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Preface

Cross-correlation functions of maximal period sequences have been studied
roughly forty years. The so called Gold sequences were found in 1967, and
are still in practical use. In the 1970s Trachtenberg, Niho and Helleseth
wrote their very influential theses on the topic. Moreover, cross-correlation
functions of maximal period sequences can be interpreted as character sums
(or Weil sums) over finite fields and therefore the mathematical theory is
actually much older. We can say that the subject is well established and in
mathematics a field of its own.

In this thesis, we will study cross-correlation functions corresponding to
decimations d which satisfy

d ≡ 1 (mod 2k − 1),

where k is half of the order of the sequences in question, i.e., the period of
the sequences is 22k − 1. This type of decimations were first studied in the
famous thesis by Yoji Niho in 1972. This pioneering work has become one
of the most cited works in the theory of m-sequences and coding theory.

Niho’s work has been important in essentially two ways. Firstly, be-
cause Niho described a method to treat the decimations described above
and applied this method to certain special cases. Secondly, and even more
importantly, Niho did an extensive computer search for cross-correlation
functions with few values. Considering the time this is impressive as this
problem is computationally very demanding. In addition, Niho made sev-
eral conjectures based on his tables and this made his thesis an important
source of open problems. Some of these problems have been solved only
recently.

In this thesis we have collected essentially all known results about Niho
type cross-correlations. Our treatment will be mathematical throughout,



8 Preface

the emphasis being on equations over finite fields. We have made an attempt
to give as simple and unified account as possible.

This thesis is organized as follows. In Chapter 1 we give some necessary
background on finite fields. This is done mostly in order to fix the notation,
and we will assume that the reader has a basic knowledge of the theory of
finite fields. In Chapter 2 we recall some basic properties of cross-correlation
functions of m-sequences. We also list all decimations for which the cross-
correlation function is known. The first two chapters should provide all the
tools needed in order to understand the rest of the thesis.

In Chapter 3 we give a simplified proof of the main theorem of Niho,
and make some general remarks about Niho type decimations. We will also
show how Niho’s theorem can be generalized to include also non-binary
sequences. At the end of the chapter we generalize Charpin’s result on
Niho type cross-correlations.

Chapter 4 is devoted to the study of the number of solutions to the third
power sum equation in case of Niho type exponents. We develop a technique
to treat these equations. Using this technique we will, among other things,
solve completely the question when this equation has only trivial solutions.

In Chapter 5 we give the values and their distributions for all known
cross-correlations of Niho type. For previously known results we give sim-
plified proofs. The results from Chapter 3 and Chapter 4 play a central role
here.

The material of the thesis comes mainly from the articles [25], [22], [35],
[23], and [13].



Chapter 1

Preliminaries

We will assume that the reader has a working knowledge of finite fields and
algebra in general. Here we give only some basic facts and fix the notation.
For additional information and proofs, the reader is referred to the books
[31, 37], and the survey [27].

1.1 Basic facts

The finite field with q elements will be denoted by GF (q). It is well known
that q = pn for some prime p and an integer n ≥ 1. On the other hand,
given a prime p and an integer n ≥ 1, there exists a finite field with pn

elements, and this field is essentially unique. The finite field with q = pn

elements is the splitting field of the polynomial xq − x over the prime field
GF (p), and in fact GF (q) is precisely the set of elements satisfying xq = x.

The multiplicative group of GF (q) will be denoted by GF (q)×. The
group GF (q)× is cyclic, and a primitive element of GF (q) is by definition
a generator of GF (q)×. A polynomial f(x) ∈ GF (p)[x] of degree n is
primitive over GF (p) if it is the minimum polynomial of some primitive
element of GF (pn).

Recall that the subfields of GF (pn) are in one-to-one correspondence
with the divisors of n.

Assume that k divides n, so that GF (pk) is a subfield of GF (pn), and
set q = pk and m = n/k. Then the trace function trn

k : GF (pn) → GF (pk)
is defined by

trn
k (x) = x + xq + xq2

+ · · · + xqm−1
.
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The basic properties of the trace are:

(i) trn
k is linear over GF (q),

(ii) trn
k is balanced, i.e., every c ∈ GF (q) occurs exactly qm−1 times as an

image,

(iii) trn
k (xq) = trn

k (x), and

(iv) the trace function is transitive, that is, trn
k (x) = trl

k(tr
n
l (x)), whenever

l divides n and k divides l.

More generally, a polynomial L(x) ∈ GF (pn)[x] of the form

L(x) =
n−1∑
i=0

aix
pi

,

is called linearized.
We will need the following well known and simple fact from linear al-

gebra.

Lemma 1.1. Let L(x) be a linearized polynomial over GF (pn) and α ∈
GF (pn). Then the equation L(x) = α either has no solutions or it has
exactly the same number of solutions in GF (pn) as the equation L(x) = 0.

Let ζ be a primitive complex p-th root of unity, and let x ∈ GF (pn).
We set

χ(x) = ζtrn
1 (x).

This is the canonical additive character of the finite field GF (pn). The
map χ : GF (pn) → C

× is indeed a character of the additive group of
GF (pn). It satisfies

(i) χ(x + y) = χ(x)χ(y),

(ii) χ(xp) = χ(x), and

(iii)
∑

x∈GF (pn) χ(x) = 0.

The identity (iii) implies that
∑

a∈GF (pn) χ(ax) = 0 if x �= 0. If x = 0, then
the sum equals pn, of course.
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1.2 Extensions of even degree

In this section we give some definitions and facts that are specific to exten-
sions of even degree.

Let y ∈ GF (q2). In analogy with the usual complex conjugation we
define

y = yq.

The usual algebraic properties of conjugation carry over to the finite case.
For example, we have

(i) x + y = x + y and xy = x y, for all x, y ∈ GF (q2), and

(ii) x + x ∈ GF (q) and xx ∈ GF (q), for all x ∈ GF (q2).

We define the unit circle of GF (q2) to be the set

S =
{
x ∈ GF (q2) : xx = 1

}
.

In other words, S is the group of (q + 1)-st roots of unity in GF (q2). We
will exploit this group structure in many situations.

A geometric interpretation of Lemma 1.2 gives an analogy with complex
numbers. The first parameterization is from [30] and the second one is from
[22].

Lemma 1.2. (i) Let z ∈ GF (q2) \ GF (q) be fixed. Then

S \ {1} =
{

z + u

z + u
: u ∈ GF (q)

}
.

(ii) Let β ∈ S \ {±1} be fixed. Then

S \ {β} =
{

αβ + 1
α + β

: α ∈ GF (q)
}

.

Proof. Assume that
z + u

z + u
=

z + v

z + v
,

for some u, v ∈ GF (q). Then

zz + uz + zv + uv = zz + vz + zu + uv,
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which implies that
(z − z) (u − v) = 0,

and therefore u = v. Thus the elements x = (z + u)/(z + u), where z ∈
GF (q2) \ GF (q) and u ∈ GF (q), are distinct. Moreover, they satisfy x =
x−1. Also x �= 1 since z �= z. This proves (i), and (ii) is equally simple.

Assume that q is even. Then gcd(q − 1, q + 1) = 1, and hence the group
GF (q2)× is the direct product of its subgroups GF (q)× and S. Thus we
have the following lemma, which is analogous to polar representation of
complex numbers.

Lemma 1.3. Assume that q is even. Then every x ∈ GF (q2)× can be
represented uniquely as

x = αβ,

where α ∈ GF (q)× and β ∈ S.

For arbitrary x this representation can be found from the following
trivial identity

x2 = (xx)
(x

x

)
. (1.1)

We will use this identity indirectly in Chapter 4.
If q is odd, then gcd(q− 1, q +1) = 2, and therefore the previous lemma

fails to be valid. However, every x ∈ GF (q2)× has a unique representation
as

x = αβ, (1.2)

where α ∈ GF (q)×, β ∈ {1, γ, γ2, . . . , γq}, and γ is a primitive element of
GF (q2). Surprisingly, this completely trivial representation proves to be
useful.

1.3 Linear recurring sequences

There are many different approaches, such as matrix theory and the theory
of formal power series, to linear recurrences over finite fields. For different
aspects the reader should consult [31], [32], and [36]. We are interested
in cross-correlation functions, and therefore we will make use of the trace
representation.
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Let a1, . . . , an, where an �= 0, be given elements of the field GF (p). A
linear recurring sequence over the field GF (p) is a sequence u0, u1, . . . of
elements of GF (p) satisfying a recurrence

ui+n + a1ui+n−1 + a2ui+n−2 + · · · + anui = 0, (1.3)

for all i. The sequence ui is completely determined by the initial values
u0, u1, . . . , un−1 and the relation (1.3).

The number n is called the order (or degree) of the recurrence.
Since linear recurring sequences can be generated by shift registers they

are also known as linear feedback shift register sequences. This is the point
of view e.g. in [17].

It is well known that the relation (1.3) produces an ultimately periodic
sequence with least period at most pn − 1. It is also clear that a periodic
sequence satisfies a linear recurrence relation.

The characteristic polynomial of the recurrence (1.3) is by definition

f(x) = xn + a1x
n−1 + a2x

n−2 + · · · + an. (1.4)

Sometimes, e.g. in [31], f(x) is also said to be the characteristic polynomial
of the corresponding sequences, but then the reader should note that it is
not unique.

It is known that a nonzero sequence generated by (1.3) has the maximum
possible period pn − 1 if and only if the characteristic polynomial of the
corresponding recurrence is a primitive polynomial over the field GF (p).

