c′ ⇒
c ref c′ ⇒
(PLET f c) ref (PLET f c′)

The regularity property can be automatically proved by decomposition
using the fact that all program constructors of our language (such as se-
quential composition, the block statement, the conditional statement and so
on) are regular if we consider them as functions on predicate transformers.
We can prove that the procedure call operator itself is regular:

regular_call =
` regular (λ c. call c f g V)

This property is important for the automatic proof of regularity in cases
when there are nested calls.

6.3.4 Correctness Proofs with Procedures

In order to prove some correctness property of a program containing proce-
dure calls, we use Hoare logic to decompose the proof in the ordinary way.
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When we get to the level when we need to prove a correctness assertion for a
procedure call, the following theorem is used. It states that the correctness
assertion for the procedure call can be reduced to a correctness assertion for
the procedure body.

correct_call =
` ∀ f g c p q V.

inverse f g ⇒
(correct p (call c f g V) q =
(∀ w. correct (λ u. (p o SND o g) (w,u) ∧

((FST o g) (w,u) = (V o SND o g) (w,u)))

c (λ u. (q o SND o g) (w,u))

The assumption of this theorem requires that the adaption functions f
and g should be inverses of each other.

This theorem shows that predicates p and q on the global state can be
translated to predicates (p o SND o g) and (q o SND o g) respectively. The
additional conjunct in the derived precondition of the procedure body ex-
presses the requirement that the procedure state components corresponding
to the value parameters should be initialised according to the value ex-
pressions (encoded in the function V) of a procedure call. The predicates
(p o SND o g) and (q o SND o g) are defined on the state composed of the
global variables that are not present in the reference parameter list of pro-
cedure call (w) and the variables of the internal procedure state (u). Since
the variables w are not affected by the procedure execution, the correctness
triple on the right hand side is true for any value of them.

Sometimes we are faced with the opposite task. We know that the pro-
cedure body satisfies a certain correctness assertion and we want to prove
a correctness property of a procedure call with actual parameters. The
following theorem shows how this correctness property can be derived:

correct_body_call =
` ∀ c f g V p q.

inverse f g ∧ monotonic c ⇒
(correct p c q ⇒
correct (λ u. (p o SND o f) (V u,u))

(call c f g V)

(λ u. ∃ x. (q o SND o f) (x,u)))

Recall that a procedure call can be unfolded as a block with the adapted
procedure body. The local variables of this block correspond to value param-
eters initialised with the actual value expressions of the call. The predicates
(p o SND o f) and (q o SND o f) are defined inside this block.



6.3. IMPLEMENTING PROCEDURES IN THE HOL SYSTEM 81

Note that the state components corresponding to the value parameters
get existentionally quantified in the postcondition (λu. ∃x. (q o SND o f) (x, u)).
The reason is that it is impossible to reconstruct the value parameter state
from the global state after a procedure call. In syntactic proof rules for
procedures, which allow us derive a correctness property of a procedure call
from a correctness property of the procedure body, this problem is usually
solved by prohibiting the use of value parameters in the postcondition. As
an example of such a syntactic proof rule, Gries’s rule[46] can be mentioned
here.

This rule states that, if the procedure body is specified by the correct-
ness triple {P} B {Q}, then the following correctness property holds for a
procedure call:

{P x,y
a,b ∧ I} p(a, b, c) {Qy,z

b,c ∧ I}
where x are value parameters, y are value-result parameters, z are result
parameters and I is an invariant expression on the variables that are not
affected by the procedure execution.

Let us try a simple example to compare our theorem and the syntactic
proof rule. Suppose we have a procedure P with the value parameter x and
the reference parameter y specified by a correctness property:

correct (λ (x,y).x = x0) c (λ (x,y).y = x0*x0 + 1)

where x0 is a specification variable which allows us to refer to the initial
value of the value parameter x in the postcondition.

Suppose we want to derive a correctness property of the procedure call
P(z+ 1, w) in the state (w, z). In our formalisation this procedure call corre-
sponds to:

call P (λ s. SND(SND s), FST s, FST(SND s))

(λ s. FST(SND s), SND(SND s), FST s)

(λ s. SND s + 1)

From now on, for readability purposes we use tupled λ-abstraction of a
program state (instead of the actual implementation of program variables
using VLETs). For example, the procedure call above can be presented as:

call P (λ (x,w,z). z, x, w)

(λ (z,x,w). x, w, z)

(λ (w,z). z + 1)

Specializing our correctness theorem with concrete instances for adaption
functions f and g, a value parameter initialisation function V, a precondi-
tion p and a postcondition q, we get (after automatically discharging the
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assumptions and simplifying) that the procedure call P (z + 1, w) is correct
with respect to the precondition (λ(w, z) • z+1 = x0) and the postcondition
(λ(w, z) • w = x0 ∗ x0 + 1).

Applying Gries’s syntactic proof rule yields the same result:

{(z + 1 = x0) ∧ I} B {(w = x0 ∗ x0 + 1) ∧ I}

where I is an invariant expression on the variables that are not affected by
the procedure execution. Our definition of a procedure call guarantees that
variables that are not present in the reference variable list stay unchanged
during execution of a procedure call. Therefore, any invariant property on
these variables is obviously preserved.

6.4 Extending the Refinement Calculator with
Procedures

Our approach for procedure handling was integrated into the Refinement
Calculator tool as one of its extensions. The procedure extension enhances
the functionality of the tool by extending the parser and pretty-printer with
new syntax for procedures and their calls, and by providing new transfor-
mation and window rules for working with procedures.

6.4.1 The Syntax

The Refinement Calculator contains a parser and a pretty-printer which
allow users to interact with the system using the syntax they are accus-
tomed to. We extended them allowing to use the commonly used syntax for
procedures and procedure calls as well.

We adapt the following standard syntax when working with procedures.
A procedure definition starts with the keyword procedure followed by the
procedure name and the list of arguments. The keywords val and var
indicate the beginning of the value and reference parameter lists respectively.
All procedure definitions should be presented before the main program part.
Therefore, the structure of the program that is entered at the beginning of
a session can be, for example, as follows:
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procedure P1 (val x,y:num var z:bool)

<the body of the procedure P1>
procedure P2 (val x:num var z,w:num)

<the body of the procedure P2>
...

procedure PN (...)

<main program>

The order of procedure definitions determines the scope of procedures.
For example, the procedure P2 can call the procedure P1, but not other way
around. The body of the procedure PN can contain calls to any previously
defined procedure.

The value parameter list can be missing. That means that the procedure
in question does not have value parameters.

The syntax of a procedure call is standard – a procedure name followed
by the list of actual parameters in parentheses. One obvious inconvenience
of using our mechanisation of procedures is that it is necessary to supply
concrete adaption functions for every procedure call. This problem is solved
by extending the parser so that it automatically generates adaption functions
using the actual definition of a procedure and the actual parameters of a
procedure call. The pretty-printer then prints a procedure call using the
usual syntax, hiding the internal representation of the HOL term.

6.4.2 Transformation Rules for Procedures

We have added three transformation rules for working with procedures. The
first one introduces (declares) a new procedure into a program, and the
others allow us to introduce or eliminate a procedure call.

Definition of a New Procedure

Starting our session we enter a program (or a specification) together with the
procedures that we are planning to use. However, sometimes it is necessary
to introduce a new procedure when the session is already on its way. Our first
transformation rule (called Define Procedure) takes care of this. During
this transformation the main program is replaced by

PLET (λ New Proc Name. < main program >) < new procedure body >

where New Proc Name is the name of the new procedure. Since the main pro-
gram does not contain any calls to the procedure that has just
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been introduced, such a replacement is always valid (formally,
∀c t • c = (λx • c). t, if x does not occur in c).

The term

PLET (λ New Proc Name. < main program >) < new procedure body >

is embedded by the procedures that were defined previously. This means
that the new procedure can use (call) all previously defined procedures.

Let us try a simple example to demonstrate what is actually going on.
Suppose we are working with a program containing one procedure called
Inc:

procedure Inc (val x:num var y:num)

y := x+1

<main program>

which corresponds to the internal HOL representation:

PLET (λ Inc.<main program>) (assign(λ (x,y).x,x+1))

If we select the transformation rule Define Procedure from the Refine menu,
we are asked to enter a new procedure. For example, if we want to define a
procedure for calculating the square of a natural number, we can enter:

procedure Square (val x:num var y:num)

y := x*x

This procedure becomes the input for the parser which generates the inter-
nal HOL representation for this particular procedure. If it contains calls to
already defined procedures, all arguments for the HOL constant call (the
procedure body, the adaption functions and the value parameter initialisa-
tion function) are automatically generated as well. The new procedure is
put between the procedures defined earlier and the main program. In our
example, after the transformation rule has been executed, the corresponding
HOL theorem is proved and the internal HOL representation of the focus is
changed to the following:

PLET (λ Inc.

PLET (λ Square.<main program>) (assign(λ (x,y).x,x*x)))

(assign(λ (x,y).x,x+1))
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Unfolding of a Procedure Call

The second transformation rule (called Unfold Procedure Call) imple-
ments the “copy rule” for procedure calls. A procedure call is unfolded
to a block containing the adapted procedure body where all formal parame-
ters are replaced by the actual parameters. In some cases (for example, if the
procedure does not have any value parameters), the block is automatically
eliminated.

Let us try a simple example to see what happens. Suppose we have the
following program on the screen:

procedure swap (var x,y:num)

x,y:=y,x

procedure max (val x,y:num var z:num)

if x < y then z:=y else z:=x fi

var z,w:num.

... swap(z,w); ... max(5,z+2,w) ...

Focusing on the call to the procedure swap, we can unfold it using the
transformation rule Unfold procedure call. As a result, the procedure
call in the focus is automatically replaced by the multiple assignment z, w :=
w, z.

Unfolding the call to the procedure max would result in the following
block:

|[ var x,y|(x=5) ∧ (y=(z+2)). if x < y then w:=y else w:=x fi ]|

The local variables of the block correspond to the formal value parameters
of the procedure max and are initialised according to the concrete value
expressions of the procedure call. The formal reference parameter z got
substituted by the actual variable w. Using context propagation rules and
the techniques for refinement in context (see Chapter 5), we can replace the
local variables of the block with their initial values given in the initialisation
predicate. Then, since the local variables are not used anymore in the block
body, the block can be eliminated using the Block Elim transformation
rule. After these simplifications, the focus is as follows:

if 5 < (z+2) then w:=z+2 else w:=5 fi

In many cases, such a simplification can be done automatically. However, in
cases when value parameters are changed inside of the procedure body, the
block cannot be eliminated so simply. In such cases, the transformation rule
just unfolds a procedure call to the corresponding block, leaving all further
simplification to the user.
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Introduction of a Procedure Call

The last transformation rule (called Introduce Procedure Call) does the
opposite of the previous one. It tries to replace the current focus (the frag-
ment of program code) by a procedure call supplied by the user. If there
is a direct correspondence between the piece of code in the focus and the
unfolded procedure call, then a replacement takes place. Otherwise, a re-
placement still takes place but an additional proof obligation is generated
for the user. The proof obligation should be discharged at some point during
the session.

For example, let us have the following program fragment in the focus:

if x ≥ y then z:=x else z:=y fi

and assume that we want to replace it with the procedure call max(x, y, z)
(where max is the procedure from the previous example).

When we select the transformation Introduce Procedure Call from
the menu, a dialog window pops up, and we are asked to supply the exact
form of a procedure call. Then the transformation rule replaces the current
focus with our procedure call max(x, y, z). However, the additional proof
obligation is generated:

?- if x ≥ y then z:=x else z:=y fi ref

if x < y then z:=y else z:=x fi

6.4.3 Procedure Refinement

The theorem ref proc (Section 6.3.3) shows that PLET is monotonic with
respect to refinement of its second argument (the body of a new procedure)
provided certain conditions about regularity and monotonicity hold. Since
all these conditions can be automatically discharged, we can add a new
window rule which allows us to focus on the procedure body. After we finish
our subderivation proving some refinement of the procedure body, the new
window rule guarantees that our refinement is actually a refinement of the
whole program.

Let us look at a simple example. Suppose we are working with a program
containing the procedure Swap.

procedure Swap (var x,y:num)

x,y:=y,x

<main program (with possible calls to Swap)>
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Focusing on the body of the procedure Swap, we can refine the multiple
assignment x, y := y, x to the block |[var t : num. t := x; x := y; y := t]|.
Closing the window yields the new focus:

procedure Swap (var x,y:num)

|[var t:num. t:=x; x:=y; y:=t ]|

<main program>

As a result, we automatically proved that a program containing the
refined Swap procedure is a refinement of our initial program.

The PLET construct is also monotonic with respect to a refinement of
the main program which is the function body of its first argument. This is
quite obvious since, when refining the main program, we actually prove the
refinement for any procedure body:

` ∀ x. f x ref f′ x

where f is the first argument of PLET. Therefore, we can add the second
window rule which guarantees that a refinement of the main program leads
to the refinement of the whole program as well.

6.5 Conclusions

In this chapter we presented an approach for modelling procedures (as they
occur in imperative programs) in the weakest precondition framework. This
approach was implemented in the mechanisation of the refinement calculus
theory in the HOL system.

In the classical works of the refinement calculus [5, 80, 84] procedures
are treated in a syntactical way, meaning that procedures are syntactically
substituted in all places where calls to them occur. Therefore, all correctness
and refinement rules for procedures are syntactical as well.

In their recent book[15] R.Back and J.von Wright presented a new ax-
iomatic approach for modelling the program state and program variables.
It allows a simple and elegant way to define procedures and procedure calls.
A procedure is just a lambda abstraction taking program variables and re-
turning a predicate transformer (the procedure body). A procedure call then
corresponds basically to the application of this lambda abstraction to the
actual parameters. The use of a lambda abstraction and a function applica-
tion to model procedures makes this approach similar to ours. However, we
use a function application (the let construct) to introduce a procedure into
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a program while Back and Wright are using it to bind the formal and the
actual parameters in a procedure call.

The approach presented in this chapter allows us to derive correctness
and refinement properties of procedures and procedure calls rather that just
postulate them. This constitutes the main contribution of this work. The
properties of procedures are proved while we are still inside the logic (in
contrast to the syntactical rules that are meta-logical).

The implementation of procedures as the extension of the Refinement
Calculator tool allows us to hide the aspects of the mechanisation that make
it hard to use in practice. The adaption functions needed to describe a pro-
cedure call are automatically generated during parsing, and most assump-
tions (such as monotonicity or regularity) are also automatically proved and
discharged.

We should admit that the use of our implementation of procedures was
illustrated only with small examples. In the next chapter we try to rectify
this by showing a more realistic example of program derivation.



Chapter 7

Example: Array Sorting

7.1 Introduction

In this chapter we present an example of program derivation using the Re-
finement Calculator tool. The Context, Correctness and Procedure ex-
tensions of the tool are used in this derivation. Therefore, they should be
loaded before the derivation is started.

Our goal is to derive a program for sorting arrays using the minimal ele-
ment insertion algorithm, i.e., an array is sorted by first finding the minimal
element of an unsorted array, swapping it with the first element and then
repeating the process for the remaining part of the array.

Arrays[25] can be modelled by defining a new HOL type (α)array where
α is a type variable. The following operations are defined for arrays:

asize : (α)array → num

lookup : (α)array → num → α

update : (α)array → num → α → (α)array

The meaning of these operations is following. If a is an array, then asize a is
the size of array a, lookup a i is the array element indexed by i, provided
i < asize a, and the operation update a i x returns the new array
which is the same as a but with the value x in the position indexed by i, if
i < asize a. Arrays are indexed from 0 to (asize a) − 1.

7.2 Initial Specification

To formulate an initial specification of our program, we need definitions of
a sorted subarray and a permutation of an array. They can be defined in
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the following way:

`def sorted (a:(num)array) (r:num→bool) =
(∀ i. (r i) ⇒ i < (asize a)) ∧
(∀ i j. (r i) ∧ (r j) ∧ (i < j)) ⇒ (lookup a i ≤ lookup a j))

`def perm (a1:(α)array) (a2:(α)array) =
(asize a1) = (asize a2) ∧
(∃ f. (injective f) ∧

(∀ i. i<(asize a1) ⇒ (f i)<(asize a1) ∧
(lookup a1 i) = (lookup a2 (f i))))

Here sorted a r stands for “the array a is sorted on the index set r”and
perm a1 a2 stands for “the array a1 is a permutation of the array a2”.

