
Seppo Virtanen

Turku Centre Computer Sciencefor

TUCS Dissertations
No 55, September 2004

A Framework for Rapid

Design and Evaluation of

Protocol Processors

A Framework for Rapid Design and
Evaluation of Protocol Processors

Seppo Virtanen

To be presented, with the permission of the Faculty of Mathematics and
Natural Sciences of the University of Turku, for public criticism in the

Tauno Nurmela Auditorium at 12 noon on October 22, 2004.

Department of Information Technology
University of Turku

FIN-20014 Turku, Finland

2004

Supervisors

Professor Johan Lilius
Department of Computer Science
Åbo Akademi University
Lemminkäisenkatu 14A
FIN-20520 Turku, Finland

Professor Jouni Isoaho
Department of Information Technology
University of Turku
Lemminkäisenkatu 14A
FIN-20520 Turku, Finland

Reviewers

Professor Jarmo Takala
Institute of Digital and Computer Systems
Tampere University of Technology
Box 553, FIN-33101 Tampere, Finland

Professor Mats Brorsson
Department of Microelectronics and Information Technology
The Royal Institute of Technology - Kungliga Tekniska Högskolan
SE-100 44 Stockholm, Sweden

Opponent

Professor Dake Liu
Computer Engineering Division
Department of Electrical Engineering
Linköping University
SE-581 83 Linköping, Sweden

ISBN 952-12-1410-4
ISSN 1239-1883

Painosalama Oy, 2004
Turku, Finland

To my children Salla, Veikko and Ella

Acknowledgements

It gives me much pleasure to conclude many years of work by expressing
my gratitude to the individuals and institutions that have influenced the
research presented in this doctoral thesis. First of all, I would like to thank my
supervisors Johan Lilius and Jouni Isoaho for their expert guidance, support
and insight during my doctoral studies. I wish to extend special thanks to
professor Lilius for all his efforts in providing an inspiring and productive
research environment.

I also wish to thank professors Jarmo Takala from Tampere University
of Technology and Mats Brorsson from the Royal Institute of Technology
(Stockholm) for performing detailed reviews of this thesis and for providing
constructive comments and accurate suggestions for improvement. By fol-
lowing their recommendations I am now able to deliver a better and more
complete presentation of my research work.

I gratefully acknowledge the financial support and working environment
provided for the most part of my doctoral studies by the Turku Centre for
Computer Science (TUCS). I also wish to thank the Department of Informa-
tion Technology (University of Turku) for appointing me to a teaching posi-
tion at the last stages of my studies, thus providing me with further financing
as well as an opportunity to participate in educating future researchers. In
addition, I wish to express my sincerest gratitude to the HPY research foun-
dation and the Nokia foundation for their generous financial support directed
to the research work presented in this thesis. Their grants have been both an
enabling and a motivating factor throughout my doctoral studies.

Several of my colleagues in the TUCS community have in one way or
another helped and supported me in my research work. I wish to thank
PhD student Tero Nurmi for providing physical estimation results and de-
veloping the physical estimation model, PhD students Tomi Westerlund and
Jani Paakkulainen for providing synthesis results and developing the synthe-
sis model, M.Sc. Tomas Lundström for his implementation of the design tool,
and M.Sc. Zhifeng Yang for his IXP1200 implementations of IPv6 routing
functions. I also wish to thank PhD student Dragos Truscan as well as Tero
Nurmi, Tomi Westerlund and Jani Paakkulainen for co-authoring papers with

i

me. Tero Nurmi also thoroughly proofread this thesis, for which I am very
grateful. I also wish to thank all my friends and colleagues in the partici-
pating departments of TUCS for creating a pleasant working environment.
In this respect I wish to extend special thanks to everyone in the Embedded
Systems laboratory as well as to everyone attending the informal Monday
morning coffee meetings in the second floor of DataCity. Moreover, I would
like to thank M.Sc. Robert Gyllenberg and M.Sc. Timo Virtanen for all the
lively discussions we have had over coffee during the past five years, whether
scientific or otherwise.

Finally, I wish to thank all my friends and my closest relatives for their
friendship and for all the great times we have shared over the years. I espe-
cially wish to thank my parents Orvokki and Keijo Virtanen for all the care,
support and guidance they have given me throughout my life. I also wish to
thank my uncle Jouko Virtanen and my father-in-law Mauno Hyyppä for their
genuine interest towards my research work throughout my doctoral studies.

In conclusion, and most of all, I thank my wife Elina as well as my children
Salla, Veikko and Ella for all the wholehearted love and all the wonderful
moments they have given me in all the different phases of the work that
ultimately lead to this thesis.

Turku, September 20, 2004

Seppo Virtanen

ii

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Overview of Thesis . 7
1.3 List of Publications . 8
1.4 Related Work . 9

2 Characteristic Functionality in Protocol Processing 15
2.1 Layered Protocol Architectures 15
2.2 Layer Characteristics . 18
2.3 Analysis of Protocols and Protocol Processing Tasks 19

2.3.1 Synchronous Digital Hierarchy 20
2.3.2 IEEE 802.3: Medium Access in the Ethernet 24
2.3.3 IEEE 802.11: Medium Access in Wireless LANs 29
2.3.4 Asynchronous Transfer Mode 33
2.3.5 The Internet Protocol 38
2.3.6 The Internet Protocol version 6 43

2.4 Chapter Summary . 46

3 The TACO Hardware Platform 49
3.1 Computer Architectures . 50

3.1.1 Complex Instruction Set Computer 51
3.1.2 Reduced Instruction Set Computer 53
3.1.3 Superscalar Architecture 54
3.1.4 Very Long Instruction Word Computer 54
3.1.5 Transport Triggered Architecture 56

3.2 TACO Protocol Processor Architecture 59
3.2.1 Interconnection Network 62
3.2.2 TACO Instruction Word 62
3.2.3 Interconnection Network Controller 64
3.2.4 Sockets . 67
3.2.5 Functional Units . 69

3.3 Assembler Programming of TACO Processors 89

iii

3.4 Memory Configuration . 91
3.5 Input/Output Interfaces . 93

3.5.1 VCI Compliant Network-on-Chip Interface 98
3.6 Chapter Summary . 100

4 The TACO Design Methodology 103
4.1 Design Flow . 105

4.1.1 Application Analysis . 105
4.1.2 Virtual Assembler Code 111
4.1.3 Iterative Design Space Exploration 111
4.1.4 Turn-around Time in the TACO Design Flow 115

4.2 The Processor Simulation Model 116
4.2.1 TACO Configurable SystemC Simulator 117
4.2.2 Object Orientation and Hardware Design 125

4.3 The Physical Estimation Model 126
4.4 The Synthesis Model . 131
4.5 Graphical Design and Evaluation Tool 133
4.6 Chapter Summary . 138

5 Design Cases 141
5.1 Architectures for ATM AIS Processing 142
5.2 Architectures for IPv6 Routing 150
5.3 IPv6 Client for a Network-on-Chip Platform 164
5.4 Chapter Summary . 169

6 Conclusion 171

iv

Chapter 1

Introduction

Network hardware design is becoming increasingly challenging as more and
more demands are put on network bandwidth and throughput requirements,
and on the speed with which new devices must appear on the market. General
purpose microprocessors are no longer an appealing alternative for networking
hardware due to their lack of optimized execution units for network process-
ing. Using general purpose processors all networking functionality must be
implemented in software. This in turn leads to very high CPU clock fre-
quency requirements. General purpose processors that operate in a suitable
frequency range are often too expensive, consume too much power or occupy
physically too much space in the target system with all their required ex-
ternal circuitry. Also, many general purpose processor features, like floating
point arithmetic units (FPUs), can usually not be taken advantage of in net-
working applications. For these reasons among others, Application-Specific
Integrated Circuits (ASICs) have been widely used for networking devices.
ASICs can provide a higher processing speed and a lower power consumption
at lower clock frequencies than general purpose processors. However, resort-
ing to ASICs requires special hardware design expertise, which usually is not
as readily available as general purpose programming skills. ASIC design is
a demanding and expensive process, and ASIC time-to-market tends to be
long. Also, ASICs are usually minimally programmable and thus need to be
redesigned for updated or new network protocols, which makes them inflexible
in dynamic market segments.

A potential solution to this problem is designing programmable processors
with network-optimized hardware [67]. As suggested in e.g. [19] and [44], the
challenge in designing such programmable network or protocol processors is to
find an architecture that is as good a compromise as possible between a gen-
eral purpose processor and a protocol-application-specific custom chip (i.e. an
ASIC implementation). An ideal protocol processor would harness both the
programmability of general purpose processors and the application-specific

1

hardware optimization of ASICs. While programmable, most of the currently
available commercial protocol and network processors are still merely high
speed multiprocessors with several parallel general purpose processing ele-
ments, lacking true protocol processing hardware optimization. Such proces-
sors are e.g. the Intel IXP family [1], IBM PowerNP [5] and the Motorola (C-
Port) C-5 [13]. The protocol and network processor development approaches
in the academic community have shown some interest into the direction of
optimized hardware solutions, and we will look at some of the academic solu-
tions more closely in section 1.4 (Related Work) of this chapter. Still, looking
at the current solutions, it can be observed that there is a continuing need to
better understand the exact needs of protocol processing in terms of design-
ing and implementing both hardware and software architectures. Thus, in
addition to developing new architectures with optimized processing elements,
attention must also be paid to application-domain-specific processor design
methodologies for protocol processing. Such methodologies should support
the designer in analyzing the application domain (and preferably the partic-
ular application in question) as well as in exploring and evaluating different
hardware/software configurations for performing the target application.

1.1 Objectives

The contribution of this thesis and its author is the TACO protocol pro-
cessor design framework, which aims to solve both of the problems de-
scribed above by providing:

1. A hardware platform optimized for protocol processing, and

2. A design methodology and a toolset for rapidly specifying, simulat-
ing, evaluating and synthesizing protocol processors based on the above
hardware platform.

The framework is a part of the TACO research project that was started in
TUCS in 1999 by Seppo Virtanen and Johan Lilius (TACO stands for Tools
for Application-specific hardware/software CO-design). Currently six persons
are either directly or indirectly involved in active TACO research. The pro-
tocol processor design framework presented in this thesis provides a rapid
top-to-bottom protocol processor design and evaluation flow, from applica-
tion specification to gate-level synthesis, with an optimized (although not
necessarily the most optimal) solution obtained as result. The research prob-
lems to be solved in order to reach such a design framework can be categorized
into two main areas:

2

1. Issues related to the hardware platform and the simulation, es-
timation and synthesis models for it. The hardware platform needs to
be specified. Different microprocessor architectures need to be analyzed to
find a base architecture that is programmable and supports modular library
based design. To enable modularity, well-defined interfaces between the ex-
ecution units and the control structures in the platform are required. The
simulation, estimation and synthesis models of the platform need to be pa-
rameterizable so that all models for a particular architecture can be rapidly
constructed by only specifying the number and connections of the execution
units needed. The techniques used for implementing the models depend on
the chosen set of development languages and environments. Emphasis should
be on obtaining reliable results rapidly from simulations and estimations, and
on providing a precise and reliable synthesis model that correctly reflects the
characteristics of the simulated model. The potential benefits of object ori-
ented programming techniques in hardware specification and simulation need
to be analyzed.

2. Issues related to the design methodology. The initial problem to
be solved is how the protocol processing application should be analyzed to
determine which tasks to implement in hardware. Performing this application
analysis requires familiarity with the protocol processing application domain.
Methods need to be specified for refining the initial application into a set of
requirements for the hardware and software executing the application. With
knowledge of the hardware requirements, the hardware design space needs to
be explored to find suitable processor architecture candidates for implemen-
tation, and the software needs to be tuned for each candidate. The simula-
tion and estimation models for the hardware platform, as mentioned above,
should support the designer in evaluating the processor candidates at this
phase. Once a suitable architecture has been found for the target application,
the design flow must support generating a logic synthesis model for it.

The suggested solutions provided by the TACO framework to these key prob-
lem categories are briefly outlined below, and discussed in detail in later
chapters of this thesis.

Hardware Platform The TACO hardware platform for protocol proces-
sor design is based on the concept of transport triggered architectures (TTAs)
[20, 107]. In TTA processors operations are triggered by programmed data
transports. This is contrary to the traditional approach, in which programmed
operations cause data transports to occur. A TTA based processor is com-
posed of functional units (FUs) that communicate via an interconnection net-
work of buses. The FUs are connected to the buses through modules called

3

sockets. In TACO processors, each FU performs a specific protocol processing
task or operation.

The benefit of a TTA-based hardware platform is its modularity and scal-
ability. Functional units can be added to a processor configuration or they
can be refined and changed as long as they provide the same interface to
the sockets connecting them to the interconnection network. The TACO
hardware platform should be regarded as a base template for protocol pro-
cessors, instantiated for a specific protocol or a specific family of protocols.
The hardware platform facilitates extensive component and module reuse be-
tween design projects. The modularity of the platform also enables design
automation. To our knowledge, the TACO hardware platform is the first and
so far the only approach in which the TTA paradigm is applied to protocol
processing. Similarly, to our knowledge the memory organization and access
scheme of the TACO hardware platform is unique in comparison to existing
TTA implementations.

Simulation, estimation and synthesis models TACO processor archi-
tectures can be described using three different models: a simulation model, a
physical estimation model and a synthesis model. The simulation model pro-
vides signal- and cycle-accurate simulations of processors and their application
code. The estimation model produces estimated values for resulting chip area
and power consumption on a given technology. A key goal in designing these
models has been to obtain accurate and reliable results fast using affordable
computers such as standard PCs. This is achieved in part by modeling inter-
nal functionality of hardware modules at a higher level of abstraction than the
inter-module communication and signaling. The simulation and estimation
models are used iteratively to rapidly evaluate the effects of hardware and/or
software modifications to performance and physical characteristics. Since the
simulation and estimation models can be trusted to provide accurate results,
the goal in the synthesis model implementation has been on achieving pre-
cise and reliable logic synthesis that correctly reflects the characteristics of
the simulated architecture. As can be expected, synthesis takes considerably
longer than simulation and estimation, and requires more expensive computer
workstations.

The three models are implemented as a component library that contains
implementations of functional units, sockets, interconnection buses, and the
program dispatch logic. To construct a processor model, the designer chooses
modules from the library and specifies their connections. Doing this man-
ually by editing top-level files for each model is an error-prone process due
to the large amount of signals and modules to be connected. To alleviate
this problem, the TACO framework also includes a graphical processor de-
sign tool. The tool automatically generates all necessary files by means of

4

supporting the application programming interfaces (APIs) of the three pro-
cessor models mentioned above. All this is done without manually modifying
the code for the three models, for which reason the tool considerably speeds
up instantiation of processor models for a given architecture and eliminates
coding errors.

Application analysis The starting point in any TACO protocol processor
design project is a high level application description or specification. The de-
velopment of the application software guides the processor design work: the
processing requirements of the target application determine a design space
for hardware architectures. Automatic methods for application analysis and
automatic hardware requirement derivation based on the analysis are nowa-
days pursued in another line of TACO research [72]. In the scope of this
thesis, the application analysis is performed by the designer manually, fol-
lowing directions and guidelines set by the TACO design methodology. The
original application specification is refined and its granularity made finer un-
til a very precise listing of required operations is obtained. The main goal of
the application analysis is to find complex and frequently needed processing
tasks that should be considered for hardware implementation. Implement-
ing such tasks as hardware modules instead of software blocks considerably
reduces the amount of clock cycles needed to execute the entire application.
As the number of cycles is reduced, also a decrease in application-level power
consumption can be expected.

Design Flow with Design Space Exploration Architectural candidates
for implementation are obtained through design space exploration. Design
space exploration is the task of evaluating the quality of several designs in
terms of hardware architecture, application software, or a combination of
both. In the TACO framework, this analysis is performed based on quality
metrics specified by the target application; the metrics could typically be
a combination of acceptable ranges of values for power consumption, chip
size and allowable clock cycle duration. The TACO hardware design space
is three-fold; design decisions are needed for the types of hardware blocks
to be used, the number of such blocks, and the connections between them.
Within this design space, first a set of hardware architectures that are able to
perform the required tasks correctly needs to be found. Only a subset of these
architectures will be able to function within the timing constraints set by the
protocol processing application. Of these, again only a subset is feasible in
terms of manufacturing costs, power consumption and circuit size.

Design space exploration in the TACO framework is not completely auto-
mated: the designer relies on his experience from previous projects in speci-
fying typically five to ten architecture configurations for detailed evaluation.

5

Po
w

er
 u

se
1

2

3
5

6

4

1

1
P

v Processing speed

Figure 1.1: Hypothetical example of design space exploration. With shown
maximum power (P1) and minimum throughput (v1) constraints, only candi-
dates 4 and 5 are acceptable. Of these, candidate 5 has a higher processing
speed with a smaller power consumption.

Each configuration is evaluated (simulated and estimated at the system-level)
before the next one is specified. TACO simulation and estimation setup is a
very well automated process, and the simulator and estimator run very fast
(typically in a matter of seconds). This way, results and experiences from
each configuration can be taken into account when specifying the next one.
With a specific application domain (protocol processing) and a modular hard-
ware platform optimized for it (TACO architecture), the designer is able to
construct a set of very good configuration candidates in the iterative process
outlined above. The goal of the TACO design space exploration is to find at
least one protocol processor configuration that correctly performs the target
application and fulfills all given design constraints. If more than one such con-
figuration is found, the one with best results in the most critical constraint(s)
is chosen for further evaluation (synthesis and post synthesis simulation).

As an example, Figure 1.1 presents partial results for a hypothetical design
space exploration experiment. A set of six architecture candidates has been
explored for throughput, area and power use (in addition to correct appli-
cation functionality). The figure shows throughput and power consumption
results for the six candidates; corresponding results should also be obtained
for circuit size. In Figure 1.1, P1 is the upper limit for tolerable power use,
and v1 is the lower limit for tolerable throughput (processing speed) in the
target application (v1 is a function of (1) the processing cycles needed by the
candidate to perform the application and (2) the estimated achievable clock
speed of the candidate). The curve shows the approximate relation between
throughput and power consumption for the target application, derived from
the results for the six candidates. As a result of this hypothetical example, two

6

acceptable candidates have been found for the target application. Of these,
candidate 5 seems to be most promising as it provides a higher throughput
and a lower power consumption than candidate 4. Candidate 5 is not neces-
sarily the most optimal solution for the target application. However, it is a
good solution that satisfies all given design constraints.

The techniques and tools provided by and used within the TACO frame-
work reduce the amount of work and time needed in both setting up and
carrying out evaluation experiments of different protocol processor hardware
configurations, especially in terms of estimating their functionality and per-
formance characteristics at early stages of the design process. A design space
exploration experiment like the hypothetical one discussed above could be
completed in the course of one day with the TACO framework.

1.2 Overview of Thesis

Chapter 2 of this thesis discusses the protocol processing application domain.
The emphasis in chapter 2 is in pointing out similarities in the processing
requirements of different protocols. Realizing that such common requirements
exist motivates further discussion on designing optimized hardware for the
protocol processing application domain.

Chapter 3 discusses the TACO protocol processor hardware platform. The
discussion includes an overview of computer architectures, an architectural
description of the hardware platform as well as a detailed discussion on the
protocol processing functional units available in the TACO module library.
A VCI (Virtual Component Interface) [118] compliant interface for Network-
on-Chip (NoC) integration is also discussed.

Having covered the hardware platform, Chapter 4 proceeds to discussing
the TACO design methodology. The topics covered include the techniques
used for application analysis and design space exploration. The simulation,
estimation and synthesis models for the hardware platform are also discussed
in this chapter. The emphasis in discussing the models is on the SystemC
simulation model. The benefits of using SystemC to simulate hardware cycle-
accurately at the system-level are discussed, as well as the detected limitations
of SystemC in terms of object oriented hardware design. For the Matlab esti-
mation model and the VHDL synthesis model we concentrate the discussion
on using these models integrally in the TACO framework: these models are
developed in other lines of research, and details of their internal implemen-
tations are beyond the scope of this thesis. Finally, a graphical design and
evaluation tool for the TACO framework is discussed. The tool is able to
generate all three models for a given TACO processor architecture, and also
to aid the designer in evaluating simulation and estimation results.

Chapter 5 discusses three case studies on protocol processor design using

7

the tools and methods provided by the TACO framework. The first case,
ATM AIS [60, 64] cell processing, focuses on demonstrating design space
exploration in the TACO framework. The second one, IPv6 [28] packet for-
warding/routing, compares the processing performance of the TACO archi-
tecture to the Intel IXP 1200 processor architecture. The last one of the
three case studies, IPv6 client operation, demonstrates the component reuse
and Network-on-Chip (NoC) integration capabilities of the TACO framework.

Chapter 6 concludes and summarizes this thesis.

1.3 List of Publications

This thesis is based on and extended from the author’s contributions to the
publications listed below (in chronological order):

1. Seppo Virtanen: On Communications Protocols and their Char-
acteristics Relevant to Designing Protocol Processing Hard-
ware. TUCS Technical Report 305, Turku Centre for Computer Sci-
ence, Finland, September 1999.

2. Seppo Virtanen, Johan Lilius and Tomi Westerlund: A Processor
Architecture for the TACO Protocol Processor Development
Framework. In Proceedings of the 18th IEEE NORCHIP Conference,
Turku, Finland, November 2000.

3. Seppo Virtanen and Johan Lilius: The TACO Protocol Processor
Simulation Environment. In Proceedings of the Ninth International
Symposium on Hardware/Software Codesign (CODES’01), Copenhagen,
Denmark, April 2001.

4. Seppo Virtanen, Dragos Truscan and Johan Lilius: SystemC based
Object Oriented System Design. In Proceedings of the 2001 Forum
on Design Languages (FDL’01), Lyon, France, September 2001.

5. Seppo Virtanen, Tomas Lundström and Johan Lilius: A Design Tool
for the TACO Protocol Processor Development Framework.
In Proceedings of the 20th IEEE NORCHIP Conference, Copenhagen,
Denmark, November 2002.

6. Seppo Virtanen, Dragos Truscan and Johan Lilius: TACO IPv6 Router
- A Case Study in Protocol Processor Design. TUCS Technical
Report 528, Turku Centre for Computer Science, Finland, April 2003.

7. Seppo Virtanen, Jani Paakkulainen, Tero Nurmi and Jouni Isoaho:
NoC Interface for a Protocol Processor. In Proceedings of the
21st IEEE NORCHIP Conference, Riga, Latvia, November 2003.

8

8. Tapani Ahonen, Seppo Virtanen, Juha Kylliäinen, Dragos Truscan,
Tuukka Kasanko, David Sigüenza-Tortosa, Tapio Ristimäki, Jani Paak-
kulainen, Tero Nurmi, Ilkka Saastamoinen, Hannu Isännäinen, Johan
Lilius, Jari Nurmi and Jouni Isoaho: A Brunch from the Coffee
Table - Case Study in NoC Platform Design. Chapter 16 in
Jari Nurmi, Hannu Tenhunen, Jouni Isoaho and Axel Jantsch (eds.):
Interconnect-Centric Design for Advanced SoC and NoC, Kluwer Aca-
demic Publishers, Boston, MA, U.S.A., April 2004.

9. Seppo Virtanen, Tero Nurmi, Jani Paakkulainen and Johan Lilius: A
System-Level Framework for Designing and Evaluating Proto-
col Processor Architectures. In International Journal of Embedded
Systems 1(1) (Special Issue on Hardware-Software Codesign for SoC),
Inderscience publishers, Geneva, Switzerland, 2004 (in press).

1.4 Related Work

In this section we discuss scientific approaches and directions that can be
deemed relevant for and related to the research presented in this thesis.

Related Design Methodologies

Behavioral HDL flows. Current ASIC design is often carried out using
behavioral hardware description language (HDL) based modeling flows. The
work is done in the functional module abstraction level1 using register-transfer
level (RTL) modeling. For example in [18] a methodology is presented for
designing a complex communication chip using behavioral VHDL as a start-
ing point. In [99] a methodology called PRCLIB (parameterized re-usable
component library) is proposed for constructing SoC’s by specifying different
hardware configurations of RTL level synthesizable and parameterizable IP
blocks from a library, and exploring the design space for such SoC’s. These
behavioral HDL based flows require that a specification of the target system
has already been produced (e.g. as a result of a system specification flow).
Also, the component libraries used in these approaches are normally not ap-
plication domain specific.

Abstract specification based flows. With a continuous trend towards
increasing system complexities, abstract specification based modeling flows
are constantly gaining popularity. The idea is to start with a very abstract
system description and then to incrementally refine this specification to con-
tain more and more architectural and communicational details. The work is

1Design abstraction level names used here follow the naming convention defined in [91].

9

not necessarily tied to a single abstraction level or modeling style; the initial
specification may e.g. be refined into a system level model using transaction-
level models (TLMs) and later into the functional module level using RTL
models. In [8] an OCAPI [115] description of system behavior is used as a
starting point in a design methodology for an Ethernet packet decoder. In [68]
a Y-chart based design methodology and its use for design space exploration
is presented. In the Y-chart methodology the performance of a selected archi-
tecture is analyzed for a given set of applications. As a result of this analysis
the designer receives performance data, based on which decisions and design
choices can be made to the architecture. The process is repeated iteratively
until a satisfactory architecture for the target set of applications is found.
Most of these methodologies yield only the specification of a good hardware
architecture candidate, and the actual hardware model of this candidate still
needs to be captured in the traditional way using an HDL. A different ap-
proach is pursued in the ODETTE project [83], in which the goal is to develop
a complete design flow, from specification to synthesis, entirely based on one
language. The language to be used is SystemC [71, 85] accompanied with
specific limiting rules (called extensions) for the use of object-oriented tech-
niques. These rules, or extensions to base SystemC, are called SystemC-Plus
[39]. By making exact rules for use of object orientation direct synthesis from
tools supporting SystemC-Plus is expected; free use of object oriented tech-
niques in hardware description is generally deemed as a synthesis-disabling
factor.

ASIP methodologies. Application-Specific Instruction-set Processor
(ASIP) design methodologies aim to find sequences of general purpose opera-
tions (like multiply-and-accumulate (MAC) sequences) in the target applica-
tion, and group these sequences into a hardware implementation [7, 10, 40, 89].
The recurring command sequences that are chosen for hardware implemen-
tation are often quite short, usually less than 10 and often only 2-3 general
purpose processor commands of length. In ASIP methodologies often a gen-
eral purpose processing core is enhanced with hardware execution units for
the detected command sequences. In [7] this kind of an approach provides a
performance increase of no more than 30 % when compared to a general pur-
pose processor designed with equal area and power constraints. If larger, yet
frequently occurring operations could be implemented in hardware, greater
increases in processing speeds could be expected. Unfortunately, complex
application-domain specific operations (e.g. cyclic redundancy checking in the
protocol processing application domain) are likely to not be well optimized
in these approaches due to the shortness of the detected command sequences.
ASIP methodologies are becoming increasingly popular in embedded proces-
sor design, especially in the DSP (digital signal processing) community. There

10

are already several commercial tool suites available for ASIP design; Examples
of such suites are the LISATek suite from CoWare and the Chess/Checkers
suite from Target Compiler Technologies. The LISATek suite uses the LISA
language for constructing machine descriptions from which software tools and
a synthesis model can be generated [47]. The Chess/Checkers suite includes a
retargetable compiler and an instruction-set-simulator generator that operate
on an ASIP processor model called the instruction-set graph (ISG) [114]. An
interesting new academic ASIP design flow has been discussed in [17]. In this
flow a common machine description is used for both a compiler and a core
generator. The core generator generates simulation and synthesis models for
an architectural template called STA (synchronous transfer architecture). Ac-
cording to [17], STA is a simplification of TTA optimized for the predictable
execution environment of DSP.

Also the MOVE framework [20, 21, 32] should be categorized as an
ASIP design process, as stated in [20]. The framework consists of a set of
tools for hardware and software synthesis. The tools operate on a paramet-
ric TTA architecture template that supports design space exploration. The
design process starts with an application written in C or C++, from which
combinations of hardware (architecture instances) and software (architecture-
optimized code) are derived. The design space exploration tools of the MOVE
framework are then used to evaluate hundreds of possible solutions (combi-
nations of hardware and software) automatically. The exploration process
initially starts with a very large machine configuration, the complexity and
connectivity of which is gradually reduced in the exploration process. Upon
completion, the exploration process produces a report on each solution candi-
date’s execution time as a function of implementation costs. The parametric
TTA template consists of funtional units (FUs) that implement combinations
of general purpose operations like addition and multiplication. A designer
can also define user modules called special function units (SFUs) for use in
the template. However, every time an SFU is added, the backend tools of the
MOVE framework need to be recompiled and reinstalled to make them aware
of a new unit. Finally, the original application code needs to be modified to
make use of the operation provided by the new SFU.

A further survey on ASIP methodologies can be found in e.g. [66].

Relation to the TACO framework. The TACO framework can be seen
as a combination of the three types of design methodologies and flows outlined
above. In the TACO framework, application-specific programmable proces-
sors are designed as is the case in ASIP design. However, two major dif-
ferences with traditional ASIP can be identified. First, in the TACO frame-
work the sequences of operations chosen for hardware implementation are
considerably larger than in traditional ASIP; in TACO the emphasis is not

11

on detecting recurring general purpose code sequences but in identifying fre-
quently needed domain-specific functions in the target application. Second,
TACO processors are not general purpose processors enhanced with special
execution units for the detected functionality, but are constructed solely of
special execution units and no general purpose processing elements.

The MOVE framework requires further discussion. In TACO all work is
done in the protocol processing application domain and all execution units
are highly optimized for it, whereas in this sense the MOVE framework re-
sembles more the traditional ASIP approaches. In terms of complexity, the
two frameworks approach the problem of finding a suitable architecture from
different directions: in MOVE, the initial machine configuration contains all
possible modules and execution units, and its complexity is reduced in the
exploration process. In TACO, the initial application is analyzed and refined
until the exact functions needed for processing the application are found. If
the functions are not supported by the FUs in the TACO library, such FUs
are created (and stored in the library). The result of this process is a mini-
mal architecture called “virtual processor”, to which complexity is gradually
added to meet original design constraints (e.g. to improve the processing per-
formance). In the TACO framework only application-domain specific special
function units (SFUs) are used, and they are determined in the application
analysis and refinement process. Finally, the MOVE framework relies on au-
tomatic design space exploration of hundreds of possible solutions, whereas
the TACO approach promotes a designer and application analysis driven ap-
proach in which (based on our experiences) typically less than ten potential
solutions need to be explored. We will return to the MOVE framework in
Chapter 3 with a discussion on the differences between the TACO platform
and the MOVE TTA architecture.

There are similarities between abstract specification based flows and
the TACO framework, as one might expect: in TACO the work is done in
a specific problem domain, it being protocol processing. In the TACO flow
the hardware architecture is also represented as a specification and simulation
model written in a high level language, but only prior to synthesis. And, lastly,
performance data such as clock cycle requirements and module utilization is
obtained from the high level simulations (in addition to the verification of
correct processor functionality). However, the TACO approach is very much
library-based and allows extensive component re-use for both simulation and
synthesis. Since all modules in our models are not developed from scratch
every time, the actual hardware design times in the TACO framework are
quite short. Only the TACO VHDL component development and VHDL
model maintenance follow more the conventions of behavioral HDL based
flows.

As a major difference to the mentioned abstract specification based flows,

12

TACO processor models are developed in three different development envi-
ronments at the same time: there is a model for system-level simulations
written in SystemC, a model for estimating physical parameters (e.g. proces-
sor area and power consumption) at the system level written in Matlab, and a
model for synthesizing architectures written in VHDL. The TACO SystemC
simulation model takes freely advantage of standard C++ [105] object ori-
ented techniques like polymorphism and inheritance in addition to standard
SystemC data types and functions. This is a key difference to the ODETTE
project, in which object orientation is used in SystemC through definition of
custom structures (resulting in non-standard SystemC code and in very lim-
ited use of the powerful object oriented techniques available in C++). The
TACO platform models are highly parameterizable. For this reason, processor
models can be constructed by just writing top-level files, in which the number
of TACO modules and the connections between them need to be specified.
A top-level file is needed for each language for a particular architecture, but
the actual processor model implementations do not need to be modified. The
top-level files in all three languages can also be automatically generated using
the TACO design tool.

Related Protocol Processor Architectures

As mentioned earlier, most commercial protocol processors available today are
devices with several high performance general purpose computing elements,
possibly accompanied with a general purpose microprocessor core. For exam-
ple, the Intel IXP1200 processors [57] are built of a StrongArm microprocessor
core and six programmable multithreaded “microengines”, and the Motorola
C-5 processors [13] of a RISC core, 16 programmable “channel processors”
and embedded coprocessors for table lookup, buffer memory and queue man-
agement. Compared to these, the TACO approach has more in common with
application specific processors (ASIP) in that we try to provide hardware
implementations of frequently occurring operations. The differences between
the TACO approach and ASIP were discussed earlier in this section.

A different commercial approach has been taken with the Xelerator X10q
processors [119]. They are data flow processors that operate on protocol data
as it flows through the processor. The architecture is organized around a linear
array of 200 processing units that form a programmable pipeline. This kind of
architecture does not require load-store functionality for protocol processing;
the goal is to process the data at network speed.

Something similar to the Xelerator processors has been suggested already
some time ago in the academic community; in [45] a programmable network
interface accelerator with protocol specific function pages (FPs) is presented.
The processor is targeted for accelerating the transfer of incoming data packets

13

to a host processor and one processor per input interface is needed. In this
approach the idea is that each layer of the protocol is processed in a separate
stage. The data flow is thus organized according to layers in the protocol
architecture in question. In our approach something similar could be achieved
by dedicating one or more interconnection buses for each layer in the protocol
stack. Another approach to direct manipulation of the incoming data flow as
described above has been proposed in [44].

In [75] a programmable finite state machine (FSM) architecture optimized
for Internet protocol (IP) processing is proposed. The emphasis in the opti-
mization is on the handling of the state table; the processor contains a special
unit to handle jumps efficiently. In this approach it was observed that the
branch instruction penalties were considerably lower than in general purpose
processors executing the same application. In contrast to this architecture, in
TACO processors the programmer is responsible for scheduling jumps in the
application.

Two recent licentiate theses from Linköping University [43, 80] give de-
tailed surveys of current industrial and academic network and protocol pro-
cessor architectures and research projects. Also, a recent book [23] presents
seven currently abundantly used commercial network processor architectures
in much detail. Thus, we will not repeat such surveys and presentations in
this thesis, but direct the reader towards the given references.

14

Chapter 2

Characteristic Functionality
in Protocol Processing

In this chapter we argue that different protocols and the functionality needed
in their processing exhibit common characteristics that can be taken advan-
tage of in protocol processing hardware design. To support this argument, we
analyze six widely used protocols to determine the key functionality needed
in their processing. We expect to show that this functionality is not unique to
each protocol but is actually characteristic to several of the analyzed protocols.
Establishing the existence of such common functionality in the processing of
a variety of protocols motivates designing optimized hardware for protocol
processing.

2.1 Layered Protocol Architectures

For human beings protocols mean rules of conduct, sets of actions and reac-
tions to be taken in certain situations. Protocols have been specified for a
multitude of human-to-human interactions, for example royal and presiden-
tial receptions as well as public defenses of academic dissertations. Although
sometimes these protocols may seem to be making things more complicated
than necessary, they ensure that people put into unfamiliar situations, often
with people they do not know, are able to behave in a predictable and correct
way. Basically, in the world of networks, protocols are needed for the same
purpose: to ensure that networked devices know how to act and react in dif-
ferent communication situations. More formally, protocols specify the syntax
and semantics of communication tasks.

In computer networks the communication tasks are usually too complex
to be implemented using monolithic protocols. Instead, modular, or layered,
protocol architectures are preferred. The protocols form a stack of layers, in

15

.

.

.

.

.

.

Application

Presentation

Session

Transport

Data link

Network

Physical

7

1

3

2

4

5

6

a)

Application

Transport

Internet

4

3

2

1

b)

Network

(Host−to−)

Application

Transport

Network

Physical1

2

3

4

5

c)

LLC

MAC
Data link

Figure 2.1: a) The ISO OSI reference model, b) the TCP/IP reference model,
and c) a hybrid reference model.

which each layer communicates with the one above it and the one below it by
passing information through predefined service access points (SAPs), using
protocol-specific logical service primitives. As an example, in the ATM pro-
tocol the primitive ATM-DATA.request is issued by the upper layer through
an SAP to request data transfer [64]. The advantage of a layered protocol
architecture is that each layer abstracts away some technical functions from
the layer above it. So, e.g. a programmer designing a new networking appli-
cation (working in the topmost layer) does not have to worry about voltage
levels and their corresponding logic states in the lowest layer.

Another important benefit of this construction is the possibility to use
many different physical mediums and well designed standard protocols for
each medium type to perform the same high level task. The International
Organization for Standardization (ISO) has defined a protocol stack reference
model (i.e. the layers and their duties). The model is called the Open Systems
Interconnection (OSI) reference model [25]. The OSI reference model, as seen
in Figure 2.1 a), distinguishes the typical tasks needed in communication, but
does not specify the actual services and protocols to be used in the different
layers. The tasks become more primitive when moving down in the stack
and more advanced when moving up. A protocol in one of the layers can be
modified as long as the changes have no effect to the operation of the rest of
the protocols in the stack. ISO has also defined protocols matching the defi-
nitions of the OSI model, but these protocols have not become very popular
in practice. The OSI reference model is not the only attempt to standardize

16

.

Header Payload Trailer

Field 1 Field 2 Field 3 Field N Field 1 Field 2 Field 3 Field M

Figure 2.2: A generic Protocol Data Unit (PDU).

the protocol stack; other suggestions include e.g. the TCP/IP reference model
[15, 70] and the ATM reference model [64]. The ATM reference model is in
use in ATM networks, and is discussed later in this chapter. The TCP/IP
reference model is shown in Figure 2.1 b).

The OSI reference model and its layer tasks were defined before the actual
OSI protocols were suggested. The TCP/IP reference model, on the other
hand, was defined for the existing protocols in the TCP/IP protocol suite1.
For this reason, the TCP/IP reference model does not accurately define the
tasks to be performed in the lowest layer of the model. The OSI reference
model (with layers 5 and 6 dropped) has become quite popular in describing
networks, but the OSI protocols for the reference model have not been widely
adopted. On the other hand, the protocols in layers 2-4 in the TCP/IP
reference model are widely used, but the TCP/IP reference model is not
usable for describing modern networks. In practice, the protocols used in
computer networks nowadays can best be classified using a hybrid reference
model such as the one seen in Figure 2.1 c). This approach is suggested in e.g.
[110]. In the hybrid model, OSI layers 5 and 6 have been dropped as suggested
by the TCP/IP reference model, and on the other hand TCP/IP reference
model layers 1 and 2 have been replaced by OSI layers 1-3. Since IEEE2 local
area network (LAN) protocols are very abundantly used in existing networks,
and since these protocols are always classified as either LLC (Logical Link
Control) or MAC (Medium Access Control) protocols, we extend the hybrid
model definition of [110] to include an optional division of the data link layer
into the LLC and MAC sublayers as seen in Figure 2.1 c).

Protocols encapsulate the information to be exchanged into Protocol Data
Units (PDUs). PDUs are protocol-specific, i.e. PDUs of a certain protocol are
understood only by stations supporting the same protocol. The OSI reference
model suggests the use of the names APDU for application layer, PPDU for
presentation layer, SPDU for session layer, TPDU for transport layer, Packet
for network layer, Frame for data link layer and bit for physical layer protocol
data units. In practice however, PDUs are often generally referred to as
packets regardless of the layer in which their exchange takes place. Also,

1The TCP/IP protocol suite consists of protocols in layers 2-4 of the TCP/IP ref. model.
2IEEE stands for “The Institute of Electrical and Electronics Engineers, Inc.”

17

most protocol specifications define a name to be used for their PDUs. For
example, ATM has cells, Ethernet has frames, IP has datagrams, TCP has
segments, etc.

As seen in Figure 2.2, PDUs are constructed of a header, a payload and a
trailer. The payload is the actual data being carried. The header and trailer
contain protocol-specific control information organized into fields defined in
the protocol specification. The fields may contain information such as protocol
version, payload length, traffic class, receiving station address, error-checking
checksum etc. Many protocols do not have a trailer part in their PDUs, but
carry all the necessary control information in the header. For example, TCP,
IP and ATM PDUs do not have trailers. A trailer is required e.g. in Ethernet
frames.

2.2 Layer Characteristics

Application layer protocols are the ones closest to the computer users. These
protocols allow applications to exchange data, and often require user input
before the exchange. Typical applications include file transfer, E-mail and web
browsing. For example, requesting a web page using a web browser causes an
HTTP (Hyper-Text Transfer Protocol) [33] request message to be sent. The
server responds to this message with another HTTP message containing the
target web page3. As another example, when sending electronic mail the user
actually manually fills in header fields of an SMTP (Simple Mail Transfer
Protocol) [88] message by entering an E-mail address into the “To:” field
and a title into the “Subject:” field. Once the mail is written and the user
tells the E-mail application to send it, the application constructs an SMTP
message from the user input and application settings (e.g. the “From:” field
containing the user’s own E-mail address is automatically inserted into the
header), and sends the message as specified in the SMTP protocol.

The most important task for the transport layer is to provide a reliable
data exchange connection between two networked devices. Transport layer
protocols communicate in an end-to-end fashion, i.e. the sending and receiving
protocols communicate directly with each other. The transport layer regards
the network below it as a pipe, into which data is inserted in one end and
consumed in the other end. Protocols of the lower layers need to concern
themselves with intermediate stations like routers as part of their operating
environment. Depending on the transport layer protocol in question, tasks like
end-to-end flow control, data segmentation and connection multiplexing may
be included in the protocol. An obvious example of transport layer protocols

3Actually, only the main text of the web page. Images etc. are retrieved in subsequent
HTTP requests and responses.

18

is the TCP protocol (Transmission Control Protocol) [50]. It provides reliable
connection-oriented communication between two remote devices. Of the tasks
mentioned above, TCP does application data segmenting and uses flow control
mechanisms to fight network congestion.

The network layer is the first chained layer in the protocol stack: com-
munication is not anymore taken care of by just the sending and receiving
hosts as in the above layers, but it is dependent of neighboring intermediate
stations. The most important task of the network layer is to interconnect dif-
ferent kinds of underlying physical networks. The network layer takes care of
issues like routing and traffic statistics. As an example, the Internet Protocol
(IP) [49, 51] is used to form the Internet out of a huge selection of underly-
ing subnetworks. IP is responsible for e.g. routing packets through multiple
routers and subnetworks from the source station to the destination.

The data link layer presents the underlying physical network (i.e. cable
or wireless transmission channel) as an error-detecting reliable transmission
line to the network layer. The data link layer protocols often utilize error de-
tection and error correcting mechanisms, and perform retransmissions when
necessary in error situations. As mentioned earlier, in practice the data link
layer is often seen consisting of two sublayers: the Logical Link Control (LLC)
and Medium Access Control (MAC) sublayers. Of these, the MAC sublayer
arbitrates access rights to the physical network, and the LLC sublayer man-
ages the logical aspects of the connection (e.g. flow control, error correction).
Commonly used data link layer protocols include the IEEE 802.2 LLC proto-
col [52] and the IEEE 802.3 MAC protocol [54] used in Ethernets.

The physical layer deals with the physical (mechanical, electrical, optical)
characteristics of the transmission medium and is mostly concerned with cor-
rect interpretations of signals to ones and zeros. For example, which voltage
represents a one and which a zero, and what is the duration of one bit in the in-
coming signal. Examples of physical layer protocols are the Synchronous Digi-
tal Hierarchy (SDH) [61, 62, 63] and Synchronous Optical NETwork (SONET)
[6] used in telephone trunk networks.

2.3 Analysis of Protocols and Protocol Processing
Tasks

In order to develop devices for the protocol processing application domain,
careful studies on protocols and protocol processing applications are needed.
Emphasis should be on finding functionality that varies very little or not at all
from one protocol to another. As a starting point, Jantsch et al. have iden-
tified three typical characteristics of protocol processing in [67]: (1) pattern
matching and replacement in bitstrings (especially in frame or cell header

19

analysis), (2) control dominated operation (large finite state machines and
nested if-then-else and case structures) and (3) the need for irregular memory
accesses (managing tables and buffers of various sizes).