Definition 1.4. An m-sequence (short for maximal period sequence) of
order n is a nonzero sequence which satisfies a recurrence of order n whose
characteristic polynomial is a primitive polynomial over the field GF (p).

Due to their randomness properties m-sequences are also known as
pseudo-noise sequences.

The trace function provides a useful representation of m-sequences.

Theorem 1.5. Let ut be an m-sequence of period pn − 1. Then there is an
element y ∈ GF (pn)× such that

ut = trn
1 (yγt), (1.5)

for some primitive element γ of the field GF (pn). Conversely, if γ is a
primitive element of GF (pn) and y ∈ GF (pn) is nonzero, then the sequence
determined by (1.5) is an m-sequence.
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In what follows, the following two properties will be fundamental.

Lemma 1.6. Let ut and vt be two m-sequences of period pn − 1. Then

(i) the sequence udt, where d is an integer, is an m-sequence if and only
if gcd(d, pn − 1) = 1, and

(ii) there is an integer d and an integer k such that gcd(d, pn−1) = 1 and
vt+k = udt for all t = 0, 1, . . ..

For the proof of Theorem 1.5, see [31]. Lemma 1.6 is a straightforward
consequence of Theorem 1.5.

If there is an integer k such that vt+k = ut for all t = 0, 1, . . ., then the
sequence vt is said to be a cyclic shift of the sequence ut. We will make no
difference between a sequence and its cyclic shifts.

An integer d satisfying gcd(d, pn − 1) is said to be a decimation. The
previous lemma says that two m-sequences of the same period are connected
by a decimation and a cyclic shift.



Chapter 2

Cross-correlation of
m-sequences

In this chapter we give the most basic properties of cross-correlation func-
tions of m-sequences. We also list all decimations for which the correspond-
ing cross-correlation function is known.

2.1 Properties of cross-correlation functions

Let ut and vt be two periodic sequences of elements from GF (p), and assume
that both have the same period ε. Furthermore, let ζ be a primitive complex
p-th root of unity.

Definition 2.1. The (periodic) cross-correlation function Cu,v between the
sequences ut and vt is defined for τ = 0, 1, . . . , ε − 1 by

Cu,v(τ) =
ε−1∑
t=0

ζut−vt+τ . (2.1)

Assume for a moment that ut and vt are binary, i.e., p = 2. Then in
the sum (2.1) ut and a cyclic shift by τ of vt are compared bit by bit, and
then the sum Cu,v(τ) counts the number of agreements and disagreements.
In other words, Cu,v measures how similar ut is to vt. Why this measure is
important is explained in detail e.g. in [32].

In the non-binary case the situation is more complex, and from the
practical point of view the cross-correlation function is somewhat artificial.
However, also non-binary sequences have been used in practice.
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Besides the periodic cross-correlation function, there are many other
correlation measures, and the reader should consult [21].

An important problem in the theory of sequences is the cross-correlation
problem:

Find the values and the number of their occurrences of the cross-
correlation function Cu,v.

Usually, one is not interested in the value Cu,v(τ) for a specific cyclic shift
τ , and when one speaks about the cross-correlation function it is actually
the multiset of its values in question. Therefore a sequence and its cyclic
shifts are considered the same in this context.

From now on we assume that ut and vt are, binary or non-binary, m-
sequences of period pn − 1. We may, possibly after cyclic shifts, write

ut = trn
1 (γt),

and vt = udt, where γ is a primitive element of the field GF (pn) and d
satisfies gcd(d, pn − 1) = 1. The cross-correlation function between the
m-sequences ut and udt will be denoted by Cd(τ).

We have

Cd(τ) =
pn−2∑
t=0

ζtrn
1 (γt)−trn

1 (γd(t+τ))

=
pn−2∑
t=0

ζtrn
1 (γt−γd(t+τ))

=
∑

x∈GF (q)×
ζtrn

1 (x−yxd)

=
∑

x∈GF (q)×
χ(x − yxd),

where χ is the canonical additive character and y = γdτ .
Thus we have an algebraic characterization of the combinatorial cross-

correlation problem: we should find the values of certain character sums.
We note here that this kind of character sums are strongly connected with
the weight distributions of certain cyclic codes and nonlinearity properties
of power functions. For these connections, the reader should consult e.g.
[4, 5]. For the use of character sums in coding theory, we refer to [27].
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It is very common to speak about Cd(τ) in terms of y without specifying
the one-to-one correspondence between τ and y.

Replacing y by −y does not change the values or the number of their
occurrences, and therefore (by redefining y) we may write

Cd(τ) =
∑

x∈GF (q)×
χ(x + yxd).

For the same reason, we may also write

Cd(τ) =
∑

x∈GF (q)×
χ(yx + xd).

This is combinatorially clear: it does not matter which one of the sequences
is shifted cyclically.

When the sequences ut and vt are the same1, e.g. when d = 1, one
speaks of autocorrelation. We have

C1(τ) =
∑

x∈GF (q)×
χ(x − yx) =

∑
x∈GF (q)×

χ((1 − y)x),

and therefore

C1(τ) =
{

pn − 1 , if y = 1
−1 , otherwise.

This two-level autocorrelation property of m-sequences has many prac-
tical applications.

The following simple properties are proved in [39].

Theorem 2.2. (i) The values of Cd(τ) are real.

(ii) The values and the number of their occurrences do not depend on the
choice of ζ.

Definition 2.3. If two decimations d and d′ satisfy d′ ≡ pid (mod pn − 1)
or dd′ ≡ pi (mod pn − 1) for some i, then they are called equivalent.

It is straightforward to see that the equivalence of decimations is an
equivalence relation.

1It is an easy task to prove that ut and udt are the same if and only if d ≡ pi

(mod pn − 1).
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If d and d′ are equivalent, then the values and the number of their
occurrences are the same for Cd(τ) and Cd′(τ), see [39], and we may consider
equivalent decimations as the same. On the other hand it is possible that
nonequivalent decimations produce the same correlation values with the
same distribution.

The following theorem is useful in finding the distributions of values.

Theorem 2.4. We have

(i)
∑pn−2

τ=0 (Cd(τ) + 1) = pn

(ii)
∑pn−2

τ=0 (Cd(τ) + 1)2 = p2n

(iii)
∑pn−2

τ=0 (Cd(τ) + 1)3 = p2nb,

where b is the number of x ∈ GF (q) such that

(x + 1)d = xd + 1. (2.2)

Proof. The identities (i) and (ii) are very simple to prove, see e.g. [34].
The identity (iii) is due to Helleseth [18], and was originally derived from

more general results. The equation (2.2) will be one of our main interests
and to this end we give here a direct proof of (iii).

So denote

S3 =
pn−2∑
τ=0

(Cd(τ) + 1)3.

For notational reasons, we set here that the range of variables u, x, y, and
z is GF (pn), and do not denote this in the sums.

Since Cd(τ) + 1 =
∑

x χ
(
xd + ux

)
, we have

S3 =
∑
u �=0

∑
x,y,z

χ
(
xd + yd + zd + u(x + y + z)

)
.

The fact gcd(d, pn − 1) = 1 implies that x �→ xd is one-to-one, and one
deduces easily that

∑
x,y,z χ

(
xd + yd + zd

)
= 0, and hence

S3 =
∑

u

∑
x,y,z

χ
(
xd + yd + zd + u(x + y + z)

)

=
∑
x,y,z

χ
(
xd + yd + zd

)∑
u

χ(u(x + y + z)).
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The inner sum here is zero unless x + y + z = 0, and therefore

S3 = pn ·
∑
x,y

∑
z=−x−y

χ
(
xd + yd + zd

)

= pn ·
∑
x,y

χ
(
xd + yd − (x + y)d

)

= pn


pn +

∑
x�=0

∑
y

χ
(
xd + yd − (x + y)d

) .

Here we have used the fact that if p is odd then d is odd. Substituting
y = ax and letting a run through GF (pn), we finally get

S3 = pn ·

pn +

∑
x�=0

∑
a

χ
(
xd + (ax)d − (x + ax)d

)

= pn ·

pn +

∑
x�=0

∑
a

χ
(
xd
(
1 + ad − (1 + a)d

))
= pn ·

∑
x

∑
a

χ
(
xd
(
1 + ad − (1 + a)d

))
= p2n · b,

since x �→ xd is one-to-one.

Similar argumentation leads to expressions for general power sums

Si =
pn−2∑
τ=0

(Cd(τ) + 1)i,

see [21]. The corresponding equations are unfortunately extremely difficult
to handle when i > 3.

If d = pi for some i, then Cd(τ) is two-valued; the sequences ut and udt

are in fact the same. Conversely, Helleseth [18] has proved

Theorem 2.5. If d is not a power of p, then Cd(τ) has at least three dif-
ferent values.
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Some additional properties, e.g. divisibility results, of cross-correlation
can be found in [18], but not very many general results are known about
cross-correlation functions of m-sequences. One divisibility result will be
given in Theorem 3.5.

2.2 Known cross-correlation functions

The cross-correlation function is completely known for relatively few infinite
families of decimations. These are listed in the following.

In addition, there are also some decimations (both binary and non-
binary) for which the values are known, but for which the distribution of
the values has not been found.

In the following, pn−1 is always the period of the sequences in question,
and k is a parameter which satisfies the given conditions.

2.2.1 Binary cross-correlations

The following decimations produce a three-valued cross-correlation function.

(i) d = 2k + 1, with n/ gcd(n, k) odd,

(ii) d = 22k − 2k + 1, with n/ gcd(n, k) odd,

(iii) d = 2n/2 + 2(n+2)/4 + 1, with n ≡ 2 (mod 4),

(iv) d = 2n/2+1 + 3, with n ≡ 2 (mod 4),

(v) d = 2(n−1)/2 + 3, with n odd,

(vi) d = 2(n−1)/2 + 2(n−1)/4 − 1, with n ≡ 1 (mod 4), and

(vii) d = 2(n−1)/2 + 2(3n−1)/4 − 1, with n ≡ 3 (mod 4).

