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Abstract

Rational choice and revealed preference are important issues in social choice
theory. A choice act is said to be rational if it is based on the optimization
of some preference relation. The revealed preference theory of consumers
was created by Samuelson (1938) and Houthakker (1950). Uzawa (1956),
Arrow (1959) and Sen (1969, 1971) developed an axiomatic theory of re-
vealed preference in an abstract framework independent of budget sets and
demand functions. The results of Uzawa, Arrow, Sen and their followers
were proved under the hypothesis that all non-empty finite sets of alterna-
tives are included in the domain of a choice function. Further on, Richter
(1966), Hansson (1968) and Suzumura (1976) elaborated a generalized the-
ory of revealed preference with no restriction on the domain of the choice
function.

This thesis is concerned with rational choice and revealed preference of
a large class of fuzzy choice functions. Our concept of fuzzy choice function
includes that of Banerjee. In Banerjee’s approach, the range of the fuzzy
choice function consists of fuzzy sets and the domain consists of crisp sets,
in our approach both the domain and the range of the fuzzy choice function
consist of fuzzy sets.

Our contributions can be grouped in five main themes:

–(1) Revealed preference and congruence axioms for fuzzy choice func-
tions;

–(2) Rationality and normality of fuzzy choice functions;

–(3) Consistency conditions for fuzzy choice functions;

–(4) Degree of dominance for fuzzy choice functions;

–(5) Applications.

Our revealed preference results are developed in two directions:

-one generalizes the Uzawa-Arrow-Sen theory

-the second extends the Richter-Hansson-Suzmura theory.

The first direction starts from two hypotheses (H1) and (H2) that extend
to a fuzzy context Uzawa-Arrow-Sen theory. In this framework connections
between weak and strong congruence axioms WFCA, SFCA, weak and
strong revealed preference axioms WAFRP , SAFRP and other properties
of rationality and normality are established. The main result is a generaliza-
tion of the Arrow-Sen theorem. Further consistency conditions Fα, Fβ, Fδ
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which are fuzzy versions of Sen’s conditions α, β, δ are studied. We prove
that a fuzzy choice function satisfies Fα and Fβ if and only if WFCA holds.
Also, Fδ holds if and only if the revealed preference relation R (canonically
associated to the fuzzy choice function) is quasi-transitive. Other consistency
conditions (Fα2, Fγ2, Fβ(+), path independence) are also discussed.

In the second direction rationality and revealed preference theory for
fuzzy choice functions with arbitrary domains are investigated. New axioms
of revealed preference WAFRP ◦, SAFRP ◦, HAFRP are introduced and
relations between these axioms and the previous ones are established.

We obtain two main theorems: (1) Axioms WFCA and WAFRP ◦ are
equivalent. (2) Axioms SFCA and HAFRP are equivalent. We analyze
two concepts of rationality: G-rationality and M -rationality. Another result
generalizes a part of a Richter theorem.

We define a notion of the degree of dominance of an alternative with
respect to an available fuzzy set of alternatives and we introduce new axioms
of congruence for fuzzy choice functions.

If we interpret an available set as a criterion, then we can obtain a ranking
of alternatives (for each criterion) with respect to the act of choice. This
ranking is obtained by using fuzzy choice problems and the instrument by
which it is established is the degree of dominance associated with a fuzzy
choice function. In defining this fuzzy choice function the revealed preference
theory is applied.

Keywords

revealed preference, fuzzy choice function, rationality, normality, consistency,
degree of dominance, decision-making
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Chapter 1

Introduction

The rationality of a consumer is a main subject in classical consumer the-
ory. By Uzawa [61], ”the rationality of a consumer may be described by
postulating that a consumer has a definite preference over all conceivable
commodity bundles and that he chooses those commodity bundles that are
optimal with respect to his preference subject to budgetary constraints”.

Samuelson’s theory of revealed preference expresses the rationality of a
consumer in terms of some preference relation associated with a demand
function. The foundation of this theory is built on The Weak Axiom of Con-
sumer Behavior [44] and on The Strong Axiom of Consumer Behavior [28].
The second axiom assures that the demand function can be reconstructed
from a revealed preference relation.

Following a suggestion of Georgescu-Roegen [23], Uzawa [60] and Arrow
[2] have developed a revealed preference theory in an abstract context, with
no economic interpretation. The work of Uzawa and Arrow was continued
by Sen with his fundamental results concentrated in [49, 48, 50] (see also
[51]). In this approach there is no demand function and the basic elements
are an arbitrary set X of alternatives and a choice function C defined on a
family B of available sets of alternatives (B ⊆ P(X)). By the rationality of
C we mean to find a preference relation R on X such that for any available
S the choice set C(S) coincides with the set of R-greatest elements of S. To
a choice function C there are associated more preference relations, each of
them leading to a different notion of rationality.

In [2] The Weak Axiom of Revealed Preference WARP and The Strong
Axiom of Revealed Preference SARP are formulated. WARP and SARP
are abstract versions of The Weak Axiom of Consumer Behavior and of
The Strong Axiom of Consumer Behavior. The results obtained by Uzawa,
Arrow, Sen and others are based on the hypothesis that the domain of the
choice function C should contain all finite subsets of the universe X; in fact
it suffices to assume that the domain of C contains the pairs and the triples
of alternatives.
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An important contribution to the development of choice function theory
belongs to Richter [41] by introducing the Weak Congruence Axiom WCA
and the Strong Congruence Axiom SCA and by proving the equivalence
between rational and congruous choice functions. For the choice functions
whose domain includes the finite sets of alternatives, Arrow-Sen theorem [2,
49] establishes the equivalence between the congruence axioms WCA, SCA,
the revealed preference axioms WARP , SARP and other four conditions of
rationality. Richter’s result does not use the above–mentioned hypothesis.
Richter’s line was followed by Hansson [27] and Suzumura [54] that created
a revealed preference theory for arbitrary choice functions. They introduced
a new axiom of revealed preference HARP and the equivalence of SCA and
HARP was established.

The first contribution on fuzzy preference relations belongs to Orlovsky
[38] and a vast literature has been dedicated to this subject (for an exhaustive
overview see the monograph [16] as well as [43, 33]). Some authors build
their results on the thesis that social choice is governed by fuzzy preferences
(hence modelled through fuzzy binary relations) but the act of choice is exact
(hence choice functions are crisp). They study choice functions generated
by fuzzy preference relations [5, 6, 7].

Some papers discuss the topic of fuzzy choice functions. Usually fuzzy
choice functions are associated to fuzzy preference relations [58, 43, 33]. In
this case the fuzzy choices are the consequence of the fuzzy preferences.

In [4] Banerjee studies fuzzy choice functions that are no longer defined
by a fuzzy preference relation. In this way the act of choice is primordial
and the preferences are defined by choices. The domain of a Banerjee fuzzy
choice function C is the family of all non-empty subsets of a universal set
X of alternatives and the range of C is a family of non-zero fuzzy subsets
of X. Then any non-empty subset S of X is an available set of alternatives.
We have no information about the alternatives in S except that they can be
chosen.

This thesis targets the study of fuzzy choice functions in a very general
form. In our approach the domain of a choice function will be a family B of
non-zero fuzzy subsets of X; if S ∈ B and x ∈ X then S(x) can be viewed
as the availability degree of the alternative x. In this way the alternatives
are singled out by their degree of availability. As in [4], the range of a fuzzy
choice function contains fuzzy subsets of X. Of course the class of fuzzy
choice functions we consider includes that of Banerjee. Banerjee fuzzifies
only the range of a choice function; we use a fuzzification of both the domain
and the range of a choice function.

Chapter 2 works out the methodological basis by introducing the concept
of paradigm as the theoretical framework within which a theory is created.
In particular, this chapter focuses on the concept of revealed preference
introduced by Samuelson [44] as one of the dominant paradigms of social
choice theory.
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The preliminaries of Chapter 3 introduces some notions and basic facts
on continuous t-norms [11, 26, 31] as well as some notions and results on
classical choice functions [2, 41, 42, 49, 48, 50, 27, 54, 55, 60, 61]. In the last
section of the chapter a fuzzy version of the Szpilrajn theorem is proved.

Chapter 4 has two sections. The first introduces the fuzzy choice func-
tions, the preference relations associated to them and formulates the axioms
of revealed preference WAFRP , SAFRP and congruence WFCA, SFCA.
WAFRP and SAFRP (resp. WFCA and SFCA) are fuzzy versions of the
classical axioms WARP and SARP (resp. WCA and SCA). Following [27],
[54] we also consider the axioms WAFRP ◦ and HAFRP (a fuzzy version of
HARP ). The fuzzy versions of classical axioms establish relationships be-
tween the fuzzy choice functions and various preference relations associated
with them. These relationships reflect the way in which the fuzzy choices
determine vague preferences and how in their turn these preference relations
influence the act of choice. The second section of the chapter deals with
M -rational, G-rational, M -normal and G-normal fuzzy choice functions, ex-
tending some results obtained by Suzumura in [54] for crisp choice functions.

Chapter 5 is devoted to a fuzzy revealed preference theory following the
line introduced by Uzawa, Arrow and Sen. The class of fuzzy choice func-
tions studied in this chapter is subject to hypotheses (H1) and (H2); they
come naturally from the assumption that the domain of choice functions
includes all finite sets of alternatives. In Section 5.1 we study the relations
between the axioms WAFRP , SAFRP , WFCA, SFCA and four other ra-
tionality conditions. The main result (Theorem 5.1) establishes equivalences
or implications between these properties; some are true for an arbitrary con-
tinuous t-norm and other for Gödel or Lukasiewicz t-norms. Section 5.2 is
concerned with consistency conditions Fα and Fβ, which are fuzzy forms of
Sen’s properties α and β [49, 48, 50]. We prove that a fuzzy choice function
satisfies Fα and Fβ if and only if WFCA holds. Section 5.3 deals with con-
dition Fδ, a fuzzy form of Sen’s condition δ. The main result (Theorem 5.3)
asserts that for a normal fuzzy choice function, the fuzzy preference relation
R is quasi-transitive if and only if Fδ holds. Other consistency conditions
(Fα2, Fγ2, Fβ(+), path independence) are discussed in the last section of
the chapter.

Chapter 6 studies the revealed preference properties for arbitrary fuzzy
choice functions ignoring the hypotheses (H1) and (H2). The investiga-
tion follows the trend of the Richter-Hansson-Suzumura theory [41, 27, 54].
In Section 6.1 we prove two main theorems: (1) the axioms WFCA and
WAFRP ◦ are equivalent; (2) the axioms SFCA and HAFRP are equiv-
alent. Section 6.2 is devoted to the analysis of a particular class of fuzzy
choice functions for which the equivalence between WAFRP ◦, G-normality,
M -normality and two other algebraic conditions holds. The last section of
the chapter investigates how the Richter theorem can be extended to a fuzzy
choice function theory.
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In Chapter 7 a notion of degree of dominance of an alternative with
respect to a fuzzy subset is introduced, extending Banerjee’s notion of domi-
nance. In the literature several notions of dominance have been studied, but
with respect to a fuzzy preference relation [33]. The degree of dominance
proposed here refers to the act of choice, and not to a preference relation. In
Section 7.1 we mention briefly the setting in which Banerjee formulated his
concept of dominance. In Section 7.2 a concept of dominance for the type
of fuzzy choice functions studied in this thesis is introduced. We prove that
the degree of dominance of an alternative x ∈ X with respect to a fuzzy
set can be expressed by means of a degree of dominance of an alternative
with respect to fuzzy subsets of type [x, y], y ∈ X. In Section 7.3, new
congruence axioms FC∗1, FC∗2, FC∗3 are formulated based on the degree
of dominance introduced in the previous section and we prove that FC∗1
implies FC∗3 and FC∗2 implies FC∗3, generalizing the results of Banerjee
[4] and Wang [62]. We introduce a new revealed preference axiom WAFRPD

and we prove the equivalence WAFRPD ⇔ FC∗3.
Chapter 8 is devoted to the possible applications of fuzzy choice functions

and the fuzzy revealed preferences associated to them. Three distinct appli-
cations are discussed, showing the importance of the notions introduced in
the previous chapters for decision making processes, by ranking the alterna-
tives according to multiple criteria. The applications try to model economic
situations in which partial information or human subjectivity generate vague
choices and vague preferences. The mathematical modelling of these situ-
ations is done by fuzzy choices examples where criteria are represented by
available fuzzy sets of alternatives. For each case one builds a fuzzy choice
space, determines the fuzzy choice function and computes the degree of dom-
inance of alternatives for each fuzzy subset of the universe of alternatives.
This leads to a ranking of alternatives with respect to each criterion. The
decision-maker will rely on the information obtained in such way.

Chapter 9 contains a summary and the main conclusions of the thesis
and poses some open problems for continued and future research.

This thesis is based on the following original papers:

I I. Georgescu. Rational and congruous fuzzy consumers. In Proceed-
ings of the International Conference on Fuzzy Information Processing
(FIP’03), Beijing, China, Springer Verlag, pages 133–137, 2003.

II I. Georgescu. A fuzzy analysis of a Richter theorem in fuzzy consumers.
In Proceedings of the 3rd International Conference in Fuzzy Logic and
Technology (EUSFLAT 2003), Zittau, Germany, pages 423–428, 2003.

III I. Georgescu. On the axioms of revealed preference in fuzzy consumer
theory. In Journal of Systems Science and Systems Engineering, vol-
ume 13, pages 279–296, 2004.
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IV I. Georgescu. Consistency conditions in fuzzy consumers theory. In
Fundamenta Informaticae, volume 61, pages 223–245, 2004.

V I. Georgescu. Revealed preference, congruence and rationality: a fuzzy
approach. In Fundamenta Informaticae, volume 65, pages 307–328,
2005.

VI I. Georgescu. Degree of dominance and congruence axioms for fuzzy
choice functions. In Fuzzy Sets and Systems, forthcoming.
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Chapter 2

Research Methodology

2.1 Normal-scientific research and paradigms

In his book The Structure of Scientific Revolutions the physicist and philoso-
pher Thomas S. Kuhn [32] calls ”normal science” that scientific research
based on achievements that a community of scientists acknowledges and
that in time forms a basis for further research. In order to be called a
scientific achievement, the research results should be innovative and suffi-
ciently powerful to attract several supporters and to raise new topics to
be explored. In economic science, such scientific achievements include von
Neumann and Morgenstern’s Theory of Games and Economic Behaviour,
Samuelson’s Foundations of Economic Analysis, Dantzig’s simplex algorithm,
Arrow’s contribution to the theory of social choice, etc.

Normal-scientific research does not aim at producing ”scientific revolu-
tions” or major discoveries. Its intention is neither to open new territories
nor to test old beliefs. On the contrary, it is directed towards extending the
knowledge that a major discovery reveals.

Kuhn connects the concept of ”paradigm” to ”normal science”. In its
dictionary meaning, a paradigm is a conceptual framework within which
scientific theories are constructed. In science the appearance of a paradigm
produces a conversion from old beliefs to new ones. This process is called
”a paradigm shift”. The common view is that a paradigm is shared by the
members of a scientific community and conversely, a scientific community
consists of people who share the same paradigm. As a result of a paradigm
shift, [32], p. 7: ”a scientist’s world is qualitatively transformed as well as
quantitatively enriched by fundamental novelties of either fact or theory”.
Kuhn believes that a paradigm is rather produced by young people who are
not so conservative or by people who are new in a scientific field.

Normal-scientific research is based on paradigms and develops the facts
that arise from them. Normal-scientific research is cumulative and it pro-
gresses relatively fast, compared to paradigms that appear as a result of
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scientific revolutions.

The discovery that brings a paradigm is not a usual process. Not all
theories bring paradigms. Many theories pretend that they lead to para-
digms, but only those theories that assimilate experiments are proclaimed
paradigmatic. After a theory has been universally accepted, it will explain
a larger scope of phenomena and a lot of scientific issues will be solved.

According to Kuhn [32], scientists involved in normal science deal with
three types of problems:

a) determination of theoretical facts on which the paradigm is based;

b) determination of real situations that can be set in the theoretical
framework of the paradigm;

c) matching empirical data with theoretical results, in order to clear out
unsolved or ambiguous aspects of the paradigm, i.e. the ”articulation” of a
theory.

Once a scientific theory is built, there will be cases when empirical ob-
servations cannot fit very well in that theory. Empirical observations do
not intend to shatter a theory, but to correct its imperfections; the theory
should be consistent with the empirical evidence. Revisions of the theory are
important because discrepancies between theoretical and empirical evidence
can be found in different parts of that theory, such as the basic assumptions,
or the auxiliary parts.

Kuhn [32] emphasizes the feature of ”puzzle-solver” of the normal science,
as an act of creation that involves commitment and skills. In general the sci-
entists challenged with problems dedicate their time and use their creativity
to find solutions, assuming that they exist, while paradigms are taken for
granted. Normal science-based researchers use already existing techniques
for finding solutions to their research problems [32], p. 96: ”The man who
is striving to solve a problem defined by existing knowledge and technique
is not however, just looking around. He knows what he wants to achieve,
and he designs his instruments and directs his thoughts accordingly”. Nor-
mal science has an expected, anticipated character, unlike paradigms that
emerge when the expectations regarding the nature of the problem and the
tools for solving it prove to be wrong.

2.2 Mathematical methods in economics

The mathematization of a science is the process by which that science has
established its structural and formal aspects.

Mathematics plays an important role in economics. One can say that
economics became a science when it started to be significantly expressed by
mathematical models. In the recent years, economic theory has been built
on solid mathematical ground. A mathematical formulation of economic
concepts confers rigor and clarity of thought, offers generalizations and opens

14



new directions for research. Usually in pure economics the mathematical
formalism is greater than in applied economics. The axiomatic approach
that uses abstract mathematics is beneficial for economic theory because it
gives straight answers free of interpretations. At the same time by its rigor
it leads to strong conclusions that eliminate confusion. The interdisciplinary
potential of mathematics lies not only in the generality of its concepts, but
also in the mode of reasoning that it proposes.

In mathematical modelling there is the tendency to use the mathematical
structures that already exist, but also to ask for new mathematical struc-
tures. This tendency is natural and favorable, since it enriches the logical
consequences of the modelled theory. There might be the risk that the math-
ematical structures that are in use cannot give an accurate description of the
observed reality, and parts of its essential features might be overlooked.

The language of mathematics is meant to translate non-mathematical
concepts into symbols. It has the advantage of simplicity and generality.
The economic models based on mathematics have the characteristic of gen-
erality, in the sense that they comprise a multitude of possible situations.
Sometimes the prose of an economic narration can be very lengthy and im-
precise, therefore a mathematical approach would make it intelligible and
would simplify its understanding. For the non-mathematical economists,
clear explanations of the mathematical conclusions and their possible con-
nections to the real world would be necessary. The difference between the
mathematical economist and the non-mathematical economist is that the
former is likely to look for similarities with other modelled processes, while
the latter is inclined to regard modelled processes as singular and attached
to a context.

A comparison between economics as a social science and natural sciences
is debatable too. Both social sciences and natural sciences build on similar
logical systems with axioms as premises. Natural sciences (especially physics
and chemistry) have the premises (=axioms) strongly based on tests and
observations and for that reason, those premises are taken as laws of nature.
In economics, it is more difficult to formulate the axioms starting only from
empirical evidence. Thus in social sciences the adequacy of the axioms to
the real phenomena is more difficult to measure than in natural sciences.

There are some opinions that new knowledge springs only from pure re-
search and requires a higher degree of intellectual effort than applied science,
that tries to implement already-known results. This idea is erroneous and
superficial, since applied science also gives rise to new knowledge and deals
with several disciplines. The economist Paul A. Samuelson [46] acknowl-
edges the depth of pure mathematics and rejects the idea that the applied
mathematics is inferior in nature; its power is given by its applicability to
real situations. In Samuelson’s opinion, valuable mathematical economics
should have some empirical relevance. Mathematical formulations should
offer systematic explanations for a set of observable data. Samuelson also
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stresses out the responsibility of the mathematical economist towards the
reader, to explain the assumptions and the conclusions in a clear language.

Over time, mathematical theory has contributed to the development of
applied economics. Without a mathematical framework it would not be
possible to test or estimate economic models. In support of this assertion
comes the fact that an important part of the Nobel laureates in economics
are applied mathematicians. We can show how mathematical ideas have
significantly influenced economics. In business, Danzig’s simplex algorithm
changed the system of industrial planning by a better allocation of resources.
In order to derive a consumer’s preferences by observing his choices, Samuel-
son introduced the revealed preference theory. Akerlof showed how asym-
metric information of buyers and sellers about product quality can cause an
”adverse selection” of low-quality products. Mathematical methods in eco-
nomics include: linear programming, fixed-point theorems, control theory,
calculus, game theory or even Arrow’s theory of rational choice.