We agree with these findings and proceed to search for additional charac-
teristic functionality that could be taken advantage of in protocol processing
hardware design. The focus in the following discussion is on analyzing pro-
tocols that can be regarded as layer 1-3 protocols in the OSI reference model
(Figure 2.1). The protocols in these layers are not end-to-end protocols but
require intermediate stations (e.g. repeaters, bridges, switches, routers etc.)
between the source and destination devices. Thus, these protocols present
a clear need for application-specific hardware systems in addition to applica-
tion software, whereas the end-to-end protocols in layers 4 and above are often
completely implemented as software running on networked workstations.

The layer 1 protocol reviewed in this chapter is the Synchronous Digital
Hierarchy (SDH) [61, 62, 63]. The IEEE 802.3 and IEEE 802.11 MAC layer
specifications [53, 54] as well as the Asynchronous Transfer Mode (ATM) [59]
are covered as layer 2 protocols4. From layer 3, the Internet Protocol (IP)
[49, 51] and the Internet Protocol version 6 (IPv6) [28] are reviewed. The
decision to review these protocols has been made based on the fact that five
of these protocols are currently in widespread use in networks around the
world, and also the remaining one (IPv6) is expected to be so in the future.

2.3.1 Synchronous Digital Hierarchy

The number of long distance telephone operators increased heavily in the
1980’s. Most operators utilized their own optical TDM (Time-Division Mul-
tiplexed) systems to connect customers from local telephone companies to
long distance networks. At the end of that decade, the CCITT (nowadays
known as International Telecommunication Union, or ITU) released recom-
mendations G.707 [62], G.708 [61] and G.709 [63] describing a high capacity
digital transmission network called Synchronous Digital Hierarchy (SDH).
These recommendations have been constantly updated since: the most recent
update is from the year 2003.

A parallel ANSI (American National Standards Institute) standard was
defined earlier in North America, describing the Synchronous Optical NET-
work (SONET)[6]. The main goal for designing SDH and SONET was to
define a common standard for making the networks of different long dis-
tance carriers compatible. In addition to a multitude of national carriers, the
European, American and Japanese digital telephone systems needed to be
able to transfer calls between each other. All these systems utilized 64 kbps

4ATM does not directly map onto the OSI reference model; actually it exhibits charac-
teristics both from OSI layer 2 and OSI layer 3.

20

2619 2619 2619 2619 2619 2619 261926192619

sµ125
(2430 octets = 19 440 bits)

Segment 1 Segment 9.

Figure 2.3: Overview of the SDH STM-1 frame. The grayed boxes represent
the SDH overhead (SDH header) and white boxes represent the SDH payload.
Numbers indicate byte (octet) count.

PCM (Pulse Code Modulation) channels but the multiplexing methods used
in these systems were incompatible. The multiplexing in SDH and SONET
was decided to be TDM-based so that the entire bandwidth is devoted to one
channel that contains time slots for various subchannels.

The standards also specified support for operations, administration and
maintenance (OAM) functionality. OAM was not well enough supported in
existing systems in the 1980’s. The SONET specification also includes support
for electrical transmission lines in addition to optical ones.

The differences between SDH and SONET are minor, although because
of them only a subset of SDH is compatible with SONET and the other way
round. So with certain options, communication and information transfer be-
tween SONET and SDH networks is possible. Specifically, OAM functionality
is not supported between SONET and SDH networks, and thus a SONET net-
work can not be administered directly from an SDH network and vice versa.

The transmission speeds for SDH and SONET are the same except for
the lowest speeds of SONET: the basic transmission unit of SDH, the STM-1
(synchronous transport module level one) frame, is sent at 155.52 Mbps. The
basic transmission units of SONET, the STS-1 frame (synchronous transport
signal level one, electrical) and the OC-1 frame (Optical Carrier level one,
optical), are sent at 51.84 Mbps. Actually, the STM-1 frame structure is very
similar to the structure obtained by multiplexing three SONET OC-1 or STS-
1 frames. Thus the SONET OC-3 and STS-3 are similar (in content) to the
SDH STM-1 frame, and the transmission speeds for STM-1 and OC-3/STS-3
are the same. The standards define transmission speeds up to 2.4 Gbps.

In addition to carrying telephone calls, SDH can also be used to carry for
example ATM cells: the STM-1 (STS-3/OC-3 in SONET) frames are sent at
the speed of 155.52 Mbps, and the STM-4 (STS-12/OC-12 in SONET) units at
622.08 Mbps. These are also standardized ATM transmission speeds, so SDH
and SONET trunks can be used to transport ATM. SDH is a synchronous pro-
tocol; the sender and receiver share a clock, and frames are exchanged every
125 µs (8000 times per second) even if there is no data to be sent. In digital
form a single telephone call requires 64 kbps of bandwidth (PCM sampling,

21

270 x N bytes

Payload

9
ro

w
s

9 x N bytes 261 x N bytes

Overhead

Figure 2.4: General structure of SDH STM-N frames. An STM-N frame is
a container for time-division multiplexed STM-1 frames. For this reason, the
overhead and the payload are N times longer than in an STM-1 frame.

8 bits per sample at 8000 samples per second). The available bandwidth for
telephone calls using SDH STM-1 frames is 150.336 Mbps (the rest of the
bandwidth is used for section overheads). Thus, an STM-1 frame is able to
transport a maximum of 2349 telephone calls at a time.

SDH frame format

SDH data is structured into units called frames. The basic STM-1 frame
consists of 2430 octets5 and is divided into nine equal length segments, as
shown in Figure 2.3. Each segment consists of a 9-octet header part (called
the segment overhead) and a 261-octet payload part. In SDH there is no
single frame header, but the information is distributed evenly throughout the
frame in segment overheads.

The higher order SDH frames (e.g. STM-3, ..., STM-N) are formed by
synchronously multiplexing lower order frames. Higher order frames are often
represented as a 9-row stack of segments as shown in Figure 2.4. In this
representation, it still must be realized that the frame is sent one row at
a time, from left to right similarly as the one-row STM-1 frame show in
Figure 2.3. As with STM-1 frames, the STM-N frames are also formed of 9
consecutive overhead and payload parts. The lengths of these parts (and hence
the required transmission speed) are multiplied with N when compared to the
STM-1 frame; thus, an STM-N frame is still sent every 125 µs, but it contains
N times more data than an STM-1 frame. An example of multiplexing lower-
order frames to higher-order frames is given in Figure 2.5. In the example,
STM-1 frames travel from sender to receiver through two faster networks. On
the way, the frames are first multiplexed into STM-3 frames and later into an
STM-12 frame, and de-multiplexed accordingly.

5An octet is an eight-bit byte.

22

B

A

ABC

K
L

STM−1STM−3

JKL

G

HGHI

EDEF

B

A

C ABC

J

K

STM−1
 level

STM−3
 level

JKL

G

H
I

GHI

D

E
F

DEF

STM−12

ABCDEFGHIJKL

 level level level

L

J

I

D

F

C

Figure 2.5: An example SDH network. Single letters indicate STM-1 frames
being transmitted. Three-letter combinations indicate STM-1 frames multi-
plexed into STM-3 frames. ABCDEFGHIJKL indicates four STM-3 frames
multiplexed into an STM-12 frame. STM-1 frames travel at 155.52 Mbps,
STM-3 frames at 466.56 Mbps, and the STM-12 frame travels at 1866.24
Mbps. Boxes indicate network nodes capable of multiplexing and demulti-
plexing STM-N frames.

SDH processing characteristics

In terms of required processing in SONET and SDH systems, the following
distinct characteristics set requirements and demands for designing protocol
processing devices:

• Processing speed. As described previously, SONET and SDH are
very high speed wide area network systems. Their transmission speeds
currently vary from 52 Mbps to 2.4 Gbps. Because of these high speeds
the hardware used for operating these networks must be able to handle
incoming information at speeds of up to 2.4 Gbps. This speed require-
ment is not variable in an SDH system; since the incoming data rate
is always constant, there are no temporary peak-rate data bursts that
could be dealt with by buffering. The execution units, interfaces and
internal transport buses of an SDH-processing device must be able to
provide adequate performance, which sets clear timing constraints on
both software and hardware design.

• Segment overhead analysis. The control and administration infor-
mation in SDH systems is conveyed as overhead bytes. The overheads
are not transmitted sequentially, but are distributed e.g. in the basic

23

STM-1 frame in 9-octet series that appear every 270 octets in a 2430-
octet frame. Because of this distributed nature, a system processing
SDH frames must be able to find the distributed overhead bytes in
the incoming bit stream, and process them. Processing the overheads
requires data analysis and manipulation at the bit level. A need for
Boolean evaluation can also be seen in overhead analysis. Finally,
since the SDH overheads may only contain values greater than or equal
to zero, it becomes obvious that unsigned arithmetic is adequate for
SDH overhead processing.

• Exact timing. As it is a synchronous and time-division multiplexed
transmission system, SDH requires very exact timing (and hence tim-
ing hardware units) in sending, receiving, assembling and disassembling
frames. Also, clock synchronization between the sender and the receiver
is required.

• Framing and deframing. In SDH, the protocol header (overhead)
information is distributed across the frame to be sent. Data framing in
SDH is thus more complicated than in protocols that place their control
information entirely in the beginning and optionally in the end of the
frame. When outputting a frame, the overhead information to be sent
must be temporarily stored in a buffer or memory block, and parts
of it outputted at exactly specified times into the outgoing bitstream.
Counter functions are also needed to calculate the correct amount of
payload bytes to be written before writing overhead bytes again, and
vice versa.

2.3.2 IEEE 802.3: Medium Access in the Ethernet

Most modern cabled local area networks are based on the IEEE 802.3 Medium
Access Control (MAC) standard [54]. Often these networks are referred to as
“Ethernets”. The original Ethernet was suggested by Metcalfe et al. in 1976
[78]. The term “ether” was used to express that the data transmission space
between the networked stations is filled with a shared transmission medium
(i.e. a single cable that runs from one station to another)6. The first IEEE
standard describing Ethernets (i.e. the aforementioned 802.3 standard) was
published in 1983, and at the time of writing, the most recent revision for
the base standard is from 2002. The standard and its amendments currently

6Until the end of the 19th century it was commonly accepted that all apparently empty
parts of space were filled with an invisible material substance called the “ether”. Among
other things, the “ether” was believed to make different kinds of waves able to travel through
space. For example James Clerk Maxwell (1831-1879), who is generally regarded as one of
the greatest physicists ever, strongly relied on the concept of “ether” in his research.

24

define access rules for networks based on coaxial cable, twisted pair cable and
optical fiber, and network speeds ranging from 1 Mbps to 10 Gbps.

The original shared medium access scheme of the Ethernet is still the basic
mode of operation and a required capability for all 802.3 compliant devices.
All stations expect to be networked with a single cable running through all
the stations in the same network segment, and thus they are prepared to
address situations in which two stations attempt to send data at the same
time (i.e. data collisions occur). The 802.3 standard calls this medium access
method CSMA/CD (Carrier Sense Multiple Access with Collision Detection).
In the coaxial cable implementations, stations are organized in this kind of
bus topology both physically and logically (the cable is the “ether”). This is
different from the twisted pair (TP) implementations, in which the stations
physically form a star topology: the cables are drawn from each station to a
centralized device called hub. In such a case, the devices still form a logical
bus topology with the circuit board of the hub acting as the “ether”.

In the coaxial cable and hub based TP implementations, the entire band-
width of the network is shared by all stations in the same network segment.
For example, let us assume a 100 Mbps hub based TP network with 10 sta-
tions. If five of the stations have a need to send data at the same time, the
available bandwidth for each of the stations is only 20 Mbps. To alleviate this,
many TP networks nowadays use intelligent switching hubs instead of basic
hubs. Switching hubs are able to buffer data and transport it directly between
two stations without letting other stations in the same network segment see
the data. This approach has obvious benefits both in terms of security and in
terms of performance; stations are not able to eavesdrop on data not addressed
to them, and all stations in the segment have the maximum bandwidth avail-
able at all times. Also, no collisions occur in the network and thus time is not
wasted in retransmission attempts. In this approach, physically the network
implements a star topology, but logically it implements a direct connection
(per transfer) topology. The stations still consider it a logical bus topology
and are prepared for data collisions and retransmissions.

The 802.3 CSMA/CD Access Method

The key responsibility of the 802.3 MAC protocol is to define medium access
rules for stations in the same network segment. 802.3 does not utilize a
static multiplexing scheme, but instead the entire bandwidth is dynamically
allocated to any station requiring network access. This decision is warranted
due to the bursty nature of data transfers in computer networks; stations do
not produce constant-speed bitstreams but short bursts of data with silence
between the bursts. As mentioned earlier, the medium is accessed using the
CSMA/CD method: if a station is ready to send a frame, it first senses

25

PREAMBLE DEST. ADDRESS SOURCE ADDRESS LENGTH FCSF
S

D

P
A
D

7 1 6 6 2 4
46−1500 octets

LLC DATA

octets

Figure 2.6: Structure of the IEEE 802.3 MAC layer frame. SFD = Start of
Frame Delimiter, LLC = Logical Link Control, FCS = Frame Check Sequence.

the medium (channel) to determine whether it is available. If the medium
is available, the station may immediately proceed to sending the outgoing
frame. If the medium is busy (i.e. some other station is currently sending a
frame), the station waits for the medium to become free before sensing the
medium again.

It is evident that using such a medium access scheme frame collisions will
still occur: due to propagation delays7 it is possible that a station on a far
edge of the network segment may sense the medium to be free while another
station is already sending a frame. The frame collision is detected by one of
the sending stations and a special 48-bit noise burst is generated onto the
network to inform other stations of a collision. The senders of the collided
frames stop transmitting their frames immediately, and start executing the
so called binary exponential backoff algorithm. The binary exponential
backoff algorithm determines a random period of time the station sending a
colliding frame has to wait before another sending attempt. With consecutive
collisions, the maximum limit for randomization increases exponentially. Af-
ter sixteen consecutive collisions for the same frame, the MAC layer reports
an error message to the upper layers in the protocol stack and refrains from
sending the colliding frame.

802.3 MAC Frame Format

The 802.3 MAC frame is formed of eight fields, as seen in Figure 2.6. The
frame begins with a 7 octet preamble used for synchronization; the octets of
the preamble form a square waveform with alternating ones and zeros. The
preamble is followed by the one-octet start of frame delimiter (SFD). The
SFD continues the synchronization waveform, but ends with two consecutive
ones. As the name suggests, SFD (in accordance with the preamble) is used
to determine the starting point of the frame in the incoming bitstream.

802.3 MAC addresses are device specific (fixed) global addresses. Net-
work device manufacturers obtain the addresses for their devices directly from
IEEE. Thus, no two devices can have the same address and hence the MAC
address can be used in e.g. automatic network configuration. The destina-

7Propagation delay is the time needed by signals to travel, or propagate, through the
network from the sender to the receiver.

26

tion address field of the header is analyzed by all stations in the segment
(assuming the segment is not switched). If a station finds its own MAC ad-
dress in the destination address field, it stores the frame for further processing.
Otherwise, the frame is discarded. The source address is used to identify
the sending station.

The minimum length of a 802.3 MAC frame is 72 octets, or 576 bits. This
length and the bit rate of the network determine the maximum segment length
of 802.3 based local area networks; transmitting the frame must take longer
than twice the propagation delay between two stations on opposite edges of
the network. This way it is impossible for a station to finish sending a frame
prior to detecting a collision (i.e. sending is still in progress when the first
bits of the colliding frame arrive). If the frames were shorter, collisions might
not be detected. For example, the maximum allowable segment length in a
10 Mbps 802.3 based LAN is 2.5 km using four repeaters. This corresponds
to a value of 51.2 µs for two times the propagation delay. This is exactly
512 bits in a 10 Mbps network, which is equal to the minimum length of the
802.3 MAC frame without the preamble and the SFD. Thus, if there is not
enough data in the LLC data field, the frame must be padded to reach the
minimum frame length of 72 octets using the pad field8. The length field
determines the length of the actual upper layer data (i.e. the length of the
LLC data field) so that the data can be separated from the padded content.

The 4-octet, or 32-bit, frame check sequence (FCS) field contains
a checksum calculated for the entire 802.3 MAC frame. The checksum is
used to detect any errors in transmission. The calculation is carried out
using cyclic redundancy checking (CRC). The generator polynomial used for
calculating the 32-bit CRC checksum is defined in the 802.3 standard9. The
same generator is used for all IEEE 802 family protocols that require a 32-bit
checksum.

The LLC payload contains the upper layer data being transmitted. The
maximum length of the upper layer data is 1500 octets, and thus the maximum
length of an 802.3 MAC frame is 1526 octets including the preamble and
the SFD.

802.3 MAC Processing Characteristics

In terms of required processing in local area networks running IEEE 802.3
MAC, the following distinct characteristics set requirements and demands for
designing protocol processing devices:

• High speed operation. The emerging 1 and 10 Gigabit Ethernets
require very high processing speeds, which naturally places great de-

8The pad field content is not specified; it can be any combination of ones and zeros.
9G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x+ 1

27

mands on hardware intended for processing these protocols. High bit
rates in the data link layer also provide high speed transmission capa-
bility for processes operating in higher layers of the protocol stack; for
example, a 10 Gigabit Ethernet is theoretically capable of transporting
IP datagrams at about the same rate.

• Random number generation. Random numbers are needed by the
binary exponential backoff algorithm to determine the lengths of wait
periods after frame collisions.

• Timer functions. Timer functions are also needed by the binary ex-
ponential backoff algorithm. After the length of the wait period has
been calculated, time needs to be measured to actually implement the
wait.

• Counter functions. The binary exponential backoff algorithm also
requires the ability to count the number of consecutive collisions. The
upper limit for randomization is dependent on the number of consecutive
collisions occurring for the same frame.

• Frame header analysis In basic 802.3 operation, all stations see all the
frames in the network segment. After synchronizing to the bitstream,
each station needs to determine whether an incoming frame belongs to
it or not. This is done by comparing the destination address field in
the header to the stations’s hardware address. If the frame belongs to
a station, the header needs to be analyzed further to e.g. determine the
payload length. These tasks require operations like bitwise manipu-
lation, Boolean comparisons and counting functions. Also, it can
be oserved that all 802.3 MAC header fields may only contain values
greater than or equal to zero. Moreover, implementing the CSMA/CD
access method does not require the use of negative values. Thus, 802.3
MAC processing can be carried out resorting only to unsigned arith-
metic.

• Checksum calculation. Each 802.3 frame contains a 32-bit CRC
checksum. The checksum needs to be calculated both in sending and in
receiving stations.

• Data buffering. In basic 802.3 operation the most recently sent frame
needs to be buffered by the sending station to make consequent re-
transmission attempts after collisions possible. In intelligent Ethernet
switches more extensive buffering is needed; each port in the switch
needs to be able to buffer several frames to ensure maximal throughput
without frame collisions.

28

2.3.3 IEEE 802.11: Medium Access in Wireless LANs

As portable and hand held computing devices have become increasingly pop-
ular, the need for connecting them easily to different types of networks has
risen. From the user’s point of view, the easiest way of connecting such a
device to a network is to use a self-configuring wireless connection: the user
would not have to connect any cables to the portable or hand held device,
and the device would automatically sense the presence of an available wireless
network. The user would be able to use the mobile unit anywhere within the
transmission range of the wireless network. However, it is evident that wire-
less networking does bring forth new problems in data communication, such
as increased noise and interference, overlapping wireless network segments
and an increased need for securing the connection.

The IEEE 802.11 MAC standard [53] for wireless local area networks was
first published in 1997 for 1 and 2 Mbps transmission speeds. The standard
originally specified operation for infrared wavelengths in the range of 850..950
nm, and for both direct-sequence and frequency-hopping spread spectrum
radio in the unlicensed industrial, scientific and medical (ISM) frequency band
at 2.4 GHz (which is also used by e.g. microwave ovens and Bluetooth10

devices). The most recent revision of the base standard was published in 1999.
The base standard has received several supplements and amendments since
the initial publication. The key supplements and amendments, as described
in the list below, specify operation in higher transmission speeds as well as in
additional radio frequency bands:

• 802.11a. This amendment to the 802.11 standard was published in
1999. It defines a high speed (up to 54 Mbps) physical layer for the
unlicensed 5 GHz frequency band. 802.11a is not directly compatible
with 802.11 systems operating in the 2.4 GHz ISM band. On the other
hand, there is less interfering radio traffic in the 5 GHz band, and more
transmission channels available for users.

• 802.11b. This supplement to the 802.11 standard, also known as Wi-Fi,
was also published in 1999 (and updated in 2001). As IEEE expresses
it, this supplement defines a “higher speed” physical layer extension to
the 2.4 GHz ISM frequency band. Devices supporting 802.11b have a
maximum transmission speed of 11 Mbps, which is 5-10 times more than
originally specified in the 802.11 standard for the ISM frequency range.
Wi-Fi has gained a lot of popularity over 802.11a (in part due to more
cost-efficient RF implementations in the 2.4 GHz band), and currently
most new devices with WLAN support are Wi-Fi compatible.

10A personal-area network (PAN) specification for robust short range communication
between (portable) devices. Named after Danish viking ruler Harald Bl̊atand (910-986).

29

• 802.11g. This amendment to the 802.11 standard, also known as
Wireless-G, has only recently been ratified by IEEE [16]. It is actu-
ally an extension to the 802.11b supplement, and it defines a high speed
(up to 54 Mbps) physical layer in the 2.4 GHz ISM band while maintain-
ing downwards compatibility with 802.11b (and base 802.11 ISM part).
Although this amendment was officially published only quite recently,
details of it were mostly settled already by the end of 2002. For this
reason, device manufacturers have already for some time been able to
manufacture 802.11g compatible, or Wireless-G, devices and make them
available on the market.

Wireless devices can operate in either ad hoc11 mode or in infrastructure
mode. By definition, an ad hoc network is a spontaneously formed temporary
and small network and the term is usually used in the context of local or
personal area networks. An ad hoc WLAN network is formed by devices
using compatible WLAN interfaces, and it is disassembled when devices sign
out of it. Ad hoc networks are useful in e.g. exchanging data between wireless
devices located in the same room without cables.

The infrastructure mode requires the use of an access point (base station).
The access point is connected (by cable) to an existing infrastructure network
(e.g. a campus area LAN or a corporate LAN). Wireless devices have access to
the infrastructure network through the access point. In infrastructure mode,
the access point acts as a hub for connecting wireless devices to the wired
network. Naturally, more than one access point can be connected to the same
infrastructure network, and a wireless device can be moved from the range
of one access point to the range of another one and still remain connected to
the same infrastructure network.

The 802.11 CSMA/CA Access Method

The medium access method of 802.11 wireless LANs is called CSMA/CA
(Carrier Sense Multiple Access with Collision Avoidance). It differs from the
CSMA/CD method used in IEEE 802.3 (Ethernet) LANs in the sense that it
focuses on avoiding frame collisions (CA, collision avoidance) instead of de-
tecting them (CD, collision detection). In the basic CSMA/CA operation in
802.11 a host senses the transmission medium for activity. If the medium is
idle, the host waits a short period of time called interframe space (IFS) plus
a random number of backoff periods called “slots”. Then, the station senses
the medium again12. If the medium is still idle, the host may start transmit-
ting data. If the medium is busy, the host must back off for a random time

11Lat. Ad hoc = for this, for this purpose.
12There are actually three different IFS times, and the one chosen for use depends on the

mode of operation.

30

2octets 2

ADDR 1 ADDR 2 ADDR 3
SEQ.

CONTROL
ADDR 4

6 66 62

/ ID

FRAME

BODY

0−2312

FCS

4

CONTROL

FRAME DURATION

PROTOCOL
TYPE SUBTYPE

FROMTO

DSVERSION DS

MORE

FRAG
RETRY

PWR

MGT

MORE

DATA
WEP ORDER

bits 2 2 4 1 1 1 1 1 1 1 1

Figure 2.7: Structure of the IEEE 802.11 MAC layer frame. SFD = Start of
Frame Delimiter, LLC = Logical Link Control, FCS = Frame Check Sequence.

before attempting to initialize transmission again. This mode of operation,
where stations contend of medium access, is called distributed coordina-
tion function (DCF) in 802.11 networks. If the network is equipped with
an access point (a base station), also contention-free access may be provided.
This optional contention-free mode is called point coordination function
(PCF). As the name suggests, the access point grants individual stations
medium access during PCF operation.

As mentioned, the DCF mode is the basic mode of operation in an 802.11
network. If PCF is not used, the network segment is always in DCF mode.
If both DCF and PCF are in use, the DCF (contention) mode and the PCF
(contention-free) mode co-exist in the network so that one mode is always
followed by another in short cycles (the DCF + PCF cycle is called a super-
frame). The time allocated to each mode changes dynamically based on the
hosts’ need for each type of traffic in the LAN. The cycle length is specified
so that all hosts have a guaranteed chance of accessing the network during
the superframe. The interframe spaces are by definition shorter for hosts that
operate in contention-free (PCF) mode; This way hosts in DCF mode are not
able to interrupt the contention-free period. The PCF mode is useful when
there is a need to guarantee a certain constant amount of bandwidth for one
or more hosts in the network segment (e.g. in multimedia applications).

802.11 MAC Frame Format

The 802.11 frame is formed of nine fields as seen in Figure 2.7. The first
seven fields form the frame header. The header fields contain frame control,
duration, address and sequencing information. The length of the header is 30
octets (240 bits).

The Frame control field is further divided into 11 subfields. It contains
subfields for protocol version, frame type and subtype, fragmentation con-
trol, wireless encryption and power management. The protocol version is
intended to be changed from 0 to another value in case of a major change

31

in the protocol specification. The type and subtype subfields indicate the
frame’s function, i.e. whether the frame is a data, control or management
frame and what its key function is (e.g. association/disassociation request or
response, beacon, powersave etc.). The to DS and from DS subfields deter-
mine how the address fields in the header are interpreted (i.e. what addresses
are given).

In DCF (contention) operation the Duration/ID field holds a frame type
dependent frame duration value (1..32767). If the system is in PCF operation,
this field is fixed to the value 32768. Other values are either reserved for future
use or used for carrying association information in the frames of the type in
question.

Depending on the type of frame in question, the 48-bit Address fields can
carry any of the following: a BSS identifier (the 48-bit address identifying the
basic service set (the cell) in which the host operates), a destination address,
a source address, a transmitter address and a receiver address. The types of
addresses contained in the address fields is defined by the to DS and from
DS subfields in the frame control field. The 48-bit addresses are formatted
the same way as in 802.3 (Ethernet) MAC.

The Sequence Control field has two subfields, the fragment number
subfield (4 bits) and the sequence number subfield (12 bits). If service or
management data needs to be fragmented, the sequence number subfield con-
tains a specific identification value for the service or management unit in
question. Fragments are numbered from zero onwards and the first fragment
has the value zero in its fragment number subfield.

The header is followed by a variable-length frame body with the actual
payload to be carried. The frame body length is specified to be between 0 and
2312 octets. The frame ends with a one-field trailer used for error detection.
The only trailer field is FCS (frame check sequence), which contains a
CRC-32 checksum of the entire frame. The FCS is used and generated the
same way as in 802.3 (Ethernet) MAC.

802.11 MAC Processing Characteristics

In terms of required processing in local area networks running IEEE 802.11
MAC, the following distinct characteristics set requirements and demands for
designing protocol processing devices:

• Random number generation. Random numbers are needed in the
802.11 MAC protocol to determine te number of backoff slots to wait
before sending a frame is allowed.

• Timer functions. Time needs to be measured to implement the waits
required by interframe spaces and random backoffs.

32

• Frame header analysis. As in 802.3, also in 802.11 the frame header
analysis requires a multitude of operations. First, the combination of
addresses included in the header needs to be determined by analyzing
the DS bits. After this, the addresses need to be validated (to find out, if
the receiving station is required to process the frame further). These op-
erations require bitwise manipulation and Boolean comparisons.
Counting functions are needed for processing the duration/ID value,
fragmentation information and sequencing control. Finally, as seen in
the previous discussion, all 802.11 MAC header fields may only con-
tain values greater than or equal to zero. Moreover, implementing the
CSMA/CA access method does not require the use of negative values.
Thus, 802.11 MAC processing can be carried out using unsigned arith-
metic.

• Checksum calculation. Each 802.11 frame contains a 32-bit CRC
checksum. The checksum needs to be calculated both in sending and in
receiving stations.

• Data buffering. Buffering is needed in processing fragmented frames;
incoming fragments need to be stored until all fragments of the original
data have arrived.

2.3.4 Asynchronous Transfer Mode

In the late 1980’s a solution called Broadband Integrated Services Digital
Network (B-ISDN) was suggested as the basis for future telephone networks.
The goal was to make transportation of anything from telephone calls to
television programs and video on demand (VoD) possible across a single fast
network. The underlying transport technology in B-ISDN was called Asyn-
chronous Transfer Mode (ATM) [59, 64]. B-ISDN did not become popular,
but its transport technology ATM is widely used. It is used e.g. to connect re-
mote LANs to each other. The standardized transmission speeds for ATM are
155.52 Mbps and 622.08 Mbps, which are also standardized SONET and SDH
speeds. Until recently, ATM has been a valid choice for network technology
when transmission speeds of several hundred megabits per second have been
needed. However, the recent emergence of Gigabit Ethernets (as standardized
in IEEE 802.3 and its amendments) may soon change this situation.

In PSTNs (Public Switched Telephone Networks) a method called cir-
cuit switching is used to send information from the sender to the receiver.
Basically circuit switching means that a (physical) wired circuit is formed be-
tween the calling parties by means of using switches that connect wires to one
another. ATM is a packet switching technology that logically forms virtual
circuits (VCs). This means that instead of using switches to form a direct

33

wire connection with the calling parties, data PDUs are sent from the source
through a series of nodes called ATM switches to the destination. The route,
or VC, that the ATM PDUs (called ATM cells) travel on has been decided
on during connection setup and is not altered during the connection; thus all
cells of a single connection take the same route from sender to receiver. When
the parties wish to terminate the connection, the virtual circuit is torn down
(i.e. information of the particular VC is removed from the connecting ATM
switches). This method of transmission has many advantages: first, the ATM
cells moving on the same virtual circuit always arrive in the same order they
were sent, and thus no cell reordering is required in the receiving end. Sec-
ond, no routing decisions need to be made on individual cells in the switches,
since their routes have been decided on already during connection setup. On
the other hand, in packet-switched virtual circuit networks such as ATM,
a malfunctioning network device causes all virtual circuits (i.e. connections)
traveling through the device to be cut off.

In ATM networks the connection hierarchy has two levels: virtual circuits
and virtual paths. Several virtual circuits form a virtual path similarly as
several insulated copper wires would form a cable. The idea of this two
level hierarchy is that if due to a network problem rerouting is necessary,
then rerouting a single virtual path causes automatically the rerouting of
the virtual circuits inside the virtual path. Thus the virtual circuits (single
connections) do not need to be rerouted individually, but can be rerouted as
a batch.

The ATM specification itself does not standardize a format for cell trans-
mission. Cells can be sent independently or they may be embedded into a
carrier system, e.g. SONET or SDH. There are separate standards specifying
how ATM cells are packed into carrier frames provided by such systems. At
any rate, this indicates that ATM cells can be sent either on electric wires or
optical fibres, depending on the underlying carrier system.

ATM cells

Each ATM cell contains 53 octets. Of this, the ATM header consists of the
first 5 octets and the cell payload consists of the last 48 octets as shown in
Figure 2.8.

Figure 2.8 displays one of the two possible ATM header types, the network-
to-network interface (NNI) header. There is also a header called the user-to-
network interface (UNI) header. The UNI header differs from the NNI header
with only a slight difference in the first field: the 12-bit VPI field is split
into a four-bit flow control field called GFC, and an 8-bit VPI field. The
GFC field exists only between the sending host and the first ATM switch,
it is overwritten by the first ATM switch, and it has no significance to the

34

(12 bits)
VPI

(16 bits)
VCI

(3 bits)
PTI

(1 bit)
CLP

(8 bits)
HEC

HEADER
(5 bytes)

USER INFORMATION (payload)
(48 bytes)

Figure 2.8: The ATM cell, network-to-network interface (NNI). VPI = virtual
path identifier, VCI = virtual circuit identifier, PTI = payload type identifier,
CLP = cell loss priority, HEC = header error check.

receiving station. Thus, in the following discussion we focus on the NNI
header type.

The predefined route for the cell is represented by the virtual circuit
(VCI) and virtual path (VPI) identifiers in the ATM header. Since the
path information is a 12-bit integer and the circuit information is a 16-bit
integer, it is easily determined that an ATM switch could have up to 4 096
incoming and outgoing virtual paths, each containing 65 536 virtual circuits.
Actually the number of virtual circuits available is smaller since some VCI
values are reserved for network control operations like setting up connections.

The payload type identifier (PTI) indicates whether the cell is a user
data cell or a maintenance/resource management cell (OAM, operations and
maintenance). Also, problems in cell transmission (congestion etc.) are indi-
cated in the payload type identifier.

If there is congestion in an ATM switch and cells need to be discarded to
regain normal operation, then cells with cell loss priority (CLP) set to 1
are discarded before cells with CLP=0.

The header error check (HEC) field of the header contains a checksum
of the ATM cell header. Only the cell header is checked for errors (i.e. included
in the checksum calculation). This is done to ensure that correct virtual circuit
and path identifiers are received. The ATM HEC checksum is calculated using
CRC-813.

ATM protocol stack and data transfer

As seen in Figure 2.9, the ATM protocol stack is somewhat different from
the OSI and hybrid protocol stacks shown in Figure 2.1. Actually an ATM

13G(x) = x8 + x2 + x+ 1

35

ATM ADAPTATION
LAYER (AAL)

PHYSICAL
LAYER

CS Sublayer

ATM LAYER

SAR Sublayer

TC Sublayer

PMD Sublayer

UPPER LAYERS UPPER LAYERS

CONTROL PLANE USER PLANE

LAYER MANAGEMENT

PLANE MANAGEMENT

Figure 2.9: The B-ISDN ATM reference model as defined in [64].

network can not be conclusively subdivided into parts fitting the OSI or hybrid
protocol models, since single layers of the ATM stack perform tasks across
the layers of OSI and hybrid stacks. For example, the ATM layer is usually
regarded as a data link layer protocol. However, a data link layer protocol is
often defined as a single hop protocol used by machines at the opposite ends
of a wire, but the ATM layer has actually the characteristics of a network
layer protocol: end-to-end virtual circuits, switching and routing [110].

The most important task to be performed by the ATM adaptation layer
(AAL, see Figure 2.9) is to segment the messages from upper layers in the
protocol stack to small pieces that can be used as payload in ATM cells.
Recall that the ATM cell is quite short (53 octets); thus, segmentation is
needed for most upper layer data. Naturally, the AAL must also reassemble
the messages in the receiving device. The convergence sublayer (CS) in the
AAL provides the standard interface (i.e. the service access points) towards
the upper layers, and the segmentation and reassembly of upper layer data
is managed by the SAR (segmentation and reassembly) sublayer. The third
dimension of the ATM protocol stack (i.e. control and user planes, layer and
plane management) defines mechanisms for, among other things, flow control,
resource management and interlayer coordination.

Before the upper layer data can be sent across an ATM network, the ATM
layer needs to set up a virtual circuit from the sender to the receiver. The
ATM layer sends a request cell to establish a transfer route. The switches

36

along the transmission path return virtual route information to the unit that
requested the route. The route information is then included in the cell headers
(VPI and VCI) of all outbound data units. The transport medium for ATM
is usually optical fiber, but for transmissions of less than 100 meters coaxial
cable or category 5 twisted pair can be utilized [26, 84, 110].

ATM cells can be sent through a network directly or via a carrier. The
ATM layer provides an outbound sequence of cells, and the transmission con-
vergence (TC) sublayer of the physical layer (see 2.9) provides a uniform
interface between the physical medium dependent (PMD) sublayer and the
ATM layer. The TC sublayer converts the ATM cells to a bitstream and pro-
vides the bitstream to the PMD sublayer. The PMD sublayer is concerned
with putting bits in the correct format at the correct time onto the medium.

An important issue in ATM is synchronization to an incoming bitstream.
The header error check (HEC) field of the ATM cells is used to deal with
this issue: the TC sublayer has a 40-bit shift register in connection with the
incoming bitstream. The 40 bits in the register are examined to determine
if they could form a correct ATM header (i.e. whether the last 8 bits form
a correct CRC-8 checksum of the first 32 bits). If CRC-8 does not compute
correctly, the register is shifted left one bit, and the next bit in the incoming
stream is inserted into the rightmost position in the shift register. This is
done until a valid HEC is found.

Once the register contains a valid ATM cell header (which still could
be a random bitstring and not actually an ATM header), the next 424 bits
(48 octets, possible cell payload) are discarded and the 40 bits after them
(potential next header) are read into the register. The process is repeated
until δ consecutive valid headers are found. This way the possibility of a
random bitstring being interpreted as a valid row of ATM cells is P = 2−8δ

[108].
After finding δ consecutive valid headers, normal operation (i.e. processing

incoming cells as valid data) starts. In normal operation, if α consecutive
invalid headers are encountered, the system goes back to searching for one
valid header and then to find δ consecutive valid ones.

ATM Processing Characteristics

In terms of required processing in networks running ATM, the following dis-
tinct characteristics set requirements and demands for designing protocol pro-
cessing devices:

• High speed operation. ATM systems need to be able to handle
ATM traffic at speeds of up to 622 Mbps. Such a high speed places
clear demands on hardware performance.

37

• Checksum calculation. In ATM, the CRC-8 checksum is calculated
very often, although only for 32 bits at a time. In normal operation it
is done every 424 bits, which is about 1.5 million times per second in a
622 Mbps ATM network.

• Counter functions. Counter functions are needed frequently in ATM,
e.g. to maintain the α and δ values needed for synchronization and error
detection.

• Cell header analysis. Processing the ATM header fields requires
at least bitwise manipulation (e.g. for processing virtual path and
virtual circuit identifiers, and in synchronization) and Boolean com-
parisons (e.g. for comparing the checksum calculation result to zero).
Also, as seen in this section, ATM header fields may only contain values
greater than or equal to zero. In addition, ATM processing does not
require the use of negative values. Thus, ATM implementations can be
done using only unsigned arithmetic.

• Data buffering. Buffering is needed in AAL for storing cell payloads
until all parts of an upper layer message have arrived. Buffering is also
necessary in ATM switches.

2.3.5 The Internet Protocol

“The Internet began in early 1969”. This statement given in [102], as blunt
as it sounds, is in fact quite accurate. In the 1960’s the U.S. department of
defense saw a need for a robust command and control network that would
remain functional even if several connecting nodes in the network fell offline
(e.g. were destroyed by a bomb). The idea was that network traffic could be
rerouted around the non-functional nodes through other nodes. In December
1969 the design work resulted in a functioning network of four nodes called the
ARPANET14. The protocols used in the original ARPANET were not very
well suited for internetworking, and in 1974 Cerf and Kahn proposed a new set
of internetworking protocols called TCP/IP [15]. The original ARPANET no
longer exists, but newer networks and nodes built in its place and in addition
to it today form the Internet as we know it.

The Internet protocol, or IP, is the network layer protocol used in the In-
ternet. The current version of the protocol (IP version 4, IPv4) is by no means
a novelty; after Cerf and Kahn’s work in the 1970’s, a Request for Comments
(RFC) specification15 of the IP protocol was given in 1980 (RFC 760) [49]. It

14ARPA = Advanced Research Project Agency (of the U.S. department of defense).
15RFCs are in general more or less considered to be Internet standards.

38

was updated in 1981, and the resulting specification was published as RFC
791 [51]. This is the most recent specification revision of the IP protocol.

The Internet is formed of a mixture of different kinds of networks running
different kinds of protocols and operated by different kinds of devices. The
IP protocol is used to construct a single internetwork out of this mixture. As
stated above, IP was designed with internetworking as the key design goal.
This means that the IP protocol is required to support a global address-
ing scheme and to be able to route datagrams (IP PDUs) from the sending
machine to the receiving machine through a number of intermediate nodes.
IP addresses these requirements by resorting to connectionless service: hosts
send datagrams onto the network and expect them to eventually reach the
receiving host. It is up to the protocols in layers above the IP protocol to
manage retransmission when necessary, and it is up to the IP routers in the
network to decide how individual datagrams travel across the mixture of net-
works from sender to receiver. It is important to realize that each datagram
travels independently through the network, and thus datagrams that carry
parts of a single application message may take different routes and arrive out
of order. Also, it is possible that some routers need to further fragment the
datagrams on the way (if e.g. a datagram is too large to travel through one
of the networks on the route). For this reason, the IP protocol in the receiv-
ing station must be able to reorder incoming datagrams, reorder incoming
fragments, and rebuild the original datagrams out of the fragments.

IP Datagram Format

An IP datagram, as seen in Figure 2.10, consists of two parts: a header part
and a text part. The text part is the user payload of a datagram. Both of
these parts can have a variable size, and the total maximum size of a datagram
is 64 kB. Usually the total datagram size is less than 1500 octets; this makes
it possible to fit a datagram into an Ethernet frame. The way this should be
done was specified already in 1985 in RFC 894 [48].

The version field in the datagram header indicates to which version of
the IP protocol the datagram belongs to. For IPv4, the value of this field is
always 4. The IHL (IP header length) field indicates how many 32-bit
data words form the variable-length header of the datagram. The minimum,
and typical, value for this field is 5. The type of service field indicates the
speed and reliability requirements for the datagram’s transmission. This field
is usually ignored by routers. The total length of datagram field indicates
the size of the entire datagram, both the header and the text parts. The value
is given in octets, and the maximum value for it is 65535 octets.

If the datagram is broken into fragments along the transmission path, then
the identification field of each fragment indicates to which original datagram

39

D
F

M
F

16 24 328bits

OPTIONS (variable length)

IDENTIFICATION

TIME TO LIVE

VERSION IHL TYPE OF SERVICE TOTAL LENGTH OF DATAGRAM

FRAGMENT OFFSET

PROTOCOL HEADER CHECKSUM

SOURCE ADDRESS

DESTINATION ADDRESS

TEXT (payload)

Figure 2.10: The IP datagram. Gray bits are unused (or no longer used).
IHL = IP Header Length, DF = Don’t fragment, MF = More fragments.

the fragment belongs to. The two control bits, DF and MF, are used for
controlling fragmentation. If set, the DF bit indicates that the datagram
may not be fragmented along the transmission path but must be delivered
in one piece. The MF bit indicates that there are still more fragments of
the datagram to come. The last fragment does not have this bit set, but all
other fragments do. The fragment offset field indicates the position in the
original datagram where the fragment belongs to.

The protocol field is used to indicate which transport layer protocol takes
the datagram after it has been reassembled at the receiving host’s network
(IP) layer. Possibilities are e.g. TCP (indicated by value 6) and UDP (indi-
cated by value 17).

The time to live (TTL) field indicates the time left in seconds before
the datagram must be discarded in a router. Usually this value is decreased at
each network hop instead of being decreased every second. This field ensures
that a datagram can not wander around the Internet forever.

The header checksum field is used to verify the correctness of a data-
gram’s header. Because at least one field in the header changes at each net-
work hop (TTL is decreased), this value must be recalculated at each hop.
The checksum is calculated using a custom algorithm defined in RFC 791 [51]:

“The checksum field is the 16 bit one’s complement of the one’s
complement sum of all 16 bit words in the header. For purposes of
computing the checksum, the value of the checksum field is zero.”

40

The options fields can contain values that concern security and routing
issues, as well as any user defined options. One purpose of these fields is to
allow experimenting without the need for allocating fixed non-used fields to
each datagram.

The source address field contains the 32-bit IP address of the device
that sent the datagram, and the destination address field contains the
32-bit IP address of the receiving device. IP addresses are formed of two
main parts, the network identifier and the host identifier. If subnets are
used, the host identifier is further divided into a subnet part and a host part.
Subnet masks are used to separate the subnet and the host parts in subnet
routers16. The lengths of the network and host identifiers vary depending
on the class of network in use; A class addresses have an eight-bit network
identifier and a 24-bit host identifier, B class addresses have a 16-bit network
identifier and a 16-bit host identifier, and C class addresses have a 24-bit
network identifier and an 8-bit host identifier. IP addresses are usually pre-
sented as a dot-separated list of eight-bit decimal numbers, e.g. the IP address
11000000 10101000 11111111 00010100 is written in the form 192.168.255.20.