The case (i) was proved by Gold [16], the case (ii) is due to Kasami [28], and
the cases (iii) and (iv) were proved by Cusick and Dobbertin [8]. The case
(v) is the famous Welch conjecture and was proved by Canteaut, Charpin
and Dobbertin [3]. The cases (vi) and (vii) were conjectured by Niho [34]
and proved by Hollmann and Xiang [26] building heavily on results in [3]
and [11].

There are only three known four-valued cases:
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(i) d = 2n/2+1 − 1, with n ≡ 0 (mod 4),

(ii) d = (2n/2 + 1)(2n/4 − 1) + 2, with n ≡ 0 (mod 4), and

(iii) d =
∑n/2

i=0 2im, with n ≡ 0 (mod 4), 0 < m < n, gcd(n, m) = 1.

The cases (i) and (ii) are due to Niho [34]. The case (iii) is due to Dobbertin
[10]. The family (iii) includes the decimations in (i).

The known five-valued cases are

(i) d = 2n/2 + 3, with n even and n/2 > 2, and

(ii) d = 2n/2 + 2n/4 + 1, with n ≡ 0 (mod 4) and n/4 odd.

The case (i) was conjectured by Niho [34] and proved by Helleseth [18].
The family in (ii) was found by Dobbertin [10].

The known six-valued cases are

(i) d = 1
3 (2n − 1) + 2s, with n even, s < n, and 1

32−s (2n − 1) �≡ 2
(mod 3), and

(ii) d = 2n/2 − 2n/4 + 1, with n ≡ 0 (mod 8).

Both (i) and (ii) are due to Helleseth [18, 19].
One notable decimation for which the values are known is d = −1,

see [29]. This is known as the Kloosterman sum. Although there is an
apparent connection to the theory of algebraic curves (or algebraic function
fields), see [38], this case is the only one which actually has been solved with
algebraic-geometric methods.

2.2.2 Non-binary cross-correlations

It seems that in general the (algebraic) cross-correlation problem is more dif-
ficult for non-binary than binary sequences. Clearly, one reason is that the
computation of non-binary cross-correlation requires exponential amount of
time compared to computation of non-binary cross-correlation. The follow-
ing seven cases have been completely solved:

(i) d = 1
2

(
p2k + 1

)
, with n/ gcd(n, k) odd,

(ii) d = p2k − pk + 1, with n/ gcd(n, k) odd,

(iii) d = 2 · 3(n−1)/2 + 1, with p = 3 and n odd,
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(iv) d = 2 · pn/2 − 1, with n even and pn/2 �≡ 2 (mod 3),

(v) d = 1
2(pn − 1) + pi, with 0 ≤ i < n and pn ≡ 1 (mod 4),

(vi) d = 1
3(pn − 1) + pi, with 0 ≤ i < n, n even, p ≡ 2 (mod 3) and

1
3p−i(pn − 1) �≡ 2 (mod 3), and

(vii) d = pn/2 − pn/4 + 1, with n ≡ 0 (mod 4) and pn/4 �≡ 2 (mod 3).

Cases (i) and (ii) are three-valued and were found by Trachtenberg [39]
for odd n. The generalizations are due to Helleseth [18]. The family (iii)
was found by Dobbertin et al. [14], and is three-valued as well.

Decimations in (iv) were found by Helleseth [18] and they produce four-
valued cross-correlations.

The five-valued case (v) was found by Helleseth [18].
Cases (vi) and (vii) are due to Helleseth [18, 20] and are six-valued.
It is interesting to note that apart from (iii) and (vii) all were found

already in the 1970s.



Chapter 3

Decimations of Niho type

In this chapter we review the main theorem in [34] and give a simplified
proof. We will also give a generalization of Niho’s theorem and show how
this implies the original one. Lastly, we give a proof of Charpin’s result,
which states that Niho type decimations lead to at least four-valued cross-
correlation functions.

3.1 Niho’s theorem

We begin with a definition.

Definition 3.1. Assume that n = 2k and let q = pk. A decimation d is
said to be of Niho type if

d ≡ 1 (mod q − 1).

From now on the length of the sequences in question will always be
pn − 1, where n = 2k, and the decimations we study will all be of Niho
type. In this section p = 2.

Theorem 3.2 gives the main technique used in [34]. Niho treated a
seemingly more general class of decimations; he assumed only that d ≡ 2i

(mod 2k − 1) for some i. However, by Theorem 2.2 the decimation 2k−id
produces an equivalent cross-correlation function, and therefore we can as-
sume that d ≡ 1 (mod 2k − 1). This simplifies the proof considerably.

When we study cross-correlation functions of m-sequences, we will al-
ways assume that gcd(d, pn − 1) = 1. However, some results make sense
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without this condition, and are useful for instance in finding weight distri-
butions of certain cyclic codes.

The following theorem describes the main method used by Niho in his
thesis [34]. Recall that

S = {x ∈ GF (2n) : xx = 1}.
Theorem 3.2. ([34]) Assume that d ≡ 1 (mod 2k − 1). Then Cd(τ) as-
sumes exactly the values

−1 + (N(y) − 1) · 2k,

where N(y) is the number of x ∈ S such that

x2d + yxd+1 + yxd−1 + 1 = 0, (3.1)

and y runs through the nonzero elements of the field GF (2n).

Proof. First of all, by Lemma 1.3 every nonzero x ∈ GF (2n) can be repres-
ented uniquely as x = αβ, where α ∈ GF (2k) and β ∈ S. Note that αd = α

for α ∈ GF (2k) and β2k
= β−1 for β ∈ S. Using these together with the

linearity and the transitivity of the trace, we get

Cd(τ) =
∑
x�=0

(−1)trn
1 (yx+xd)

=
∑

β

∑
α �=0

(−1)trn
1 (yαβ+αdβd)

=
∑

β

∑
α �=0

(−1)trn
1 (α(yβ+βd))

=
∑

β

∑
α �=0

(−1)trk
1 (α(yβ+βd+yβ−1+β−d))

= −2k − 1 +
∑

β

∑
z∈GF (q)

(−1)trk
1 (z(yβ+βd+yβ−1+β−d))

= −1 + (N(y) − 1) · 2k,

where N(y) is the number of x ∈ S such that

xd + yx + yx−1 + x−d = 0.
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Remark 3.3. (i) Assume now that for some s, and for some t such that
gcd(t, 2k + 1) = 1, we have td ≡ s (mod 2k + 1). Then the mapping
x �→ xt is a permutation of S, and substituting xt for x in (3.1) yields
an equivalent equation

x2s + yxs+t + yxs−t + 1 = 0. (3.2)

We could have obtained this equation directly by noting that every
x ∈ GF (2n)× has a unique representation also as x = αβt with α ∈
GF (q)× and β ∈ S.

The form (3.2) will occur in Theorem 5.2.

(ii) If gcd(s, 2k + 1) = 1 and gcd(t, 2k + 1) = 1, then by the Chinese
remainder theorem there is a decimation leading to the equation (3.2),
i.e., there is a d such that gcd(d, 2n − 1) = 1 and{

d ≡ 1 (mod 2k − 1)
td ≡ s (mod 2k + 1).

(iii) It is easy to see that replacing s by −s in (3.2) leads to the same
equation. Also, the roles of s and t can be changed. These two remarks
just reflect the facts that the decimations 2kd and d−1 (mod 2n − 1)
produce equivalent cross-correlation functions.

(iv) In (3.2) both s and t are typically odd. In this case the square root can
be taken of the equation, since we are interested only in the number
of distinct solutions. Replacement of √

y by y does not affect the
distribution of the number of the solutions, since √

y runs through
GF (2n) when y does.

3.2 A generalization of Niho’s theorem

In this section p is an arbitrary prime, n = 2k and q = pk.
As we noted, Lemma 1.3 fails to be valid when p is odd. However, using

the representation given in the equation (1.2), we can exploit the same ideas
as in the proof of Theorem 3.2.

Theorem 3.4. ([35]) Assume that d ≡ 1 (mod q − 1), and denote s =
(d − 1)/(q − 1). Then Cd(τ) assumes exactly the values

−1 + (N(y) − 1) · q,
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where N(y) is the number of common solutions to{
z2s−1 + yzs + yzs−1 + 1 = 0

z ∈ S.

Proof. Every nonzero x ∈ GF (q2) can be represented uniquely as x = αiβj ,
where β is a primitive element of GF (q2), α = βq+1, i = 0, 1, . . . q − 2, and
j = 0, 1, . . . , q. Using this

Cd(τ) =
∑
x�=0

ζtrn
1 (yx−xd)

=
∑

j

∑
i

ζtrn
1 (yαiβj−αdiβdj)

=
∑

j

∑
i

ζtrn
1 (αi(yβj−βdj))

=
∑

j

∑
i

ζtrk
1 (αi(yβj−βdj+yqβqj−βqdj))

= −q − 1 +
∑

j

∑
z∈GF (q)

ζtrk
1 (z(yβj−βdj+yqβqj−βqdj))

= −1 + (N(y) − 1) · q,
where N(y) is the number of solutions x ∈ {1, β, . . . , βq} to

yx − xd + yqxq − xqd = 0. (3.3)

Now divide by x, and denote z = xq−1. It is clear that when x runs
through {1, β, . . . , βq}, then z runs through S. Thus replacing y by −y we
get an equivalent pair{

y + z
d−1
q−1 + yz + z

qd−1
q−1 = 0

z ∈ S.
(3.4)

In detail, if x ∈ {1, β, . . . , βq} is a solution to (3.3), then xq−1 = z ∈ S is
a solution to (3.4). On the other hand, if z ∈ S is a solution to (3.4), then
there is a unique solution x ∈ {1, β, . . . , βq} to (3.3) such that xq−1 = z.