Now we are ready to enter our initial specification:

var a:(num)array.

a:= a′. (sorted a′ (λ i. i<(asize a))) ∧ (perm a a′)

7.3 Introducing Local Variables and a Do-Loop

We implement this specification using a loop that traverses the array starting
at position 0. The array is traversed using an indexing variable i : num.
Every iteration of the loop guarantees that the array slice a[0..i−1] becomes
sorted. This can be achieved in the following way: we find the minimal
element in the subarray a[i..(asize a) − 1], swap it with the current ith

element of the array, and, finally, increase the value of i by 1. The loop
terminates when i reaches the value (asize a) − 1.1

Finding the minimal element in a subarray and swapping two array el-
ements can be defined as relations in the HOL system. The definition of
min in subarray relation is the following:

`def min_in_subarray (a:(num)array) (r:num→bool) k =
(r k) ∧ (∀ j. (r j) ⇒ (j < asize a) ∧ (lookup a k ≤ lookup a j))

Thus the term min in subarray a r k specifies that k is the index of the
minimal element on the part of the array a specified by the index set r.

The relation swap is defined as follows:
1There is no need to execute the loop for the last element of the array (the case

i = (asize a)−1) since by then the element a[(asize a)−1] should contain the maximal
element of the array.
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`def swap (a:(α)array) i j a′ =
((asize a′ = asize a) ∧ (i < asize a) ∧ (j < asize a) ∧
(lookup a i = lookup a′ j) ∧ (lookup a j = lookup a′ i) ∧
(∀ k. ¬(k = i) ∧ ¬(k = j) ⇒ (lookup a k = lookup a′ k)))

The term swap a i j a′ states that the array a′ is the same as the array a
with ith and jth elements swapped.

Now we are prepared to formulate the guard, the body, the invariant
and the variant function of our loop:

Guard: i < (asize a)−1

Body: k:=k′.(min_in_subarray a (λ ii.(ii≥i) ∧ (ii < asize a)) k′);
a:=a′.(swap a i k a′); i:=i+1

Invariant:

(sorted a (λ ii. ii < i)) ∧ (perm a A) ∧
((asize a > 0) ⇒ i < asize a) ∧
((i>0) ⇒ min_in_subarray a (λ ii. ii≥(i−1) ∧ ii<asize a) (i−1))

Variant: (asize a) − i

The constant A here refers to the initial value of the array a. The first three
conjuncts of the invariant property are quite obvious. The last conjunct
expresses the very useful (for further correctness proofs) fact that (except
for the first step) the last element of the sorted subarray a[0..i−1] also is the
minimal element of the remaining part of the array a[i− 1..(asize a) − 1].

Before transforming the specification into a do-loop using the transfor-
mation rule for loop introduction, we should introduce the variables i and
k, and the constant A into our specification. The variables i and k are intro-
duced as the local variables of a new block, and the constant A is introduced
as a specification variable in the assertion statement a = A. We also initialize
the variable i by adding the assignment statement i := 0.

var a:(num)array.

|[ var i,k:num.

{a=A}; i:=0;

a,i,k:= a′,i′,k′. (sorted a′ (λ i. i<(asize a))) ∧ (perm a a′)
]|

Focusing inside the block, we can propagate context information using
the transformation rule PUSH ASSERTION from the Context menu, and then
use the accumulated context for rewriting the body of the nondeterministic
assignment statement (see Figure 7.1).

As a result, all references to the initial value of the array a are replaced
by A:
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Figure 7.1: Rewriting the body of the nondeterministic assignment

{(a=A) ∧ (i=0)};
a,i,k:= a′,i′,k′. (sorted a′ (λ i. i<(asize A))) ∧ (perm A a′)

Now applying the loop introduction rule (the menu choice Loop Introduction)
with the guard, the body, the invariant, and the variant described above as
arguments, yields the following focus:

do i < (asize a)−1 →
k:=k′.(min_in_subarray a (λ ii.(ii≥i) ∧ (ii < asize a)) k′);
a:=a′.(swap a i k a′);
i:=i+1

od

This step generates a number of proof obligations. The proof obligations
state respectively that the loop invariant should hold initially, the loop body
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should preserve the invariant and decrease the variant, and the invariant
and the negation of the guard should imply the postcondition. The second
proof obligation is expressed as a correctness assertion (i.e., of the form
pre << loop body >> post) for the loop body. In order to prove it,
we should use transformation rules provided by the Correctness extension
which allow us to reduce this assertion to a boolean term. Proof obligations
are proved in separate subderivations, transforming boolean terms into truth
preserving the backward implication relation.

For the sake of brevity, we omit the actual proofs of these proof obli-
gations. We should mention, however, that these proofs require some addi-
tional properties of the constants sorted, perm, swap, and
min in subarray proved beforehand. For example, we need the following
theorem stating that by swapping loop elements we get a new array that is
a permutation of the original:

` ∀ a a′ i j.

(i < asize a) ∧ (j < asize a) ∧ (swap a i j a′) ⇒
(perm a a′)

Closing windows gives us a refinement of our initial specification:

var a:(num)array.

|[var i,k:num.

i:=0;

do i < (asize a)−1 →
k:=k′.(min_in_subarray a (λ ii.(ii≥i) ∧ (ii < asize a)) k′);
a:=a′.(swap a i k a′);
i:=i+1

od

]|

7.4 Introducing Procedures Min in subarray and
Swap in array

In the next step we implement the relations min in subarray and swap
as procedures and replace appropriate nondeterministic assignments that
use these relations in the main program by corresponding procedure calls.
Selecting the Define Procedure transformation rule, we can enter:

procedure Min_in_subarray (val a:(num)array; i:num var j:num)

{i < (asize a)−1};
j := j′.(min_in_subarray a (λ ii.(ii≥i) ∧ (ii < asize a)) j′);
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Figure 7.2: Definition of the procedure Swap in array

In the same way, the new procedure Swap in array is defined (see Figure
7.2):

procedure Swap_in_array (val i1,i2:num var a:(num)array)

{(i1 < asize a) ∧ (i2 < asize a)}
a:=a′.(swap a i1 i2 a′);

Since there is the direct correspondence between introduced procedures
and the corresponding specification (nondeterministic assignment) state-
ments in the loop body of the main program, we can replace them by focusing
and selecting the Introduce Procedure Call transformation rule from the
menu. The dialog window asks us to supply the exact form of a procedure
call.

As a result, the following main program is yielded:
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var a: (num)array.

|[var i,k:num | i=0.

while i < ((asize a)−1) do

Min_in_subarray(a,i,k);

Swap_in_array(i,k,a);

i := i+1

od

]|

By introducing the procedures Min in subarray and Swap in array in
our program, we only postponed the task of actual implementation of the
corresponding relations min in subarray and swap. In the following sec-
tions we show how we can refine the bodies of these procedures into exe-
cutable code.

7.5 Refining the Procedure Min in subarray

Focusing on the body of the Min in subarray procedure yields the following
focus:

{i < (asize a)−1};
j := j′.(min_in_subarray a (λ ii.(ii≥i) ∧ (ii < asize a)) j′)

We implement this using a loop which traverses the array starting from
position i + 1. The array is traversed using an indexing variable k : num.
The body of the loop ensures that the variable j contains the index of the
minimal element in the subarray a[i..k].

First of all, we introduce a block with a local variable k which is initialised
to the value i + 1 by an assignment statement.

|[var k:num.

k:=i+1; {i < (asize a)−1};
j,k := j′,k′.(min_in_subarray a (λ ii.(ii≥i) ∧ (ii < asize a)) j′)

]|

We then add an assignment statement which initialises the result param-
eter j to the value i, and propagate context information into an assertion
before the nondeterministic assignment statement.

|[var k:num.

j:= i; k:=i+1;

{(i<(asize a)−1) ∧ (j=i) ∧ (k=i+1)};
j,k := j′,k′.(min_in_subarray a (λ ii.(ii≥i) ∧ (ii < asize a)) j′)

]|
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Now we can formulate the guard, the body, the invariant and the variant
function of our loop:

Guard: k < asize a

Body: if (lookup a k ≤ lookup a j) then j:=k else skip fi; k:=k+1

Invariant:

(k ≤ asize a) ∧ (min_in_subarray a (λ ii. ii≥i ∧ ii<k) j)

Variant: (asize a) − k

Supplying these terms as the parameters for the Loop Introduction
transformation rule results in the following focus:

|[var k:num.

j:= i; k:=i+1;

do (k < asize a) →
if (lookup a k ≤ lookup a j) then j:=k else skip fi;

k:=k+1

od

]|

The corresponding proof obligations are generated for this loop as well
but they can be easily proved in separate subderivations.

7.6 Refining the Procedure Swap in array

The Swap in array procedure can be easily implemented using the update
operation for arrays. However, the update operation allows changing only
one array element in a time. Therefore, in order to make a swap of two
elements, we should save the value of one of them in a temporary variable.
We introduce a local variable t for this purpose and initialise it to the value
of array element indexed by the value parameter i1.

|[var t:num.

t:= lookup a i1;

{(i1 < asize a) ∧ (i2 < asize a)};
a:=a′.(swap a i1 i2 a′);

]|

Next we introduce the specification variable A to refer to the initial value
of the array a as an assertion statement and then propagate the assertion
inside the block collecting context information. After rewriting the body of
the nondeterministic assignment (specification) statement using the context
information, the focus is transformed to:
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|[var t:num.

t:= lookup a i1;

{(a=A) ∧ (i1 < asize A) ∧ (i2 < asize A) ∧ (t = lookup a i1)};
a := a′.(swap A i1 i2 a′);

]|

Now we can add the assignment a := update a i(lookup a j) before the
specification statement since a is no longer used in the latter. Propagating
the context information once again results in the following focus:

|[var t:num.

t:= lookup a i1;

a := update a i1 (lookup a i2);

{(i1 < asize A) ∧ (i2 < asize A) ∧
(t = lookup a i1) ∧ (a = update A (lookup A j))};

a := a′.(swap A i1 i2 a′);
]|

Focusing on the body of the specification statement, we get the context
information added to the assumption list. The body expression can be
transformed preserving the backward implication relation. This is based on
the following antimonotonicity property of a specification statement

(∀s s′. R. s. s′ ⇒ Q. s. s′) ⇒ [Q] v [R]

which implemented in the Refinement Calculator as a window rule (see Sec-
tion 3.4).

Using the theorem

` ∀ a a′ a′′ i j t.

(i < asize a) ∧ (j < asize a) ∧
(t = lookup a i) ∧ (a′ = update a i (lookup a j)) ⇒

((a′′ = update a′ j t) ⇒ swap a i j a′′)

we can transform the body of the specification statement to
a′ = update a i2 t. Such a specification statement can be rewritten
as an ordinary assignment statement. Rewriting and closing windows gives
us the refinement of the procedure Swap in array:

procedure Swap_in_array (val i1,i2:num var a:(num)array)

|[var t:num.

t:= lookup a i1;

a := update a i1 (lookup a i2);

a := update a i2 t;

]|
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7.7 The Final Program

As a result of the derivation, we arrived at the executable program that is
proved to be the implementation (refinement) of our initial specification.

procedure Min_in_subarray (val a:(num)array; i:num var j:num)

|[var k:num.

j:= i; k:=i+1;

do (k < asize a) →
if (lookup a k ≤ lookup a j) then j:=k

else skip fi;

k:=k+1

od

]|

procedure Swap_in_array (val i1,i2:num var a:(num)array)

|[var t:num;

t := lookup a i1;

a := update a i1 (lookup a i2);

a := update a i2 t

]|

var a:(num)array.

|[var i,k:num.

i := 0;

do i < ((asize a)−1) →
Min_in_subarray(a,i,k);

Swap_in_array(i,k,a);

i := i+1

od

]|

7.8 Conclusions

In this chapter we have illustrated how our mechanisation of procedures can
be quite effectively used as a structuring tool for top-down development of a
simple program. The derivation of the final implementation was straightfor-
ward and went quite smoothly. The main bulk of the work was actually done
proving a number of properties of the introduced HOL constants. This was
needed to discharge the proof obligations generated by the transformation
rule for loop introduction.

Of course, we avoided some complications, for example while introducing
procedure calls. In our example there was the direct correspondence between
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specification statements to be replaced and procedure calls. Otherwise, we
would need to prove additional proof obligations of the form

?− S ref call P(...)

To do this, we would have to unfold the right hand side of the refinement
assertion, remove (if necessary) a block statement etc.

In the following chapters we return to the general properties of our pro-
cedure model. Some interesting questions are still unanswered. How can
we use context information when working with procedures and procedure
calls? How can we deal with recursive procedures? Is it possible to assign a
procedure as a value to a variable? Let us find out.
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Chapter 8

Procedure Calls in Context

In Chapter 5 we described how context information can be transported
from one program place to another and used for program refinement. We
presented two sets of rules – one set includes rules for propagating context
assertions or assumptions through different constructs of our language, and
the other one includes rules for doing refinement in the context provided by
context assertions.

In this chapter we show how we can extend these sets with rules for
procedure calls. Since a procedure call can be rewritten (unfolded) into the
adapted body of the corresponding procedure, the expansion can be done
in a rather simple way reusing the rules for working with context that were
already presented.

8.1 Taking Context Into Account

Recall that refinement in context is refinement of the form {p}; S v S′

where p is a predicate containing context information. Intuitively it means
that we prove refinement of the statement S only for those initial states that
satisfy the predicate p. Since we use additional (context) information in the
refinement step, we get as a result a wider class of possible refinements of
S.

Suppose we have a procedure call P (e, x) where P is the name of a
procedure, e are the value expressions, and x are the reference parameters.
A context assertion before a procedure call provides us with additional in-
formation about the initial state in which the procedure call is executed.
We can use this information for rewriting the actual value parameters of a
procedure. The following HOL theorem describes the way in which value

101
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expressions can be rewritten:

` ∀ p V V′ c f g.

(∀ u. p u ⇒ (V u = V′ u)) ⇒
{p};(call c f g V) = {p};(call c f g V′)

Recall that V is a state function which returns the value expressions of a
procedure call as a tuple. The theorem then says that we can use the context
assertion p for rewriting the state function V into the new state function V′.

The above theorem forms the basis for the corresponding window rule
that we have added to the window inference system. This window rule allows
us to focus on any value expression of a procedure call and use the predicate
of a context assertion as an additional assumption while rewriting it (doing
a subderivation which preserves the equality relation).

Let us consider a very simple example. Suppose we are working with
the program fragment {x = 5}; P(x + 1, y). The exact definition of the
procedure P has no importance for this example. Focusing on the value
expression x + 1, we can start a new subderivation with the assumption
x = 5 added in the Assumptions subwindow. The relation to be preserved
in this subderivation is the equality relation. Selecting the Rewrite Once
transformation from the Transform menu, we can rewrite the focus (using
the assumption x = 5) to 5 + 1 which can be further simplified (rewritten)
to just 6. Closing the window (the subderivation), we get our initial focus
transformed (according to the theorem presented above) to {x = 5}; P(6, y).

We showed in this section how context information can be used for rewrit-
ing a procedure call. The only thing we can do (retaining a procedure call
in its place) is to rewrite the value expressions of a procedure call. However,
there is always the alternative possibility to unfold a procedure call into a
block with the adapted procedure body. Then we can use the previously
defined rules for propagating context information inside the block, and then
use this information to refine a program statement we interested in.

8.2 Propagating Context Information Through a
Procedure Call

As explained earlier, a procedure call can be rewritten into a block containing
the adapted procedure body. Therefore, propagation of context information
through a procedure call actually means pushing a context assertion through
the corresponding program fragment.
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In chapter 5 we presented a number of sharp context propagation rules
for different constructs of our language. However, we cannot give a similar
rule for procedure calls. The problem is that in general the procedure body
can contain loop(s), and, as we have explained in Chapter 5, there is no sim-
ple way to propagate the maximal amount of context information through
a loop.

Here we consider alternative ways to propagate context information
through a procedure call. First of all, we distinguish the special case when
the predicate of a context assertion before a procedure call is indifferent to
(i.e., not affected by) execution of a procedure call. In other words, it is
described in terms of variables that are not present in the list of reference
variables of the procedure call. Then, according to the following theorem,
the context assertion can be propagated through the procedure call:

` ∀ c f g V p.

conjunctive c ⇒
inverse f g ⇒
(∃ p′. ∀ w u. (p o SND o g)(w,u) = p′ w) ⇒

({p};(call c f g V) ref (call c f g V);{p})

The internal state (w, u) is the state that the lifted procedure body (skip‖c)
is executed on. It consists of the global variables that are not affected by
procedure execution (w) and the actual procedure state containing the value
and reference parameters (u). The function SND o g translates the internal
procedure state into the initial (global) state. The theorem then states that
if the predicate p defined on the global state can be expressed (redefined) in
terms of the variables that are not affected by procedure execution (w) then
it can be propagated through a procedure call.