The addresses were originally allocated by granting an institution or cor-
poration a network identifier from one of the classes. The institutions and
corporations then allocated the individual addresses to their hosts. Since the
C class only supports 256 addresses (of which a few are special, i.e can not
be allocated to hosts), many institutions and corporations requested B class
addresses with up to 65 536 possible addresses. This kind of address hierarchy
and allocation policy leads to inefficient IPv4 address space use; according to
[110], more than half of class B networks have less than 50 hosts (of the more
than 65 000 possible ones) connected to them.

For this reason among others, IPv4 is running out of addresses. The long
term solution for the problem is expected to be provided by the next version
of the protocol, IPv6. It introduces 128-bit addresses (which make it possible
to have about 7 · 1023 IPv6 addresses on each square meter of the earth’s
surface [110]), and a more efficient allocation policy. IPv6 is discussed further
in the next section. The short term solutions that have been been taken into
use, while waiting for IPv6 to start dominating the Internet, are classless
inter-domain routing (CIDR) [34] and network address translation
(NAT) [103]. In CIDR, the rest of the available IP addresses are allocated
more efficiently by forgetting the concept of address classes. If for example an
institution or corporation needs 4000 addresses, it is granted an address space
of 4096 addresses (the nearest two’s power). However, this approach requires
more processing in routers due to a more complex analysis of the destination
address.

16An AND operation is performed between the destination address and the subnet mask
to find out to which subnet a datagram should be transported.

41

NAT takes a totally different approach to the problem: the basic idea is to
use a certain block of (hundreds of) IP addresses internally in an institution or
corporation, and to use just one or a few globally known addresses for outside
connections. The internal addresses are not visible to the outside network, but
only to hosts within the institutions or corporations own network. A special
device called a NAT gateway is used to translate the internal IP addresses
into one of the available global addresses. A session ID17 is also included
in the newly formed datagrams. With the use of session IDs, addresses of
incoming datagrams can again be converted (or mapped) back to internally
used addresses. Certain ranges of IP addresses have been defined for use in
such internal networks, and if an address in one of these ranges is encountered
in an inter-domain router, the corresponding datagram is discarded.

IP Processing Characteristics

In terms of required processing in networks running Internet Protocol version
4, the following distinct characteristics set requirements and demands for
designing protocol processing devices:

• Support for high speed operation. The speed at which datagrams
arrive in a host running the IP protocol depends on the underlying
data link and physical protocols in use. IP devices may need to be
able to process datagrams at speeds of up to 10 Gbps. More typically,
the network speed range for IP networks nowadays is from 1 Mbps to
1 Gbps.

• Checksum calculation. Each host and each router needs to be able
to calculate the custom IP checksums. Sending hosts need to calculate
the checksum for the headers of outgoing datagrams. Routers need to
first verify the checksum of an incoming datagram and then recalculate
it after the routing decision has been made. Receiving hosts need to
verify the checksums in incoming datagrams.

• Datagram header analysis. Processing the IP header fields requires
at least Counter functions for e.g. accessing the header fields (IHL de-
termines header length), bitwise manipulation for e.g. analyzing the
addresses and processing subnet information, Boolean comparisons
for e.g. determining correct protocol version. Since the IP header fields
may only contain values greater than or equal to zero, and IP process-
ing can be done without using negative values, unsigned arithmetic
is adequate for IP implementations.

17More precisely, actually the distinct set of source and destination TCP/UDP ports and
source and destination IP addresses of a transmission is used as its session ID.

42

• Data buffering. Buffering is needed to reorder datagram fragments
before providing the payload to the upper layer. Routers also need
to buffer datagrams that have entered the router but have not been
processed yet.

2.3.6 The Internet Protocol version 6

To answer to the existing problems in IPv4 (first and foremost, the problem
of running out of IP addresses), in RFC 1550 [12] the IETF18 called for pro-
posals describing a new version of IP. IETF used the name “IPng”, or IP:
next generation, for the new protocol. As a result of this call, a combination
of two of the proposals was published in 1994 with the name “Simple Internet
Protocol Plus” (SIPP) [46]. A year later, the first specification describing
Internet Protocol version 6 [27] was published based on the SIPP proposal.
The most important difference with the SIPP proposal and the IPv6 speci-
fication was that the 64-bit addresses suggested for SIPP were replaced by
128-bit addresses in IPv6. The most recent version of the IPv6 specification
was published in 1998 as RFC 2460 [28].

In addition to the size of the address space and the ways of allocating the
addresses, IPv6 provides support for authentication and payload encryption,
which were not integral parts of IPv4. IPv6 also specifies type-of-service fea-
tures (i.e. traffic classes). The IPv6 main datagram header has a fixed size
with 7 fields (IPv4 had a variable size with 13 fields), which should make
its processing in routers faster. Dropping the header checksum also speeds
up the processing of regular datagrams in both hosts and routers. However,
checksum calculations are still needed in e.g. inter-router control messaging.
For regular datagrams, IPv6 relies on the upper and lower layers in the proto-
col stack to manage error detection and error correction. Finally, inter-router
fragmentation is not allowed; managing datagram fragmentation is up to the
sending and receiving host only. Thus, if a datagram is too big for a subnet,
the subnet router will discard the datagram and send an error message to
the sending host. The sending host will then fragment the datagram into
pieces small enough to travel through the subnet. This feature also improves
network performance by simplifying the fragmentation and relieving routers
from it.

IPv6 Datagram Format

Like IPv4, an IPv6 datagram consists of two parts, the header and the payload
part. As a difference, the IPv6 header consists of a fixed-length part with
seven fields, and an optional set of extension headers. The extension headers

18IETF stands for the Internet Engineering Task Force.

43

16 24 328bits

VERSION TRAFFIC CLASS FLOW LABEL

PAYLOAD LENGTH NEXT HEADER HOP LIMIT

SOURCE ADDRESS

(128 bits)

(128 bits)

DESTINATION ADDRESS

PAYLOAD

NEXT HEADER(S)

Figure 2.11: The IPv6 datagram. The first seven header fields are followed by
zero or more extension headers, the upper layer header (“NEXT HEADER(S)”

in the Figure) and the upper layer payload. The NEXT HEADER field points
to the upper layer header, if no IPv6 extension headers are present.

specify additional information for the receiver or for the routers along the way.
The extension headers can carry (a combination of) additional information
about routing, end-to-end fragmentation, authentication and encryption. The
fixed part of the header is 320 bits, or 40 octets, of length. Different kinds of
extension headers are of different sizes. Some of them have a fixed length and
some can have a variable length. Each extension header has a “next header”
field pointing to the next header or the upper layer header.

The version field of the IPv6 header must always contain the value 6 to
indicate the protocol version. We recall that in the currently used version of
the IP protocol this field is always set to 4.

The traffic class field is used to indicate the type of service the data
requires. Values from 0 to 7 support flow control mechanisms, and values
from 8 to 15 are intended for real-time services such as audio and video
connections. A higher value within one of these ranges indicates a higher
priority and/or bandwidth requirement. The lower the value within one of
the ranges, the sooner the packet is discarded if a router becomes congested.

Flow labels can be used to setup connections with special properties
between two hosts. In other words, the flow label is a connection identifier for

44

the communicating hosts. The flow label reserves bandwidth for a connection
between two hosts: if a datagram with a non-zero flow label is encountered by
a router, the router needs to find out from its flow tables the type of special
service needed by the datagram.

The payload length field indicates the number of octets in the datagram
in addition to the fixed-length header. The maximum value for this field is 65
535 8-bit bytes, or 64 kB. However, the IPv6 datagram size is not limited to
any value; if the payload is larger than 64 kB, the payload length field is set to
all zeros and the actual payload length is given in an extension header. Data-
grams with payloads larger than 64 kB are called jumbograms. Jumbograms
are mostly useful in supercomputing applications in which massive amounts
of data need to be transferred.

The next header field indicates the type of extension header (if any)
following the fixed length header. If there is no extension header following
the main header, the field indicates the receiving upper level protocol (e.g.
TCP).

The hop limit field is used to make sure that a datagram is removed from
the network at some point and not left to travel in the network forever. The
maximum value for the hop limit is 255, and it is decreased by one at each
network hop (router).

The source and destination address fields contain the 128 bit IPv6
addresses of the sender and the receiver of the datagram. IPv6 addresses are
written as eight semicolon-separated groups of four digit hexadecimal num-
bers, e.g. ABCD:1234:7890:0000:0000:000A:0D33:9000. It has been decided
that in addition to this normal (called preferred) notation, an alternate (ab-
breviated) notation may be used; in this notation, all leading zeros are left out
and sets of one or more groups of four hexadecimal zeros can be replaced by
two semicolons. With these rules in mind, the previous IPv6 address could
then be written as ABCD:1234:7890::A:D33:9000.

IPv6 Processing Characteristics

The processing requirements of IPv6 are quite similar to those of IPv4. How-
ever, the long addresses in IPv6 require more processing and bitwise manipu-
lation than in IPv4. Also, the unlimited datagram size places greater demands
on buffering and memory. In practice however, in most communication be-
tween IPv6 hosts, datagrams need to travel through networks that run the
IEEE 802.3 (Ethernet) MAC protocol. For IPv6 over 802.3, the maximum
datagram size has been specified to 1500 octets in [22]. Taking into account
that routers do not fragment datagrams in IPv6, we can state that most IPv6
traffic is likely to be carried out with datagrams of 1500 or less octets in
length.

45

On the other hand, the processing of IPv6 datagram headers is faster than
in IPv4 because (1) there are fewer fields to analyze, (2) the main header is
fixed in length, and (3) there is no checksum to be calculated by hosts. Routers
need to be able to calculate checksums to send and receive control messages,
but not for each incoming and outgoing datagram (which is the case in IPv4).

In terms of required processing in networks running Internet Protocol
version 6, the following distinct characteristics set requirements and demands
for designing protocol processing devices:

• Support for high speed operation. The speed at which datagrams
arrive in a host running the IPv6 protocol depends on the underlying
data link and physical protocols in use. IPv6 devices may need to be
able to process datagrams at speeds of up to 10 Gbps. More typically,
the network speed range for current networks is from 1 Mbps to 1 Gbps.

• Checksum calculation. IPv6 routers need to be able to calculate
Internet checksums for control messages.

• Datagram header analysis. Processing the IPv6 header fields re-
quires at least counter functions for e.g. reducing hop limits in routers,
bitwise manipulation for e.g. analyzing the addresses and Boolean
comparisons for e.g. determining correct protocol version. As seen in
the previous discussion, the IPv6 header fields may only contain values
greater than or equal to zero. Also, IPv6 processing can be done with-
out using negative values. Thus, unsigned arithmetic is adequate for
IPv6 implementations.

• Data buffering. Buffering is needed in the sending and the receiving
host to reorder datagrams before providing their payloads to the upper
layer. Routers also need to buffer datagrams that have entered the
router but have not been processed yet.

2.4 Chapter Summary

This chapter gave an overview of the protocol processing application domain.
The presented analysis of six important and widely used protocols and the
additional findings in [67] make it clear that protocols and protocol processing
applications have similar requirements for the functionality needed to process
them, and this can be taken advantage of in hardware design. Table 2.1
summarizes the key processing operations and characteristic functionality of
protocol processing found in this chapter. As can be seen in this table, most
of the detected characteristic functionality for a particular protocol was found
to actually be characteristic to several other protocols as well. A processor

46

Processing IEEE IEEE
Characteristic SDH 802.3 802.11 ATM IP IPv6
High bitrate Yes Yes No Yes Yes∗ Yes∗

Boolean evaluations Yes Yes Yes Yes Yes Yes
Bitwise manipulation Yes Yes Yes Yes Yes Yes
Counter functions Yes Yes Yes Yes Yes Yes
Timer functions Yes Yes Yes No No No
Checksum calculation No∗∗ Yes Yes Yes Yes No∗∗∗

Random numbers No Yes Yes No No No
Buffering Yes Yes Yes Yes Yes Yes
Unsigned arithmetic Yes Yes Yes Yes Yes Yes

Table 2.1: Summary of typical and essential functions found in the protocols
analyzed in this chapter. Bitwise manipulation means bit-pattern matching
and/or masking inside data words, and/or n-bit shifting. High bitrate means
network speeds higher than 500 Mbps.
∗The required processing speed in the network layer depends on lower layer protocols used.
∗∗SDH uses parity bits, the calculation of which does not classify as a checksum.
∗∗∗ Checksums are needed in some cases, e.g. in routers when processing control messages.

with optimized hardware support for the found common functionality should
be easily and clearly able to outperform a similar processor with general pur-
pose processing units. Also, the power consumption and area use of such
an optimized processor can be expected to be less than those of a general
purpose implementation. This is on the other hand due to a reduced clock
speed requirement (the optimized processor is likely to provide equal process-
ing performance at a lower clock speed), and on the other hand due to the fact
that the optimized processor needs to implement only the required subset of
operations (general purpose execution units may also implement extra func-
tionality that is not needed for the desired protocol processing functionality).
The last row in Table 2.1 displays a very important finding in terms of pro-
cessor design: protocol processing can be implemented using only unsigned
arithmetic (i.e. there is no need for managing negative values), which makes
hardware implementations considerably simpler.

Clearly, there are foreseeable advantages to be gained by designing opti-
mized processors for protocol processing applications. In Chapter 3 we de-
velop a protocol processor hardware platform that has been designed taking
into account the protocol analysis results reached in this chapter.

47

48

Chapter 3

The TACO Hardware
Platform

Chapter 2 ended with the conclusion that it is beneficial to design proces-
sors with optimized hardware for protocol processing. This chapter proceeds
from that conclusion to specifying a modular and scalable transport triggered
(TTA) [20, 107] hardware platform for the TACO protocol processor design
framework. In this hardware platform, which we will call the TACO architec-
ture, each execution unit is optimized for a particular protocol processing task.
Some of the tasks have been chosen for hardware implementation based on
the findings of the previous chapter, and others based on application analyses
carried out in later case studies such as the ones discussed in Chapter 5.

We start the discussion in this chapter with an introduction to computer
architectures and key architectural approaches. The discussion outlines a path
of improvements made to computer architectures through time, ultimately
leading to high performance solutions like VLIW, superscalar and transport
triggered architectures. VLIW has been seen to exhibit several characteris-
tics that could be beneficial for automated protocol processor design, such as
easy instruction decoding, adaptivity for specific applications and high per-
formance (in part due to increased parallelism) [20]. However, as pointed out
in [20], TTA based architectures can be expected to provide at least the same
beneficial characteristics as VLIW, but at a reduced complexity. Thus, we
argue that specifying a TTA based architectural solution for use in the TACO
protocol processor design framework provides many advantages, among which
is good support for design automation.

Based on the results of the protocol analysis presented in the previous
chapter we have decided to implement support only for unsigned arithmetic
into the TACO architecture to reduce hardware complexity. Also, among
the TACO execution units there are no general purpose processing elements
like multipliers or arithmetic-logic units (ALUs). We argue that this kind of

49

an architecture is very efficient for protocol processing: on the other hand
typical protocol processing operations can be performed with optimized pro-
cessing units in hardware, and on the other hand the architecture remains
relatively small and simple due to the missing general purpose processing el-
ements. Also, resorting to TTA reduces the amount of control logic (and the
processing overhead produced by it) needed in a processor, since many tradi-
tional hardware tasks are taken care of already at the time of designing the
application software; for this reason, for example dynamic code scheduling in
hardware is not necessary in the TACO architecture.

We also argue that the TACO architecture is very modular and scalable:
creating new protocol processing execution units for use in the TACO platform
is quite straight-forward since the communication interface differs very little
from one unit type to another. Also, execution units created for an earlier
TACO architecture instance can be conveniently reused in later TACO design
projects. To validate these arguments, in this chapter we give a detailed pre-
sentation of the TACO architecture, its building blocks and their interfacing,
and conclude the chapter by summarizing the key differences between the
TACO architecture and the MOVE TTA template [20].

3.1 Computer Architectures

The classification of computer generations as well as the choice of a device
to be credited as the first-ever computer are topics that many scientists and
researchers disagree upon; in [104] Stallings suggests that there have been five
generations of computers. The first three generations of these (vacuum tube
computers 1946-1957, transistor circuit computers 1958-1964, integrated cir-
cuit (IC) computers 1965-1971) are agreed upon by most authors. According
to [104], the division between the fourth and fifth generation is not clear, al-
though the generation is suggested to have changed with the shift from large
scale integration (LSI) based circuit technology (1972-1977) to very large scale
integration (VLSI) based circuit technology (1978 onwards).

In [109] Tanenbaum more or less agrees with the first three generations
mentioned above, although he defines the third generation to be the combi-
nation of Stallings’ generations 3 and 4 (IC and LSI). Tanenbaum defines the
fourth generation to have begun in 1980 in the form of VLSI based computers.
In addition, he defines an additional generation, called the zeroth generation
for mechanical computers (1642-1945).

Similar disagreements exist for the device to be credited as the first com-
puter; Some see the ancient Greek Antikytheran device [90] as the first com-
puter of all time1. In [109] Tanenbaum credits the first-ever computer to be

1The Antikytheran device was assumedly designed for calculating the future motions of

50

the difference engine built by British scientist Charles Babbage in 1834. In
[104] Stallings does not attempt to name the first computer ever; instead, he
names the ENIAC machine built in the University of Pennsylvania in 1946 to
be the “first general-purpose electronic digital computer”. Tanenbaum names
a device called COLOSSUS built by the British government in 1943 to be the
“first electronic digital computer”, and credits ENIAC to have started “an
explosion of interest in building digital computers”.

In the context of this thesis we accept the fact that opinion is divided on
the definitions of computer architecture generations as well as the concept of
the world’s first computer (whether digital or analog, electrical or mechani-
cal), and will therefore pursue these topics no further. Instead, we will focus
our discussions in this chapter on current typical computer architectures.
However, the previous discussion on historical architecture generations sheds
some light to the relation between computer architecture and microprocessor
architecture; the early digital electronic computers did not have microproces-
sors but the functionality was implemented as a circuit board with discrete
components. Later, when gradually larger and larger sets of such discrete
components were incorporated into one component, namely an integrated cir-
cuit, the microprocessor was born. With microprocessors it became possible
to integrate parts of, or even complete, computer architectures into a single
chip instead of the earlier discrete component circuit board structure. For this
historical reason, printed work describing basic microprocessor architectures
still often contains the words “computer architecture” within the title.

In the following, we will briefly study some of the most significant types
of computer, or nowadays microprocessor, architectures. The discussed archi-
tectures are the traditional Complex Instruction Set Computer (CISC), the
Reduced Instruction Set Computer (RISC), the Very Long Instruction Word
(VLIW) Computer, the superscalar architecture and the Transport Triggered
Architecture (TTA). Since the TACO architecture is based on TTA, in the
following we take the TTA discussion somewhat further than the discussions
on the other mentioned architectures.

3.1.1 Complex Instruction Set Computer

The early computers were quite simple and they could be programmed with
simple and compact instructions. The instruction sets were also very com-
pact. As computers became more powerful and more complex applications
needed to be executed on them, and on the other hand as memories were
slow and expensive, processing complexity was moved from software to hard-
ware: with more complex instructions, a single instruction could be used to

stars and planets. The device was found in 1900 in an ancient Greek ship wreck in the
Mediterranean close to the island of Antikythera.

51

perform an operation that earlier required several consequent simpler oper-
ations. This meant more processing speed for the application due to fewer
instruction fetches from the program memory. Also, with complex instruc-
tions, application programs became shorter in terms of code lines and thus
less memory was needed to store the program in the computer.

In addition to growing program complexities, a need for executing the
same application in a variety of computers (low cost and speed vs. higher
cost and speed) had risen. To deal with this need, already in the 1950’s a
method called interpretation was suggested (see [109] for a discussion on the
history of interpretation). The idea was that complex application instructions
were interpreted inside the computer into native microinstructions for the
particular computer type. The interpreter was actually a kind of embedded
program running in the computer in addition to the application software.
Interpretation made it possible for manufacturers to generate product families
of computers, in which only the most expensive machines directly supported
the complex instructions in hardware (and hence were very fast), and the rest
used interpretation.

These development tracks lead in the 1970’s to a situation where almost
all computers were based on complex instruction sets, microcode and interpre-
tation [109]. These computers and their later descendants are called Complex
Instruction Set Computers (CISCs). A clear advantage of CISCs at the time
was that compiling high level programming languages to complex machine in-
structions was far less demanding than compiling them directly to microcode
(here it is necessary to realize that compiler technologies and compilation
speeds of that time do not even nearly scale up to their modern-day counter-
parts). On the other hand, interpreting complex instructions into microcode
inside a computer or a processor and then executing this microcode takes
time and worsens overall system performance. Also, nowadays memory price
and instruction fetch performance are no longer limiting factors in computer
design, and on the other hand processing speed still is. Therefore the advan-
tages gained by producing compact and complex CISC code (instead of more
elaborate yet faster low level code) are nowadays compromised rather than
clear. However, in embedded systems the amount of available memory is of-
ten limited, for which reason the amount of memory allocated for application
code needs to be carefully considered. CISC-like approaches might thus be
worth consideration in embedded applications.

A good example of CISCs is Intel’s 80x86 processor family. Even the
newest processors in this product line are backwards compatible with the
8088 processor used in the original IBM PC (i.e. are able to execute code
written for the 8088). However, starting from the 80486 generation, Intel
processors have gradually adopted more and more features from RISC and
superscalar computer architectures to improve overall processor performance.

52

Such enhancements to the traditional CISC approach include for example in-
struction level parallelism and execution prediction as well as non-interpreted
execution of the simplest instructions in the instruction set [109].

3.1.2 Reduced Instruction Set Computer

In late 1970’s and early 1980’s, as instruction set complexity in computers
was growing to meet the capabilities of high level programming languages,
some research was also carried out in the opposite direction, i.e. to reduce
instruction complexity for better performance. This research direction intro-
duced the concept of Reduced Instruction Set Computer (RISC) architectures.
Early RISC architectures include the IBM 801 Minicomputer [93], the Stan-
ford MIPS [42] and the Berkeley RISC-I and RISC-II [86, 87] processors. A
detailed comparison of IBM 801, RISC-I and MIPS is given in [87].

RISC architectures trade backwards compatibility for instruction sets that
do not require interpretation: all instructions are directly executed by hard-
ware. RISC instructions should execute as fast as CISC microinstructions and
have similar or lower complexity [104]. This way the performance penalty of
interpreting complex code is removed; on the other hand, the program com-
piler will now have to convert code written in high level programming lan-
guages into very elaborate machine code instead of the traditional complex
instructions. A design goal for RISCs is that each instruction is executed in
one machine cycle. Also, instead of resorting to frequent data memory ac-
cesses (as in CISCs), RISCs encourage the use of register-to-register transfers.
This is achieved by providing only simple load and store operations as well as
more general-purpose registers than in CISCs. Finally, an important charac-
teristic of RISCs in comparison to CISCs is that RISC instructions typically
are of a fixed size that matches the processor’s word length. Thus, instruction
decoding in the processors is simpler and faster than in CISCs that support
variable lengths and formats for instructions.

For novel computer and processor designs, RISCs seem to be a good
modern-day approach. However, pure RISC designs have not become as popu-
lar as one might expect. Instead, CISC devices like the Intel 80x86 processors
have started to incorporate more and more RISC-like characteristics (like ex-
ecuting simpler instructions directly without interpretation) in newer product
generations. These kinds of hybrid CISC-RISC devices are not as fast as pure
RISCs with same development and manufacturing costs would be, but still
provide better performance than pure CISCs [109].

An example of modern RISCs is the PowerPC family of processors that
resulted from a co-operation between IBM, Apple and Motorola. The original
32-bit PowerPC processors were designed along the RISC design guidelines
discussed above. Current PowerPCs are 64-bit superscalar RISC machines.

53

As with the Intel processors slowly leaning more and more towards RISC, a
similar, although perhaps not so obvious nor strong, trend can be observed
for the PowerPC processor family; the increasing instruction set complexity
and the increasing complexity of supported hardware operations drive the
PowerPC family slowly, yet gradually into features and characteristics that
are usually linked more to the CISC rather than the RISC design space.
However, a key definition of RISCs, completely uninterpreted code execution,
still holds for current 64-bit PowerPC processors. Also, 64-bit PowerPCs are
able to natively execute old 32-bit PowerPC RISC instructions.

Nowadays PowerPC processors are mostly used in Apple computers and
many embedded systems (e.g. in cars), and e.g. in high performance FPGA
platforms such as the Xilinx Virtex-II Pro family.

3.1.3 Superscalar Architecture

Superscalar architectures rely on execution unit replication to achieve par-
allel execution of sequential code. This kind of approach requires additional
dispatch circuitry in the architecture to deliver sequential instructions to avail-
able execution units: instead of waiting for a particular unit to complete its
execution, the dispatch circuitry immediately assigns the next operation to
another execution unit of the same kind (if one is available). The compiler
does not need to schedule code to support the replicated execution units;
the scheduling is done dynamically by the dispatch circuitry. A superscalar
processor potentially executes sequential code much faster than a similar se-
quential processor would at a given clock speed due to parallel code execution
on replicated units. On the other hand, this means that dispatch circuitry
optimization becomes a very important task in designing a superscalar pro-
cessor.

According to [104] and [109], the term “superscalar” was first used to de-
scribe these kinds of computers in 1987 by researchers at IBM. Superscalar
features were initially introduced to RISC-based architectures: RISC simplic-
ity (small size, simple instructions) allowed reasonably easy execution unit
replication and simpler-than-CISC dispatch circuitry design [104]. Advance-
ments in chip manufacturing processes and technologies later made it possi-
ble to start gradually adding superscalar features into CISC-based processor
families like the Intel 80x86 processors. The Intel Pentium processor and its
descendants are an example of modern superscalar CISC-based processors,
and the PowerPC family an example of modern superscalar RISC processors.

3.1.4 Very Long Instruction Word Computer

Very Long Instruction Word (VLIW) architectures are very closely related to
superscalar architectures. The goal in both approaches is to speed up exe-

54

cution by resorting to instruction level parallelism and replicated execution
units. The key differences lie in code scheduling and instruction formatting:
from the previous section we recall that a superscalar processor takes in se-
quential code and dynamically schedules it in the hardware for parallel execu-
tion. In VLIWs, the program compiler is responsible for efficiently scheduling
the code for execution. This approach has some clear benefits as well as some
clear drawbacks. In the following we discuss some of the key aspects in both
respects.

Moving the scheduling from hardware to software considerably simplifies
the processor architecture (circuitry needed by scheduling is removed) and
speeds it up (no time is lost in dynamic scheduling decisions made in hard-
ware) with the cost of additional effort in application software and/or intelli-
gent compiler design. This also makes it possible to update and improve the
scheduling algorithm whenever necessary, whereas in superscalar processors
the scheduling algorithm can not be changed later. Also, compile-time (or
static) scheduling allows scheduling of the entire code before it is executed on
the hardware, which is not the case for superscalar architectures. In practice
however, the entire code can often not be optimally scheduled into separate
execution tracks because of difficulties in data dependency, conditional ex-
ecution, looping and jumps. For this reason, VLIWs give only a moderate
performance improvement over superscalar implementations.

Static scheduling means on the other hand that the machine code can only
be run in a microprocessor that exactly fulfills the scheduling constraints such
as a specified (minimum) number of execution units and control and data
paths. Thus, product differentiation and designing product family genera-
tions becomes much more difficult than in commercial superscalar architec-
tures (where the same compiled code can usually be executed on each device
in a manufacturer’s product lineup). Because of the static scheduling the
compiled code must be in a format that can be easily decoded in hardware
into instructions for each execution unit. This is accomplished by using a
fixed length instruction, in which each execution unit has its own control, or
subinstruction, field. The control field length may be different for each exe-
cution unit type (the length depends on the number of bits needed to operate
the particular execution unit type).

Since each execution unit requires its own portion of the instruction word
(typically 16-32 bits), in a processor with several execution units and capabil-
ities to execute several subinstructions in parallel the instruction word length
grows rapidly. Typically the instruction word length in a VLIW is between
128 and 1024 bits [101]. Comparing this to the instruction word lengths of 32
or 64 bits used in modern RISCs and superscalar processors gives context to
the name “Very Long Instruction Word” computer given to the architecture.

The Texas Instruments TMS320C6X DSP (digital signal processor) family

55

is one of the most successful commercial approaches to VLIW. These proces-
sors are used mostly in embedded systems for communication, for example
in ADSL modems and wireless communication devices. The C6X processors
have an instruction word length of 256 bits. The processors support eight
parallel operations per clock cycle, using two data paths. Other commercial
VLIW products include e.g. the Transmeta Crusoe processor for low power
mobile applications requiring Intel 80x86 compatibility2.

3.1.5 Transport Triggered Architecture

The most important difference between Transport Triggered Architectures
(TTAs) and more conventional computer and microprocessor architectures
such as the ones described in this chapter is the way the processors are pro-
grammed. Traditionally processors are programmed by specifying operations,
which cause data transports to occur in the processor as a side effect. In TTA
processors this programming paradigm is mirrored [20]: Instead of program-
ming operations, in TTAs the data transports are explicitly programmed, and
operations occur as a side effect of these transports.

The concept of transport triggering was first introduced for digital con-
trollers by Lipovski et al. in [107] in 1980. In the 1990’s the TTA paradigm
was developed further by H. Corporaal’s group in the Delft University of Tech-
nology, the Netherlands. Their work resulted in the MOVE TTA architecture
template described in [20].

It is suggested in [20] that TTA processors are actually a superset of RISC
and VLIW architectures: a RISC processor could be seen as a VLIW with
only one FU; a VLIW could be represented as a TTA processor by using the
same execution units and connectivity, and specifying the data transports
as they would occur in the VLIW (i.e. not optimize the data transports for
the TTA implementation). Thus, a performance improvement over a sim-
ilar VLIW processor can be expected from a TTA implementation for the
same application: parallel program execution can be optimized further due
to direct programmability of data transports. TTAs could also be seen as
ultimate RISC processors, or OISCs (One-instruction Instruction Set Com-
puters), since at the most basic level there is only one machine instruction
available: the move operation for transporting data from a source to a desti-
nation location. Since the move instruction causes different operations in the
processor to occur depending on the transport destination, the term OISC
can still be a bit misleading in the context of TTAs.

According to [20], VLIW scalability worsens rapidly as data transport
capacity and connectivity increase (especially register files and bypass logic

2The Crusoe processor uses a technology called “Code Morphing” to convert 80x86 CISC
instructions into native Crusoe VLIW instructions.

56

become very complex). Also, VLIWs are rarely able to utilize their available
data bandwidth even when all FUs are busy. TTA alleviates these problems by
making data transports visible; this way the programmer and the compiler are
able to optimize data transports. For this reason TTA also strongly reduces
the underutilization and complexity of the data path [20].

A TTA processor is formed of functional units (FUs) that communicate
via an interconnection network of data buses, controlled by an interconnection
network controller unit. The FUs connect to the buses through modules called
sockets. Each functional unit has input and output registers, and each of these
has a corresponding socket. Operations are triggered as a side effect of data
transports to specific addressable locations (e.g. certain registers in FUs).
The number of transport buses and the number and type of FUs depends
on the target application and usually also on design constraints for physical
characteristics like clock frequency, power consumption, chip area etc.

By changing the type and number of FUs and by changing the connectivity
and capacity of the interconnection network, a wide range of TTA processor
architectures can be specified. Since the number of FUs and buses in the
interconnection network is (in principle) not restricted and the design of these
elements is independent, TTA is a very flexible platform in terms of hardware
design. There are practically no constraints on designing the interconnection
network and different kinds of FUs as long as both are in accordance with a
given socket interface specification.

Like VLIWs, TTAs do not require logic for execution optimization (i.e.
run-time instruction reordering to improve concurrent use of functional units
etc.) Instead, TTA processors rely on the program compiler to perform in-
struction scheduling in an optimal way. In general, TTA instructions resemble
VLIW instructions. They consist of several RISC type subinstructions that
each define a data transport by specifying a source and a destination identi-
fier. Conditional execution can be implemented e.g. by using special guard
identifiers; if the condition specified in the guard identifier is not met, the
corresponding data move is cancelled.

MOVE TTA Template

The MOVE framework TTA template [20] is without a doubt currently the
best known actualization of the TTA paradigm and as such is a de-facto point
of reference. Also, the TTA paradigm itself does not dictate any module spec-
ifications for processor implementations, only the general concept. Therefore
we resort here to briefly discussing the key building blocks of the MOVE TTA
template [20] to exemplify the kinds of structures needed to actualize the TTA
paradigm.

57

Functional Units Functional units (FUs) are the modules that carry out
execution of specified operations in a TTA processor. The MOVE framework
[20] distinguishes between two classes of functional units: FUs and SFUs.
FU operations typically resemble operations performed by general purpose
processors. These operations are regular, commonly used tasks like ALU
functions (in fact, an ALU can be considered to be an FU). In contrast, SFUs
(Special Functional Units) perform operations that are application-domain
specific and are not very frequently needed in general purpose processing.

An FU has a set of input and output registers. The main types of FU
registers are input and output, used for inputting data to or outputting data
from the functional unit. There are two subtypes of input registers, namely
operand (OP) and trigger (TR) registers. Output registers are called result
(R) registers.

The difference between operand and trigger registers is that a data trans-
port to a trigger register triggers an FU operation. The FU operation uses
the transported data word as an operand. The operand registers are used for
inputting additional operands (for operations that need more than one value
to compute, e.g. addition). For such operations, data needs to be transported
to the operand register prior to triggering; data transports to operand regis-
ters do not trigger operations. The results of FU operations, if there are any,
are stored in one or more result registers.

Each functional unit can provide more than one operation to be performed
on the input data. This is possible by using opcodes that are extracted from
socket addresses by the sockets (discussed shortly). For example, a functional
unit that supports logical shifting could make a left or a right shift based on
the extracted opcode.

Sockets A socket is a gateway between the interconnection network and a
functional unit. Each socket is connected to one or more buses and to one
FU register. A socket can send or receive one data word per clock cycle to or
from the FU it is connected to.

An input socket evaluates if a destination identifier on a bus connected to
it matches its own identifier. If the identifiers match, the socket passes data
from the bus on which the identifier was found to the FU (more precisely,
to the register in the FU to which the socket is connected). The number
of destination identifiers a single socket can recognize is not limited to one.
If the socket has more than one identifier, an opcode is extracted from the
identifier. This opcode is passed to the FU at the same time as the data
is, and the operation performed by the FU on the data is specified by the
extracted opcode.

Trigger sockets are a special kind of input sockets. Trigger sockets function
like input sockets, but upon passing the data from the bus to the FU the

58

trigger socket also signals the FU to start executing its operation. Data
transfers through regular input sockets do not cause FU operations to start
executing.

An output socket is similar in implementation to an input socket. It
compares the source identifier(s) on the connected source bus(es) to its own
identifier(s) and if there is a match, the possible opcode is extracted and data
is passed from the FU to the bus on which the identifier was found. Also the
output sockets can have more than one identifier.

Interconnection Network In MOVE TTA each bus on the interconnec-
tion network actually consists of data, address (source and destination) and
control buses. Source and destination buses transport the move instructions
to the sockets and data buses transport data from one FU to another. Control
buses are used, among other things, for protecting unfinished execution and
for conditional execution.

The interconnection network can be partly connected (each socket con-
nects to only some of the buses), or fully connected (each socket is connected
to every bus). If the interconnection network is fully connected, each register
in each FU can move data on any of the buses, thus making code generation
for the processor easier. The number of buses in a processor is not restricted;
However, the size of the instruction word grows rapidly with the number of
buses. To deal with this issue, the use of compression techniques for reducing
TTA instruction word size has been suggested for example in [41].

3.2 TACO Protocol Processor Architecture

An important goal in the TACO framework has been to be able to take
as much advantage of design automation as possible in rapidly specifying,
simulating, estimating and synthesizing protocol processors. Ultimately this
becomes a concern of defining an underlying hardware platform. Such a hard-
ware platform needs to provide a design interface and a design abstraction
level that facilitates design automation. These requirements among others
lead to choosing the TTA paradigm as the basis for the TACO hardware
platform: we saw that the TTA concept should have the necessary poten-
tial for providing the kind of modularity and scalability that is essential to
automated or semi-automated component library based processor design.

With TTA it is possible to construct a library of functional unit descrip-
tions written in a hardware modeling language. From such a library, specific
FUs can be conveniently selected for use in a particular processor architecture
instance. Adding new protocol processing functional units into such a library
is also quite straight-forward since the communication interface differs very
little from one unit type to another. FUs created for an earlier application

59

can be expected to be reusable in later design projects with this kind of a
library based approach.

Resorting to TTA also reduces the amount of control logic (and the pro-
cessing overhead produced by it) needed in a processor, since many tradi-
tional hardware tasks are taken care of already at the time of designing the
application software; for this reason, for example dynamic code scheduling
in hardware is not necessary in the TACO architecture. Scheduling the code
in a way that eliminates hardware access conflicts and the need for run-time
optimizations and checks is left to the programmer (and/or an intelligent
compiler).

Using the terminology defined in [20], TACO processors are constructed
solely of SFUs; there are no general purpose FUs (e.g. like ALUs or mul-
tipliers) in TACO processors. However, for simplicity, in the rest of this
thesis we will use the terms “functional unit” and “FU” when referring to
the TACO special functional units. The protocol processing functionality of
a given TACO processor is defined by the functional unit configuration of the
architecture in question. Each FU is designed and optimized for executing a
particular protocol processing task. Figure 3.1 a) shows a general overview
of the TACO protocol processor architecture. The functional units marked
with “SFU” are the protocol processing units. Since their type varies from
one protocol and/or application to another, and therefore the types are not
specified in this figure. The rest of the functional units have a more spe-
cific purpose; there are units for I/O and memory management, and optional
generic registers.

For clarity, Figure 3.1 a) shows only one user memory management unit
(uMMU), protocol data memory management unit (dMMU), Input FU and
Output FU. However, the number of these units is not limited in a TACO
processor. Naturally the same holds for the memory blocks associated with
the aforementioned MMUs. We will return to details of the I/O and memory
interfaces later in this chapter.

In our implementations thus far we have used FUs that execute their oper-
ations in one machine cycle; this RISC-like feature has made application code
scheduling considerably easier. However, the TACO hardware platform (nor
the TACO framework) does not in any way limit the possibilities of pipelining
FU execution, and in future projects we expect FU pipelining to become nec-
essary in order to ensure support for increasing operation complexity. Based
on the findings made in Chapter 2, TACO processors support only unsigned
arithmetic to reduce hardware complexity.

60

Network Controller
Interconnection

a)

b)

TRIGGER

OPERAND

trig
opcode

SR
C

D
A

T
A

D
ST

BUS 1

SR
C

D
A

T
A

D
ST

BUS 2

SR
C

D
A

T
A

D
ST

BUS N

RESULT

SFU . . .

Interconnection network

Input

Output

So
ck

et
s

Connection to DATA bus

Connection to SRC or DST bus

Trigger
input

memory
Program User data

SFU

SFU

Generic Registers uMMU

memory

dMMU

memory
Protocol data

SFU

SFU Output FU

Input FU

SFU

Data packets and
host interface

(see below)
connections

Socket

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

(D
A

T
A

, S
R

C
 a

nd
 D

ST
 b

us
es

 1
..N

)

Figure 3.1: Overview of the TACO protocol processor architecture. a) gen-
eral overview, b) overview of the FU-socket-bus interface. SFUs are special
protocol processing functional units, OPERAND, TRIGGER and RESULT
are data registers, trig is used for triggering FU operations, and opcode is
used for FU operation selection.

61

15 8 7 0

Source ID Destination ID

Subinstruction 1 Subinstruction 2

n−1

21 16

Guard ID

... I CSubinstruction N

03425n−23n−22 n−44

(n = 22N + 4) N = (n − 4) / 22

Figure 3.2: TACO protocol processor instruction word (N buses).

3.2.1 Interconnection Network

Figure 3.1 b) shows a more detailed view of the connections between func-
tional units and the interconnection network. There can be more than one
operand and result registers in a functional unit. Each FU register requires
its own socket to connect to the interconnection network. The interconnec-
tion network is formed of one or more data buses and the same number of
SRC and DST buses. Data buses carry data between FUs. SRC buses carry
source addresses (i.e. which register in an FU should send data onto the data
bus corresponding to the SRC bus), and similarly DST buses carry destina-
tion addresses (i.e. which register in an FU should receive data from the data
bus corresponding to the DST bus). The number of possible data moves in
one clock cycle is equal to the number of data buses in the interconnection
network.

The TACO interconnection network can be fully connected (i.e. all buses
have connections to all sockets), or partially connected. However, in our im-
plementations thus far we have resorted to fully connected interconnection
networks; full connectivity of the network makes automated hardware and
software generation less demanding and ensures maximal use of bus band-
width: with partial connectivity, situations in which a bus is idle, but can not
be used due to a lack of necessary connections, may arise.

3.2.2 TACO Instruction Word

The TACO processor architecture is not limited to specific bus configurations
or data word lengths. However, for each architecture instance the processor
designer has to make decisions on the number of buses in the interconnection
network, and on the data word length of the processor. The decision on
the number of buses is directly linked to the instruction word length of the
processor: the instruction word must be long enough to provide source and
destination identifiers to all the buses.

As seen in Figure 3.2, a TACO instruction word consists of subinstructions

62

Guard ASM Guard ASM
ID Boolean code ID Boolean code

000000 a a:src > dst 001000 e e:src > dst
000001 ¬a !a:src > dst 001001 ¬e !e:src > dst
000010 b b:src > dst 001010 a ∧ b a.b:src > dst
000011 ¬b !b:src > dst 001011 a ∧ (¬b) a.!b:src > dst
000100 c c:src > dst 001100 (¬a) ∧ b !a.b:src > dst
000101 ¬c !c:src > dst 001101 (¬a) ∧ (¬b) !a.!b:src > dst
000110 d d:src > dst 001110 (¬a) ∨ (¬c) !a/!c:src > dst
000111 ¬d !d:src > dst 111111 TRUE src > dst

Table 3.1: Example of using Guard IDs in TACO assembler commands, with
corresponding Boolean expressions. a, b, c, d and e are guard signals from
FUs. Boolean operations: ¬ negation (NOT), ∧ conjunction (AND), ∨ disjunction (OR).

and an immediate control (IC) field. Each subinstruction specifies a data move
for its corresponding bus (subinstruction 1 defines a data move for bus 1 and
so on). The subinstructions are constructed of a Guard ID (GID), a Source
ID (SRC) and a Destination ID (DST). The source and destination IDs define
the addresses from/to which data is moved. The addresses refer to registers
in functional units.

In the TACO hardware platform the lengths of the GID, SRC, DST and
IC fields are fully parameterizable. However, in all our implementations thus
far we have adopted 4 bits for IC, 8 bits for SRC and DST, and 6 bits for GID.
With these values a processor with one bus in the interconnection network
would have an instruction word length of 26 bits, whereas a processor with 6
buses would have an instruction word length of 136 bits.

The assembler notation for TACO subinstructions is seen in Table 3.1.
Basically the assembler representation of a subinstruction is constructed of
the optional guard expression (discussed below in “Guard IDs”), the SRC ID,
a greater-than sign (>) indicating move direction, and finally the DST ID.

Immediate integers and IC bits TACO processors support short imme-
diate integer generation. The immediate integer size is equal to the length
of the SRC subinstruction field. Immediate integers are detected in program
code by decoding the four IC bits in the TACO instruction word (see Figure
3.2). These bits specify the subinstruction (and hence the bus) that contains
an immediate integer in place of an SRC identifier. Thus, dispatching a short
immediate integer does not have an effect on the number of available data
transports per cycle. The suggested way of using larger integer data values
in TACO processors is to initialize the required number of User data mem-

63

ory locations (see Figure 3.1 a)) with the needed values at compile time. In
TACO assembler notation immediate values are differentiated from SRC val-
ues by placing a “+” sign in front of the value in the assembler command;
e.g. +25 > dst indicates that the immediate integer 25 should be dispatched
to the destination indicated by dst.