2.3 The construction of theorems and the building

of valid theories

In its incipient stage, each science targets to accumulate particular data, to
analyze and classify them and to formulate some hypotheses on the connec-
tions between these data. Without a systematization and logical unity, the
progress of the science is not satisfactory. Therefore, in its mature stage, the
science gets organized in coherent systems of ideas called scientific theories.

Generally speaking, a scientific theory is a body of knowledge coherently
organized, which describes the real world phenomena. According to the
philosopher and physicist Mario Bunge [10],p. 381: ”Such systems, charac-
terized by the relation of deducibility holding among some of its formulas,
are called hypothetico–deductive systems, models, or simply theories”.

The same author claims that the fundamental objectives of a scientific
theory are [10]:

(i) to systematize the knowledge by establishing logical relations between
previously non-connected elements;

(ii) to explain facts by means of systems of hypotheses that consist of
propositions expressing the facts;

(iii) to enlarge the knowledge by deriving new propositions;

(iv) to increase the testability of hypotheses.

Scientific theories progress in four stages: the direct observation, the
inductive stage, the deductive stage and the formalization of the theory.

The direct observation is concerned with searching for singular facts on
phenomena. These facts are collected and grouped; by their analysis hy-
potheses on the laws that govern these phenomena are derived. The collec-
tion of data and the investigation of the relationships among the hypotheses
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give rise to new hypotheses and generalizations, configured in systems of hy-
potheses [10]. The goals of the research are figured out, the observed prop-
erties are verified and experiments leading to new knowledge are conceived.
The inductive stage begins and also elements that belong to deduction ap-
pear.

The inductive reasoning moves from specific to general and characterizes
a theory that is derived from empirical observations or by experience. The
deductive reasoning moves from general to specific and is characteristic for
those theories which are derived from assumptions or axioms. The induc-
tive reasoning is more exploratory, while the deductive reasoning narrows
down the study to hypothesis testing. Although distinctive, the two types
of reasoning intertwine in a scientific theory.

After an inductive itinerary, a scientific theory aspires to a form of de-
ductive organization. This confers to the science an intelligible and unifying
individuality. The results obtained by deductive reasoning can be applied
to a multitude of concrete situations. The deductive reasoning assures the
certitude of the proofs; by standardization it produces economy in the effort
of thinking.

The organization of science in deductive theories has been influenced
by the evolution of mathematics and its expansion of its methods in other
sciences.

The structure of deductive theories is connected to the notions of axiom
and proof. An axiomatic system should coherently provide a body of knowl-
edge. The justification of choosing axioms is different from the construction
of the theory. The confrontation of the axiomatized theory and the body of
knowledge concretely obtained does not say anything about what happens
inside the theory, but validates more or less the choice of axioms.

The axiomatization of a deductive theory assumes the choice of some
primitive concepts on whose basis all the notions of the theory are defined;
they are called derived concepts.

The manner in which the derived concepts are obtained from the prim-
itive concepts is specified by well established rules of construction. The set
of propositions is consequently obtained.

A set of propositions called axioms are chosen and the rules of deduction
are specified. By rules of deduction from axioms the valid propositions or
the theorems of that theory are derived.

The formalization is the last stage in the evolution of the theory. To
the propositions of the theory formulated in natural language are assigned
expressions in a formal language. One starts with an alphabet composed of
a list of primitive symbols. The finite strings of symbols are called words. By
rules, symbols from the set of the words are combined to form the expressions
of the language. They will be the formalized expression of the propositions
of the theory.

When the language has been built, its deductive structure is defined.
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A list of axioms and a list of deduction rules are given. The strings of
expressions obtained from axioms and by applying the deduction rules are
called formal proofs. The expressions situated at the end of a formal proof
are called formal theorems.

Formal proofs and formal theorems are fundamental elements in the con-
struction of a formal system.

The theory building process described in this section is the one that I
have used in my research.

2.4 Revealed preference theory: a paradigm

One of the dominant paradigms of social choice is the revealed preference
theory. The classical economic theory has as a basic assumption the ra-
tionality of the consumer behaviour, as an optimizing behavior subject to
some budgetary constraints. Revealed preference is a concept introduced
by Samuelson in 1938, in the attempt to postulate the rationality of a con-
sumer’s behaviour in terms of a preference relation associated to a demand
function.

The observable variables regarding the behaviour of a consumer are
prices, quantities purchased and income, while the unobservable variables
are his preferences. In revealed preference theory first choices are given,
then preferences are defined by choices. The consumer reveals by choices
his/her preferences, hence the term revealed preferences [45]:

”By comparing the costs of different combinations of goods at different
relative price situations, we can infer whether a given batch of goods is pre-
ferred to another batch; the individual guinea-pig, by his market behaviour,
reveals his preference pattern - if there is such a consistent pattern”.

Unlike the results of his predecessors Marshall and Hicks, who proposed a
parametric analysis of the demand functions, Samuelson’s theory of revealed
preference was meant to construct a theory of demand functions based only
on observable variables. Samuelson’s non-parametric approach of the the-
ory of demand functions was less subject to errors than the Hicksian and
Marshallian parametric approaches to the same theory.

The paradigm of revealed preference theory is emphasized by Suzumura
[57], p. 22:

”If the choice behaviour of an agent is guided systematically by some
underlying preferences, that fact will infallibly reveal itself in his actual
choices, so that by observing his choices under alternative specifications of
environmental conditions, we may possibly reconstruct his underlying pref-
erences. This was indeed the original insight of Samuelson that propelled
him to open the door to the splendid edifice of revealed preference theory
for a competitive consumer.”

Samuelson introduced the revealed preference relation R as follows:
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In terms of vectors of prices and chosen bundles (pt, xt), we say that
commodity bundle x0 is revealed preferred to commodity bundle x1 and
write x0Rx1 if x0 is chosen when x1 is available.

We can explain this definition by the fact that if p0x0 ≥ p0x1, the con-
sumer can buy commodity bundle x1 at price p0 but he has chosen commod-
ity bundle x0 instead. If expenditures p0x0 < p0x1 then we say that x0 is
not revealed preferred to x1.

Samuelson’s theory is based on the Weak Axiom of Consumer Behaviour:

If x0 is revealed preferred to x1 then x1 is not revealed preferred to x0.

In terms of relation R, the Weak Axiom of Consumer Behaviour is briefly
written:

If x0Rx1 then not x1Rx0.

Samuelson’s results in revealed preference theory could be applied for
two commodity bundles. Houthakker formulated a stronger form, called
the Strong Axiom of Consumer Behaviour, managing to prove Samuelson’s
results for an arbitrary number of commodity bundles. In terms of quantities
and prices, the Strong Axiom of Consumer Behaviour can be formulated

If p0x0 ≥ p0x1, p1x1 ≥ p1x2, . . ., pn−1xn−1 ≥ pn−1xn then pnx0 > pnxn.

In terms of commodity bundles, it can be formulated:

If commodity bundle x0 is revealed preferred to commodity bundle x1,
commodity bundle x1 is revealed preferred to commodity bundle x2, . . ., and
commodity bundle xn−1 is revealed preferred to commodity bundle xn then
xn is not revealed preferred to x0, i.e.

If x0Rx1, x1Rx2,..., xn−1Rxn then not xnRx0.

The Strong Axiom of Consumer Behaviour implies the Weak Axiom of
Consumer Behaviour. The main difference between strong and weak axioms
of consumer behaviour is that the strong axiom not only makes impossible
the existence of two choices that are both revealed preferred to one another,
but also makes impossible the existence of sequences of choices that finally
lead to two choices that are each revealed preferred to one another.

From these results, the axiomatization of consumer theory using a set-
theoretic approach began.

Uzawa and Arrow enlarged Samuelson’s theory of revealed preference,
introducing in an abstract setting the concept of choice function. Their ax-
iomatic approach started from the assumption that the domain of the choice
function contains all finite subsets of a universal set of alternatives [2]: ”It is
the suggestion [...] that the demand-function point of view would be greatly
simplified if the range over which the choice functions are considered to be
determined is broadened to include all finite sets. Indeed, as Georgescu–
Roegen has remarked, the intuitive justification of such assumptions as the
Weak Axiom of Revealed Preference has no relation to the special form of
the budget constraint sets but is based rather on implicit consideration of
two–element sets”. Their approach goes beyond the study of demand func-
tion and lacks any economic interpretation. The underlying structure is the
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choice space, a pair 〈X,B〉 made of a non-empty set X (whose elements are
interpreted as alternatives) and a non-empty family of non-empty subsets of
X (available sets). This is a level at which the revealed preference theory
is developed as a deductive system: from basic concepts and axioms, by
deductions, the whole theory is built.

Uzawa and Arrow introduced the weak and strong axioms of revealed
preference WARP , SARP , abstract versions of weak and strong axioms of
consumer behaviour. Sen noticed that Arrow’s results can be reduced to the
study of the choice functions based on two-element and three-element sets
of alternatives. An important step in the study of the theory of rational
choice was taken by Richter, Hansson and Suzumura. Richter was the first
to formulate the strong congruence axiom SCA and proved the equivalence
between a rational and congruous consumer. This direction assumed that
the domain of a choice function consists of an arbitrary family of non-empty
subsets of a universe of alternatives. Later Sen introduced a weaker ver-
sion of SCA, the weak congruence axiom WCA and proved the equivalence
between the axioms of revealed preference and congruence and other four
conditions of rationality. The current viewpoint is that the theory of general
domains, as the Richter-Hansson-Suzumura approach is called, is the most
relevant for most choice situations. Suzumura maintains ([57], p. 27) that
under the assumption that the domain of the choice functions is a non-empty
collection of non-empty subsets of a universe of alternatives X, ”the theory of
rational choice functions developed on this minimal domain condition applies
to whatever choice situations we may care to specify: Choice of consumers
in a competitive or noncompetitive market, of government bureaucracies, of
voters, and of whatsoever”.

Besides rationality, consistency conditions are another way of expressing
the coherency of the act of choice. They describe the choice behaviour when
the available set of alternatives expands or contracts. Consistency conditions
are related to the lattice operations of feasible sets (union and intersection).
We distinguish contraction consistency conditions and expansion consistency
conditions. The first ones give ”information on what elements are chosen
from subsets from information on what elements are chosen from supersets.”
The second ones give information on ”information on what elements are
chosen from supersets from information on what elements are chosen from
subsets”. ([29], pp 30-31).

Human preferences are many times ambiguous and have different degrees
of intensity. An explanation for this would be insufficient information or
human subjectivity. For this reason instead of saying that an alternative x
is better than an alternative y, it is better to evaluate the degree of preference
of x to y; this will always be a number in [0, 1]. The idea of mathematical
modelling of vague preferences is obvious: given a set X of alternatives, the
preference will be represented by a binary fuzzy relation on X.

Even if the preference is ambiguous, the choice can be either exact or
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vague. When the choice is exact, it will be mathematically described by
a crisp choice function on X: from any available set S ⊆ X a non-empty
crisp subset is selected. This viewpoint has been adopted by several authors
(see [33] for a detailed discussion). Various crisp choice functions have been
proposed based on a fuzzy preference relation. The most studied is Orlovsky
choice function.

There are cases (negotiations on electronic marketplaces) when the de-
cision maker cannot make a definitive choice. In this process of decision
making, the choice is potential [4]:

”For instance, a decision-maker, faced with the problem of deciding
whether not to choose an alternative x from a set of alternatives A, may
feel that he/she is inclined to the extent 0.8 (on, say, a scale from 0 to 1)
toward choosing it. Moreover, this fuzziness of choice is, at least potentially,
observable. For instance, the decision-maker in the example will be able to
tell an interviewer the degree of his/her inclinations, or demonstrate these
inclinations to an observer by the degree of eagerness or enthusiasm which
he/she displays. Hence, while there may be problems of estimation, fuzzy
choice functions are, in theory, observable.”

In this stage for an available set S, one cannot say if x ∈ S is chosen, but
one can evaluate by the real number C(S)(x) ∈ [0, 1] ”the degree to which x
can be chosen”. The choice function then assigns a fuzzy subset of X to any
available set S. This approach belongs to Banerjee [4] (see also [64], [62]).

In this thesis we enlarge Banerjee’s framework introducing a new concept:
the degree of availability of an alternative. Here the available sets are fuzzy
subsets of the universe of alternatives X. If S is such an available set and
x ∈ X then S(x) is the availability degree of x. In interpretation the available
sets correspond to some criteria or attributes of the alternatives. To an
available set S (which is a fuzzy subset of X) the choice function will assign
a non-zero fuzzy subset C(S) of X such that C(S)(x) ≤ S(x) for any x ∈ X.
If we identify the crisp subsets of X with their characteristic functions we
will see that our framework extends Banerjee’s. The pair made by the set
of alternatives and the family of available sets is called fuzzy choice space
and represents the mathematical structure in which this thesis develops the
theory of fuzzy choice functions.

As in classic economic theory, the relationship between fuzzy preferences
and fuzzy choices is studied twofold. To a fuzzy choice function several fuzzy
preference relations are attached and, conversely, there are several ways to
define a fuzzy choice function from a fuzzy preference relation. The funda-
mental concepts of classic economic theory (rationality, normality, revealed
preference, consistency etc) appear exactly in the context of this twofold
relation.

Fuzzy choice functions reflect vague choices: their behaviour ought to be
subject to some rationality conditions. The rationality of fuzzy choice func-
tions is a larger concept than the rationality of crisp choice functions. Similar
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to the crisp case, the rationality of fuzzy choice functions expresses a prin-
ciple of optimality through fuzzy preference relations. One can define two
cases of fuzzy rationality: G-rationality (the choice of the greatest elements)
and M -rationality (the choice of the maximal elements). Related to the
properties of the fuzzy preference relation, there exist transitive-rationality,
reflexive-rationality, etc.

The fuzzy revealed preference represents the study of the rationality of
fuzzy choice functions through certain preference relations canonically as-
sociated to them. The axioms of revealed preference reflect a rational be-
haviour. WAFRP and SAFRP are fuzzy versions of WARP and SARP .
Congruence axioms WFCA, SFCA (fuzzy versions of axioms WCA, SCA)
are other conditions that adjust the fuzzy choices.

The connections between rationality, normality, revealed preference and
congruence axioms are the main objective of this thesis. In relation with
them various consistency conditions are also studied.

Several authors have studied the problem of selecting the alternatives
based on a fuzzy preference relation ([5, 6, 16, 33, 38, 43] etc). In this matter
they analyzed various concepts of dominance expressed in terms of the fuzzy
preference relation (for an exhaustive overview on this topic see [16, 33, 43]).
In [4, 62] a concept of dominance directly related to a (Banerjee) fuzzy choice
function and not to a fuzzy preference relation is investigated. This type of
dominance allows for the formulation of new axioms of congruence used in
the development of fuzzy revealed preference theory in [4, 62].

In this thesis we have defined the degree of dominance of an alternative
x with respect to an available set S. This notion refines the dominance in
[4, 62]. If we interpret the available set S as a criterion in decision making,
the degree of dominance is important for obtaining a hierarchy of alternatives
with respect to that criterion. Banerjee’s notion of dominance determines
only the dominant alternatives. The degree of dominance is useful for the
ranking of all alternatives according to each criterion of choice. This type
of multicriterial ranking of alternatives provides more complete information
for the decision–makers. In this way the alternatives are ordered by choices
(at least by potential choices) and not by preferences.

The transition from crisp revealed preference to fuzzy revealed preference
is not a simple translation. Many times classic concepts and properties lead
to several fuzzy versions (e. g. axioms WAFRP , WAFRP ◦ are distinct
fuzzy versions of the classic axiom WAFRP ). From these versions we must
choose those that reflect more faithfully this topic (vague preferences and
choices) and that allow for well-founded mathematical constructions.

In formulating the notions, axioms and theorems we used the framework
of the residuated lattice structure of [0, 1] (induced by an arbitrary contin-
uous t-norm). The proofs of the results are based on the properties of the
residuum associated to a t-norm. By this, at the level of formulation and
argument, the use of fuzzy logic is more transparent.
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Chapter 3

Preliminaries

In the first section of this chapter we present notions and basic facts on
continuous t-norms and fuzzy relations. As is known, a continuous t-norm
defines a residuum and a negation on [0, 1]. The structure of residuated lat-
tice of [0, 1] allows the development of a fuzzy set theory for each continuous
t-norm. The main continuous t-norms are Lukasiewicz t-norm, Gödel t-norm
and product t-norm [26, 31]. Some results of this thesis will be established
for a continuous t-norm and others for one of the three t-norms from above,
especially for Gödel t-norm.

Section 3.2 outlines some notions in classical choice function theory. We
recall several preference relations associated to a classical choice function
and we state the congruence axioms WCA, SCA [41], revealed preference
axioms WARP , SARP [2, 49, 48, 50] in the form imposed by Arrow [2] as
well as consistency conditions α, β, γ, δ [49]. We sum up classical results
among which Arrow-Sen theorem [2, 49] and Richter theorem [41]. We assert
the equivalent forms of axioms WARP , SARP in terms of C-connected
sequences and Hansson’s revealed preference axiom HARP [27]. The section
ends with two theorems belonging to Hansson and Suzumura [27, 54].

In Section 3.3 we formulate and prove a fuzzy version of Szpilrajn theorem
that asserts that for a strict ∗-order R on a set X there exists a total strict
∗-order R∗ on X that includes R. This theorem will be later used for a fuzzy
analysis of Richter theorem [41] in consumer theory.

The results of Section 3.3 are based on our paper [17].

3.1 Continuous t-norms and fuzzy relations

The notion of a triagular norm , briefly a t-norm, was introduced by Menger
[36] as a generalization of the triangular inequality of a metric. The current
notion of the t-norm belongs to Schweizer and Sklar [47]. The t-norm models
the intersection of two fuzzy sets and the conjunction in fuzzy logic [16, 26,
11]. There is a vast literature dedicated to t-norms and to their applications
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to fuzzy set theory [11, 16, 26, 31].
In this paragraph we shall recall some notions and properties of t-norms.

The basic reference for fuzzy preference relations is the monograph [16]. We
shall present next some notions and results of fuzzy relations theory with
regard to a continuous t-norm.

Let [0, 1] be the unit interval. For any a, b ∈ [0, 1] we shall denote a∨ b =
max (a, b) and a∧ b = min (a, b). More generally, for any {ai}i∈I ⊆ [0, 1] we
denote

(3.1.1)
∨

i∈I

ai = sup {ai|i ∈ I};
∧

i∈I

ai = inf {ai|i ∈ I}.

Then ([0, 1],∨,∧, 0, 1) becomes a bounded distributive lattice. Further-
more, [0, 1] is a distributive complete lattice.

A triangular norm (=t-norm) is a binary operation ∗ on [0, 1] such that
for any a, b, c ∈ [0, 1] the following axioms are satisfied:

(T1) a ∗ b = b ∗ a;
(T2) a ∗ (b ∗ c) = (a ∗ b) ∗ c;
(T3) If a ≤ b then a ∗ c ≤ b ∗ c;
(T4) a ∗ 1 = a.
An immediate consequence is that a ∗ 0 = 0 for any a ∈ [0, 1].
A t-norm ∗ : [0, 1]2 → [0, 1] is said to be continuous if it is continuous as

a function on the unit interval. With any continuous t-norm ∗ we associate
a new binary operation → on [0, 1]:

(3.1.2) a → b =
∨
{c ∈ [0, 1]|a ∗ c ≤ b}.

The operation → is called the residuum or the implication associated
with ∗.

We list here the most well-known continuous t-norms and their corre-
sponding residua:

Lukasiewicz t-norm
a ∗L b = max (0, a + b − 1); a →L b = min (1, 1 − a + b)

Gödel t-norm

a ∗G b = min (a, b); a →G b =

{
1 if a ≤ b
b if a > b

Product t-norm

a ∗P b = ab; a →P b =

{
1 if a ≤ b

b/a if a > b
Let ∗ be a continuous t-norm.
The properties mentioned in the following three lemmas reflect the main

connections between the t-norm ∗ and its residuum →.