The theorem above can also be expressed in the form of a syntactic
inference rule:

{p}; P (val x; var y) v P (val x; var y); {p}
• P is conjunctive, and

no free variables in p appear in the reference variable list y

Since all statements of our programming language are conjunctive, we can
always discharge the first side condition of this inference rule.

We have written a transformation rule which allows us to propagate
context information in the cases covered by the theorem. The condition

(∃ p′. ∀ w u. (p o SND o g)(w,u) = p′ w)
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is discharged by automatically finding (if possible) a “witness” predicate p′

defined on the part of a program state that is not affected by the procedure
execution. Such a “witness” always exists if the predicate p does not mention
the variables that are included in the reference parameter list. The other
conditions are discharged automatically as well.

Let us consider a simple example. In Chapter 6 we have defined the
procedure Square for calculating the square of a natural number:

procedure Square (val x:num var y:num)

y := x*x

Suppose we have the following fragment of the main program working on a
program state consisting of three variables (x,y and z) of the type num in
the focus:

{x≤y}; Square(y+1,z)

According to the theorem above we can propagate the assertion through the
procedure call. After the transformation we get:

Square(y+1,z); {x≤y}

Before the transformation, the predicate of the context assertion is
(λ(x, y, z) • x ≥ y). The transformation rule automatically generates the
“similar” predicate (λ(x, y) • x ≥ y) which is used to prove and discharge
the corresponding proof obligation.

8.3 An Alternative Solution

Another way of propagating context information through a procedure call
is by using a previously stored initial specification of the procedure body.
The idea (originally proposed by M.Staples in [99]) is to keep the procedure
body of the form {S0 v S}; S where S0 is the initial specification of the
procedure body, and S is the current implementation of it. This format
can easily be introduced for the initial specification S0 since the refinement
S0 v {S0 v S0}; S0 is trivially true. Every further refinement of the
procedure body preserves this format since the following rule is valid:

S v S′

{S0 v S}; S v {S0 v S′}; S′
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A context assertion that is propagated through the initial specification
can be propagated through any of its implementation as well:

{p}; S0 v S0; {q}
{p}; {S0 v S}; S v {S0 v S}; S; {q}

Both inference rules can be easily proved as corresponding HOL theorems.
We can propagate context information through the initial specification

of the procedure body in a sharp way using the sharp context propaga-
tion rules for assertion and nondeterministic assignment statements given in
Chapter 5. However, the application of this rule for any proper refinement
of the initial specification would not yield the maximal amount of context
information since implementation decisions made by the developer in the
refinement steps are not reflected in it.

8.4 Discussion

When we consider how to use or propagate context information when work-
ing with procedures, we face a kind of conflict of interests. Talking about
procedures, we usually mean “abstraction” and “hiding of details”. On
the other hand, talking about using or calculating context information, we
actually mean “complete disclosure”. The rules for working with context
proposed in this chapter reflect this “all or nothing” dilemma.

If we see a procedure as a “black box”, then context information accu-
mulated before a procedure call can be used only for rewriting the value
expressions of the procedure call, and can be propagated through a pro-
cedure call only if it is indifferent to the procedure execution. If we want
to collect the maximal amount of context information, we should disclose
what is hiding behind a procedure call. In other words, we should unfold
the procedure call.

The idea proposed by M.Staples to store the initial specification of a
procedure in an assertion statement can be seen as a compromise solution (it
is similar to so called the “grey box” approach[27] advocated for development
of component systems). This allows calculation of the context information
after a procedure call in an easy way no matter how difficult the actual
procedure implementation is. However, the question of how easy is this
approach to implement in practice still remains open.
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Chapter 9

Recursive Procedures

Our approach for modelling procedures allows us to define a procedure which
contains recursive calls to itself. The body of such a procedure is then of
the form (µX. ...) where µ is the least fixpoint operator. In this chapter
we consider recursive procedures in much more detail concentrating on such
issues as introduction and unfolding of a recursive procedure call, introduc-
tion of a recursive procedure from a nonrecursive specification, correctness
of a recursive procedure call etc.

We have already encountered fixpoints when talking about lattice-theore-
tical properties of predicate transformers and other mathematical structures
used in the refinement calculus theory (Chapter 4). In this chapter we show
how these general lattice properties of fixpoints can be applied for special
cases and used in practice.

9.1 Representation of a Recursive Procedure

In the refinement calculus theory recursion is modelled as the least fixpoint
of the corresponding function defined on predicate transformers. According
to the theorem of Knaster-Tarski[100], a monotonic function on a complete
lattice has the unique least fixpoint. Predicate transformers form a com-
plete lattice and, therefore, the least fixpoint of monotonic functions on
predicate transformers always exist and is unique. Recall that all state-
ments of our language are monotonic and all statement constructors are
regular (i.e., monotonic as functions on monotonic predicate transformers).
The regularity and monotonicity assumptions should be explicitly stated in
the theorems but they can be checked and discharged automatically.

When we enter a procedure containing recursive calls to itself, the parser
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recognizes the recursive structure of the procedure body and generates the
least fixpoint operator µ around its internal representation.

For example, a program with a recursive procedure fact

procedure fact (val n:num var x:num)

if n>1 then fact(n−1,x); x:=x*n else x:=1 fi

in

<main program>

is internally represented as

PLET

(λ fact. <main program>)

(VLET (λ n.

VLET (λ x.

mu (λ fact. cond (λ var. n var > 1)

(call fact ... seq assign (λ var. n var, x var * n var))

(assign (λ var. n var, 1))))

SND) FST)

We are allowed to focus and refine the body of a recursive procedure
because of the following general monotonicity property of the least fixpoint
operator:

mu_submono ` (∀ x. (f x) ref (g x)) ⇒ (mu f) ref (mu g)

Focusing on the body of a recursive procedure, we in fact focus inside the
expression mu(λX....), so any refinement that we prove is true for an arbitrary
value of X, i.e., is of the form ∀x. (f x) ref (g x).

9.2 An Unfolding of a Recursive Procedure Call

An unfolding of a procedure call is the same as replacing the procedure call
with a block containing the adapted procedure body. The block introduces
new local variables for every procedure value parameter and initialises them
with the value expressions from the procedure call.

Since the body of a recursive procedure is of the form (µX....), we can go
a step further in the unfolding process, using the basic unfolding property
of the least fixpoint construct µ:

mu_unfold ` ∀ f. regular f ⇒ (mu f = f (mu f))

Let us consider a simple example. Suppose we have the procedure call
fact(5, z) in our focus. In this case, unfolding the procedure call would
yield
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|[ var n:num | n=5.

if (n>1) then fact(n−1,z); z:=z*n

else z:=1 fi ]|

Propagating context information inside the block, we can simplify the con-
ditional statement by removing one of its branches.

|[ var n:num | n=5.

{n=5}; fact(n−1,z); z:=z*n ]|

Using the context information, we can rewrite the value expression of the
procedure call and then propagate the context assertion through it (since
the variable n is not affected by the procedure execution). As a result, we
have:

|[ var n:num | n=5.

fact(4,z); {n=5}; z:=z*n ]|

Rewriting the right hand side of the assignment statement using the context
assertion {n = 5} and removing the context assertion afterwards give us
the block body where the local variable n is not used anymore. Applying
the Block elimination transformation rule from the menu then yields the
following focus:

fact(4,z); z:=z*5

The theorem that we have proved in this derivation is

fact = (mu fact. if n>1 then ...)

` fact(5,z) = fact(4,z); z:=z*5

This corresponds exactly to one step of intuitive execution of the recursive
procedure fact.

9.3 An Introduction of a Recursive Procedure Call

If we want to introduce a recursive procedure call in the place of some
program fragment c, we actually have to prove that

` c ref (call P ...)

where P is the body of a recursive procedure.
If P has no value parameters, then the unfolded procedure call can be

simplified by eliminating the block statement that is introduced in the un-
folding step. The resulting goal is then
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` c ref (mu f)

where (mu f) is now defined on the global program state.
This goal can be handled using the theorem mu thm from the HOL theory

of the refinement calculus:

val mu_thm =
` ∀ c.

regular f ∧
monotonic c ∧
(∃ t.∀ i. {λ v. t v = i}; c ref

f ({λ u. t u < i}; c))

⇒
c ref mu f

Since the regularity and monotonicity assumptions can be automatically
discharged, mu thm allows us to reduce an introduction of a recursive proce-
dure call to a proof obligation of the form

∀ i. ({λ u. t u = i}; c) ref

f ({λ u. t u < i}; c)

where t is a termination function (variant) supplied by the user.
If a recursive procedure has value parameters, we cannot directly use

mu thm to simplify the goal. We need some preparatory steps which trans-
form the program fragment that we are replacing in such a way that, firstly,
it becomes independent of the value expressions of a procedure call, and,
secondly, it can be executed on the procedure state.

Let us explain this with a small example. Suppose we want to introduce
the call fact(x + 1, y) in the place of the specification statement y :=
FACT (x + 1) where FACT is the HOL constant for factorial. Unfolding the
procedure call, we get the following goal (proof obligation) to prove:

y := FACT(x+1)

ref

|[ var n | n=x+1.

adapt f g (mu fact.

if n>1 then fact(n−1,y); y:=y*n

else y:=1 fi)

]|

The assignment y := FACT (x + 1) is defined on the program state (x, y),
i.e., it is internally represented as assign(λ(x, y). x, FACT(x + 1)). The
functions f and g are state reorderings, defined in the following way:
f = (λ(n, x, y). x, n, y) and g = (λ(x, n, y). n, x, y).
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To prove this goal, we start a subderivation starting with the statement
y := FACT(x+1). In the first step, we introduce a block with the local vari-
able n initialised in the same way as in the block of the unfolded procedure
call.

|[ val n | n=x+1. y := FACT(x+1) ]|

Note that the actual representation of the assignment statement inside the
block now is assign(λ(n, x, y). n, x, FACT(x + 1)).

Propagating context information about the initial value of variable n
inside the block and using it for refining the assignment statement gives us
the following focus:

|[ val n | n=x+1. {n=x+1}; y := FACT n ]|

It is easy to notice that assign(λ(n, x, y). n, x, FACT n) (the assignment
inside the block) is equal to skip ‖ assign(λ(n, y). n, FACT n) on the rear-
ranged state (x, n, y). It can be expressed by the adaption operation using
the state reordering functions f and g defined above:

assign(λ (n,x,y).n,x,FACT n) = adapt f g (assign(λ (n,y).n,FACT n))

Using this equality to rewrite the body of the block gives us the following
focus:

|[ val n | n=x+1. adapt f g (y := FACT n) ]|

As a result, the following refinement is proved in the subderivation:

` y := FACT(x+1)

ref

|[ val n | n=x+1. adapt f g (y := FACT n) ]|

Using this result and the transitivity property of the program refinement
relation, we can reduce our main goal to:

|[ val n | n=x+1. adapt f g (y := FACT n) ]| ref

|[ val n | n=x+1. adapt f g (mu fact.

if n>1 then fact(n−1,y); y:=y*n

else y:=1 fi)

]|

Since the block statement and the adaption operator are both monotonic
with respect to their statement arguments, the goal can be further reduced
to:
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y := FACT n

ref

(mu fact.

if n>1 then fact(n−1,y); y:=y*n

else y:=1 fi)

The preparation stage is over. The goal is now of the form that allows
application of the theorem mu thm. In order to further simplify the goal, we
supply the concrete termination function n. This yields the following goal:

∀ i. {n = i}; y := FACT n

ref

if n>1 then

call ({n < i}; y := FACT n) (n−1,y); y:=y*n

else y:=1 fi

Finally, by expanding definitions we can easily prove this goal. Note that
here we used a slightly different syntax for a procedure call to stress the fact
that the procedure body fact has been replaced with {n < i}; y := FACT n.

Of course, in the general case it may be not so easy to transform a
program fragment into the form required for application of mu thm. Some
further automation is definitely needed to make an introduction of a recur-
sive procedure easier.

9.4 Correctness of a Recursive Procedure Call

Sometimes we need to check that a recursive procedure call is correct with
the respect to certain pre- and post-conditions. In order to reduce such a
correctness assertion, we combine the following two theorems:

correct_call =
` ∀ f g c p q V.

inverse f g ⇒
(correct p (call c f g V) q =
(∀ w. correct (λ u. (p o SND o g) (w,u) ∧

((FST o g) (w,u) = (V o SND o g) (w,u)))

c (λ u. (q o SND o g) (w,u))

correct_mu =
` ∀ f p p′ q t.

regular f ∧ (p implies p′) ∧
(∀ w.

correct (λ s. p′ s ∧ (t s = w))

(f ({λ s. p′ s ∧ t s < w}; nondass (λ s s′. q s′))) q)

⇒
correct p (mu f) q
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The first theorem (introduced in Section 6.3.4) reduces a correction assertion
of a procedure call to a correctness assertion of the procedure body. Since the
body of a recursive procedure is of the form µf, the correctness assertion can
be further reduced using theorem correct mu, getting rid of the µ construct.
The variables p′ and t in the theorem correct mu stand for an invariant
property and a termination function of the recursion encoded by µf .

Let us look into a simple example. Suppose we have defined the following
recursive procedure:

procedure Exp (val x,y:num var z:num)

if y=0 then skip

else z,y := z*x,y−1; Exp(x,y,z)

fi

This recursive procedure can be used to calculate the power xy and store
it into the variable z provided that the value of z before a procedure call
is equal to 1. We can prove it by checking that the following correctness
assertion is true:
correct (x=x0 ∧ y=y0 ∧ z=1)

Exp(x,y,z)

(z = x0^y0)

The specification variables x0 and y0 here are used to indicate the initial
values of the variables x and y.

Using the theorem correct call gives us (after some simplifications)
the following correctness assertion on the procedure body:

correct (x=x0 ∧ y=y0 ∧ z=1)

(mu X. if y=0 then skip

else z,y := z*x,y−1; Exp(x,y,z)

fi)

(z = x0^y0)

Using the invariant x = x0 ∧ z*x^y = x0^y0 and the termination func-
tion y allows us to reduce this correctness assertion (according to the theo-
rem correct mu) to the following goal:

regular (λ X. if y=0 then ...) ∧
(∀ x y z. (x=x0 ∧ y=y0 ∧ z=1) ⇒ (x=x0 ∧ z*x^y = x0^y0)) ∧
(∀ w. correct

(x=x0 ∧ y=y0 ∧ z=1 ∧ y=w)

(if y=0 then skip

else z,y := z*x,y−1;

{x=x0 ∧ z*x^y = x0^y0 ∧ y<w}; z:=z′.z′=x0^y0

fi)

(z = x0^y0))
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The first two conjuncts of the goal can easily be proved and discharged.
Expanding the definitions of correctness and program statements, we can
prove the third subgoal as well.

The final result is the theorem:

Exp = mu (λ Exp. if y=0 then skip else ...)

` correct (x=x0 ∧ y=y0 ∧ z=1)

Exp(x,y,z)

(z = x0^y0)

Note that the definition of the procedure Exp is presented as the assumption
of this theorem.

9.5 An Introduction of a Recursive Procedure

We can introduce recursive procedures as well as ordinary procedures, en-
tering them together with the main program in the beginning of our session
or using the Introduce New Procedure transformation rule during our ses-
sion. In both cases the parser recognizes the recursive structure of the pro-
cedure body and generates the least fixpoint operator µ around its internal
representation.

In some cases, however, the procedure body is given as a nonrecursive
specification which can still be implemented in a recursive way. This can
be done using the recursion introduction rule Rec intro included into the
Refinement extension of the Refinement Calculator. This rule implements
the following inference rule:

{t = i}; c v f ({t < i}; c)
c v µf

Rec intro

where t is the variant function and i is a new specification variable. The
rule is based on the theorem mu thm shown above. This rule is also a spe-
cialisation of the lattice-theoretical property for µ introduction presented as
the following inference rule in Section 4.2.7:

∀i. Ci v f(tj < i. Cj)
(ti ∈ Nat. Ci) v µf

(µ introduction)

To obtain the rule Rec intro, we should specialise Ci with {t = i}; c, the
general join operator t with the angelic choice t on predicate transformers,
and the lattice ordering v with the program refinement relation v.

Let us explain how the rule Rec intro works. If we want to introduce
recursion in place of the current focus c, we are asked to supply a variant
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(state function) t and then a subderivation starts. In the subderivation
we have to transform the initial focus {t = i}; c to a program fragment
containing {t < i}; c. After we finish the subderivation, the transformation
rule rec intro extracts a function f and replaces the initial focus with µf.