Guard IDs The guard ID (GID) is used in defining conditional execution:
if a non-zero GID exists in a subinstruction, the data move specified by SRC
and DST may be carried out only if the logical condition specified by the GID
exists in the processor. Such a logical condition could be for example a boolean
false result from two specified functional unit operations. The functional units
report these logical conditions to the interconnection network controller by
using special one-bit signals called “guard signals”. If for example six bit
Guard IDs are used, it is possible to define up to 64 different logical conditions
for conditional execution. A Guard ID of all ones (i.e. the value “TRUE”)
indicates that no guard evaluation is needed and the specified move is allowed
regardless of the guard signal values.

Table 3.1 gives an example of using guard IDs in assembler notations of
TACO subinstructions. A negative condition is expressed using the exclama-
tion mark (!), a Boolean AND using the period (.) and a Boolean OR using
the slash (/).

3.2.3 Interconnection Network Controller

The structure of the interconnection network controller is reasonably simple
because it does not include any logic for execution optimization, e.g. dynamic
scheduling. The instruction scheduling is done already at the assembler code
level, since the assembler code itself is a list of data moves. Thus, instruction
decoding in TACO processors is very simple; it more or less becomes the
task of splitting the long instruction words into SRC and DST addresses,
and dispatching these addresses. The cost of this simplicity and efficiency
in instruction decoding is an increase in the amount of program memory
needed (due to the length of the instruction word). The interconnection
network controller has no support for operating system functions such as
virtual memory and multitasking.

The key tasks the Interconnection Network Controller performs are:

• fetching instructions from the Program memory

• maintaining the Program Counter (PC)

• evaluating guard signals and guard IDs for conditional execution

64

op
co

de

PC

socket

guard signals

...

...

...

...

Dispatch instructions

Program memory

......

DATA

SRC

DST

SRC

DATA

DST

Decode and dispatch immediate bits

bus 1

guard
evaluation

SRC/imm.

and DST

dispatch

bus N

guard
evaluation

SRC/imm.

and DST

dispatch

Figure 3.3: Functional view of the interconnection network controller in a
processor with N buses.

• splitting long instruction words into subinstructions

• dispatching subinstructions onto the buses

• extracting and dispatching immediate integers specified in program code

Figure 3.3 shows a functional view of the network controller. The network
controller retrieves a long TTA instruction word from the program memory.
Then, the long instruction word is divided into subinstructions for each bus.
We recall from earlier that each subinstruction consists of a source address
(SRC), a destination address (DST) and a guard expression (GID). If the
guard bits are all ones, a guard expression has not been specified. If the guard
bits specify some other value, the programmer has specified a conditional data

65

move. In this case, the guard expression is compared to the values of the guard
signals from the functional units (see Figure 3.3). If the guard expression is
satisfied by the guard signals, or if there is no guard expression, the execution
of the subinstruction is allowed. At this point, the SRC and DST values are
written onto the SRC and DST address buses.

If the Network Controller detects immediate control bits that specify an
immediate integer, the SRC value of the specified subinstruction is treated
as a data value instead of a socket address. This value is dispatched on the
corresponding DATA bus, and a zero is dispatched on the corresponding SRC
address bus.

Four stage pipeline Instruction execution in TACO processors is carried
out in four pipeline stages:

• fetch: In this stage the next instruction is fetched from program mem-
ory.

• decode: This stage consists of two steps: in the first step source and
destination identifiers are put onto the instruction buses, and in the
second step sockets decode the identifiers locally. If there is a match
between a hard-coded identifier and an identifier in the instruction bus,
the socket stores the result of the decode process to be used in the next
pipe stage (i.e. the socket becomes enabled).

• move: In this stage FUs with enabled sockets write/store data to/from
the buses.

• execute: In this stage the FUs execute their operations.

The pipeline is shown in Figure 3.4.

Program counter The interconnection network controller is also respon-
sible for maintaining, updating and loading the program counter (PC). For
the loading functionality the network controller has a built-in trigger socket.
This makes jumps in program code possible. The program counter socket has
three logical triggers:

• TAPC: Program counter is loaded with the value specified as the trigger
data (TR). The resulting action is an absolute jump to the specified
program code line (PC = TR).

• TUPC: Program counter is incremented by the value specified as the
trigger data (TR). The resulting action is a relative PC increment
(PC = PC + TR).

66

decodefetch move execute

decodefetch move execute

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

fetch decode move execute

movedecode execute

fetch movedecode execute

fetch: PC

Instr. 1

Instr. 2

Instr. 3

Instr. 4

Instr. 5

FC

FC

FC

Figure 3.4: TACO protocol processor pipeline and its operation during pro-
grammed jumps. A programmed jump is detected in instruction 4 (labeled
fetch: PC). FC = fetch cancelled.

• TDPC: Program counter is decremented by the value specified as the
trigger data (TR). The resulting action is a relative PC decrement
(PC = PC - TR).

The program counter socket addresses occupy the last three locations in the
address space for move destinations (DST addresses).

Programmed jumps also require some pipeline management. Figure 3.4
shows how the pipeline is emptied when programmed jumps occur. When
the network controller detects that one of the subinstructions in the long
TACO instruction word is a program counter load, it does not allow further
instruction fetches for three machine cycles (i.e. the pipeline is locked for three
cycles). This delay is needed for the already pipelined subinstructions (N
active subinstructions when there are N buses in the interconnection network)
to finish. The program counter load is performed in the execute stage, since
program counter loads from the functional units are possible.

3.2.4 Sockets

Functional units are connected to the interconnection network through input,
trigger and output sockets as seen in Figure 3.1 b). In TACO processors each
input and output socket has one hardcoded logical identifier (address), and
each trigger socket has at least one hardcoded identifier. Multiple identifiers
in trigger sockets are used to specify opcodes for functional units that are
able to perform more than one operation on the input data (e.g. a boolean
evaluation unit: operations like “=”, “≥”, “≤”, ...). Multiple logical identi-
fiers belonging to a particular trigger socket have consecutive integer values,
so opcode extraction is done by subtracting the value of the first hard-coded
logical identifier from the identifier read from the DST bus. This opcode is
dispatched as a four-bit signal (integer value 0..15) to the functional unit,

67

opcode
se

le
ct

logic

decode

DST bus data bus

1 2 N 1 2 N...

...

...

...

trigger data to FU

opcode

Figure 3.5: Implementation of a TACO trigger socket. The implementation of
an Input socket lacks the opcode and trigger characteristics, but is otherwise
exactly the same.

and the functional unit performs the operation corresponding to the opcode.
Naturally, only one hard-coded identifier per socket can be addressed during
one cycle.

Input and Trigger Sockets

In the TACO architecture an input or a trigger socket can have an active
connection to only one bus at a time, i.e. it can not pass data from multiple
buses towards its target FU register during one cycle. Input sockets do not
include any logic for managing resource conflicts, i.e. situations in which the
same socket is addressed from multiple sources. Such situations are expected
to be dealt with and prevented already in the application software design
process (i.e. programming and scheduling).

Input sockets decode destination addresses from the DST buses. If a DST
address on one of the buses matches one of the hard-coded logical identifiers,
the corresponding bus ID is stored in a select register (see Figure 3.5). If there
is no match, the value zero is stored. On the next machine cycle, if there is a
non-zero value in the select register, a connection between the selected data
bus and the receiving register in the functional unit is opened.

Trigger sockets (Figure 3.5) function like regular input sockets except for
two additional pieces of functionality:

• A trigger socket always signals its host FU to start executing its oper-
ation when data is written through the socket into the corresponding

68

FU register. This is implemented using a one bit trigger signal.

• A trigger socket always extracts an opcode from the DST IDs. The
extracted opcode is passed to the FU when the FU is triggered.

Output Sockets

Output sockets decode source addresses (SRC) just as the input and trigger
sockets decode DST addresses. A data connection is opened between the
corresponding FU register and ALL the data buses for which the decode
process found a match.

The output socket implementation is very similar to that of the input
socket. The differences are that the direction of data flow is opposite, and an
output socket can open a connection between the FU register and multiple
data buses.

3.2.5 Functional Units

In this section we discuss the specifications for existing TACO functional unit
descriptions in the TACO module libraries. All protocol processing FUs de-
scribed in this section have been optimized for a specific protocol processing
task: some of the FU operations have been chosen for hardware implemen-
tation based on the findings made in Chapter 2, and others based on appli-
cation analyses carried out in later case studies such as the ones discussed in
Chapter 5. Protocol application implementations using these FUs can be ex-
pected to achieve better execution times, smaller silicon areas or lower power
consumption than a general purpose processor implementation with similar
design constraints due to hardware execution of frequently needed function-
ality.

Figure 3.6 shows the general structure of all FUs. For simplicity, there
is only one input operand register and one output result register (and cor-
responding sockets) pictured. However, many FUs actually have several
operand inputs and result outputs. Still, there is always only one physical
trigger register in an FU. If the FU in question supports more than one oper-
ation, the trigger socket connected to the trigger register is able to recognize
more than one logical address from the DST buses as described in section
3.2.4. The trigger socket also triggers the FU operation by raising a one-bit
signal; this is the signal connected to T in Figure 3.6.

The FU operation resides in the combinatorial logic part of Figure 3.6.
There is no limit for the number of FUs of the same kind in a processor.
If the application to be implemented requires the same operation frequently,
improved performance can be achieved through FU replication (having two or
more of the same kind of FUs in a processor). Some functional units also have

69

output socket

...1 2 N

1 2 ... N

trigger operand

combinatorial

opcode

logic

result

input socket

1 2 ... N

trigger socket

T

guard

Figure 3.6: General structure of the functional units. Note that there can
be (and often is) more than one operand inputs and result outputs. Trigger,
operand and result are FU data registers, T is used for triggering FU oper-
ations, and opcode is used for FU operation selection. The optional guard
signal is used for guard evaluation in the network controller.

a guard signal (result bit signal) connected directly to the network controller
(guard in Figure 3.6). These signals are used when the network controller is
evaluating guard bits, i.e. logical conditions for conditional execution. Guard
bits were discussed earlier in sections 3.2.2 and 3.2.3.

Most of the functional units are parameterizable in terms of data word
length. However, we have conducted all our case studies of the TACO ar-
chitecture using 32-bit data word length. Thus, in the following discussion
we describe the TACO functional units as they would be implemented using
32-bit data word length. Also, we will use the following symbols to describe
Boolean operations: ¬ negation (NOT), ∧ conjunction (AND), ∨ disjunction
(OR).

Comparator FU

Comparators are used for Boolean comparisons between specified data words.

70

Interface:

• Operand register OP (input operand type)

• Trigger register TR (input trigger type)

Eight opcodes

• Result register R (output result type)

• Has a guard signal to network controller

• No external connections

Operation:

GuardBitSignal = 0; // Reset guard bit
R = 0; // Reset result

switch(opCode) {
case 0: If TR == OP { // TEQ: TR equal to OP

R = MaxInt; // MaxInt = binary all ones data word
GuardBitSignal = 1; // Raise guard signal

}
break;
case 1: If TR != OP { // TNEQ: TR not equal to OP

R = MaxInt; // MaxInt = binary all ones data word
GuardBitSignal = 1; // Raise guard signal

}
break;
case 2: If TR > 0 { // TGZ: TR greater than 0

R = MaxInt; // MaxInt = binary all ones data word
GuardBitSignal = 1; // Raise guard signal

}
break;
case 3: If TR == 0 { // TEQZ: TR equal to 0

R = MaxInt; // MaxInt = binary all ones data word
GuardBitSignal = 1; // Raise guard signal

}
break;
case 4: If TR <= OP { // TLEQ: TR less than or equal to OP

R = MaxInt; // MaxInt = binary all ones data word
GuardBitSignal = 1; // Raise guard signal

}
break;
case 5: If TR < OP { // TLT: TR less than OP

R = MaxInt; // MaxInt = binary all ones data word
GuardBitSignal = 1; // Raise guard signal

71

}
break;
case 6: If TR >= OP { // TGEQ: TR greater than or equal to OP

R = MaxInt; // MaxInt = binary all ones data word
GuardBitSignal = 1; // Raise guard signal

}
break;
case 7: If TR > OP { // TGT: TR greater than OP

R = MaxInt; // MaxInt = binary all ones data word
GuardBitSignal = 1; // Raise guard signal

}
break;

}

Functional description of operation: The value written into the trigger
register (TR) is compared to the value already stored in the operand (OP)
register. The type of comparison that is carried out depends on the opcode
received from the trigger socket. If the comparison result is true, an all-ones
value is stored into the result register (R), and the guard signal is raised. If
the result is false, zero is given in the result register, and the guard signal is
reset to zero.

Example: A comparator unit has been assigned logical socket addresses
51..58 (decimal notation). The value 100 has already been stored into the
operand register (OP). The value 99 is written into the trigger register (TR),
using the socket address 57. The opcode is 57-51 = 6, which corresponds to
the“≥” operation (TGEQ). Since the expression “99 ≥ 100” is false, the guard
signal is reset to zero and the value zero is stored into the result register (R).

Masker FU

Maskers are used to replace specified bits in a data word with other bits.

Interface:

• Operand register OP (input operand type)

• Data register OD (input operand type)

• Trigger register TR (input trigger type)

One opcode

• Result register R (output result type)

72

• No guard signal

• No external connections

Operation: R = (OP ∧ OD) ∨ (TR ∧¬OP);

Functional description of operation: Any part(s) of the data word given
in the trigger register (TR) are replaced with bit sequences defined by a mask
(OP) and another data word (OD).

Example: The original data word is 1100 0101 0011 and is input to the
trigger register TR. The 0101 sequence in the middle needs to be changed
to 1010. Thus, we define the mask OP = 0000 1111 0000, in which a zero
indicates a bit in the original data word that should not be modified, and
a one indicates a bit that should be modified. Then, as the replacement
bitstring we transport the data word 0110 1010 0110 to the OD register. In
this data word the first and last four bits can (in this case) be either ones or
zeros without effecting the outcome of the operation. Now, according to the
function given above, we first calculate OP ∧OD = 0000 1010 0000. Then,
we calculate TR ∧ ¬OP = 1100 0000 0011. Finally, we do an OR between
these minterms and obtain R = 1100 1010 0011.

Shifter FU

The Shifter FU is used for shifting data words left or right a given amount
of bit positions. The unit can also be used for moving a specified number of
most significant bits to least significant bits and zeroing the rest of the bits.

Interface:

• Operand register OP (input operand type)

• Trigger register TR (input trigger type)

Three opcodes

• Result register R (output result type)

• Has a guard signal to network controller

• No external connections

73

Operation:

if ((OP > 32) | (OP < 1)) R = 0;
else {
switch(opCode) {
case 0: // TLR, logical right shift
R = TR.range(31,OP);
GuardBitSignal = TR(OP - 1);
for(int idx = 0; idx < OP; idx++){
R[31-idx]=’0’;

}
break;

case 1: // TLL, logical left shift
R.range(31,OP) = TR.range(31-OP,0);
GuardBitSignal = TR(31 - OP + 1);
for(int idx = 0; idx < OP; idx++){
R[idx]=’0’;

}
break;

case 2: // TML, shift n MSBs to n LSBs, zero rest of bits
R.range(OP-1,0) = TR.range(31,32-OP);
GuardBitSignal = TR(31-OP);
for (int idx = OP; idx < 32; idx++){
R[idx] = ’0’;

}
break;

}
}

If the operand value is 32, only update the guard signal to reflect the last
removed bit.

Functional description of operation: With opcodes 0 and 1, the value
given in the trigger register (TR) is shifted logically left or right (depending
on the logical trigger address used) as many positions as defined by the the
value given in the operand register (OP). The value of the guard signal is
equal to the last removed bit: e.g. in a left shift with 5 positions, bit 27 is the
last removed bit. In a right shift with 5 positions, bit 4 is the last removed
bit. If the value in OP is greater than or equal to 32, the result given in R
will be zero.

With opcode 2, a specified number of most significant bits in a data word
become the least significant bits of the result. The rest of the bits are zeroed.
The original data word is input in the trigger register (TR), and the number
of bits to move is specified in the operand register (OP). The resulting data
word is placed into the result register R.

74

Examples: TLR: the original data word is 1100 0101 0011. This value is
given as trigger (TR). The programmer wishes to perform a logical right shift
for 4 positions, so the logical trigger used is TLR (opcode 0). The value 4 is
stored into the operand register (OP). The result of the logical right shift is
then 0000 1100 0101.

TML: the original data word is 1100 0101 0011. This value is given as
trigger (TR). The programmer wishes to move the three most significant bits
to least significant bits and zero the rest of the bits in the data word. The
logical trigger used is TML (opcode 2). The value 3 is stored into the operand
register (OP). The result of the operation is 0000 0000 0110.

Matcher FU

Matchers are used to determine whether specified bits exist at specified loca-
tions inside a data word.

Interface:

• Operand register OP (input operand type)

• Data register OD (input operand type)

• Trigger register TR (input trigger type)

One opcode

• Result register R (output result type)

• Has a guard signal to network controller

• No external connections

Operation:

R = 0; GuardBitSignal = 0; // Reset result and guard
R = (¬ OP ∨ OD ∨ TR) ∧ (OP ∨ ¬ OD ∨ ¬ TR);
If R == MaxInt GuardBitSignal = 1;

// MaxInt = binary all ones data word

Functional description of operation: The Matcher FU operation spec-
ified above is derived from the bitstring matching circuit suggested in [67].
The operand (OP) and data (OD) registers specify a bit pattern (range of
bits and their values). This pattern is compared to the data word given in
the trigger register (TR). If the pattern matches the corresponding portion of

75

the data word in the trigger register, the guard signal is raised (i.e. the result
of operation is true). OP contains the correctly aligned bit pattern(s) that
need to be matched in the TR value, and OD contains the correctly aligned
negation(s) of the desired bit pattern(s). Irrelevant bits are indicated by ones
in both OP and OD.

Example: The original data word is 1100 0101 0011 and is given in the
trigger register TR. The 0101 sequence in the middle is the one that needs
to be matched. Thus, we define the operands OP = 1111 0101 1111 and
OD = 1111 1010 1111. The bit positions with the value one in both OP and
OD have been specified irrelevant for the evaluation.

Now, according to the function specified for the operation, we first evaluate
¬OP ∨OD ∨ TR = 1111 1111 1111. Thereafter we evaluate OP ∨ ¬OD ∨
¬TR = 1111 1111 1111. Both evaluations resulted in data words of all ones.
Thus, also the final AND results in all ones which indicates a true result
(the desired bit pattern was found). An all-one data word is written into the
result register R and the guard signal is raised.

Had the value stored in TR been 1100 1101 0011, the first maxterm of
the match equation would still have produced all ones. However, the second
maxterm would have been 1111 0111 1111. This would have caused the final
AND to produce a data word not consisting of all ones, indicating a false
result.

Internet Checksum FU

The Internet Checksum FU is used to calculate Internet checksums as specified
in [11, 94].

Interface:

• Operand register OP (input operand type)

• Data register OD (input operand type)

• Trigger register TR (input trigger type)

Two opcodes

• Result register R (output result type)

• No guard signal

• No external connections

76

Operation:

• Opcode 0, TRC: Reset checksum (initialize for new calculation)

• opcode 1, TCC: Calculate checksum:

A = OPMSW + OPLSW + ODMSW + ODLSW + TRMSW + TRLSW + R’;

B = AMSW + ALSW ;

R’ = B + Bcarry;

R = ¬R’;

R’ is a 16-bit internal register used for storing the cumulative one’s
complement sum. A represents a 32-bit summation stage, B is a 16-bit
summation stage. MSW and LSW indicate most and least significant
16-bit words, respectively.

Functional description of operation: The Internet checksum is calcu-
lated using 16-bit one’s complement summation. The Internet Checksum FU
has an internal register (R’ in the above operation specification) for storing
a temporary result needed in consequtive calculations.

For a new checksum calculation, R’ is initially zeroed. The datagram for
which the checksum is calculated is fed into the Internet Checksum FU as
32-bit words, three words at a time (32-bit words to OP, OD and TR). The
FU splits the inputs into six 16-bit words and sums them up with the value in
R’ using 32-bit summation: the MSW of the result will then contain a sum
of the carry bits, and the LSW will contain the 16-bit sum. To convert the
result to a one’s complement sum, the carry bits are added to the 16-bit sum
in the LSW (stage B in the TCC trigger operation specification). The carry
from this summation is again added to the result, and the result is stored into
R’. The negation of this value is placed into the result register R.

This FU could also have been implemented with only one input register.
However, with three input registers up to three data words per clock cycle
can be transported into the FU for Internet checksum calculation. Depending
on the application and its data transport requirements, with this FU imple-
mentation checksum calculation speed can be up to 300 % higher than with
an FU that would have only one input register.

Example: In the following, for the sake of simplicity in representation, we
consider a four-bit checksum calculated from three eight-bit inputs. R’ al-
ready contains a value, which needs to be included in the calculation.

R′ = 1011,OP = 1010 0101,OD = 1110 0111,TR = 1100 0011
A = 1011 + 1010 + 0101 + 1110 + 0111 + 1100 + 0011 = 11 1110

77

B = 11 + 1110 = 1 0001
R′ = 0001 + 1 = 0010
R = ¬R′ = 1101,

which is the result to be placed into the result register R. The value in R’ is
needed when the next two input data words are processed.

Counter FU

Counters are used for counting up and down a specified number of positions.

Interface:

• Trigger register TR (input trigger type)

Three opcodes

• Result register R (output result type)

• Guard signal

• No external connections

Operation:

GuardBitSignal = 0; // Reset guard bit
R = 0; // Reset result
switch(opCode) {

case 0: R = TR; // TSC: Set Counter
break;
case 1:

R = R + TR; // TIC: Increment Counter
If R == 0
GuardBitSignal = 1; // Raise guard if counter zero

break;
case 2:

R = R - TR; // TDC: Decrement Counter
If R == 0
GuardBitSignal = 1; // Raise guard if counter zero

break;
}

Functional description of operation: Before the counter unit can be
used, it has to be initialized by writing a start value to the trigger register
(TR) using the logical trigger TSC. Then, whenever necessary, the counter
is incremented or decremented using the logical triggers TIC and TDC. The

78

data value written into TR is added to or subtracted from the value currently
output as result in the result register (R). If the new value is zero, the result
bit is raised.

Example: The counter is initialized to the value 10 by writing an immediate
integer into the address that corresponds to the logical trigger TSC. Then,
in the following cycles, the value 1 is written into the address corresponding
to the logical trigger TDC. After 10 writes (or 10 cycles in this case), the
result is zero, and the guard signal is raised.

HEC FU

A HEC FU is needed in ATM processing to calculate the ATM Header Error
Check checksum (CRC-8, generator polynomial G(x) = x8 + x2 + x + 1) as
described in Chapter 2.

Interface:

• Trigger register TR (input trigger type)

One opcode

• Result register R (output result type)

• No external connections

Operation: Calculate CRC-8 for the 32-bit data word given as input in TR,
output result in R. The benefit of designing a CRC module that operates
on a specific generator polynomial is that the resulting implementation is
efficient in terms of execution time and required silicon area. A run-time
parameterizable implementation would become considerably more complex.
The VHDL code for the HEC FU’s parallel CRC-8 calculation was generated
using the Easics CRCTool [30].

Router Local Info FU

The Router Local Info FU provides locality information of an IPv6 router.

Interface:

• Operand register OP (input operand type)

• Operand register OD (input operand type)

79

• Trigger register TR (input trigger type)

Eight opcodes

• Result register R (output result type)

• No guard signal

• No external connections

Operation:

• Opcode 0, TMTU: return maximum transmission unit (MTU) size in
bytes for an interface

R = MTU[TR];

• Opcode 1, TLLA: return 32-bit part of local link address for an interface

R = LLA[TR].range(32·(OP + 1) - 1, 32·OP);

• Opcode 2, TUNI: return 32-bit part of unicast address for an interface

R = UNI[TR].range(32·(OP + 1) - 1, 32·OP);

• Opcode 3, TCST: return cost for sending a datagram on an interface

R = Cost[TR];

• Opcode 4, TSMTU: store MTU size in bytes for an interface

MTU[TR] = OD;

• Opcode 5, TSLLA: store 32-bit part of local link address for an interface

LLA[TR].range(32·(OP + 1) - 1, 32·OP) = OD;

• Opcode 6, TSUNI: store 32-bit part of unicast address for an interface

UNI[TR].range(32·(OP + 1) - 1, 32·OP) = OD;

• Opcode 7, TSCST: store cost for sending a datagram on an interface

Cost[TR] = OD;

The 128-bit words are input and output 32 bits per cycle. The value in
the operand register (OP) specifies the ordinal number of the 32-bit data
word that is to be input or output (3 indicates the most significant and 0
the least significant 32-bit word of the 128-bit value), and the value in the
trigger register (TR) specifies the local interface in question. The OD register
specifies the data to be written when storing information into the unit.

80

Local link addr. Local unicast addr. MTU Cost
128 bits 128 bits 11 bits 4 bits

Table 3.2: Data organization per interface in the Router Local Info FU.

Functional description of operation: The Local Info unit is used for
accessing and updating information regarding the router and its interfaces.
The values stored into or read from the Local Info unit are used in the process
of making routing decisions. The internal data organization of the Local Info
unit is shown in Table 3.2. The storage space provided by the Local Info unit
is implemented using a small dedicated memory block for each of the table
columns. The Local Info unit is thus actually a special memory management
unit. The maximum number of entries in the local information table depends
on the chosen memory blocks.

Example: Reading the local link address for interface 3 takes five cycles.

• cycle 1: write 3 to OP, write 3 to TR (TLLA)

• cycle 2: read first 32 bits of the address from R, write 2 to OP, write
3 to TR (TLLA)

• cycle 3: read next 32 bits of the address from R, write 1 to OP, write
3 to TR (TLLA)

• cycle 4: read next 32 bits of the address from R, write 0 to OP, write
3 to TR (TLLA)

• cycle 5: read last 32 bits of the address from R

Routing table FU

The Routing Table FU is used for storing and accessing the routing table in
an IPv6 Router.

Interface:

• Operand register OP (input operand type)

• Data register OD (input operand type)

• Trigger register TR (input trigger type)

Nine opcodes

81

• Result register R (output result type)

• No guard signal

• No external connections

Operation:

• Opcode 0, TRN: return number of entries (prefixes) in table

• Opcode 1, TRP: return 32-bit part of 128-bit prefix;
prefix specified by TR, part specified by OP (3 = MSW, 0 = LSW).

R = prefix[TR].range(32·(OP + 1) - 1, 32·OP);

• Opcode 2, TRL: return length of prefix (8 bits) specified by TR

R = prefixLength[TR];

• Opcode 3, TRI: return interface ID (8 bits) specified by TR

R = interface[TR];

• Opcode 4, TRM: return metric (8 bits) for interface specified by TR

R = metric[TR];

• Opcode 5, TSRP: store 32-bit part of 128-bit prefix;
prefix specified by TR, part specified by OP (3 = MSW, 0 = LSW),
value specified by OD.

prefix[TR].range(32·(OP + 1) - 1, 32·OP) = OD;

• Opcode 6, TSRL: store length of prefix for a prefix;
prefix specified by TR, value specified by OD.

prefixLength[TR] = OD;

• Opcode 7, TSRI: store interface ID (8 bits) for a prefix;
prefix specified by TR, value specified by OD.

interface[TR] = OD;

• Opcode 8, TSRM: store metric (8 bits) for prefix specified by TR

metric[TR] = OD;

Table 3.3 shows the structure of the internal routing table. The 128-bit words
are input and output 32 bits per cycle. The value in the operand register (OP)
specifies the ordinal number of the 32-bit data word that is to be input or
output (3 indicates the most significant and 0 the least significant 32-bit word
of the 128-bit value), and the value in the trigger register (TR) specifies the
ID of the prefix in question. The OD register specifies the data to be written
when storing information into the unit.

82

Prefix Prefix Length Interface ID Metric
128 bits 8 bits 4 bits 4 bits

Table 3.3: Data organization for the routing table accessed by the Routing
Table Unit.

Functional description of operation: The Routing Table unit is used for
accessing and updating routing table information. The routing table is imple-
mented using a small dedicated memory block for each of the table columns.
The routing table unit is thus actually a special memory management unit.
The maximum number of entries in the routing table depends on the chosen
memory blocks.

Example: The most significant 32-bit word of a prefix corresponds to the
ordinal number 3 and the least significant word to the ordinal number 0.
Thus, to store the second 32-bit word of a 128-bit IPv6 address as the next
hop address for prefix 5:

• The value 2 is input into the operand register (OP). This corresponds
to the second most significant 32-bit word of the address.

• The 32-bit data word is input into the data register (OD).

• Finally, the value 5 is input into the trigger register (TR) using the
TSRH logical trigger identifier (opcode 8).

ICMPv6 FU

The ICMPv6 FU is used for generating header information for ICMPv6 mes-
sages in an IPv6 router.

Interface:

• Operand register OP (input operand type)

• Data register OD (input operand type)

• Trigger register TR (input trigger type)

One opcode

• One Result register R (output result type)

• No guard signal

• No external connections

83

Operation:
R.range(31,24)= OP.range(7,0);
R.range(23,16)= OD.range(7,0);
R.range(15,0)= TR.range(15,0);

Functional description of operation: This unit is used to construct the
first of the two 32-bit data words needed for creating an ICMPv6 header. The
second word is directly written into the memory, since it is directly obtainable
from the Local Info FU (MTU for target interface) or through an immediate
integer (pointer to erroneus field).

R is the first 32-bit word of the ICMPv6 header.

Contents of OP (MSB..LSB): Unused (24 b), Type (8 b)
Contents of OD (MSB..LSB): Unused (24 b), Code (8 b)
Contents of TR (MSB..LSB): Unused (16 b), Checksum (16 b)

Contents of R (MSB..LSB): Type (8 b), Code (8 b), checksum (16 b)

Example: An ICMPv6 message “Packet too large” needs to be sent. The
value “2” is written into OP (type), the value “0” into OD (code) and the
IPv6 checksum value (let us choose 0x5A for this example) from the checksum
unit to TR. On the next cycle, the value 0x0200005A is output from R.

Memory Management FUs

The Memory Management FUs are used for accessing the different memory
blocks in a TACO processor. The protocol data memory management FU
additionally provides DMA access for the Input and Output FU.

Interface:

• Operand register OP (input operand type)

• Data register OD (input operand type)

• Trigger register TR (input trigger type)

Two opcodes

• Result register R (output result type)

• User memory management unit: no guard signal

84

• Protocol data memory management unit: two guard signals

• No external connections

• dMMU has DMA interfaces for input and output FUs; this functionality
is discussed in section 3.5. uMMU has no DMA interfaces.

Operation:

• Opcode 0, TRMM: read from memory

Read data word from memory address [OP+TR]
(OP is base address, TR is offset).

• Opcode 1, TWMM: write to memory

Write data in OD to memory address [OP+TR]
(OP is base address, TR is offset).

Functional description of operation: The memory management FUs
are used by other FUs to access the memories. The memories the MMUs are
connected to are fast enough to provide one memory access per clock cycle,
thus an MMU can provide its result in one clock cycle. The memory address to
be accessed is determined by adding the offset value from the trigger register
to the base value from the operand register. The MMUs access the memory
from the calculated base+offset address when triggered.

Both MMU types provide mechanisms for reading and writing data
into/from their corresponding memory blocks. There can be more than one
of each kind of MMU in a TACO architecture. uMMUs are used for storing
and retrieving user data. Since a uMMU provides its result in one clock cycle,
no general purpose registers are needed for variables and constants (however,
such registers can optionally be included in a TACO architecture). The user
memory locations can be initialized to specific values (e.g. constants needed
by the application) at the time of application software design. Figure 3.7
shows a functional view of a uMMU. uMMU replication makes it possible to
serve several memory accesses (to separate memory blocks) in parallel, pro-
vided that sufficient data transport capacity is available (i.e. there are several
data buses available for use in the interconnection network).

dMMUs are used for storing and accessing PDUs. In addition to normal
access through the interconnection network (like uMMUs), dMMUs also pro-
vide DMA access to their corresponding memory blocks for the Input and
Output FUs. During DMA access the dMMU raises one of its guard signals
to indicate it is busy either reading from or writing to its memory block in
DMA mode. A Functional view of a dMMU is given in Figure 3.8. For clarity,
the figure shows separate diagrams for memory writes (a)) and memory reads

85

+

Control

DATA OUT

Si
gn

al
s

to
/f

ro
m

 m
em

or
y

R/W

RD ADDR

ADDRWR

RD

WR

trig

opcode

T
op

co
deR OD OP TR

DATA IN

Figure 3.7: Functional view of a user memory management unit (uMMU).
R, OD, OP and TR are FU data registers, T is used for triggering MMU
operations, and opcode is used for read/write selection.

(b)). The dMMU maintains a counter for determining the next memory ad-
dress usable for DMA access from the Input FU (Address counter in Figure 3.8
a)). This counter is initially zero, and after reaching a value corresponding to
the highest possible memory address in the corresponding memory block it is
again zeroed. In other words, DMA access uses the protocol data memory in
a circular fashion, overwriting the oldest (and obsolete) data when necessary.

Replicating dMMUs is not useful unless also a matching pair of Input and
Output FUs is replicated. The benefits of such replication are unclear; in all
the TACO experiments we have carried out so far we have included only one
dMMU-Input FU-Output FU set into the architectures. We will discuss the
dMMUs as part of a TACO processor’s I/O interface in section 3.5 later in
this chapter.

Example: To read data from memory address 150 with the base address
set to 128 (i.e. the value 128 is already stored in OP), the value 22 is written
into TR using the logical trigger TRMM (opcode 0).

To write data to memory address 150 with the base address set to 128 (i.e.
the value 128 is stored in OP), the data value to be stored into the memory
location is written into the data register OD, and the value 22 is written into
TR using the logical trigger TWMM (opcode 1).

86

+

Address
Counter

+

Guard
bit (WR)

Guard
bit (RD)

op
co

de

T

op
co

de

T

ADDR

b)

Si
gn

al
s

to
/f

ro
m

 O
ut

pu
t F

U

Control

DATA OUT

RD

Si
gn

al
s

to
/f

ro
m

 m
em

or
y

DATA IN

WR

ADDR

Si
gn

al
s

to
 m

em
or

y

a)

Si
gn

al
s

to
/f

ro
m

 I
np

ut
 F

U

 Control

WR

RD

R OD OP TR

InData

Trigger

Address

R/W

R/W

R OD OP TR

OutData

Trigger

Ack

Address

DStart

Figure 3.8: Functional view of the protocol data memory management unit
(dMMU). a) Writing to memory, b) reading from memory. R, OD, OP and
TR are FU data registers, T is used for triggering MMU operations, and
opcode is used for read/write selection. For DMA writes, DStart indicates
the beginning of a new PDU, and Trigger is used for requesting DMA access.
For DMA reads, Trigger is used for requesting DMA access and Ack is used
for granting it.

87

Input FU

The Input FU maintains information on incoming PDUs, and stores them in
the protocol data memory. Together with the Output FU and the Protocol
Data Memory Management FU it forms the TACO I/O interface described
in section 3.5 of this chapter.

Interface:

• Trigger register TR (input trigger type)

One opcode

• Three result registers R1, R2, R3 (output result type)

• Guard signal

• External connections; discussed in section 3.5.

Operation: When triggered, write the oldest entry in the

• Memory address FIFO to R1

• External interface ID FIFO to R2

• PDU length FIFO to R3

The data value used in triggering (i.e. data moved to TR) has no relevance;
the trigger register is used only for triggering the unit.

Functional description of operation: The Input FU acts as a triple
read-only FIFO for FUs that access it through the interconnection network.
For each incoming PDU it holds the starting memory address, the ID of the
interface the PDU came from (if there is more than one network interface),
and the length of the PDU. When the Input FU is triggered, it places the
oldest entries in its three FIFOs into corresponding result registers (R1, R2,
R3).

Example: To get the starting memory address, input interface ID and PDU
length for the oldest PDU in the protocol data memory, write any non-zero
value to the trigger register. The PDU information is given in the result
registers R1, R2 and R3.

Output FU

The Output FU sends outgoing PDUs from the protocol data memory. To-
gether with the Input FU and the Protocol Data Memory Management FU
it forms the TACO I/O interface described later in this chapter.

88

Interface:

• Operand register OP (input operand type)

• Data register OD (input operand type)

• Trigger register TR (input trigger type)

One opcode

• No result registers

• No guard signal

• External connections; discussed in section 3.5.

Operation: When triggered, add the value in

• OP to the Memory address FIFO

• OD to the PDU length FIFO

• TR to the External interface ID FIFO

Functional description of operation: The Output FU acts as a triple
write-only FIFO for FUs that access it through the interconnection network.
For each outgoing (i.e. processed) PDU, it holds the starting memory address,
the ID of the interface the PDU should be sent to (if there is more than
one network interface), and the length of the PDU. When the Output FU is
triggered, it places the information given in the input registers into its FIFOs.

Example: To store the starting memory address, output interface ID and
PDU length for an outgoing PDU, the corresponding data words are written
into the three input registers.

3.3 Assembler Programming of TACO Processors

TACO processors are programmed by specifying a source address (SRC) and
a destination address (DST) for each bus in the interconnection network. SRC
and DST are typically registers in functional units. The move from SRC to
DST can be made conditional by specifying a Guard ID as explained earlier
in this chapter. An operation is executed on the target functional unit if
the register indicated by DST is a trigger register. We recall that in TACO
processors the maximum number of data moves that can be made during one
clock cycle equals the number of buses in the interconnection network. Thus,

89

MATCH (word2, pattern2);

MATCH (word1, pattern1);

COUNTER2.INCREMENT;

COUNTER1.DECREMENT;COUNTER1.INCREMENT;

T

T F

F

Figure 3.9: Algorithm used in the programming example.

if there is more than one bus in the interconnection network, the architecture
in question supports instruction level parallelism (ILP) in code execution.

As a programming example we will consider the algorithm in Figure 3.9.
Clearly, the processing of this algorithm would require up to five cycles to com-
plete in traditional sequential programming (assuming each operation takes
one instruction cycle to execute).

If we consider a TACO processor with three buses, two counter FUs and
two matcher FUs (already holding the match patterns pattern1 and pattern2
as operands), we have the following assembler code for this particular TACO
processor (each line represents one 70 bit TACO instruction, i.e. is executed
in one instruction cycle):

word1 > TM1; word2 > TM2; 1 > TIC2;

a.b:1 > TIC1; a.!b:1 > TDC1;

// TM1, TM2 = trigger IDs for Matchers 1 and 2
// TIC1, TDC1, TIC2 = trigger IDs for Counters 1 and 2
// (I=increment, D=Decrement)
// a, b = true result guard expressions for Matchers 1 and 2
// !b = false result guard expression for Matcher 2

The assembler code for this algorithm requires five data moves, and can
be executed in two instruction cycles in the TACO architecture in question.
In the code, both of the match operations are carried out in parallel. The
third move in the first cycle is used for updating Counter 2 (in the original

90

algorithm Counter 2 is updated at the end of the algorithm, but updating it
earlier does not have an effect on the outcome of the algorithm). Counter 1
is incremented in the second cycle only if both match results are true, and
decremented, if the result from Matcher 1 is true and the result from Matcher 2
is false. If the result from Matcher 1 is false, Counter 1 is not updated. Note
the utilization of conditional (or guarded) transports.

3.4 Memory Configuration

As stated earlier, TACO processors can have several uMMUs and dMMUs
with associated memory blocks. In addition, the processors have a program
memory block which is managed by the Interconnection Network Controller.
Besides these, also the FU registers are addressable locations of TACO pro-
cessors. Figure 3.10 shows a summary of the possible addressable locations
in TACO processors.

If optional general purpose registers are included in a TACO architec-
ture, their addresses are included in the FU input and output register address
spaces. The optional routing table and local info units have their own address
spaces for storing routing information. For all the separate address spaces in
TACO processors the addressing starts from address 0. The size of each ad-
dress space is fully parameterizable. If the short immediate integers specified
using the SRC subinstruction field are not long enough to absolutely specify
a memory address in a particular memory block, a user memory block can be
initialized to specific long integer memory address values that can be retrieved
using short integer addressing. In addition, all the memory management units
fully support base-offset-type addressing.

In our TACO processor designs so far we have implemented support for
including SRAM (static RAM) as on-chip memory. On-chip memory is most
often produced into a layout at the time of manufacturing the chip. The
memory manufacturer provides information of the necessary signals for using
the memory block, and a simulation model of the memory. The designer
can choose the word sizes etc., but is not able to modify the actual memory
implementation. Since the detailed memory interface is not known until the
memory/chip manufacturer has been chosen, we can not design a memory
interface unit that would be compatible with any on-chip memory IP block.
However, since the SRAM memory interface is quite simple, not much design
effort is needed to connect such a memory block onto a TACO processor.

SRAMs provide excellent performance with some cost on power consump-
tion. In most TACO designs the target clock speed is below the memory
access speed of a modern SRAM cache memory block. Thus, one memory
access per clock cycle can be executed. Choosing SRAM for the memory type
also makes it possible to use a third party processor for fast memory access

91

�������
�������
�������
�������

�������
�������
�������
�������

= Reserved/special location

...

2

3

0

1

K−1

K

K−2

K−3

User memory
block k

...

2

3

0

1

L−1

L

L−2

L−3

addresses
Program memory

P−1

P−2

P−3

...

2

3

0

1

P

rows
Routing Table

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�������
�������
�������
�������

�������
�������
�������
�������

...
2

3

0

1

I−1

I

I−2

I−3

Protocol data

...

2

3

0

1

J−1

J

J−2

J−3

Protocol data

...

2

3

0

1

U−1

U

U−2

U−3

User memory
block 1

...

2

3

0

1

Q−1

Q

Q−2

Q−3

Local Info
table rows

...

memory block jmemory block 1

...

2

3

0

1

M−1

M

M−2

M−3

NOP

FU output

...

2

3

0

1

N−1

N

N−2

N−3

NOP

PC

PC

PC

FU input
addresses addresses

...

Figure 3.10: Addressable locations in TACO processors.
I, J, K, L, M, N, P, Q, U, j and k : parameterizable values.
NOP : location reserved for “no operation” instructions.
PC : location reserved for maintaining and updating the program counter.

92

and table lookup. One such processor is the iFlow address processor [82],
designed to act as a co-processor for speeding up internet routing table look-
ups. The host network processor sees the iFlow processor as SRAM, and reads
from and writes to the iFlow processor using typical SRAM mechanisms.

3.5 Input/Output Interfaces

There are two kinds of I/O communication needed in TACO processors:

1. Reading data from and writing data to the network,

2. Communicating with a host processor, or with on-chip IP (Intellectual
Property) blocks (if necessary).

The mechanisms for these tasks can be designed individually to suit the needs
and the functioning environment of a certain protocol processing application,
or a generic solution can be used. Application-specific solutions usually pro-
vide better performance at the cost of interconnectibility. In the following
pages we will discuss some possible solutions for both kinds of I/O tasks.

Connection to Network

The network interface of any device is defined by the type of the physical
network medium. In copper-wired networks it is usually necessary to enhance,
filter and convert the incoming signal before it can be interpreted as digital
data words. In optical networks this task is often simpler, since usually the
incoming signal only needs to be converted from optical to electrical form.
In any case, it is only after these conversions that the actual protocol data
is ready for analysis. Figure 3.11 shows some possible tasks that need to be
carried out in copper-wired and optical networks before the received data is
ready for processing.

In TACO processors the I/O functionality is produced jointly by three
functional units: the dMMU (protocol Data Memory Management Unit),
the Input FU and the Output FU. Since the tasks needed to be performed
on signals coming from and going to a copper-wired network vary from one
type of physical medium to another and one type of protocol to another,
placing the entire signal processing into one FU would require a separate FU
for each kind of physical medium and communications protocol. For this
reason, the standard Input and Output FUs do not concern themselves with
management of the physical connection. Naturally protocol-specific FUs with
all the necessary functionality for the particular protocol’s physical connection
could also be constructed; this way additional circuitry required by an off-
the-shelf standard interface would not be needed.

93

Medium dependent interface for a copper−wired network

Automatic Gain
Control (AGC)

A/D Conversion

Equalizer

Decoder
Optical−to−electrical

conversion

Optical medium
interface

Incoming signal Incoming signal

Receive Buffer

To further processing

Figure 3.11: Block diagram of possible tasks in preparing a signal from the
network for data processing.

If a TACO processor is used as a part of a Network-on-Chip (NoC) device,
it is also possible to use the NoC interface for PDU input and output. A NoC
interface for the TACO hardware platform is discussed at the end of this
chapter.

