
Turku Centre for Computer Science

TUCS Dissertations

No 28, May 2000

Safe Language Mechanisms for

Modularization and Concurrency

Martin Büchi

T U C S

Safe Language Mechanisms for
Modularization and Concurrency

Martin Büchi

To be presented —with the permission of the Faculty of Mathematics and Natural
Sciences at Åbo Akademi University— for public criticism in Alabama’s Auditorium
at DataCity in Turku, Finland, on June 9, 2000, at 12 noon.

Department of Computer Science
Åbo Akademi University

Supervised by

Professor Ralph Back
Department of Computer Science
Åbo Akademi University
Lemminkäisenkatu 14A
20520 Turku
Finland

Reviewed by

Professor Cliff B. Jones
Department of Computing Science
University of Newcastle upon Tyne, NE1 7RU
The United Kingdom

Dr. Clemens A. Szyperski
Microsoft Research
One Microsoft Way 31/1288
Redmond, WA 98052
U.S.A.

ISBN 951-29-1727-0
ISSN 1239-1883

Painosalama Oy, 2000
Turku, Finland

Para

Acknowledgments

I would like to thank my supervisor, Professor Ralph Back, for his encouragement,
support, and guidance. As a professor, he provided me with the best possible appren-
ticeship to scientific research. As a friend, he showed great understanding for my needs
and gave me continuous support. Together with Professors Johan Lilius, Kaisa Sere,
and Joakim von Wright, he created a very inspiring and human environment for per-
forming research.

Professor Cliff Jones of the University of Newcastle, United Kingdom, and Dr. Cle-
mens Szyperski of Microsoft Research, USA, kindly agreed to review this dissertation.
I would like to thank them for their insightful comments and suggestions, which helped
me improve the introduction, the appendix, and some of the papers.

I had the good fortune of receiving guidance and support from four former post-
docs and researchers at the programming methodology group. Dr. Emil Sekerinski
(currently at McMaster University, Canada) introduced me to concurrency theory, the
B method, and formal reasoning about object-oriented systems. As we co-authored
three papers together, he taught me how to publish scientific articles. Dr. Wolfgang
Weck (currently at Oberon microsystems Inc., Switzerland) filled me with enthusiasm
for component software and type systems. His never-ending pursuit of an intelligible
structure and a clear focus greatly improved the five papers we wrote together. Dr. Jim
Grundy (currently at the Australian National University, Australia) and Dr. John Har-
rison (currently at Intel Corporation, USA) helped me with higher order logic and
theorem proving.

Dr. Marina Waldén patiently answered my questions on the B method and on action
systems. Furthermore, she bravely endured my first sentences in Finnish and Swedish
and is greatly responsible for my present fluency in these two beautiful languages.
Dr. Mats Aspnäs was the universal source for help and provided superb lunch company.
I had many inspiring discussions with my fellow Ph.D. students Dr. Linas Laibinis,
Dr. Leonid Mikhajlov, Dr. Anna Mikhajlova, Iván Porres Paltor, Rimvydas Rukšėnas,
Mauno Rönkkö, and Elena Troubitsyna as well as with other members of the program-
ming methodology group.

I would like to thank the staff of Åbo Akademi University and the Turku Centre
for Computer Science for creating a pleasant and efficient working environment. The
financial support from the Turku Centre for Computer Science and ABB Switzerland
is gratefully acknowledged.

Sari Isotalo and Albert Morgades, Kaisa Yli-Jokipii and Jussi Linderborg, and Ul-
rika and Lasse Nielsen have become fantastic friends during the past 4 years. They have
greatly enriched my life. Thanks, too, to the Ikkala extended family for introducing me
to Finnish family life.

Finally, I would like to thank my parents, my brother, and Yasko for their continu-
ous support.

Turku, May 10, 2000
Martin Büchi

Abstract

We study safe language mechanisms for modularization and concurrency. Our contri-
butions are a case study and several new language mechanisms with associated theories.
Our motivation is twofold. First, the construction of software used in safety-critical sys-
tems requires expressive specification and programming languages that are themselves
safe. Second, we want to gain insight into models for creating correct programs.

Large programs must be decomposed into smaller parts —such as modules, com-
ponents, or classes— that can be considered one at a time without too much regard
for the remaining parts. Concise formal specifications facilitate the use of these parts.
Refinement can be used to prove implementations correct with respect to their speci-
fications. Furthermore, specification and refinement improve the development process
by separating the what from the how.

We have performed a medium-sized case study in the B formal method to explore
the practical application of modularization, specification, and refinement. The sharing
restrictions among modules in B caught our attention. To overcome these restrictions,
we propose a new compositional symmetric sharing mechanism based on roles ex-
pressing rely/guarantee conditions.

B and other standard specification and data refinement methods work well for lay-
ered systems. However, they cannot in a modular way handle call-backs, which are
common in object- and component-based systems. We propose a new specification
and refinement method that addresses this need. Our specifications explicitly prescribe
making external calls during the execution of a method, and the corresponding notion
of refinement considers the sequence of external calls as part of the observable behavior
that is preserved.

Compiler-checkable explicitly named and declared types with associated semantic
contracts can augment the semantic specification and refinement approach. To be effi-
ciently decidable and safe, type systems must forbid some semantically correct compo-
sitions. We isolate such a case, and the novel solution we propose takes a step toward
the reconciliation of safety and flexibility. Our solution is especially useful for com-
ponent software because component assemblers often lack the ability to change and
recompile components in order to make them compatible.

Existing composition mechanisms either fail to fully address the safety, modular
reasoning, and late composition requirements of component software, or allow only
limited reuse due to typing restrictions. We introduce a new object composition mech-
anism that addresses the above needs of component software.

We also explore the benefits of specification, refinement, and object orientation in
concurrent systems. We build on action systems, which give us a simple, yet powerful
model for concurrency. We add objects to action systems and investigate both practical
and theoretical aspects of our new model. Our compiler and run-time environment
provide for animation. On the theoretical side, we define trace refinement of active
objects. Our notion of refinement supports algorithmic, data, and atomicity refinement
in the implementation of specifications and in behavioral subtyping.

To assure the safety of both our systems and language mechanisms, we have applied
tool-based formal methods to achieve the most rigorous proofs. We have used Atelier
B to mechanically check our B case study, and have proved type soundness of our
extended type systems in Isabelle/HOL.

Contents

1 Introduction 1

2 Modules, Components, and Classes 3
2.1 Modules . 3
2.2 Components . 6
2.3 Classes and objects . 8

3 Formal Specifications 10
3.1 Formal vs informal specifications . 11
3.2 Algebraic vs model-based specifications 11
3.3 Formal methods . 12
3.4 Tools . 12

4 Refinement 13

5 Compositional Sharing of Modules in B 14
5.1 A sample problem . 14
5.2 A modular solution based on rely/guarantee conditions 15

6 Specification and refinement of external calls 16
6.1 Postconditions vs statements . 16
6.2 Statement-based specifications of call-backs 18
6.3 Greybox refinement . 19

7 Types 21
7.1 Behavioral typing . 21
7.2 Type safety . 25

8 Precise typing 26
8.1 A sample problem . 26
8.2 Compound types to the rescue . 27
8.3 Purely structural equivalence for types 29

9 Composition and reuse of components 29
9.1 A sample problem . 30
9.2 Generic wrappers as the solution . 31
9.3 Design space for generic wrappers 31
9.4 Generic wrappers in Java . 32
9.5 Generic wrappers and compound types 32
9.6 Prototype-based languages . 33

10 Concurrency 33
10.1 Models for concurrency . 34
10.2 Action systems . 35
10.3 Object-oriented action systems . 36
10.4 Refinement of object-oriented action systems 38

11 Summary 38

References 39

Publication reprints
The B Bank . I
Compositional Symmetric Sharing in B II
The Greybox Approach: When Blackbox Specifications Hide too Much . . III
Compound Types for Java . IV
Generic Wrapping . V
Action-Based Concurrency and Synchronization for Objects VI
Refining Concurrent Objects . VII

An Introduction to B

List of Original Publications

I. Martin Büchi. The B Bank. In Emil Sekerinski and Kaisa Sere, editors, Program
Development by Refinement: Case Studies Using the B Method, FACIT series,
chapter 4, pages 115–180. Springer Verlag, 1998.

II. Martin Büchi and Ralph Back. Compositional Symmetric Sharing in B. In Jean-
nette M. Wing, Jim Woodcock, and Jim Davies, editors, Proceedings of FM’99:
World Congress on Formal Methods, volume 1708 of Lecture Notes in Computer
Science, pages 431–451. Springer Verlag, September 1999.

III. Martin Büchi and Wolfgang Weck. The Greybox Approach: When Blackbox
Specifications Hide too Much. Submitted for publication.

IV. Martin Büchi and Wolfgang Weck. Compound Types for Java. In Proceedings
of the Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA) ’98, pages 362–373. ACM Press, 1998.

V. Martin Büchi and Wolfgang Weck. Generic Wrapping. Technical Report 317,
Turku Centre for Computer Science, April, 2000. Shortened version: Generic
Wrappers. In Proceedings of ECOOP 2000, Lecture Notes in Computer Science.
Springer Verlag, June 2000.

VI. Ralph Back, Martin Büchi, and Emil Sekerinski. Action-Based Concurrency and
Synchronization for Objects. In M. Bertran and T. Reus, editors, Proceedings of
the Fourth AMAST Workshop on Real-Time Systems, Concurrent, and Distributed
Software (ARTS), volume 1231 of Lecture Notes in Computer Science, pages 248–
262. Springer Verlag, May 1997.

VII. Martin Büchi and Emil Sekerinski. Refining Concurrent Objects. Conditionally
accepted to Fundamenta Informaticae with request for changes.

1 Introduction

Computer-based systems are ubiquitous in safety-critical applications. The depend-
ability of such systems —say in airplanes, medical equipment, and banks— is there-
fore of critical importance. The quality of the instruments used to construct computer-
based systems strongly influences the dependability of these systems. The main in-
struments for building computer-based systems include specification and programming
languages. In this thesis, we identify problems with existing languages in the key ar-
eas of modularization and concurrency, and propose new mechanisms to address these
problems. Because we are concerned with the safety of systems, we use formal meth-
ods to show that our mechanisms themselves are safe.

Structure and abstraction are the main techniques leading to understandable and
hence trustworthy programs. Programs must be decomposed into partitions that can be
considered one at a time without too much regard for the remaining parts.

If a team is to develop a large program, the original task must be split into smaller
subproblems that can be handled by individual programmers. Solutions to individual
problems may rely on the solutions of other subproblems. For example, the imple-
mentation of accounts in a banking application may rely on a database. In turn, the
implementation of accounts may be used from various front-ends, such as ATMs and
cashiers’ terminals. Programmers should be able to build on the work of others, without
having to study the inner workings of the others’ solutions. Hence, program building
blocks need to be equipped with concise abstract descriptions for facilitating their use.
The decomposition of programs into smaller parts with concise specifications is called
modularization.

Refinement allows developers to show that program parts satisfy their specifica-
tions. Furthermore, program development by refinement yields a separation of con-
cerns: When we write specifications, we can focus on the what without being distracted
by the how. When we implement a part, we can focus on efficiency and correctness
without having to worry about determining the requirements of clients.

The formalization of specifications and of refinement enables tool-based mechan-
ical reasoning about properties of our programs. Formalization can provide insight,
deliver assurance, and help with debugging.

Types can enhance modular development. Explicitly declared and named types can
stand for external semantic specifications. Unlike semantic specifications and refine-
ment, types can be automatically checked by compilers and run-time environments.

In this thesis we introduce several novel language mechanisms for the concise spec-
ification of modules and for the composition of modules and instances of items defined
therein. Two of these mechanisms use types for automatic checking.

Language mechanisms used for constructing safety-critical systems must them-
selves be safe. A language mechanism is safe if it is free from defects and produces
the expected results. Whereas everyone is likely to be interested in safety, there are
different ways of asserting it. In this thesis, we have chosen formal methods to give
the most rigorous safety proofs for our systems and language mechanisms. To further
increase the confidence in proofs, we have partly used mechanized theorem provers.

The second area of concern in this thesis is concurrency. Many computer systems
are concurrent in the sense that multiple things can happen at the same time. For exam-

1

is_type Γ T
Γ � T � T

qed

Safe?

Validation 2: Safety asserted
using tool-based formal
methods.

name equivalence:
all types declared

to implement
TextContainer

compound type
[Text, Container]:
all types declared

to
implement Text

and
Containers

structural equivalence:
all types containing the

same methods as
TextContainer

IMPLEMENTATION
 OperationsBank_1

REFINES
 OperationsBank

IMPORTS
 RB.RobustBank

SEES
 BC.BasicCGI
 …
END

Account

number: NAT
pin: NAT
balance: NAT = 0

˙class-scope¨
accounts: set of
Account

˙constructor¨
NewAccount(cid: Customer, pin: NAT)

˙query¨
Balance(pin): NAT
Authorized(pin): BOOL
AccountOwner(): Customer

˙update¨
Deposit(amount: NAT): BOOL
Withdraw(pin: NAT, amount: NAT)
ChangePin(pin: NAT, newPin: NAT)

˙class-scope¨
AccountDBFull(): BOOL
ThisAccound(number): Account

Customer

name: STRING
yob: NAT

˙class-scope¨
customers: set of Customer
˙constructor¨
NewCustomer(name: STRING, yob: NAT)

˙query¨
CustomerData(): STRING×NAT

˙class-scope¨
CustomerDBFull(ss: STRING): BOOL
ThisCustomer(name: STRING, yob: NAT): BOOL× Customer
InitFindCustomer(name: STRING): NAT
FindNextCustomer(): BOOL× Customer

h
a
s0..*

1 modularization
concurrency

Build systems using
existing languages.

Suggest new mechanisms.

Validation 1: Solves problem,
is simple, and is orthogonal to
existing mechanisms.

IMPLEMENTATION
 OperationsBank_1

REFINES
 OperationsBank

IMPORTS
 RB.RobustBank

SEES
 BC.BasicCGI
 …
END

A c c o u n tnumber: NAT
pin: NAT
balance: NAT = 0

˙class-scope¨
accounts: set of Account

˙constructor¨
NewAccount(cid: Customer, pin:
N A T)

˙ q u e r y ¨
Balance(pin): NAT
Authorized(pin): BOOL
AccountOwner(): Customer

˙ u p d a t e ¨
Deposit(amount: NAT): BOOL
Withdraw(pin: NAT, amount: NAT)
ChangePin(pin: NAT, newPin: NAT)

˙class-scope¨
AccountDBFull(): BOOL
ThisAccound(number): Account

C u s t o m -
e r

name: STRING
yob: NAT

˙class-scope¨
customers: set of Customer

˙constructor¨
NewCustomer(name: STRING, yob: NAT)

˙ q u e r y ¨
CustomerData(): STRING×NAT

˙class-scope¨
CustomerDBFull(ss: STRING): BOOL
ThisCustomer(name: STRING, yob: NAT):
BOOL×Cus tome r
InitFindCustomer(name: STRING): NAT
FindNextCustomer(): BOOL×Customer

h a s

0 . . *

1 ABC✔

- rely/guarantee in B
- greybox approach
- compound types
- generic wrappers
- type-bound actions

IMPLEMENTATION
 OperationsBank_1

REFINES
 OperationsBank

IMPORTS
 RB.RobustBank

SEES
 BC.BasicCGI
 …
END

Account

number: NAT
pin: NAT
balance: NAT = 0

˙class-scope¨
accounts: set of Account

˙constructor¨
NewAccount(cid: Customer, pin: NAT)

˙query¨
Balance(pin): NAT
Authorized(pin): BOOL
AccountOwner(): Customer

˙update¨
Deposit(amount: NAT): BOOL
Withdraw(pin: NAT, amount: NAT)
ChangePin(pin: NAT, newPin: NAT)

˙class-scope¨
AccountDBFull(): BOOL
ThisAccound(number): Account

Customer

name: STRING
yob: NAT

˙class-scope¨
customers: set of Customer
˙constructor¨
NewCustomer(name: STRING, yob: NAT)

˙query¨
CustomerData(): STRING× N A T

˙class-scope¨
CustomerDBFull(ss: STRING): BOOL
ThisCustomer(name: STRING, yob: NAT): BOOL× Customer
InitFindCustomer(name: STRING): NAT
FindNextCustomer(): BOOL× Customer

has

0..*

1

Pinpoint and analyze prob-
lems in existing languages.
Try to solve them with exist-
ing mechanisms or circum-
vent them.

language
design

system
verification

Consistency and correctness of
refinement steps proved using
tool-based formal methods.

Consistent?
Correct?

Spec � Imp

$ qed

Figure 1: Overview of the system construction and language design processes

ple, several travel agents in different countries can make reservations and cancellations
for the same flight at the same time. Concurrent systems are intrinsically more com-
plicated to develop than their sequential counterparts. This is due to synchronization,
communication, and non-interference requirements. The choice of a conceptual model
for concurrency determines how well we can focus on the actual requirements without
having to worry about unwanted effects, such as the deadlock of two processes waiting
for each other. In this thesis we extend an existing model for concurrency, i.e. action
systems, by adding objects to achieve a more expressive, yet still simple formalism.

Figure 1 summarizes the general approach of this thesis: Existing languages are
used to build systems. The dependability of these systems is asserted using tool-based
formal methods. Problems that are encountered with existing languages are analyzed
and new mechanisms are proposed for solving them. The new mechanisms are vali-
dated in two steps. First they must solve the problems at hand, be as simple as possible,
and be orthogonal to existing mechanisms that they do not replace. Second, their safety
is proved using formal methods.

Publications and practical work The body of this thesis comprises seven articles.
In addition to the papers, I have for this thesis produced several software artifacts and
mechanized proofs constituting a total effort of approximately one person year. For
Paper I, I have produced a B case study with 2,324 lines of B in 15 constructs and a total
of 1,397 proof obligations, all of which I have discharged with the mechanized theorem

2

prover of Atelier B. For Papers IV and V, I have extended a formalization of Java’s
type system in Isabelle/HOL and proved type soundness for the extended systems.
Additionally, I have written an Action-Oberon compiler and a run-time environment to
experiment with object-oriented action systems, as described in Papers VI and VII.

Overview The remainder of this introduction is organized as follows. The first three
sections introduce some basic concepts used throughout this thesis. Section 2 charac-
terizes modules, components, and classes. Special emphasis is put on modular infor-
mation hiding. In Sect. 3 we discuss formal specifications. We illustrate the advantage
of a formal foundation and argue for the use of tools. Refinement to assert the cor-
rectness of implementations with respect to their specifications is discussed in Sect. 4.
Modularization, specification, and refinement are also key ingredients of the case study
in Paper I.

In Sect. 5 we describe an interference problem of shared modules in B and sketch
how we solve it in Paper II. In Sect. 6 we discuss the specification and refinement of
external calls. This topic is studied in detail in Paper III

Types and their use as automatically checkable aids for the construction of seman-
tically consistent and correct programs are described in Sect. 7. In Sect. 8 we intro-
duce compound types to solve a typing problem in component software. In Sect. 9
we propose a new language construct for late composition. Targeted at strongly-type
languages, it utilizes the type system to provide maximal static and dynamic safety.

Section 10 is devoted to concurrency. We introduce object-oriented action systems
as a simple, yet powerful model for concurrency. Furthermore, we reiterate the ideas
of specification and refinement in the concurrent context.

Section 11 contains the conclusions. Throughout the introduction, we point out
which aspects we have studied in Papers I–VII and what contributions we have made.

The seven papers listed above form the body of this thesis. The appendix gives a
short introduction to the B method for the purpose of Papers I and II.

2 Modules, Components, and Classes

In this section we present the basic concepts of modular, component-oriented, and
object-oriented programming.

2.1 Modules

A module, as in Modula-2 [59], Oberon-2 [47], or B [1], is a closed static unit that en-
capsulates embedded abstractions, such as types, variables, constants, functions, pro-
cedures, and classes. A module is closed in the sense that others cannot add, remove,
or change any items. In contrast, Java [27] packages, to which anyone can add new
classes, are open. Because modules are closed, their encapsulated domains are fixed
and the modules can be fully analyzed. Modules can import other modules and thereby
gain access to exported items of the imported modules. Modules can be understood, re-
fined, implemented, compiled, and reasoned about separately, that is knowing only the

3

B A

C
B’

A’

C’ B’’

A’’

C’’

DB Math

Problem divided into
subproblems

Modular specification Modular implementation
using auxiliary modules

imports

?

Problem to be solved

Figure 2: Modular solution of a problem

specifications of imported modules. Modularization leads to a separation of concerns
and thus reduces the detailed reasoning needed to a doable amount.

Figure 2 illustrates a modular solution of a problem. The problem to be solved is
divided into subproblems A, B, and C. The subproblems and their dependencies are
specified. Different programmers then implement the three specifications. Modules B′′

and C′′ use the auxiliary modules DB and Math to complete their tasks.
A module can hide details from clients that import it. Thus, modules establish a

new level of abstraction. This is called information hiding. Figure 3 gives part of a
simple banking application in Oberon-2 as an example of information hiding: Clients
of module Bank1 can call the exported (indicated by the ‘*’ after the name) procedure
Withdraw, which appears in the interface. On the other hand, clients cannot directly
manipulate the balances because they are not exported.

Information hiding has three benefits:

1. Implementers of client modules are not bothered by implementation details of
the imported module. They must only understand the specification to utilize a
module. In the example, they do not have to know that accounts are implemented
with two arrays. This is an advantage even if the same person develops both the
provider and the client module. She or he doesn’t have to remember the details
of the provider implementation when coding the client.

2. The implementer is free to choose and change the actual data structure and algo-
rithms. For example, accounts could be implemented with linked lists or using
an SQL database instead.

3. Clients cannot tamper with and corrupt the data structure, read secret informa-
tion, or make unauthorized modifications.1 In the example, clients cannot over-
draw accounts, read pins, or withdraw money without the correct pin.

In Paper I we make extensive use of modular information hiding. Every module is
divided into a semantic specification and an implementation. The concise specifications
helped us to reduce the amount of detailed reasoning when writing client modules.
Correctness proofs of clients were greatly simplified by using the abstract descriptions
of imported modules, rather than the lengthy implementations.

1Most modularization mechanisms are suitable as software engineering aids, but not as security mecha-
nisms because they do not enforce information hiding on the binary level.

4

DEFINITION Bank1; (* Interface visible to clients *)
PROCEDURE Withdraw(no, pin, amount: INTEGER; VAR ok: BOOLEAN);
. . .

END Bank1.

MODULE Bank1; (* Implementation *)
VAR nofAccounts: INTEGER;

pins, balances: ARRAY 10 OF INTEGER;

PROCEDURE Withdraw*(no, pin, amount: INTEGER; VAR ok: BOOLEAN);
BEGIN

IF (0<=no) & (no<nofAccounts) & (pins[no]=pin) & (amount>0) &
(balances[no]>=amount) THEN

balances[no]:=balances[no]-amount; ok:=TRUE
ELSE ok:=FALSE
END

END Withdraw;
. . .

END Bank1.

Figure 3: Information hiding: Visible interface and implementation of Bank1

Additionally, modular information hiding allowed us to specify provider modules
and check whether their specifications would provide suitable services to clients with-
out being concerned about the implementations. When writing the implementations,
we only needed to think of the specification, but not of all the different client usages.

Finally, information hiding guaranteed that client modules could not invalidate the
invariants of service modules. Thus, information hiding enabled us to establish invari-
ants on a modular base.

On the negative side, information hiding also prevents clients from performing sen-
sible operations directly on the data, which would sometimes be simpler and more ef-
ficient. Instead of hiding the data and providing procedures to access it, we could also
make the data visible to clients and give them rules as to how they may manipulate it.
However, such an approach has two disadvantages. First, such rules are semantic and
can therefore, unlike hiding, not be enforced by a compiler. Second, changes of inter-
nal requirements may invalidate clients. For example, we might decide to introduce
a log of all withdrawals. With information hiding, we simply change the procedure
Withdraw; there is no need to reanalyze or change the clients. On the other hand, if
clients can directly modify the balances instead of calling Withdraw we must change
the rules for these accesses and, therefore, change all clients so that they also update
the log. Thus, modularization is also possible without language support. However, in
this case the compiler cannot warn us if we inadvertently break our conventions.

There are three typical kinds of modules:

1. A subroutine library module contains no data of its own, but exports a collec-
tion of procedures. A typical example is a module that exports mathematical
functions.

5

2. An abstract data structure module contains hidden data and procedures to ma-
nipulate that data. Module Bank1 (Fig. 3) is an example of an abstract data
structure.

3. An abstract data type module exports a data type together with associated oper-
ations. In contrast to 2, clients can create arbitrary numbers of instances of the
abstract data type at run time.

Modules in most languages have two drawbacks. First, traditional modules can
only be combined into a system if they are all written in the same language. Sec-
ond, modules, such as Fortran numerical subroutine libraries, are statically linked to-
gether by the developer. For some purposes, this is too restrictive. For example, we
might want to use a different spell checker in our word processor, or embed an editable
spreadsheet into a text document. This may not be possible if the word processor is a
statically linked monolithic program. Component software addresses these problems.

2.2 Components

Software components are binary units of independent production, acquisition, and de-
ployment that interact to form a functioning system [56]. Components should have con-
tractually specified interfaces and explicit context dependencies only. Whereas mod-
ules state which other modules they import, components state which services, such as
a database or mathematical functions, they require. The decision which other compo-
nent will provide these services is delayed until the components are assembled. Some
systems may even contain several components providing the same service. Which
component is used to provide which service to which other component may then be
statically configurable, or this may be decided when a request is made on the basis of
such factors as the current load.

Component software makes it possible for separate teams to develop different parts
of large software systems and replace individual software parts that evolve at different
speeds. Replacement can be done without having to change or reanalyze other parts.
Furthermore, marketing of independently developed building blocks becomes possible.

As in other engineering disciplines, component markets allow customers to com-
bine off-the-shelf components for standard tasks with custom-made components for
business-specific requirements. Customers can thus save time and get large parts of
their systems at predictable costs. Component manufacturers profit from the market
because they can focus on their core competence. For example, a company with special
knowledge in checking the spelling of the Finnish language can build a spell checker
component for word processors [40]. They do not have to create themselves a full
word processor that can compete with Word. Because a given component can be used
in different applications, manufactures are likely to sell large quantities.

Figure 42 illustrates a component market, as it exists for JavaBeans and ActiveX
components (e.g. [18]) and in more restricted forms for plug-ins for standard software,
such as Adobe Photoshop, Quark XPress, and Netscape Navigator. A component mar-
ket has three kinds of players. Vendors produce and sell components. Assemblers

2Figures 4 and 17 originally created by Wolfgang Weck. Modified and used with permission.

6

Component
Market

Vendor A Vendor B

Independent vendors
manufacture components.

Assemblers and users select
components and plug them
together.

Standardized contracts
define common references
for component vendors.

U
se

r
de

m
an

ds
 in

flu
en

ce

th
e

de
ve

lo
pm

en
t o

f n
ew

an

d
m

od
ifi

ed
 c

om
po

ne
nt

s.

N
ew

 s
ta

nd
ar

ds
 e

m
er

ge

bo
th

 fo
r

co
op

er
at

io
n

w
ith

an

d
fr

om
 a

bs
tr

ac
tio

n
of

ex

is
tin

g
co

m
po

ne
nt

s.

U
se

r
de

m
an

ds
 d

riv
e

th
e

ev
ol

ut
io

n
of

 n
ew

 s
ta

nd
ar

ds
.

Figure 4: Component market

combine components and possibly some custom ‘glue’ into applications. Users ac-
quire such applications as well as single components that they themselves insert into
their applications. As in other component markets, standards emerge from user de-
mands and successful components.

Component-based development also provides many benefits if the different players
depicted in Fig. 4 are within the same company. The engineering of ever growing and
changing applications appears to be possible only using loosely coupled components
with contractually specified dependencies. Therefore, even large companies that would
seem to profit from monolithic software switch to component-based designs [50].

The idea of software components dates back to the NATO conference on software
engineering in 1968 [42]. In 1990 Brad Cox even advocated an industrial revolution in
the software realm [20], observing that software components are not just a technologi-
cal issue but a cultural one as well.

To meet the above demands, component-oriented programming requires [56]:

1. Encapsulation. Component-oriented programming requires encapsulation and
information hiding like modular programming.

2. Polymorphism. Polymorphism is the ability to appear in multiple forms. It al-
lows a component to work with any other component implementing a required
interface. The most common form is subtype (inclusion) polymorphism, which
allows variables to reference at run time instances of subtypes of their declared
types. For example, a variable of type IPrinter in an ATM could reference a
driver object for the specific printer installed.

7

3. Late binding and loading. Late binding and loading allow us to defer decid-
ing which component implementation to use for a certain service to assembly,
load, or even run time. Late binding and loading are crucial for independent
deployment and for data-driven use of additional components as in compound
documents and Web applets.

4. Safety. Safety is the property of a component to prevent certain kinds of problems
by (preferably) statically excluding certain kinds of errors or by dynamically de-
tecting them as early as possible to avoid failure. Safety is crucial because com-
ponents are assembled by third parties, rendering integration testing of complete
systems by component developers impossible.

5. Specifications. Components need to be equipped with concise semantic speci-
fications or with a label stating to which standard specification they adhere. If
this is not done, the use of third-party components is difficult and may not be
economically profitable.

Components being binary units, communication among components requires bi-
nary wiring standards, such as Microsoft’s COM [51], Sun’s JavaBeans [54], and the
OMG’s CORBA Components [46]. Components can be created in any language for
which a mapping to the desired binary standard exists. However, binary standards are
most easily programmed to in languages that directly support the same interface spec-
ification and composition mechanisms. We call such languages component-oriented.
Furthermore, only language-level support can provide the desired machine checkable
safety using types.

2.3 Classes and objects

Components and modules have many points of contact with classes and objects: Com-
ponents are often programmed with object-oriented languages and have ‘object-orient-
ed interfaces’. Furthermore, component-oriented programming is sometimes presented
as an evolution of object-oriented programming, with which it is occasionally also con-
fused. Finally, some languages unify modules, classes, and components. It is our aim
here to separate the different concepts and show where combining them may be fruitful.

Object-oriented programming is the construction of software systems as structured
collections of abstract data type implementations [43]. Simula-67 [21] is generally
accredited to have been the first object-oriented programming language. By now, the
object-oriented paradigm spans all aspects of software engineering. Paper I shows
how object-oriented analysis and design can successfully be combined with formal
specifications and implementations in a procedural style.

Figure 5 gives a variant of our banking example in Java. It defines two classes,
Account and SavingsAccount. Classes are templates for the instantiation of objects at
run time.

Object-oriented programming languages rest on four pillars:

1. Encapsulation. Data and the methods to modify the data are encapsulated in
objects. For example, each account contains a number, a pin, and a balance as

8

well as a withdrawal method. The encapsulated data cannot be accessed directly
outside the defining class.

2. Inheritance. Inheritance allows classes or objects to be defined as extensions
of others. In the example, SavingsAccount inherits from Account. Inheritance
means that SavingsAccount has all attributes and methods of Account. Addition-
ally, inheritance implies subtyping in most languages. (A subtype is a subcollec-
tion of a type.)

3. Subtype polymorphism. Subtype polymorphism allows a polymorphic variable
to reference objects of any subtype of the variable’s static type. For example, a
variable acc of declared type Account could at run time reference an instance of
SavingsAccount. Subsumption allows us to consider an element of a subtype as
an element of a supertype.

4. Dynamic binding. Dynamic binding implies that the actual type of a referenced
object determines which version of an operation to apply. For example, if we
would override withdraw in SavingsAccount to allow at most 10,000 mk to be
withdrawn per month, calling the method on a variable acc of declared type
Account results in the specialized method being executed if acc references an
instance of SavingsAccount.

The relationship between classes and modules varies from language to language.
In Oberon-2, modules are receptacles for multiple classes with closer communication
[55]. In Java and Eiffel, on the other hand, classes are unified with modules. Most Java
and Eiffel classes are abstract data type modules. The main differences to abstract data
type implementations in procedural languages like Modula-2 [59] are the support for
inheritance, subtype polymorphism, and dynamic binding.

Since ‘component-oriented’ has replaced ‘object-oriented’ as the high-tech syn-
onym of good, object-oriented languages have been rebranded as component-oriented.

class Account {
private int number, pin, balance;

public boolean withdraw(int pin, int amount) {
if(this.pin==pin && this.balance>=amount) {

this.balance=this.balance-amount; return true;
} else {

return false;
}

}
. . .

}

class SavingsAccount extends Account {
public void addInterest() {. . .}
. . .

}

Figure 5: Classes Account and SavingsAccount

9

Whereas these languages can be used to program to binary component standards, they
may not provide optimal support and some of their coding practices may contradict the
principles of components.

In object-oriented programming we specify classes and directly access objects via
variables of class type. In contrast, we specify interfaces and perform all accesses
indirectly through them in component-oriented programming.

The component-oriented approach has two advantages. Because clients only talk
about interfaces, they are not bound to a specific implementation from one vendor. Sec-
ond, avoiding code inheritance across component boundaries leads to more robust sys-
tems. Code inheritance across component boundaries, as practiced in object-oriented
programming, results in an overly tight binding leading to the semantic fragile base
class problem [44]. Seemingly valid maintenance changes to a base class break sub-
classes. Consider the stylized classes C and D, which both contain two methods for
incrementing x:

class C {
int x;
void inc1() {x=x+1;}
void inc2() {x=x+1;}

}

class D extends C {

void inc1() {inc2();}

}

If the developer of C changes the implementation of inc2 in a new release to

void inc2() {inc1();}

then calling either inc1 or inc2 of an instance of D will result in an infinite mutual
recursion. As long as both C and D are written by the same developer, he or she may
spot this bug. However, if the two classes are in components from different developers,
then the combination of D with the new version of C may occur at the customer’s site.

Additionally, object-oriented programming languages do not support safe late com-
position well, as required by component software (Sect. 9).

3 Formal Specifications

Information hiding frees developers of clients from studying the source code of a part
(module, class, or component) they want to use. However, developers can only utilize
a part if they know what it can do for them. Hence, they need a specification of the
functionality of the part.

A specification is a contract between the provider and the clients of a part. From
the clients’ perspective, the contract states how they may use a part and what results
they will get. Reciprocally, from the provider’s perspective the contract states how the
part must perform under which conditions.

The specification of a part must describe the essential aspects of the part’s observ-
able behavior. Otherwise it cannot be used as a contract. In this thesis, the observable
behavior is taken to be limited to functional aspects, that is, the return values of opera-
tions and the state of accessible variables. We are not concerned about time or memory
requirements. In addition to the sine qua non of describing the essential aspects of

10

the observable behavior, specifications should not prescribe unnecessary details, they
should be simple to read and write, and they should lend themselves to formal reason-
ing.

3.1 Formal vs informal specifications

Specifications can have different degrees of formality. Plain English specifications
are at the informal end of the spectrum. Except for simple cases, they are usually
not clear enough. They are subject to interpretation, which in turn depends upon the
particular context of the reader. Different interpretations of specifications can then lead
to incompatible parts.

The problem is intensified by the fact that specifications should deliberately leave
certain aspects undefined. Otherwise, the implementer is too limited in his or her
choices. Furthermore, leaving certain aspects undefined increases the chances that
future versions will be able to conform to the same specification. This, in turn, implies
that clients do not need to be revised to work with new versions of the provided part.

With informal specifications it is often not clear what is intentionally left open and
what is just inadequately described. As a result, implementers of clients often ‘infer’
additional properties by testing. Such assumptions might however be broken in new
versions of the provided part.

Informal specifications cannot be used as input to tools, such as formal theorem
provers, automatic test case generators, or automatic pre- and postcondition checkers.
In particular, informal specifications cannot serve as bases for formal refinement proofs
that would guarantee the correctness of implementations. In conclusion, informal spec-
ifications are insufficient. Formal specifications are needed.

This said, we would like to emphasize that form should follow function. Formality
in specifications is a means, not a goal in itself. In practice it often suffices to formally
specify only certain aspects of a system and to describe the rest in less formal notations.
Furthermore, formal is not a synonym of cryptic. In many cases a few statements in a
normal programming language can be considered as formal.

3.2 Algebraic vs model-based specifications

There are two main styles of formal specifications. In the algebraic or property-
oriented style [41, 2], operations are described solely in terms of each other by relating
their input and output values. The most famous example is the stack specification,
which is characterized by axioms like top(push(s, x)) = x. The latter says that if we
push an element x onto an arbitrary stack s and then look at the top element, we get
x. Algebraic specifications are best suited for simple abstract data types. They do not
scale well to larger systems.

Model-based specifications operate on a state. Therefore, they are closer to imple-
mentations. This similarity has provoked criticism of their not really being specifica-
tions, but high-level implementations [34]. In practice, however, model-based specifi-
cations scale better and and are closer to most people’s mind set. Since we are inter-
ested in the specification of larger systems, we have chosen the model-based approach
(Papers I, II, III, and VII).

11

Algebraic and model-based specifications can also be combined. For example,
basic datatypes of model-based specification methods are commonly described in the
algebraic style.

3.3 Formal methods

Formal methods provide the foundations for formal specifications and help us get the
most out of the latter. A method is a systematic procedure, technique, or mode of in-
quiry for doing something. A method is formal if it is rigid, based on a (mathematical)
theory, and offers the possibility for mechanical proofs. The term mechanical means
that the proofs and calculations follow a fixed set of rules that can be applied in a
machinelike manner and can be mechanized with computers.

Formal methods can provide insight, deliver assurance, and help with debugging.
The process of formalization often sheds new light on something and triggers off a
closer examination. This insight together with concise characterizations of generally
desirable features, such as compositionality and type soundness, can also guide us
when exploring new mechanisms.

Customers of safety-critical software may demand some assurance that the deliv-
ered product actually satisfies its requirements. Formal proofs provide one of the best
assurances. Therefore, the use of formal methods has been recommended by regulatory
bodies [10].

Formal methods can also be used for debugging, complementing or replacing other
techniques like testing. To this aim, formal documents may be used both as input for
proof tools and as basis for peer reviews.

3.4 Tools

Paper-and-pencil proofs tend to be error prone and time consuming. Mechanized proof
tools, such as proof obligation generators and theorem provers, address these issues.

Usually more errors are made in paper-and-pencil proofs than in mechanized proofs
[28]. Small errors are common in the former, and the generally lower level of formality
and handwaving arguments for subproofs further reduce the trustworthiness of manual
proofs.

Automation in proof tools can also speed up proofs. In practice, the degree of au-
tomation largely depends on the kind of properties to be proved. In the case study of
Paper I, 83 % of the 1397 proof obligations were automatically discharged by Atelier
B [53]. On the other hand, automation largely failed for the type soundness proofs re-
ported in Papers IV and V. In these two cases the tool-based proofs with Isabelle/HOL
[49] took longer than manual proofs would probably have. The higher trustworthiness
was the main argument for mechanization in these cases.

When automation fails, theorem provers need to be guided by the user. The user
invokes a series of proof tactics to prove theorems. The interactively issued commands
can be combined into proof scripts. The latter can then be executed in batch mode.
Re-execution of scripts is especially useful after changes to the specification.

Systems usually undergo many small changes, both during the initial development
and during maintenance. Script-based proof tools allow us to automatically reprove

12

theorems. This conveys more confidence than the typical adaptation of a paper-and-
pencil proof with ‘this-should-still-hold’ handwaving. In the latter approach, subtle
dependencies that cause certain requirements to be invalidated in the modified system
often go undetected.

4 Refinement

In the foregoing passages we discussed how to specify parts and prove that the spec-
ifications satisfy certain requirements. We now investigate how to make sure that our
implementations are correct with respect to their specifications. This can be done by
proving refinement between specifications and implementations. Refinement rules al-
low the part implementer to prove that the part fulfills the specification contract. Refine-
ment between a specification and an implementation preserves the observable behavior
and possibly decreases nondeterminism. A refined part (implementation) satisfies any
expectation that the client developer can deduce from the specification.

It is desirable that refinement can be established in a modular way. We only want
to consider the specification and the implementation, but not the client modules, when
proving refinement. If this is possible, we speak of independent refinement.

Many benefits of modularization are lost if the correctness of a refinement depends
on the context. A part can no longer be used by looking just at its specification. The
client might invalidate premises of the refinement proof. Refinement of a provided part
has to be reproved every time a client is changed.

Specifications and refinement can also improve the development process. We can
start with a precise statement of what the part should do without being bothered by
how it is to do this. This way, we are more likely to correctly capture the informal
requirements. Furthermore, it is simpler to show that certain requirements hold for a
concise specification than for a lengthy implementation. By proving refinement be-
tween the specification and the implementation we are guaranteed that the latter also
satisfies the requirements. Like modularization, program development by refinement
gives a separation of concerns, which reduces the detailed reasoning to an achievable
amount.

Going directly from a specification to an implementation might sometimes be too
big of a step. Too many decisions would have to be made all at once, rather than pro-
ceeding step by step. Validation of each step as it is made ensures that we do not waste
time making subsequent decisions on wrong premises. Stepwise refinement allows us
to make multiple small steps [58, 24]. Starting from the specification, we add details
and replace data structures and algorithms by more efficient ones in multiple steps un-
til we arrive at an implementation. By proving refinement between intermediate steps,
we are guaranteed that the final implementation is correct with respect to the original
specification. This method is adopted in the case study described in Paper I.

There are different forms of refinement. In this thesis, we use algorithmic, data,
and greybox, and trace refinement. The first two are described below. The others are
discussed in more detail in later sections.

Algorithmic refinement [3, 8] is defined to preserve correctness between statements
on the same state space. An algorithmic refinement step may decrease nondeterminism
and widen the termination set.

13

Data refinement [29, 22] is a technique for changing the encapsulated data struc-
tures of a module, class, or component. For example, the arrays of pins and balances
in Fig. 3 could be replaced by a single array of account objects or by a linked list if the
behavior that clients can observe by means of operation calls remains unchanged. Data
refinement is used in Papers I, II, III, and VII.

5 Compositional Sharing of Modules in B

If we split up systems into modules, we need mechanisms to recombine modules to
systems. Programming languages typically contain a single mechanism for this pur-
pose, e.g. the IMPORT statement in Oberon-2. By importing a provider module P, a
client module gets the right to invoke exported operations of P. If several client mod-
ules import the same shared module P, all importing modules have the same rights.
This may make modular reasoning impossible because client modules may invalidate
each others’ assumptions about the state of the shared module.

We illustrate the problem in B [1], which is strictly modular in order to enable inde-
pendent refinement. We also sketch our solution from Paper II. Our approach achieves
compositionality with access role specifications expressing rely/guarantee conditions.

5.1 A sample problem

Consider the example of a production plant control system. The simplistic plant con-
sists of a conveyor belt and a monitoring console. Both are controlled by their own
software modules. Additionally, a database module is used for storing alarms in the
variable alarms. The conveyor belt should only be running if there are no alarms. This
is expressed in the second line of the invariant of the following B specification:

MACHINE ConveyorBelt /* B specification */
UTILIZES Database /* hypothetical shared import */
VARIABLES running /* variable declaration */
INVARIANT running∈BOOL ∧ /* typing of variable */

(running=TRUE ⇒ alarms= /0) /* discussed invariant property */
/* variable alarms from imported Database */

. . .

Assume that the monitoring console module provides an operation to set an alarm.
If the conveyor belt is running at the point where the alarm is set, adding an alarm to
the variable alarms of the database invalidates the invariant of ConveyorBelt: alarms= /0
becomes false, the implication holds no longer, and, therefore, the invariant becomes
false.

The above specification of ConveyorBelt is not suitable if the console can be used
to set alarms. Thus, we consider in the sequel the scenario where the console only
allows the operator to deactivate, but not to activate, alarms. By deactivating alarms,
the invariant of ConveyorBelt cannot be invalidated. We now have a system that can be
proved consistent and we investigate how this proof can be performed.

Modular means that we only consider the module in question plus modules im-
ported by it. For a modular consistency proof of ConveyorBelt, we, therefore, only

14

consider ConveyorBelt and Database. By looking only at these two modules, we can-
not prove that the invariant of ConveyorBelt always holds. We lack an assurance that
Console, and possible other clients of Database, do not set new alarms. Hence, the
modular approach fails. Global proofs are required to assert that operations of Console
cannot invalidate operations of ConveyorBelt. Unfortunately, global non-interference
proofs make us loose some benefits of modularity, most notably independent refine-
ment.

The B method puts modularity above the possibility to express the above sharing
architecture. For B to be modular, sharing is restricted by the single writer/multiple
readers paradigm. Thus, the above architecture where both ConveyorBelt and Console
modify the state of the shared Database is not possible in B.

5.2 A modular solution based on rely/guarantee conditions

In Paper II we add to B a compositional shared access mechanism based on rely/guar-
antee conditions [32]. This mechanism removes the single writer/multiple readers re-
striction and makes the above architecture possible.

To guarantee interference freedom among multiple accessors of a common ma-
chine, only the possible modifications to the shared variables are relevant. We define
these effects in the form of access roles as part of the shared machine. Accessing
constructs declare which role(s) they play. The accessors guarantee to perform only
modifications allowed by the declared role(s). In return, they can rely on the other
accessors adhering to their roles.

We exemplify our mechanism on the specification of the shared Database. The
database has a contract SingleDevice with two roles Creator and Controller, intended
to capture the accesses by ConveyorBelt and Console respectively. Both role specifica-
tions use the ANY specification statement. The ANY statement chooses nondeterminis-
tically a value for aa such that the predicate after WHERE holds and then executes its
body delimited by THEN and END.

MACHINE Database
CONTRACTS /* new clause suggested in Paper II */

SingleDevice =̂ /* sharing contract with roles Creator and Controller */
Creator = ANY aa WHERE aa∈NAT THEN NewAlarm(aa) END,
Controller = ANY aa WHERE aa∈alarmsTHEN ResetAlarm(aa) END

. . .

The machine ConveyorBelt accesses Database in the role of the Creator:

MACHINE ConveyorBelt
ACCESSES /* new clause suggested in Paper II */

Database!SingleDevice AS Creator
VARIABLES running
INVARIANT running∈BOOL ∧ (running=TRUE ⇒ alarms= /0)
. . .

Hence, operations of ConveyorBelt are permitted to set new alarms by invoking
operation NewAlarm of Database. On the other hand, the above access declaration
does not allow them to reset alarms. Dually, operations of Console, which accesses
Database as Controller, can only reset alarms.

15

This new shared access mechanism lets us prove modularly that the invariant of
ConveyorBelt cannot be invalidated by other clients of Database. If the other accessor
role Controller preserves the invariant of ConveyorBelt, then any other client module,
such as Console, accessing Database in this role will do so.

In addition to this modular proof, we need to globally check that Database is ac-
cessed at most once in each role. If Console also accessed Database as Creator, then
operations of Console could set alarms. Single access in each role can be checked
automatically.

The proposed sharing mechanism works in the same way in specifications, interme-
diate refinements, and implementations. The modular approach implies that refinement
can be proved independently, i.e., without considering the clients.

Our new mechanism can handle many shared access architectures in a modular way.
However, it has its limitations. For example, it would be permissible for an operation of
Console to set an alarm if the operation also stopped the conveyor belt. A system with
such an operation could be proved consistent using global proofs. This is, however, not
possible with our approach.

The existing composition mechanisms of B are already very complex. Adding yet
another mechanism might seem like a step in the wrong direction. However, discus-
sions with developers of Atelier B [53] and engineers of Matra Transport International,
who created with B the automatic train operating system for METEOR [9], the first
driverless metro in Paris, convinced us that our proposal addresses a real need. Both
parties told that they have encountered real life problems that would have benefited
from our mechanism. The existing composition mechanisms forced less ideal mono-
lithic or underspecified solutions upon them.

6 Specification and refinement of external calls

In this section we describe how methods with external calls can be specified and re-
fined. We use statements rather than postconditions in our specifications. Because
postconditions might be more common for specification purposes, we start with a gen-
eral discussion of postconditions vs statements.

6.1 Postconditions vs statements

In the model-based approach, the effect of operations can either be expressed with pre-
and postconditions or with statements. For example, the implementation of withdraw
in Fig. 5 can be considered a specification using statements. For comparison, a seman-
tically equivalent specification over the same state space is given in pre-/postcondition
style in Fig. 6. The precondition says in which states and with which parameters the
operation may be called. The postcondition expresses in which states and with which
return values the operation may terminate —provided the precondition was satisfied.

We use priming to denote the initial state of a variable and the syntactic sugar if
a then b else c end for (a ⇒ b) ∧ (¬a ⇒ c), where we assume a to be total. For
uniformity, equality is denoted by ‘==’.

16

public boolean withdraw(int pin, int amount) {
pre true
post

if this.pin==pin ∧ this.balance>=amount then
this.balance==this.balance′-amount ∧ result==true

else
result==false

end

Figure 6: Pre-/postcondition specification of withdraw

In this thesis, we write specifications as combinations of preconditions and state-
ments. The precondition has the same function as in pre-/postcondition specifications.
The statement replaces the postcondition. It explicitly describes how the state is trans-
formed and the result is computed.

We use the same kinds of statements in specifications as in imperative programs.
To leave certain aspects open and write high-level specifications, we additionally use
nondeterministic constructs, such as the ANY statement introduced in Sect. 5.

Below we investigate the respective advantages of postconditions and statements.
The two approaches do not exclude each other. For example, the new version of VDM
[48] supports both postcondition-based implicit operation specifications and statement-
based explicit operation specifications. An implicit operation specification is basically
the same as an explicit specification the body of which is a single specification state-
ment.

Advantages of postconditions

A seeming advantage of postconditions is that various requirements, possibly coming
from different sources, can simply be conjoined with ‘∧’. However, we can always
write such a specification as a single specification statement as well.

VDM [33] and Z [52], which both use postconditions, utilize the simplicity of
combining requirements to implicitly conjoin the invariant to every postcondition.

On the other hand, in statement-based methods like B or greybox specifications
(Paper III) we must prove that operations preserve the invariant if called with values
satisfying their precondition. We consider these explicit consistency proofs to be a
benefit, rather than a burden. Intuitive and informal specifications capture what an
operation should do, regardless of whether the operation might thereby invalidate the
invariant. Statement specifications let us express this directly. The consistency proof
shows whether this behavior is actually legal. Failure to prove consistency may point
to an overly strong invariant. Thus redundancy helps us find specification errors. On
the other hand, the implicit conjunction of the invariant to the postcondition in VDM
and Z can lead to unintentionally restrictive specifications. This may not be noticed
until much later, at a stage when changing the specification may invalidate much work
already based on it.

The choice of statements vs postconditions influences whether the invariant is im-
plicitly conjoined or not. VDM illustrates this by conjoining the invariant to the post-

17

condition of implicit operation specifications and by not conjoining it to statement-
based explicit operation specifications. However, the opposite is also possible. The
invariant was not implicitly conjoined to the postcondition in earlier versions of VDM
[31]. Dunne proposed to implicitly conjoin the invariant to statement-based B specifi-
cations [25].

A second advantage of postconditions is that they are declarative, rather than oper-
ational, and, therefore, ‘truer’ specifications than statements. This is, however, a matter
of style and taste only.

Advantages of statements

Statement-based specifications have several advantages over postconditions [13, 12].
First, statements allow specifications to be split into multiple sequential steps. Second,
they scale better because they may contain calls to other operations. With postcondi-
tions, we must either repeat the effect of the call or introduce additional named predi-
cates. Repetition, e.g., duplicating the instantiated postcondition of the called method
in the postcondition of withdraw, makes postconditions lengthy and creates mainte-
nance problems. Additional predicates complicate the specifications and may require
complicated plumbing for use in different scopes. Third, statements give us a uniform
notation for specifications and implementations.

As described in Paper III, the main advantage of statements is that they can be used
to specify call-backs without complicated encodings. Statement-based specifications
can contain calls to other methods. This is discussed below.

6.2 Statement-based specifications of call-backs

Traditional modular systems, such as the bank in Paper I, are layered, and calls only
occur from higher to lower layers. In this case, it is sufficient to specify the state
changes and return values of methods. There is no need to specify external calls.

If, on the other hand, we also have calls from lower to higher layers, or if our
architecture is not layered, just specifying the resulting state transformations of calls
might be insufficient. Up-calls from lower to higher levels or more generally call-backs
are possible by passing a reference to a procedure or an object with methods. They are
common in object- and component-based systems.

A representative application of call-backs is the observer pattern [26]. It allows
software components that need to react to certain events, such as particular state chang-
es, to register an observer object with the observed object. The observed object then
calls a notify method from each registered observer object upon the occurrence of the
respective events.

We extend our banking example to illustrate the observer pattern. The legal depart-
ment of a bank might like to be informed of transactions on some dubious accounts.
When class Account is specified and implemented, this and other external methods that
should be performed on a withdrawal may not be known. The observer pattern pro-
vides a solution: Observer objects can be registered with accounts and they are notified
of each transaction.

18

public boolean withdraw(int pin, int amount) {
if(this.pin==pin && this.balance>=amount) {

this.balance=this.balance-amount; return true;
do(int i in 0..this.nofObservers-1)

registeredObservers[i].withdrawNotification(this, amount);
} else {

return false;
}

}

Figure 7: Greybox specification of withdraw with notifications

Let registeredObservers be an array of references denoting the registered observers
for a given account. Then withdraw may be specified with statements as in Fig. 7. A
do loop is used to leave the order, in which the observers are notified, unspecified. The
do loop is executed once for i bound to every value between 0 and this.nofObservers-1.

The specification expresses that all observers must be notified. Furthermore, it
states that this must happen after the amount has been subtracted from the balance.
This is important because an observer might make a call-back to the account object
to inquire the current balance. The specification says that this call will return the new
rather than the old balance.

When we specify withdraw, we do not know how the different observers will react
to withdrawal notifications. Thus the specification of IAccountObserver (Fig. 8) only
states that an account observer has a method withdrawNotification.

With postconditions we cannot express calls as such, but only their effects on the
state. Since we do not know what the latter are on the unknown state spaces of the
observers, we cannot specify them. Hence, the withdrawal notifications cannot be
captured with postconditions.

In conclusion, statements let us specify external calls using normal programming
language syntax. With postconditions, on the other hand, we cannot specify that calls
should be made if the effect of those calls is not known —at least not without compli-
cated encodings. We discuss the specification of external calls with statements, named
greybox specifications, in detail in Paper III.

6.3 Greybox refinement

Greybox specifications describe three aspects of a method’s behavior: the state trans-
formation, the return value, and the external calls to be made. Data refinement only

public interface IAccountObserver {
void WithdrawNotification(int amount) {

skip;
}

}

Figure 8: Specification of IAccountObserver

19

public boolean withdraw(int pin, int amount) {
if(this.pin==pin && this.balance>=amount) {

this.balance=this.balance-amount; return true;
for(int i=0; i<this.nofObservers; i++)

registeredObservers[i].withdrawNotification(this, amount);
} else {

return false;
}

}

Figure 9: Implementation of withdraw with notifications

preserves the first two aspects and is, therefore, insufficient to assure that an imple-
mentation satisfies all assumptions that a client may legally deduce from a greybox
specification. To fill the gap, we introduce in Paper III the notion of greybox refine-
ment, which preserves all three aspects.

The basic conditions of greybox refinement are as follows: The implementation
of a method must make the same sequence of calls to other component instances in
the same respective states as the specification, perform the same overall changes to the
local state, and return the same value. If the specification is nondeterministic, then the
call sequence, local state transformation, and return value of the implementation must
correspond to one choice in the specification.

In Paper III we formalize greybox refinement using a trace semantics that records
both the state and external method calls. We also show how to prove simple cases with
piecewise refinement in context.

Figure 9 gives an implementation of the greybox specification of Fig. 7. The dif-
ference is that we have made the order of notifications deterministic by replacing the
do with a for loop. Greybox refinement would also allow us to replace the state space
of the part. For example, we could replace the array registeredObservers by a TreeSet.

The key advantage of greybox refinement over data refinement is that it guaran-
tees a component’s properties, that are not described in the common specification with
other components, to be preserved when assembled to a system. For example, the
specification of IAccountObserver only states that account observers have a method
withdrawNotification, which can be called by accounts. The semantics of this method
(on the state space in the scope of the specification) is skip. An instance of a class im-
plementing IAccountObserver will, however, do something concrete, such as sending
an e-mail to the person monitoring the account.

If the implementation of Account is a greybox refinement of its specification, then
the withdraw method will notify the observer object. Thus, the e-mail gets sent as
intended by the implementer of the account observer class.

If, on the other hand, we were to establish only data refinement for the Account
implementation, then the e-mail might not be sent. The reason for this is that the spec-
ification of withdrawNotification is skip. Not doing anything is a legal data refinement
of a call to a skip method. Hence, with data refinement an implementation of withdraw
is not forced to notify the observers.

20

7 Types

Formal semantic specifications together with refinement provide a way for constructing
dependable software. Types can enhance this method in several ways:

• Types can serve as labels guaranteeing compliance with standards. When com-
posing components, compatibility can be asserted by a simple comparison of
labels. This is especially useful when third parties, possibly users at run-time,
combine components. Requiring the user to perform an interactive semantic
proof when pasting a part into a compound document would not be practical.

• Types can help to document interfaces. The meaning of a parameter can often be
inferred from its name and type.

• Compilers can automatically flag all errors of certain kinds by type checking a
program. Thereby certain kinds of errors can be caught before starting more
difficult and time-consuming semantic proofs, which usually have to be redone
each time after an error has been located and fixed. Type checking can be fully
automated because type systems are generally decidable.

• Types can be used at run time to check the validity of operations that could not
be proved type correct with the information available at compile time.

• The actual type of an expression can be determined at run time and the behavior
of the program can be based on this information.

Types are a powerful instrument for creating semantically consistent and correct
programs —whether semantic proofs are performed or not.

7.1 Behavioral typing

Explicitly declared and named types can stand for external semantic contracts. For
example, the actual parameters of an operation should satisfy a precondition, which
in the object-oriented paradigm may include having associated methods with certain
semantics. Consider the method transferTo (Fig. 10), which may be added to the class
Account (Fig. 5). The actual parameter for to should be an account with a method
deposit, adhering to a corresponding specification.

public boolean transferTo(Account to, int fromPin, int amount) {
if(this.withdraw(fromPin, amount)) {

to.deposit(amount); return true;
} else {

return false;
}

}

Figure 10: Method TransferTo

21

Account acc1, acc2; int p, a;
...; ...=acc1.transferTo(acc2, p, a)

boolean transferTo(Account to, int fromPin,
 int amount)

semantic specification of Account
intendedintended

compiler checked

Figure 11: Behavioral typing with compiler checked references to the same standard

Such semantic conditions are in general undecidable and neither automatic compile-
time nor run-time checking of them is feasible with state-of-the-art technology. On the
other hand, type systems of standard programming languages are —for most practical
cases efficiently— decidable. Compilers can check most conformances statically and
controlled type casts and type tests can be performed at run time.

Thus, instead of semantic contracts, explicitly declared and named types that stand
for the former can be used in programming languages. The behavioral specification is
documented separately and linked to the type via the name. Compilers cannot automat-
ically check the compliance with such specifications, but they can verify that references
to the same types, and intentionally to the same contracts, have been made (Fig. 11).

Behavioral subtyping

Subsumption lets us consider an instance of a subtype as an instance of a supertype,
e.g., a SavingsAccount as an Account (Fig. 5). Subsumption may not give the desired
semantic effects unless the behavior of the subtype instance corresponds to that of a
supertype instance. For example, overriding the method withdraw (Fig. 5) for Sav-
ingsAccount so that it adds the amount to the balance would quickly ruin the bank. The
semantic conformance of subclasses to their superclasses termed behavioral subtyping
or class refinement is determined by data or greybox refinement of classes.

Standard compilers can use types to check that references to the same standards are
made. By declaring SavingsAccount as a subclass of Account, we state that instances of
the former behave like instances of the latter. Thus, the type system and, therefore, the
compiler and run-time system can allow variables of declared type Account to reference
instances of SavingsAccount (Fig. 12). At the same time, the type system forbids a
variable of type Account to reference an instance of any other class that has not been
declared to be a subtype of Account.

Together with semantic proofs, types are useful because they can be used to au-
tomatically detect certain errors before starting costly semantic proofs. If we do not
perform the semantic refinement proof, types give us at least some safety.

Standards in other domains: an analogy

Consider an analogy to the well-established component market for mass storage with
its interface standards such as SCSI. The manufacturers of host adapters and hard disks
verify that their products adhere to the standard. A customer does not have to know the

22

semantic specification of SavingsAccount

intended

compiler checked

class SavingsAccount extends Account {...}
Account acc; SavingsAccount sa;
...; acc=sa; b=acc.withdraw(p, a);

semantic specification of Account�
behavioral
subtyping

semantics of Account.withdraw

intended

intended

Figure 12: Behavioral subtyping with compiler-checked references to the same stan-
dard

SCSI specification. He or she must only check that it says SCSI on both the host adapter
and the disk before he or she plugs them together. Likewise component assemblers and
users should be able to plug together software components labeled with the same type.
Assemblers and users should not be required to study the definitions of any standards
and do compliance checking.

The analogy can even be extended to subtyping. Fast SCSI drives can transfer data
at twice the speed when used with a Fast SCSI host adapter. Yet, they can also be
used like normal SCSI drives on normal SCSI adapters. In analogy, a SavingsAccount
should be usable like an Account. Extended functionality should be exploitable by
other components aware of it.

Different forms of behavioral subtyping are discussed in Papers III and VII and
used in Papers IV and V.

Behavioral subtyping and encapsulation

Behavioral subtyping is a useful tool for constructing programs. However, proofs of
behavioral subtyping require a breach of encapsulation if the superclass contains exe-
cutable implementations. Behavioral subtyping cannot be proved with the specification
of the superclass alone, the latter’s implementation is required.

To illustrate this, assume that sqrt (Fig. 13) is part of the specification of class C.
Assume further that the implementation of sqrt in C actually has a precision of 1 %,
rather the 2 % required by the specification. Another developer B may create a subclass
D of class C. Method sqrt is overridden in D to have a precision of 1.5 %. Because D
computes the square root with higher precision than the specification of C, developer

float sqrt(float x) pre x>=1 {
any(float y: y>=0 && 0.98*y*y<x && x<1.02*y*y) return y;

}

Figure 13: Nondeterministic specification of a square root method

23

IC (with semantic specification)

C D

�

<:

b) No code inheritance: syntactic
implies behavioral subtyping

�

<:

C

semantic specification of C

D

a) Code inheritance: syntactic,
but not behavioral subtyping

�

:>
�

�

Figure 14: Syntactic and behavioral subtyping with and without code inheritance

B might want to conclude that D is a behavioral subtype of C. However, this is not true
because the implementation C calculates the square root with an even higher precision.
Figure 14 (a) illustrates the relationships between the specification of C, C, and D.
Class D being a syntactic subtype of class C is denoted by ‘C :> D’ and its not being a
behavioral subtype is denoted by ‘C
� D’.

Developer B would need the implementation of C to prove subtyping. However, the
latter might not be available to B. Furthermore, forcing B to look at the implementation
defeats the purpose of abstraction and information hiding. Even if D would refine the
current implementation of C, a future version thereof that still adheres to its specifica-
tion might again break refinement by, e.g., also working for input values between 0 and
1. In conclusion, if implementations may refine their specifications, such specifications
suffice as contracts for clients, but not for subclasses.

This problem is not restricted to inheritance, rather it extends to any form of sub-
typing of classes with executable code. If we can override methods, the overriding
methods may only refine the specification but not the implementation of the overridden
method. If we can add new methods, the additional methods might extend the absolute
or relative set of reachable states of the supertype implementation.

Behavioral subtyping is not a goal in itself, but a means of creating semantically
correct programs. Hence, we should consider the consequences of D being only a
behavioral subtype of the specification of C, but not of C. Clients that do not depend
on the implementation of C being more deterministic than its specification function
properly when using an instance of D instead of one of C. From a practical point of
view, the problem is, therefore, that programmers who are aware of C being more
precise must not rely on this. Most notably, for self calls in C, the developer of C must
not assume his or her own, more deterministic implementation to be executed.

Although it is possible to write programs in such a way that D not being a behav-
ioral subtype of C does not cause any harm, we believe that it is better not to rely on the
adherence to such coding practice and semantic proofs thereof. It is advisable to avoid
code inheritance across component boundaries instead. A safer solution is to introduce
an interface type IC and attach the semantic specification to this type (Fig. 14 (b)).
Paper III advocates such a model and Paper V gives coding conventions to avoid the
pitfalls when behavioral subtyping of classes with code is deemed appropriate.

24

7.2 Type safety

Types provide a means for expressing the set of legal values of a variable. For example
by typing a variable x as Account, we state that x may reference at run time an instance
of Account or a subtype thereof and that the value of x may also be null. The variable x
may not have any other value. A programming language must enforce this restriction.
For example, it must prevent us from assigning 3 to x. Otherwise, types degenerate to
mere notes of intention, rather than trustworthy assurances.

A programming language that enforces type restrictions is type sound. Type sound-
ness means that all values produced during any program execution respect their static
types. This in turn guarantees that method lookup always succeeds and that no memory
corruption can occur through the dereferencing of invalid pointers.

Not all programming languages are type sound. For example C++ allows us to
assign the value 3 to variable x of type Account. The worst part is that this error might
go unnoticed for a while and later on cause arbitrary behavior, the source of which is
difficult to locate. In the example, method lookup may fail or return an invalid address
when trying to invoke a virtual method on x and assigning to an instance variable of
the ‘object’ referenced by x may lead to memory corruption.

Correct programs can be written in languages that are not type sound. However,
it takes a bigger effort and errors in the final product are more likely. Consider an
analogy. A carpenter can use either a hammer or a stone to hammer the nails into a
dresser. Using the hammer is likely to be easier, more efficient, and less prone to do
damage to the wood.

Type soundness is not a trivial property, especially for polymorphic languages [11,
14]. It came to prominence with the discovery that older versions of Eiffel were not
type sound [19, 43].

Formal proofs of type soundness, as reported in Papers IV and V, are complex
and time consuming. Because they only have to be performed once by the language
designer for all the language users to enjoy the benefits, the effort is worth it.

Type safety: a weaker notion used on the binary level

In practice, a weaker notion of type soundness, called type safety, is sometimes fa-
vored on the binary level for economical and compatibility reasons. For example, the
Java language is type sound and Java compilers must enforce type soundness [27, 57].
However, the verifier of the Java virtual machine [39] is not forced to check or reestab-
lish type soundness of the byte code. The virtual machine only guarantees to protect
the user from the consequences of type unsound operations. Exceptions, which can
be handled in a controlled manner, are guaranteed to be thrown before method lookup
failures and memory corruption could occur. A type unsound operation without such
consequences may go unnoticed.

The advantages of this approach are efficiency and improved compatibility. The
verifier is simpler and faster. Classes that have undergone incompatible changes may
still be loaded together and may work as intended.

The disadvantage is that a type soundness violation may be signaled much later,
possibly when the class that caused it isn’t even loaded anymore. Thus, it becomes

25

more difficult to locate the source of the error. Furthermore, it is not sufficient that the
type unsound statement is dynamically enclosed by a suitable catch clause. The state-
ment that finally causes the virtual machine to throw the exception must be enclosed
by a suitable catch clause.

It is important to remember that Java only uses the weaker notion of type safety
on the binary level. Thus, this example does not go against our belief that strict type
soundness should be striven for on the programming language level.

8 Precise typing

To be decidable and safe, type systems have to restrict flexibility. Thereby, type systems
are bound to also forbid some sensible combinations. In this section, we illustrate a
situation that cannot be properly handled by the type systems of Java and most other
languages. We also sketch our solution (Paper IV), which takes a step toward the
reconciliation of flexibility and safety.

8.1 A sample problem

We assume two standards that have come into existence independently of each other.
The first standard defines an interface IText, describing operations, such as insertion
and deletion of characters. In particular, IText contains a transformation function dis-
playPoint, which converts text positions to pixel positions. The second standard defines
a compound document framework, like OLE [16], including an interface IContainer to
be implemented by all classes whose instances may act as compound document con-
tainers. The latter must support insertion and removal of document parts. Figure 15
shows portions of these two interfaces in Java.

/* as part of a text framework: */
public interface IText {

java.awt.Point displayPoint (int textPos);
/* returns the display position at which the character at textPos is drawn */
. . .

};

/* as part of a compound document framework: */
public interface IContainer {

void insertPart (DocPart part, java.awt.Point xyPos);
. . .

};

Figure 15: The standard interfaces IText and IContainer

Both standards form individually useful frameworks. Vendors can build compo-
nents for either of them. The problem emerges with the wish to create components that
build on both standards simultaneously. In our example, this would be components that
deal with both texts and containers. Classes ContainerTextA and TextContainerB from
vendors A and B may implement both interfaces:

26

public class ContainerTextA implements IContainer, IText {. . .};
public class TextContainerB implements IText, IContainer {. . .};

These classes exhibit a little nuisance. To insert a document part, one has to pass
the graphical coordinates because the container interface must be used. One may prefer
to give a text position and have the part inserted after the corresponding character. For
this purpose, a generic service can be implemented that maps a text position to the
corresponding display position and then inserts the document part there. We assume
that a vendor C wants to offer this service within a class LibraryServices. Figure 16
shows part of this class and Fig. 17 illustrates the whole scenario.

public class LibraryServices {
public static void insertDocPart(DocPart part, ? into, int textPos) {

/* the question mark stands for a type saying that interfaces IText
and IContainer must be implemented */
into.insertPart(part, into.displayPoint(textPos));

}
};

Figure 16: Vendor C’s library services

Vendor C’s library service works for instances of classes that implement both in-
terfaces IText and IContainer. Unfortunately, this cannot be expressed by the type of
parameter into, as the question mark in Fig. 16 indicates.

The obvious solution is to create a combined interface ITextContainer, which ex-
tends both IText and IContainer and does not add or hide anything, and to declare pa-
rameter into of this type. However, with this solution instances of ContainerTextA and
TextContainerB are not compatible with the library service, because the two classes
are declared to implement only the base interfaces but not the combined interface
ITextContainer. The problem is who is to define the interface ITextContainer to be
used by all parties. It is not part of either of the two frameworks because they are as-
sumed to be independent. If one of the vendors A, B, or C defines ITextContainer, the
others would be obliged to use this definition. This contradicts the mutual unawareness
postulated for component software vendors. On the other hand, if all vendors declare
their own combined interfaces, they are not compatible either.

The alternative is to type parameter into as IText, check in the body of the method
that the actual parameter is also of type IContainer, and perform the corresponding cast.
The problem with this solution is that we loose static type safety. The compiler cannot
warn us if we call insertDocPart with an actual parameter that might only implement
IText, but not IContainer.

In summary, the type systems of Java and most other languages do not allow us to
precisely express the requested type for parameter into.

8.2 Compound types to the rescue

In Paper IV, we introduce compound types, a novel typing mechanism that allows us
to state directly that a parameter must implement a set of interfaces, such as IContainer
and IText.

27

Component
Market

Vendors A and B create texts
that are also containers

Vendor C creates a service, which
works with objects implementing both
interfaces IContainer and IText

Assemblers want to
compose instances
of A and B with C's
service

Standard interface IText
(part of a text framework)

Vendor X creates a
container that is not
a text

Standard interface IContainer
(part of a compound

document framework)

Figure 17: Independent development of classes and insertion service

Compound types are anonymous reference types. They are direct extensions of a
set of interface types, referred to as the constituent types. The subtypes of a compound
type S are exactly those types that are declared to extend or implement all constituent
types of S. We write compound types as comma separated lists delimited by square
brackets.

We can use a compound type to precisely type the parameter into of Fig. 16. The
compound type [IContainer, IText] expresses exactly what values we expect for into.
With this declaration, we may pass as actual parameter for into a reference to an in-
stance of a class declared to implement both IContainer and IText or the value null.
The latter case is —as often— undesirable. However, it cannot be excluded without
making the type system undecidable or introducing types of non-null references.

Most strongly typed object-oriented programming languages would profit from the
addition of compound types. In Paper IV, we add compound types as a conservative
extension to Java. We have proved type soundness of the resulting type system with
Isabelle/HOL.

28

8.3 Purely structural equivalence for types

Some languages avoid the above problem by using purely structural rather than name
equivalence for types. Subtyping is not based on the declared relationships. Instead, a
type T is a subtype of another type S if T contains at least all the methods and public
fields contained in S. With structural subtyping, ContainerTextA would be a subtype of
the combination interface ITextContainer.

The problem with purely structural subtyping is that any other type that happens to
have the same members is also a subtype —even if it was not intended to be one and
has a different behavior. Consider again the above analogy to mass storage interface
standards (Sect. 7.1). Purely structural typing would mean that we would plug any
other device with a mechanically compatible connector into a SCSI host adapter. It just
happens that parallel printer cables fit some SCSI connectors —but the outcome may
be disastrous.

Accidental matches of complex interfaces are rare. But many frameworks contain
very simple, often even empty base interfaces. For these interfaces, accidental matches
are likely.

In conclusion, purely structural subtyping does not support behavioral typing. Our
proposal combines the safety of name equivalence with the flexibility of structural
equivalence for an important kind of typing problems in component software.

9 Composition and reuse of components

Inheritance and object composition, the two main reuse mechanisms in object-oriented
programming, do not fully meet the requirements of component software. Inheritance
falls short for three reasons. First, inheritance fixes the superclass at compile time.
Thus, it does not satisfy the late binding requirement of component software (Sect. 2.2).
Second, inheritance across component boundaries is not safe, as illustrated by the frag-
ile base class problem (Sect. 2.3). Third, it requires a breach of encapsulation to prove
behavioral subtyping (Sect. 7.1). This is intolerable for components from different
vendors.

Object composition, that is one object holding a reference to another object, is the
second reuse mechanism in object-oriented programming. References can be assigned
at run time, thereby meeting the late binding requirement. Furthermore, object com-
position gives a less fragile coupling: Changes to a class are less likely to invalidate
classes that contain references to it than subclasses. However, the relationship between
an object and another object referenced by the first is rather loose —too lose for certain
applications, as illustrated below.

Below we show with an example why neither inheritance nor object composition
fully satisfies the needs of component software. We then explain how generic wrappers,
introduced in Paper V, solve the problem.

29

IView

TextView BorderWrapper

1

1

wraps

ButtonView

Figure 18: Class diagram of the decorator pattern

9.1 A sample problem

User interface views such as text views may have borders or scroll bars. One way to
implement text views with borders is to create a subclass of plain text views. Supposing
that there are different kinds of borders, this requires that a subclass for each kind of
border is created. In most languages, subclasses can only be defined at compile-time
by developers, but not at run time by users. In a component scenario, it may, however,
be the user who would like to combine a border and a view from mutually unaware
vendors. Even in a closed environment, creating subclasses for all kinds of views with
all kinds of borders and scroll bars is problematic because it leads to a combinatorial
explosion of classes. Thus, inheritance is not suited for adding borders to views.

Object-composition yields a more flexible solution to this problem [26, Decorator
Pattern]. The border is represented by a separate object. It holds a reference to an
embedded view, to which it forwards most calls. The border is itself a view. Hence, its
presence is more or less transparent to the clients of the embedded view.

Unfortunately, the presence of the border is not fully transparent to the clients of
the embedded view. Let IView be the base type of all views, such as TextView and But-
tonView (Fig. 18). The BorderWrapper class subtypes IView and also holds a reference
of type IView. The problem is that when a border instance decorates a TextView, it
hides the specific functionality of the latter from its clients because the border is not
a TextView. This is illustrated in Fig. 19: The type of a reference to a BorderWrap-
per around a TextView is not of type TextView. The members of TextView cannot be
accessed directly through such a reference. Furthermore the border cannot be inserted

p instanceof BorderWrapper == true

but
p instanceof TextView == false

BorderWrapper

IView p

TextView

IView wrappedView

Figure 19: The decorator is not fully transparent to clients of the embedded view

30

into a list of TextViews. The root of these problems is that the type of a BorderWrapper
does not depend on the actual type of the embedded view. Thus, object composition
does not solve the problem of adding borders to views either.

9.2 Generic wrappers as the solution

In Paper V we introduce generic wrappers, a special object-composition mechanism
that turns a border wrapping a TextView into an element of the latter. Generic wrappers
are classes that are declared to wrap instances of a given reference type (class, interface)
or of a subtype thereof. Similar to an extends clause to specify a super class, we use a
wraps clause to state the lower type bound for the wrapped object. This also declares
the wrapper class to be a subtype of the static type bound. For example, the declaration

class GBorderWrapper wraps IView {. . .}

declares the class GBorderWrapper to wrap an instance of a class that implements
IView. When creating a wrapper instance, a reference to the object to be wrapped is
passed to the constructor as a special argument delimited by ‘<>’. For example, the
following statement wraps a TextView in a GBorderWrapper:

TextView t = new TextView(. . .); IView v = new GBorderWrapper<t>(. . .);

The particularity of generic wrappers is that their instances are also of the type of
the wrapped object. The GBorderWrapper wrapping a TextView is of a subtype of both
GBorderWrapper and TextView. Hence, such an aggregate can be assigned to a variable
of type TextView and the latter’s methods can be called on it.

9.3 Design space for generic wrappers

In Paper V we analyze the design space for generic wrappers. One design option is
the choice between forwarding and delegation. The difference between forwarding
and delegation is the binding of the self parameter in methods of the wrapped object
when called through the wrapper. With delegation, the self parameter is bound to the
wrapper, and with forwarding it is bound to the wrapped object. Figure 20 illustrates
the difference with a client calling method m of the wrapped object on a reference to
the wrapper. Inheritance is a form of delegation where the wrapper and the wrapped
object are merged into one and the binding is fixed at compile time [38].

The advantage of delegation over forwarding is that the wrapper can better modify
and customize the behavior of the wrapped object because delegation provides for the
specialization of self calls. The main advantage of forwarding is that it eases modular
reasoning: As illustrated in Fig. 20, delegation can lead to up-calls from the wrapped
object to the wrapper. With forwarding, on the other hand, control stays within the
wrapped object once a call has been forwarded to it. The wrapper cannot interfere with
the flow of control inside the wrapped object [56]. Thus, forwarding gives a looser cou-
pling that does not suffer from the semantic fragile base class problem (Sect. 2.3). This
is especially important for component software because the wrapper and the wrapped
object may be developed independently and composed at run time.

31

wrapper

forwarding

wrapped
object

this.n()

a) Forwarding

wrapper

delegation

this.n()

b) Delegation

wrapper:

void n() {
print("n1");

}

wrapped object:

void m() {
 print("m2, "); n();
}
void n() {

print("n2");
}

Output: m2, n2 Output: m2, n1

wrapped
object

Figure 20: Forwarding vs delegation

Furthermore, forwarding allows programmers to assume self calls to invoke their
own implementations. Thus, forwarding eases the problem of syntactic subtypes being
behavioral subtypes of their supertypes’ specifications, but not of the latter’s imple-
mentations (Sect. 7.1).

9.4 Generic wrappers in Java

As a proof of concept, we add generic wrappers to Java in Paper V. Our exemplary
generic wrappers satisfy the safety and modular reasoning requirements of component
software because they use forwarding rather than delegation, fix the wrapped object to
the wrapper, and make optimal use of static typing and run-time type information.

We have proved type soundness of the resulting type system with Isabelle/HOL.

9.5 Generic wrappers and compound types

Generic wrappers fit well together with compound types. Compound types let us spec-
ify that a parameter must be a text with a label, i.e. of type [ILabel, IText]. For ex-
ample, the method signText(Key privateKey, [ILabel, IText] idText) could set the label
to the signature of the text calculated with privateKey (Fig. 21). Let LabelWrapper
implement ILabel and wrap IView and let TextView implement IText. An instance of
LabelWrapper wrapping a TextView could be passed as second argument to method
signText.

The type [ILabel, IText] precisely expresses the requirements for parameter idText.
Our generic wrapper LabelWrapper wrapping a Text fulfills these requirements. With

signText(Key privateKey, [ILabel, IText] IdText) {. . .}

class LabelWrapper implements ILabel wraps IText {. . .}

Text t; . . .;
signText(k, ([ILabel, IText]) new LabelWrapper<t>)

Figure 21: Summary of example definitions

32

normal object composition, on the other hand, it would be impossible to meet the re-
quirements. References to the wrapper are only of type Label and references to the
wrapped object only of type Text. Thus, normal object composition would force us to
give up precise typing to make things compatible.

In conclusion, generic wrappers fulfill precise type requirements, even if part of the
requirements is met by the wrapper and part by the wrapped object.

9.6 Prototype-based languages

Mechanisms similar to generic wrapping already exist in so-called prototype-based
languages. In these languages, class inheritance is replaced by object composition and
delegation to parent objects. However, delegation in prototype-based languages does
not satisfy the safety requirement of components when used between objects from dif-
ferent components. First, the coupling is too tight leading to difficulties comparable
to the fragile base class problem. Second, the parents of a given object can be re-
placed by other objects, which makes modular reasoning very difficult. Third, static
type systems, which in strongly-typed class-based languages are used to detect many
errors at the developer’s site, do not work well with prototype-based languages. Thus,
delegation in prototype-based languages does not satisfy the safety requirements of
component software.

10 Concurrency

The second part of this thesis and introduction deals with concurrency and language
support for the latter. The themes of specification, refinement, object orientation, and
separation of concerns are revisited in the concurrent context.

The physical world is concurrent, in the sense that many things happen at the same
time. Computer systems modeling some aspect of the physical world must, therefore,
deal with concurrency. Examples of concurrent programs include airline reservation
systems and operating systems for multiuser computers. Furthermore, problems with-
out inherent concurrency requirements are often parallelized so that they can be solved
in a shorter time using several processors. Finally, reactive systems, which respond to
external events and whose input and output are passed during execution, are often most
easily understood with concurrent models.

If many tasks of a common problem are performed concurrently, a need naturally
arises for coordination and communication between them. At the same time, the tasks
should not interfere with each others’ work or infinitely wait for each other (deadlock).