Let us consider the factorial example. Suppose we have in the focus

y := FACT x

where x and y are variables of the type num. Selecting the Rec intro trans-
formation rule from the Refinement menu and entering x for the variant
function yields the following focus:

{ x=i };
y := FACT x

After a number of transformations we can arrive at the following imple-
mentation:

if x=0 then y := 1

else

x := x−1;

{ x<i }; y := FACT x;

y := y*(x+1)

fi

Closing the window (subderivation) gives us the focus with the recursion
operator µ introduced:

(mu X. if x=0 then y := 1

else

x := x−1; X; y := y*(x+1)

fi )

However, we cannot directly use Rec intro for transforming a nonre-
cursive specification into the body of a recursive procedure, since the latter
should be of the form (muX. ... call X ...). In order to do this, we modify the
transformation rule Rec intro by adding one intermediate step for a proce-
dure call introduction. The new transformation rule is called Recpro intro.

Let us look once again at the factorial example. Suppose we have intro-
duced the procedure fact as follows:

procedure fact (val x:num var y:num)

y := FACT x

Focusing on the procedure body, we start recursive procedure introduction
subderivation with the focus:
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{ x=i };
y := FACT x

After a number of refinements we can obtain the following (slightly dif-
ferent) implementation:

if x=0 then y := 1

else

{ (x−1)<i }; y := FACT (x−1);

y := y*x

fi

In order to reuse the Rec intro rule to produce the format required for
recursive procedures, we need to introduce a recursive procedure call into
the program. In this particular case, we need to replace

{(x− 1) < i}; y := FACT(x− 1)

with a procedure call of the form

call({x < i}; y := FACT x) ( , )

The selection of concrete parameters should be extracted from the program.
In this case, it is easy to see that the refinement needed to prove is

{ (x−1)<i }; y := FACT (x−1)

ref

call ({ x<i }; y:=FACT x) (x−1,y)

which is obviously true (which can be proved by unfolding the procedure
call in the right hand side of refinement).

Using this theorem, the focus is transformed to:

if x=0 then y := 1

else

call ({ x<i }; y:=FACT x) (x−1,y);

y := y*x

fi

Closing the subderivation (applying Rec intro) results in the following
focus:
(mu X. if x=0 then y := 1

else

call X (x−1,y); y := y*x

fi )

The modified transformation rule Recpro intro differs from Rec intro
by the additional step introducing the call operator into a program. In
general, this step can be made as an additional proof obligation. After this
is done, the Rec intro transformation rule is reused to do the rest.
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9.6 Conclusions

In this chapter we showed how our approach for modelling procedures can be
extended to deal with procedures containing recursive self-calls. Recursive
procedures are modelled as the least fixpoints of corresponding functions on
predicate transformers. We use lattice-theoretical properties of the least fix-
point operator as the basis for proving properties about recursive procedures
and for writing transformation rules for working with recursive procedures.
Our implementation is by no means complete; automatic matching and sim-
plification is especially needed, for example, in the introduction of recursive
procedures and their calls.

In our approach we permit only simple recursion of procedure calls. This
means that no mutual or cyclic dependencies among procedures are allowed.
In Chapter 13 we briefly present our theoretical study of component systems
where this restriction is dropped. P.Homeier[57, 58] has done extensive work
on mechanical verification of programs with mutually recursive procedures.
His approach uses annotated procedure calls containing additional variant
information and it automatically generates verification conditions needed to
prove termination and other correctness properties of programs.
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Chapter 10

Procedure Variables

10.1 Introduction

One of the advantages that higher-order logic offers us is the possibility to
reason about functions of arbitrary complexity. Such higher-order objects
can be used anywhere alongside with objects of “basic” types such as inte-
gers, booleans and so on. To illustrate this point, in this section we consider
the use of program variables of a procedure (predicate transformer) type.

Recall that the program state that we are working on is a tuple of poly-
morphic type which for concrete programs can be instantiated in different
ways. Program variables are then projection functions on this tuple. An
application of these functions to the concrete program state gives us the
value of a program variable in this state. Since the program state is of a
polymorphic type, any well-defined type of higher-order logic can be used
as the base type of a program variable.

We model procedures as predicate transformers working on a program
state that consists of value and reference parameters. By defining a program
variable of the base type Ptrans(Σ × Γ), we make it possible to store any
procedure with value parameters of type Σ and reference parameters of type
Γ in this variable. Variables of procedure type can be used in the same way
as variables of an ordinary type – they can be assigned to, they can be used
in expressions (i.e., they can be called), they can be supplied as parameters
to other procedures etc.

In the first part of this chapter we discuss the most common uses of
procedure variables. In the second part we consider the problem of refining
the value of a variable of a procedure type.

119
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10.2 Using Procedure Variables

In this section we consider the most typical cases of using procedure vari-
ables. Suppose that we are working with a program containing a procedure
Exp. This procedure takes two integers x and y as the value parameters
and returns the value xy in the reference parameter z. The main program
starts with the program variable declarations which include the declaration
of a procedure variable pvar. The base type of this procedure variable is
Ptrans((num#num)#num) which means that any procedure with two value
parameters of integer type and one reference parameter of integer type (like
Exp) can be assigned to this variable.

procedure Exp(val x,y:num; var z:num)

<procedure Exp body>
var n,k: num;

a1,a2,b: (num)array;

pvar: Ptrans((num#num)#num);

...

Then we can assign a value to variable pvar in the usual way (in the
assignment statement), for example,

pvar,n := Exp,10;

Once a procedure variable has been assigned some concrete value, we
can use it in two ways – by calling its value (the procedure) or by passing
it as a parameter to other procedures. In the first case a procedure variable
should be used as the first parameter of the call operator. However, here
we face a type clash since the call operator expects a predicate transformer
rather than a program variable (a state projection function).

The solution is to define a special procedure call statement for this par-
ticular case. It can be done in a rather straightforward way, reusing the
definition of call:

`def (vcall v f g V) q s = (call (v s) f g V) q s

For any postcondition q and initial state s the operator vcall is defined as
the call operator where the calling procedure body is taken as the value of
the procedural variable v in the initial state s.

In our example we can call pvar in the following way:

pvar(n−1,2,k);

which is internally represented as
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vcall pvar <reordering f> <reordering g> (λ s. n−1,2)

Context information about the value of a procedure variable can be used
to rewrite a procedure call. This is expressed in the following theorem:

val vcall_in_context =
` {λ s. v s = proc}; vcall v f g V =

{λ s. v s = proc}; call proc f g V

The meaning of this theorem is quite obvious – if we know that a procedure
variable contains the value of a concrete procedure proc, the call of such a
procedure variable is equivalent to the call of the procedure proc.

For example, suppose the call pvar(n − 1, 2, k) occurs in the context
(pvar = Exp) ∧ (n = 10). Then it is equivalent to the ordinary procedure
call Exp(9, 2, k). As a result of this procedure call, the variable k gets the
value 81.

A procedure variable can be used as a parameter of other procedures in
the usual way. For example, suppose we introduce a new procedure

procedure Zip_Arrays (val op: Ptrans((num#num)#num); a,b:(num)array

var c: (num)array)

<procedure Zip_Arrays body>

This procedure takes two arrays of integers (of the same length) and “zip”
them together using the supplied operation op (“zipping” means that we
apply the operation op for the subsequent array elements a[i] and b[i]).
The result is returned in the reference parameter c.

Then we can call the procedure Zip arrays supplying the value of the
procedure variable pvar as the actual operation:

Zip_Arrays(pvar,a1,a2,b);

Of course, using procedure variables in procedure calls makes sense only
if these variables have earlier been assigned a value. A call to an unas-
signed procedure variable is, of course, allowed in our formalisation, but it
is impossible to prove anything about such a procedure call.

10.3 Refinement of the Value of a Procedure Vari-
able

The approach presented in the previous section raises some interesting ques-
tions that we cannot leave unanswered. What happens if we refine a pro-
cedure that was assigned to a procedure variable? Is the refinement of the
whole program preserved in this case?
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Operationally it seems all right. In all places where an old procedure
(as the value of a procedure variable) was executed, execution of the new
refined procedure would take place.

However, being the value of a procedure variable, the old procedure was
a part of the global state. By refining the procedure, we are at the same
time changing the global state. That means that the ordinary (algorithmic)
refinement relation is not sufficient in this case since it requires that the
relationship between programs would be proved for the same initial state:

S v S′ ≡ ∀q σ • S. q. σ ⇒ S′. q. σ

where q is a postcondition and σ is an initial state.

10.3.1 Solution: Data Refinement

To prove validity of refinement of the value of a procedure variable, we need
a more general refinement relation that permits a change of the program
state. That suggests the use of data refinement.

As explained in Chapter 2, data refinement between statements S and
S′ with an abstraction relation R, denoted S vR S′, can be expressed via
the ordinary refinement in the following way:

S vR S′ ≡ (abst R); S; (repr R) v S′

where abst and repr are the abstraction and representation statements al-
lowing to simulate execution of an abstract statement S on a concrete state
(see Section 2.6).

In our case the relationship between an abstract state component a of
a procedure type and its concrete counterpart c can be expressed via the
refinement a v c. Note that here we have to use different names to
distinguish the abstract and concrete state components. In practice, the
variable names before and after data refinement can be the same.

The data refinement extension of the Refinement Calculator allows us (in
most cases) to calculate the concrete program from an abstract one and the
supplied abstraction relation. The calculation is done in a structural way
by decomposing the initial abstract program S, and then using preproved
theorems of the form (abst R); T ; (repr R) v T ′ for the basic cases.
Therefore, to make it possible to data-refine a program containing procedure
variables, we should provide data refinement theorems for the different cases
where procedure variables are used.

We consider three different cases:
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1. when a procedure variable is assigned a new value;

2. when we call a procedure as the value of a procedure variable;

3. when a procedure variable is passed as the value parameter to another
procedure.

10.3.2 Proving Different Cases of Data Refinement

First, let us denote our abstraction relation as dr = (λ(a, c, u). a ref c)
where u are the state components that are not affected by data refinement.
For simplicity, we assume that the procedure variable is the first component
of the program state.

Assigning the value to a procedure variable Now we are ready to
formulate and prove the theorem for data refinement of an assignment state-
ment which assigns the new procedure value to a procedure variable:

pvar_assign_dataref =
` ∀ p p′.

p ref p′ ⇒
(abst dr); a := p; (repr dr) ref c := p′

This theorem states that, if we know from the context that the procedure p
is refined by the procedure p′, then the assignment statement a := p can
be data refined (with the abstraction relation dr = (λ(a, c, u). a ref c))
to the assignment statement c := p′.

As a special case (when p = p′) we have

pvar_assign_dataref2 =
` ∀ p.

(abst dr); a := p; (repr dr) ref c := p

This means that, if we do not know anything the procedure p, data refine-
ment leaves the assignment unchanged.

Let us return to the example presented in Section 10.2. Suppose we have
refined the procedure Exp to Exp′. This fact is added as the additional as-
sumption of the main program. Then the data refinement extension can use
the theorem pvar assign dataref and the added assumption to transform
the assignment statement

pvar,n := Exp,10

to
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pvar,n := Exp′,10

The abstraction relation dr is

(λ(pvar, pvar′, (n, k, ...)). pvar ref pvar′)

in this case.

Calling the value of a procedure variable For the remaining two cases,
we assume that a procedure variable was earlier assigned some concrete value
(a concrete procedure). That means that we can obtain (by using the context
propagation rules) a context assertion of the form {pvar = P} before a
procedure call. Here pvar is the name of a procedure variable and P is the
name (body) of some concrete procedure.

Using the theorem vcall in context, we can then rewrite the proce-
dure call (vcall pvar...) into (call P...). It is easy to notice that now the
procedure call statement is independent of the value of the procedure vari-
able (since the value of a procedure variable cannot be used as the body of
the calling procedure and one of its parameters at the same time due to a
type clash1). The following theorem can then be used:

pvar_call_dataref =
` ∀ p p′.

p ref p′ ⇒
(∀ q x y u. call p f g V q (x,u) = call p f g V q (y,u)) ⇒
monotonic p ⇒
(abst dr); call p f g V; (repr dr)

ref

call p′ f g V

The assumption (∀q x y u. call p f g V q (x, u) = ...) expresses the
fact that the procedure call is independent of the first state component (a
procedure variable). It can be reduced to the corresponding assumptions on
the procedure parameters and then automatically checked and discharged.

After the data refinement is done, we can once again propagate the
context assertion containing information about the new refined value of a
procedure variable and, applying the theorem vcall in context in a sym-
metrical way, restore the vcall pvar operator.

1Recall that the type of a procedure is constructed from the types of its value and
reference parameters. When the value or reference parameters of a procedure are missing,
the HOL type one is used to indicate this. Therefore, the type of a procedure always
differs from the type of any of its parameters.
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For the procedure call pvar(n − 1, 2, k) from the example in Section
10.2, the data refinement extension can use the calculated context assertion
{pvar = Exp} to transform the call pvar(n−1, 2, k) to Exp(n−1, 2, k), then
use the theorem pvar call dataref and the assumption Exp ref Exp′ to
data refine it to Exp′(n − 1, 2, k). After the data refinement of the whole
program is done, the new context assertion {pvar = Exp′} can be calculated
before the procedure call, and used for the restoration of pvar(n− 1, 2, k).

Passing a procedure variable as a value parameter Finally, let us
consider the case when a procedure variable is passed to another procedure
as a value parameter. Without losing generality, we show how our method
works for the case when the procedure has only one value parameter, i.e., a
procedure call is of the form:

call proc f g (λ s. pvar s)

where pvar is the name of a procedure variable.
In a similar way as in the previous case, we can calculate the value of

a procedure variable from the preceding program context. As a result, a
context assertion of the form {pvar = P} is obtained before a procedure
call. Using the context information, the procedure call can be then rewritten
to

call proc f g (λ s. P)

where P is the value of the variable pvar before the procedure call. Once
again the resulting statement is independent of the pvar value. Then the
following theorem can be used:

pvar_vcall_dataref =
` ∀ P P′.

(P ref P′) ∧
(∀ q x y u. call proc f g (λ s. P) q (x,u) =

call proc f g (λ s. P) q (y,u))

⇒
((call f g proc (λ s. P)) ref (call f g proc (λ s. P′)) ⇒
abst dr; call proc f g (λ s. P); repr dr

ref

call proc f g (λ s. P′))

According to the theorem, in the case when a procedure call is indepen-
dent of the procedure variable, we can reduce the proof of data refinement
between the corresponding procedure calls to a proof of ordinary refinement
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between them. Unfolding procedure calls and using the monotonicity prop-
erties of the block statement and the adapt operator, we can further reduce
it to the data refinement (with the same abstraction relation dr) between
the statements pvar := p; proc and pvar := p′; proc where proc is the
body of the called procedure. The following syntactic derivation describes
the structure of the proof.

P1 v P2
` call proc f g (λs. P1)
= {unfold the procedure call}

|[ var pvar| pvar = P1. adapt f g proc ]|
= {move initialisation inside}

|[ var pvar| T. adapt f g (pvar := P1; proc) ]|
v {data refinement of the block body}

• adapt f g (pvar := P1; proc)
v{pvarvpvar′}

• pvar := P1; proc

v{pvarvpvar′}
pvar′ := P2; proc[pvar/pvar′]

adapt f g (pvar′ := P2; proc[pvar/pvar′])
|[ var pvar′| T. adapt f g (pvar′ := P2; proc[pvar/pvar′]) ]|

=
|[ var pvar′| pvar′ = P2. adapt f g (proc[pvar/pvar′]) ]|

=
|[ var pvar| pvar = P2. adapt f g proc ]|

=
call proc f g (λs. P2)

Indentations (marked by •) indicate the subderivations needed to justify
certain steps in the derivation. The main derivation preserves the ordinary
refinement relation, while the subderivations preserve data refinement with
the abstraction relation (λ(pvar, pvar′, u). pvar v pvar′).
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The complete rule for the third case can be syntactically expressed as
the following inference rule:

P1 v P2 ` pvar := P1; proc vdr pvar′ := P2; proc[pvar/pvar′]
P1 v P2 ` call proc f g (λs. P1) v call proc f g (λs. P2)

As a result, we reduced the proof of data refinement of a procedure call to
the corresponding data refinement of the procedure body which recursively
can be solved using the rules given for the first two cases.