Generic Solution For TACO processors, the generic solution for network
I/O is to connect the Input and Output FUs directly to a send/receive buffer.
The generic I/O interface is shown in Figure 3.12. The send/receive buffer
may be e.g. a buffer in an Ethernet device used for storing deframed data
coming in from the network. The Input and Output FUs have DMA access to
the protocol data memory, and they are also connected to the interconnection
network (like all other FUs).

If incoming data from the send/receive buffer can be written into the

94

D
at

a
L

in
k

L
ay

er
O

ut
pu

t b
uf

fe
rs

D
at

a
L

in
k

L
ay

er

In
pu

t b
uf

fe
rs

TACO
boundary

T
o/

Fr
om

In
te

rc
on

ne
ct

io
n

N
et

w
or

k
T

o/
Fr

om
In

te
rc

on
ne

ct
io

n
N

et
w

or
k

T
o/

Fr
om

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

INPUT FU

dMMU

OUTPUT FU

SRAM

From network

To network

(2 port)

Data

Data Length

Data Length

Data

Trigger

Ack

Trigger

Ack

In
D

at
a

O
ut

D
at

a

A
dd

re
ss

A
dd

re
ss

T
ri

gg
er

A
ck

Interface
SRAM

Dual Port

T
ri

gg
er

D
St

ar
t

Figure 3.12: A generic network interface for TACO processors. Thick arrows
indicate signals with processor word width, thin lines indicate one-bit signals.

memory, the Input FU passes the data to the dMMU for storing it into the
memory. The Trigger signal (see Figure 3.12) is used to request DMA transfer
to the protocol data memory through the dMMU, and the DStart signal
informs the dMMU that the next data word to be transferred is the first word
of a new PDU. Information like the base memory address of the incoming
protocol data unit (PDU) as indicated by the dMMU is stored into the Input
FU. While the PDU is being written into the memory, its processing can
be started by the other functional units through the interconnection network
assuming dual-port memory is used (dual-port memory can simultaneously
be read from and written to as long as the operations do not access the same
address). The other functional units access the PDU residing in the protocol
data memory using the dMMU. The starting memory addresses of PDUs are
stored in the Input FU.

95

To write modified data back into the protocol data memory, the func-
tional units accessing the memory through the interconnection network need
to either wait for the incoming PDU write to finish, or to use the user data
memory for temporary storage. This of course depends on the application
and its program code implementation.

Once the PDU has been processed, the Output FU is informed of an
outbound PDU. The Output FU accesses the protocol data memory from a
given base address and sends out a given number of data words. The memory
space taken up by a PDU is released as soon as the PDU has been processed
(forwarded, consumed or discarded). In our implementations this far the
Output FU has blocked other read accesses to the protocol data memory
while it sends a processed PDU. While the Output FU is sending a PDU,
a new PDU can simultaneously be written into the protocol data memory
through the Input FU and its processing can start immediately.

So far the above memory access scheme has not caused problems for us in
terms of performance. Due to the basic nature of communication protocols,
PDUs are in practice always of reasonable size (no matter which protocol
is used). So, transferring PDUs does not block the rest of the processing
for too long. Also, in copper-wired networks PDU processing can usually be
carried out at a higher speed than the maximum speed at which the PDUs can
appear at the inputs of the processor (however, this might not be the case
in optical networks). The reason we have implemented the memory access
this way is to be able to use dual-port memory; if the Input and Output FUs
and the interconnection network should all have simultaneous access to the
protocol data memory, a four-port memory implementation would be needed.
Another solution that could be applied here would be to design and implement
an equal-priority arbitration scheme into the dMMU. Naturally, a four-port
access scheme would still be the fastest alternative, if it could be implemented
at the same speed as two-port access.

Custom solutions In our first protocol processor design experiment, the
ATM AIS processing case study (discussed in Chapter 5 of this thesis), we
used a custom solution for PDU I/O. The solution was based on the stan-
dard solution described above, but a pre-processing circuit was implemented
between the inbound receive buffer and the Input FU. The pre-processing
circuit synchronizes to incoming ATM data with the synchronization method
described in Chapter 2 and thus also verifies the ATM cells. Once synchro-
nized, the pre-processing circuit allows valid cells to be accessed by the Input
FU. The VHDL code for the CRC-8 calculation needed in the pre-processing
circuit was generated using the Easics CRCTool [30]. For outgoing cells, the
standard TACO solution described above was used.

Also in our IPv6 routing experiments like e.g. the one discussed in Chapter

96

5 we have used a custom solution for PDU I/O. This solution is actually more
of an extension to the generic TACO I/O interface of Figure 3.12: the protocol
data memory is organized into “slots” consisting of 387 32-bit words. Each slot
provides enough space for a 1500-octet IPv6 datagram and an additional pair
of IPv6 and ICMPv6 headers. This way ICMPv6 messages can be constructed
in the memory simply by adding the necessary headers to the beginning of a
slot containing the IPv6 datagram to be sent as the content of an ICMPv6
message. For normal processing, the memory is simply accessed with an offset
that bypasses the reserved ICMPv6 memory allocation. This approach can
with little effort be modified for use with most packet-exchange protocols
when necessary, although modifications are needed on a per-protocol basis
(especially in terms of packet size).

Connection to a Host Processor or On-Chip IP

A TACO processor can operate in a system in one of three alternative ways:

1. As a stand-alone processor,

2. As a stand-alone co-processor,

3. As an IP block in a System-on-Chip or a Network-on-Chip device.

For the latter two, a connection and communication mechanism of some sort
is needed. As a stand-alone co-processor we face another point of decision:
whether the TACO processor should support the co-processor interface of a
specific family of host processors, or if it should provide a generic interface to
basically any kind of host processors.

If the decision is to use a TACO protocol processor as a stand-alone co-
processor for a specific host family, the interconnection can be designed in
a more optimal way to support only the needed communication between the
two processor families. This type of connection is used in e.g. early Intel x86
CPUs and their x87 math co-processors, and Texas Instruments DSPs and
TI MSP430 series microcontrollers. A good choice for this kind of connec-
tion might be something similar to what is used in the TI processors - their
HPI (Host Processor Interface) communication resembles the fast path - slow
path approach needed in protocol processing (fast path: DSP calculations,
slow path: system control by the microcontroller). Although this kind of an
approach would be advantageous in terms of performance, by using such an
interface the TACO processors would no longer be able to function as generic
co-processors.

For a generic interface to a multitude of host processors an industry stan-
dard interface is needed. Again, the interface solutions are different for stand-
alone co-processors and for SoC/NoC IPs. For stand-alone processors, a

97

generic external interface is needed, whereas for SoCs and NoCs the structures
inside the chip used for interconnecting the IP blocks depend on the designer.
For a stand-alone co-processor, an industry-standard approach would be to
implement the PCI (Peripheral Component Interconnect) bus. PCI is widely
supported by most modern general purpose controllers and processors as well
as special purpose processors like The Intel IXP1200, Motorola PowerQUICC
and Texas Instruments DSPs. PCI support would require a special FU into
TACO protocol processors that converts the data from the processor into
a format suitable for PCI, and that would manage the PCI communication
independently.

At the time of writing, we have not yet decided to implement a bus in-
terface for stand-alone use; instead, our focus has been on designing and
implementing a SoC/NoC on-chip bus interface for the TACO architecture.
The TACO VCI compliant on-chip bus interface is discussed below.

3.5.1 VCI Compliant Network-on-Chip Interface

To use a TACO processor as an IP block in a SoC or NoC device, a standard
on-chip bus interface is needed. Recently we were invited to participate in
a NoC design co-operation project within a national research programme
in Finland [3]. We were asked to provide an IPv6 client implementation
of our TACO protocol processor architecture for inclusion in a multimedia
processing NoC platform. The IPv6 client core was required to be BVCI
(Basic VCI, Basic Virtual Component Interface) [118] compliant (the IPv6
client is discussed in more detail in Chapter 5). Thus, we proceeded to specify,
design and implement a BVCI interface module into our protocol processor
architecture.

We recall that data and control I/O in TACO processors is normally man-
aged by two FUs, namely the Input and Output FUs. These two units accom-
panied with the protocol data MMU (dMMU) and the protocol data memory
form the I/O subsystem in TACO processors as described in the previous
section (see Figure 3.12). This I/O subsystem is available as a library com-
ponent in the TACO libraries, and can thus be conveniently included in any
TACO architecture instance. With this in mind, there were two major design
alternatives for implementing BVCI support into the TACO architecture:

1. Remove the input and output FUs and replace them with BVCI com-
pliant FUs.

2. Design a wrapper module that maps signals from the existing FUs to
BVCI signals.

A decision was made to proceed with alternative 2. This way we would
not have to redesign the existing FUs and we would be loyal to one of the key

98

O
ut

A
dr

O
ut

D
at

a

Data

Ack

TACO protocol processor

dMMU

SRAM

INPUT FU

OUTPUT FU

T
A

C
O

 B
V

C
I

in
te

rf
ac

e
w

ra
pp

er
 m

od
ul

e

O
n−

C
hi

p
bu

s
B

V
C

I
In

te
rf

ac
e

On−Chip bus

On−Chip bus

BVCI
signals

Interface
SRAM

T
o/

Fr
om

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

In
te

rc
on

ne
ct

io
n

N
et

w
or

k
In

te
rc

on
ne

ct
io

n
N

et
w

or
k

T
o/

Fr
om

T
o/

Fr
om

In
D

at
a

T
ri

gg
er

T
ri

gg
er

A
ck

Data Length

Data

Trigger

Ack

Data Length

Trigger

In
A

dd
r

D
St

ar
t

Figure 3.13: Connections between the interconnection network, internal pro-
tocol data memory, input and output FUs and the BVCI interface in a TACO
processor.

principles within the TACO design framework: modularity. With a wrapper
module BVCI support could be included into an architecture when necessary,
and it could be left out of architectures that do not require NoC bus compli-
ancy. Figure 3.13 shows the TACO I/O interface discussed earlier, enhanced
with a BVCI wrapper module.

Figure 3.14 shows the internal structure of the TACO VCI wrapper mod-
ule. On the input side (left side of Figure 3.14), the TACO protocol processor
acts as a VCI target and the VCI interface on the on-chip network side acts
as a VCI initiator. The communication is started by the initiator raising the
CMDVAL signal and asserting certain other VCI signals (e.g. WDATA, CMD,
CLEN). On CMDVAL, the TACO interface wrapper checks that the correct
VCI command is issued. If the command is incorrect, the wrapper responds
by generating a VCI error packet to the on-chip originator of the erroneous
data. If the command is correct, the wrapper raises the trigger signal towards
the Input FU. If the Input FU responds with an Ack, the CMDACK signal
is raised, and data transfer from the on-chip network to the TACO dMMU
begins.

On the output side (right side of Figure 3.14), the TACO wrapper acts as
the VCI initiator. When the Output FU is ready to send data to an on-chip
IP, it raises the trigger signal. The wrapper responds with an Ack towards

99

R
SP

V
A

L

R
D

A
T

A

R
E

R
R

O
R

R
E

O
P

R
SP

A
C

K

From TACO Output FUTo TACO Input FU

...

B
V

C
I

SI
G

N
A

L
S

C
L

E
N ...

FIFOTest unit
Command

Response
Error andTrigger and

Transfer
Trigger and
Transfer Response

Resend and

C
M

D
A

C
K

W
D

A
T

A

C
M

D
V

A
L

R
SP

V
A

L

R
D

A
T

A

R
E

R
R

O
R

R
E

O
P

R
SP

A
C

K

C
M

D
V

A
L

W
D

A
T

A

C
L

E
N

C
M

D
A

C
K

B
V

C
I

SI
G

N
A

L
S

T
ri

gg
er

D
at

a

D
at

a
le

ng
th

A
ck

T
ri

gg
er

D
at

a

D
at

a
L

en
gt

h

A
ck

FROM BVCI INITIATOR TO BVCI TARGET

Figure 3.14: Functional block diagram of the TACO NoC wrapper module.

the Output FU if there is space left on the output FIFO of the wrapper. If
the FIFO is full, the Ack is not asserted. The FIFO size is parameterizable,
and is typically set to match the packet size of the on-chip network. With at
least one item in the FIFO, the wrapper raises the CMDVAL signal towards
the VCI interface on the on-chip network side. As soon as a CMDACK signal
is detected by the wrapper, data from the FIFO is transferred over the VCI
interface to the target.

The TACO IPv6 Client processor for which the NoC interface was origi-
nally designed is discussed in more detail in Chapter 5.

3.6 Chapter Summary

This chapter discussed the TACO architecture, a modular and scalable TTA-
based hardware platform for the TACO protocol processor design framework.
TTA was chosen to be the underlying base hardware solution for the TACO
framework some time after seeing H. Corporaal’s TTA presentation in the
Tampere System-on-Chip seminar in 1999. Until then, no architecture had
been found suitable for use in the TACO framework. This choice eventually
lead to presenting the first TACO architecture instances in a conference paper
in 2000 [116]. These initial architecture instances have now evolved to the
parameterizable hardware platform discussed in this chapter.

In the TACO architecture each functional unit is optimized for a particu-
lar protocol processing task. Some of the tasks have been chosen for hardware
implementation based on the findings of Chapter 2, and others based on ap-
plication analyses carried out in later case studies such as the ones discussed
in Chapter 5. There are no general purpose processing elements like multipli-
ers or arithmetic-logic units (ALUs) among the TACO FUs. In this approach
the overheads in e.g. processing speed and chip size potentially resulting from

100

general purpose implementations are avoided. This approach and the choice
of TTA as the base architecture were also determined to contribute to re-
duced hardware complexity, especially in control logic. The vital aspects of
the TACO hardware platform, including its control structures, different FU
types, programming and I/O interfaces were discussed in detail in this chap-
ter. To our knowledge, the TACO hardware platform is the first and so far
the only approach in which the TTA paradigm is applied to protocol process-
ing. Similarly, to our knowledge the memory organization and access scheme
of the TACO hardware platform is unique in comparison to existing TTA
implementations.

The MOVE framework TTA template [20] is without a doubt currently the
best known actualization of the TTA paradigm and as such is a de-facto point
of reference. Below we summarize the key architectural differences between
TACO processors and the MOVE framework TTA template of [20].

• TACO processors have support only for unsigned arithmetic due to the
characteristics of protocol processing. MOVE TTAs have support for
signed arithmetic. The benefit of resorting exclusively to unsigned arith-
metic is that the resulting hardware is simpler.

• Unlike MOVE TTA, TACO processors do not have control buses. This
means that the signals Global Lock (GL), Local Lock Request (LL)
and Squash (SQ) do not exist in TACO processors. The functionality
provided by these signals is provided to TACO processors in part by the
application software design process (i.e. instruction scheduling), in part
by the four stage pipeline, and in part by the Interconnection Network
Controller.

• TACO processors have multiple memories: Program memory (for the
program code), Protocol data memory (for storing/retrieving protocol
data units), and one or more User data memories (for storing/retrieving
user data). Also, In the TACO architecture there are FUs that have
direct memory access (i.e. the Input and Output FUs have DMA access
to the protocol data memory). MOVE TTAs implement a traditional
Harvard architecture with separate program and data memories and
have no FUs with DMA.

• Each memory block (program, protocol data, one or more user data
memory blocks) in a TACO processor has its own address space, whereas
in MOVE TTAs a common memory address space is implemented.

• All TACO MMUs support base-offset addressing. This is not the case
with MOVE TTA load-store units.

101

• TACO processors are not required to have general purpose registers, al-
though they are optional. Most register traffic can be managed by direct
data transports between functional units. In addition, User data memo-
ries can be used for register-like data access and storage. In comparison,
MOVE TTAs are required to have a register file and each interconnec-
tion bus needs to have access to it in order for the compiler to function.

With a TTA-based hardware platform it is possible to construct a library
of functional unit descriptions written in a hardware modeling language. De-
signing new functional units for use in the TACO platform is quite straight-
forward since the communication interface differs very little from one unit
type to another. Also, FUs created for an earlier application can be reused
in later design projects with this kind of a library based approach. In the
next chapter we develop this idea of component library based design further
to reach a rapid design methodology for protocol processors. The methodol-
ogy is built of simulation, estimation and synthesis models of the hardware
platform described in this chapter, a design tool that integrates the models
into a comprehensive processor design environment, techniques for analyzing
protocol processing applications, and a documented design flow.

102

Chapter 4

The TACO Design
Methodology

In Chapter 2 it was established that there are foreseeable benefits in designing
processors with optimized hardware for protocol processing. This realization
lead in Chapter 3 to specifying the TACO hardware platform, a family of pro-
cessor architectures in which each execution unit is optimized for a particular
protocol processing task. The modular structure of the platform was seen to
potentially support automated component library based processor modeling.

In this chapter a rapid system level protocol processor design and evalu-
ation methodology is built around the TACO hardware platform. We argue
that the tools and techniques of the methodology can reliably be used to
reach a gate-level synthesized, application-optimized TACO processor archi-
tecture and its program code with an application specification as a starting
point. The process includes iterative and rapid design improvement at the
system level. We also argue that the methodology is cost-efficient due to a
short turn-around time and the ability to use low-end computer systems and
affordable or free software for system level simulations and estimations. Fi-
nally, we argue that by using object-oriented programming techniques and
analysis methods several advantages are gained for hardware design.

TACO designs start from protocol processing application analysis to de-
termine the functionality needed to process the target application. The goal
in this process is to find frequently needed functionality in the application,
and to map this functionality to existing functional unit descriptions. If no
suitable FUs are found for the desired functionality, new FU descriptions are
created. This naturally saves time, since all functionality does not need to be
implemented from scratch every time. Another benefit of such a library based
approach is that FU descriptions already in the library have been verified for
simulations, estimations and synthesis; it is enough to verify only FUs that
are newly added to the library.

103

After application analysis the design space is explored by evaluating the
quality of different architectural candidates using simulation and estimation
models for the hardware platform. This is an iterative process; results of
simulations and estimations of architectural candidates for the same target
application guide the task of specifying new candidates for the next round of
design space exploration. For this kind of an approach, it is obvious that the
simulation, estimation and synthesis models for the hardware platform need
to be parameterizable and configurable. Otherwise each model would need
to be rewritten every time a change is made into an architecture instance
to be examined. The parameterization should be carried out at a high level
of abstraction to ensure that simulation and estimation models for a set of
architectures can be constructed in little time. Also, the simulation and
estimation models need to execute fast so that the time-consuming tasks of
design space exploration and design quality evaluation can be carried out as
time-wise efficiently as possible. Once a suitable (in terms of performance and
cost) architecture has been found through this kind of designer-driven design
space exploration, a synthesis model for it is configured and the architecture
is synthesized.

Although the TACO processor models do not need modifications for each
new architecture candidate thanks to their parametric configuration and in-
stantiation capabilities, even the process of configuring the models manually
for different architectures requires preciseness and is an error-prone process
due to a large number of signals and modules that need to be correctly in-
stantiated and connected. Valuable design time could be lost in evaluating
incorrectly specified architectures and in debugging the instantiation files if
errors are made in the configuration process. To deal with this issue, the
TACO framework relieves the processor designer from manually configuring
and instantiating the models by providing a graphical tool that performs these
tasks automatically and also assists the designer in design quality evaluation.

We start the discussion in this chapter by specifying the TACO protocol
processor design flow. The initial problem to be solved is to specify techniques
for analyzing the target application. From this application analysis the flow
continues to iterative design space exploration using the design tool and the
processor models. Once the flow completes, an optimized hardware architec-
ture, optimized program code and a synthesizable hardware model for the
target application have been found. After discussing the design flow we take
a look at turn-around times in the TACO methodology. Then we proceed to
discussing details of the TACO processor models. Emphasis in this discussion
is on the simulation model; for the estimation and synthesis models we limit
the discussion to only an overview, since the maintenance and development
of these models are topics in research directions pursued by other researchers
in the TACO project. After discussing the simulation model we address the

104

use of object oriented programming conventions in hardware design.
The chapter is concluded with a presentation of the TACO design tool that

is used for generating instantiation and configuration files for the processor
models and for evaluating simulation and estimation results.

4.1 Design Flow

This section discusses the TACO protocol processor design flow, in which an
optimized protocol processor architecture, optimized application code for it
and a synthesizable model of it are rapidly derived starting from a high level
application description. The flow requires application analysis, architecture
design, simulation, physical parameter estimation, architecture exploration,
design iteration and hardware synthesis. To achieve this, methods for ana-
lyzing protocol processing applications need to be defined, and the processor
models and the design tool need to be efficiently incorporated into the design
flow.

Figure 4.3 a few pages ahead displays a block diagram of the TACO design
flow that supports all the design tasks outlined above. It is to be noted that
the flow is not a completely automated process; rather it is a set of consecutive
procedures the designer needs to follow and complete. The designer is required
to make certain design decisions along the way, and to evaluate the quality
of candidate solutions using e.g. the results from simulations and physical
estimations.

4.1.1 Application Analysis

In the TACO framework protocol processor development is guided by the
development of the protocol software. We have already seen in Chapter 2
that commonly used communications protocols exhibit very similar functional
characteristics in their processing (see Table 2.1 for a summary of such char-
acteristics), and the functional units in the TACO architecture have been
specified in part based on the findings made in Chapter 2. However, knowl-
edge of inter-protocol similarities may not be adequate when optimizing an
architecture for a particular protocol processing application; therefore the
design process should be such that it makes it easy to identify frequently
used operations within the particular target application. Similarly, the target
hardware platform should be (and in the case of TACO, it is) such that it
allows easy integration of application-specific operations into hardware.

Although a variety of methods could probably be adapted for use within
the TACO framework, object-oriented (OO) techniques [29] have been cho-
sen as the basis for TACO application analysis. One of the main advantages
provided by object-oriented methods is that since they are focused on iden-

105

Receive

Send

IdentifyCell

F4 OAM

F5 OAM

Other

F5 AIS

Other

CellCount

ATM / AAL / F4 / F5 processing

Incoming cell

Mode CellType

AISNormal

Empty

Normal

AIS

outgoing cell

Figure 4.1: Use Case diagram for processing ATM F5 AIS cells.

tifying objects and implementing the functionality of a system using objects,
the methods can be easily applied to identification of tasks that could be
implemented in hardware as functional units.

In TACO, OO techniques are used so that objects encapsulate state and
functionality, while classes describe the common properties of a number of ob-
jects. Thus objects and classes are suitable abstractions for modeling proto-
col processing operations. Many object-oriented methods contain techniques
and notations for so called domain analysis (identification of common data-
structures and functionality within a domain of interest).

As in most modern OO methods, also in the TACO framework application
analysis is started by drawing up a use case diagram. The use case diagram
shows the main functionality that needs to be implemented. In the context
of TACO, use cases are often data transports between service access points
(SAPs) of different protocol layers (see Chapter 2 for more information on
SAPs). Such a use case could be for example sending a user protocol data
unit (PDU), receiving one, or perhaps receiving an operation and maintenance

106

FIFO : FunctionalUnit

MMU : FunctionalUnitRegister1 : FunctionalUnit

Register2 : FunctionalUnit

Compare2 : FunctionalUnit

Matcher2 : FunctionalUnit Compare1 : FunctionalUnit Matcher1 : FunctionalUnit

Compare1 : FunctionalUnitMMU : FunctionalUnit

Compare2 : FunctionalUnit

Register2 : FunctionalUnit

Counter1 : FunctionalUnitPCounter : FunctionalUnit

PCounter : FunctionalUnit Counter1 : FunctionalUnit

immediate immediate

immediate

immediate

 : External SendCell

: External HeaderAddress

guard signals to network controller

guarded immediate

guarded immediate

guard signal

guarded immediate

guarded immediate

Figure 4.2: Collaboration diagram for ATM F5 AIS cell processing. Arrows
represent data transfers. Immediate value generation and control signals are
managed by the interconnection network controller (not shown in the figure).

107

(OAM) PDU. As an example, figure 4.1 shows use cases for ATM F5 AIS1

cell processing drawn using the UML [29] notation. The use case diagram can
be used to guide the development process in an iterative way so that in each
iteration the implementation of one use case is added to the prototype (e.g.
the ROPES process of [29]).

The first object diagrams of the system are obtained from the use cases.
The analysis then continues with refinement of the object diagrams until op-
erations that are suitable for hardware implementation are identified (domain
analysis). Once this process finishes, knowledge of required functional unit
types has been acquired, and the hardware part of the application analysis is
completed.

Once the tasks that could be performed in hardware (and implemented as
TACO functional units) have been identified, the original application and its
data dependencies need to be mapped to the required set of functional units.
In this aspect of the application analysis, collaboration diagrams [29] showing
the interactions between the different functional units are constructed. In
terms of the TACO framework, it is possible to take the application analysis
further by refining the collaboration diagrams to a level at which timing is
taken into account and at which each interaction in the diagram corresponds
to a data move between registers in functional units. Figure 4.2 shows such an
extensively refined collaboration diagram for a part of the interactions needed
for processing ATM F5 AIS cells. The diagram has been drawn assuming
adequate data transport capacity (at least three interconnection buses) and
processing capacity (at least two of each required functional unit type). The
dotted arrows indicate information generated by the interconnection network
controller (e.g. immediate integer generation and conditional execution con-
trol), and the solid arrows indicate transfers between functional units. Two
arrows pointing to a single FU indicate that both of the input registers of
the FU are loaded with data (see Chapter 3 for more information concerning
architectural details). Dashed horizontal lines indicate timing (i.e. cycles).

A collaboration diagram refined this far can be modified to match a par-
ticular TACO architecture (i.e. by specifying the number of functional units
and interconnection buses in an architecture). From a diagram refined this
far it is already possible to draw preliminary bus utilization and clock cy-
cle count estimates for the target application running on a specified TACO
architecture. For example, the interactions shown in Figure 4.2 require 8
clock cycles and use 21 out of 24 possible data transfers in a TACO processor
with three buses and two FUs of each required kind. More typically however,
the refinement of collaboration diagrams in the TACO framework aims at
producing a time-dependent sequential mapping between the required oper-
ation types and the required data transports of the target application. The

1AIS = Alarm Indication Signal [60]. F5 AIS processing is an ATM OAM function.

108

resulting collaboration diagram is actually a block diagram of executing the
target application on the simplest possible TACO architecture, and it serves
as a specification for the sequential assembler code for a virtual processor (to
which we will return shortly).

Further research on application analysis is nowadays conducted in another
line of TACO research. Currently a key topic in this direction is finding ways
of automatizing the application analysis process. See e.g. [4, 72, 113] for more
discussion on this research direction.

Figure 4.3 shows a block diagram of the TACO design flow discussed in
this chapter. The application analysis techniques discussed above reside in
the first two steps of the flow, i.e. boxes Analysis of protocol processing ap-
plication specification and Information on required functionality / modules in
Figure 4.3). Once the required operations to perform the application have
been determined, they are compared to operations provided by the FUs al-
ready existing in the TACO module library (i.e. SystemC, Matlab and VHDL
component library).

If the required operations are found in the library or they can conveniently
be performed by using the existing operations in the library, the library will
remain unchanged. However, if the application requires an operation that
is not directly mappable to the modules available in the TACO library, the
operation is added to the library. This is done by creating SystemC and
VHDL modules of the operation as seen in the dashed box at the top right
of Figure 4.3. Once the VHDL module has been synthesized, the physical
parameters of the module are inserted into the Matlab estimation model.
These characteristics can be e.g. the number of logic gates and the ratio of
combinatorial vs. non-combinatorial logic in the module that can be used to
make the estimations more precise. If the module is not synthesized at this
time, the Matlab model will calculate estimates for the physical characteristics
of the module based on default settings.

Table 4.1 lists the protocol processing functional unit versions currently
available in the TACO module library (the functional unit types are discussed
in Chapter 3). As can be seen in this table, some units in the Matlab and
VHDL models currently exist only as a 0.35 µm implementation, some as
a 0.18 µm implementation, and some as both. The reason for this is that
the older 0.35 µm implementations were made using a single manufacturer’s
technology libraries, whereas the 0.18 µm VHDL implementations are imple-
mented using standard CMOS technology. It should be possible with little
effort to adapt the 0.18 µm implementations for use also in newer technology
generations such as 0.13 µm. For the Matlab implementations, technology de-
pendent input parameters need to be updated to reach an estimation model
in another technology generation. This is done either by using information
from module synthesis, or by using designer-defined generic technology pa-

109

FU Matlab VHDL
type SystemC 0.35 µm 0.18 µm 0.35 µm 0.18 µm
Matcher X X X X X
Shifter X X X X X
Comparator X X X X X
Counter X X X X X
Masker X X X
HEC FU X X X
ICMPv6 FU X X X
Local Info FU X X X
Routing Table FU X X X
IP Checksum FU X X X

Table 4.1: Available versions of TACO protocol processing FUs in the different
processor models. “X” indicates that the FU type and version in question
exists in the TACO component library. The operations performed by the
FUs listed here are discussed in Chapter 3.

rameters. The SystemC modules are technology-independent. In addition to
having module versions for different technology generations, it is naturally
also possible to have different optimization versions of modules. For example,
one version could be optimized for maximal processing speed, while another
one is optimized for low power consumption. Still, both modules would per-
form the same operation for the same input data.

Upon its completion, the TACO application analysis process should provide
the following results:

• A list of hardware operations needed for the target application.

• Existence of suitable TACO hardware modules for the listed operations.

• Allowable processing time per PDU. This value is based on the network-
ing environment of the target application, and depends on the network
speed and the datagram size (e.g. 100 Mbps Ethernet, 1500-octet frames:
the maximum allowable processing time per PDU is 120 µs).

• A list of physical constraints for hardware design (dependent on the
target hardware implementation, e.g. stand-alone vs. NoC): maximum
tolerable values for power consumption and area use, and the technology
generation (e.g. 0.18 µm) to be used.

110

4.1.2 Virtual Assembler Code

After establishing that all the operations in the application can be performed
by modules available in the TACO libraries, the application specification is
refined (i.e. the amount of details in the specification is gradually increased,
thus causing the abstraction level of the specification to be gradually lowered)
until it becomes a list of consecutive data moves between elementary TACO
protocol processing operations (i.e. operations offered by the modules in the
TACO libraries). A data move of this kind could be e.g. to move a counter’s
output value to the input of a greater-than operation. This list of data moves
is called the sequential assembler code for a virtual processor in the TACO flow
(see Figure 4.3 for a box with this label). The term “virtual processor” means
a TACO processor with one functional unit of each needed type and one bus
in the interconnection network. The application specification is refined into
virtual processor assembler code by e.g. resorting to the use of collaboration
diagrams as described in the previous section.

4.1.3 Iterative Design Space Exploration

Once the first virtual assembler code has been derived for the target appli-
cation, the TACO design flow enters the iterative design space exploration
cycle (From box Sequential assembler for virtual processor to box Analysis of
design quality).

As defined in the introduction of this thesis, design space exploration is
the task of evaluating the quality of several designs in terms of hardware
architecture, application software, or a combination of both. In the TACO
framework, this analysis is performed based on quality metrics specified by
the target application; the metrics are typically a combination of acceptable
ranges of values for power consumption, chip size and allowable execution
time. We have already seen that the TACO hardware design space is three-
fold; design decisions are needed for the types of hardware blocks to be used,
the number of such blocks, and the connections between them. Within this de-
sign space, only a set of hardware architectures is able to perform the target
application correctly. Only a subset of these architectures is able to func-
tion within the timing constraints set by the protocol processing application.
Again, only a subset of the architectures fulfilling the time-wise requirements
is feasible in terms of power consumption and circuit size.

In the TACO flow, design space exploration is not completely automated:
the designer relies on his experience from previous TACO projects in speci-
fying typically five to ten architecture configurations for detailed evaluation.
Each configuration is evaluated (simulated and estimated at the system-level)
before the next one is specified. With this kind of an iterative approach to
design space exploration, results and experiences from each configuration can

111

application specification
protocol processing

Analysis of

Information on
required

functionality / modules

Sequential assembler
for virtual processor

Assembly of VHDL
model from comp. lib.

Protocol processor

Synthesis and
verification

Changes
needed

Synthesize component

Create VHDL

module
description of new

Insert operation
cycle count

into SystemC model

description of new
Create SystemC

module

Bus utilization
information

data transport statistics
Register to register

All modules
exist in TACO

libraries?

Yes

No

SystemC simulation

Correct Functionality?
No

Yes

Physical parameter
estimation in Matlab

Matlab estimation results

Dynamic power
consumption estimate

quality
Analysis of design

Design OK

from modules in library

SystemC model
construction

SystemC simulation results

Clock constraint from
total cycle count

Processor area estimate

Insert module phys.
data (e.g. logic depth)
into Matlab model

Figure 4.3: TACO protocol processor design flow.

112

be taken into account when specifying the next one. The evaluation of an
architecture may reveal that changes are needed even at the level of the orig-
inal virtual assembler code; for example, simulations can suggest incorrect
execution of the target application. However, most of the time the designer
would detect either a need for increased performance (with the potential cost
of increased area and power needs), or a need for reduced area or power (with
the potential cost of reduced performance).

The virtual assembler code obtained through application analysis and
specification refinement defines the types of functional units needed to per-
form the target application and is thus used as an initial basis for deriving
different architecture instances. This is the SystemC model construction box
in Figure 4.3. The SystemC simulation model of an architecture candidate is
usually constructed by generating a top level file using the TACO design tool,
but simulators can also be constructed manually. An experienced designer
can derive good candidates for processor architectures quickly, since such a
designer is able to predict the kinds of effects that adding or removing buses
or functional units to/from an architecture will have on overall system per-
formance. We will return to the construction and structure of the SystemC
simulation model in section 4.2, and to the TACO design tool in section 4.5.

To exploit the increased parallelism offered by concurrent data transports
in TACO processors the application code (initially the virtual assembler code)
must be organized in an optimal manner for each given architecture instance.
This optimization will later be carried out by a compiler that takes in program
code written in a high-level language and produces optimized assembler code;
however, with the current tools available in the TACO framework, the virtual
assembler code needs to be optimized manually for each architecture instance.

After an architecture instance has been constructed and the application
code has been prepared for the specific architecture instance, the system can
be simulated (box SystemC simulation in Figure 4.3). If the SystemC simu-
lation reveals incorrect or otherwise unwanted functionality in the processing
of the application, the program code and/or the hardware architecture need
to be modified. It is up to the designer’s experience to decide at this point
whether to modify only the application code, only the hardware architec-
ture, or both. If the designer is satisfied with the overall simulated system
functionality, physical characteristics (i.e. area use, power consumption and
worst-case delay) of the simulated hardware architecture are estimated. To
do this, the Matlab estimation model needs to be configured for the target
architecture (e.g. using the TACO design tool). We will return to details
of the Matlab estimation model in section 4.3. Depending on the designer’s
choices, the Matlab model may take some of the SystemC simulation results
as parameters (boxes Physical parameter estimation in Matlab and SystemC
simulation results in Figure 4.3). The designer’s choices include for example

113

power optimization by using register transfer statistics for preliminary proces-
sor floorplanning, and bus utilization information for a more precise estimate
on the overall power consumed by bus drivers during data transfers.

As the last phase of the iterative exploration cycle of the TACO design
flow, the Matlab and SystemC results are combined and analyzed to deter-
mine whether the system (i.e. the hardware architecture and the optimized
application code for the architecture) meets the requirements of the original
specification (box Analysis of design quality in Figure 4.3). The number of
clock cycles it takes for the given application to be performed on the simu-
lated architecture is obtained from SystemC simulations, and an estimate of
the worst case delay (clock cycle) using a given manufacturing technology is
obtained from the Matlab estimations. By multiplying the number of required
clock cycles with the estimated cycle time, information on the architecture’s
capability of fulfilling the timing requirements of the target application is
obtained. Similarly, the area use and power consumption estimates are com-
pared to constraints specified for the target application. If the design was
unable to perform the given application correctly, unable to match the de-
sign constraints (timing, power, area), or still a better solution is desired, the
designer returns to earlier stages in the flow as indicated in Figure 4.3.

The goal of the iterative design space exploration in the TACO flow is
to find at least one protocol processor architecture that correctly performs
the target application and fulfills all given design constraints. If more than
one such configuration is found, the one with best results in the most critical
constraint(s) is chosen for further evaluation.

Once a satisfactory architecture has been found, the TACO flow contin-
ues with generating a synthesizable VHDL model (box Assembly of VHDL
model in Figure 4.3). Generating the synthesis model requires a configura-
tion file to be created. The configuration file specifies all components of the
processor and their interconnections. The file is substantially more complex
than the corresponding SystemC file due to VHDL’s lack of support for ob-
ject oriented programming conventions. Thus, creating the configuration file
manually would result in increased design time and would require a thorough
proofreading. For this reason, it is recommended that the designer gener-
ates the configuration file using the TACO design tool: this way all potential
programming mistakes are avoided and the designer can be sure that the syn-
thesis configuration matches the simulated configuration. Whether manually
or automatically created, the VHDL configuration file is used to synthesize
the processor architecture (box Synthesis and verification in Figure 4.3).

Prior to synthesis, the architecture and the program code are verified
by VHDL simulation. If all requirements are fulfilled the design is ready to
be synthesized as described in section 4.4 later in this chapter. Following
synthesis, the design is put through the processes of placement and routing.

114

In these steps detailed information of the physical placement of the functional
units and interconnections between and within them are derived. Successful
completion and verification of the routing finishes the design process. The
tasks and processes following VHDL simulation and synthesis are tool and
manufacturing technology dependent. The details on work done and processes
undergone in the stages following gate-level synthesis are beyond the scope of
this thesis.

4.1.4 Turn-around Time in the TACO Design Flow

Since certain parts of the SystemC simulation model are implemented in high-
level C++ (as will be seen in section 4.2), TACO simulators execute very fast.
One run of a packet processing loop can be performed in less than a second
or at most a few seconds on a standard PC. The simulation speed in terms of
clock cycles per second depends on the complexity of the architecture being
simulated. As an example, SystemC simulations of the IPv6 client processor
core (which is discussed in Chapter 5) execute at the speed of 2 950 clock
cycles per second in a PC equipped with a 1 000 MHz processor, 256 MB of
main memory, an IDE hard drive and a Linux installation with kernel version
2.4.3. Since in the IPv6 Client case study 1 920 clock cycles were needed to
process one IPv6 datagram, the simulation speed in that particular case study
is about 1.5 IPv6 datagrams per second. Obviously the total simulation time
depends also on the number of PDUs processed in the simulation; in the IPv6
client processor simulator the simulated processing of 1000 IPv6 datagrams
takes 10-11 minutes. See Chapter 5 for more information and details about
the IPv6 Client case study.

Also the Matlab model executes fast, a typical execution takes 3-4 seconds
on a standard PC. Thus, one run of the design iteration cycle (from box Sys-
temC model construction to box Analysis of design quality in Figure 4.3) can
also be carried out in little time. In addition, by using the TACO design tool
no time is lost in writing and debugging the top-level processor configuration
files for the three models. Therefore the iterative design space exploration
part of a TACO design project can be expected to complete in a short time
frame (a day or two) while providing good results.

The most time consuming parts in the design process are the steps from
logic synthesis onwards. Depending on the optimization constraints, already
the synthesis of an architecture instance can be an overnight process on a
typical workstation (we use a SUN Ultra 10 workstation). The process of
placement and routing consumes even more time.

115

4.2 The Processor Simulation Model

This section focuses on the SystemC [71, 85] simulation model for the TACO
hardware platform. The TACO SystemC model is implemented with object
oriented programming techniques and a component library based approach.
Key design goals for the simulation model have been on the other hand easy
model instantiation and on the other hand high execution speed in simulations
using affordable computers. We start the discussion with an introduction to
executable specifications and SystemC. Then the design and implementation
of the TACO SystemC model and its usage conventions are discussed. The
discussion on the simulation model is concluded with a description of the
problems that were encountered and needed to be solved to use object oriented
C++[105] conventions for describing hardware in SystemC, and with a look
at the suitability of object oriented programming techniques for hardware
design.

An interesting and fairly recent development in the EDA (Electronic De-
sign Automation) community is the adoption of executable specifications as a
potential replacement for traditional written specifications. The idea behind
executable specifications is that instead of reading through a large quantity
of documents describing the desired functionality of a system, the system de-
signer could simply run the executable specification and see how the system
is supposed to work. Such an executable specification is gradually refined
to contain more and more implementational details during system develop-
ment. Thus, ideally an executable specification serves also as documentation
throughout the design project. Executable specifications are expected to pro-
vide unambiguity, completeness and correctness to system specification [37].

Currently C and C++ are the most popularly chosen bases for implement-
ing executable specification development languages and environments as seen
in e.g. [36, 37, 92]. The choice to use these two languages is obvious in terms of
availability and cost: existing tools and programming skills can be used, since
companies already use C++ in their software development and C in their em-
bedded system programming. Also, operating systems like Linux [112] provide
C and C++ compilers and utilities free of charge. However, these languages
are designed for writing computer programs, not for describing computers or
other hardware devices. Therefore they lack necessary functionality and fea-
tures for describing clocks, signals, reactivity and parallel processing. Also,
most current design flows that start from a C or C++ based functional level
description contain a “jump phase” in which the functional model written in
C/C++ is translated into an HDL (hardware description language) [35, 71].
This phase is often manual and involves refining the model down to the RTL
level. To solve this problem, either a system description language should be
built on top of C or C++, or a language designed specifically for system

116

description should be created.
SystemC explores the first option. It is a somewhat recently introduced

C++ class library for designing executable specifications and cycle-accurate
simulators of hardware in C++. SystemC is distributed under an open license
and is supported by several of the major EDA companies. It provides support
for hardware-oriented data types like modules, ports and signals. Originally
there were two major goals in designing SystemC [71]: to provide a single
language framework for co-verifying systems at varying, possibly mixed, ab-
straction levels, and to allow system designers to gradually refine their models
towards the RTL level without translating them into a HDL.

4.2.1 TACO Configurable SystemC Simulator

When SystemC was introduced in 1999, it seemed to have a lot of potential
in system-level modeling. Thus, with some enthusiasm, the decision to exper-
iment with SystemC in the TACO project was made. SystemC development
seemed to be on the right track - it was firmly believed in the TACO project
that it would be beneficial to combine the advantages of object oriented (OO)
programming techniques available in C++ with the support for cycle accu-
rate simulations and hardware data types provided by SystemC. Surprisingly
though, initially SystemC actively discouraged the use of C++’s object ori-
ented techniques. The situation has improved in later versions, but even the
current SystemC version still enforces certain limitations for object oriented
programming. Also, for a long time it seemed that the SystemC community
widely uses SystemC for constructing low level descriptions of hardware de-
vices in a similar way as hardware is described in traditional HDLs. It has
happened only quite recently that discussions in EDA conferences and online
discussion groups have started covering the use of object oriented techniques
in context with system design using SystemC.

To be able to rapidly simulate, evaluate and explore architectures for a
given protocol processing application or algorithm, an object oriented con-
figurable protocol processor simulation model was devised for the TACO
framework. The component library based model is written in SystemC and
maintained in a standard x86 PC running Linux. The model contains imple-
mentations of functional units, sockets, interconnection buses, and the inter-
connection network controller. Using the simulation model it is possible to
construct a cycle accurate simulator of any given TACO architecture, and to
simulate both the functionality of the hardware as well as the software. The
application software code is input to simulations as hexadecimal values (i.e.
compiled TACO instruction words).

The level of abstraction used in implementing the TACO simulation model
is heterogenous in the following sense: the inter-module communication is

117

handled at the RTL level, whereas the internal functionality of the modules
is implemented as higher level C++ using SystemC’s fixed bitstring length
data types (e.g. sc uint<32>, 32-bit unsigned integer). The motivation for
using heterogenous abstraction in the simulation model implementation is
that simulators are notably faster when the execution logic is implemented as
normal C++ instead of RTL-style coding; high-level C++ can be used inside
the modules as long as the correct amount of cycle delays (i.e. SystemC wait
statements) is inserted into modules requiring more than one clock cycle to
complete their execution.

Since the functional units of the TACO hardware platform have a very
similar interface, inheritance is utilized in the SystemC simulator (see Figure
4.4). This is done by gathering the behavior and connectivity that is the same
for all functional units into a parent class, and placing only the additions to the
port/signal configuration required by individual modules as well as the code
for the particular FU’s execution logic to the child classes. The approach has
obvious benefits: the code is more compact and readable (the interface code
is not repeated multiple times), there are less errors to debug (only additions
to the interface are coded) and adding new functional units to the SystemC
component library is faster (most FUs in the hardware platform differ only
in the internal implementation, not so much in the physical interface). New
FUs are always verified for correctness at the time they are made available
in the TACO component library. Thus, all FU descriptions in the library are
known to have already been verified.