The first equation in (3.4) reduces easily to

z2s−1 + yzs + yzs−1 + 1 = 0. (3.5)
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A similar argument leads to the following theorem, which seems to be
new.

Theorem 3.5. Assume that k divides n and that d ≡ 1 (mod pk−1). Then
Cd(τ) + 1 is divisible by pk.

Proof. Note that x ∈ GF (pn)× has a unique representation as x = αiβj ,
where β is a primitive element of GF (pn), α = β(pn−1)/(pk−1), and i =
0, 1, . . . , pk−2, and j = 0, 1, . . . , (pn−1)/(pk−1)−1. As ptk ≡ 1 (mod pk−1)
for all t = 0, 1, . . ., we may proceed as in the proof of Theorem 3.4.

Remark 3.6. (i) Let p = 2. The original Niho’s theorem can be easily
deduced from Theorem 3.4 as follows. Firstly, squaring the equation
(3.5) gives an equivalent equation (y2 may be replaced by y)

z4s−2 + yz2s + yz2s−2 + 1 = 0.

Secondly, from s = (d − 1)/(q − 1) we get

d = s · (q + 1) − 2s + 1, (3.6)

and hence
2s = s(q + 1) + 1 − d,

2s − 2 = s(q + 1) − 1 − d,

and
4s − 2 = 2s(q + 1) − 2d.

Since the exponents can be reduced modulo q + 1, using (3.6) we get
the equation (3.1).

(ii) The equation (3.3) can sometimes, but not always, be deduced also by
combining Theorem 3.8. of [18] and a theorem due to Baumert and
McEliece (see [1] and [18]). However, this method leads to lengthy
and more detailed calculations, compare the proofs of Theorem 4.13
of [18] and Theorem 5.11.

(iii) The condition z ∈ S is far more convenient than z ∈ {1, β, . . . , βq}.
Firstly, it usually reduces the degree of the corresponding equation.
Secondly, the set S can be parameterized with the elements of GF (q),
i.e., the equation can be transformed to an equation over the subfield
GF (q), see Lemma 1.2 and Theorem 5.2.
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As a quick application of Theorem 3.4 we give a slick proof of the fol-
lowing result.

Theorem 3.7. ([24]) Let p = 3 and n = 2k, where n �≡ 2 (mod 4). Then
for d = 3 · pk − 2 , Cd(τ) is at most five-valued.

Proof. Since now d = 3 · (pk − 1
)
+ 1, we may use Theorem 3.4 with s = 3.

The corresponding equation is then

x5 + yx3 + yx2 + 1 = 0, (3.7)

which is of degree five. Therefore Cd(τ) is at most six-valued. It suffices to
show that (3.7) has never exactly four solutions in S.

It is obvious that if four roots of this equations are in S, then the fifth
root is too. Hence (3.7) can have exactly four distinct roots in S if and only
if it has a double root and other roots are simple (and of course all roots
in S). The usual derivative argument shows that multiple roots in S are
possible if and only if y ∈ S. But then (3.7) splits as

(
x3 + y

) (
x2 + y

)
= 0,

which has either exactly one or exactly three solutions.

Computed results in [15] show that this is indeed a five-valued fam-
ily. Some partial results on the distribution of the values are given in the
unpublished manuscript [24].

We will give another application of Theorem 3.4 in the last chapter.

3.3 Charpin’s result

Recall that when d is of Niho type, the values of Cd(τ) are in one-to-one
correspondence with the values

−1 + (N(y) − 1) · pk,

where N(y) is the number of solutions x ∈ S to

x2s−1 + yxs + yxs−1 + 1 = 0. (3.8)
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Let Ni denote the number of times the value −1 + (i − 1) · pk occurs.
We have the following equations:

2s−1∑
i=0

Ni = p2k − 1 (3.9)

2s−1∑
i=0

(i − 1)Ni = pk (3.10)

2s−1∑
i=0

(i − 1)2Ni = p2k. (3.11)

The first equation here is trivial, since there are p2k−1 distinct y ∈ GF (q2)×.
The second follows easily from the first power sum equation given in The-
orem 2.4 and the identity

pn−2∑
τ=0

(Cd(τ) + 1) =
2s−1∑
i=0

Ni

(
(i − 1) · pk

)

by dividing by pk. The third equation can be derived similarly from the
second power sum equation.

For convenience, we denote

r0 = gcd(s, q + 1)

and
r1 = gcd(s − 1, q + 1).

Furthermore, we denote

Ui = Sri = {xri : x ∈ S}

for i = 0, 1. Note that Ui are subgroups of S.
Let N(y) be the number of solutions to (3.8) corresponding to y ∈

GF (q2).
We will need the following lemma.

Lemma 3.8. If r1 > 1 (resp. r0 > 1) then U0 \U1 �= ∅ (resp. U1 \U0 �= ∅).
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Proof. By symmetry, it suffices to prove the first statement. Assume on the
contrary that U0 \ U1 = ∅, i.e., U0 ⊆ U1. Then U0 is a subgroup of U1, and
therefore (q + 1)/r0 (the order of U0) divides (q + 1)/r1 (the order of U1).
From this we deduce that r1 divides r0. Since clearly gcd(r0, r1) = 1, we
must have r1 = 1.

The following result was proved for binary sequences in [7]. The follow-
ing proof was given in [23], and it applies to non-binary sequences as well.
We will implicitly exclude the case of autocorrelation, i.e., we assume that
the corresponding sequences are different.1

Theorem 3.9. Assume that d is of Niho type. Then the cross-correlation
function Cd(τ) is at least four-valued.

Proof. We have to show that Ni > 0 for at least four different indices i.
Subtracting (3.9) from (3.11) gives

N1 + 1 =
2s−1∑
i=3

i(i − 2)Ni, (3.12)

which is impossible when N1 = 0 or Ni = 0 for all i ≥ 3.
Squaring (3.10) and comparing with (3.11) gives

(
2s−1∑
i=0

(i − 1)Ni

)2

=
2s−1∑
i=0

(i − 1)2Ni, (3.13)

which implies

2
∑
i<j

(i − 1)(j − 1)NiNj =
2s−1∑
i=0

(i − 1)2
(
Ni − N2

i

)
. (3.14)

Suppose that N0 = 0. If there is only one value i ≥ 2 such that Ni > 0,
then (3.10) and (3.11) give (i − 1)Ni = pk and (i − 1)2Ni = pn. This
implies that i = pk + 1 and Npk+1 = 1. In this case the correlation value is
−1 + (pk + 1 − 1)pk = pn − 1, i.e., we have the case of the autocorrelation.

Since the cross-correlation function always takes on at least three values
(or from the preceding argument) it follows that Ni �= 0 for two distinct

1The decimation d = 1 is of Niho type, but produces a two-valued cross-correlation,
see page 17.



3.3 Charpin’s result 31

values i ≥ 2 and j ≥ 2. This implies that the left hand side is positive,
contradicting the fact that the right hand side is at most 0.

We have now shown that N0 > 0, N1 > 0 and Ni > 0 for some i ≥ 3.
Hence, in order to show that cross-correlation function is at least four-
valued, we need to show that either N2 > 0 or that Ni and Nj are nonzero
for some i > j > 2.

In the case y ∈ S the equation (3.8) splits as(
xs−1 + y

)
(xs + y) = 0, (3.15)

and then clearly2

(i) N(y) = r0 for y ∈ U0 \ U1

(ii) N(y) = r1 for y ∈ U1 \ U0

(iii) N(y) = r0 + r1 for y ∈ U0 ∩ U1, y �= 1

(iv) N(1) = r0 + r1 − 1.

In the case r0 = r1 = 1 it follows from (iii) that N(y) = 2 for any
y ∈ S \ {1} and therefore N2 > 0 and we have at least four-valued cross-
correlation.

In the case when r0 > 1 or r1 > 1, we obtain from (iv) that Nr0+r1−1 >
0. Further, (iii) implies that Nr0+r1 > 0 except possibly when U0∩U1 = {1}.
In the exceptional case we have r0 > 1 and r1 > 1, and then Lemma 3.8
implies that at least one of U0 \U1 or U1 \U0 is nonempty. From (i) or (ii)
we obtain that either Nr0 > 1 or Nr1 > 1. Since these indices are ≥ 2 and
different from r0 + r1 − 1, we conclude that the cross-correlation is at least
four-valued.

Note that in the course of the proof we got the fact that −1 is one of the
values of Cd(τ). An old and unproven conjecture of Helleseth states that
no matter what d is, −1 is always one of the values of Cd(τ), see [18]. For
Niho type d this is proved in a different way in [13]3.

Corollary 3.10. If d is of Niho type then both −1 and −1 − pk occur as
values of Cd(τ).

2It is well known that if the equation xm = a has a solution in a cyclic group of order
q + 1, then it has exactly gcd(q + 1, m) solutions in this group.

3Again this is proved for binary sequences only. However, by Theorem 3.4 the same
proof applies to non-binary sequences as well.
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The binary case of Corollary 3.10 is also proved in [7].
As a simple consequence of the methods used in the previous proof we

get the following result.

Theorem 3.11. Assume that d is of Niho type and that Cd(τ) is four-
valued. Then r0 = 1 or r1 = 1.