Lemma 3.1 [11, 26] For any a, b, c ∈ [0, 1] the following properties hold:

(1) a ∗ b ≤ c ⇔ a ≤ b → c;

(2) a ∗ (a → b) = a ∧ b;

(3) a ∗ b ≤ a; a ∗ b ≤ b;
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(4) b ≤ a → b;

(5) a ≤ b ⇔ a → b = 1;

(6) a = 1 → a;

(7) 1 = a → a;

(8) 1 = a → 1;

(9) a ∗ (b ∨ c) = (a ∗ b) ∨ (a ∗ c);

(10) a ≤ b implies b → c ≤ a → c and c → a ≤ c → b;

(11) a → (b → c) = b → (a → c) = (a ∗ b) → c;

(12) (a → b) ∗ (b → c) ≤ a → c.

In accordance with Lemma 3.1 (1), ([0, 1],∨,∧, ∗,→, 0, 1) is a residuated
lattice (see [11, 26]).

Lemma 3.2 [11, 26] For any {ai}i∈I , {bi}i∈I ⊆ [0, 1] and a ∈ [0, 1] the
following properties hold:

(1) a → (
∧

i∈I

ai) =
∧

i∈I

(a → ai);

(2) (
∨

i∈I

ai) → a =
∧

i∈I

(ai → a);

(3)
∨

i∈I

(ai → a) ≤ (
∧

i∈I

ai) → a;

(4)
∨

i∈I

(a → ai) ≤ a → (
∨

i∈I

ai);

(5) (
∨

i∈I

ai) ∗ a =
∨

i∈I

(ai ∗ a);

(6) (
∨

i∈I

ai) ∗ (
∨

j∈I

bj) =
∨

i,j∈I

(ai ∗ bj);

(7) (
∧

i∈I

ai) ∗ (
∧

j∈I

bj) ≤
∧

i,j∈I

(ai ∗ bj).

The negation operation ¬ associated with a continuous t-norm ∗ is defined
by

(3.1.3) ¬a = a → 0 =
∨
{c ∈ [0, 1]|a ∗ c = 0}.

Recall the negations associated with Lukasiewicz, Gödel and product
t-norms ([26] p. 31):
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Lukasiewicz t-norm
¬a = 1 − a

Gödel and product t-norms

¬a =

{
1 if a = 0
0 if a > 0

Lemma 3.3 [11, 26] For any a, b, c ∈ [0, 1] the following properties hold:

(1) a ≤ ¬b ⇔ a ∗ b = 0;

(2) a ∗ ¬a = 0;

(3) a ≤ ¬¬a;

(4) ¬0 = 1, ¬1 = 0;

(5) ¬a = ¬¬¬a;

(6) a → b ≤ ¬b → ¬a;

(7) a ≤ b ⇒ ¬b ≤ ¬a;

(8) ¬(a ∨ b) = ¬a ∧ ¬b; ¬(a ∧ b) = ¬a ∨ ¬b.

The biresiduum ↔ of a continuous t-norm ∗ is defined by
(3.1.4) a ↔ b = (a → b) ∧ (b → a)
for any a, b ∈ [0, 1].
Let X be a non-empty set and P(X) the power set of X. For any A ⊆ X

the characteristic function χA of A is defined by

(3.1.5) χA(x) =

{
1 if x ∈ A
0 if x 6∈ A.

Remark 3.1 The assignment A 7→ χA defines a bijection between P(X)
and {0, 1}X ; in fact this bijection is a Boolean isomorphism.

A fuzzy subset of X is a function A : X → [0, 1]. If x ∈ X then A(x) is
called the degree of membership of x in A. Let us denote by F(X) the set
of fuzzy subsets of X. By identifying a subset A of X with its characteristic
function χA (cf. Remark 3.1), P(X) can be considered a subset of F(X).

For any x1, . . . , xn ∈ X, we shall denote by [x1, . . . , xn] the characteristic
function of the set {x1, . . . , xn}:

[x1, . . . , xn](y) =

{
1 if y ∈ {x1, . . . , xn}
0 otherwise.

If A, B ∈ F(X) we denote A ⊆ B if A(x) ≤ B(x) for each x ∈ X. For
any A, B ∈ F(X) we define the fuzzy subsets A∪B, A∩B, A∗B and A → B
by

(3.1.6) (A ∪ B)(x) = A(x) ∨ B(x); (A ∩ B)(x) = A(x) ∧ B(x);
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(3.1.7) (A ∗ B)(x) = A(x) ∗ B(x); (A → B)(x) = A(x) → B(x)

for each x ∈ X. Let {Ai}i∈I ⊆ F(X); we define (
⋃

i∈I

Ai(x)), (
⋂

i∈I

Ai(x))

by

(3.1.8) (
⋃

i∈I

Ai(x))(x) =
∨

i∈I

Ai(x); (
⋂

i∈I

Ai(x))(x) =
∧

i∈I

Ai(x)

for any x ∈ X.

Remark 3.2 By (3.1.6) and (3.1.7) we obtain four operations ∪, ∩, ∗ and
→ on F(X). Denote by 0 and 1 the constant functions 0(x) = x, 1(x) = 1
for each x ∈ X. Then (F(X),

⋃
,
⋂

, ∗,→,0,1) is a complete residuated
lattice (see [11], Theorem 3.6, p. 80).

A fuzzy subset A of X is non-zero if A(x) 6= 0 for some x ∈ X; A is
normal if A(x) = 1 for some x ∈ X. The support of A ∈ F(X) is defined by
supp A = {x ∈ X|A(x) > 0}.

If A, B ∈ F(X) then we denote

(3.1.9) I(A, B) =
∧

x∈X

(A(x) → B(x));

(3.1.10) E(A, B) =
∧

x∈X

(A(x) ↔ B(x)).

I(A, B) is called the subsethood degree of A in B and E(A, B) the degree
of equality of A and B. Intuitively I(A, B) expresses the truth value of the
statement ”A is included in B.” and E(A, B) expresses the truth value of
the statement ”A and B contain the same elements.”(see [11], p. 82 and p.
85).

Example 3.1 ([11], p. 83) For Lukasiewicz, Gödel and product t-norms we
have

I(A, B) =
∧
{1 − A(x) + B(x)|x ∈ X, A(x) > B(x)} (Lukasiewicz)

I(A, B) =
∧
{B(x)|x ∈ X, A(x) > B(x)} (Gödel)

I(A, B) =
∧
{B(x)/A(x)|x ∈ X, A(x) > B(x)} (product)

Example 3.2 ([11], p. 85) For Lukasiewicz, Gödel and product t-norms we
have

E(A, B) =
∧
{1 − |A(x) − B(x)||x ∈ X} (Lukasiewicz)

E(A, B) =
∧
{A(x) ∧ B(x)|x ∈ X, A(x) 6= B(x)} (Gödel)

E(A, B) =
∧
{A(x)/B(x) ∧ B(x)/A(x)|x ∈ X} (product)

Lemma 3.4 ([11], p. 84-85) For any A, B, C ∈ F(X) we have

(i) I(A, A) = 1; E(A, A) = 1;

(ii) I(A, B) = 1 iff A ⊆ B;

(iii) E(A, B) = 1 iff A = B;
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(iv) E(A, B) = E(B, A);

(v) I(A, B) ∗ I(B, C) ≤ I(A, C);

(vi) E(A, B) ∗ E(B, C) ≤ E(A, C).

Besides I(., .) there exist plenty of indicators expressing the inclusion
of one set into another. A large class of such indicators was axiomatically
developed by Sinha and Dougherty [53, 13].

Now we fix a continuous t-norm ∗.
A fuzzy relation on X is a fuzzy subset of X2, i.e. a function R : X2 →

[0, 1].

Fuzzy relations model vague preferences: if x, y ∈ X are two alternatives
then the real number R(x, y) shows the degree to which x is preferred to
y. In other words, R(x, y) is the degree to which x is ”at least as good as”
alternative y.

The asymmetric part of R is the fuzzy relation PR on X defined by
PR(x, y) = R(x, y) ∗ ¬R(y, x) for all x, y ∈ X (here ¬ is the negation as-
sociated to t-norm ∗). The number PR(x, y) shows the degree to which
alternative x is strictly preferred to alternative y.

If R, Q are two fuzzy relations on X then Q is an extension of R if R ⊆ Q.

The fuzzy relation R on X is said to be:

reflexive if R(x, x) = 1 for any x ∈ X;

irreflexive if R(x, x) = 0 for each x ∈ X;

∗-antisymmetric if R(x, y) ∗ R(y, x) = 0 for all distinct x, y ∈ X;

∗-transitive if R(x, y) ∗ R(y, z) ≤ R(x, z) for all x, y, z ∈ X;

total if R(x, y) > 0 or R(y, x) > 0 for all distinct x, y ∈ X;

strongly total if R(x, y) = 1 or R(y, x) = 1 for all distinct x, y ∈ X;

strongly complete if it is strongly total and reflexive.

If R, Q are two fuzzy relations on X then the product (composition) R◦Q
is the fuzzy relation defined by

(3.1.11) (R ◦ Q)(x, y) =
∨

z∈X

(R(x, z) ∗ Q(z, y))

for all x, y ∈ X. We shall use the notation Rn = R ◦ R ◦ . . . ◦ R
︸ ︷︷ ︸

n−times

.

The product ◦ is associative but not commutative.

Obviously R is ∗-transitive iff R2 ⊆ R. Any intersection of ∗-transitive
fuzzy relations is ∗-transitive. Thus the ∗-transitive closure T (R) of a fuzzy
relation R is defined to be the intersection of all ∗-transitive fuzzy relations
on X including R. Of course R is ∗-transitive iff T (R) = R. Throughout this
thesis ”transitive” (resp. ”transitive closure”) means ”∧-transitive” (resp.
”∧-transitive closure”).

The following lemma is well-known (see e.g. [16, 3]):

Lemma 3.5 If R is a fuzzy relation on X then for all x, y ∈ X
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T (R)(x, y) = R(x, y) ∨
∞∨

n=1

∨

t1,...,tn∈X

(R(x, t1) ∗ . . . ∗ R(tn, y)).

Remark 3.3 In this section we have seen that any continuous t-norm de-
fines a structure of complete residuated lattice on the set F(X) of fuzzy sub-
sets of X. If we change the t-norm ∗ we obtain other operations on F(X),
hence another structure of residuated lattice. In conclusion we can say that
for any continuous t-norm there exists a ”theory of fuzzy sets” in which we
can reflect (more or less adequately) vague phenomena.

3.2 Crisp choice functions

A choice problem resides in:

a) a universe X of alternatives under the control of an agent;

b) a non-empty family B of non-empty subsets of X; a member S of B
represents ”the set of available states that could possible be presented to the
agent under the appropriate specification of the environmental conditions”
[57], p. 20;

c) a mechanism by which the agent may choose from an available set S a
subset C(S); it is necessary to impose the condition that at least an element
of S has to be chosen, therefore C(S) will be always non-empty.

More often, the mechanism of choice has an underlying preference rela-
tion on X.

Let X be a non-empty universe of alternatives and B a non-empty subset
of P(X) \ {∅}. A set S ∈ B can be taken as an available set of alternatives.
The pair 〈X,B〉 will be called a choice space. In the terminology of consumer
theory the pair 〈X,B〉 is called a budget space; the elements of X are called
bundles and the sets of B are called budgets.

In this framework we can formulate a choice problem: given S ∈ B choose
one or more elements in S; we can relate it to the notion of choice function
or consumer.

A choice function or a consumer on 〈X,B〉 is a function C : B → P(X)
which to any S ∈ B assigns a non-empty subset C(S) of S; C(S) can be
taken as the set of bundles or alternatives chosen subject to S; it will be
called the choice set of S.

A significant part of choice function theory [2, 49, 48, 50] has been de-
veloped under the following hypothesis:

(H) B contains all non-empty finite subsets of X.

A preference relation Q on X is a binary relation Q on X; for x, y ∈ X,
if (x, y) ∈ Q then we say that the alternative x is preferred to the alternative
y. A regular preference relation on X (or ordering in Sen’s terminology [49])
is a preference relation on X which is reflexive, transitive and total.

To a preference relation Q we assign two relations PQ and IQ:
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(3.2.1) PQ = {(x, y) ∈ X2|(x, y) ∈ Q and (y, x) /∈ Q}
(3.2.2) IQ = {(x, y) ∈ X2|(x, y) ∈ Q and (y, x) ∈ Q}
PQ (resp. IQ) is called the strict preference relation (resp. the indiffer-

ence relation) associated with Q. If (x, y) ∈ PQ then x is preferred to y and
y is not preferred to x. In this case we say that alternative x is strictly pre-
ferred to alternative y. If (x, y) ∈ IQ then alternatives x and y are equally
preferred.

The act of choice is connected to a preference relation. The choice func-
tions are related to preference relations in two ways.

In the first case to a preference relation on the set of alternatives a choice
function is assigned. The properties of the preference relation will influence
the behaviour of the choice function.

The second case follows a converse route. To a choice function a pref-
erence relation (or more) is assigned. One investigates how this preference
relation reflects the act of choice.

In the first case there exists a correspondence from preference relations
to choice functions, while in the second case the correspondence is inverse.

A significant part of the theory of choice functions is devoted to those
correspondences. The concept of rational choice function appears as a result
of the first construction. A choice function is rational if it is derived from
a preference relation Q and if the chosen alternatives verify a criterion of
Q-optimality. [54] considers two expressions of Q-optimality: Q-maximality
and Q-greatestness. The criteria of optimality give a first classification of
rationality (in this thesis G-rationality and M -rationality are considered).
The second way to classify rationality of the choice functions is according to
the properties of the preference relation (transitivity, reflexivity etc.)

A special case of rationality is normality. A choice function C is normal
if it is rationalizable by a preference relation canonically associated to C.
Normality reconstructs the choice function from the associated preference
relation.

If S ∈ B and Q is a preference relation on X then we define

(3.2.3) M(S, Q) = {x ∈ S|(y, x) /∈ PQ for all y ∈ S}
(3.2.4) G(S, Q) = {x ∈ S|(x, y) ∈ Q for all y ∈ S}
M(S, Q) is the set of Q-maximal elements in S and G(S, Q) is the set of

Q-greatest elements in S.

For the interpretation of the notions of Q-maximality and Q-greatestness
see e.g. [54]: An alternative x in an available set S is ”said to be Q-maximal
in S if there exists no y in S which is strictly preferred to x in terms of Q”.
An alternative x in an available set S is ”said to be Q-greatest in S if, for
all y in S, x is at least as preferable as y in terms of Q”.

For a fixed preference relation Q we consider the functions

MQ : B → P(X); GQ : B → P(X)

defined by MQ(S) = M(S, Q) and GQ(S) = G(S, Q) for any S ∈ B.
In general MQ and GQ are not choice functions; this is assured by natural
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conditions on Q.
Let C : B → P(X) be a choice function. Following [49] we shall present

some preference relations generated by C:
(3.2.5) R = {(x, y)|x ∈ C(S) and y ∈ S for some S ∈ B}
(3.2.6) P = {(x, y)|(x, y) ∈ R and (y, x) 6∈ R}
(3.2.7) I = IR = {(x, y)|(x, y) ∈ R and (y, x) ∈ R}
(3.2.8) P̃ = {(x, y)|x ∈ C(S) and y ∈ S − C(S) for some S ∈ B}
(3.2.9) R̃ = {(x, y)|(y, x) 6∈ P̃}
(3.2.10) Ĩ = {(x, y)|(x, y) ∈ R̃ and (y, x) ∈ R̃}
Assuming that hypothesis (H) holds we also define
(3.2.11) R̄ = {(x, y)|x ∈ C({x, y})}
(3.2.12) P̄ = PR̄ = {(x, y)|(x, y) ∈ R̄ and (y, x) 6∈ R̄}
(3.2.13) Ī = {(x, y)|(x, y) ∈ R̄ and (y, x) ∈ R̄}
We shall denote by W (resp. P ∗) the transitive closure of R (resp. P̃ ).
Relation R (called revealed preference in [52]) has been introduced by

Samuelson in 1938 (see [44]); he associates R to a demand function. Samuel-
son’s theory of revealed preference studies the rationality of a consumer in
terms of the preference relation R. In an axiomatic context it has been re-
sumed by Uzawa [60] and Arrow [2]. Its intuitive significance is obvious: x
is weakly revealed preferred to y if x is chosen and y is available.

Relation P̃ (called strong revealed preference in [52]) has been defined
by Arrow in [2]. It has the meaning: x is strongly revealed preferred to y if
there exists an available set from which x is chosen and y is rejected.

Base relation R̄ appears in [60] and [2] and corresponds to a concept of
binary choice: x is preferred to y if x is chosen from the available set {x, y}.

In general revealed preference theory concentrates on how relations R and
P̃ (P , I, R̃, Ĩ as well) contribute to the description of the choice function.
They are used in the formulation of the axioms of revealed preference. In
addition, base relation R̄ will have a crucial role in the results of Chapter 5.

The axioms of revealed preference WARP and SARP were introduced
by Samuelson [44] and Houthakker [28], respectively. The form presented
here is given by Arrow [2]:

WARP (Weak Axiom of Revealed Preference)
If (x, y) ∈ P̃ then (y, x) 6∈ R.
SARP (Strong Axiom of Revealed Preference)
If (x, y) ∈ P ∗ then (y, x) 6∈ R.
The strong congruence axiom was introduced by Richter [41] and its

weaker form by Sen [49]:
WCA (Weak Congruence Axiom)
For any x, y ∈ X and S ∈ B, if x ∈ S, y ∈ C(S) and (x, y) ∈ R then

x ∈ C(S).
SCA (Strong Congruence Axiom)
For any x, y ∈ X and S ∈ B, if x ∈ S, y ∈ C(S) and (x, y) ∈ W then

x ∈ C(S).
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Following [54] a choice function C : B → P(X) is said to be G-rational
(resp. M -rational) if there is a preference relation Q such that C = GQ

(resp. C = MQ); in this case we say that Q is a G-rationalization (resp. an
M -rationalization) of C. C is G-normal (resp. M -normal) if C = GR (resp.
C = MR) where R is the preference relation defined by (3.2.5).

Sometimes we will denote Ĉ = GR and we will say that Ĉ is ”the image”
of C.

Now we shall recall three results from [49].

Proposition 3.1 Assume hypothesis (H) holds. Then WCA implies that
R is a regular preference relation; if C is G-normal then the converse is also
true.

Proposition 3.2 If hypothesis (H) holds then WCA is equivalent to R =
R̃.

The following Arrow-Sen theorem establishes the equivalence between
WCA, SCA, WARP , SARP and other conditions of rationality.

Theorem 3.1 [49] (Arrow-Sen) Assume hypothesis (H) holds. For a choice
function C : B → P(X) the following assertions are equivalent:

(i) R is a regular preference and C is normal;

(ii) R̄ is a regular preference and C is normal;

(iii) C satisfies WCA;

(iv) C satisfies SCA;

(v) C satisfies WARP ;

(vi) C satisfies SARP ;

(vii) R = R̃;

(viii) R̄ = R̃ and C is normal.

The previous theorem is stated in the form given in [49]; some implica-
tions or equivalences have been established by Arrow in [2].

Besides rationality and normality, a choice function can be related to
consistency. Consistency conditions determine the choice by varying between
subsets and supersets of available sets.

Now we shall recall the consistency conditions α, β, γ, δ introduced by
Sen in [49, 48, 50].

Let C : B → P(X) be a choice function.
Condition α . For any pair of sets S, T ∈ B and for any x ∈ S, if x ∈ C(T )

and S ⊆ T then x ∈ C(S).
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That is, ”if x is best in a set it is best in all subsets of it to which x
belongs” [49].

Condition β . For any pair S, T ∈ B and for any x, y ∈ C(S), if S ⊆ T
then x ∈ C(T ) iff y ∈ C(T ).

That is, ”if x and y are both best in S, a subset of T , then x is best in
T if and only if y is best in T” [49].

Condition γ . Let M ⊆ B, V the union of all sets in M (V =
⋃
M) and

x ∈ X. If x ∈ C(S) for all S ∈ M then x ∈ C(V ).

That is, ”if x is best in each set in a class of sets such that their union is
V , then x must be best in V ” [49].

Condition δ . For any pair of finite sets S, T ∈ B and for any (distinct)
elements x, y ∈ C(S), if S ⊆ T then C(T ) 6= {x}.

That is, ”if x and y are both best in S, a subset of T , then neither of
them can be uniquely best in T” [49].

Besides these properties, in [50] other consistency conditions are studied:

Condition α2 . For any S ∈ B and for any x ∈ S, if x ∈ C(S) then
x ∈ C([x, y]) for all y ∈ S.

Condition γ2 . For any S ∈ B and for any x ∈ S, if x ∈ C([x, y]) for all
y ∈ S then x ∈ C(S).

Condition β(+) . For any pair of sets S, T ∈ B such that S ⊆ T and for
any x ∈ C(S) and y ∈ S, if y ∈ C(T ) then x ∈ C(T ).