When we design a concurrent system, we want to be able to focus on the actual
requirements and not be bothered by deadlocks and other artificial problems. For this
purpose, we need a suitable conceptual model of concurrency. The spectrum of concur-
rent programs is so wide that there is no universal panacea. However, we will below try
to argue why our model, object-oriented action systems, is very well suited for certain
problems.

33

10.1 Models for concurrency

In this section, we analyze the main design dimensions for a model of concurrency.

True concurrency vs interleaving If two processors execute parts of the same pro-
gram, they are working truly concurrently. Models of true concurrency give the most
realistic representations of physical processes and allow for accurate notions of fairness
[5]. However, models of true concurrency tend to be very complex.

If, on the other hand, we are only concerned with the functional, untimed correct-
ness of a program, we can use the more abstract interleaving model of concurrency
[17]. In an interleaving semantics, we think of concurrent atomic transactions to be
executed in an arbitrary sequential order. For example, if processor 1 executes S and
processor 2 executes T, then we consider the sequential executions S; T and T; S in our
reasoning, rather than the parallel S ‖ T.

The choice between true concurrency and interleaving illustrates a general phe-
nomenon: A higher abstraction level simplifies reasoning on properties captured by
the model. Conversely, certain reasoning cannot be performed in such a model because
it does not truthfully represent the necessary details.

Processes vs actions The notion of sequential control flow is pervasive in comput-
ing. Turing machines and von Neuman computers are examples of sequential devices.
Problem decomposition on the sequencing of tasks is often useful. However, some
problems are more easily understood through abstractions unrelated to control flow
[15].

A specifications should capture the essence of a problem. If the flow of control is
not determined by the problem, the specification thereof should not fix it either. Re-
stricting the control flow when refining a specification for a specific target architecture
is simple and will almost trivially preserve correctness. On the other hand, removing or
changing control flow restrictions is difficult and often does not preserve correctness.

Most models of concurrency are based on interacting parallel processes [23, 45,
30]. To avoid interference and to enable per-process reasoning, various constructs such
as semaphores and monitors are introduced. Even with these aids, non-operational rea-
soning on parallel processes remains difficult and certain properties, such as deadlock
freedom, can often only be established globally.

With processes, it may be difficult to get a picture of the overall behavior of a
system due to the many possible interactions. This is also reflected in the cumbersome
and intricate proof rules for process-based models of concurrency [5].

Instead of adding concurrency to sequential processes, we can make concurrency
the foundation of our model. Nondeterministically selected and atomically executed
actions avoid fixing the flow of control at a high level [35, 4]. With actions, it is usually
much simpler to get a picture of the overall behavior. Furthermore, many deadlock and
synchronization problems of the process model do not exist in action-based models.

Communication There are three basic models for communication in concurrent sys-
tems:

34

1. In the shared state model, the different processes or actions communicate via
shared variables.

2. In the asynchronous message passing model, processes or actions send messages
either to channels or directly to other processes or actions.

3. In the synchronized event model two or more processes synchronize and ex-
change information on a handshake or rendez-vous.

Branching vs linear time The difference between branching-time and linear-time
models lies in their treatment of the choices that systems face during their execution.
Linear-time models describe concurrent systems in terms of the sets of their possible
sequences of states. On the other hand, branching-time models record the points at
which different computations diverge from one another.

Intensionality vs extensionality Intensional models focus on describing what sys-
tems do. Intensional theories model systems in terms of states and transitions between
states.

Extensional models, in turn, are based on what outside observers see. Extensional
models first define a notion of observation and then represent systems in terms of the
observations that may be made of them.

The dichotomy between intensional and extensional models also exists for sequen-
tial theories.

10.2 Action systems

An action system describes the behavior of a concurrent system in terms of the atomic
actions that can take place during the execution of the system. Action systems can
express both finite and infinite computations. An action system consists of a state, an
initialization thereof, and a set of actions. Actions are comprised of a guard and a body.
The body can be an arbitrary sequential program. Execution proceeds as follows: First,
the initialization is executed. Then, actions are executed repeatedly in a loop until no
more action is enabled. The selection of enabled actions is nondeterministic and is not
bound to a fairness pledge. The nondeterminism is demonic, in the sense that there is
no way of influencing which action is chosen next.

With respect to the above classification, our action systems are extensional and
based on an interleaving semantics for actions communicating via shared variables.
Action systems provide a simple, yet powerful formal seamless framework from high-
level design to implementation. The higher-order logic refinement calculus theory can
be used for reasoning about safety properties and about the termination of action sys-
tems. In this thesis, we are not concerned with general liveness properties [36], for
which a temporal logic would be required.

The action system model for parallel, distributed, and reactive systems was pro-
posed by Back and Kurki-Suonio [4, 5]. The same basic approach has later been used
in other models for concurrent and distributed computing, notably in UNITY [15] and

35

MODULE OneFish;

CONST
height=10; width=20;

VAR
x*, y*: INTEGER;
right*, up*: BOOLEAN;

ACTION MoveRight
WHEN right & (x#width);

BEGIN INC(x)
END MoveRight;

ACTION MoveLeft
WHEN ˜right & (x#0);

BEGIN DEC(x)
END MoveLeft;

ACTION BounceRight
WHEN right & (x=width);

BEGIN right:=FALSE
END BounceRight;

. . . (* bounce left, move up and down *)

BEGIN (* initialization *)
x:=0; y:=0; right:=TRUE; up:=TRUE

END OneFish.

Figure 22: Screen saver OneFish

TLA [37]. UNITY and TLA are based on temporal logics and give up some of the
generality of action systems in favor of execution fairness.

Figure 22 gives an example of a fish screen saver action system in Action-Oberon,
a concrete notation for action systems originally proposed by Back and Sere [6] and
extended in Paper VI. A single fish swims around the screen. The current position
of the fish is given by Cartesian coordinates x (horizontal axis) and y (vertical axis).
The fish is either moving right (right = TRUE) or left and either up (up = TRUE) or
down. When it reaches a border, it changes direction. Note that the lack of a fairness
assumption means that the fish might only move along one axis, although the guard for
moving along the other axis is infinitely often true.

10.3 Object-oriented action systems

Plain action systems are cumbersome for applications with several similar entities.
Consider, for example, a more realistic screen saver with a varying number of fish.
With plain action systems we would have to create an array of states and replicate the
actions. Still, if the number of fish is not constant, replication as well as run-time
creation and destruction of fish are cumbersome and error-prone.

To address this problem, we have added objects with actions to Action-Oberon and
written a corresponding compiler and run-time environment for Paper VI. Figure 23
shows part of an object-oriented action system. POINTER TO RECORD roughly cor-
respond to class in most other languages. The declaration ACTION (f: Fish) MoveRight
leads to the dynamic creation of an action for each instance of type Fish. The bound
variable f is called participant and may be used like a variable in the action. It corre-
sponds to the receiver (self) of a method.

Actions with n participants lend themselves to symmetrically express n-ary com-
munication. In most other formalisms communication is asymmetric, that is informa-
tion is only transferred from the sender to the receiver, or symmetric communication is
restricted to two parties.

36

MODULE OOFish;

TYPE
Fish=POINTER TO RECORD /* class */

x, y: INTEGER;
right, up: BOOLEAN

END;

VAR
fi: Fish; k: INTEGER;

ACTION (f: Fish) MoveRight
WHEN f.right & (f.x#width);

BEGIN INC(f.x)
END MoveRight;

ACTION (f: Fish) MoveLeft
WHEN ˜f.right & (f.x#0);

BEGIN DEC(f.x)
END MoveLeft;

. . .

BEGIN (* initialization *)
. . . (* create some fishes *)

END OOFish.

Figure 23: Screen saver OOFish

Suppose we want to program some special behavior if two fish meet. We can do
this with ACTION (f1, f2: Fish) Meet (Fig. 24). An instance of Meet will be created at
run time for each pair of fish.

The addition of object-orientation brings to concurrent systems the power of the
object-oriented approach, such as encapsulation, subtyping, inheritance, and dynamic
binding. Furthermore it removes the semantic gap when using object-oriented analysis
and design.

Action systems provide a good model for specifying concurrent, distributed, and
reactive systems. However, direct implementations, such as ours, suffer from an in-
herent inefficiency problem caused by the need to constantly re-evaluate guards. Our
Action-Oberon compiler and run-time environment are, therefore, mostly meant to be
used for the animation of specifications and for rapid prototyping.

More efficient implementations would be possible by optimizing the re-evaluation
of the guards. Applicable techniques include common subexpression elimination and
dependency analysis that indicates which actions may change the values of which
guards. Further optimization techniques may be borrowed from triggered procedures
in databases.

ACTION (f1, f2: Fish) Meet WHEN (f1.x=f2.x) & (f1.y=f2.y) & (f1#f2);
BEGIN

(* do something: e.g.
- change the directions of the fish
- create a new fish
- remove one of the fish *)

END Meet;

Figure 24: Type-bound action Meet with two participants

37

10.4 Refinement of object-oriented action systems

In Sect. 7 we have discussed class refinement. The idea was that instances of a subclass
should behave like instances of a superclass. In Paper VII we extend this idea to active
objects, that is, instances of classes with actions.

Trace semantics

There exists two semantics for action systems. The input/output semantics describes
the possible final values for any initial values. It abstracts away from intermediate
states. The trace semantics lists the sequences of observable states. Thus, it captures
the reactive behavior and is also meaningful for non-terminating systems.

The trace semantics of an action system is given by a set of traces. A trace is a
sequence of observable states. Hence, our trace semantics is a linear-time model.

Consider the screen save of Fig. 22 for an example. Representing the state of
module OneFish as a tuple (x, y, right, up), the following is a possible trace: <(0, 0,
TRUE, TRUE), (0, 1, TRUE, TRUE), (0, 2, TRUE, TRUE), (1, 2, TRUE, TRUE), . . .>.

Trace refinement of action systems [7] is defined so that each trace of the implemen-
tation action system is also a trace of the specification action system. Trace refinement
implies refinement of the input/output behavior, but not the other way round.

Class refinement

We base our refinement of classes with actions on the trace semantics. A class D refines
a class C, if replacing an instance of C by an instance of D in an (almost) arbitrary
action system results in a trace refinement of the action system.

For example, a class Ray that has identical MoveRight, MoveLeft, BounceRight,
and BounceLeft actions as Fish (Fig. 23), but no actions to move up and down, is a
refinement of class Fish.

Refinement of classes with actions may also be used for development by refine-
ment. Thus the same separation of concerns between specifications and refinement is
possible as for the sequential case.

As for greybox refinement, it is very difficult to prove trace refinement of action
systems directly. Therefore, we define in Paper VII a notion of class simulation. Class
simulation does not talk about traces and does not contain a quantification over all
contexts in which an instance of a class might occur. Hence, class simulation is much
easier to establish. The main theorem of the paper states that class simulation implies
class refinement.

11 Summary

The dependability of computer-based systems is crucial because they are ubiquitous in
safety-critical applications. The dependability of computer programs is largely influ-
enced by the expressiveness and safety of the languages used to create the programs.
Expressive languages let us separate concerns and base our reasoning on simple and

38

powerful conceptual models. A language mechanism can be used to build dependable
systems only if it works correctly under all circumstances.

Structure and abstraction allow a separation of concerns and, thereby, reduce the
detailed reasoning to an achievable amount. We have performed a large case study in
B to explore the virtues of modularization, specification, and stepwise refinement (Pa-
per I). The sharing limitations among modules in B caught our attention. To overcome
these restrictions, we have proposed a new compositional symmetric sharing mecha-
nism based on roles expressing rely/guarantee conditions (Paper II).

B and other standard data refinement methods work well for layered systems where
calls are only made from higher to lower layers. However, they cannot in a modular
way handle call-backs, which are common in object- and component-based systems.
To solve this problem, we have introduced greybox specifications and refinement (Pa-
per III). Greybox specifications explicitly prescribe making external calls during the
execution of a method and greybox refinement considers the sequence of external calls
as part of the observable behavior that is preserved.

Types can enhance the semantic specification and refinement approach. Explicitly
named and declared types can be used as labels guaranteeing adherence to semantic
contracts. Since type systems are decidable, they can be used in compilers to automat-
ically catch certain kinds of errors before starting difficult semantic proofs. Further-
more, types can be used for run-time compatibility checks. The safety and decidability
of type systems comes at a price: Some semantically correct programs are not accepted
by the type checker. Such problems are particularly pressing in the realm of component
software, where components cannot be changed and recompiled so easily. In Paper IV,
we have isolated such a problem and proposed a novel solution, which takes a step
toward the reconciliation of safety and flexibility.

Existing composition mechanisms either fail to fully address the safety, modular
reasoning, and late composition requirements of component software or allow only
limited reuse due to typing restrictions. In Paper V, we have introduced a new compo-
sition mechanism that addresses these needs.

Many systems are concurrent. Action systems provide a simple, yet powerful con-
ceptual model for concurrency. In Paper VI, we have added objects to action systems to
more easily handle systems with many similar entities and to reduce the semantic gap
when using object-oriented analysis. Our compiler and run-time environment allow the
animation of action systems in Action-Oberon. Trace refinement of active objects al-
lows us to apply algorithmic, data, and atomicity refinement when creating subclasses
(Paper VII).

To assure the safety of both our systems and language mechanisms, we have used
tool-based formal methods to achieve the most rigorous proofs. We have used Atelier
B to mechanically check the case study of Paper I, and have proved type soundness in
Isabelle/HOL for the extended type systems of Papers IV and V.

Acknowledgments Hilkka Yli-Jokipii carefully checked the language of an earlier
version of this introduction and suggested many improvements. I am also delighted to
acknowledge the help of Marsha Brofka, who proofread the acknowledgments and the
abstract.

39

References

[1] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[2] E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, editors. Algebraic Foun-
dation of System Specification. IFIP State-of-the-Art Reports. Springer Verlag,
1999.

[3] Ralph Back. Correctness Preserving Program Refinements: Proof Theory and
Applications, volume 131 of Mathematical Center Tracts. Mathematical Centre,
Amsterdam, 1980.

[4] Ralph Back and Reino Kurki-Suonio. Decentralization of process nets with cen-
tralized control. In 2nd ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, pages 131–142. ACM Press, 1983.

[5] Ralph Back and Reino Kurki-Suonio. Distributed co-operation with action sys-
tems. ACM Transactions on Programming Languages and Systems 10:513–554,
1988.

[6] Ralph Back and Kaisa Sere. From action systems to modular systems. In Pro-
ceeding of Formal Methods Europe ’94. LNCS 873, Springer Verlag, 1994.

[7] Ralph Back and Joakim von Wright. Trace refinement of action systems. In
CONCUR 94, pages 367–384. LNCS 836, Springer Verlag, 1994.

[8] Ralph Back and Joakim von Wright. Refinement Calculus: A Systematic Intro-
duction. Springer Verlag, 1998.

[9] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. Météor: A
successful application of B in a large project. In Proceedings of FM’99: World
Congress on Formal Methods, pages 369–387. LNCS 1708, Springer Verlag,
September 1999.

[10] Jonathan P. Bowen and Michael G. Hinchey. Formal methods and safety-critical
standards. IEEE Computer, 27(8):68–71, 1994.

[11] Kim B. Bruce, Robert van Gent, and Angela Schuett. PolyTOIL: A type-safe
polymorphic object-oriented language. In Proceedings of ECOOP ’95, pages
27–51. LNCS 952, Springer Verlag, 1995.

[12] Martin Büchi and Emil Sekerinski. Formal methods for component software: The
refinement calculus perspective. In Wolfgang Weck, Jan Bosch, and Clemens
Szyperski, editors, Proceedings of the Second Workshop on Component-Oriented
Programming (WCOP), volume 5 of TUCS General Publication, pages 23–
32, Short version in ECOOP’97 workshop reader LNCS 1357, June 1997.
http://www.abo.fi/˜mbuechi/publications/FMforCS.html.

40

[13] Martin Büchi and Wolfgang Weck. A plea for grey-box components. Tech-
nical Report 122, Turku Centre for Computer Science, Presented at the Work-
shop on Foundations of Component-Based Systems, Zürich, September, 1997.
http://www.abo.fi/˜mbuechi/publications/GreyBoxes.html.

[14] Luca Cardelli. Type systems. In Handbook of Computer Science and Engineer-
ing, chapter 103. CRC Press, 1997. http://www.luca.demon.co.uk/Papers.html.

[15] K. M. Chandy and J. Misra. Parallel Program Design – A Foundation. Addison
Wesley, 1988.

[16] David Chappell. Understanding ActiveX and OLE. Microsoft Press, 1996.

[17] Rance Cleaveland and Scott A. Smolka, editors. Strategic directions in concur-
rency research. ACM Computing Surveys, 28(4):607–625, December 1996.

[18] Component Source. http://www.componentsource.com.

[19] William Cook. A proposal for making Eiffel type-safe. In Proceedings of ECOOP
’89, pages 57–70. Cambridge University Press, 1989.

[20] Brad Cox. Planning the software industrial revolution. Software Technologies of
the 90’s special issue of IEEE Software magazine, November 1990.

[21] Ole-Johan Dahl, Bjørn Myrhaug, and Kristen Nygård. Simula-67 common base
language. Technical Report Publication S-22, Norwegian Computing Centre,
Oslo, 1970.

[22] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented
Proof Methods and Their Comparison. Cambridge Tracts in Theoretical Com-
puter Science, No. 47. Cambridge University Press, 1998.

[23] E.W. Dijkstra. Cooperating sequential processes. In Programming Languages,
pages 43–112. Academic Press, 1968.

[24] E.W. Dijkstra. Notes on structured programming. In O. Dahl, E.W. Dijkstra, and
C.A.R. Hoare, editors, Structured Programming. Academic Press, 1971.

[25] Steve Dunne. The safe machine: A new specification construct for B. In Pro-
ceedings of FM’99: World Congress on Formal Methods, pages 472–489. LNCS
1708, Springer Verlag, September 1999.

[26] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[27] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Ad-
dison Wesley, 1996.

[28] John Harrison. Formalized mathematics. Technical Report 36, Turku Cen-
tre for Computer Science, 1996. http://www.cl.cam.ac.uk/users/jrh/papers/form-
math3.html.

41

[29] C.A.R. Hoare. Proofs of correctness of data representation. Acta Informatica,
1(4):271–281, 1972.

[30] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[31] Cliff B. Jones. Software Development: A Rigurous Approach. Prentice Hall
International, 1980.

[32] Cliff B. Jones. Specification and design of (parallel) programs. In Proceedings of
IFIP’83, pages 321–332. North Holland, 1983.

[33] Cliff B. Jones. Systematic Software Development Using VDM. Prentice Hall
International, 1986.

[34] Cliff B. Jones. Scientific decisions which characterize VDM. In Proceedings of
FM’99: World Congress on Formal Methods, pages 28–47. LNCS 1708, Springer
Verlag, September 1999.

[35] Robert M. Keller. Formal verification of parallel programs. Communications of
the ACM, 19(7):371–384, July 1976.

[36] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans-
actions on Software Engineering, 3:125–143, 1977.

[37] Leslie Lamport. The temporal logic of actions. ACM Transactions of Program-
ming Languages and Systems, 16(3):872–923, 1994.

[38] Henry Lieberman. Using prototypical objects to implement shared behavior in
object-oriented systems. In Proceedings of OOPSLA ’86, pages 214–223. ACM
Press, 1986.

[39] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addi-
son Wesley, 1996.

[40] Lingsoft. Orthografix: Finnish proofing tools for Microsoft Word, 1998.
http://www.lingsoft.fi/.

[41] Peter Lucas. On the semantics of programming languages and software devices.
In Randall Rustin, editor, Formal Semantics of Programming Languages (Pro-
ceedings of the Courant Computer Science Symposium 2), pages 41–57. Prentice
Hall, 1972.

[42] McIllroy. Mass-produced software components. In Peter Naur, Brian Randell,
and J. N. Buxton, editors, Software engineering: concepts and techniques: pro-
ceedings of the NATO conferences. The Conference on Software Engineering held
in Garmisch, Germany, 7th to 11th October 1968. Petrocelli/Charter, 1976.

[43] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, second
edition, 1997.

42

[44] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base class problem.
In Proceedings of ECOOP ’98, pages 355–374. LNCS 1445, Springer Verlag,
1998.

[45] Robin Milner. A Calculus of Communicating Systems. LNCS 92, Springer Verlag,
1980.

[46] Object Management Group. CORBA components, 1999. Revision February 15,
1999, formal document orbos/99-02-01, http://www.omg.org.

[47] Peter Mössenböck and Niklaus Wirth. The programming language Oberon-2.
Structured Programming 12:179–195, 1991.

[48] P. G. Larsen and B. S. Hansen and H. Brunn N. Plat and H. Toetenel and D. J.
Andrews and J. Dawes and G. Parkin and others. Information technology — Pro-
gramming languages, their environments and system software interfaces — Vi-
enna Development Method — Specification Language — Part 1: Base language,
December 1996.

[49] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828, Springer
Verlag, 1994. See also http://www.cl.cam.ac.uk/Research/HVG/Isabelle/.

[50] Cuno Pfister. Component software: A case study using BlackBox
components (online tutorial of the BlackBox Component Builder), 1997.
http://www.oberon.ch.

[51] Dale Rogerson. Inside COM. Microsoft Press, 1996. See also
http://www.microsoft.com/com/.

[52] J.M. Spivey. The Z Notation. Prentice Hall, second edition, 1992.

[53] Stéria Méditerranée. Atelier-B. France, 1996. http://www.atelierb.societe.com.

[54] Sun Microsystems, Inc. Java Beans, 1997. http://java.sun.com/beans/.

[55] Clemens A. Szyperski. Import is not inheritance — Why we need both: Modules
and classes. In Proceedings of ECOOP 92, pages 19–32. LNCS 615, Springer
Verlag, 1992.

[56] Clemens A. Szyperski. Component Software – Beyond Object-Oriented Program-
ming. Addison-Wesley, 1997.

[57] David von Oheimb and Tobias Nipkow. Machine-checking the Java specification:
Proving type-safety. In Jim Alves-Foss, editor, Formal Syntax and Semantics of
Java, pages 119–156. LNCS 1523, Springer Verlag, 1999.

[58] Niklaus Wirth. Program development by stepwise refinement. Communications
of the ACM, 14:221–227, 1971.

[59] Niklaus Wirth. Programming in Modula-2. Springer Verlag, 1982.

43

Paper I

The B Bank

Martin Büchi

Originally published in: Emil Sekerinski and Kaisa Sere, editors, Program Develop-
ment by Refinement: Case Studies Using the B Method, FACIT series, chapter 4, pages
115–180. Springer Verlag, 1998.1

Reproduced with permission.

1The reference numbers in this reprint differ from those in the original publication because the latter
contained a single bibliography for all chapters. The book’s Web page referred to in the paper is located at
http://www.cs.abo.fi/Bcases/.

4. The B Bank

Martin Büchi

4.1 Introduction

In this chapter we develop a simple banking application with cashier and automated
teller machine (ATM) functionality. The cashier can register new customers, create
accounts for them, and accept deposits. At the ATM, the customer can withdraw
money, query the balance, and change her secret personal identification number
(PIN).

We illustrate the combination of structured and formal methods by using object-
oriented modelling techniques in the analysis. The communication from B with the
environment is exemplified through the development of base machines for persis-
tent storage of objects, string handling, and for interfacing with the Web through
HTML and the common gateway interface. The latter permits us to build a uniform
graphical interface for both the cashier station and the ATM (Fig. 4.1).

Fig. 4.1. Screenshot of the Final Application

116 4. B Bank

Our aim is to carefully explain design decisions as they come up and to motivate
our choices. We stress differences to classical imperative languages and develop-
ment methods for them.

The sources for both Atelier B and the B-Toolkit can be fetched from the book’s
Web site. The final application being Web-based, it can also be run over the Internet
from the book’s Web page without the need for installation.

We start out by rewriting the informal requirements in structured plain English,
as is commonly done in practice. This first design document helps to eliminate mis-
understandings between the customer and the designer and is often part of a con-
tract. We then proceed to a semi-formal object model using the Unified Modeling
Language (UML) [7]. In this step we make the first design decisions by identify-
ing objects, relations, and attributes. This intermediate step bridges the gap between
requirement specification and B machine.

Our initial B specification Bank encompasses the basic functionality on an ab-
stract level. This is the machine which we animate to find design errors. On top
we build a robust graphical user interface. Underneath, we build a foundation for
objects and persistent storage. This combination of top-down and bottom up devel-
opment, where we start with a machine describing the functionality on an abstract
level, is very common in B.

On top of the central machine Bank we construct a robust interface Robust-
Bank with trivial preconditions and error reporting. Using this robust interface and a
base machine wrapping a common-gateway interface library, we build a Web-based
graphical user interface for our development.

A program consists of an algorithm and communication with the environment.
Only the algorithm can be directly implemented in B. Communication is performed
using base machines which give a B representation of a resource. A base machine is
a machine which is specified in B, but hand coded in C, or another classical language
for which a compiler exists. We illustrate the development of a base machine for
interfacing with the Web in Sect. 4.7.

The implementation of RobustBank shows the principle of structural refinement.
An implementation is based on a number of more basic machines, which are in
turn based on either more basic or base machines. We discuss the difference be-
tween specification and implementation structure. Using a library machine for two-
dimensional arrays and a base machine for file access we develop a framework for
persistent objects. Another base machine provides persistent strings.

Fig. 4.2 gives an overview of the development process, including section num-
bers for quick reference. An overview of the implementation of Bank will be given
in Fig. 4.12.

In the discussion we address the question of proofs in B. What types of proper-
ties about our system can we prove within B?

Steria’s Atelier B in version 3.2 [23] has been used in this case study. Sect. 4.11
explains the differences in the implementation for B-Core’s B-Toolkit 3.4.2 [17]. We
briefly discuss a number of interesting differences in the language implementations
and provided library constructs.

4.1 Introduction 117

00010011101101
01011101111011
01010101101010
10111110011110
00010000000110
10101000000000
11111000011111

#include <stdio.h>
#include
"BasicCGI.h"

void link_BasicCGI(
PROTA(struct
BasicCGI_type *)v)
PROTC(struct
BasicCGI_type *v)

hand-coded
C (4.7.3)

executable
machine code

MACHINE
 BasicCGI
 …
 …
 …
 …
END

IMPLEMENTATION
 BasicCGI_1

REFINES
 BasicCGI
 …
 …
END

empty implemen-
tation (4.7.3)

rewritten
requirements (4.2)

Account

number: NAT
pin: NAT
balance: NAT = 0

˙class-scope¨
accounts: set of Account

˙constructor¨
NewAccount(cid: Customer, pin: NAT)

˙query¨
Balance(pin): NAT
Authorized(pin): BOOL
AccountOwner(): Customer

˙update¨
Deposit(amount: NAT): BOOL
Withdraw(pin: NAT, amount: NAT)
ChangePin(pin: NAT, newPin: NAT)

˙class-scope¨
AccountDBFull(): BOOL
ThisAccound(number): Account

Customer

name: STRING
yob: NAT

˙class-scope¨
customers: set of Customer

˙constructor¨
NewCustomer(name: STRING, yob: NAT)

˙query¨
CustomerData(): STRING×N A T

˙class-scope¨
CustomerDBFull(ss: STRING): BOOL
ThisCustomer(name: STRING, yob: NAT): BOOL×Customer
InitFindCustomer(name: STRING): NAT
FindNextCustomer(): BOOL×Customer

has
1 0..*

structured
notation (4.3)

MACHINE
 Bank
 …
 …
 …
 …
END

mental
picture (4.1)

Bank,
Account,
Withraw, but

MACHINE
 RobustBank
 …
 …
 …
 …
END

robust abstraction (4.6)

IMPLEMENTATION
 RobustBank_1

REFINES
 RobustBank
 …
 …
END

B specification
of core function (4.5)

implementation
of core function (4.10)

implementation of
robust abstraction (4.9)

MACHINE
 MainBank
 …
 …
 …
 …
END

IMPLEMENTATION
 MainBank_1

REFINES
 MainBank
 …
 …
END

MACHINE
 OperationsBank
 …
 …
 …
 …
END

B specification
of interface (4.8.1)

IMPLEMENTATION
 OperationsBank_1

REFINES
 OperationsBank
 …
 …
END

Main machine
(4.8.1)

Implementation
of main (4.8.2)

manual
translation,
no exact
rules, no
proof

manual
translation,
partly fol-
lows rules,
no proof

manual
translation,
proved

automatic
translation

imports

Semantics of arrows

sees

includes

#include <stdio.h>
#include
"MainBank.h"

struct
BasicCGI_type
*BC_ptr;
 struct

tool generated C
(not shown for
other implemen-
tations)

Implementation
of interface (4.8.1)

CGI base
machine (4.7.2)

Start
1. Customers with their name and

date of birth can be stored in the
system.

2. No two customers can have both
the same name and date of birth.

3. Customers can have any number
of accounts.

4. All accounts have a unique
number.

5. Each account has a unique owner
who is in the database.

6. Accounts have a non-negative

Fig. 4.2. Overview of the Development Process

118 4. B Bank

4.2 Rewriting the Requirements

We start out by making the requirements of the initial application more precise. Such
a complete rewrite by the developer of the customer’s requirements in a common
language provides for a common understanding. It can also eliminate many errors
typically introduced by going directly from a mental picture to a specification, or
even worse an implementation. Requirements state only what must be achieved,
but not how it must be done. Fig. 4.3, an excerpt of Fig. 4.2, shows where in the
development process we are.

1. Customers with their name and
date of birth can be stored in the
system.

2. No two customers can have both
the same name and date of birth.

3. Customers can have any number
of accounts.

4. All accounts have a unique
number.

5. Each account has a unique owner
who is in the database.

6. Accounts have a non-negative

rewritten
requirements

manual translation, no exact rules,
no proof

mental
picture

Bank,
Account,
Withraw, but

Fig. 4.3. Requirement Analysis

The system should provide for:

1. Customers with their name and date of birth can be stored in the system.
2. No two customers can have both the same name and date of birth.
3. Customers can have any number of accounts.
4. All accounts have a unique number.
5. Each account has a unique owner who is in the database.
6. Accounts have a non-negative balance.
7. Accounts have a secret PIN.

The cashier can perform the following transactions:

8. The cashier can enter new customers into the system by providing their name
and year of birth.

9. The cashier can create new accounts with a zero balance providing a customer
identification and an initial PIN. The latter can be entered by the customer.

10. The cashier can accept deposits knowing only the number of the account. The
secret PIN is not needed for deposits.

The customer can perform the following operation at the ATM, which all require
the account number — entered manually rather than read from a chip or magnetic
card in our simulation — and the matching secret PIN:

11. The customer can make a withdrawal of at most the current balance.
12. The customer can query the current balance.

4.3 Structured Models 119

13. The customer can change the secret PIN by providing both the old, currently
valid, and the new pin. The latter becomes immediately valid and the old PIN
can no longer be used.

The user interface should be Web-based and provide access to all the above
listed functions of the system. For brevity, we refrain from listing the user interface
requirements here. We return to the topic in Sect. 4.8. A more detailed explanation of
requirement analysis can be found in software engineering books, such as [19, 22].

4.3 Structured Models

In the next step, analysis, we produce structured models from the problem state-
ment. The structured notations help to produce specifications which are correct with
respect to the user requirements. This step is performed manually, following some
heuristics. However, it lacks formal rules and, therefore, also a proof. This step could
be skipped, going directly to a B specification. However, this would be a rather big
step and, hence, also a source of errors. The benefits of integrating formal and struc-
tured methods are becoming recognised by many researchers [8, 9]. The IEC 65A
122 standard for safety-critical software also recommends the use of both structured
and formal methods for software of the highest integrity level [10]. Often customers
can be taught to read structured diagrammatic notations, but not formal AMN spec-
ifications. This intermediate step provides a more concise foundation for discussion
than the natural language requirements.

The desire to capture all aspects of a problem using graphical models has led
to a proliferation of different diagram types. We abstain from using all these —
often not very useful — diagrams and do not attempt to capture everything in a
graphical notation. We regard graphical models as complimentary to the textual
specifications. Not opting for an automatic translation from the graphical model,
we can give true abstractions, which quickly convey the main aspects, rather than
cluttering the models with implementation details.

For our case study only static structure diagrams are relevant. The large amount
of information captured in static structure diagrams is widely acknowledged [11].
Dynamic models are not applicable, because all operations are modeless, for exam-
ple, the customer enters the account number, the PIN, and the desired amount all at
once before asking the system to perform the withdrawal. A functional model would
not provide much insight, as all transactions are made against a single database.

We have chosen the Unified Modeling Language (UML) [7]. Fig. 4.4 reminds
us again, where in the development process we are.

4.3.1 Class Diagrams

The class diagram shows the static data structure of the real-world system and or-
ganises it into workable pieces. It describes real-world object classes and their rela-
tionships to each other.

120 4. B Bank

manual translation, no exact rules,
no proof

structured
notation

Account

number: NAT
pin: NAT
balance: NAT = 0

˙class-scope¨
accounts: set of Account

˙constructor¨
NewAccount(cid: Customer, pin: NAT)

˙query¨
Balance(pin): NAT
Authorized(pin): BOOL
AccountOwner(): Customer

˙update¨
Deposit(amount: NAT): BOOL
Withdraw(pin: NAT, amount: NAT)
ChangePin(pin: NAT, newPin: NAT)

˙class-scope¨
AccountDBFull(): BOOL
ThisAccound(number): Account

Customer

name: STRING
yob: NAT

˙class-scope¨
customers: set of Customer

˙constructor¨
NewCustomer(name: STRING, yob: NAT)

˙query¨
CustomerData(): STRING×N A T

˙class-scope¨
CustomerDBFull(ss: STRING): BOOL
ThisCustomer(name: STRING, yob: NAT): BOOL×Customer
InitFindCustomer(name: STRING): NAT
FindNextCustomer(): BOOL×Customer

has
1 0..*

1. Customers with their name and
date of birth can be stored in the
system.

2. No two customers can have both
the same name and date of birth.

3. Customers can have any number
of accounts.

4. All accounts have a unique
number.

5. Each account has a unique owner
who is in the database.

6. Accounts have a non-negative

rewritten
requirements

Fig. 4.4. Structured Notation

In our case we identify Customer and Account as object classes (Fig. 4.5). Our
simple data dictionary defines them as follows: A Customer is the holder of zero
or more accounts. An Account is an entity in our bank against which transactions
can be made.

Account

number: NAT
pin: NAT
balance: NAT = 0

«class-scope»
accounts: set of Account

«constructor»
NewAccount(cid: Customer, pin: NAT)

«query»
Balance(pin): NAT
Authorized(pin): BOOL
AccountOwner(): Customer

«update»
Deposit(amount: NAT): BOOL
Withdraw(pin: NAT, amount: NAT)
ChangePin(pin: NAT, newPin: NAT)

«class-scope»
AccountDBFull(): BOOL
ThisAccound(number): Account

Customer

name: STRING
yob: NAT

«class-scope»
customers: set of Customer

«constructor»
NewCustomer(name: STRING, yob: NAT)

«query»
CustomerData(): STRING×NAT

«class-scope»
CustomerDBFull(): BOOL
ThisCustomer(name: STRING, yob: NAT): BOOL×Customer
InitFindCustomer(name: STRING): NAT
FindNextCustomer(): BOOL×NAT

has
1 0..*

Fig. 4.5. Object Model

Next, we enumerate the attributes, that is, the properties, and the operations
of the individual classes. Each Customer has a name and a year of birth (yob).
In addition to the instance-scope attributes, of which each instance has its own
copy, class Customer has the class-scope attribute customers, the set of all cus-
tomers in the system. Class-scope members are underlined in the diagram. The class
Customer has a single constructor and a single query function. The product type
STRING×NAT indicates that CustomerData returns both the name and the year of

4.4 System Design 121

birth of a customer. It also has class-scope operations to inquire whether the database
is full, to retrieve a customer, and to find all customers with a certain name.

Each Account has a number, a pin, and a balance, which is initially 0. Re-
member that requirement 4 states that number is an identifier. In entity-relationship
models, this would typically be expressed by underlining the attribute — a notation
which is used for class-scope attributes in UML. Entity relationship models repre-
senting sets, each class must have an identifier. However, in object-oriented systems
we can have several objects with the same values for all their attributes. Objects have
a system-generated unique identifier. Hence, unlike in multisets, objects with iden-
tical attribute values can actually be distinguished. In our example, we do not have
multiple objects with identical values for their attributes. A notation for indicating
identifiers in class diagrams would add information.

Class Account also has a class-scope attribute accounts, the set of all accounts
in the system. Account has a single constructor. The query functions permit the user
to query the balance, check whether a pin is valid, and get the owner of an account.
The update operations provide functionality to make a deposit or withdrawal and
to change the PIN. The class-scope operations allow the user to check whether the
database is full and to retrieve an account by its number.

Finally we catalogue the associations, that is, the dependencies between objects.
A customer may have any number of accounts; each account has exactly one owner.
This association is expressed by the line between the two classes in Fig. 4.5. The
multiplicity is expressed using intervals. The ‘1’ next to Customer says that each
account is owned by exactly one customer. The ‘0..*’ next to Account expresses that
a customer may have any number of accounts. The label has names the association.

4.4 System Design

From the analysis of the system we progress to system design. System design is the
high-level strategy for solving the problem and building a solution. During system
design, we partition the system into subsystems, decide on what external hard- and
software components we use, and establish a conceptual policy.

We start with the middle layer capturing the desired functionality (Fig. 4.6). On
top of the basic functionality layer we build a robust abstraction which performs
error checking and returns error codes, rather than relying on non-trivial precondi-
tions. The top layer gives us the desired system in the form of a Web interface as
defined by the problem statement. Its second foundation is the common gateway
interface (CGI) subsystem, which consists of an off-the-shelf CGI library and a B
wrapper. The CGI subsystem interfaces to the Web server. The latter communicates
via TCP/IP with the Web browsers running on the ATM and the cashier’s terminal.

In order to implement the core data, we build a subsystem which supports persis-
tent objects and strings. The former in turn is based on two more basic subsystems,
one giving us objects and a second one providing access to the file system. The
two bottom layers represent the available resources, namely the hardware and the
operating system.

122 4. B Bank

basic functionality (non-trivial preconditions)

objects with persistency

file system access

operating system, including file system and networking

hardware

robust interface (trivial preconditions)

Web interface

W
eb

 s
er

ve
r

W
eb

 b
ro

w
se

r

OS

HW

CGI
access

CGI
lib.

TCP
IP

objects
strings

Fig. 4.6. System Design

An alternative would have been to rely on a database management system for
persistent storage, giving us such standard features as transaction management, dis-
tribution, and crash recovery. We have chosen not to do so in order to maximize the
ratio of formally verified software and limit the external dependencies of this case
study.

4.5 B Specification

Having outlined the system architecture, we continue by translating the structured
model to a B specification, giving the middle layer of basic functionality. First we
translate our object model according to fixed rules which gives the state space of
the machine and the signature of the operations. Then we add the initialisation and
the specification of the operations with help of the rewritten requirements. Fig. 4.7
points again to our current position in the development process.

structured
notation

MACHINE
 Bank
 …
 …
 …
 …
END

B specification
of core function

manual translation,
partly follows rules,
no proof

manual translation, no exact rules, no proof

Account

number: NAT
pin: NAT
balance: NAT = 0

˙class-scope¨
accounts: set of Account

˙constructor¨
NewAccount(cid: Customer, pin: NAT)

˙query¨
Balance(pin): NAT
Authorized(pin): BOOL
AccountOwner(): Customer

˙update¨
Deposit(amount: NAT): BOOL
Withdraw(pin: NAT, amount: NAT)
ChangePin(pin: NAT, newPin: NAT)

˙class-scope¨
AccountDBFull(): BOOL
ThisAccound(number): Account

Customer

name: STRING
yob: NAT

˙class-scope¨
customers: set of Customer

˙constructor¨
NewCustomer(name: STRING, yob: NAT)

˙query¨
CustomerData(): STRING×N A T

˙class-scope¨
CustomerDBFull(ss: STRING): BOOL
ThisCustomer(name: STRING, yob: NAT): BOOL×Customer
InitFindCustomer(name: STRING): NAT
FindNextCustomer(): BOOL×Customer

has
1 0..*

1. Customers with their name and
date of birth can be stored in the
system.

2. No two customers can have both
the same name and date of birth.

3. Customers can have any number
of accounts.

4. All accounts have a unique
number.

5. Each account has a unique owner
who is in the database.

6. Accounts have a non-negative

rewritten
requirements

Fig. 4.7. Transformation to B Specification

4.5 B Specification 123

4.5.1 State

For each object class we introduce a set containing all possible instances. This
gives us the sets CUSTOMER and ACCOUNT. For technical reasons, detailed in
Sect. 4.11, we define them as subsets of NAT rather than as SETS. The cardinalities
of the sets, delimiting the maximal number of customers and accounts in the system,
are given by the machine parameters maxCustomers and maxAccounts.

MACHINE
Bank(maxCustomers, maxAccounts)

CONSTRAINTS
maxCustomers ∈ 1 . . 100000 ∧ maxAccounts ∈ 1 . . 200000

SEES
StrTokenType

DEFINITIONS
CUSTOMER == 0 . . maxCustomers-1; ACCOUNT == 0 . . maxAccounts-1

Furthermore we introduce the two class-scope variables of Fig. 4.5 customers
(⊆ CUSTOMER) and accounts (⊆ ACCOUNT), which denote the sets of customers
and accounts in the system.

Mandatory attributes are modelled as total functions from the set of actual cus-
tomers, respectively accounts, to the value of the attribute. This gives us variables
customerName, customerYob, accountNumber, accountPin, and accountBalance.
Identifiers, for example, accountNumber and the product of customerName and cus-
tomerYob, are injections, capturing the fact that no two objects with the same values
for these attributes can exist.

The seen machine StrTokenType defines the set STRTOKEN representing strings
and the empty string constant EmptyStringToken (∈ STRTOKEN). The rationale
behind string tokens will be explained in Sect. 4.7.1.

The relation has can be translated to the total function accountOwner from ac-
counts to customer. It is a function, rather than a general relation, because the max-
imum multiplicity of Customer is 1; furthermore, it is total because the minimum
multiplicity is also 1. The variable foundCustomers is used for the implementation
of the search-by-name operations for customers as described below.

The last state component is the concrete (also called visible) variable fileOpen.
It indicates whether the database has been successfully internalised from disk and,
thus, whether the machine can actually be used. The difference between a normal
(also called abstract or hidden) variable and a concrete variable is that the latter is
implemented unchanged and can, therefore, be directly accessed by implementa-
tions that import Bank.

VARIABLES
customers, customerName, customerYob,
accounts, accountNumber, accountPin, accountBalance, accountOwner,
foundCustomers

124 4. B Bank

CONCRETE VARIABLES
fileOpen

INVARIANT
customers ⊆ CUSTOMER ∧
customerName ∈ customers→ STRTOKEN ∧ customerYob ∈ customers→ NAT ∧
customerName ⊗ customerYob ∈ customers� (STRTOKEN × NAT) ∧
accounts ⊆ ACCOUNT ∧
accountNumber ∈ accounts� NAT ∧ accountPin ∈ accounts→ NAT ∧
accountBalance ∈ accounts→ NAT ∧ accountOwner ∈ accounts→ customers ∧
fileOpen ∈ BOOL ∧ foundCustomers ⊆ customers

4.5.2 Functionality

In the beginning, there are no customers or accounts in the database. Hence, the
initialisation assigns the empty set to the sets customers and accounts and, therefore,
also to the functions representing the attributes and relations. As the database has
not yet been read from disk fileOpen is FALSE. We could have designed the system
so that internalisation from disk is part of initialisation. Because internalisation can
fail, if, for example, the file has been corrupted, a variable indicating its success
would have to be set during initialisation and checked by the higher level abstraction.
Hence, we would not gain anything. We introduce the abbreviation RESET as the
same code occurs again later.

DEFINITIONS
RESET ==

customers := {} || customerName := {} || customerYob := {} ||
accounts := {} || accountNumber := {} || accountPin := {} ||
accountBalance := {} || accountOwner := {} ||
fileOpen := FALSE || foundCustomers := {}

INITIALISATION
RESET

The first operation NewCustomer creates a new customer object and sets its
name and yob attributes. In order to concentrate on the actual functionality, rather
than error checking and reporting, the precondition not only gives a type to the pa-
rameters, but also states that there must not be any customer with both the same
name and year of birth present in the database, that the database must not be full,
and that internalisation (see below) must have succeeded. If these conditions are
met, an arbitrary new customer object is selected using the ANY-clause. This object
is added to customers and its name and yob attributes are set. Note that customer-
Name(newCustomer) := name is an abbreviation for customerName := customer-
Name ∪ {newCustomer �→ name}.

NewCustomer(name, yob) =
PRE

name ∈ STRTOKEN ∧ yob ∈ NAT ∧

4.5 B Specification 125

(name, yob) �∈ ran(customerName ⊗ customerYob) ∧
customers �= CUSTOMER ∧ fileOpen = TRUE

THEN
ANY newCustomer WHERE

newCustomer ∈ CUSTOMER - customers
THEN

customers := customers ∪ {newCustomer} ||
customerName(newCustomer) := name || customerYob(newCustomer):= yob

END
END;

Any client of NewCustomer must be able to verify the precondition. For this
purpose we introduce operations ThisCustomer and CustomerDBFull. Operation
ThisCustomer checks whether a customer denoted by her name and yob is present.
If this is the case, the operation returns result code TRUE and the ID of the customer.
Otherwise, the result code is set to FALSE. The result code alone would suffice to
check the existence; the operation is more general for purposes we shall see later
on.

found, cid← ThisCustomer(name, yob) =
PRE name ∈ STRTOKEN ∧ yob ∈ NAT ∧ fileOpen = TRUE THEN

IF (name, yob) ∈ ran(customerName ⊗ customerYob) THEN
cid := (customerName ⊗ customerYob) −1 (name,yob) || found := TRUE

ELSE
cid :∈ CUSTOMER || found := FALSE

END
END;

In practice, databases are assumed to have infinite capacity and their adminis-
trators are supposed to add secondary storage as the available storage gets filled.
However, the number of incidents of database and buffer overflow problems clearly
shows that we should not trust this assumption in a safety-critical system. Operation
CustomerDBFull allows us to check whether the database is full and, herewith, ver-
ify the precondition customers �= CUSTOMER of NewCustomer. Note that we could
prove the invariant of machine Bank to be preserved without this precondition. In
the case it would not hold, the ANY-statement would have to choose an element
from the empty set and would therefore be magic. Hence, we could not find any
implementation using a finite set CUSTOMER which would either always find an
unused member or execute magic.

is← CustomerDBFull =
PRE fileOpen = TRUE THEN

is := bool(customers = CUSTOMER)
END;

Operation NewCustomer can only be performed if the internalisation of the
database from disk has succeeded. This condition is expressed by the last conjunct

126 4. B Bank

of the precondition: fileOpen = TRUE. A more pragmatic solution would be to as-
sume that any client of Bank will terminate with an error message if internalisation
fails and not make any calls to NewCustomer. However, replacing the formal pre-
condition with this informal assumption would lead to unprovable obligations.

Operation CustomerData is an instance-scope operation which returns the name
and year of birth of a customer. Self, the identity of the object, is modelled as a
normal parameter cid. The identity of a customer object can be retrieved using This-
Customer. Atelier B requires the additional typing cid ∈ CUSTOMER.

name, yob← CustomerData(cid) =
PRE cid ∈ customers ∧ cid ∈ CUSTOMER ∧ fileOpen = TRUE THEN

name := customerName(cid) || yob := customerYob(cid)
END;

The find operations give the set of all customers with a certain name. First,
operation InitFindCustomer must be called. It returns the number of matches and
assigns the matching customers to foundCustomers. Operation FindNextCustomer
then returns the matching customers one by one.

nof← InitFindCustomer(name) =
PRE name ∈ STRTOKEN ∧ fileOpen = TRUE THEN

nof, foundCustomers ∈ (foundCustomers = customerName −1 [{name}] ∧
nof = card(foundCustomers))

END;

found, yob← FindNextCustomer =
PRE fileOpen = TRUE THEN

IF foundCustomers �= {} THEN
ANY cust WHERE cust ∈ foundCustomers THEN

found := TRUE || yob := customerYob(cust)||
foundCustomers := foundCustomers-{cust}

END
ELSE found := FALSE || yob :∈ NAT
END

END;

The triple NewAccount, ThisAccount, and AccountDBFull is similar to the cor-
responding operations on customers. Operation NewAccount expects as parameters
the ID of an existing customer and an initial secret PIN. By making the PIN a pa-
rameter we favour the scenario where the customer enters the desired PIN when
the cashier creates the account. If the ATM card and the PIN are mailed to the
customer, a random PIN must be generated in one of the above layers. Operation
AccountOwner returns the owner of an account.

number← NewAccount(cid, pin) =
PRE

cid ∈ customers ∧ cid ∈ CUSTOMER ∧ pin ∈ NAT ∧
accounts �= ACCOUNT ∧ fileOpen = TRUE

THEN
ANY newAccount, newNumber WHERE

4.5 B Specification 127

newAccount ∈ ACCOUNT - accounts ∧
newNumber ∈ NAT ∧ newNumber �∈ ran(accountNumber)

THEN
accounts := accounts ∪ {newAccount} ||
accountNumber(newAccount) := newNumber ||
accountPin(newAccount) := pin || accountBalance(newAccount) := 0 ||
accountOwner(newAccount) := cid || number := newNumber

END
END;

found, aid← ThisAccount(number) =
PRE number ∈ NAT ∧ fileOpen = TRUE THEN

IF number ∈ ran(accountNumber) THEN
aid := accountNumber −1 (number) || found := TRUE

ELSE aid :∈ ACCOUNT || found := FALSE
END

END;

is← AccountDBFull =
PRE fileOpen = TRUE THEN

is := bool(accounts = ACCOUNT)
END;

cid← AccountOwner(aid) =
PRE aid ∈ accounts ∧ aid ∈ ACCOUNT ∧ fileOpen = TRUE THEN

cid := accountOwner (aid)
END;

The operation Balance requires the account’s PIN. The PIN is only used in the
precondition to verify the legitimacy of the client, but not in the body of the opera-
tion. Specifying that the entered PIN must match the stored PIN in the precondition,
forces us to prove that Balance is always called with the correct PIN. Unfortunately,
this implies that the parameter pin is also present in the actual implementation where
it is not used at all. To gain additional security, especially if the upper software lev-
els are not fully proved, the correctness of the PIN could actually be verified in the
implementation — contrarily to the standard practice of not verifying preconditions
in implementations. Logically, it would be sound to allow implementations to have
only a subset of the parameters of the corresponding machine, but in practice this
would mean that the client’s C code would depend not only on the interface defined
by the machine, but also on the actual implementation. The alternative would be
to drop the pin parameter altogether and trust in the clients always calling an au-
thorisation operation, such as Authorized, first. However, such a condition would
not create any proof obligations and would, therefore, not be verifiable within B. A
model checking solution to the latter approach is documented in [5].

bal← Balance(aid, pin) =
PRE

aid ∈ accounts ∧ aid ∈ ACCOUNT ∧
pin ∈ NAT ∧ accountPin(aid) = pin ∧ fileOpen = TRUE

THEN
bal := accountBalance(aid)

END;

128 4. B Bank

is← Authorized(aid, pin) =
PRE

aid ∈ accounts ∧ aid ∈ ACCOUNT ∧ pin ∈ NAT ∧ fileOpen = TRUE
THEN

is := bool(accountPin(aid) = pin)
END;

We can enforce that withdrawals and balance queries can only be performed
with the correct PIN. On the other hand, secrecy not being a property of behaviors,
we cannot ensure it in B. Nothing can prevent an implementation to output secret
pins onto a device, the state of which is not captured by the B specification.

The operation Deposit credits the amount to the specified account. It cannot
verify that the money is actually given to the bank; this is the duty of the cashier.

We have to make sure that the addition accountBalance(aid) + amount does not
create an overflow. There are a number of approaches to this problem:

• One possibility is to blindly assume that no one will ever have this much money
and leave the addition unguarded. This will, however, rightfully leave us with an
undischargable proof obligation. Even if our assumption holds, a typing error by
a cashier could crash the system. The latter could again be caught by a check for a
maximum amount in the interface, leaving only a sequence of similar mis-entries
as problematic.
• We could strengthen the precondition of Deposit with accountBalance(aid) <

maxint - amount and offer an additional operation MaximalDeposit returning the
biggest possible deposit on a given account. Such an operation could, however, be
abused to query the balance without the secret PIN from another software layer.
Whether such guarding between software layers is needed in a closed system is
debatable. After all, no customer of the bank could abuse this loophole at an ATM.
Only programmers writing clients could. Note that introducing such a loophole
would not create any unprovable proof obligations in B. We cannot express a
property like ‘client machines cannot infer the balance without knowledge of the
secret PIN’ in B.
• The third possibility is to let Deposit indicate whether the operation has suc-

ceeded or not. This cannot as easily be abused to query the balance, because if
the operation succeeds a transaction is performed and the money must actually be
transferred. Hence, this solution is chosen.

status← Deposit(aid, amount) =
PRE

aid ∈ accounts ∧ aid ∈ ACCOUNT ∧ amount ∈ NAT ∧ amount > 0 ∧
fileOpen = TRUE

THEN
IF accountBalance(aid) < MAXINT - amount THEN

accountBalance(aid) := accountBalance(aid) + amount || status := TRUE
ELSE status := FALSE
END

END;

4.5 B Specification 129

Withdraw(aid, pin, amount) =
PRE

aid ∈ accounts ∧ aid ∈ ACCOUNT ∧ pin ∈ NAT ∧ amount ∈ NAT ∧
accountPin(aid) = pin ∧ amount ≤ accountBalance(aid) ∧
fileOpen = TRUE

THEN
accountBalance(aid) := accountBalance(aid) - amount

END;
ChangePin(aid, pin, newPin) =

PRE
aid ∈ accounts ∧ aid ∈ ACCOUNT ∧ pin ∈ NAT ∧ accountPin(aid) = pin ∧
newPin ∈ NAT ∧ fileOpen = TRUE

THEN
accountPin(aid) := newPin

END;

Operations Withdraw and ChangePin follow the same pattern as Deposit.
The two final operations Open and Close concern persistency. An image of the

set of customers, accounts, and strings (see below) is stored in the files designated
by the parameters customerFileName, accountFileName, and stringFileName be-
tween program runs. Open is meant to read an arbitrary state satisfying the invariant
from secondary storage. If Open succeeds, the result code status and the status flag
fileOpen are set to TRUE. Note that the new state must satisfy the invariant, even if
status is FALSE. In practice, status = FALSE means that the aforementioned files do
not contain the image of a legal state or that the files cannot be properly accessed.
Close writes the current state of the machine to the three files.

status← Open(customerFileName, accountFileName, stringFileName) =
PRE

customerFileName ∈ STRING ∧ accountFileName ∈ STRING ∧
stringFileName ∈ STRING ∧ fileOpen = FALSE

THEN
ANY customersInit, customerNameInit, customerYobInit,

accountsInit, accountNumberInit, accountPinInit,
accountBalanceInit, accountOwnerInit, st

WHERE
customersInit ⊆ CUSTOMER ∧
customerNameInit ∈ customersInit→ STRTOKEN ∧
customerYobInit ∈ customersInit→ NAT ∧
customerNameInit⊗ customerYobInit ∈ customersInit� (STRTOKEN× NAT)
∧ accountsInit ⊆ ACCOUNT ∧
accountNumberInit ∈ accountsInit� NAT ∧
accountPinInit ∈ accountsInit→ NAT ∧
accountBalanceInit ∈ accountsInit→ NAT ∧
accountOwnerInit ∈ accountsInit→ customersInit ∧
st ∈ BOOL

THEN
customers := customersInit || customerName := customerNameInit ||
customerYob := customerYobInit ||
accounts := accountsInit || accountNumber := accountNumberInit ||
accountPin := accountPinInit || accountBalance := accountBalanceInit ||

130 4. B Bank

accountOwner := accountOwnerInit ||
foundCustomers := {} || fileOpen := st || status := st

END
END;

status← Close =
PRE fileOpen = TRUE THEN

RESET || status :∈ BOOL
END

END

In B we can only reason about a single program run. We could express as an
invariant with auxiliary variables the condition that calling Close, then arbitrarily
modifying the state, and thereafter calling Open should be skip on the base state
space, if both result codes indicate success. This could be expressed by Close cre-
ating a snapshot of the current state in a set of auxiliary variables. However, we
cannot infer from this that externalisation and internalisation actually work. A meta-
language statement (Close; Open) = skip is easier to understand than a similar con-
dition encoded as an invariant. Hence, it might be desirable to have a formal meta
language with an associated proof tool for expressing such properties in B, as is
done, for example, by the Refinement Calculator [4] for the refinement calculus.

Machine Bank, encapsulating the basic functionality, is animated to test whether
it satisfies the stated requirements and also to check whether the latter are what we
actually want. The proofs for this machine ascertain that the initialisation establishes
the invariant and that the operations preserve it. However, the step from the rewritten
requirements and the structured notation to the formal B specification cannot be
formally proven, as indicated by the arrows in Fig. 4.7.

4.5.3 Discussion

The account number is a unique identifier for accounts. Hence, instead of introduc-
ing the system-generated object identifiers customers (⊆ CUSTOMER) we could
have used account numbers as identifiers, simplifying the specification. The other
attributes would then have been functions with domain accountNumber rather than
accounts. In the implementation, we could have still used system-generated iden-
tifiers, in order to make references to accounts independent of the chosen pattern
for account numbers and to use a generic support machine for persistent objects.
The two specifications can be proved to be equivalent by mutual refinement (Exer-
cise 4.3). We decided not to make the simplification in order to better illustrate the
general scheme.

In our example, we have only used very simple UML class models. We sketch
here briefly the translation of some more advanced elements.

Optional attributes can be modelled by partial functions. Attributes of maxi-
mal cardinality greater than one, as allowed in entity-relationship diagrams, can be
expressed as general relations. Binary relations between classes with maximum car-
dinality greater one for both classes are expressed as general relations in B.

4.6 Robust Abstraction 131

Subtypes can be expressed as a subsets. Hence, polymorphism can be expressed
in B as ‘soft types’. However, dynamic binding must be expressed as case state-
ments. Hence, only closed (complete) systems can be given a B translation. Fur-
thermore, all classes with cyclic references must be specified in the same machine.
The transformation is difficult because B prohibits the calling of operations from
the same module and the use of sequencing in machines. B is well-suited for the
translation of a certain class of object-oriented models.

The combination of B and OMT [18] object models, the predecessors of UML
class models, has been pioneered by Lano [13, 12]. Different translations of object
diagrams into B have been proposed [6, 21]; the B-Toolkit even offers a tool for
automatic translation (Sect. 4.11).

A simple translation of statecharts to B is also given by Lano [13]. A more thor-
ough treatment can be found in Sekerinski [20]. Exercise 4.2 uses dynamic mod-
elling to add online banking with a login to our application.

4.6 Robust Abstraction

To keep the specification simple, the initial machine Bank uses non-trivial precon-
ditions rather than elaborate error handling. We could build a graphical user inter-
face directly upon it. However, we opt for an intermediate layer, providing roughly
the same functionality but with verification of parameters. Herewith, we effectively
split up the task at hand. We avoid duplication of parameter checking for transac-
tions which can be performed in different manners, for example by a cashier or at
an ATM, using different interfaces.

We have to decide whether we want to include Bank into the robust interface Ro-
bustBank or not. If we want to reason about the behaviour on the robust level or if we
want to be able to do such reasoning on even higher levels, we have to include Bank.
If, on the other hand, all interesting invariant conditions are provable on the lower
level, the inclusion would not make sense. Without including Bank we cannot spec-
ify under which conditions the operation actually succeeds and which parameters
lead to which status code. However, we are guaranteed termination, which means
that the corresponding implementation can only call the lower level implementation
if the latter’s precondition is satisfied. The advantage of the underspecification is
that the implementation is also allowed to return an error in cases not explicitly cap-
tured by the specification, arising from practical implementation issues. We decide
to include Bank to be able to perform more reasoning; the alternative approach will
be illustrated on the next level up, the user interface layer. Below is the specification
of RobustNewCustomer in the case where Bank would not be included.

result← RobustNewCustomer(name, yob) =
PRE name ∈ STRING ∧ yob ∈ NAT THEN

result :∈ {success, db full, db error, customer already present}
END

132 4. B Bank

Although specification and implementation structuring are largely independent
in B, the above decision has some practical consequences. If we include Bank in Ro-
bustBank, the latter becomes the focus of refinement and implementation. We only
need to implement Bank if we opt for importing it in the implementation of Robust-
Bank. In the alternate approach of non-inclusion, we implicitly assume that Bank
is imported in the implementation of the robust level and that the corresponding
operations are called.

MACHINE
RobustBank(maxCustomers, maxAccounts)

CONSTRAINTS
maxCustomers ∈ 1 . . 100000 ∧ maxAccounts ∈ 1 . . 200000

INCLUDES
BK.Bank(maxCustomers, maxAccounts)

SEES
StrTokenType

DEFINITIONS
CUSTOMER == 0 . . maxCustomers-1; ACCOUNT == 0 . . maxAccounts-1

SETS
RESULT = {success, dbFull, dbError, customerAlreadyPresent,

unknownCustomer, negativeAmount, amountTooBig, unknownAccount,
AmountGreaterThanBalance, WrongPin}

We rename Bank in the includes clause so that references to its identifiers must
be fully qualified, which increases readability. Note that sets, elements of enumer-
ated sets, and constants do not participate in the renaming.

The robust operations are overly specific with respect to the reported result
codes. For example in the case of RobustNewCustomer the specification prescribes
the result code to be dbFull rather than customerAlreadyPresent in the case where
both are applicable, for example the database is full and the customer passed as
parameter is already in the database. This approach is simpler, but constrains the
implementation. Exercise 4.6 investigates the more general specification.

OPERATIONS
result← RobustNewCustomer(name, yob) =

PRE name ∈ STRTOKEN ∧ yob ∈ NAT THEN
IF BK.fileOpen = TRUE THEN

IF BK.customers �= CUSTOMER THEN
IF (name,yob) �∈ ran(BK.customerName ⊗ BK.customerYob) THEN

result := success || BK.NewCustomer(name, yob)
ELSE result := customerAlreadyPresent
END

ELSE result := dbFull
END

ELSE result := dbError
END

END;

4.6 Robust Abstraction 133

Since a machine is only allowed to change its local state, it is imperative that
changes to Bank’s state are performed using the latter’s operations. However, query
operations such as RobustBalance could be specified directly and one could argue
that it is pointless to write query operations in machines which are included in oth-
ers. If, however, we have convinced ourselves on the level of Bank that any access of
an account’s balance requires the corresponding PIN, this claim is automatically pre-
served if we only use operations of Bank and do not read its variables directly. This
approach also facilitates change. Assume that we introduce a log in Bank recording
all operations and, thereby, transform RobustBalance into a state modifying op-
eration. The operation approach does not require any changes on the robust level
indicating better modular continuity. However, since in B we specify behaviour and
not call-sequences — as in the realm of component software [3] —, we still might
have to adapt the implementation of the robust level, if the implementation does not
call the same operation.

result, nof← RobustInitFindCustomer(name) =
PRE name ∈ STRTOKEN THEN

IF BK.fileOpen = TRUE THEN
nof← BK.InitFindCustomer(name) || result := success

ELSE result := dbError || nof :∈ NAT
END

END;

found, yob← RobustFindNextCustomer =
IF BK.fileOpen = TRUE THEN found, yob← BK.FindNextCustomer
ELSE found := FALSE || yob := 0
END;

result, number← RobustNewAccount(name, yob, pin) =
PRE name ∈ STRTOKEN ∧ yob ∈ NAT ∧ pin ∈ NAT THEN

IF BK.fileOpen = TRUE THEN
IF BK.accounts �= ACCOUNT THEN

IF (name,yob) ∈ ran(BK.customerName ⊗ BK.customerYob) THEN
result := success ||
number← BK.NewAccount((BK.customerName ⊗ BK.customerYob) −1

(name, yob), pin)
ELSE result := unknownCustomer || number :∈ NAT
END

ELSE result := dbFull || number :∈ NAT
END

ELSE result := dbError || number :∈ NAT
END

END;

result, bal← RobustBalance(number, pin) =
PRE number ∈ NAT ∧ pin ∈ NAT THEN

IF BK.fileOpen = TRUE THEN
IF number ∈ ran(BK.accountNumber) THEN

IF pin = BK.accountPin(BK.accountNumber −1 (number)) THEN
bal← BK.Balance(BK.accountNumber −1 (number), pin) ||
result := success

ELSE result := WrongPin || bal :∈ NAT

134 4. B Bank

END
ELSE result := unknownAccount || bal :∈ NAT
END

ELSE result := dbError || bal :∈ NAT
END

END;

result, name, yob← RobustOwner(number) =
PRE number ∈ NAT THEN

IF BK.fileOpen = TRUE THEN
IF number ∈ ran(BK.accountNumber) THEN

name := BK.customerName(BK.accountOwner (BK.accountNumber −1

(number))) ||
yob := BK.customerYob(BK.accountOwner (BK.accountNumber −1

(number))) ||
result := success

ELSE
result := unknownAccount || name :∈ STRTOKEN || yob :∈ NAT

END
ELSE

result := dbError || name :∈ STRTOKEN || yob :∈ NAT
END

END;

result, dd← RobustDeposit(number, amount) =
PRE number ∈ NAT ∧ amount ∈ NAT THEN

IF BK.fileOpen = TRUE THEN
IF number ∈ ran(BK.accountNumber) THEN

IF amount > 0 THEN
IF BK.accountBalance(BK.accountNumber −1 (number)) <

MAXINT - amount THEN
dd← BK.Deposit(BK.accountNumber −1 (number), amount) ||
result := success

ELSE result := amountTooBig || dd :∈ BOOL
END

ELSE result := negativeAmount || dd :∈ BOOL
END

ELSE result := unknownAccount || dd :∈ BOOL
END

ELSE result := dbError || dd :∈ BOOL
END

END;

result← RobustWithdraw(number, pin, amount) =
PRE number ∈ NAT ∧ pin ∈ NAT ∧ amount ∈ NAT THEN

IF BK.fileOpen = TRUE THEN
IF number ∈ ran(BK.accountNumber) THEN

IF pin = BK.accountPin(BK.accountNumber −1 (number)) THEN
IF amount > 0 THEN

IF amount ≤ BK.accountBalance(BK.accountNumber −1 (number))
THEN

BK.Withdraw(BK.accountNumber −1 (number), pin, amount) ||
result := success

ELSE result := AmountGreaterThanBalance
END

4.7 Base Machines 135

ELSE result := negativeAmount
END

ELSE result := WrongPin
END

ELSE result := unknownAccount
END

ELSE result := dbError
END

END;

result← RobustChangePin(number, pin, newPin) =
PRE number ∈ NAT ∧ pin ∈ NAT ∧ newPin ∈ NAT THEN

IF BK.fileOpen = TRUE THEN
IF number ∈ ran(BK.accountNumber) THEN

IF pin = BK.accountPin(BK.accountNumber −1 (number)) THEN
BK.ChangePin(BK.accountNumber −1 (number), pin, newPin) ||
result := success

ELSE result := WrongPin
END

ELSE result := unknownAccount
END

ELSE result := dbError
END

END;

status← RobustOpen(customerFileName, accountFileName, stringFileName) =
PRE

customerFileName ∈ STRING ∧ accountFileName ∈ STRING ∧
stringFileName ∈ STRING

THEN
IF BK.fileOpen = FALSE THEN

status← BK.Open(customerFileName, accountFileName, stringFileName)
ELSE status := FALSE
END

END;

status← RobustClose =
IF BK.fileOpen = TRUE THEN

status← BK.Close
ELSE status := FALSE
END

END

4.7 Base Machines

Before we can build a graphical user interface on top of the robust abstraction, we
need to build support for the desired input and output mechanisms. A program con-
sists of two parts: computation and interaction with the environment. The algorith-
mic aspects of a program can be expressed in B, whereas the input and output must
be coded in a traditional language. B does not contain direct language support for

136 4. B Bank

communication with the environment, because input and output is very much de-
pendent on the target architecture (Web, X Windows, disk, audio, etc.).

The B development can be interfaced in two ways with its environment: using
base machines or using a main program written in a classical programming language
which calls the B development. A base machine is a machine the implementation
of which is written in a classical programming language rather than in B. A spec-
ification of the desired functionality is given as a regular B machine so that it can
be used by other B constructs. The actual implementation, not being expressible
in B, is programmed directly in the desired classical language, for example, C or
Ada. The alternative approach is to use B to create a service subsystem, a subrou-
tine library, and write the main program which interfaces with the environment and
calls the B subsystem in a classical programming language. The two approaches
can also be combined, for example, we could write a base machine for file access
and still write the main program interfacing with the Web in C. In fact, since only
scalars and one-dimensional array are implementable directly in B0 and all other
data structures use library machines, which in turn are built on base machines, few
interesting developments are possible without base machines at all.

We decided to use base machines rather than writing the main program directly
in a classical programming language. Base machines can be reused for other devel-
opments. From this perspective, it would be logical to have a standard library of base
machines. However, the typical domain of B being embedded systems with custom
interfaces, such a library would not be generally usable. Nevertheless, it would be
desirable to have for educational purposes.

In many industrial applications, especially in those that build on existing compo-
nents, B is only used to create the most safety-critical algorithmic part in the middle,
building on well-tested databases for persistent storage and complex graphical user
interfaces. This often suitable compromise requires a great amount of discipline to
be exercised to avoid parts of the algorithm being expressed outside B. We have
chosen the all-B approach to illustrate its feasibility.

4.7.1 Strings in Atelier B

Atelier B has a type STRING for constant character chains. STRING can be used for
passing a message like “Hello world” to a terminal output machine or, in our case,
to pass the names of the dump files. However, there is no support for non-literal
strings as needed for customers’ names. Atelier B does not permit objects of variable
length, such as strings, to be passed between operations. Because there is no support
for constant-length strings either, we are forced to either use tokens as references to
the actual strings, which are stored in a base machine, or pass strings character-by-
character with multiple calls. We opt for tokens. Machine StrTokenType defines a
type of string tokens.

MACHINE
StrTokenType

SETS

4.7 Base Machines 137

STRTOKEN

CONCRETE CONSTANTS
EmptyStringToken

PROPERTIES
EmptyStringToken ∈ STRTOKEN

END

Note that the set STRTOKEN is abstract. Therefore, normal B machines cannot
simply ‘create new string tokens’ as would have been the case if we had used a
subset of the NAT instead. The fact that STRTOKEN is valued to a subset of NAT in
the implementation only helps the C-translator, but cannot be exploited in constructs
which see or import StrTokenType.

Since string tokens can be compared with ‘=’, we need to have an injection
from tokens to strings. To ensure this, only one single machine called BasicString is
allowed to generate tokens. Input base machines return tokens, not strings. Fig. 4.8
(left side) illustrates string I/O, with BasicCGI as an example of an I/O machine.
Implementation MainBank 1 requests a string to be input. BasicCGI reads a string
from the Web, enters the string in BasicString and in return receives a token, which
it returns to its client MainBank 1. Note that the operations for entering new strings
and retrieving strings by token are not specified on the B level, but are only present
in the hand-coded C implementation.

The rest of this subsection discusses additional aspects of passing objects of
variable size in B. The material is of general interest, but is not necessary for under-
standing the case study. Hence, it can be skipped on a first reading.

Unfortunately, the token solution has a shortcoming: We cannot ensure in B
that no other base machine generates tokens. For example a random base machine
could have a machine parameter of set type and provide an operation which returns
arbitrary elements of that set. Instanciated with STRTOKEN, this machine could
generate tokens for which BasicString has no corresponding string. We must also
ensure that whenever string tokens are externalised, the corresponding strings are
also saved.

The obvious, but for other reasons undesirable, remedy to the first problem
would be to introduce a set legalTokens ⊆ STRTOKEN in BasicString. Any input
operation would then have to modify legalTokens. However, only the constructs that
includes/imports BasicString, but no others that only see BasicString, have access
to state modifying operations of BasicString.1 As a consequence, input from any
source would have to be implemented in a single base machine, contradicting mod-
ularity. For example, base machines for input from the Web and from a terminal
could not simply be combined by importing both, but would have to be textually
merged.

1 This single writer and multiple readers restriction is due to the visibility of variables of
included/imported machines in the invariant of the including/importing implementation.
Multiple writers could invalidate each other’s invariants.

138 4. B Bank

Notations

machine implementation

implementsimports

includes/
extends

MainBank_1
(Interface)

Bank

Basic
OtherIO BasicString

Bank_1

no communication
on B level, only on
C code level

BasicCGI

possible other I/O machine
(not present in development)

stores the set of
tokens to be
externalized,
but not the set of
all valid tokens

MainBank_1
(interace)

Input request
(ReadTokenString)

BasicCGI BasicString Web

In
pu

t s
ce

na
rio Get string from form input

Return string
Enter string

Return token
Return token

Output request
(WriteTokenXString)

O
ut

pu
t s

ce
na

rio

Output string

Get string by token

Return string

Chosen solution with scenarios Alternative solution

MainBank_1
(Interface)

Bank

BasicAllIO
String

Bank_1

stores both the set
of tokens to be
externalized and
the set of all valid
tokens

promotes I/O
operations from
BasicAllIOString

promotes I/O
operations from
BasicAllIOString

all intermediate
constructs must
promote I/O
operations from
BasicAllIOString

no other I/O
machines possible

Fig. 4.8. Alternatives for Input/Output and String Storage

4.7 Base Machines 139

The single-writer restriction would complicate the design even if we would limit
ourselves to a single input/output (I/O) machine. If we would not want to externalise
all strings, but only a selected subset (the names of the customers) that we need
again in future program runs, then implementation Bank 1 would also need write
access to BasicString’s state because Bank 1 would have to control the externalisa-
tion process. All components accessing BasicString in write mode would have to be
parents in a straight line, each imported by the next. Hence, the single I/O machine
would have to import BasicString, respectively be merged into a single machine to
also avoid the behind the scene passing of strings. Implementation Bank 1 would
then have to import this machine BasicAllIOString. The real inelegance would be
that the I/O operations which are accessed from the interface layer would have to
be promoted by the specifications Bank and RobustBank. A similar pollution of the
specifications of Bank would occur if externalisation of strings were to be controlled
by the interface layer and Bank would have to provide operations to query the set of
strings to be externalised.

Because of the need to combine all I/O into a single I/O machine and the clutter-
ing of specifications with implementation aspects, we do not choose this solution.
Rather we accept that we cannot maintain in B a set of all valid tokens. Fig. 4.8
illustrates the two alternatives. The specification of BasicString is given on page
161.

4.7.2 Machine BasicCGI

In order to input and output data to the Web, we need a machine to access the
common gateway interface (CGI), which we call BasicCGI. CGI is a standard for
interfacing external applications with information servers, such as Web servers. A
plain hypertext markup language (HTML) document that the Web daemon retrieves
is static, which means it exists in a constant state: a text file that doesn’t change.
A CGI program, on the other hand, is executed in real-time, so that it can output
dynamic information. The user fills out a form in the browser and sends the data to
the server which executes the CGI program. The CGI program processes the input,
modifies the local database, and generates an output which is sent back to the user’s
browser for display.

MACHINE
BasicCGI

SEES
StrTokenType

OPERATIONS

status, num← ReadNat(name) =
PRE name ∈ STRING THEN

status :∈ BOOL || num :∈ NAT
END;

140 4. B Bank

In an HTML form every field has a unique name. Operation ReadNat inputs a
natural number value of a field, designated by its name, from a form. Since the user
can enter an arbitrary number into a given field, we can only assure that num is a
natural number. The browser, the server, and the connection between them being
outside the realm of our specification, we cannot specify that the reported value is
actually the one entered by the user. An implementation which always returns 0,
independently of the users input would, therefore, be formally correct. Neither can
we specify under which circumstances the result code indicates success. Actually,
an implementation which always fails would also be correct. The intended meaning
of the operation is only captured by its name and the natural language description.
The only property guaranteed by the formal specification is termination.

Whether we use result codes or not depends upon how we can react to failure.
Consider, for example, a measuring device with an input sensor and a disk to store
the values as its only output device. If the disk fails, we can also stop execution.
In this case an abstraction specifying the disk as reliable leads to a simpler system.
Alternatively, we might specify the disk as unreliable, but simply ignore the result
codes in the higher layers, leading to unprovable obligations. On the other hand, if
we can react to failure by, for example, storing the current state on a spare disk and
showing an error message on the screen, return codes are desirable. In non safety-
critical systems, operations with a very high success probability are often assumed
to be fully reliable, because little can be done in case of failure and the resulting
system is much simpler.

To be more precise, the return codes in our example indicate whether the Web
server has indicated an error or not. If, for example, the underlying hardware has
malfunctioned in a way not traced by the operating system or Web server, for ex-
ample, a communication error resulting in a correct checksum, the error goes un-
noticed. Building up a system from components, we specify each component sep-
arately and reason about the whole system using composition rules assuming the
implementations to adhere to the specification. If a specification is too weak, the
corresponding component cannot be used intelligently. Although more truthful, a
specification saying that the CGI functions might have failed even if the result indi-
cates success, is useless, because we cannot build on it. Risk estimates using proba-
bilistic reasoning would need to complement a development in B [24, 15, 16].

Operation ReadTokenString reads a string from a form field. As described above,
the string is stored in machine BasicString and only a token is returned. If the string
contained in the field is longer than maxLength, the operations returns failure.

status, str← ReadTokenString(name, maxLength) =
PRE name ∈ STRING ∧ maxLength ∈ NAT THEN

status :∈ BOOL || str :∈ STRTOKEN
END;

The remaining five operations are concerned with outputting a new document in
response to the user’s request. Each document has a MIME (Multipurpose Internet
Message Extension) type which tells the browser the format of the remaining data

4.7 Base Machines 141

stream. In our case, the type is always “text/html”. Operation WriteLiteralContent-
Type lets us send the MIME type to the browser. Parameter mimeType is of type
STRING as a constant literal string is envisaged to be used as an actual parameter.

WriteLiteralContentType(mimeType) =
PRE mimeType ∈ STRING THEN skip END;

In HTML, certain characters such as ‘<’ are reserved for markup purposes. Ad-
ditionally, 8-bit characters must be encoded using either their mnemonic or their
decimal codes in the Latin-1 character set. For example, the letter ‘ü’ can be en-
coded as either ‘ü’ or as ‘ ü’. Operation WriteLiteralString outputs a
string without any conversions; hence, the string can contain HTML tags, but special
characters must already be encoded. Operation WriteLatin1TokenString converts a
string from the Latin-1 character set to its HTML encoding.

WriteLiteralString(str) =
PRE str ∈ STRING THEN skip END;

WriteLatin1TokenString(str) =
PRE str ∈ STRTOKEN THEN skip END;

In arguments to CGI programs, certain reserved characters as well as 8-bit char-
acters must be encoded as their hexadecimal codes in the Latin-1 character set. The
letter ‘ü’, for example, is represented as ‘%FC’. Since such argument strings may
not contain any spaces, the latter are converted to ‘+’s. This type of conversion is
performed by operation WriteURLString before outputting its argument.

WriteURLTokenString(str) =
PRE str ∈ STRTOKEN THEN skip END;

WriteNat(num) =
PRE num ∈ NAT THEN skip END

END

The actual output operations are specified as skip as the output is not part of the
state captured by the B specification. Although the output operations can also fail in
practice, we have chosen the less safe, but more convenient approach of specifying
them as reliable.

A partial modelling of the output would also have practical consequences. The
operations of BasicCGI might be called from different implementation constructs.
As long as the operations are inquiry operations they can be called from implemen-
tations which see BasicCGI. If, on the other hand, the output operations modify the
state, the lowest machine in the hierarchy using BasicCGI must import the latter and
promote the operations.

Machine BasicCGI does not enforce its output to be correct HTML, for example,
there is no check for matching markup tags. Although desirable, such checks would
make the machine much more cumbersome to use as tags could not be embedded in
strings and the machine would have to be updated to use new HTML tags.

142 4. B Bank

4.7.3 Implementing BasicCGI

To implement BasicCGI we first write an ‘empty’ B implementation the C trans-
lation of which gives us a C code skeleton conforming to the coding standards of
Atelier B’s translator. This skeleton is then filled in with the actual code. The imple-
mentation BasicCGI 1 contains only the minimal information to conform to B and
be translatable. We have to value every set and constant, initialize concrete variables
of the specification, and list all the operations. Operations are simply specified as
skip, if they have no return parameters and otherwise as dummy assignments to the
return parameters. We do not prove anything about this empty implementation. Note
that BasicCGI 1 sees BasicString to force the latter being imported somewhere in
the development.

IMPLEMENTATION
BasicCGI 1

REFINES
BasicCGI

SEES
StrTokenType, BasicString

OPERATIONS

status, num← ReadNat(name) =
BEGIN

status := TRUE; num := 0
END;

status, str← ReadTokenString(name, maxLength) =
BEGIN

status := TRUE; str := EmptyStringToken
END;

WriteLiteralContentType(mimeType) = skip;

WriteLiteralString(str) = skip;

WriteURLTokenString(str) = skip;

WriteLatin1TokenString(str) = skip;

WriteNat(num) = skip

END

Rather than implementing CGI access from scratch we build upon the public
domain ANSI C library cgic version 1.05 from Thomas Boutell [2]. This library
provides for comfortable parsing of form input. The second included header file
trad ctx.h defines some macros such as PROTx to make the source code portable
between ANSI C and K&R compilers.