The execution of a TACO simulator for a given architecture consists of
two phases. In the setup phase all modules are instantiated. This phase relies
heavily on polymorphism2 to allow automatic socket instantiation and ad-
dressing, and to connect different kinds of functional units to buses through
sockets. After the setup phase all modules in the processor have been instanti-
ated. No more modifications to the architecture are made, and polymorphism
is no longer used. The second phase, simulation, is started when the command
sc start() is issued in the sc main() routine (SystemC’s equivalent to the
main() routine found in all C++ programs). It is important to realize that
at the moment the simulation starts, the processor architecture is completely
static and no more modules are dynamically constructed. For this reason,
it is possible (although it would require some effort) to mechanically remove
the polymorphic code used for automatic simulator construction. Also the
inheritance can be mechanically removed, thus making it possible to have
static module instantiation and stand-alone modules without a class hierar-
chy. Such removal of polymorphism and inheritance would be useful, were it
necessary to develop the code to RTL level for direct synthesis from SystemC;

2Programming convention in which routines can be applied to objects of many different
types.

118

FunctionalUnitMatcher

Counter

Timer

GenReg

 . . .

CRC

FIFO

RandomGen

MMU

HEC

FuBaseSC_MODULE

NetControl SocketManager

Socket

OutSocket

TriggerSocket

InSocket
Comparator

Figure 4.4: SystemC simulator class hierarchy. Arrows indicate inheritance
(arrow head points to parent class), and lines indicate association.

certain commercial tools nowadays support synthesis of system descriptions
written in a predefined subset of SystemC. However, in the TACO framework
this is at least currently not necessary, since the TACO design tool (discussed
later in this chapter) is able to set up a VHDL synthesis model for any given
TACO architecture.

The classes that are used for simulating hardware are derived from the
class sc module provided by SystemC. This class provides among other things
macros for simulating signals and ports. The TACO SocketManager class is
not a hardware simulation module: it is used by objects from the functional
unit classes during the setup phase for generating, connecting and maintaining
sockets, socket ID’s and signals dynamically. During the simulation phase,
SocketManager is used for obtaining pointers to any modules that inherit
from sc module and were dynamically created in the setup phase of simulator
execution. See the code example on the next page for an example of using
the SocketManager for reserving a socket ID.

We recall that there are three different types of sockets in a TACO proces-
sor (see Chapter 3 for more information on sockets). Input sockets are used
for writing data into operand registers in FUs, output sockets for reading data
from result registers, and trigger sockets for writing data into trigger registers
and simultaneously triggering FU operations. In the simulator all sockets are
derived from the base class Socket that provides most of the socket interfac-
ing and a state machine for each socket. The subclasses add their own internal
functionality and interface requirements to the base class description.

119

The three level hierarchy for functional units was needed to overcome cer-
tain SystemC limitations. We will return to these limitations shortly. The
base classes FuBase and FunctionalUnit provide the interfacing and a state
machine needed by each FU. Additions to the base FU interface (e.g. an
additional register) and the actual processing task to be executed by a spe-
cific functional unit are placed into the FU leaf classes (Matcher, Comparator,
Counter etc. in Figure 4.4). A functional unit is added to the TACO SystemC
simulation model component library by specifying a new leaf class under the
FunctionalUnit unit class, specifying additional FU registers (if any), spec-
ifying the identifiers for logical trigger socket IDs, specifying whether the FU
needs a result bit signal, and writing the code for the operation to be per-
formed. However, due to limitations of SystemC, some additional code is also
needed. For example, the system clock needs to be tied to the new FU at this
level of the class hierarchy.

A simple adder FU with one operand, one trigger and one result register
and no result bit would be added to the library in the following manner (for
clarity, bypass code for the mentioned SystemC issues is not included):

class Adder: public FunctionalUnit {
void assignTriggerIds() {

trigger->setId(SocketManager::reserveInSocketId("TADD"));
};
void triggerOperation() {

resultReg = operandReg + triggerReg;
};

}:

In the above code example, a new leaf class Adder is specified under the
parent class FunctionalUnit. Then, a logical trigger ID called TADD is al-
located to the new functional unit. Note that the sockets are defined in the
parent class; thus, in the leaf class only the logical trigger IDs need to be de-
fined. Next, the operation to be performed is defined. For FUs that are able
to perform more than one operation on the data, additional logical trigger
IDs need to be allocated. This is done by repeating the allocation line of the
code example with different ID names.

The code in the function triggerOperation() defines that once the FU is
triggered (i.e. when data is written into the trigger register), the values stored
in the operand and trigger registers are added together, and the result of this
addition is placed in the result register. Timing issues for register reads and
writes are managed in the parent class; in the leaf class only the operation to
be performed in the execute pipe stage needs to be defined.

The interconnection network controller (class NetControl) does not have
any subclasses since there is always only one such module in a TACO proces-
sor. The controller is responsible for extracting bus instructions from TACO

120

instruction words, generating immediate values and evaluating guard expres-
sions for conditional execution (see Chapter 3 for more details on the in-
terconnection network controller). The interconnection network controller
implementation in the simulation model is state machine based.

Instantiating the SystemC model for a given architecture

The simulation model is set up for simulating a given TACO architecture by
instantiating as many interconnection network buses as necessary and then in-
stantiating as many functional units as necessary (and specifying their types).
This is done either manually or using a tool like the TACO design tool dis-
cussed later in this chapter. The functional units are connected to the in-
terconnection network by calling connect routines in the newly created bus
objects. The creation of sockets and the signals required for connecting the
sockets to buses and functional units is done automatically and dynamically
by specifying which FU registers connect to which buses as seen in the code
example below (line numbers have been added for commenting purposes).

0: NetControl* nc = new NetControl("NC");
1: Bus* bus1 = new Bus("Bus1");
2: Bus* bus2 = new Bus("Bus2");
3: Matcher* m1 = new Matcher("M1",clk);
4: bus1->insertOperand(m1);
5: bus1->insertData(m1);
6: bus2->insertData(m1);

Line 0: Create the interconnection network controller nc.
Lines 1 and 2: Create two buses and connect them to nc.
Line 3: Create a matcher functional unit m1, connect the system clock to it.
Line 4: Create an input socket for the operand register of m1, create signals
for connecting the socket to m1, connect the socket to m1 and bus1.
Line 5: Create an input socket for the data register of m1, create signals for
connecting the socket with m1, connect the socket to m1 and bus1.
Line 6: The data input socket already exists; just connect the socket to bus2.

As can be seen in the code example, much of the complexity in specifying
the interconnections between different modules has been abstracted away from
the designer by resorting to object oriented programming techniques. Still,
using the TACO design tool for simulator instantiation should be preferred:
the tool generates the instantiation file completely and without errors every
time, which is more demanding to achieve with manual instantiation. Once
the architecture has been specified in the described manner in the top level
TACO SystemC file (main.cpp), the simulator is compiled. This is done

121

by issuing the command make in the directory in which the SystemC model
resides. Normally the compilation takes less than a minute. The executable
produced by the compilation is the simulator for the specified architecture.
The architecture can then be simulated by starting the executable.
The SystemC simulations of a TACO processor architecture provide the fol-
lowing results for design quality evaluation:

• Functional verification. The key result of any simulation is of course
verification of correct system functionality. Such is also the case in
TACO: the most important goal in a processor simulation is to find out
whether the simulated architecture functions correctly when executing
the target protocol processing application.

• Clock cycle count. TACO simulators count the number of clock cycles
used in each simulation run. This information along with the network
speed requirement of the target application (e.g. 100 Mbps Ethernet,
622 Mbps ATM etc.) and the estimated achievable clock speed (from
physical estimations; discussed shortly) determines whether the archi-
tecture being simulated is able to execute the application fast enough.

• Bus utilization. During each simulation, TACO simulators calculate
the number of possible data transfers and the number of actual data
transfers for each bus in the interconnection network. Thus, when a
simulation ends, the simulator is able to report relative bus utilization
values for each bus (e.g. 150 data transfers actually made out of 200
possible ones: relative bus utilization = 75 %).

• Register transfer statistics. During simulations TACO simulators
also record the source and destination addresses for each data move into
a database. At the end of each simulation, the values in the database are
used for calculating the frequency of data moves between individual reg-
isters. This list of data move frequencies is then sorted into descending
order and reported as register transfer statistics to the designer.

The results are written into an XML file that can be used e.g. for passing
the simulation results on to a result analysis tool like the TACO design tool
discussed later in this chapter.

SystemC issues in TACO simulator implementation

There are certain issues about the design of SystemC that need to be pointed
out. Some are more concerned with what could be called “good C++ prac-
tice” while others are more about the architecture and API of SystemC.

122

There are two rules that are taught in most elementary C++ programming
courses: do not use macros (section 7.8 of [105]), and do separate inter-
face from implementation (item 34 in [79]). In SystemC many constructs
are implemented as macros that rearrange text in the program code before
the compiler sees it. This causes many difficulties in debugging the code (e.g.
debuggers like the Data Display Debugger (DDD) [24] show macros disas-
sembled). For this reason an instruction (a macro) that causes an error or
malfunction in the compiled program (e.g. a simulator for a TACO processor)
is often difficult to find. Macros have importance in writing C code, but the
use of macros in C++ is discouraged in literature.

A more general problem with the SystemC macro approach is that it
breaks the distinction between interface definition files (header files, *.h)
containing only declarations (of variables and methods), and implementa-
tion files (code files, *.cpp) containing the bodies of the methods. Although
this distinction is not enforced by the C++ language, it is considered good
software engineering practice for several reasons. First, readability of the
code is considerably improved when interface definitions are not intermin-
gled with implementation details. Second, recompilation speed is increased,
because changing an implementation only causes the implementation file to
be recompiled. Due to this SystemC feature, a small change in the TACO
simulator may cause all files to be recompiled. Interestingly enough, the
SystemC documentation actually recommends giving the module constructor
implementation within the interface definition file.

Since the TACO simulator needed to be easily expandable, we early on
decided to use inheritance as a structuring mechanism. However, it was soon
observed that this kind of implementation technique seems to be actively
discouraged in SystemC version 1.0.1.3 After much debugging the cause of
the problem was finally isolated into the constructors of the TACO functional
unit classes: the constructor for an object of class module is declared as
SC CTOR(module) in SystemC. This is expanded to

typedef module SC CURRENT USER MODULE;
module(sc module name);

The first line defines a type name alias, that will be returned to shortly.
The second line is interesting. It declares a constructor for objects of class
module that takes an anonymous sc module name object as a parameter. The
life-time of the object is the scope of the constructor and it is used to push
the current module onto the simulation context stack. This makes sure that
all ports declared in the class are attached to the correct instance of class

3In SystemC version 2.0, inheritance was allowed but still limited; For example, ports
could not be defined inside a member function.

123

module in the simulator. So when building the inheritance hierarchy with
sc module as the base class, we must make sure that all the parent classes
are instantiated within the scope of the correct sc module name object. This
can be achieved by adhering to the following convention: each non-leaf class
must have a default constructor (a constructor with empty argument list).

However, a second problem still remains. This one concerns the typedef
in the first line, which declares the type SC CURRENT MODULE to be an alias
for the name of the current module. This type is needed in macros that are
used to connect the execution of a method to the correct simulation context.
However, since non-leaf classes are created with the default constructor, the
constructor will not define SC CURRENT MODULE and thus the program will fail
to compile. It was necessary to resort to C++ templates to overcome this
particular problem.

For this reason, a multi-level class hierarchy for the inheritance needed
to be implemented: the actual functional unit implementations were imple-
mented as leaf classes, and two intermediate levels before the SystemC level
(the sc module class) were needed to circumvent the problem described above.

The top-level class FuBase (see the code example following this paragraph,
and Figure 4.4) is an abstract class4 that defines the interface to the functional
unit classes. The second-level class FunctionalUnit is a template class that
contains the common functionality of the functional units. It is also used
to set SC CURRENT MODULE to the correct type. Conceptually the template
class FunctionalUnit and the class FuBase together form an interface and
functionality definition shared by all functional units. The following code
shows the class declarations of the three-level class hierarchy of the TACO
simulation model as seen in Figure 4.4.

class FuBase: public sc module
{...};

template <class CB> class FunctionalUnit:
public FuBase{

typedef CB SC CURRENT USER MODULE; ...};

class Matcher: public FunctionalUnit<Matcher>
{...};

By reading through the SystemC source code it can be observed that by
using the internal calls in the SystemC implementation a cleaner design of
the TACO simulation model could probably have been obtained. Using the
internals it would also have been possible to adhere to ”good C++ practice”.

4A class that cannot be instantiated.

124

However, since the SystemC internals are not really documented and stan-
dardized, the decision to use the official SystemC API was made in the TACO
SystemC simulation model implementation.

4.2.2 Object Orientation and Hardware Design

In the preceding discussions in this chapter the idea of using object oriented
techniques for describing hardware at various, but high, levels of abstraction
has been found quite beneficial: OO techniques were used in context with
application analysis and system-level processor simulations. On the other
hand, the popular system description language SystemC was found to actively
discourage the use of OO techniques for the same purpose. Thus, a literature
survey on the topic became intriguingly necessary. The survey revealed that
the hardware design community has not reached a consensus on the usefulness
of object-oriented techniques in hardware design [98]. The most interesting
effort in this context is the attempt to add objects and inheritance to VHDL,
called OO-VHDL [97]. The research presented in [97] found several difficult
object-oriented concepts that do not have a good mapping to hardware. These
include inheritance, and method calls. The research thus seems to suggest
that object-orientation does not fit to hardware design very well. This could
arguably be deemed a misunderstanding. Object-orientation is more than an
implementation language. It is a conceptual way of thinking and structuring
the problem domain. In an object oriented design method objects can be
viewed at three levels:

1. Conceptual level : The classes represent concepts in the domain of study.
This view is taken very early in the analysis phase.

2. Specification level : The classes specify interfaces of the system. A type is
the interface of the class. A type can have many classes that implement
it, and a class can implement many types.

3. Implementation level : Classes represent code in a programming lan-
guage.

Both OO-VHDL and SystemC view objects as implementation level enti-
ties that should be directly mappable to hardware. If one takes this view it is
clear that especially inheritance is non-trivial to map into hardware. Inheri-
tance is an implementation technique that is used to implement subtyping in
many object-oriented languages. Subtyping on the other hand allows poly-
morphism, where a function may be called with several different argument
types. The reason that polymorphism is difficult to implement in hardware is
simply that in hardware all types (objects) have to be static, since they are
physical objects. However, it can be claimed that in any practical hardware

125

design these kinds of situations do not arise, or the corresponding code can be
rewritten in a way that circumvents the problem. This holds, because in an
instance of a hardware system the set of objects is fixed. It does not change
and thus the types of the variables in the program do not change while the
system is running. Indeed this is exactly the case with the TACO SystemC
simulation model.

Polymorphism and inheritance are very powerful concepts that have al-
lowed programmers to increase their productivity substantially mainly be-
cause they enable reuse of code. Therefore, since hardware design is more
and more becoming a programming activity, the importantance of allowing
hardware “programmers” to use these techniques should not be underesti-
mated.

4.3 The Physical Estimation Model

The estimation model for the TACO hardware platform is designed, imple-
mented and developed by PhD student Tero Nurmi (University of Turku).
However, to be able to fully describe the potential of the TACO framework
it is necessary to give an overview of the system level estimation model in
this thesis. We limit the discussion to an overview of the model in relation
to the TACO hardware platform as presented in joint publications of Mr.
Nurmi and the author of this thesis [81, 117], and emphasize that the sci-
entific aspects concerning physical and mathematical modeling of delay, area
and power described in the following are results from Mr. Nurmi’s research
and not a scientific contribution of the author of this thesis.

The estimation model for the TACO hardware platform runs in Matlab
and is implemented as scripts and functions in Matlab’s native M-language.
The model is maintained in a standard PC running Windows, but it could
also be used in Matlab versions for other operating systems. It contains a set
of equations for estimating delay, area and power consumption. The TACO
estimation model was first introduced in [81]. It has been updated since
to support estimation of power consumption and pipe stage delay and also
to utilize block-wise Rent’s exponents [2] in the estimation of the number
of gates. Somewhat similar approaches for modeling system level physical
characteristics have been presented in e.g. [9], [14], [31], [38], [106], but the
TACO estimation model has been extensively optimized to support the TACO
hardware platform.

Delay formation in TACO processors

The cycle time and hence the critical processing path of a TACO architecture
instance is identified and defined by the processing delay produced by the

126

Reg

FU A

S+D

S+D Reg

FU B

BUSES

Figure 4.5: Move stage delay. The delay consists of socket delays and the bus
wire delay including the sending socket’s driver. S indicates a socket, D a
driver and Reg a register.

slowest pipeline stage. In the estimation model the delay is calculated for a
specified technology generation. Here we recall from Chapter 3 that TACO
processors have a four-stage pipeline with pipe stages fetch, decode, move
and execute. The slowest pipeline stage depends on the specified technology
generation; as the effect of interconnects relative to logic increases in delay
formation, the slowest pipeline stage shifts from the execute stage to the fetch
and move stages. Thus, in order to estimate the cycle time of a given TACO
architecture, the delays caused by each of the four pipe stages need to be
calculated. In the following paragraphs we outline the mathematics used in
calculating the delays for each pipe stage.

Move stage delay It is assumed that when socket IDs are sent to the
corresponding input and output sockets the output driver of the output socket
drives the signal on the bus. The signal is received in the receiving FU’s input
register, either in an operand or a trigger register. Thus, the move stage delay
is defined as a combined driver/bus delay and the delay formed in two sockets
(input and output).

The principle used in calculating the move stage delay is shown in Figure
4.5: the move stage delay is proportional to the distance between two FUs
(and especially between the two registers). In the TACO architecture the
distance can be approximated with the equation

FUdistance = d(N
2

)e
√
areaFU + total widthbuses (4.1)

127

where N is the total number of FUs around the buses, areaFU is the area of
the largest FU and total widthbuses is the total width of the bus structure.
For total widthbuses it is assumed that the silicon area required by the sockets
and drivers/repeaters fits under the metal bus structure.

The bus delay portion of the move stage delay is then defined as RLC wire
delay [65] and takes also into account the possible need for repeaters. The
maximum length for global wires without the need to use repeaters is defined
in [121] as

Lc = 2th[(1 + α)ρ
√
εkε0cKc]−1 (4.2)

where t and h are thicknesses of the conductor and the dielectric, α is a
return/signal path resistance ratio (we have α = 1), ρ is metal resistivity and
Kc is a fringing factor for wire capacitance.

Execute stage delay The execute stage delay equals an average gate delay
multiplied by the worst case logic depth of a signal path in an FU (worst case
“chain” length of serially connected logic gates through which signals need
to pass before a result is reached). Using the Matlab model we have been
able to conclude that the execute stage delay sets the cycle time (and thus
the critical path) for TACO processors both in the 0.35 µm and the 0.18 µm
technology generation. This is due to the relatively large logic depths in
the TACO FUs (see Figure 3.6 in Chapter 3 for the internal structure and
organization of TACO FUs). However, in newer technology generations there
is a shift towards wire dominance in delay formation. Therefore also the move
and fetch stage delays have to be taken into account in the worst case delay
estimation.

Fetch stage delay The fetch stage delay depends on the utilized program
memory technology and memory hierarchy organization. There are some
memory models that predict access time, area and power consumption of on-
chip memories but usually it is better to use values provided by a technology
supplier.

Area estimation

In area estimations the Matlab model adds up the total area of the functional
units (i.e. combinatorial logic) and the area for the bus structure (includ-
ing drivers and sockets). The timing constraint used for area estimations is
1.20 · fmin

clock, in which fmin
clock is the minimum clock frequency requirement for

running the target algorithm on the target architecture (the value is obtained
from SystemC simulations). The 20% increase is inserted to ensure adequate
processing performance after placement and routing of a design.

128

The area for the bus structure depends on the number of buses and the
wire widths of the buses. Also the number of FUs has an effect on the size of
the bus structure (see Eq. 4.1): the more there are FUs the longer buses are
needed and hence the bus structure area increases. The number of gates in
an FU is estimated by Rent’s rule [69] as

NI/O = KpN
p
g (4.3)

where NI/O is the number of signal I/O connections in an FU, Ng is the
number of gates in an FU and Kp and p are Rent’s constant and exponent,
respectively.

Rent’s constant and Rent’s rule can be evaluated separately for each FU.
This has been examined in [2] for blocks of a RISC-type processor.

Knowing the estimated number of gates and by using area information
of a single, average gate (from a standard cell library data sheet) the total
area needed by functional units can be estimated. However, space has to be
reserved also for global power and clock delivery networks when estimating
the total area of a processor. We estimate this by adding 20 % to the the
resulting logic area.

Additionally, the area of the bus structure has to be estimated. Once the
number and width of buses is known and a preliminary FU floorplan exists,
we can estimate the area of the bus structure. However, depending on the
size of the socket drivers and possible repeaters it may happen that buses of
the minimum distance between consecutive wires can’t be used.

Power estimation

The dynamic power consumption is defined by the capacitance of the logic
gates and wiring, power supply voltage, cycle time and switching activity
of electrical nodes in different FUs and bus drivers. The wiring includes
inter-gate wiring inside an FU as well as the global bus structure including
driver/repeater capacitance and wire capacitance.

The designer can affect dynamic power consumption mostly by preferring
designs that operate on lower clock frequencies or by using lower supply volt-
age. In the former case the driving ability requirements for gates are less
stringent and therefore gates can be smaller. Minimum gate size is defined
by the technology used. However, the timing requirements of the application
may not allow the use of minimum size gates. In this case a lower supply
voltage has to be used. This may deteriorate performance because the supply
voltage should be large enough compared to the threshold voltage (Vth) of
transistors. New technologies make lower threshold voltages and thus also
lower supply voltages possible, but with the cost of increased leakage in tran-
sistors. As for the buses, the designer can place the blocks that have much

129

bidirectional traffic close to each other.

Instantiating the Matlab model for a given architecture

The Matlab estimation model is set up for a given TACO architecture using
a plain-text configuration file. The file specifies the number of buses in the
architecture, bus width, number and type of functional units, and certain
technology generation dependent parameters. As an example, the following
code instantiates two 32-bit data buses (N dbus and W dbus), two sets of
address buses5 (N abus and W abus),and two functional units. The functional
units are input as a three-column matrix. The first column indicates the
number of functional units of the selected type in the architecture, the second
column indicates the number of registers, and the last one the total bit count
of the registers (e.g. four 32-bit registers = 128 bits). After the FU matrix,
labels (FU names) are given for each row. This is done mainly for better
readability of both the instantiation file and the Matlab result file (which
uses the same labels). The FU definitions end by specifying the number of
FUs that have a result bit connected to the network controller (the N ctrl
parameter).

N dbus = 2;
N abus = 2;

W dbus = 32;
W abus = 16;

FU spec = [1 4 128;
FU spec = 1 3 96];
FU spec(1,:) = Matcher;
FU spec(2,:) = Shifter;
N ctrl = 2;

gate area = 54e-12;
fld = 22;

The technology dependent parameters shown after the FU definitions in
the above example are set up similarly as the bus parameters. There are
many more technology dependent parameters in addition to the three shown
in the above example. However, analyzing all of them is beyond the scope of
this thesis. The ones shown above are examples of some of the parameters the
designer can define if no prior values from synthesis are available; gate area
gives the size of one single logic gate (needed for area estimations), and fld
specifies the logic depth of the logically deepest FU in the architecture (used
in execute pipe stage delay estimation).

5Two SRC and two DST buses, each of them eight bits. The Matlab estimation model
treats the SRC+DST bus pair as a 16-bit address bus.

130

The Matlab model configuration file can be written by the designer for
the architecture in question, or generated by the TACO design tool (recom-
mended). The TACO design tool is discussed later in this chapter. Once
created, the configuration file is fed to Matlab, and the estimation results are
given in a similarly formatted plain-text file. The Matlab estimations of a
TACO processor architecture provide the following results for design quality
evaluation:

• Area estimates. The Matlab model produces estimates of a TACO
processor’s logic area as well as the entire processor’s area. The logic
area covers the area needed by logic blocks such as functional units,
sockets and the interconnection network controller. In addition to these,
the entire processor area includes also the area needed by e.g. buses,
wiring, and power and clock distribution.

• Delay estimate. The worst case delay of the processor (and thus on
the other hand the maximum obtainable clock speed and on the other
hand the critical processing path) is estimated by analyzing delays in
the different pipe stages as described earlier in this section. The execute
stage delay is calculated for a specified (maximum) logic depth, i.e. for
the slowest FU. The logic depth can again be a generalization or based
on synthesis. The delay estimation in combination with the clock cycle
count from SystemC simulations determines whether the architecture in
question is capable of providing the performance required by the target
application.

• Power estimate. The Matlab model estimates the power/energy con-
sumption for each functional unit in an architecture as described ear-
lier. This information in combination with the register transfer statistics
from SystemC simulations give an estimate of task energy consumption,
i.e. how much energy is needed to execute the target application on the
given architecture.

4.4 The Synthesis Model

The TACO synthesis model is implemented as a library of module descrip-
tions in VHDL. The first version of the synthesis model was written using
Alcatel’s 0.35 µm technology libraries. The current version is implemented
using 0.18 µm standard CMOS technology. The TACO VHDL module library
includes descriptions for all hardware blocks of the TACO hardware platform,
including functional units, sockets and the interconnection network controller.
Due to the lack of support for object oriented programming in VHDL, new

131

functional units are added to the library in a “copy-paste”-fashion: the ex-
isting FU description that most closely resembles the structure of the new
functional unit acts as a starting point for the VHDL implementation of the
new functional unit. Then, the parts of the existing description that are not
needed in the description of the new FU are removed, and the parts that are
needed to describe the new FU are inserted. In comparison to the SystemC
model, adding a new FU to the VHDL module description library clearly
requires more time and is a more error-prone process.

To build a VHDL description of a TACO architecture, a top-level file
specifying all needed modules and their interconnections needs to be created.
The preferred way of doing this is to use the TACO design tool. However, it is
also possible (although time-consuming, and risky in terms of coding errors)
to construct the top-level file manually. For this reason, we will not cover
manual VHDL model instantiation here but will return to the topic in the
TACO design tool discussion that follows this section.

The TACO processor design methodology discussed in this chapter is con-
cluded when a gate-level synthesized model of a given TACO processor ar-
chitecture is reached. Thus, the procedures carried out after synthesis are
beyond the scope of this thesis. These post-synthesis procedures are defined
on the other hand by the tools used and on the other hand by advances in
research in that area. Thus, in this section we outline the procedures to be
carried out to reach a gate-level synthesized processor model based on the
previously mentioned top-level file.

Prior to synthesis, the processor model defined by the manually written
or automatically generated top-level file is simulated in a VHDL simulator.
All VHDL descriptions of functional units as well as other modules in the
hardware platform have already been individually simulated and synthesized
at the time of adding these descriptions into the TACO library. Thus, the
individual VHDL module descriptions have already been verified to meet the
functional specifications given in the corresponding SystemC module descrip-
tions at the time of writing or generating the top-level file. The top-level
VHDL file defines exactly the same architecture as the architecture simulated
in SystemC. Once the top-level VHDL file for a processor architecture has
been generated, the architecture defined by it is simulated using VHDL sim-
ulation tools. In these simulations, the synthesis model is appended with a
non-synthesizable part that is used for simulating the different memory blocks
needed in the specified architecture. For example, program memory is simu-
lated by reading the application code used in the SystemC simulations from
a file. A similar solution is used for simulating the inbound and outbound
network buffers. By using identical application code in both the SystemC
and the VHDL simulations, identical functionality and execution scheduling
is expected: in TACO processors, the application code has been scheduled al-

132

ready at the time of application software implementation. Thus, the synthesis
model is verified by comparing the VHDL simulation results to the SystemC
simulation results running the same application code and the same network
data. Successful completion of the VHDL simulations permits proceeding to
synthesis.

When the synthesis tool processes the top-level file, it first builds a so
called generic pre-processed model of each module in the TACO library (i.e.
translates the VHDL code to native code of the synthesis tool). Then, synthe-
sis constraints like target clock speed are set. After this, the modules defined
in the top-level file are selected for synthesis on a chosen (or available) man-
ufacturing technology by the optimization process. Then, the architecture is
synthesized. The synthesis process produces a gate-level netlist of the archi-
tecture, which is used as input for the remaining design steps like placement
and routing.

4.5 Graphical Design and Evaluation Tool

The TACO design tool integrates the three previously discussed processor
models into a graphical design and analysis environment for TACO processors.
The designer is relieved of the task of manually setting up the top level files
needed for simulation, estimation and synthesis of TACO architectures.

As seen in the previous sections, TACO protocol processor models are
developed, maintained and used in a heterogenous computing environment.
This heterogeneity (simulations in a Linux PC, estimations in a Windows PC,
synthesis in a Unix workstation) made it obvious already at early stages of
the TACO project that manually setting up simulations, estimations and syn-
thesis is a time consuming, error-prone process often requiring more than one
person. For this reason, work was started in the direction of creating a pro-
cessor design and analysis tool. The first version of the tool was implemented
in Delphi 2.0 (using the object Pascal programming language). However,
this version was not easily modifiable to support adding new modules into
the TACO libraries, and it could only be used in Windows environments.
Therefore a decision was made to write a specification for a new design tool
version. The new specification required, among other things, at least the fol-
lowing functions, features and capabilities to be coded into the TACO design
tool:

• The tool needs to be platform independent. This should be accom-
plished by resorting to the Java programming language.

• The tool needs to enable graphical design of architectures.

• The tool needs to generate SystemC, Matlab and VHDL top level code.

133

• The tool needs to be able to import architectures (load/save features).

• Newly created modules need to be made usable in the tool without
modifying the tool itself.

• The tool needs to support module feature browsing (e.g. results of the
most recent physical characteristics estimation of a functional unit).

• The tool needs to have mechanisms for analyzing simulation and esti-
mation results and for preliminary processor floorplanning.

With these requirements in mind, work was started to implement the tool in
Java. The key functionality and characteristics of the tool are described in
the following pages.

An architecture is designed in the TACO tool by specifying the number of
buses and the number and type of functional units (FUs) in the architecture.
A functional unit is inserted into the architecture by double-clicking its name
on the FU list on the left side of the tool window (see Figure 4.6). The tool
responds by placing an FU of the specified type into the architecture and
giving it a meaningful and unique name, e.g. Matcher1, Matcher2, Counter1,
Matcher3, Counter2.

Based on the type of the inserted FU, the tool automatically places the
correct number of input, output and trigger registers into the graphical rep-
resentation of the architecture as seen in Figure 4.6. The registers are also
named automatically. Sockets are not shown in the graphical representation
to make the view clearer. However, all necessary sockets are correctly instan-
tiated in the processor models configured with top-level files generated by the
tool. The tool also automatically instantiates specific control signals required
by some FU types and hides these signals from the designer (e.g. a result bit
signal is automatically created and connected from a Matcher unit directly
to the interconnection network controller).

Buses are inserted into an architecture by clicking the “Bus: +” button
in the tool. The buses are also automatically named. The interconnection
network controller is also automatically generated by the tool into the top-
level files and is therefore not shown in the tool window. Buses and functional
units can naturally also be removed from the architecture.

In addition to placing FUs and buses into the architecture, the designer
needs to specify the connectivity between FU registers and buses. The tool
supports incomplete connectivity (i.e. an FU register does not have to be
connected to every bus as long as it is connected to at least one). However,
when an FU is inserted into the architecture, all of its registers are by default
connected to each bus already present in the architecture.

The tool supports adding new functional units to the known FU types
without modifying the tool itself. This is accomplished by modifying an

134

Figure 4.6: The TACO design tool.

135

XML module configuration file that is read by the design tool at startup. The
module configuration file holds the name, the number and the type of sockets,
a short description of functionality and a VHDL code generation template for
each FU. This way each time a functional unit or some other new module is
created into the SystemC, Matlab and VHDL component libraries the tool
does not require any modifications; only the required information of the new
module needs to be placed into the configuration file.

The information given in the module configuration file is accessible to the
designer by double-clicking the corresponding module in the design window.
The designer also has access to a component browsing window, in which the
characteristics (operation, registers+types, logic depth, power use, etc.) of the
functional units available in the TACO libraries can easily be reviewed. These
characteristics are based on previous simulation and estimation results, and
can be updated either manually (e.g. to support technology or standard cell
library updates) or by directly importing results produced by the simulator
and the estimator.

Once the design is complete, it may be necessary to modify the default
Matlab parameters for estimator code generation. For example, standard cell
library dependent values like average gate sizes may need modification. The
code generation process is started by clicking the “Generate” button in the
toolbar. Before generating the code, the tool parses the design for inconsis-
tencies like a completely unconnected register. Then the tool generates the
top level code corresponding to the designed architecture for all three target
environments (SystemC, Matlab, VHDL).

Figure 4.7 shows generated SystemC, Matlab and VHDL code for Matcher1,
the two interconnection buses, the interconnection network controller, the re-
quired connectivity and the system clock for the architecture shown in Figure
4.6. Recall from the earlier discussion on the estimation model that the Mat-
lab code actually covers all the Matchers in the architecture. As can be seen
in the code examples, the SystemC and Matlab codes appear more readable
and compact in comparison to the VHDL code. In the case of SystemC, this
follows from the use of object oriented programming techniques to automa-
tize as much of the module instantiation as possible. In the case of Matlab,
the compactness follows from the fact that the Matlab model is used only
for estimation of physical characteristics (i.e. mathematical calculations), not
for simulations. Hence the information needed by Matlab consists of input
parameters for the estimation equations.

The results produced by SystemC simulations and Matlab estimations
can be imported into the tool for review. The types of results obtained from
simulations and estimations have been discussed in previous sections of this
chapter. Figure 4.6 shows a part of the results obtained from SystemC sim-
ulations at the bottom of the tool window. The tool is showing the register

136

a) Generated SystemC code b) Generated Matlab code
sc clock clk("clock",20); N dbus = 2;

NetControl nc("NetCtrl1"); N abus = 2;

nc.clk(clk); W dbus = 32;

Bus* bus1 = new Bus("Bus1"); W abus 16;

Bus* bus2 = new Bus("Bus2"); FU spec = [1 4 128];

Matcher* m1 = new Matcher("M1", clk); FU spec(1,:) = Matcher;

bus1->insertOperand(m1); N ctrl = 1;

bus2->insertOperand(m1); fld = 22;

bus1->insertData(m1); gate area = 54e-12;

bus2->insertData(m1);

bus1->insertTrigger(m1);

bus2->insertTrigger(m1);

bus1->insertResult(m1);

bus2->insertResult(m1);

nc.initialize();

c) Generated VHDL code
signal m1 op1 load, m1 od2 load, signal m1 trg load : std ulogic;

signal m1 OP1 : unsigned(datawidth-1 downto 0);

signal m1 OD2 : unsigned(datawidth-1 downto 0);

signal m1 TR : unsigned(datawidth-1 downto 0);

signal m1 ResultR : unsigned(datawidth-1 downto 0);

signal m1 guard bit : std ulogic;

matcher1 operand : input socket

generic map (socket address => 16#OPM1#)

port map (clk => clk, reset => reset, dst address =>

icnw dst address, net data in => icnw data, load =>

m1 op1 load, socket data out => m1 OP1);

matcher1 data : input socket

generic map (socket address => 16#ODM1#)

port map (clk => clk, reset => reset, dst address =>

icnw dst address, net data in => icnw data, load =>

m1 od2 load, socket data out => m1 OD2);

matcher1 trigger : input socket

generic map (socket address => 16#TM1#)

port map (clk => clk, reset => reset, dst address =>

icnw dst address, net data in => icnw data, load =>

m1 trg load, socket data out => m1 TR);

matcher1 result : output socket

generic map (socket address => 16#RM1#)

port map (src address => icnw src address,

socket data in => m1 ResultR, net data out => icnw data);

matcher1 fu : matcher

port map (clk => clk, reset => reset, op1 load =>

m1 op1 load, od2 load => m1 od2 load,

trg load => m1 trg load, OP1 => m1 OP1,

OD2 => m1 OD2, TR => m1 TR, ResultR =>

m1 ResultR, guard bit => icnw guard());

Figure 4.7: Examples of SystemC, Matlab and VHDL code generated by the
TACO design tool. The code excerpts concern Matcher1 of the architecture
shown in Figure 4.6. For SystemC, the code also instantiates buses, the system
clock and the network controller. For Matlab, three technology parameters
have been left in the code to demonstrate pre-synthesis estimation capabilities.

137

transfer statistics from the simulations mapped into FU-to-FU transfers. The
design tool allows the designer to integrally examine these results and to make
design decisions based on them. Using these results to iteratively improve the
architecture for a given target application was discussed in section 4.1 of this
chapter.

The TACO design tool considerably speeds up the setup of simulations,
physical parameter estimations and synthesis: no manual code writing is nec-
essary to reach a functioning processor hardware model in all three of the
mentioned processor model development environments. The tool also plays
an important role in eliminating potential coding errors that could occur when
manually writing the top level files. The top level code in the SystemC and
especially in the VHDL model requires instantiating quite a few signals and
connecting them between modules, which is a very error-prone process. Using
a tool to do this automatically greatly reduces the time needed to construct
and debug the top level files. In addition to generating code, the tool was
also seen to aid the designer in reviewing simulation and estimation results,
which is an important benefit in the kind of iterative design space exploration
carried out in the TACO framework.

4.6 Chapter Summary

In this chapter we discussed a rapid system level protocol processor design
methodology that was specified and built around the TACO hardware plat-
form discussed in Chapter 3. The most important characteristics of the
methodology were identified to be the following:

• Flow completeness: the TACO design flow defines all design procedures
to be taken, starting from an application specification, to reach a gate-
level synthesized protocol processor model and its application code.

• Support for iterative design space exploration and design improvement
at the system level.

• Short turn-around time at the system level. Very fast and reliable exe-
cution of simulations and physical estimations.

• Reliable synthesis model generation after finding a good combination of
hardware architecture and application code at the system level.

• No processor model rewriting necessary with modifications to an archi-
tecture instance; processor models need modifications only when new
functional units are specified.

138

• Tool support for specifying architectures and for generating configura-
tion files for the processor models.

• Customizability: new functional units can be added to the component
library whenever necessary and without recompiling the design tool.

• Cost-efficiency resulting from the short turn-around time and the ability
to use low-end computer systems and affordable, or even free, software
for system level simulations and estimations.

To create such a design framework, several issues had to be addressed.
First of all, processor models for simulation, estimation and synthesis needed
to be created for the hardware platform. A key issue in the development
of the processor models was that they needed to provide a simple enough
API (application programming interface) through which models for any given
TACO architecture could be generated. This was especially important for sys-
tem level simulations of architectures: in addition to functional verification,
TACO simulations need to provide hardware-accurate results like cycle-by-
cycle simulation and register transfer statistics. Whilst providing such precise
information, the simulations are also required to be very fast (i.e. to run a
test bench in a matter of seconds) to facilitate rapid architectural exploration
at the system level. The TACO simulation model was seen to meet these
requirements through use of object oriented programming techniques and a
heterogeneous level of abstraction in the implementation. For the system-
level estimation model the requirements do not cause potential performance
bottlenecks since the estimations are carried out as one-time calculations of
pre-defined equations. Synthesis on the other hand is relieved of such perfor-
mance requirements since it is put to use only after a suitable architecture
has been found through system-level simulations and estimations; the most
important requirements for the synthesis model are that its API supports gen-
erating a synthesizable description of a given TACO architecture, and that
the generated description can be reliably synthesized.

It was also seen that although the processor model APIs considerably
raise the abstraction level in implementational details for the designer, there
are still quite a few modules and signals to instantiate and interconnect. To
relieve the designer of doing this manually, a processor design and evaluation
tool has been built for the TACO framework. The tool allows the designer to
graphically specify a processor architecture and by a single click of a button
to generate top-level simulation, estimation and synthesis configuration files
for it. The tool also allows the designer to integrally examine simulation and
estimation results and to make iterative design decisions and improvements
based on them.

139

In Chapter 2 certain characteristics of protocol protocol processing were
found to be shared by a variety of industry-standard protocols. However,
knowledge of inter-protocol similarities may not be adequate when optimizing
an architecture for a particular protocol processing application. To make the
process of analyzing protocol processing applications easier for the designer,
we defined in this chapter a sequence of object oriented UML-based analy-
sis and refinement methods. With these methods and the results obtained
in Chapter 2 it is possible to use the TACO design tool and the processor
models to find an optimized, even though not necessarily the most optimal,
combination of hardware architecture and application code for the original
target application. With the techniques and tools presented in this chapter a
designer is able to tell already at early stages of the design process whether
an architecture will be able to perform a given target application within a
given set of design constraints. Based on this knowledge, the designer is able
to iteratively improve designs and explore more architectures in a short time
frame.

The next chapter presents three protocol processor design case studies that
demonstrate the use of the TACO methodology for designing and evaluating
protocol processor architectures for given target applications.

140

Chapter 5

Design Cases

Chapter 4 discussed the TACO design methodology, a rapid system level
framework for designing protocol processors. The key building blocks of the
methodology were the TACO hardware platform, the processor models for
simulation, estimation and synthesis, and a documented design flow. The
design flow defines all procedures to be completed in order to reach a gate-level
synthesized processor description and its program code with an application
as a starting point. The processor description and the program code are
optimized for the initial application.

To verify its capabilities, the TACO design methodology has been applied
to several case studies. In this chapter we will look more closely at three such
design cases. In the first one we argue that the TACO methodology is capable
of rapid designer-driven design space exploration, and that the simulation,
estimation and synthesis models for TACO processors provide reliable results
in different phases of the design process. The target application for the first
case study is processing a part of the ATM AIS (Alarm Indication Signal [60])
function in a 622 Mbps ATM network.

In the second case study we argue that the TACO architecture scales
up to meet the performance provided by typical processing elements found
in modern commercial network processor architectures. The TACO design
methodology is used to find optimized processor architectures for the task
of IPv6 [28] packet forwarding/routing at a throughput speed of 2 Gbps.
Then, the executional and physical performance of these TACO architectures
in running the most vital functions of the target application is compared to
the performance provided by the microengines of an Intel IXP1200 processor
running the same functions.

In the third case study we argue that with the tools and methods of the
TACO framework both the hardware and the software parts of earlier designs
can conveniently be reused. We also argue that any TACO processor can with
little effort be used as an intellectual property (IP) block in a Network-on-

141

Chip (NoC) device using the TACO BVCI interface discussed in Chapter 3.
The target application in the case study is IPv6 client operation in a 100 Mbps
network environment as a part of a multimedia processing NoC platform. Not
counting the NoC interface, the TACO IPv6 client core is built exclusively
of existing modules in the TACO library. In addition, it is a simplification
of a more complex previous experiment (i.e. the IPv6 router case study with
2 Gbps throughput requirement). Thus, no new protocol processing FUs were
created, and extensive design space exploration was not necessary. These two
factors caused the design process to speed up considerably.

5.1 Architectures for ATM AIS Processing

This case study applies the TACO design methodology to design space explo-
ration. The target application for this case comes from ATM segment OAM
F5 AIS (Alarm Indication Signal [60]) processing. More precisely, we consider
an algorithm that analyzes incoming ATM cells to find out if a cell is a regu-
lar user cell, an idle cell1 or an AIS-type operations and maintenance (OAM)
cell. Depending on the incoming cell type, the algorithm swithces between
normal operation mode and AIS operation mode. Incoming AIS cells cause
the system to enter AIS mode: an AIS cell is sent every 1024 regular or idle
cells. The outbound regular cells are buffered cells; if a regular cell arrives
at the input while the system is in AIS mode, the system returns to normal
processing. If an idle cell appears at the input, it is discarded. If there are no
regular ATM cells to be sent, idle cells are generated and transmitted.

TACO application analysis of the AIS processing algorithm and the stan-
dards associated with it [60, 64] lead to the following results:

• The data word length of 32 bits should be used, and 0.35 µm CMOS
technology should be used (at the time of performing this case study, no
other technology libraries were available for use in the TACO project).