Path Independence (PI) . For any pair of sets S, T ∈ B, C(S ∪ T ) =
C(C(S) ∪ C(T )).

We recall from [49, 48, 50] some propositions on consistency conditions.
Later they will be analyzed in the fuzzy framework.

Proposition 3.3 If hypothesis (H) holds then a G-normal choice function
satisfies condition α.

Proposition 3.4 Assume hypothesis (H) holds. Then a choice function
satisfies WCA iff it satisfies conditions α and β.

A preference relation Q is quasi-transitive iff the strict preference relation
PQ is transitive.
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Proposition 3.5 Assume hypothesis (H) holds. For a G-normal choice
function the associated preference relation R is quasi-transitive iff condition
δ is satisfied.

We have seen that all the results above hold in the presence of hypothesis
(H). In fact it suffices to assume that B contains the pairs and the triples
of alternatives.

Investigation of properties of rationality, congruence and revealed pref-
erence axioms in the general case, without hypothesis (H) is a direction
started by Richter [41] and continued by Hansson [27], Suzumura [54] and
others.

We will recall first an important theorem of Richter [41].

Theorem 3.2 Let C : B → P(X) be an arbitrary choice function. Then the
following are equivalent:

(i) C satisfies SCA;

(ii) There exists a regular preference relation Q on X such that Q is the
G-rationalization of C.

A sequence (S1, . . . , Sn) in B is called C-connected if Sk ∩ C(Sk+1) 6= ∅
for all k ∈ {1, 2, . . . , n} where Sn+1 = S1.

In [27], Hansson proposed the following equivalent form of revealed pref-
erence axioms (denoted also WARP and SARP ):

WARP For any C-connected pair (S1, S2) in B, S1∩C(S2) = C(S1)∩S2

holds.

SARP For any C-connected sequence (S1, . . . , Sn) in B we have

Sk ∩ C(Sk+1) = C(Sk) ∩ Sk+1 for some k = 1, . . . , n − 1.

Also in [27, 54] another revealed preference axiom appears:

HARP (Hansson’s Axiom of Revealed Preference) For any C-connected
sequence (S1, . . . , Sn) in B

Sk ∩ C(Sk+1) = C(Sk) ∩ Sk+1 for all k = 1, . . . , n − 1.

These three axioms allowed to obtain some results in the general case.

Following [54] we shall consider the following revealed preference relation:

(3.2.14) R∗ = {(x, y)|x 6∈ S or x ∈ C(S) or y 6∈ C(S) for all S ∈ B}.
In interpretation, ”x is said to be R∗-revealed preferred to y if there exists

no choice situation in which y is chosen and x is available but rejected”[54].

Theorem 3.3 [54] Conditions WARP , WCA and R ⊆ R∗ are mutually
equivalent.1

Theorem 3.4 [54] Conditions HARP and SCA are equivalent.

1In [54] R is denoted by R
∗.
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3.3 An extension theorem

A classical Szpilrajn theorem [59] asserts that any strict partial order is a
subrelation of a strict total order. The first result in formulating a fuzzy
version of Szpilrajn theorem was established by Zadeh in [66]. A fuzzy
version of Szpilrajn theorem was also obtained by Gottwald in [24] for t-
norms without zero divisors. Paper [8] contains an analysis of Szpilrajn
theorem in fuzzy orderings context with respect to a t-norm ∗ and a ∗-
equivalence E.

In particular Szpilrajn theorem is the main tool for proving a well-known
theorem of Richter [41] that establishes the equivalence between rational and
congruous consumers.

In this section we will formulate and prove a fuzzy version of Szpilrajn
theorem, that will be later used in Section 6.3 for a fuzzy analysis of Richter
theorem in consumer theory.

Let X be a non-empty set. A preorder on X is a reflexive and transitive
relation on X. A relation R is complete if R∪R−1 = X ×X, i.e. (x, y) ∈ R
or (y, x) ∈ R for all x, y ∈ X. A weak order is a complete and transitive
relation on X. Of course a weak order is a preorder. For any relation R,
T (R) will denote its transitive closure, i.e. the intersection of all transitive
relations Q including R. The asymmetric part of R is the relation PR =
R \R−1 = {(x, y)|(x, y) ∈ R and (y, x) 6∈ R}. A relation R is total if for any
x 6= y we have (x, y) ∈ R or (y, x) ∈ R. A relation R is complete if and only
if it is reflexive and total.

A relation R on X is said to be a partial order if it is reflexive, anti-
symmetric and transitive. R is a strict partial order if it is irreflexive and
transitive.

Theorem 3.5 (Szpilrajn [59]) Any strict partial order can be embedded in
a strict total order on X.

An important problem is to see to what extent a fuzzy version of Szpil-
rajn theorem holds true for an arbitrary continuous t-norm. Our extension
theorem will be later used for the fuzzy analysis of Richter theorem in con-
sumer theory.

Let R, Q be two fuzzy relations on X such that R ⊆ Q. We say that
the extension Q of R preserves the irreflexivity of R if Q(x, x) = 0 for each
x ∈ X such that R(x, x) = 0. A fuzzy relation R on X is a strict partial
∗-order if it is irreflexive and ∗-transitive; a fuzzy relation is a total strict
∗-order if it is total, irreflexive and ∗-transitive.

In this section we shall prove that any ∗-transitive fuzzy relation R on
X can be extended to a total ∗-transitive fuzzy relation Q on X preserving
the irreflexivity of R. From this one infers that any strict partial ∗-order on
X can be extended to a total strict ∗-order on X. This result can be viewed
as a fuzzy version of Szpilrajn theorem [59].
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Let ∗ be a continuous t-norm. If R is a fuzzy relation on X then R̄ will
be the fuzzy relation defined by

R̄(a, b) =

{
1 if a = b

R(a, b) if a 6= b

for any a, b ∈ X. It is obvious that R ⊆ R̄.

Lemma 3.6 If R is ∗-transitive then R̄ is also ∗-transitive.

Proof. Let a, b, c ∈ X. We shall prove that R̄(a, b) ∗ R̄(b, c) ≤ R̄(a, c). If
a = c then R̄(a, c) = 1 and the inequality is trivially verified. Assume a 6= c.
If a 6= b, b 6= c then R̄(a, b) ∗ R̄(b, c) = R(a, b) ∗ R(b, c) ≤ R(a, c) = R̄(a, c).
Supposing a = b, b 6= c we have R̄(a, b) ∗ R̄(b, c) = 1 ∗ R(b, c) = R(b, c) =
R(a, c) = R̄(a, c); the case a 6= b, b = c follows similarly. If a = b = c then
the inequality is obvious.

Lemma 3.7 Let R be a ∗-transitive fuzzy relation on X and p, q two distinct
elements of X such that R(p, q) = R(q, p) = 0. Then there exists a ∗-
transitive fuzzy relation R′ on X fulfilling the following conditions: (i) R ⊆
R′; (ii) R′(p, q) = 1; (iii) R′ preserves the irreflexivity of R.

Proof. The fuzzy relation R′ is defined by

R′(a, b) = R(a, b) ∨ [R̄(a, p) ∗ R̄(q, b)]

for all a, b ∈ X. It is obvious that R ⊆ R′ and R′(p, q) = R(p, q) ∨
[R̄(p, p) ∗ R̄(q, q)] = R(p, q) ∨ 1 = 1.

In order to prove the ∗-transitivity of R′ one remembers that

R′(x, y) ∗ R′(y, z) = [R(x, y) ∨ (R̄(x, p) ∗ R̄(q, y))] ∗ [R(y, z) ∨ (R̄(y, p) ∗
R̄(q, z))] = [R(x, y)∗R(y, z)]∨ [R(x, y)∗ R̄(y, p)∗ R̄(q, z)]∨ [R̄(x, p)∗ R̄(q, y)∗
R̄(y, z)] ∨ [R̄(x, p) ∗ R̄(q, y) ∗ R̄(y, p) ∗ R̄(q, z)] and

R′(x, z) = R(x, z) ∨ [R̄(x, p) ∗ R̄(q, z)].

The following inequalities follow from hypothesis and by Lemma 3.6:

R(x, y) ∗ R(y, z) ≤ R(x, z) ≤ R′(x, z);

R(x, y)∗R̄(y, p)∗R̄(q, z) ≤ R̄(x, y)∗R̄(y, p)∗R̄(q, z) ≤ R̄(x, p)∗R̄(q, z) ≤
R′(x, z);

R̄(x, p) ∗ R̄(q, y) ∗ R̄(y, z) ≤ R̄(x, p) ∗ R̄(q, z) ≤ R′(x, z);

R̄(x, p) ∗ R̄(q, y) ∗ R̄(y, p) ∗ R̄(q, z) ≤ R̄(x, p) ∗ R̄(p, q) ∗ R̄(q, z) = 0

since R̄(p, q) = R(p, q) = 0.

Therefore R′(x, y) ∗ R′(y, z) ≤ R′(x, z) hence R′ is ∗-transitive.

Assume R(x, x) = 0, then, by Lemma 3.6 one gets
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R′(x, x) = R(x, x) ∨ [R̄(x, p) ∗ R̄(q, x)] = R̄(x, p) ∗ R̄(q, x) = R̄(q, x) ∗
R̄(x, p) ≤ R̄(q, p) = R(q, p) = 0.

Corollary 3.1 Let R be a strict partial ∗-order on X, p, q ∈ X, p 6= q and
R(p, q) = R(q, p) = 0. Then there exists a strict partial ∗-order R′ such that
R ⊆ R′ and R′(p, q) = 1.

Theorem 3.6 Let R be a ∗-transitive fuzzy relation on X. Then there exists
a total ∗-transitive fuzzy relation R∗ on X such that (i) R ⊆ R∗; (ii) R∗

preserves the irreflexivity of R.

Proof. Let C be the family of ∗-transitive fuzzy relations Q on X such
that R ⊆ Q and Q preserves the irreflexivity of R. Obviously R ∈ C. C is
partially ordered w.r.t. the inclusion ⊆ of fuzzy relations. We shall prove
that (C,⊆) is inductive. i.e. every totally ordered family {Qi}i∈I ⊆ C has
an upper bound in C. Let {Qi}i∈I be a totally ordered family in C, i.e. for

all i, j ∈ I we have Qi ⊆ Qj or Qj ⊆ Qi. It suffices to prove that Q =
⋃

i∈I

Qi

belongs to C.
Let x, y, z ∈ X. According to Lemma 3.2 (6) we have:

Q(x, y)∗Q(y, z) = [
∨

i∈I

Qi(x, y)]∗ [
∨

j∈I

Qj(y, z)] =
∨

i,j∈I

(Qi(x, y)∗Qj(y, z)).

Let i, j ∈ I so Qi ⊆ Qj or Qj ⊆ Qi. Assume for example that Qi ⊆ Qj ,
hence Qi(x, y) ∗ Qj(y, z) ≤ Qj(x, y) ∗ Qj(y, z) ≤ Qj(x, z).

This inequality holds for any i, j ∈ I, hence Q(x, y) ∗ Q(y, z) ≤ Q(x, z).
Thus Q is ∗-transitive. If R(x, x) = 0 then Qi(x, x) = 0 for any i ∈ I hence

Q(x, x) =
∨

i∈I

Qi(x, x) = 0. It is obvious that R ⊆ Q hence Q ∈ C and (C,⊆)

is inductive. By Zorn’s Lemma there exists a maximal member R∗ in C, i.e.
R∗ ⊆ P and P ∈ C implies R∗ = P . According to the definition of C, R∗ is
∗-transitive, R ⊆ R∗ and R∗(x, x) = 0 for each x ∈ X such that R(x, x) = 0.

Now we shall prove that R∗ is total, i.e. R∗(x, y) > 0 or R∗(y, x) > 0 for
all distinct x, y ∈ X. By absurdum assume R∗(p, q) = R∗(q, p) = 0 for some
distinct p, q ∈ X. By Lemma 3.7 there exists a ∗-transitive fuzzy relation
R′ on X such that R∗ ⊆ R′, R′(p, q) = 1 and R′ preserves the irreflexivity of
R∗. One remarks that R∗ preserves the irreflexivity of R:

R(x, x) = 0 ⇒ R∗(x, x) = 0 ⇒ R′(x, x) = 0.
Hence R∗ & R′ ∈ C. This contradicts the maximality of R∗, hence R∗ is

total.

Corollary 3.2 If R is a strict partial ∗-order on X then there exists a total
strict ∗-order R∗ on X such that R ⊆ R∗.

This corollary is a fuzzy version of Szpilrajn theorem [59].
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Chapter 4

Fuzzy Choice Functions

In this chapter we start the study of fuzzy choice functions.

Section 4.1 specifies the context in which we work. There exist plenty
of contributions on fuzzy choice functions (see the references of [33]). Most
of them have the premises that preferences are vague but the act of choice
is exact (see [5, 6, 7]). In [4] Banerjee lifts this condition putting forth the
idea of fuzzy choice functions. However Banerjee’s approach is not complete
because the range of his choice functions is made of fuzzy sets of alternatives.

In our definition of a fuzzy choice function, both the domain and the
range consist of fuzzy sets. By identifying a crisp set with its characteristic
function, our definition includes Banerjee’s.

Section 4.1 contains the main fuzzy preference relations associated to a
fuzzy choice function. We prove several lemmas that establish connections
and properties of these fuzzy preference relations. We introduce congruence
axioms WFCA, SFCA (fuzzy versions of WCA, SCA) and revealed pref-
erence axioms WAFRP , SAFRP (fuzzy versions of WARP , SARP ). In
their equivalent form [27, 54] WARP and SARP lead to other fuzzy revealed
preference axioms WAFRP ◦ and SAFRP ◦. Hansson’s revealed preference
axiom HARP leads to its fuzzy version HAFRP .

Section 4.2 is dedicated to M -rational and G-rational fuzzy choice func-
tions, analogous to the classical notions (see Section 3.2). M -rationality and
G-rationality are two ways to show how the behaviour of a fuzzy choice func-
tion is determined by fuzzy preference relations. When these fuzzy preference
relations are canonically associated to the choice function we obtain the con-
cepts of M -normality and G-normality. One result of this section (Proposi-
tion 4.2) establishes the equivalence between G-rationality and G-normality.
Proposition 4.3 shows that in general WAFRP ◦ implies M -normality.

The results of this chapter are based on our papers [20, 21].
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4.1 Definitions and axioms

A vast literature has been dedicated to fuzzy choice functions. Most au-
thors build their results on the thesis that social choice is governed by fuzzy
preferences (hence modelled through fuzzy binary relations) but the act of
choice is exact (hence choice functions are crisp) (see [5, 6, 7]). They study
the crisp choice functions generated by fuzzy preference relations.

Let X be a set of alternatives and B ⊆ P(X) \ {∅} a family of available
sets. An agent wants to choose a non-empty set C(S) from each available
set S ∈ B. Based on an expertise he has to find a way to evaluate how
”an alternative x is preferred to an alternative y”. Suppose n experts are
consulted in saying without ambiguity that ”alternative x is preferred to
alternative y” (for any y ∈ X). Herewith each expert i produces a crisp
preference relation Ri on X. The agent will combine the evaluations of the
n experts. Following [38], for any x, y ∈ X denote by R(x, y) the fraction of
the number of experts that preferred x to y in the total number n:

R(x, y) = card{i|(x,y)∈Ri}
n .

For the agent the real number R(x, y) ∈ [0, 1] represents the degree of
preference of x with respect to y. In this way we have obtained a fuzzy
preference relation R : X2 → [0, 1].

One assigns a crisp choice function to a preference relation built as above.
The first choice function defined like this belongs to Orlovsky [38]. Recall
the construction of the Orlovsky function:

Let X be a non-empty set, B ⊆ P(X) \ {∅} and R a fuzzy preference
relation on X. For any S ∈ B and x ∈ X denote

OV (x, S, R) =
∧

y∈S

min(1 − R(y, x) + R(x, y), 1).

For each S ∈ B denote

C(S, R) = {x ∈ S|OV (x, S, R) ≥ OV (y, S, R) for all y ∈ S}.

The function C(., R) defined by the mapping S 7→ C(S, R) is called
Orlovsky function. Such fuzzy choice functions associated to fuzzy preference
relations have been studied in the literature [16, 5, 6, 7, 33] etc.

In [43] to each fuzzy relation R on X there are associated four choice
functions based on a t-norm. Such a choice function has the form: C(X) :
X → [0, 1] where for any y ∈ X, C(X)(y) is interpreted as ”the degree to
which the alternative y in X is the ’best’ element in the set X”. For example,
if X = {x1, . . . , xn}, ∗ is a t-norm and R is a fuzzy relation on X then the
first of the four choice functions in [43] is defined by C(X)(xi) = DR(xi) =
R(xi, x1) ∗ . . . ∗ R(xi, xi−1) ∗ R(xi, xi+1) ∗ . . . ∗ R(xi, xn) for any xi ∈ X.
For Gödel t-norm one obtains the choice function studied by Svitalsky [58].
The real number DR(xi) is called the degree of domination of xi and can be
interpreted as the truth value of the statement ”xiRxj for each xj ∈ X” (see
[43]).

In [4], Banerjee admits the vagueness of the act of choice and develops a
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theory of revealed preference for choice functions with a fuzzy behavior. We
shall give a short description of Banerjee’s paper.

Let X be a non-empty set of alternatives, H the family of all non-empty
finite subsets of X and F the family of non-zero fuzzy subsets of X with
finite support. A Banerjee fuzzy choice function is a function C : H → F
such that supp C(S) ⊆ S for any S ∈ H. This notion has the following
interpretation [4]:

”For all S ∈ H, C(S)(x) will be taken to represent the extent to which x
belongs to the set of chosen alternatives when the available set of alternatives
is S”.

According to the previous definition the domain H of a Banerjee fuzzy
choice function is the family of all non-empty finite subsets of X. Then any
non-empty finite subset of X is an available set of alternatives. We have no
information about the alternatives in S except that they can be chosen. We
will change this hypothesis, varying the alternatives with their availability
degree. The domain B of a fuzzy choice function is made of non-zero fuzzy
subsets of X; if S ∈ B and x ∈ X then S(x) can be taken as the availability
degree of alternative x.

Now we shall formalize this thesis.

Definition 4.1 Let us consider a pair 〈X,B〉 where X is a non-empty set
and B is a non-empty family of non-zero fuzzy subsets of X. A fuzzy choice
function (=fuzzy consumer) on 〈X,B〉 is a function C : B → F(X) such
that for each S ∈ B, C(S) is non-zero and C(S) ⊆ S.

The same definition of a fuzzy choice function can be also found in [39].
In terms of fuzzy consumers, X is the set of bundles and B is the family

of fuzzy budgets ; the pair 〈X,B〉 is called a fuzzy budget space . Let x ∈ X
be a bundle and S ∈ B be a fuzzy budget; the real number C(S)(x) can
be interpreted as the degree to which the bundle x is chosen subject to the
fuzzy budget S. The fuzzy set S ∈ B offers an availability degree S(x) for
each x ∈ X. The degree C(S)(x) to which x is chosen subject to S naturally
belongs to the interval (0, S(x)]. C(S)(x) > 0 expresses the fact that the
possibility of choosing x may be taken into consideration.

Remark 4.1 Let H be the family of all non-empty finite subsets of X. H
can be identified with B0 = {χK |K ∈ H} and 〈X,B0〉 is a fuzzy budget space.
A Banerjee fuzzy choice function C : H → F induces a fuzzy choice function
C ′ : B0 → F by putting C ′(χK) = C(K) for each K ∈ H. Thus C and
C ′ can be identified hence our definition for fuzzy choice functions includes
Banerjee’s.

Banerjee fuzzifies only the range of a choice function; in our approach
both the domain and the range of a choice function are fuzzified. In this
case the results on fuzzy choice functions have a much deeper meaning.
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Although a part of fuzzy choice function theory will be developed in this
general setting, in order to extend Uzawa-Arrow-Sen theory we need some
natural hypotheses.

In this thesis we work with the following hypotheses:

(H1) Every S ∈ B and C(S) are normal fuzzy subsets of X;

(H2) B includes all fuzzy sets [x1, . . . , xn], n ≥ 1 and x1, . . . , xn ∈ X.

For the crisp case (B ⊆ P(X)) hypothesis (H1) asserts that any S ∈ B
and C(S) are non-empty, hence (H1) is automatically fulfilled in accordance
with the definition of choice function; for the same case, (H2) asserts that
B includes all non-empty finite subsets of X.