In a project, a machine can be imported several times with different instance
names. Different instances represent different data. Implementing a base machine,
we have to decide whether multiple instantiation is permitted or not. If, for example,
a base machine represents a physical device such as an LED only one copy of the
corresponding base machine should be included in a development. If a base machine

4.7 Base Machines 143

does not allow for multiple instantiations, we have to verify that the project adheres
to this rule. The restriction cannot be expressed in AMN; depending upon the target
language and the translator it is possible to write C code which fails to compile,
respectively link if the rule is violated. If, as in our case, this is not possible, manual
inspection is necessary. On the other hand, if we allow multiple instantiations, the
state of an instantiation must be included into the struct BasicX type. As discussed
above, we do not need to make our machine BasicCGI instanciable, even if we use
it from more than one implementation construct. Hence, we opt for this simpler
approach which also corresponds more closely to the reality we model. Our third
base machine BasicFile (Sect. 4.10.4) illustrates multiple instantiation. The hand-
coded additions and modifications are set in italics in the C source files.

#include”cgic.h”
#ifndef trad ctx include def

#include ”trad ctx.h”
#endif

/* Links to machines from the SEES clause */
#ifndef StrTokenType include def

#include ”StrTokenType.h”
#endif

/* Structure associated to component (instance record) */
struct BasicCGI type {

int BasicCGI init already done;
} ;

#define BasicCGI include def

/* Reference to machines from the SEES clause */
EXTERN struct StrTokenType type *StrTokenType ptr;

/* Prototypes of translated operations */
EXTERN void link BasicCGI PROTF((struct BasicCGI type *v));

EXTERN void init BasicCGI PROTF((struct BasicCGI type *v));

/* Type of name changed manually from INT32 to char* */
EXTERN void ReadNat BasicCGI PROTF((struct BasicCGI type *v,

INT32 *status, INT32 *num, char *name));

/* The other operations can be found on the book’s Web page. */

In its original implementation, cgic provides itself a main function and expects
the user to write a function called cgiMain which is called after initialisation. By
changing a handful of lines as indicated in the online source code, we turn cgic’s
main function into a function cgiInit which we call from init BasicCGI. The spec-
ifications does not allow the initialisation to fail. In practice, if the initialisation
fails we write a message to stderr and abort execution. Since we cannot perform
any transaction anyhow, abortion at startup is the simplest solution. The operations

144 4. B Bank

are simply calls to the corresponding procedures of cgic, respectively fprintf com-
mands.

#include <stdio.h>
#include ”BasicCGI.h”
#include ”BasicString.h”

void link BasicCGI(PROTA(struct BasicCGI type *)v)
PROTC(struct BasicCGI type *v)

{}

void init BasicCGI(PROTA(struct BasicCGI type *)v)
PROTC(struct BasicCGI type *v)

{
if (StrTokenType ptr->StrTokenType init already done &&

(v->BasicCGI init already done==0)) {
if (cgiInit()!=0){

fprintf(stderr, ”Initialization of BasicCGI failed.\n”); exit(-1);
}
v->BasicCGI init already done=1;

}
}

void ReadNat BasicCGI(PROTA(struct BasicCGI type *)v, PROTA(INT32 *)status,
PROTA(INT32 *)num, PROTA(char *)name)

PROTC(struct BasicCGI type *v) PROTC(INT32 *status)
PROTC(INT32 *num) PROTC(char *name)

{
int s;

s=cgiFormInteger(name, num, 0);
if ((s==0)&&(*num>=0)) {

*status=TRUE;
} else {

*num=0; *status=FALSE;
}

}

/* The other operations can be found on the book’s Web page. */

We prove in B that all calls to operations of BasicCGI satisfy the respective pre-
conditions. Hence, there is no need to write checks for the preconditions in the C
code of BasicCGI. The hand-coded C implementation is a refinement of its B spec-
ification. The validity of the refinement has to be asserted using normal verification
techniques, for example, testing and third party code inspection.

We make a separate project out of BasicCGI, BasicString, and StrTokenType to
facilitate reuse in other projects. This also prevents us from accidentally overwriting
the hand-coded implementation. The files cgic.c and cgic.h must be manually added
to the Makefile, copied from the data base to the code directory. Additionally, the

4.8 User Interface 145

target BasicCGI must be removed from the Makefile, as we only want to create a
library and make would produce an error because of the missing main function.

For didactic reasons, we have presented the implementation of the base machine
directly following its specification. In practice, we often write the implementation
only after we have actually used its specification in other constructs and, thereby,
convinced ourselves of its appropriateness. The disadvantage of this is that the spec-
ification might not be implementable on the target system, causing a rework of all
dependent constructs.

4.8 User Interface

The user interface presents an entry mask to the user, parses the input with the help
of BasicCGI, sends the request to the robust interface RobustBank, and presents
the results using again the CGI machine. We first prototype this interaction using
static HTML code with normal links between the pages rather than calls to our CGI
application. Once we are satisfied with the look and feel, we write the user interface

Notations

static HTML
page

CGI output link
transition

form input
transition

new customer
output

welcome

new customer
form

new account
form (simple)

list of
customers

deposit
form

deposit
output

new account
form (full)

new account
output

2 or more
matching
customers

0 or 1
matching
customer

Fig. 4.9. Cashier Interaction

146 4. B Bank

which generates the same HTML code based upon CGI requests. Static information,
such as the input forms, remains in the form of normal HTML files.

The cashier is presented with a menu on the bottom of her terminal, from which
she can choose a form to enter a new customer, create a new account for an existing
customer, or make a deposit. In the ‘new customer’ form, the cashier enters the
name and year of birth of the customer and clicks on a button to send the data to the
CGI application. In response, the cashier gets a screen saying that the operation has
succeeded or that an error has occurred. These messages are all generated by the
same CGI program, but for prototyping we need to create different HTML pages.
After reading the output message, the cashier clicks on another menu choice.

When creating a new account, the cashier has the option of entering both the
customer’s name and year of birth or only the name. If there is only one cus-
tomer with the given name in the system, an account is created. On the other
hand, if there is more than one customer with this name, the cashier is presented
with a list. She then simply clicks on the desired customer to create the ac-
count. In the latter case, the links contain all the parameters, which would usu-
ally be entered into the form by the cashier. For example for customer ‘Garfield’,
born in ‘1978’, and PIN ‘2001’ the URL of the link would be ‘http://. . ./cgi-
bin/AB/MainBank?command=1&name=Garfield&yob=1978&pin=2001’. The CGI

<HTML>
<HEAD><TITLE>B Bank: New Customer</TITLE></HEAD>
<BODY BGCOLOR=“#228B22”>

<H1>B Bank: New Customer</H1>
<FORM ACTION=“http://www.tucs.abo.fi/cgi-bin/mbuechi/AB/MainBank”

METHOD=“POST”>
<INPUT TYPE=“HIDDEN” NAME=“command” VALUE=“0”>
<TABLE BORDER=“0”>

<TR ALIGN=“Center” VALIGN=“Middle”>
<TD ALIGN=“RIGHT”>Customer name:</TD>
<TD ALIGN=“LEFT”><INPUT NAME=“name” SIZE=“18”></TD>

</TR>
<TR ALIGN=“Center” VALIGN=“Middle”>

<TD ALIGN=“RIGHT”>Year of birth:</TD>
<TD ALIGN=“LEFT”><INPUT NAME=“yob” SIZE=“4”></TD>

</TR>
</TABLE>
<P>

<INPUT TYPE=“submit” VALUE=“Add customer”>

<INPUT TYPE=“reset” VALUE=“Reset input form”>

</P>
</FORM>

</BODY>
</HTML>

Fig. 4.10. HTML Source Code of ‘New Customer’ Form

4.8 User Interface 147

program doesn’t have to store any temporary information. ‘Deposit’ leads to simple
one-step interaction sequences like ‘new customer’, as depicted in Fig. 4.9.

For brevity’s sake, we do not list all the HTML pages. We assume the reader
to be familiar with basic HTML. In Fig. 4.10, the FORM tag introduces the actual
entry form. Its attribute ACTION states the URL of the CGI program, to which the
input data is sent upon pressing the submit button. The input field ‘name’ takes
the customer name. Rather than creating a separate CGI application for each entry
form, we use a hidden input field ‘command’ which selects the desired operation.
The CGI program is our final B applications, which we copy to the CGI directory
of the Webserver and give the suitable execution rights.

The user interaction at the ATM and the corresponding HTML pages are similar.
On a standard ATM, the account number is read from a card. To run our simulation
without any special hardware, the user is also requested to enter the account number.
A typical ATM interface is modal, that is, one first inserts the card, then enters
the PIN, and finally performs the desired transaction. In our simulation, the user is
requested to enter all information in a single modeless dialog. Exercise 4.2 shows
how to model a modal interface using the idea of links generated by the program.

In order to make navigation easier in the simulation, we add a frame set with a
meta menu which lets us easily switch between the cashier terminal and the ATM,
displayed with different background colour in the right-hand side frame.

4.8.1 Main Program

To keep the size of the individual operations small, we create one operation per
transaction type. Since in B operations from the same construct cannot be called, we
divide the user interface into two machines. Machine MainBank contains the main
program. It reads the ‘command’ field and calls the selected operation of machine
OperationsBank, which does the actual work.

We do not duplicate the state on the user interface level in OperationsBank, as
we do not want to perform any reasoning. Hence, the specification of the transaction
operations is simply skip.

MACHINE
OperationsBank

OPERATIONS

NewCustomer = skip;

NewAccount = skip;

Deposit = skip;

Withdraw = skip;

Balance = skip;

ChangePin = skip;

Error(number) =
PRE number ∈ NAT THEN skip END;

148 4. B Bank

status← Open(customerFileName, accountFileName, stringFileName) =
PRE

customerFileName ∈ STRING ∧ accountFileName ∈ STRING ∧
stringFileName ∈ STRING

THEN
status :∈ BOOL

END;

status← Close =
BEGIN

status :∈ BOOL
END

END

The machine MainBank is also stateless. The specification of its single opera-
tion main is skip, guaranteeing only termination. Since the persistent state, existing
beyond a single program run, cannot be modelled, skip is in fact the only reasonable
specification for a main program.

MACHINE
MainBank

OPERATIONS

main = skip

END

4.8.2 Implementations

The implementation MainBank 1 first opens the database. Then it reads the value
of the ‘command’ input field, calls the selected operation, and closes the database.

IMPLEMENTATION
MainBank 1

REFINES
MainBank

IMPORTS
BC.BasicCGI, OB.OperationsBank , StrTokenType

OPERATIONS

main =
VAR dbst, st, res IN

dbst← OB.Open(”/tmp/customer”, ”/tmp/account”, ”/tmp/strings”);
IF dbst = TRUE THEN

st, res← BC.ReadNat(”command”);
IF st = TRUE THEN

CASE res OF
EITHER 0 THEN OB.NewCustomer
OR 1 THEN OB.NewAccount

4.8 User Interface 149

OR 2 THEN OB.Deposit
OR 3 THEN OB.Withdraw
OR 4 THEN OB.Balance
OR 5 THEN OB.ChangePin
ELSE OB.Error(0)
END

END
ELSE OB.Error(1)
END;
dbst← OB.Close

ELSE OB.Error(2)
END

END

END

The implementation OperationsBank 1 imports RobustBank. The operation
NewCustomer first outputs the header of the result screen, which is independent
of the outcome of the operation. Then it reads the value of the ‘name’ field, calls
RobustNewCustomer and presents the result.

The loop in operation NewAccount shows the advantage of not just using B to
create a subroutine library. In this case, loops on the user interface level would not
be proved to terminate. For brevity’s sake, some operations are omitted in the listing
below. They can, as all other constructs, be found on the book’s Web page.

IMPLEMENTATION
OperationsBank 1

REFINES
OperationsBank

IMPORTS
RB.RobustBank(100, 200)

SEES
BC.BasicCGI

CONCRETE CONSTANTS
False1

PROPERTIES
False1 ∈ BOOL� NAT

VALUES
False1 = {(TRUE �→ 0), (FALSE �→ 1)}

DEFINITIONS
CASHIER HEADER(title) == HEADER(title, ”#228B22”);
ATM HEADER(title) == HEADER(title, ”#DC143C”);
HEADER(title,color) == (

BC.WriteLiteralContentType(”text/html”);
BC.WriteLiteralString(”<HTML>\n<HEAD><TITLE>B Bank: ”);
BC.WriteLiteralString(title); BC.WriteLiteralString(”</TITLE></HEAD>\n”);
BC.WriteLiteralString(”<BODY BGCOLOR=”); BC.WriteLiteralString(color);

150 4. B Bank

BC.WriteLiteralString(”>\n<H1>B Bank: ”);
BC.WriteLiteralString(title); BC.WriteLiteralString(”</H1>\n”));

FOOTER == BC.WriteLiteralString(”</BODY></HTML>\n”);
DB FULL MSG == BC.WriteLiteralString(”<P>Sorry. The database is full.</P>”);
DB ERR MSG ==

BC.WriteLiteralString(”<P>Sorry. The databse is not working.</P>”);
UNK ACC MSG(num) == (

BC.WriteLiteralString(”<P>Account ”); BC.WriteNat(num);
BC.WriteLiteralString(” is not in database.</P>”));

CGI SCRIPT == ”http://www.tucs.abo.fi/cgi-bin/mbuechi/AB/MainBank”;
MAX NAME LENGTH == 256

OPERATIONS

NewCustomer =
VAR st, name, yob, result IN

CASHIER HEADER(”New Customer”);
st, name← BC.ReadTokenString(”name”, MAX NAME LENGTH);
IF st = TRUE THEN

st, yob← BC.ReadNat(”yob”);
IF st = TRUE THEN

result← RB.RobustNewCustomer(name, yob);
CASE result OF

EITHER success THEN
BC.WriteLiteralString(”<P>Customer ”);
BC.WriteLatin1TokenString(name);
BC.WriteLiteralString(” (”); BC.WriteNat(yob);
BC.WriteLiteralString(”) has been added.</P>”)

OR customerAlreadyPresent THEN
BC.WriteLiteralString(”<P>Customer ”);
BC.WriteLatin1TokenString(name);
BC.WriteLiteralString(” (”); BC.WriteNat(yob);
BC.WriteLiteralString(”) is already in database.</P>”)

OR dbFull THEN DB FULL MSG
OR dbError THEN DB ERR MSG
END

END
ELSE BC.WriteLiteralString(”<P>Could not get year of birth.</P>”)
END

ELSE BC.WriteLiteralString(”<P>Could not get name.</P>”)
END;
FOOTER

END;

NewAccount =
VAR st, name, yob, pin, result, number, nof, found, ii IN

CASHIER HEADER(”New Account”);
st, name← BC.ReadTokenString(”name”, MAX NAME LENGTH);
IF st = TRUE THEN

st, pin← BC.ReadNat(”pin”);
IF st = TRUE THEN

st, yob← BC.ReadNat(”yob”);
IF st = FALSE THEN

result, nof← RB.RobustInitFindCustomer(name);
IF result = success THEN

4.8 User Interface 151

IF nof = 0 THEN
BC.WriteLiteralString(”<P>Customer ”);
BC.WriteLatin1TokenString(name);
BC.WriteLiteralString(” is not in database.</P>”)

ELSIF nof = 1 THEN
found, yob← RB.RobustFindNextCustomer;
st := TRUE

ELSE BC.WriteLiteralString(”<P>Choose from list:</P>”);
ii := 0; found, yob← RB.RobustFindNextCustomer;
WHILE found = TRUE DO

BC.WriteLiteralString(”<A HREF=”);
BC.WriteLiteralString(CGI SCRIPT);
BC.WriteLiteralString(”?command=1&name=”);
BC.WriteURLTokenString(name);
BC.WriteLiteralString(”&yob=”);
BC.WriteNat(yob);
BC.WriteLiteralString(”&pin=”);
BC.WriteNat(pin);
BC.WriteLiteralString(”>”);
BC.WriteLatin1TokenString(name); BC.WriteLiteralString(” (”);
BC.WriteNat(yob); BC.WriteLiteralString(”)</L>”);
found, yob← RB.RobustFindNextCustomer

INVARIANT
yob ∈ NAT ∧
RB.BK.foundCustomers ∈ F (RB.BK.foundCustomers)

VARIANT
card(RB.BK.foundCustomers)+1-False1(found)

END;
BC.WriteLiteralString(””)

END
ELSE DB ERR MSG
END

END;
IF st = TRUE THEN

result, number← RB.RobustNewAccount(name, yob, pin);
CASE result OF

EITHER success THEN
BC.WriteLiteralString(”<P>New account number ”);
BC.WriteNat(number);
BC.WriteLiteralString(” has been created for customer ”);
BC.WriteLatin1TokenString(name);
BC.WriteLiteralString(” (”); BC.WriteNat(yob);
BC.WriteLiteralString(”).</P>”)

OR unknownCustomer THEN
BC.WriteLiteralString(”<P>Customer ”);
BC.WriteLatin1TokenString(name);
BC.WriteLiteralString(” (”); BC.WriteNat(yob);
BC.WriteLiteralString(”) is not in database.</P>”)

OR dbFull THEN DB FULL MSG
OR dbError THEN DB ERR MSG
END

END
END

152 4. B Bank

ELSE BC.WriteLiteralString(”<P>Could not get pin.</P>”)
END

ELSE BC.WriteLiteralString(”<P>Could not get name.</P>”)
END;

FOOTER
END;

Deposit =
VAR st, number, amount, result, dd, name, yob IN

CASHIER HEADER(”Deposit”);
st, number← BC.ReadNat(”number”);
IF st = TRUE THEN

st, amount← BC.ReadNat(”amount”);
IF st = TRUE THEN

result, dd← RB.RobustDeposit(number, amount);
CASE result OF

EITHER success THEN
BC.WriteLiteralString(”<P>A deposit of ”);
BC.WriteNat(amount);
BC.WriteLiteralString(” has been made on account ”);
BC.WriteNat(number);
result, name, yob← RB.RobustOwner(number);
IF result = success THEN

BC.WriteLiteralString(” belonging to ”);
BC.WriteLatin1TokenString(name);
BC.WriteLiteralString(” (”); BC.WriteNat(yob);
BC.WriteLiteralString(”)”)

END;
BC.WriteLiteralString(”.</P>”)

OR negativeAmount THEN
BC.WriteLiteralString(”<P>Amount must be greater than 0.</P>”)

OR amountTooBig THEN
BC.WriteLiteralString(”<P>Amount too big. ”)
BC.WriteLiteralString(”No deposit has been made.</P>”)

OR unknownAccount THEN UNK ACC MSG(number)
OR dbError THEN DB ERR MSG
END

END
ELSE BC.WriteLiteralString(”<P>Could not get amount.</P>”)
END

ELSE BC.WriteLiteralString(”<P>Could not get number.</P>”)
END;
FOOTER

END;

/* Operations Withdraw, Balance, and ChangePin and Error omitted. Check the book’s Web
page. */

status← Open(customerFileName, accountFileName, stringFileName) =
status← RB.RobustOpen(customerFileName, accountFileName, stringFileName);

status← Close =
status← RB.RobustClose

END

4.9 Implementation of the Robust Abstraction 153

4.9 Implementation of the Robust Abstraction

The missing piece is the implementation of the robust layer RobustBank. We have
to make a choice as to whether we want to import Bank in the implementation
RobustBank 1 or whether we want to build directly on lower level abstractions.

Often, a more abstract specification is included into the robust level and a sim-
ilar, more concrete specification is imported in the implementation. The machine
that is included in the specification should be as abstract as possible to avoid over-
specification. The machine that is imported in the implementation should be quite
concrete to make it more useful. The use of two different constructs solves this
dilemma. However, in our case we can include, respectively import the same ma-

RobustBank_1

Bank_1Bank

RobustBank_1

Bank

transitivity of refinement

RobustBank
monotonicity
of context

algorithmic
refinement data

refinement
=

Notations

machine implementation
proved
refinement

induced
refinement

RobustBank_1

Concrete
Bank_1

Abstract
Bank

RobustBank_1

Concrete
Bank

transitivity of refinement

RobustBank
monotonicity
of context

algorithmic
refinement

data
refinement

Same machine Bank is both included and imported (chosen path)

More abstract construct AbstractBank is included in specification,
more concrete construct ConcreteBank is imported in implementation (rejected alternative)

≠

Fig. 4.11. Import of Included Machine vs. Import of More Concrete Construct

154 4. B Bank

chine Bank in both the specification and the implementation, avoiding a proliferation
of constructs. In the alternative case Bank, respectively a more abstract version Ab-
stractBank, would have been used only in the specification, but would not have to
be refined to an implementation. Fig. 4.11 shows the two options.

Importing an already included machine without renaming, respectively renam-
ing it identically both times, constitutes an algorithmic refinement. The identity
mapping invariant is implicitly added.

The operations first check whether the parameters and the current state satisfy
the preconditions of the corresponding operations in Bank and then call them, or
report an error if the conditions do not hold.

IMPLEMENTATION
RobustBank 1(maxCustomers, maxAccounts)

REFINES
RobustBank

IMPORTS
BK.Bank(maxCustomers, maxAccounts)

SEES
StrTokenType

OPERATIONS

result← RobustNewCustomer(name,yob) =
VAR status, cid IN

IF BK.fileOpen = TRUE THEN
status← BK.CustomerDBFull;
IF status = FALSE THEN

status, cid← BK.ThisCustomer(name,yob);
IF status = FALSE THEN

BK.NewCustomer(name,yob); result := success
ELSE result := customerAlreadyPresent
END

ELSE result := dbFull
END

ELSE result := dbError
END

END;

result, nof← RobustInitFindCustomer(name) =
IF BK.fileOpen = TRUE THEN

nof← BK.InitFindCustomer(name); result := success
ELSE

result := dbError; nof := 0
END;

found, yob← RobustFindNextCustomer =
IF BK.fileOpen = TRUE THEN

found, yob← BK.FindNextCustomer
ELSE

found := FALSE; yob := 0
END;

4.9 Implementation of the Robust Abstraction 155

result, number← RobustNewAccount(name, yob, pin) =
VAR status, cid IN

number := 0;
IF BK.fileOpen = TRUE THEN

status← BK.AccountDBFull;
IF status = FALSE THEN

status, cid← BK.ThisCustomer(name, yob);
IF status = TRUE THEN

number← BK.NewAccount(cid, pin); result := success
ELSE result := unknownCustomer
END

ELSE result := dbFull
END

ELSE result := dbError
END

END;

result, bal← RobustBalance(number, pin) =
VAR status, aid IN

bal := 0;
IF BK.fileOpen = TRUE THEN

status, aid← BK.ThisAccount(number);
IF status = TRUE THEN

status← BK.Authorized(aid, pin);
IF status = TRUE THEN

bal← BK.Balance(aid, pin); result := success
ELSE result := WrongPin
END

ELSE result := unknownAccount
END

ELSE result := dbError
END

END;

result, name, yob← RobustOwner(number) =
VAR status, aid, cid IN

yob := 0;
IF BK.fileOpen = TRUE THEN

status, aid← BK.ThisAccount(number);
IF status = TRUE THEN

cid← BK.AccountOwner(aid);
name, yob← BK.CustomerData(cid);
result := success

ELSE
result := unknownAccount; name := EmptyStringToken; yob := 0

END
ELSE

result := dbError; name := EmptyStringToken; yob := 0
END

END;

/* Operations RobustBalance, RobustOwner, RobustDeposit, RobustWithdraw,
and RobustChangePin omitted. Check on the book’s Web page. */

status← RobustOpen(customerFileName, accountFileName, stringFileName) =
IF BK.fileOpen = FALSE THEN

156 4. B Bank

status← BK.Open(customerFileName, accountFileName, stringFileName)
ELSE status := FALSE
END;

status← RobustClose =
IF BK.fileOpen = TRUE THEN

status← BK.Close
ELSE status := FALSE
END

END

4.10 Implementation of Bank

Our next task is to refine Bank to an implementation, because we have chosen to im-
port it into RobustBank. In Sect. 4.4 we have already outlined the basic structure of
this implementation. Now we have to take a closer look at our requirements on one
hand and the available resources, that is, the B library machines and the operating
system of the target computer, on the other. This is the gap we have to bridge.

The data structures we need to implement are object classes with attributes as
well as relations. We need to be able to create new objects, read and modify their
attributes, and externalise and internalise them. All our attributes are of types NAT
and STRTOKEN. If we provide a possibility to reference string tokens with natural
numbers, strings, respectively references to string tokens can also be stored like
NATs. Functional relations (accountOwner) can also be modelled as NAT attributes
if NAT is also chosen as the identifier type for objects.

Atelier B provides a base machine BASIC ARRAY RGE for two dimensional
array. This could be used to store objects with their NAT attributes by letting the
first index select the object and the second the desired attribute or vice versa. If the
number of fields is known, we could alternatively use a number of one-dimensional
arrays which can be directly implemented in B0.

A simple machine for file access named BASIC FILE VAR, originating from
the data-base example of the B Book [1], is also provided. This machine permits
objects with attributes of identical type to be stored and retrieved from file. Using
it to externalise strings would be very cumbersome. Also, it does not provide for
persistency between program runs as the name of the file is generated at random.
Neither does it perform any error handling; file system errors cause it to abort.

We could implement Bank directly on our own base machines BasicFile and
BasicString and on BASIC ARRAY RGE. However, it seems to be wiser to intro-
duce a middle layer, which encapsulates general support for objects. This simpli-
fies the implementation of Bank and gives us a reusable subsystem. It also frees us
from hardwiring whether we want to internalise the complete database at startup or
whether we only want to keep the currently accessed object in the main memory.

We implement Bank using a machine Object providing the aforementioned sup-
port for objects and BasicString. The specification still leaves it open whether the

4.10 Implementation of Bank 157

complete database is kept in main memory or not. In the implementation we can
no longer postpone the decision. We decide to read the whole database at startup;
the other solution for a similar object-support machine is developed by Abrial in the
aforementioned data-base example. Fig. 4.12 shows the structure of the intended
development with section numbers for reference. We create a separate project for
the object support and string machines to facilitate reuse.

Notations

machine implementation library
machine

implements

imports
(renaming to X)

hand-coded C

X

Bank
(4.5)

Object_1
(4.10.5)

Basic
File.h

Bank_1
(4.10.3)

BasicFile_1

Object
(4.10.1)

BasicFile
(4.10.4)

BASIC_AR
RAY_RGE

Basic
File.c

cu
st

om
er

s_
1

ac
co

un
ts

_1

BasicString
(4.10.2)

Basic
String_1

Basic
String.h

Basic
String.c

BS

BA BI

BF

L_SETfoundCustomers_1

Fig. 4.12. Implementation of Bank

158 4. B Bank

We proceed in a top-down fashion. We first identify the required functionality
for implementing Bank, specify the necessary machines Object and BasicString,
and then implement Bank. We then repeat the same sequence of steps for Object
and BasicString.

4.10.1 Machine Object

As stated above, Object must be able to store a set of objects, each having a given
number of attributes of identical type. We need to create new objects, modify and
read their fields, search for an object by the value of one of its fields, and check
whether the database is full or not.

Object has four parameters. The first parameter maxNofObjs denotes the maxi-
mal number of objects, which the machine can store. As discussed in Sect. 4.5, such
an upper bound is needed in a safety-critical system in order to avoid overflows.
The question remains, however, how we should constrain the maximal value of ob-
jects. This value is determined by the available main memory storing the objects
and the available disk space for externalisation. This contradicts our aim to make
the specification independent of the target computer. Even if we know our target
architecture, the available memory at run time depends also upon which other pro-
cesses are running and how many instantiations of the Object machine are present.
Obviously, we cannot formally prove the instantiations to work for any value —
except for 0. Such a proof would not be within B. In practice, we have to reason
for the complete system that the chosen instantiations are permissible for the given
resources. We implement our machine so that it allocates all the required memory
at startup. Although failure during initialisation also violates the specification, it is
usually less harmful than at run time. For the second resource, the disk storage, we
take the more optimistic and less safe assumption that the disk always has at least
as much free space as we have main memory.

MACHINE
Object(maxNofObjs, nofFields, VALUE, valueElement)

CONSTRAINTS
maxNofObjs ∈ NAT1 ∧ nofFields ∈ NAT1 ∧ valueElement ∈ VALUE

DEFINITIONS
FIELD == 0 . . nofFields-1; OBJECT == 0 . . maxNofObjs-1

VARIABLES
object, objectSequence, field, foundObjects

CONCRETE VARIABLES
fileOpen

INVARIANT
object ⊆ OBJECT ∧ card(object) ≤ maxNofObjs ∧
objectSequence ∈ perm(object) ∧ field ∈ FIELD→ (object→ VALUE) ∧
fileOpen ∈ BOOL ∧ foundObjects ⊆ object

INITIALISATION

4.10 Implementation of Bank 159

object := {} || objectSequence := [] || field := FIELD × { {} } ||
fileOpen := FALSE || foundObjects := {}

The second parameter nofFields takes the number of fields per object. It would
be desirable to use a machine parameter of set type to designate the fields rather than
the integer range 0 . . nofFields-1. Using such a branded type, certain errors could be
flagged by the type checker rather than resulting in unprovable obligations at a later
stage of the development. The reason why we do not use a machine parameter of set
type is that it is not possible in B to iterate over an arbitrary set in an implementation
as will be required in the implementation of Object. An iterator base machine cannot
be implemented either because of an unfortunate C encoding decision in Atelier B.

The third parameter VALUE is the domain of the fields. The fourth parameter
valueElement takes an arbitrary element of VALUE. It is required for the deter-
ministic initialisation of a concrete variable of type VALUE in the implementation
Object 1.

OPERATIONS

obj← CreateObject(initValue) =
PRE

initValue ∈ VALUE ∧ card(object) < maxNofObjs ∧ fileOpen = TRUE
THEN

ANY newObj, objSeq WHERE
newObj ∈ OBJECT - object ∧ objSeq ∈ perm(object ∪ {newObj})

THEN
object := object ∪ {newObj} || objectSequence := objSeq ||
field := λ ii.(ii ∈ FIELD | field(ii) ∪ {newObj �→ initValue}) ||
obj := newObj

END
END;

vv← GetField(oo, ff) =
PRE oo ∈ NAT ∧ oo ∈ object ∧ ff ∈ FIELD ∧ fileOpen = TRUE THEN

vv := field(ff)(oo)
END;

SetField(oo, ff, vv) =
PRE

oo ∈ NAT ∧ oo ∈ object ∧
ff ∈ FIELD ∧ vv ∈ VALUE ∧ fileOpen = TRUE

THEN
field(ff)(oo) := vv || foundObjects :∈ P (object)

END;

is← Full =
PRE fileOpen = TRUE THEN

is := bool(card(object) = maxNofObjs)
END;

nof← NofObjects =
PRE fileOpen = TRUE THEN

nof := card(object)
END;

160 4. B Bank

Operation GetSequenceObj permits the traversal of all objects. For this purpose
we have introduced the variable objectSequence, which is always a permutation of
the set of objects. Operation CreateObject reshuffles the sequence to allow for more
implementation freedom. Exercise 4.5 shows how this, without the provision for
deleting objects overly general specification, allows the simple addition of object
deletion.

obj← GetSequenceObj(index) =
PRE

index ∈ NAT ∧ index+1 ∈ dom(objectSequence) ∧ fileOpen = TRUE
THEN obj := objectSequence(index+1)
END;

The find operations follow the same pattern as their correspondences in Bank.

InitFind(ff, vv) =
PRE ff ∈ FIELD ∧ vv ∈ VALUE ∧ fileOpen = TRUE THEN

foundObjects := field(ff) −1 [{vv}]
END;

found, oo← FindNext =
PRE fileOpen = TRUE THEN

IF foundObjects �= {} THEN
ANY obj WHERE obj ∈ foundObjects THEN

found, oo, foundObjects := TRUE, obj, foundObjects - {obj}
END

ELSE found := FALSE || oo :∈ OBJECT
END

END;

Internalizing objects with references to other objects (relations), we have to
be able to verify whether the references denote valid objects. Operation InDomain
serves this purpose.

is← InDomain(obj) =
PRE obj ∈ NAT ∧ fileOpen = TRUE THEN

is := bool(obj ∈ object)
END;

If the file denoted by parameter name of Open does not exist a new file is created.

status← Open(fileName) =
PRE fileName ∈ STRING THEN

ANY obj, objSeq, st WHERE
obj ⊆ OBJECT ∧ card(obj) ≤ maxNofObjs ∧
objSeq ∈ perm(obj) ∧ st ∈ BOOL

THEN
object := obj || objectSequence := objSeq || foundObjects :∈ P (obj) ||
field :∈ FIELD→ (obj→ VALUE) || status := st || fileOpen := st

END
END;

4.10 Implementation of Bank 161

status← Close =
PRE fileOpen = TRUE THEN

fileOpen := FALSE || status :∈ BOOL
END

END

4.10.2 Machine BasicString

As explained in Sect. 4.7.1, machine BasicString stores all strings in the system. Be-
cause of the single writer restriction, this cannot be reflected in the B specification.
The latter only represents the mapping from natural number indices to string tokens
and the registration of strings to be externalised.

Machine BasicString can store at most maxNofStrings persistent strings. Oper-
ation AddString can be specified without any precondition that enough memory is
available for a string of a certain size as the memory allocation has already taken
place upon token generation.

MACHINE
BasicString(maxNofStrings)

CONSTRAINTS
maxNofStrings ∈ NAT1

SEES
StrTokenType

VARIABLES
regStrings, bsFileOpen

INVARIANT
regStrings ∈ NAT �� STRTOKEN ∧ card(regStrings) ≤ maxNofStrings ∧
bsFileOpen ∈ BOOL

INITIALISATION
regStrings := {} || bsFileOpen := FALSE

OPERATIONS
index← AddString(ss) =

PRE
ss ∈ STRTOKEN ∧ card(regStrings) �= maxNofStrings ∧
bsFileOpen = TRUE

THEN
IF ss ∈ ran(regStrings) THEN index := regStrings −1 (ss)
ELSE

ANY newId WHERE newId ∈ NAT-dom(regStrings) THEN
index, regStrings := newId, regStrings ∪ {(newId �→ ss)}

END
END

END;

is← IsFull =
is := bool(card(regStrings)=maxNofStrings);

162 4. B Bank

bb← InDomain(index) =
PRE index ∈ NAT THEN

bb := bool(index ∈ dom(regStrings))
END;

ss← GetString(index) =
PRE

index ∈ NAT ∧ index ∈ dom(regStrings) ∧ bsFileOpen = TRUE
THEN

ss := regStrings(index)
END;

found, index← FindString(ss) =
PRE ss ∈ STRTOKEN THEN

IF ss ∈ ran(regStrings) THEN
found, index := TRUE, regStrings −1 (ss)

ELSE
found := FALSE || index :∈ NAT

END
END;

status, nof← BsOpen(fileName) =
PRE fileName ∈ STRING THEN

ANY res, regStringsInit WHERE
res ∈ BOOL ∧ regStringsInit ∈ NAT �� STRTOKEN ∧
card(regStringsInit) ≤ maxNofStrings

THEN
regStrings := regStringsInit || bsFileOpen := res ||
status := res || nof := card(regStringsInit)

END
END;

status← BsClose =
PRE bsFileOpen = TRUE THEN

bsFileOpen := FALSE || status :∈ BOOL
END

END

The empty implementation as well as the hand-coded C source are available
from the book’s Web page.

4.10.3 Implementation Bank 1

Using Object, BasicString, and L SET we can now implement Bank. We instantiate
the Object machine twice to implement the customer and account objects. Library
machine L SET is used for temporary storage of the not yet retrieved set of cus-
tomers from the find operations.

IMPLEMENTATION
Bank 1(maxCustomers, maxAccounts)

REFINES
Bank

4.10 Implementation of Bank 163

IMPORTS
BASIC BOOL, BASIC ARITHMETIC,
BS.BasicString(maxCustomers),
customers 1.Object(maxCustomers, 2, NAT, 0),
accounts 1.Object(maxAccounts, 4, NAT, 0),
foundCustomers 1.L SET(maxCustomers, 0 . . maxCustomers-1)

SEES
StrTokenType

Constant False1 is introduced for expressing variant functions in operations
ThisCustomer and InitFindCustomer.

CONCRETE CONSTANTS
False1

PROPERTIES
False1 ∈ BOOL� NAT

VALUES
False1 = {(TRUE �→ 0), (FALSE �→ 1)}

During internalisation, we have to check whether all references from accounts
to customers captured by accountOwner reference existing customers and whether
all references to strings from customerName are in the domain of the internalised
strings. Hence, internalisation fails if it fails in one of the three instantiated machines
or the consistency check fails. Rather than resetting the already internalised parts
if an error is detected, the linking invariant separates two cases. If internalisation
succeeded, the state is represented by the state of the imported machines. Otherwise,
it is the initial state. Implementation Bank 1 is a data refinement of machine Bank
as specified by the linking invariant.

DEFINITIONS
customerName 1 == 0;
customerYob 1 == 1;
accountNumber 1 == 0;
accountPin 1 == 1;
accountBalance 1 == 2;
accountOwner 1 == 3

CONCRETE VARIABLES
nextAccountNumber 1

INVARIANT
nextAccountNumber 1 ∈ NAT ∧
((fileOpen = TRUE)⇒

customers = customers 1.object ∧
(∀ ll.(ll ∈ customers 1.object⇒

customerName(ll) = BS.regStrings(customers 1.field(customerName 1)(ll)))) ∧
customers 1.field(customerName 1)∈ customers 1.object→ dom(BS.regStrings)∧
card(BS.regStrings) ≤ card(customers) ∧
customerYob = customers 1.field(customerYob 1) ∧

164 4. B Bank

accounts = accounts 1.object ∧
accountNumber = accounts 1.field(accountNumber 1) ∧
accountPin = accounts 1.field(accountPin 1) ∧
accountBalance = accounts 1.field(accountBalance 1) ∧
accountOwner = accounts 1.field(accountOwner 1) ∧
(∀ ll.(ll ∈ accounts 1.object⇒

accounts 1.field(accountNumber 1)(ll) < nextAccountNumber 1)) ∧
nextAccountNumber 1 < MAXINT - maxAccounts + card(accounts) ∧
customers 1.fileOpen = TRUE ∧
accounts 1.fileOpen = TRUE ∧
BS.bsFileOpen = TRUE ∧
foundCustomers = ran(foundCustomers 1.set vrb)) ∧

((fileOpen = FALSE)⇒
customers = {} ∧ customerName = {} ∧ customerYob = {} ∧
accounts = {} ∧ accountNumber = {} ∧
accountPin = {} ∧ accountBalance = {} ∧
accountOwner = {} ∧
foundCustomers = {})

INITIALISATION
nextAccountNumber 1 := 0; fileOpen := FALSE

OPERATIONS

NewCustomer(name, yob) =
VAR cid, ii IN

cid← customers 1.CreateObject(0);
ii← BS.AddString(name);
customers 1.SetField(cid, customerName 1, ii);
customers 1.SetField(cid, customerYob 1, yob)

END;

name, yob← CustomerData(cid) =
VAR sn IN

sn← customers 1.GetField(cid, customerName 1);
name← BS.GetString(sn);
yob← customers 1.GetField(cid, customerYob 1)

END;

is← CustomerDBFull =
BEGIN

is← customers 1.Full;
IF is=FALSE THEN

is← BS.IsFull
END

END;

found, cid← ThisCustomer(name, yob) =
VAR sindex, curYob IN

cid := 0; curYob := 0; found, sindex← BS.FindString(name);
IF found = TRUE THEN

customers 1.InitFind(customerName 1, sindex);
found, cid← customers 1.FindNext;
IF found=TRUE THEN

curYob← customers 1.GetField(cid, customerYob 1)
END;

4.10 Implementation of Bank 165

WHILE (found = TRUE) ∧ (yob �= curYob) DO
found, cid← customers 1.FindNext;
IF found = TRUE THEN

curYob← customers 1.GetField(cid, customerYob 1)
END

INVARIANT
cid ∈ 0 . . maxCustomers-1 ∧ found ∈ BOOL ∧
customers 1.foundObjects ⊆ customerName −1 [{name}] ∧
(found = FALSE⇒ yob �∈ customerYob[customerName −1 [{name}]]) ∧
(found = TRUE⇒

(cid ∈ customerName −1 [{name}] ∧ curYob = customerYob(cid) ∧
(yob=curYob⇒ cid=(customerName ⊗ customerYob) −1 (name,yob)) ∧
(yob �= curYob⇒ yob �∈ customerYob[customerName −1 [{name}]-

customers 1.foundObjects])))
VARIANT

card(customers 1.foundObjects) + 1 - False1(found)
END

END
END;

nof← InitFindCustomer(name) =
VAR found, index, sindex IN

foundCustomers 1.CLR SET;
nof := 0;
found, sindex← BS.FindString(name);
IF found = TRUE THEN

customers 1.InitFind(customerName 1, sindex);
found, index← customers 1.FindNext;
WHILE found = TRUE DO

foundCustomers 1.INS SET(index);
nof := nof + 1;
found, index← customers 1.FindNext

INVARIANT
(found = TRUE⇒

customerName −1 [{name}] = ran(foundCustomers 1.set vrb) ∪
customers 1.foundObjects ∪ {index}) ∧

(found = FALSE⇒
customerName −1 [{name}] = ran(foundCustomers 1.set vrb) ∧
customers 1.foundObjects = {}) ∧

nof = card(foundCustomers 1.set vrb)
VARIANT

card(customers 1.foundObjects)+1-False1(found)
END

END
END;

found, yob← FindNextCustomer =
VAR nof, cid IN

nof← foundCustomers 1.CARD SET;
IF nof = 0 THEN

found := FALSE; yob := 0
ELSE

found := TRUE;
cid← foundCustomers 1.VAL SET(1);

166 4. B Bank

foundCustomers 1.RMV SET(cid);
yob← customers 1.GetField(cid, customerYob 1)

END
END;

We assign consecutive account numbers to newly created accounts, where next-
AccountNumber contains the next account number which is the greatest number in
the system plus one. We do, however, not blindly trust that the internalised file ad-
heres to this convention, that is, we do not simply set nextAccountNumber to number
of accounts plus one, which would lead to an undischargable proof obligation.

number← NewAccount(cid, pin) =
VAR aid IN

aid← accounts 1.CreateObject(0);
accounts 1.SetField(aid, accountNumber 1, nextAccountNumber 1);
accounts 1.SetField(aid, accountPin 1, pin);
accounts 1.SetField(aid, accountBalance 1, 0);
accounts 1.SetField(aid, accountOwner 1, cid);
number := nextAccountNumber 1;
nextAccountNumber 1 := nextAccountNumber 1 + 1

END;

bal← Balance(aid, pin) =
bal← accounts 1.GetField(aid, accountBalance 1);

is← Authorized(aid, pin) =
VAR actualPin IN

actualPin← accounts 1.GetField(aid, accountPin 1);
is := bool(pin = actualPin)

END;

cid← AccountOwner(aid) =
cid← accounts 1.GetField(aid, accountOwner 1);

status← Deposit(aid, amount) =
VAR bal, xx IN

bal← accounts 1.GetField(aid, accountBalance 1);
xx := MAXINT - amount;
IF bal < xx THEN

accounts 1.SetField(aid, accountBalance 1, bal+amount);
status := TRUE

ELSE
status := FALSE

END
END;

Operation Deposit introduces the local variable xx only because in B0 the argu-
ments of a comparison cannot contain arithmetic expressions.

/* Operations Withdraw, ChangePin, AccountDBFull, and ThisAccount omitted. Check on
the book’s Web page. */

status← Open(customerFileName, accountFileName, stringFileName) =
VAR nofAccounts, ii, jj, aid, owner, nbr, nofStrings, nofCustomers, cid, nameNr, yob,

curAid, curNbr, curCid, curNameNr, curYob, xx, yy IN

4.10 Implementation of Bank 167

fileOpen := FALSE; nextAccountNumber 1 := 0;
status← customers 1.Open(customerFileName);
IF status = TRUE THEN

status← accounts 1.Open(accountFileName);
IF status = TRUE THEN

nofAccounts← accounts 1.NofObjects;
ii := 0;
WHILE (ii < nofAccounts) ∧ (status = TRUE) DO

aid← accounts 1.GetSequenceObj(ii);
owner← accounts 1.GetField(aid, accountOwner 1);
status← customers 1.InDomain(owner);
nbr← accounts 1.GetField(aid, accountNumber 1);
IF nbr ≥ nextAccountNumber 1 THEN

xx := MAXINT - nbr;
yy := maxAccounts - nofAccounts + 2;
IF xx < yy THEN

status := FALSE
ELSE nextAccountNumber 1 := nbr + 1
END

END;
jj := ii + 1;
WHILE (jj < nofAccounts) ∧ (status = TRUE) DO

curAid← accounts 1.GetSequenceObj(jj);
curNbr← accounts 1.GetField(curAid, accountNumber 1);
IF nbr = curNbr THEN

status := FALSE
END;
jj := jj + 1

INVARIANT
jj ∈ ii+1 . . nofAccounts ∧
status ∈ BOOL ∧
(status = TRUE⇒

(∀ kk.(kk ∈ ii+2 . . jj⇒ nbr �= accounts 1.field
(accountNumber 1)(accounts 1.objectSequence(kk))) ∧

owner ∈ customers 1.object ∧
¬ (nbr ≥ nextAccountNumber 1 ∧

MAXINT-nbr<maxAccounts-nofAccounts+2)))
VARIANT

nofAccounts - jj
END;
ii := ii + 1

INVARIANT
ii ∈ 0 . . nofAccounts ∧
status ∈ BOOL ∧
nextAccountNumber 1 ∈ NAT ∧
(status = TRUE⇒

(∀ kk.(kk ∈ 1 . . ii⇒
accounts 1.field(accountNumber 1)(accounts 1.objectSequence(kk)) <

nextAccountNumber 1 ∧
accounts 1.field(accountOwner 1)(accounts 1.objectSequence(kk)) ∈

customers 1.object ∧
∀ ll.(ll ∈ 1 . . nofAccounts ∧ kk �= ll⇒

accounts 1.field(accountNumber 1)(accounts 1.objectSequence(kk))

168 4. B Bank

�= accounts 1.field(accountNumber 1)
(accounts 1.objectSequence(ll))))) ∧

nextAccountNumber 1 < MAXINT - maxAccounts + nofAccounts)
VARIANT

nofAccounts - ii
END;
/* Consistency check of customers 1 and BS ommitted. Check on the Web. */
foundCustomers 1.CLR SET; fileOpen := status

END
END

END;

status← Close =
BEGIN

status← customers 1.Close;
IF status = TRUE THEN

status← accounts 1.Close;
IF status = TRUE THEN status← BS.BsClose END

END;
nextAccountNumber 1 := 0; fileOpen := FALSE

END

END

4.10.4 Machine BasicFile

In order to permanently store objects on disk, as required for the implementation of
Object, we need a base machine to access the file system, which we call BasicFile.
It should let us open a file in different modes, access the file, and provide operations
to delete a file and check for the existence of a file. We want to store both natural
numbers as well as elements of a given set, passed as a machine parameter. An
instance of BasicFile represents a single file.

The variables fileName and fileMode denote the name and mode of the currently
open file. The name of the file has been specified as an arbitrary string, although
certain characters might not be permitted in file names and certain names might
denote special resources.

MACHINE
BasicFile(VALUE)

SETS
FILE MODE = {READ WRITE, TRUNCATE WRITE, READ, WRITE}

DEFINITIONS
READ MODE == {READ WRITE, READ};
WRITE MODE == {READ WRITE, TRUNCATE WRITE, WRITE}

VARIABLES
fileMode, fileOpen

INVARIANT
fileMode ∈ FILE MODE ∧

4.10 Implementation of Bank 169

fileOpen ∈ BOOL

INITIALISATION
fileMode :∈ FILE MODE || fileOpen := FALSE

OPERATIONS

status← Open(fileName, mode) =
PRE fileName ∈ STRING ∧ mode ∈ FILE MODE THEN

ANY rr WHERE rr ∈ BOOL THEN
fileMode := mode || fileOpen := rr || status := rr

END
END;

status← Close =
PRE fileOpen = TRUE THEN

fileOpen := FALSE || status :∈ BOOL
END;

status← Delete(fileName) =
PRE fileName ∈ STRING THEN

status :∈ BOOL
END;

exists← FileExists(fileName) =
PRE fileName ∈ STRING THEN

exists :∈ BOOL
END;

The read operations are specified as returning an arbitrary value, not linking
write and read at all. Such a specification would be very difficult to capture in B,
too cumbersome to apply in reasoning in clients, and impossible to satisfy in the
implementation.

status←WriteNat(num) =
PRE num ∈ NAT ∧ fileOpen = TRUE ∧ fileMode ∈WRITE MODE THEN

status :∈ BOOL
END;

status, num← ReadNat =
PRE fileOpen = TRUE ∧ fileMode ∈ READ MODE THEN

status :∈ BOOL || num :∈ NAT
END;

status←WriteVal(val) =
PRE val ∈ VALUE ∧ fileOpen = TRUE ∧ fileMode ∈WRITE MODE THEN

status :∈ BOOL
END;

status, val← ReadVal =
PRE fileOpen = TRUE ∧ fileMode ∈ READ MODE THEN

status :∈ BOOL || val :∈ VALUE
END

END

170 4. B Bank

The C implementation, which is based on the code skeleton generated from the
empty B implementation, consists mostly of straightforward calls of the correspond-
ing functions of stdio.h. The procedure ReadVal BasicFile also checks whether the
read value actually represents an element of the machine parameter VALUE. Unfor-
tunately, Atelier B’s C translator only passes the upper bound of the representing
integer range in the ill-named parameter size VALUE in the initialisation. This suf-
fices for enumerated sets that are represented as consecutive integer constants start-
ing from 0. However, for instantiations of VALUE with integer ranges with a lower
bound other than 0 we cannot test whether the read value is below the indicated
range. The sources of BasicFile 1.imp, BasicFile.h, and BasicFile.c can be found
online.

4.10.5 Implementation Object 1

Using the base machine BasicFile and the library machine BASIC ARRAY RGE we
can now implement Object and, herewith, finish the development.

BASIC ARRAY RGE models a two dimensional array with the total function
arr rge ∈ RANGE → (INDEX → VALUE), where INDEX, VALUE, and RANGE
are machine parameters. We instantiate RANGE with the set of fields and INDEX
with the object numbers. For example, arr rge(0)(7) denotes the 0th field of the 7th
object. We use the variable nofObjs 1 to denote the number of objects and link it
to object with object = 0 . . nofObjs 1-1. This gives us also the linking invariant for
field as ∀ ii.(ii ∈ FIELD⇒ field(ii) = 0 . . nofObjs 1-1 ✁ arr rge(ii)).

IMPLEMENTATION
Object 1(maxNofObjs, nofFields, VALUE, valueElement)

REFINES
Object

IMPORTS
BI.BasicFile(VALUE),
BA.BASIC ARRAY RGE(0 . . maxNofObjs-1, VALUE, 0 . . nofFields-1)

DEFINITIONS
FIELD == 0 . . nofFields-1; OBJECT == 0 . . maxNofObjs-1;
READ MODE == {READ WRITE, READ};
WRITE MODE == {READ WRITE, TRUNCATE WRITE, WRITE}

CONCRETE VARIABLES
nofObjs 1, findField, findValue, findMax, findNext

INVARIANT
nofObjs 1 ∈ 0 . . maxNofObjs ∧ object = 0 . . nofObjs 1-1 ∧
size(objectSequence) = nofObjs 1 ∧
(∀ ii.(ii ∈ 0 . . nofObjs 1-1⇒ objectSequence(ii+1) = ii)) ∧
(∀ ii.(ii ∈ FIELD⇒ field(ii) = 0 . . nofObjs 1-1C (BA.arr rge(ii)))) ∧
(fileOpen = TRUE⇒ (BI.fileOpen = TRUE ∧ BI.fileMode ∈WRITE MODE)) ∧
findField ∈ FIELD ∧ findValue ∈ VALUE ∧
findMax ∈ -1 . . nofObjs 1-1 ∧ findNext ∈ 0 . . nofObjs 1 ∧

4.10 Implementation of Bank 171

foundObjects = (field(findField) −1 [{findValue}]) ∩ findNext . . findMax

INITIALISATION
nofObjs 1 := 0; fileOpen := FALSE;
findField := 0; findValue := valueElement; findMax := -1; findNext := 0

OPERATIONS

obj← CreateObject(initValue) =
VAR fld IN

fld := 0;
WHILE fld < nofFields DO

BA.STR ARR RGE(fld, nofObjs 1, initValue);
fld := fld + 1

INVARIANT
fld ∈ 0 . . nofFields ∧ BA.arr rge ∈ FIELD→ (OBJECT→ VALUE) ∧
(∀ ii.(ii ∈ FIELD⇒ field(ii) = 0 . . nofObjs 1-1C (BA.arr rge(ii)))) ∧
(∀ ii.(ii ∈ 0 . . fld-1⇒ BA.arr rge(ii)(nofObjs 1) = initValue))

VARIANT
nofFields - fld

END;
obj := nofObjs 1; nofObjs 1 := nofObjs 1 + 1

END;

vv← GetField(oo, ff) =
vv← BA.VAL ARR RGE(ff, oo);

SetField(oo, ff, vv) =
BA.STR ARR RGE(ff, oo, vv);

is← Full =
IF nofObjs 1 = maxNofObjs THEN is := TRUE
ELSE is := FALSE
END;

nof← NofObjects =
nof := nofObjs 1;

obj← GetSequenceObj(index) =
obj := index;

InitFind(ff, vv) =
BEGIN

findField := ff; findValue := vv; findMax := nofObjs 1-1; findNext := 0
END;

found, oo← FindNext =
VAR val, maxObj, findStart IN

found := FALSE; oo := 0;
IF findNext ≤ findMax THEN

val← BA.VAL ARR RGE(findField, findNext);
findStart := findNext;
WHILE (findNext < findMax) ∧ (val �= findValue) DO

findNext := findNext + 1;
val← BA.VAL ARR RGE(findField, findNext)

INVARIANT
findNext ∈ findStart . . findMax ∧
(∀ ll.(ll ∈ findStart . . findNext-1⇒ BA.arr rge(findField)(ll) �= findValue)) ∧

172 4. B Bank

val = BA.arr rge(findField)(findNext)
VARIANT

findMax-findNext
END;
IF val = findValue THEN

found := TRUE; oo := findNext
END;
findNext := findNext + 1

END
END;

is← InDomain(obj) =
is := bool(obj < nofObjs 1);

status← Open(fileName) =
VAR st, ii, fld, vv IN

status← BI.FileExists(fileName);
IF status = TRUE THEN

status← BI.Open(fileName, READ);
IF status = TRUE THEN

status, nofObjs 1← BI.ReadNat;
IF (status = TRUE) ∧ (nofObjs 1 ≤ maxNofObjs) THEN

ii := 0;
WHILE (status = TRUE) ∧ (ii < nofObjs 1) DO

fld := 0;
WHILE (status = TRUE) ∧ (fld < nofFields) DO

status, vv← BI.ReadVal;
BA.STR ARR RGE(fld, ii, vv);
fld := fld + 1

INVARIANT
fld ∈ 0 . . nofFields ∧ status ∈ BOOL

VARIANT
nofFields - fld

END;
ii := ii + 1

INVARIANT
ii ∈ 0 . . nofObjs 1 ∧ status ∈ BOOL

VARIANT
nofObjs 1 - ii

END;
IF status = TRUE THEN

status← BI.Close;
IF status = TRUE THEN

status← BI.Open(fileName, TRUNCATE WRITE)
END

END
ELSE

nofObjs 1:=0;
status := FALSE

END
ELSE

nofObjs 1 := 0
END

ELSE
nofObjs 1 := 0; status← BI.Open(fileName, TRUNCATE WRITE)

4.11 B-Toolkit Implementation 173

END;
findMax := -1; findNext := 0;
fileOpen := status

END;

status← Close =
VAR ss, ii, fld, vv IN

ss← BI.WriteNat(nofObjs 1);
IF ss = TRUE THEN

ii := 0;
WHILE (ss = TRUE) ∧ (ii < nofObjs 1) DO

fld := 0;
WHILE (ss = TRUE) ∧ (fld < nofFields) DO

vv← BA.VAL ARR RGE(fld, ii);
ss← BI.WriteVal(vv);
fld := fld + 1

INVARIANT
fld ∈ 0 . . nofFields

VARIANT
nofFields - fld

END;
ii := ii + 1

INVARIANT
ii ∈ 0 . . nofObjs 1

VARIANT
nofObjs 1 - ii

END
END;
IF ss = TRUE THEN

status← BI.Close
ELSE

status := FALSE; ss← BI.Close
END;
fileOpen := FALSE

END

END

At this point we can translate the complete project.

4.11 B-Toolkit Implementation

In this section we list some of the changes necessary to port the case study from
Atelier B to the B-Toolkit. The point of this section is to illustrate the large differ-
ences between the two tools —even on the language level!— which make porting
a non-trivial task. The magnitude of such a port can be compared to the translation
of an X Window program written in K&R C to ANSI C on the Apple Macintosh:
both require some little changes on the language level and the use of a different
base library. The rest of this section is mainly targeted at B-Toolkit users who are
interested in a description of the adaptations made in the B-Toolkit version of the
ATM.

174 4. B Bank

4.11.1 Differences in the Supported Language

The following ‘syntactic’ differences can be compensated for with simple rewrites:

• In the B-Toolkit, machine parameters are not repeated in refinements and imple-
mentations.
• In the B-Toolkit, lowercase machine parameters are implicitly constrained to be

of type SCALAR.
• Ordered pairs must be written as (a �→ b) rather than (a,b) in the B-Toolkit,

whereas both notations are allowed in Atelier B.
• Sets and constants are valued in the PROPERTIES clause; there is no special

values VALUES clause as in Atelier B.
• The constant MAXINT, the greatest representable natural number, is not prede-

fined in the B-Toolkit.
• In the B-Toolkit, the subset 0 . . MAXINT is denoted by SCALAR rather than NAT.

The type SCALAR is defined in machine Scalar TYPE, which must be imported
if scalars are used.
• In the B-Toolkit, booleans are defined as enumerated type in the library machine

Bool TYPE, which must be imported if booleans are used.
• In the B-Toolkit, strings are defined as sequences in the library String TYPE,

which must be imported if strings are used.
• In the B-Toolkit, there can only be one DEFINITION clause per construct. Defi-

nitions are visible in the whole construct, not just from the syntactic introduction
point on forward as in Atelier B. Parameters of definitions are restricted to single-
letter identifiers (jokers). Definitions containing the parallel operator (‘‖’) must
be parenthesised.
• In the B-Toolkit, renamed variables must be parenthesised if the inverse is taken.
• In the B-Toolkit, the bool(P) operator, which converts the value of a condition to

a BOOL, is not available in implementations. An if-clause must be used instead.
• The B-Toolkit C translator does not accept arithmetic expressions as actual pa-

rameters. The values of arithmetic expressions must be evaluated and stored in
local variables, which can then be passed as parameters.
• The C translator does not accept read access to output parameters, even if they

have been properly initialized. Local variables, which are at the end of the op-
eration assigned to the output parameters, must be used within the operation in
place of output parameters appearing on the right hand side of assignments or in
conditions.
• Whereas the Atelier B translator creates only few name clashes, which lead to

errors at link time, its correspondent in the B-Toolkit cannot even handle opera-
tions on different layers with identical names. Hence, one is forced to invent new
names and, thereby, pollute the name space.

The following differences make porting from the Atelier B to the B-Toolkit dif-
ficult:

• The B-Toolkit does not support dot renaming in implementations. This means
that renamed textual copies of multiple used constructs must be made. In our

4.11 B-Toolkit Implementation 175

case, Object and all the constructs it needs would have to be textually present
with different name prefixes. This also requires identical proofs to be performed
for each copy. This restriction in the B-Toolkit is due to the fact that all constructs
are single instance only which is also exhibited by the C translator putting im-
plementation data into global variables rather than instantiation records. On the
level of base machines, which reside in the standard library, textual renaming is
performed automatically upon configuration. The team library does not provide
for renaming.
• In the B-Toolkit all constants are abstract, whereas Atelier B has both concrete

and abstract constants. The B-Toolkit translator decides which constants can be
used in implementations.
• Concrete variables and variables in implementations are not supported. All global

variables, such as nextAccountNumber 1, must be implemented using library ma-
chines. Sets which are both included and imported lead to name clashes. Different
renaming does not help because sets do not participate in renaming. Hence, sets
must be factored out into separate machines which are only seen in the specifi-
cation. Third-party constructs which do not respect this design pattern, such as
the library machines in B-Toolkit prior to version 4, can, therefore, not be easily
extended as extension is performed by both including and importing the same
machine.

The following differences would make porting from the B-Toolkit to Atelier B
difficult. Some of these ‘additional features’ are used in the B-Toolkit version:

• Machines can contain the VAR clause. Hence, we can use it to hide the return
parameter dd from Deposit in RobustDeposit.
• Machine parameters are visible in the PROPERTIES clause. Hence, we could

model the set CUSTOMER of machine Bank as an abstract set with cardinality
maxCustomers and value it to CUSTOMER = 0..maxCustomers-1 in the imple-
mentation. To rule out any circular definitions, Atelier B does not permit this in
accordance with [1, Chapter 12.1.7].
• The B-Toolkit allows strings to be passed as parameters. Hence, there is no need

to introduce string tokens. Strings being sequences implies that functions such as
size are applicable. Porting a construct which makes use of this from B-Toolkit
would be difficult. In general, string support in the B-Toolkit is better. Unfortu-
nately, B-Toolkit’s C translator creates fixed length arrays for local string vari-
ables and does not perform any overflow tests.
• Sets of imported or seen machines can be used in the instantiation of other ma-

chines.
• Set machine parameters can be instantiated with ‘unions’ (‘∪’) of sets. This is not

described in the B Book [1]; it could be understood as type sums. Unfortunately,
on the implementation level, where sets are represented as (initial) intervals of
natural numbers, operations on such sets are based on the natural number pro-
jections only, leading, in our opinion, to ill-typed expressions and wrong results.
Thus, for sets COLORS = {red, blue, green} and FRUITS = {apple, banana,
grape} we can calculate {red, blue} ∩ {banana, grape} = {blue} = {banana} as

176 4. B Bank

both blue and banana are represented by 2. Union of sets is used extensively by
the base generator (see below).

4.11.2 Differences in the Provided Base Machines and Libraries

In the B-Toolkit, all provided library machines are base machines, whereas Atelier B
comes only with a small set of base machines and numerous extensions in the form
of normal B developments. In the B-Toolkit, base machines reside in the standard
library (SLIB).

The B specification of base machines must be given in a separate project, oth-
erwise the linker requires an implementation in B and does not use the hand-coded
C source. After successful analysis and compilation, the configured construct along
with its C implementation is copied to the SLIB, to which one needs write permis-
sion. The main differences in the C encoding are the representation of machine data
in global variables rather than in instance records and the division of header infor-
mation into the ‘.h’ and a ‘.g’ file. Note that when introducing a construct from the
SLIB, the C sources are copied. Thus, if the (implementation of the) base machine
is changed, it must be removed and reintroduced into projects using it.

Compilation and linking is under the control of the tool. Hence, external source
files such as cgic cannot simply be added manually to the Makefile as in Atelier B.
Instead, they need to be introduced as so-called lower-level SLIB constructs. Lower-
level SLIB constructs have no B specification and can only be accessed from the C
code of other SLIB constructs. Instead of a lower-level SLIB, a normal C library can
be created out of the legacy code and included manually in a normal SLIB construct.

4.11.3 Adapting the Development

The B-Toolkit implementation takes the above listed language differences into ac-
count. Additionally, supplied base machines have been used in place of the self-
developed persistent object machines. The B-Toolkit provides base machines for
objects and string objects. Library machine Bank str obj, where Bank is the re-
name prefix for the instanciation, provides for string objects, like our own base
machine BasicString. Rename ffnc obj provides for two dimensional arrays; it
replaces Object of our Atelier B development. We introduce two copies called
CUSTOMER ffnc obj and ACCOUNT ffnc obj for storing customers and accounts
respectively.

In combination with machine file dump, the multiple object machines also pro-
vide for persistency. A file is opened with file dump into which all machines can ex-
ternalise their state. Unfortunately, the code contains no error or consistency check-
ing. Atelier B’s library also contains a machine BASIC SAVE which roughly corre-
sponds to file dump; however, it does not function anymore and the corresponding
procedures have been removed from the B specification of the other library ma-
chines.

4.11 B-Toolkit Implementation 177

4.11.4 Automatic Translation of Object Models

The B-Toolkit acknowledges the fact that object models can be automatically trans-
lated to B machines. From a textual description of the object model a set of machines
and corresponding implementations is generated. The base description (Fig. 4.13)
lists global variables (customers and accounts) as well as the object classes
(CUSTOMER and ACCOUNT) with their attributes and the relations. Relations
can be expressed asymmetrically by being part of one of the participating object
classes, as done in the example, or as separate entities.

From the base construct, a list of operations on the global variables and on ob-
jects of the listed classes is generated. After optional manual filtering of the opera-
tions’ list, a set of machines and implementations is generated. The implementations
are based on constructs from the standard library described above. Based on Bank-
Foundation it would then be possible to implement Bank. Editing the generated
machines and implementations directly is not recommended because of the lack of
backward propagation to the base construct; it would result in breaking the link and
the possibility to regenerate the constructs after changing the base.

It is doubtful whether using the base generation tool would be justified in our
case. Even if certain aspects are actually formally proved and the code is automat-
ically generated, added complexity is a source for errors. Manual reuse of those
library constructs that are actually needed seems to be better suited in our case.

SYSTEM
BankFoundation

IS

GLOBAL
customers : SET(CUSTOMER)[100];
accounts : SET(ACCOUNT)[200]

END;

BASE
CUSTOMER

MANDATORY
name : STRING [256]; yob : NAT

END;

BASE
ACCOUNT

MANDATORY
number : NAT; pin : NAT;
balance : NAT; owner : CUSTOMER

END

END

Fig. 4.13. Base Construct for Automatic Generation

178 4. B Bank

The B-Toolkit comes with three small data base like examples, called PERSON1,
PERSON2, and PERSON3, which illustrate the differences between the manual
use of the standard library constructs and the application of the base generator.

4.12 Discussion

4.12.1 Related Work

The B Book [1] contains a much smaller example of a database application. The
database example as well as an ATM case study are included in the Atelier B dis-
tribution. The documentation of the ATM, which is in French only, provides an
exemplary requirement specifications, a traceability matrix, and a set of test scenar-
ios. On the other hand, it lacks a description of the construction process as well as
a detailed explanation of the produced code. The ATM relies on a Tcl/Tk graphical
interface as main program and delegates more work to unverified base machines.

A comprehensive B bibliography is maintained by the B users group on the Web
at http://estas1.inrets.fr:8001/ESTAS/BUG/WWW/BUGhome/BUGhome.html.

4.12.2 Metrics

Fig. 4.14 provides some metrics of the development. The empty implementations of
the base machines, the hand-coded C sources, and the HTML pages are not included.

4.12.3 What Have We Proved?

We would like to conclude with a few remarks on proofs. What have we actually
proved in our development? We have proved that all operations of the machines
respect their invariants and that the implementations are refinements of their spec-
ifications, provided that the B theory is correct, the tools generated all necessary
obligations, and the tools did not discharge any false obligations.

What haven’t we proved? We haven’t proved that the specification corresponds
to the informal requirements; especially, that we have captured all requirements
as invariants. Furthermore, we haven’t proved that the hand-coded base machines
actually satisfy their specifications. We are also at the mercy of the B to C translator,
the C compiler, and the used computers with their operating systems.

In conclusion, the many unprovable and unproved aspects even of a formal de-
velopment in B are a clear sign, that good engineering practices, including anima-
tion, peer code review, and testing, are also important in a ‘proved’ development.

4.13 Exercises

Exercise 4.1 (Search operations). Give the cashier the possibility to display all
customers who have their 20th birthday this year and are entitled to a present. Use
the pattern of SetFindCustomer and FindNextCustomer of machine Bank.

4.13 Exercises 179

Machines

total obvious proof proof percent
length obligations obligations auto proved

MainBank 9 lines 3 0 100
OperationsBank 49 lines 19 0 100
RobustBank 239 lines 101 10 100
Bank 288 lines 394 49 95
Object 171 lines 125 17 100
BasicFile 102 lines 26 0 100
BasicString 98 lines 41 6 100
BasicCGI 72 lines 15 0 100
StrTokenType 14 lines 1 0 100
Total 1042 lines 725 82 98

Implementations (without base machines)

total obvious proof proof percent
length obligations obligations auto proved

MainBank 1 52 lines 16 4 100
OperationsBank 1 334 lines 1028 285 99
RobustBank 1 206 lines 856 27 85
Bank 1 305 lines 526 643 71
Object 1 204 lines 291 230 70
StrTokenType 1 10 lines 3 2 100
Total 1111 lines 2720 1191 78

Fig. 4.14. Statistics of the Development

Exercise 4.2 (Online banking). Extend the bank so that customers can transfer
money from one account to another over the Internet. The customer logs in using
the account number, a password, and a one time code. The latter can for simplicity
be chosen to be the login number. After login, the customer can make any num-
ber of transfers from her accounts to any accounts. The session is terminated by an
explicit logout or after a fixed timeout. Withdrawals must now also be authorisable
using the customer’s password rather than the secret PINs of the individual accounts.
Tool generated forms, similar to the lists generated by ‘new account’, which contain
hidden information, like the ‘command’ field, can be used so that the password and
one time code must only be entered once. For the timeout, a base machine giving
the time must be added and the time when a one time code was first used must be
stored on disk between program runs.

Exercise 4.3 (Simplified specification of accounts). As noted in Sect. 4.5.3, ac-
count numbers being unique they could be used as object identifiers for accounts
in machine Bank. Remove the sets ACCOUNT and accounts, change the type of

180 4. B Bank

accountNumber to NAT and the domain of the other account attributes to account-
Number, and constrain the cardinality of accountNumber to maxAccounts. Introduce
the current specification as a refinement of the new one. Optionally, introduce the
simplified specification as refinement of the current specification to gain an equiva-
lence proof by mutual refinement.

Exercise 4.4 (Subtyping). Use subtyping modelled by subsetting to introduce two
kinds of accounts. Savings accounts which get interest and cheque accounts without
interest, but with the advantage that they allow overdrafts up to a certain limit.

Exercise 4.5 (Deleting customers and accounts). Provide for the deletion of cus-
tomers and accounts. Be careful not to allow the deletion of accounts with non zero
balance and of customers with accounts. Which invariants of the current system
depend on the fact that deletion of customers and accounts is not possible?

Exercise 4.6 (Non-deterministic choice of error codes). If several preconditions
of a transaction are not satisfied, the robust operations prescribes exactly which
result code must be returned. For example, if RobustNewAccount is called with a
non-existent customer when the account data base is full, dbFull rather than un-
knownCustomer must be reported. Respecify the robust operations so that the choice
of the reported violated condition is arbitrary, thus avoiding overspecification.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,
1996.

2. Th. Boutell. cgic: an ANSI C library for CGI programming.
http://www.boutell.com/cgic/.

3. M. Büchi and W. Weck. A plea for grey-box components. In Foundations of Component-
Based Systems ’97, 1997. http://www.abo.fi/˜mbuechi/.

4. M. Butler, J. Grundy, T. Långbacka, R. Ruksenas, and J. von Wright. The Refine-
ment Calculator: Proof support for program refinement. In Lindsay Groves and Steve
Reeves, editors, Formal Methods Pacific’97: Proceedings of FMP’97, Discrete Mathe-
matics and Theoretical Computer Science, pages 40–61, Wellington, New Zealand, July
1997. Springer-Verlag.

5. M.B. Dwyer, V. Carr, and L. Hines. Model checking graphical user interfaces using
abstractions. In Proceedings of ESEC/FSE ’97, LNCS 1301, pages 244–261. Springer–
Verlag, September 1997.

6. Ph. Facon et al. Mapping object diagrams into B specification. In Methods Integration
Workshop, 1996.

7. I. Jacobson G. Booch, J. Rumbaugh. Unified Modeling Language User Guide. Addison-
Wesley, 1998. http://www.rational.com/uml/.

8. D. Coleman, F. Hayes, and S. Bear. Introducing objectcharts or how to use statecharts in
object-oriented design. IEEE Transactions on Software Engineering, 18(1), 1992.

9. J. V. Hill. Microprocessor Based Protection Systems. Elsevier, 1991.
10. IEC. Software for computers in the application of industrial safety-related systems, 1992.

IEC 65A 122.
11. C.B. Jones. A rigorous approach to formal methods. IEEE Computer, pages 20–21,

April 1996.
12. K. Lano. The B Language and Method: A guide to Practical Formal Development.

Springer Verlag, 1996.
13. K. Lano. Integrating formal and structured methods in object-oriented system develop-

ment. In S.J. Goldsack and S.J.H. Kent, editors, Formal Methods and Object Technology.
Springer Verlag, 1996.

14. K. Lano and H. Haughton. Specification in B: An Introduction Using the B Toolkit.
Imperial College Press, London, 1996.

15. Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic predicate transform-
ers. ACM Trans. Program. Lang. Syst., 18(3):325–353, May 1996.

16. Carroll Morgan. The generalised substitution language extended to probabilistic pro-
grams. In Proceedings of B’98: the 2nd International B Conference. LNCS, Springer
Verlag, 1998. http://www.comlab.ox.ac.uk/oucl/groups/probs/bibliography.html.

17. D. S. Neilson and I. H. Sorensen. The B-technologies: a system for computer aided
programming. B-Core (UK) Ltd., Oxford, U.K., 1996. Including the B-Toolkit User’s
Manual, Release 3.2.

324 References

18. J. Rumbaugh, M. Blaha, W. Premerlani, and F. Eddy. Object-Oriented Modeling and
Design. Prentice Hall, 1991.

19. R. S. Pressman. Software Engineering : A Practitioner’s Approach. McGraw Hill, 4th
edition, 1996.

20. E. Sekerinski. Statecharts in B. In Proceedings of the second B conference, pages 182–
197. LNCS 1393, Springer Verlag, April 1998.

21. R. Shore. Object-oriented modelling in B. In Proceedingsof 1st Conference on the B
method, pages 133–154, 1996.

22. I. Sommerville. Software Engineering. Addison-Wesley, 5th edition, 1995.
23. Stéria Méditerranée. Atelier-B. France, 1996.
24. N. Storey. Safety-Critical Computer Systems. Addison-Wesley, 1996.
25. J. Wordsworth. Software Engineering with B. Addison-Wesley, September 1996.

Paper II

Compositional Symmetric Sharing in B

Martin Büchi and Ralph Back

Originally published in: Jeannette M. Wing, Jim Woodcock, and Jim Davies, editors,
Proceedings of FM’99: World Congress on Formal Methods, volume 1708 of Lecture
Notes in Computer Science, pages 431–451. Springer Verlag, September 1999.

Reproduced with permission.

Compositional Symmetric Sharing in B

Martin Büchi and Ralph Back

Åbo Akademi University
Turku Centre for Computer Science

Lemminkäisenkatu 14A, 20520 Turku, Finland
{Martin.Buechi, Ralph.Back}@abo.fi,
http://www.abo.fi/˜{mbuechi, backrj}

Abstract. Sharing between B constructs is limited, both on the specification and
the implementation level. The limitations stem from the single writer/multiple
readers paradigm, restricted visibility of shared variables, and structural con-
straints to prevent interference. As a consequence, applications with inherent
sharing requirements have to either be described as large monolithic constructs or
be underspecified, leading to a loss of modularity respectively certain desirable
properties being unprovable.
We propose a new compositional symmetric shared access mechanism based on
roles describing rely/guarantee conditions. The mechanism provides for multiple
writers on shared constructs, visibility of shared variables in the accessors’ in-
variants, and controlled aliasing. Use is uniform in machines, refinements, and
implementations. Sharing is compositional: all proof obligations are local and do
not require knowledge of the other accessors’ specifications, let alone their or the
shared construct’s implementation.
Soundness of the mechanism is established by flattening.

1 Introduction

The B method provides support for modularization and, herewith, for information hid-
ing, compositionality of module operations, reusability of modules, and decomposition
of proofs [4, 5]. Modules can be combined using a number of different mechanisms.
Refinement being ‘almost’ monotonic with respect to the composition mechanisms,
most proof obligations arise on a per module base. The few additional restriction on
the global structure can be checked automatically. In this compositional approach, we
can focus on a part of a large system, establish desired properties for this part, and be
guaranteed that these properties hold in the complete system.

To achieve compositionality [8] and independent refinement, sharing is restricted in
B. Sharing is based on the single writer/multiple readers paradigm. If several constructs
access a shared construct, only one accessor (writer) can modify the state of the shared
construct. The other accessors (readers) are limited to read-only access, respectively
to calling inquiry operations. To ensure that invariants cannot be invalidated, only the
single writer is allowed to reference variables of the shared construct in its invariant.
Because of these limitations, applications with inherent sharing requirements cannot be
handled satisfactorily, as described in Sect. 2.2.

432 Martin Büchi and Ralph Back

We introduce a new sharing mechanism that overcomes the single writer and the
variable visibility restrictions. Multiple constructs can have write access to a shared
construct and reference shared variables in their invariants. The mechanism is compo-
sitional: all proof obligations arise on a per module base and only a few automatically
checkable restrictions on the sharing graph are required for global correctness. The key
element are freely specifiable accessor roles, which determine how the different acces-
sors can use the shared construct. Adherence to these role specifications guarantees that
the accessors do not invalidate each others invariants.

Role specifications can be considered as guarantee conditions in the sense of Cliff
Jones [15] with the rely conditions being given by the other roles. Rely/guarantee con-
ditions (also known as assumption/commitment specifications) have been developed as
a compositional proof method for shared variable and message-passing concurrency
with interleaving semantics. This paper shows that the same theory is also applicable to
modular sequential systems with sharing.

Section 2 reviews the existing sharing mechanisms and illustrates a shortcoming on
a concrete example. Throughout the paper we use numbered variations of the same ex-
ample. In Sect. 3 we take the problem to its roots, analyzing the reasons for the existing
restrictions. Section 4 introduces the new mechanism. We provide further details of the
sharing mechanism in Sect. 5. In Sect. 6 we list the complete syntax, the proof obliga-
tions, the visibility rules, and the well-formedness criteria for the composition graph.
Using flattening of constructs, we prove the soundness of the proposed mechanism in
Sect. 7. Sect. 8 lists related work and draws the conclusions.

2 The Problem

2.1 Review of Existing Composition Mechanisms

B has three different constructs: machines, refinements, and implementations, distin-
guished by different syntactic restrictions. Machines express original specifications.
Refinements are intermediate constructs. An implementation denotes the end of a re-
finement chain and contains executable code. In addition to behavioral specifications,
refinements and implementations contain data refinement relations in form of gluing
invariants. Machines can be parameterized. Parameters are instantiated by the single
writer.

The B method has four mechanisms to compose constructs. The different mech-
anisms can be used in different constructs. The target of a composition is always a
machine.

INCLUDES The INCLUDES clause can appear in machines and refinements. It can
be understood as textual inclusion with the restriction that variables of the included
machine can only be modified indirectly through operations of the included machine so
that the invariant of the included machine is preserved. The including construct instanti-
ates the parameters of the included machine and can reference variables of the included
machine in the invariant. The including construct becomes the focus of refinement, the
included construct doesn’t have to be implemented unless it is also imported.

Compositional Symmetric Sharing in B 433

USES The USES clause can only appear in machines. It provides for limited sharing
on the specification level. Any number of machines can use a shared machine. All us-
ing and the used machine must be included into a common machine, which becomes
the focus of refinement. The using machines cannot be refined. They have read-only
access to the shared machine and can reference shared variables in their invariants. To
guarantee that the including machine, which is the only writer, does not invalidate the
invariants of the using machines, the using machines’ invariants have to be proved upon
inclusion.

SEES The SEES clause can appear in any construct. It provides for read only access to
a shared machine. Variables of the seen machine cannot be referenced in the invariant of
the seeing construct. Without this restriction, the invariant of the seeing machine could
be invalidated by the construct with write access to the seen machine.

IMPORTS The IMPORTS clause can only appear in implementations. The import-
ing machine instantiates the parameters of the imported machine, can call both inquiry
and modification operations and can reference variables of the imported machine in its
invariant. Imported machines can be seen by any number of other constructs.

Summary The INCLUDES and USES clauses can be considered as weak or syntactic
relations [5]. Their aim is to combine text of machine specifications; this structure is not
reflected in subsequent refinements or in the final implementation. SEES and IMPORTS
on the other hand are strong relations as the shared code will remain visible as a module
in the final implementation.

2.2 A Problem with the Existing Mechanisms

In this subsection, we illustrate a shortcoming of the existing sharing mechanisms with
a concrete example. The example’s main characteristic are its inherent sharing require-
ments.

We consider a control system for a manufacturing plant consisting of various de-
vices, such as robot arms and conveyor belts. Each device is controlled by its own
software module, the central Run operation of which is periodically called by a sched-
uler. Whenever a device controller notices an error, the device is stopped and an alarm
is registered in a central database. The plant operator can list the active alarms on the
screen and deactivate alarms after fixing their cause. The devices check whether all their
alarms have been deactivated and if so resume work.

The database is shared between all the device controllers and the monitoring con-
sole. They all need both read and write access: the device controllers need to check for
active alarms and enter new alarms, the monitoring console needs to list active alarms
and change the activity status of alarms.

How do we specify, refine, and implement such an architecture using B’s existing
composition mechanisms? Let us first look at the specification. Since the devices are to
a certain degree independent and since multiple instances of the same device type can

434 Martin Büchi and Ralph Back

ConveyorBelt RobotArm Console

Database1
a)

ConveyorBelt RobotArm Console

Database

Top
b)

AllDevices
AndConsole

Database
c)

read/write
access

Semantics of arrows

SEES or
USES

INCLUDES

Fig. 1. Specification Approaches

exist, it makes sense to specify them modularly using separate machines. Likewise, the
database is captured by a separate machine, which is accessed by the device controllers
and the monitoring console (Fig. 1 a). As remarked above, all accessors need both read
and write access to the shared database. However, the existing sharing mechanisms are
limited by the single writer paradigm (Sect. 2.1).