Proof. Assume on the contrary that both r0 > 1 and r1 > 1. Then U0 \
U1 �= ∅ and U1 \ U0 �= ∅ (this is a simple exercise in group theory; note
that gcd(r0, r1) = 1), and therefore we know that Nr0 > 0, Nr1 > 0, and
Nr0+r1−1 > 0. Together with N0 > 0 and N1 > 0 we have at least five
values.



Chapter 4

On the third power sum

4.1 Motivation and the idea

Unless otherwise stated, in this chapter p will be an arbitrary prime. As
before, we denote q = pk and d satisfies the Niho condition

d ≡ 1 (mod q − 1).

In what follows, the parameter s is defined by the equation

d = (q − 1)s + 1.

We will now begin our study on the number of solutions x ∈ GF (q2) to

(x + 1)d = xd + 1. (4.1)

Solving (4.1) gives the value of the third power sum
∑pn−2

τ=0 (Cd(τ) + 1)3,
see Theorem 2.4, and is therefore helpful in finding the distribution of the
values of Cd(τ).

The equation (4.1) is interesting in itself. Besides in the theory of m-
sequences, it occurs in many other contexts in combinatorics. For instance,
it is related to the number of codewords of weight three in certain cyclic
codes (see [33]). As another example, (4.1) is related to nonlinearity prop-
erties of power functions, (see e.g. [12]); this is of interest in cryptography.
The two connections above are also studied in [4] and [5]. Thirdly, in [9]
the polynomial (x+1)d +xd +1 was used in constructing of difference sets.

Our approach to the equation (4.1) stems from the polar representation
described in Lemma 1.3. In the binary case, the representation (1.1) (and



34 On the third power sum

its uniqueness) suggests that comparison of the "α-part" and the "β-part"
of both sides of the equation (4.1) may give some information.

In the nonbinary case, the equation (1.1) is still valid. However, it
yields two representations for the squares in GF (q2), and no representation
for the non-squares. In spite of this, the representation is still strong enough
in many cases. It appears that only minor modifications are needed in order
to treat both binary and non-binary cases simultaneously.

Unless otherwise indicated, the results in this chapter are from [23].

4.2 The results

Firstly, we note that every x ∈ GF (q) is a solution to (4.1). This is a simple
consequence of the fact d ≡ 1 (mod q − 1). Among other things, we will
see that under certain conditions there are no other solutions.

We also note that if d ≡ pi (mod pj − 1) for some i and j, then every
x ∈ GF (pj) satisfies the equation (4.1).

The following lemma will be crucial.

Lemma 4.1. Assume that d = (q − 1)s + 1 and that x ∈ GF (q2)× is a
solution to

(x + 1)d = xd + 1. (4.2)

Then z = xq−1 satisfies zs = 1 or zs−1 = 1.

Proof. Since
(x + 1)d = xd + 1, (4.3)

we also have
(x + 1)d = xd + 1. (4.4)

Multiplying these equations gives

(xx + x + x + 1)d = (xx)d + xd + xd + 1. (4.5)

Clearly xx, x+x ∈ GF (q) and therefore also xx+x+x+1 ∈ GF (q). Since
for a ∈ GF (q) we have ad = a, (4.5) implies

x + x = xd + xd.

Divided by x this becomes

1 + xq−1 = xd−1 + xqd−1.
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Let z = xq−1. Since zq+1 = 1, we get

1 + z = zs + z1−s,

which is equivalent to

(zs − 1)(zs−1 − 1) = 0, (4.6)

from which the claim follows.

The key idea here is that z is an element of S, which in turn is a cyclic
group; the order of this group is q + 1. Therefore (4.6) implies in fact that
zgcd(s,q+1) = 1 or zgcd(s−1,q+1) = 1. Very often the greatest common divisors
in question are quite small, and the equation (4.1) becomes tractable.

From now on, if x is known from the context, we will denote z = xq−1.
Note that z = 1 if and only if x ∈ GF (q)×.

We now give some identities, which will be useful in what follows.
Firstly, we have trivially

x = xz. (4.7)

Secondly, we have xd = x(q−1)s+1 = xzs. Therefore, if zs = 1, we have

xd = x. (4.8)

On the other hand, if zs−1 = 1, by (4.7) we have

xd = x. (4.9)

Since the elements of GF (q) are trivially solutions to (4.1), we may
assume x �= −1. Therefore the equations (4.3) and (4.4) imply

(
x + 1
x + 1

)d

=
xd + 1
xd + 1

.

Hence, if zs = 1 we get using (4.8) that
(

x + 1
x + 1

)d

=
x + 1
x + 1

,

i.e., (
x + 1
x + 1

)d−1

= 1. (4.10)
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If zs−1 = 1 we get using (4.9) that

(
x + 1
x + 1

)d

=
x + 1
x + 1

,

i.e., (
x + 1
x + 1

)d+1

= 1. (4.11)

Note also that

gcd(d + 1, q + 1) = gcd(s(q − 1) + 2, q + 1)
= gcd(s(q + 1) − 2s + 2, q + 1)
= gcd(2(s − 1), q + 1), (4.12)

and similarly,
gcd(d − 1, q + 1) = gcd(2s, q + 1). (4.13)

Lemma 4.2. Assume that q is fixed.

(i) Let x ∈ GF (q2) \ {0,−1}, and denote z = xq−1 and w = (x + 1)q−1.
Then x is a solution to (4.1) if and only if zs = ws = 1 or zs−1 =
ws−1 = 1.

(ii) The set of solutions to (4.1) depends only on the pair {gcd(s, q +
1), gcd(s − 1, q + 1)}, not on the specific choice of s. More precisely,
let e = (q − 1)t + 1 and assume that either{

gcd(s, q + 1) = gcd(t, q + 1)
gcd(s − 1, q + 1) = gcd(t − 1, q + 1)

or {
gcd(s, q + 1) = gcd(t − 1, q + 1)

gcd(s − 1, q + 1) = gcd(t, q + 1).

Then x ∈ GF (q2) is a solution to (4.1) if and only if x satisfies
(x + 1)e = xe + 1.

Proof. (i) If x �= 0 is a solution to (4.1), then by the previous lemma
zs = 1 or zs−1 = 1. If zs = 1, using (4.8) we get from (x+1)d = xd+1
that ws = 1. If zs−1 = 1, then (4.9) implies ws−1 = 1. If zs = ws = 1
or zs−1 = ws−1 = 1, then obviously x satisfies (4.1).
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(ii) This follows easily from (i) and the fact that both z and w are elements
of S. As an illustration, assume that gcd(s, q + 1) = gcd(t, q + 1) and
gcd(s − 1, q + 1) = gcd(t − 1, q + 1). If x �= 0,−1 satisfies (4.1) then
zs = ws = 1 or zs−1 = ws−1 = 1. We then have zt = wt = 1 or
zt−1 = wt−1 = 1, because of the assumption on the greatest common
divisors. From (i) we deduce (x + 1)e = xe + 1. The remaining cases
are left to the reader.

We will now give necessary and sufficient conditions when GF (q) is the
exact set of solutions to (4.1). The binary case differs slightly from the
non-binary counterpart. The reason for this will become evident.

Theorem 4.3. Let q = pk be odd. Assume that d = (q − 1)s + 1 and that
either {

gcd(s, q + 1) = 1
gcd(s − 1, q + 1) = 2

or {
gcd(s, q + 1) = 2

gcd(s − 1, q + 1) = 1.

Then the equation (4.1) has exactly q solutions in the field GF (q2), i.e.,
there are no solutions outside of GF (q).

Proof. We firstly note that the left hand sides of the equations (4.10) and
(4.11) are elements of S. Moreover, from (4.12) (resp. (4.13)) we get that
gcd(d + 1, q + 1) is 1, 2 or 4 (resp. gcd(d − 1, q + 1) is 1, 2 or 4).

In any case, if x ∈ GF (q2) \ {0,−1} is a solution to (4.1), from (4.10)
or (4.11) together with (4.12) or (4.13) we have

(
x + 1
x + 1

)4

= 1,

which we can write as

x4 + 4x3 + 6x2 + 4x + 1 = x4 + 4x3 + 6x2 + 4x + 1.

Again we write x = xz. By assumption z satisfies z2 = 1. Using this, we
get easily

x3 + x = x3z + xz,
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and this implies that z = 1, x = 0 or x2 = −1. If z = 1 or x = 0 then
x ∈ GF (q). Furthermore, the solutions of x2 = −1 are in GF (q) if q ≡ 1
(mod 4). We now look closer to the case q ≡ −1 (mod 4). Then k is
necessarily odd.

Claim. If q ≡ −1 (mod 4) and x2 = −1, then x is not a solution to
(4.1).

Proof of the claim. Note that if x2 = −1, then x ∈ GF (p2). Assume on
the contrary that x �∈ GF (q), i.e., that x ∈ GF (p2) \ GF (p) satisfies both
x2 = −1 and (4.1). Firstly, we note that

d = (pk − 1)s + 1 ≡ (p − 1)s + 1 (mod p2 − 1),

so
(x + 1)(p−1)s+1 = x(p−1)s+1 + 1. (4.14)

Case 1. Assume first xd = x. Then we get from (4.14) that (x +
1)(p−1)s = 1. Denote ω = (x+1)p−1. Then ord(ω) > 2, which is seen in the
following way:

ω2 = (x + 1)2(p−1) = (x2 + 2x + 1)p−1 = (2x)p−1 = xp−1 �= 1,

since x �∈ GF (p). On the other hand ord(ω) divides both p + 1 and s, since
ωp+1 = (x + 1)p2−1 = 1 and ωs = 1. Therefore ord(ω) > 2 is a factor of
both pk +1 (k is odd) and s which is in contradiction with gcd(s, q +1) = 1
or gcd(s, q + 1) = 2.