Now we fix a continuous t-norm ∗. The following definitions will be
formulated in the fuzzy set theory associated to the t-norm ∗; we shall use
the residuated structure ([0, 1],∨,∧, ∗,→, 0, 1).

The following three definitions introduce the main fuzzy revealed prefer-
ence relations used in fuzzy choice function theory. They generalize to fuzzy
sets the crisp revealed preference relations defined by (3.2.5)-(3.2.13).

Definition 4.2 Let C : B → F(X) be a fuzzy choice function on 〈X,B〉.
We define the following fuzzy revealed preference relations R, P, I on X by

(i) R(x, y) =
∨

S∈B

(C(S)(x) ∗ S(y));

(ii) P (x, y) = R(x, y) ∗ ¬R(y, x);

(iii) I(x, y) = R(x, y) ∗ R(y, x)

for any x, y ∈ X.

Definition 4.3 Assume hypothesis (H2) holds. Let C be a fuzzy choice
function on 〈X,B〉. We define the following fuzzy revealed preference rela-
tions R̄, P̄ , Ī on X by

(i) R̄(x, y) = C([x, y])(x);

(ii) P̄ (x, y) = R̄(x, y) ∗ ¬R̄(y, x);

(iii) Ī(x, y) = R̄(x, y) ∗ R̄(y, x)

for any x, y ∈ X.

Definition 4.4 Let C be a fuzzy choice function on 〈X,B〉. We define the
following fuzzy revealed preference relations R̃, P̃ , Ĩ on X by

(i) P̃ (x, y) =
∨

S∈B

(C(S)(x) ∗ S(y) ∗ ¬C(S)(y));

(ii) R̃(x, y) = ¬P̃ (y, x);

(iii) Ĩ(x, y) = R̃(x, y) ∗ R̃(y, x)

for any x, y ∈ X.

Preserving the results from the crisp case, we denote by W the transitive
closure of R and by P ∗ the transitive closure of P̃ .
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An easy computation shows that the fuzzy revealed preference relations
introduced by these definitions extend the corresponding crisp revealed pref-
erence relations. We kept the notations used for crisp choice functions in
order to see how Uzawa-Arrow-Sen theory is generalized to fuzzy choice
functions.

Remark 4.2 Let C : H → F be a Banerjee fuzzy choice function and C ′ :
B0 → F the associated fuzzy choice function (cf. Remark 4.1). For any
K ∈ H and u ∈ X we have C ′(χK)(u) ≤ χK(u) hence

u 6∈ K ⇒ C ′(χK)(u) = χK(u) = 0.

Assume ∗ is the Gödel t-norm ∧. Thus the fuzzy revealed preference
relation R associated with C ′ (cf. Definition 4.2 (i)) has the following form

R(x, y) =
∨

K∈H

(C ′(χK)(x) ∧ χK(y))

=
∨
{C(K)(x)|K ∈ H, x, y ∈ K}.

In this case R coincides with the fuzzy revealed preference relation defined
by Banerjee in [4] , Definition 2.5.

Remark 4.3 Assume the conditions of Remark 4.2 are fulfilled but ∗ is
the Lukasiewicz t-norm ∗L. According to the definition of the Lukasiewicz
t-norm, for any a, b ∈ [0, 1] we have a ∗L ¬b = max (0, a − b).

Let P̃ be the fuzzy revealed preference relation associated with C ′ accord-
ing to Definition 4.4 (i). An easy computation shows that for any x, y ∈ X
we have

P̃ (x, y) =
∨

K∈H

(C ′(χK)(x) ∗L χK(y) ∗L ¬C ′(χK)(y))

=
∨
{max(0, C(K)(x) − C(K)(y))|K ∈ H, x, y ∈ K}.

This shows that in this case P̃ coincides with the fuzzy relation defined
in [4], Definition 2.6.

Remarks 4.2, 4.3 show that in [4] appear some fuzzy revealed preference
relations corresponding to Gödel t-norm and some others corresponding to
Lukasiewicz t-norm, resulting a framework that combines the reasonings and
the two t-norms. In this thesis we adopt a different viewpoint, in the attempt
to develop a theory of fuzzy choice functions for a fixed t-norm.

Definition 4.5 Let C be a fuzzy choice function on 〈X,B〉. We define the
fuzzy preference relations R∗ and R1 on X by

(i) R∗(x, y) =
∧

S∈B

[(S(x) ∗ C(S)(y)) → C(S)(x)];

(ii) R1(x, y) =
∧

S∈B

[¬S(x) ∨ C(S)(x) ∨ ¬C(S)(y)]

for any x, y ∈ X.
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Remark 4.4 By Lemma 3.1 (11), R∗(x, y) can be written

R∗(x, y) =
∧

S∈B

[S(x) → (C(S)(y) → C(S)(x))].

An easy computation shows that both R1 and R∗ are fuzzy generalizations
of the crisp relation defined by (3.2.14).

We observe that for each x ∈ X,

R∗(x, x) =
∧

S∈B

[(S(x) ∗ C(S)(x)) → C(S)(x)] = 1.

Lemma 4.1 R1 ⊆ R∗.

Proof. Let x, y ∈ X and S ∈ B. By Lemma 3.1 (9)

[¬S(x) ∨ C(S)(x) ∨ ¬C(S)(y)] ∗ (S(x) ∗ C(S)(y)) =

= [¬S(x) ∗ S(x) ∗ C(S)(y)] ∨ [C(S)(x) ∗ S(x) ∗ C(S)(y)]∨
∨[¬C(S)(y) ∗ S(x) ∗ C(S)(y)] =

= C(S)(x) ∗ S(x) ∗ C(S)(y) ≤ C(S)(x).

Therefore by Lemma 3.1 (1) we get

¬S(x) ∨ C(S)(x) ∨ ¬C(S)(y) ≤ (S(x) ∗ C(S)(y)) → C(S)(x).

The last inequality holds for any S ∈ B hence by definitions of R∗ and
R1, we obtain R1(x, y) ≤ R∗(x, y).

Example 4.1 Assume ∗ is the Gödel t-norm ∧.

Let us take X = {x, y} and B = {A} with A = 0.2χ{x} + χ{y} and the
fuzzy choice function C : B → F(X) defined by C(A) = 0.1χ{x} + χ{y}. In
this case

R1(x, x) = ¬A(x) ∨ C(A)(x) ∨ ¬C(A)(x) = ¬0.2 ∨ 0.1 ∨ ¬0.1 = 0.1.
Since R∗(x, x) = 1 it follows that R1(x, x) 6= R∗(x, x), hence R∗ and R1 are
distinct.

Lemma 4.2 P̃ ⊆ R.

Proof. For any x, y ∈ X we have:

P̃ (x, y) =
∨

S∈B

[C(S)(x) ∗ S(y) ∗ ¬C(S)(y)] ≤
∨

S∈B

[C(S)(x) ∗ S(y)] =

R(x, y).

Lemma 4.3 Assume hypotheses (H1), (H2) are fulfilled and C : B → F(X)
is a fuzzy choice function.

(i) R̄ ⊆ R;

(ii) R and R̄ are reflexive and strongly total.
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Proof. (i) By the definition of R and R̄ for any x, y ∈ X we have

R̄(x, y) = C([x, y])(x) = C([x, y])(x) ∗ [x, y](y) ≤
∨

S∈B

(C(S)(x) ∗ S(y)) =

R(x, y).
(ii) For any x ∈ X, C([x]) ⊆ [x] hence for each y ∈ X:

C([x])(y) ≤ [x](y) =

{
1 if y = x
0 if y 6= x.

Since C([x]) is a normal fuzzy set, C([x])(x) = 1. Hence R̄(x, x) =
C([x])(x) = 1 so R̄ is reflexive.

Let x, y be two distinct alternatives. For any z ∈ X we have

C([x, y])(z) ≤ [x, y](z) =

{
1 if z ∈ {x, y}
0 otherwise .

Since C([x, y]) is a normal fuzzy set it follows that R̄(x, y) = C([x, y])(x) =
1 or R̄(y, x) = C([x, y])(y) = 1, hence R̄ is strongly total.

Using R̄ ⊆ R and R̄ is reflexive and strongly total it follows immediately
that R is reflexive and strongly total.

Now we shall consider the following axioms of fuzzy revealed preference:

WAFRP (Weak Axiom of Fuzzy Revealed Preference)
P̃ (x, y) ≤ ¬R(y, x) for all x, y ∈ X;

SAFRP (Strong Axiom of Fuzzy Revealed Preference)
P ∗(x, y) ≤ ¬R(y, x) for all x, y ∈ X.

Now we shall state two axioms of congruence for fuzzy choice functions:

WFCA (Weak Fuzzy Congruence Axiom)
For any S ∈ B and x, y ∈ X the following inequality holds
R(x, y) ∗ C(S)(y) ∗ S(x) ≤ C(S)(x).

SFCA (Strong Fuzzy Congruence Axiom)
For any S ∈ B and x, y ∈ X the following inequality holds
W (x, y) ∗ C(S)(y) ∗ S(x) ≤ C(S)(x).

Remark 4.5 Axioms WAFRP , SAFRP , WFCA, SFCA are fuzzy ver-
sions of axioms WARP , SARP , WCA, SCA in crisp choice function the-
ory. Fuzzy versions of the above axioms are found in [4] in the form imposed
by the context.

Remark 4.6 Since P̃ (x, y) ≤ P ∗(x, y) and R(x, y) ≤ W (x, y) for any x, y ∈
X the following implications hold true for any fuzzy choice function C:
SAFRP ⇒ WAFRP ; SFCA ⇒ WFCA.

If P̃ (resp. R) is ∗-transitive then P̃ = P ∗ (resp. R = W ), therefore in
this case:
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SAFRP ⇔ WAFRP (resp. SFCA ⇔ WFCA).

The next two axioms WAFRP ◦ and SAFRP ◦ extend to fuzzy choice
functions the form of WARP and SARP formulated in terms of C-connected
sequences ([54]).

WAFRP ◦ For any x, y ∈ X and S1, S2 ∈ B
(4.1.1) [S1(x)∧C(S2)(x)]∧[S2(y)∧C(S1)(y)] ≤ E(S1∩C(S2), S2∩C(S1)).

SAFRP ◦ For any x1, . . . , xn ∈ X and S1, . . . , Sn ∈ B

(4.1.2)
n∧

k=1

[Sk(xk) ∧ C(Sk+1)(xk)] ≤
n−1∨

j=1

E(Sj ∩ C(Sj+1), Sj+1 ∩ C(Sj))

where Sn+1 = S1.

Remark 4.7 In the crisp case (4.1.1) says: if there exist an element x ∈
S1 ∩ C(S2) and an element y ∈ S2 ∩ C(S1) then S1 ∩ C(S2) = S2 ∩ C(S1).

This is exactly the axiom WARP formulated in terms of C-connected se-
quences, hence WAFRP ◦ is a generalization of WARP . Similarly, SAFRP ◦

generalizes SARP .

We add the axiom HAFRP as a fuzzy extension of HARP :

HAFRP For any x1, . . . , xn ∈ X and S1, . . . , Sn ∈ B:
n∧

k=1

[Sk(xk) ∧ C(Sk+1)(xk)] ≤
n−1∧

j=1

E(Sj ∩ C(Sj+1), Sj+1 ∩ C(Sj))

where Sn+1 = S1.

It is clear that HAFRP implies SAFRP ◦.

4.2 Rational and normal fuzzy choice functions

In this section we study the concepts of M -rational and G-rational fuzzy
choice functions extending some results proved by Suzumura for crisp choice
functions [54].

Let Q be a fuzzy preference relation on the universal set of alternatives
X and B a non-empty family of non-zero fuzzy subsets of X. For any S ∈ B
let us define the fuzzy subsets M(S, Q) and G(S, Q) of X:

(4.2.1) M(S, Q)(x) = S(x) ∗
∧

y∈X

[(S(y) ∗ Q(y, x)) → Q(x, y)]

= S(x) ∗
∧

y∈X

[S(y) → (Q(y, x) → Q(x, y))];

(4.2.2) G(S, Q)(x) = S(x) ∗
∧

y∈X

[S(y) → Q(x, y)].

Remark 4.8 Assume Q is a fuzzy preference relation and S = χU with
U ∈ P(X). An easy computation shows that
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(4.2.3) M(χU , Q)(x) =







∧

y∈U

(Q(y, x) → Q(x, y)) if x ∈ U

0 if x 6∈ U.

(4.2.4) G(χU , Q)(x) =







∧

y∈U

Q(x, y) if x ∈ U

0 if x 6∈ U.

If Q is a crisp relation on X (Q : X2 → {0, 1} ) then Q(y, x) → Q(x, y) =
¬PQ(y, x) then by (4.2.3) and (4.2.4) we have

M(χU , Q)(x) = 1 if and only if ¬PQ(y, x) = 1 for all y ∈ U
G(χU , Q)(x) = 1 if and only if Q(x, y) = 1 for all y ∈ U .
Therefore (4.2.1) and (4.2.2) generalize to fuzzy choice functions the Q-

maximal point sets and the Q-greatest point sets (see (3.2.3) and (3.2.4)).

Definition 4.6 A fuzzy choice function C on 〈X,B〉 will be called G-rational
(resp. M -rational) if there is a fuzzy preference relation Q on X such that

C(S) = G(S, Q) (resp. C(S) = M(S, Q)) for any S ∈ B.

For the rest of this section assume that ∗ is the Gödel t-norm ∧.

Lemma 4.4 (i) G(S, Q) ⊆ M(S, Q) for each S ∈ B;

(ii) If Q is strongly complete then G(S, Q) = M(S, Q).

Proof. (i) Let x ∈ X. Then for each y ∈ X, S(y) ∧ Q(y, x) ≤ S(y)
implies S(y) → Q(x, y) ≤ (S(y) ∧ Q(y, x)) → Q(x, y) (by Lemma 3.1 (10));
it follows immediately that G(S, Q)(x) ≤ M(S, Q)(x).

(ii) For any x, y ∈ X we have Q(x, y) = 1 or Q(y, x) = 1. We notice that

S(y) → (Q(y, x) → Q(x, y)) =

{
1 if Q(x, y) = 1

S(y) → Q(x, y) if Q(y, x) = 1
= S(y) → Q(x, y)

then M(S, Q)(x) = G(Q, S)(x) for any x ∈ X.

Remark 4.9 Let C : B → F(X) be a G-rational fuzzy choice function and
Q a fuzzy preference relation such that C(S) = G(S, Q) for each S ∈ B.
By Lemma 4.4 (ii), if Q is strongly complete M(S, Q) = G(S, Q) for each
S ∈ B; in this case we say that C is strongly complete rational.

Lemma 4.5 Any M -rational fuzzy choice function is G-rational.

Proof. For any fuzzy relation Q on X let us define a fuzzy relation Q′

by Q′(x, y) = Q(y, x) → Q(x, y) for any x, y ∈ X. Then for any S ∈ B and
x ∈ X:

G(S, Q′)(x) = S(x) ∧
∧

y∈X

[S(y) → Q′(x, y)]
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= S(x) ∧
∧

y∈X

[S(y) → (Q(y, x) → Q(x, y))]

= M(S, Q)(x).
Then G(S, Q′) = M(S, Q) for any S ∈ B and the lemma follows imme-

diately.

For any fuzzy choice function C on 〈X,B〉 let us consider the associated
revealed preference relation R (see Def. 4.2) and define the functions G∗ :
B → F(X) and M∗ : B → F(X)

G∗(S)(x) = G(S, R)(x) = S(x) ∧
∧

y∈X

[S(y) → R(x, y)];

M∗(S)(x) = M(S, R)(x) = S(x) ∧
∧

y∈X

[(S(y) ∧ R(y, x)) → R(x, y)]

for any S ∈ B and x ∈ X.

Lemma 4.6 If C is a fuzzy choice function then C(S) ⊆ G∗(S) ⊆ M∗(S)
for any S ∈ B.

Proof. Let S ∈ B and x ∈ X. We must prove that C(S)(x) ≤ G∗(S)(x) ≤
M∗(S)(x). By the definition of R, C(S)(x) ∧ S(y) ≤ R(x, y) for any y ∈
X. Then C(S)(x) ≤ S(y) → R(x, y) for any y ∈ X, hence C(S)(x) ≤
∧

y∈X

[S(y) → R(x, y)].

Since C(S)(x) ≤ S(x) it follows that

C(S)(x) ≤ S(x) ∧
∧

y∈X

[S(y) → R(x, y)] = G∗(S)(x).

The inequality G∗(S)(x) ≤ M∗(S)(x) follows by Lemma 4.4 (i).

Definition 4.7 A fuzzy choice function C is G-normal (resp. M -normal)
if C(S) = G∗(S) (resp. C(S) = M∗(S)) for any S ∈ B.

If C is G-normal (resp. M -normal) then it is G-rational (resp. M -
rational).

Proposition 4.1 Any M -normal fuzzy choice function C is G-normal.

Proof. Let S ∈ B. By Lemma 4.6, C(S) ⊆ G∗(S) ⊆ M∗(S) = C(S)
hence C(S) = G∗(S).

Proposition 4.2 For a fuzzy choice function C the following are equivalent:

(1) C is G-rational;

(2) C is G-normal.
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Proof. (1) ⇒ (2) Assume there is a fuzzy relation Q such that C(S) =
G(S, Q) for any S ∈ B. For any x, y ∈ X:

R(x, y) =
∨

S∈B

[C(S)(x) ∧ S(y)]

=
∨

S∈B

[S(x) ∧ S(y) ∧
∧

z∈X

(S(z) → Q(x, z))].

For any S ∈ B we have:

S(x) ∧ S(y) ∧
∧

z∈X

(S(z) → Q(x, z)) ≤ S(x) ∧ S(y) ∧ (S(y) → Q(x, y)) =

= S(x) ∧ S(y) ∧ Q(x, y) ≤ Q(x, y).

Thus R(x, y) ≤ Q(x, y). We have proved that R ⊆ Q. For any x, y ∈ X
we have C(S)(x) ∧ S(y) ≤ R(x, y), hence C(S)(x) ≤ S(y) → R(x, y).

Hence C(S)(x) ≤
∧

y∈X

[S(y) → R(x, y)]. Since C(S)(x) ≤ S(x) it follows

that C(S)(x) ≤ S(x) ∧
∧

y∈X

[S(y) → R(x, y)].

Since R(x, y) ≤ Q(x, y) we have S(y) → R(x, y) ≤ S(y) → Q(x, y) for
any x, y ∈ X, hence

S(x) ∧
∧

y∈X

(S(y) → R(x, y)) ≤ S(x) ∧
∧

y∈X

(S(y) → Q(x, y)) = C(S)(x).

It follows that C(S)(x) = S(x) ∧
∧

y∈X

(S(y) → R(x, y)) for any x ∈ X,

hence C is G-normal.

(2) ⇒ (1) Obviously.

Proposition 4.3 Let C be a fuzzy choice function on 〈X,B〉 such that C(S)
is a normal fuzzy subset of X for any S ∈ B. If C satisfies WAFRP ◦ then
C is M -normal.

Proof. By Lemma 4.6 it suffices to prove that M∗(S)(x) ≤ C(S)(x) for
any S ∈ B and x ∈ X. Let y ∈ X such that C(S)(y) = 1; then S(y) = 1.
By the definition of M∗(S) and Lemma 3.2 (2) we have

M∗(S)(x) = S(x) ∧
∧

z∈X

[(S(z) ∧ R(z, x)) → R(x, z)] ≤

≤ S(x) ∧ [(S(y) ∧ R(y, x)) → R(x, y)] =

= S(x) ∧ [R(y, x) → R(x, y)] =

= S(x) ∧ [
∨

B∈B

(C(B)(y) ∧ B(x)) → R(x, y)] =

= S(x) ∧
∧

B∈B

[(C(B)(y) ∧ B(x)) → R(x, y)] ≤

≤ S(x) ∧ [(C(S)(y) ∧ S(x)) → R(x, y)] =

= S(x) ∧ [S(x) → R(x, y)] =

= S(x) ∧ R(x, y) =
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= S(x) ∧
∨

T∈B

[C(T )(x) ∧ T (y)] =

=
∨

T∈B

[S(x) ∧ C(T )(x) ∧ T (y)] =

=
∨

T∈B

[S(x) ∧ T (y) ∧ C(T )(x) ∧ C(S)(y)].

According to WAFRP ◦, S(x)∧T (y)∧C(T )(x)∧C(S)(y) ≤ C(S)(x) for
any T ∈ B, hence M∗(S)(x) ≤ C(S)(x).

Corollary 4.1 Let C be a fuzzy choice function on 〈X,B〉 such that C(S)
is a normal subset of X for any S ∈ B. If C satisfies WAFRP ◦ then C is
G-rational as well as M -rational.