This sharing architecture is possible with SEES or USES, if the called operations,
such as NewAlarm in Database1, are specified as inquiry only – although their imple-
mentations modify the concrete state:

MACHINE Database1
OPERATIONS

NewAlarm(type) =̂ PRE type ∈ NAT THEN skip END;
bb← ActiveAlarms =̂ BEGIN bb :∈ BOOL END;
. . .

END

Unfortunately, this underspecification precludes any sensible reasoning. Because
there is no set of active alarms in Database1, we cannot express the fact that the con-
veyor belt is only running if none of its alarms are active. Likewise, we cannot prove
that an alarm will remain active until acknowledged by the operator. In conclusion, this
architecture cannot be applied satisfactorily in B.

An alternative architecture is based on a top machine Top as single writer to the
database, to which the device controllers and the monitoring console have only read ac-
cess employing SEES or USES (Fig. 1 b). In this scenario, the device controllers cannot
register alarms in the database directly. Instead, they have to return the corresponding
information upon being called by Top, which in turn enters the alarms into the database.
This becomes rather cumbersome if there are intermediate machines through which the
information has to be passed or if the information does not have a constant length.

An additional problem becomes apparent when looking at the active alarms display
operation of the monitoring console. This operation has to get a list of all active alarms.

Compositional Symmetric Sharing in B 435

This list not being constant in size, it cannot be returned by a single operation call.
Instead, the elements have to be retrieved one by one –like the results of an SQL query
in C. It is often simpler if the database maintains a set of already returned elements (See
e.g. [6] for details of such a retrieval operation.) rather than requiring the search criteria
together with a resume index to be passed with every call. However, if the retrieval
operation updates a variable, it cannot be called by the monitoring console with read-
only access. This problem could again be ‘solved’ by an undesirable underspecification.

Employing SEES in the device controllers we would be forced to specify properties
relating devices and the database (e.g., the conveyor belt is only running if none of its
alarms are active) in the Top machine rather than in the device controllers. With USES
on the other hand, we would be allowed to reference variables of the database in the
invariants of the device controllers, but would not be allowed to refine the latter leading
either to a monolithic implementation of Top or a difficult to manage almost duplication
of constructs.

In any case, the all including construct Top becomes the single focus of refinement
without any direct support for architectural structure preserving refinement. Whereas
it is definitely beneficial that B does not force the specification and implementation
structures to be identical, the example shows that there are cases where more support
for structure preserving refinement would be needed.

The problems of access restrictions can be overcome by merging all device con-
trollers and the monitoring console into one big machine (Fig. 1 c). This, however, leads
to a loss of modularity and, herewith, of information hiding, compositionality, reusabil-
ity (e.g. multiple instantiation if we have several conveyor belts), and decomposition of
proofs.

The same problems reoccur at the refinement and implementation levels, where we
are also restricted by the single writer approach and the limitations of shared variables
visibility. The above problems are not limited to our specific example. Further motiva-
tion to analyze the reasons for the current restrictions and to suggest new mechanisms
are, e.g., given by [22, Chapters 4, 5, 6, and 7].

3 Analysis of the Problem

In this section, we analyze the reasons for the single writer and shared variable visibility
restrictions. In a nutshell, the restrictions are due to interference that would contradict
compositionality and independent refinement by invalidating local proofs.

Consider a variation of the plant control system where alarms are set on the con-
sole. The conveyor belt simply adjusts its execution status based on whether there
are active alarms in the system. The shared machine Database2 contains a variable
activeAlarms⊆NAT. The conveyor belt is specified as follows, using the keyword UTI-
LIZES to indicate some sort of sharing access:

MACHINE ConveyorBelt2
UTILIZES Database2
VARIABLES running
INVARIANT running∈BOOL ∧ (running=TRUE⇒ activeAlarms= /0)

436 Martin Büchi and Ralph Back

When the console sets an alarm it invalidates the invariant of ConveyorBelt2 if run-
ning is TRUE. A construct with write access to a shared machine may invalidate any
other accessor’s invariant, if the latter references variables of the shared machine.

Such undesirable interferences cannot be ruled out with local proofs for any of the
three machines Database2, ConveyorBelt2, or Console2. They require either a global
approach or a modular approach with noninterference proofs like [20]. In both cases we
would loose the benefits of independent refinement provided by a compositional theory
[25].

Hence we have to choose between having multiple writers without the possibility
to reference variables of the shared machine in any of the accessors’ invariants or the
current single writer paradigm. Not being able to reference variables of the shared ma-
chine in any of the accessors’ invariants is too restrictive, precluding the proving of
many properties. For example, we cannot prove that the conveyor belt is only running if
there are no active alarms because the variable activeAlarms of Database2 is not visible
in the invariant of ConveyorBelt2.

The same problems of destroying each other’s invariants exist on the refinement and
implementation levels. In addition to the local invariant, also the gluing invariant, ex-
pressing the data refinement relation, could be invalidated if we were to allow multiple
writers [23].

On the positive side, we can note that multiple writers never invalidate the invariant
of the shared machine as all modifications are done through operation calls.

4 Role-Based Access

To guarantee interference freedom among multiple accessors of a common machine,
only the possible modifications to the shared variables are relevant. We define these
effects in form of access roles as part of the shared machine. Accessing constructs
declare which role(s) they play. The accessors guarantee to perform only modifications
allowed by the declared role(s). In return, they can rely on the other accessors adhering
to their roles. Let construct A accesses a shared machine in role R1. If the other roles
R2, . ., Rn maintain the invariant of A, then any accessor in role Ri (i ∈ 2. .n) maintains
the invariant of A. Thus, we can both specify and refine accessor A without knowing the
other accessors’ specifications or implementations.

Because a library machine might foresee multiple sharing scenarios and because a
custom machine might be used in multiple instances with different sharing, we allow
the definition of multiple contracts with different roles.

4.1 Role Specifications

We illustrate the concept on our plant control system. This time, the conveyor belt
creates the alarms reacting to sensors and an emergency stop button. The monitoring
console is used to deactivate alarms. Database3 defines a contract SingleDevice with
two roles Creator and Controller, intended to capture the accesses by ConveyorBelt3
and Console3 respectively. An instance of Database3 with contract SingleDevice can
have at most two accessors, one for each role.

Compositional Symmetric Sharing in B 437

MACHINE Database3
CONTRACTS

SingleDevice =̂
Creator = ANY type WHERE type∈NAT THEN NewAlarm(type) END,
Controller = ANY aa WHERE aa∈activeAlarmsTHEN ResetAlarm(aa) END

VARIABLES alarms, activeAlarms, alarmType
INVARIANT alarms⊆NAT ∧ activeAlarms⊆alarms ∧ alarmType∈alarms→NAT
INITIALISATION alarms, activeAlarms, alarmType:= /0, /0, /0
OPERATIONS

aa← NewAlarm(type) =̂
PRE type∈NAT THEN

ANY nn WHERE nn∈NAT-alarms THEN
aa, alarms:=nn, alarms∪{nn} ‖
activeAlarms, alarmType(nn):=activeAlarms∪{nn}, type

END
END;

ResetAlarm(aa) =̂ PRE aa∈activeAlarms
THEN activeAlarms:=activeAlarms-{aa} END;

nof← NofActiveAlarms =̂ nof:=card(activeAlarms);
. . .

END

We specify the set of alarms as a subset of NAT and the active alarms as a subset
of all alarms. The attribute alarmType is a functions from alarms to NAT. More on this
approach of mapping records/classes to B, including proper treatments of finiteness,
can be found in [18, 6].

4.2 Accesses

The machine ConveyorBelt3 declares that it accesses the Database3 as Creator in a
SingleDevice contract. We use a ‘!’ as separator of the qualified identifier because the
dot is reserved for possible renaming.

MACHINE ConveyorBelt3
ACCESSES Database3!SingleDevice AS Creator
VARIABLES running
INVARIANT running∈BOOL ∧ (running=TRUE⇒ activeAlarms= /0)
INITIALISATION running:=TRUE
OPERATIONS

rr← Run =̂
CHOICE

ANY type WHERE type∈0. .8
THEN NewAlarm(type) ‖ running, rr:=FALSE, FALSE END

OR running, rr:=bool(activeAlarms= /0), bool(activeAlarms= /0)
END;

EmergencyStop =̂ BEGIN NewAlarm(9) ‖ running:=FALSE END
END

The operations Run and EmergencyStop have to act as refinements of Creator [] skip
on the state space of the Database, which is clearly the case. This also implies, that
inquiry operations can be freely called by any accessor.

438 Martin Büchi and Ralph Back

Furthermore, we need to show that another construct, accessing Database3 in the
second role Controller cannot invalidate the invariant of ConveyorBelt3. To this aim, we
show that the role specification Controller executed like an operation on the combined
state space of Database3 and ConveyorBelt3 maintains the latter’s invariant. This is
the case, because Controller can only deactivate alarms. Deactivation is unproblematic
because the second conjunct of the invariant of ConveyorBelt3 is an implication and not
an equality.

4.3 Refining and Implementing Accesses

Refinements and the implementation of ConveyorBelt3 have to make the same changes
to the variables of the shared machine Database3.

We assume Motor3 to be a machine controlling the power of the motor and Sensor3
a sensor that is activated if a load on the conveyor belt is about to fall off the edge.

IMPLEMENTATION ConveyorBelt3′ REFINES ConveyorBelt3
ACCESSES Database3!SingleDevice AS Creator
IMPORTS M.Motor3, S.Sensor3
INVARIANT running=M.on
OPERATIONS

rr← Run =̂
VAR ss, nof IN

ss← S.ReadSensor;
IF ss=TRUE THEN M.ShutOff; NewAlarm(0)
ELSE nof← NofActiveAlarms; IF nof=0 THEN M.TurnOn END
END

END;
EmergencyStop =̂ BEGIN M.ShutOff; NewAlarm(9) END

END

Instead of accessing the database itself, the implementation ConveyorBelt3′ could
also import another machine that accesses the database and performs the changes.

4.4 Instantiation

In the existing composition mechanisms, the single writer also instantiates the machine
parameters of the utilized machine. In our new mechanism, instantiation is separate
from access using the INSTANTIATES clause, which specifies the machine, the contract,
and the values of the parameters, if any. For example, we might have an implementation
Main3′, which imports the accessors and instantiates the shared database:

IMPLEMENTATION Main3′ REFINES Main3
INSTANTIATES Database3!SingleDevice
IMPORTS ConveyorBelt3, Console3

Every accessed copy of a shared machine must be instantiated exactly once in an
implementation, naming the same contract as all accessors. Renaming can be performed
in the ACCESSES and INSTANTIATES clauses, thus allowing multiple instances with
possibly different contracts. The renaming of the construct containing the INSTANTI-
ATES clause determines the number of instances.

Compositional Symmetric Sharing in B 439

5 Further Aspects of Role-Based Access

5.1 Replicated Roles

In the previous section we have used role-based access for a plant control with a single
device. In reality, we have many devices, which all have almost identical role specifica-
tions. Rather than requiring textual duplication, we introduce a replication mechanism
over a constant set. Thus, we can define the role Creator of Database4 as follows:

MACHINE Database4
CONTRACTS

MultipleDevices =̂
Creator(no∈0. .19) =

ANY type WHERE type∈10×no. .10×no+9 THEN NewAlarm(type) END,

This example definition allows 20 accessors in the role of creators, one for each
value between 0 and 19. The replicator no may be used inside the scope of the role
definition like a constant. A construct that accesses a shared machine in a replicated
role has to indicate its replication value. The conveyor belt could be defined as:

MACHINE ConveyorBelt4
ACCESSES Database4!MultipleDevices AS Creator(0)

For the non-interference proofs the other replicated roles have to be considered like
different role specifications. In the example, we would have to prove that Creator(nn)
for nn∈1. .19 maintains the invariant of ConveyorBelt4. This is the case if we adapt the
invariant of ConveyorBelt3 as below and adjusting the Run operation correspondingly.

INVARIANT
running∈BOOL ∧ (running=TRUE⇒ activeAlarms∩(alarmType−1[0..9])= /0)

5.2 Form of Role Specifications

As shown in the examples, role specifications take the format of normal B operations.
Traditionally, rely/guarantee conditions are expressed as predicates over the current and
the next state of variables. However, we feel that operation-like specifications are more
in line with B.

As a guiding principle, we allow the same statements as in operations of a refine-
ment that includes the accessed machine. Thus, multiple substitutions, sequencing, and
nondeterministic choice are all allowed, but loops are not. Variables can be read directly,
but modified through operation calls only. To gain sufficient expressiveness, either loops
or direct modifications should be made legal.

We do not have to prove that operation calls in role specifications satisfy the pre-
conditions of the called operations, because we perform these proofs for the actual
accessors. As an engineering aid, the tools should nevertheless support conformance
proofs for role specifications. Precondition violating role specifications do not give the
accessor more freedom, but make the non-interference proofs for other accessors more
difficult.

440 Martin Büchi and Ralph Back

The role specifications, like any module interfaces, should be very simple com-
pared to the code of the actual accessors. Hence, roles are described like operations,
rather than full machines with variables that maintain their values between calls. Such
specifications would require full-blown construct refinement with gluing invariants be-
tween role and local variables in accessors and also more complex non-interference
proofs. The simple format suffices in most cases and is, combined with some coding
tricks modifying the operation specifications, as general as full machines.

The relative simplicity of the role specifications compared to the code of the actual
accessors reduces the complexity of the non-interference proofs. The simplification of
the non-interference proofs for all other accessors on all refinement levels by far out-
weighs the additional burden of the single role adherence proof.

An overly weak role specification makes it easy to prove role adherence, but impos-
sible to guarantee non-interference for other accessors. An overly strong specification
causes the opposite problem. Writing the role specifications is a design step, like any
other definition of module interaction.

5.3 Adherence to Role Specifications

An operation of an accessor adheres to a role specification if it either acts as a refine-
ment of the specification or as skip on the state space of the accessed machine. We add
skip as an implicit choice to every role specification. This corresponds to the guarantee
condition being reflexive [15], respectively the stuttering transition being built into the
semantics [3, 17].

Whether an operation O that refines a role specification R is called multiple times
or whether O acts as a refinement of Rˆ (=skip[]R[](R;R)[] . . .) has the same effect for
the other accessors. This corresponds to the guarantee condition being transitive [15],
respectively mumbling being built into the semantics. Explicitly allowing mumbling
makes the proofs more difficult and can –provided we allow direct write access or loops
in role specifications– always be replaced with a weaker role specification. For simplic-
ity, we do not consider mumbling in this paper.

In the initialization of the accessors we only allow inquiry operations of the ac-
cessed machine to be called. Otherwise we would have to define an order in which
the accessors are initialized and could not assume the shared machine to be in its initial
state when the accessors are initialized. The initializations acting as skip on the accessed
machine, they automatically adhere to the role specifications.

5.4 Sharing Structure

Sharing is used to get multiple access paths to the same data. In the presence of indepen-
dent refinement, we need some structural restrictions to control aliasing. In this section,
we give two examples of what could go wrong without such structural restrictions. A
full account of the restriction is given in Sect. 6.4.

We adopt the following notation in figures: The primed constructs are the imple-
mentations refining the unprimed machines. Multiple instances of an accessed machine
–if present– are graphically indicated by duplication to make collaborations clear. We

Compositional Symmetric Sharing in B 441

M
M’

A
A’

B
B’

S!K
S’

C
C’

D
D’

b) Legal Structure

R
1 , R

2R
3

R4

R4

R 4

R
3

IMPORTS

Semantics of arrows

SEES
Role(s)

ACCESSES

(Renaming)

INSTANTIATES

M
M’

A
A’

C
C’

a) Illegal Structure

B
B’

S!K
S’

D
D’

R
1

R2

R
1

R3

R3

Fig. 2. Illustration of Legal and Illegal Composition Graphs

append the name of the actual contract to the name of the accessed machine. The access
arrows are adorned by the role(s) and possibly the replication values, the instantation
arrow by the possible renaming. In a slight abuse of notation, it would also be possi-
ble to visualize roles as UML style interfaces (circles) attached to the shared machine.
However, our notion of roles and that of UML interfaces is not identical because our
roles contain guarantee conditions rather than the signatures of callable operations.

Consider a machine A that accesses a shared machine S (left branch of Fig. 2 a).
The implementation A′ also accesses S and furthermore imports B. Machine B does not
access S, but the implementation B′ does. Even if we locally prove that the operations
of A′ act as a refinements of the operations of A, this property might not hold in the
complete system. A′ may call operations of B and, thereby, unknowingly modify S.
This might lead to S being modified differently than specified in A, B′ observing S in a
state where the gluing invariant of B′ does not hold, and A′ violating preconditions of
operations of S. This problem is due to A′ accessing S both traceably and untraceably.
The problem is not bound to B only accessing S in the implementation. An invisible
access could also be created if B′ would not access S directly, but import a machine E
that accesses S.

Without constraints on the composition graph, also the interaction between the old
and the new composition mechanism can lead to problems. A seeing construct C′ (right
branch of Fig. 2 a) assume that the state of the seen machine S does not change during
the execution of an operation of C′. To enforce this, the seeing construct C′ can only call
inquiry operations. In proofs of C′, no substitutions are made on the state of the seen
machine S. If C′ could indirectly modify S, global correctness would be invalidated.
This could, for example, happen if the seeing machine imports a third machine D, the
implementation of which accesses S. Thus, we need restrictions on the structure of the
development to ban such architectures.

5.5 Emulating the Existing Composition Mechanisms

The existing composition primitives IMPORTS and SEES can be emulated using AC-
CESSES and INSTANTIATES as follows: A contract permitting a single writer with full
access rights and an infinite number of readers with a skip role specification is added

442 Martin Büchi and Ralph Back

to the shared construct. Then, IMPORTS can be replaced with an access in the writer
role and an instantiation. The SEES clauses are replaced with accesses in the replicated
reader role. Because the existing mechanisms IMPORTS and SEES capture a frequent
special case and because abolishing them would require more complicated global re-
strictions based not only on the structure but also the semantics of roles, it makes sense
to have all mechanisms at our disposition.

Promotion of operations (turning operations of a utilized machine into proper opera-
tions of the utilizing construct) would only be possible in combination with ACCESSES
in trivial cases where the other accessors do not make any observable modifications
(e.g., for the single writer in the above emulation contract). Furthermore, promotion of
operations is much less important with ACCESSES, because the latter provides for mul-
tiple writers. Therefore, we do not consider the promotion of operations from accessed
machines, but rather count promotion as a further reason to also keep the existing import
mechanism.

The USES mechanism cannot be emulated because it dictates that the used machine
be included into another machine whereas an accessed machine cannot be included.
INCLUDES, being a copying rather than a sharing mechanism, cannot be emulated
with ACCESSES.

6 Formal Definitions

6.1 Syntax

We give the following extended syntax definitions [2, p 715ff] for machines, refine-
ments, and implementations:

MACHINE
Machine Header

CONSTRAINTS
Predicate

CONTRACTS
Contract List

ACCESSES
Access List

INSTANTIATES
Inst List

USES
. . .

REFINEMENT
Machine Header

REFINES
Id List

ACCESSES
Access List

INSTANTIATES
Inst List

SETS
. . .

IMPLEMENTATION
Machine Header

. . .
VALUES

Predicate
ACCESSES

Access List
INSTANTIATES

Inst List
IMPORTS
. . .

Contract List, Access List, and Inst List are defined as follows:

Syntactic Category Definition

Contract List Contract; Contract List
Contract

Contract Contract Name =̂ Role List

Compositional Symmetric Sharing in B 443

Syntactic Category Definition

Role List Role, Role List
Role

Role Role Name = Statement
Role Name(Replicator ∈ Set) = Statement

Access List Access; Access List
Access

Access Machine Name!Contract Name AS Acc Role List
Renamed Name.Machine Name!Contract Name AS Acc Role List

Acc Role List Acc Role, Acc Role List
Acc Role

Acc Role Role Name
Role Name(Simple Term)

Inst List Inst, Inst List
Inst

Inst Machine Name!Contract Name
Machine Name!Contract Name(Expression List)
Renamed Name.Machine Name!Contract Name
Renamed Name.Machine Name!Contract Name(Expression List)

Contract Name, Role Name, Replicator, Machine Name, and Renamed Name all
stand for Identifier. The form of the role specification is discussed in detail in Sect. 5.2.

6.2 Proof Obligations

We give the proof obligations for machines and implementations containing an AC-
CESSES clause. The rules for refinements are analogous. As noted in Sect. 5.2, the
CONTRACTS clause does not give rise to any proof obligations. We leave out sets, con-
stants and assertions as the respective proof obligations are unchanged. Figure 3 gives
an overview of the proof obligations.

MACHINE Ms(Ps)
CONSTRAINTS Cs

CONTRACTS
K =̂

R1 = F1,
R2 = F2

VARIABLES Xs

INVARIANT Is
INITIALISATION Us

OPERATIONS
us ← Os(ws) =̂

PRE Qs THEN Vs END
END

MACHINE M1(P1)
CONSTRAINTS C1
ACCESSES

Ms!K AS R1
VARIABLES X1
INVARIANT I1
INITIALISATION U1
OPERATIONS

u1 ← O1(w1) =̂
PRE Q1 THEN V1 END

END

IMPLEMENTATION
M′1(P1)

REFINES M1
ACCESSES

Ms!K AS R1
CONCRETE VARS

X′1
INVARIANT I′1
INITIALISATION U′1
OPERATIONS

u1 ← O1(w1) =̂
BEGIN V′1 END

END

We use the abbreviations A1 for P1∈P1(INT) and As for Ps∈P1(INT). Occurrences
of Os in U1, V1, U′1, V′1, F1, and F2 should be replaced by Vs with the parameters
substituted accordingly [2, p 314ff]. As in [2] we do not make this substitution explicit
in the proof obligations.

444 Martin Büchi and Ralph Back

R1

M1

M1’

R2

Ms

Ms’

(1)
(2)

(3)
(4)

(5)
(6)

(7)

Pr
oo

f o
bl

ig
at

io
ns

 fo
r

M
s,

M
s’

as
 in

 [2
]

refinement/role adherence

Semantics of arrows

non-interference

accesses (calls satisfy preconditions)

consistency (init establishes invariant,
operations preserve invariant)

(n)
proof obligation
number (cf. text)

Fig. 3. Proof Obligations for an Accessing Machine and Implementation

Machine M1 The first proof obligation of M1 states that the initialization must establish
the invariant. The role of the accessed machine is similar to the one of an included
machine, except that its parameters are not actualized [2, p 331ff].

A1 ∧ C1 ∧ As ∧ Cs ⇒ [Us][U1]I1 (1)

The next obligation concerns the preservation of the invariant of the accessing ma-
chine by its operations:

A1 ∧ C1 ∧ I1 ∧ Q1 ∧ As ∧ Cs ∧ Is ⇒ [V1]I1 (2)

The third obligation states that the operations of the accessor must conform to the
declared role. Note that there is no corresponding obligation for the initialization be-
cause the latter may not call modification operations of the accessed machine. Because
both the role specification Fs and the operation O1 operate on Xs, renaming must be
performed. Let X̂ s be a fresh set of variables, then we get

A1 ∧ C1 ∧ I1 ∧ Q1 ∧ As ∧ Cs ∧ Is ∧ X̂ s=Xs ⇒ [[Xs:=X̂ s]V1]¬[F1 []skip]¬(X̂ s=Xs) (3)

If a construct accesses a machine in multiple roles, its operations have to conform
to the nondeterministic choice of the two roles. Thus, if M1 were to access Ms as R1 and
R2, then F1 would have to be replaced by F1[]F2.

The fourth obligation concerns the interference freedom by all other roles, which in
our case is only R2.

A1 ∧ C1 ∧ I1 ∧ As ∧ Cs ∧ Is ⇒ [F2]I1 (4)

For replicated roles, we have to prove non-interference for all replication values
except for the one of the accessor in question. Let us assume the following replications
R1(g1∈G1) and R2(g2∈G2) and let M1 access Ms as R1(h1). Then we get the following
three obligations:

h1∈G1 (4’)
A1 ∧ C1 ∧ I1 ∧ As ∧ Cs ∧ Is ∧ g1∈G1-{h1}⇒ [F1]I1
A1 ∧ C1 ∧ I1 ∧ As ∧ Cs ∧ Is ∧ g2∈G2 ⇒ [F2]I1

Compositional Symmetric Sharing in B 445

Replication not only avoids duplication of role specifications, it also leads to a re-
duction of the overal proof burden by combining many similar non-interference obliga-
tions.

The proof obligations for operation calls (satisfy precondition) are unchanged.

Implementation M′1 For the implementation M′1 we have 3 proof obligations. The first
two proof obligations concerning initialization and operation refinement are similar to
those of an implementation that imports another machine [2, p 597ff].

A1 ∧ C1 ∧ As ∧ Cs ⇒ [Us][U′1]¬ [U1]¬I′1 (5)

The second proof obligation is for the operation refinement. The 1-to-1 data refine-
ment of the shared variables is explicit in this obligation (X̂ s=Xs).

A1 ∧ C1 ∧ I1 ∧ I′1 ∧ Q1 ∧ As ∧ Cs ∧ Is ∧ X̂ s=Xs ⇒ (6)
[[u1:=û1][Xs:=X̂ s]V′1]¬[V1]¬([Xs:=X̂ s]I′1 ∧ û1=u1 ∧ X̂ s=Xs)

For sharing in the implementation only, we have to prove adherence rather than 1-
to-1 data refinement in the implementation. The third and last obligation concerns the
interference freedom. As noted above for machines, it should be replicated if some of
the roles are.

A1 ∧ C1 ∧ I1 ∧ I′1 ∧ As ∧ Cs ∧ Is ⇒ [F2]I′1 (7)

If M or M′1 also instantiates Ms, say Ps with Ns, then As can be replaced by the
stronger predicate Ps=Ns in the above proof obligations. In this case we have the ad-
ditional proof obligation that the actual parameters satisfy the constraints, as for IN-
CLUDES and IMPORTS.

6.3 Visibility Rules

For brevity, we only summarizes some key aspects of the visibility rules here. In the
CONTRACTS clause we allow only read access to variables. A construct’s own sets and
constants as well as those of seen machines are allowed as parameters of instantiations.
To prevent cyclic dependencies, sets and constants of included, used, imported, and
accessed machines are, on the other hand, not visible in the INSTANTIATES clause.

Only a construct’s own sets and constants and those of seen machines, but not those
of imported machines may be used as parameters of instantiations. In their initializa-
tions, accessors can call only inquiry operations of an accessed construct.

If a construct A only instantiates, but does not access B, then none of the objects of
B are visible in A. Like SEES, but unlike INCLUDES, ACCESSES is not transitive. If
machine A includes, uses, sees, imports, or accesses B and B accesses C, then the objects
of C are not visible in A. It is, however, possible that A also accesses C (Fig. 2 b).

446 Martin Büchi and Ralph Back

6.4 Well-Formedness of the Composition Graph

The well formedness criteria for the composition graph concerning ACCESSES to guar-
antee global correctness are presented below. They are simple enough to be checked
automatically.

Similar checks are already performed for the existing composition mechanisms [2,
21]. For simplicity, we talk about ‘accessed machines’ instead of renamed instances
thereof.

The following conditions can be verified by the type checker on a per-construct
base:

1. If a machine, a refinement, or an included machine thereof accesses a machine Ms

as R of contract K then this construct’s implementation must either access Ms as R
of contract K or import exactly one machine that contains such an access.

2. If a machine, a refinement, or an included machine thereof accesses a machine Ms

as R1, . . ., Ri of contract K then this construct’s implementation may not access Ms

in any other roles nor import a machine accessing Ms in any other roles. (The proof
obligation for operation refinement would not allow modifications not covered by
R1, . . ., Ri anyhow.)

3. A construct and one of its included machines cannot access the same machine in
the same role.

4. If a machine, a refinement, or an included machine thereof contains an instantia-
tion, then all further refinements and the implementation must either contain the
same instantiation with the same parameters or include/import without renaming a
machine containing such an instantiation.

The following conditions must be checked globally for complete projects:

1. Every accessed machine is instantiated exactly once in an implementation.
2. Every shared machine is accessed at most once in each role, respectively for each

replication value, by an implementation
3. All accesses and the instantiation of a machine are for the same contract.
4. An accessed machine cannot be included or imported. This also implies that neither

a used nor a using machine can be accessed.
5. A seen machine must either be instantiated or imported.

To present the remaining architectural condition, we extend the notation of [21].
The relational notation is as in B: ‘+’ denotes the transitive non-reflexive closure, ‘∗’
the transitive and reflexive closure, and ‘;’ composition.

1. M1 sees M2 iff the implementation of M1 sees the machine M2.
2. M1 m sees M2 iff machine M1 sees machine M2.
3. M1 imports M2 iff the implementation of M1 imports the machine M2.
4. M1 accesses M2 iff the implementation of M1 accesses the machine M2.
5. M1 depends on M2 iff the implementation of M1 is built utilizing M2:

depends on =̂ (sees∪imports∪accesses)+.
6. M1 can alter M2 iff the implementation of M1 can alter the variables of M2:

can alter =̂ depends on∗; (imports∪accesses).

Compositional Symmetric Sharing in B 447

7. M1 any accesses M2 iff M1, one of its refinements, or its implementation accesses
the machine M2.

8. M1 (imp acc Ms) M2 iff the implementation of M1 imports the machine M2 and M2

accesses Ms.
9. M1 traceably accesses M2 iff M1 accesses M2 through a chain of imports, in which

all machines access M2:
M1 traceably accesses M2 =̂ M1 (imp acc M2)∗; accesses M2.

10. M1 untraceably accesses M2 iff M1 indirectly accesses M2 in a way other than an
imports chain, in which all machines access M2:
untraceably accesses =̂ (depends on; accesses)-traceably accesses.

11. M1 instantiates M2 iff the implementation of M1 instantiates the machine M2.
12. M1 references M2 iff the implementation of M1 references the machine M2: refer-

ences =̂ (sees∪imports∪accesses∪instantiates)+.
13. id is the identity relation.

The composition graph must then satisfy the following condition:

((sees∪ imports∪ accesses); can alter)∩ (i)
(((imports∪ accesses);m sees+)∪ (sees;m sees∗)) = /0 ∧

any accesses∩untraceably accesses = /0 ∧ (ii)
references∩ id = /0 (iii)

The first conjunct states that a seen machine must not be modified. The second conjunct
asserts that no construct accesses the same machine directly and untraceably. The third
conjunct excludes cyclic dependencies.

The right branch of Fig. 2 a) violates the first conjunct of the above condition, the
left branch violates the second conjunct. M′ not accessing S has nothing to do with the
violations; the corresponding access in Fig. 2 b) is just shown as an additional option.

7 Soundness

In this section we give a partial proof of the soundness of our new shared access mech-
anism. We syntactically merge a shared machine and all its accessing machines into a
new machine and the implementation of the shared machine along with the implemen-
tations of the accessors into a new implementation. Then we show that all the proof
obligations of these two constructs, which do not contain the new mechanism, are im-
plied by the obligations of the individual constructs. Namely, the invariant of the merged
machine holds and the implementation is a correct refinement.

Because we have substitutions of both Vs and V′s for Os, we have to indicate which
body is used. We write [Os\Vs] for this extended substitution which includes the pa-
rameters, e.g., [Os\Vs] (a← Os(b)) equals [us, ws:=a, b]Vs if us is the output and ws

the input parameter of Os. We assume here that operations are not recursive.
Let Ms, M1, and M′1 be as in Sect. 6.2. Furthermore, let M2 and M′2 be like M1

and M′1 respectively, but with index ‘2’. With M′S as in Fig. 4, we get the two merged
constructs M and M′ (Fig. 4). Note that V′s gets substituted for Os in the implementation
M′.

448 Martin Büchi and Ralph Back

IMPLEMENTATION
M′s(Ps)

REFINES Ms

CONCRETE VARS
X′s

INVARIANT I′s
INITIALISATION U′s
OPERATIONS

us ← Os(ws) =̂
BEGIN V′s END

END

MACHINE M(P1, P2, Ps)
CONSTRAINTS

C1 ∧ C2 ∧ Cs

VARIABLES X1, X2, Xs

INVARIANT I1 ∧ I2 ∧ Is
INITIALISATION

Us; [Os\Vs](U1 ‖ U2)
OPERATIONS

u1 ← O1(w1) =̂
PRE Q1 THEN

[Os\Vs]V1
END;

u2 ← O2(w2) =̂
PRE Q2 THEN

[Os\Vs]V2
END

END

IMPLEMENTATION
M′(P1, P2, Ps)

REFINES M
CONCRETE VARS

X′1, X′2, X′s
INVARIANT I′1 ∧ I′2 ∧ I′s
INITIALISATION

U′s; [Os\V′s](U′1; U′2)
OPERATIONS

u1 ← O1(w1) =̂
BEGIN [Os\V′s]V′1 END;

u2 ← O2(w2) =̂
BEGIN [Os\V′s]V′2 END

END

Fig. 4. Flattened Constructs

Theorem 1. If all proof obligations of Ms, M′s, M1, M′1, M2, and M′2 are true ([2, p
763ff], Sect. 6.2), then all proof obligations of M and M′ hold.

Several soundness proofs of the rely/guarantee method for shared variable systems
have been given in the literature for different formalisms [24, 27, 1, 12]. The proof of
this theorem is very similar.

8 Summary

8.1 Related Work

The use of assumptions and commitments to achieve compositionality in program veri-
fication was first proposed by Francez and Pnueli [11]. Jones introduced rely/guarantee
conditions as a method for top-down program development [15]. Ketil Stølen has added
wait-conditions to handle synchronization and auxiliary variables to increase expres-
siveness [24]. Jones himself applied the idea to object-oriented systems [16]. Rely/gua-
rantee specifications have also been incorporated into temporal logic-based formalisms,
thereby also capturing certain liveness properties: Collete added them to UNITY [7] and
Abadi and Lamport to TLA [1]. Misra and Chandy have first used assumption/commit-
ment specifications for message passing systems [19]. A unifying overview of shared
variable and message passing assumption/commitment specifications is given by [26].

Neither VDM nor Z have an equally powerful modularization mechanism as B,
although some constructions have been suggested [9, 13]. RAISE, Cogito, and other re-
lated formalisms provide different forms of modularization. However, we are not aware
of any compositional symmetric shared access mechanism comparable to ours.

Compositional Symmetric Sharing in B 449

Both Jones [15] and Stølen [24] combined rely/guarantee specifications with a
VDM like logic and syntax. However, their aim was to reason about concurrent pro-
grams only and they have not investigated rely/guarantee specifications in VDM for
modular sharing. Whereas existing work has mostly focused on the use of assump-
tion/commitment specifications for concurrent system, this paper has applied them to
achieve compositionality in sequential systems with shared components.

Role-based contracts for different forms of collaborations have been proposed, e.g.,
by Helm et al for object-oriented systems [14] and by Francez and Forman for interact-
ing processes [10]. Role-based specifications expressing rely/guarantee conditions as
part of the shared construct are believed to be new. Traditionally, a rely/guarantee pair
is part of each component to be composed. Centralization of all rely/guarantee specifi-
cations is possible in our case because only a single component is shared, whereas most
other approaches handle mutual sharing. Our benefit is that all proofs for an accessor
can be performed without knowing the other accessors.

Pioneering work in explaining the existing B composition mechanisms and their
interplay with refinement has been done by Bert, Potet, and Rouzaud [5, 21].

8.2 Conclusions

We have extended the B method with a compositional symmetric shared access mech-
anism that overcomes the limitations of the single-writer restriction and the limited
visibility of shared variables of the existing mechanisms. Based on rely/guarantee con-
ditions expressed as accessor roles of the shared construct, the new mechanism is com-
positional, providing for independent refinement without the need to know the other
accessors. The abstraction of possible modifications into compact role specifications
simplifies the non-interference proofs. The new mechanism provides for flexible shar-
ing on all levels; applications with sharing requirements can be specified, refined, and
implemented without loss of modularity or underspecification as has been the case with
the existing mechanisms. Uniform applicability in all constructs, replicated roles, mul-
tiple contracts, and good integration with existing composition mechanism add to the
flexibility of the new mechanism.

For the new mechanism, we have given formal definitions of the syntax, the proof
obligations, the visibility rules, and the restrictions on the composition graph. A partial
soundness proof completes the paper.

Acknowledgments. Marina Waldén and Emil Sekerinski provided detailed comments
on earlier drafts. We would also like to thank Wolfgang Weck for a number of fruitful
discussions on the topic. The referees’ comments are gratefully acknowledged.

References

1. Martı́n Abadi and Leslie Lamport. Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):507–534, 1995.

2. J. R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University Press,
1996.

450 Martin Büchi and Ralph Back

3. R. Back and J. von Wright. Trace refinement of action systems. In CONCUR 94, pages
367–384. LNCS 836, Springer Verlag, 1994.

4. J. A. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of the ACM, 37(2):335–372,
1990.

5. Didier Bert, Marie-Laure Potet, and Yann Rouzaud. A study on components and assembly
primitives in B. In Proceedings of the first B conference, pages 47–62, 3 rue du Maréchal
Joffre, BP 34103, 44041 Nantes Cedex 1, 1996. IRIN Institut de recherche en informatique
de Nantes.

6. Martin Büchi. The B Bank. In Emil Sekerinski and Kaisa Sere, editors, Program Develop-
ment by Refinement: Case Studies Using the B Method, chapter 4, pages 115–180. Springer
Verlag, 1998. http://www.abo.fi/˜mbuechi/publications/BBook.html.

7. Pierre Collette. Application of the composition principle to UNITY-like specifications. In
Proceedings of TAPSOFT 93, pages 230–242. LNCS 668, Springer Verlag, 1993.

8. Willem-Paul de Roever. The quest for compositionality—a survey of assertion-based proof
systems for concurrent programs, part I: Concurrency based on shared variables. In F.J.
Neuhold and G. Chroust, editors, Proceedings of the IFIP Working Conference “The role of
abstract models in computer science”, pages 181–205. North-Holland, 1985.

9. J.S. Fitzgerald and C. B. Jones. Modularizing the formal description of a database system. In
VDM’90: VDM and Z – Formal Methods in Software Development, pages 189–210. LNCS
428, Springer Verlag, 1990.

10. N. Francez and I. Forman. Interacting Processes: A Multiparty Approach to Coordinated
Distributed Programming. ACM Press, 1996.

11. Nissim Francez and Amir Pnueli. A proof method for cyclic programs. Acta Informatica,
9:133–157, 1978.

12. Peter Grønning, Thomas Qvist Nielsen, and Hans Henrik Løvengreen. Refinement and com-
position of transition-based rely-guarantee specifications with auxiliary variables. In Pro-
ceedings of the 10th Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 332–348. LNCS 472, Springer Verlag, 1990.

13. I. J. Hayes and L. P. Wildman. Towards libraries for Z. In J. P. Bowen and J. E. Nicholls,
editors, Z User Workshop: Proceedings of the Seventh Annual Z User Meeting, Workshops
in Computing. Springer Verlag, 1993.

14. Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: Specifying behav-
ioral compositions in object-oriented systems. In Proceedings of OOPSLA/ECOOP ’90,
pages 169–180, 1990.

15. Cliff B. Jones. Specification and design of (parallel) programs. In Proceedings of IFIP’83,
pages 321–332. North Holland, 1983.

16. Cliff B. Jones. Accomodating interference in the formal design of concurrent object-based
programs. Formal Methods in System Design, 8(2):105–122, March 1996.

17. Leslie Lamport. The temporal logic of actions. ACM Transactions of Programming Lan-
guages and Systems, 16(3):872–923, 1994.

18. Kevin Lano. Integrating formal and structured methods in object-oriented system develop-
ment. In S.J. Goldsack and S.J.H. Kent, editors, Formal Methods and Object Technology.
Springer Verlag, 1996.

19. J. Misra and M. Chandy. Proofs of networks of processes. IEEE Software Engineering,
7(4):417–426, 1981.

20. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta Informat-
ica, 6:319–340, 1976.

21. Marie-Laure Potet and Yann Rouzaud. Composition and refinement in the B-method. In
Proceedings of the second B conference, pages 46–65. LNCS 1393, Springer Verlag, 1998.

22. Emil Sekerinski and Kaisa Sere, editors. Program Develoment by Refinement: Case Studies
Using the B Method. FACIT. Springer Verlag, 1998.

Compositional Symmetric Sharing in B 451

23. Kaisa Sere and Marina Waldén. Data refinement of remote procedures. In Proceedings of
TACS 97, pages 267–294. LNCS 1281, Springer Verlag, 1997.

24. Ketil Stølen. Development of Parallel Programs on Shared Data-Structures. PhD thesis,
University of Manchester, 1990. Available as technical report UMCS-91-1-1.

25. Qiwen Xu. On compositionality in refining concurrent systems. In J. He, J. Cooke, and
P. Wallis, editors, Proceedings of the BCS FACS 7th Refinement Workshop. Electronic Work-
shops in Computing, Springer Verlag, 1996.

26. Qiwen Xu, Antonio Cau, and Pierre Collette. On unifying assumption-commitment style
proof rules for concurrency. In Proceedings of CONCUR 94, pages 267–282. LNCS 836,
Springer Verlag, 1994.

27. Qiwen Xu, Willem-Paul de Roever, and Jifeng He. The rely-guarantee method for verifying
shared variable concurrent programs. Formal Aspects of Computing, 9(2):149–174, 1997.

Paper III

The Greybox Approach: When Blackbox
Specifications Hide too Much

Martin Büchi and Wolfgang Weck

Submitted for publication.

The Greybox Approach:
When Blackbox Specifications Hide Too Much

Martin Büchi1 and Wolfgang Weck2

1 Åbo Akademi University, Turku Centre for Computer Science,
Lemminkäisenkatu 14A, FIN-20520 Turku, Martin.Buechi@abo.fi

2 Oberon microsystems Inc., Technoparkstrasse 1, CH-8005 Zürich, weck@oberon.ch

Abstract. Development of different parts of large software systems by separate
teams, replacement of individual software parts during maintenance, and market-
ing of independently developed software components require behavioral interface
descriptions. Interoperation and reuse are impossible without sufficient descrip-
tion; only abstraction leaves room for alternate implementations.
Specifications that only relate the state prior to service invocation (precondition)
to that after service termination (postcondition) do not sufficiently capture exter-
nal calls made during operation execution. If other methods called in the specifi-
cation cannot be fully specified, it is not sufficient that the implementation only
performs the specified state transformation. The implementation must also make
the prescribed external calls in the respective states.
We show how to specify both state change and external call sequences using sim-
ple extensions of programming languages. Furthermore, we give a formal defi-
nition of the correctness of implementations with respect to such specifications.
Finally, we give two theorems stating that all functional properties of components
are preserved in systems assembled thereof.

1 Introduction

Independently developed and marketed software components and individually replace-
able software parts quickly gain importance. The interfaces between those have to be
specified so that independent readers arrive at the same conclusions. The necessity for
complete interface descriptions is especially big in the realm of independently devel-
oped software components. Hence, we expect current bad experiences with fuzzy spec-
ifications to raise mainstream acceptance of the overhead it takes to write more system-
atic and formalized specifications of software component interfaces. Broad acceptance,
however, can only be expected, if the required extra effort, both in time and intellectual,
does not outweigh the experienced —or expected— gain.

The contributions of this paper are an interface specification approach that captures
both state transformations and component interactions via method calls as well as ac-
companying refinement rules. The latter can be used both informally in the back of the
head as well as for formal proofs. Even for projects where the (expected) cost savings
in testing and maintenance don’t outweigh the cost of proofs, safety is not critical, and
the time is tight, we believe that it’s worthwhile to at least have these rules in mind
when coding. They may be taken like loop invariants and termination functions, which

1

are rarely written down —let alone formally proved—, yet are in some programmers’
minds when coding. The refinement calculus [6] gives us a solid semantic foundation.

To enhance practical applicability and acceptance, our specification language is de-
fined as a slight extension of an imperative programming language, in the case of this
paper Java. Considering that even pre- and postconditions, for which some tool support
already exists [35], are rarely adopted, we put special emphasis on bringing specifica-
tions closer to the mind setting of an imperative programming language user.

Software components are binary units of possibly independent production, acquisi-
tion, and deployment that interact to form a functioning system [53]. In this paper, we
take the simplifying view that each component consists of exactly one class. For brevity,
we talk about ‘component instances’ rather than of ‘instances of the single class of the
component’.

1.1 Interface specifications are abstractions

It is an old observation that there is a need to present abstractions of software building
blocks to make them reusable by third parties and to allow for alternate implementa-
tions. A long time ago, programming languages started to provide means for syntactic
encapsulation, but even today only few can represent semantic abstractions. Almost all
approaches to the latter rely on relating the system’s state prior to an operation invoca-
tion to that after termination. Pre- and postconditions are the most prominent example
here. In this paper, we discuss a situation in which these approaches are unsatisfactory
and suggest to draw on the theory of program refinement and to use abstract programs
as specification formalism.

Already modular programming introduced by Parnas in 1972 [45, 44] includes in-
formation hiding or encapsulation to separate concerns between implementing and us-
ing a module. This simplifies the analysis of complex software systems, because soft-
ware using a specific module M can be described without explaining M’s implementa-
tion details. As a further consequence, the implementation of M can be changed later
on, as long as it still meets the same abstraction. On the syntactic level, modules are
supported by several programming languages, such as Modula-2 [56], Modula-3 [41],
and Ada [54]. Programmers decide which identifiers (variables, procedures) are visible
(exported) to clients of their module and which are hidden and can be accessed by code
within the same module only.

Encapsulation is also one of several pillars on which object-oriented programming
(OOP) rests. As with modules, object implementations are decoupled from their inter-
faces. In addition, however, the interfaces may be changed or extended by subclasses.
The separation between specification and implementation is also crucial to achieve
polymorphism, another main pillar of object orientation. Only because an object’s client
does not depend on one specific implementation, it can work with instances of sub-
classes as well.

Syntax level encapsulation is provided by most OOP languages, for example, C++
[51], Eiffel [34], and Java [22]. Modula-3 [41], Oberon [57], and Component Pascal
[43] combine object-orientation with modules.

As a combination of modular and object-oriented programming, component soft-
ware relies on encapsulation and abstraction as well [53]; and again, syntax level ab-

2

straction is supported by interface description languages (IDLs), as defined for Mi-
crosoft’s COM [48] and OMG’s CORBA [23] standards.

Syntax level encapsulation is extremely effective when it comes to ensuring that
certain internal invariants are never invalidated by client modules or classes. Not grant-
ing access to data or functionality means that all access is under local control. If things
go wrong, the reason must be in the own software building block.

1.2 From syntactic to semantic abstractions

Syntax level encapsulation and abstraction is not enough. For those identifiers that are
visible to client programmers we often need to describe how and under which circum-
stances they are to be used.

Syntactic abstraction must, therefore, be complemented with semantic abstraction.
If variables can be accessed, assignments may need to be constrained with invariants.
If operations can be invoked, it must be said under which circumstances they may be
invoked and what they then can be expected to do. Prominent languages and formalisms
for this are Eiffel’s pre- and postconditions [34, 35], Larch C++ [30], and Parnas’ tables
[27].

All these approaches consider everything between an operation’s invocation and
termination as completely hidden. All available information deals with what is before
and after an operation’s execution. No information is given about what happens in-
between. We call such specifications blackbox specifications (Fig. 1).

Often, blackbox specifications are sufficient, but there are cases in which they are
too black and more information is needed. Therefore, some software libraries are pro-
vided with complete implementation source code for last reference. Unfortunately,
source code spoils most advantages of encapsulation. We refer to source code also as
whitebox specification. In this paper we discuss situations in which blackboxes are too
dark and propose a way to lighten up blackboxes to become greyboxes, which combine
the advantages of black- and whiteboxes.

Overview. Section 2 illustrates a typical component instance interaction case where
blackbox specifications hide too much. Furthermore, it introduces the observer-pattern,
which is used as an example throughout the paper. In Sect. 3 we show a first specifi-
cation approach that indicates mandatory call-backs without giving up abstraction. In
the following section we iron out the remaining problems and present the final greybox
specification style. Section 5 talks about implementations. Section 6 presents the full
refinement rules to assert correctness of implementations with respect to specifications.

input output

Fig. 1. Blackbox Specification

3

Aiming for practical applicability, we show how to prove correctness of frequent special
cases of greybox refinement in Sect. 7. Readers who are content with an informal, intu-
itive explanation of greybox refinement may skip Sects. 6.5 and 7. In Sect. 8, we show
what greybox refinement of components implies for systems assembled thereof. Sec-
tion 9 summarizes the required additions to imperative programming languages for the
purpose of greybox specification. Finally, Sect. 10 discusses related work and Sect. 11
draws the conclusions.

2 The Problem: When Black is Too Dark

Above, we defined blackbox specifications as descriptions that only relate the states
before and after an operation (Fig. 1). It is impossible to draw conclusions about what
happens between these two observation points unless there is some trace left in the
observable state.

Such blackbox specifications are insufficient when it comes to call-backs. Call-
backs activate functionality external to the specified component instance (Fig. 2). Typi-
cally such functionality is installed by the calling client or even third party software, as
it is the case with the observer example detailed later in this section.

That blackboxes do not provide enough information to deal with call-backs has
been stated and discussed in [53]. In the following we shall briefly recapitulate that
discussion.

2.1 Call-backs

A call-back mechanism allows clients of a library to register operations for activation
under certain circumstances. Figuratively, the client instructs the library to call it back
upon the occurrence of a certain event (Fig. 2).

Call-backs are used to make systems extensible. In layered system architectures,
they occur as calls from lower into higher layers in which case they are known as up-
calls [14]. Up-calls allow the programmers of higher layers to modify the behavior of
the lower layers of which they are clients.

In a similar way, methods implemented in a subclass but called in the respective
superclass can be interpreted as call-backs from reusable into reusing software compo-
nents.

input output

external service

Fig. 2. Blackbox Specification with External Call

4

A representative application of call-backs is the observer design pattern [21]. It
allows software components that need to react to certain events, such as particular state
changes, to register an observer object with the observed object. The observed object
then calls a notify method of each registered observer object upon the occurrence of the
respective events.

A prominent application of the observer pattern is the Model-View-Controller archi-
tecture (MVC), developed originally for Smalltalk [29, 21]. The MVC architecture pro-
vides a separation of concerns between internal representation and manipulation of data
(model), data presentation to the user (view), and command interpretation (controller).
Because of that separation, the way of presenting the data to users can be changed by re-
placing the view component while keeping —or reusing— the model component. Most
implementations of the MVC architecture allow more than one view to present the same
model at a time. These views may even display the data differently, for instance, as a
spreadsheet and as a pie chart. In this paper, we use a simplified version of the MVC
pattern without a separate controller.

Instance of the model component must work with zero, one, or more simultaneous
views and must not depend on the actual form of presentation by the views. Hence,
the observer pattern is used. The model is the observer. The views are registered as
observers and notified on changes to the model.

2.2 Example: part of a text system

Szyperski [53] presents a simple text system as an example of the above. In this pa-
per we shall only look at those functions needed to delete characters. As the form of
presentation we use Java syntax together with pre- and postconditions (Fig. 3).

All our specifications are model based. That is, we add a model state, such as reg-
isteredObservers and text, to express the specifications. We use the modifier private to
mark model fields and methods, i.e., members that are only present for specification
purposes and are not accessible to clients and classes implementing the interface.

We give the specification additions directly rather than as comments with a special
start symbol [31]. A pre-parser can easily remove the additions so that the stripped
version can still be processed with a normal Java compiler.

We use the abstract data types setof and seqof for sets and sequences of objects.
The empty set is denoted by ‘{}’ and the empty sequence by ‘<>’. The length of a
sequence is given by len, the ith element of sequence s can be accessed as s[i] with
indices ranging from 0 to len(s)-1. In accordance with Java, we use ‘==’ for equality
and ‘=’ for assignment. The keyword all denotes universal quantification. We use the
keyword ‘@pre’ in postconditions to refer to the value of a variable at the start of
the operation. The keyword result denotes the result value. In discussions, we use the
notation C.m to refer to the specification/implementation of the instance method m in
interface/class C.

Instances of classes implementing ITextModel are models. Changes, such as deleting
a character, can be initiated by clients calling the respective methods, e.g. deleteCharAt.
Views need to call the register method once to subscribe to notifications about text
changes.

5

interface ITextModel {
private setof ITextObserver registeredObservers={};
private seqof char text=<>;

int length();
pre true
post result==len(text)

char charAt(int pos);
pre 0<=pos && pos<len(text)
post result==text[pos]

void deleteCharAt(int pos);
pre 0<=pos && pos<len(text)
post (all int i: 0<=i && i<pos: text[i]==text@pre[i]) &&

(all int i: pos<=i && i<len(text): text[i]==text@pre[i+1]) &&
len(text)==len(text@pre)-1

. . .

void register (ITextObserver obs); // specification omitted
void unregister (ITextObserver obs); // specification omitted

}

Fig. 3. Pre-/Postcondition Specification of Interface ITextModel

The above specification of ITextModel.deleteCharAt does not say that and when ob-
servers are notified. These notification calls cannot be expressed with pre- and post-
conditions because they do not change the the state of the text model. We could only
add a textual comment like ‘call deleteNotification of all registered observers after
deleting character’. Additionally, we could put the corresponding comment to ITextO-
bserver.deleteNotification (Fig. 4). However, none of these plain English comments are
machine checkable and enforceable.

interface ITextObserver {
void deleteNotification(int pos);

// pre character that was at pos has just been deleted
// (informal comment, not tool checkable). . .

}

Fig. 4. Specification of Interface ITextObserver

6

2.3 Analysis of the example

We focus our analysis on the specification of the notification of the observers. How can
we specify in ITextModel.deleteCharAt that the model must notify all registered views
exactly once in an arbitrary order after making the modifications.

Blackbox specifications are about state changes only The problem is rooted in the
fact that we are specifying an interface of an open, extensible system. While we know
and can prescribe many aspects of the model’s state, we want to retain full flexibility
for the observer. It is the very idea of this pattern that one does not have to define what
observers may do upon a notification. This openness presents a dimension of extension.

When we specify ITextModel, we don’t know how the different views, registered
as observers, will react to delete notifications. We don’t even know the state spaces of
the different views. With postconditions we cannot express calls as such, but only the
effect of calls on the state. Since we don’t know the effects of deleteNotification on the
different views and because the calls do not modify the model’s state, the notification
calls cannot be captured with postconditions. Blackbox specifications are about state
changes only. They cannot describe the notification calls.

The next five paragraphs contain a rather technical refutation of encoding attempts
in blackbox specifications. They may be safely skipped by readers interested only in
how the greybox approach works, but not in the details of why blackbox specifications
don’t.

Theoretically, we could encode the calls made by an operation into history/trace
variables. For example, each observer could be equipped with a counter to be implicitly
incremented during each notification call. With this we could add a conjunct to the
postcondition of ITextModel.deleteCharAt expressing that the counters of all registered
observers have been incremented by 1. However, with only these counter we could still
not specify in which order, in which states, and with which parameter values the calls
are to be made.

It is possible to encode all this information with traces. However, such an encoding
is very complicated and unusable for practical specifications. Furthermore, it does not
give the desired results in combination with abstract data type refinement based on ob-
servational substitutability: Without inquiry operations for all trace variables, the latter
can just be ‘forgotten’. With inquiry operations, their values could be computed differ-
ently. Only a mandatory 1-to-1 data refinement relation on trace variables and syntactic
rules to forbid explicit assignment to these variables could, theoretically, rest the case.

Another seeming workaround is to keep a copy of ITextModel.text in ITextObserver
and strengthen the postcondition of ITextModel.deleteCharAt to require the copy to be
synchronized. The same synchronization condition is added to the postcondition of ITex-
tObserver.deleteNotification. The idea is to force the implementation of deleteCharAt to
call deleteNotification after changing the local state and to have the implementation of
deleteNotification synchronize the states by calls to ITextModel.charAt. Like the trace
variables above, the state copy in ITextObserver would have to be directly or indirectly
observable to force it being preserved in standard data refinements.

In addition to its practical clumsiness, this approach fails to capture certain aspects:
First, the values of the actual parameters of ITextObserver.deleteNotification are not

7

input output

external service

Fig. 5. Whitebox Specification

recorded. Second, sending multiple delete notifications or sending an insert notifica-
tion —assuming that the specification of ITextObserver.insertNotification has the same
postcondition as deleteNotification— instead would be correct refinements. Third, this
approach wouldn’t allow us to specify that in the method deleteCharsBetween(int from,
int to), which deletes all characters between positions from and to, multiple delete notifi-
cations must be sent to the same observer. To address these issues, this approach would
have to be augmented by a trace encoding as described above, rendering the state copy
superfluous.

In conclusion, blackbox specification of call-backs through trace encoding and/or a
copy of the other component instances’ states is not practical.

Whitebox specifications would work but aren’t abstract enough Whitebox speci-
fications, that is source code, show exactly when and in which order the observers are
notified (Fig. 5). However, they ruin abstraction by fixing too many details. For exam-
ple, we might want to leave the notification order open so it can be changed in future
versions.

Informal specifications are not good enough Pure informal specifications might be
clear enough in very simple cases, but they also have their share of disadvantages. They
cannot be used as input to any tool, such as automatic test case generation [13], auto-
matic pre- and postcondition checking [35, 18], or formal theorem provers [1].

Informal sentences are subject to interpretation, which in turn depends on the par-
ticular context of the reader. Often, these contexts vary, resulting in mismatches of in-
terpretations by independent vendors and eventually leading to incompatible software
components. For example, it is likely that an informal specification would not unam-
biguously answer the following questions: In what order are the observers notified? Is it
the same order every time? Can the observers register additional observers upon being
notified of a state change? Are these newly registered observers notified in the current
round?

This problem is aggravated by the fact that component interfaces need to abstract
and for this often intentionally leave certain aspects undefined. However, with informal
specifications it is often not clear what is intentionally left unspecified.

8

input output

external service

Fig. 6. White-on-Black Layered Specification

3 A Pragmatic Approach: Layering White on Black

In this section we discuss a simple and pragmatic way to specify the circumstances
under which call-backs are to be made. The idea is to decompose an operation with
call-backs into a set of private operations and a public operation calling the former.
None of these private operations contain any call-backs. Hence, they can be specified
as complete blackboxes. On top of that layer of blackbox specification we put a single
whitebox specification of the original operation (Fig. 6). The latter contains only calls to
the blackboxes of the lower layer, the call-backs, and eventual loops and conditionals in
which call-backs occur. In our ITextObserver example, we decompose the deleteCharAt
method into just one blackbox operation changing the text data and a whitebox opera-
tion. The latter calls the blackbox operation and notifies the observers (Fig. 7).

interface ITextModel {
private ITextObserver[] registeredObservers;
private int nofObservers=0;
private seqof char text=<>;

private void removeCharacter (int pos);
//Blackbox specification:
post (all int i: 0<=i && i<pos: text[i]==text@pre[i] &&

(all int i: pos<=i && i<len(text): text[i]==text@pre[i+1]) &&
len(text)==len(text@pre)-1

void deleteCharAt(int pos) pre 0<=pos && pos<len(text) { // Whitebox specification:
removeCharacter(pos);
for(int i=0; i<nofObservers; i++){

registeredObservers[i].deleteNotification(pos);
}

. . .
}

Fig. 7. Layered Specification of Interface ITextModel

9

interface LayeredSpecPattern {
private void partOne(. . .);

// Blackbox specification:
// pre Pre1
// post Post1

private void partTwo(. . .);
// Blackbox specification:
// pre Pre2
// post Post2

void publicService(. . .) {
// Whitebox specification:
partOne(. . .);
callBack(. . .);
partTwo(. . .);

}
}

Fig. 8. Pattern for Layered Specifications

The general idea used in the example can be summarized as follows. To make clear,
under which circumstances the observer is notified, we need to give a whitebox spec-
ification of all services that contain such calls; in our case this is the deleteCharAt
method. Specifying the entire service as a whitebox, however, would be too detailed.
Hence, wherever we want to give an abstraction instead of an actual implementation,
we include a call to another private service, which we specify as a blackbox. Without
loss of generality we assume a single call-back only in the general specification pattern
illustrating the above idea (Fig. 8).

The specification could also be given as a partly abstract class instead of an inter-
face. The public method could be implemented and the blackbox methods would be
left abstract. A subclass would then simply have to implement the two blackbox meth-
ods. Figure 9 givew the UML class diagram of this approach, which corresponds to the
template method pattern [21].

The main advantages of this layered approach is that it can readily be deployed
with formalisms such as Eiffel [34] and JML [31] that allow both black- and whitebox
specifications. Although external calls can be specified, neither of these approaches
comes with refinement rules that preserve the external call sequence.

This layered approach also has some disadvantages. We need to make every data
structure, such as registeredObservers, used in the whitebox part concrete. Leaving cer-
tain aspects, such as the notification order, unspecified may be difficult. Also, the need
to introduce a blackbox operation for every block makes specifications less readable.

LayeredSpecPattern

+ void publicService(...)
void partOne(...)
void partTwo(...)

ConcreteClass

void partOne(...)
void partTwo(...)

partOne(...);
callBack(...);
partTwo(...);

Fig. 9. Template Method Pattern for White-on-Black Layering

10

4 Abstract Programs: Shades of Grey

Specification statements [3, 6] can be used instead of auxiliary blackbox methods. A
specification statement is of the form any(T y: P) {S} where T is a type, y a (bound)
variable, P a predicate, and S a statement. Upon execution, an arbitrary value is chosen
for y such that P holds and then S is performed. For example, any(float y: y>=0 &&
0.98*y*y<x && x<1.02*y*y) {s=y;} assigns the square root of x, computed with a preci-
sion of 2 % to y and subsequently to s. If, for example, the value of x is 16, then that of
s will be between 3.96 and 4.04 after the statement has been executed.

If there are no values for the bound variable y such that the predicate P holds, then
the any statement aborts. Specification statements permit us to write specifications that
are as high level as their pre-/postcondition counterparts.

In Fig. 7, we can replace the call to removeCharacter in deleteCharAt by

any(seqof char txt: (all int i: 1<=i && i<pos: txt[i]==text[i]) &&
(all int i: pos<i && i<=len(text): txt[i]==text[i]) && len(txt)==len(text)-1)

{text=txt;}

Whereas the above square root example was truly nondeterministic, the text exam-
ple isn’t because there is exactly one possible outcome for every initial value of text
and pos satisfying the precondition. Hence, provided that concatenation of strings is
defined, the specification (Fig. 10) can in this case be written as:

text=text[0..pos-1]+text[pos+1..len(text)-1]

As another specification construct, we add a do loop over sets. The body of a do
loop is executed exactly once with the iterator bound to each element of the initial value
of the set. We use a do loop to express that all observers must be specified in an arbitrary
order exactly once in deleteCharAt (Fig. 10).

Our focus has been on the notification calls, which we want to specify so that they
must be made in an implementation. However, a specification may also make optional
calls. Say, we use a call to a square root function of a math component. An implemen-
tation should be free to either make the same call or compute the result itself. To dis-
tinguish between mandatory and optional calls, we use the following approach. Inquiry
methods are declared with the modifier inquiry in the specification. All other methods
are called modification methods —whether they actually modify the state or not. Inquiry
methods may not modify the state or contain any calls to modification methods. In our
example, length and charAt are inquiry methods. Calls to modification methods in spec-
ifications are referred to as mandatory calls; calls to inquiry methods as optional calls.
Implementations must make the same mandatory calls as their specifications and may
not make any additional calls to modification methods of the mentioned component
instances. Additionally, they can make arbitrary calls to inquiry operations.

As a final element, we allow constructors in specifications. This is necessary for
cases where the initialization must contain external method calls. For example, we
might want that every view is always registered as an observer with a model. In this
case, we need to specify a constructor for ITextObserver that makes a registration call.

11

interface ITextModel {
private setof ITextObserver registeredObservers={};
private seqof char text=<>;
public int maxObservers=10;

invariant // denoted by I in the text
card(registeredObservers)<=maxObservers

inquiry int length() {
return len(text);

}

inquiry char charAt(int pos) pre 0<=pos && pos<len(text) {
return text[pos];

}

void deleteCharAt(int pos) pre 0<=pos && pos<len(text) {
text=text[0..pos-1]+text[pos+1..len(text)-1];
do(ITextObserver o in registeredObservers) {

o.deleteNotification(pos);
}

}

. . .

void register (ITextObserver obs) pre obs!=null && not(obs in registeredObservers)
&& card(registeredObservers)<maxObservers {

registeredObservers=registeredObservers+{obs};
}

}

Fig. 10. Greybox Specification of Interface ITextModel

Figure 11 gives the general pattern for greybox specifications with the same seman-
tic meaning as Fig. 8. Post1′ and Post2′ correspond to Post1 and Post2 with ui@pre
replaced by ui and ui by wi. We have here generalized the any statement for multiple

interface GreyboxSpecPattern {
void publicService(. . .) {

any(T1 w1, . . ., Tm wm: Post1′) {u1=w1; . . .; um=wm;};
callBack(. . .);
any(T1 w1, . . ., Tn wn: Post1′) {u1=w1; . . .; un=wn;};

}
}

Fig. 11. Pattern for Greybox Specifications

12

input output

external service

Fig. 12. Greybox Specification

variables. That is, an arbitrary tuple of values will be chosen for w1, . . ., wm such that
the predicate holds. Figure 12 illustrates the greybox specification approach.

4.1 Consistency of specifications

Specifications that may abort or invalidate their own invariant when executed are of
questionable use. Therefore, we require the following five consistency conditions to
hold for greybox specifications: If an operation is started in a state and with actual
parameters that satisfy both the invariant and the precondition, then

1. The method may not abort, i.e., try to access a null reference (For simplicity, we
consider throwing an exception as abortion.).

2. The invariant is guaranteed to hold after termination.
3. All external calls are made with parameters that satisfy the respective precondition.
4. The own invariant holds whenever an external call is made. This simplifies reen-

trance, as explained in Sect. 6.1.
5. An operation either terminates or makes infinitely many external calls to modifi-

cation operations. The second option allows us to specify nonterminating methods
such as the scheduler of an operating system.

We follow the B method [1] by requiring consistency proofs to show that operations
preserve the invariant. This contrasts implicit operation specifications in VDM [28] and
Z [50], where the invariant is implicitly conjoined to every postcondition. We consider
these explicit consistency proofs to be a benefit, rather than a burden. Intuitive and
informal specifications capture what an operation should do, regardless whether it might
thereby invalidate the invariant. Statement specifications let us express this directly.
The consistency proof shows whether this behavior is actually legal. Failure to prove
consistency may also point to an overly strong invariant. Thus redundancy helps us
find specification errors. On the other hand, the implicit conjunction of the invariant
to the postcondition in VDM and Z can lead to unintentionally restrictive. Without the
need for a consistency proof, however, this may not be noticed until much later, when
changing the specification may invalidate work already based on it.

Constructors have to satisfy the above five consistency requirements when called
with parameters satisfying the precondition.

13

class CTextModel implements ITextModel {
private ITextObserver[] regObs=new ITextObserver[maxObservers];
private int nofObs=0;
private StringBuffer t=new StringBuffer();
invariant // denoted by I′ in the text

0<=nofObs && nofObs<=maxObservers &&
ITextModel.registeredObservers==regObs[0..nofObs-1] &&
(String)ITextModel.text==(String)t

public void deleteCharAt(int pos) {
. . . // remove character from t
for(int i=0; i<nofObs; i++) {

regObs[i].deleteNotification(pos);
}

}

public void register (ITextObserver obs) {
regObs[nofObs]=obs;
nofObs++;

}
. . .

}

Fig. 13. Implementation CTextModel

5 Implementing Greybox Specifications

Implementations are coded as normal Java classes (Fig. 13). The only addition is the
invariant. The latter consists of two —possibly intermingled— parts, the local and the
gluing invariant (abstraction relation). The local invariant restricts the ‘legal’ values
of the local variables. Its aims are the documentation of desired properties and the
simplification of proofs. The gluing invariant links the values of the concrete vari-
ables in the implementation to the abstract variables of the specification. For exam-
ple, ITextModel contains a set of observers. This set is implemented with an array
(Fig. 13). Simulation-based correctness proofs of an implementation with respect to
its specification (Sects. 6 and 7) require us to state how the concrete and the abstract
variables, e.g., the values of the set and the array, are related. The invariant conjunct
ITextModel.registeredObservers==regObs[0..nofObs-1], where regObs[0..nofObs-1] is
the set {regObs[0]} ∪ {regObs[1]} ∪ . . . {regObs[nofObs-1]}, states this.

6 Refinement of Greybox Specifications

A specification can be viewed as a contract between a client and a provider who imple-
ments it. To refine a specification means to improve it from the client’s point of view.
That is, the provider can deliver more, but not less. Intuitively, refinement is defined by

14

observational substitutability: The user must not be able to observe any new behavior
of specified attributes if a component is replaced by a refinement thereof in any system.

For practical purposes, a proof rule involving a quantification over all possible sys-
tems, in which the component might be placed, is not useable. Hence, we develop
simulation-based rules instead and account not only for the behavior observable by
users, but also for that only observable by client software components.

A client can observe three functional aspects of another component instance A: The
return values from method calls to A, the public variables of A (if any), and calls made
by A to modification methods of other component instances. The latter are observable
because they may change the states of the called component instances. These states are,
in turn, observable by the first two means.

The basic conditions of greybox refinement are simple: The implementation of
every method must make the same sequence of mandatory calls to other component
instances in the same respective states as the specification, perform the same overall
changes to the local state, and return the same value. If the specification is nonde-
terministic, then the call sequence, local state transformation, and return value of the
implementation must correspond to one choice in the specification. The refinement cal-
culus [3, 6, 40] provides a formal base, but not yet any rules, to prove this conformance.

In this section we first clear the field by discussing a number of critical issues sur-
rounding greybox refinement and then formalize the latter. We end the section with two
theorems on the refinement of systems with multiple components.

6.1 Reentrance

Reentrance occurs if method m of an instance of class A calls method n of an instance of
class B and n calls —directly or indirectly— method o of A (Fig. 14) [53, 36]. For exam-
ple, an observer could in its implementation of deleteNotification call ITextModel.charAt
to enquire the current value of text.

Both for the consistency of specifications and for the refinement rules (Sect. 6.5) we
assume the invariant of an object to hold whenever one of its methods is called. Hence,
we need to establish the invariant before making calls to other component instances, so
that the own invariant holds upon reentrant calls.

We follow [15] in banning reentrant calls to modification methods. Although such
calls can be handled in theory, they make components very difficult to understand. As-
sume, for example, that in Fig. 14 method o would be a modification method. Then the

: A : B

m(..)

n(..)

o(..)

Fig. 14. Reentrance Scenario

15

effect of method m on the local state of an instance of A would not be described by m
alone. Instead all called external modification methods would have to be examined for
possible reentrant calls to modification methods.

Mutual recursion between inquiry methods of two instances of A and B could hap-
pen if A.m calls B.n and B.n calls A.m. Mutual recursion between inquiry methods is
only problematic, if it is infinite. Because the calls to inquiry methods are not visible
from specifications, such mutual recursions cannot be detected by modular reasoning.
Possible infinite mutual recursions can, however, be detected at the time when compo-
nents are combined or at run-time with special tests.

The impossibility of detecting all possible infinite mutual recursions at compile
time is a consequence of the axioms of component software, namely late composition
of components from mutually unaware vendors. Any compile-time solution has to give
up the full flexibility of the components software model. One solution to the mutual
recursion problem is to impose a partial order on inquiry methods and to allow only
calls to ‘smaller’ methods. Considering that the order must be over components from
mutually unaware vendors, this leads to serious restrictions.

6.2 Unmentioned component instances

Often implementations use additional component instances not mentioned in the spec-
ification. For example, an observer may use a window instance, in which it paints the
text and a model may use a set from a collection framework to manage the references
to registered observers. This use of additional component instances is necessary, but
comprises a variety of problems.

We call component instances referred to in the specification as mentioned compo-
nent instances and all others as unmentioned component instances. For example, from
the perspective of ITextModel and of classes implementing only the former, any instance
of a component CSet is classified as unmentioned, assuming that CSet doesn’t imple-
ment ITextObserver. Furthermore, any instance of ITextObserver not registered as an
observer is labeled unmentioned.

As motivated above, allowing calls to modification methods of unmentioned compo-
nent instances is absolutely necessary. However, this may lead to reentrant calls of mod-
ification methods. Consider the following scenario: Method CTextModel.deleteCharAt
calls a modification method event of a (unmentioned) instance of a CLog component,
the specification of which does not mention any other components. Since, event is a
modification method, it may itself call other modification methods, including modifica-
tion methods of our CTextModel instance and the latter’s registered observers. In both
cases, refinement of ITextModel by CTextModel may be violated. This problem is sim-
ilar to the one of mutual recursion above. A static solution has to give up part of the
flexibility of component software.

6.3 Self calls

Self calls, that is calls to methods of the same component instance, deserve special
treatment. The idea of greybox specifications is to prescribe what calls have to be made
between different component instances in addition to the changes of the instance state.

16

If a specification contains self calls, it is simply for the purpose of factoring out parts
that —ignoring recursion— could be textually substituted for the call. Hence, self calls
are never mandatory. An implementation of a specification method containing self calls
must simply make the same external calls and local state modification as the specifica-
tion method including the own called methods. It is not required, but often beneficial,
to establish the invariant before making self calls.

6.4 Additional methods and constructors

Classes may have more public methods and constructors than one of their implemented
interfaces. For example, CTextModel could also have a method deleteCharsBetween(int
from, int to), which deletes all characters between positions from and to. Every possi-
ble execution of an additional method must constitute a refinement of the external call
sequence and state modifications performed by a finite sequence of interface methods
with possible local computation of parameters in-between. In this case, other compo-
nent instances cannot tell the difference between the single call to the new method and
the sequence of calls (mumbling invariance) [9]. Additional inquiry methods can be
added freely (stuttering invariance), as covered by the above definition with the empty
sequence.

A class may implement multiple interfaces. In this case, the methods prescribed by
other interfaces have to be considered as additional methods. For example, if CTextModel
were also to implement an interface ILog, all implementations of methods prescribed by
ILog would have to satisfy the above criteria with respect to ITextModel and vice versa.

Especially if a class implements several interfaces, the above requirement for ad-
ditional methods sometimes turns out to be too strict. To overcome this problem, we
allow interfaces to contain a special method others. This method is not to be imple-
mented by classes, it simply shows what other modifications —with accompanying
external calls— are allowed in additional methods.

The rules for additional constructors are anologous. Every possible execution of an
additional constructors must constitute a refinement of the external call sequence and
state modifications performed by an interface constructor followed by a finite sequence
of interface methods with possible local computation of parameters in-between.

6.5 Formalizing greybox refinement

In this subsection, we give the general formalization of greybox refinement using a trace
semantics, partly inspired by the trace semantics for action systems [5]. We formalize
the conformance of call sequences and state changes. Predicate transformer semantics
for basic programming language constructs can be found in the literature [6, 12].

First we review some fundamentals of predicates, relations, and product and sum
types.

Predicates and relations. Predicates (boolean expressions) on a type Γ are functions
from elements of type Γ to boolean. For example, for variable x of type int, x>0 is a
predicate on int. A predicate determines a subset, e.g. the positive integers. Thus we

17

use ⊆ as order between predicates, e.g. x>5 ⊆ x>0. Predicates being functions, they
can be applied to values, e.g. (x>5)(6) is true.1

Relations of type Σ ↔ Γ are functions of type Σ → Γ → boolean. An invariant I′ of an
implementation with state space Γ refining a specification with state space Σ can also be
considered as a relation of type Σ ↔ Γ. We can apply such a relation to a state σ of the
specification and a state γ of the implementation: I′(σ, γ). For relation R and predicate p
the relational image im(R, p) is defined as {y | (exists x: : R(x,y) && p(x))}. We use &&
for conjunction of predicates and relations.

Product and sum types. The product type int × char denotes the type of tuples of inte-
gers and characters. The tuple (5, ‘a’) is an element of it. We use the projection functions
fst and snd for tuples, e.g. fst((5, ‘a’)) is 5 and snd((5, ‘a’)) is ‘a’.

The sum type int ⊕ char denotes a disjoint union of an integer and a character (cor-
responding to a variant record in Pascal or a union with a type tag in C). A variable of
this type has either an integer or a character value. We leave the injection and projection
functions for sum types implicit.

Definition of greybox refinement. With these notions we can define greybox refinement.
Without loss of generality, we only allow constants and variables as actual parameters.

When we animate (execute) method m of the sample interface ITest, it generates
a behavior. A behavior is a sequence of states, where the successor state is computed
by executing the next atomic statement.2 Let Σ be the type of the state space of the
specification, for example setof ITextObserver × seqof char for ITextModel. When ex-
ecuting ITextModel.deleteCharAt(2) the following is a possible behavior: <({o1, o2},
[texZt]), ({o1, o2}, [text]), ({o1, o2}, [text]), ({o1, o2}, [text]), ({o1, o2}, [text]), ({o1, o2},
[text])>.

As defined so far, we do not record which modification methods of which objects
are called with which parameters. Let Ωi for i in 1..e denote the types of references
to mentioned component instances in our specification ITest. Furthermore, let ∆i, j for
j in 1..fi denote the parameter types of the modification methods of component type
i. Finally, let Ω0 denote the type Unit with the single element unit and let f0==0. By
extending every state in a sequence by an element of type

eM

i=0

(
Ωi ×

fiM

j=1

∆i, j

)
we can indicate for every state, whether in this state a mandatory call is made and if
so to which method of which object and with which parameters. That is, an element of
the above type is a tuple of a reference to a component instance and a parameter value
for one of the modification methods of the referenced component instance. Different
methods with identical parameter types are correctly distinguished by the sum type.

1 We omit the explicit λ if the binding is clear from the names or the position as in the example.
I.e., x gets bound to 6.

2 External method calls are split into two atomic statements as explained below. Otherwise, the
grain of atomicity is not important.

18

A simple behavior is of type:

seqof

(
Σ×

[
eM

i=0

(
Ωi ×

fiM

j=1

∆i, j

)])
A mandatory method call like w=e.m(c) generates two states σi and σi+1, such that

σi==(fst(σi−1), (e,c)) and σi+1==(x, (unit, unit)), where x stands for fst(σi−1) with the
value of w replaced by the return value of e.m(c). A state is a call state if the second
component is not (unit, unit).

For every method ITest.m we generate the set sbeh(ITest.m) of all simple behav-
iors where the first state and the value of the parameter satisfies the invariant and the
precondition.

Let Π be the type of the input parameter of the method in question, for example int
for ITextModel.charAt, and Φ the result type, that is char for the aforementioned method.
A full behavior additionally contains the values of the parameters and the result. A full
behavior is of type:

seqof

(
Σ×

[
eM

i=0

(
Ωi ×

fiM

j=1

∆i, j

)])
× (Π×Φ)

The set of full behaviors of method ITest.m is denoted by beh(ITest.m). For full
behavior b, the corresponding simple behavior is fst(b).

We distinguish three kinds of behaviors: (normally) terminating, aborting, and infi-
nite behaviors. A terminating behavior is generated if the method returns control to its
caller via a return statement or if its result type is void also by executing the last state-
ment. An aborting behavior is generated if the method aborts, e.g., tries to access an
array at an index outside its boundaries. Since aborting behaviors are undesirable, we
actually require both specifications and implementations to be free of them. An infinite
behavior is generated if the operation neither terminates nor aborts. The terminating
(beh+(ITest.m)), aborting (beh⊥(ITest.m)), and infinite behaviors (beh∞(ITest.m)) form
a partitioning of all full behaviors. The same holds for their simple counterparts.

Traces are the observable parts of behaviors. They are generated by removing non-
observable states, that is states where no external calls are made, from behaviors. We get
the set of full traces tr(ITest.m) (respectively simple traces str(ITest.m)) by performing
the following two operations on each behavior b in beh(ITest.m) (resp. sbeh(ITest.m)):

1. If b in beh∞(ITest.m) ends in an infinite sequence of non-call states, then we re-
move b from beh∞(ITest.m) and add it with the infinite sequence of non-call states
removed to beh⊥(ITest.m).

2. Remove all non-call states, except for the first state and if b is finite the last state,
from b.

Simple/full traces are of the same type as simple/full behaviors. The trace set is the
disjoint union of the terminated, aborted, and infinite traces.

Likewise we generate the set of traces of the implementation CTest.m under ques-
tion. We assume that the state space of CTest is Γ. The initial states are given by the

19

ITest interface
CTest class
Σ type of state space of ITest
Γ type of state space of CTest
I′ invariant of CTest
Ωi types of references to mentioned components
∆i, j parameter types of modification methods of Ωi
⊕ sum type
× product type
fst, snd first and second projection of tuple
m prescribed method
n additional method
K prescribed constructor
L additional constructor
sbeh, beh set of simple/full behaviors
str, tr set of simple/full traces
b behavior
s, s′ simple traces
t, t′ full traces
� concatenation of simple traces
str(ITest)∗ transitive closure of all simple traces of ITest
str(̂ITest) union of simple traces of constructors
im(I′, I) relational image of I under I′

Fig. 15. Summary of Notation and Conventions

predicate im(I′, I && p), where I′ is the invariant of CTest, I the invariant of ITest and p
the precondition of ITest.m. When computing traces for implementations, we only con-
sider mentioned component instances and their types. Thus the types of the traces of
ITest.m and CTest.mITest only differ in the first component of the sequences, which is
Σ, respectively Γ. The subscript for CTest.m is necessary because CTest may implement
multiple interfaces (Sect. 6.4).