• Processing ATM AIS cells requires the following protocol processing
functional unit types: Comparator, Matcher and Counter. In addi-
tion, all ATM processing implementations require header error check-
sum (HEC) calculations. HEC calculation (8-bit CRC) was not effi-
ciently accomplished with the functional units already existing in the
TACO libraries at the time of starting this case study. Thus, a func-
tional unit for calculating the ATM HEC was added to the libraries.
After this addition, all FUs required by the target application existed
as 0.35 µm implementations in TACO libraries (see Chapter 3 for more
details on the FU types).

1Idle cells contain no information and are sent when there is no user data to be sent.

142

• The target operating environment for the application is a 622 Mbps
ATM network. In such a network, a new cell arrives for processing
approximately 1.47 · 106 times per second. This means a maximum
allowable processing time of approximately 0.68 µs per cell.

• The control flow of the ATM AIS processing algorithm to be imple-
mented in this case study is given in Figure 5.1.

• Recall from Chapter 2 that ATM cells consist of 53 octets, of which the
header takes up the first 5 octets or 40 bits (octet 5 is an 8-bit HEC
checksum of the first 32 header bits). Idle ATM cells are identified by
analyzing the first 4 octets of the cell header: the first 3 octets have an
all-zero value, and the last one is 0000 0001 in binary notation. ATM
segment OAM F5 cells are identified by the binary value 100 in the cell
header’s PTI (payload type identifier) field. A segment OAM F5 cell
is an AIS cell if the payload of the cell starts with the octet 0001 0000
(binary notation). Determining the type of an ATM cell thus requires
processing of the first 6 octets (or 48 bits) of the cell.

• ATM cell I/O is managed as described in Chapter 3.

After establishing that all the functional units needed for the target applica-
tion exist in TACO libraries, the control flow diagram of the AIS processing
routine (shown in Figure 5.1) was refined into sequential assembler code for
a virtual processor as explained in Section 4.1 of the previous chapter.

The iterative design space exploration phase of the TACO flow started
in this case study with evaluating a simple architecture instance, namely an
implementation of the virtual processor for which the sequential assembler
code was previously constructed. After simulating and estimating this in-
stance, complexity was incrementally added to the following instances using
SystemC simulation and Matlab estimation results from previous instances to
guide the process. Here the addition of complexity to the instances is defined
as increasing the number of functional units and interconnection buses in the
architecture. The instances were specified and the top level description files
were generated using the design tool described in Chapter 4 (Figure 4.7 shows
examples of generated code).

For clarity, in the rest of this case study different TACO instances are
identified using the following convention: single-2 indicates the use of one FU
of each needed type and two buses in the interconnection network. Double-3
indicates the use of three buses and two of each of the following FU types:
Matcher, Counter and Comparator. Using this naming convention, the first
instance that was evaluated (i.e. implementation of the virtual processor) is
called single-1.

143

AIS
NOT

EMPTY
NOT

OAM
NOT

IS
AIS

SEND
EMPTY CELL

SEND
CELL

AIS CELL
SEND

OAMCOUNT
= 1024

MATCH
EMPTY

MATCH
OAM

OAMCOUNT
0

IS OAM

MATCH
AIS

AIS MODE
RESET

EMPTY
 IS

AIS MODE
TEST

AIS MODE
NOT

OAMCOUNT
= 0

OAMCOUNT = 1024

SET AIS MODE

OAMCOUNT − −
IS AIS MODE

TEST
OAMCOUNT

SET

VALID CELL
PROCESS NEXT

Figure 5.1: Control flow diagram of the ATM AIS (Alarm Indication Signal)
cell processing loop of the case study. The starting point of the diagram is
the situation at which a new valid cell is ready for processing.

144

Network Controller
Interconnection

output socket
Input and

connections

memory
Program

Gen. Registers (8)

dMMU

HEC

Interface
I/O

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

(3
 b

us
es

)

Protocol data
memory

Comparator 1

Comparator 2

Counter 2

Counter 1

Matcher 1

Matcher 2

Figure 5.2: The TACO double-3 ATM processor (functional view).

Altogether six architecture instances were explored in the iterative design
space exploration part of the TACO design flow. As the last instance we sim-
ulated and estimated the double-3 architecture. It turned out to be the least
clock cycle consuming architecture of those explored for the target algorithm.
A functional view of the double-3 architecture is given in Figure 5.2. This
figure also serves as a functional view of the rest of the explored architecture
instances, since they differ from the double-3 architecture only in the number
of functional units and interconnection buses as described above. Note in this
figure that the AIS implementation discussed in this case study did not re-
quire user data memory, and thus it was left out of the explored architectures
to save chip area. Instead, a register unit with eight generic registers was
used in the architecture.

The SystemC simulation and Matlab estimation results for the explored
architecture instances are presented in Tables 5.1 and 5.2. In general, increas-
ing the number of functional units and/or buses in the architecture decreased
the minimum required clock speed for the target application. The bus uti-
lization data from SystemC simulations (Table 5.1) indicates the amount of
data transports on the interconnection network buses. Each data bus can be
considered to have a data transport slot during each clock cycle. Therefore,
the total number of available data transport slots (move slots in Table 5.1) is
nslots = nbuses · ncycles, where ncycles is the number of clock cycles required to

145

a)

InBuffer > R1; // cell header mem addr from input FU to R1

InBuffer > OMM; // cell header mem addr into MMU op reg

0 > TRMM; // trigger data mem read with offset 0

RMM > R2; // put mem read result into register R2

1 > TRMM; // trigger data mem read from address R1+1

1 > OCM1; // Set up Comparator 1 for idle cell matching

R2 > TM1; // perform OAM match operation

R2 > TEQ1; // perform idle cell match operation

RMM > TM2; // perform AIS match operation

RMM > R3; // put data memory word to register R3

!a.!c:0 > OCM2; // cell not idle/not OAM -> reset AIS mode

a.!b:0 > OCM2; // OAM but not AIS -> reset AIS mode

a.b:1 > OCM2; // if OAM and AIS -> set AIS mode

1 > TEQ2; // Test AIS mode

NOP; // No Operation

b)

MATCH
OAM

MATCH
EMPTY

AIS
NOT

EMPTY
NOT

OAM
NOT

IS
AIS

IS OAM

MATCH
AIS

EMPTY
 IS

Figure 5.3: Relation between the number of processing elements and data
transport capacity in a TACO processor. a) Assembler code excerpt for a
part of the target application. b) The part of the control flow diagram that
is implemented by the assembler code in a). The assembler code in boldface
performs the three if-then statements needed by the control flow specified by
the dashed line.

146

perform the target algorithm for processing one PDU. In the simplest case,
i.e. the single-1 instance, bus utilization is naturally 100% (the only bus is
used all the time until the algorithm finishes). The more interesting result is
that with double FUs the bus utilization remains very high with the addition
of more buses into the architecture. This is a major contributor to overall
processor performance as seen in table 5.1; as the number of functional units
of the same kind increases, more buses are needed to fully utilize the pro-
cessing capacity of the functional units. The utilization information is also
used in the Matlab model to estimate the total energy consumed during the
execution of the algorithm.

The importance of providing adequate data transport capacity for the
functional units is best highlighted using an example from the AIS processing
algorithm’s assembler implementation for the double-3 architecture (Figure
5.3). In the example, each line represents one TACO subinstruction; thus,
each block of three lines represents a single TACO instruction word executed
in one clock cycle. In the code example, the incoming cell has already passed
through the preprocessing circuit. Thus, the cell has been verified for correct-
ness (i.e. the checksum has been calculated) and has thereafter been stored
into the protocol data memory. The starting memory address of the cell has
been stored into the Input FU (labeled InBuffer in the code example). Recall
from the beginning of this section that to find out whether an ATM cell is
an OAM AIS cell, the first two 32-bit data words of the cell need to be ana-
lyzed. In addition, it is also necessary to find out if a cell is idle. In a 32-bit
processor this means altogether three if-then type operations, of which one is
nested below another one (see Figure 5.3 b), the part marked with a dashed
line). However, in the double-3 architecture it is possible to carry out these
three if-then operations in one clock cycle, as long as the match patterns for
OAM and AIS identification have already been stored into the two Matcher
FUs in the architecture. The TACO subinstructions marked in boldface in
Figure 5.3 execute the three if-then operations using a Comparator FU for
idle cell matching. As seen in the assembler code in Figure 5.3 a), in addition
to two Matchers and a Comparator at least three interconnection buses are
needed to execute these three operations in one cycle. This example clearly
shows that adding functional units into an architecture does not necessarily
improve algorithm execution speed; attention must also be paid to the overall
data transport capacity of the architecture.

The previously defined execution cycle count per PDU (ncycles) for an
architecture instance is obtained through SystemC simulations. This value
together with the maximum allowable processing time per PDU (Tmax) ob-
tained through application analysis define a minimum value for the required
clock frequency of the processor:

147

Architecture Execution Required Move Unused Bus
instance cycles clock frequency slots slots utilization

single-1 121 178 MHz 121 0 100%
single-2 68 100 MHz 136 15 89%
single-3 49 72 MHz 144 42 71%
double-1 90 132 MHz 90 0 100%
double-2 53 78 MHz 106 1 99%
double-3 36 53 MHz 108 2 98%

Table 5.1: Simulation results for the six architecture instances explored in
the ATM AIS case study. With the indicated Required clock frequencies all
candidates have the same execution time.

fminclock =
ncycles
Tmax

(5.1)

For example, for a maximum processing time of Tmax = 0.68 µs per ATM
cell (obtained in the application analysis for this case study), and the cycle
count of ncycles = 121 per ATM cell (obtained from SystemC simulations of
the single-1 candidate) produces a minimum clock frequency requirement of
fminclock = 178 MHz.

fminclock multiplied by 1.2 (as explained in Section 4.3 of the previous chap-
ter) was used as a timing constraint in the Matlab model when estimating the
area use and the power consumption of architecture instances. By combin-
ing the bus utilization results from SystemC simulation and power analysis
results from Matlab estimation, an estimate of the energy consumed by a
task running in the processor is obtained. The Matlab estimation results are
shown in Table 5.2.

Co-analyzing the results from SystemC and Matlab revealed that in two
and three bus configurations the double-FU instances require larger area than
the single-FU -instances. This is not surprising; in the 0.35 µm CMOS tech-
nology logic gates are still relatively large and the more there are functional
units the more there are gates which increase the total area. The cases with
only one bus need further analysis; as seen in Table 5.1, these instances have
the most stringent clock frequency demands. The Matlab estimations showed
that minimum-sized gates are too slow in these cases. The first instance
(single-1) needed gates of scaling factor 3 and the second one (double-1)
gates of scaling factor 2 to reach the target clock frequency. For all the rest
architecture instances minimum-sized gates could be used in order to meet
the target frequency constraints and thus only the number of FUs affected
the logic area.

148

Architecture Relative task Logic area Processor area
instance energy estimate estimated synthesized (estimated)

single-1 1.00 2.08 mm2 - 2.63 mm2

single-2 0.40 0.89 mm2 - 1.20 mm2

single-3 0.31 0.89 mm2 0.87 mm2 1.27 mm2

double-1 0.96 1.88 mm2 - 2.39 mm2

double-2 0.56 1.41 mm2 - 1.96 mm2

double-3 0.43 1.41 mm2 1.25 mm2 2.09 mm2

Table 5.2: Estimation and synthesis results for the six architecture instances
explored in the ATM AIS case study. The Relative task energy estimates
indicate the amount of energy needed to process the target application in
relation to the candidate with the highest task energy consumption (1.00
indicates highest consumption).

The same analysis can be extended to average power consumption, or more
precisely, task energy consumption (see Table 5.2). Task energy is the total
amount of energy needed to execute a task once and is directly proportional to
the average power consumed by the corresponding architecture instance. For
the two 1-bus instances, the single-FU instance consumes more energy than
its double-FU counterpart; for the two- and three-bus instances the situation
is vice versa. All double-FU instances consume more energy than the single-
FU instances during one clock cycle. However, the larger number of clock
cycles needed by single-FU instances for executing the same algorithm more
or less compensates this difference. This and the difference in gate sizes are
also the reasons for which the single-1 instance requires more energy than the
double-1 instance for the same task.

Two of the six architecture instances were synthesized at 200 MHz to
verify the simulation and estimation results. Single-3 was chosen for synthesis
because of its excellent power and area characteristics, and double-3 because
of its ability to operate at a low clock frequency (this allows for the most cost-
efficient co-circuitry). The synthesized logic areas for these two instances are
shown in Table 5.2. The Matlab model is able to estimate both the logic
area and the entire processor area; Thus, also the processor area estimates
have been included in Table 5.2. As can be seen in this table, the logic area
estimates and the values obtained from synthesis are quite close.

The ATM AIS case study verified that the tools and techniques provided
by the TACO framework were well applicable to this kind of rapid system-level
protocol processor design. The SystemC simulations and Matlab estimations
were seen to provide reliable results, thus aiding the designer in making design

149

decisions already early in the design process.

5.2 Architectures for IPv6 Routing

This case study applies the TACO design methodology to finding architectures
for IPv6 routing and packet forwarding. The key goal in this case study is to
compare the executional and physical performance of TACO architectures to
the performance provided by a commercial programmable network processor,
namely the Intel IXP1200 processor.

The IPv6 protocol was discussed in Chapter 2. IPv6 routing involves
receiving datagrams from adjacent networks, checking datagram validity, de-
ciding the outbound interfaces to which the received datagrams should be for-
warded, and sending the datagrams out on the appropriate interface. Also, a
router should maintain and update a routing table that contains information
about the network topology. Routing table updates are made based on special
datagrams received occasionally from adjacent routers. In addition, the local
routing table information needs to be broadcasted occasionally to adjacent
routers to facilitate their routing table updates. Thus, two types of packets
need to be handled by IPv6 routers: regular datagrams that pass through
the router (for which the router makes a routing decision), and administra-
tive datagrams consumed by the router (e.g. the ones used for routing table
updates). Clearly, executing the actual routing process is the fast path and
also the potential performance bottleneck in an IPv6 router; the routing ta-
ble updates (slow path of processing) are sent and received quite infrequently
compared to the rate at which regular datagrams pass through the router.
Thus, emphasis in an IPv6 router implementation should be in efficient pro-
cessing of the tasks that are needed in the fast path of processing described
above.

Routing decisions are made by searching the routing table for an entry
that most closely matches the destination address of the datagram to be
routed. Depending on the type of router in question (e.g. small office/campus
area router vs. national or international trunk network router), the routing
table can consist of less than ten entries or more than a thousand entries.
Finding the correct entry in the routing table can therefore require a long
computation time. In addition to varying routing table lengths, different
routing algorithms and hence different routing table access schemes are used
in different types of IPv6 routers: for a small office router a single-chip router
using sequential routing table access might be adequate, whereas for a trunk
network a complex system constructed of for example several protocol proces-
sors, content-addressable memories (CAMs) and memory access accelerators
like the iFlow address processor [82] might be needed.

In this case study a single-chip small office router built on the TACO hard-

150

SEGMENT
HOME

FOR
ROUTER A

SEGMENT
HOME

FOR
ROUTER B

ROUTER
TACO

FOR TACO
SEGMENT

HOME

ROUTER

ROUTER A

ROUTER B

ROUTER C
TO EXTERNAL

NETWORKS
intf 1

intf 2

intf 3

intf 4

network perimeter
office / campus

Figure 5.4: A possible network topology for the IPv6 router case study. The
TACO router is connected to a home network segment and three other routers.
Router C provides access to networks outside the office or campus LAN in
which the TACO router resides. Routers A and B provide access to their
home segments and to other routers and networks in the office or campus
network.

ware platform is considered. A possible operating environment, i.e. a network
topology, for such a router is given in Figure 5.4. The router runs a sequen-
tial routing table lookup algorithm. The implementation covers OSI layer 3
and expects the underlying network to be an Ethernet; Ethernet processing is
expected to be managed by appropriate off-the-shelf LAN circuitry for each
of the router’s interfaces. The way the Ethernet circuitry and a TACO pro-
cessor are interconnected depends on the products used. The TACO side of
this interconnection was specified in Chapter 3 (See Figure 3.12). In this case
study the LAN circuitry of each network interface is expected to provide fully
assembled decapsulated IPv6 datagrams into a buffer accessible by the router
processor (more precisely, by the Input FU of Figure 3.12). The same kind of
interconnection is assumed for outbound IPv6 traffic.

Some of the key processing tasks needed in IPv6 routing have been imple-

151

mented for a 200 MHz Intel IXP1200 network processor in a recent Master’s
thesis [120] at the University of Turku. The work also involved making per-
formance analyses for the implemented IXP1200 routing functions. The func-
tions were implemented and tested on the IXP1200 developer workbench,
a software environment for developing and simulating applications for the
IXP1200 processor. In this case study an important goal is to compare the
results of executing these tasks on the IXP1200 to the results of running them
on TACO processors. The aim is not to see which of the two architectures is
faster, but to obtain some understanding on the characteristics and capabil-
ities of the TACO hardware platform in comparison to a typical commercial
programmable network processor architecture.

The IXP1200 is a multiprocessor with six programmable processing ele-
ments called microengines accompanied with a programmable general pur-
pose processor core. The microengines are intended for executing protocol
processing operations, while the processor core is intended for system man-
agement and general purpose processing tasks. Each microengine executes
four threads, which means that the same code can be executed for four PDUs
in parallel. Additional PDU-level parallelism is accomplished in the IXP1200
by using the same program code in several microengines. Something similar
could be achieved in the TACO hardware platform either by using several
TACO processors running identical application code in parallel, or by con-
structing an architecture in which dedicated sets of buses and FUs execute
identical routines in parallel.

Specifically, in the rest of this case study we will focus on the following
IPv6 routing functions that have also been implemented on the IXP1200
processor:

• Datagram header validation (fast path and slow path)

• Routing table lookup using sequential access (fast path)

• Calculation of the Internet checksum for outbound ICMPv6 messages
(slow path)

Simplified control flow diagrams for these functions are given in Figure 5.5.
Of these functions, header validation and routing table lookup form the most
vital processing track in routing IPv6 datagrams. In IPv6, Internet check-
sums are no longer used in regular datagram headers. Instead, they are used
in upper layer protocols and inter-router control messages (more specifically,
ICMPv6 messages). However, in the currently used Internet protocol version
4 (IP, IPv4) the Internet checksum is calculated for each datagram header in
each router (i.e. Internet checksum calculation is needed in the fast path of
processing). In general, as seen at the end of Chapter 2, checksum calcula-
tions are performed in quite a few protocols. Thus, it is important to know

152

A
na

ly
ze

 N
ex

t h
ea

de
r

fi
el

d

c)

G
et

 p
re

fi
x

le
ng

th
fo

r
ro

ut
in

g
ta

bl
e

en
tr

y

ro
ut

in
g

ta
bl

e
R

ea
d

pr
ef

ix
 f

ro
m

D
es

tin
at

io
n

ad
dr

es
s?

Pr
ef

ix
 m

at
ch

es
E

nd
 o

f
ta

bl
e?

N
o

U
se

 d
ef

au
lt

ro
ut

e

Y
es

Y
es

N
o

Fo
rw

ar
d

da
ta

gr
am

R
ea

d
In

te
rf

ac
e

ID
fr

om
 r

ou
tin

g
ta

bl
e

R
es

et
 c

he
ck

su
m

 to
 z

er
o

A
dd

 n
ex

t 1
6

bi
ts

of
 d

at
a

to
 c

he
ck

su
m

A
dd

 c
ar

ry
 b

it
to

 c
he

ck
su

m

E
nd

 o
f

da
ta

?

In
ve

rt
 r

es
ul

t

Y
es

N
o

V
er

si
on

 =
 6

?

M
ul

tic
as

t d
at

ag
ra

m
?

Pa
yl

oa
d

le
ng

th
 <

 1
46

0?

H
op

 L
im

it
>

 0
?

Y
es

Y
es Y
es

R
ep

or
t E

rr
or

Y
es

N
o

N
o

N
o

N
o

a)
b)

Figure 5.5: Simplified control flow diagrams for IPv6 routing tasks analyzed
in the case study. a) IPv6 header validation, b) Internet checksum calculation
and c) routing table lookup.

153

how well a protocol or network processor performs in checksum calculation.
In terms of the TACO architecture, its capabilities in checksum calculation
have not been properly tested prior to this case study: in the ATM case study
the HEC checksum was calculated for only the 32 ATM header bits, which
can not be seen as an intensive and performance-critical processing task. On
the other hand, in IPv6 routing the checksums are calculated for entire data-
grams carrying ICMPv6 messages (i.e. for up to 1500 bytes), which makes
them a suitable checksum testbed for TACO architectures. Also, checksum
calculation should provide an interesting subtopic for the performance com-
parisons between the TACO and the IXP1200 architectures: TACO processors
have hardware-optimized execution for checksums, for which reason checksum
calculation should be quite efficient in a TACO processor. The IXP1200 ar-
chitecture on the other hand relies more on general purpose programming
and processing techniques in calculating checksums, which in some situations
could result as a bottleneck in processing performance.

The IXP1200 implementations of the routing functions discussed in this
section have been coded using IXP1200’s native assembler language (the mi-
croengine instruction set). The microengine code has not been extensively
optimized, and each function has been implemented for execution in all four
threads of a single microengine. This means that each time the processing of
a function is completed in a microengine it has actually been completed four
times (e.g. for four different PDUs).

As with the design space exploration case study discussed in the previous
section, also this case study starts with application analysis as described in
Chapter 4. The analysis of IPv6 routing and the standards associated with
it (e.g. [28, 76]) lead to the following results:

• The data word length of 32 bits should be used, and 0.18 µm CMOS
technology should be used (at the time of performing this case study, the
0.18 µm technology had become available for use in the TACO project).

• Processing IPv6 datagrams requires the following protocol processing
functional unit types: Comparator, Matcher, Counter, Internet Check-
sum, Masker, Shifter and ICMPv6 FU. In addition to these, a routing
table unit and a router local information unit are needed. These units
are more like specialized registers or memory blocks than functional
units. Since the 0.18 µm CMOS technology had become available for
use in the TACO project, a decision for technology transition was made.
Thus, the VHDL descriptions for all functional units needed in the IPv6
router case study were rewritten using the 0.18 µm libraries, and the
Matlab and SystemC models were updated correspondingly (see Figure
4.3 in Chapter 4 for more information). After this transition, all FUs

154

required by the target application existed as 0.18 µm implementations
in TACO libraries (see Chapter 3 for more details on the FU types).

• The router should have four interfaces. Additionally, each interface of
the router can be either sending or receiving datagrams at any given mo-
ment; an interface can not be both sending and receiving datagrams at
the same time. This kind of router could be connected to e.g. one local
network segment and three other routers, of which one could provide a
route to external networks. A network topology matching this descrip-
tion, i.e. a possible operating environment for this router, is shown in
Figure 5.4.

• IPv6 is a connectionless network layer (OSI layer 3) protocol and its
average throughput speed in a given network environment depends on
the type and load of the underlying LAN(s). Thus, a timing constraint
can not implicitly be specified. However, the following characteristics of
IPv6, Ethernet and the target application define an exaggerated worst-
case timing constraint:

– The routing process to be implemented in this case study expects
the underlying network to be an Ethernet. Detailed guidelines for
transmitting IPv6 datagrams over Ethernet networks are given in
RFC 2464 [22]; most importantly, it specifies a default (maximum)
IPv6 datagram length of 1500 octets for the transmission. This
is due to the maximum Ethernet frame size of 1526 octets (see
Chapter 2): with MTU = 1500 octets, each Ethernet frame is able
to carry one maximum-size datagram, and on the other hand any
valid IPv6 datagram will with certainty fit into a single Ethernet
frame.

– The router should be able to operate on top of 1 Gbps Ethernet
networks. In normal networking conditions a situation in which
each of the router’s interfaces would be carrying data constantly
at its peak bandwidth is an unlikely and unusual event and would
probably be a sign of a severe network problem: a basic char-
acteristic of most computer networks is a bursty nature for data
transmission in which short high-bandwidth bursts are followed by
periods of non-existent or very low-bandwidth traffic. However, to
obtain a worst case timing constraint, we here assume a situation
in which two of the router interfaces are each providing incoming
datagrams at a constant speed of 1 Gbps for routing and forward-
ing through the other two interfaces. This kind of a situation is not
realistic, since it requires a second assumption: routing decisions
for the incoming datagrams must be evenly distributed among the

155

two outbound interfaces. If this weren’t the case, the underlying
Ethernet would not be able to handle the traffic: one of the in-
terfaces would require more than 1 Gbps of outbound bandwidth
or the network segment would be severely congested. These as-
sumptions require the router to be able to process incoming IPv6
datagrams with the speed of 2 Gbps. With such a target process-
ing speed, the possibilites for the router to be congested when used
on top of 1 Gbps Ethernets should be minimal.

At 2 Gbps throughput and 1526 · 8 bits per datagram for the reasons
explained above, we get an IPv6 datagram rate of about 164 000 data-
grams per second. This means that a new datagram may arrive for
processing every 6 µs.

However, since a 200 MHz IXP1200 processor was used to implement
the target routing functions in [120], the TACO architecture instances
evaluated in this case study were also targeted to the 200 MHz clock
frequency: this is necessary to warrant any kind of performance com-
parison between the two architectures. To achieve 2 Gbps throughput
at 200 MHz, no more than 1200 cycles per IPv6 datagram may be used
for processing.

• The PDU I/O interface was implemented as described in Chapter 3.

The previous discussion suggested that IPv6 routing is a rather complex
protocol processing application. However, it can reasonably easily be split into
smaller tasks that, in terms of software, would become subroutines in the final
application code. This characteristic of the application was exploited also in
this case study: instead of developing the entire application from specification
to sequential assembler code for a virtual processor (as described in Chapter
4), the specification was split into smaller parts that were individually refined
towards the virtual processor assembler level. Thus, the application analysis
was completed in a situation in which the functional unit types needed for
IPv6 routing had been determined, and in which virtual processor assembler
code existed for the key tasks (or subroutines) of IPv6 routing. In addition
to clarifying the refinement process, this approach was chosen also to ensure
implementational accuracy to the IXP1200 implementations of the routing
functions.

In the iterative design space exploration phase of the TACO design flow
(see Chapter 4) we decided not to simulate and estimate the virtual proces-
sor, but to directly add more processing elements to the architecture; this
decision seemed warranted due to the complexity of the target application as
a whole. Also, a decision was made to use the same functional units in each
architecture instance to be explored. The number and type of FUs selected

156

Header Route Internet Maximum
validation lookup checksum needed

Checksum FUs - - 1 1
Comparators 1 1 - 1
Counters - 2 - 2
Matchers 3 - - 3
Maskers 1 1 1 1
Shifters 1 1 1 1
Routing table FU - 1 - 1
Local Info FU - 1 - 1
ICMPv6 FU 1 - - 1

Table 5.3: Number of TACO functional units needed in each target IPv6 rout-
ing function to execute the function without unnecessary operand transports
in most critical execution paths.

for the instances were obtained by reviewing the virtual assembler code for
each target function. This process involved examining the code to find oper-
ations of the same kind needed consequtively or within a sequence of a few
instructions in the most performance critical parts of each function (e.g. main
loops or main repetitive code sequences). In these parts of the functions, sev-
eral data transports and thus also several clock cycles may be unnecessarily
spent for transporting operands to the FUs between calculations. For exam-
ple, a Matcher unit requires two operands and a trigger data value for each
computation (see Chapter 3 for more details). Now, if a function contains
three consequtive Match operations, 9 data transports are needed to carry
out the operations using just one Matcher unit. Consider a situation in which
these three Match operations are used inside a loop that needs to be repeated
several, for example, 10 times: 90 transports would be required to complete
the operations. On the other hand, by using three Matcher FUs that each
hold static operands during the loop, only 36 transports would be needed (six
transports to store the operands in the FUs, and 30 transports for the 30
Match operations).

The code examination procedure was carried out for each of the target
routing functions as outlined above. As a result, Table 5.3 lists the number
and type of TACO FUs needed to execute each function without the occur-
rence of unnecessary operand transports as described above. The values listed
in the Maximum needed column of Table 5.3 were decided to be the functional
unit configuration for all TACO architecture instances explored in this case
study: this way all target functions could be executed without unnecessary
operand transports. Also, the resulting TACO architecture instances would

157

Network Controller
Interconnection

Matcher 1

Matcher 2

Matcher 3

User data

uMMU

memory

dMMU

Interface
I/O

Protocol data
memory

output socket
Input and

connections

memory
Program

Routing Table FU

Counter 2

Counter 1

Checksum

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

(1
..3

 b
us

es
)

Masker

Comparator

ICMPv6 FU

Shifter

Local Info FU

Figure 5.6: Functional view of the TACO IPv6 router processor architectures
examined in this case study.

be relatively small and simple, which would better warrant a comparison to
IXP1200 microengine implementations of the functions.

Thus, all TACO instances explored in this case study have the same func-
tional unit configuration but a different interconnection bus count. One, two
and three bus configurations were chosen for exploration; based on earlier
experiments such as the ATM case study presented in the previous section,
a three bus configuration was expected to provide sufficient data transport
capacity for all the target functions.

Figure 5.6 shows a functional view of the TACO architecture instances
explored in this case study. In the rest of this section, we will distinguish these
architectures from one another using a notation that specifies the number of
interconnection buses in the architecture: TACO-1, TACO-2 and TACO-3.

SystemC and Matlab top level files were again generated for the instances

158

TACO Routing Exec. Exec. Move Unused Bus
instance function cycles time [ns] slots slots util.

TACO-1 Header validation 32 160 32 0 100 %
Route lookup (5) 63 315 63 3 95 %
Route lookup (50) 510 2 550 510 0 100 %
Checksum (64) 41 205 41 0 100 %
Checksum (1500) 755 3 775 755 0 100 %

TACO-2 Header validation 20 100 40 7 83 %
Route lookup (5) 38 190 76 17 78 %
Route lookup (50) 305 1 525 710 101 86 %
Checksum (64) 24 120 48 3 94 %
Checksum (1500) 381 1 905 762 3 100 %

TACO-3 Header validation 13 65 39 7 82 %
Route lookup (5) 32 160 96 36 63 %
Route lookup (50) 254 1 270 762 252 67 %
Checksum (64) 21 105 63 13 79 %
Checksum (1500) 378 1 890 1 134 372 67 %

Table 5.4: Simulation results for the three architecture instances explored in
the IPv6 router case study. Execution times have been calculated assuming
a 200 MHz clock frequency. Route lookup (50) indicates a routing table with
50 entries, and Checksum (1500) indicates an Internet checksum calculation
for 1500 bytes of data.

as described in the previous section and in Chapter 4. Then, the virtual
assembler code for each function was prepared first for the TACO-1 archi-
tecture; this meant modifying the virtual code to take advantage of the ad-
ditional FUs in the architecture (and resulted in the unnecessary operand
transports to be removed from the code). Once the code had been prepared
for the TACO-1 architecture, modifying it for use in the more complex archi-
tectures was quite straight-forward; the code was improved to take advantage
of the increased data transport capacity in the TACO-2 and TACO-3 archi-
tectures while maintaining data dependencies. Once the application code for
each function had been prepared for execution on each of the architecture in-
stances, the SystemC and Matlab models were used to simulate and estimate
the instances.

Table 5.4 shows the results of SystemC simulations for each function ex-
ecuted on each architecture instance. For Route lookup and Checksum cal-
culation, two results are given for each instance. The execution time of the
Route lookup function depends on the number of routing table entries to be

159

analyzed before a routing decision is made. Route lookup (5) indicates five
entries, and Route lookup (50) indicates 50. For the checksum calculations, a
similar effect on execution time is caused by the length of the data for which
the checksum is calculated. Checksum calculation (64) indicates a calculation
for 64-byte data, and Checksum calculation (1500) for 1500-byte data. The
IXP1200 implementations of the functions were tested in [120] using 5 entries
for route lookup and 64-byte data for checksum calculation; the same values
were used here to facilitate a performance comparison. The more demanding
values of 50 entries for Route lookup and 1500 bytes of data for Checksum
calculation were also simulated to obtain better estimates for processor per-
formance in the entire routing process (discussed later in this section). The
term slot is used in the simulation results as defined in the previous section
(the ATM AIS case study).

It is interesting to notice that the IPv6 routing functions are not able
to use the interconnection buses as efficiently as the ATM AIS processing
routine examined in the previous section. Possible reasons behind this are
the different PDU sizes used in the two protocols, and the fact that no ta-
ble lookups needed to be implemented in the ATM case study. The IPv6
router function most closely resembling the ATM AIS processing routine is
the Header validation function; in both of these tasks PDU header fields are
analyzed to find out certain specific properties of the PDU in question. As
it turns out, the IPv6 Header validation function is also best able to take
advantage of increases in data transport capacity (see Table 5.4, Header val-
idation bus utilizations for TACO-2 and TACO-3). On the other hand, in
the Checksum calculation function, increasing data transport capacity be-
yond two buses provides practically no performance improvement in this case
study. For example, see Table 5.4 for the Checksum calculation (1500) results
of the TACO-3 instance: there are almost as many unused transport slots as
there are clock cycles used for executing the function, which means that one
bus is virtually unused during the execution. In the other two functions, the
TACO-3 instance is clearly faster than the other instances due to its higher
data transport capacity.

Table 5.5 shows the results of Matlab estimations and VHDL synthesis
for each of the explored TACO instances. The results in this table do not
include the area and power costs produced by protocol data, user data and
program memory blocks nor the small memory blocks associated with the
routing table FU. The power estimates assume a worst case situation in which
all FUs and sockets are active at all times. Thus, the power estimates are
highly exaggerated; in typical application execution in TACO processors n · 2
functional units and n · 2 sockets (n is the number of interconnection buses)
and the interconnection network controller are active while the rest of the
FUs and sockets are more or less idle.

160

Architecture Worst case power Logic area Processor area
instance estimate estimated synthesized (estimated)

TACO-1 155 mW 0.48 mm2 0.44 mm2 0.53 mm2

TACO-2 165 mW 0.50 mm2 0.47 mm2 0.66 mm2

TACO-3 177 mW 0.52 mm2 0.52 mm2 0.79 mm2

Table 5.5: Estimation and synthesis results using 0.18 µm technology for the
three TACO architecture instances explored in the IPv6 router case study.
The results do not include memory blocks.

As the results in Table 5.5 show, the Matlab model is quite accurate
in estimating the logic area; some additional pessimism in the model might
be appropriate (and was later implemented into the model) to ensure that
the estimates will not produce a result smaller than actually produced by
gate-level synthesis (see the next case study for further discussion on this
topic). The processor area estimates also include the area required by the
interconnection buses and any other wiring in addition to the reported logic
area. The increases in logic areas and worst-case power consumption of the
architectures with more than one bus are produced by an increase in the sizes
of the sockets and the interconnection network controller due to increasing
interconnection network complexity.

We recall that in the target 2 Gbps throughput speed range each PDU
needs to be processed in less than 6 µs or 6 000 ns. The fast path of the entire
IPv6 routing process more or less consists of receiving a datagram, validating
it (and decreasing its hop limit header value), making a routing decision for
it, and sending the datagram. Sending and receiving the datagrams are not
actual protocol processing tasks and the maximum speed at which these oper-
ations can be done depends on the LAN co-circuitry used. However, assuming
a worst-case scenario in which the processor would be idle during the receive
and send operations (which is not normally the case in TACO processors),
altogether 750 TACO cycles2, or 3 750 nanoseconds, would be consumed for
the receive and send operations. As seen earlier in this case study, routing
table size has a major effect on the overall PDU processing time especially
when a sequential access scheme is used. It is easily seen from Table 5.4 that
for a routing table of only five entries all TACO architectures are easily able
to function at the target 2 Gbps speed range. However, for 50 entries, the
TACO-1 architecture consumes too many cycles if the processor is idle dur-
ing the receive and send processes. TACO-2 and TACO-3 would be able to
function in the target speed range even in this worst case scenario. Thus, we

2Assuming a 1500-octet, or 375-word, datagram.

161

TACO-1 TACO-2 TACO-3 IXP1200 µE
Function [ns] [ns] [ns] [ns]

Header validation 160 100 65 84
Route lookup (5) 315 190 160 478
Checksum (64) 205 120 105 1 983

Table 5.6: Required processing time per PDU in IPv6 routing functions for
the explored TACO instances and for one IXP1200 microengine at 200 MHz.

conclude that when synthesized at 200 MHz, the TACO-2 and TACO-3 fulfill
the design constraints for this target application. The TACO-1 instance is
able to fulfill the constraints if the routing table is sufficiently small (no more
than 30 entries). Naturally, routing table access speed can be dramatically
improved by resorting to more intelligent table lookup schemes and hardware
accelerators. We have analyzed the use of different IPv6 routing table access
solutions in the context of TACO processors in [73].

As a conclusion to this case study, Table 5.6 shows the processing times
of the target IPv6 routing functions for the TACO instances examined in this
case study, and for one of the six (identical) microengines of an Intel IXP1200
processor as analyzed in [120]. The IXP1200 results assume that four PDUs
are processed at the same time using the four microengine processing threads.
For example, the Header validation actually consumes 335 ns but produces a
validation result for four PDUs simultaneously.

In general, the TACO instances seem to provide somewhat better execu-
tion times in all the implemented routing functions. The only exception is the
Header validation function, in which the TACO-1 and TACO-2 are slightly
slower (in absolute processing speed) than the IXP1200 microengine. This is
due to lacking data transport capacity in the TACO-1 and TACO-2 archi-
tectures; the Header validation function consists mostly of relatively straight-
forward Boolean comparisons that can be executed in parallel if enough trans-
port capacity is available. However, in the TACO-1 and TACO-2 architec-
tures the available data transport capacity is limited (1 and 2 data buses,
respectively). Perhaps the most surprising results are obtained for the Check-
sum function, in which the TACO instances are roughly 10-20 times faster
than the IXP1200 microengine. This is due to the fact that TACO processors
have native hardware support for calculating checksums: it is only necessary
to transport all data words to be checksummed to the Checksum FU. Con-
trary to this, in the IXP1200 microengine implementation described in this
case study the checksum calculation is carried out as a full software imple-
mentation for tasks like data word splitting and one’s complement summing
(see Chapter 2 for more information on Internet checksum calculation, and

162

Chapter 3 for a specification of the TACO checksum FU). Also, the IXP1200
implementation has not been written by an experienced IXP1200 program-
mer but by a student working on his M.Sc. project, and on the other hand
the TACO implementation has been programmed by an experienced TACO
programmer. Still, both implementations follow the block diagram given in
Figure 5.5 b) and thus the TACO architecture can be determined to provide
better support for IP checksum calculation than an IXP1200 microengine.

It is important to remember that an IXP1200 processor is formed of six
microengines and a general purpose processor core; thus, it is quite obvious
that its processing performance as a whole is far better than what is provided
by any of the TACO instances analyzed in this case study. In terms of power
consumption we refer to the IXP1200 datasheet [56], according to which the
typical power consumption of an IXP1200 processor at 200 MHz is 4.5 W and
the maximum consumption is 6.6 W. Of these values, the embedded SA-1100
equivalent on-board StrongARM core has a maximum power consumption
of about 500 mW at the target clock frequency according to the SA-1100
datasheet [55]. The rest of the (maximum) power, about 6 W, is consumed
by the six microengines, the internal memories and other on-chip functional
blocks (e.g. Intel IXP Bus controller). Unfortunately the datasheets cited here
do not reveal more detailed information on power consumption of individual
functional blocks in an IXP1200 processor; therefore we can only state (based
on the values given in Table 5.5 and in the cited Intel datasheets) that the
power consumption of the TACO architectures analyzed in this case study
can be assumed to be in the same order of magnitude as the power consumed
by one IXP1200 microengine.

Also in terms of area comparisons the available information for the IXP1200
microengines is very limited. According to [77], the die size for an IXP1200
processor is 126 mm2. On the other hand, [74] reports a die size of 75 mm2

for an SA-1100 (including memory and interface controllers). If the memory
and interface controllers on-board an IXP1200 are expected to occupy about
the same area as the ones used in an SA-1100 (i.e. the die size of an SA-1100
is assumed to be about the same as the IXP1200’s on-board StrongARM
core plus the IXP1200’s on-board memory and interface controllers), 51 mm2

would be left for the six microengines and the on-chip IX Bus controller. Fur-
ther, if we assume that the IX bus controller occupies roughly the area of four
microengines (based on a physical layout image presented in [77]), we reach a
coarse area estimate of 5.1 mm2 for each microengine. This value (which can
under no circumstances be deemed accurate) is higher than the area occupied
by any of the TACO instances; however, according to [77], the IXP1200 is
manufactured using a 0.25 µm process. The results for the TACO instances
of this case study were obtained for 0.18 µm. The conclusion for the area
comparisons between the TACO instances and an IXP1200 microengine thus

163

is the same as for the power comparison: the values can be assumed to be in
the same order of magnitude, especially if the same manufacturing technology
had been used for both architectures.

An interesting continuation for this case study could be to implement a
Network-on-Chip (NoC) [111] device that would incorporate a general purpose
processor core and several TACO processors, and to compare its performance
to the IXP1200 or some other member of the IXP network processor fam-
ily. The first step to this direction is taken in the next section, in which a
TACO IPv6 client processor is integrated onto a multimedia processing NoC
platform.

5.3 IPv6 Client for a Network-on-Chip Platform

As the third case study of this thesis we examine the component reuse and
Network-on-Chip (NoC) [111] integration capabilities of the TACO frame-
work. Like the case study presented in the previous section, the target ap-
plication for this case study also deals with processing the IPv6 protocol.
However, the target application considered in this case study is simpler and
requires a lower processing speed; hence, the design process is reduced to
reusing both the hardware modules and the application code from the pre-
vious case study, and to implementing a Network-on-Chip interface for the
resulting processor core. Architectural and implementational details of the
NoC interface for TACO processors have already been discussed in Chapter
3, and that discussion is not repeated here.

Soon after the completion of the IPv6 router processor project the TACO
research group was invited to participate in a NoC design project within a
national research program in Finland. The goal in the project was to develop
a NoC platform for networked multimedia processing. The platform was
required to receive, decrypt, and decode a compressed video stream. Such a
platform could be used for example in a PocketPC-type device for applications
like confidential mobile videoconferencing. The video stream was assumed
to have been compressed using the MPEG-2 [58] algorithm and encrypted
using the RSA [96] algorithm prior to sending it over a wireless connection.
The MPEG-2 compression parameters were chosen to meet the screen size
and processing capacity of modern high-end hand-held devices with built-in
wireless LAN (WLAN) support. The compression parameters are shown in
Table 5.7.

The networking environment in this case study is a small office with a
wireless LAN. The encrypted compressed video data is streamed from a server
equipped with wireless access point functionality to hand-held devices in the
WLAN segment. The network layer protocol (OSI layer 3) used in this case
study is IPv6. Due to this arrangement, the server can be configured to send

164

Video Audio Frame Size Frame Rate Bits/Pixel
900 kbps 64 kbps 320 x 240 px 25 fps 24
(CBR) (joint stereo)

Table 5.7: Compression parameters for the case study. CBR = constant bit
rate.

Sequence Number
(2 octets) Payload

Internet Checksum
(2 octets)

IPv6 Header
(40 octets)

1500 octets

Figure 5.7: Structure of the PDU used in the case study.

all datagrams with a hop limit value of 1. This way the possibility of confi-
dential IPv6 datagrams traversing outside the target operating environment
is reduced: IPv6 routers discard such datagrams.

To improve the reliability of the wireless transmission, a simple proprietary
transport layer (OSI layer 4) protocol was defined to be used on top of IPv6 in
this case study. The proprietary protocol basically adds sequence numbering
and an Internet checksum of the entire datagram to the basic IPv6 header.
Also, no IPv6 extension headers (see Chapter 2) were neither needed nor used
in this case study. The structure of the resulting PDU is shown in Figure 5.7.
The payload of the PDU carries the RSA-encrypted MPEG-2 video stream.
With 44 header octets and a total PDU size of 1500 octets, the transmission
overhead produced by the transport and network layer protocols used in this
case study is about 3 %.

The NoC platform was built of IP (intellectual property) blocks developed
in the research units participating in the co-operation. The main components
were a TACO processor core for IPv6 client operation, an RSA unit3 [95] for
decryption, and a programmable general purpose RISC processor core called
COFFEE3 for decompression. These IP blocks were interconnected using
an on-chip packet-switching network called PROTEO3 [100]. Each IP block
was required to provide Virtual Component Interface (VCI) [118] compliancy
towards the PROTEO network.