Proof. By Propositions 4.1 and 4.3.

Proposition 4.4 Any M -normal fuzzy choice function C is strongly com-
plete rational.

Proof. For any S ∈ B, C(S) = M∗(S). Let us take the fuzzy rela-
tion R◦ on X defined by R◦(x, y) = R(y, x) → R(x, y) for any x, y ∈ X.
If R(y, x) ≤ R(x, y) then R◦(x, y) = R(y, x) → R(x, y) = 1; if R(y, x) >
R(x, y) then R◦(y, x) = R(x, y) → R(y, x) = 1. Thus R◦ is strongly com-
plete. By a similar argument used in the proof of Lemma 4.5 we have
M∗(S) = M(S, R) = G(S, R◦) and by Lemma 4.4 (ii), G(S, R◦) = M(S, R◦).
Then C(S) = G(S, R◦) = M(S, R◦) for any S ∈ B, hence C is strongly com-
plete rational.

Figure 4.1 summarizes the results of this paragraph.

normal
G
 
 normal
M
  


rational
G
 
 rational
M
  


0
WAFRP


Figure 4.1: Properties of rationality and normality
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Chapter 5

Fuzzy Revealed Preference

and Consistency Conditions

In Chapter 4 we formulated the following axioms:

WAFRP (Weak Axiom of Fuzzy Revealed Preference)

SAFRP (Strong Axiom of Fuzzy Revealed Preference)

WFCA (Weak Fuzzy Congruence Axiom)

SFCA (Strong Fuzzy Congruence Axiom)

These are fuzzy versions of the revealed preference and congruence ax-
ioms (WARP , SARP , WCA, SCA) in classical consumer theory. We work
in a fuzzy set theory corresponding to a continuous t-norm; thus the formu-
lation of these axioms depends on the t-norm.

Chapter 5 studies various connections between these four axioms and
properties of rationality and consistency. Generally we attempt to know to
what extent classical consumer theory can be extended to our framework.

In our case the structure of residuated lattice offers a suitable setting.

The results of this chapter follow the line Uzawa-Arrow-Sen and will
be obtained under hypotheses (H1) and (H2). We recall that under the
hypothesis that the domain of the consumer contains the pairs and the triples
of alternatives, Arrow-Sen theorem asserts the equivalence between WARP ,
SARP , WCA, SCA and other four conditions of rationality (see Theorem
3.1).

The first section of the chapter tries to answer the question to what
degree Arrow-Sen theorem can be extended to fuzzy case. The equivalent
properties of Arrow-Sen theorem lead to eight conditions for fuzzy choice
functions. The main result of the section (Theorem 5.1) establishes equiva-
lences or implications between these conditions. Some are true for an arbi-
trary continuous t-norm and others for Gödel or Lukasiewicz t-norm.

Section 5.2 deals with consistency conditions Fα, Fβ, the fuzzy forms
of Sen’s properties α, β [49]. The formulation of Fα uses the subsethood
function I(., .) and Fβ is stated in terms of ∧ and ↔. We prove that a fuzzy
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choice function satisfies Fα, Fβ if and only if WFCA holds for C. We also
study the fuzzy choice functions verifying a special hypothesis (U); in the
crisp case, this hypothesis says that C(S) is a singleton for each subset S.
Under this hypothesis we prove that WFCA and Fα are equivalent.

Section 5.3 is concerned with condition Fδ, a fuzzy version of Sen’s con-
dition δ. The main result (Theorem 5.3) shows that for a normal choice
function, the associated fuzzy preference relation R is quasi-transitive if and
only if condition Fδ holds.

In Section 5.4 we study some other consistency conditions Fα2, Fβ(+),
Fγ2. We prove that a fuzzy choice function is normal if and only if it
satisfies Fα2 and Fγ2. Condition FPI is introduced as a fuzzy version of
the path independence property PI [50]. The fuzzy preference relation R̄ is
quasi-transitive provided FPI holds.

In this chapter ”rational” (resp. ”normal”) means G-rational (resp. G-
normal).

Throughout this chapter assume hypotheses (H1) and (H2) hold.

The results of this chapter are based on our papers [20, 19].

5.1 A fuzzy approach to the Arrow-Sen theorem

In this section we will study various relations between the axioms of revealed
preference and congruence.

Our aim is to investigate if Arrow-Sen Theorem (Theorem 3.1) is true for
fuzzy choice functions. Some equivalences and implications of this theorem
hold true in the fuzzy set theory based on a continuous t-norm, others for
Gödel or Lukasiewicz t-norm. Particularly, for Gödel t-norm we prove that
a fuzzy choice function C satisfies SFCA if and only if the associated fuzzy
relation R is a regular preference and C is normal. This shows that a strong
form of Richter’s Theorem [41] holds if hypotheses (H1), (H2) are fulfilled.

Let C be a fuzzy choice function. In this chapter we shall denote by Ĉ
the fuzzy choice function G∗ defined in Section 4.2. By Lemma 4.6 we have
C(S) ⊆ Ĉ(S) for any S ∈ B.

Proposition 5.1 If the fuzzy choice function C satisfies WFCA then R is
a regular preference 1 on X.

Proof. We shall prove the following assertions:

(a) R is reflexive.

(b) R is strongly total.

1We use ’regular preference’ instead of ’regular fuzzy preference’.
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These two assertions follow by Lemma 4.3.
(c) R is ∗-transitive.

Let x, y, z ∈ X. We shall prove that R(x, y) ∗ R(y, z) ≤ R(x, z).
Denote T = [x, y, x]. Since

C(T )(u) =

{
1 if u ∈ {x, y, z}
0 otherwise.

it follows that C(T )(x) = 1 or C(T )(y) = 1 or C(T )(z) = 1. We study
separately these three cases.

(c1) C(T )(x) = 1. Then

R(x, z) =
∨

S∈B

(C(S)(x) ∗ S(z)) ≥ C(T )(x) ∗ T (z) = 1.

Therefore R(x, z) = 1 and the inequality R(x, y) ∗ R(y, z) ≤ R(x, z) is
obviously satisfied.

(c2) C(T )(y) = 1. By WFCA we have

R(x, y) ∗ C(T )(y) ∗ T (x) ≤ C(T )(x).
Since T (x) = C(T )(y) = 1 we have R(x, y) ≤ C(T )(x) hence

R(x, y) ∗ R(y, z) ≤ R(x, y) ≤ C(T )(x) = C(T )(x) ∗ T (z) ≤ R(x, z).
(c3) C(T )(z) = 1. By WFCA we have
R(y, z) = R(y, z) ∗ C(T )(z) ∗ T (y) ≤ C(T )(y)
R(x, y) ∗ C(T )(y) = R(x, y) ∗ C(T )(y) ∗ T (x) ≤ C(T )(x)
therefore
R(x, y) ∗ R(y, z) ≤ R(x, y) ∗ C(T )(y) ≤ C(T )(x) ∗ T (z) ≤ R(x, z).

Lemma 5.1 Let C be a normal fuzzy choice function. Then R = R̄.

Proof. For any x, y ∈ X we have

R̄(x, y) = C([x, y])(x) = Ĉ([x, y])(x) = [x, y](x)∗
∧

z∈X

([x, y](z) → R(x, z)) =

= ([x, y](x) → R(x, x)) ∧ ([x, y](y) → R(x, y)) = R(x, x) ∧ R(x, y) =
R(x, y).

Proposition 5.2 Let C be a normal fuzzy choice function. If R is ∗-
transitive then C satisfies WFCA.

Proof. Let S ∈ B and x, y ∈ X. We must prove that R(x, y) ∗ C(S)(y) ∗
S(x) ≤ C(S)(x). Since

C(S)(x) = Ĉ(S)(x) = S(x) ∗
∧

z∈X

(S(z) → R(x, z))
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it suffices to prove that

R(x, y) ∗ C(S)(y) ≤
∧

z∈X

(S(z) → R(x, z)).

Let z ∈ X. Since C(S)(y) ∗ S(z) ≤ R(y, z) and R is ∗-transitive, then

R(x, y) ∗ C(S)(y) ∗ S(z) ≤ R(x, y) ∗ R(y, z) ≤ R(x, z).

Thus

R(x, y) ∗ C(S)(y) ≤ S(z) → R(x, z)

for each z ∈ X, therefore the desired inequality follows.

By Proposition 5.2, if C is a normal fuzzy choice function and R is a
regular preference then C satisfies WFCA.

Proposition 5.3 Assume that ∗ is the Lukasiewicz t-norm. If C is a fuzzy
choice function such that R = R̃ then C satisfies WFCA.

Proof. Suppose by absurdum that C does not satisfy WFCA then there
exist S0 ∈ B and x, y ∈ X such that

(a) R(x, y) ∗ C(S0)(y) ∗ S0(x) 6≤ C(S0)(x).

Since R(x, y) ≤ R̃(x, y) = ¬P̃ (y, x) then we have

0 = R(x, y) ∗ P̃ (y, x) = R(x, y) ∗
∨

S∈B

(C(S)(y) ∗ ¬C(S)(x) ∗ S(x)) =

=
∨

S∈B

(R(x, y) ∗ C(S)(y) ∗ ¬C(S)(x) ∗ S(x))

therefore R(x, y) ∗ C(S)(y) ∗ S(x) ∗ ¬C(S)(x) = 0 for each S ∈ B. But
¬¬C(S)(x) = C(S)(x) because ∗ is the Lukasiewicz t-norm, hence we get
R(x, y) ∗ C(S)(y) ∗ S(x) ≤ C(S)(x), contradicting (a).

Proposition 5.4 Assume that ∗ is the Lukasiewicz t-norm. If C satisfies
WFCA then R = R̃.

Proof. Using Lemma 3.2 (5) we get

R(x, y) ∗ P̃ (y, x) = R(x, y) ∗
∨

S∈B

(C(S)(y) ∗ ¬C(S)(x) ∗ S(x)) =

=
∨

S∈B

(R(x, y) ∗ C(S)(y) ∗ ¬C(S)(x) ∗ S(x)).

By WFCA, R(x, y) ∗ C(S)(y) ∗ S(x) ≤ C(S)(x), hence, for any S ∈ B
we have R(x, y) ∗ C(S)(y) ∗ ¬C(S)(x) ∗ S(x) = 0.

It follows that R(x, y) ∗ P̃ (y, x) = 0. We have proved that R(x, y) ≤
¬P̃ (y, x) = R̃(x, y).
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Now we shall prove the converse inequality R̃(x, y) ≤ R(x, y). First we
shall establish the inequality

(a) R̃(x, y) ≤ C([x, y])(x).

Since

C([x, y])(t) ≤ [x, y](t) =

{
1 if t ∈ {x, y}
0 otherwise

and C([x, y]) is a normal fuzzy set we have C([x, y])(x) = 1 or C([x, y])(y) =
1. If C([x, y])(x) = 1 then (a) is obviously verified. Assume C([x, y])(y) = 1.
Then

R̃(x, y) = ¬P̃ (y, x) = ¬
∨

S∈B

(C(S)(y) ∗ ¬C(S)(x) ∗ S(x)) ≤

≤ ¬(C([x, y])(y)∗¬C([x, y])(x)∗[x, y](x)) = ¬¬C([x, y])(x) = C([x, y])(x)

and (a) is also verified. We remark that C([x, y])(x) = C([x, y])(x) ∗
[x, y](y) ≤ R(x, y).

Thus, by (a), R̃(x, y) ≤ R(x, y).

For a fuzzy choice function C let us consider the following statements

(i) R is a regular preference and C is normal;

(ii) R̄ is a regular preference and C is normal;

(iii) C verifies WFCA;

(iv) C verifies SFCA;

(v) C verifies WAFRP ;

(vi) C verifies SAFRP ;

(vii) R = R̃;

(viii) R̄ = R̃ and C is normal.

We remark that the previous properties are the fuzzy versions of the
equivalent conditions of Arrow-Sen theorem (see Theorem 3.1).

A natural problem is to obtain a fuzzy extension of Arrow-Sen theorem.
The following theorem establishes some relations between the assertions (i)-
(viii). This extends to fuzzy case a significant part of Arrow-Sen theorem.

Theorem 5.1 Let C be a fuzzy choice function.

(1) Conditions (i), (ii) are equivalent.
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(2) Implication (i) ⇒ (iii) holds; if ∗ is the Gödel t-norm ∧ then the im-
plication (iii) ⇒ (i) also holds.

(3) Conditions (iii), (iv) are equivalent.

(4) If ∗ is the Lukasiewicz t-norm then conditions (iii),(v), (vi), (vii) are
equivalent;

(5) Implication (viii) ⇒ (vii) holds.

Proof. (1) By Lemma 5.1, R = R̄, hence (i) ⇔ (ii) holds.
(2) By Proposition 5.2, if C is normal and R is a regular preference then

C satisfies WFCA, thus (i) ⇒ (iii) holds. Now we shall prove that for the
Gödel t-norm (iii) ⇒ (i) is true. In accordance with Proposition 5.1, R is a
regular preference. By Lemma 4.6, C(S) ⊆ Ĉ(S) for any S ∈ B. Let S ∈ B.
We shall prove that Ĉ(S) ⊆ C(S), i.e. Ĉ(S)(x) ≤ C(S)(x) for each x ∈ X.
Since C(S) is a normal fuzzy set C(S)(z) = 1 for some z ∈ X; we also have
S(z) = 1. Thus

Ĉ(S)(x) = S(x) ∧
∧

y∈X

(S(y) → R(x, y)) ≤ S(x) ∧ (S(z) → R(x, z)) =

S(x) ∧ R(x, z) = R(x, z) ∧ C(S)(z) ∧ S(x) ≤ C(S)(x).

The last inequality follows according to WFCA. Therefore Ĉ(S) ⊆ C(S)
so C(S) = Ĉ(S).

(3) By Remark 4.5, the implication (iv) ⇒ (iii) is obvious. Since WFCA
implies the ∗-transitivity of R (see Proposition 5.1), it follows that R is
equal to its transitive closure W . Thus WFCA implies SFCA, hence the
implication (iii) ⇒ (iv) is proved.

(4) Assume that ∗ is the Lukasiewicz t-norm. First we will prove that
(iii) ⇒ (v) holds. Suppose by absurdum that C does not satisfy WAFRP ,
so P̃ (x, y) 6≤ ¬R(y, x) for some x, y ∈ X. Then, by Lemma 3.3 (1), P̃ (x, y) ∗
R(y, x) > 0. In accordance with Lemma 3.2 (5)

P̃ (x, y) ∗ R(y, x) = [
∨

S∈B

(C(S)(x) ∗ S(y) ∗ ¬C(S)(y))] ∗ R(y, x) =

=
∨

S∈B

(C(S)(x) ∗ S(y) ∗ ¬C(S)(y) ∗ R(y, x))

therefore C(S)(x) ∗ S(y) ∗ ¬C(S)(y) ∗R(y, x) > 0 for some S ∈ B. Since
¬¬C(S)(y) = C(S)(y), by Lemma 3.3 (1) we get R(y, x) ∗C(S)(x) ∗ S(y) 6≤
C(S)(y), contradicting WFCA.

In order to prove the converse implication (v) ⇒ (iii) we assume by ab-
surdum that C does not satisfy WFCA, i.e. there exist S0 ∈ B and x, y ∈ X
such that R(y, x) ∗ C(S0)(x) ∗ S0(y) 6≤ C(S0)(y). By Lemma 3.3 (1) we ob-
tain R(y, x) ∗ C(S0)(x) ∗ S0(y) ∗ ¬C(S0)(y) > 0. Thus
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P̃ (x, y) ∗ R(y, x) =
∨

S∈B

(C(S)(x) ∗ S(y) ∗ ¬C(S)(y) ∗ R(y, x)) ≥

≥ C(S0)(x) ∗ S0(y) ∗ ¬C(S0)(y) ∗ R(y, x) > 0,

therefore, by Lemma 3.3 (1), P̃ (x, y) 6≤ ¬R(y, x), contradicting WAFRP .

The implication (vi) ⇒ (v) is always true (see Remark 4.5). We shall
establish the implication (v) ⇒ (vi). If we assume (v), then (iii) holds, since
we have proved that (iii) and (v) are equivalent. Thus C satisfies WFCA.
By Proposition 5.1, R is a regular preference. Applying Proposition 5.4, we
obtain R = R̃, hence R̃ is a regular preference. We shall prove that P̃ is ∗-
transitive, i.e. P̃ (x, y) ∗ P̃ (y, z) ≤ P̃ (x, z). In accordance with the definition
of P̃ , this inequality can be written ¬R̃(y, x)∗¬R̃(z, y) ≤ ¬R̃(z, x). Since ∗ is
the Lukasiewicz t-norm, by Lemma 3.3 (1), this last inequality is equivalent
to

R̃(z, x) ∗ ¬R̃(y, x) ∗ ¬R̃(z, y) = 0.

Since R̃ is strongly total, we have R̃(y, x) = 1 or R̃(x, y) = 1. If R̃(y, x) =
1 then ¬R̃(y, x) = 0 and the previous inequality is obvious. Consider the
case R̃(x, y) = 1. R̃ is ∗-transitive then R̃(z, x) = R̃(z, x)∗R̃(x, y) ≤ R̃(z, y).

Therefore R̃(z, x)∗¬R̃(y, x)∗¬R̃(z, y) ≤ R̃(z, y)∗¬R̃(y, x)∗¬R̃(z, y) = 0.

It follows that P̃ is ∗-transitive then P̃ is identical to its ∗-transitive
closure P ∗. Thus it is obvious that WAFRP ⇒ SAFRP .

(iii) ⇔ (vii) By Propositions 5.3 and 5.4.

(5) If C is normal then R = R̄ (by Lemma 5.1). Then R̄ = R̃ implies
R = R̃.

The equivalence (i) ⇔ (iii) proved in Theorem 5.1 (2) for the case of Gödel
t-norm can be viewed as a fuzzy extension of Richter theorem (assuming
hypotheses (H1), (H2)).

5.2 Conditions Fα and Fβ

Conditions α and β were introduced by Sen [49] for crisp choice functions.

In this section we will consider fuzzy versions Fα and Fβ of these condi-
tions and we will prove that a fuzzy choice function C satisfies Fα and Fβ if
and only if C satisfies WFCA. We consider a class of fuzzy choice functions
satisfying a new hypothesis (U). In the crisp case (U) expresses that C(S) is
a singleton for each fuzzy set S. Among results under hypothesis (U) there
is the equivalence between Fα and WFCA.

First we will recall the (crisp) conditions α and β.

Let C : B → P(X) be a crisp choice function.

Condition α . For any S, T ∈ B and for any x ∈ X, we have the impli-
cation
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x ∈ S, x ∈ C(T ) and S ⊆ T ⇒ x ∈ C(S).

Condition β . For any S, T ∈ B and for any x, y ∈ X, we have the
implication

x, y ∈ C(S) and S ⊆ T ⇒ x ∈ C(T ) if and only if y ∈ C(T ).

These two conditions can be extended to the fuzzy case.

Let C : B → F(X) be a fuzzy choice function on 〈X,B〉.

Condition Fα . For any S, T ∈ B and x ∈ X we have

I(S, T ) ∧ S(x) ∧ C(T )(x) ≤ C(S)(x).

Condition Fβ . For any S, T ∈ B and x, y ∈ X we have

I(S, T ) ∧ C(S)(x) ∧ C(S)(y) ≤ C(T )(x) ↔ C(T )(y)

where ↔ is the biresiduum of the t-norm ∧.

It is obvious that conditions Fα, Fβ generalize α, β.

A weak form of conditions Fα, Fβ can be given as:

Condition Fα′ . For any S, T ∈ B and x ∈ X, if S ⊆ T then

S(x) ∧ C(T )(x) ≤ C(S)(x).

Condition Fβ′ . For any S, T ∈ B and x, y ∈ X, if S ⊆ T then

C(S)(x) ∧ C(S)(y) ≤ C(T )(x) ↔ C(T )(y).

Since S ⊆ T iff I(S, T ) = 1 clearly Fα ⇒ Fα′, Fβ ⇒ Fβ′.

Although Fα′, Fβ′ are closer to α, β, the use of subsethood degree
I(A, B) in Fα and Fβ gives a better expression of the behaviour of fuzzy
choice functions.

Proposition 5.5 If C is a normal fuzzy choice function then Fα is verified.

Proof. Since C = Ĉ it suffices to show that for any S, T ∈ B and x ∈ X
the following inequality holds:

I(S, T ) ∧ S(x) ∧ Ĉ(T )(x) ≤ Ĉ(S)(x).