We say that two simple traces s and s′ correspond at position i (writtn s ∝i
I′ s′), if the

state parts of the ith sequence elements are related by the invariant of the implementation
I′, taken as a relation, and the external call parts are identical:

s ∝i
I′ s′ def= I′(fst(s[i]), fst(s′[i])) && snd(s′[i])==snd(s[i])

We define trace approximation under the refinement relation I′ as follows: The sim-
ple trace s approximates s′ under I′ (written s �I′ s′) if one of the following conditions
holds:

– s and s′ are terminating, len(s)==len(s′), and (all i: 0<=i && i<len(s): s ∝i
I′ s′).

– s and s′ are infinite and (all i: 0<=i: s ∝i
I′ s′).

Greybox refinement for method m holds if for every trace of CTest.mITest there is
a corresponding trace of ITest.m:

20

ITest.m ≤I′ CTest.mITest
def= (all t′: t′ in tr(CTest.mITest): exists t: t in tr(ITest.m):

fst(t) �I′ fst(t′) && snd(t)==snd(t′))

To summarize: This condition requires that CTest.m preserves the invariant, refines
its specification (call sequence, state transformation, return value), and establishes the
invariant before each external call.

Additional methods. If CTest contains an additional public method n beyond those
prescribed by ITest, there must for every simple trace of CTest.n be a finite sequence of
concatenateable traces of methods of ITest that approximates the former. For the starting
states we distinguish two cases: If n is not prescribed by any interface implemented by
CTest and it has the precondition p in the implementation, then the starting states are
im(I′, I) && p. If n is prescribed by another interface ITest2 with invariant I2 and state
space Σ2, then I′ is actually a function of type Σ → Σ2 → Γ → boolean. The starting states
are {γ | exists σ, σ2: I′(σ, σ2, γ) && I(σ) && I2(σ2) && p(σ2)}.

We define concatenation (�) of simple traces as follows: Two simple traces u and
v can be concatenated if u is terminating and if fst(u[len(u)-1])==fst(v[0]). In this case
we first add the simple traces and then remove the two intermediary non-call states.
The concatenated trace belongs to the same kind (terminating, aborted, infinite) as v.
We define str(ITest) to be the union of all simple traces of its modification methods —
including others (Sect. 6.4)—, and str(ITest)∗ the transitive closure thereof with respect
to concatenation (including the empty trace).

With these definitions we can formally express the refinement condition for addi-
tional methods:

ITest∗ ≤I′ CTest.nITest
def= (all s′: s′ in str(CTest.nITest):

exists s: s in str(ITest)∗: s �I′ s′)

Note that for additional methods there is no equivalence criteria for parameters or
return values.

Constructors. The conditions for constructors are analogous to those for methods.
However, the initial states are arbitrary. For simplicity, we consider the initialization
in the field declaration as part of every constructor. The condition for prescribed con-
structor K3 is as follows:

ITest.K ≤I′ CTest.KITest
def= (all t′: t′ in tr(CTest.KITest): exists t: t in tr(ITest.K):

fst(t) �I′ fst(t′) && snd(t)==snd(t′))

Additional constructors are like additional methods, except that the first simple trace
of the concatenated sequence must be that of a constructor. We define str(̂ITest) to be the
union of all simple traces of the constructors of ITest. The rule for additional constructor
L then becomes:

ITest∗ ≤I′ CTest.LITest
def= (all s′: s′ in str(CTest.LITest): exists s:

s in (str(̂ITest)�str(ITest)∗): s �I′ s′)

3 In most languages, constructors have the same name as the containing classes. To avoid over-
loading, we use different identifiers.

21

Combination If all the above conditions hold for all methods and constructors of CTest,
then CTest refines/implements ITest (written ITest ≤I′ CTest). Furthermore, we write
ITest ≤ CTest for (exists I′: : ITest ≤I′ CTest).

7 Refinement Proofs in Practice

The above trace refinement rules are difficult to apply directly. In cases where the
mandatory external calls in the specification and the implementation are embedded in
similar control structures (loops, conditionals), we can use simpler data refinement in
context rules for corresponding blocks (Fig. 16).

7.1 Data refinement

We review some fundamentals of weakest preconditions and refinement following [6]
and of data refinement following [4].

Weakest precondition. For statement S and predicate q, wp(S,q) denotes Dijkstra’s
weakest precondition, that is the set of states from which S is guaranteed to terminate
in q. For S and predicate p the strongest postcondition sp(S, p) denotes the smallest set
of states in which S may terminate if started from p.

Assert and guard. The assert statement assert p skips if the boolean expression p
holds and aborts otherwise. The guard statement is the dual of the assert. For predicate
p, guard p skips if p holds and magically establishes any postcondition if p does not
hold.

Algorithmic refinement. Statement S′ refines statement S, written S � S′, if S′ estab-
lishes any postcondition q from any state where S establishes q:

S � S′ def= (all q: : wp(S, q) ⊆ wp(S′, q))

Data refinement. Data refinement is a general technique by which one can change the
data representation in a refinement. Any observable behavior of the refined component
must also be observable on the abstract component. Note that unlike for greybox re-
finement, the observable behavior does not include the return values of method calls or
the external calls made by the statement. The return value is usually included in data
refinement of abstract data types, but the external calls in combination with the state
transformation is believed to be unique to greybox refinement.

Our formal definition of data refinement is based on the simpler to apply, but in-
complete proof technique of forward simulation. For relation R : Σ ↔ Γ let [R] denote
a nondeterministic relational update, that is a statement from Σ to Γ such that the states
are related by R. It is the same as any(γ′: R(σ, γ′)) {γ = γ′;} except that it also changes
the state space. Statement S′ data refines statement S under relation R, written S �R S′:

S �R S′ def= S; [R] � [R]; S’

22

interface IB {
private E e; // reference to other object
invariant I
int m(Z z) pre p {

W w; C c; int r;
S;
w=e.n(c);
T;
return r;

}
}

class CB implements IB {
private E e′; // reference to other object
invariant I′ // implies IB.e==e′

public int m(Z z) {
W w’; C c′; int r’;
S′;
w′=e′.n(c′);
T′;
return r′;

}
}

Fig. 16. Structure-Preserving Refinement

7.2 Piecewise data refinement in context

In case of structural similarity (Fig. 16), we can establish greybox refinement by proving
data refinement in context of the corresponding blocks (S, S′ and T, T′), the parameters
of external calls (r, r′), and of the result values (r, r′). Let S, S′, T, and T′ be statements
without any calls to modification operations of mentioned component instances. Let E.n
denote a modification operation. Furthermore, let c, c′, r, and r′ be fresh variables of
the same types as their correspondents without the initial underscore.

We consider separately the first block and the following blocks. For each we develop
a sequence of increasingly more general, but also more complex rules. Especially if
proofs are done informally, it is often easier to apply a less general rule, provided that
it suffices.

First block. The first block S including the value of the method parameter has to be
data refined by S′:

S; c=c �I′ && c== c′ S′; c′=c′ (1a)

The assignments to c and c′ and the extension of the refinement relation by c== c′

guarantee that the values of the actual parameters of the method calls e.n and e′.n are
the same.

This condition is sufficient, but too strong. We only require data refinement in a
context where the invariant I and the precondition p hold. We express the context with
an assert statement:

assert I && p; S; c=c �I′ && c== c′ S′; c′=c′ (1b)

That we only consider contexts where I′ holds is already determined by the refine-
ment relation.

23

Following blocks. In the rules for the second and the following blocks, it is a bit more
complicated to express the minimal context in which data refinement must hold. The
first rule does not limit the context:

w=e.n(c); T; r=r �I′ && r== r′ w′=e.n(c′); T′; r′=r′ (2a)

Here we use r and r′ to assure refinement of the return values. The preceding
method calls e.n, respectively e′.n, are required because the refinement relation is only
required to hold after termination of S and S′, but not after the method calls.

Condition (2a) is sufficient, but too strong. We only require refinement to hold in
contexts that are reachable by executing S in states where I && p holds. This gives us
the sharper condition:

assert sp(S, p && I); w=e.n(c); T; r=r �I′ && r== r′ w′=e.n(c′); T′; r′=r′ (2b)

This is the sharpest context we can describe with asserts; using guards we can ex-
press an even more general rule. Often, S′ is more deterministic and, therefore, gives us
more context information than S. Consider the following correct refinement example:

I: true p: true S: any(int y: true) {x=y;} T: x=1
I′: x==x′ && e==e′ S′: x′=1 T′: skip

This cannot be proved correct with the above rule, but with the following more
general rule:

w=e.n(c); T; r=r �I′ && r== r′ guard sp(S′, im(I′, I && p)); w′=e.n(c′); T′; r′=r′ (2c)

This rule is sufficiently complete for most practical applications. A complete rule,
requiring additional concepts and notation, as well as as a proof of completeness are
beyond the scope of this paper.

Let condition (1) be true if (1a) or (1b) holds and let condition (2) be true if (2a),
(2b), or (2c) holds. Then we get the following theorem:

Theorem 1 (Soundness of piecewise data refinement). If conditions (1) and (2) hold,
then A.m ≤I′ B.m.

The semi-commuting diagram in Fig. 17 shows this piecewise data refinement in
context, where solid lines mean ‘for every choice’ and dashed lines ‘there exists a
choice’. The strongest postcondition expressions are remarks to illustrate conditions
(2b) and (2c).

Insufficient conditions. To sharpen the intuition, we also list the following two alterna-
tives for condition (2), which are sometimes wrongfully believed to be sufficient. In the
first case we require data refinement of the complete method:

S; w=e.n(c); T; r=r �I′ && r== r′ S′; w′=e.n(c′); T′; r′=r′ (f1)

24

S’ w’=e’.n(c’); T’

S w=e.n(c); TI && p

I’ I’ && c==c’ I’ && r==r’

sp(S, I && p)

sp(S’, im(I’, I && p))

Fig. 17. Piecewise Data Refinement

The following counterexample shows that the above condition (f1) together with (1)
is insufficient. The conditions hold, but greybox refinement doesn’t because <0, 1> is
not a legal sequence of states for x.

I: true p: true S: any(int y: true) {x=y;} T: skip
I′: x==x′ && e==e′ S′: x′=0 T′: x′=1

The second insufficient replacement for condition (2) is ‘derived’ from the layered
specification pattern (Fig. 8). It says that partTwo, standing for T, must be data refined
by partTwo′, that is T′. This condition, T �I′ T′, as well as condition (1) hold in the
following example:

I: true p: true S: skip w=e.n(c): w=1 T: w=0; x=1
I′: w==w′ && w′==0 && x==x′ S′: skip w′=e′.n(c′): w′=1 T′: w=0

However, trace refinement does not hold. The problem of this condition is that it
wrongfully assumes I′ to hold after the call to e.n. If we impose and prove the addi-
tional, unnecessarily restricting consistency requirement on specifications that the in-
variants also hold after the external method calls, then we can use this rule. For layered
specifications (Sect. 3) this means that with this additional consistency requirement, we
can produce a correct implementation by implementing —or if we write the specifica-
tion as an abstract class inheriting— the whitebox layer unchanged and proving data
refinement in context (without any calls) of the blackboxes.

Sufficient conditions for additional methods and for constructors using data refine-
ment in context follow the same pattern as conditions (1) and (2).

8 Refinement of Component-Based Systems

In this section, we show what greybox refinement of individual components implies for
systems assembled thereof.

We assume that components only reference interfaces and use factories [21, Factory
Pattern] to create instances of components implementing the respective interface. Let

25

CA and CB be two components implementing interfaces IA and IB, respectively. We
define ✸(IA:=CA, IB:=CB) to be the composition of components CA and CB, that is an
environment in which CA is used for the instantiation of elements of IA and CB for IB.
Conceptually, but not for actual execution, we can also use interfaces for instantiation.
For example, ✸(IA:=IA, IB:=IB) denotes the environment in which IA and IB are used for
creating instances of themselves.

Greybox refinement extends naturally to compositions of components. If such a
composition forms a complete system in the sense that it doesn’t make any external
calls, then greybox refinement coincides with more traditional forms of abstract data
type refinement (e.g. [17]). For compositions, we get the following theorem:

Theorem 2 (Preservation of observational behavior). We assume that there are no
infinite mutual recursions (Sect. 6.1) and no reentrant calls to modification methods
via unmentioned component instances (Sect. 6.2). Furthermore, we assume that no run-
time type test or other form of reflection is used. If IA ≤ CA and IB ≤ CB then the
following five greybox refinements hold:

(1) ✸(IA:=IA, IB:=IB) ≤ ✸(IA:=CA, IB:=IB)
(2) ✸(IA:=IA, IB:=IB) ≤ ✸(IA:=IA, IB:=CB)
(3) ✸(IA:=IA, IB:=IB) ≤ ✸(IA:=CA, IB:=CB)
(4) ✸(IA:=CA, IB:=IB) ≤ ✸(IA:=CA, IB:=CB)
(5) ✸(IA:=IA, IB:=CB) ≤ ✸(IA:=CA, IB:=CB)

Especially properties (4) and (5), which do not hold in other approaches, are inter-
esting. Instantiate IA by ITextObserver, CA by VendorATextObserver, IB by ITextModel,
and CB by VendorBTextModel and assume that the hypothesis of Theorem 2 holds. As-
sume furthermore, that vendor A has programmed the observer —in combination with
ITextModel— to display the beginning of the model’s text in a 80 * 25-character size
window. Assume that we select this observer, because it displays the text in the desired
format, and combine it with VendorBTextModel. Property (4) then guarantees that the
combined system actually displays the model’s text in the aforementioned format.

Property (3) does not guarantee this because the specification of ITextObserver does
not even prescribe the observer to display the text. It could as well read it out, spell
check it, or scan it for credit card numbers. Properties (4) and (5) are, therefore, crucial
for modular and component-based development.

Run-time type tests and other forms of reflection have been explicitly excluded
in Theorem 2, because they would give additional observational power that could be
exploited to make any refinement impossible. For example, property (3) would not hold
if IB and CB contained a statement like:

IA a=IAFactory.create(); if(a instanceof CA) {. . . /* change some state */}

It is, of course, possible to use reflection and invoke additional methods in a way
that preserves refinement. Namely, clients may invoke additional methods to achieve
the same effect as multiple calls to old methods. We illustrate this with a component CB
that uses a run-time type test to check whether a referenced object is of a certain type.
If it is, CB.call invokes an additional method.

26

interface IB {
void callM(IA a) {

any(int no: no>=0) {
for(int i=0; i<no; i++) {

choose {
if(exists X1 x1: : p1(a, x1)) {

any(X1 x1: p1(a, x1)) {
Y1 y1=a.m1(x1);

}
}

| x.others();
}

}
}

}
}

class CB implements IB {
public void callM(IA a) {

if(a instanceof CA &&
(exists X2 x2: : p2((CA)a, x2))) {

any(X2 x2: p2((CA)a, x2)) {
Y2 y2=((CA)a).m2(x2);

}
}

}
}

Fig. 18. Use of Reflection and Calls to Additional Methods

Let IA have method m1 of the following form:

Y1 m1(X1 x1) pre p1(this, x1) {. . .}

Method callM of IB invokes an arbitrary number of times methods m1 and others
(Fig. 18). This is expressed with a choose statement, which nondeterministically se-
lects and executes one of its alternatives separated by ‘|’. The implementation of callM
in CB invokes the additional method m2 of CA instead.

Imposing again the same restrictions on the other components as above, we get the
following theorem:

Theorem 3 (Reflection and additional methods). We assume that there are no infi-
nite mutual recursions (Sect. 6.1) and no reentrant calls to modification methods via
unmentioned component instances (Sect. 6.2). If only CB uses reflection and if IA ≤ CA
then the same five greybox refinements as in Theorem 2 hold.

9 Towards a Greybox Specification Language

In this paper we have used invariants, preconditions, specification statements, abstract
data types, and loops over sets as extensions to Java for formulating component con-
tracts. The final definition of a greybox specification language is subject to future re-
search. To get some feedback what constructs such a language needs to include, we
have conducted a number of small to medium sized case studies within our group. The
most notable example [52] is the specification of a part of the text subsystem of the
commercial BlackBox component framework [42]. The language used for this was an
extension of Component Pascal [43], the implementation language of the BlackBox

27

component framework. The greybox specification was shown to be consistent with the
original blackbox specification provided with the product.

There are two reasons why it is important to fix a greybox language and not just use
ad-hoc notations. First, tool support can only be provided for a clearly defined language.
Second, ad-hoc notations are subject to different interpretations. Below we summarize
the specification extensions used in our case studies:

– Invariants and method preconditions (Sects. 2.2, 4) with universal and existential
quantifications.

– Fields, private members (methods, fields), and constructors in interfaces (Sects. 2.2,
4).

– The modifier inquiry for inquiry only methods (Sect. 4).
– The special method others to provide for more modifications in additional methods

(Sect. 6.4).
– Abstract data types set and sequence of objects together with the usual operations

(Sect. 2.2).
– Loops (do) to iterate over sets and sequences (Sect. 4).
– Specification statement any (Sect. 4).
– The non-deterministic control structure choose (Sect. 8).

10 Related Work

In this section, we discuss whether and how other specification methods can be utilized
to (1) specify both state transformations and mandatory calls and (2) prove refinement
of both aspects in implementations.

Pre/post specifications. As discussed in Sect. 2.3, methods that are based on pre/post
specifications (without an explicit encoding of the external call trace) cannot specify
mandatory external calls that the component must make. Thus Z [50] does not satisfy
our requirements. Neither do Meyer’s design by contract [33, 35], the Object Constraint
Language (OCL) [55], or the Java Modeling Language (JML) [31], although they are es-
pecially targeted at object- and component-based development, respectively a language
for these paradigms. As pointed out (Sect. 3), we can express layered specifications with
notations, such as Eiffel, that express both white- and blackbox specifications. However,
none of these approaches comes equipped with refinement rules that also preserve the
external call sequence.

We are not aware of any pre/post specification-based methods that actually encode
the call sequence with the respective states into trace variables (Sect. 2.3) to achieve the
same expressiveness as greybox specifications.

B The B method [1] uses a combination of preconditions and abstract statement se-
quences to specify operations. The operation bodies can contain calls to operations of
imported modules. However, in refinement steps only the overall state transformation,
but not the external call sequence needs to be preserved. Thus, B does not solve the
problem at hand. Related methods such as VDM [28], VDM++ [16], and RAISE [46]
do not give a better grip on the problem.

28

Class refinement. Mikhajlova and Sekerinski [38, 37, 39] also use a refinement calculus-
based extension of an object-oriented language with nondeterministic constructs and
abstract data types for their treatment of class refinement. Their definition of refinement
only requires data refinement of the state transformations, but does not include refine-
ment of external call sequences. Because they equal non-termination with abortion, they
do not have a practically useful treatment of methods that make infinitely many external
calls. Their condition for additional methods is weaker than ours: Additional methods
must simply preserve the strongest invariant implied by existing methods; thus, pre-
serve absolute rather than relative (from the current) state reachability as we demand.
This would not be a sensible option for greybox refinement because no refinement of
external call sequences could be demanded. No provisions, such as our special oth-
ers method, are made for additional methods to perform supplementary modifications.
Their refinement theorems do not take reflection into consideration.

Behavioral subtyping Behavioral subtyping, a related notion to class refinement, es-
tablishes data refinement between types that are meant to stand for classes and speci-
fications thereof. It has been studied in semi-formal settings guaranteeing only partial
correctness by America [2], by Liskov and Wing [32], and by Dhara and Leavens [19].
However, because pre/post specifications are used, these approaches are not suitable for
the problem at hand either.

Components with reentrance Mikhajlov et al. [36] have developed a method for semi-
modular refinement of components in the presence of reentrance. Calls to other compo-
nents can be specified, but only the resulting state transformations have to be refined.
Hence, they cannot handle the kind of systems exemplified in this paper by the observer
pattern. Specifically, if we replace greybox refinement by their definition of refinement
in Theorem 2,4 then only properties (1) – (3), but not the crucial properties (4) and (5)
hold. Additional minor differences include them not handling additional methods and
equaling non-termination with abortion.

Refinement calculi. As exemplified by our own proposal, the refinement calculi of Back
[3, 6] and Morgan [40] with their abstract statement notation can be used to specify
external calls. However, their refinement rules only take the state transformations, but
not the calls, into account. The semantics of method calls is defined by reduction, which
is inappropriate for the problem at hand.

Contracts of Helm, Holland, and Gangopadhyay. Helm et al. define a mostly syn-
tactic notion of interaction contracts [24, 25] for the object-oriented design of compo-
nents. External calls can be explicitly specified. However, lacking the distinction be-
tween modification and inquiry operations, all specified calls are mandatory. As a con-
sequence, not only the call to deleteNotification in ITextModel.deleteCharAt, but also the
call corresponding to our charAt in ITextObserver.deleteNotification is explicitly men-
tioned to be mandatory in their treatment of the observer pattern.

4 This is only meaningful if the combined systems, like ✸(IA:=CA, IB:=CB), make no external
calls.

29

Call sequences can be specified using sequential and parallel composition as well
as conditionals. The local state change is indicated by a combination of postcondition
and place where the modification should be executed:

SetValue(Value val) {∆value; Notify();} [value==val]

This means that first, indicated by the ∆value, value should be set so as to satisfy the
postcondition, that is to val. This notation does not work if several changes with external
calls in-between should be made. For example, the following specification, presented
in our notation, can not be expressed in theirs:

SetTwoValues(Value val1, Value val2) {value=val1; Notify(); value=val2;}

Hence, their notation cannot satisfactorily be used to express the states in which ex-
ternal calls have to be made. Furthermore, no operation preconditions can be expressed.

Holland’s thesis [25] gives part of an operational semantics for an object-oriented
programming language and for interaction contracts. However, no semantic reasoning
is done. There is a notion of contract refinement to design specialized contracts; how-
ever, no clear semantic conditions are listed and the examples are such that not even
the state transformation aspect can be captured by any standard notion of data refine-
ment. No conditions for the correct implementation of specified call sequences and state
transformations is given. The notion of contract refinement is not applicable for prov-
ing implementation correctness, because there is a fundamental dichotomy between
contracts (specifications) and class implementations in their work. The OOram method
[47] partly expanded on these ideas, but does not solve the problems discussed in this
paper.

UML. Different kinds of diagrams from the Unified Modeling Language (UML) [49]
can be used to specify both state changes and call sequences. Sequence and collabora-
tion diagrams —collectively called interaction diagrams— show interactions of fixed
sets of objects, including the messages sent among them. The more common instance
form describes one actual sequence of message interchanges; thus, it is not appropri-
ate for general specifications. On the other hand, the generic form describes all possi-
ble sequences using loops and branches. Using loops, we can also indicate messages
sent to an a priori unknown set of objects, such as our observers. There is no nota-
tion to distinguish between mandatory and optional calls. The main focus of interac-
tion diagrams are the possible message sequences. State changes can be indicated by
placing a copy of an object icon showing those modifications. No invariants or oper-
ation preconditions can be expressed in collaboration diagrams. Thus no consistency
check (Sect. 4.1) is possible. Figure 19 shows the collaboration diagram approximating
ITextModel.deleteCharAt. UML does not prescribe a fixed format for repetition expres-
sions or state changes; hence, we use our own notation.

In our experience, interaction diagrams that make use of loops, branches, and ob-
ject icon duplication to express greybox specifications quickly become crowded and
unreadable. We are not aware of any use of interaction diagrams in the sense of greybox
specifications. Formal semantics for UML is still work in progress. Furthermore, UML
lacks a notion of refinement and, therefore, cannot be used to assert the correctness of

30

: ITextModel : ITextModel : ITextObserver

1: deleteCharAt(p) 1.1: «become»
text = text[0..pos-1]+text[pos+1..len(text)]

1.2 *[o in registeredObservers]:
deleteNotification(p)

Fig. 19. Collaboration Diagram for ITextModel.deleteCharAt

implementations based on UML diagrams. The object message sequence chart [11] and
the message sequence chart notations [26], from which UML sequence diagrams are
derived, have the same limitations.

Activity diagrams can also be used to model operations. They give flowchart-like
representations as used in visual programming languages. However, even the principal
authors of UML admitted that this is usually more cumbersome than a textual represen-
tation [8]. Furthermore, there is no clear notation to indicate external calls and activity
diagrams lack both a formal semantics and refinement rules.

Catalysis. Catalysis [20], a method specifically targeted at the development of com-
ponents and frameworks, contains several possibilities to indicate what external calls
must be made during the execution of a method. For most cases, the preferred way is to
use UML statechart diagrams. Statecharts show state machines that emphasize the flow
of control from state to state. Although state changes, external calls, conditionals, and
loops can all be encoded in the Catalysis version of statecharts, they are really meant
for higher levels of abstraction and, therefore, quite cumbersome to use for greybox-
like specifications. Catalysis does not provide a clear semantics and refinement rules
that preserve all relevant aspects.

Sequence expressions can express sequencing constraints on external method calls
using sequential composition, alternative, arbitrary iteration, and concurrency, but no
conditionals. Time indexes (e.g. x@i for the value of x at time i) can be used for pa-
rameters of calls in message sequences, but it is impossible to indicate in which states
external calls have to be made.

Catalysis differentiates between optional and mandatory calls. Unlike in our ap-
proach where this distinction is based on the kind of the called method, Catalysis lets
the specifier of the caller decide individually for every call. Catalysis lacks a formal
semantics and has only vague informal refinement rules for asserting the correctness of
an implementation.

No other surveyed method, such as Fusion and OOAD, gives a better grip on the
problem.

Algebraic specifications. Algebraic specifications suffer from the same deficiencies as
pre/post specifications. Consider the typical stack example. For stack s and element e,
s==pop(put(s, e)). Here we cannot specify what external method calls methods pop and
put must make.

31

Grey box data refinement. The terms greybox specification and refinement have been
coined by the authors of this article [10]. Boiten and Derrick later introduced the similar
names grey box data refinement and types for an unrelated form of data refinement [7].

11 Conclusions

Specification approaches that only relate the state prior to operation invocation to the
state after operation termination are insufficient to cope with call-backs in extensible
systems: The sequence of external calls and the respective states in which the latter
must be made cannot be specified. An encoding with auxiliary trace variables could
theoretically solve this problem. However, in practice such an encoding would be very
complex and almost unreadable.

Specifications that only relate pre- and post-operational states are called blackboxes.
As the other extreme, whitebox specifications contain all implementation details which
often makes them too restrictive. On the middle ground there are two possibilities. In
a discrete combination of the concepts, one can layer a whitebox on blackboxes. On a
continuous scale, we recommend a new method which we call greybox specification.

To specify external calls, we proposed component interface specifications to draw
on abstract programs rather than on pure blackbox views. Formally, this approach has a
sound basis in the refinement calculus. Practically, abstract programs are very close to
the programmers’ intuition. To increase acceptability further, we recommend to define
a greybox specification language as a natural extension of an implementation language.
In this paper we use such an extension of Java.

Greybox refinement preserves or refines the observable behavior of components.
Unlike in normal data refinement, external calls, and not just their state transformation
effect in the specification, are also considered part of the observable behavior. As a re-
sult, properties of component implementations beyond those in the specifications are
preserved when combined with other components into a system. The given refinement
rules can be used to establish the correctness of implementations with respect to speci-
fications. These rules can be used for fully formal reasoning and also give an intuition
for informal justifications.

Greybox specifications also have a number of ‘soft’ advantages [10]: They are (usu-
ally) shorter than source code, tend to be more readable than large postconditions —
even without trace encoding—, scale better, and allow to indicate enough detail for
resource-efficient reuse. Here, we have on purpose not discussed these advantages in
order not to distract from the fundamental problem solved by greybox specifications.

Acknowledgments. We would like to thank Ralph Back, Dominik Gruntz, Cuno Pfister,
Clemens Szyperski, Anna Mikhajlova, and Leonid Mikhajlov for a number of fruitful
discussions.

References

1. Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

32

2. Pierre America. Designing an object-oriented programming language with behavioral sub-
typing. In Foundations of Object-Oriented Languages, REX School/Workshop, pages 60–90.
LNCS 489, Springer Verlag, 1991.

3. Ralph Back. Correctness Preserving Program Refinements: Proof Theory and Applications,
volume 131 of Mathematical Center Tracts. Mathematical Centre, Amsterdam, 1980.

4. Ralph Back. Changing data representation in the refinement calculus. In 21st Hawaii Inter-
national Conference on System Sciences. IEEE Press, 1989.

5. Ralph Back and Joakim von Wright. Trace refinement of action systems. In CONCUR 94,
pages 367–384. LNCS 836, Springer Verlag, 1994.

6. Ralph Back and Joakim von Wright. Refinement Calculus: A Systematic Introduction.
Springer Verlag, 1998.

7. E.A. Boiten and J. Derrick. Grey box data refinement. In J. Grundy, M. Schwenke, and
T. Vickers, editors, International Refinement Workshop & Formal Methods Pacific ’98,
Discrete Mathematics and Theoretical Computer Science, pages 45–59. Springer-Verlag,
September 1998.

8. Grady Booch, Jim Rumbaugh, and Ivar Jacobson. Unified Modeling Language User Guide.
Addison-Wesley, 1998.

9. Martin Büchi and Emil Sekerinski. Formal methods for component software: The refinement
calculus perspective. In Wolfgang Weck, Jan Bosch, and Clemens Szyperski, editors, Pro-
ceedings of the Second Workshop on Component-Oriented Programming (WCOP), volume 5
of TUCS General Publication, pages 23–32, Short version in ECOOP’97 workshop reader
LNCS 1357, June 1997. http://www.abo.fi/˜mbuechi/publications/FMforCS.html.

10. Martin Büchi and Wolfgang Weck. A plea for grey-box components. Technical Re-
port 122, Turku Center for Computer Science, Presented at the Workshop on Founda-
tions of Component-Based Systems, Zürich, September, 1997. http://www.abo.fi/˜mbuechi/
publications/GreyBoxes.html.

11. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture – A System of Patterns. John Wiley & Sons, 1996.

12. Ana Cavalcanti and David A. Naumann. A weakest precondition semantics fo an object-
oriented language of refinement. In Proceedings of FM’99: World Congress on Formal
Methods, pages 1439–1459. LNCS 1709, Springer Verlag, September 1999.

13. Marsha Chechik and John Gannon. Automatic analysis of consistency between requirements
and designs. In Proceedings of COMPASS’95, pages 123–132, 1995.

14. D.D. Clark. Structuring a system using up-calls. In Proceedings of the 10th ACM Symposium
on Operating System Principles (SOSP), ACM Operating System Review, 19(5), pages 171–
180, 1985.

15. Derek Coleman et al. Object-Oriented Development: The Fusion Method. Prentice Hall,
1994.

16. E.H. Dürr and J. van Katwijk. VDM++ — a formal specification language for object-oriented
designs. In Computer Systems and Software Engineering, Proceedings of CompEuro’92,
pages 214–219. IEEE Computer Society Press, 1992.

17. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented Proof Meth-
ods and Their Comparison. Cambridge Tracts in Theoretical Computer Science, No. 47.
Cambridge University Press, 1998.

18. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static
checking. Technical report, Compaq SRC Research Report 159, 1998.

19. Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through specifi-
cation inheritance. In Proceedings 18th International Conference on Software Engineering,
pages 258–267. IEEE Press, 1996.

20. Desmond F. D’Souza and Alan Cameron Wills. Objects, Components, and Frameworks with
UML: The Catalysis Approach. Addison Wesley, 1998. http://www.catalysis.org.

33

21. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

22. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison Wesley,
1996.

23. Object Management Group. The common object request broker: Architecture and specifica-
tion, 1997. Revision 2.0, formal document 97-02-25, http://www.omg.org.

24. Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: Specifying behav-
ioral compositions in object-oriented systems. In Proceedings of OOPSLA/ECOOP ’90,
pages 169–180, 1990.

25. Ian M. Holland. The Design and Representation of Object-Oriented Components. PhD
thesis, Northeastern University, 1993.

26. International Telecommunication Union. Z.120: Message sequence chart (MSC), October
1992. http://www.itu.int.

27. R. Janicki, D.L. Parnas, and J. Zucker. Tabular representations in relational documents.
In C. Brink, W. Kahl, and G. Schmidt, editors, Relational Methods in Computer Science
(Advances in Computing Science), chapter 11, pages 184–196. Springer Verlag, 1997. Also
as CRL Report 313, McMaster University.

28. Cliff B. Jones. Systematic Software Development Using VDM. Prentice Hall International,
1986.

29. G.E. Krasner and S.T. Pope. A cookbook for using the Model-View-Controller user interface
paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3):26–49, 1988.

30. Gary T. Leavens. An overview of Larch/C++ behavioral specifications for C++. In Haim
Kilov and William Harvey, editors, Specification of Behavioral Semantics in Object-Oriented
Information Modeling, pages 121–142. Kluwer Academic Publishers, 1996.

31. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06d, Iowa State University,
Department of Computer Science, April 1999.

32. Barbara H. Liskov and Jeanette M. Wing. A behavioral notion of subtyping. ACM Transac-
tions on Programming Languages and Systems, 16(6):1811–1841, November 1994.

33. Bertrand Meyer. Applying ‘design by contract’. IEEE Computer, 25(10):40–51, October
1992. See also http://www.eiffel.com/doc/manuals/technology/contract/index.html.

34. Bertrand Meyer. Eiffel: The Language. Prentice Hall, second edition, 1992.
35. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, second edition,

1997.
36. Leonid Mikhajlov, Emil Sekerinski, and Linas Laibinis. Developing components in the pres-

ence of re-entrance. In Proceedings of FM’99: World Congress on Formal Methods, pages
1301–1320. LNCS 1709, Springer Verlag, September 1999.

37. Anna Mikhajlova. Ensuring Correctness of Object and Component Systems. PhD thesis,
Turku Centre for Computer Science, October 1999. http://www.tucs.fi.

38. Anna Mikhajlova and Emil Sekerinski. Class refinement and interface refinement in object-
oriented programs. In Proceedings of FME’97: Industrial Applications and Strengthened
Foundations of Formal Methods, pages 82–101. LNCS 1313, Springer Verlag, 1997.

39. Anna Mikhajlova and Emil Sekerinski. Ensuring correctness of Java frameworks: A for-
mal look at JCF. Technical Report 250, Turku Center for Computer Science, March 1999.
http://www.tucs.fi.

40. Carroll Morgan. Programming from Specifications. Prentice Hall, second edition, 1994.
41. Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall Series in Innova-

tive Technology, 1991.
42. Oberon microsystems, Inc. BlackBox Component Builder, 1997. http://www.oberon.ch/.
43. Oberon microsystems, Inc. Component Pascal, 1997. http://www.oberon.ch/docu/

component pascal.html.

34

44. David Lorge Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM, 15(12):1053–1058, December 1972.

45. David Lorge Parnas. A technique for software module specification with examples. Com-
munications of the ACM, 15(5):330–336, May 1972.

46. The RAISE Language Group. The RAISE Specification Language. Prentice Hall, 1992.
47. Trygve Reenskaug, Per Wold, and Odd Arild Lehne. Working with Objects: The OOram

Software Engineering Method. Manning, 1995.
48. Dale Rogerson. Inside COM. Microsoft Press, 1996.
49. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Refer-

ence Manual. Addison-Wesley, 1999.
50. J.M. Spivey. The Z Notation. Prentice Hall, second edition, 1992.
51. Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, third edition, 1997.
52. Petri Suni. Grey-box specification seems to work — a case study. LuK-tutkielma, University

of Turku, Department of Computer Science, 1999.
53. Clemens A. Szyperski. Component Software – Beyond Object-Oriented Programming.

Addison-Wesley, 1997.
54. S. Tucker Taft and Robert A. Duff, editors. Ada 95 Reference Manual: Language and Stan-

dard Libraries (International Standard ISO/IEC 8652:1995(E)). LNCS 1246, Springer Ver-
lag, 1997.

55. Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language : Precise Modeling
With UML. Addison-Wesley, 1999.

56. Niklaus Wirth. Programming in Modula-2. Springer Verlag, 1982.
57. Niklaus Wirth. The programming language Oberon. Software – Practice and Experience,

18(7):671–690, 1988.

35

Paper IV

Compound Types for Java

Martin Büchi and Wolfgang Weck

Originally published in: Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA) ’98, pages 362–373. ACM
Press, 1998.2

Reproduced with permission.

2This paper has been reformatted for the different page size.

Compound Types for Java

Martin Büchi and Wolfgang Weck

Åbo Akademi University, Turku Centre for Computer Science,
Lemminkäisenkatu 14A, FIN-20520 Turku

Martin.Buechi@abo.fi, Wolfgang.Weck@abo.fi

Abstract. Type compatibility can be defined based on name equivalence, that
is, explicit declarations, or on structural matching. We argue that component
software has demands for both. For types expressing individual contracts, name
equivalence should be used so that references are made to external semantical
specifications. For types that are composed of several such contracts, the struc-
ture of this composition should decide about compatibility.
We introduce compound types as the mechanism to handle such compositions.
To investigate the integrability into a strongly typed language, we add compound
types to Java and report on a mechanical soundness proof of the resulting type
system.
Java users benefit from the higher expressiveness of the extended type system. We
introduce compound types as a strict extension of Java, that is without invalidating
existing programs. In addition, our proposal can be implemented on the existing
Java Virtual Machine.

1 Introduction

One of several reasons to use Java is its support of component-oriented programming,
the creation of compiled building blocks to be used in different contexts, and the assem-
bly of systems from such components. JavaBeans [34], Java’s component model, com-
petes with other component software standards, such as CORBA [13] and Microsoft’s
COM [32], but the language itself may also be used to program to these language inde-
pendent standards.

Type systems, such as Java’s, help to document and safeguard component interfaces.
By annotating inter-component call parameters with types, one provides some primitive
documentation on how to use a service and at the same time expresses a statically
checkable precondition: the object passed must implement certain methods, as stated
by the type.

Explicitly declared and named types can stand for contracts about services. The
behavioral specification is documented separately and linked to the type via the name.
A compiler can, of course, not check compliance with such a specification, but it can
verify that references to the same types, and intentionally the same contracts, have been
made. Explicitly stated contracts are particularly important in the component software
realm [35].

Frequently, classes need to conform to more than one contract. For instance, Mi-
crosoft’s OLE [6] defines ActiveX control containers via a bundle of contracts to be

1

implemented. Java supports multiple subtyping to this end. Similarly, one may want
to declare variables or method parameters of a type comprising several contracts. This
is not supported to the same degree by Java. On a first glance it may seem to be no
problem because one only would have to declare the right subtype. We will demon-
strate, however, that this may not be possible with independently developed software
components.

This problem is explained in Sect. 2. In Sect. 3 we take the problem to its root, the
question whether type compatibility is being decided by name equivalence or structural
match. We will show that we need a mixture of both, and therefore, we propose com-
pound types in Sect. 4.1 In Sect. 5 we show how to add compound types to Java. They
are a strict extension, that is, existing Java programs need not be changed. This also
holds for the run-time support, the byte code and the virtual machine in particular. We
illustrate the latter in Sect. 6. In Sect. 7 we report on a mechanically verified sound-
ness proof for the extended type system. Section 8 relates to other work and Sect. 9
summarizes our conclusions.

2 The Problem

The problem with Java’s type system is explained in this section. In 2.1 we briefly re-
view the relevant aspects of Java’s type system. In the second subsection, we introduce
the essentials of component software, the domain in which the problem mainly surfaces.
With these preliminaries we show that it may be impossible to sharply type a param-
eter to demand a specific combination of interfaces, so that existing or independently
developed classes need not be modified to be compatible.

2.1 Java’s type system

An essential ingredient of object-oriented programming and component software is
polymorphism. In Java, subtyping relationships can be declared in three ways: a class
can subclass another class, a class can implement an interface, and an interface can
extend another interface. Subclassing provides for code inheritance in addition to sub-
typing, whereas interfaces are pure types, that is, no code is attached to them. Typically,
multiple subtyping needs less extra conflict resolution rules than multiple subclassing.
Thus, Java’s designers decided that a class can have only a single direct superclass but
implement several interfaces. Because a class without an explicitly declared superclass
implicitly inherits from a predefined class Object, every class —except Object— sub-
types exactly one class directly and an arbitrary number, possibly zero, of interfaces, as
illustrated in Fig. 1.

If a class C is declared to implement an interface I, all methods defined by I exist in
C, too. Thus, it is type-safe to assign instances of class C to variables of type I.

We have to take a closer look at the situation in which a class C implements several
interfaces, say I and J, that both declare a method with the same name, m. If I and J both

1 The compound types defined in this paper are not to be confused with structured types (records,
arrays, functions), which are sometimes also called compound types.

2

interface I

class C

class B interface J

class C extends B implements I, J { ... };

Fig. 1. A class extending a base class and implementing two interfaces

declare m with exactly the same signature and return type, C defines m only once and
binds this to both interfaces. If the parameter lists differ, Java’s overloading mechanism
takes care of the situation. Both versions exist within C and upon a call the one with
the best fitting signature is selected.2 The case in which the parameter lists are equal
but the return types differ is not permitted by the overloading rules. Consequently, the
compiler rejects the declaration of C if I and J conflict in this way.

Subtyping relations can also be established between interfaces. An interface I can
be declared to extend other interfaces J0, . . ., Jn. A class implementing I, implicitly im-
plements all interfaces J0, . . ., Jn, but not vice versa. Interfaces cannot subtype (extend)
classes.

Whereas subclassing is basically a mechanism for code reuse, multiple subtyping
offered via interfaces can be used to express different aspects of objects. For instance,
a class D of objects being an applet, runnable in a separate thread, and wanting to
be informed of changes in observable objects, would subclass the class Applet and
implement the interfaces Runnable and Observer.

These combinations are stated without the need to declare a new type first. The class
D automatically constitutes such a new type of its own. Another class, E, also extending
Applet and implementing the same interfaces as D, establishes a new type too, but a
different one. Java uses name equivalence of types, that is, two types are compatible
only if declared so. With classes D and E being declared as separate types, instances
of one cannot be assigned to variables of the other’s type. Figure 2 summarizes the
discussed aspects of Java’s type system.

– code inheritance via single subclassing
– multiple subtyping via interfaces (without code inheritance)
– conflict resolution (partially) via overloading
– only types declared to be compatible are compatible (name equivalence)

Fig. 2. Relevant aspects of Java’s type system

2 This may not be decidable, in which case an error is flagged, as defined by Java’s rules about
overloading.

3

2.2 Component software

One purpose of using object-oriented technology is to create building blocks to be used
in several systems. To support such building blocks, Java features, for instance, separate
compilation of classes and bundling of related classes as packages.

Component software tries to move the idea of building blocks to an industrial scale.
Like in other engineering disciplines, software systems shall be assembled from pre-
manufactured components rather than crafted individually by hand. This is an old idea,
dating back to the NATO conference on software engineering in 1968 [22]. In 1990
Brad Cox even advocated an industrial revolution in the software realm [10], observing
that software components are not just a technological issue but a cultural one as well.
In particular, as also stressed in a recent book by Clemens Szyperski [35], the true po-
tential of component software comes from establishing component markets. If system
assemblers can acquire individual components from several vendors, they can actually
combine the many special skills, ideas, and inventions each vendor has to offer. The
number of possibly interesting combinations grows rapidly as vendors can join an open
market to offer components in the field of their special competence.

An example, frequently used to illustrate this, are spell-checking components that
can be composed with a text editor to provide for in-place checking and correction.
For instance, a vendor with special competence in linguistics and a specific language,
Finnish, offers an add-on spell checker [18] to be used with Microsoft Word. Offering a
component rather than a complete word processor allows the company to concentrate on
what their staff is good at. Also, the market for Finnish language checkers is probably
not extremely large and may not give enough revenue to finance the construction of a
competitive editor.

Furthermore, Microsoft’s editor serves as an integration platform with other add-
ons offered by further vendors. For instance, a user requiring not only well performed
checking of Finnish but also needing to include some special type of diagrams into doc-
uments, may not find an of-the-shelf program with this particular feature combination.
Custom programming of such a system would be too expensive in most cases, but a
custom assembly from standard components may be achievable at a reasonable price.
Because of this, component software is also described as a path between standard and
custom software [29].

Using industrial components as described above has two requirements. Firstly, using
a premanufactured component must be easy enough, compared to programming it from
scratch, to balance the cost of acquiring it. Otherwise, component reuse is simply not
going to happen because system development costs would increase instead of decrease.

The most inexpensive way to compose components is by plug-and-play. This means
that neither the components need to be adapted nor any programming is required to glue
the components together. The problem may not even be the programming itself, but the
required reengineering and detailed understanding of the components or at least their
interfaces. Plug-and-play in turn may sometimes be left to the end user. Netscape’s
Communicator Plug-Ins [7] are an example of this.

As a second requirement, vendors must be able to produce compatible components
despite being mutually unaware. Considering a large component market, it is impossible
to demand any vendor to know about all other products and to adapt to them.

4

Component
Market

Vendor A Vendor B

Second Phase :
independent vendors
manufacture components

System Assembler

Third Phase :
assemblers select and
plug components

First Phase :
standardized contracts
define common reference
for component vendors

Fig. 3. The three phases of component-oriented programming

It seems, as if the latter requirement of independent component development would
contradict the former requirement of plug-and-play, but fortunately this is not the case.
Component vendors cannot be expected to synchronize their work with each other, but
they can build on common standards. If the latter are properly designed, the indepen-
dently produced components will still interoperate in a plug-and-play manner.

It is not sufficient, however, to use a common wiring (or plumbing) standard, such
as COM, CORBA, or a specific programming language, such as Java. These standards
only define the calling conventions for procedures or methods respectively. In addition,
component plug-and-play requires application domain dependent standard contracts,
specified both syntactically and semantically.

The three phases of creating component systems are shown in Fig. 3, omitting feed-
back loops, which drive the evolution of standards and components. During the first
phase, different standard interfaces are designed and described in public. In the second
phase, vendors program towards these standards and place the resulting components on
the market. In the third phase, finally, system assemblers select and acquire components
from the market and plug them together. Note, that assemblers do not need to analyze
what a standard interface actually specifies. It suffices to know that two components
refer to a common standard.

In Java, types are used to support standard contracts. By types we understand both
classes and interfaces. Like a plug-and-play system assembler, the loader can check
that two components refer to the same type(s) and are thus compatible. A type’s name

5

designates the standard. The full behavioral specification associated with it must be
stated outside the language in the documentation for component manufacturers.

2.3 A scenario exemplifying a problem with Java

The following example describes a situation that cannot be properly handled by Java’s
type system. We assume two different and independent standards, which have come
into existence entirely unrelated. One of them defines an interface Text, describing op-
erations, such as insertion and deletion of characters. We also assume a transformation
function which converts text positions to pixel positions. The second standard defines a
compound document framework, like OLE [6], including an interface Container to be
implemented by all objects that may act as compound document containers. The latter
must support insertion and removal of document parts. Figure 4 shows portions of these
two interfaces in Java.

Both standards form individually useful frameworks. Vendors can build components
for either of them. The problem comes with the wish to create components that build
on both standards simultaneously. In our example, this would be components that deal
with both texts and containers.

In object-oriented programming, combining independently emerged frameworks
has been described as an open problem [21]. This is not a problem with component
software, where components just implement standard interfaces but do not reuse code
from the framework. A component can implement several interfaces belonging to dif-
ferent standard collections. (A common plumbing standard, for instance Java, is still
helpful but not strictly necessary.)

Figure 5 shows portions of two sample classes, TextContainerA of Vendor A and
ContainerTextB of vendor B, both implementing the interfaces Text and Container of
our sample standards. These classes exhibit a little nuisance. To insert a document part

/* as part of a text framework: */
public interface Text {

void insert (char ch, int textPos);
/* insert character ch at position textPos */
. . .
java.awt.Point displayPoint (int textPos);
/* returns the display position at which the character at textPos is drawn */
. . .

};

/* as part of a compound document framework: */
public interface Container {

void insertPart (DocPart part, java.awt.Point xyPos);
. . .

};

Fig. 4. The standard interfaces Text and Container

6

/* Vendor A’s component: */
public class TextContainerA implements Text, Container {. . .};

/* Vendor B’s component: */
public class ContainerTextB implements Text, Container {. . .};

Fig. 5. Classes offered by vendors A and B

one has to pass the graphical coordinates because the container interface must be used.
One may prefer to give a text position and have the part inserted after the corresponding
character. For this purpose, a generic service can be implemented that maps the text
position to a display position and then inserts the document part there. We assume that
a Vendor C wants to offer this service within a class LibraryServices. Figure 6 shows
part of this class and Fig. 7 illustrates that whole scenario.

Vendor C’s library service works only for instances of classes that implement both
interfaces Text and Container. Unfortunately, this cannot be expressed by the type of
parameter into, as the question mark in Fig. 6 indicates.

The obvious solution is to create a combined interface TextContainer, which ex-
tends both Text and Container and does not add or hide anything, and to declare pa-
rameter into of this type. However, instances of neither TextContainerA nor Contain-
erTextB are compatible with the library service, as they are both declared to implement
only the base interfaces but not the combined interface TextContainer. The problem
is who is to define the interface TextContainer to be used by all parties? It is not part
of either of the two frameworks because they are assumed to be independent. If one
of the vendors A, B, or C defines TextContainer, the others would be obliged to use
this definition. This contradicts mutual unawareness postulated for component software
vendors. On the other hand, if all three vendors declare their own combined interfaces,
they are not compatible either.

The problem can be partly tackled by conventions. A class never implements more
than one interface directly; an interface never extends any of its superinterfaces by more
than one base interface. Instead, combined interfaces named as concatenation of the
fully qualified names of the two direct superinterfaces in alphabetical order are intro-
duced into a package CombinedInterfaces. In our example, all three vendors would
create and use interface com X Text com Y Container, assuming that Text is part of

public class LibraryServices {
public static void insertDocPart (DocPart part, ? into, int textPos) {

/* the question mark stands for a type saying that interfaces
Text and Container must be implemented */
into.insertPart(part, into.displayPoint(textPos));

}
};

Fig. 6. Vendor C’s library services

7

Component
Market

Vendors A and B create texts
which are also containers

Vendor C creates a service working
with objects implementing interfaces
Containers and Texts

Assembler wants
to compose A's
objects with C's
service

Standard Interface Text
(part of a text framework)

Vendor X creates a
container, which is
not a text

Standard Interface Container
(part of a compound

document framework)

Fig. 7. Independent development of classes and insertion service

standard X and Container of Y. The system assembler then deletes all but one of the
equivalent definitions. Unfortunately, this renders plug-and-play less feasible.

Furthermore, the conventions-based approach suffers from the combinatorial explo-
sion of the number of interfaces. For the combination of three interfaces, the three pair
interfaces have to be created and the combined interface has to be defined as the ex-
tension of all three pair interfaces as to make its implementations compatible with the
pair interfaces as well. The overhead of this solution and, herewith, the pollution of the
name space grows exponentially with the number of combined interfaces. Furthermore,
legacy classes that do not abide by this convention are left out.

Finally, this approach fails completely, if we try to combine three or more types one
of which is a class. Assume that we have a class C and interfaces I and J. According
to the above convention, this would give us the abstract classes CI and CJ as well
as the combined interface IJ. For classes implementing all three types C, I, and J to
be compatible with the three pair types CI, CJ, and IJ, the triple type would have to
extend all three pair types. This, however, is impossible because Java does not support
multiple class inheritance. We can define a class D which extends CJ and implements
IJ, but instances of D —or D’s subclasses— cannot be assigned to variables of type CI

8

impossible: not single
inheritance anymore!

interface I

class CJ

class D

class C

class CI

interface J

interface IJ

Fig. 8. Impossibility of compatibility with all subsets of supertypes

(Fig. 8). Java does not permit us to declare a class to be compatible with all subsets of
its supertypes. This is an additional problem, not bound to component software.

As a different approach, we can resort to run-time tests and textual annotations. We
declare parameter into of InsertDocPart (Fig. 6) to be of type Text, add a comment
that it must also implement Container, and cast the parameter’s value to Container
when accessing the latter’s members. In this approach, we loose static type checking.

Yet another possibility would be to use two parameters, one of type Text and one of
type Container and require them to reference the same object. Again, we need a less
desirable run-time test instead of compile-time type checking.

3 Structure vs. Name Equivalence of Types

The problem described above can be attributed to Java’s use of name equivalence of
types. Types are compatible only if explicitly declared so. A radical cure would be to
use structure equivalence instead, as for instance proposed in [16]. All types that look
alike would be considered compatible in this case. From the modeling perspective of
object-oriented programming, however, name equivalence is more expressive. In this
section we review the advantages of both structural and name equivalence, before we
introduce compound types as a beneficial combination of these two in the next section.

3.1 Structure equivalence of types

With structure equivalence, any two types containing methods and fields with the same
names and signatures are equivalent. Likewise, subtyping is based on structure. A type
T is assumed to be a subtype of another type S if T contains at least all the methods and
fields contained in S. This is the principle; there are more elaborated rules, for instance,
allowing for co- or contravariant parameters.

The goal is an as big as possible type matching relation and, therefore, a maximum
of flexibility. Types and the relations between them may even be inferred automatically
by the compiler and thus need not be declared explicitly by the programmer.

9

If Java would use structure equivalence between types, the problems described in the
previous section would not exist. Vendor C could define a combined interface TextCon-
tainer, extending Text and Container and use this to type the parameter into. As both
implementations TextContainerA and ContainerTextB contain (at least) all methods
named in TextContainer, they would be structural subtypes of TextContainer and,
thus, compatible with the library service.

The fundamental purpose of a type system is to prevent the occurrence of run-
time errors [4]. On a quasi syntactical level structural type equivalence suffices. Types
prevent, for instance, ‘method not understood’ and memory access violation errors that
could occur if, for example, an integer could be assigned to a pointer.

3.2 Name equivalence of types

When using objects as a modeling aid, we would like to eliminate errors beyond those
covered by structural type equivalence. Whenever an object of a specific type is re-
quired, say as a parameter, we actually intend to require a specifically behaving object.
Behavioral subtyping [19] and class refinement [24] formalize this idea of behavior
associated to types and of subtypes having to refine the behavior of their supertype(s).

From this point of view, types stand for semantical specifications. While the confor-
mance of an implementation to a behavioral specification cannot be easily checked by
current compilers, type conformance is checkable. By simply comparing names, com-
pilers can check that several parties refer to the same standard specification (Fig. 9).

Similarly, Microsoft’s COM [32] uses interface identifiers (IIDs) to give each in-
terface its own ‘name.’ IIDs become, like numbers of ISO standards, abstractions of
specifications.

Consider also the analogy to the well-established component market for mass stor-
age with its interface standards such as SCSI, IDE, etc. The buyer of a new hard drive
simply ensures that she buys a SCSI drive, if that is what it says on her disk controller.

Text

class X implements Text bool parse (Text t)

compiler checked

intended

Standard Specification

intended

Fig. 9. Compiler checked reference to same standard specification

10

For her, the term SCSI represents a common reference made by the manufacturers of
the controller and the drive.

The buyer would not be served well, if she would simply shop for a hard disk with
matching mechanical connectors, as a drive that adheres to another, incompatible logi-
cal signaling standard might also fit this criterion.

In the same way, even if the projections of two unrelated semantical specifications
by coincidence result in the same structure, the two should not be considered equal.
As an extreme example of such accidental matches, borrowed from [20], consider two
classes: Rectangle with operations Move and Draw and a class Cowboy with opera-
tions Move, Draw, and Shoot. Looking only at the structure, Cowboy is a subtype of
Rectangle.

This can be ruled out only by forcing programmers to be explicit about their inten-
tions. In other words, type equivalence and subtype relations must be declared rather
than be inferred.

To this purpose, several languages use name equivalence. They consider two types
compatible only if the declaration of either type explicitly refers to the name of the
other. Java is one example. Modula-3 [5] uses structural type equivalence by default, but
allows the programmer to explicitly demand name equivalence by assigning a unique
brand to a type.

4 Compound Types

Both structural and name equivalence offer benefits as discussed above. Structure equiv-
alence gives more flexibility when composing software, name equivalence allows pro-
grammers to better express their intentions. To combine these advantages, we introduce
a light-weight construction to explore the middle ground between exclusive use of struc-
ture or name equivalence: compound types.

To begin with, let us analyze the respective advantages of name and structure equiv-
alence in the context of our initial example of TextContainers introduced in Sect. 2.3.
Name equivalence allows us to explicitly state that objects compatible with interface
Text are supposed to adhere to the respective specification, in our example partially
provided in the form of comments. A similar statement holds with respect to interface
Container. Structure equivalence, on the other hand, would allow us to type the service
defined in Fig. 6 more reasonably.

The behavioral specification of that service refers to the two specifications asso-
ciated with the types Text and Container, not just to the union of the methods and
fields defined by these types. In the service’s implementation, this shows whenever the
parameter into is used as if being of the (behavioral) type Text or Container.

We call a type that combines the behavioral specifications of several other types the
compound type of these. In the following, we denote a compound type as a list of its
constituent types in square brackets. In our example, the service’s parameter into would
be typed as [Text, Container].

Neither in a language based only on structure equivalence nor in one using only
name equivalence such a type can be expressed. With structure equivalence more types
than wanted would be compatible because of possible accidental, purely syntactical

11

name equivalence:
all types declared

to implement
TextContainer

desired type CT:
all types declared to
implement Text and

Containers

structural equivalence:
all types containing the

same methods as
TextContainer

Fig. 10. Type compatibility with name equivalence, structure equivalence, and compound types

matches. With name equivalence, different types declared with the same constituent
types remain incompatible. Fig. 10 visualizes the different sets defined when using
name equivalence, structure equivalence, and compound types.

Compound types, composed from the same behavioral types can be treated as equal
even with respect to behavioral specification. Any type subtyping both Text and Con-
tainer, such as TextContainerA, must respect both semantical specifications at the
same time. Consequently, it can be safely cast to either of its constituent types and
therefore it is compatible with the corresponding compound type [Text, Container].

We conclude that type equivalence of compound types can and should be defined
based on the structure of the composition. We thus speak of structure equivalence
of compositions of name equivalent types. Compound types combine the best of two
worlds.

Using compound types, we can solve our typing problem of the parameter into
from Fig. 6. We give it the type [Text, Container]. Since both classes TextContainerA
and ContainerTextB implement the two constituent interfaces Text and Container, in-
stances of them can be passed as actual parameters to the library service. Variable into
having all members of its constituent interfaces, the required method calls can be made
without any additional casts or run-time validity tests. Thanks to the combination of
structural and name equivalence, instances of other classes that just happen to declare
methods with the same names and signatures as Text and Container, rather than imple-
ment the two interfaces, are rightfully rejected at compile time as values for parameter
into. Figure 11 illustrates the subtype relationships, omitting transitive arrows.

Compound types also solve the other typing problem pointed out in Sect. 2.3 and
illustrated in Fig. 8. Java’s type system does not allow a programmer to declare a class
that is assignment compatible with all subsets of extended, respectively implemented
types, if the class implements more than one interface and does not have Object as its
direct superclass. Consider now the case with compound types. Let class G extend class
C and implement interfaces I and J. Instances of G can be assigned to variables of types
C, I, J, [C, I], [C, J], [I, J], and [C, I, J].

12

[Text, Container]

TextContainer

Text Container

TextContainerA ContainerTextB
Dotted relationships
do not hold!

Fig. 11. Subtype relationship (transitive arrows omitted)

Compound types have underpinning in the theory of intersection types ([9, 33], see
[30] for a recent overview). The intersection of two types S and T is the type of all ele-
ments belonging to both S and T. The new idea is to use defined types, which represent
behavioral specifications, rather than the members of these types as atoms.

To mark this specific choice of atoms and to emphasize the intuition of combining
specifications, rather than that of intersecting sets of possible values, we have decided
to use the new name compound type.

5 Compound Types in Java

In this section we discuss a number of details showing how compound types are inte-
grated into Java. We investigate the conditions for well-formedness and a number of
interesting properties.

We define compound types in Java as anonymous reference types. A compound type
is a direct extension of a set of interfaces and a non-final class, collectively referred to as
constituent types. The members (methods, fields) of a compound type are the members
of its constituent types with their respective accessibility. The compound type does
not add any additional members, redefine any members, or hide any constants. If no
constituent class type is explicitly given, Object is implicitly assumed acknowledging
that any reference type can be converted to Object by assignment conversion.

Compound types can be used as parameter types, variable types, return types of
methods, cast operators, and operands of the instanceof operator. They are not permit-
ted in the extends or implements clauses of interface and class declarations.

A variable, the declared type of which is a compound type, may have as its value a
reference to an instance of a class declared to extend the constituent class and implement
the constituent interfaces, or the value of the variable may be null. In other words, the
legal values of a variable, the declared type of which is a compound types, are those
that could also be assigned to variables of all constituent types of the variable’s type.

Compound types are written as comma separated lists delimited by square brackets.
The order of constituent types is not relevant, e.g., [Text, Container] and [Container,
Text] denote the same type.

13

As a guiding principle, a compound type [C, I1, I2, . . ., In] is well-formed, if the
abstract class definition abstract class D extends C implements I1, I2, . . ., In
{}, where D is a fresh name, would be acceptable in the same package. Thus, no two
constituent types may define a method with the same name and signature but different
return types.

If the rare and, therefore, comparatively minor problem of method clashes were
solved in the Java base language, e.g., by qualified names, it would also automatically
disappear for compound types.

Including more than one class type is pointless, as no compatible objects could ever
be created in Java’s single class inheritance system, unless the classes are in a subclass
relationship. For simplicity and consistency, we do not allow more than one class to be
included.

On the other hand, coherence with Java’s design principles dictates that both an
interface and one of its superinterfaces may be included. Assume that TrivText is a su-
perinterface of Text. Then, instances of TextContainerA and ContainerTextB can also
be assigned to variables of type [Text, Container, TrivText] as their classes indirectly
also implement TrivText. However, [Text, Container] and [Text, Container, TrivText]
do — due to an in our opinion unfortunate feature of Java — not denote the same type.
In Java interfaces may shadow constants defined in their superinterfaces. Let TrivText
define a constant int k = 21 and Text shadow it by defining boolean k = true. Then
a.k denotes the boolean expression true for a of type [Text, Container], but is ambigu-
ous for a of type [Text, Container, TrivText]. In the latter case, a qualification such as
Text.a.k would be required. Including an interface that is already implemented by the
constituent class is analogous. As in a class declaration, the same interface may not be
included more than once in a compound type.

We have introduced compound types as anonymous types only. They could, how-
ever, also be given names for documentation purposes. Of course, partially structure
equivalence as described above would also apply to the named variant. A named com-
pound type would only be visible where all its constituting interfaces are visible.

The changes we propose to Java’s language specification [12] can be found in [3,
Appendix].

6 Emulating Compound Types on the Virtual Machine

Our proposed extension requires modifications of the Java compiler, but programs with
compound types can be executed on an unchanged virtual machine [17]. The latter is
significant because many of the security and portability properties of Java are tied to the
virtual machine, as remarked by Agesen et al. [1].

There are —at least— two ways of emulating compound types. Both of them are
hinted at in Sect. 2.3. One idea is to use one of the constituent types in place of the
compound type and to employ explicit casts to access members of the other constituent
types. Most of these casts require run-type validity checks. However, if the byte-code
has been generated by a correct compiler all these casts will always succeed at run time,
as they have already at compile time been proven correct.

14

These superfluous run-time tests are also needed when using current Java as only
one of the constituent types can be asserted statically. Removing unnecessary tests auto-
matically requires a flow analysis of the complete system. Already expensive for closed
systems, this is entirely impossible for extensible systems that by definition are never
complete.

Thus, the use of compound types on an existing virtual machine without any adap-
tation does not incur any performance penalty over a solution in current Java. Rather,
if the virtual machine would be adapted to support compound types, a performance
increase over the state-of-the-art would result.

The other way is to use multiple variables, one for each constituent type. These
variables all contain the same value but have different types. The compiler takes care
that the variables are changed in lockstep; a run-time check that all refer to the same
object is not necessary. This solution also comes with some overhead in space and time
compared to an adapted virtual machine, but it is as efficient as a solution in current
Java.

The result of the instanceof expression E instanceof [C, L1, L2, . . ., Ln] is true if
the value of E is not null and the reference could be cast to [C, L1, L2, . . ., Ln] without
raising a ClassCastException. Let o be a fresh variable of type Object. Then

E instanceof [C, L1, L2, . . ., Ln]
≡ (o=E) instanceof C && o instanceof L1 && . . .

&& o instanceof Ln

In spite of the emulation option on the existing virtual machine, compound types
cannot be mapped to plain Java without loosing static safety on the language level.

7 Type Soundness

In this section, we report on a mechanically verified formal proof of type soundness of
Java with compound types. Type soundness intuitively means that all values produced
during any program execution respect their static types. An immediate corollary of type
soundness is that method calls always execute a suitable method, that is, there are no
‘method not understood’ errors at run time. Type soundness is not a trivial property,
especially for polymorphic languages [2, 4]. It came to prominence with the discovery
of the failure of its application to older versions of Eiffel [8, 23].

Our proof of type soundness for compound types is based on the work of von Ohe-
imb and Nipkow [36], a much extended version of [26], in which they have formalized
and proved type soundness of a large subset of Java. They verified the proof mechani-
cally with the theorem prover Isabelle/HOL [27].

To this formalization, we added compound types as reference types, appended the
widening and casting relations with compound types, and defined the members of the
latter. Finally, we adapted the proofs and ran them through Isabelle/HOL.3 The defini-
tion of compound types adds 131 lines to the existing 1371 lines, approximately 10 %.

3 At http://www.abo.fi/˜mbuechi/publications/CompoundTypes.html the Isabelle theories are
available.

15

Here, we present the extensions to the widening and casting relations, which are
interesting in their own rights. A full report of all the mechanical details is beyond the
scope of this paper.

The Java language specification introduces identity and irreflexive widening con-
versions separately. Since in all conversion contexts permitting widening identity con-
versions are possible as well, the two are merged in the formalization. The expression
Γ � S � T says that in program environment Γ objects of type S can be transformed
to type T by identity or widening conversion. In particular, expressions of type S can
be assigned to variables of type T and expressions of type S can be passed for for-
mal parameters of type T . Widening can be understood as a syntactic, declared form
of subtyping.4 Unlike subtyping in most type theoretic frameworks, the Java language
specification does not say that widening is transitive. Hence, transitivity is a proved
property rather than an axiom.

We use the following naming conventions:

C,D classes M,L sets of interfaces
I,J interfaces S,T arbitrary types
R reference type Γ program, environment

Likewise, Γ �C≺cD expresses that C is a subclass of D, Γ �C ❀ I that class C im-
plements interface I, and Γ� I≺iJ that I is a subinterface of J. Furthermore, is type Γ T
expresses that T is a legal type in Γ, RefT R denotes reference type R, and NT stands
for the null type. With this, we can express the following two typing judgments, which
are also applicable to compound types:

is type Γ T
Γ � T � T

is type Γ (RefT R)
Γ � NT � RefT R

Further Class C stands for the class type C, Iface I for the interface type I, and T[·]
for an array type with elements of type T . Compound (C,L) denotes the compound
type with class C and interfaces Li ∈ L. The discriminators is class Γ C, is iface Γ I,
and is compound Γ (C,L) are also used. The latter is true, if the compound type is well
formed, that is, all constituent types are accessible, C is not final, and there is no method
name p such that two constituent types define a method named p with identical signature
but different return types. We assume that is class Γ Object and is iface Γ Cloneable
holds for all Γ. In Java, Cloneable is the only interface implemented by arrays. With
this we can define the remaining widening rules involving compound types:

Γ � Class C � Class D;
is compound Γ (D,M); ∀J ∈ M.Γ �C ❀ J

Γ � Class C � Compound (D,M)

is iface Γ I;
is compound Γ (Object,M); ∀J ∈ M.Γ � I≺iJ∨ I = J

Γ � Iface I � Compound (Object,M)

4 For simplicity, the term ‘subtyping’ is used in the other sections of this paper in place of the
formally correct notion of ‘widening’.

16

is type Γ T
Γ � T[·] � Compound (Object,{})

is type Γ T
Γ � T[·] � Compound (Object,{Cloneable})

Γ � Class C � Class D; is compound Γ (C,L)
Γ � Compound (C,L) � Class D

is compound Γ (C,L); Γ �C ❀ J∨ (∃I ∈ L.Γ � I≺iJ∨ I = J)
Γ � Compound (C,L) � Iface J

Γ � Class C � Class D;
is compound Γ (C,L); is compound Γ (D,M);
∀J ∈ M.Γ �C ❀ J∨ (∃I ∈ L.Γ � I≺iJ∨ I = J)
Γ � Compound (C,L) � Compound (D,M)

The casting relation Γ� S�?T states, that a cast from type S to type T is permissible
at compile time, that is, the type cast ‘(T)e’, where e is of type S, might succeed at run-
time. If it can be proven to always fail, the compiler can already flag an error.

If Γ � S � T holds, the cast can be proven to always succeed. Otherwise, a run-time
validity test must be performed to check whether Γ � R � T holds for the run-time
type R of the cast operand. The following general casting conversions are applicable to
compound types as well:

Γ � S � T
Γ � S�?T

Γ � RefT S�?RefT T

Γ � (RefT S)[·]�?(RefT T)[·]

In the rules below, ‘no conflict Γ (I,D,M)’ means that there is no method name p
such that both I and D or one of the interfaces in M declare a method named p with the

Γ � S � T S widens to (‘is subtype of’) T in Γ
Γ �C≺cD C is a subclass of D in Γ
Γ �C ❀ I C implements I in Γ
Γ � I≺iJ I is a subinterface of J in Γ
Γ � S�?T cast from S to T permissible at

compile time in Γ
‘no conflict Γ (I,D,M)’ in Γ interface I, class D, and

constituent interfaces of M do not
define a method with the same name
and the same signature but different
return types

Fig. 12. Summary of notation

17

same signature but different return types.5 We use this abbreviation freely for different
combinations of classes, interfaces, and sets of interfaces to indicate the absence of a
method clash in place of the actual predicates, which are lengthy and technical.

Γ � D≺cC; is compound Γ (D,M)
Γ � Class C�?Compound (D,M)

Γ � Class C � Class D; is compound Γ (D,M);
¬(is final Γ C); ‘no conflict Γ (C,M)’

Γ � Class C�?Compound (D,M)

is iface Γ I; is compound Γ (D,M); ‘no conflict Γ (I,D,M)’
Γ � Iface I�?Compound (D,M)

Γ � D≺cC; is compound Γ (C,L);
¬(is final Γ D)∨ (∀I ∈ L.Γ � D ❀ I); ‘no conflict Γ (D,L)’

Γ � Compound (C,L)�?Class D

is compound Γ (C,L); is iface Γ J; ‘no conflict Γ (C,L,J)’
Γ � Compound (C,L)�?Iface J

is type Γ T
Γ � Compound (Object,{})�?T[·]

is type Γ T
Γ � Compound (Object,{Cloneable})�?T[·]

Γ � D≺cC; is compound Γ (C,L);
is compound Γ (D,M); ‘no conflict Γ (C,L,D,M)’

Γ � Compound (C,L)�?Compound (D,M)

Γ � Class C � Class D; is compound Γ (C,L);
is compound Γ (D,M); ‘no conflict Γ (C,L,D,M)’

Γ � Compound (C,L)�?Compound (D,M)

Whereas the widening rules can be considered as a particular instantiation of sub-
typing for intersection types, the rules for casts are believed to be new.

The currently by von Oheimb and Nipkow formalized subset of Java, on which we
build, still does not capture all features. Of them final classes, modifiers, class variables,
static methods, interface fields, and methods of the class Object would be relevant for
compound types.

The main advantages of a mechanized over a paper-and-pencil proof are additional
confidence and support for extensions. We would like to stress the second aspect. Not

5 In what is believed to be an omission from the specification [28], Java checks at compile
time only for clashes between methods contained in interfaces, but not for clashes between
methods contained in classes and interfaces. Opting for maximum static detection of errors,
casts involving compound types are defined to check for all kinds of clashes.

18

only did the formalization result in a soundness proof, but the proof tool also reminded
us of what all needed to be defined about compound types before the desired proper-
ties could be established. Most proof scripts worked without modifications. The fact
that all theorems were reproved mechanically for the extended language definition con-
veys more confidence than the typical adaptation of a paper-and-pencil proof with ‘this-
should-still-hold’ handwaving.

8 Related Work

Our analysis leading to the observation that component software demands a combina-
tion of named, behavioral types and structure equivalence for compositions of those,
was inspired by Microsoft’s binary standard COM. To our knowledge, however, it has
never been presented on the programming language level so far. Without this underpin-
ning, some existing programming languages offer similar or related constructions. In
this section we review in brief Microsoft’s COM, the languages Objective-C, Sather,
and Modula-3, the theory of intersection types, and —as a quite different technology—
binary component adaptation.

Microsoft’s COM: The principle idea of using structural type equivalence with
named types as atomic building blocks, each presenting a behavioral contract, is very
much inspired by Microsoft’s Component Object Model (COM) [32, 6]. In COM, ob-
jects cannot be accessed directly but through interfaces only. These interfaces have
globally unique identifiers (GUID) as names. It is the intention that with each interface
also goes a behavioral specification, to be documented separately.

An object’s type is defined as the set of the interfaces implemented by it. The
COMEL language [14], built to formalize COM, consequently uses interface sets, sim-
ilar to our compound types, to type objects. This compositional definition of an object’s
behavior is heavily used, for instance, by the ActiveX framework [6], which defines,
for example, an ActiveX control container as any object implementing a specific set of
interfaces.

Here the parallel ends, however. Clients of a COM object need to use a separate
reference variable to each interface through which they want to interact with the object,
because each interface may be implemented by a separate node and thus have a different
address in memory. This is acceptable as memory layout under the hood and may be
hidden by a proper programming language. We expect such a language to build heavily
on compound-typed variables.

To determine whether an object is of a given type, queries must be issued for each
interface being part of that type. This may seriously impact a system’s performance,
in particular, if an object is situated remotely. Therefore, distributed COM (DCOM)
introduced a service to retrieve sets of interfaces.

Alternatively, categories could be used. Membership of classes in a certain category
can describe, beyond other, that a specific set of interfaces is supported. In this sense,
categories can be compared to explicitly declared subtypes. Only if a class makes an
explicit reference, that is, registers as a category member, the information can be ex-
ploited.

19

Objective-C: Objective-C [25], an object-oriented extension of C, first introduced
the dual class and interface hierarchies. Entities can be typed with a combination of a
class type and one or more protocol types (Objective-C’s name for interfaces), much
like our compound types. Objective-C’s type system is not sound; for example, the
validity of casts is not checked at run time. Introducing and verifying compound types
as part of a type-sound language, such as Java, still remained to be done.

Modula-3: Modula-3 [5] is another language which combines name equivalence and
structure equivalence of types. This combination, however, is different than what we
proposed. In Modula-3 structure equivalence is the default for all types, unless declared
as branded, which makes them clearly distinguishable. Also, Modula-3 supports only
single subtyping and thus compound types cannot contribute anything.

Sather: Sather [11], an object-oriented programming language featuring multiple
subtyping and subclassing in separate hierarchies, allows the programmer to introduce
types as supertypes of already existing classes. That way it offers two symmetric possi-
bilities to introduce a subtype relationship: it can be declared with either the sub- or the
supertype. Most other languages require a declaration with the subtype.

The compatibility problem described in Sect. 2.3 may be solved partially by that.
Even if vendor C creates the library service after vendor A creates his TextContainer
component, C can still declare the type of the parameter into (Fig. 6) in such a way that
A’s implementation becomes a supertype. This requires, of course, that C is aware of
A’s component.

Sather allows subtype relationships to be introduced in the source code by program-
mers of either type, but not by third parties, such a system assemblers, who only have
access to the binary components. In our above example, the library service is still not

C: insertDocPart(…, TextContainerC into, …)

Text Container

TextContainerA ContainerTextB

D
ot

te
d

re
la

tio
ns

hi
ps

do
 n

ot
 h

ol
d!

tim
e

TextContainerD ContainerTextE

Inserted by C.
(C was aware of A.)

(C was not

aware of B.)

(E was notaware of C.)

Inserted by D.

(D was aware of C.)

Fig. 13. Scenario in Sather where supertyping solves part of problem

20

compatible with vendor B’s component, as C was not aware of B’s implementation and
did thus not explicitly declare it to be a subtype. Likewise, any components created
after the library service, the manufacturers of which were not aware of the combined
type introduced by C, are incompatible with the library service (Fig. 13). With the mu-
tual unawareness postulate for a large component market, Sather’s supertyping does,
therefore, not solve the problem at hand.

Pure structure equivalence in Java: The use of pure structural type equivalence be-
tween classes and interfaces in Java to increase compatibility has been suggested by
Läufer et al. [16]. In their suggestion, any instance of a class that provides an imple-
mentation for each method in an interface can be used where a value of the interface
type is expected. Thus, classes declared to implement several interfaces directly, such as
TextContainerA, are compatible with interfaces, such as TextContainer, combined of
the base interfaces implemented by the class. However, also classes that by coincidence
happen to contain methods with matching signatures but that are not meant to adhere
to the associated semantics are assignment compatible. As explained in Sect. 3.2, pure
structure equivalence ignores the modeling aspect of types resulting in too large a com-
patibility relation.

Using only structure equivalence to decide compatibility between classes and inter-
faces, as proposed by Läufer et al., it is not possible to express that a parameter must
also subclass a certain class in addition to implementing some interfaces. As a case in
point, structural conformance between classes and interfaces does not solve the prob-
lem of compatibility with all subsets of supertypes for the case of three or more types
including a class other than Object (Fig. 8).

Furthermore, the proposal requires changes to the Java Virtual Machine, possibly
introducing some security problems. In addition, the existing Java language is changed,
rather than extended as by our compound types.

Intersection types: As pointed out in Sect. 3, intersection types with classes and
interfaces as atoms are the theoretical foundation for our approach. Intersection types
were introduced into the λ-calculus in the late 70’s by Coppo and Dezani-Ciancaglini
[9] and independently by Sallé [33]. The original motivation for introducing intersec-
tion types was the desire for a type-assignment system in which the typing of terms is
invariant under β-expansion and in which every term with a normal form has a mean-
ingful typing.

In the past twenty years, intersection types, infinite intersections, and the dual notion
of union types have been studied extensively in type theory. Pierce and others have also
studied the combination of intersection types with bounded polymorphism and other
object-oriented concepts (see [30] for a summary of his thesis and an overview of recent
work in the field). In contrast to our work, these studies all take the ‘type’ rather than
the ‘modeling’ view. Thus, they use pure structure equivalence, not taking semantical
soundness into account.

Forsythe [31], a descendant of Algol 60, is the only programming language that
explicitly uses intersection types and that we are aware of. Forsythe is based on pure
structure equivalence, rather than on a combination of name and structure equivalence
as our approach. ‘Objects’ exist in the form of function records only, not allowing for
co-variant specialization of the self parameter.

21

Binary component adaptation (BCA): BCA allows components to be adapted in
binary form and during program loading [15]. BCA rewrites class files before or while
they are loaded without requiring source code access. Thus, modifications described by
delta files can be applied by third-parties. Adding an interface to the implements clause,
one of the supported modifications, could be used to solve the compatibility problem
described in Sect. 2.3: Vendor C, the creator of the library service, declares a combined
interface, which is used to type the parameter into (Fig. 6). Even if vendors A and B
have not declared their components to implement this interface, a component integrator
can add it to the lists of implemented interfaces using BCA.

BCA adds further flexibility because it can be used to glue classes that are not based
on common standard interfaces. Unfortunately, it also burdens the person assembling
the system with the task of figuring out how to do this correctly. That is, the system
assemblers need to understand the interfaces’ semantics and program the adaptation.
Plug-and-play with made-to-fit components, as enabled by compound types, is the more
economical alternative wherever applicable. Furthermore, BCA makes systems harder
to understand as delta files must also be taken into account.

BCA does not solve the problem of compatibility with all subsets of supertypes for
the case of three or more types including a class other than Object (Fig. 8), because
BCA does not add any new kind of types or modify any conversion rules.

9 Conclusions

We have exhibited a shortcoming of Java’s current type system. In a programming lan-
guage for extensible component software, substitutability of typed objects should nei-
ther be decided by the types’ name nor just by the structural compatibility of signatures
exclusively. Name equivalence, as offered by Java, is too restrictive when composing
independently evolved standards or frameworks. Structure equivalence, on the other
hand, does not support behavioral typing, that is, to associate semantical specifications
with type names.

We concluded that one needs both. On the level of declared types, name equivalence
is to be used. A behavioral contract can be associated with each type. When composing
these types, however, we want separately declared compositions to be compatible if
they have the same structure, that is if they consist of the same types.

To this end, we propose compound types as structurally matched compositions of
named types, considered to match only if declared so.

We showed how to add compound types as anonymous compositions of named
types to Java, an example of a practical, type-sound programming language. To a vari-
able of a compound type one can assign any object with the same structure in terms of
implemented interfaces and extended classes.

Java is well suited to host compound types. Building on multiple inheritance of
interfaces, we integrated our proposal smoothly. The resulting language is a strict ex-
tension and thus backward compatible. Java programs with compound types can be
executed on an unchanged virtual machine.

A mechanical soundness proof gives additional confidence in the well-definedness
of the extended type system. The relative ease of adapting a formalization of the existing

22

Java language further illustrates the orthogonality of our proposal. The changes we
propose to Java’s language specification [12] can be found in [3, Appendix].

We believe that compound types can contribute to any typed language with multiple
subtyping and name equivalence of types.

Acknowledgments David von Oheimb and Tobias Nipkow provided us with their for-
malization of Java and helped us with our extensions. We would like to thank Ralph
Back, Dominik Gruntz, Cuno Pfister, and Clemens Szyperski for a number of fruitful
discussions. The referees’ helpful comments are also gratefully acknowledged.

References

1. Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type parameterization to the
Java language. In Proceedings of OOPSLA ’97, pages 49–65. ACM Press, 1997.

2. Kim B. Bruce, Robert van Gent, and Angela Schuett. PolyTOIL: A type-safe polymorphic
object-oriented language. In Proceedings of ECOOP ’95, pages 27–51. LNCS 952, Springer
Verlag, 1995.