Returning to the example from the previous section once again, we can
see that the proof of data refinement of the procedure call
Zip Arrays(pvar, a1, a2, b) in the context (pvar = Exp) ∧ (Exp ref Exp′)
can be reduced to the proof of the following goal:

Exp ref Exp′

?- (call Zip_Arrays f g (λ s. Exp)) ref

(call Zip_Arrays f g (λ s. Exp′))

which in turn can be reduced to the proof of the goal

Exp ref Exp′

?- (abst R); pvar:=Exp; Zip_Arrays; (repr R) ref

pvar:=Exp′; Zip_Arrays

where R is the abstraction relation (λ(pvar, pvar′, ...). pvar ref pvar′).
We started this section with the question “Is refinement of the whole

program preserved in the case when we refine the value of a procedure vari-
able?”. Summarising, we answer affirmatively to this question though we
should admit that a complete mechanisation of the approach described can
be quite involved.

10.4 Discussion

Using procedure variables is a commonplace practice in functional program-
ming. However, in imperative programming it is rare. Actually, there are
only a few imperative programming languages that allow using procedure
variables. For example, in standard Pascal[103] and Oberon[93] passing pro-
cedures as value parameters to other procedures is allowed. Modula-2[104]
allows all three common uses of procedure variables that we described in
this chapter. However, the problems that could be solved using procedure
variables are usually solved using object-oriented techniques and dynamic
binding.
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We have found it challenging to test how our approach handles such
higher-order objects as procedure variables. Due to the nature of the pro-
gram state modelled, procedure variables could be used alongside with vari-
ables of “ordinary” types without any problems. However, things got more
complicated when we considered what happens if we refine the value of a
procedure variable. The solution proposed (using data refinement) provides
a good basis for this problem to be handled mechanically.



Chapter 11

Specifying Procedures by
Hoare Triples

11.1 Introduction

In this chapter we step aside from mechanisation issues that we have been
discussing so far in the Thesis and do a theoretical investigation. The rea-
son for this is the following. Studying various theoretical treatments of
procedures, we have encountered a number of syntactic correctness rules for
procedure calls [47, 75, 19, 20]. The procedures in these rules were specified
as correctness triples (i.e., by pre- and postconditions). Attempts to com-
pare approaches have led to some interesting and quite general theoretical
results about the relationship between specifications in the form of correct-
ness triples and specification statements of the refinement calculus. Though
we concentrate more on theoretical issues rather than mechanisation in this
chapter, all theoretical results are also presented as HOL theorems proved
in the HOL theory of the refinement calculus. The material of this chapter
is based essentially on a published paper[66] written together with J.von
Wright.

The use of pre- and postconditions to describe desired program behavior
is a well-known and widespread technique. A program (or program frag-
ment) S can be specified as follows:

{p} S {q}
where p (the precondition) and q (the postcondition) are predicates over the
state space (the program variables). Such a specification is called a Hoare
triple or a (total) correctness assertion.

129
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In this chapter we investigate the relationship between specifications in
the form of Hoare triples on the one hand and specification statements in
the refinement calculus [4, 84] on the other. We are focusing on the issue of
sharpness, i.e., on finding the most abstract specification satisfying a given
Hoare triple.

The situation is particularly complex when specification variables are
used. These are variables that occur free in the pre- and postcondition of
the specification, without being program variables. Without specification
variables it would not be possible to refer to initial values of program vari-
ables in the postcondition.

We investigate how specification variables in Hoare triples should be
interpreted in general, and what their exact role is in the communication
of values between pre- and postconditions. Our main result (Thm.1) shows
how a Hoare triple with specification variables can be translated into the
refinement calculus specification statement without losing sharpness. In this
translation we eliminate specification variables from a specification, and this
elimination subsumes several rules proposed by others in the past [33, 55, 91].

In the second part of the chapter we show how our results can be used
for analysis and derivation of proof rules for the correctness of procedure
calls. Such rules allow us to deduce correctness properties for procedure
calls from a characterising correctness property of the procedure body. A
procedure can be specified as follows:

procedure P (value x; value − result y)
{p} B {q}

where B is a dummy standing for the body of the procedure and any imple-
mentation must work on the parameters x and y, leaving the value parame-
ter x unchanged. A correctness rule for procedures then allows us to verify
correctness formulas of the form

{p′} P (a, b) {q′}
where a and b are the actual parameters (a can be an expression but b must
be a program variable).

Many rules have been proposed for procedures [47, 75, 19, 20]. A rule is
most useful if it is sharp, i.e. if it provides a way of calculating the weakest
precondition for a procedure call with respect to any postcondition.

Our analysis of specifications and specification variables directly yields
a sharp rule for procedures in the presence of specification variables. The
rule itself is not new [20], but our formulation is more general, depending
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only on the specified statement satisfying a very general semantic condition
(conjunctivity).

11.2 Specification Statements of the Refinement
Calculus

In this section we partly recall and partly introduce the basic notions needed
in our investigation: conjunctivity and monotonicity of program statements,
different kinds of specification statements, and specification variables.
Lemma 11.1 is to our knowledge new; more details about the rest can be
found in standard introductions to predicate transformer semantics and re-
finement [35, 4, 84, 15].

11.2.1 A Useful Lemma

The predicate transformers that model program statements are generally
assumed to satisfy certain healthiness conditions. In this investigation, the
only healthiness condition that is essential is conjunctivity. Recall that a
predicate transformer is called conjunctive if it satisfies the following:

S. (∩i | i ∈ I • qi) = (∩i | i ∈ I • S. qi)

for an arbitrary nonempty collection {qi | i ∈ I} of predicates. Furthermore,
a conjunctive predicate transformer S is also monotonic: p ⊆ q ⇒ S. p ⊆
S. q.

Later in the chapter we make use of the following property which shows
how we can use conjunctivity of a statement if we are interested only in
some specific initial and final states (i.e., a specific context) defined corre-
spondingly by precondition and postcondition collections {pi | i ∈ I} and
{qi | i ∈ I}:
Lemma 11.1 Assume that S is a conjunctive predicate transformer, and σ
a state. Furthermore, assume that {pi | i ∈ I} and {qi | i ∈ I} are collections
of predicates, where i ranges over some type I. Then

(∀i | i ∈ I • pi. σ ⇒ S. qi. σ) ≡ (∃i | i ∈ I • pi. σ) ⇒ S. (∩i | pi. σ • qi). σ

Proof We first prove forward implication. Assume (∀i • pi. σ ⇒ S. qi. σ)
and (∃i • pi. σ). Then the set {i | pi. σ} is nonempty, so

S. (∩i | pi. σ • qi). σ
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≡ {conjunctivity, nonemptiness}
(∀i | pi. σ • S. qi. σ)

≡ {bounded quantification notation}
(∀i • pi. σ ⇒ S. qi. σ)

≡ {assumption}
T

For the reverse implication, we assume (∃i • pi. σ) ⇒ S. (∩i | pi. σ • qi). σ.
Then

pi. σ

⇒ {assumption}
S. (∩j | pj . σ • qj). σ

⇒ {monotonicity; intersection is subset of qi}
S. qi. σ

and the proof is finished. 2

11.2.2 Specification Statements and Specification Variables

In this investigation we use the specification statement of the form {p}; [Q]
where p is a predicate and Q is a relation. Its interpretation as a predicate
transformer (see Section 2.5) is as follows:

({p}; [Q]). r. σ ≡ p. σ ∧ (∀σ′ • Q. σ. σ′ ⇒ r. σ′) (11.1)

In other words, if p holds in the initial state σ and Q relates σ and some
final state σ′, then r must hold in σ′. In such a specification, p is the
precondition and Q is the next-state relation. It is easily shown that the
specification-statement predicate transformer is conjunctive.

In practice, we want to express specifications using program variables.
The syntactic equivalent of a predicate over σ is then a boolean term where
program variables may occur free.

A specification that allows only program variable y to be changed can be
written in the form {p}; [y := y′ | Q] where p and Q are boolean terms over
the program variables. In addition, Q may mention the (bound) variable
y′, which stands for the final value of y. The definition (11.1) then gets the
following syntactic form:

({p}; [y := y′ | Q]). r = p ∧ (∀y′ • Q ⇒ ry
y′) (11.2)
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For example, the specification

{x ≥ 0}; [y := y′ | y′2 ≤ x < (y′ + 1)2]

states that y is to be assigned the integer square root of x (provided x is
nonnegative).

We will mostly use this format for specifications. However, we will also
make comparisons with Morgan’s pre-post specification statement [84]. It
has the form y : [p, q], where y is the frame, p is the precondition, and q is
the postcondition. The example above, rewritten as a pre-post specification,
is

y : [x ≥ 0, y2 ≤ x < (y + 1)2]

Pre-post specification statements are simple and intuitive, but they be-
come a bit more cumbersome if one wants to refer to initial values of changed
variables in the postcondition. There are two ways of overcoming this diffi-
culty. One is to use a convention, for example that zero-subscripted variables
refer to initial values (some formalisms use priming conventions, but the idea
is the same). This is syntactically simple but it introduces a new kind of
entity into the logic (zero-subscripted variables) which makes the rules more
complicated. A logically cleaner solution is to introduce a new binding con-
struct. Morgan uses blocks with logical constants [84] of the form |[ con c • S]|.
In the semantics of this construct the variable c is existentially quantified:

|[ con c • S ]|. q = (∃c • S. q) (11.3)

Using a logical constant to hold the initial value, we can express the speci-
fication

{y ≥ 0}; [y := y′ | y′2 ≤ y < (y′ + 1)2]

equivalently as

|[ con c • y : [y ≥ 0 ∧ y = c, y2 ≤ c < (y + 1)2] ]|

As a predicate transformer, a con-block is not generally conjunctive. How-
ever, in this case the conjunct y = c in the precondition implies that there
is exactly one possible initial value for c and conjunctivity is guaranteed.
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11.3 Hoare Triples as Specifications

Recall that a program statement is called correct with respect to precon-
dition p and postcondition q if any execution from an initial state in p is
guaranteed to terminate in a final state in q. This traditional notion of
(total) correctness is defined in the refinement calculus as follows:

{p} S {q} ≡ p ⊆ S. q

for a predicate transformer S and predicates p and q.
Correctness and refinement can be connected through specification state-

ments. If S is conjunctive, then

{p} S {q} ≡ y : [p, q] v S (11.4)

(this is proved in [81]). Equivalently, this can be stated as follows:

{p} S {q} ≡ {p}; [y := y′ | qy
y′ ] v S (11.5)

This means that {p}; [y := y′ | qy
y′ ] is the most abstract specification of a

statement S that satisfies the correctness triple {p} S {q}; any (conjunctive)
statement that satisfies this triple must be a refinement of {p}; [y := y′ | qy

y′ ].
Now consider the following problem. A statement S is specified by the

Hoare triple {p} S {q} and we want to find an acceptable precondition of S
with respect to some given postcondition r. In other words, we want a rule
of the form

{p} S {q}
{?} S {r} (11.6)

and the problem is to fill in the place of the question mark. In particular,
we want to replace the question mark with a predicate that is as weak
as possible. The rule is said to be sharp if it gives the weakest possible
precondition.

From (11.5) we see that the weakest precondition of {p}; [y := y′ | qy
y′ ]

with respect to r is an acceptable precondition. We expand using (11.2) to
get the precondition

p ∧ (∀y′ • qy
y′ ⇒ ry

y′) (11.7)

In fact, replacing the question mark in (11.6) with this precondition gives us
a sharp rule, since (11.5) is an equivalence rather than just an implication.
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11.3.1 Handling Specification Variables

Correctness triples are restricted as a means of specification since they do
not allow us to refer to initial values of variables in the postcondition. To
overcome this restriction, specification variables (sometimes called logical
variables) are used. A specification with specification variables has the form

{p[m]} S {q[m]}
where p[m] is the same as p but with an explicit indication that a specifica-
tion variable m may occur free. Such a specification should be interpreted
as saying that the correctness condition must hold for any value of m (so m
is implicitly universally quantified).

We are now faced with the following problem: If we reformulate this
specification as a specification statement, how should the specification vari-
ables be interpreted?

The obvious solution seems to be to use the con block, treating a specifi-
cation of the form {p[m]} B {q[m]} as |[ con m • y : [p, q] ]|. The semantics of
the con block and the pre-post specification now gives us the precondition

(∃m • p ∧ (∀y′ • qy
y′ ⇒ ry

y′)) (11.8)

for the question mark in (11.6). This corresponds to treating m as an ordi-
nary free variable (i.e., as implicitly universally quantified) in the correctness
assertion.

Does this interpretation then give us the weakest possible precondition?
The following theorem shows that in general this is not the case.

Theorem 11.1 Assume that S is conjunctive and changes only the vari-
able(s) y. Then the correctness assertion

{p[m]} S {q[m]}
is valid if and only if the refinement

{∃m • p[m]}; [y := y′| ∀m • p[m] ⇒ q[m]yy′ ] v S

holds.

Proof

{p[m]} S {q[m]}
≡ {semantic interpretation}

(∀m • ∀σ • p[m]. σ ⇒ S (q[m]). σ)
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≡ {swap quantifiers}
(∀σ • ∀m • p[m]. σ ⇒ S. (q[m]). σ)

≡ {Lemma 11.1, S assumed conjunctive}
(∀σ • (∃m • p[m]. σ) ⇒ S. (∩m | p[m]. σ • q[m]). σ)

≡ {S monotonic (see explanation below)}
(∀σ • (∃m • p[m]. σ) ⇒ (∀r • ((∩m | p[m]. σ • q[m]) ⊆ r) ⇒ S. r. σ) )

≡ {moving quantifier outside}
(∀r σ • (∃m • p[m]. σ) ⇒ (((∩m | p[m]. σ • q[m]) ⊆ r) ⇒ S. r. σ) )

≡ {shunting property (A ⇒ (B ⇒ C) ≡ A ∧ B ⇒ C)}
(∀r σ • (∃m • p[m]. σ) ∧ ((∩m | p[m]. σ • q[m]) ⊆ r) ⇒ S. r. σ )

≡ {definitions of set operations}
(∀r σ • (∃m • p[m]. σ) ∧ (∀γ • (∀m • p[m]. σ ⇒ q[m]. γ) ⇒ r. γ) ⇒ S. r. σ )

≡ {definition of specification statement}
(∀r σ • {∃m • p[m]}; [λσγ • (∀m • p[m]. σ ⇒ q[m]. γ)]). r. σ ⇒ S. r. σ)

≡ {definition of refinement}
{∃m • p[m]}; [λσγ • (∀m • p[m]. σ ⇒ q[m]. γ)] v S

≡ {switch to syntactic form}
{∃m • p[m]}; [y := y′| ∀m • p[m] ⇒ q[m]yy′ ] v S

The fourth proof step uses the following property which holds for arbi-
trary monotonic S:

( ∀q σ • S. q. σ ≡ (∀r • (q ⊆ r) ⇒ S. r. σ) )

2

11.3.2 Discussion

Theorem 11.1 has a number of consequences. First, it shows that a Hoare
triple specification {p[m]} S {q[m]} corresponds to a specification statement
{∃m • p[m]}; [y := y′| ∀m • p[m] ⇒ q[m]yy′ ]. As a result, we get a specifica-
tion statement where there are no specification variables anymore. Instead,
the relationship between initial and final states is expressed directly, and m
has become an ordinary bound variable.

Next, we use (11.5) and (11.2) to calculate the weakest precondition for
S (specified by {p[m]} S {q[m]}) to establish postcondition r. We get

(∃m • p[m]) ∧ (∀y′ • (∀m • p[m] ⇒ q[m]yy′) ⇒ ry
y′) (11.9)
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This precondition can be shown to be equivalent to the one in (11.8) if
there is at most one value for the specification variable m that satisfies the
precondition p in the initial state. However, if there is more than one such
value of m, then (11.9) yields a weaker precondition than (11.8).

Finally, we note that Theorem 11.1 shows what real difference the as-
sumption about statement conjunctivity makes in Hoare triple specifications
with specification variables. In the world of all monotonic predicate trans-
formers, a specification assertion of the form {p[m]} S {q[m]} is equivalent
to

|[ con m. y : [p[m], q[m]] ]| v S

This can be proved in a derivation similar to that in the proof of Theorem
11.1. However, if we restrict ourselves to conjunctive predicate transformers,
we get the sharper result in Theorem 11.1.