By Lemma 3.1 (2) we have for any u ∈ X

S(u) ∧ (S(u) → T (u)) ∧ (T (u) → R(x, u)) = S(u) ∧ T (u) ∧ (T (u) →
R(x, u)) = S(u) ∧ T (u) ∧ R(x, u) ≤ R(x, u).

Using Lemma 3.1 (1) one infers

(S(u) → T (u)) ∧ (T (u) → R(x, u)) ≤ S(u) → R(x, u).

Therefore

I(S, T ) ∧ S(x) ∧ Ĉ(T )(x) =

=
∧

u∈X

(S(u) → T (u)) ∧ S(x) ∧ T (x) ∧
∧

u∈X

(T (u) → R(x, u)) ≤
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≤ S(x) ∧
∧

u∈X

[(S(u) → T (u)) ∧ (T (u) → R(x, u))] ≤

≤ S(x) ∧
∧

u∈X

(S(u) → R(x, u)) = Ĉ(S)(x).

Proposition 5.6 If the fuzzy choice function C fulfills condition Fα then
R = R̄.

Proof. By Lemma 4.3 (i) the inclusion R̄ ⊆ R is always true. We prove
that R(x, y) ≤ R̄(x, y) for any x, y ∈ X. Let S ∈ B. Then, by Fα

I([x, y], S) ∧ [x, y](x) ∧ C(S)(x) ≤ C([x, y])(x).
We remark that
I([x, y], S) =

∧

u∈X

([x, y](u) → S(u)) =

= ([x, y](x) → S(x)) ∧ ([x, y](y) → S(y)) =
= (1 → S(x)) ∧ (1 → S(y)) = S(x) ∧ S(y).

Thus the above inequality becomes
S(x) ∧ S(y) ∧ C(S)(x) ≤ C([x, y])(x).

Since C(S)(x) ≤ S(x) we have C(S)(x) ∧ S(y) ≤ C([x, y])(x) for each
S ∈ B therefore

R(x, y) =
∨

S∈B

(C(S)(x) ∧ S(y)) ≤ C([x, y])(x) = R̄(x, y)

Proposition 5.7 If a fuzzy choice function C satisfies WFCA then condi-
tions Fα, Fβ are fulfilled.

Proof. By Theorem 5.1, WFCA implies the normality of C, hence, by
Proposition 5.5, condition Fα is verified. Assume by absurdum that C does
not fulfill Fβ, hence there exist S, T ∈ B and x, y ∈ X such that

I(S, T ) ∧ C(S)(x) ∧ C(S)(y) 6≤ C(T )(x) ↔ C(T )(y) =
= (C(T )(x) → C(T )(y)) ∧ (C(T )(y) → C(T )(x)).
Therefore

I(S, T ) ∧ C(S)(x) ∧ C(S)(y) 6≤ C(T )(x) → C(T )(y)
or
I(S, T ) ∧ C(S)(x) ∧ C(S)(y) 6≤ C(T )(y) → C(T )(x).

Assume the first case holds, hence, by Lemma 3.1 (1)
(a) I(S, T ) ∧ C(S)(x) ∧ C(S)(y) ∧ C(T )(x) 6≤ C(T )(y).
We remark that
I(S, T ) ∧ C(S)(x) ∧ C(S)(y) ∧ C(T )(x) ≤ C(S)(y) ∧ S(x) ∧ C(T )(x) =
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= C(S)(y) ∧ S(x) ∧ C(T )(x) ∧ S(y)
because C(S)(y) ∧ S(y) = C(S)(y). Since C(S)(y) ∧ S(x) ≤ R(y, x) one

obtains
(b) I(S, T ) ∧ C(S)(x) ∧ C(S)(y) ∧ C(T )(x) ≤ R(y, x) ∧ C(T )(x) ∧ S(y).
By (a) and (b) one infers
R(y, x) ∧ C(T )(x) ∧ S(y) 6≤ C(T )(y)
contradicting WFCA.

Proposition 5.8 If C fulfills conditions Fα, Fβ then WFCA holds.

Proof. Let S ∈ B and x, y ∈ X. Since I([x, y], S) = S(x) ∧ S(y) we have

S(x) ∧ C(S)(y) ∧ R(x, y) = S(x) ∧ S(y) ∧ C(S)(y) ∧ R(x, y) =
= I([x, y], S) ∧ S(x) ∧ S(y) ∧ C(S)(y) ∧ R(x, y) =
= I([x, y], S) ∧ [x, y](y) ∧ C(S)(y) ∧ S(x) ∧ S(y) ∧ R(x, y) ≤
≤ C([x, y])(y) ∧ S(x) ∧ S(y) ∧ C(S)(y) ∧ R(x, y)

because I([x, y], S) ∧ [x, y](y) ∧ C(S)(y) ≤ C([x, y])(y), by Fα.
Replacing R(x, y) with its expression in Definition 4.2 we obtain

S(x) ∧ C(S)(y) ∧ R(x, y) ≤

≤ C([x, y])(y) ∧ S(x) ∧ S(y) ∧ C(S)(y) ∧
∨

H∈B

(C(H)(x) ∧ H(y)) =

=
∨

H∈B

[C([x, y])(y) ∧ S(x) ∧ S(y) ∧ C(S)(y) ∧ C(H)(x) ∧ H(y)].

In accordance with Fα:
C(H)(x) ∧ H(y) = C(H)(x) ∧ H(x) ∧ H(y) = I([x, y], H) ∧ [x, y](x) ∧

C(H)(x) ≤ C([x, y])(x).

Therefore, by Fβ and Lemma 3.1 (2):

C([x, y])(y) ∧ S(x) ∧ S(y) ∧ C(S)(y) ∧ C(H)(x) ∧ H(y) ≤
≤ C([x, y])(y) ∧ S(x) ∧ S(y) ∧ C(S)(y) ∧ C([x, y])(x) =
= I([x, y], S) ∧ C([x, y])(x) ∧ C([x, y])(y) ∧ C(S)(y) ≤
≤ [C(S)(x) ↔ C(S)(y)] ∧ C(S)(y) ≤
≤ C(S)(y) ∧ [C(S)(y) → C(S)(x)] = C(S)(y) ∧ C(S)(x) ≤ C(S)(x).

These inequalities hold for each H ∈ B therefore
S(x) ∧ C(S)(y) ∧ R(x, y) ≤ C(S)(x).
Hence the fuzzy choice function C verifies WFCA.

Theorem 5.2 For a fuzzy choice function C the following are equivalent:
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(1) C verifies conditions Fα, Fβ;

(2) WFCA holds for C.

Proof. By Propositions 5.7 and 5.8.

Remark 5.1 The previous theorem generalizes to fuzzy choice functions a
result of Sen (see [49], (T8)). This is one more argument that Fα, Fβ are
the appropriate versions of α, β and not conditions Fα′, Fβ′.

In crisp consumer theory a special case is made by consumers C : B →
P(X) with the property that C(S) is a singleton for any S ∈ B. We gener-
alize this case considering fuzzy choice functions C : B → F(X) that verify:

(U) For any S ∈ B, C(S) = [x], for some x ∈ X.

For fuzzy choice functions C that verify (U) there is a unique x ∈ X such

that C(S)(y) =

{
1 if y = x
0 if y 6= x.

Proposition 5.9 If a normal fuzzy choice function C verifies (U) then R
is a regular preference.

Proof. Assume C is normal. By Lemma 4.3 we know that R is reflexive
and strongly total; by Lemma 5.1, R = R̄.

Let x, y ∈ X. Then
R(x, y) = R̄(x, y) = C([x, y])(x); R(y, x) = C([x, y])(y).
But C([x, y]) is a normal fuzzy set so C([x, y])(x) = 1 or C([x, y])(y) = 1

because

C([x, y])(t) ≤ [x, y](t) =

{
1 if t ∈ {x, y}
0 otherwise.

Thus, by (U), we have exactly one of two cases:
R(x, y) = 1 and R(y, x) = 0.
R(x, y) = 0 and R(y, x) = 1.
Now we prove that R is ∧-transitive. Let x, y, z ∈ X. We will establish

the inequality R(x, y) ∧ R(y, z) ≤ R(x, z). The case R(x, z) = 1 is obvious.
Consider R(x, z) 6= 1. Since R(x, z) = C([x, z])(x) and C verifies (U), we
must have R(x, z) = 0.

Assume by absurdum R(x, y) ∧ R(y, z) 6= 0 hence R(x, y) = R(y, z) = 1
and R(y, x) = R(z, y) = 0 because of (U). Therefore, since C is normal

C([x, y, z])(x) = [x, y, z](x) ∧
∧

u∈X

([x, y, z](u) → R(x, u)) =

= R(x, x) ∧ R(x, y) ∧ R(x, z) = R(x, y) ∧ R(x, z) = 0
and similarly
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C([x, y, z])(y) = R(y, x) ∧ R(y, z) = 0

C([x, y, z])(z) = R(z, x) ∧ R(z, y) = 0.

Since

C([x, y, z])(u) ≤ [x, y, z](u) =

{
1 if u ∈ {x, y, z}
0 otherwise

and C([x, y, z]) is a normal fuzzy set we have C([x, y, z])(x) = 1 or
C([x, y, z])(y) = 1 or C([x, y, z])(z) = 1. Contradiction. Then R is tran-
sitive.

Remark 5.2 Assume C is a normal fuzzy choice function fulfilling (U). By
the proof of Proposition 5.9, R = R̄. Thus P = P̄ . We prove P̄ = R̄.

For any x, y ∈ X we have

P̄ (x, y) = R̄(x, y) ∧ ¬R̄(y, x) = C([x, y])(x) ∧ ¬C([x, y])(y)

R̄(x, y) = C([x, y])(x).

According to (U) we have one of the cases (see the proof of Proposition
5.9)

C([x, y])(x) = 1, C([x, y])(y) = 0;

C([x, y])(x) = 0, C([x, y])(y) = 1.

A simple computation shows that each of these cases leads to

C([x, y])(x) = C([x, y])(x) ∧ ¬C([x, y])(y),

so R̄(x, y) = P̄ (x, y). Hence P = P̄ = R̄ = R.

Proposition 5.10 Let C be a fuzzy choice function satisfying (U). The
following assertions are equivalent

(1) WFCA holds for C;

(2) C satisfies condition Fα.

Proof. (1) ⇒ (2) By Theorem 5.1 WFCA implies the normality of C.
In accordance with Proposition 5.5 C satisfies Fα.

(2) ⇒ (1) Let x, y ∈ X and S ∈ B. We prove that

(a) R(x, y) ∧ C(S)(y) ∧ S(x) ≤ C(S)(x).

It is easy to see that I([x, y], S) = S(x) ∧ S(y). Applying Fα for [x, y]
and S we get

C(S)(y) ∧ S(x) = S(x) ∧ S(y) ∧ C(S)(y) = I([x, y], S) ∧ [x, y](y) ∧
C(S)(y) ≤ C([x, y])(y),

hence

R(x, y) ∧ C(S)(y) ∧ S(x) ≤ C(S)(y) ∧ S(x) ≤ C([x, y])(y).

Let H ∈ B. Applying again Fα for [x, y] and H we get

C(H)(x) ∧ H(y) = H(x) ∧ H(y) ∧ C(H)(x) = I([x, y], H) ∧ [x, y](x) ∧
C(H)(x) ≤ C([x, y])(x)

hence

C(H)(x) ∧ H(y) ∧ C(S)(y) ∧ S(x) ≤ C(H)(x) ∧ H(y) ≤ C([x, y])(x).
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Since these last inequalities hold for each H ∈ B we infer

R(x, y) ∧ C(S)(y) ∧ S(x) = [
∨

H∈B

(C(H)(x) ∧ H(y))] ∧ C(S)(y) ∧ S(x) =

∨

H∈B

[C(H)(x) ∧ H(y) ∧ C(S)(y) ∧ S(x)] ≤ C([x, y])(x).

We conclude that
R(x, y) ∧ C(S)(y) ∧ S(x) ≤ C([x, y])(x) ∧ C([x, y])(y).
If x 6= y then C([x, y])(x)∧C([x, y])(y) = 0 because of (U), then R(x, y)∧

C(S)(y) ∧ S(x) = 0 ≤ C(S)(x). If x = y then R(x, y) ∧ C(S)(y) ∧ S(x) =
C(S)(x) ∧ S(x) ≤ C(S)(x). Hence the inequality (a) is proved.

5.3 Quasi-transitivity and condition Fδ

This section deals with a fuzzy form Fδ of Sen’s condition δ. For a normal
fuzzy choice function C we prove that the associated fuzzy preference relation
R is quasi-transitive if and only if condition Fδ holds.

Let Q be a fuzzy relation on X and PQ be the fuzzy relation on X defined
by PQ(x, y) = Q(x, y)∧¬Q(y, x) for any x, y ∈ X. If R is the fuzzy revealed
preference relation associated with a fuzzy choice function C (cf. Definition
4.2) then PR = P .

We say that a fuzzy relation Q on X is quasi-transitive if
PQ(x, y) ∧ PQ(y, z) ≤ PQ(x, z) for any x, y, z ∈ X.

Proposition 5.11 Let Q be a reflexive and strongly total fuzzy relation on
X. If Q is transitive then Q is quasi-transitive.

Proof. By the definition of PQ we have
PQ(x, y) ∧ PQ(y, z) = Q(x, y) ∧ ¬Q(y, x) ∧ Q(y, z) ∧ ¬Q(z, y)
for all x, y, z ∈ X. Hence PQ(x, y) ∧ PQ(y, z) ≤ Q(x, y) ∧ Q(y, z) ≤

Q(x, z), Q being transitive. We remark that Q(z, x) ∧ Q(x, y) ≤ Q(z, y)
hence

Q(z, x) ∧ Q(x, y) ∧ ¬Q(z, y) ≤ Q(z, y) ∧ ¬Q(z, y) = 0
so Q(z, x) ∧ Q(x, y) ∧ ¬Q(z, y) = 0.
According to Lemma 3.3 (1), Q(x, y) ∧ ¬Q(z, y) ≤ ¬Q(z, x) hence
PQ(x, y) ∧ PQ(y, z) ≤ Q(x, y) ∧ ¬Q(z, y) ≤ ¬Q(z, x).
Therefore PQ(x, y) ∧ PQ(y, z) ≤ Q(x, z) ∧ ¬Q(z, x) = PQ(x, z), i.e. Q is

quasi-transitive.

Let C : B → F(X) be a fuzzy choice function on 〈X,B〉.

Definition 5.1 We say that the fuzzy choice function C satisfies the condi-
tion Fδ if for any S = [a1, . . . , an], T = [b1, . . . , bm] in B and for any distinct
x, y ∈ X the following inequality holds
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I(S, T ) ≤ (C(S)(x) ∧ C(S)(y)) → ¬(C(T )(x) ∧
∧

t6=x

¬C(T )(t)).

Remark 5.3 By Lemma 3.1 (1) the previous inequality is equivalent to

I(S, T ) ∧ C(S)(x) ∧ C(S)(y) ≤ ¬(C(T )(x) ∧
∧

t6=x

¬C(T )(t)).

An easy computation shows that in case of crisp choice functions condi-
tion Fδ is exactly condition δ.

Proposition 5.12 Assume the fuzzy choice function C is normal and sat-
isfies condition Fδ. Then the associated fuzzy revealed preference relation R
is quasi-transitive.

Proof. We prove that for all x, y, z ∈ X the following inequality holds

(a) P (x, y) ∧ P (y, z) ≤ P (x, z) = R(x, z) ∧ ¬R(z, x).

Recall that R is reflexive and strongly total in accordance with Lemma
4.3.

Since C is normal one gets

C([x, y, z])(x) = Ĉ([x, y, z])(x) = R(x, y) ∧ R(x, z);

C([x, y, z])(y) = Ĉ([x, y, z])(y) = R(y, x) ∧ R(y, z);

C([x, y, z])(z) = Ĉ([x, y, z])(z) = R(z, x) ∧ R(z, y).

By the definition of a fuzzy choice function, C([x, y, z])(x) = 1 or C([x, y, z])(y) =
1 or C([x, y, z])(z) = 1.

If C([x, y, z])(y) = 1 then 1 = R(y, x) ∧ R(y, z) ≤ R(y, x), R(y, z) hence
R(y, x) = R(y, z) = 1. One gets P (x, y) = R(x, y) ∧ ¬R(y, x) = 0 so (a) is
trivially satisfied. Similarly, if C([x, y, z])(z) = 1 then P (y, z) = 0 and (a) is
satisfied.

Let us consider the case C([x, y, z])(x) = 1 hence R(x, y) = R(x, z) = 1.
Then (a) is equivalent to P (x, y) ∧ P (y, z) ≤ ¬R(z, x). By Lemma 3.3 (1),
this last inequality is equivalent to

(b) P (x, y) ∧ P (y, z) ∧ R(z, x) = 0.

Since C is normal we have C([x, z])(x) = R(x, z) = 1 and C([x, z])(z) =
R(z, x). In accordance with condition Fδ and Lemma 3.3 (7), (8) the fol-
lowing hold
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R(z, x) = R(x, z) ∧ R(z, x)

= I([x, z], [x, y, z]) ∧ C([x, z])(x) ∧ C([x, z])(z)

≤ ¬(C([x, y, z])(x) ∧
∧

t6=x

¬C([x, y, z])(t))

= ¬(
∧

t6=x

¬C([x, y, z])(t))

= ¬(¬C([x, y, z])(y) ∧ ¬C([x, y, z])(z))

= ¬(¬(R(y, x) ∧ R(y, z)) ∧ ¬(R(z, x) ∧ R(z, y)))

≤ ¬(¬R(y, x) ∧ ¬R(z, y)) = ¬¬R(y, x) ∨ ¬¬R(z, y)

Thus one gets

P (x, y)∧P (y, z)∧R(z, x) ≤ P (x, y)∧P (y, z)∧(¬¬R(y, x)∨¬¬R(z, y)) ≤
≤ ¬R(y, x) ∧ ¬R(z, y) ∧ (¬¬R(y, x) ∨ ¬¬R(z, y)) =

= (¬R(y, x)∧¬R(z, y)∧¬¬R(y, x))∨(¬R(y, x)∧¬R(z, y)∧¬¬R(z, y)) = 0

and the inequality (b) was proved.

Proposition 5.13 If C is a normal fuzzy choice function and R is quasi-
transitive then condition Fδ holds.

Proof. Suppose by absurdum that Fδ does not hold, i.e. there exist
S = [a1, . . . , an], T = [b1, . . . , bm] ∈ B and x, y ∈ X such that

(a) I(S, T ) ∧ C(S)(x) ∧ C(S)(y) 6≤ ¬(C(T )(x) ∧
∧

t6=x

¬C(T )(t)).

We observe that

(b) C(S)(y) ∧ C(S)(x) ≤ C(S)(y) ∧ S(x) ≤ R(y, x).

If R(y, x) = 0 then, by (b), C(S)(x) ∧ C(S)(y) = 0, contradicting (a);
hence R(y, x) > 0. Thus ¬R(y, x) = 0 and P (x, y) = R(x, y)∧¬R(y, x) = 0.

Since S(t), T (t) ∈ {0, 1} we have S(t) → T (t) ∈ {0, 1} for each t ∈ X

hence I(S, T ) =
∧

t∈X

(S(t) → T (t)) ∈ {0, 1}.

I(S, T ) = 0 contradicts (a), hence I(S, T ) = 1. Then S ⊆ T so {a1, . . . , an} ⊆
{b1, . . . , bm}. If x 6∈ {a1, . . . , an} then C(S)(x) ≤ S(x) = 0 contradicting (a);
then x ∈ {a1, . . . , an}. Similarly, y ∈ {a1, . . . , an}.

By (a), ¬C(T )(t) > 0 for each t 6= x. Since

¬C(T )(t) =

{
1 if C(T )(t) = 0
0 if C(T )(t) > 0

we must have ¬C(T )(t) = 1, hence C(T )(t) = 0 for each t 6= x.

But C is normal, so

C(T )(y) = T (y) ∧
∧

z∈X

(T (z) → R(y, z)).
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Since T (y) = 1 and T (z) → R(y, z) =

{
R(y, z) if z ∈ {b1, . . . , bm}

1 otherwise
it follows that 0 = C(T )(y) = R(y, b1)∧ . . .∧R(y, bm). Thus R(y, z1) = 0 for
some z1 ∈ {b1, . . . , bm}. R(y, x) > 0 implies z1 6= x; of course z1 6= y. R be-
ing strongly total, R(z1, y) = 1, therefore P (z1, y) = R(z1, y)∧¬R(y, z1) = 1.