3. Martin Büchi and Wolfgang Weck. Java needs compound types. Technical Report 182,
Turku Centre for Computer Science, 1998. http://www.tucs.fi/publications/techreports/
TR182.html.

4. Luca Cardelli. Type systems. In Handbook of Computer Science and Engineering, chapter
103. CRC Press, 1997. http://www.luca.demon.co.uk/Papers.html.

5. Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordanand Bill Kalsow, and Greg
Nelson. Modula-3 report (revised). Research Report 52, Systems Research Center, Dig-
ital Equipment Corporation, Palo Alto, November 1989. http://www.research.digital.com/
src/m3defn/html/.

6. David Chappell. Understanding ActiveX and OLE. Microsoft Press, 1996.
7. Netscape Communications. Netscape Plug-Ins, 1998. http://developer.netscape.com/docs/

manuals/communicator/ plugin/index.htm.
8. William Cook. A proposal for making Eiffel type-safe. In Proceedings of ECOOP ’89, pages

57–70. Cambridge University Press, 1989.
9. M. Coppo and M. Dezani-Ciancaglini. A new type assignment for λ-terms. Archiv. Math.

Logik, 19:139–156, 1978.
10. Brad Cox. Planning the software industrial revolution. Software Technologies of the 90’s

special issue of IEEE Software magazine, November 1990.
11. B. Gomes, D. Stoutamire, B. Weisssman, and H. Klawitter. Sather 1.1 : Language es-

sentials, 1998. http://www.icsi.berkeley.edu/˜sather/Documentation/LanguageDescription/
contents.html.

12. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison Wesley,
1996.

13. Object Management Group. The common object request broker: Architecture and specifica-
tion, 1997. Revision 2.0, formal document 97-02-25, http://www.omg.org.

14. Rosziati Ibrahim and Clemens Szyperski. The COMEL language. Technical Report FIT-TR-
97-06, Faculty of Information Technology, Queensland University of Technology, Brisbane,
Australia, 1997. http://www.fit.qut.edu.au/TR/techreports/FIT-TR-97-06.ps.Z.

15. Ralph Keller and Urs Hölzle. Binary component adaptation. In Proceedings of ECOOP ’98.
LNCS, Springer Verlag, 1998. http://www.cs.ucsb.edu/oocsb/papers/ecoop98.html.

23

16. Konstantin Läufer, Gerald Baumgartner, and Vincent F. Russo. Safe structural conformance
for Java. Technical Report CSD-TR-96-077, Department of Computer Science, Purdue Uni-
versity, 1996.

17. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison Wesley,
1996.

18. Lingsoft. Orthografix: Finnish proofing tools for Microsoft Word, 1998.
http://www.lingsoft.fi/.

19. Barbara H. Liskov and Jeanette M. Wing. A behavioral notion of subtyping. ACM Transac-
tions on Programming Languages and Systems, 16(6):1811–1841, November 1994.

20. Boris Magnusson. Code reuse considered harmful. Journal of Object-Oriented Program-
ming, 4(3):8, November 1991.

21. Michael Mattsson and Jan Bosch. Framework composition: Problems, causes and solutions.
In Proceedings of TOOLS USA 97, 1997.

22. McIllroy. Mass-produced software components. In Peter Naur, Brian Randell, and J. N.
Buxton, editors, Software engineering: concepts and techniques: proceedings of the NATO
conferences. The Conference on Software Engineering held in Garmisch, Germany, 7th to
11th October 1968. Petrocelli/Charter, 1976.

23. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, second edition,
1997.

24. Anna Mikhajlova and Emil Sekerinski. Class refinement and interface refinement in object-
oriented programs. In Proceedings of FME’97: Industrial Applications and Strengthened
Foundations of Formal Methods, pages 82–101. LNCS 1313, Springer Verlag, 1997.

25. NeXT Software, Inc. Object-Oriented Programming and the Objective-C Language.
Addison-Wesley, 1993. http://developer.apple.com/techpubs/rhapsody/ObjectiveC/.

26. Tobias Nipkow and David von Oheimb. Java�ight is type-safe — definitely. In Proc. 25th
ACM Symp. Principles of Programming Languages, pages 161–170. ACM Press, 1998.

27. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828, Springer Verlag,
1994. See also http://www.cl.cam.ac.uk/Research/HVG/isabelle.html.

28. Roly Perera and Peter Bertelsen. The unofficial Java spec report, 1997.
http://www.ergnosis.com/jsr/.

29. Cuno Pfister. Component software: A case study using BlackBox components (online tutorial
of the BlackBox Component Builder), 1997. http://www.oberon.ch.

30. Benjamin C. Pierce. Intersection types and bounded polymorphism. Mathematical Struc-
tures in Computer Science, 7(2):129–193, April 1997.

31. John C. Reynolds. Design of the programming language Forsythe. In Algol-like Lan-
guages, volume 1, pages 173–234. Birkhäuser, 1997. Also available as CMU-CS-96-146,
ftp://reports.adm.cs.cmu.edu/usr/anon/1996/CMU-CS-96-146.ps.gz.

32. Dale Rogerson. Inside COM. Microsoft Press, 1996. See also http://www.microsoft.com/
com/.

33. P. Sallé. Une extension de la théory des types en λ-calcul. In Proceedings of Automata,
Languages and Programming, pages 398–410. LNCS 61, Springer Verlag, 1978.

34. Sun Microsystems, Inc. Java Beans, 1997. http://splash.javasoft.com/beans/.
35. Clemens Szyperski. Component Software : Beyond Object-oriented Programming. Addison-

Wesley, 1998.
36. David von Oheimb and Tobias Nipkow. Machine-checking the Java specification: Proving

type-safety. In Jim Alves-Foss, editor, Formal Syntax and Semantics of Java. LNCS, Springer
Verlag, 1998, to appear.

24

Paper V

Generic Wrapping

Martin Büchi and Wolfgang Weck

Technical Report 317, Turku Centre for Computer Science, April, 2000. Shortened ver-
sion: Generic Wrappers. In Proceedings of ECOOP 2000, Lecture Notes in Computer
Science. Springer Verlag, June 2000.

Reproduced with permission.

Generic Wrapping

Martin Büchi
Turku Centre for Computer Science
Lemminkäisenkatu 14A, FIN-20520 Turku
Martin.Buechi@abo.fi, http://www.abo.fi/˜Martin.Buechi/

Wolfgang Weck
Oberon microsystems Inc.
Technoparkstrasse 1, CH-8005 Zürich
weck@oberon.ch, http://www.abo.fi/˜Wolfgang.Weck/

T U C S

Turku Centre for Computer Science
TUCS Technical Report No 317
April 2000

ISBN 952-12-0569-5
ISSN 1239-1891

Abstract

Component software means reuse and separate marketing of pre-manufactured bi-
nary components. This requires components from different vendors to be com-
posed very late, possibly by end users at run time as in compound-document frame-
works.

To this aim, we propose generic wrappers, a new language construct for strongly
typed class-based languages. With generic wrappers, objects can be aggregated at
run time. The aggregate belongs to a subtype of the actual type of the wrapped
object. A lower bound for the type of the wrapped object is fixed at compile time.
Generic wrappers are type safe and support modular reasoning.

This feature combination is required for true component software but is not
achieved by known wrapping and combination techniques, such as the wrapper
pattern or mix-ins.

We analyze the design space for generic wrappers, e.g. overriding, forwarding
vs. delegation, and snappy binding of the wrapped object. As a proof of concept,
we add generic wrappers to Java and report on a mechanized type soundness proof
of the latter.

Keywords: Component software, late composition, type systems, language design,
generic wrappers, mix-ins, Java

TUCS Research Group
Programming Methodology Research Group

1 Introduction

Component software enables the development of different parts of large software
systems by separate teams, the replacement of individual software parts that evolve
at different speeds without changing or reanalyzing other parts, and the marketing
of independently developed building blocks. Components are binary units of inde-
pendent production, acquisition, and deployment [53].

Component technology aims for late composition, possibly by the end user.
Compound documents, e.g. a Word document with an embedded Excel spread-
sheet and a Quicktime movie, as well as Web browser plug-ins and applets are
examples of this. Late composition is a major difference between modern com-
ponents and traditional subroutine libraries, such as Fortran numerical packages,
which are statically linked by the developer.

Flexible late composition is one goal, prevention of unsafe compositions, such
as adding scroll bars to a file descriptor, leading to ‘method not understood’ errors
and possible system malfunction, is the other. Type systems can help to prevent
this kind of run-time errors by prohibiting unsafe compositions. However, static
type systems in class-based languages like Java [21], C++ [48], and Eiffel [33]
tend to promote inflexible composition mechanisms, such as inheritance, which is
fixed at compile time for a whole class.

Untyped prototype-based languages such as Self [54] are more flexible. Here,
inheritance relationships can be decided at run time on a per-object base. The price
of this flexibility is the lack of certain compile-time and as-early-as-possible run-
time error detection: Assignments that may later on cause ‘method not understood’
errors don’t cause any errors at compile time or at the time of their execution.
Rather, the errors occur much later when the method is called. Flagging an error
at compile time is preferable because it happens in presence of the programmer.
Run-time errors, on the other hand, might occur at the clients’ sites. Even in this
case, trapping as close as possible to the place, where things started to go wrong,
greatly facilitates debugging. Furthermore, component-wise (modular) reasoning,
another requirement for independently developed components [53], is practically
impossible in very flexible prototype-based languages.

In this paper we present an inflexibility problem in class-based languages and
propose a new solution that partly borrows from prototype-based languages yet
retains the possibility for maximal static and as-early-as-possible run-time error
detection and modular reasoning.

Late composition is most pressing for items defined by different components,
which may themselves be combined by an independent assembler or even by the
user at run-time. Component standards such as Microsoft’s COM [45], JavaBeans
[50], and CORBA Components [40] are on the binary level. Components can be
created in any language for which a mapping to the binary standards exists. How-
ever, binary standards are most easily programmed to in languages that support the
same composition mechanisms. Furthermore, only direct language-level support
can provide the desired machine checkable safety using types. Hence, composition

1

mechanisms in programming languages are relevant, even though components are
binary units.

The mechanism suggested in this paper is partly inspired by COM’s aggrega-
tion, but it doesn’t yet have an exact equivalent in any of the aforementioned binary
component standards.

Overview Section 2 illustrates with examples a problem of existing composition
mechanisms and defines the requirements for a better solution. In Sect. 3, we
show why existing technology does not sufficiently address these requirements.
We introduce generic wrappers as a solution to the aforementioned problems in
Sect. 4. Next, we discuss the design space for generic wrappers in Sect. 5 and the
interplay with other type mechanisms in Sect. 6. As a proof of concept we add
generic wrapping to Java in Sect. 7 and report on a mechanized type soundness
proof of the extended language in Sect. 8. Section 9 introduces reflective mix-ins
as an alternative to generic wrappers. Finally, Sect. 10 points to related work and
Sect. 11 draws the conclusions.

2 The Problem

In this section, we describe some applications that cannot be satisfactorily realized
with existing composition mechanisms. We also introduce some terminology, and
distill a set of requirements.

2.1 Examples

We consider a problem in the realm of compound documents and then show that
the same difficulties arise in many other domains.

Embedded views in compound documents for on-screen viewing, such as an
Excel spreadsheet in a Word document, may be so large that they require their
own scroll bars. Likewise, the user may want to add borders or identification tags
to embedded views. It is even possible, that a user wants several such decorators
added to the same embedded view.

There may exist different scroll bars from different vendors, which don’t know
all the other decorator or embedded view vendors. Decorators are typical examples
of third-party components that users want to select to meet their specific needs.
One user may want proportional scroll bars, another may like blinking borders to
draw the boss’ attention to the excellent sales figures, and still another may require
immutable 128-bit identification tags.

In a compound-document framework similar to Java Swing or Microsoft OLE,
let IView be the interface implemented by all classes whose instances can be dis-
played on screen and inserted into containers. Typical examples of classes imple-
menting IView are TextView, GraphicsView, SpreadsheetView, and ButtonView.

2

p instanceof BorderWrapper == true

but
p instanceof TextView == false

BorderWrapper

IView p

TextView

IView wrappedView

Figure 1: The wrapper is not fully transparent to clients of the embedded view

One way to implement decorators is with wrappers [20, Decorator Pattern]. A
border wrapper is itself a view, that is it implements the IView interface. Hence
it can itself be inserted into a compound document container. Furthermore the
wrapper contains a reference of type IView to a wrapped view, which in a specific
instance may be a TextView. The wrapper forwards most requests to the wrapped
view, possibly after performing additional operations such as drawing the border.

Unfortunately, this approach has a serious disadvantage. If we wrap a border
around a TextView, then the aggregate is only a BorderWrapper, but not a TextView
with all of the latter’s methods (Fig. 1). Hence, a spell check operation on all
embedded text views in a document will not recognize a bordered TextView as
containing text, unless it knows how to search inside wrappers from different man-
ufacturers.

A standard interface, like IViewWrapper to be implemented by all view wrap-
pers could ease the problem of searching inside different wrappers:

interface IViewWrapper {
IView getWrappee();

}

However, instead of a simple type test, the spell checker would have to loop
through all the wrappers:

IView q=p;
while(!(q instanceof TextView) && q instanceof IViewWrapper) {

q=((IViewWrapper)q).getWrappee();
}
if(q instanceof TextView) {. . .;}

This solution is cumbersome for several reasons: First, it requires 5 lines of
code instead of a simple type test. Second, it only works if there is a unique stan-
dard for wrappers, such as IViewWrapper. Third, it doesn’t let the wrapper main-
tain invariants ranging over both itself and the wrapped object because clients have
direct access to the latter.

3

To work with any type of object, this approach would require a wrapper in-
terface to be defined for any reference type, instance of which might possibly be
wrapped. Still the spell checker should be able to locate a wrapped TextView with
the above code, whether the wrapper implements IViewWrapper or ITextViewWrap-
per. Hence, ITextViewWrapper must be a subtype of IViewWrapper, which is only
the case in languages that allow covariant specialization of method return types
(i.e. of getWrappee) in subclasses. Using a single wrapper interface that defines
the return type of getWrappee to be Object would result in a loss of static type in-
formation. Parametric polymorphism with covariant subtyping and run-time type
information solves this problem, but doesn’t address the above three shortcomings.

Support for certain common kinds of wrappers may also be built into the
wrapped objects. For example, JComponent, the correspondence to our IView in
Java Swing, supports borders as insets. However, identification tags and other
kinds of wrapper that were not previewed by the Swing designers are left out.

As a second example, let us consider a forms container that requires all its
embedded views to implement the interface IControl. Assume that ButtonView im-
plements IControl and that BorderWrapper doesn’t. Hence, a bordered ButtonView
cannot be inserted into a forms container: The type system rightfully prevents us
from passing a BorderWrapper wrapping a ButtonView as the first parameter to the
method insert(IControl c, Point pos). Otherwise a ‘method not understood’ error
could occur when the container tries to call one of the methods declared in ICon-
trol. Passing just the wrapped ButtonView as parameter to insert is not a solution,
because we would loose the border. The only workaround is to change the type of
the first parameter of insert to IView and test that the actual parameter implements
IControl or wraps an object that does so. Furthermore, we then either have to store
two references per embedded view, one to the outermost wrapper and one to the
object implementing IControl, or have the container loop through all the wrappers
each time it wants to call a wrapped view’s method declared in IControl.

Examples of wrappers in different applications are abundant. Documented
cases include window decorators [20], the Microsoft AFC wrapper for AWT com-
ponents [14], the view wrapper ComponentView for inserting AWT components
into Java Swing texts [49], a physical access control system that adds surveillance
with wrappers [22], a wrapper that adds additional relations [1], and the stream dec-
orators in the Java library [49]. Many of these applications could be generalized
and additional problems could be tackled with wrappers if the problems described
above would be solved.

2.2 Terminology

We use the following terminology: A wrapped object is called a wrappee. A wrap-
per and a wrappee together are referred to as an aggregate. The declared type of a
variable is referred to as static (compile-time) type. The type of the actually refer-
enced object is called the variable’s dynamic (actual, run-time) type. Likewise, we
distinguish between the static (declared, compile-time) and the dynamic (actual,

4

run-time) wrappee type. For example, for an instance of BorderWrapper, declared
to wrap an IView, and actually wrapping a TextView, the static wrappee type is
IView and the dynamic wrappee type is TextView.

In discussions, we use the notation C.m to refer to the implementation of in-
stance method m in class C. The subtype relation is taken to be reflexive; e.g.,
TextView is a subtype of itself.

Except where otherwise stated, the discussion in the first 6 sections applies
to most strongly-typed class-based languages such as Java, Eiffel, and C++. For
simplicity, we use Java terminology throughout the paper. A Java interface corre-
sponds to a fully abstract class in Eiffel and C++.

2.3 Requirements

From the above examples we can distill a number of requirements for a wrap-
ping mechanism. Numbers in parentheses refer to the summary of requirements in
Fig. 2.

The user wants to select which border to wrap around which view. At compile
time, the implementor of BorderWrapper doesn’t know whether an instance of her
class will wrap a TextView, a GraphicsView, or any other view that might even be
only implemented in the future. Thus, the actual type and instance of the wrappee
must be decidable at run time (1). Furthermore, wrappers must be applicable to any
subtype of the static wrappee type (2). In this paper we only consider wrapping of
specific instances (selective wrapping), but not adaption of all instances of a given
class (global wrapping).

An aggregate of a BorderWrapper wrapping a ButtonView should be insertable
into a controls container, even though only the wrappee implements the required
interface IControl. Therefore, an aggregate should be an element of the wrapper
and the actual wrappee type (3). This also implies that all methods of the wrappee
can be called by clients and that they can make these calls directly on a reference
to the wrapper.

Upon calling paint on an aggregate of a BorderWrapper and a TextView, the
border’s paint method should be executed. The latter first draws the border and
then calls the paint method of the wrapped view with an adapted graphics context.
Thus, wrappers must be able to override methods of the wrappee (4).

If clients can have direct references to the wrappee, they can call overridden
methods. For example, a client could call the paint method of the embedded view
with the graphics context (dimensions) of the whole aggregate. Thence, a wrapper
should be able to control whether clients can directly access the wrappee (5).

A wrapper may depend on the wrappee’s state being in a certain relationship
to its own, as expressed by an invariant ranging over both state spaces. By overrid-
ing methods of the wrappee that could be used to invalidate this invariant and not
granting clients direct access to the wrappee, this invariant can be partly protected.
However, the actual wrappee type may always provide additional methods that

5

1. Run-time applicability. The actual type and instance of the wrappee must be
decidable at run time.

2. Genericity. Wrappers must be applicable to any subtype of the static wrappee
type.

3. Transparency. An aggregate should be an element of the wrapper and the
actual wrappee type.

4. Overriding. Wrappers must be able to override methods of the wrappee.

5. Shielding. A wrapper should be able to control whether clients can directly
access the wrappee.

6. Safety. The type system should prevent as many run-time errors as possible
statically and signal errors as early as possible at run time.

7. Modular reasoning. Modular reasoning should be possible in the presence
of wrapping.

Figure 2: Requirements for a Wrapping Mechanism

may be used to invalidate the invariant. Requirement 3 states that these methods
are accessible to clients.

Early detection of errors and the possibility for modular reasoning have already
been identified as general requirements for component-oriented programming. We
state them here as explicit requirements (6 and 7) for the purpose of assessing
composition mechanisms.

We may want to put both scroll bars and a border around a text view. Hence,
multiple wrapping should be supported. We refrain, however, from explicitly list-
ing this as one of our requirements, because it is satisfied by all surveyed mecha-
nisms.

Finally, it is desirable that classes are not required to follow any coding stan-
dards for their instances to be wrappable. Otherwise, instances of classes pro-
grammed to different standards and of legacy classes are left out. Since certain
coding standards can be established, as shown by JavaBeans, and since certain
automatic rewriting —even of binary code— is possible, we consider this as a
nice-to-have feature, but do not make it a formal requirement.

3 Why Existing Technology Is Insufficient

In this section we show why existing technology fails to address the above require-
ments.

6

IView

TextView BorderWrapper

1

1

wraps

ButtonView

IView

TextView ButtonView

BorderedTextVScrollableTextV

...

ScrollBordTextVBordScrollTextV

a) Inheritance b) Containment, bottleneck
interface, dual interface

Figure 3: Solution Attempts in Class-Based Languages

3.1 Single-object solutions

Inheritance Feature combination by multiple inheritance produces specialized
combination classes, such as BorderedTextView and BorderedGraphicsView. Thus,
it combines the functionality of the wrapper and the wrappee into a single object.
However, combinations can only be made at compile time by a vendor having
access to both the border and the view. Run-time feature composition in interface
builders or in compound documents is impossible with inheritance. Hence, this
approach fails requirement (1). The modular reasoning requirement (7) is not fully
satisfied because of the close coupling between super- and subclass, leading to the
semantic fragile base class problem [36]. Furthermore, inheritance suffers from
the combinatorial explosion problem, as illustrated by Fig. 3 a.

Mix-ins Parametric/bounded polymorphism, where the type parameter can serve
as a supertype of the parameterized type, gives a special form of inheritance. Mul-
tiple combinations of wrapper and wrappee types can be created without textual
code duplication. With this kind of mix-ins1 [1] we could define the generic border
type

class ParBorderedView<Wrappee implements IView> extends Wrappee {. . .}

and could derive the class ParBorderedView<TextView> of bordered text views
and the class ParBorderedView<ButtonView> of bordered button views. However,
also with mix-ins all combinations must be made at compile time. Hence, they fail
like normal inheritance the requirement of run-time applicability (1).

1Support for mix-ins is rare. Examples include C++ templates, which delay most checking to the
derivation of classes, Jigsaw [5], and three extension proposals for Java [1, 18, 3].

7

3.2 Two-object solutions

Containment The containment approach, also known as the decorator pattern
[20], has already been sketched along with the presentation of the example in
Sect. 2.1. It is illustrated by Fig. 3 b. The wrapper itself subtypes the static wrappee
type and contains a field with a reference to the wrappee. As stated above, this ap-
proach fails the transparency requirement (3). Clients can only use the extended
functionality of the wrappee by directly accessing it. Thus, the implementor has to
choose between the shielding requirement (5) and making the full functionality of
the wrappee available to clients.

An additional problem surfaces if the static wrappee type is a class with public
fields. In this case, we end up with two unsynchronized copies of these fields in
the wrapper and the wrappee.

Specialized wrappers Instead of creating a single BorderWrapper, we could de-
fine specialized border wrappers with matching static wrappee types for any kind
of view such as TextViewBorder and GraphicsViewBorder. However, this solution
attempt fails the run-time requirement (1) for the type: If the border vendor is not
aware of SpreadsheetView, there will not be a matching border. Even in a closed
system this approach suffers from a combinatorial explosion of classes like the
inheritance approach.

Bottleneck interface In the bottleneck approach, the wrapper implements the
declared wrappee type and holds a private reference to the wrappee (Fig. 3 b). The
difference to the containment approach is that the wrappee only contains a single
public method, the message handler, with a parameter containing the instructions
what should actually be done. The wrapper also has a message handler method.
The latter forwards any message that it doesn’t understand itself to the wrappee.
This approach does not make good use of the static type system. Fewer errors
can be detected at compile time. Run-time type tests cannot be used to determine
which messages are understood. Furthermore, callers have to be prepared to han-
dle pseudo method-not-understood return values from the message handler. Thus,
errors are not restricted to type casts. In summary, this approach makes the full
functionality of the wrappee available to clients, but fails the transparency (3) as
well as the safety requirement (6). It requires adherence to special coding stan-
dards, but bottleneck interfaces could be generated automatically.

Dual interfaces The containment and the bottleneck interface approach can be
combined to get dual interfaces. Wrappees have in addition to their normal pub-
lic methods a message handler through which all normal methods can be called
(Fig. 3 b). Hence, methods of the static wrappee type can be called directly in
a type-checked manner and additional functionality of the dynamic wrappee type
through the message handler. Dual interfaces fare slightly better than bottleneck
interfaces with respect to safety, but otherwise have the same drawbacks.

8

Requirement

 Technology R
un

-ti
m

e
ap

pl
ic

ab
ilit

y
(1

)

G
en

er
ic

ity
 (2

)

Tr
an

sp
ar

en
cy

 (3
)

O
ve

rri
di

ng
 (4

)

Sh
ie

ld
in

g
(5

)

Sa
fe

ty
 (6

)

M
od

ul
ar

re
as

on
in

g
(7

)

Inheritance (b) ✔ ✔ n/a ✔ (c)
Parameterized mix-ins (b) ✔ ✔ n/a ✔ (c)
Containment ✔ (b) (d) (d) (e) ✔

Specialized wrappers(a) (f) (b) ✔ ✔ ✔ ✔ ✔

Bottleneck interface ✔ ✔ ✔ ✔

Dual interface ✔ (b) ✔ ✔ (e)
Delegation in prototype-based languages ✔ ✔ n/a ✔ ✔

(a) If only used with specific type, otherwise like containment. (d) Either full functionality availability or overriding and shielding.
(b) Yes, but with exceptions due to signature clashes. (e) Type safety for static wrappee type.
(c) Limited due to tight coupling. (f) Type determined at compile time.

Figure 4: Properties of Existing Technologies

Delegation in prototype-based languages Prototype-based languages, such as
Self [54], use a parent object to which the receiving object delegates messages
that it does not understand itself. A bordered text view could be implemented by a
border object with a text view parent. Due to the lack of (static) typing and because
of the possibility to reassign the parent object, prototype-based languages fail the
requirements of safety (6) and modular reasoning (7) [20].

3.3 Summary

We conclude that none of the existing technologies gives a satisfactory solution to
the problem at hand. Figure 4 summarizes the results. Further language specific
and binary level solution approaches are described in Sect. 10.

4 Generic Wrappers

To solve the problem stated in Sect. 2, we introduce generic wrappers. Generic
wrappers are classes that are declared to wrap instances of a given reference type
(class, interface) or of a subtype thereof. Like an extends clause to specify a su-
perclass, we use a wraps clause to state the static wrappee type. This also declares
the wrapper class to be a subtype of the static wrappee type. For example, the
declaration

class LabelWrapper wraps IView {. . .}

states that each instance of the class LabelWrapper wraps an instance of a class
that implements IView. The declaration makes class LabelWrapper a subtype of
IView. Thus, instances of LabelWrapper can be assigned to variables of type IView

9

and LabelWrapper has all public members (methods, fields) of IView. Forward-
ing/delegation of calls to the methods of IView is implicit, that is there is no need
to write explicit stubs.

To assure that this subtyping relationship always holds (and thereby that for-
warding of calls never fails) must instances of LabelWrapper always wrap an in-
stance of a subtype of IView —already during the execution of constructors. Hence,
the wrappee must be passed as a special argument (in our syntax delimited by <>)
to class instance creation expressions:

TextView t = . . .; IView v = new LabelWrapper<t>(. . .);

The compiler checks that the declared type of variable t is a subtype of the static
wrappee type. The wrapper class instance creation expression throws an exception
if the value of t is null or if t were an expression and its evaluation throws an
exception. In both cases, no wrapper object is created and the value of v remains
unchanged.

The particularity of generic wrappers is that their instances are not only of the
static, but also of the actual wrappee type. For example, a LabelWrapper wrapping
a TextView is also of the latter type and not just of type IView. Hence, such an
aggregate can be assigned to a variable of type TextView and the latter’s methods
can be called on it. In the following program fragment, which is based on the
definition of LabelWrapper above, the type test returns true and the cast succeeds:

IView v = new LabelWrapper<new TextView()>(. . .);
TextView t2; if(v instanceof TextView) {t2=(TextView)v;}

The adjective ‘generic’ in generic wrapper stands for the reuse of parameteriz-
able abstractions, which we have added to the plain wrapper pattern.

Methods declared in the wrapper override those in the wrappee analogously to
overriding in subclasses.

In constructors and instance methods of generic wrapper classes, the keyword
wrappee references the wrappee. It can be treated like an implicitly declared and
initialized final instance field with some restrictions on use, as discussed below.
Hence, wrappers can call overridden methods of the wrappee using the keyword
wrappee corresponding to super for overridden methods of superclasses. For ex-
ample, the paint method of BorderWrapper might look as follows:

public void paint(Graphics g) {
. . .; // paint border
wrappee.paint(g1); // paint wrapped view with adapted graphics context

}

A wrapper that is aware of certain subtypes of the static wrappee type, can also
use the keyword wrappee in type tests. For example, a wrapper that displays the
length of the text in the wrapped view, if the latter is a TextView, might contain the
following code fragment:

if(wrappee instanceof TextView) {int len=((TextView)wrappee).textLength(); . . .;}

10

Preliminary evaluation Although this basic definition still leaves many aspect
open, we can evaluate which requirements (Fig. 2) it fulfills independently of how
the details are fixed. The actual type and instance of the wrappee can be decided
upon at run time. Hence, requirement (1) is satisfied.

Wrappers are applicable to a all of the static wrappee type’s subtypes, for which
no unsound overriding would occur. An example of the latter might be that a
method with signature m() and return type void would be overridden by one with the
same signature, but a different return type, as discussed below. Thus, the genericity
requirement (2) is mostly fulfilled.

As defined above, instances of generic wrappers are members of the actual
wrappee type. Therefore, the transparency requirement (3) is satisfied. Note that
none of the surveyed existing mechanisms satisfied both the run-time applicability
and the transparency requirement (Fig. 4).

The fulfillment of the shielding (5) and modular reasoning (7) requirements
cannot be judged without fixing more details.

The compiler ensures that an aggregate is always of the static wrappee type
and, thereby, that all calls to methods of the static wrappee type will succeed.
Run-time tests can be used to check whether the aggregate is of a certain type.
Only insufficiently guarded casts may fail. Calls to methods of the actual wrappee
type always find a matching method. Hence, the type system fulfills the safety
requirement (6) by preventing as many run-time errors as possible statically and
signaling errors as early as possible at run time.

5 Design Space for Generic Wrappers

The basic definition of generic wrappers in the previous section leaves many as-
pects open. In this section, we investigate the design space for generic wrappers.

The time of binding has a major influence on the design space of generic wrap-
pers as compared to inheritance. With inheritance, the superclass is bound at com-
pile time. With generic wrappers the actual type and instance of the wrappee first
become known at wrap time, that is, run time. Later binding brings flexibility, but
means that certain compatibility checks asserting type soundness and, thereby, the
success of all method lookups have to be delayed (Fig. 5). A notable feature of
generic wrappers is that an existing wrapper object can be wrapped again. Thus, it
remains always possible to add new functionality to an aggregate.

Dynamic linking partly blurs this distinction. The name of the superclass is
fixed at compile time, but the actual version and, therefore, the members and their
semantics are not known until load time. For example in Java, the loading of a
class may be delayed until an instance thereof is created. In this case, the com-
patibility with the used superclass is checked as late as the compatibility between
a wrapper and the actual wrappee type. In conclusion, dynamic linking postpones
compatibility checking to run time without fully exploiting the flexibility thereof.

11

at users’ sites

class inheritance

generic wrappers

prototype-based

compile load wrap method invocation

tim
e

per class per instance

at developers’ sites

class inheritance
with dynamic linking

nothing fixed: any method call may fail, further methods may be added

minimal supertype fixed: method calls will succeed if matching implementation bound

supertype implementation fixed: method calls will succeed, no further methods can be added

Figure 5: What Is Asserted to Hold from Where on?

5.1 Overriding of instance methods

Overriding of instance methods in subclasses is governed by certain rules to guar-
antee both type and semantic soundness. The same rules extend to overriding of
methods of the wrappee by methods of the wrapper. For example to guarantee type
soundness in Java, the overridden method must not be final, the return type of the
overriding method must be the same as that of the overridden method, the over-
riding method must be at least as accessible, the overriding method may not allow
additional types of exceptions to be thrown, and an instance method may not over-
ride a class method. To also guarantee semantic soundness, the overriding method
must be a behavioral refinement of the overridden method [32].

Although the actual type of the wrappee isn’t known until wrap time, we can
perform certain checks at compile time. We can check that overriding of methods
of the static wrappee type by methods of the wrapper respect the above rules. Any
violation of the type rules would necessarily also lead to a violation in combination
with any actual wrappee type, i.e., a subtype of the static wrappee type.

Because the actual wrappee may have more methods than the static wrappee
type, overriding conflicts may nevertheless occur at wrap time, i.e., when the com-
bination of the wrapper and the wrappee first becomes visible. In Fig. 6, three
overriding conflicts occur when wrapping an instance of A in an AWrapper. The
methods A.m an A.o would be overridden by semantically incompatible ones and
AWrapper.n cannot override A.n because they have different return types.

Below we discuss two approaches to this problem. The first checks type sound-
ness at wrap time and throws an exception if wrapping would be type unsound. To

12

interface IA {
int m(); // return 0 or 1

}

class AWrapper wraps IA {
public int m() {return 0;};
public void n() {. . .};
public int o() {return 0;};

}

class A implements IA {
public int m() {return 1};
public int n() {. . .};
public int o() {return 1};

}

IA a=new A();
AWrapper w=new AWrapper<a>();

Figure 6: Overriding Example

decrease the probability of unsound overriding, we suggest a number of coding
conventions. The second approach avoids wrap-time type problems by relying on
a different form of method lookup and subsumption. We conclude with a short
refutation of static approaches.

In this section we assume that there are no final classes and no method header
specialization in subtypes (overriding non-final with final methods, overriding with
restricted exception throws clauses and higher accessibility, as well as covariant
return type and contravariant parameter type specialization) in our language. The
interaction of final classes and method header specialization with generic wrappers
is discussed in Sect. 6.2.

5.1.1 Wrap-time tests and coding conventions

At wrap time, we can automatically check whether overriding of methods of the
actual wrappee by the wrapper is type sound. If this is the case, we can create
the wrapper instance. Otherwise, we throw an exception. Wrap-time tests require
enough information in the binary code. Java byte code, for example, satisfies this
requirement.

Wrap-time exceptions are undesirable, yet they are preferable over unsuccess-
ful method lookup as in prototype based languages like Self. First, if components
are combined by an assembler, she can much more easily check all combinations
than all method calls on all combinations. Second, if an error occurs, detecting it
as early as possible facilitates debugging, as expressed by requirement (6).

To reduce the probability of wrap-time conflicts, we could use laxer rules for
wrap-time overriding. For example, Java’s binary compatibility prescribes laxer
rules for the load-time compatibility checks between a class and its used super-
class. In analogy, we could, e.g., allow overriding of a method of the wrappee by a
method of the wrapper with an incompatible exception throws clause. Binary com-
patibility is a last resort for coping with changes to a superclass, fixed at compile
time. On the other hand, generic wrappers promote the use of subtypes of the static
wrappee type. Furthermore, laxer typing rules threaten semantic soundness, which

13

must be the ultimate goal. Hence, we believe that the strict rules should be used
for generic wrappers at wrap time also.

We suggest to adhere to the following four coding conventions, which can
greatly reduce the possibility of both type and semantic conflicts at wrap time:

(a) Classes only define (non private) methods declared in implemented interfaces.

(b) No two interfaces, not related by extension, declare methods with the same
signature.

(c) Interfaces have semantic specifications and methods in classes are semantic
refinements of their correspondences in the implemented interfaces.

(d) Method calls are only made on variables of interface, but not class types.2

We analyze the conventions for method o of Fig. 6. Convention (a) implies that
both AWrapper and A implement interfaces declaring a method o. Furthermore, (b)
dictates that this must be the same interface, say IO. The idea of class refinement
[37], and the related notion of behavioral subtyping [2, 32], is that interfaces have
semantic specifications and that methods in subtypes are behavioral refinements
of the corresponding methods in their supertype. Assuming that both AWrapper.o
and A.o are refinements of IO.o, we can deduce that both 0 and 1 are correct return
values. Finally, condition (d) implies that a call x.o() may only be written for
x of static type IO. In this case, the value 0 returned by the overriding method
AWrapper.m meets our expectations.

If (a) or (b) is not adhered to, then a type conflict may occur as illustrated by
method n of Fig. 6. If (c) is not adhered to, it could be that IO.o specifies the
return value to be 1, which would not hold in the above case. Finally, if (d) is
not respected, we could make a call x.o on a variable of type A. If x contained a
reference to an AWrapper wrapping an A, we would get a return value of 0 although
we expected 1.

Conventions (a) and (d) could easily be enforced by a programming language.
Instead of (b) a language can require qualified notation for member access instead
of merging namespaces of interfaces. Convention (c) requires semantic proofs and
is, therefore, more difficult to check. These conventions also avoid semantic prob-
lems in the overriding in subclasses. Hence, they are implicitly advocated as good
style for object-oriented programming [20, 53, 15] and correspond to Microsoft
COM’s rules/guidelines for the binary level.

In conclusion, wrap-time checking allows us to avoid type unsound overriding.
Furthermore, adherence to some also otherwise beneficial coding conventions can
greatly reduce the possibility of type or semantic unsound overriding.

2Self calls, which are of course also allowed, are discussed in Sect. 5.3.

14

5.1.2 An alternative form of method lookup

An alternative is to have the wrapper only override methods already present in the
static wrappee type. In Fig. 6, this would mean that only A.m would be overridden
by AWrapper.m.

Instead of overriding additional methods of the actual wrappee, in the example
A.n and A.o, we allow an aggregate to contain multiple methods with the same
signature and base the dispatch on run-time context information. In the simplest
case, the dispatch is based on the static type of the receiver:

AWrapper w=new AWrapper<new A()>();
int i; i=w.o(); // executes AWrapper.o, i=0
A a=(A)w; i=a.o(); // executes A.o, i=1

In more general cases, the dispatch is not only based on static, but on run-time
context information, i.e., an object’s history of subsumptions. To illustrate this,
assume that method o is declared in interface IO and that both AWrapper and A
implement IO. In the following code fragment, added to the above, the static type
of the receiver is in both cases IO, but different implementations are executed:

IO x;
x=w; i=x.o(); // executes AWrapper.o, i=0
x=a; i=x.o(); // executes A.o, i=1

The problem is that there are two occurrences of IO in the aggregate. Thus, we
have to choose one for subsumption.3 Multiple non-virtual inheritance in C++ has
a similar semantics.

In languages that do not support final classes or method header specialization
(Sect. 6.2), this form of method lookup avoids wrap-time exceptions. However,
to also achieve semantic soundness, we still need to adhere to the above four cod-
ing conventions. Otherwise, we could execute a.m() in the fragment above and be
surprised that we don’t get 1 as result. The soundness problems caused by special-
ization could only be avoided by fully giving up overriding.

Method lookup and subsumption are more complex with this approach. Fur-
thermore, adding this to a single-inheritance language with ‘normal’ method lookup
and subsumption for inheritance, we end up with two different forms of method
lookup and subsumption. The technicalities of this approach for compile-time
composition of mix-ins can be found in [18].

5.1.3 Refutation of static approaches

Here we briefly discuss why some approaches that avoid possible wrap-time con-
flicts at compile time and that are based on normal overriding have serious defi-
ciencies.

3In our case, we have already subsumed the aggregate to be of type AWrapper, respectively A.
A true choice would be needed in the first line if w were of a subtype of both AWrapper and A,
e.g., the compound type [AWrapper, A] [7].

15

Allowing the wrapper to only override methods of the static wrappee type, but
not add additional methods would avoid the problem of unsound overriding of ad-
ditional methods in the actual wrappee, e.g. A.n. However, not allowing additional
methods in the wrapper would be a severe restriction, which would greatly reduce
the usefulness of generic wrappers. Furthermore, this approach would fail in lan-
guages that support final classes or method header specialization (Sect. 6.2).

Negative type information [44, 10, 23] could express that subtypes of IA must
not have a method, like n, that might be overridden in an unsound way. However,
this would also mean that an aggregate of an AWrapper and a subtype of IA would
not be of a subtype of IA and could, therefore, not be referenced by a variable
of type IA. Furthermore, negative type information cannot be expressed in type
systems of current languages.

Requiring the exact type of the wrappee to be known at compile time, a third
approach, would contradict the requirement of run-time applicability (1).

5.2 Hiding of fields and class methods

In many languages, fields and class methods are hidden rather than overridden in
subtypes. Hiding of fields, if permitted, is not problematic because the hiding field
may have a different type than the hidden field. The static wrappee type is used
to access hidden fields in the actual wrappee. Hiding of class methods is usually
governed by similar requirements as overriding of instance methods. Thus, the
same two options apply.

5.3 Forwarding vs. delegation

The difference between forwarding (also called redirection and consultation) and
delegation is the binding of the self parameter in the wrappee when called through
the wrapper. With delegation, the self parameter is bound to the wrapper, with
forwarding it is bound to the wrappee. Figure 7 illustrates the difference with a
client calling method m of the wrappee on a reference to the wrapper.

Forwarding is a form of automatic message resending; delegation is a form
of inheritance with binding of the parent (superclass) at run time, rather than at

wrapper w

forwarding

wrappee f

this.n()

a) Forwarding

wrapper w

delegation

wrappee f

this.n()

b) Delegation

wrapper:

void n() {
print("n1");

}

wrappee:
void m() {
 print("m2, "); n();
}
void n() {

print("n2");
} Output: m2, n2 Output: m2, n1

Figure 7: Forwarding vs. Delegation

16

compile/link time as with ‘normal’ inheritance [31]. Delegation vs. forwarding,
the binding time of the parent, and the support for type transparency are almost
orthogonal design dimensions.

In all cases, super calls in the wrappee invoke methods of its superclass and
not the wrapper’s superclass. During these calls, this is bound to the wrappee with
forwarding and to the wrapper with delegation.

The advantage of delegation over forwarding is that the wrapper can better
modify and customize the behavior of the wrapped object. The advantage of for-
warding is that it eases modular reasoning: As illustrated, delegation can lead to
up-calls from the wrappee to the wrapper. With forwarding, control stays within
the wrappee once a call has been forwarded to it. The wrapper cannot interfere
with the flow of control inside the wrappee [53]. Thus, forwarding gives a looser
coupling not suffering from the semantic fragile base class problem [36]. This is
especially important for component software because the wrapper and the wrappee
may be developed independently and composed at run time. Furthermore, forward-
ing does –unlike delegation– not break encapsulation [46].

5.4 Replacing a wrappee

The wrappee of a given wrapper could be replaced by another object, the type of
which is a subtype of the old dynamic wrappee type. It is not sufficient that the
new wrappee is a subtype of the static wrappee type: A BorderWrapper wrapping
a TextView can be referenced by a variable of static type TextView. Replacing the
wrappee by a ButtonView would violate type soundness.

Let ExtTextView be a subclass of TextView. Then, a border wrapper wrapping
an ExtTextView should by subsumption be treatable like a border wrapper wrap-
ping a TextView. If we allow a wrappee to be replaced, this is no longer the case.
Replacing the ExtTextView in the first aggregate by a TextView is unsound whereas
replacing the TextView in the second aggregate by another TextView is sound.

Although cyclic wrapping is type sound in combination with certain features,
it is for semantic reasons mostly undesirable. Cyclic wrapping is prevented by the
construction process, because the wrappee must be passed as an argument to the
wrapper instance creation expression (Sect. 4). If we don’t want cyclic wrapping,
we also have to prevent it in the replacement of a wrappee.

For semantic reasons, we think that the wrappee should not be exchangeable.
By fixing the wrappee for the lifespan of the wrapper, the system becomes more
static and, therefore, simpler to analyze and reason about.

5.5 Direct client references to the wrappee

There are both advantages and disadvantages to allowing clients to hold direct
references to the wrappee and being able to invoke the latter’s methods —bypassing
a possible overriding by the wrapper. On the positive side, this may give clients the
possibility to invoke methods that are ‘accidentally’ overridden. For example, both

17

BorderWrapper and TextView may define instance methods setColor with the same
parameters. Without direct access to the wrappee, clients may not be able to change
the text color. With direct access to the wrappee, this is possible. However, only
clients that are aware that they reference a wrapped TextView rather than a bare one
can do so. With the alternative method lookup (Sect. 5.1.2), TextView.setColor can
also be accessed through a cast, unless the method is already declared in the static
wrappee type IView.

The disadvantage of direct client references to the wrapper is that it gives an
additional way for clients to invalidate invariants ranging over both the wrapper and
the wrappee. Furthermore, we end up with different reference values to the same
aggregate; thus, loosing the unique identity and the possibility of direct reference
comparison.

On a middle ground, we could allow clients to access overridden or hidden
members of the wrappee using a special qualified syntax, e.g. w.wrappee.getSize(),
but not allow direct references. That is, x=w.wrappee would not be legal. This
approach restricts direct client access to few in the source code well visible places
and solves the problem of different reference values to an aggregate. To safely
access wrap-time overridden members, we would additionally need run-time type
tests of the wrappee by clients and casts in the qualified access. For example, to
invoke the method setColor, not present in IView, of a wrapped TextView, we would
write:

if(w.wrappee instanceof TextView) {((TextView)w.wrappee).setColor(c);}

If we in principle permit direct client references to the wrappee, we can still let
the developer of a wrapper decide for each wrapper class or instance, whether to
actually allow such references.

Analogies to overriding in inheritance shows that all of the above options are
used in some languages: Java does not allow clients to access overridden methods.
In Self, clients can have direct references to parent objects. Finally, overridden
methods can be invoked by clients using qualified accessors in C++.

The transparency of generic wrappers reduces the need for direct client refer-
ences. In the containment approach (Sect. 3.2) all functionality that the dynamic
wrappee type provides beyond the static wrappee type can only be made accessible
by giving clients direct access to the wrappee. With generic wrappers, on the other
hand, the full functionality of the dynamic wrappee type is available through the
wrapper —except for accidentally overridden methods.

Whether we allow the wrapper to hand out direct references or not, we have
the problems of existing references to the wrappee and of the wrappee handing out
self references. Even if we in principle permit direct references, we may want to
restrict them to clients that explicitly ask for them and are aware of the dangers.

18

5.5.1 Redirection of existing references

The problem of existing references vanishes if there aren’t any. In analogy to
aggregation in Microsoft’s COM (Sect. 10), we could require the wrappee to be
created along with the wrapper and not allow the wrappee’s constructor to pass out
self references. The latter condition can, however, only be checked with a semantic
proof that can in general not be performed automatically. Furthermore, experience
with COM showed that this approach is often too restrictive [42].

The second best case is a single reference to the object to be wrapped. In type
systems with aliasing control [25, 12] that can guarantee uniqueness of references
we could restrict wrapping to unique references. This single existing reference to
the wrappee, which is used as argument in the wrapper construction, could then
either be redirected to the wrapper or be set to null. The restriction to unique
references may severely limit the applicability of wrappers. Furthermore, aliasing
control is not common.

For mainstream languages we see the following options:

1. Keep the references to the wrapped object unchanged. This is only an option
if we allow direct references to the wrappee. Unfortunately, clients won’t
recognize if an object they refer to has been wrapped. Hence, they might
unknowingly invoke overridden methods of the wrappee and, thereby, cause
the aforementioned semantic problems.

2. Set all existing references to the wrappee to null. Although this approach is
type sound, it is clearly unacceptable.

3. Update all existing references to point to the wrapper. Thanks to the trans-
parency of generic wrappers this is sound. Since the type of a reference can
only be increased by wrapping, assumptions —gained using run-time type
test— that a reference is at least of a certain type are not falsified. On the
other hand, negative type assumptions may be invalidated.

5.5.2 Handing out of self references

Wrappees may pass out self references, e.g. for event listener registration. If we
don’t want direct client references to the wrappee or only allow the wrapper to
hand them out, we need to address this issue. The draconian solution is to disallow
the use of this in the wrappee except for member access. This is, however, very
restrictive and excludes instances of legacy classes not adhering to this restriction
from being used als wrappees.

Alternatively, we may define this in the wrappee to reference the wrapper ex-
cept when used for member access. In combination with forwarding or with dele-
gation and direct client calls of wrappee methods, we get a little semantic curiosity:
For variable x of the wrappee’s type, this.m() invokes the wrappee’s implementa-
tion of m() and x=this; x.m() calls the wrapper’s overriding implementation, if the
latter exists.

19

TextView

La
be

lW
ra

pp
er

BorderW
rapper

b) Disjunctive wrapping

TextView

LabelWrapper

ScrollWrapper

BorderWrapper

a) Conjunctive wrapping

Figure 8: Conjunctive and Disjunctive Wrapping

5.6 Multiple wrapping

There are two forms of multiple wrapping, conjunctive and disjunctive wrapping
(Fig. 8). Conjunctive (also called additive or recursive) wrapping applies multiple
wrappers around each other. For example, we might wrap a TextView in a Scroll-
Wrapper and the latter with a BorderWrapper. Cyclic wrapping has been discussed
in Sect. 5.4. Infinite wrapping chains are not a problem in practice. They could
only occur in infinite executions on computers with infinite amounts of memory.

Disjunctive wrapping presents the same wrappee with different wrappers. It
has analogous drawbacks as direct client references to the wrappee, namely the
possibility of invalidating invariants ranging over the wrappee and one of its other
wrappers. The application of disjunctive wrappers is tricky: Automatic redirection
to the outermost wrapper (Sect. 5.5) doesn’t work, because there is no single out-
ermost wrapper. Furthermore, disjunctive wrapping is only possible if we allow
direct client references to the wrappee, provide a special statement for the simulta-
neous application of multiple wrappers, or let an existing wrapper wrap its wrappee
reference without updating it. With type transparency, disjunctive wrapping can in
most cases be replaced by conjunctive wrapping because the full dynamic wrappee
type is visible through all wrappers.

If we allow direct client references to the wrappee but not disjunctive wrap-
ping, we have to define what happens if a client wraps an object that is already
wrapped. The options are disallowing it and throwing an exception if tried, putting
the new wrapper between the wrappee and the old wrapper, and applying the new
wrapper around the old wrappee. Thanks to the transparency of generic wrappers,
all options are type sound.

5.7 Concealment

In certain cases, a wrapper may want to conceal part of the wrappee from clients.
For example, a ConfidentialWrapper and its wrappee should not be serializable for
confidentiality reasons. Thus, the wrapper wants to conceal interface Serializable

20

from clients in case the wrappee implements it. For this case, a conceals clause
may be useful in combination with wraps:

class ConfidentialWrapper wraps IView conceals Serializable {. . .}

With this definition, no instance of a ConfidentialWrapper aggregate will ever
be an element of Serializable. That is, for a variable x referencing such an aggre-
gate, x instanceof Serializable will be false.

Alternatively, a wrapper could be transparent for explicitly listed types only:

class SpecialWrapper wraps IView hoists IText, IGraphics {. . .}

When such a SpecialWrapper wraps an instance of a class implementing IText
then the functionality declared in IText can be accessed through the wrapper. On
the other hand, if the same class also implements another interface, say IContainer,
the latter’s functionality cannot be accessed through the wrapper and the wrapper
cannot be assigned to a variable of static type IContainer. Although transparency is
restricted, this approach differs from the containment approach (Sect. 3.2) in that
the type of the aggregate depends on the actual type of the wrappee.

Concealment may be practical for special cases, but it causes type soundness
problems because the aggregate is not a subtype of the wrappee. Existing refer-
ences to the wrappee cannot be redirected to the wrapper, if the latter conceals
(part of) the static type of the variable containing the reference. Concealment also
causes similar problems in combination with solutions 2 and 3 of applying a wrap-
per to an already wrapped object (Sect. 5.6). Furthermore, with delegation self
calls of the wrappee to methods that are concealed by the wrapper fail. For this, a
workaround would be to conceal types only from clients, but not from the aggre-
gate itself.

These problems may, but do not necessarily occur in a given system that uses
concealment. In analogy to Eiffel allowing subclasses to conceal4 inherited mem-
bers, we could allow concealment of types. This would, however, require system
validity checks of complete systems.

5.8 Multiple wrappees

So far, we have assumed that a given wrapper instance wraps exactly one object.
This could be generalized to a fixed or arbitrary number of objects, thereby provid-
ing a single view of a subsystem implemented by multiple objects corresponding to
the facade pattern [20]. Similar to multiple code inheritance, this works well unless
different wrappees implement methods with the same signature and the wrapper
does not override them. In this case, message lookup needs to be redefined. Simi-
lar to wrap-time overriding (Sect. 5.1), such conflicts caused by type transparency
may not be visible at compile time.

4This is called ‘hiding’ in Eiffel. We don’t use this term here to avoid confusion with Java style
hiding of class methods and fields (Sect. 5.1).

21

There are four partly combinable approaches for augmenting the definition of
method lookup. The first two are similar to possible solutions for type-sound wrap-
time overriding.

1. We can disallow ambiguous aggregates by checking for static conflicts at
compile time and throwing an exception at run time when trying to wrap
objects that would result in an ambiguity. This approach, however, fails the
genericity requirement (2).

2. We can leave the problem unresolved until an ambiguous method is called
and only then throw an exception. Self uses this approach in presence of
multiple parents. This fails the requirement of as-early-as-possible error de-
tection (6).

3. Message lookup proceeds according to a certain strategy (depth first, breadth
first) and a certain order (declaration order, alphabetic order of wrappee type
names, etc.). The first matching method is chosen. Any such strategy and
order would be rather arbitrary, as illustrated by the criticism of CLOS using
syntactic order to choose the correct multi-method [11].

4. The wrapper explicitly defines a lookup strategy and order for conflict res-
olution. This solution is rather complex and may still not have the desired
effect.

6 Interaction With Other Typing Mechanisms

In this section we discuss the interaction of generic wrappers with other common
typing mechanisms.

6.1 Subclassing

Here we investigate whether and how generic wrappers can substitute inheritance
and how the two may be combined.

6.1.1 Generic wrappers as a substitute for inheritance

If we choose delegation (Sect. 5.3) for generic wrappers, then they can be used to
simulate class-based inheritance as follows:

class D extends C {. . .};
D d=new D();

Inheritance

class D wraps C {. . .};
D d=new D<new C()>();

Simulation with generic wrappers

22

The main difference is that at compile time we only know the lower bound
of the wrappee type for generic wrappers, whereas with inheritance we know the
exact superclass. This can be interpreted as flexibility or as lack of knowledge.

If, on the other hand, we use forwarding instead of delegation for generic wrap-
pers, then we cannot modify the semantics of self calls in methods of the supertype.
Thus, such generic wrappers cannot be used to simulate inheritance. Considering
the advantages of the looser coupling, generic wrappers might still be used in a
language as a replacement for inheritance.

6.1.2 Subclassing of wrapper classes

In most mainstream languages like Java, Eiffel, and C++ subclassing implies sub-
typing. For this principle to extend to wrappers, a subclass of a wrapper class
C has to be declared to wrap the same type X as C or a subtype of X. Covariant
specialization of the static wrappee type is possible unless the wrappee can be re-
placed (Sect. 5.4) using a method like setWrappee(StaticWrappeeType w), where
the static wrappee type occurs in a contravariant position.

A seeming alternative to a subclass D of a wrapper class C being itself a wrap-
per would be that D implements the static wrappee type of C. For example, if C
wraps X then D implements X would suffice. However, methods of C may contain
accesses to wrappee members using the keyword wrappee. These accesses would
be undefined in D because instances of D do not have a wrappee. It would be
type sound, but semantically undesirable, to let wrappee be a self reference in such
cases. Hence, implementing a superclass’ static wrappee type instead of wrapping
an object of that type is not an alternative.

Forcing subclasses of wrapper classes to be wrappers themselves implies a
restriction on the legal static wrappee types. Let C be a wrapper class with static
wrappee type X. Then X must not be equal to C or be a subclass of C. If X is
itself a wrapper class, it must not —directly or transitively— be declared to wrap
C or a a subclass of C. Only infinite and circular chains, which we both forbid,
could be elements of a class C not adhering to these rules. It is, however, for
example legal for a BorderWrapper to have the static wrappee type IView (or even
some other wrapper type) and have an instance of BorderWrapper wrap another
BorderWrapper.

6.2 Method Header Specialization and Final Classes

Some languages allow overriding methods to have more specialized headers. For
example, Java allows a non-final method to be overridden by a final one and al-
lows the overriding method to have a more restricted exception throws clause and
a higher accessibility. Other languages also allow covariant return type and con-
travariant parameter type specialization.

This creates problems with overriding by wrappers, even if the overriding is
statically visible. Wrapping an instance of B with a BWrapper in Fig. 9, would

23

interface IB {
void p() throws SomeException;

}

class BWrapper implements IB wraps IB {
public void p() throws SomeException {. . .};

}

class B implements IB {
public final void p() {. . .};

}

IB b=new B();
BWrapper w=new BWrapper(); // illegal wrapping caught by exception
((B)w).p() // final method would be overridden and exception might be thrown

Figure 9: Method Header Specialization Example

override the final method B.p with an empty throws clause by BWrapper.p, which
may throw SomeException.

To prevent such unsound overriding, we have to use wrap-time exceptions.
Thus, in languages with method header specialization, even the alternative form of
method lookup (Sect. 5.1.2) cannot fully avoid the problem of wrap-time excep-
tions. Method header specialization is the type correspondent of semantic refine-
ment discussed in Sect. 5.1.1.

Final classes pose a similar problem. They should not be subtyped. Thus, it is
a compile-time error to declare a wrapper with a static wrappee type that is a final
class type. At run time, an exception is thrown if an attempt is made to wrap an
instance of a final class.

6.3 Overloading resolution

Many languages support overloading of method names, that is classes containing
multiple methods with the same name, but different numbers or types of param-
eters. For every call, the signature of the method to be invoked is determined at
compile time. Compile-time selection of the invoked method’s signature means
that a better fitting signature of the run-time type, e.g. a subclass, is ignored. The
same principle applies to generic wrappers: There is no need for a costly search of
a possibly better fitting signature in the actual wrappee during method invocation.

6.4 Parametric types

Parametric types and methods, like C++ templates and generic Eiffel classes, allow
compile-time reuse of generic classes and interfaces by providing type parameters
and, thereby, creating generically derived classes. Java doesn’t support parametric

24

types. We use here the C++ like syntax with bounds common to most proposals
(e.g. [1]) for adding F-bounded polymorphism to Java.

Generic wrappers and parametric types can be combined without problems. In-
stances of generically derived classes don’t distinguish themselves from instances
of normal classes. Hence, they can be normally wrapped.

Generic wrappers can be parameterized. As in combination with inheritance,
the type parameter might be implicitly limited by soundness constraints for over-
riding and hiding. Let classes C and D be defined as follows:

class C {
void m(String s) {. . .}

}

class D<T> wraps C {
int m(T s) {. . .}

}

Using String for the parameter T, i.e. D<String>, we would get two methods
m(String s). Hence, such a derivation has to be forbidden at compile time. An anal-
ogous problem occurs in combination of parametric types with inheritance rather
than generic wrapping, as illustrated by replacing wraps by extends in the declara-
tion of D above.

By allowing the type parameter in the wraps clause we can make use of possible
additional compile time knowledge about the wrappee. Compare the classes E1 and
E2, where M stands for some member declarations:

class E1 wraps I {M}
class E2<T implements I> wraps T {M}

Any legal wrappee of an instance of a derived class of E2 is also a legal wrappee
of an instance of E1. However, derived classes of E2, such as E2<C> (assuming
that C implements I), can be used to give more static type information. Similar
static type information can be provided by a subclass of E1 with covariantly spe-
cialized static wrappee type C or with compound types [7], e.g. [E1, C].

Generic wrappers can also be used as bounds in generic classes and as actual
parameters in generic derivations.

6.5 Compound types

Compound types [7] let us express directly that the type of a parameter must sub-
type a set of named reference types, thereby optimally supporting flexible behav-
ioral typing.5 For example, the compound-typed variable [ILabel, IText] v may
reference an instance of a class that implements both ILabel and IText, or the value
of v may be null.

5Cecil’s [11] greatest lower bound types, written ILabel & IText, and Objective-C’s [38] multi-
ple protocols, written <ILabel, IText>*, are similar to compound types in Java.

25

signText(Key privateKey, [ILabel, IText] IdText) {. . .}

class LabelWrapper implements ILabel wraps IText {. . .}

Text t; . . .;
signText(k, ([ILabel, IText]) new LabelWrapper<t>)

Figure 10: Summary of example definitions

Compound types let us specify that a parameter must be a text with a label,
a text with a border, or even a text with both a label and a border. For example,
the method signText(Key privateKey, [ILabel, IText] idText) could set the label to
the signature of the text calculated with privateKey (Fig. 10). Let LabelWrapper
implement ILabel and wrap IView and let TextView implement IText. An instance of
LabelWrapper wrapping a TextView could be passed as second argument to method
signText. Without type transparency, this would not be possible.

If the source code of signText were under our control, we could declare the pa-
rameter idText to have type ILabel and then in the body of signText get the wrappee
and test its type. This approach has, however, several drawbacks: First, the typing
of the parameters conveys less precise information. Users don’t immediately see
what parameters are legal. Second, instances of non-wrapper classes that only im-
plement ILabel are legal parameters. Thus, errors that could be caught at compile
time are not. Third, the implementation has to differentiate between parameters
that implement the two interfaces in one or two objects. In conclusion, compound
types allow for more precise typing, but without type transparency certain aggre-
gates would not be legal parameters.

Constituent types of a compound type being implemented by different objects
may, however, lead to undesirable semantic effects. Assume, for example, that
TextView also implements ILabel and while the text is modified constantly updates
the signature that it itself stores. In this case, modifying the text contents of a
TextView wrapped by a LabelWrapper and then reading the label, may unexpect-
edly returns a wrong signature, namely that stored in the wrapper and not that of the
wrappee. The same problem exists, of course, in the decorator pattern (Sect. 3.2).

7 Generic Wrappers in Java

As a proof of concept, we add generic wrapping to Java. We present generic wrap-
pers as a strict extension, that is existing Java programs need not be changed and
instances of existing classes can be wrapped.

We select a consistent set of features from the aforementioned design choices
and give a definition of generic wrappers in Java. We base our choices on the
motivating examples and the above discussions, without repeating the latter. Next,
we discuss selected integration issues with the Java library. Finally, we show how
the defined mechanism solves the motivating problem.

26

In the next section, we report on a mechanized type soundness proof for the
presented solution. A discussion of efficient implementation strategies is beyond
the scope of this paper.

7.1 Feature selection and language integration

Both compile-time and wrap-time overriding and hiding are governed by the same
rules as (compile-time) overriding and hiding in subclasses. Furthermore, we don’t
allow instances of final classes to be wrapped. Violations of these rules by the
wrapper/static wrappee pair are flagged at compile time; violations by the wrap-
per/actual wrappee pair cause exceptions at the time of wrapping.

To get loose coupling between the wrapper and the wrappee and to facilitate
semantic reasoning we chose forwarding over delegation and fix the wrappee for
the lifespan of the wrapper. All existing references to the wrappee are redirected to
the wrapper upon wrapping. We define this in the wrappee to refer to the wrapper
except when used for member access. For example, this.x is the field x of the
wrappee, but s.register(this) passes a reference to the wrapper as parameter. This
approach guarantees a unique identity of the aggregate from the clients’ point of
view.

In a tribute to flexibility, we allow clients to explicitly attain direct references
to the wrappee. Still, we hope this feature proves to be superfluous. The imple-
mentor of the wrapper class determines whether clients can get direct references to
the wrappee by putting an access modifier (private, protected, public) between the
keyword wraps and the static wrappee type, e.g:

class LabelWrapper3 wraps public IView {. . .}

The access modifier of the wrappee in a subclass must provide at least as much
access as that in the superclass.

The keyword wrappee can be treated like the name of a final instance field of
the wrapper class with the used modifier, e.g public in the above example. For
example, let x be a variable of type LabelWrapper3. Then clients can access the
wrappee as x.wrappee. To navigate back from a wrappee to its outermost wrapper,
the method:

public final Object getWrapper() {return this;}

is added to the class Object. With the above definitions, this method returns a
reference to the wrapper if the receiver object is wrapped and otherwise to the
receiver itself.

We allow only conjunctive, but not disjunctive wrapping. Wrapping an already
wrapped object corresponds to wrapping its outermost wrapper. Because it is not
sound in combination with the above features, we don’t allow concealment. Every
wrapper has exactly one wrappee. (The wrappee may of course itself be a wrapper.)

27

Although believed not to cause any problems, we do not allow array objects to
be wrapped, as would be possible for wrappers, the static wrappee type of which
is an array type, Object, Cloneable, or Serializable. The latter are the only inter-
faces implemented by arrays.

Grammar The grammar for class declarations and class instance creation ex-
pressions is augmented as follows [21]:

ClassDeclaration: Modifiersopt class Identifier Superopt Interfacesopt
Wrapperopt ClassBody

Wrapper: wraps AccessModifieropt ReferenceType
AccessModifier: one of public protected private
ClassInstanceCreationExpression: new ClassType Wrappeeopt (ArgumentListopt)
Wrappee: < Expression >

Additionally, wrappee is added as an alternative to the PrimaryNoNewArray
production.

Synchronized methods To simplify synchronization between threads, acquiring
a lock on a wrapper instance also locks the wrappee, possibly recursively in case
of conjunctive wrapping.

7.2 Library integration

The library being an integral part of Java —the description of three packages is
even part of the Java language specification— we discuss how selected features
interplay with generic wrappers. Generic wrappers integrate in a straightforward
way with most libraries, often providing new possibilities.

Serialization For instances of a Java class to be serializable, the class must im-
plement the empty interface Serializable. The serialization of wrappers is problem-
atic in case the wrapper implements Serializable, but the wrappee doesn’t. Type
soundness forbids us to not externalize the wrappee and set the wrappee reference
to null upon deserialization. We see the following options:

1. Disallow serializable wrappers to wrap instances of non-serializable classes.

(a) Using compound types (Sect. 6.5), this can be done statically without
otherwise restricting applicability: A wrapper class that implements
Serializable must require the wrappee to do the same, e.g., a label
wrapper implementing Serializable would have to be declared as La-
belWrapper wraps [IView, Serializable].

(b) Expressing this requirement without compound types adds unnecessary
restrictions, if the desired wrappee type, e.g. IView, is not a subtype of
Serializable. In this case we have to declare a subinterface of IView

28

and Serializable. However, due to by-name equivalence of types this
unnecessarily excludes classes implementing the two directly [7].

(c) Instead of static checks we could resort to throwing an exception when
trying to wrap an instance of a non-serializable class by a serializable
wrapper as we do for unsound overriding (Sect. 5.1).

2. Treat the wrappee like an object referenced by a field of the wrapper and
throw a NotSerializableException when trying to serialize the aggregate.
This ruins the clients’ perception of the aggregate being a single object.

3. If the wrappee has a no-argument constructor, only serialize the wrapper and
create a new wrappee upon deserialization. Otherwise, use one of the above
options. This is analogous to a subclass of a non-serializable superclass.

4. Ignore security and other concerns of the implementor of the wrappee and
serialize the latter nonetheless.

With compound types, we choose the first option because it solves the problem
at compile time without introducing any unnecessary restrictions. Otherwise we’d
use the second option.

A dual problem occurs if the wrappee implements Serializable, but the wrapper
doesn’t. With concealment, we could conceal the interface from clients. Without,
we get almost dual options. However, due to the lack of static negative type infor-
mation there is no correspondence options 1 (a) and 1 (b), except the very restrictive
requirement that all wrapper classes must implement Serializable. We, therefore,
choose the second option of throwing a NotSerializableException when trying to
serialize a wrapper that is not serializable.

Cloning The general contract of clone is that it creates and returns a copy of
the receiver object [21]. Because we don’t allow disjunctive wrapping, clone of a
wrapper has to either create a deep copy or throw a CloneNotSupportedException.

The method clone is defined in Object, classes implement the empty interface
Cloneable to indicate that they actually support cloning. If a wrapper implements
the interface, but the dynamic wrappee type doesn’t, we have a similar problem
as for serialization. Analogously we have the options of disallowing a wrapper
that implements Cloneable to wrap an instance of a class that doesn’t, throw a
CloneNotSupportedException, or create a new wrappee with the no-argument con-
structor if present and accessible. We opt again for the first choice.

The dual problem of the wrappee, but not the wrapper, implementing Clone-
able is again solved with the second option. The implementation of clone, that
the wrapper inherits from Object and which overrides the implementation in the
wrappee, throws a CloneNotSupportedException.

29

7.3 Assessment

Our mechanism fulfills all requirements (Fig. 2) except for genericity (2). The
latter fails in cases where overriding or hiding would not be sound. We consider
this acceptable because exceptions are already thrown at the time of wrapping —
and not at the time of member access— and because creation of new instances can
also fail for other reasons with an exception in existing Java.

Clearly, the motivating problems (Sect. 2.1) can be solved with the presented
generic wrappers for Java: Let BorderWrapper be declared as follows:

class BorderWrapper wraps IView {. . .;}

If such a border wraps a TextView, the aggregate is of type TextView and is,
therefore, recognized as such by the spell check procedure of all embedded views.
Likewise, if such a border wraps a ButtonView, the aggregate is of type IControl
implemented by ButtonView. Hence, it can be inserted into a forms container.
The developers of TextView, ButtonView, the spell check operation, and the forms
container don’t have to do any special coding for this to work.

8 Type Soundness

In this section, we report on a mechanically verified formal proof of type soundness
of Java extended with generic wrappers. Type soundness intuitively means that all
values produced during any program execution respect their static types. An im-
mediate corollary of type soundness is that method calls always execute a suitable
method, that is, there are no ‘method not understood’ errors at run time. Type
soundness is not a trivial property, especially for polymorphic languages [6, 9]. It
came to prominence with the discovery of its failure in Eiffel [13, 34]. Static typing
loses much of its raison d’être if type soundness does not hold.

Our proof of type soundness for generic wrappers is based on the work of von
Oheimb and Nipkow [41], a much extended version of [39]. They have formalized
a large subset of Java and mechanically proved type soundness with the theorem
prover Isabelle/HOL [43].

For this paper, we have added generic wrappers to this formalization. For sim-
plicity, we have extended the formalization of the existing Java type system, rather
than our previous extension with compound types [7]. Finally, we adapted the
proofs and ran them through Isabelle/HOL.6

8.1 Definitions

Here, we present the widening and casting relations, which are interesting in their
own rights. Since all type judgments involving arrays are unchanged, they are

6At http://www.abo.fi/˜mbuechi/publications/GenericWrapping.html the Isabelle theories are
available.

30

omitted in this presentation. A full report of all the mechanical details is beyond
the scope of this paper.

The Java language specification introduces identity and irreflexive widening
conversions separately. The Java language specification [21] uses the term ‘widen-
ing’ for its form of subtyping. Since identity conversions are possible in all conver-
sion contexts permitting widening, the two are merged in the formalization. The
expression Γ � S � T says that in program environment Γ objects of type S can be
transformed to type T by identity or widening conversion. In particular, expres-
sions of type S can be assigned to variables of type T and expressions of type S can
be passed for formal parameters of type T .

We use the following naming conventions:

C,D classes A list of classes
I,J interfaces S,T arbitrary types
R reference type Γ program, environment

The judgment Γ � C≺cD expresses that class C is a subclass of class D, Γ �
C ❀ I that class C implements interface I, and Γ � I≺iJ that I is a subinterface of
J (Fig. 11). Furthermore, is type Γ T expresses that T is a legal type in Γ, RefT R
denotes reference type R, and NT stands for the null type.

Class C stands for the class type C and Iface I for the interface type I. Fur-
thermore, the discriminators is class Γ C and is iface Γ I are used.

In our formalization we now have two kinds of classes: normal (non-wrapper)
classes and wrapper classes. The discriminator is wrapper Γ C is true if C is a
wrapper class and false otherwise. WrappeeOf Γ C denotes the static wrappee
type of class C in program environment Γ.

At run time, instances of wrapper classes are of aggregate types. Aggregate
types are finite lists of at least two class types. An instance of the wrapper class
C wrapping an instance of the wrapper class D that itself wraps an instance of the
(non-wrapper) class E belongs to type Aggregate [C,D,E].

The discriminator is aggregate Γ A is true if A is a list of class names, all
but the last element of A denote wrapper classes in Γ, the last element denotes a
non-wrapper class, for each i ∈ 0. .length A− 2 there exists a ji > i such that the
jith element extends, implements, or is equal to the static wrappee type of the ith
element, and there are no clashes between method signatures of the elements of A.

Γ � S � T S widens to (‘is subtype of’) T in Γ
Γ �C≺cD C is a subclass of D in Γ
Γ �C ❀ I C implements I in Γ
Γ � I≺iJ I is a subinterface of J in Γ
Γ � S�?T cast from S to T permissible at

compile time in Γ

Figure 11: Summary of notation

31

Since there are no variables of aggregate type and because we do not allow the
dynamic reassignment of wrappees, we only need widening rules with aggregates
on the left-hand side of the conclusion judgment.

The following six typing judgments apply unchanged also to wrapper classes:

is type Γ T
Γ � T � T

is type Γ (RefT R)
Γ � NT � RefT R

Γ � I≺iJ

Γ � Iface I � Iface J
is iface Γ I; is class Γ Object

Γ � Iface I � Class Object

Γ �C≺cD
Γ � Class C � Class D

Γ �C ❀ J
Γ � Class C � Iface J

The following widening rules involving wrapper classes are used at compile
time:

is wrapper Γ C; Γ � WrappeeOf Γ C � Class D
Γ � Class C � Class D

is wrapper Γ C; Γ � WrappeeOf Γ C � Iface J
Γ � Class C � Iface J

The following widening rules involving aggregates are used at run time (set
converts a list into a set):

is aggregate Γ A; ∃C ∈ set A.Γ � Class C � Class D
Γ � Aggregate A � Class D

is aggregate Γ A; ∃C ∈ set A.Γ �C ❀ J
Γ � Aggregate A � Iface J

The casting relation Γ � S�?T states, that a cast from type S to type T is
permissible at compile time, that is, the type cast ‘(T)e’, where e is of type S,
might succeed at run time. This is interesting because if it can be proven to always
fail, the compiler can already flag an error.

If Γ � S � T holds, the cast can be proven to always succeed. Otherwise, a
run-time validity test must be performed to check whether Γ � R � T holds for the
run-time type R of the cast operand. The following general casting conversions are
applicable to wrapper classes as well:

Γ � S � T
Γ � S�?T

is class Γ C; is iface Γ J
Γ � Class C�?Iface J

is iface Γ I; is class Γ D
Γ � Iface I�?Class D

The following two casting rules have weaker conditions in the presence of
generic wrappers:

is class Γ C; is class Γ D
Γ � Class C�?Class D

is iface Γ I; is iface Γ J
Γ � Iface I�?Iface J

32

8.2 Theorems and conclusions

With the above definitions we proved that evaluation and execution are type sound
and that method lookup always succeeds. These theorems on the extended type
system correspond to the ones proved by von Oheimb and Nipkow for Java without
generic wrappers. The first two theorems are syntactically equivalent to the ones
of von Oheimb and Nipkow. Semantically they are, however, different because the
types include generic wrappers. The method lookup theorem is both syntactically
and semantically different.

The currently by von Oheimb and Nipkow formalized subset of Java, on which
we build, still does not capture all features. Of them final classes, modifiers (cur-
rently only static), interface fields, and methods of the class Object would be rel-
evant for generic wrappers. In particular, final classes would allow us to slightly
strengthen some of the premises in the above casting rules.

The main advantages of a mechanized over a paper-and-pencil proof are ad-
ditional confidence and better support for extensions. We would like to stress the
second aspect. Not only did the formalization result in a soundness proof, but the
proof tool also reminded us of what all needed to be defined about generic wrappers
before the desired properties could be established. Most proof scripts worked with-
out modifications. The fact that all theorems were reproved mechanically for the
extended language definition conveys more confidence than the typical adaptation
of a paper-and-pencil proof with ‘this-should-still-hold’ handwaving.

9 Reflective Mix-Ins

Mix-ins with capabilities to create new derived classes at run time provide a single-
object alternative to generic wrappers. To our knowledge, gbeta (Sect. 10) is the
only typed language that supports the derivation of mix-ins from generic classes
at run time. However, since gbeta differs greatly from most other object-oriented
languages such as Java, Eiffel, and C++, a transfer of this mechanism to other
languages is not straightforward. Hence, this section should be understood as an
alternative proposal, not as a comparison with existing languages.

9.1 The proposed mechanism

To illustrate the mechanism, consider again the parameterized class ParBordered-
View:

class ParBorderedView<Wrappee implements IView> extends Wrappee {. . .}

Usually, derivations such as ParBorderedView<TextView> can only be made
at compile time. Hence, we concluded in Sect. 3.1 that mix-ins do not satisfy the
requirement of run-time applicability (1) as, for instance, required to implement
compound documents.

33

We could, however, allow derivations to be made at run-time. We outline such
a proposal for Java based on reflection. In Java the static method forName of Class
gets the class object of a class. Assume that this also works for parameterized
classes. Thus a reference to the class object of ParBorderedView can be assigned
to the variable pc as follows:

Class pc=Class.forName(”ParBorderedView”);

From this, we can get the class object of a derived class with the postulated
method derivation. The type argument of the latter is a class object.

Class dc=pc.derivation(Class.forName(”TextView”));

If needed, this creates a new derived class. Actual run-time applicability comes
from the fact that we can replace the string constant ”TextView” by a variable.
Finally, we can create instances of the derived class using the reflection method
newInstance:

Object o=dc.newInstance();

As shown, this can be used to create arbitrary bordered views at run time. Let
us assess this solution with respect to the requirements (Fig. 2) and in comparison
with generic wrappers.

9.2 Comparison with generic wrappers

Reflective mix-ins have roughly the same properties as generic wrappers that re-
quire the wrappee to be created together with the wrapper. Consistency with mix-
ins derived at compile time further restricts the design space of reflective mix-ins
as compared to generic wrappers.

9.2.1 Combination of wrapper and wrappee into a single object

Reflective mix-ins combine the wrapper and the wrappee into a single object. This
has several consequences. First, reflective mix-ins cannot be used to wrap existing
objects.

Second, the replacement of a wrappee (Sect. 5.4) and direct client references to
the wrappee (Sect. 5.5) are not applicable. On the negative side, the latter implies
that accidentally overridden methods cannot be called by clients. On the positive
side, the problems of redirecting existing references and of handing out self ref-
erences don’t exist. However, these problems don’t occur with generic wrappers
either, if we force the wrappee to be created along with the wrapper.

Third, the combination of the wrapper and the wrappee into a single object
means that only conjunctive, but not disjunctive wrapping is possible (Sect. 5.6).

34

9.2.2 Various differences and similarities

The combination of the super- and subclass becomes first visible when the cor-
responding derived class object is generated with the method derivation. Hence,
possibly unsound combinations due to overriding and hiding conflicts can only be
caught at run time by exceptions as for generic wrappers (Sect. 5.1).

Consistency with mix-ins derived at compile time dictates that we use dele-
gation rather than forwarding. Thus, reflective mix-ins suffer from the semantic
fragile base problem. The latter is aggravated by the fact that the base class is not
statically known and the combination cannot be analyzed at compile time.

The static type safety of reflective mix-ins and generic wrappers is roughly
equivalent. However, the return type of newInstance and all other reflective meth-
ods for creating instances from a class object being Object, we always need an
initial cast with reflective mix-ins. Furthermore, the parameters of constructors
cannot be statically type checked.

An advantage of reflective mix-ins is that they allow the type parameter to be
used in other places than just in the extends clause. The usage must, however, be
restricted to covariant or even private occurrences to maintain subtyping.

9.2.3 Overloading resolution

Reflective mix-ins cause two kinds of overloading resolution problems that do not
occur with generic wrappers. These problems arise from the following two design
principles: A generically derived class that is derived at compile time has the same
semantics as a plain class with the same members (copy semantics). The semantics
of a derived class is independent of the time of derivation (compile or run time).
Thus, the copy principles also applies to classes that are derived at run time using
reflection. Based on this, we can illustrate the two problems.

class C {}
class D extends C {

void m(Integer x) {. . .}
}
class X {

static Object n(Object x) {. . .}
static int n(D x) {. . .}

}
class W<A extends C> extends A {

void m(String x) {. . .}
void o() {

Object y=X.n(this); // different resolution for W<D> causes type error
m(null); // resolution ambiguous for W<D>

}
}

Figure 12: Overloading Resolution Problems of Reflective Mix-Ins

35

First, the most specific method may depend upon the derivation parameter. In
Fig. 12, the most specific method for the call X.n(this) is the one with return type
Object in the derived class W<C>. However, in the derived class W<D> the most
specific method is the one with return type int. In this case the assignment to y is
ill-typed.

Second, in languages, such as Java, without a total order between methods for
overloading resolution, calls may be ambiguous in certain derived classes. The call
m(null) is unambiguous in W<C>, but it is ambiguous in the derivation W<D>.

Like overriding conflicts, changes in overloading resolution and overloading
ambiguities can only be caught at the time of derivation by raising an exception.
These problems do not exist for generic wrappers (Sect. 6.3). Because combina-
tions with actual wrappee types are only made at run time, there is no need to follow
the copy semantics by analogy to a static case. Thus, overloading can be resolved
based on the static wrappee type. Hence, generic wrappers fare slightly better than
reflective mix-ins with respect to the genericity requirement (2). A more detailed
discussion of overloading resolution for static mix-ins can be found in [3].

10 Related Work

Section 3 already provides an overview of some related mechanisms. With the
exception of delegation, where a final comparison with our mechanism is deemed
interesting, these technologies are not discussed again here.

10.1 Language mechanisms

Delegation in prototype-based languages What do we gain with generic wrap-
pers over delegation in prototype-based languages?

First, the static wrappee type and calls to it can be statically type checked.
Some prototype-based languages, such as Cecil [11], also have (optional) static
type systems. However, these languages require the exact type or even the concrete
instance of the parent object to be known at compile time. The same approach is
taken by prototype-based object calculi, e.g. [17]. Thus, they fail the requirement
of run-time applicability (1).

Second, with generic wrappers the dynamic wrappee type can be checked with
run-time type tests.