11.3.3 Mechanisation of the Results

The theoretical results presented in this chapter were proved as HOL theo-
rems in the HOL mechanisation of the refinement calculus theory. Here we
present the HOL theorems of Lemma 11.1, the monotonicity property used
in Theorem 11.1, and the Theorem 11.1 itself.

val conj_lemma =
` ∀ C p q.

conjunctive C ⇒
((∀ m. p m s ⇒ C (q m) s) =
(∃ m. p m s) ⇒ C (glb (λ q′. ∃ m. p m s ∧ (q′ = q m))) s)

val mono_lemma =
` ∀ C. monotonic C ⇒

(∀ q s. C q s = (∀ r. q implies r ⇒ C r s))

val Theorem1 =
` ∀ C p q.

conjunctive C ⇒
((∀ m. correct (p m) C (q m)) =
{λ s. ∃ m. p m s}; nondass (λ s s′. ∀ m. p m s ⇒ q m s′) ref C)

: thm

Recall that glb is the greatest lower bound of predicates and nondass is
nondeterministic assignment (demonic update) statement. The HOL proofs
of these theorems follow very closely the formal steps presented in the deriva-
tions.
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Finally, the fact that the con -block is the most abstract specification
statement satisfying the assertion of the form {p[m]} S {q[m]} when we
restrict ourselves to monotonic predicate transformers, can be proved as the
following HOL theorem:

val Theorem2 =
` ∀ C p′ q′.

monotonic C ⇒
((∀ m. correct (p m) C (q m)) =
con (λ m. {λ s. p m s}; nondass (λ s s′. q m s′)) ref C)

where the con -block is defined as follows:

val con_DEF =
`def ∀ C q s. con C q s = (∃ m. C m q s)

11.4 Application: Proof Rules for Procedures

In this section we show how the results of the previous section can be used
for analysing proof rules for procedures. We assume that procedures are
specified in the following way, using correctness triples:

procedure P (value x; value − result y)
{p} B {q}

where it is implicitly assumed that the value of the value parameter x cannot
be changed during procedure execution and that the procedure body B is
conjunctive.

11.4.1 A Basic Proof Rule for Procedures

We start with the proof rule for total correctness of procedure call proposed
by Gries [46, 47]. It allows three kinds of procedure parameters: value,
value-result and result. For simplicity we restrict ourselves to only value
and value-result parameters (result parameters can be used as value-result
parameters without loss of generality).

Gries’s rule then states that the procedure call P (a, b) is correct with
respect to the following precondition and postcondition (so the rule shows
how we can calculate a precondition for the procedure call with respect to
some fixed postcondition r):

{px,y
a,b ∧ (∀u. qx,y

a,u ⇒ rb
u)} P (a, b) {r} (11.10)
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We can equivalently specify the procedure P as

{p}; [y := y′ | qy
y′ ]

according to (11.5). Thus the derived precondition of Gries’s rule (11.10)
follows directly from (11.7), with suitable substitutions to take the actual
parameters into account. In fact, (11.7) shows that the rule in (11.10) is
sharp.

11.4.2 Procedures with Specification Variables

Let us now consider the case when specification variables are used to allow
initial values of variables to be mentioned in the postcondition of the pro-
cedure specification. A procedure specification with specification variables
has the form

procedure P (value x; value − result y)
{p[m]} B {q[m]}

Gries and Levin [47] give a proof rule for such a procedure, stating that the
predicate

(∃m • px,y
a,b ∧ (∀u • qx,y

a,u ⇒ rb
u)) (11.11)

is a derived precondition of the procedure call P (a, b), for postcondition r.
In fact, this rule was proposed earlier (in a partial correctness framework) by
Hoare [55], under the name of the Rule of Adaption. Note that predicate in
(11.11) is exactly what we get from (11.8), i.e., when specification variables
are handled as being bound in a con block.

11.4.3 The Sharpness Problem

The discussion in Section 11.3.2 now suggest that the rule in (11.11) is
not sharp, i.e., it does not always give the weakest possible precondition.
Actually, this has been demonstrated by Bijlsma, Matthews and Wiltink
[20]. As a counterexample, they give a procedure for rounding a real number
to a nearby integer. The procedure has value parameter x (ranging over
reals) and value-result parameter y (ranging over integers) and is specified
(using the specification variable m) in the following way:

procedure P (value x; value − result y)
{m ≤ x ≤ m + 1} B {y = m ∨ y = m + 1}
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As examples of procedure bodies satisfying this specification, obvious pro-
cedures like Floor(x, y) or Ceil(x, y) can be mentioned.

Now consider the call P (a, c) with postcondition c = 0. From (11.11) we
get the derived precondition false, although a = 0 is in fact a valid precon-
dition. Bijlsma, Matthews and Wiltink only give an informal argument for
this, but the following argument demonstrates that their claim is true, when
the body B is required to be conjunctive. We specialise m in the correct-
ness formula twice, once to −1 and once to 0. That gives two correctness
formulas

{−1 ≤ x ≤ 0} B {y = −1 ∨ y = 0}
and

{0 ≤ x ≤ 1} B {y = 0 ∨ y = 1}
We then use the following rule which holds for arbitrary conjunctive S

{p} S {q} {p′} S {q′}
{p ∧ p′} S {q ∧ q′}

to find that B must be correct with respect to the precondition x = 0 and
the postcondition y = 0.

11.4.4 A Sharp Proof Rule with Specification Variables

After demonstrating that the Gries-Levin rule is not sharp, Bijlsma, Wiltink
and Matthews propose their own rule which they prove to be sharp, by a
long and complicated argument involving induction over the syntax of the
programming notation. According to their rule, the weakest precondition of
the procedure call is

(∃m • px,y
a,b ) ∧ (∀u • (∀m • px,y

a,b ⇒ qx,y
a,u) ⇒ rb

u) (11.12)

(this precondition is weaker than the one in (11.11) if there is more than
one value of the specification variable m satisfying predicate p in the initial
state of the procedure call).

Now compare this with what we get if we directly use (11.9) to calculate
the weakest precondition for procedure call P (a, b) to establish postcondition
r. In fact, what we get is exactly the precondition (11.12). Thus Theorem
11.1 directly gives us the sharp rule for procedure calls in the presence of
specification variables. Note also that Theorem 11.1 only required that the
specified statement (the procedure body) be conjunctive. Thus we do not
need to make any assumptions about the syntax of the specified statement;
the conjunctivity requirement is sufficient.
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11.4.5 An Alternative Argument

Let us now look at the formula in the middle of the proof of Theorem 11.1:

(∀σ • (∃m • p[m]. σ) ⇒ S. (∩m | p[m]. σ • q[m]). σ)

To make the correspondence between this formula and the syntactic pre-post
specification even more clear, we do one additional rewriting step using the
fact that program state can be modeled as a tuple. Here we assume that
the procedure state is a pair with the value and the value-result parameters
as components.

Rewriting the state σ as (a, b) where a are value parameters and b are
value-result parameters we get

(∀a, b • (∃m • p[m].(a, b)) ⇒ S. (∩m | p[m].(a, b) • q[m]).(a, b))

It is easy to see that this corresponds to the following syntactic correctness
formula:

{∃m • p[m]x,y
a,b} S {∀m • p[m]x,y

a,b ⇒ q[m]xa}
Now the specification variable m is not free anymore. Therefore, we can
calculate a precondition with Gries’ first rule (11.10) which was already
shown to be sharp.

Substituting (∃m • p[m]x,y
a,b ) for p and (∀m • p[m]x,y

a,b ⇒ q[m]xa) for q we
get the following:

(∃m • px,y
a,b ) ∧ (∀u • (∀m • px,y

a,b ⇒ qx,y
a,u) ⇒ rb

u)

which is again exactly the precondition (11.12) of the general rule.

11.5 Conclusions

The contribution of the work presented in this chapter is a way of trans-
lating a specification written as a correctness assertion into a specification
statement of the refinement calculus. This makes it clear what is the exact
status of specification variables in a correctness assertion, when the asser-
tion is seen as a specification. Our translation is shown to be sharp, i.e., it
yields the most abstract specification satisfying a correctness assertion.

We have shown how specification variables in Hoare triples should be
interpreted to fit together with the notions of specification and refinement
in the refinement calculus. For example, our investigation shows that the
statement S specified by

{m ≤ x ≤ m + 1} S {y = m ∨ y = m + 1}
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can be specified using the specification statement

{∃m • m ≤ x ≤ m + 1};
[y := y′ | ∀m • m ≤ x ≤ m + 1 ⇒ y′ = m ∨ y′ = m + 1]

Furthermore, we find that this is not equivalent to a specification of the form

|[ con m • y : [m ≤ x ≤ m + 1, y = m ∨ y = m + 1] ]|
However, the two specifications are closely related: the former is the least
conjunctive refinement1 of the latter.

We illustrated the results by applying them to procedure correctness.
Traditionally, the refinement calculus framework has not considered correct-
ness rules for procedures. Instead, work has concentrated on specification
and refinement of procedures and procedure calls [5, 80]. Our analysis shows
how correctness rules for procedures can be derived and analysed efficiently
within the framework of the refinement calculus.

In particular, we exhibit a short derivation of a sharp rule for procedures
in the presence of specification variables. The rule is known from earlier work
[20], but there it is not explained how to arrive at this rule, and the proof
of sharpness is quite long and complicated.

E.Olderog in [91] discusses the relative incompleteness of Gries’s proof
rule for procedures and presents an Adaptation rule which yields a weakest
precondition that is very similar (but not the same) as ours. However, he
considers only partial correctness, and his notion of relative completeness is
not the same as our notion of sharpness.

K.Engelhardt and W.-P.de Roever[36] study simulation of specification
statements in Hoare logic. However, they go in the opposite direction, re-
ducing specification statements to Hoare triples in order to prove data re-
finement by means of simulation.

The results presented in this chapter provide a good basis for mecha-
nisation of specification statements written as Hoare triples. A program
fragment, for example the body of a procedure, could be specified by a cor-
rectness assertion which is then automatically translated into the internal
HOL representation of the corresponding specification statement accord-
ing to Theorem 11.1. We are planning to integrate this approach into the
Procedure extension of the Refinement Calculator. It would allow us to
describe procedures as Hoare triples in the interface provided when the ac-
tual internal representation (generated according to the HOL theorems we
presented) is hidden by the parser and the pretty-printer.

1The least conjunctive refinement of a statement is the least (wrt. the refinement
ordering) conjunctive statement that refines it.



Chapter 12

Modelling Functional
Procedures

12.1 Introduction

In imperative programming two kinds of procedures are encountered. A call
to an ordinary procedure is itself a program statement, while a call to a func-
tional procedure is an expression. Thus, calls to functional procedures occur
inside other expressions (in the right-hand side of an assignment or in the
guard of a conditional or a loop). Many languages support functional pro-
cedures, but still they have been ignored in most theories of programming,
such as Hoare logic or the refinement calculus. These theories typically do
not treat expressions at all, assuming that the underlying logic handles them
sufficiently.

In this chapter we describe how functional procedures can be handled in
a weakest-precondition framework, where programs are identified with pred-
icate transformers. We also show how our theory of functional procedures
can be integrated into the HOL mechanisation of the refinement calculus.
Thus we have a framework for reasoning in a mechanised logic about impera-
tive programs that contains definitions of and calls to functional procedures.
To make such reasoning possible in practice, we derive rules that reduce rea-
soning about the calling program to correctness reasoning about the body
of the functional procedure.

We model functional procedures in their full generality; thus the body
of a functional procedure can be built using standard specification syntax,
including nondeterminism, sequential composition, conditionals and loops.
Recursive procedures constitute a special challenge, but we show how they
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can be handled, and provide a nontrivial example of reasoning about a
recursive procedure for binary search.

The material of this chapter is based on a paper[67] written together
with J.von Wright.

12.2 Functional Procedures

The general purpose of a procedure is to abstract a certain piece of code,
giving it a name and then adapting it (through parameters) in different
places of the program. Since procedures are program fragments, they can
be modelled in the usual way, i.e., as predicate transformers (see Chapter
6).

The effect of calling an ordinary procedure is that the procedure body
(adapted as described by the parameters) is executed in place of the proce-
dure call. However, the effect of calling a functional procedure is that a value
is returned, and calls to functional procedures appear inside expressions in
assignments and guards. Thus, a call to a functional procedures cannot be
replaced by the procedure body.

12.2.1 The Function Call Operator

Since a functional procedure is really a program fragment, we want to model
it as a predicate transformer. To make this work, this predicate transformer
has the argument (a tuple) as its initial state and the returned result as its
final state. A call to such a functional procedure is then defined so that
it extracts the state function from the predicate transformer (i.e., from the
body of the functional procedure).

A return statement explicitly indicates what result should be returned
by a functional procedure. It is defined as follows:

`def ∀ e. return e = assign (λ u. e u)

Note that by η-conversion, return and assign are exactly the same, but
their intuitions differ: assign models an ordinary assignment to program
variables, while return is used to produce the final (result) state; it should
be executed as the very last statement before control returns to the calling
program.

In order to use functional procedure calls in our program, we have to find
a way of extracting the state function from the procedure body. The body of
a functional procedure is defined as a predicate transformer. Operationally
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we can see it as modelling backward execution – we supply a set of final states
we are interested in (postcondition), and calculate the biggest possible set
of initial states (weakest precondition) from which we guaranteed to reach
the final states described by the postcondition. State functions, however,
model forward execution – for a given initial state they calculate the final
state that is the result of the state change. We need to find a translation
that reverses execution modelled by the functional procedure body.

For a given initial state we consider all possible sets of reachable final
states (postconditions). We then calculate the intersection of all such sets
of states (the minimal set of reachable final states), and finally we select a
value from this minimal set as the result of our state function.

This intuition is formalised in the following definition:

`def ∀ c. fcall c = (λ u. ε v. glb (λ q. c q u) v)

where c is the body of the functional procedure, u is the initial (argument)
state, and v is the result value.

Modelling the body of a functional procedure, we usually require it to
satisfy an additional healthiness condition1 called strictness. The strictness
property excludes any miraculous execution of a program statement. Most
statements of our language are strict. The exceptions are magic, [false],
and [λss′.F]. The HOL definition of strictness is as follows:

`def strict c = (c false = false)

Note the use of the choice operator ε in the definition of fcall. It means
that the result value of a function call is an arbitrary (but fixed) element
from the set glb (λq. c q u). If this set is empty, then we have no information
whatsoever about the value that is returned. However, conjunctivity and
strictness (the two healthiness conditions that we generally require) together
guarantee that the set is nonempty.

As an example, we define a very simple functional procedure that squares
a natural number as follows:

`def sqfun = return (λ u. u*u)

In a Pascal-like syntax this corresponds to something like the following:

func sqfun(x : num) : num =
return x ∗ x

A call to this functional procedure can then be as follows:
1So far we have used two healthiness conditions of program statements – monotonicity

and conjunctivity.
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assign λ (x,y).(x,y + fcall sqfun (x+1))

corresponding to an assignment of the form

y := y + sqfun(x + 1)

12.2.2 Basic Properties

We shall now discuss a number of basic properties of the function call opera-
tor that we have proved as HOL theorems. We start with a basic soundness
property: if the body of the functional procedure is an assignment statement
then the function call extracts the state change function from it:

fcall_assign =
` ∀ e. fcall (assign e) = e

The proof rests on the fact that in this case, the intersection
glb (λq. (assign e) q u) is the singleton set {e u} where u is the initial (ar-
gument) state of the functional procedure. Therefore, the choice operator
actually has no choice but to select e u as the result value of the function
call.

Implicitly the same property holds for any deterministic and terminating
functional procedure body, since such a statement is semantically equivalent
to a single assign statement.

Next, we have a property that allows us show that a functional procedure
in fact implements a specific function.

fcall_thm =
` ∀ c f. conjunctive c ∧ strict c ∧

(∀ u0. correct (λ u. u = u0) c (λ v. v = f u0)) ⇒
(fcall c = f)

Here, c is the body of the functional procedure and f is (the HOL formali-
sation of) the function that the procedure implements. The implementation
property is reduced to a corresponding correctness property of the procedure
body, which can then be proved using standard (Hoare logic) methods.

Finally, we have two theorems that show how the function call oper-
ator can be propagated past an initial assignment and distributed into a
conditional:

fcall_seq =
` ∀ c e. fcall (assign e seq c) s = fcall c (e s)

fcall_cond =
` ∀ g c1 c2 s.

fcall (cond g c1 c2) s = (g s → fcall c1 s | fcall c2 s)
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These theorems will be important when proving properties of concrete im-
plementations. They could also support a kind of partial evaluation using
the actual parameters of a function call.

12.2.3 Example: Implementation Proofs

Consider the very simple task of finding the minimum of two numbers. In
HOL we can formalise the minimum function in the following way:

`def ∀ m n. MIN(m,n) = (m < n → m | n)

In the imperative programming notation we now code a (slightly differ-
ent) functional procedure minfun

`def minfun =
cond (λ (x,y). x ≤ y)

(return λ (x,y).x)

(return λ (x,y).y)

The two arguments of the functional procedure minfun form the initial state
(pair). The variables here are explicitly modelled as projection functions FST
and SND. In a Pascal-style programming notation this would translate to

func minfun(x : num, y : num) : num =
if x ≤ y then

return x

else

return y

endif

Now we can prove that minfun actually implements the HOL function
MIN.