The NoC platform itself is presented in [3]. In this case study we focus
on constructing a VCI-compliant IPv6 client core needed for the platform
using the tools and techniques of the TACO framework. Analysis of the tasks
needed to be performed by the IPv6 client processor as part of the NoC
platform produced the following conclusions:

3Developed at the Tampere University of Technology, Finland.

165

• The data word length of 32 bits should be used, and 0.18 µm CMOS
technology should be used.

• IPv6 client operation requires the following protocol processing func-
tional unit types: Comparator, Matcher, Counter, Internet Checksum,
Masker and Shifter. After the previous case study in IPv6 routing, all
these functional units already existed as 0.18 µm implementations in
TACO libraries (see Chapter 3 for more details on the FU types).

• Current standard WLANs operate at maximum speeds of less than 100
Mbps. With 1500-octet PDUs and a 100 Mbps peak transmission rate
the target NoC must be able to receive and process at least 8 300 IPv6
datagrams per second. This is about 20 times less than the datagram
processing rate required from the TACO IPv6 router architectures ex-
plored in the previous case study, which suggests that a relatively simple
TACO architecture could be used for this kind of IPv6 client operation.
Also, a 100 Mbps networking environment clearly provides enough data
transport capacity to carry the MPEG-2 stream defined in Table 5.7.

• The IPv6 client receives incoming datagrams from an on-chip I/O buffer
through a VCI compliant NoC interface. The I/O interface was de-
scribed in Chapter 3.

• Each received IPv6 datagram needs to be validated using a procedure
very similar to the Validate function in the previous case study. Specif-
ically, the header Version field has to indicate IPv6, the Next Header
value has to indicate the previously defined proprietary upper layer pro-
tocol, the Payload Length field must indicate a value that puts the total
datagram size to that defined in Figure 5.7, and the Hop Limit value
may not be larger than 1.

• Each received IPv6 datagram is verified for integrity by computing its
checksum as defined in RFC 1071 [11].

• Once validated and verified, the header information needs to be removed
from each datagram, and the payload should then be transported to
the on-chip RSA decryption block through the VCI-compliant on-chip
network.

In comparison to the IPv6 router case study, the IPv6 client application
requires a significantly lower PDU processing speed. For this reason, a de-
cision was made to simplify the TACO-1 router architecture instance and
to adapt its validate and checksum functions for this case study. Thus, the
application specification did not need to be refined into assembler code for

166

Network Controller
Interconnection

output socket
Input and

connections

memory
Program User data

uMMU

memory

Counter FU

Input FU

Output FU

TACO IPv6 Client

BVCI
Interface

BVCI
signals

Wrapper

Shifter FU

Masker FU

Matcher FU

Comparator FU

IP Checksum FU dMMU

memory
Protocol data

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

PROTEO
Network
Interface
Module

Figure 5.8: The TACO IPv6 Client and its BVCI connection to the on-chip
network.

a virtual processor as usually done in TACO design projects. Instead, an
architecture with only one FU of each required type and only one intercon-
nection bus was specified. All protocol processing FUs were reused from the
IPv6 router case study. However, to connect the IPv6 client to the on-chip
network, a BVCI [118] compliant interface needed to be designed and imple-
mented. The interface was implemented as a bridge between the TACO input
and output FUs and the on-chip PROTEO network as described in Chapter
3. The resulting IPv6 client architecture is shown in Figure 5.8. Since the
TACO NoC interface was already presented in Chapter 3, we will not discuss
its details further in this section.

The application code for the IPv6 client was constructed using modified
versions of the IPv6 routing function implementations from the previous case
study as a starting point. Thus, previously existing modules were extensively
reused for both the hardware and the software parts of the IPv6 client pro-
cessor.

Top-level SystemC and Matlab files for the architecture were again gener-
ated using the TACO design tool discussed in Chapter 4. SystemC simulations
suggested that the target application requires 1920 clock cycles per PDU when
executed on the TACO architecture of Figure 5.8. The original application
specification required the client to be able to operate in LAN speeds of up to
100 Mbps (or up to 8 300 PDUs per second). At this speed, the clock speed
requirement for the TACO IPv6 client is 17 MHz. However, we decided to
target the Matlab estimations and VHDL synthesis to 200 MHz, at which

167

Estimated Estimated Synthesized
worst-case power logic area logic area

[mW] [µm2] [µm2]
Matcher 7.1 13 785 12 851
Shifter 14.6 28 160 24 351
Comparator 9.3 18 036 17 197
Masker 6.4 12 346 11 335
Checksum 10.5 20 324 19 836
Counter 6.8 13 161 11 782
Input FU 15.9 30 820 26 064
Output FU 9.4 18 207 17 002
dMMU 6.1 11 844 11 721
uMMU 4.0 7701 7342
Sockets 21.6 41 122 31 720
Network Controller 7.0 28 346 21 169
Total (IPv6 client part) 118.7 243 852 212 370
BVCI Interface wrapper 15.6 30 342 23 137
Total (client + wrapper) 134.3 274 194 235 507

Table 5.8: Estimation and synthesis results in the IPv6 Client case study.
Estimations and synthesis have been targeted to 200 MHz clock frequency.
The results do not include memory blocks.

speed the TACO client should be able to provide adequate performance for
operation at network speeds of up to 1 Gbps.

Results of the Matlab estimations and VHDL synthesis for 0.18 µm CMOS
technology and 200 MHz target clock speed are shown in Table 5.8. The Mat-
lab estimates suggested a logic area of 0.27 mm2 (core size without memories)
and a worst case power consumption of 134 mW. These values were acceptable
for the target multimedia processing NoC platform, and thus we proceeded
to synthesize the architecture. Synthesis resulted in a logic area of 0.24 mm2.
When comparing this to the estimated value, it can be stated that the ac-
curacy of the area estimates was Asynth = 0.86 Aestim. This accuracy is
sufficient at the system level, where slight pessimism in estimates is always
preferable: if the estimations would suggest a smaller area than what is ob-
tainable through synthesis, original design constraints might not be met. It
is important to notice that Matlab area estimates for are consistently slightly
larger than the values obtained through synthesis for every module in the
processor, hence ensuring that design constraints are always met also after
synthesis. The power consumption estimate reflects the situation of operat-
ing at 200 MHz (i.e. at about 1 Gbps network speed). The network speed

168

for the target application is considerably lower, which reduces the power con-
sumption respectively. Also, the estimate expects all functional units to be
active at all times, which is obviously a worst-case scenario as explained in
the previous case study (the application software and the complexity of the
interconnection network determine FU activity).

The results presented in Table 5.8 revealed that the BVCI wrapper module
did not considerably increase the size or power consumption of the IPv6 client
processor. In fact, the increase in both size and power is about the same as
the cost of adding one functional unit into the architecture. For the IPv6
client processor discussed above, the synthesized area increases by 11 % and
the estimated average power consumption by 13 %. Naturally, the relative
increase in area and power consumption produced by the BVCI wrapper is
reduced in more complex applications in which more functional units and
interconnection network buses are used.

The design of the TACO IPv6 client did not involve any modifications to
the TACO SystemC, Matlab and VHDL protocol processing FU descriptions;
instead, the work was done by choosing which components from the compo-
nent library are needed using the TACO design tool. Then the tool was used
to generate top level instantiation files for simulation, estimation and synthe-
sis. Naturally, since no new protocol processing functional units were needed
into the libraries for the target application, and most of the application code
was taken from earlier work, the IPv6 client design project was carried out
in a very short period of time (a matter of days). More time was needed
for specifying and implementing the BVCI interface wrapper. However, after
this case study the BVCI interface can now also be incorporated into any
new TACO processor design project as a library component, thus enabling
convenient Network-on-Chip integration in future design projects.

Clearly, the component reuse capabilities of the TACO framework were
evident and proved to be quite useful in designing the IPv6 client processor.
A silicon implementation of the target multimedia processing NoC platform
(nowadays called CoffeeTable) with its TACO IPv6 client core is currently
under development as a continuation to the research program that originated
the NoC project. At the time of writing this thesis, the project timetable
expects the chip to be manufactured in 2005. At that time, the chip will be
extremely valuable in further performance studies of TACO processors as well
as in examining TACO use as an intellectual property block in Network-on-
Chip devices.

5.4 Chapter Summary

This chapter discussed three case studies in which the tools and techniques of
the TACO framework were applied to three different protocol processing ap-

169

plications used in different kinds of networking environments and conditions.
The goal in the case studies was to show that the assumptions and arguments
made in Chapter 4 were valid.

The first case study, ATM AIS processing, demonstrated the rapid de-
signer driven system level design space exploration capabilities of the TACO
framework and verified the accuracy of system-level simulations and estima-
tions. The second case study, IPv6 routing/packet forwarding, focused on
determining how well the protocol processing performance of TACO proces-
sors scales up to meet the performance provided by typical processing ele-
ments found in modern commercial network multiprocessor architectures. As
a result, TACO architectures were seen to provide similar execution times for
IPv6 routing functions as an Intel IXP1200 microengine. Interestingly, the
TACO architectures considered in the case study were found to be consider-
ably faster than an IXP1200 microengine in calculating the Internet checksum.
The third case study, IPv6 client operation, demonstrated the component
reuse and Network-on-Chip integration capabilities in the TACO framework.
A processor architecture for IPv6 client operation was constructed entirely
from pre-existing protocol processing functional units, and most of the ap-
plication code was also obtained from the earlier IPv6 router case study.
The processing speed required for the IPv6 client application was roughly 20
times less than the speed required in the IPv6 router case study. Also, the
IPv6 client application was considerably simpler than the routing application.
Thus, no design space exploration was necessary: it was enough to simplify
the most basic one of the IPv6 router architectures analyzed in the second
case study. Finally, in the third case study it was seen that a TACO processor
can rather conveniently be integrated into a Network-on-Chip platform by us-
ing an industry-standard interface. It was also seen that the area and power
costs of including the NoC interface wrapper into a TACO architecture are
about the same as the costs from including an average functional unit. We
consider these costs to be quite reasonable for gaining NoC support to any
given TACO architecture. A silicon implementation of the NoC platform is
currently under development, and the chip is expected to be manufactured in
2005. The chip will provide a valuable testing and analysis environment for
further performance studies of TACO processors and their use as intellectual
property blocks in Network-on-Chip devices. Also, we are currently working
towards an FPGA implementation of a more complex TACO architecture with
NoC support. The FPGA implementation is expected to be ready during fall
2004.

We conclude this chapter by stating that the three case studies reached
the goals that had been set for them. Thus, they validated the fundamental
assumptions and arguments on which the TACO framework and its design
process are based on. The next chapter summarizes and concludes this thesis.

170

Chapter 6

Conclusion

In this thesis we have proposed a framework for rapidly designing and evaluat-
ing programmable protocol processors with application-optimized hardware
execution units. The proposed framework, called the TACO framework, is
built of a hardware platform optimized for protocol processing, and a doc-
umented design methodology for rapidly specifying, simulating, evaluating
and synthesizing protocol processors based on the hardware platform. Us-
ing the tools and methods provided by the TACO framework an optimized
hardware architecture, optimized application code and a synthesizable proces-
sor model are reached using an application specification as a starting point.
In the introduction of this thesis we described the potential benefits to be
gained by developing protocol processor architectures and domain-specific
design methodologies, and postulated the key research issues that need to be
addressed in order to create a design framework for these purposes. In this
chapter we summarize the solutions to these issues that have been proposed
in earlier chapters of this thesis, and outline directions for future work within
the TACO research project.

We started unfolding the research issues by arguing that different protocols
require similar operations in their processing, and thus implementing hard-
ware support for such operations is beneficial in terms of processing perfor-
mance. To support this argument we analyzed six commonly and abundantly
used communication protocols to find common characteristic functionality in
their processing. The findings made in this analysis clearly showed foreseeable
advantages to be gained by designing processors with optimized hardware for
protocol processing tasks. From these findings we proceeded to specifying
a hardware platform with native support for protocol processing operations.
The TTA-based hardware platform, which we called the TACO architecture,
is a modular and scalable family of programmable architectures optimized for
protocol processing. We argued that the TACO architecture can be used for
automated component library based hardware design. To our knowledge, the

171

TACO hardware platform is the first and so far the only approach in which the
TTA paradigm is applied to protocol processing. Similarly, to our knowledge
the memory organization and access scheme of the TACO hardware platform
is unique in comparison to existing TTA implementations.

After specifying the hardware platform we proceeded to developing a rapid
protocol processor design methodology around it. The work required desiging
and implementing processor models for simulation, estimation and synthesis
of TACO architectures. A key issue in the development of the processor
models was that they needed to provide a reasonably simple application pro-
gramming interface through which models for any given TACO architecture
could be generated. This was deemed especially important for system level
simulations of architectures: in addition to functional verification, simula-
tions need to provide hardware-accurate results like cycle-by-cycle simulation
and register transfer statistics. Whilst providing such precise information,
the simulations were also required to execute very fast to facilitate rapid ar-
chitectural exploration at the system level. The TACO SystemC simulation
model was found to meet these requirements through use of object oriented
programming techniques and a heterogeneous level of abstraction in the im-
plementation; it was seen that typically a TACO simulator is able to simulate
thousands of clock cycles per second on a standard PC.

For the Matlab system-level estimation model the speed requirements did
not cause potential performance bottlenecks since the estimations are carried
out as one-time calculations of pre-defined equations. The synthesis model
on the other hand is relieved of such performance requirements since it is put
to use only after a suitable architecture has been found through system-level
simulations and estimations; the most important requirements for the synthe-
sis model were that its API supports generating a synthesizable description of
a given TACO architecture, and that the generated description can be reliably
synthesized.

In addition to recognizing common characteristics in the processing of dif-
ferent protocols, we argued that attention also needs to be paid to identifica-
tion of frequently needed operations within the particular target application.
We defined a sequence of object oriented UML-based analysis and refinement
methods for such application analysis. Finally, using all the building blocks
outlined above, we constructed a design flow for rapidly and iteratively find-
ing optimized combinations of hardware architecture and application code for
a given target application. The most important characteristics of the entire
design methodology were identified to be completeness, capability for system-
level iteration, exploration and evaluation, short turn-around time, reliability
of the simulation, estimation and synthesis results, and cost-efficiency.

To validate the assumptions and arguments made in this thesis, we applied
the tools and methods of the TACO framework to three case studies in pro-

172

tocol processor design. The first case study verified the rapid designer driven
system level design space exploration capabilities of the TACO framework
and the accuracy of system-level simulations and estimations. The case study
concentrated on exploring TACO architectures for processing a part of the
ATM AIS (Alarm Indication Signal) function in a 622 Mbps ATM network,
and was targeted at the 0.35 µm technology generation. Six different TACO
architectures were explored. Of these, the fastest one was able to execute the
target application at 53 MHz while the slowest one required a clock frequency
of 178 MHz.

The second case study was targeted at the 0.18 µm technology generation
and focused on determining how well the protocol processing performance
of TACO processors scales up to meet the performance provided by typi-
cal processing elements found in modern commercial network multiprocessor
architectures. As a result, the analyzed TACO architectures were seen to
provide slightly better execution times for key IPv6 routing functions than an
Intel IXP1200 microengine running at the same clock frequency. In Internet
checksum calculation the TACO implementations were actually seen to be up
to 20 times faster than the corresponding IXP1200 microengine implementa-
tion. A key factor for such a difference was determined to be the full hardware
implementation in TACO architectures as compared to a full software imple-
mentation on the IXP1200. We also concluded that the less than 200 mW
worst-case power consumption and the less than 1 mm2 area of the analyzed
TACO architectures can be expected to be in the same order of magnitude as
the corresponding characteristics of an IXP1200 microengine, especially if the
same manufacturing technology would have been used on both architectures.

The third case study verified the component reuse and Network-on-Chip
integration capabilities of the TACO framework: an IPv6 client core was
successfully constructed solely of previously existing TACO hardware and
software components. It was also seen that the area and power costs of in-
cluding support for Network-on-Chip connectivity into a TACO architecture
are about the same as the costs from including an average functional unit (a
16 mW increase in power consumption and a 0.03 mm2 increase in area in
the 0.18 µm technology generation). A silicon implementation of the NoC
platform for which the IPv6 client core was designed is currently under devel-
opment, and the chip is expected to be manufactured in 2005. The chip will
be extremely valuable as a test environment for further performance studies
of TACO processors and their use as intellectual property blocks in Network-
on-Chip devices. Also, we are currently working towards an FPGA imple-
mentation of a more complex TACO architecture with NoC support. The
FPGA implementation is expected to be ready during fall 2004. All in all,
the three case studies reached the goals that had been set for them and thus
validated the fundamental assumptions and arguments on which the TACO

173

framework and its building blocks are based on.
There are still several tasks in the TACO design process that could be au-

tomated further. For example, the application analysis procedure described
in this thesis is performed manually by the designer. As this is the case, auto-
mated methods for application analysis are currently investigated in another
line of research within the TACO project. These methods are aimed at re-
lieving the designer from manually refining application specifications, and at
automatically finding domain-specific operations needed by the application.
A related topic is designing a compiler that would automatically compile and
optimize program code written in a high-level language to a given TACO ar-
chitecture. The current TACO compiler operates on assembler and requires
the designer to manually optimize the code for the target architecture. Re-
cent advances in TACO application analysis research suggest that it may be
possible to incorporate optimizing compiler functionality into the automa-
tized application analysis process. However, substantially more research is
still needed in this area of TACO research.

An emerging research direction in the TACO project is mapping the TACO
framework to other application domains. Our current focus in this direction
is video compression. This can in many senses be seen as a related, although
mathematically more intensive, application domain. In terms of the TACO
architecture, the future focus will be on optimizing the Input/Output inter-
face further and in developing alternate solutions for the current basic TACO
I/O interface. Finally, we intend to further improve the simulation and esti-
mation models to provide even more detailed results, especially in terms of
power consumption analysis. Among other things, this involves gathering and
analyzing very detailed information on the characteristics of the data being
moved on the interconnection buses (e.g. quantity and position information
of one and zero bits in each transferred data word during a simulation).

174

Bibliography

[1] M. Adiletta, M. Rosenbluth, D. Bernstein, G. Wolrich, and
H. Wilkinson. The next generation of Intel IXP network
processors. Intel Technology Journal, 6(3):6–18, August 2002.
http://developer.intel.com/technology/itj/2002/volume06issue03/

(verified 2004-08-24).

[2] T. Ahonen, T. Nurmi, J. Nurmi, and J. Isoaho. Block-wise extraction
of Rent’s exponents for an extensible processor. In IEEE Computer
Society Annual Symposium on VLSI, pages 193–199, February 2003.

[3] T. Ahonen, S. Virtanen, J. Kylliäinen, D. Truscan, T. Kasanko,
D. Sigüenza-Tortosa, T. Ristimäki, J. Paakkulainen, T. Nurmi, I. Saas-
tamoinen, H. Isännäinen, J. Lilius, J. Nurmi, and J. Isoaho. A Brunch
from the Coffee Table - Case Study in NoC Platform Design. Chap-
ter 16 in J. Nurmi, H. Tenhunen, J. Isoaho and A. Jantsch (Eds):
Interconnect-Centric Design for Advanced SoC and NoC. Kluwer Aca-
demic Publishers, Boston, MA, U.S.A., April 2004.

[4] M. Alanen, J. Lilius, I. Porres, and D. Truscan. Realizing a model driven
engineering process. Technical Report 565, Turku Centre for Computer
Science, Turku, Finland, November 2003.

[5] J. Allen, B. Bass, C. Basso, R. Boivie, J. Calvignac, G. Davis,
L. Freléchoux, M. Heddes, A. Herkersdorf, A. Kind, J. Logan, M. Peyra-
vian, M. Rinaldi, R. Sabhikhi, M. Siegel, and M. Waldvogel. IBM Pow-
erNP network processor: Hardware, software and applications. IBM
Journal of Research and Development, 47(2/3):177–194, March 2003.
http://www.research.ibm.com/journal/rd47-23.html (verified 2004-08-24).

[6] American National Standardization Institute. ANSI T1.105-2001, Syn-
chronous Optical Network (SONET) - Basic Description including Mul-
tiplex Structure, Rates and Formats, 2001.

[7] M. Arnold and H. Corporaal. Designing domain specific processors. In
Proceedings of the 9th International Symposium on Hardware/Software

175

Codesign (CODES’01), pages 61–66, Copenhagen, Denmark, April
2001.

[8] M. Attia and I. Verbauwhede. Programmable Gigabit Ethernet packet
processor design methodology. In Proceedings of the European Confer-
ence on Circuit Theory and Design (ECCTD’01), pages III:177–180,
Espoo, Finland, August 2001.

[9] H. B. Bakoglu. Circuits, Interconnections and Packaging for VLSI.
Addison-Wesley Publishing Company, Inc., Reading, MA, U.S.A., 1990.

[10] A. Both, B. Biermann, R. Lerch, Y. Manoli, and K. Sievert. Hardware-
software-codesign of application specific microcontrollers with the ASM
environment. In Proceedings of the Conference on European Design
Automation, pages 72–76, Grenoble, France, September 1994.

[11] R. Braden. Computing the Internet checksum. RFC 1071, Sept. 1988.

[12] S. Bradner and A. Mankin. IP: Next generation (IPng) white paper
solicitation. RFC 1550, December 1993.

[13] C-Port Corporation (a Motorola Company), North Andover, MA,
U.S.A. C-5 Network Processor Architecture Guide, May 2001.
http://www.freescale.com/files/netcomm/doc/ref manual/C5NPD0-AG.pdf

(verified 2004-08-24).

[14] A. Caldwell, Y. Cao, A. B. Kahng, F. Koushanfar, H. Lu, I. L. Markov,
M. Oliver, D. Stroobandt, and D. Sylvester. GTX: The MARCO
GSRC technology extrapolation system. In Proceedings of the 37th
IEEE/ACM Design Automation Conference, pages 693–698, Los An-
geles, CA, U.S.A., June 2000.

[15] V. G. Cerf and R. E. Kahn. A protocol for packet network intercommu-
nication. IEEE Transactions on Communications, COM-22(5):637–648,
May 1974.

[16] S. M. Cherry. Wi-Fi takes new turn with “Wireless-G”. IEEE Spectrum,
40(8):12–13, August 2003.

[17] G. Cichon, P. Robelly, H. Seidel, E. Matúš, M. Bronzel, and G. Fettweis.
Synchronous Transfer Architecture (STA), pages 343–352. LNCS 3133.
Springer-Verlag, Berlin, Germany, 2004.

[18] R. Clauberg, P. Buchmann, A. Herkersdorf, and D. J. Webb. Design
methodology for a large communication chip. IEEE Design and Test of
Computers, pages 86–94, July-September 2000.

176

[19] D. E. Comer. Network Systems Design Using Network Processors. Pear-
son Prentice Hall, Upper Saddle River, NJ, U.S.A., 2004.

[20] H. Corporaal. Microprocessor Architectures - from VLIW to TTA. John
Wiley and Sons Ltd., Chichester, West Sussex, England, 1998.

[21] H. Corporaal and J. Hoogerbrugge. Cosynthesis with the MOVE frame-
work. In Proceedings of the IMACS-IEEE Multiconference on Computa-
tional Engineering in Systems Applications (CESA’96), pages 184–189,
Lille, France, July 1996.

[22] M. Crawford. Transmission of IPv6 packets over Ethernet networks.
RFC 2464, December 1998.

[23] P. Crowley, M. A. Franklin, H. Hadimioglu, and P. Z. Onufryk, editors.
Network Processor Design - Issues and Practices, volume 1. Morgan
Kauffmann Publishers, San Francisco, CA, U.S.A., 2003.

[24] The Data Display Debugger (DDD) web site.
http://www.gnu.org/software/ddd/ (verified 2004-08-24).

[25] J. D. Day and H. Zimmermann. The OSI reference model. Proceedings
of the IEEE, 71:1334–1340, December 1983.

[26] M. Decina and V. Trecordi. Convergence of telecommunications and
computing to networking models for integrated services and applica-
tions. Proceedings of the IEEE, 85(12):1887–1914, December 1997.

[27] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) specifi-
cation. RFC 1883, December 1995.

[28] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) specifi-
cation. RFC 2460, December 1998.

[29] B. P. Douglass. Real-Time UML: Developing Efficient Objects for Em-
bedded Systems. Addison-Wesley, 2000.

[30] The Easics on-line CRC Tool.
http://www.easics.com/webtools/crctool/ (verified 2004-08-24).

[31] J. C. Eble, V. K. De, and J. D. Meindl. A first generation generic system
simulator (GENESYS) and its relation to the NTRS. In Proceedings
of the 11th Biennial University/Government/Industry Microelectronics
Symposium, pages 147–154, Austin, TX, U.S.A., May 1995.

[32] The MOVE project web site.
http://ce.et.tudelft.nl/MOVE/ (verified 2004-08-24).

177

[33] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616,
June 1999.

[34] V. Fuller, T. Li, and K. Varadhan. Classless inter-domain routing
(CIDR): an address assignment and aggregation strategy. RFC 1519,
Sept. 1993.

[35] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification and
Design of Embedded Systems. Prentice-Hall, Inc., Englewood Cliffs,
NJ, U.S.A., 1994.

[36] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and Z. Shuqing. SpecC:
Specification Language and Methodology. Kluwer Academic Publishers,
Norwell, MA, U.S.A., 2000.

[37] J. Gerlach and W. Rosenstiel. System level design using the SystemC
modeling platform. In Proceedings of the 3rd Workshop on System De-
sign Automation (SDA2000), Rathen, Germany, March 2000.

[38] B. Geuskens and K. Rose. Modeling microprocessor performance.
Kluwer Academic Publishers, Boston, MA, U.S.A., 1998.

[39] E. Grimpe and F. Oppenheimer. Aspects of object-oriented hardware
modelling with SystemCPlus. In Proceedings of the 2001 Forum on
Design Languages (FDL’01), Lyon, France, September 2001.

[40] T. V. K. Gupta, P. Sharma, M. Balakrishnan, and S. Malik. Processor
evaluation in an embedded systems design environment. In Proceedings
of the 13th International Conferenence on VLSI Design, pages 98–103,
January 2000.

[41] J. Heikkinen, T. Rantanen, A. Cilio, J. Takala, and H. Corporaal. Eval-
uating template-based instruction compression on transport triggered
architectures. In Proceedings of the 3rd IEEE International Workshop
on System-on-Chip for Real-Time Applications, pages 192–195, Calgary,
Canada, June 2003.

[42] J. L. Hennessy, N. Jouppi, F. Baskett, and J. Gill. MIPS: a VLSI proces-
sor architecture. Technical Report 223, Stanford University, Computer
Systems Laboratory, Stanford, CA, U.S.A., November 1981.

[43] T. Henriksson. Hardware Architecture for Protocol Processing. Licenti-
ate thesis, Department of Electrical Engineering, Linköping University,
Linköping, Sweden, 2001.

178

[44] T. Henriksson. Intra-Packet Data-Flow Protocol Processor. PhD thesis,
Department of Electrical Engineering, Linköping University, Linköping,
Sweden, 2003.

[45] T. Henriksson, U. Nordqvist, and D. Liu. Specification of a configurable
general-purpose protocol processor. In Proceedings of Second Interna-
tional Symposium on Communication Systems, Networks and Digital
Signal Processing, pages 284–289, Bournemouth, UK, July 2000.

[46] R. Hinden. Simple Internet Protocol Plus white paper. RFC 1710,
October 1994.

[47] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen,
A. Wieferink, and H. Meyr. A novel methodology for the design of
application-specific instruction-set processors (ASIPs) using a machine
description language. IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems, 20(11):1338–1354, November 2001.

[48] C. Hornig. A standard for the transmission of IP datagrams over Eth-
ernet networks. RFC 894, April 1985.

[49] Information Sciences Institute, University of Southern California, Ma-
rina del Rey, CA, U.S.A. RFC 760: DOD Standard Internet protocol,
January 1980.

[50] Information Sciences Institute, University of Southern California, Ma-
rina del Rey, CA, U.S.A. RFC 761: DOD Standard Transmission Con-
trol Protocol, January 1980.

[51] Information Sciences Institute, University of Southern California, Ma-
rina del Rey, CA, U.S.A. RFC 791: Internet Protocol - DARPA Internet
Program Protocol Specification, September 1981.

[52] The Institute of Electrical and Electronics Engineers, Inc., New York,
NY, U.S.A. IEEE Std 802.2, 1998 Edition. Logical Link Control, 1998.

[53] The Institute of Electrical and Electronics Engineers, Inc., New York,
NY, U.S.A. IEEE Std 802.11, 1999 Edition. Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications, 1999.

[54] The Institute of Electrical and Electronics Engineers, Inc., New York,
NY, U.S.A. IEEE Std 802.3-2002. Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical layer spec-
ifications, 2002.

[55] Intel Corporation. Intel StrongARM SA-1100 Microprocessor Specifica-
tion Update (order number 278105-006), November 1998, U.S.A.

179

[56] Intel Corporation. Intel IXP1200 Network Processor Datasheet (part
number 278298-010), December 2001, U.S.A.

[57] Intel Corporation. Intel IXP1200 Network Processor Family Hardware
Reference Manual (part number 278303-008), August 2001, U.S.A.

[58] International Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC). ISO/IEC 13818 family of stan-
dards for coding of moving pictures, 1996-2000.
http://www.iso.org/iso/en/prods-services/popstds/mpeg.html (verified 2004-08-24).

[59] International Telecommunication Union, Telecommunication Standard-
ization Sector. ITU-T Recommendation I.361: B-ISDN ATM Layer
Specification, 1993.

[60] International Telecommunication Union, Telecommunication Standard-
ization Sector. ITU-T Recommendation I.610: B-ISDN Operation and
Maintenance Principles and Functions, 1993.

[61] International Telecommunication Union, Telecommunication Standard-
ization Sector. ITU-T Recommendation G.708: Sub STM-0 network
node interface for the synchronous digital hierarchy (SDH), 1999.

[62] International Telecommunication Union, Telecommunication Standard-
ization Sector. ITU-T Recommendation G.707/Y.1322: Network node
interface for the synchronous digital hierarchy (SDH), 2000.

[63] International Telecommunication Union, Telecommunication Standard-
ization Sector. ITU-T Recommendation G.709: Interfaces for the Op-
tical Transport Network OTN, 2003.

[64] The International Telegraph and Telephone Consultative Committee.
CCITT Recommendation I.321: B-ISDN Protocol Reference Model and
its Application, 1991.

[65] Y. I. Ismail and E. G. Friedman. Effects of inductance on the propaga-
tion delay and repeater insertion in VLSI circuits. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 8(2):195–206, April
2000.

[66] M. K. Jain, M. Balakrishnan, and A. Kumar. ASIP design methdologies:
Survey and issues. In Proceedings of the 14th International Conference
on VLSI Design, pages 76–81, Bangalore, India, January 2001.

[67] A. Jantsch, J. Öberg, and A. Hemani. Is there a niche for a general
protocol processor core? In Proceedings of the 16th IEEE Norchip
Conference, pages 93–100, Lund, Sweden, November 1998.

180

[68] B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. A. Vissers. A
Methodology to Design Programmable Embedded Systems - The Y-Chart
Approach, pages 18–37. LNCS 2268. Springer-Verlag, Berlin, Germany,
2002.

[69] B. S. Landman and R. L. Russo. On a pin versus block relation-
ship for partitions of logic graphs. IEEE Transactions on Computers,
C20(12):1469–1479, December 1971.

[70] B. Leiner, R. Cole, J. Postel, and D. Mills. The DARPA Internet proto-
col suite. IEEE Communications Magazine, 23(3):29–34, March 1985.

[71] S. Y. Liao. Towards a new standard for system-level design. In Pro-
ceedings of the Eighth International Workshop on Hardware/Software
Codesign, San Diego, CA, U.S.A., May 2000.

[72] J. Lilius and D. Truscan. UML-driven TTA-based protocol processor
design. In Proceedings of the 2002 Forum for Design and Specification
Languages (FDL’02), Marseille, France, September 2002.

[73] J. Lilius, D. Truscan, and S. Virtanen. Fast Evaluation of Protocol
Processing Architectures for IPv6 Routing. In Proceedings of the 2003
Design, Automation and Test in Europe conference (DATE’03), Mu-
nich, Gemany, March 2003.

[74] T. Litch and J. Slaton. StrongARMing portable communications. IEEE
Micro, 18(2):48–55, March 1998.

[75] Y. Ma, A. Jantsch, and H. Tenhunen. A programmable protocol pro-
cessor architecture for high speed Internet protocol processing. In Pro-
ceedings of the 18th IEEE Norchip Conference, pages 212–216, Turku,
Finland, November 2000.

[76] G. Malkin and R. Minnear. RIPng for IPv6. RFC 2080, January 1997.

[77] W. Mangione and G. Memik. Network processor technologies.
http://cares.icsl.ucla.edu/cares/content/presentations/NPU overview-

UCRIVERSIDEandMINDSPEED files/presentation.pdf (verified 2004-09-02).

[78] R. Metcalfe and D. Boggs. Ethernet: Distributed packet switching for
local computer networks. Communications of the ACM, 19(5):395–404,
July 1976.

[79] S. Meyers. Effective C++: 50 Specific Ways to Improve Your Programs
and Designs. Addison Wesley Longman, Inc., Reading, MA, U.S.A.,
2nd edition, 1997.

181

[80] U. Nordqvist. A Programmable Network Interface Accelerator. Licenti-
ate thesis, Department of Electrical Engineering, Linköping University,
Linköping, Sweden, 2002.

[81] T. Nurmi, S. Virtanen, J. Isoaho, and H. Tenhunen. Physical modeling
and system level performance characterization of a protocol processor
architecture. In Proceedings of the 18th IEEE Norchip Conference, pages
294–301, Turku, Finland, November 2000.

[82] M. O’Connor and C. A. Gomez. The iFlow address processor. IEEE
Micro, pages 16–23, March-April 2001.

[83] The ODETTE Project web site. http://odette.offis.de/ (verified 2004-08-24).

[84] R. O. Onvural. Asynchronous Transfer Mode Networks: Performance
Issues. Artech House, Inc., Norwood, MA, U.S.A., 1994.

[85] The Open SystemC Initiative web site.
http://www.systemc.org/ (verified 2004-08-24).

[86] D. A. Patterson. RISC watch. ACM SIGARCH Computer Architecture
News, 12:11–19, March 1984.

[87] D. A. Patterson. Reduced instruction set computers. Communications
of the ACM, 28:8–21, January 1985.

[88] J. B. Postel. Simple mail transfer protocol. RFC 821, August 1982.

[89] J. V. Praet, G. Goossens, D. Lanneer, and H. D. Man. Instruction
set definition and instruction selection for ASIP. In Proceedings of the
Seventh International Symposium on High-Level Synthesis, pages 11–16,
Niagara-on-the-lake, Canada, May 1994.

[90] D. J. d. S. Price. An ancient Greek computer. Scientific American,
200(6):60–67, June 1959.

[91] J. M. Rabaey, A. Chandrakasan, and B. Nikolić. Digital Integrated
Circuits - a Design Perspective. Prentice Hall/Pearson Education In-
ternational, Upper Saddle River, NJ, U.S.A., second edition, 2003.

[92] M. Radetzki and W. Nebel. Synthesizing hardware from object-oriented
descriptions. In Proceedings of the 2nd Forum on Design Languages
(FDL’99), Lyon, France, August 1999.

[93] G. Radin. The 801 minicomputer. IBM Journal of Research and De-
velopment, 27(3):237–246, May 1983. http://www.research.ibm.com/journal

/rd/273/ibmrd2703E.pdf (verified 2004-08-24).

182

[94] A. Rijsinghani. Computation of the Internet checksum via incremental
update. RFC 1624, May 1994.

[95] T. Ristimäki and J. Nurmi. Implementation of a fast 1024-bit RSA
encryption on platform FPGA. In Proceedings of the 6th IEEE Inter-
national Workshop on Design and Diagnostics of Electronics Circuits
and Systems (DDECS’03), Poznan, Poland, April 2003.

[96] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120–126, February 1978.

[97] G. Schumacher and W. Nebel. Inheritance concept for signals in object-
oriented extensions to VHDL. In Proceedings of the EURO-DAC’95
Design Automation Conference with EURO-VHDL’95, pages 428–435,
Brighton, UK, September 1995.

[98] G. Schumacher and W. Nebel. Object-oriented hardware modelling –
where to apply and what are the objects? In Proceedings of the EURO-
DAC’96 Design Automation Conference with EURO-VHDL’96, pages
428–433, Geneva, Switzerland, September 1996.

[99] R. S. Shelar, S. Nath, and J. S. Nanaware. Parameterized reusable com-
ponent library methodology. In Proceedings of the 26th EUROMICRO
Conference (EUROMICRO’00), Maastricht, The Netherlands, Septem-
ber 2000.

[100] D. Sigüenza-Tortosa and J. Nurmi. PROTEO: A new approach to
Network-on-Chip. In Proceedings of the IASTED International Con-
ference on Communication Systems and Networks (CSN’02), Malaga,
Spain, September 2002.

[101] D. Sima, T. Fountain, and P. Kacsuk. Advanced Computer Architectures
- a Design Space Approach. Addison-Wesley Longman Ltd., Harlow,
Essex, England, 1998.

[102] R. J. Smith and M. Gibbs. Navigating the Internet. SAMS Publishing,
Indianapolis, IN, U.S.A., 1994.

[103] P. Srisuresh. Traditional IP network address translator (traditional
NAT). RFC 3022, January 2001.

[104] W. Stallings. Computer Organization and Architecture - Designing for
Performance. Prentice-Hall, Inc., Upper Saddle River, NJ, U.S.A., in-
ternational edition, 1996.

183

[105] B. Stroustrup. The C++ Programming Language. Addison-Wesley Pub-
lishing Company, Reading, MA, U.S.A., 3rd edition, 1997.

[106] D. Sylvester and K. Keutzer. System-level performance modeling
with BACPAC - Berkeley Advanced Chip Performance Calculator. In
SLIP’99 - Workshop on System-Level Interconnect Prediction, pages
109–114, April 1999.

[107] D. Tabak and G. J. Lipovski. MOVE architecture in digital controllers.
IEEE Transactions on Computers, 29(2):180–190, February 1980.

[108] A. S. Tanenbaum. Computer Networks. Prentice Hall, Inc., Upper
Saddle River, NJ, U.S.A., third edition, 1996.

[109] A. S. Tanenbaum. Structured Computer Organization. Prentice-Hall,
Inc., Upper Saddle River, NJ, U.S.A., fourth edition, 1999.

[110] A. S. Tanenbaum. Computer Networks. Prentice Hall, Inc., Upper
Saddle River, NJ, U.S.A., fourth edition, 2003.

[111] H. Tenhunen and A. Jantsch, editors. Networks on Chip. Kluwer Aca-
demic Publishers, Dordrecht, Netherlands, 2003.

[112] L. Torvalds. Open Sources: Voices from the Open Source Revolution,
chapter “The Linux Edge”. O’Reilly and Associates, Inc., Sebastopol,
CA, U.S.A., 1999.

[113] D. Truscan, J. M. Fernandes, and J. Lilius. Tool support for DFD-UML
model-based transformations. In Proceedings of the 11th International
Conference and Workshop on the Engineering Of Computer-Based Sys-
tems (ECBS’04), Brno, Czech Republic, May 2004.

[114] J. Van Praet, D. Lanneer, W. Geurts, and G. Goossens. Processor mod-
eling and code selection for retargetable compilation. ACM Transactions
on Design Automation of Electronic Systems, 6(3):277–307, July 2001.

[115] S. Vernalde, P. Schaumont, and I. Bolsens. An object oriented pro-
gramming approach for hardware design. In IEEE Computer Society
Workshop on VLSI’99, Orlando, FL, U.S.A., April 1999.

[116] S. Virtanen, J. Lilius, and T. Westerlund. A processor architecture for
the TACO protocol processor development framework. In Proceedings
of the 18th IEEE Norchip Conference, pages 204–211, Turku, Finland,
November 2000.

184

[117] S. Virtanen, T. Nurmi, J. Paakkulainen, and J. Lilius. A system-level
framework for designing and evaluating protocol processor architec-
tures. International Journal of Embedded Systems (Special Issue on
Hardware-Software Codesign for SoC), 1(1), 2004 (in press).

[118] VSI Alliance. Virtual Component Interface Standard. VSIA, April 2001.

[119] Xelerator X10q Network Processors: Product Brief.
http://www.xelerated.com/file.aspx?file id=3 (verified 2004-09-06).

[120] Z. Yang. IPv6 router design and routing functions implementation on
IXP1200 network processor. Master’s thesis, University of Turku, Fin-
land, August 2002.

[121] L. R. Zheng, B. Li, and H. Tenhunen. Global interconnect design for
high speed ULSI and system-on-package. In Proceedings of the 12th
Annual IEEE ASIC/SOC conference (ASIC/SOC’99), Washington DC,
U.S.A., September 1999.

185

18. Anna Mikhajlova
19. Vesa Torvinen
20. Jorma Boberg

21. Leonid Mikhajlov

22. Timo Kaukoranta

23. Gábor Magyar

24. Linas Laibinis
25. Shuhua Liu

26. Jaakko Järvi

27. Jan-Christian Lehtinen

28. Martin Büchi
29. Elena Troubitsyna
30. Janne Näppi
31. Jianming Liang
32. Tiberiu Seceleanu
33. Tero Aittokallio

34. Ivan Porres
35. Mauno Rönkkö
36. Jouni Smed
37. Vesa Halava
38. Ion Petre
39. Vladimir Kvassov

40. Franck Tétard

41. Jan Manuch
42. Kalle Ranto
43. Arto Lepistö
44. Mika Hirvensalo
45. Pentti Virtanen

46. Adekunle Okunoye

47. Antonina Kloptchenko
48. Juha Kivijärvi
49. Rimvydas Rukš nas
50. Dirk Nowotka
51. Attila Gyenesei

, Ensuring Correctness of Object and Component Systems

, Construction and Evaluation of the Labour Game Method

, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures

, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility

, Iterative and Hierarchical Methods for Codebook Generation

in Vector Quantization

, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems

, Mechanised Formal Reasoning About Modular Programs

, Improving Executive Support in Strategic Scanning with Software

Agent Systems

, New Techniques in Generic Programming : C++ is More Intentional

than Intended

, Reproducing Kernel Splines in the Analysis of Medical

Data

, Safe Language Mechanisms for Modularization and Concurrency

, Stepwise Development of Dependable Systems

, Computer-Assisted Diagnosis of Breast Calcifications

, Dynamic Chest Images Analysis

, Systematic Design of Synchronous Digital Circuits

, Characterization and Modelling of the Cardiorespiratory System

in Sleep-disordered Breathing

, Modeling and Analyzing Software Behavior in UML

, Stepwise Development of Hybrid Systems

, Production Planning in Printed Circuit Board Assembly

, The Post Correspondence Problem for Marked Morphisms

, Commutation Problems on Sets of Words and Formal Power Series

, Information Technology and the Productivity of Managerial

Work

, Managers, Fragmentation of Working Time, and Information

Systems

, Defect Theorems and Infinite Words

, Z -Goethals Codes, Decoding and Designs

, On Relations between Local and Global Periodicity

, Studies on Boolean Functions Related to Quantum Computing

, Measuring and Improving Component-Based Software

Development

, Knowledge Management and Global Diversity - A

Framework to Support Organisations in Developing Countries

, Text Mining Based on the Prototype Matching Method

, Optimization Methods for Clustering

, Formal Development of Concurrent Components

, Periodicity and Unbordered Factors of Words

, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes

4

ë

52. Petteri Kaitovaara
53. Petri Rosendahl
54. Péter Majlender

55. Seppo Virtanen

, Packaging of IT Services – Conceptual and Empirical Studies

, Niho Type Cross-Correlation Functions and Related Equations

, A Normative Approach to Possibility Theory and Soft Decision

Support

, A Framework for Rapid Design and Evaluation of Protocol

Processors

Turku Centre for Computer Science

TUCS Dissertations

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics and Business Administration

Department of Computer Science

Institute for Advanced Management Systems Research

Institute of Information Systems Sciences

�

�

�

�

�

ISBN 952-12-1410-4

ISSN 1239-1883