Third, type casts are the only points of failure; method lookup always succeeds.
This greatly simplifies debugging by indicating errors closer to where they occur.

Fourth, generic wrappers are targeted at mainstream class-based languages.
For our exemplary generic wrappers in Java, we have chosen a set of distin-

guishing features that facilitate modular reasoning. First we use forwarding rather
than delegation. Second the wrappee is assigned snappily differentiating it from re-
assignable parent fields. Third, we disallow disjunctive wrapping. The latter is no

36

problem because we get sharing of behavior from classes whereas prototype-based
languages have to use shared parents for this.

Lava Kniesel [30] has implemented an extension of Java with wrappers. The
main difference to our generic wrappers is that in his proposal the aggregate is not
a subtype of the actual, but only of the static wrappee type. Thus his proposal fails
the transparency requirement (3) and is more limited in its applicability. Lava’s
wrappers are a form of the decorator pattern (Sect. 3.2) with automatically gener-
ated forwarding stubs and multiple wrappees combined with delegation. Wrappees
can be reassigned, thereby, complicating semantic reasoning. The proposal is not
type sound because the wrappees are assigned within the constructor. Independent
extensibility, the focus of our proposal, is not well supported.

Delegation for software and subject composition Harrison et al. [24] discuss
options for different bindings of this in the decorator and facade patterns. They
show how to implement delegation using either stored or passed pointers in class-
based languages. Furthermore, they propose a declarative approach, to be used by
component assemblers, permitting the binding of this to be customized on a per-
method base. Their solution does not address the shortcomings of the decorator
pattern with respect to our requirements. Namely, it does not provide for trans-
parency (3).

gbeta gbeta [16], a generalized version of BETA, supports two forms of dy-
namic (parent fixed at run time) inheritance through multiple inheritance. Dy-
namic object specialization is a dynamic modification of the structure of an ex-
isting object, preserving object identity. For example, the statement somePtn##-
>anObject## enhances the structure of anObject with the pattern somePtn. Fur-
thermore, gbeta allows a form of reflective mix-ins through non-constant virtual
types as superpatterns.

Because gbeta uses submethoding with INNER rather than overriding, it is not
obvious how the mechanisms of gbeta could be transferred to more ‘standard’
object-oriented languages.

Dynamic mix-ins Steyaert et al. [47] propose dynamic inheritance through mix-
ins. The catch is that each object must contain a specification of all its potential
enhancements. This renders their proposal inapplicable for mutually unaware com-
ponent vendors. Mezini [35] also presents a sophisticated, but complex approach
to object evolution without name collisions. However, her work is untyped.

Cecil In addition to the combination of prototypes with an (optional) static type
system, Cecil [11] has two more features worth a comparison: predicate objects
and multi-methods. Predicate objects are Cecil’s more restricted alternative to dy-
namic inheritance. An object o that inherits from all parents of a predicate object

37

p automatically also inherits from p if the state of o satisfies the predicate of p.
Predicate objects permit important states of objects to be explicitly identified and
named. However, with respect to the problem at hand, they are mere syntactic
sugar for if or case statements in the methods of the parent objects.

Multi-methods are, ignoring modularization, just elegant syntactic sugar for
an explicit coding of a Cartesian product [52]. Since multi-methods can —with
certain restrictions to guarantee a best fit [11]— be defined outside the classes of
their receivers, they can be used to modify a component without changing the lat-
ter’s source code [26]. However, they do not address the problems of independent
extensibility and run-time applicability. Furthermore, they cannot be used to selec-
tively change the behavior of certain instances only.

Lagoona Lagoona [19] is a single dispatch language that separates messages
from reference types. Any message (without a return type) can be sent to any ob-
ject. For messages without return types, object types can provide a default method
with programmable forwarding. Thus, wrappers could simply forward messages
that they don’t understand to their wrappees. However, only additional methods
with return type void can be called. The wrapper is not a subtype of the actual
wrappee and type test cannot be used directly to test whether a message will be
understood. Hence, Lagoona does not satisfy the transparency requirement (3).
With respect to the problem at hand, forwarding in Lagoona is just a syntactically
sugared version of bottleneck interfaces.

Fewer errors are caught by the type system because any message can be sent to
any object and semantic reasoning is difficult due to the programmable resending.

Objective C Categories in Objective C [38] allow classes to be extended with a
new set of methods/protocols independently of the original class definition. This
compile-time mechanism corresponds to creating a subclass and globally replacing
all occurrences of the superclass by the subclass. Categories modify whole classes,
rather than individual objects. Categories do not fulfill the requirements of run-
time applicability (1) and genericity (2).

Binary Component Adaption (BCA) BCA [28] provides for similar adaption
of Java binaries as categories for Objective-C binaries. Thus, BCA does not solve
the problem at hand either.

Aspect-oriented programming Aspects [29] are a new category of program-
ming construct that ‘cross-cut’ the modularity of traditional programming con-
structs. So an aspect can localize, in one place, code that deeply affects the im-
plementation of multiple classes or methods. Aspects modify classes at compile
time. Hence, they do not address the problems of run-time composition of objects
created by different components from different vendors.

38

Mix-in calculus Bono et al. have developed a formal calculus of classes and
mix-ins [4]. Method declarations in mix-ins are explicitly marked as overriding
an existing method or introducing a new method. The lower type bound (static
wrappee type) is computed from the signature of a mix-in. Redefined methods give
positive type information and new methods negative type information. Subtyping
is determined by the types’ structures. Negative type information is used to avoid
mix-in-application-time exceptions.

We believe that name equivalence for types in combination with our coding
conventions (Sect. 5.1.1) is better suited to avoid accidental overriding. First,
with structural subtyping a method marked as redefining may override an unre-
lated method that happens to have the same signature. Our solution avoids this.
Second, a method m marked as new cannot override a method m from the actual
base class even if the two were meant to correspond (as in our system expressed by
the fact that the wrapper and the wrappee implement an interface IM declaring m).
In our approach, overriding is possible in this case.

The addition of new/redefined method attributes to our generic wrappers would
not be very useful. Positive type information can be expressed by the explicitly
named static wrappee type. Declaring a method m in the wrapper to be new if
the static wrappee type contains a method with the same signature is pointless
because it leads to a compile-time error. This leaves us with the possibility to mark
a method n as new if the static wrappee type does not contain a method with this
signature. For this to be useful, the type system would have to support negative type
information. As discussed in Sect. 5.1.3, this is rare and causes other problems.

10.2 Binary component standards

As stated in Sect. 1, wrapping of objects created by different components requires
binary standards. Thus, we survey below the most common component standards.

However, even with wrapping on the binary level, direct language-level support
has many advantages. First, it makes it simpler and less error-prone to write com-
ponents for binary wrapping mechanisms, because component instances can be ref-
erenced by normal, tightly typed variables and method calls can be type checked.
Second, the full power of type systems for early error detection can only be used
with programming language support.

Microsoft COM COM is a language-independent binary component standard. It
provides two forms of object composition for reuse: containment and aggregation
[45]. With containment, the wrapper (outer) holds a reference to the wrappee (in-
ner) and must provide explicit forwarding stubs. Thus, COM containment shares
most properties with its language-level sibling (Sect. 3.2).

A COM object implements a set of interfaces. Clients have only references
to these interfaces. Each interface has a different address. Thus, if a client has a
reference to one interface of a given object, it cannot directly access functionality
provided by the same object through a different interface. Instead, the client has

39

to call the method QueryInterface, the first method of any interface, with the name
of the desired interface as parameter. COM aggregation makes use of this indirec-
tion. When the wrapper is asked for an interface that it does not implement itself,
it forwards the QueryInterface call to the wrappee. Alternatively, it may explicitly
conceal interfaces of the wrappee by answering request negatively itself instead of
forwarding them. The wrappee holds a back pointer to the wrapper. When the
wrappee’s QueryInterface is called directly by a client, the wrappee forwards the
call to the wrapper. In summary, unless the wrapper conceals part of the wrappee,
aggregation satisfies the transparency requirement (3). On the negative side, ag-
gregation only works with specially coded classes as wrappees. A programming
language could enforce the rules for aggregation so that all components written
in this language would be aggregable. Aggregation requires the inner object to
be created along with the outer object to guarantee that only the wrapper holds a
reference to the wrappee.

Ibrahim and Szyperski [27] have formalized parts of COM, including contain-
ment, aggregation, and QueryInterface. The latter is replaced by typecase state-
ments in their exemplary language COMEL. Aiming for a truthful formalization,
COMEL has the same properties as COM on the binary level.

JavaBeans In its current version, JavaBeans does not support wrappers. A very
rudimentary draft proposal for an object aggregation/delegation model [8] was
scrapped after public criticism. In this conventions-based approach, the wrapper
(delegator) was to hold references to a number of wrappees (delegatees), but not to
implement the static wrappee type. Every wrapper was supposed to implement the
interface Aggregate:

public interface Aggregate {
Object getInstanceOf(Class delegateInterface);
boolean isInstanceOf(Class delegateInterface);

}

Instances of Class represent classes and interfaces in a running Java applica-
tion. Thus, delegates could have been retrieved by naming the desired interface or
class. Any object could have been wrapped, but only so-called ‘cognizant’ dele-
gates would have contained a back pointer allowing the discovery of the delegator
from the delegate.

Enterprise JavaBeans and CORBA Components Enterprise JavaBeans [51]
and CORBA Components [40] are enterprise component standards. Their focus is
on containers providing such functionality as transactions, security, events, and per-
sistence. However, they do not provide any special support for wrappers. Like their
COM siblings, CORBA components can implement multiple interfaces (facets),
but only navigation within components is provided by provide name, the rough
equivalent to COM’s QueryInterface.

40

11 Conclusions

Late composition of software components from different vendors is the essence of
component software, enabling component markets and flexible reuse. One form of
late composition is the combination of features implemented by different vendors
into object-aggregates that appear as single objects to their clients. Our analysis
shows, that existing technologies fail to fully unlock this power.

To remedy the problem, we have proposed generic wrappers, a typed form
of dynamic inheritance. We have analyzed the design space with respect to both
type soundness and semantic intuition, desirability, and consistency with existing
mechanisms, such as subclassing. One option is forwarding instead of delegation
to loosen the coupling and, thereby, avoid the semantic fragile base class prob-
lem. Another option is the snappy assignment of the wrappee to facilitate modular
semantic reasoning.

As a proof of concept, we have chosen a consistent set of desirable features
for a concrete mechanism, which we added to Java. We have given a mechanized
proof of type soundness for the extended language. Additionally, the formalization
provides an operational semantics for Java extended with generic wrappers.

Acknowledgments David von Oheimb and Tobias Nipkow provided us with
their formalization of Java and helped us with our extensions. We would like to
thank Ralph Back, Dominik Gruntz, Cuno Pfister, and Clemens Szyperski for a
number of fruitful discussions and comments.

References

[1] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type parame-
terization to the Java language. In Proceedings of OOPSLA ’97, pages 49–65.
ACM Press, 1997.

[2] Pierre America. Designing an object-oriented programming language with
behavioral subtyping. In Foundations of Object-Oriented Languages, REX
School/Workshop, pages 60–90. LNCS 489, Springer Verlag, 1991.

[3] D. Ancona, G. Lagorio, and E. Zucca. Jam: A smooth extension of Java with
mixins. Technical report, DISI, University of Genova, 1999.

[4] Viviana Bono, Amit Patel, and Vitaly Shmatikov. A core calculus of classes
and mixins. In Proceedings of ECOOP ’99, pages 43–66. LNCS 1628,
Springer Verlag, 1999.

[5] Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity and
Multiple Inheritance. PhD thesis, University of Utah, 1992.

41

[6] Kim B. Bruce, Robert van Gent, and Angela Schuett. PolyTOIL: A type-safe
polymorphic object-oriented language. In Proceedings of ECOOP ’95, pages
27–51. LNCS 952, Springer Verlag, 1995.

[7] Martin Büchi and Wolfgang Weck. Compound types for Java. In Proceed-
ings of OOPSLA ’98, pages 362–373. ACM Press, 1998. http://www.abo.fi/
˜mbuechi/publications/OOPSLA98.html.

[8] Laurence Cable and Graham Hamilton. A Draft Proposal for a Object Ag-
gregation/Delegation Model for Java and JavaBeans (Version 0.5). Sun Mi-
crosystems, April 1997.

[9] Luca Cardelli. Type systems. In Handbook of Computer Science and Engi-
neering, chapter 103. CRC Press, 1997.

[10] Luca Cardelli and John C. Mitchell. Operations on records. Mathematical
Structures in Computer Science, 1(1):3–48, 1991.

[11] Craig Chambers. The Cecil language: Specification & rationale (version 2.1).
Technical report, University of Washington, March 1997.

[12] David G. Clarke, John M. Potter, and James Noble. Ownership types for
flexible alias protection. In Proceedings of OOPSLA ’98, pages 48–64. ACM
Press, 1998.

[13] William Cook. A proposal for making Eiffel type-safe. In Proceedings of
ECOOP ’89, pages 57–70. Cambridge University Press, 1989.

[14] Stephen R. Davis. AFC Programmer’s Guide. Microsoft Press, 1998. See
also http://www.microsoft.com/java/afc/.

[15] Desmond F. D’Souza and Alan Cameron Wills. Objects, Components, and
Frameworks with UML: The Catalysis Approach. Addison Wesley, 1998.
http://www.catalysis.org.

[16] Erik Ernst. gbeta – a Language with Virtual Attributes, Block Structure, and
Propagating, Dynamic Inheritance. PhD thesis, Department of Computer
Science, University of Aarhus, Denmark, 1999.

[17] Kathleen Fisher and John C. Mitchell. Notes on typed object-oriented pro-
gramming. In Proceeding of Theoretical Aspects of Computer Software,
pages 844–885. LNCS 789, Springer Verlag, 1994.

[18] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and
mixins. In Proc. 25th ACM Symp. Principles of Programming Languages,
pages 171–183. ACM Press, 1998.

[19] Michael Franz. The programming language Lagoona: A fresh look at object-
orientation. Software – Concepts and Tools, 18(1):14–26, March 1997.

42

[20] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[21] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison Wesley, 1996.

[22] Mark Grand. Patterns in Java, volume 1. John Wiley & Sons, 1998.

[23] Robert Harper and Benjamin Pierce. A record calculus based on symmetric
concatenation. In Proc. 18th ACM Symp. Principles of Programming Lan-
guages, pages 131–142. ACM Press, 1991.

[24] William Harrison, Harold Ossher, and Peri Tarr. Using delegation for soft-
ware and subject composition. Technical Report RC-20946 (92722), IBM
Research Division, T.J. Watson Research Center, August 1997.

[25] John Hogg. Islands: Aliasing protection in object-oriented languages. In
Proceedings of OOPSLA ’91, pages 271–285. ACM Press, 1991.

[26] Urs Hölzle. Integrating independently-developed components in object-
oriented languages. In Proceedings of ECOOP ’93, pages 36–56. LNCS 707,
Springer Verlag, 1993.

[27] Rosziati Ibrahim and Clemens Szyperski. Can the component object model
(COM) be formalized? – The formal semantics of the COMEL language.
In Proceedings of IRW/FMP’98. Technical Report TR-CS-98-09, The Aus-
tralian National University, September 1998.

[28] Ralph Keller and Urs Hölzle. Binary component adaptation. In Proceedings
of ECOOP ’98, pages 307–329. LNCS 1445, Springer Verlag, 1998.

[29] Gregor Kiczales et al. Aspect-oriented programming. In Proceedings of
ECOOP ’97, pages 220–242. LNCS 1241, Springer Verlag, 1997.

[30] Günter Kniesel. Type-safe delegation for run-time component adaptation. In
Proceedings of ECOOP ’99. LNCS 1628, Springer Verlag, 1999.

[31] Henry Lieberman. Using prototypical objects to implement shared behavior
in object-oriented systems. In Proceedings of OOPSLA ’86, pages 214–223.
ACM Press, 1986.

[32] Barbara H. Liskov and Jeanette M. Wing. A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems, 16(6):1811–
1841, November 1994.

[33] Bertrand Meyer. Eiffel: The Language. Prentice Hall, second edition, 1992.

43

[34] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, sec-
ond edition, 1997.

[35] Mira Mezini. Dynamic object evolution without name collisions. In Proceed-
ings of ECOOP ’97, pages 190–219. LNCS 1241, Springer Verlag, 1997.

[36] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base class prob-
lem. In Proceedings of ECOOP ’98, pages 355–374. LNCS 1445, Springer
Verlag, 1998.

[37] Anna Mikhajlova and Emil Sekerinski. Class refinement and interface re-
finement in object-oriented programs. In Proceedings of FME’97: Industrial
Applications and Strengthened Foundations of Formal Methods, pages 82–
101. LNCS 1313, Springer Verlag, 1997.

[38] NeXT Software, Inc. Object-Oriented Programming and the Objective-C
Language. Addison-Wesley, 1993.

[39] Tobias Nipkow and David von Oheimb. Java�ight is type-safe — definitely. In
Proc. 25th ACM Symp. Principles of Programming Languages, pages 161–
170. ACM Press, 1998.

[40] Object Management Group. CORBA components, 1999. Revision February
15, 1999, formal document orbos/99-02-01, http://www.omg.org.

[41] David von Oheimb and Tobias Nipkow. Machine-checking the Java speci-
fication: Proving type-safety. In Jim Alves-Foss, editor, Formal Syntax and
Semantics of Java, pages 119–156. LNCS 1523, Springer Verlag, 1999.

[42] Geoff Outhred and John Potter. Extending COM’s aggregation model. In
Component-Oriented Software Engineering Workshop (in conjunction with
the Australian Software Engineering Conference), 1998.

[43] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828,
Springer Verlag, 1994. http://www.cl.cam.ac.uk/Research/HVG/Isabelle/.

[44] Didier Rémy. Typechecking records and variants in a natural extension of
ML. In Proc. 16th ACM Symp. Principles of Programming Languages, pages
242–249. ACM Press, 1989.

[45] Dale Rogerson. Inside COM. Microsoft Press, 1996.

[46] A. Snyder. Encapsulation and inheritance in object-oriented programming
languages. In Proceedings of OOPSLA ’86, pages 38–45. ACM Press, 1986.

[47] Patrick Steyaert and Wolfgang De Meuter. A marriage of class- and object-
based inheritance without unwanted children. In Proceedings of ECOOP ’95,
pages 127–144. LNCS 952, Springer Verlag, 1995.

44

[48] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, third
edition, 1997.

[49] Sun microsystems. Java platform, 1998. http://java.sun.com.

[50] Sun Microsystems, Inc. Java Beans, 1997. http://java.sun.com/beans/.

[51] Sun Microsystems, Inc. Enterprise JavaBeans, 1999. http://java.sun.com/
products/ejb/.

[52] Clemens A. Szyperski. Independently extensible systems — software engi-
neering potential and challenges. In Proceedings of the 19th Australasian
Computer Science Conference, Melbourne, 1996.

[53] Clemens A. Szyperski. Component Software – Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 1997.

[54] D. Ungar and R.B. Smith. Self: The power of simplicity. In Proceedings
of OOPSLA ’87, pages 227–241. ACM Press, 1987. Revised version in Lisp
and Symbolic Computation, 4(3), 187–205, 1991.

45

Paper VI

Action-Based Concurrency and Synchronization
for Objects

Ralph Back, Martin Büchi, and Emil Sekerinski

Originally published in: M. Bertran and T. Reus, editors, Proceedings of the Fourth
AMAST Workshop on Real-Time Systems, Concurrent, and Distributed Software (ARTS),
volume 1231 of Lecture Notes in Computer Science, pages 248–262. Springer Verlag,
May 1997.

Reproduced with permission.

Action-Based Concurrency
and Synchronization for Objects

Ralph Back, Martin Büchi, Emil Sekerinski

Åbo Akademi University, Department of Computer Science
Lemminkäisenkatu 14A, 20520 Turku, Finland

{backrj, mbuechi, esekerin}@abo.fi

Abstract. We extend the Action-Oberon language for executing action systems
with type-bound actions. Type-bound actions combine the concepts of type-bound
procedures (methods) and actions, bringing object orientation to action systems.
Type-bound actions are created at runtime along with the objects of their bound
types. They permit the encapsulation of data and code in objects. Allowing an
action to have more than one participant gives us a mechanism for expressing
n-ary communication between objects. By showing how type-bound actions can
logically be reduced to plain actions, we give our extension a firm foundation in
the Refinement Calculus.

1 Introduction

Action-Oberon extends Oberon-2 [22] with actions for modeling parallel and distributed
computations. The extension is based on the theory of action systems [6] and was pro-
posed by Back and Sere [8] and implemented by Hedman [14]. An action system is a
parallel or distributed program where parallel activity is described in terms of guarded
actions. Enabled actions are executed atomically in a nondeterministic order to model
parallelism. Atomicity of actions guarantees that a parallel execution of an action sys-
tem gives the same results as a sequential nondeterministic execution in Action-Oberon
(serializability).

Action-Oberon supports only plain actions, which may optionally be replicated over
a constant range of integers. Plain actions describe updates to the variables visible in the
module in which they are declared. The new type-bound actions combine the principles
of type-bound procedures (methods) and actions. Bound to one or more types, they
are created dynamically whenever an object of a bound type is created. They describe
updates to the objects to which they are bound, as well as to the variables visible in their
declaration module. Järvinen and Kurki-Suonio first proposed the marriage of object-
oriented concepts and action systems in the DisCo language [16]. Their basic idea is
the same as ours, but the actual definitions differ greatly due to the form of object
orientation, the base language, the underlying logic, and the interpretation.

We have built an environment, in form of an Action-Oberon to Oberon-2 compiler
and an associated runtime/simulation system under Oberon/F [21], which allows ex-
tended Action-Oberon programs to be executed. The environment helps to debug spec-
ifications and isolate critical properties worth formal proofs. Our environment is a play

ground for action systems and not an attempt to add concurrency to the Oberon lan-
guage and/or system.

Section 2 presents the Action-Oberon base language, Sect. 3 explains the type-
bound actions, Sect. 4 elaborates on the deactivation of type-bound actions and the
deallocation of objects, Sect. 5 discusses inheritance of type-bound actions, Sect. 6 pro-
vides a foundation for type-bound action in the Refinement Calculus, Sect. 7 points to
related work, and Sect. 8 draws the conclusions.

2 Action-Oberon Base Language

Oberon-2 [22] is the successor of Pascal and Modula-2. Modula-2 adds modularization
to Pascal. Oberon-2 extends Modula-2 with object-oriented concepts in form of type
extension on record types (subtyping/inheritance) as well as type-bound procedures
(methods). Oberon-2 has been chosen as a base language because of its simplicity and
its similarity to previously used ad-hoc notations of action systems.

Action-Oberon [8] adds actions and guarded procedures to Oberon-2. Action sys-
tems are represented by Oberon modules. All actions are executed repeatedly in a loop
until all actions are disabled. Selection of enabled actions is nondeterministic and is not
bound to a fairness pledge. The nondeterminism is demonic, in the sense that there is
no way of influencing which action is chosen. The simulation environment provides,
however, the possibility to install one’s own scheduler or to manually select actions.
The module body contains the initialization. Parallel composition of action systems
corresponds to loading several modules into memory at once. Actions from all loaded
modules are executed in one big loop; that is, they may be interleaved in any order. The

MODULE OneFish;

CONST
height=10;
width=20;

VAR
x, y: INTEGER;
right, up: BOOLEAN;

ACTION MoveRight
WHEN right & (x#width);

BEGIN INC(x)
END MoveRight;

ACTION MoveLeft
WHEN ˜right & (x#0);

BEGIN DEC(x)
END MoveLeft;

ACTION Bounce Right
WHEN right & (x=width);

BEGIN right:=FALSE
END BounceRight;

ACTION BounceLeft
WHEN ˜right & (x=0);

BEGIN right:=TRUE
END BounceLeft;

ACTION MoveUp (* code *)
ACTION Move Down (* code *)
ACTION BounceUp (* code *)
ACTION BounceDown (* code *)

BEGIN
x:=0; y:=0; right:=TRUE; up:=TRUE

END OneFish.

Fig. 1. Screen saver OneFish

249

combined action system can only terminate when none of the loaded modules contains
an enabled action.

Actions are declared like procedures without parameters. The guard of an action is
given as a (side-effect free) boolean expression. Omitting the guard corresponds to an
always enabled guard.

Throughout the paper we use the example of a fish screen saver. In our first version
OneFish (Fig. 1), a single fish swims around the screen. The fish’s current position is
given by cartesian coordinates x (horizontal axis) and y (vertical axis). The fish is either
moving right (right = TRUE) or left and either up (up = TRUE) or down. When it reaches
a border it changes direction. Note that the lack of a fairness assumption means that the
fish might only move along one axis, although the guard for moving along the other
axis is infinitely often true.

Our screen saver is an example of an action system which never terminates. Hence,
our interest does not lie in its input/output behavior, but in its possible traces (sequences
of states).

Actions may optionally be replicated over one or more constant ranges of integers,
generating a number of similar actions. We use this mechanism to add more fishes
to our screen saver in the next version ManyFishes (Fig. 2). The action declaration
ACTION MoveRight(i: 0..many-1) generates an action for each i between 0 and many-1.
The replicator i can be used like a constant in the guard and body of the action.

Like actions, procedures may be protected by an optional guard [7]. If the evaluation
of the guard of an action or the execution of its body would lead to a call of a disabled

MODULE ManyFishes;

CONST
many=5;
height=10;
width=20;

VAR
x, y: ARRAY many OF INTEGER;
right, up: ARRAY many OF BOOLEAN;
k: INTEGER;

ACTION MoveRight(i: 0..many-1)
WHEN right[i] & (x[i]#width);

BEGIN INC(x[i])
END MoveRight;

ACTION MoveLeft(i: 0..many-1)
WHEN ˜right[i] & (x[i]#0);

BEGIN DEC(x[i])
END MoveLeft;

ACTION Bounce Right(i: 0..many-1) (* code *)
ACTION BounceLeft(i: 0..many-1) (* code *)
ACTION MoveUp(i: 0..many-1) (* code *)
ACTION Move Down(i: 0..many-1) (* code *)
ACTION BounceUp(i: 0..many-1) (* code *)
ACTION BounceDown(i: 0..many-1) (* code *)

BEGIN
FOR k:=0 TO many-1 DO

x[k]:=k; y[k]:=k;
right[k]:=TRUE; up[k]:=TRUE

END
END ManyFishes.

Fig. 2. Screen saver ManyFishes

250

procedure, the action is considered to be disabled. Note that no waiting for the guard to
become true takes place, as is common with monitors or semaphores.

3 Type-Bound Actions

Being useful in certain cases, replication is awkward at best when we have to replicate
several actions over the same range, as in Fig. 2. It provides no encapsulation of data
and code within a single entity, (pseudo-) dynamic creation of new entities is cumber-
some and error-prone – even if we added dynamically extendible arrays and variable
replication ranges.

Thus, borrowing from the concept of object orientation, we add type-bound actions
to Action-Oberon. The declaration ACTION (f: Fish) MoveRight leads to the dynamic
creation of an action for each object of type Fish that we create. The bound variable
f is called participant and may be used like a variable in the action. It corresponds to
the receiver (self) of a type-bound procedure. Figure 3 gives our screen saver using
type-bound actions.

Suppose we want to program some special behavior if two fishes meet. We can
do this with ACTION (f1, f2: Fish) Meet (Fig. 4). We allow an action to have several

MODULE OOFishes;

CONST
height=10;
width=20;
many=5;

TYPE
Fish=POINTER TO FishDesc;
FishDesc=RECORD

x, y: INTEGER;
right, up: BOOLEAN

END;

VAR
fi: Fish;
k: INTEGER;

ACTION (f: Fish) MoveRight
WHEN f.right & (f.x#width);

BEGIN INC(f.x)
END MoveRight;

ACTION (f: Fish) MoveLeft
WHEN ˜f.right & (f.x#0);

BEGIN DEC(f.x)
END MoveLeft;

ACTION (f: Fish) Bounce Right (* code *)
ACTION (f: Fish) BounceLeft (* code *)
ACTION (f: Fish) MoveUp (* code *)
ACTION (f: Fish) Move Down (* code *)
ACTION (f: Fish) BounceUp (* code *)
ACTION (f: Fish) BounceDown (* code *)

PROCEDURE CreateFish(VAR nf: Fish;
x, y: INTEGER; right, up: BOOLEAN);

BEGIN
NEW(nf); nf.x:=x; nf.y:=y;
nf.right:=right; nf.up:=up

END CreateFish;

BEGIN
FOR k:=0 TO many-1 DO

CreateFish(fi, k, k, TRUE, TRUE)
END

END OOFishes.

Fig. 3. Screen saver OOFishes

251

ACTION (f1, f2: Fish) Meet
WHEN (f1.x=f2.x) & (f1.y=f2.y) & (f1#f2);
VAR baby: Fish;

BEGIN
(* do something: i.e.

- change direction
- create new fish
- remove one of the fishes *)

END Meet;

Fig. 4. Type-bound action Meet

participants, i.e. f1 and f2, of various types. An instance of Meet will be created at
runtime for each tuple of fishes, including double instantiations of the same fish. Hence,
we have to explicitly strengthen the guard of Meet if we do not desire fishes to meet
themselves (no aliasing). Actions with n participants lend themselves to symmetrically
express n-ary communication, which is difficult in most other formalisms for n > 2.

Action names are treated as global identifiers of their modules. The complete EBNF
for actions is given in Fig. 5.

Action = ACTION [Participants] IdentDef [Replicators] [Guard] ”;”
DeclSeq [BEGIN StatementSeq] END identifier.

Participants = ”(” VarDecl {”;” VarDecl} ”)”.
Replicators = ”(” Repl {”;” Repl} ”)”.
Repl = identifier ”:” ConstExpr ”..” ConstExpr.
Guard = WHEN Expr.

Fig. 5. EBNF of extended action declaration

If we add action Meet to OOFishes, it is not guaranteed that Meet will be executed
whenever two fishes are at the same coordinates because the fishes’ move actions are
also enabled; their guards would have to be strengthened if desired.

We could imagine several behaviors if two fishes meet. We could for example
change the direction of one fish or we could have them produce a baby fish by in-
voking NEW. Without object-orientation, but only plain replication, we would have to
extend our data arrays and ranges separately to get the same effect.

4 Deactivation and Deallocation

Consider the case where we would want one fish to eat the other. How do we remove
the dead fish from our system, that is how do we prevent it from participating in actions
and how do we recycle its allocated memory? In Oberon-2, objects may be garbage
collected if they are no longer referenced from one of the loaded modules. Having
introduced type-bound actions, we cannot simply adopt this condition. Consider the
case where we remove the last reference to an object. Should this object still be able
to have one of its type-bound actions executed until it is garbage collected? If so, this

252

action could again set a pointer to the object and, herewith, revive it. On the other hand,
if the object looses its eligibility to participate in actions with the removal of the last
reference, we unnecessarily restrict the independence of our active objects and – in an
extendible system where we often don’t know the number of references to an object –
loose control over the duration of an object’s active life cycle. We can prevent an object
from being collected by keeping a reference to it, but we cannot enforce an object to
be disabled. Given the undesirable properties of the ‘naturally’ extended conditions for
garbage collection, we enumerate the possible solutions which preserve pointer safety
(no dangling pointers) and summarize their properties in Fig. 6:

1. An object may be collected after the last reference to it vanishes. Until then, it is
eligible to participate in actions (as above).

2. An object may be collected after the last reference to it vanishes. An unreachable
object cannot have one of its bound actions executed (as above).

3. An object may only be garbage collected if it is no longer referenced and none of its
bound actions can ever be enabled again. Clearly, the second condition can in prac-
tice not be verified; hence, no automatic garbage collection can be implemented.

4. An object o is deallocated with a special command KILL(o). The precondition of
KILL(o) is that o is the only reference to the object. As the declaration of type-bound
actions is not restricted to their participants’ declaration modules (see below), we
stand the danger in an extendible system of prematurely killing an object. Addition-
ally, an unreferenced object, which will never again have one of its bound actions
enabled, cannot be deallocated and, therefore, creates a memory leak.

5. The eligibility of an object o to participate in actions is removed with a special
command DEACTIVATE(o). Meanwhile, all references are kept. An object can be

Property 1 2 3 4 5

pointer-safety yes yes yes yes yes
recycling of memory feasible yes yes no yes yes
duality of constructor yes yes yes yes no
and destructor
manual disabling of actions no no no yes yes
without explicit flag
revival impossible no yes yes yes yes
active lifespan no no yes yes yes
independent of references
execution model without no no yes yes yes
reference count
safe deallocation yes yes yes no yes
safe disabling of actions no1 no1 yes no2 no2

avoids memory leaks yes yes yes no no

1Due to dependency on references.
2Due to explicit termination with KILL, respectively DEACTIVATE.

Fig. 6. Properties of different deallocation schemes for objects with type-bound actions

253

garbage collected, if it has been deactivated and it is no longer referenced. We can
interpret this as a special case of situation 3 where each object has a flag alive which
is initially true, added as an implicit conjunct to each action guard, and can only be
set to false by invoking DEACTIVATE. Creation and deactivation are not duals, as
the latter only revokes an object’s active behavior. As with solution 4, we have the
problem of memory leaks.

We can model any of the above choices in the Refinement Calculus (Sect. 6). How-
ever, the computation model is simpler if an object’s eligibility to participate in actions
does not depend on it being referenced and the model must not include a reference
count.

Going back to our consumed fish example, solutions 4 and 5 let us solve the prob-
lem without introducing a liveness flag and the corresponding guards in all actions. To
keep the theory simple, make recycling of memory feasible, avoid cluttering of code by
explicit flags, and prevent the introduction of aborts, we choose solution 5. If o has al-
ready been deactivated DEACTIVATE(o) is skip; DEACTIVATE(NIL) is abort. So far, the
loss of duality between creation and destruction and the premature disabling of actions
have not caused any problems in our examples.

The existence of both modules and classes (types and associated type-bound pro-
cedures/actions) in Action-Oberon provides for more compositionality. Modules are
compile-time abstractions which provide for scoping and may contain several classes,
the latter providing for extensibility and being a run-time abstraction that defines the
structucture and behavior of objects. This separation of concerns allows objects to be
bundled to components [23,21]. In Action-Oberon this gives us more compositionality
on the module level by restricting the outside visibility of attributes and methods and
still allows for privileged access between more closely related classes.

Unlike type-bound procedures, type-bound actions may be declared in any module
where the participant types are visible, with access to the fields (instance variables)
according to the Oberon-2 export/import visibility rules. This is needed for defining
actions with participants stemming from different modules.

5 Inheritance of Type-Bound Actions

We can add some variety to our aquarium by defining special kinds of fishes. If we
create a type Shark as subtype of Fish (Fig. 7), sharks have all actions of normal fishes
bound to them plus possibly additional ones, i.e. ShowTeeth.

We might also want to override (redefine, extend) some actions for sharks, i.e. have
sharks become hungrier whenever they move and eat another fish they meet when they
are hungry enough. We could create an action ACTION (s: Shark; f: Fish) Meet, if we
permitted overriding. This would immediately raise two problems. Consider a fish ϕ
and a shark σ. Should we now have two actions Meet, the original one for (ϕ,σ) and
the redefined for the reversed tuple (σ,ϕ) (Fig. 8 a)?

Secondly, this would require multiple dispatch, as actions can have several partic-
ipants. Assume that we also define a subtype Piranha of Fish and override the meet
action for ACTION (f: Fish; p: Piranha) Meet. Which action body would we choose for

254

TYPE
Shark=POINTER TO SharkDesc;
SharkDesc=RECORD (Fish)

hunger: INTEGER
END;

ACTION (s: Shark) ShowTeeth;
BEGIN (* show teeth *)
END ShowTeeth;

Fig. 7. Subtype Shark

a tuple of a shark and a piranha (Fig. 8 b)? Requiring each combination of (normal)
fishes, sharks and piranhas (Fig. 8 c) to be defined is not practical in a modular system
where the different subtypes can be defined in different modules and where modules
are not statically linked. The solution of Chambers and Leavens for multiple dispatch
of methods [10], which requires a designated topmost module and flags errors of other
modules when compiling this module, is against the spirit of open systems and inde-
pendent extension [24]. While the first problem could be partly solved by introducing a
special notation for symmetrical participants, the second one has no solution which is
orthogonal to separate extension. Hence, we do not permit overriding of actions.

We could allow overriding for actions with only one participant as this does not
require multiple dispatch and, therefore, does not create the problems described here.
For simplicity’s and orthogonality’s sake we do not. Instead, we simulate overriding
of type-bound actions by using overriding of type-bound procedures. Figure 9 shows
how we override MoveRight by replacing the body with a single call to a type-bound
procedure. In the implementation of MoveRight for Shark, s.MoveRightˆ is a super-call
to the overridden type-bound procedure which in our case is a call to MoveRight for
Fish. Instead of replacing the complete guard with a call to a type-bound procedure,
we choose in this example to explicitly state the conjuncts common to all extensions.
This form of overriding requires explicit provisions to be made, i.e. introducing the

(Fish, Fish)

(Shark, Fish)

(,)(,)

 : Fish

a) b) (Fish, Fish)

(Shark, Fish)(Fish, Piranha)

(,)

 : Shark

c) (F,F)

(F,S) (F,P)(S,F) (P,F)

(P,S) (S,P)(S,S) (P,P)

F = Fish, S = Shark,
 : Shark : Piranha P = Piranha

Fig. 8. Problems of overriding actions with more than one participant

255

PROCEDURE (f: Fish) MoveRight;
BEGIN INC(f.x)
END MoveRight;

PROCEDURE (s: Shark) MoveRight;
BEGIN s.MoveRightˆ; INC(s.hunger)
END MoveRight;

PROCEDURE (f: Fish) WantToMove(): BOOLEAN;
BEGIN RETURN TRUE
END WantToMove;

PROCEDURE (s: Shark) WantToMove(): BOOLEAN;
BEGIN RETURN s.hunger<10
END WantToMove;

ACTION (me: Fish) MoveRight
WHEN me.right & (me.x#width) & me.WantToMove;

BEGIN me.MoveRight
END MoveRight;

Fig. 9. Simulating overriding for actions with only one participant

constant function WantToMove which we override for our lazy sharks which don’t move
if they are too hungry. However, there is also the argument that unless the designer has
arranged for it, reuse and overriding never work in practice anyhow [17]. Overriding of
type-bound procedures and dynamic type tests give all that is needed.

Another approach would be not to inherit actions, i.e. a Shark would not automat-
ically have all actions defined for Fish. This would be orthogonal to polymorphism as
actions are not called explicitly; it would not create the danger of invoking undefined
actions as the method deletion mechanism of Smalltalk does. Because inheritance of
type-bound actions has proved to be desirable in practice, we have adopted it in Action-
Oberon. E.g. without inheritance of type-bound actions, we would have to explicitly
give all the move actions for sharks.

6 A Semantics for Type-Bound Actions

In this section we give a formal semantics to type-bound actions by reducing them
to plain actions. We have four levels to express an action system: Action-Oberon with
type-bound actions, Action-Oberon without type-bound actions, action systems, and the
Refinement Calculus. The translation from Action-Oberon without type-bound actions
to action systems is given by Back and Sere [8], the translation from action systems
to the Refinement Calculus and the mathematical treatment of action systems is due to
Back, Kurki-Suonio and von Wright [6,3,4,9]. Figure 10 shows these three levels for
a sample program. A plain action ACTION A WHEN G; BEGIN S END A; translates
to the guarded statement G → S which is only enabled if G holds. An Action-Oberon
module with several actions translates to a do loop with a demonic choice between
the actions. On the Refinement Calculus level, a predicate in square brackets denotes a

256

MODULE M init; init;
do while G1∨G2 do

ACTION A1 WHEN G1; G1 → S1 [G1];S1� [G2];S2
BEGIN S1 [] G2 → S2 od

END A1; od

Sugared Refinement Calculus
ACTION A2 WHEN G2;
BEGIN S2
END A2; init;

(µX • ([G1];S1� [G2];S2);X�skip);
BEGIN init [¬(G1∨G2)]
END M.

Action-Oberon action system Refinement Calculus

Fig. 10. Translation of an Action-Oberon module

guard, which is equivalent to skip if the predicate holds and magic otherwise. The
meet (�) denotes the demonic choice, and µ stands for the least fixpoint. The refinement
calculus level only applies to the input/output, but not to the trace semantics.

A type-bound action is defined as follows: There is only one instance of each type-
bound action. The guard implicitly stands for ‘there exists a tuple that satisfies the stated
guard’ and the first statement demonically (nondeterministically) chooses one such tu-
ple. We first use this intuition to sketch a simulation of type-bound actions in Action-
Oberon without type-bound actions. Thereafter, we also provide a direct translation to
action systems by formalizing this idea.

We keep a data structure of all types and their inheritance relation as well as a set of
all active objects of each type. We turn each type-bound action into a plain action of the
same name by replacing the guard by a traversal function which returns true, if it finds a
tuple of possible participants from the respective sets of active participants. We add an
additional first statement, which demonically chooses one possible tuple and assigns it
to the participant variables. This is, up to optimizations, how the current implementation
works.

Alternatively, we can map type-bound actions directly to their action system equiv-
alent. Using the Refinement Calculus typed higher-order logic, we denote the record
types by R1, . . . ,Rn and the corresponding pointer types by P1, . . . ,Pn. Records are
represented as tuples and type extension ([width] subtyping/inheritance) corresponds
to tuple extension. We model the heap as a partial function (functional relation) from
pointers to records and use a boolean flag for each record to indicate whether an object
is active:

heap : P1 + . . .+Pn +NIL �→ (R1 + . . .+Rn)×Bool

Initially, heap is empty. To manipulate the sum types (disjoint union), we define fami-
lies of injection functions ini : Pi → P1 + . . .+Pn +NIL (also for records), projection
functions outi : P1 + . . .+ Pn +NIL→ Pi, and corresponding discriminator functions

257

isi : R1 + . . .+Rn → Bool. NIL is the one-element type {nil} for modeling NIL point-
ers, for which we get the following invariant: inNIL nil /∈ dom heap. We also define is∗i
to be the transitive closure of isi with respect to the direct subtype/inheritance relation

(Rj <: Ri
def= Rj=RECORD (Ri) . . . END):

is∗i r
def= (isi r)∨ (∃j.Rj <: Ri ∧is∗j r)

In fact, is∗i corresponds to Oberon’s IS statement: r IS Ri ≡ is∗i r. Furthermore, we
define dom to return the domain of a partial function. We define fst and snd as the first
and second projections of a tuple, and prjk as the kth projection.

We express NEW as a family of predicate transformers. For pointer p of Action-
Oberon type Pi we get:

NEWi(p) def= (�x : Pi|ini x /∈ dom heap•p := ini x);
heap := heap∪{p �→ (ini 0Ri ,T)}

The only change to NEW with respect to Oberon-2 is the initialization of the boolean
flag indicating that the object is active: First we demonically – indicated by the meet
– choose a free location in the heap and assign it to p and then augment the partial
heap function by the mapping from p to the 0-record with unspecified values of the
referenced type. To exhibit the fact that DEACTIVATE only changes the activity flag of
the referenced record, we give it in terms of a relational override <+ defined for relations
r,s:

r <+ s
def= {(x �→ y) ∈ r|x /∈ dom s}∪ s

DEACTIVATE(p) def= {p ∈ dom heap};
heap := heap <+ {p �→ (fst (heap p),F)}

DEACTIVATE asserts – indicated by the braces – that p is a valid pointer and then sets
the activity flag of the referenced record to false. We can now give the translation for a
type-bound action:

ACTION (p: Pi) A WHEN G; BEGIN S END A;
def= (�q ∈ dom heap|is∗i (fst (heap q))∧snd (heap q)•

begin var p : P1 + . . .+Pn +NIL;p := q;G → S end)

The quantified variable q is a logical variable, whereas p, which is only visible within
the block bracketed by begin and end, is a program variable which may also appear on
the left hand side of assignments. The action is enabled if there is at least one possible
participant for which G holds. More formally, the guard and the body of a predicate
transformer S are defined as gA = ¬wp(A, false) and sA = {gA};A. This allows us to
view a type-bound action as a guarded statement. The generalization to actions with
more than one participant is straightforward.

A statement containing a record field access is the sum of predicate transformers
over all record, respectively pointer types. Let for example p be a pointer to a record

258

whose kth field is x: INTEGER and let h: INTEGER. The assignment h:=p.x in Action-
Oberon then corresponds to the following predicate transformer:

h:=p.x
def= {p ∈ dom heap};

(h := prjk (out1 (fst (heap p))))+
. . .+
(h := prjk (outn (fst (heap p))))+
abort

The properties of the summation operator for predicated transformers were explored by
Back and Butler [5], based on Nauman’s [20] and Martin’s [19] category theoretical
considerations. Late binding of type-bound procedures is modeled analogously.

Hence, we can use type-bound actions in our extended Action-Oberon programs
and use their unsugared form for reasoning in the Refinement Calculus or use the above
correspondence to give a sugared form of the relevant inference rules.

Interestingly, there are two other ‘natural’ explanations for type-bound actions which
give identical semantics:

1. Whenever an object is created, the set of actions is augmented by the correspond-
ing bound actions. Dually, when an object’s eligibility to participate in actions is
revoked, the associated actions are removed. This model is possible as the action
system formalism does not require the set of actions to be constant or finite.

2. We start with an infinite number of objects in a special not-yet-created state and an
infinite number of corresponding actions the guards of which test that all participant
are in the created state. Creating an object corresponds to changing its state to
created.

7 Related Work

Our work on Action-Oberon was inspired by the original Action-Oberon and DisCo.
Other related work includes Unity, its successor Seuss, IP, and a number of frameworks
for active objects.

DisCo [16] first introduced type-bound actions. DisCo’s concept of ‘inheritance’
corresponds to having a field of the inherited type in our terminology; hence, there is no
overriding. DisCo does not have any type-bound procedures, making it lack any form
of dynamic binding. The language contains no loops or recursion. Guarded procedures
do not exist.

In Unity [11] ‘actions’ are restricted to (quantified) multiple deterministic assign-
ments, and the set of actions must be finite and constant; on the other hand, it has
fairness and progress properties. We are not aware of anything like type-bound actions
in Unity. Due to the lack of nondeterminism in assignments and the restriction to a fi-
nite constant set of ‘actions’ none of our explanations for type-bound actions could be
applied in Unity.

Seuss [12] gives the notion of boxes which correspond to our object types and clones
which are instantiations thereof. Boxes have local variables (non-exported instance vari-
ables), actions (type-bound actions), and procedures (type-bound procedures) which

259

may also be partial (guarded). The set of clones is static. By also requiring all actions to
terminate, Seuss can provide fairness. As all actions reside within one clone, there is no
possibility to create an action with more than one participant. As in our model, an action
calling a disabled procedure fails. However, the disabled procedure can still change the
state of the callee, by executing the code associated to a ‘negative alternative’.

In IP [13], processes are the main structuring elements rather than implementation
details arising from the target machine’s architecture. Multiparty interactions provide
for communication, synchronization, and agreement. Processes can only access non-
local variables within interactions. Interprocess communication abstraction is realised
in form of teams which facilitate dynamic process creation. Teams are often used anal-
ogously to type-bound actions; roles in teams correspond to participants. Conflict prop-
agation in coordinated enrolement causes lookahead computation similar to guarded
procedures.

Formalisms and languages for active objects are characterized by different objects
executing in parallel. New objects can be created dynamically. Objects communicate
by message passing, which is the only way to have an object do something. Generally,
objects do not contain any actions. Triggered procedures in object-oriented databases
are a notable exception to this rule; however, the triggered (guarded) procedures are
usually executed as part of the transaction setting off the trigger. Due to the lack of
actions, the condition for garbage collection is simple reachability, respectively knowl-
edge of an object’s mail address. N-ary communication between objects can generally
not be expressed in a symmetric fashion. Hewitt’s actor model [15,1] was the first for-
mal model of active objects. More recently, CCS and the π-calculus have been used to
give a semantics to members of the POOL family [2,18,25].

8 Conclusions

We have extended the Action-Oberon language with type-bound actions encapsulating
both data and actions in objects by combining the principles of object-orientation and
action systems. Actions with n participants provide a symmetrical mechanism to ex-
press n-ary communication between objects. Of the solutions for disabling an object
as participant of any action and recycling its allocated memory, we found the explicit
DEACTIVATE command to have the most desirable properties. Due to the conflict be-
tween multiple dispatch and independent extensibility, overriding of type-bound actions
is prohibited. Overriding of type-bound procedures and dynamic type tests provide for
selective overriding. By reducing type-bound actions to plain actions they are given
a formal semantics in the Refinement Calculus framework which allows for concise
mathematical reasoning.

We are interested in increasing our collection of examples manifesting the useful-
ness of type-bound actions. Simulation of mechanical systems is a very promising ap-
plication. We are also interested in adding fairness and/or priorities to Action-Oberon.
Additionally, we are trying to show the value of object-encapsulation for atomicity re-
finement of actions and for synchrony-loosening refinements.

We would like to thank Wolfgang Weck, Jim Grundy, Kaisa Sere, and Philipp
Heuberger for a number of clarifying and fruitful discussions on the topic of this paper.

260

References

1. Gul Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

2. Pierre America. Issues in the design of a parallel object-oriented language. Formal Aspects
of Computing, 1(4):366–411, 1989.

3. R. Back. Refinement calculus, part II: Parallel and reactive programs. In Stepwise Refinement
of Distributed Systems: Models, Formalisms, Correctness. Proceedings. LNCS 430, Springer
Verlag, 1990.

4. R. Back. Refinement of parallel and reactive programs. In M. Broy, editor, Program Design
Calculi, NATO ASI Series, pages 73–92. Springer-Verlag, 1993.

5. R. Back and M. Butler. Exploring summation and product operators in the refinement calcu-
lus. Technical Report on Computer Science & Mathematics, Ser. A. No 152, Åbo Akademi,
1994.

6. R. Back and R. Kurki-Suonio. Distributed co-operation with action systems. ACM Transac-
tions on Programming Languages and Systems 10:513–554, 1988.

7. R. Back and K. Sere. Action systems with synchronous communication. In IFIP TC 2
Working Conference on Programming Concepts, Methods and Calculi (PROCOMET ’94),
pages 107–126. Elsevier, 1994.

8. R. Back and K. Sere. From action systems to modular systems. In Proceeding of Formal
Methods Europe ’94. LNCS 873, Springer Verlag, 1994.

9. R. Back and J. von Wright. Trace refinement of action systems. In CONCUR 94, pages
367–384. LNCS 836, Springer Verlag, 1994.

10. Craig Chambers and Gary T. Leavens. Type checking and modules for multi-methods. Tech-
nical Report #95-19, Iowa State University, August 1995.

11. K. M. Chandy and J. Misra. Parallel Program Design – A Foundation. Addison Wesley,
1988.

12. K.M. Chandy. A discipline of multiprogramming. Available from the PSP group’s ftp site
ftp://ftp.cs.utexas.edu/pub/psp/seuss/discipline.ps.Z, June 1996.

13. N. Francez and I. Forman. Interacting Processes: A Multiparty Approach to Coordinated
Distributed Programming. ACM Press, 1996.

14. Eric J. Hedman. Action-Oberon. Master’s thesis, Åbo Akademi University, 1995.
15. Carl Hewitt. Viewing control structures as patterns of passing messages. Artificial Intelli-

gence, 8(3), 1977.
16. H.-M. Järvinen and R. Kurki-Suonio. DisCo specification language: Marriage of action and

objects. In Proceedings of 11th International Conference on Distributed Computing Systems,
pages 142–151, Arlington, Texas, 1991. IEEE Computer Society Press.

17. R.E. Johnson and B. Foote. Designing reusable classes. Journal of Object-Oriented Pro-
gramming, June 1:2 1988.

18. Cliff B. Jones. A π-calculus semantics for an object-based design notation. In Proceedings
of CONCUR 93, pages 158–172. LNCS 715, Springer Verlag, 1993.

19. C.E. Martin. Preordered Categories and Predicate Transformers. PhD thesis, Programming
Research Group, Oxford University, 1991.

20. D.A. Naumann. Two-Categories and Program Structure: Data Types, Refinement Calculi,
and Predicate Transformers. PhD thesis, University of Texas at Austin, 1992.

21. Oberon microsystems, Inc. Oberon/F. http://www.oberon.ch, 1995.
22. P. Mössenböck and N. Wirth. The programming language Oberon-2. Structured Program-

ming 12:179–195, 1991.
23. Clemens A. Szyperski. Import is not inheritance – Why we need both: Modules and classes.

In Proceedings of ECOOP 92, pages 19–32. LNCS 615, Springer Verlag, 1992.

261

24. Clemens A. Szyperski. Independently extensible systems – software engineering potential
and challenges. In Proceedings of the 19th Austalasian Computer Science Conference, Mel-
bourne, 1996.

25. D.J. Walker. Objects in the π-calculus. Information and Computation, 116(2):253–271,
1995.

262

Paper VII

Refining Concurrent Objects

Martin Büchi and Emil Sekerinski

Conditionally accepted to Fundamenta Informaticae with request for changes.

Refining Concurrent Objects

Martin Büchi1 and Emil Sekerinski2

1 Turku Centre for Computer Science,
Lemminkäisenkatu 14A, 20520 Turku, Finland;

Martin.Buechi@abo.fi
2 McMaster University,

1280 Main Street West, Hamilton, Ontario, Canada, L8S4K1;
emil@mcmaster.ca

Abstract. We study the notion of class refinement in a concurrent object-oriented
setting. Our model is based on a combination of action systems and classes. An
action system describe the behavior of a concurrent, distributed, or interactive
system in terms of the atomic actions that can take place during the execution of
the system. Classes serve as templates for creating objects. To express concur-
rency with objects, we add actions to classes.
We define class refinement based on trace refinement of action systems. Addi-
tionally, we give a simulation-based proof rule. We show that the easier to apply
simulation rule implies the trace-based definition of class refinement.
Class refinement embraces algorithmic refinement, data refinement, and atomic-
ity refinement. Atomicity refinement allows us to split large atomic actions into
several smaller ones. Thereby, it paves the way for more parallelism. We investi-
gate the special case of atomicity refinement by early returns in methods.

1 Introduction

For the development of larger programs, a recommended practice is to separate a con-
cise but precise specification of what the program should do from a possibly involved
and detailed implementation. We view the specification as an abstract program P and
the implementation as a concrete program Q. The task of ensuring that the implementa-
tion satisfies the specification is eased by introducing intermediate programs such that
each program is a refinement of the previous one, formally expressed as:

P = P0 � P1 � P2 � . . . � Pn = Q

In algorithmic refinement steps abstract (or more abstract) statements are replaced by
concrete (or more concrete) statements whereas in data refinement steps abstract (or
more abstract) data structures are replaced by concrete (or more concrete) data struc-
tures. For the development of concurrent programs, in atomicity refinement steps se-
quential (or less concurrent) parts are replaced by by concurrent (or more concurrent)
ones.

These general principles are applied here to classes. For example, a file can be spec-
ified as an object of a class whose state is a sequence and a current position and whose
read and write operations access the sequence at the current position. A typical imple-
mentation of this class would use a cache for storage and would process write operations

1

in the background, hence changing the state space and introducing concurrency. In any
case, the illusion to the user of the write operation is maintained that the operation is
executed atomically. In this example, concurrency is introduced in the implementation
for allowing a better utilization of resources, which is an aspect we are interested in
without formalizing it.

In this paper we propose a formal model for objects with attributes and methods,
with self- and super-calls in methods, classes with inheritance, and action-based concur-
rency. Objects have actions which, as long as they are enabled, may execute and change
the object’s state while other parts of the program are in progress. As in class-based
programming languages, classes serve as templates for creating objects and inheritance
is understood as a mechanism for modifying classes.

The notion of class refinement expresses that an object of the refining class behaves
as an object of the refined class. Class refinement between two classes is defined in
terms of the observable traces of programs with instances of those classes. We give
a simulation condition for establishing class refinement by using a relation between
the attributes of those classes. As the main result, we prove that simulation by relation
implies class refinement in a setting with dynamic object structures.

The proposed class refinement extends class refinement as defined for sequential
objects [27, 26] by adding actions to classes. Class refinement has also been studied
under the name behavioral subtyping in less formal settings guaranteeing only partial
correctness by America [2] and by Liskov and Wing [24]. Different models for classes
and objects have been proposed [1]. We extend the model of classes as self-referential
structures with a delayed taking of the fixed point of [31, 16].

The action system model for parallel, distributed, and reactive systems was pro-
posed by Back and Kurki-Suonio [7, 8]. The same basic approach has later been used
in other models for distributed computing, notably UNITY [14] and TLA [21].

An action system describes the behavior of a concurrent system in terms of the
atomic actions that can take place during the execution of the system. Action systems
allow a succinct description of the overall behavior of a system. Furthermore, action-
based approaches do not force us to fix the flow of control where doing so is unneces-
sary for an abstract specification (see e.g. [14]). Action systems can be used to express
various forms of communication, e.g. shared variable, rendez-vous, and bounded chan-
nels, as well as different interaction mechanisms, e.g. semaphores, critical regions, and
4-phase handshake [8, 14].

Back and Sere [9] have added procedures to action systems. They, as well as Sere
and Waldén [30] and Bonsangue et al [13], have also studied input/output refinement
of action systems with methods, which is similar to our classes after self- and super-
references have been resolved. Using trace refinement, we extend those results to reac-
tive behavior and handle non-terminating systems.

The action system model has been extended with different notions of objects. Jär-
vinen and Kurki-Suonio [18] used aggregation rather than inheritance and overriding,
based their semantics on TLA, and concentrated on superposition refinement. Back et
al [6] concentrated on the design of a language. Bonsangue et al [13] developed a less
formal model with an action-system-per-object semantics. Seuss [28] also combines

2

objects with action-based concurrency. The catch in Seuss is that the set of objects
(called clones) is static.

Atomicity refinement has first been proposed by Lipton [23]. Back studied in-
put/output behavior preserving atomicity refinement in action systems [4, 5]. Sere and
Waldén [30] and Bonsangue et al [13] have extended this to procedures and methods,
still refining only input/output behavior. Lamport and Schneider [22] and Cohen and
Lamport [15] have studied atomicity refinement in TLA considering liveness proper-
ties beyond termination. De Bakker and de Vink [17] give an overview of atomicity
refinement in process algebras and Petri nets. The idea of an early return, or release,
statement has been proposed by Jones [19, 20] in a framework with explicit constructs
for parallelism.

Our calculus for concurrent objects is meant to provide a design notation for pro-
grams to be implemented in concurrent object-oriented languages, such as POOL, Mo-
dula-3, and Java. Programs can be expressed more abstractly than in those languages.
The synchronization and communication mechanisms of these programming languages
can be formally introduced in refinements.

Outline. In Section 2 we review the fundamentals of statements and action systems.
Section 3 introduces classes with attributes, methods, and actions as well as local ob-
ject creation, inheritance, and self- and super-references in methods and actions. Sec-
tion 4 defines class refinement in terms of the externally observable behavior, gives a
condition for class simulation using a relation, and proves that class simulation implies
class refinement for a system with a single object of a given class. Section 5 introduces
dynamic object structures and extends the discussion of class refinement and class sim-
ulation to that setting. In Section 6 we study early returns as a special case of atomicity
refinement. Finally, Section 7 draws the conclusions.

2 Statements and Action Systems

The refinement calculus, which provides the foundation for our work, is due to Back,
Morgan, and von Wright [3, 29, 11]. We review the fundamentals of statements defined
by predicate transformers following [11] and of action systems following [10].

2.1 Statements

State predicates of type P Σ are functions from elements of type Σ to Bool. Relations of
type ∆ ↔ Ω are functions from ∆ to (state) predicates over Ω. Predicate transformers
of type ∆ �→ Ω are functions from predicates over Ω (the postconditions) to predicates
over ∆ (the preconditions):

P Σ =̂ Σ → Bool
∆ ↔ Ω =̂ ∆ → P Ω
∆ �→ Ω =̂ P Ω → P ∆

On predicates, conjunction ∧, disjunction ∨, implication ⇒, and negation ¬ are defined
by the pointwise extension of the corresponding operations on Bool. The entailment or-
dering ≤ is defined by universal implication. The predicates true and false represent the

3

universally true, respectively false predicates. On relations, we use union ∪, intersection
∩, relational composition ◦, and the relational image R [p] of a predicate p, defined by
R [p] y =̂ (∃x • R x y∧p x). The identity relation is denoted by Id.

Statements are defined by predicate transformers because only their input/output
behavior is of interest. Thus, for statement S and predicate q we have S q = wp(S,q),
where wp is in Dijkstra’s notation the weakest precondition of statement S to estab-
lish postcondition q. More precisely, we identify program statements with monotonic
predicate transformers, i.e. predicate transformers S for which p ≤ q ⇒ S p ≤ S q.

The sequential composition of predicate transformers S and T is defined by their
functional composition:

(S ; T) q =̂ S (T q)

The identity on predicate transformers is denoted by skip . The guard [p] skips if p holds
and “miraculously” establishes any postcondition if p does not hold. The guard [false]
is called magic . The assertion {p} skips if p holds and establishes no postcondition if
p does not hold (the system crashes). The (never holding) assertion {false} is called
abort :

skip q =̂ q [p] q =̂ p ⇒ q
magic q =̂ true {p} q =̂ p∧q
abort q =̂ false

The demonic (nondeterministic) choice � establishes a postcondition only if both al-
ternatives do. The angelic choice � establishes a certain postcondition if at least one
alternative does. The relational updates [R] and {R} both update the state according to
relation R. If several final states are possible, then [R] chooses one demonically and {R}
chooses one angelically. If R is of type ∆ ↔ Ω, then [R] and {R} are of type ∆ �→ Ω:

(S�T) q =̂ (S q)∧ (T q) [R] q δ =̂ (∀ω • R δ ω ⇒ q ω)
(S�T) q =̂ (S q)∨ (T q) {R} q δ =̂ (∃ω • R δ ω∧q ω)

We generalize the binary demonic choice to the choice among a fixed set of statements:

(�i ∈ I • S) q =̂ (∀i ∈ I • S q)

As a variant, we allow the choice to be restricted by a state predicate:

(�i | p • S) =̂ (�i • [p] ; S)

All of the above constructs are monotonic. The universally and the positively conjunc-
tive predicate transformers are two important subsets of the monotonic predicate trans-
formers. Let qi for some index set I and i ∈ I form a set of predicates. If

S(∀i ∈ I • qi) = (∀i ∈ I • S qi)

holds for any index set I, then S is universally conjunctive. If the condition holds for
nonempty sets I, then S is positively conjunctive. Any universally conjunctive predicate
transformer is equal to [R] for some relation R. Any positively conjunctive predicate

4

transformer is equal to {p} ; [R] for some predicate p and some relation R. For example,
for any predicate transformers S,T,U we have that

(S�T) ; U = (S ; U)� (T ; U)

but only if U is positively conjunctive we have also that:

U ; (S�T) = (U ; S)� (U ; T)

Other statements can be defined in terms of the above ones, for example the guarded
statement p → S =̂ [p] ; S and the conditional:

if p then S else T end =̂ (p → S)� (¬p → T)

The enabledness domain (guard) of a statement S is denoted by grd S and its termination
domain by trm S:

grd S =̂ ¬S false trm S =̂ S true

For example, grd (p → S) = p∧ grd S and trm ({p} ; [R]) = p.

Refinement. The reflexive and transitive refinement ordering � is defined by universal
entailment:

S � T =̂ ∀q • S q ≤ T q

The loop do S od executes its body as long as it is enabled. This is defined by taking
the least fixed point of the function F = λX • S ; X � [¬ grd S]. Sequential composition
and nondeterministic choice are monotonic in both operands, so a least fixed point µ F
exists and is unique:

do S od =̂ µ X • S ; X� [¬ grd S]

The loop while p do B is defined as do p → B od , provided that B is always enabled,
i.e. grd B = true .

Data refinement S �R S′ generalizes (plain) algorithmic refinement by relating the
initial and final state spaces of S : Σ �→ Σ and S′ : Σ′ �→ Σ′ with a relation R : Σ ↔ Σ′:

S �R S′ =̂ S ; [R] � [R] ; S′

Data refinement S �R S′ can be equivalently defined by {R−1} ; S � S ; {R−1}, where
R−1 is the relational inverse of R. Algorithmic refinement is a special case of data re-
finement with the identity relation.

Program Variables. Typically the state space is made up of a number of program vari-
ables. Thus the state space is of the form Γ1 × . . .×Γn. States are tuples (x1, . . . ,xn).
The variable names serve for selecting components of the state. For example, if x : Γ
and y : ∆ are the only program variables, then the assignment x := e updates x and leaves
y unchanged:

x := e =̂ [R] where R (x,y) (x′,y′) ≡ x′ = e∧ y′ = y

5

The nondeterministic assignment x :∈ q assigns x an arbitrary element of the set q:

x :∈ q =̂ [R] where R (x,y) (x′,y′) ≡ x′ ∈ q∧ y′ = y

The declaration of a local variable y : ∆ with initialization predicate yi extends the
state space and sets y to any value for which yi y holds. A block construct allows us to
temporarily extend the state space with local variables, execute the body of the block
on the extended state space, and reduce the state space again:

var y | yi • S =̂ enter y | yi ; S ; exit y
enter y | yi =̂ [R] where R x (x′,y′) ≡ x = x′ ∧ yi y′

exit y =̂ [R] where R (x,y) x′ ≡ x = x′

Leaving out the initialization predicate as in var y • S means initializing the variable
arbitrarily, var y | true • S. Where necessary, we also explicitly indicate the type ∆ of
the new variable as in var y : ∆. Since Γ×(∆×Ω) is isomorphic to (Γ×∆)×Ω, we can
always find functions which transform an expression of one to the other type. Hence we
simply write Γ×∆×Ω. For example, if Γ = Γ1 ×·· ·×Γn then S above would have the
type Γ1 × ·· ·×Γn ×∆ �→ Γ1 × ·· ·×Γn ×∆. Assuming that variable names select the
correct state space component, we can also commute state space components.

Product Statements. For predicates q1 : P Σ1 and q2 : P Σ2 the product q1 × q2 of type
P (Σ1×Σ2) is defined as (q1×q2) (σ1,σ2) =̂ q1 σ1∧q2 σ2. For predicate transformers
S1 : ∆1 �→ Ω1 and S2 : ∆2 �→ Ω2, their product S1 ×S2 is a predicate transformer of type
∆1 ×∆2 �→ Ω1 ×Ω2 which corresponds to the simultaneous execution of S1 and S2:

(S1 ×S2) q (δ1,δ2) =̂ ∃q1,q2 | q1 ×q2 ≤ q • S1 q1 δ1 ∧S2 q2 δ2

Intuitively, this means that S1 × S2 establishes the postcondition q : P (Ω1 ×Ω2) from
initial state (δ1,δ2), if there is a “rectangular” subset q1 × q2 of q such that indepen-
dently S1 establishes q1 from δ1 and S2 establishes q2 from δ2 [12].

Two statements S and T over the same state space are independent if they operate
on different components of the state space (disjoint variables). This implies that there
must exist S′ and T ′ such that S = S′ × skip and T = skip ×T ′. If R is a relation we
say that R is independent of S if [R] and S are independent, or equivalently {R} and S
are independent. If R and Q are independent of S we have following subcommutativity
properties:

S ; [R] � [R] ; S {Q} ; S � S ; {Q}

For simplicity and readability, we usually omit the natural extensions of predicates
by true and of statements by skip when operating on an extended state space.

Procedures. Declaration of a procedure p with value parameters v : ∆, result parameters
r : Ω, and body S, written

procedure p(val v : ∆, res r : Ω) is S

defines p to stand for S of type Γ×∆×Ω �→ Γ×∆×Ω, if Γ is the type of the global
variables.

6

A procedure call p(e,x) extends the state space by the value and result parameters,
sets the value parameters to e, executes the procedure body, sets the result parameter x,
and removes the parameters:

p(e,x) =̂ var v,r • v := e ; p ; x := r

Now suppose that p is a recursive procedure, which is expressed by assuming that S is
of the form s p for some s. That is, S has a free occurrence of p. The meaning of p is then
given by taking the least fixed point of the function s, i.e. the least solution of λX • X =
s X. Statements form a complete lattice with the refinement ordering. Furthermore,
we assume that s is defined with p occurring in monotonic positions only. These two
conditions guarantee that the least fixed point µ s of s exists and is unique. Hence we
can define p =̂ µ s.

A set of mutually recursive procedures is defined by taking the fixed point of state-
ment tuples. For tuples (s1, . . . ,sn) and (s′1, . . . ,s

′
n), where si and s′i are statements of the

same type, the refinement ordering is defined elementwise:

(s1, . . . ,sn) � (s′1, . . . ,s
′
n) =̂ (s1 � s′1)∧ . . .∧ (sn � s′n)

Statement tuples also form a complete lattice with the refinement ordering. Let p stand
for (p1, . . . ,pn), assume S1 = s1 p, . . . ,Sn = sn p, and let s stand for λp • (s1 p, . . . ,sn p).
The set of procedure declarations

procedure p1 is S1, . . . , procedure pn is Sn

defines p to be the least fixed point of s, i.e. p =̂ µ s. Assuming again that all pi occur
only in monotonic positions in all sj, a least fixed point exists and is unique.

2.2 Action Systems

Statements modeled as predicate transformers can express only atomic computations.
In concurrent programs, components of the program interact during the computation.
For reactive systems, the possible sequences of observable states rather than the in-
put/output behavior are of interest. Such components can be modeled by action sys-
tems. Action systems consist of local variables, an initialization thereof, and a body,
which is repeatedly executed as long as it is enabled. Action systems can represent ter-
minating, non-terminating, and aborting computations. Formally an action system is a
pair AS = (ai,A) where ai : P Σ is the initializing predicate of the local state. Upon ini-
tialization, arbitrary values satisfying ai are chosen for the local variables. The global
state space Γ is declared and initialized outside. Action A : Γ×Σ �→ Γ×Σ is a positively
conjunctive statement, which acts on the local state of type Σ and global state of type
Γ. Because A is positively conjunctive, it can be written as {p} ; [R]. The next relation
of A relates a state (u,v) in both the enabledness and termination domain to all possible
next states (u′,v′):

nxt A (u,v) (u′,v′) =̂ p (u,v)∧R (u,v) (u′,v′)

A behavior of AS is a sequence of pairs

s = 〈(u0,v0),(u1,v1), . . .〉

7

where v0 is the initial value of the local state, such that ai v0, and all consecutive ele-
ments of the sequence are in the next relation:

nxt A (ui,vi) (ui+1,vi+1)

The set beh AS is the set of all behaviors. A behavior is terminating if it is finite and
for the last element (un,vn) the action A is not enabled, ¬ grd A(un,vn). A behavior is
aborting if it is finite and for the last element (un,vn) the action aborts, i.e. (un,vn) is
not in the termination domain, ¬ trm A(un,vn). A behavior is non-terminating if it is not
of finite length. The set beh AS can be thought of as the (disjoint) union of terminating,
aborting, and non-terminating behaviors of AS.

We use the following syntax for an action system (ai,A) with local variables a:

var a | ai • do A od

Action systems are typically composed of a set of actions A1, . . . ,An operating on dif-
ferent parts of the state space, which we write as:

var a | ai • do A1 [] . . . [] An od

In the interleaving model, parallelism of two actions is modeled by taking them in
arbitrary, demonically chosen order. Hence the meaning of such an action system is
given by taking the nondeterministic choice between all actions:

var a | ai • do A1 � . . .�An od

We furthermore consider the case of an indexed set of actions and of set of actions
where the possible choice depends on a state predicate:

([] i ∈ I • A) =̂ (�i ∈ I • A)
([] i | p • A) =̂ (�i | p • A)

To express various kinds of possibly parallel computations, we use also combinations
of these notations, for example as in:

do ([] i | p • A) [] ([] j | q • B) od

Parallel Composition. The parallel composition of action systems AS = (ai,A) and
BS = (bi,B) with the same global state space merges the local state spaces (possibly
renaming variables to make them mutually distinct) and combines the actions by non-
deterministic choice:

AS ‖ BS =̂ (ai∧bi,A�B)

This models an arbitrary interleaving of the action of AS and BS without any assumption
of fairness. As grd (A�B) = grd A∨ grd B, the combined system terminates only if
both A and B are not enabled. As trm (A�B) = trm A∧ trm B, the combined action
system aborts if either A or B aborts. (We omit the explicit state space reordering and
the natural extensions by skip for A and B to operate on the global state space and
their respective local state space in A�B.) Parallel composition is commutative and
associative, up to the order of state components.

8

Given an action system AS, we can make part of its global state space local by
var b | bi • AS, as we do typically for hiding common variables of two action systems
composed in parallel. If a and b are disjoint then:

var b | bi • var a | ai • do A od =̂ var a,b | ai∧bi • do A od

Trace Refinement. Behaviors contain a local state component, which is not observable
from outside. Furthermore, behaviors may contain stuttering steps which are not ob-
servable from outside either. A state (ui+1,vi+1) is a stuttering state if ui = ui+1. Traces
on the other hand capture only the observable part of behaviors. For a behavior s, its
trace tr s is obtained by

1. removing all finite sequences of stuttering states from s, and
2. removing the local state component from all states in s.

Behavior s approximates behavior t, written s � t, if

– s is aborting and tr s is a prefix of tr t, or
– tr s = tr t.

Trace refinement between action systems AS and BS with the same global state space
holds if all behaviors of BS have an approximating behavior of AS:

AS � BS =̂ ∀t ∈ beh BS • ∃s ∈ beh AS • s � t

Since only finite stuttering is removed, an infinite behavior gives rise to an infinite trace
and a finite behavior gives rise to a finite trace. Both “concrete stuttering” in BS as well
as “abstract stuttering” in AS is allowed.

Simulation. Trace refinement can be shown to hold by simulation. Here we consider
forward simulation between AS = (ai,A) and BS = (bi,B) with the same global state
space using a relation R. An action A� is a stuttering action if it always terminates and
it leaves the global state unchanged:

trm A� = true and nxt A� (u,v) (u′,v′) ⇒ u = u′

Let Sn be the n-fold sequential composition of statement S, defined by S0 = skip and
Sn+1 = S ; Sn. Let S∗ stand for the nondeterministic choice between all n-fold sequential
compositions of S, defined by S∗ = (� n ∈ Nat • Sn). Define AI = enter a | ai and BI =
enter b | bi. Action system AS is simulated by BS using R, written AS4R BS, if there are
decompositions A = A� �A� and B = B� �B� such that A� and B� are stuttering actions
and:

(a) Initialization: AI ; A∗
� ; [R] � BI ; B∗

�

(b) Actions: A� ; A∗
� ; [R] � [R] ; B� ; B∗

�

(c) Exit Condition: R[trm A∧ grd A] ≤ grd B
(d) Internal Convergence: R[trm A∧ trm (do A� od)] ≤ trm (do B� od)

Theorem 1. Let AS and BS be action systems and R a relation. Then:

AS4R BS ⇒ AS � BS

9

p ≤ q entailment of predicates Section 2.1

S � T algorithmic refinement of statements Section 2.1
S �R T data refinement of statements Section 2.1

s � t approximation of traces Section 2.2

AS � BS trace refinement of action systems Section 2.2
C �◦ D class refinement with single object Section 4.1
C �↑ D class refinement with dynamic object structures Section 5.1

AS4R BS simulation of action systems Section 2.2
C 4◦

R D simulation of classes with single object Section 4.2

C 4↑
R D simulation of classes with dynamic object structures Section 5.1

Fig. 1. Summary of ordering relations

In general, action system refinement is not compositional in the sense that refining one
action system would lead to a refinement in an environment with other action systems
running in parallel. However, we get compositionality under the additional constraint of
non-interference. Let ES = (ei,E) be an action system and let R be refinement relation
for AS. Action system ES does not interfere with R if

trm E∧ r ≤ E r

where r u b = R (u,a) (u,a′). In other words, r is an invariant of E.

Theorem 2. Let AS, BS, and ES be action systems, let R be a relation. If ES does not
interfere with R then:

AS4R BS ⇒ AS ‖ ES � BS ‖ ES

Figure 1 summarizes the various ordering relations on predicates, statements, traces,
action systems, and classes.

3 Objects and Classes

Conventionally, a class is a template that defines a set of attributes and methods. Meth-
ods of a class may contain self-references to the method itself and to other methods of
the class. Instantiating a class creates a new object with initialized attributes and method
bodies as defined by the class. A subclass inherits attributes and methods from its super-
class. Furthermore a subclass may add new attributes and overwrite inherited methods.
Methods in a subclass may contain super-references to methods in the superclass. For-
mally, classes are modeled as self-referential recursive structures, where self-references
are not resolved at the time the class is declared, but resolving is delayed until objects
are created [31].

10

These principles are extended here: classes define additionally a set of actions,
which are inherited in subclasses and may be overwritten. Subclasses may also intro-
duce additional actions. Self-references are possible between both methods and actions.
Self-references are resolved at the time when an object is created. Also, both methods
and actions may contain super-references to methods and actions in the superclass.

3.1 Classes

Let Σ be the type of the attributes of some class C and let α be a type variable to
be instantiated by the type of the global variables and possibly by the type of further
attributes of subclasses. Typically, classes have several attributes and programs contain
several global variables. Thus, elements of Σ and α are tuples. Attribute and variable
names are used for accessing the corresponding components. The set of methods and
actions of a class is represented by a tuple with the method and action name accessing
the corresponding component. For the types of methods mi and actions aj of C we define

CMi = α×Σ×∆i ×Ωi �→ α×Σ×∆i ×Ωi CA = α×Σ �→ α×Σ

where ∆i and Ωi are the types of the value, respectively result parameter of method mi.
Within a class, methods mi and actions aj of that class can be referred to by self.mi and
self.aj, respectively. This is formalized by having self.mi and self.aj as parameters of all
methods and actions, allowing all methods and actions to be referred to by all methods
and actions. The usefulness of this generalization becomes clearer when considering
inheritance. Let self stand for the tuple of method and action names prefixed by self :

self = (self.m1, . . . ,self.mm,self.a1, . . . ,self.aa)

Let cmi be the body of method mi. Since cmi may contain calls to other methods and
actions of the same object, mi is a function of self :

mi = λself • cmi

Thus, the parameter self may be used inside cmi. Actions are treated analogously. The
collection of all methods and actions of a class can then be expressed as a tuple cs
parameterized with self ,

cs = λself • (cm1, . . . ,cmm,ca1, . . . ,caa)

where cmi : CMi, caj : CA, self.mi : CMi, and self.aj : CA. Note that self is here used
to refer to methods and actions, but not to reference attributes (fields) of an object.
Attributes are referenced with their unqualified names inside methods and actions.

A class also specifies possible initial values ci : P Σ of its attributes c. Hence a class
C takes the form of a tuple:

C = (ci,cs)

11

✲ C ✲self

(a)

✲ C
self❄

(b)

Fig. 2. Illustration of (a) class C and of (b) taking the fixed point of C. The incoming arrow
represents calls to C, the outgoing arrow stands for self-calls of C.

Figure 2(a) illustrates the definition of a class. For defining class C with attributes,
methods, and actions as above we use the syntax:

class C
attr c | ci,
meth m1(val v1, res r1) is cm1,
. . . ,
meth mm(val vm, res rm) is cmm,
action a1 is ca1,
. . . ,
action aa is caa

end

Objects have all self-calls resolved with methods of the object itself. Self-calls may be
mutually recursive, like mutually recursive procedures. Modeling this formally amounts
to taking the least fixed point of the function cs (Figure 2(b)). Methods and actions of
objects of class C, denoted by C.mi and C.ai, respectively, are defined by taking the
fixed point of the tuple of all methods and actions and then selecting the corresponding
method or action:

C.mi =̂ (µ cs).mi C.ai =̂ (µ cs).ai

Declaring a variable x to be of class C means declaring it to be of type Σ and initializing
it with ci:

var x : C • S =̂ var x | ci • S

Such a variable corresponds to a local, stack allocated object in programming lan-
guages. Since actions cannot access variables which are local to some statements, con-
currency cannot be expressed this way. For this purpose dynamic object structures are
introduced later.

A method call x.mi of object x of class C corresponds to a procedure call with x as
a value-result parameter.

x.mi =̂ var c • c := x ; C.mi ; x := c

The name of the implicit formal parameter is that of the attributes, namely c. Therefore,
c is used to access local data in the body of C.mi. This corresponds to this in some
programming languages.

12

Additional value and result parameters are treated as for procedure calls. For con-
venience, we also use the same notation for selecting an action of an object:

x.ai =̂ var c • c := x ; C.ai ; x := c

Example. We illustrate the above definitions with a stylized example. Let class E be
defined as follows:

class E
attr c | c = 0,
meth change is c :∈ NAT,
meth inc is c := c+1,
action a is true → self .change,

end

If E = (ei,es), then ei = (c = 0) and es is given by:

es = λ(self .change,self .inc,self .a) • (c :∈ NAT,c := c+1, true → self .change)

Taking the fixed point of es results in the substitution of the call to change by the
definition of change in E:

µ es = (c :∈ NAT,c := c+1, true → c :∈ NAT)

The use of fixed points becomes clear when we consider overriding in inheritance.

3.2 Inheritance

Inheritance is expressed by the application of a modifier to a base class: If D inherits
from C, then D is equivalent to L mod C, where modifier L corresponds to the extending
part of the definition of D. This model of single inheritance is equivalent to dynamic
method lookups along the inheritance graph as implemented in most object-oriented
languages [16]. We call C the superclass of D and D a subclass of C.

Let C be as above. A modifier L specifies additional attributes, say l of type Λ. We
consider only modifiers that redefine all methods of the base class. If a method should
remain unchanged, this is expressed by making a supercall to the same method of the
base class. A modifier also redefines all actions of the base class and possibly adds new
actions.