Case 2. Secondly, assume xd = x. Since k is odd, we have x = xp.
Hence (4.14) gives

(x + 1)(p−1)s+1 = xp + 1 = (x + 1)p,

i.e., (x + 1)(p−1)(s−1) = 1. We may now proceed similarly as in Case 1.

Because of Lemma 4.2, Case 2 would have followed from Case 1.
The following theorem was given in [22]. We present here the slick proof

from [23].

Theorem 4.4. Assume that d ≡ 1 (mod 2k − 1). If gcd(d − 1, 2k + 1) =
gcd(d + 1, 2k + 1) = 1, then the equation

(x + 1)d = xd + 1 (4.15)

has exactly 2k solutions in GF (2n).
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Proof. Every x ∈ GF (2k) is a solution to (4.15) since d ≡ 1 (mod 2k − 1).
We now assume that x �= 0, 1 satisfies (4.15).

We know that (at least) one of the equations (4.10) and (4.11) is satisfied.
Since gcd(d − 1, 2k + 1) = gcd(d + 1, 2k + 1) = 1, we must have

x + 1
x + 1

= 1,

which implies x = x, i.e., x ∈ GF (q).

The converse case to Theorems 4.3 and 4.4 is given by the following.
Note that the proof is constructive.

Theorem 4.5. Assume that gcd(s, q+1) > 2 or gcd(s−1, q+1) > 2. Then
the equation (4.1) has a solution outside of GF (q).

Proof. We will treat the case gcd(s, q+1) > 2. The case gcd(s−1, q+1) > 2
then follows from Lemma 4.2.

The condition gcd(s, q + 1) > 2 implies that there are z0, z1 ∈ S such
that z0, z1 �= 1, z0 �= z1, and zs

0 = zs
1 = 1. We define

x0 =
z1 − 1
z0 − z1

,

and
x1 = x0 + 1 =

z0 − 1
z0 − z1

.

We then have

xq−1
0 =

(z1 − 1)q(z0 − z1)
(z0 − z1)q(z1 − 1)

=
zq
1z0 − zq+1

1 − z0 + z1

zq
0z1 − zq

0 − zq+1
1 + zq

1

=
zq
1z0 − 1 − z0 + z1

zq
0z1 − zq

0 − 1 + zq
1

=
z0z1

z0z1
· zq

1z0 − 1 − z0 + z1

zq
0z1 − zq

0 − 1 + zq
1

=
z2
0 − z0z1 − z2

0z1 + z0z
2
1

z2
1 − z1 − z0z1 + z0

=
z0(z2

1 − z1 − z0z1 + z0)
z2
1 − z1 − z0z1 + z0

= z0.
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Similarly,

xq−1
1 =

(z0 − 1)q(z0 − z1)
(z0 − z1)q(z0 − 1)

=
zq+1
0 − z1z

q
0 − z0 + z1

zq+1
0 − zq

0 − zq
1z0 + zq

1

=
1 − z1z

q
0 − z0 + z1

1 − zq
0 − zq

1z0 + zq
1

=
z0z1

z0z1
· 1 − z1z

q
0 − z0 + z1

1 − zq
0 − zq

1z0 + zq
1

=
z0z1 − z2

1 − z2
0z1 + z2

1z0

z0z1 − z1 − z2
0 + z0

= z1.

We claim that x0 is a solution to (4.1). Note that the conditions z0 �= 1 and
xq−1

0 = z0 imply that x0 �∈ GF (q). Since zs
0 = zs

1 = 1 we deduce (as earlier)
that

xd
0 = x0

and
xd

1 = x1.

Therefore
(x0 + 1)d = xd

1 = x1 = x0 + 1 = xd
0 + 1,

and the proof is complete.

Sometimes it is possible to decide whether a specific element x ∈ GF (q2)
is a solution. As an example, we give the following theorem.

Theorem 4.6. Let p = 3 and x ∈ GF (9) \GF (3). Then x is a solution to
(4.1) if and only if d ≡ 1 or d ≡ 3 (mod 8).

Proof. Firstly, d is odd since d ≡ 1 (mod q−1), and therefore d ≡ 1, 3, 5 or
7 (mod 8). Clearly, if d ≡ 1 or d ≡ 3 (mod 8), then x satisfies (4.1). The
lemma now follows from the factorizations

(x + 1)5 − x5 − 1 = 2x(x + 1)(x − 1)2

and
(x + 1)7 − x7 − 1 = x(x + 1)(x − 1)4.
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When we consider cross-correlation functions of m-sequences we always
assume that gcd(d, pn − 1) = 1. If p = 2 then 3 divides pn − 1 (n is even),
and therefore 3 cannot divide d. So 3 divides either d − 1 or d + 1. Now
if k is odd, then 3 divides 2k + 1 and we see that Theorem 4.4 does not
apply. In fact every x ∈ GF (4) is a solution to (4.1) since either d ≡ 1 or
d ≡ 2 (mod 3). The following theorem gives a solution to the cases similar
to this.

Theorem 4.7. Assume that for some i ≥ 1 either{
gcd(s, q + 1) = 1

gcd(s − 1, q + 1) = pi + 1

or {
gcd(s, q + 1) = pi + 1

gcd(s − 1, q + 1) = 1.

Then the set of solutions to (4.1) is GF (pk)∪GF (p2i), and hence the number
of solutions is pk + p2i − pi.

Proof. We remind the reader that pi+1 divides pk +1 if and only if i divides
k and k/i is odd. If pi + 1 divides pk + 1, then

pk + 1 =
(
pi + 1

) (
p(u−1)i − p(u−2)i + · · · − pi + 1

)
,

where u = k/i.
Assume now that x is a solution outside of GF (q). We will first show

that necessarily x ∈ GF (p2i). We note firstly that when pi+1 divides pk +1
we never have q ≡ −1 (mod 2pi + 2) since k/i is odd. This means (see the
equations (4.12) and (4.13)) that gcd(d + 1, q + 1) = gcd(s − 1, q + 1) and
gcd(d− 1, q + 1) = gcd(s, q + 1). Thus we have either from (4.10) or (4.11)
that (

x + 1
xz + 1

)pi+1

= 1,

where z satisfies zpi+1 = 1. From this we deduce

xpi+1 + xpi
+ x + 1 = xpi+1zpi+1 + xpi

zpi
+ xz + 1,

which implies that
−(zpi − 1)xpi

= (z − 1)x
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or
−(zpi−1 + zpi−2 + · · · + 1)xpi

= x,

since now z �= 1.
Since z �= 1 satisfies zpi+1 = 1 we have zpi

= −(zpi−1 + zpi−2 + · · · + 1)
and hence

zpi
xpi

= x.

This is the same as xpk+i
= x, which in turn is equivalent to x ∈ GF (pk+i).

As noted, k/i must be odd. Thus gcd(k + i, 2k) = 2i and then x ∈
GF (p2i), which is what we wanted to show. The reader should note here
that GF (p2i) ⊆ GF (p2k).

Lastly, we have to prove that every x ∈ GF (p2i) satisfies the equation
(4.1). Assume firstly that pi + 1 divides s. Since pi + 1 divides q + 1 we
know that i divides k and therefore pi − 1 divides q − 1. Hence d ≡ 1
(mod p2i − 1). On the other hand, if pi + 1 divides s − 1 we may deduce
similarly that d ≡ pk (mod p2i − 1).

The statement on the number of solutions follows easily from the fact
GF (pk) ∩ GF (p2i) = GF (pi).

Remark 4.8. Let p = 2. Theorem 4.4 and Theorem 4.7 cover the cases
where the pair of greatest common divisors in question are e.g. {1, 1}, {1, 3},
{1, 5} or {1, 9}. Note that for example the pairs {1, 7}, {3, 5}, {3, 7}, and
{5, 7} are not possible. So the "smallest" unknown case corresponds to the
pair {1, 11}.



Chapter 5

Cross-correlation functions of
Niho type

In this chapter we describe all known Niho type cross-correlation functions.
Especially, in Section 5.2 we give a large class of decimations which lead to
four-valued cross-correlation functions. Another purpose of this chapter is
to give a simple and unified treatment for the other cases. A central role is
played by the results developed in the preceding two chapters.

5.1 The known cases

The previously known cross-correlation functions of Niho type are

(i) d = 2n/2+1 − 1, with n ≡ 0 (mod 4),

(ii) d = (2n/2 + 1)(2n/4 − 1) + 2, with n ≡ 0 (mod 4),

(iii) d =
∑n/2

i=0 2im, with n ≡ 0 (mod 4), 0 < m < n, gcd(n, m) = 1,

(iv) d = 2n/2 + 3, with n even and n/2 > 2, and

(v) d = 2 · pn/2 − 1, with n even and pn/2 �≡ 2 (mod 3).

The first four concern binary sequences only, and the fifth is a p-ary version
of the decimations in (i). For the references, see Section 2.2.

In the next section we give a family which properly includes the decim-
ations both in (i) and (ii). In addition we will give simplified treatments
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for the other cases, and finally describe a family of decimations, which is
connected to Kloosterman sums.

5.2 New four-valued cross-correlations

5.2.1 The fundamental equation

We will see that all known four-valued cross-correlation functions (are of
Niho type and) lead to a similar equation. These equations are all of the
form (5.1), and we are interested in the number of solutions in S. However,
according to computed results in [15], there are four-valued cross-correlation
functions which are not related to Niho’s theorem.