` fcall minfun = MIN

The proof is straightforward: first we use the theorem fcall cond to dis-
tribute fcall into the conditional statement, then we eliminate fcall using
the basic property fcall assign. After this follows a case split and then
the proof is finished off by arithmetic reasoning. Note that this kind of im-
plementation theorem is very strong: when reasoning about a program that
contains a function call, we can replace the function call with the mathe-
matical function that it corresponds to. Thus, we never have to refer to the
definition of minfun after this.
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12.2.4 Nondeterminism and Nontermination

It is natural to expect functional procedures to be deterministic and ter-
minating, since they typically implement (total) functions. The theorem
fcall assign shows that in this case the function call extracts the imple-
mented function.

However, our formalisation of functional procedures is more general than
this, because it allows function bodies that are nondeterministic and/or
nonterminating. An obvious question is now: what do we know about the
value that a functional procedure returns in these cases?

Suppose that the body of a functional procedure is nonterminating. That
means that there are no postconditions that can be satisfied by execution of
the body. Expanding the definition of fcall, we can prove that the function
call in this case returns an arbitrary (but fixed) value of the result type.

` ∀ c u. nonterminating c u ⇒ (fcall c u = (ε v.T))

Therefore, a nonterminating function body does not lead to a nonterminat-
ing function call (an expression in the HOL logic is always defined), but we
get a return value about which we know absolutely nothing (apart from type
information).

Let us now consider the case when the function body is (demonically)
nondeterministic (but terminating). A simple case is when the procedure
body consists of a single nondeterministic assignment statement nondass R.
In this case, if for some given initial state (function parameters) u the set
R u is not empty, then some selected element from the set R u is returned by
the function call:

` ∀ R u. (∃ v. R u v) ⇒ R u (fcall (nondass R) u)

A similar argument can also be used when the body of the nondeter-
ministic functional procedure is more complex, since it is then equivalent to
some nondeterministic assignment.

12.3 Correctness Reasoning with Functional Pro-
cedures

The usual way to prove that a program (or some program fragment) is cor-
rect with respect to a given precondition-postcondition pair is to decompose
the global correctness property into correctness properties for the program
components, using Hoare logic.
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12.3.1 Correctness Proofs with Functional Procedures

When proving correctness of a program containing function calls, we use
Hoare logic to decompose the proof in the ordinary way. When we get to
the bottom level, we are faced with proving verification conditions that come
from guards and assignments (e.g., conditions of the form P ⇒ Q[x := E]
that come from the assignment rule of Hoare logic). When function calls are
present, such conditions express a relationship between the calling state, the
argument to the function, and the result returned by the function call. The
following theorem can then be used to reduce the condition to a correctness
condition on the function body:

fcall_property =
` ∀ c R e u0.

conjunctive c ∧ strict c ⇒
correct (λ u. u = e u0) c (λ res. R u0 res) ⇒

R u0 (fcall c (e u0))

Here c is the function body, and R expresses the relationship between the
state from which the function is called (u0) and the function result
(e is the function that says how the function argument is constructed from
the calling state). Note also that fcall property is a generalisation of
fcall thm (see Section 12.2.2). Since conjunctivity and strictness can be
proved automatically, it gives a way of reducing a general property of a func-
tion call to a correctness property for the body of the functional procedure
in question.

Let us use the squaring function to show how this is used in practice.
Recall that it was defined as

`def sqfun = return (λ u. u * u)

Suppose that we want to prove the following correctness assertion for the
assignment statement with the function call:

` correct (λ (x,y). T)

(assign λ (x,y).(x,fcall sqfun (x + 1) − 1))

(λ (x,y). y ≥ x)

Here the tupled abstraction makes the correspondence with the intended
Hoare logic formula clear:

{T} y := square fun(x + 1) − 1 {y ≥ x}
After applying the Hoare logic rule for assignment and simplifying, the

goal is reduced to the following:
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` fcall sqfun (x + 1) − 1 ≥ x

We can now specialise the theorem fcall property with square fun for c,
with (λ(x, y) r. r − 1 ≥ x) for R, with (λ(x, y). x + 1) for e, and with x for
u0. This theorem reduces our goal (after the conjunctivity and strictness
conditions have been automatically discharged) to

` correct (λ u. u = x+1) (return (λ u. u * u)) (λ r. r−1 ≥ x)

Now we apply the Hoare logic rule for assignments (recall that the return
statement is an assignment) and the goal is reduced to

` (x + 1) * (x + 1) − 1 ≥ x

which is a standard verification condition (and obviously true).
The functional procedure square fun was very simple, but the same

strategy works for more complex procedure bodies and more complex cor-
rectness conditions as well. The example shows how the verification con-
ditions that arise from program correctness proofs lead to new correctness
proofs, when function calls are present. Since the body of one function may
contain calls to another function, new correctness conditions may appear,
and so on. Eventually, however, all function calls have been handled and
we reach the ground level where only basic verification conditions remain
(unless there is recursion; see Section 12.4).

12.3.2 Contextual Correctness Reasoning

A function call can occur in a situation where a context (i.e., a restriction on
the possible values of program variables) is known to hold. If this contextual
knowledge can be expressed in the form of a predicate p that holds for the
arguments at a call to c, then we can assume p as a precondition when
reasoning about the body of the functional procedure c.

The theorem that captures this intuition is the following, in the case of
an implementation proof:

fcall_thm_pre =
` ∀ c p f.

conjunctive c ∧ strict c ∧
(∀ u0. correct (λ u. (u = u0) ∧ p u) c (λ v. v = f u0)) ⇒
(∀ u. p u ⇒ (fcall c u = f u))

A simple example of a situation where this property can be useful is when
the function call occurs inside the guard of a conditional, e.g.,
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cond (λ (x,y). x>0 ∧ fcall foo x) ...

In this case, we may instantiate p to (λu.u > 0) when using fcall thm pre
to reason about the call to foo.

A similar argument can also be used when proving some general property
of a function call (e.g., when reducing correctness conditions):

fcall_property_pre =
` ∀ c p R e u0.

conjunctive c ∧ strict c ∧
correct (λ u. (u = e u0) ∧ p u) c (λ v. R u0 v)) ⇒
p (e u0) ⇒ R u0 (fcall c (e u0))

This is a direct generalisation of fcall property (Section 12.3).

12.4 Recursive Functions

Recursion in the context of (ordinary) procedures can be defined using the
least fixpoint (with respect to the refinement ordering on predicate trans-
formers) of a functional that corresponds to the recursively defined proce-
dure. This method cannot be used directly with functional procedures, since
the fcall operator is not monotonic with respect to the refinement ordering
(nor any other suitable ordering).

12.4.1 A Constructor of Recursive Functional Procedures

As a first step towards defining recursion we define an iterator.

`def (∀ f. iter 0 f = assign (λ s. ε s′. T)) ∧
(∀ n f. iter (SUC n) f = f (iter n f))

Since there is no bottom (or undefined) element to start the iteration from,
we choose to start it from some element selected by the choice operator.
This means that we have to be careful when defining the recursion operator:
it is not sufficient that two consecutive iterations give the same result (the
selection operator may cause this to happen “by accident”). However, if
from some point on all further iterations give the same result, then the
iteration has stabilised. This justifies the following definition

`def ∀ f. fmu f =
assign (λ s. ε a. ∃ m. ∀ n. n > m ⇒ (fcall (iter n f) s = a))
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Of course, the problem of nontermination is the same as before: a po-
tentially infinite sequence of recursive calls is modelled as terminating and
returning a result about which we know nothing.

The following example shows how fmu is used when defining a recursive
functional procedure (one where recursion occurs inside a fcall). We define

`def Factfun = λ Z.

cond (λ x. x=0)

(assign λ x.1)

(assign λ x.x * fcall Z (x−1))

`def factfun = fmu Factfun

This corresponds to a Pascal-style function definition of the following form:

func factfun(x : num) : num =
if x = 0 then

return 1
else

return x ∗ factfun(x − 1)
endif

12.4.2 Basic Properties

The crucial property of the recursion operator fmu is that it gives the stabil-
isation point of iter, if such a point exists, for the arguments in question:

fmu_thm =
` ∀ f s k.

(∀ n. fcall (iter (k + n) f) s = g s) ⇒
(fcall (fmu f) s = g s)

This property may not seem very informative, but it gives us the tools we
need to prove properties of functional procedures defined with fmu. The
argument k is crucial; it corresponds to a termination argument (an upper
bound on the number of iterations needed to reach stability).

As an example, we briefly describe how one proves that factfun really
implements the (built-in) FACT function of the HOL system.

According to fmu thm it is sufficient to prove the following lemma

` ∀ x n. fcall (iter (SUC x + n) Factfun) x = FACT x

We have chosen SUC x as termination argument (which is reasonable when
we are computing the factorial of x).
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The proof of this lemma follows a fairly simple routine, involving only
induction and rewriting with basic arithmetic facts. As a result, we imme-
diately get the implementation theorem

` fcall factfun = FACT

12.4.3 Example: binary search

The factorial example illustrates the fmu operator and it shows that it is
possible to prove properties of a recursive functional procedure. However, it
can be argued that factfun merely encodes the standard recursive definition
of the factorial function into imperative form, and that the proof really only
performs the corresponding decoding. In order to show that more realistic
functional procedures can be handled, we now consider an example where
the procedure does not correspond to an encoding of a standard recursive
function definition.

Our example is a binary search, which in standard syntax is as follows:

func binfind(f : num → num, l : num, r : num, x : num) : bool =
if r ≤ l then

return F

else

|[ var m := (l + r) div 2;
if f m < x then

return binfind(f, m + 1, r, x)
else if f m = x then

return T

else

return binfind(f, l, m, x)
endif endif

]|
endif

The aim is to show that if the first argument f is a monotonic function (i.e.,
sorted), then binfind(f, l, r, x) returns T if exists i such that l ≤ i < r and
f i = x, and it returns F otherwise.

We define a constant Binfind standing for the functional procedure of
which the procedure binfind is the least fixpoint:
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` Binfind = λ Z.

cond (λ (f,l,r,x). r ≤ l)

(return λ (f,l,r,x). F)

((assign λ (f,l,r,x). ((l + r) DIV 2,f,l,r,x)) seq

(cond (λ (m,f,l,r,x). f m < x)

(return λ (m,f,l,r,x). fcall Z (f,SUC m,r,x))

(cond (λ (m,f,l,r,x). f m = x)

(return λ (m,f,l,r,x). T)

(return λ (m,f,l,r,x). fcall Z (f,l,m,x))

)))

` binfind = fmu Binfind

This corresponds exactly to the standard syntax above. The assignment

assign λ (f,l,r,x). ((l + r) DIV 2,f,l,r,x)

corresponds to the block entry, adding the new variable (m) as a first state
component. No explicit block exit is needed; it is taken care of by the return
statement.

The correctness of the binary search depends on the first argument being
sorted. Thus, the theorem that we want to prove is the following:

` ∀ f x.

(∀ i j. i < j ⇒ f j ≤ f j) ⇒
(∀ l r. fcall binfind (f,l,r,x) =

(∃ i. l ≤ i ∧ i < r ∧ (f i = x)))

Exactly as for the simple example in Section 12.4.2, the crucial lemma
shows that iteration of Binfind is guaranteed to terminate with a correct
answer. The lemma has the following form:

` ∀ f:num→num. ∀ x:num.
(∀ i j. i < j ⇒ f i ≤ f j) ⇒
(∀ d k l. fcall (iter (SUC d + k) Binfind) (f,l,l+d,x) =

(∃ i. l ≤ i ∧ i < l + d ∧ (f i = x)))

The critical part of the proof is an induction over d (the length of the search
interval), which is also the termination argument. Since the termination
argument is (approximately) halved rather than decreased by one, we must
use general well-founded induction:

` ∀ P. (∀ n. (∀ m. m < n ⇒ P m) ⇒ P n) ⇒ (∀ n. P n)

rather than standard induction over the natural numbers. The proof strat-
egy is essentially the same as in the factorial example, but here we need to
push fcall both into conditionals and past assignments (see Section 12.2.2).
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The proof then reduces to basic arithmetic facts (including tedious details
about integer division) and to simple properties of monotonic functions. The
following two are typical examples of lemmas used in the proof:

` (∀ i j. i < j ⇒ f i ≤ f j) ∧ (f i = x) ∧ f j < x ⇒ j < i

` m > 0 ⇒ m DIV 2 < m

This proof follows a general strategy that can be used in similar proofs.
However, automating this strategy does not seem feasible, at least not when
general well-founded induction is used. In this example finding the right
instantiations for d, k, and l in the lemma required elaborate equation solv-
ing. Furthermore, assumptions about the state (such as the monotonicity
assumption on f) may be used in nontrivial ways.

The proof also depends on pushing fcall into the structure of the func-
tional procedure, and this only works going into conditionals and past as-
signments. Thus, the same strategy cannot be used if nondeterministic
constructs are involved, or if there are assignments after a recursive call. It
is not clear whether there exists a useful proof strategy in these situations.

12.5 Discussion

We have presented an approach for modelling functional procedures in a
weakest precondition framework. We are explicitly interested in functional
procedures as they occur in Pascal-like programs, i.e., where the procedure
is described as an imperative program even though the call is used as an
expression. Thus we cannot use existing theories of functional programs
(e.g., [32, 97]). Instead, functional procedures are handled through the link
between assignments and state transforming functions. To our knowledge,
they have not treated in this way before.

We integrated this approach into the mechanised version of the refine-
ment calculus in HOL system. The HOL formalisation of the refinement
calculus contains support for correctness reasoning about programs, and we
reuse it for correctness reasoning where calls to functional procedures occur.

Two ways of proving (correctness) properties of function calls were de-
scribed. If the functional procedure is characterised by an implementation
theorem then the function call can be replaced directly by a reference to the
corresponding (mathematical) function. In other cases, the proof leads to
correctness proofs for the body of the functional procedure.

Our approach for modelling functional procedures allows function bodies
to be nondeterministic and/or nonterminating. Since the result of a function
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call is selected using the choice operator ε, it is always well-defined. In the
nondeterministic case, the result returned by the function call is an arbitrary
but fixed value of the form εP (where P is some nonempty set). Thus the
value returned by the function call is deterministic, but the only information
we can ever get about it is that it belongs to the set P . In this sense our
approach differs significantly from earlier attempts to do model expressions
and expression refinement in a weakest precondition framework[74, 87, 96].
In our framework, a refinement of the body of a functional procedure does
not lead to a refinement of the calling program (but proofs of properties of
the calling program can generally be reused, as long as it does not make
essential use of the selected element εP , and that is very rarely needed2).

The use of the choice operator ε in the function call definition also means
that the problem of nontermination is solved in rather simplistic way. Non-
termination in the body of the functional procedure cannot cause an “in-
finite looping” function call, since our expressions are always well-defined.
Instead, a nonterminating body leads to a return value about which we know
nothing.

The work presented can be extended by investigation of possible semi-
automated strategies for proofs of implementation and correctness, both for
simple and recursive functional procedures. The approach described in this
chapter also provides a good basis for adding functional procedures to the
Refinement Calculator tool.

2Essential use of the selected element εP means that the property proved only holds
for this fixed arbitrary element belonging to the set P and does not hold for any other
element from this set.



Chapter 13

Conclusions & Future Work

13.1 Conclusions

General remarks The refinement calculus is a powerful formalism for de-
veloping provably correct programs starting from their precise mathematical
descriptions (specifications). However, since actual proofs tend to become
too large and complicated, and therefore unmanageable, we need a mechan-
ical assistance to guarantee their soundness.

This dissertation has presented new ideas and techniques to support
mechanical development of programs on the basis of the refinement calcu-
lus theory. Most of the ideas and techniques presented in the thesis have
been implemented within the Refinement Calculator – a tool for program
refinement being developed at Åbo Akademi University.

Our refinement theory is mechanised in the theorem prover HOL. HOL
provides us with security for expressing and proving complex refinement
rules. The weakest precondition semantics of our programming language is
given definitionally in higher order logic. The use of a shallow embedding
within a classical logic allows us to freely mix our refinement logic with
ordinary logic. All this increases our confidence that the refinement rules
presented in this thesis are sound, and derivations done by the tool are
logically accurate.

The work presented in the thesis relies heavily on the work of other people
involved in the Refinement Calculator project. Specifically, we have exten-
sively used general refinement and logical transformations, data refinement
techniques, window inference extensions, and parsing and pretty-printing
facilities that have been developed and integrated into the Refinement Cal-
culator by other members of our group.