For defining modifier L with attributes, methods, and actions as above we use the
following syntax, where unmentioned methods mi and actions aj are defined as super.mi

and super.aj, respectively:

modifier L
attr l | li,
meth m1(val v1, res r1) is lm1,
. . . ,
meth mm(val v1, res rm) is lmm,
action a1 is la1,
. . . ,
action ab is lab

end

13

✲ L
✲✲

super

self

(a)

✲ L

C

❄

self✻super

✲
self

(b)

✲ L

C

❄
self✻super

✛ self

(c)

Fig. 3. Illustration of (a) modifier L, of (b) L mod C, and of (c) taking the fixed point of L mod C

For the types of methods mi and actions aj of L we define

LMi = β×Λ×Σ×∆i ×Ωi �→ β×Λ×Σ×∆i ×Ωi

LA = β×Λ×Σ �→ β×Λ×Σ

where β is the type variable for global variables and further attributes in subclasses of
D. Thus, we instantiate α of CMi and CA by β×Λ. The types of the value and result
parameters of method mi are, exactly as in C, that is ∆i and Ωi. Within L, methods
mi and actions aj of that class can be referred to by self.mh and self.ak, and those of
the superclass C by super.mi and super.aj, respectively. This is formalized by having
self.mh,self.ak,super.mi, and super.aj as parameters of all methods and actions. We let
self and super stand for:

self = (self.m1, . . . ,self.mm,self.a1, . . . ,self.ab)
super = (super.m1, . . . ,super.mm,super.a1, . . . ,super.aa)

The collection of all methods and actions of modifier L can then be expressed as a tuple
ls parameterized with both self and super,

ls = λself • λsuper • (lm1, . . . , lmm, la1, . . . , lab)

where lmk : LMk, lah : LA, self.mh : LMh, self.ak : LA, super.mi : CMi, and super.aj : CA.
A modifier also specifies initial values li : Λ of the new attributes l. Hence a modifier L
takes the form of a tuple:

L = (li, ls)

The modification of C by L binds super-calls in L to C and leaves the self-calls in L and
C unresolved for possible further modification (Figure 3(b)):

L mod C =̂ (li∧ ci,λself • ls self (cs self))

Here self = (self.m1, . . . ,self.mm,self.a1, . . . ,self.aa) is identical as self in the definition
of cs. Self-calls in L mod C, including those in methods and action of C, are bound to
L when an object is instantiated (Figure 3(c)).

14

Example. We illustrate inheritance by extending class E of Section 3.1. Modifier F
overrides method change and adds action b:

modifier F
meth change is super.inc(),
action b is c < 10 → self .inc()

end

If F = (fi, fs), then fi = true and fs is given by:

fs = λ(self .change,self .inc,self .a,self .b) •

λ(super.change,super.inc,super.a) •

(super.inc(),super.inc(),super.a,c < 10 → self .inc())

The second and third component are the implicit supercalls of not explicitly redefined
method inc and action a. The application F mod E gives the following:

F mod E = (gi,gs)
gi = (x = 0)
gs = λ(self .change,self .inc,self .a,self .b) • (c := c+1,c := c+1,

true → self .change(),c < 10 → self .inc())

This illustrates that the super-calls are bound to the definitions in E. On the other hand,
the self-calls in both E and F are still unresolved. This makes it possible to add another
modifier to F mod E. The self-calls are again bound when an instance of F mod E is
created:

µ gs = (c := c+1,c := c+1, true → c := c+1,c < 10 → c := c+1)

4 Class Refinement and Class Simulation

In this section we define class refinement in terms of trace refinement. Also, a simu-
lation condition between classes with a relation is defined and proved to imply class
refinement. The reasoning is done with a single object of a class running in isolation;
dynamic object creation is considered later.

4.1 Class Refinement

For an object x of class C, let A [x] be the action system with all its actions. Thus A [x]
specifies how x behaves between external method calls to x:

A [x] = do x.a1 [] . . . [] x.aa od

Let O[x] be an action system observing object x only through method calls: we rep-
resent O[x] as the (guarded) choice of either aborting or calling a method of x, where
additionally local variables may be updated between method calls. Let SA,S1, . . . ,Sm

be universally conjunctive statements that are independent of the global state, i.e. they
access only local variables h:

O[x] = var h | hi • do SA ; abort [] S1 ; x.m1 [] . . . [] Sm ; x.mm od

15

Let K [C] be a program operating on an object x of class C such that K is the full context
of x, in the sense that no other program accesses x. We describe K [C] by an interleaving
of method calls to x and of actions of x:

K [C] = var x : C • O[x] ‖ A [x]

Class D is a refinement of class C, written C �◦ D, if using an object of class D instead
of C in all possible programs yields a trace refinement of the original program:

C �◦ D =̂ ∀K • K [C] � K [D]

Class refinement between two classes is independent of how the classes are constructed
using inheritance. In practice, it is often useful if all subclasses are refinements of their
superclass. In typed languages, refinement is most beneficial between a class and its
subclasses.

Our theory of refinement applies to classes with inheritance and self- and super-calls
as introduced above. Because self- and super-calls in methods and actions are resolved
before refinement is considered, there is no textually explicit resolution with fixed points
here. Therefore, our treatment of refinement is independent of the model for inheritance
and self- and super-calls and is also applicable to models lacking these concepts. In
summary, our notion of refinement is targeted at the model of classes introduced in
Section 3, but is independent enough to be applicable to other models as well.

4.2 Class Simulation

For proving refinement between classes C = (ci,cs) and D = (di,ds) we use a simula-
tion with a refinement relation R. Define CI = enter c | ci, DI = enter d | di, and:

CX = C.a1 � . . .�C.aa and DX = D.a1 � . . .�D.ab

Class C is simulated by D using R, written C 4◦
R D, if there is a decomposition CX =

CX� �CX� and DX = DX� �DX� such that CX� and DX� are stuttering actions and:

(a) Initialization: CI ; CX∗
� ; [R] � DI ; DX∗

�

(b) Methods: C.mi ; CX∗
� ; [R] � [R] ; D.mi ; DX∗

�

for all mi in m1, . . . ,mm

(c) Actions: CX� ; CX∗
� ; [R] � [R] ; DX� ; DX∗

�

(d) Method Guards: R[trm C.mi ∧ trm CX∧ grd C.mi] ≤ grd D.mi ∨ grd DX
for all mi in m1, . . . ,mm

(e) Exit Condition: R[trm CX∧ grd CX] ≤ grd DX
(f) Internal Convergence: R[trm CX∧ trm (do CX� od)] ≤ trm (do DX� od)

Theorem 3. Let C and D be classes and R a relation. Then:

C 4◦
R D ⇒ C �◦ D

Proof. By the subordinate lemma below and Theorem 1.

Lemma 1. Let C and D be classes and R a relation. Then:

C 4◦
R D ⇒∀K • K [C]4R K [D]

16

Proof. We define:

CY = (SA ; abort)� (S1 ; C.m1)� . . .� (Sm ; C.mm)
DY = (SA ; abort)� (S1 ; D.m1)� . . .� (Sm ; D.mm)

We have to show that (a) to (f) above imply K [C]4R K [D] for any K as above, which
means that for any hi, SA, and S1, . . . ,Sm:

var h | hi • var c | ci • do CY [] CX od 4R

var h | hi • var d | di • do DY [] DX od

We note that R is independent of h, hence h is not involved in the refinement. According
to the definition of action system simulation (Section 2.2) with AI := CI, A� := CY �
CX�, A� := CX�, BI := DI, B� := DY �DX�, and B� := DX� we get four conditions:

(1) Initialization: CI ; CX∗
� ; [R] � DI ; DX∗

�

(2) Actions: (CY �CX�) ; CX∗
� ; [R] � [R] ; (DY �DX�) ; DX∗

�

(3) Exit Condition: R[trm (CY �CX)∧ grd (CY �CX)] ≤ grd (DY �DX)
(4) Internal Convergence: R[trm (CY �CX)∧ trm (do CX� od)] ≤ trm (do DX� od)

Condition (1) follows immediately from (a). For (2) we calculate, for any SA and
S1, . . . ,Sm:

(CY �CX�) ; CX∗
� ; [R] � [R] ; (DY �DX�) ; DX∗

�

≡ { ; distributes over �}
(CY ; CX∗

� ; [R])� (CX� ; CX∗
� ; [R]) � ([R] ; DY ; DX∗

�)� ([R] ; DX� ; DX∗
�)

⇐ {monotonicity}
(CY ; CX∗

� ; [R] � [R] ; DY ; DX∗
�)∧ (CX� ; CX∗

� ; [R] � [R] ; DX� ; DX∗
�)

The second conjunct follows from (c). We continue with the first conjunct:

CY ; CX∗
� ; [R] � [R] ; DY ; DX∗

�

≡ {definition of CY , DY and ; distributes over �}
(SA ; abort ; CX∗

� ; [R])� (S1 ; C.m1 ; CX∗
� ; [R])� . . .

� (Sm ; C.mm ; CX∗
� ; [R]) �

([R] ; SA ; abort ; DX∗
�)� ([R] ; S1 ; D.m1 ; DX∗

�)� . . .

� ([R] ; Sm ; D.mm ; DX∗
�)

⇐ {monotonicity}
(SA ; abort ; CX∗

� ; [R] � [R] ; SA ; abort ; DX∗
�)∧

(∀i ∈ {1, . . . ,m} • Si ; C.mi ; CX∗
� ; [R] � [R] ; Si ; D.mi ; DX∗

�)
⇐ {S ; [R] � [R] ; S for independent R,S and abort ; S = abort for any S}

(∀i ∈ {1, . . . ,m} • Si ; C.mi ; CX∗
� ; [R] � [R] ; Si ; D.mi ; DX∗

�)
⇐ {as Si and R are independent}

∀i ∈ {1, . . . ,m} • Si ; C.mi ; CX∗
� ; [R] � Si ; [R] ; D.mi ; DX∗

�

⇐ {monotonicity}
∀i ∈ {1, . . . ,m} • C.mi ; CX∗

� ; [R] � [R] ; D.mi ; DX∗
�

17

The last line follows from (b). For (3) we calculate, for any SA and S1, . . . ,Sm:

R[trm (CY �CX)∧ grd (CY �CX)] ≤ grd (DY �DX)
≡ {as trm (S�T) = trm S∧ trm T and grd (S�T) = grd S∨ grd T}

R[trm CY ∧ trm CX∧ (grd CY ∨ grd CX)] ≤ grd DY ∨ grd DX
⇐ {monotonicity}

(R[trm CY ∧ trm CX∧ grd CY] ≤ grd DY ∨ grd DX)∧
(R[trm CX∧ grd CX] ≤ grd DX)

The second conjunct follows from (e). We continue with the first conjunct:

R[trm CY ∧ trm CX∧ grd CY] ≤ grd DY ∨ grd DX
⇐ {grd(S ; T) ≤ grd T if S universally conjunctive and S,T independent}

R[trm CY ∧ trm CX∧ grd CY] ≤
grd DY ∨ grd (SA ; DX)∨ . . .∨ grd (Sm ; DX)

≡ {grd (S�T) = grd S∨ grd T for any S,T}
R[trm CY ∧ trm CX∧ grd CY] ≤ grd (DY � (SA ; DX)� . . .� (Sm ; DX))

≡ {R[p] ≤ q ≡ p ≤ [R] q and [R](grd S) = grd ({R} ; S) (*)}
trm CY ∧ trm CX∧ grd CY ≤

grd ({R} ; (DY � (SA ; DX)� . . .� (Sm ; DX)))
≡ { ; distributes over � and abort �S = abort for any S}

trm CY ∧ trm CX∧ grd CY ≤ grd (({R} ; SI ; abort)�
({R} ; S1 ; (D.m1 �DX))� . . .� ({R} ; Sm ; (D.mm �DX)))

⇐ {{R} ; S � S ; {R} if R,S independent and grd U ≤ grd T if T � U}
trm CY ∧ trm CX∧ grd CY ≤ grd ((SA ; {R} ; abort)�

(S1 ; {R} ; (D.m1 �DX))� . . .� (Sm ; {R} ; (D.mm �DX)))
⇐ { trm (S�T) = trm S∧ trm T and

grd (S�T) = grd S∨ grd T for any S,T}
(trm (SA ; abort)∧ trm CX∧ grd (SI ; abort) ≤ grd (SI ; {R} ; abort))∧
(∀i ∈ {1, . . . ,m} • trm (Si ; C.mi)∧ trm CX∧ grd (Si ; C.mi) ≤

grd (Si ; {R} ; (D.mi �DX)))
⇐ {{R} ; abort = abort for any R}

∀i ∈ {1, . . . ,m} • trm (Si ; C.mi)∧ trm CX∧ grd (Si ; C.mi) ≤
grd (Si ; {R} ; (D.mi �DX))

⇐ { trm T ≤ trm (S ; T) if S universally conjunctive and S,T independent}
∀i ∈ {1, . . . ,m} • trm (Si ; C.mi)∧ trm (Si ; CX)∧ grd (Si ; C.mi) ≤

grd (Si ; {R} ; (D.mi �DX))
⇐ { trm (S�T) = trm S∧ trm S for any S,T and ; distributes over �}

∀i ∈ {1, . . . ,m} • trm (Si ; (C.mi �CX))∧ grd (Si ; C.mi) ≤
grd (Si ; {R} ; (D.mi �DX))

⇐ {(trm T ∧ grd U ≤ grd V) ⇒
(trm (S ; T)∧ grd (S ; U) ≤ grd (S ; V)}

∀i ∈ {1, . . . ,m} • trm (C.mi �CX)∧ grd C.mi ≤ grd ({R} ; (D.mi �DX))
≡ {(*) above}

∀i ∈ {1, . . . ,m} • R[trm (C.mi �CX)∧ grd C.mi] ≤ grd (D.mi �DX)
≡ { trm (S�T) = trm S∧ trm T and

grd (S�T) = grd S∨ grd T for any S,T}
∀i ∈ {1, . . . ,m} • R[trm C.mi ∧ trm CX∧ grd C.mi] ≤ grd D.mi ∨ grd DX)

18

The last line follows from (d). Condition (4) follows from (f) by monotonicity. ��

A related theorem has first been given for action systems with remote procedures in
[9] and in a revised form in [30], which is similar to the corresponding theorem for OO-
action systems in [13]. The theorem given here generalizes those in four ways. First,
we consider trace refinement and not just input/output refinement. Thus, class refine-
ment also preserves reactive behavior and is meaningful for non-terminating systems.
Second, removing abstract stuttering in refinement is explicitly considered. Third, the
concrete stuttering action can be more general than a (data-) refinement of skip . Fourth,
conditions (d) and (e) are weakened by including the termination conditions into the an-
tecedents of the implications.

The case with no explicit abstract stuttering and the concrete stuttering actions being
(data-) refinements of skip is obtained as a special case. Let C and D be classes and
let CI, DI, CX, and DX be defined as above. Assume there exists a decomposition
DX = DX� �DX� such that DX� is a stuttering action. The conditions for this case are:

(a’) Initialization: CI ; [R] � DI
(b’) Methods: C.mi ; [R] � [R] ; D.mi for all mi in m1, . . . ,mm

(c’) Main Actions: CX ; [R] � [R] ; DX�

(d’) Internal Actions: [R] � [R] ; DX�

(e’) Method Guards: R[trm C.mi ∧ trm CX∧ grd C.mi] ≤ grd D.mi ∨ grd DX
for all mi in m1, . . . ,mm

(f’) Exit Condition: R[trm CX∧ grd CX] ≤ grd DX
(g’) Internal Convergence: R[trm CX] ≤ trm (do DX� od)

Condition (d’) is equivalent to skip �R DX�, expressing that the concrete stuttering
actions are data refinements of skip .

Theorem 4. Let C and D be classes and R a relation as above. If conditions (a’) – (g’)
hold then C 4◦

R D.

Proof. We show that the above conditions (a’) – (g’) imply the conditions (a) – (f) of
class simulation. We set CX� := CX and CX� := magic . Thus we have CX0

� = skip ,

CXi
� = magic for all i > 0, and, therefore, CX∗

� = skip because skip � magic = skip .
With this, (a) follows immediately from (a’) and (d’).

By reflexivity and transitivity of refinement, we get from condition (d’) that [R] �
[R] ; DXi

� for any i ≥ 0. Since [R] is refined by sequences of any length, it is also refined
by their choice, [R] � [R] ; DX∗

� . Condition (b) then follows by a transitivity from the
following calculation:

C.mi ; CX∗
� ; [R]

� {as [R] � [R] ; DX∗
� }

C.mi ; [R] ; DX∗
�

� {condition (b’)}
[R] ; D.mi ; DX∗

�

Condition (c) follows analogously using (c’). The remaining conditions (d) to (f) follow
directly from (e’) to (g’). For (f) we observe that do CX� od = magic and trm magic =
true . ��

19

Corollary 1. Let C and D be classes and R a relation as above. If conditions (a’) – (g’)
hold then C �◦ D.

As with action system refinement, class refinement is not compositional in the sense
that refining the class of an object will not necessarily lead to a system with other
objects running in parallel being refined. However, we get compositionality under the
additional constraint of non-interference with the environment.

Theorem 5. Let C and D be classes, ES be an action systems, and R be a relation. If
ES does not interfere with R then:

C 4◦
R D ⇒∀K • K [C] ‖ ES � K [D] ‖ ES

Proof. By Lemma 1 and Theorem 2. ��

4.3 Example

We use an artificial aquarium as an example. Clearly, the observable sequences of states,
denoting the position of the fishes, are the relevant aspect in such a system. A refinement
of only the state transformation from initial to final states would be insufficient: A
dedicated artificial aquarium has no final state. For its use as a screen saver, input/output
refinement would only mean that at the end we are again guaranteed to get the original
screen back.

The global variable s : array [0..w−1,0..h−1] of NAT denotes the state (color) of
each quadrant of the screen, with constants w > 6 and h > 6. The color value 0 stands
for background water. The base class Creature of all objects in our aquarium is given
by:

class Creature
attr x,y,col | 0 ≤ x < w∧0 ≤ y < h∧ col #= 0,
meth move(val dx, val dy) is

0 ≤ x+dx < w∧0 ≤ y+dy < h →
skip � (s[x,y] := 0 ; x := x+dx ; y := y+dy ; s[x,y] := col),

action newpos is
s[x,y] := 0 ; x :∈ {0..w−1} ; y :∈ {0..h−1} ; s[x,y] := col

end

Creatures described by class Ray are a refinement with a special form of movement.
Rather than jumping wildly around the screen, rays are always at the same vertical
position, have a horizontal speed sx, and move at most 3 pixels at once:

class Ray
attr x,y,col,sx | x = 0∧0 ≤ y < h∧ col = 5∧ sx = 1,
meth move(val dx, val dy) is

0 ≤ x+dx < w∧−3 ≤ dx ≤ 3∧dy = 0 →
s[x,y] := 0 ; x := x+dx ; s[x,y] := col,

action newpos is
0 ≤ x+ sx < w → s[x,y] := 0 ; x := x+ sx ; s[x,y] := col,

action bouncel is x+ sx < 0 → sx :∈ {1..3},
action bouncer is w ≤ x+ sx → sx :∈ {−3..−1}

end

20

Class Ray refines class Creature with refinement relation R:

R (s,x,y,col) (s′,x′,y′,col′,sx′) ≡ s = s′ ∧ x = x′ ∧0 ≤ x < w∧ y = y′∧
0 ≤ y < h∧ col = col′ ∧−3 ≤ sx′ ≤ 3

We can use Theorem 4 to prove Creature4◦
R Ray because we have no explicit abstract

stuttering. We set CX := Creature.newpos, DX� := Ray.newpos, DX� := Ray.bouncel
� Ray.bouncer, and CI and DI to the respective initialization. Internal convergence
(condition (g’)) follows by transitivity from the calculation below (assuming that an
access to s outside the screen aborts):

R[trm CX]
= {definitions of trm and CX}

R[λs,x,y,col • 0 ≤ x < w∧0 ≤ y < h]
= {definition of R, relational image}

λs′,x′,y′,col′,sx′ • 0 ≤ x′ < w∧0 ≤ y < h∧−3 ≤ sx′ ≤ 3
≤ {universal implication}

λs′,x′,y′,col′,sx′ • −1 ≤ x′ ≤ w∨0 ≤ x′ + sx′ < w
= {definitions, calculus}

trm (do DX� od)

The other conditions can also be proved by unfolding the definitions and simple calcu-
lus. By Corollary 1 we also get Creature �◦ Ray. Hence, replacing a Creature by a Ray
in any context K produces a trace refinement.

5 Dynamic Object Structures

In this section we introduce dynamic object structures, which allow multiple objects to
run concurrently. Furthermore, we extend the discussion of class refinement and class
simulation to this setting.

We model the heap as an array and pointers as indices into this array [25]. We first
describe the basic ideas using only one class and then generalize it to multiple classes
with subtypes.

5.1 Single Class

For a class C with attributes of type Σ we declare a program variable heap to contain all
dynamically created objects:

var heap : array NAT of Σ

Pointers to objects of C are then simply natural numbers, that is the declaration p :
pointer to C stands for p : NAT . We use 0 to denote nil, that is the pointer not referenc-
ing any object. We use a separate counter next, initialized to 1, to generate new pointer
values. If ci is the initialization of the attributes of C and p is a pointer, p : pointer to C,
then the creation of a new object is defined by:

p := new C =̂ p := next ; (�c | ci • heap[p] := c) ; next := next +1

21

To handle the way how attributes of objects on the heap are referenced, we have to
introduce an indirection for each attribute reference via the receiver (the current object).
We denote the receiver by this and introduce the shorthand this.c for referencing the
attribute c of the object heap[this]:

this.c = heap[this].c

We use this shorthand in both expressions and for assignments in methods. A method
call p.m is then defined as (We use the restricted choice rather than the variable notation
for this because the latter is a logic rather than a program variable.):

p.m =̂ {p #= nil} ; (�this | this = p • C.m)

Parameter passing is handled as for procedures. In our formalization, this is used to
reference the receiver object whereas self and super are used in classes to reference
methods and actions.

Formally, a class C with dynamically created objects is given by C = (ci,cs) as
previously, except that heap is now necessarily part of the global state and all references
in cs to attributes go via heap. The selection C.mi and C.ai are defined as previously
and we use the same syntax:

class C
attr c | ci,
meth m1(val v1, res r1) is cm1,
. . . ,
meth mm(val vm, res rm) is cmm,
action a1 is ca1,
. . . ,
action aa is caa

end

With the declaration of class C as above, we associate an action system A [C] which
consists of actions operating on all objects of that class:

A [C] = do ([] this | 1 ≤ this < next • C.a1 [] . . . [] C.aa) od

This action system is composed in parallel with any other action system using objects
of class C.

Example. A class Creature with dynamically created objects could be defined by:

class Creature
attr x,y,col | 0 ≤ x < w∧0 ≤ y < h∧ col #= 0,
meth move(val dx, val dy) is

0 ≤ this.x+dx < w∧0 ≤ this.y+dy < h →
skip � (s[this.x, this.y] := 0 ; this.x := this.x+dx ;

this.y := this.y+dy ; s[this.x, this.y] := this.col),
action newpos is

s[this.x, this.y] := 0 ; this.x :∈ {0..w−1} ; this.y :∈ {0..h−1} ;
s[this.x, this.y] := this.col

end

22

This declaration stands for:

var heap : array NAT of NAT × NAT × NAT
var next | next = 1
class Creature

meth move(val dx, val dy) is
0 ≤ heap[this].x+dx < w∧0 ≤ heap[this].y+dy < h →

skip � (s[heap[this].x,heap[this].y] := 0 ;
heap[this].x := heap[this].x+dx ;
heap[this].y := heap[this].y+dy ;
s[heap[this].x,heap[this].y] := heap[this].col),

action newpos is
s[heap[this].x,heap[this].y] := 0 ;
heap[this].x :∈ {0..w−1} ; heap[this].y :∈ {0..h−1} ;
s[heap[this].x,heap[this].y] := heap[this].col

end

If cr is a pointer to a Creature object, cr : pointer to Creature, then cr := new Creature
is defined by:

cr := next ;
(�x,y,col | 0 ≤ x < w∧0 ≤ y < h∧ col #= 0 • heap[cr] := (x,y,col)) ;
next := next +1

A method call cr.move(2,7) stands for:

{cr #= nil} ; (�this | this = cr • Creature.move(2,7))

The method selection Creature.move(2,7) stands for:

var dx,dy • dx,dy := 2,7 ;
0 ≤ heap[this].x+dx < w∧0 ≤ heap[this].y+dy < h →

skip � (s[heap[this].x,heap[this].y] := 0 ; heap[this].x := heap[this].x+dx ;
heap[this].y := heap[this].y+dy ;
s[heap[this].x,heap[this].y] := heap[this].col)

The action system A [Creature] associated with Creature is:

do
([] this | 1 ≤ this < next •

s[heap[this].x,heap[this].y] := 0 ; heap[this].x :∈ {0..w−1} ;
heap[this].y :∈ {0..h−1} ; s[heap[this].x,heap[this].y] := heap[this].col)

od

5.2 Class Refinement and Class Simulation

We show that with the above definitions the notion of class refinement carries over
analogously to dynamic object structures. With the declaration of a class C, we as-
sociate an action system O[C], which observes all objects of class C by calling their

23

methods. We represent O[C] as the (guarded) choice of either aborting or calling a
method of x, where additionally local variables may be updated between method calls.
Let SA,S1, . . . ,Sm,SC be universally conjunctive statements that are independent of the
global state, i.e. they access only local variables h:

O[C] =
var h | hi •

do SA ; abort
[] ([] this | 1 ≤ this < next • S1 ; C.m1 [] . . . [] Sm ; C.mm)
[] SC ; p := new C
od

Here we assume that p is part of the local variables h. Let K [C] be a program operating
on objects of class C such that K is the full context of objects of class C, in the sense
that no other program accesses the attributes of objects of C or creates new objects of
C. We describe K [C] by an interleaving of method calls to instances of C, creation of
new instances of C, and actions of instances of C:

K [C] = var heap,next | next = 1 • O[C] ‖ A [C]

Class D is a refinement of class C, written C �↑ D, if using objects of class D instead
of C in all possible programs yields a trace refinement of the original program:

C �↑ D =̂ ∀K • K [C] � K [D]

The conditions for simulation between two classes with dynamically created objects are
like those for simulation with a single object, except that all objects on the heap are in
the refinement relation. Thus for a refinement relation R between classes C = (ci,cs)
and D = (di,ds) we define (g denotes the global variables):

R (g,heap,next) (g′,heap′,next′) =̂ (∀q | 1 ≤ q < next •

R (g,heap[q]) (g′,heap′[q]))∧
next = next′

Furthermore we define CC = p := new C, DC = p := new D, and

CX = (�this | 1 ≤ this < next • C.a1 � . . .�C.aa)
DX = (�this | 1 ≤ this < next • D.a1 � . . .�D.ab)

Class C is simulated by D using R, written C 4↑
R D, if there is a decomposition CX =

CX� �CX� and DX = DX� �DX� such that CX� and DX� are stuttering actions and:

(a) Creation: CC ; CX∗
� ; [R] � [R] ; DC ; DX∗

�

(b) Methods: C.mi ; CX∗
� ; [R] � [1 ≤ this < next] ; [R] ; D.mi ; DX∗

�

for all mi in m1, . . . ,mm

(c) Actions: CX� ; CX∗
� ; [R] � [R] ; DX� ; DX∗

�

(d) Method Guards: R[1 ≤ this < next∧ trm C.mi ∧ trm CX∧ grd C.mi] ≤
grd D.mi ∨ grd DX for all mi in m1, . . . ,mm

(e) Exit Condition: R[trm CX∧ grd CX] ≤ grd DX
(f) Internal Convergence: R[trm CX∧ trm (do CX� od)] ≤ trm (do DX� od)

24

Theorem 6. Let C and D be classes and R a relation. Then:

C 4↑
R D ⇒ C �↑ D

Proof. By the subordinate lemma below and Theorem 1.

Lemma 2. Let C and D be classes and R a relation. Then:

C 4↑
R D ⇒∀K • K [C]4R K [D]

Proof. We define:

CY = (SA ; abort)�
(�this | 1 ≤ this < next • (S1 ; C.m1)� . . .� (Sm ; C.mm))�
(SC ; CC)

DY = (SA ; abort)�
(�this | 1 ≤ this < next • (S1 ; D.m1)� . . .� (Sm ; D.mm))�
(SC ; DC)

CI = enter heap,next | next = 1
DI = enter heap,next | next = 1

Leaving out the types, we note that heap in CI is an array of C attributes and heap in DI
is an array of D attributes. We have to show that (a) to (f) above imply K [C]4R K [D]
for any K as above, which means that for any hi, SA, S1, . . . ,Sm, and SC:

var h | hi • var heap,next | next = 1 • do CY [] CX od 4R
var h | hi • var heap,next | next = 1 • do DY [] DX od

We note that R is independent of h, hence h is not involved in the refinement. Accord-
ing to the definition of action system simulation (Section 2.2) with AI := CI, A� :=
CY �CX�, A� := CX�, BI := DI, B� := DY �DX�, B� := DX�, and R := R we get four
conditions:

(1) Initialization: CI ; CX∗
� ; [R] � DI ; DX∗

�

(2) Actions: (CY �CX�) ; CX∗
� ; [R] � [R] ; (DY �DX�) ; DX∗

�

(3) Exit Condition: R[trm (CY �CX)∧ grd (CY �CX)] ≤ grd (DY �DX)
(4) Internal Convergence: R[trm (CY �CX)∧ trm (do CX� od)] ≤ trm (do DX� od)

Condition (1) expands to:

enter heap,next | next = 1 ; CX∗
� ; [R] � enter heap,next | next = 1 ; DX∗

�

First we note that after the initialization of next by 1, neither CX� nor DX� is enabled,
as (�i | false • S) = magic . Therefore, CX∗

� = skip and DX∗
� = skip . The refinement

relation R quantifies over all objects created on the heap. As next is set to 1, there is no
such object and the refinement holds vacuously.

For (2) we calculate, for any SA, S1, . . . ,Sm, and SC:

(CY �CX�) ; CX∗
� ; [R] � [R] ; (DY �DX�) ; DX∗

�

≡ { ; distributes over �}
(CY ; CX∗

� ; [R])� (CX� ; CX∗
� ; [R]) � ([R] ; DY ; DX∗

�)� ([R] ; DX� ; DX∗
�)

⇐ {monotonicity}
(CY ; CX∗

� ; [R] � [R] ; DY ; DX∗
�)∧ (CX� ; CX∗

� ; [R] � [R] ; DX� ; DX∗
�)

25

The second conjunct follows from (c). We continue with the first conjunct:

CY ; CX∗
� ; [R] � [R] ; DY ; DX∗

�

≡ {definitions of CY and DY and ; distributes over �}
(SA ; abort ; CX∗

� ; [R])�
(�this | 1 ≤ this < next • (S1 ; C.m1 ; CX∗

� ; [R])� . . .

�(Sm ; C.mm ; CX∗
� ; [R]))�

(SC ; CC ; CX∗
� ; [R]) �

([R] ; SA ; abort ; DX∗
�)�

(�this | 1 ≤ this < next • ([R] ; S1 ; D.m1 ; DX∗
�)� . . .

�([R] ; Sm ; D.mm ; DX∗
�))�

([R] ; SC ; DC ; DX∗
�)

⇐ {monotonicity}
(SA ; abort ; CX∗

� ; [R] � [R] ; SA ; abort ; DX∗
�)∧

((�this | 1 ≤ this < next • (S1 ; C.m1 ; CX∗
� ; [R])� . . .

�(Sm ; C.mm ; CX∗
� ; [R])) �

(�this | 1 ≤ this < next • ([R] ; S1 ; D.m1 ; DX∗
�)� . . .

�([R] ; Sm ; D.mm ; DX∗
�)))∧

(SC ; CC ; CX∗
� ; [R] � [R] ; SC ; DC ; DX∗

�)
⇐ {S ; [R] � [R] ; S for independent R,S and abort ; S = abort for any S}

((�this | 1 ≤ this < next • (S1 ; C.m1 ; CX∗
� ; [R])� . . .

�(Sm ; C.mm ; CX∗
� ; [R])) �

(�this | 1 ≤ this < next • ([R] ; S1 ; D.m1 ; DX∗
�)� . . .

�([R] ; Sm ; D.mm ; DX∗
�)))∧

(SC ; CC ; CX∗
� ; [R] � [R] ; SC ; DC ; DX∗

�)
⇐ {definition of �i | p • S and

(∀i • S � T) ⇒ (�i • S) � (�i • T) for any S,T}
(∀this • ∀i ∈ {1, . . . ,m} •

[1 ≤ this < next] ; Si ; C.mi ; CX∗
� ; [R] �

[1 ≤ this < next] ; [R] ; Si ; D.mi ; DX∗
�)∧

(SC ; CC ; CX∗
� ; [R] � [R] ; SC ; DC ; DX∗

�)
⇐ {Si and R and SC and R independent, refinement calculus}

(∀this • ∀i ∈ {1, . . . ,m} •

Si ; C.mi ; CX∗
� ; [R] � [1 ≤ this < next] ; Si ; [R] ; D.mi ; DX∗

�)∧
(SC ; CC ; CX∗

� ; [R] � SC ; [R] ; DC ; DX∗
�)

The first conjunct follows from (b) and the second from (a). The proof of (3) is similar
to the one of the corresponding condition in Theorem 3 and is left out for brevity.
Condition (4) follows from (f) by monotonicity. ��

As for the case with a single object, class refinement with dynamic object structures is
compositional only under the additional constraint of non-interference with the envi-
ronment.

26

Theorem 7. Let C and D be classes, ES be an action systems, and R be a relation. If
ES does not interfere with R then:

C 4↑
R D ⇒∀K • K [C] ‖ ES � K [D] ‖ ES

Proof. By Lemma 2 and Theorem 2.

5.3 Multiple Classes and Subtyping

This formalization easily extends to multiple classes with subtyping. We declare for
each class Ci with attribute type Σi a separate heapi : array NAT of Σi. Thus with a
class declaration class Ci . . . end we associate:

var heapi : array NAT of Σi,
var nexti | nexti = 1

Pointers are extended to tuples with one index indicating the heap and one index in-
dicating the element within the heap. A pointer variable declaration p : pointer to Ci

stands for p : NAT × NAT . The first component of a pointer p is selected by p.class,
the second component by p.ref . The nil value is always represented by (0,0) to make it
unique.

Assuming that Ck, . . . ,Cl are all subtypes of Ci (including Ci), object creation,
method calls with dynamic dispatch, type tests, and a sample attribute access are de-
fined by:

p := new Ci =̂ p := (i,nexti) ; (�c | cii • heapi[nexti] := c) ;
nexti := nexti +1

p.m =̂ {p #= nil} ;
(�this | this = p • p.class = k → Ck.m� . . .�

p.class = l → Cl.m)
p instanceof Ci =̂ p.class ∈ {k, . . . , l}
x := this.c =̂ this.class = k → x := heapk[this.ref].c� . . .�

this.class = l → x := heapl[this.ref].c

With each class declaration Ci, we associate an action system A [Ci] which repre-
sents all actions of all objects of that class:

A [Ci] = do
([] this | this.class = i∧1 ≤ this.ref < nexti • Ci.a1 � . . .�Ci.aa)
od

For a program with classes C1, . . . ,Cn we take the parallel composition of the action
systems for objects of each class. This composition is then to be combined with further
action systems containing normal actions and procedures:

A [C1] ‖ . . . ‖ A [Cn] ‖ BS

27

Example. Let class Creature be as in Section 5.3 and let Ray be an analogously adapted
version of class Ray in Section 4 for dynamic data structures. Furthermore, we postulate
a class Turtle, for which Creature 4↑

Q Turtle holds for some relation Q. Let G be the
following specification of an artificial aquarium, in which new objects may constantly
be added and where the most recently created object may be influenced through its
move method:

G = (var p : Creature | p = nil •

do p := new Creature [] p #= nil → p.move(2,0) od)
‖ A [Creature]

By applying Theorem 6 twice and Theorem 7, which both extend to multiple classes,
we can show that this specification is trace refined, G � H, by implementation H with
rays and turtles:

H = (var p : Creature | p = nil •

do p := new Ray [] p := new Turtle [] p #= nil → p.move(2,0) od)
‖ A [Ray] ‖ A [Turtle]

6 Early Return

Atomicity refinement is used to increase concurrency by decreasing the granularity of
atomic actions. Consider method rnd that computes random numbers and for later ref-
erence stores them in a time ordered sequence:

meth rnd(res y) is y :∈ NAT ; ‘store y in sequence’

Using atomicity refinement, we could split up rnd so that it returns control to the caller
after assigning y and schedules the —if the sequence is kept on secondary storage—
time consuming insertion operation for later. Thereby, the execution time of any action
a calling rnd is reduced. Thus, other actions accessing the same resources as a can be
started earlier, thereby increasing concurrency.

We introduce a release statement, which facilitates the above type of atomicity
refinement. A release returns control to the caller of a method and schedules the re-
mainder to be executed later on. If the method containing the release statement has

class C
attr c | ci,
meth m is S ; release ; T,
meth n is U,
action a is V

end

a) Method with release

class C
attr c, lck | ci∧ lck = 0,
meth m is lck = 0 → S ; lck := 1,
meth n is lck = 0 → U,
action a is lck = 0 → V,
action r is lck = 1 → T ; lck := 0

end

b) Equivalent without release

Fig. 4. Definition of release as enabling a remainder action

28

result parameters, they must be assigned before executing release . For example, we
could rewrite method rnd as follows:

meth rnd(res y) is y :∈ NAT ; release ; ‘store y in sequence’

Figure 4 defines release as enabling an action r that performs the remainder. The
object is locked, that is none of its other methods or actions can be executed, until the
remainder action is completed. For simplicity, we do not allow self and reentrant calls
and parameter and local variable access in the remainder. These generalizations are
made below.

Introducing release leads to class refinement:

Theorem 8. Let C and D be classes which are identical except that method m in C and
m in D, referred to as C :: m and D :: m, are defined by:

meth C :: m is S ; T,
meth D :: m is S ; release ; T

If T does not modify global variables and does not access parameters, then C �◦ D
holds.

Proof. We apply Theorem 3 with R (u,c) (u′,c′, lck′) := u′ = u∧ ((l′ = 0∧ c′ = c)∨
(l′ = 1∧ nxt S c c′)), CI := enter c | ci, CX� := V , CX� := magic , DI := enter c, lck |
ci∧ lck = 0, DX� := lck = 0 → V , DX� := lck = 1 → T ; lck := 0. The theorem follows
by simplifications of the conditions (a) – (f).

Note that Theorem 4 cannot be used for the proof since the remainder action lck = 1 →
T ; lck := 0 is a concrete stuttering action which is not a (data-) refinement of skip .

The release statement can be generalized to allow the remainder to access the value
parameter and the local variables of the method and also read the result parameter (Fig-
ure 5). The values of the parameters and local variables are stored in additional attributes
for use by the remainder.

class C
attr c := ci,
meth m(val v, res r) is

var x • S ; release ; T,
meth n(val w, res s) is

U
action a is

V

end

a) Method with release

class C
attr c, lck,m v,m r,m x | ci∧ lck = 0,
meth m(val v, res r) is

lck = 0 → var x • S ; lck,m v,m r,m x := 1,v,r,x,
meth n(val w, res s) is

lck = 0 → U,
action a is

lck = 0 → V,
action r is

lck = 1 → var v,r,x := m v,m r,m x • T ; lck := 0
end

b) Equivalent without release

Fig. 5. Definition of release with remainder accessing parameters and Local Variables

29

class C
attr c | ci,
meth m(val v, res r) is

var x • S ; release ; T,
meth n(val w, res s) is U,

action a is V

end

a) Method with release

class C
attr c, lck,m v,m r,m x | ci∧ lck = 0
meth m(val v, res r) is

p ; var x • S ; lck,m v,m r,m x := 1,v,r,x,
meth n(val w, res s) is p ; U,
meth p is

if lck = 1 then
var v,r,x := m v,m r,m x • T ; lck := 0

end ,
action a is lck = 0 → V,
action r is lck = 1 → p

end

b) Equivalent without release

Fig. 6. Definition of release supporting multiple calls to an object within an action

Finally, we consider the case where an action contains multiple calls to methods of
the same object. If a method of an object that has an outstanding remainder is called
then the latter is executed as part of the call. Otherwise, the guard of the methods called
after performing a release would be false and, therefore, such actions never enabled.
Consider action b where o references an object of type C as in Figure 6:

action b is (var z : U • o.m(0,z) ; o.n(0,z))

If we simply locked o, that is, defined the implicit guard of n to be lck = 0, then b would
never be enabled.

We illustrate this with a random number class that stores a sequence of already
computed numbers:

class C
attr l := 0,s : array NAT of NAT ,
meth rnd(res y) is y :∈ NAT ; s[l], l := y, l+1,
meth get(val i, res y) is i < l → y := s[i]

end

Class C is refined by D, where a release is introduced in method rnd after the assign-
ment of y. We show directly the expansion according to Figure 6:

class D
attr l := 0,s : array NAT of NAT , lck := 0,rnd y,
meth rnd(res y) is p ; y :∈ NAT ; lck,rnd y := 1,y,
meth get(val i, res y) is p ; i < l → y := s[i],
meth p is if lck = 1 then var y := rnd y • s[l], l, lck := y, l+1,0 end ,
action r is lck = 1 → p

end

30

We have C 4◦
R D for the following R:

R (l,s) (l′,s′, lck′,rnd y′) ≡ lck′ ∈ {0,1}∧
(lck′ = 0 ⇒ l = l′ ∧ (∀i ∈ {0..l−1} • s[i] = s′[i]))∧
(lck′ = 1 ⇒ l = l′ +1∧ (∀i ∈ {0..l−2} • s[i] = s′[i])∧ s[l−1] = rnd y′)

The proof is a simple verification of the six conditions of class simulation with CX� =
magic , CX� = magic , DX� = magic , DX� = r, and CI and DI the respective initializa-
tions.

7 Conclusions and Discussion

We have given a model for action-based concurrency with objects. Classes with at-
tributes, methods, and actions serve as templates for objects. Class refinement support-
ing algorithmic, data, and atomicity refinement is defined based on trace refinement.
Class refinement can be proved by a simulation rule. Early returns are a special form of
atomicity refinement. Dynamic data structures allow objects to run concurrently.

The refinement rules have been developed in a most general form without consid-
ering some useful special cases. For example, for the refinement of classes with dy-
namically created objects each attribute reference goes via the heap. If aliasing can be
excluded, the rule could be simplified. Another special case is superposition refinement.
When a subclass is created by superposition, the original computation on the inherited
attributes is left unchanged. Additional functionality is provided through new attributes.
Deriving rules for such special cases is left as future work.

Class refinement for concurrent objects is defined here as an extension of class
refinement defined in [26, 27], following the general model of classes as self-referential
structures with a delayed taking of the fixed point of [31, 16]. As known from [26],
inheritance is not monotonic with respect to the refinement of the base class, leading to
the so called fragile base class problem. This problem persists in the concurrent setting.
With the possibility of self- and super-references between actions, it extends to actions.

For expressing symmetric communication and synchronization among several ob-
jects, multi-party actions have been studied in [6]. They can be introduced here without
further difficulties.

Many interesting questions are connected with early returns. The remainder of a
method into which we introduce a release statement cannot modify global variables.
Otherwise, multiple changes that were previously executed in one atomic step could
now be performed in multiple steps. The definition of trace refinement does not permit
this. Making intermediate states visible and even making modifications to other global
variable before the remainder’s changes to global variables are performed are not legal
refinements.

Modifications to other objects in the remainder of a method is a useful concept
studied by Jones [20]. This is allowed if there are no other references to those objects
and hence those changes are not observable to the remaining program. To this aim,
Jones uses unique references. Spinning the idea of non-observability even further, the
global state could also be updated in multiple steps if parts of it could be locked and be

31

guaranteed not to be observed until the remainder has been executed. The incorporation
of such refinement steps into our formalism is an open issue.

The main advantage of a release statement over a “manual” atomicity refinement
are the readability (no need to syntactically split the method into parts and to syntac-
tically clutter all guards and the split method with synchronization and variable save
statement) and the automatic resource locking. A version without resource locking
would be possible and would allow additional interleavings, but would lead to prac-
tically rather strong proof conditions, making it less attractive.

The release statement could also be introduced into action systems without objects,
for example within procedures. Objects, however, have the advantage that they encap-
sulate tightly coupled state components and, thereby, make it in practice easier to lock
resources accessed by the remainder.

Acknowledgments We would like to thank Ralph Back and Marina Waldén for a number
of clarifying discussions. The insightful comments of the anonymous referees are also
gratefully acknowledged.

References

1. Martı́n Abadi and Luca Cardelli. A Theory of Objects. Springer Verlag, 1996.
2. Pierre America. Designing an object-oriented programming language with behavioral sub-

typing. In Foundations of Object-Oriented Languages, REX School/Workshop, Lecture Notes
in Computer Science 489, pages 60–90, 1991.

3. Ralph Back. Correctness Preserving Program Refinements: Proof Theory and Applications,
volume 131 of Mathematical Center Tracts. Mathematical Centre, Amsterdam, 1980.

4. Ralph Back. Refining atomicity in parallel algorithms. In PARLE Conference on Parallel
Architectures and Languages Europe, Eindhoven, June 1989. Springer-Verlag.

5. Ralph Back. Atomicity refinement in a refinement calculus framework. Technical Report on
Computer Science & Mathematics, Ser. A. No 141, Åbo Akademi, 1993.

6. Ralph Back, Martin Büchi, and Emil Sekerinski. Action-based concurrency and synchroniza-
tion for objects. In T. Rus and M. Bertran, editors, Transformation-Based Reactive System
Development, Fourth AMAST Workshop on Real-Time Systems, Concurrent, and Distributed
Software, Lecture Notes in Computer Science 1231, pages 248–262, Palma, Mallorca, Spain,
1997. Springer-Verlag.

7. Ralph Back and Reino Kurki-Suonio. Decentralization of process nets with centralized con-
trol. In 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
pages 131–142. ACM Press, 1983.

8. Ralph Back and Reino Kurki-Suonio. Distributed co-operation with action systems. ACM
Transactions on Programming Languages and Systems 10:513–554, 1988.

9. Ralph Back and Kaisa Sere. Action systems with synchronous communication. In E.-R.
Olderog, editor, IFIP Working Conference on Programming Concepts, Methods, Calculi,
pages 107–126, San Miniato, Italy, 1994. North-Holland.

10. Ralph Back and Joakim von Wright. Trace refinement of action systems. In B. Jonsson and
J. Parrow, editors, CONCUR ’94: Concurrency Theory, Lecture Notes in Computer Science
836. Springer-Verlag, 1994.

11. Ralph Back and Joakim von Wright. Refinement Calculus – A Systematic Introduction.
Springer-Verlag, 1998.

32

12. Ralph Back and Joakim von Wright. Products in the refinement calculus. Technical Report
235, Turku Centre for Computer Science, February 1999.

13. Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. An approach to object-orientation
in action systems. In Mathematics of Program Construction, Lecture Notes in Computer
Science 1422, Marstrand, Sweden, 1998. Springer-Verlag.

14. K. M. Chandy and J. Misra. Parallel Program Design – A Foundation. Addison Wesley,
1988.

15. Ernie Cohen and Leslie Lamport. Reduction in TLA. In Proceedings of CONCUR’98,
Lecture Notes in Computer Science 1466, pages 317–331. Springer-Verlag, 1998.

16. William Cook and Jens Palsberg. A denotational semantics of inheritence and its correctness.
In ACM Conference Object Oriented Programming Systems, Languages and Applications,
ACM SIGPLAN Notices, Vol 14, No 10, pages 433–443, 1989.

17. J.W. de Bakker and E.P. de Vink. Bisimulation semantics for concurrency with atomicity
and action refinement. Fundamenta Informaticae, 20(1):3–34, 1994.

18. H.-M. Järvinen and R. Kurki-Suonio. DisCo specification language: Marriage of action and
objects. In Proceedings of 11th International Conference on Distributed Computing Systems,
pages 142–151, Arlington, Texas, 1991. IEEE Computer Society Press.

19. Cliff B. Jones. An object-based design method for concurrent programs. Technical report,
University of Manchester, Department of Computer Science, December 1992.

20. Cliff B. Jones. Accomodating interference in the formal design of concurrent object-based
programs. Formal Methods in System Design, 8(2):105–122, March 1996.

21. Leslie Lamport. The temporal logic of actions. ACM Transactions of Programming Lan-
guages and Systems, 16(3):872–923, 1994.

22. Leslie Lamport and Fred B. Schneider. Pretending atomicity. Technical Report Research
Report 44, Compaq Systems Research Center, May 1989.

23. Richard J. Lipton. Reduction: A method of proving properties of parallel programs. Com-
munications of the ACM, 18(12):717–721, December 1975.

24. Barbara H. Liskov and Jeanette M. Wing. A behavioral notion of subtyping. ACM Transac-
tions on Programming Languages and Systems, 16(6):1811–1841, November 1994.

25. David C. Luckham and Norihisa Suzuki. Verification of array, record, and pointer opera-
tions in pascal. ACM Transactions on Programming Languages and Systems, 1(2):226–244,
October 1979.

26. Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base class problem. In Eric Jul,
editor, ECOOP’98 – 12th European Conference on Object-Oriented Programming, Lecture
Notes in Computer Science 1445, pages 355–382, Brussels, Belgium, 1998. Springer-Verlag.

27. Anna Mikhajlova and Emil Sekerinski. Class refinement and interface refinement in object-
oriented programs. In John Fitzgerald, Cliff Jones, and Peter Lucas, editors, Formal Methods
Europe’97, Lecture Notes in Computer Science 1313, pages 82–101, Graz, Austria, 1997.
Springer-Verlag.

28. Jayadev Misra. A discipline of multiprogramming. ACM Computing Surveys, 28A(4), De-
cember 1996.

29. Caroll C. Morgan. Programming from Specifications. Prentice Hall, 1990.
30. Kaisa Sere and Marina Waldén. Data refinement of remote procedures. In Proceedings of

TACS 97, Lecture Notes in Computer Science 1281, pages 267–294. Springer-Verlag, 1997.
31. Peter Wegner and Stanley B. Zdonik. Inheritance as an incremental modification mechanism

or what like is and isn’t like. In S. Gjessing and K. Nygaard, editors, European Conference
on Object Oriented Programming, Lecture Notes in Computer Science 322, pages 55–77.
Springer-Verlag, 1988.

33

Appendix

An Introduction to B

Martin Büchi

An Introduction to B

Martin Büchi

May 10, 2000

1 Introduction

This appendix gives a short introduction to the B method. Some familiarity with a
model-based specification method, such as VDM, Z, the refinement calculus, or ad-
hoc pre-/postconditions, is assumed. The purpose of this appendix is to provide the
necessary background material for Papers I and II, which have been presented in con-
texts assuming a certain familiarity with B. The reader is referred to [1, 10, 11, 17] for
full introductions to B. Most examples in this appendix are drawn from Paper I.

The B method, invented by Jean-Raymond Abrial [1], is a state-based method built
on set theory and predicate logic. B is similar to VDM and Z. A comparison with these
two methods is provided in Sect. 6.

The availability of two commercial tools for B [16, 2] has lead to a relatively wide
acceptance of B in industry and CS curricula. Both tools include analyzers, animators,
proof obligation generators, proof tools, code translators, and documentation facilities.

2 Development Overview

A typical development process in B looks as follows: First, we gather the requirements
and write them down in an informal notation, e.g. plain English. This step is like for
any other development method. The use of B starts with the next step.

Based on the informal requirements, we create a formal specification, referred to
as a machine in B. This machine captures the observable behavior of our program, but
does not detail how it is implemented. We animate (execute with the help of the user)
this machine to check that it corresponds to the informal requirements. Furthermore,
we perform certain consistency proofs on it.

Next we create an implementation —also using the B notation. The implementa-
tion is supposed to exhibit the same observable behavior as the original machine. We
formally prove this using the refinement rules of B. In contrast to the machine, the
implementation contains enough details so that it can be automatically translated into
executable code. The current tools create C, C++, or Ada code, which can then be
compiled with a normal compiler.

Refinement in B can be described as invent and verify. We write an implemen-
tation as a new text. In the same text we state how we believe the implementation
refines the original machine. Finally, we prove that refinement actually holds. Thus,

1

refinement doesn’t mean that we get the implementation by (mechanically) applying
transformation rules to the specification.

In practice, it is often too cumbersome to directly move from a specification to an
implementation. Too many decisions would have to be taken all at once. Therefore, the
B method allows us to create a number or intermediate refinements. These refinements
allow us to add implementation details step by step. For each step we prove that the
observable behavior is preserved.

Layered development provides another possibility to partition the implementation
task. Instead of implementing everything with just the language primitives, we import
other modules to provide some services. The development of these auxiliary modules
proceeds in the same fashion as for the original program.

3 Machines

Machines express original specifications. They define the syntactic interface and the
externally visible behavior of a module. They do not say how the functionality is imple-
mented. B machines are somewhat similar to C++ header files or Modula-2 definition
modules with semantic annotations. The main difference is that B machines contain
formal semantic specifications. The latter lend themselves to unambiguous mechanic
reasoning.

Machines encapsulate a state and operations thereon. Thus they are abstract data
structure modules in the terminology of the thesis’ introduction (Sect. 2.1). A machine
consists of a header, a state definition, an initialization, and operations.

3.1 Header

Machines may be parameterized by simple scalars and finite non-empty sets. The fol-
lowing example introduces a machine Bank with parameters maxCustomers and max-
Accounts:

MACHINE
Bank(maxCustomers, maxAccounts)

The values of the machine parameters may be constrained with a CONSTRAINTS
clause, which is written as a predicate on the parameters:

CONSTRAINTS
maxCustomers ∈ 1 . . 100000 ∧ maxAccounts ∈ 1 . . 200000

Parameters are instantiated upon inclusion into another machine and import into an
implementation (Sect. 5).

Machines may declare constants. Their names are introduced in the CONSTANTS
clause:

CONSTANTS
maxOpenFiles

2

Constants are typed and constrained in the PROPERTIES clause. In the example,
NAT1 denotes the set of positive natural numbers.

PROPERTIES
maxOpenFiles ∈ NAT1

The valuation of constants is deferred to the implementation. It is done in the
VALUES clause of the implementation.

Enumerated sets can be defined in the SETS clause. Such sets correspond roughly
to enumerations in Pascal and C.

SETS
FILE MODE = {READ WRITE, TRUNCATE WRITE, READ, WRITE}

Textual macros with parameters, like in C, can be introduced in the DEFINITIONS
clause:

DEFINITIONS
READ MODE == {READ WRITE, READ};

3.2 State

The state space of a machine is determined by a set of variables. The VARIABLES
clause introduces variable names. For example, the declaration below introduces the
variables customers, customerName, and customerYob:

VARIABLES
customers, customerName, customerYob

The INVARIANT clause assigns types to the variables and relates them to each
other. Thus, the invariant restricts the set of legal states. It expresses the static laws of
the machine. The invariant is written as a predicate on the variables:

INVARIANT
customers ⊆ CUSTOMER ∧
customerName ∈ customers→ STRTOKEN ∧
customerYob ∈ customers→ NAT ∧
customerName ⊗ customerYob ∈ customers� (STRTOKEN × NAT)

Here, CUSTOMER and STRTOKEN are sets, the declarations of which are not
shown. The first conjunct states that customers is a subset of CUSTOMER. The symbol
‘→’ denotes total functions. Hence, the second conjunct expresses that customerName
is a total function from customers to STRTOKEN. Applied to a customer, it returns the
customer’s name. Similarly, customerYob is used to represent the customers’ year of
birth. These first three conjunct express only basic typing information.

The last conjunct is more interesting. It states that no two customers have both the
same name and the same year of birth. This kind of information cannot be expressed
in most programming languages. The last conjunct uses a product type (‘×’), a total
injective function (‘�’), and a direct relational product (‘⊗’).

3

Sets and constants
BOOL booleans TRUE and FALSE
NAT natural numbers
NAT1 positive natural numbers
MAXINT largest natural number for a given computer (e.g. 231-1)

Relation symbols
↔ arbitrary relations
→ total functions
� total injective functions
�� partial injective functions

Functions on sets and relations
card(s) cardinality of set s
dom(r) domain of relation r
ran(r) range of relation r
r−1 inverse of relation r
u C r restriction of relation r to domain u
r[u] relational image
f(x) function application
r ⊗ s direct relation product (see text)

Sequences (q with domain 1..len(q))
[] empty sequence
len(q) length of sequence q
perm(s) permutations of set s

Others
(x, y) tuple (also written as (x �→ y))
bool converts a predicate into a boolean expression (e.g. x:=bool(y=z))

Figure 1: Summary of B symbols

The direct relational product of two relations r ∈ a↔ b and s ∈ a↔ c with identical
domain is denoted by r ⊗ s and defined as follows:

r ⊗ s
def= {(x, (y, z)) | (x, (y, z)) ∈ a × (b × c) ∧ (x, y) ∈ r ∧ (x, z) ∈ s}

The symbols used in Papers I and II are summarized in Fig. 1. Additional symbols
have their normal mathematical meaning.

Abstract and concrete variables

B differentiates between abstract and concrete variables. Because abstract variables are
much more common, they are usually referred to simply as variables.

4

Abstract variables in a machine describe a model state. This model state is intro-
duced to specify the effects of operations. An implementation may use variables with
different names and types instead. Therefore, abstract variables cannot be directly read
or written by implementations that import the machine.

B also provides concrete variables, which can be directly read in client constructs.
Direct write access is not granted because otherwise the invariant could not be proved
on a modular base and independent refinement would be impossible. Concrete vari-
ables are rarely used because they constrain the implementation and make it more
difficult to modify specifications and implementations. Concrete variables are intro-
duced in the CONCRETE VARIABLES clause and, like abstract variables, typed in the
INVARIANT clause. Concrete variables can only be of scalar types.

3.3 Initialization

The initialization assigns initial values to all variables. Figuratively, the initialization
is executed upon loading of the machine.

The initialization of a machine is written as a generalized substitution without se-
quential composition. Generalized substitution is the B term for a slight extension of
Dijkstra’s language of guarded commands. The initialization of the above variables
might look as follows, where ‘||’ denotes parallel composition:

INITIALISATION
customers := /0 || customerName := /0 || customerYob := /0

The initialization must establish the invariant. This is a consistency proof obligation
of every machine. In our example, /0 ⊆ CUSTOMER holds because the empty set is
a subset of any set. Furthermore, the empty sets of tuples represents functions with
empty domains. The direct relational product of empty relations is also the empty
relation, which corresponds to an empty set of tuples. Hence, the above initialization
establishes the invariant.

3.4 Operations

The state of a machine is modified and inspected through operations. They correspond
to functions in C or methods in Java.

An operation consist of a precondition and a body. The precondition expresses un-
der which circumstances an operation may be called. The precondition is a predicate
on the state of the machine and the parameters. For example, in the operation New-
Customer (Fig. 2), the precondition after the keyword PRE states that the type of the
parameter name must be STRTOKEN and that the type of yob must be NAT. Further-
more, the precondition requires that no customer with the same name and year of birth
exists already in the database and that the latter is not full.

It is the caller’s responsibility to assure that the precondition holds for every call.
This is a proof obligation dictated by B.

The body of an operation is, like the initialization, written as a generalized substitu-
tion without sequential composition. The example in Fig. 2 uses the ANY specification
statement. The ANY statement nondeterministically chooses a value for the bound

5

NewCustomer(name, yob) =
PRE

name ∈ STRTOKEN ∧ yob ∈ NAT ∧
(name, yob) �∈ ran(customerName ⊗ customerYob) ∧ customers �= CUSTOMER

THEN
ANY newCustomer WHERE newCustomer ∈ CUSTOMER - customers THEN

customers := customers ∪ {newCustomer} ||
customerName(newCustomer) := name || customerYob(newCustomer):= yob

END
END;

Figure 2: Specification of operation NewCustomer

variable (i.e. newCustomer) such that the predicate after WHERE is satisfied and then
executes its body delimited by THEN and END.

In the sample specification, customerName(newCustomer) := name is an abbrevi-
ation for customerName := customerName ∪ {newCustomer �→ name}. Other gener-
alized substitutions include the standard IF statement and the nondeterministic assign-
ment x :∈ S, which assigns to x an arbitrary value of the set S.

Operations may also contain calls to other operations of included or seen (Sect. 5)
machines. However, no calls can be made to operations of the same machine. Return
values of operation calls are assigned with ‘←’ rather than ‘:=’.

For the consistency of a machine, we have to prove that the operations preserve the
invariant whenever they are called with parameters satisfying the precondition.

4 Refinements and Implementations

Machines give concise descriptions of what should be done and what a client can ex-
pect, but they do not state how this is done. In intermediate refinements and in imple-
mentations we can add more details of the original informal specification and replace
data structures and algorithms with more efficient ones. The laws of refinement guar-
antee that the behavior observable by clients is preserved.

In B, a machine can be refined to an implementation directly or with intermediate
steps. The following introduces an intermediate refinement of our machine:

REFINEMENT
Bank 0(maxCustomers, maxAccounts)

REFINES
Bank

Like machines, refinements contain a state and operations thereon. The names
and types of the variables of a refinement may differ from those of the corresponding
machine. In our case, we replace the set customers of the machine by nextCustomer of
a subrange type of NAT.

6

The state spaces of the machine and of the refinement are related to each other in
the invariant. This is sometimes referred to as the linking or gluing invariant or as the
abstraction or data refinement relation. This relation helps us prove that the refinement
exhibits the same, or a more deterministic behavior as the machine.

In our case, we state that the set customers is equal to the set of numbers from 0 up
to nextCustomer-1:

VARIABLES
nextCustomer, . . .

INVARIANT
nextCustomer ∈ 0 . . maxCustomers ∧
customers = 0 . . nextCustomer-1 ∧ . . .

The initialization of a refinement must establish the invariant. Since the states of
the machine and the refinement are linked via the invariant, this also implies that the
refinement is in a corresponding state after initialization.

INITIALISATION
nextCustomer := 0 || . . .

A refinement provides exactly the operations specified in the corresponding ma-
chine. The parameters are the same, but they are not syntactically repeated:

NewCustomer =
BEGIN

nextCustomer := nextCustomer + 1;
. . .

END;

Operations in refinements may contain sequential composition ‘;’. The refined
operations must behave like their abstract counterparts for any actual parameters satis-
fying the precondition stated in the machine. The exact proof obligations are given by
B’s rules of (forward) data refinement.

An implementation distinguishes itself from an intermediate refinement through a
number of things. An implementation starts with the keyword IMPLEMENTATION.
Implementations may not contain nondeterministic constructs, such as the ANY state-
ment. Furthermore, only concrete, but not abstract variables are permitted. Thanks
to these restrictions, implementations can be automatically translated into executable
code.

WHILE loops are only permitted in implementations. The loops contain a variant
function to prove termination and an invariant to establish properties of the post state.

5 Modular Development

B provides for modular specification, refinement, and implementation. When we refine
or implement a machine, we only have to consider that machine. We don’t have to be
aware of which clients use it in which ways.

7

Furthermore, B allows us to utilize other modules knowing only their specification,
as provided by the machine construct. For example, we could implement our bank with
the help of a database. For this purpose, we would import the machine Database in our
implementation Bank 1. Note that we import the machine Database, not an implemen-
tation thereof. When we code Bank 1, we only have to look at the machine Database.
The latter provides all the information we need in form of a concise specification. We
do not need to care how Database is implemented.

B has four mechanisms for composing modules, providing for both inclusion and
sharing. The different mechanisms can be used in different constructs. They are de-
scribed below.

5.1 Inclusion in machines and refinements

We can include an instance of a machine into another machine or refinement. For
example, a machine RobustBank could include an instance of the above machine Bank:

MACHINE
RobustBank

INCLUDES
Bank(100, 200)

The result is almost the same as textually copying Bank into RobustBank. There
are three key differences:

1. The operations of RobustBank can only read, but not directly modify the (ab-
stract and concrete) variables of Bank. This guarantees that the invariant of Bank
cannot be invalidated by operations of RobustBank.

2. In operations of RobustBank we can call operations of the included Bank. (Re-
member that constructs cannot call their own operations.) Thus, variables of
Bank can be modified in a controlled way.

3. By default, operations of the included Bank are not visible to clients of Robust-
Bank. It is, however, possible to explicitly make operations visible to clients. In-
dividual operations can be made visible with PROMOTES. By using EXTENDS
in place of INCLUDES all operations get promoted.

Upon inclusion, we must instantiate the parameters of the included machine. Above
we have instantiated maxCustomers with 100 and maxAccounts with 200.

We can include several instances of the same machine. In this case we have to
rename the different instances. For example, we could have included two copies of
Bank into our RobustBank:

INCLUDES
first.Bank(10,20), second.Bank(30,40)

The result is the same as if we had made two textual copies of the machine Bank
and prefixed all identifiers therein with ‘first.’ and ‘second.’, respectively.

8

The including construct becomes the focus of refinement, the included machine
doesn’t have to be implemented —unless another instance of the included machine is
imported somewhere else. In the above example, this means that we do not have to
refine or implement Bank.

5.2 Import in implementations

Implementations can import instances of other machines. For example, the imple-
mentation Bank 1 could import an instance of Database. Upon import, we have to
instantiate the parameters, e.g. the postulated maxSize parameter with 300:

IMPLEMENTATION
Bank 1(maxCustomers, maxAccounts)

REFINES
Bank

IMPORTS
Database(300)

The operations of the implementation Bank 1 may invoke operations of Database.
Furthermore, they can read concrete variables of Database.

Abstract variables of Database cannot be read or modified in operations of Bank 1.
However, they can be referenced in the invariant of Bank 1 to express relationships.
For example, the names of the customers may be stored in the database. In this case,
we need to relate customerName of the refined machine Bank to the variable of the
database representing this information. Assuming the latter is called dbStrings, the
invariant of Bank 1 may look as follows:

INVARIANT
(0 . . nextCustomer-1)C customerName = (0 . . nextCustomer-1)C dbStrings ∧ . . .

Referencing variables of an imported machine in the invariant does not affect the
behavior of the implementation. This is a pure aid for proving certain properties.

Renaming can also be used with IMPORTS to import multiple instances of a given
machine. Each instance of a machine is imported by exactly one implementation. Thus,
we cannot share instances of imported machines with IMPORTS alone.

5.3 Sharing

Multiple machines, refinements, and implementations can share an instance of a ma-
chine with SEES. Every instance of a seen machine must be imported by some imple-
mentation, which instantiates the parameters of the shared machine.

SEES provides read-only access to the shared machine. This means that the see-
ing machine can only invoke inquiry, but not modification operations of the shared
machine. This restriction is necessary to avoid interference with the invariant of the
implementation importing the shared machine. Assume that the implementation IO 1
sees Database, which is imported by Bank 1. If an operation of IO 1 were to modify

9

the variable dbStrings of Database, then the above invariant of Bank 1 might be in-
validated. This interference could only be detected with global, but not with modular
proofs.

For dual reasons, variables of the shared machine Database cannot be referenced
in the invariant of IO 1. Otherwise, operations of Bank 1 might falsify the invari-
ant of IO 1. In conclusion, sharing is restricted by the single writer/multiple readers
paradigm. The importing implementation is the single writer, which is allowed to ref-
erence variables of the shared machine in its invariant. The seeing constructs are the
readers, which are not allowed to reference variables of the shared machine in their
invariants.

B has a second sharing mechanism called USES. It provides for limited sharing on
the specification level only and is also restricted to a single writer. Furthermore, the
shared and all the sharing machines must be included into the same construct. Hence,
the applicability of USES is very limited.

5.4 Summary of composition mechanisms

The sheer number of composition mechanisms in B might be intimidating at first. How-
ever, empirical evidence shows that the different mechanisms address real needs. Ex-
cept for USES, all mechanisms are widely applied.

The INCLUDES and USES clauses can be considered as weak or syntactic relations
[3]. Their aim is to combine text of machine specifications; this structure is not re-
flected in subsequent refinements or in the final implementation. SEES and IMPORTS
on the other hand are strong relations as the shared code will remain visible as a mod-
ule in the final implementation. Sharing in B is restricted by the single writer/multiple
readers paradigm.

6 Comparison of B with VDM and Z

In this section we compare B with VDM [9] and Z [15]. The main aim is to help the
reader familiar with one of these methods put B into perspective.

Coverage VDM and B cover the whole development process from specification to
implementation. Z also has rules for refinement, but in practice it is mostly used for
specification only. B and VDM are methods. Z is a notation.

Logical foundation VDM [9] is based on the logic of partial functions. Z and B are
based on similar formulations of set theory and first order predicate logic.

Syntax VDM and B use keyword-based textual notations. Both have a pure ASCII
notation and a mathematical publication form. Z uses a semi-graphical schema nota-
tion. ASCII equivalents also exist.

10

Operation specification In VDM and B, the preconditions of operations are explic-
itly specified. In Z, the preconditions are not explicitly stated, but may be calculated
from the schema definitions.

Z express the effect of an operation with a postcondition. B uses statements instead
—much like imperative programming languages. VDM has both postcondition-based
implicit operation specifications and statement-based explicit operation specifications.

In B and in explicit VDM operation specifications, only the variables that are ex-
plicitly assigned to are modified, all others remain unchanged. In implicit VDM opera-
tion specifications, only the global variables that are listed as writable in the operation’s
externals clause may be modified. In Z, the postcondition has to explicitly list the vari-
ables that remain unchanged.

The invariant is an explicit conjunct of every postcondition of Z and of implicit
VDM operations. Thus, feasibility is the only proof obligation for such operation spec-
ifications. For B and explicit VDM operations, to which the invariant is not conjoined,
we have to prove that they preserve the invariant (consistency).

Only VDM contains special syntax for specifying exceptions.

Modularization B has a strong modularization concept supporting information hid-
ing, separate refinement, and layered development. Standard VDM and Z offer little
support for modularization. Though several modularization extensions have been pro-
posed and implemented [5, 7, 12].

Standardization The VDM specification language achieved ISO Standardization in
1996 [13]. Z is undergoing ISO standardization. Abrial’s book [1] is the de facto
standard for B. However, both industrial tools available for B deviate slightly from
Abrial’s book and are not fully compatible with each other.

Tool support All three methods are supported by a number of tools. Support for
syntax and type checking, pretty printing, documentation, animation, and proving exist
for all three methods. Code generators are only available for B and VDM.

Extensions Several object-oriented extensions of VDM and Z have been proposed
and implemented. VDM++ [4, 6], an extension of VDM, supports object orientation,
concurrency, and real time. Object-Z [14] extends Z with object-oriented concepts.
Sum [8] extends Z with modules and explicitly states operation preconditions.

Translations from action systems, CSP, and UML diagrams to B have been pro-
posed. However, no object-oriented or concurrent extensions of B have been published.

References

[1] Jean-Raymond Abrial. The B Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[2] B-Core. B-Toolkit. England, 1995. http://www.b-core.com/.

11

[3] Didier Bert, Marie-Laure Potet, and Yann Rouzaud. A study on components and
assembly primitives in B. In Proceedings of the first B conference, pages 47–62,
3 rue du Maréchal Joffre, BP 34103, 44041 Nantes Cedex 1, 1996. IRIN Institut
de recherche en informatique de Nantes.

[4] E.H. Dürr and J. van Katwijk. VDM++ — a formal specification language for
object-oriented designs. In Computer Systems and Software Engineering, Pro-
ceedings of CompEuro’92, pages 214–219. IEEE Computer Society Press, 1992.

[5] J.S. Fitzgerald and C. B. Jones. Modularizing the formal description of a database
system. In VDM’90: VDM and Z – Formal Methods in Software Development,
pages 189–210. LNCS 428, Springer Verlag, 1990.

[6] The VDM Tool Group. The IFAD VDM++ language. Technical report, IFAD,
October 1998.

[7] I. J. Hayes and L. P. Wildman. Towards libraries for Z. In J. P. Bowen and J. E.
Nicholls, editors, Z User Workshop: Proceedings of the Seventh Annual Z User
Meeting, Workshops in Computing. Springer Verlag, 1993.

[8] Wendy Johnston and Luke Wildman. The Sum reference manual. Techni-
cal Report 99-21, Software Verification Research Centre, School of Information
Technology, The University of Queensland, Brisbane 4072, Australia, November
1999.

[9] Cliff B. Jones. Systematic Software Development Using VDM. Prentice Hall
International, 1986.

[10] Kevin Lano. The B Language and Method: A Guide to Practical Formal Devel-
opment. Springer Verlag London, 1996.

[11] Kevin Lano and Howard Haughton. Specification in B: An Introduction Using the
B Toolkit. Imperial College Press, London, 1996.

[12] Marie-Laure Potet Yves Ledru and Rémy Sanlaville. VDM Modules. In
John Fitzgerald and Peter Gorm Larsen, editors, VDM in Practice, pages 1–12,
September 1999.

[13] P. G. Larsen and B. S. Hansen and H. Brunn N. Plat and H. Toetenel and D. J.
Andrews and J. Dawes and G. Parkin and others. Information technology — Pro-
gramming languages, their environments and system software interfaces — Vi-
enna Development Method — Specification Language — Part 1: Base language,
December 1996.

[14] Graeme Smith. The Object-Z Specification Language. Advances in Formal Meth-
ods. Kluwer Academic Publishers, 1999.

[15] J.M. Spivey. The Z Notation. Prentice Hall, second edition, 1992.

[16] Stéria Méditerranée. Atelier-B. France, 1996. http://www.atelierb.societe.com.

[17] J. B. Wordsworth. Software Engineering with B. Addison-Wesley, 1996.

12

Turku Centre for Computer Science
Lemminkäisenkatu 14
FIN-20520 Turku
Finland

http://www.tucs.fi

University of Turku
• Department of Mathematical Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Science

	Header
	Title Page
	Defense
	Supervisor and Reviewers
	Dedication
	Acknowledgments
	Abstract
	Table of Contents
	List of Original Publications

	Introduction
	1 Introduction
	2 Modules, Components, and Classes
	2.1 Modules
	2.2 Components
	2.3 Classes and objects

	3 Formal Specifications
	3.1 Formal vs informal specifications
	3.2 Algebraic vs model-based specifications
	3.3 Formal methods
	3.4 Tools

	4 Refinement
	5 Compositional Sharing of Modules in B
	5.1 A sample problem
	5.2 A modular solution based on rely/guarantee conditions

	6 Specification and refinement of external calls
	6.1 Postconditions vs statements
	6.2 Statement-based specifications of call-backs
	6.3 Greybox refinement

	7 Types
	7.1 Behavioral typing
	7.2 Type safety

	8 Precise typing
	8.1 A sample problem
	8.2 Compound types to the rescue
	8.3 Purely structural equivalence for types

	9 Composition and reuse of components
	9.1 A sample problem
	9.2 Generic wrappers as the solution
	9.3 Design space for generic wrappers
	9.4 Generic wrappers in Java
	9.5 Generic wrappers and compound types
	9.6 Prototype-based languages

	10 Concurrency
	10.1 Models for concurrency
	10.2 Action systems
	10.3 Object-oriented action systems
	10.4 Refinement of object-oriented action systems

	11 Summary
	References

	Paper I: The B Bank
	4. The B Bank
	4.1 Introduction
	4.2 Rewriting the Requirements
	4.3 Structured Models
	4.3.1 Class Diagrams

	4.4 System Design
	4.5 B Specification
	4.5.1 State
	4.5.2 Functionality
	4.5.3 Discussion
	4.6 Robust Abstraction

	4.7 Base Machines
	4.7.1 Strings in Atelier B
	4.7.2 Machine BasicCGI
	4.7.3 Implementing BasicCGI

	4.8 User Interfaces
	4.8.1 Main Program
	4.8.2 Implementations

	4.9 Implementation of the Robust Abstraction
	4.10 Implementation of Bank
	4.10.1 Machine Object
	4.10.2 Machine BasicString
	4.10.3 Implementation Bank_1
	4.10.4 Machine BasicFile
	4.10.5 Implementation Object_1
	4.11 B-Toolkit Implementation
	4.11.1 Differences in the Supported Language
	4.11.2 Differences in the Provided Base Machines and Libraries
	4.11.3 Adapting the Development
	4.11.4 Automatic Translation of Object Models

	4.12 Discussion
	4.12.1 Related Work
	4.12.3 What Have We Proved

	4.13 Exercises
	References

	Paper II: Compositional Symmetric Sharing in B
	Compositional Symmetric Sharing in B
	1 Introduction
	2 The Problem
	2.1 Review of Existing Composition Mechanisms
	2.2 A Problem with the Existing Mechanisms

	3 Analysis of the Problem
	4 Role-Based Access
	4.1 Role Specifications
	4.2 Accesses
	4.3 Refining and Implementing Accesses
	4.4 Instantiation

	5 Further Aspects of Role-Based Access
	5.1 Replicated Roles
	5.2 Form of Role Specifications
	5.3 Adherence to Role Specifications
	5.4 Sharing Structure
	5.5 Emulating the Existing Composition Mechanisms

	6 Formal Definitions
	6.1 Syntax
	6.2 Proof Obligations
	6.3 Visibility Rules
	6.4 Well-Formedness of the Composition Graph

	7 Soundness
	8 Summary
	8.1 Related Work
	8.2 Conclusions

	References

	Paper III: The Greybox Approach: When Blackbox Specifications Hide too Much
	The Greybox Approach: When Blackbox Specifications Hide Too Much
	1 Introduction
	1.1 Interface specifications are abstractions
	1.2 From syntactic to semantic abstractions

	2 The Problem: When Black is Too Dark
	2.1 Call-backs
	2.2 Example: part of a text system
	2.3 Analysis of the example

	3 A Pragmatic Approach: Layering White on Black
	4 Abstract Programs: Shades of Grey
	4.1 Consistency of specifications

	5 Implementing Greybox Specifications
	6 Refinement of Greybox Specifications
	6.1 Reentrance
	6.2 Unmentioned component instances
	6.3 Self calls
	6.4 Additional methods and constructors
	6.5 Formalizing greybox refinement

	7 Refinement Proofs in Practice
	7.1 Data refinement
	7.2 Piecewise data refinement in context

	8 Refinement of Component-Based Systems
	9 Towards a Greybox Specification Language
	10 Related Work
	11 Conclusions
	References

	Paper IV: Compound Types for Java
	Compound Types for Java
	1 Introduction
	2 The Problem
	2.1 Java's type system
	2.2 Component software
	2.3 A scenario exemplifying a problem with Java

	3 Structure vs. Name Equivalence of Types
	3.1 Structure equivalence of types
	3.2 Name equivalence of types

	4 Compound Types
	5 Compound Types in Java
	6 Emulating Compound Types on the Virtual Machine
	7 Type Soundness
	8 Related Work
	9 Conclusions
	References

	Paper V: Generic Wrapping
	Generic Wrapping
	Abstract
	1 Introduction
	2 The Problem
	2.1 Examples
	2.2 Terminology
	2.3 Requirements

	3 Why Existing Technology is Insufficient
	3.1 Single-object solutions
	3.2 Two-object solutions
	3.3 Summary

	4 Generic Wrappers
	5 Design Space for Generic Wrappers
	5.1 Overriding of instance methods
	5.1.1 Wrap-time tests and coding conventions
	5.1.2 An alternative form of method lookup
	5.1.3 Refutation of static approaches

	5.2 Hiding of fields and class methods
	5.3 Forwarding vs. delegation
	5.4 Replacing a wrappee
	5.5 Direct client references to the wrappee
	5.5.1 Redirection of existing references
	5.5.2 Handing out of self references

	5.6 Multiple wrapping
	5.7 Concealment
	5.8 Multiple wrappees

	6 Interaction With Other Typing Mechanisms
	6.1 Subclassing
	6.1.1 Generic wrappers as a substitute for inheritance
	6.1.2 Subclassing of wrapper classes

	6.2 Method Header Specialization and Final Classes
	6.3 Overloading resolution
	6.4 Parametric types
	6.5 Compound types

	7 Generic Wrappers in Java
	7.1 Feature selection and language integration
	7.2 Library integration
	7.3 Assessment

	8 Type Soundness
	8.1 Definitions
	8.2 Theorems and conclusions

	9 Reflective Mix-Ins
	9.1 The proposed mechanism
	9.2 Comparison with generic wrappers
	9.2.1 Combination of wrapper and wrappee into a single object
	9.2.2 Various differences and similarities
	9.2.3 Overloading resolution

	10 Related Work
	10.1 Language mechanisms
	10.2 Binary component standards

	11 Conclusions
	References

	Paper VI: Action-Based Concurrency and Synchronization for Objects
	Action-Based Concurrency and Synchronization for Objects
	1 Introduction
	2 Action-Oberon Base Language
	3 Type-Bound Actions
	4 Deactivation and Deallocation
	5 Inheritance of Type-Bound Actions
	6 A Semantics for Type-Bound Actions
	7 Relatad Work
	8 Conclusions
	References

	Paper VII: Refining Concurrent Objects
	Refining Concurrent Objects
	1 Introduction
	2 Statements and Action Systems
	2.1 Statements
	2.2 Action Systems

	3 Objects and Classes
	3.1 Classes
	3.2 Inheritance

	4 Class Refinement and Class Simulation
	4.1 Class Refinement
	4.2 Class Simulation
	4.3 Example

	5 Dynamic Object Structures
	5.1 Single Class
	5.2 Class Refinement and Class Simulation
	5.3 Multiple Classes and Subtyping

	6 Early Return
	7 Conclusions and Discussion
	References

	Appendix: An Introduction to B
	An Introduction to B
	1 Introduction
	2 Development Overview
	3 Machines
	3.1 Header
	3.2 State
	3.3 Initialization
	3.4 Operations

	4 Refinement and Implementations
	5 Modular Development
	5.1 Inclusion in machines and refinements
	5.2 Import in implementations
	5.3 Sharing
	5.4 Summary of composition mechanisms

	6 Comparison of B with VDM and Z
	References