Curiously enough, the equation (5.1) together with the condition x ∈ S
behaves like an affine equation over the subfield. Our treatment is based on
this behavior, parameterizations given in Lemma 1.2, properties of linear-
ized polynomials, and the following lemma.

Lemma 5.1. Let α be a nonzero element in some extension of the field
GF (p). If the equation

xps−1 = α

has a solution in GF (pk), then it has exactly pgcd(k,s) − 1 solutions in the
field GF (pk).

Proof. If x0 is a solution, then all the solutions are ux0, where u ∈ GF (ps)×.
Of these exactly pgcd(k,s) − 1 belong to the field GF (pk).

The binary case of the following theorem was originally proven in [25].
The generalization to all p is from [22].

Theorem 5.2. ([25, 22]) Let n = 2k and y ∈ GF (q2) \ {0}. The equation

xps+1 + yxps − yx − 1 = 0 (5.1)

has either 0, 1, 2 or pgcd(s,k) + 1 solutions x ∈ S.

Proof. The proof is divided into two cases.
Case 1. Assume first that y ∈ GF (q), i.e., y = y. In this case x = 1 ∈ S

is a solution to (5.1); in fact x = 1 is a solution if and only if y ∈ GF (q). We
apply the parameterization (i) of Lemma 1.2 to the equation (5.1), and then
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multiply it by (z + u)ps+1. Note that the coefficient of ups+1 disappears,
and we get

(z − z + yz − yz)ups
+ (zps − zps

+ yzps − yzps
)u

= −(zps+1 − zps+1 + yzps
z − yzzps

).

Every solution x ∈ S \ {1} to (5.1) corresponds to a solution u ∈ GF (2k)
of the previous equation.

If z − z + yz − yz = 0, there is nothing to prove. Otherwise we have an
affine equation of the form

ups
+ α1u = α2, (5.2)

where α1, α2 ∈ GF (q). Lemma 5.1 implies that the corresponding linear
equation

ups
+ α1u = 0 (5.3)

has either exactly one root or exactly pgcd(k,s) roots in GF (q). From Lemma
1.1 we know that the affine equation (5.2) either has no solutions or it has
the same number of solutions as (5.3). Hence, in the case y ∈ GF (q), the
equation (5.1) has either 1, 2 or pgcd(k,s) + 1 solutions in S.

Case 2. For the rest of the proof, we assume that y /∈ GF (q). If (5.1)
has no solution in S, we are through. Suppose now that there is such a
solution. We apply the parameterization (ii) of Lemma 1.2 to the equation
(5.1). Since y /∈ GF (q), the fixed element β can be chosen to be one of the
solutions. Multiplied by (α + β)ps+1 the equation (5.1) transforms to

(βps+1 + yβps − yβ − 1)αps+1 + (βps
+ yβps+1 − y − β)αps

+ (β + y − yβps+1 − βps
)α

+ (1 + yβ − yβps − βps+1) = 0.

By assumption, the leading coefficient here is zero. Now every solution
x ∈ S \ β to (5.1) corresponds to a solution α ∈ GF (q) of the previous
equation.

If the coefficient of αps above is zero, the remaining equation is of degree
one and we are through. Otherwise we again have an affine equation of the
form

αps
+ a1α = a2, (5.4)
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where a1, a2 ∈ GF (q2) (in fact a1, a2 ∈ GF (q), but this is not needed1).
To complete the proof, we may now proceed similarly as in the case y ∈
GF (pk).

We will use this theorem only in the case p = 2. It is not clear whether
it can be applied to non-binary cases or not.

The polynomials of the form xq+1 + axq + bx + c, where q is a power
of the characteristic of the field, arise in several other contexts, too. The
interested reader should see [2] and references given there.

5.2.2 The decimations

Lemma 5.3. Let

d =
2k−1

2s − 1
(22k + 2s+1 − 2k+1 − 1), (5.5)

where s is such that 2s divides k. Then

(i) gcd(d, 2n − 1) = 1,

(ii) d ≡ 1 (mod 2k − 1), and

(iii) d ≡ 2k−2s

2s−1 (mod 2k + 1).

Proof. We prove (ii) and leave (iii) to the reader. Then (i) can be proved
using (ii) and (iii) and the well known fact that gcd(2i + 1, 2j − 1) = 1 if
and only if j/ gcd(i, j) is odd; here it is needed that 2s divides k.

We have

d − 1 =
23k−1 + 2k+s − 22k − 2k−1 − 2s + 1

2s − 1

=
2k−1

(
22k − 1

)
+ 2s

(
2k − 1

)− (22k − 1
)

2s − 1

=

(
2k − 1

) (
2k−1

(
2k + 1

)
+ 2s − (2k + 1

))
2s − 1

,

so it suffices to show that d′ = 22k−1 + 2k−1 + 2s − 2k − 1 is divisible by
2s − 1. But this follows from d′ = 2k−1

(
2k − 1

)
+ (2s − 1), since 2s − 1

divides 2k − 1.
1An easy computation shows that ai = ai in (5.4)
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Lemma 5.4. We have gcd(d ± 1, 2k + 1) = 1 for d in (5.5).

Proof. Since 2s − 1 divides 2k − 1, we must have gcd(2s − 1, 2k + 1) = 1.
Hence gcd(d ± 1, 2k + 1) = gcd((2s − 1)(d ± 1), 2k + 1). The lemma now
easily follows from the congruence (2s − 1)d ≡ 2k − 2s (mod 2k + 1).

We now "normalize" d to the equivalent decimation

d =
1

2s − 1
(22k + 2s+1 − 2k+1 − 1).

Theorem 5.5. ([25]) Let n = 2k, where 2s divides k, and let d = (22k +
2s+1−2k+1−1)/(2s−1). Then the cross-correlation function Cd(τ) between
two m-sequences takes on the following values:

−1 − 2k occurs 22k+s−1−2k+s−1

2s+1 times

−1 occurs 22k−2k−2s

2s times

−1 + 2k occurs 22k+s−1−22k+2k+s−1

2s−1 times

−1 + 2k+s occurs 22k−2k

23s−2s times.

Proof. Since now (2s − 1) · d ≡ 2k − 2s (mod 2k + 1) (see Remark 3.3 (i))
Niho’s theorem leads to the equation

x2s+1 + yx2s
+ yx + 1 = 0,

which is the binary special case of the equation in Theorem 5.2. Therefore
Cd(τ) is four-valued and the values are as claimed. Furthermore, Theorem
4.4 and Lemma 5.4 give that the number b of Theorem 2.4 is 2k. As usual,
we denote by Ni the number of times (5.1) has exactly i solutions in S. We
have a system of linear equations

N0 + N1 + N2 + N2s+1 = 22k − 1
−2kN0 + 2kN2 + 2k+sN2s+1 = 22k

22kN0 + 22kN2 + 22k+2sN2s+1 = 24k

−23kN0 + 23kN2 + 23k+3sN2s+1 = 25k.

The first equation comes from the number of equations of the form (5.1),
and the other ones are simple consequences of Theorem 2.4. Straightforward
calculations give the claimed distribution.
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Remark 5.6. It is a routine matter to verify that s = 1 (resp. s = k/2)
gives a decimation equivalent to the decimation in (i) (resp. (ii)) given
at the beginning of this chapter. We note here that Niho’s proof of (ii)
is somewhat complicated. In fact, it is incomplete: Niho treated only the
case y ∈ GF (2k) of the corresponding equation and claims that Welch has
proven the rest. However, Welch’s calculations seem to be unpublished.
There is an earlier simple proof of (ii) in [19].

Niho [34] gave tables of binary cross-correlation functions up to n = 16,
and now all at most four-valued cross-correlation functions of binary m-
sequences within this table belong to a known infinite family.

5.3 Other cross-correlation functions

In this section we give the other known cross-correlation functions of Niho
type, and present some simplifications of the proofs of the corresponding
results.

5.3.1 Dobbertin’s family

We have seen that Theorem 5.5 generalizes both of Niho’s families. For
the first of Niho’s families two other generalizations have been found. The
following four-valued family, which includes the first of Niho’s family, was
found by Dobbertin [10].

Consider

d =
2(k+1)s − 1

2s − 1
. (5.6)

It is a routine matter to verify d ≡ 1 (mod 2k − 1). Once again Niho’s
theorem leads to the equation (5.1) (with p = 2, of course), and therefore
we know the values of Cd(τ). Using Theorem 4.4 we find that the number
b of Theorem 2.4 is 2k in this case. Solving the corresponding system of
equations gives the following distribution of the values.

Theorem 5.7. ([10]) Let n = 2k, and assume s satisfies gcd(s, n) = 1.
Then for d in (5.6) the cross-correlation function Cd(τ) has the following
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values:
−1 − 2k occurs 22k+s−1−2k+s−1

2s+1 times

−1 occurs 22k−2k−2s

2s times

−1 + 2k occurs 22k+s−1−22k+2k+s−1

2s−1 times

−1 + 2k+1 occurs 22k−2k

23s−2s times.

The proof presented by Dobbertin is based on Niho’s technique but is
different otherwise. Dobbertin’s treatment of the corresponding equation
depends essentially on the restriction gcd(s, n) = 1.

All known binary four-valued cross-correlations lead to the equation
(5.1). We warn the reader that according to the computed results in [15],
there are four-valued cross-correlations which are not of Niho type. How-
ever, it may turn out that these are exceptional cases of five-valued cross-
correlations where one of the values has "collapsed".

In [13] it is conjectured that all binary four-valued Niho type cross-
correlation functions arise from the equation (5.1).