157
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The main significance of our contribution lies in the treatment of proce-
dures and procedure calls in the weakest precondition semantics (formalised
in higher-order logic) and its implementation in a workable and practical
fashion in the Refinement Calculator tool. That allows us to create and
reason formally about modular units of programs such as procedures and
functions. As a result, the standard program refinement techniques imple-
mented in the Refinement Calculator can be applied for formal top-down
development of larger programs.

The investigation of refinement and correctness properties of procedures
and their calls in our model has led to a number of novel and interesting
results concerning the relationship between Hoare triples and specification
statements in the refinement calculus, the connection between procedure
variables and data refinement, the treatment of functional procedure calls
etc. All these results are proved or implemented in the rigorous environment
of the HOL system.

Next we overview each of the main parts of the thesis in more detail.

Overview of main results Chapter 4 presents our mechanisation of an
abstract lattice theory and its integration with the Refinement Calculator
tool. This work allows us to automatically instantiate abstract lattice prop-
erties for concrete domains and use them on different abstraction levels of
the program model that we are working with. Our approach is very similar
to the one taken by Gunter[50] in her HOL formalisation of abstract group
theory. Windley[105] has implemented a package for using abstract theories
in the HOL system. The package allows us to define abstract theories alge-
braically, i.e., by defining abstract operations axiomatically via their basic
properties. This package provides an alternative way to define an abstract
lattice theory in the HOL system. However, Windley associates the un-
derlying set of abstract elements with a HOL type. Our approach is more
flexible since it allows us to use any set of elements as the underlying set of
an abstract theory.

The use of abstract lattice properties for program derivations is not that
apparent in the rest of the thesis. This can be explained by the fact that
abstract lattice properties are mostly used on the level of program predicates
and relations, and we often omitted this level of detail when presenting our
program derivations.

At the high level of program statements the most notable example of the
application of the abstract lattice properties is recursion introduction as a
specialisation of the lattice property of the least fixpoint introduction. This
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rule is very useful for reasoning about loops and recursive procedures.
In future our work can be extended with facilities for handling monoid

structures which interact with the lattice ordering (e.g., so that the composi-
tion operation is monotonic in both arguments with respect to the ordering).

In Chapter 5 we described our work on the implementation of two dual
approaches for introduction, calculation and the use of context information
in the refinement calculus framework. While working on the mechanisation
of the rules for handling context information, we focused on two main issues:
the first was the proof of sharpness of the rules, and the second was the
implementation of them within the Refinement Calculator tool.

There are several stubborn problems regarding context which are worth
discussing. The first problem is how to manage an explosive growth of
context information while propagating it through large program fragments.
This can lead to difficulties in retrieving the information which is the most
relevant for refinement of a certain subterm. The problem can be tackled
by hiding (using a pretty-printer) a part of irrelevant accumulated context
information by focusing attention/projecting on the program variables of
interest. Also, we are planning to take advantage of the new HOL techniques
for automatic simplification that have become available in the most recent
releases of the HOL system.

The propagation of context information through loops is in general cum-
bersome because of the absence of sharp context propagation rules for loops.
The current solution suggests that a loop invariant is propagated as the
only available context information. This situation can be improved by im-
plementing the approaches described in the thesis for strengthening a loop
invariant and for propagation of context information that is not affected by
loop execution.

Another problem is the propagation of context information through pro-
cedure calls. The two approaches presented suggest either a complete dis-
closure via unfolding of a procedure call or treating a procedure as a “black
box”. We believe that the optimal way could be a compromise solution
proposed by Staples[99], e.g., to use an initial specification of a procedure
to calculate a sufficient and manageable amount of context information.

The main part of the thesis is devoted to modelling procedures and
procedure calls in the weakest precondition semantics. This allows us to
prove a number of semantic properties of procedures and their calls that
were just postulated in traditional syntactic approaches.

The implementation of our approach in the HOL system leads to an
increase in scalability of the mechanised refinement calculus, because it al-
lows us to deal formally with bigger programs by providing a possibility
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to create and reason about modular units of programs (such as procedures
and functions). We illustrated it by an example presented in Chapter 7
which demonstrated how our framework can facilitate the top-down formal
development of programs.

The next step in this direction would be a generalisation of the approach
by introducing modules as collections of procedures working on a local state.
We present our proposal for how modules could be implemented in the next
section.

We use a simple and intuitive approach to modelling procedures by
means of the let construct. Hence we consider procedures to be independent
context assumptions for the main program. Therefore, the global program
state can be accessed by a procedure only via procedure parameters. This
restriction means that we do not model global variables. However, our mech-
anisation can be easily extended by modelling global variables as “syntactic
sugaring”, i.e., by modifying the parser and pretty-printer in such a way
that global variables declared in a procedure definition are automatically
added as additional reference parameters in a procedure call.

In the thesis we have not considered data refinement of procedures and
their calls. Data refinement of local variables of a procedure is easily imple-
mentable since these variables are modelled as local variables of the corre-
sponding block statement (the procedure body). However, data refinement
of the variables that occur in the list of reference parameters is directly im-
possible since the procedure definition is out of scope of the program that
we are data refining. A possible solution could be to “wrap” the procedure
call using abstraction and representation statements that are used in data
refinement. Such a “wrapping” is usually called interface refinement[77],
and a mechanisation of it is one of possible extensions of our work.

Using tuples for modelling the program state provides an extra over-
head in our formalisation. When modelled as a tuple, the program state
is intuitively simple. However, the order of the elements is important in
tuples while program variables supposed to be independent. We often need
to prove that after a certain permutation (reordering) of the state we are
still working with the same state, and this can be tedious and annoying.
However, this overhead is hidden from the user by the automation provided.

To reduce the complexity of our formalisation of procedures, we allow
procedures to be defined only in a fixed order which determines their scope.
This excludes the possibility of mutually dependent procedures. We see
dropping this restriction as a possible future extension of our work. We
discuss it in detail in the next section.

Work related to the mechanisation of procedures has mostly been done in
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the area of program verification. Mechanisation has been provided by special
programs called Verification Condition Generators (VCG) which reduce the
task of proving program correctness to proving a set of generated lemmas
of a much simpler form. We should mention VCGs developed by Igarashi,
London, and Luckham[59], Boyer and Moore[22], and Gray[45] that included
treatment of procedures modelled in axiomatic semantics. However, these
verification condition generators were not themselves verified. This means
that any proof using and relying on these VCGs tools might not be sound,
even if all the verification conditions were correctly proven. The notable ex-
ception is the work of Homeier[57, 58]. He has written and verified his VCG
using the HOL theorem prover. In his work Homeier models a purposely-
built imperative programming language (which includes mutually-recursive
procedures) in an operational semantics. His VCG then automatically gen-
erates the verification conditions needed to prove termination and other
correctness properties of a program.

In his thesis, Staples[99] has presented a mechanisation of a
refinement-based approach for program development in the Isabelle theo-
rem prover. In his work program statements are modelled using a weakest
precondition semantics defined in an untyped set theory. To model program
states and variables, Staples uses dependently typed functions to represent
program states as an underspecified map from variable names to their val-
ues. His treatment of procedures is similar to ours in the sense that he also
uses the let construct to bind a main program and a procedure. Adaption
of the procedure body in place of a procedure call is controlled by special
initialisation and finalisation functions, the purpose of which is similar to
state reordering functions used in our approach.

13.2 Possible Future Extensions

In this section we present our proposals for future extensions of the work
presented in this thesis.

Modules Procedures can be very useful as a structuring tool for develop-
ing large programs. But talking about real software systems, we should take
one step further and consider how groups of procedures can themselves be
organised into larger units called modules. A module corresponds to data
abstraction in the sense that it introduces local variables (state) that can be
accessed and updated only by procedures (sometimes called methods) pro-
vided by a module. Therefore, the main purpose of modules is to encapsulate
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(i.e, make hidden) their data and all aspects of their use.
Is it possible to generalize our approach from procedures to modules

as well? When we are talking about modules, we usually associate two
things with them – the introduction and initialisation of a local module
state (variables), and the declaration of a number of module procedures
that can access and update the module state. We can present an abstract
module M1 in the following way:

module M1 =
var u : T | Init;
procedure P1 (val v1; var u, r1)
...

procedure Pn (val vn; var u, rn)

where u are the local variables of module M1, Init is an initialisation pred-
icate for the local state, and P1, ..., Pn are procedures of a module M1. The
types of these procedures are of the form Ptrans(Σi ×T ×Γi) where Σi and
T × Γi are the value and reference parameter types of procedure Pi. Note
that the local variables u are explicitly included into the lists of reference
variables of all module procedures.

A module and a program can be then composed into one unit by a use
operator which is defined in the following way:

use M1 in < program > =
let P1 in

let P2 in

...

let Pn in

|[var u : T | Init. < program >]|
Here < program > can contain calls to the procedures defined in the module.
However, the difference between these calls and ordinary procedure calls is
that the reference to the module state u should automatically be added to
the list of reference parameters of a procedure call.

Any particular module could be defined in the HOL system as a pair
of the form (Init, (P1, ...Pn)). In general it would be desirable to define
modules inductively as HOL objects. That would allow us to make inductive
definitions of operations on modules (such as use), and to prove general
properties of modules as HOL theorems. For example, it would then be
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possible to define the notion of module refinement mref and to prove that
the use operation is monotonic with respect to module refinement:

` ∀ M1 M2 C. M1 mref M2 ⇒ (use M1 C) ref (use M2 C)

However, module procedures can have different parameters and, there-
fore, be of different types, and a collection of them can only be modelled
as an n-tuple (general tuple). Unfortunately, there is no way of reasoning
inductively about n-tuples in the HOL system. The alternative solution
could be to define modules at the meta (SML) level as a collection of HOL
terms under a given name corresponding to a module name, and then to
extend the parser/pretty-printer with a use operator so that for any partic-
ular case of use < module > < program > it would generate the internal
HOL representation according to the definition of use given above.

Since the composition of a module and a program can be expanded into
a collection of nested let operators and a block statement of a special form,
we can prove refinement of a program or of the procedures of a module in
the same way as we did before. A refined module, however, can be saved
under a new name, and used later in other programs.

Mutually dependent procedures When modelling procedures, we have
imposed the restriction that procedures cannot be mutually dependent. The
order in which procedures are declared is very important since it determines
the scope in which a particular procedure is visible and can be called. In
this way we exclude the possibility of mutual recursion in procedure calls.

In a paper[64] written together with L.Mikhajlov and E.Sekerinski we
dropped this restriction, studying a more general layout in which two com-
ponents (modules) are calling methods of each other in an arbitrary way.
Furthermore, no restrictions are imposed on the order in which methods of
modules are declared.

Here we briefly describe the way we are modelling such a component
system. A mechanisation of this approach is a part of future work.

Any component system can be seen as consisting of two components A
and B. Suppose that A has m and B has n methods. The components com-
municate by invoking each other’s methods and passing parameters. For
simplicity, we model method parameters by global variables that the meth-
ods of both components can access in turns. Due to encapsulation the type
of the internal state of the other component is not known, we say that the
body of a method of the component A has the type Ptran(Σ × ∆ × β),
where Σ is the type of A’s internal state, ∆ is the type of global variables
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modeling method parameters, and β is a type variable to be instantiated
with the type of the internal state of the other component during compo-
sition. As the internal state of the other component is not accessible, we
assume that methods of A operate only on their internal state and the state
representing method parameters and are, therefore, of the form S‖skip.
Similarly, methods of B have bodies that are of the form skip‖S and of
type Ptran(α × ∆ × Γ), where α is a type variable.

The behaviour of a component method depends on the behavior of the
methods it invokes. We can model a method of the component A as a
function taking a tuple of method bodies and returning a method body:

ai =̂ λBb • abi

If we introduce an abbreviation Ψn to stand for Ψ × ... × Ψ with n occur-
rences of Ψ, we can write out the type of ai as Ptrann(Σ × ∆ × β) →
Ptran(Σ × ∆ × β), where n is the number of methods of B. Methods of B
are defined in the same manner. Accordingly, we can collectively describe
all methods of A as a function A given as follows:

A =̂ (λBb • (ab1, ..., abm)) : Ptrann(Σ × ∆ × β) → Ptranm(Σ × ∆ × β)

Therefore, the component A is a tuple (a0, A), where a0 : Σ is an initial value
of the internal state and A is the function defined above. The definition of
the component B is similar but with the corresponding differences in typing.

Composing components A and B results in a component system that has
methods of both components with all mutual calls resolved. Using fixpoints1,
we could define such a system in the following way:

(A compB) =̂ ((a0, b0), (µ(A◦B), µ(B◦A)))

Note that during composition, the type variables α and β, representing the
unknown state spaces of the components B and A, get instantiated with Σ
and Γ respectively, so that the composed system has methods operating on
the state space Σ × ∆ × Γ.

Note that in the special case B = A we get a module defining a set
of procedures that can be calling each other in an arbitrary way. Such a
module can be defined as

A =̂ (a0, µ(A))
1In the paper[64] we present a detailed argument explaining why we need fixpoints.
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The same approach can be applied to defining mutually dependent proce-
dures into a main program. In this case we have

let (ab1, ab2, ...abn) = µ(A) in < main program >

Of course, working with procedures or modules defined in this way involves
extensive dealing with fixpoints and their properties.

Other extensions There are still some topics of this thesis that would be
interesting to investigate further. One possible extension is the mechanisa-
tion of interface refinement which would allow us to “wrap” procedure calls
during data refinement. Another possibility is to implement a “grey box”
approach which would permit us to propagate context information through
procedure calls. It would also be interesting to investigate how to mechanise
the new axiomatic model of the program state and variables described by
Back and von Wright in [15] which allows us to handle procedures in a very
simple and elegant way.



166 CHAPTER 13. CONCLUSIONS & FUTURE WORK



Bibliography

[1] S. Agerholm. A HOL Basis for Reasoning about Functional Programs.
PhD Thesis, University of Aarhus, BRICS Department of Computer
Science, 1994. BRICS Report Series RS-94-44.

[2] F. Andersen. A Theorem Prover for UNITY in Higher Order Logic.
PhD Thesis, Technical University of Denmark, Lyngby.

[3] P.B. Andrews. An Introduction to Mathematical Logic and Type The-
ory: To Truth Through Proof. Academic Press, 1986.

[4] R.J.R. Back. On the correctness of refinement in program develop-
ment. PhD thesis Report A-1978-4, Department of Computer Science,
University of Helsinki, 1978.

[5] R.J.R. Back. Procedural abstraction in the refinement calculus. Tech-
nical Report 55, Department of Computer Science, Åbo Akademi, 1987.
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[95] R. Rukšėnas and J. von Wright. A tool for data refinement. In LNCS
1479, 423–442. Springer–Verlag, 1998.

[96] M. Schwenke and K. Robinson. What If? In Second Australian Re-
finement Workshop, 1992.

[97] K. Slind. Function Definition in Higher-Order Logic. In Proc. 1996
International Workshop on Higher Order Logic Theorem Proving, Lec-
ture Notes in Computer Science 1125, Turku, Finland, August 1996.
Springer–Verlag.

[98] S. Sokolovski. Total correctness of procedures. In Proceedings of 6th
Symposium on the Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science 53, 475–483. Springer–Verlag, 1977.

[99] M. Staples. A Mechanised Theory of Refinement. Ph.D. Thesis, Cam-
bridge University, 1999.

[100] A. Tarski. A lattice theoretical fixed point theorem and its applica-
tions. Pacific J. Mathemetics, 5:285–309, 1955.

[101] M. Utting and K. Robinson. Modular reasoning in an object-oriented
refinement calculus. In R.Bird, C.C.Morgan, and J.Woodcock (Eds.),
Mathematics of Program Construction, Lecture Notes in Computer Sci-
ence 669, 334–367. Springer–Verlag, 1993.

[102] M. Utting and K. Whitwell. Ergo user manual. Technical Report 93-19,
Software Verification Research Centre, The University of Queensland,
February 1994.



176 BIBLIOGRAPHY

[103] J. Welsh and J.Elder. Introduction to Pascal. Prentice–Hall Interna-
tional, 1979.

[104] J. Welsh and J.Elder. Introduction to Modula-2. Prentice–Hall Inter-
national, 1987.

[105] P.J. Windley. Abstract Theories in HOL. In Proc. of the Int. Workshop
on the HOL Theorem Proving System and Its Applications, September
1992. IFIP Transactions A-20, 197–210.

[106] N. Wirth. Program development by stepwise refinement. Communi-
cations of ACM, 14:221–227, 1971.

[107] J. von Wright. Doing Lattice Theory in Higher Order Logic. In Techni-
cal Report 136, Reports on Computer Science and Mathematics, Series
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