5.3.2 Niho-Helleseth family

Niho [34] made several conjectures on cross-correlation functions. The first
of these concerned the decimation (5.7), on which Niho gave some partial
results himself. The remaining details were done by Helleseth [18]. We give
a simplified treatment.

We let
d = 2k + 3, (5.7)

and prove that Cd(τ) is five-valued, and give the distribution of values.
First of all it is easy to show that gcd(2n − 1, d) = 1. Furthermore, d is

equivalent to the decimation

d′ = 2k−2 · d =
(
2k−1 − 1

)(
2k−2 + 1

)
+ 1, (5.8)

and the corresponding equation is

x4 + yx3 + yx + 1 = 0. (5.9)

Thus Cd(τ) is (at most) five-valued. The following two lemmas are enough
to give the distribution of the values. The number of y ∈ GF (2n)× such
that (5.9) has exactly i solutions in S is denoted by Ni.
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Lemma 5.8. We have N3 = 2k−1 for (5.9).

Proof. The equation (5.9) has exactly three distinct solutions in S if and
only if it has a solution of multiplicity two and two other solutions. The
root of the derivative satisfies x2 = y/y. We substitute this into (5.9) to get

(
y

y

)2

+ yx
y

y
+ yx + 1 = 0.

This implies y = y, i.e., y ∈ GF (2k). In this case (5.9) factors as(
x2 + 1

) (
x2 + yx + 1

)
= 0.

Hence y = β + β−1 for some β. There are three distinct roots if and only
if β ∈ S \ {1}. Since x �→ x + x−1 maps the set S \ {1} two-to-one, there
are exactly 2k−1 elements y ∈ GF (2n)× of the form y = β + β−1 where
β ∈ S.

Lemma 5.9. For d in (5.8), the equation

(x + 1)d = xd + 1 (5.10)

has 2k solutions if k is even, and 2k + 2 solutions if k is odd.

Proof. Clearly always gcd
(
2k−2, 2k + 1

)
= 1. It is equally easy to see that

gcd
(
2k−2 + 1, 2k + 1

)
= 1 if k is even and gcd

(
2k−2 + 1, 2k + 1

)
= 3 if k is

odd. The claim now follows from Theorem 4.4 and Theorem 4.7.

The previous lemma, as well as Lemma 5.15, follows also from results
in [6].

The distribution of the values is as follows.

Theorem 5.10. ([18]) Let k > 2. Then for d in (5.7) Cd(τ) has the
following values:

−1 − 2k occurs 2n−1 − 2k−3
(
2k + (−1)k+1 + 1

)− 2k−1 times
−1 occurs 1

3

(
2k
(
2k + (−1)k+1 + 1

)
+ 2k−1 − 3

)
times

−1 + 2k occurs 2n−1 − 2k−2
(
2k + (−1)k+1 + 1

)
times

−1 + 2k+1 occurs 2k−1 times
−1 + 3 · 2k occurs 1

3

(
2k−3

(
2k + (−1)k+1 + 1

)− 2k−1
)

times.



5.3 Other cross-correlation functions 51

5.3.3 A non-binary family

The only completely known non-binary Niho type cross-correlation function
corresponds to the decimation d = 2pk−1. This is a non-binary counterpart
of the first of Niho’s families. The case p > 2 is due to Helleseth [18]. Using
Theorem 3.4 there is no need to separate these cases.

Theorem 5.11. ([34, 18]) Let n = 2k, pk �≡ 2 (mod 3), and d = 2pk − 1.
Then Cd(τ) has the following values:

(i) −1 − pk, which occurs 1
3

(
p2k − pk

)
times,

(ii) −1, which occurs 1
2

(
p2k − pk − 2

)
times,

(iii) −1 + pk, which occurs pk times, and

(iv) −1 + 2pk, which occurs 1
6

(
p2k − pk

)
times.

Proof. It is easily seen that d ≡ 1 (mod 2k − 1) and (d − 1)/(pk − 1) = 2.
Therefore (by Theorem 3.4) the corresponding equation is simply

x3 + yx2 + yx + 1,

and thus Cd(τ) is at most four-valued. Using Theorems 4.3 and 4.4 the
third power sum is easily found; the number of b of Lemma 2.4 is pk. Note
that, the condition pk �≡ 2 (mod 3) is needed only to guarantee that the
decimated sequence is indeed an m-sequence.

5.3.4 Two other families

To end this chapter we present some results on Cd(τ) corresponding to the
decimation

d = 3 · 2k − 2.

Lemma 5.12. Let n = 2k and d = 3 · 2k − 2. Assume that k �≡ 2 (mod 4).
Then

(a) gcd(d, 2n − 1) = 1,

(b) d ≡ 1 (mod 2k − 1), and

(c) d ≡ −5 (mod 2k + 1).
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Proof. Firstly, d = 3(2k − 1) + 1 and d = 3(2k + 1) − 5, and we get (b)
and (c). Finally, (a) follows from the following facts. Suppose that a prime
p �= 2 divides 2n − 1. Then it divides 2k − 1 or 2k + 1. Using (b) we get
that p cannot divide both d and 2k − 1. Using (c) we get that if p divides
both d and 2k + 1, then it divides 5. But this is impossible because of the
assumption k �≡ 2 (mod 4).

Theorem 5.13. ([13]) Assume that k �≡ 2 (mod 4), n = 2k and

d = 3 · 2k − 2.

Then the values of Cd(τ) are among

−1 + (N(y) − 1) · 2k,

where N(y) = 0, 1, . . . , 5. Moreover, if k is even, the value −1 + 3 · 2k does
not occur.

Proof. Using Niho’s theorem we see that the cross-correlation values are
exactly the values

−1 + (N(y) − 1) · 2k,

where y runs through the nonzero elements of the field GF (2n), and N(y)
is the number of solutions x ∈ S to the equation

x5 + yx3 + yx2 + 1 = 0. (5.11)

Since the equation is of degree five, the cross-correlation function is at most
six-valued. We have to show that (5.11) cannot have exactly four solutions
in S if k is even.

Note that if four solutions of the equation are in S, then the fifth root
does too.

Let f(x) = x5 + yx3 + yx2 + 1. Then f(x) has repeated roots if and
only if yy = 1; this can be seen by forming the derivative. In this case the
repeated root is

x = y22k−1
,

and f(x) splits as

f(x) = (x2 + y)(x + ρ)(x + αρ)(x + α2ρ), (5.12)
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where α is a primitive element of GF (4) and ρ is any element such that
ρ3 = y.

The equation (5.11) can have exactly four solutions in S only if ρ, α ∈ S.
But the order of α is 3. Thus 3 has to divide 2k + 1 and then necessarily k
is odd.

We have shown the following.

(i) Let n ≡ 0 (mod 8), n = 2k, and

d = 3 · 2k − 2.

Then Cd(τ) is (at most) five-valued.

(ii) Let k be odd, n = 2k, and

d = 3 · 2k − 2.

Then Cd(τ) is (at most) six-valued.

Let Ni denote the number of times (5.11) has exactly i solutions in S.
For even k, we know that N4 = 0. The following lemma gives N4 for

odd k.

Lemma 5.14. Assume that k > 1 is odd. Then N4 = 1
3(2k − 2).

Proof. If (5.11) has exactly four solutions in S, then f(x) has a root of
multiplicity 2 and the other roots are simple. From (5.12) we deduce that
this happens if and only if there is ρ ∈ S \ {1} such that ρ3 = y. Since the
mapping x �→ x3 is now three-to-one, this happens (2k +1)/3−1 times.

Lemma 5.15. Let n = 2k, where k �≡ 2 (mod 4). Let

d = 2k + 2k−1 − 1.

Then
(x + 1)d = xd + 1 (5.13)

has exactly

(i) 2k solutions in GF (2n) if k is even, and

(ii) 2k + 2 solutions in GF (2n) if k is odd.
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Proof. The equivalent decimation 2 · d =
(
2k − 1

) · 3 + 1 satisfies d ≡ 1
(mod 2k − 1) and then the claim follows easily from Theorem 4.4 and The-
orem 4.7.

From the number of equations of the form (5.11) we deduce
∑5

i=0 Ni =
2n − 1. Thus one more independent equation on the numbers Ni is needed
in order to calculate the distribution of the values.

It is shown in [13], that there is a connection between Dickson polyno-
mials and Niho type cross-correlation functions. This connection is then
used to calculate the number N2 in the special case of the equation (5.11).
The distribution found is given by the following theorem.

Theorem 5.16. ([13]) Let n = 2k, where k is odd, and let d = 3 · 2k − 2.
Then the values of Cd(τ) are distributed as follows:

−1 − 2k occurs 11·22k−24·2k+R
30 times

−1 occurs 9·22k+22·2k−3R−20
24 times

−1 + 2k occurs 22k−2·2k+R−4
6 times

−1 + 2k+1 occurs 22k−R+12
12 times

−1 + 3 · 2k occurs 2k−2
3 times

−1 + 2k+2 occurs 22k−14·2k+R+20
120 times.

Here R is defined as

R =
∑

y∈GF (2k)\{0,1}
χ

(
1
y

)
K

(
1

y3 + y

)
,

where K(y), y ∈ GF (2k), denotes the Kloosterman sum

K(y) =
∑

x∈GF (2k)

χ

(
1
x

+ yx

)
.

In the last sum the convention 1/0 = 0 is used.

As the proof of Theorem 5.16 involves extensive and very detailed cal-
culations, we do not repeat it here. The reader is referred to the original
manuscript.

Of course the above theorem is unsatisfactory in the sense that a closed
formula is not given. It is not even clear what is the order of the error term
R.
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