Applying the same procedure with y instead of x and z1 instead of y
there exists z2 ∈ {b1, . . . , bm}\{y, z1} such that P (z2, z1) = 1. If z2 = x then
according to the hypothesis of quasi-transitivity, 1 = P (x, z1) ∧ P (z1, y) ≤
P (x, y). This contradicts P (x, y) = 0, so z2 6= x. In conclusion, z2 ∈
{b1, . . . , bm} \ {x, y, z1}.

By induction there exists a sequence z1, z2, . . . , zk, . . . of elements of
{b1, . . . , bm} such that zk ∈ {b1, . . . , bm} \ {x, y, z1, . . . , zk−1} for any k =
1, 2, . . . (z0 is taken y). Thus the terms of the sequence (zk) will be distinct,
contradicting the finitude of {b1, . . . , bm}. The contradiction shows that Fδ
is verified.

Summing the two previous propositions we get

Theorem 5.3 If C is a normal fuzzy choice function, then R is quasi-
transitive if and only if condition Fδ is verified.

Remark 5.4 Theorem 5.3 is the generalization for fuzzy choice functions
of a Sen result (see [49], (T10)).

5.4 Other consistency conditions

In [50] there exist other consistency conditions besides properties α, β, γ,
δ. In this section we study conditions Fα2, Fβ(+) and Fγ2, fuzzy versions
of conditions α2, β(+) and γ2 for crisp choice functions [50]. Then a fuzzy
choice function is normal if and only if conditions Fα2 and Fγ2 are satisfied.
If a fuzzy choice function C verifies Fβ(+) then the associated fuzzy prefer-
ence relation R is transitive. We will prove that for a fuzzy choice function
C, the path independence condition C(S∪T ) = C(C(S)∪C(T )) implies the
quasi-transitivity of R̄.

Throughout this section C will denote a fuzzy choice function on 〈X,B〉.
We introduce condition Fα2, a fuzzy form of the property α2 in [50].

Condition Fα2

For any S ∈ B and for any x, y ∈ X, C(S)(x) ∧ S(y) ≤ C([x, y])(x).

The following proposition shows that condition Fα2 is obtained by re-
laxing condition Fα.

Proposition 5.14 Condition Fα implies condition Fα2.
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Proof. By condition Fα we have
I([x, y], S) ∧ C(S)(x) ∧ [x, y](x) ≤ C([x, y])(x)
for any S ∈ B and x, y ∈ X. Observing that
I([x, y], S)∧C(S)(x)∧[x, y](x) = S(x)∧S(y)∧C(S)(x) = C(S)(x)∧S(y)
one gets exactly condition Fα2.

Proposition 5.15 The following statements are equivalent:

(a) Condition Fα2;

(b) For any S ∈ B and x ∈ X, C(S)(x) ≤
∧

y∈X

(S(y) → C([x, y])(x));

(c) R = R̄.

Proof. (a) ⇔ (b) For any S ∈ B the following conditions are equivalent:

• for any x, y ∈ X, C(S)(x) ∧ S(y) ≤ C([x, y])(x);

• for any x, y ∈ X, C(S)(x) ≤ S(y) → C([x, y])(x);

• for any x ∈ X, C(S)(x) ≤
∧

y∈X

(S(y) → C([x, y])(x)).

Thus (a), (b) are equivalent.
(a) ⇔ (c) Since R̄(x, y) = C([x, y])(x) and R̄ ⊆ R (cf. Lemma 4.3 (i))

the following properties are equivalent:

• Condition Fα2;

• for any S ∈ B and x, y ∈ X, C(S)(x) ∧ S(y) ≤ R̄(x, y);

• for any x, y ∈ X,
∨

S∈B

(C(S)(x) ∧ S(y)) ≤ R̄(x, y);

• for any x, y ∈ X, R(x, y) ≤ R̄(x, y);

• for any x, y ∈ X, R(x, y) = R̄(x, y).

In conclusion, condition Fα2 and (c) are equivalent.

Now let us consider the following property.

Condition Fγ2

For any S ∈ B and x ∈ X, S(x) ∧
∧

y∈X

(S(y) → C([x, y])(x)) ≤ C(S)(x).

Since for any S ∈ B and x ∈ X we have
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G(S, R̄)(x) = S(x) ∧
∧

y∈X

(S(y) → R̄(x, y))

= S(x) ∧
∧

y∈X

(S(y) → C([x, y])(x, y))

condition Fγ2 can be expressed
• For any S ∈ B and x ∈ X, G(S, R̄)(x) ≤ C(S)(x).

Proposition 5.16 The following properties are equivalent:

(a) C is normal;

(b) C satisfies conditions Fα2 and Fγ2.

Proof. (a) ⇒ (b) Since C is normal, by Lemma 5.1 R = R̄ hence condition
Fα2 is verified.

For each S ∈ B and x, y ∈ X we have

S(x) ∧
∧

y∈X

(S(y) → C([x, y])(x)) = S(x) ∧
∧

y∈X

(S(y) → R̄(x, y))

= S(x) ∧
∧

y∈X

(S(y) → R(x, y))

= Ĉ(S)(x)

= C(S)(x).

Then condition Fγ2 is verified.
(b) ⇒ (a) Since R = R̄ (by Proposition 5.15) and Fγ2 holds we get

Ĉ(S)(x) = S(x) ∧
∧

y∈X

(S(y) → R(x, y))

= S(x) ∧
∧

y∈X

(S(y) → R̄(x, y)) ≤ C(S)(x).

The inequality C(S)(x) ≤ Ĉ(S)(x) always holds, then Ĉ(S)(x) = C(S)(x)
for each S ∈ B and x ∈ X.

Now we consider a fuzzy version of the property β(+) in [50].

Condition Fβ(+)
For any S, T ∈ B and x, y ∈ X, I(S, T ) ∧ C(S)(x) ∧ S(y) ≤ C(T )(y) →

C(T )(x).

Proposition 5.17 Fβ(+) implies Fβ.
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Proof. For any S, T ∈ B and x, y ∈ X

I(S, T ) ∧ C(S)(x) ∧ C(S)(y) ≤ I(S, T ) ∧ C(S)(x) ∧ S(y)

≤ C(T )(y) → C(T )(x)

and similarly, I(S, T ) ∧ C(S)(x) ∧ C(S)(y) ≤ C(T )(x) → C(T )(y).

Then condition Fβ follows immediately.

Proposition 5.18 If Fβ(+) holds then for any S, T ∈ B and x ∈ X we
have C(S)(x) ∧ C(T )(x) ≤ C(S ∪ T )(x).

Proof. Let y ∈ X such that C(S∪T )(y) = 1; then S(y)∨T (y) = 1 hence
S(y) = 1 or T (y) = 1. Assume S(y) = 1. Then, by Fβ(+):

C(S)(x) = I(S, S∪T )∧C(S)(x)∧S(y) ≤ C(S∪T )(y) → C(S∪T )(x) =
1 → C(S ∪ T )(x) = C(S ∪ T )(x).

Similarly, if T (y) = 1, then C(T )(x) ≤ C(S ∪T )(x); therefore C(S)(x)∧
C(T )(x) ≤ C(S ∪ T )(x).

Proposition 5.19 If C satisfies Fβ(+) then R is transitive.

Proof. Let S, T ∈ B and x, y, z ∈ X. Take w ∈ X such that C(S ∪
T )(w) = 1; since C(S∪T )(w) ≤ S(w)∨T (w) we have S(w) = 1 or T (w) = 1.
Assume T (w) = 1. Exactly as in the proof of Proposition 5.18 one gets

(a) C(T )(y) ≤ C(S ∪ T )(y).

Applying Fβ(+) it follows that

C(S)(x) ∧ S(y) = I(S, S ∪ T ) ∧ C(S)(x) ∧ S(y)

≤ C(S ∪ T )(y) → C(S ∪ T )(x)

hence by Lemma 3.1 (1)

(b) C(S)(x) ∧ S(y) ∧ C(S ∪ T )(y) ≤ C(S ∪ T )(x).

In accordance with (a) and (b) the following inequalities hold:

C(S)(x) ∧ S(y) ∧ C(T )(y) ∧ T (z) ≤ C(S)(x) ∧ S(y) ∧ C(S ∪ T )(y) ∧ T (z)

≤ C(S ∪ T )(x) ∧ T (z)

≤ C(S ∪ T )(x) ∧ (S ∪ T )(z)

≤ R(x, z).

These inequalities are true for all S, T ∈ B, hence
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R(x, y) ∧ R(y, z) = [
∨

S∈B

(C(S)(x) ∧ S(y))] ∧ [
∨

T∈B

(C(T )(y) ∧ T (z))]=

=
∨

S,T∈B

(C(S)(x) ∧ S(y) ∧ C(T )(y) ∧ T (z)) ≤ R(x, z).

We say that the fuzzy choice function C is path independent if for any
S, T ∈ B the following equality holds

(FPI) C(S ∪ T ) = C(C(S) ∪ C(T )).
Condition FPI extends to fuzzy setting the path independence property

PI for crisp choice functions (see [50], p. 68).

Proposition 5.20 If FPI holds then the fuzzy relation R̄ is quasi-transitive.

Proof. Let x, y, z ∈ X. We must prove that P̄ (x, y) ∧ P̄ (y, z) ≤ P̄ (x, z),
i.e.

(a) R̄(x, y) ∧ ¬R̄(y, x) ∧ R̄(y, z) ∧ ¬R̄(z, y) ≤ R̄(x, z) ∧ ¬R̄(z, x).
If R̄(y, x) > 0 or R̄(z, y) > 0 then ¬R̄(y, x) = 0 or ¬R̄(z, y) = 0 so (a)

is trivially verified. Assume R̄(y, x) = R̄(z, y) = 0 then, since R̄ is strongly
total, R̄(x, y) = R̄(y, z) = 1. Thus

C([x, y])(x) = R̄(x, y) = 1; C([x, y])(y) = R̄(y, x) = 0
hence C([x, y]) = [x]. Similarly, C([y, z]) = [y]. According to FPI we

can write

C([x, y, z]) = C([x, y] ∪ [y, z]) = C(C([x, y]) ∪ C([y, z]))

= C([x] ∪ [y]) = C([x, y]) = [x];

C([x, y, z]) = C([x, y] ∪ [z]) = C(C([x, y]) ∪ C([z]))

= C([x] ∪ [z]) = C([x, z])

hence C([x, z]) = [x]. This yields
R̄(x, z) = C([x, z])(x) = [x](x) = 1
R̄(z, x) = C([x, z])(z) = [x](z) = 0.
Then R̄(x, z) ∧ ¬R̄(z, x) = 1 and the inequality (a) holds.

Proposition 5.21 If Fα holds then C(S ∪ T ) ≤ C(C(S) ∪ C(T )) for all
S, T ∈ B.

Proof. Let S, T ∈ B and x ∈ X. First we prove that
(a) C(S ∪ T )(x) ≤ C(S)(x) ∨ C(T )(x).
Assume T (x) ≤ S(x) then C(S ∪ T )(x) ≤ S(x) ∨ T (x) = S(x). By Fα

we get
C(S ∪T )(x) = I(S, S ∪T )∧C(S ∪T )(x)∧S(x) ≤ C(S)(x) ≤ C(S)(x)∨

C(T )(x).
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If S(x) ≤ T (x) then (a) follows similarly. We apply again Fα:

C(S ∪ T )(x) = C(S ∪ T )(x) ∧ (C(S) ∪ C(T ))(x)

= I(C(S) ∪ C(T ), S ∪ T ) ∧ C(S ∪ T )(x) ∧ (C(S) ∪ C(T ))(x)

≤ C(C(S) ∪ C(T ))(x)

Thus C(S ∪ T ) ≤ C(C(S) ∪ C(T )).

Remark 5.5 In case of crisp choice functions the converse of Proposition
5.21 also holds (see [50], Proposition 17). An open problem is whether the
converse of Proposition 5.21 holds true.

5.5 An example

As seen above, Theorem 5.1 establishes some connections between conditions
(i)-(viii) in Section 5.1.

The example presented in this section is constructed with the aim to
clarify these connections and the limitations of Theorem 5.1.

Let X = {x, y} and B = {[x], [y], [x, y], A} where A ∈ F(X) is defined
by A = 0.3χ{x} + χ{y}.

Consider function C : B → F(X) defined by

C([x]) = χ{x}; C([y]) = χ{y}; C([x, y]) = 0.25χ{x} + χ{y}; C(A) =
0.25χ{x} + χ{y}.

C is a fuzzy choice function fulfilling (H1) and (H2). We determine first
the fuzzy relation R associated to C. According to Definition 4.2 (i)

R(x, y) =
∨

S∈B

(C(S)(x) ∗ S(y))=

= (C([x])(x) ∗ [x](y)) ∨ (C([y])(x) ∗ [y](y)) ∨ (C([x, y])(x) ∗ [x, y](y)) ∨
(C(A)(x) ∗ A(y)) =

= 1 ∗ 0 ∨ 0 ∗ 1 ∨ 0.25 ∗ 1 ∨ 0.25 ∗ 1 = 0.25.

Analogously R(x, x) = R(y, y) = R(y, x) = 1, thus

R =

(
1 0.25
1 1

)

It is clear that R is ∗-transitive, reflexive and strongly total.

We check now if the fuzzy choice function C verifies WFCA. For all
a, b ∈ X and S ∈ B we must have the inequality

(a) R(a, b) ∗ C(S)(b) ∗ S(a) ≤ C(S)(a).
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For a = b this inequality is always true; consider only the cases a =
x, b = y and a = y, b = x.

Case a = x, b = y. Since R(x, y) = 0.25 we have to prove that for any
S ∈ B the following inequality holds:

(b) 0.25 ∗ C(S)(y) ∗ S(x) ≤ C(S)(x).

−S = [x]. We have C(S)(y) = C([x])(y) = 0, hence (b) is verified.

−S = [y]. We have 0.25 ∗ C([y])(y) ∗ [y](x) = 0, hence (b) is verified.

−S = [x, y]. We have 0.25 ∗ C([x, y])(y) ∗ [x, y](x) = 0.25 = C([x, y])(x).

−S = A. We have 0.25∗C(A)(y)∗A(x) = 0.25∗1∗0.3 ≤ C(A)(x) = 0.25.

The case a = y, b = x follows similarly.

In conclusion C verifies WFCA. The fuzzy relation R being ∗-transitive,
R = W then C satisfies also SFCA.

We check now if condition (i) is verified for C. R is a regular preference,
then we investigate if C is normal:

Ĉ([x])(x) = 1 = C([x])(x)

Ĉ([x])(y) = 0 = C([x])(y)

Ĉ([y])(x) = 0 = C([y])(x)

Ĉ([y])(y) = 1 = C([y])(y)

Ĉ([x, y])(x) = [x, y](x) ∗ [([x, y](x) → R(x, x)) ∧ ([x, y](y) → R(x, y))] =
R(x, y) = 0.25 = C([x, y])(x)

Ĉ([x, y])(y) = R(y, x) = 1 = C([x, y])(y)

Ĉ(A)(y) = A(y) ∗ [((A(x) → R(y, x)) ∧ (A(y) → R(y, y))] = 0.3 →
R(y, x) = 1 = C(A)(y)

Ĉ(A)(x) = A(x) ∗ [((A(x) → R(x, x)) ∧ (A(y) → R(x, y))] = 0.3 ∗
R(x, y) = 0.3 ∗ 0.25; C(A)(x) = 0.25.

For the Gödel t-norm we have

Ĉ(A)(x) = 0.3 ∧ 0.25 = 0.25 = C(A)(x),

hence Ĉ = C.

For the Lukasiewicz t-norm ∗L

Ĉ(A)(x) = 0.3 ∗L 0.25 = max(0.3 + 0.25 − 1, 0) = 0 6= C(A)(x)

and for the product t-norm ∗P

Ĉ(A)(x) = 0.3 ∗P 0.25 = 0.3 × 0.25 6= C(A)(x).

This example shows that the implication (iii) ⇒ (i) in Theorem 5.1 is
false in the case of Lukasiewicz or product t-norms; meanwhile it confirms
that the equivalence (i) ⇔ (iii) is true for Gödel t-norm .

We compute now P̃ and R̃. According to Definition 4.4 (i) we have

P̃ (y, x) =
∨

S∈B

(C(S)(y) ∗ S(x) ∗ ¬C(S)(x)) =

= [C([x])(y) ∗ [x](x) ∗ ¬C([x])(x)] ∨ [C([y])(y) ∗ [y](x) ∗ ¬C([y])(x)]∨
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∨[C([x, y])(y) ∗ [x, y](x) ∗ ¬C([x, y])(x)]∨ [C(A)(y) ∗A(x) ∗ ¬C(A)(x)] =
= (¬0.25) ∨ (0.3 ∗ ¬0.25).

Similarly, P̃ (x, y) = 0. Hence

P̃ =

(
0 0

(¬0.25) ∨ (0.3 ∗ ¬0.25) 0

)

For Lukasiewicz t-norm ∗L we have
P̃ (y, x) = (1 − 0.25)∨ max (0.3 + 0.75 − 1, 0) = 0.75, hence

P̃ =

(
0 0

0.75 0

)

, R̃ =

(
1 0.25
1 1

)

= R.

For Gödel and product t-norms

P̃ =

(
0 0
0 0

)

, R̃ =

(
1 1
1 1

)

6= R.

It follows that for Gödel and product t-norms the equivalence (iv) ⇔
(vii) in Theorem 5.1 does not take place.
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Chapter 6

General Results

In the previous chapter we studied under hypotheses (H1) and (H2) revealed
preference axioms WAFRP , SAFRP , congruence axioms WFCA, SFCA
and some consistency conditions. This line of enquiry follows Uzawa-Arrow-
Sen theory that starts from the assumption that the domain of the choice
function contains the finite sets of alternatives.

Richter, Hansson, Suzumura and their followers investigated the choice
functions’rationality and revealed preference and congruence conditions with-
out this hypothesis.

The purpose of this chapter is a fuzzy approach of revealed preference and
congruence axioms for fuzzy choice functions in the general case, following
Richter-Hansson-Suzumura theory; we will work ignoring hypotheses (H1)
and (H2).

In the first two sections we fix Gödel t-norm and in the last section we
work with an arbitrary continuous t-norm ∗. As we have seen in Section 4.1,
axioms WARP and SARP written in terms of C-connected sequences lead
to new revealed preference axioms WAFRP ◦, SAFRP ◦. We also introduced
axiom HAFRP .

In Section 6.1 we prove two main theorems:

1. The axioms WFCA and WAFRP ◦ are equivalent.

2. The axioms SFCA and HAFRP are equivalent.

Another proposition asserts that WFCA ⇒ WAFRP and SFCA ⇒
SAFRP . According to the first theorem we have WAFRP ◦ ⇒ WAFRP .
These results are summarized in a diagram that illustrates the hierarchy of
axioms and other conditions of rationality.

Section 6.2 deals with a particular case of fuzzy choice functions. For
them we establish the equivalence between WAFRP ◦, G-normality, M -
normality and other two properties expressed by algebraic identities. Par-
ticularly the implication WAFRP ⇒ WAFRP ◦ fails hence WAFRP and
WAFRP ◦ are not equivalent.

A classical Richter theorem [41] asserts that a classical choice function
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satisfies SCA if and only if it is rationalized by a reflexive, transitive and
total preference relation.

Section 6.3 investigates to what extent Richter’s theorem can be extended
to fuzzy choice functions. We work here in a fuzzy set theory based on
an arbitrary continuous t-norm ∗. We introduce the notion of totally ∗-
rational fuzzy choice function, i.e. a G-rational fuzzy choice function which
is rationalized by a reflexive, ∗-transitive and total fuzzy preference relation.
A fuzzy choice function is said to be ∗-congruous if it satisfies SFCA.

First we prove that every totally ∗-rational choice function is ∗-congruous.
To prove the converse implication is an open question. We need to define the
notion of ∗-semirational fuzzy choice function in order to construct the proof
on the fuzzy level. We find a surprising result: any fuzzy choice function is
∗-semirational; to prove that we essentially apply Theorem 3.8.

The results of this chapter are based on our papers [18, 17, 21].

6.1 The hierarchy of axioms

In this section we shall establish some connections between various axioms
introduced in the previous paragraph. The results will be summarized in
the final diagram.

Proposition 6.1 (i) WFCA ⇒ WAFRP ;
(ii) SFCA ⇒ SAFRP .

Proof. (i) Let C : B → F(X) be a fuzzy choice function fulfilling WFCA.
For any x, y ∈ X we have

P̃ (x, y) ∧ R(y, x) = [
∨

S∈B

(C(S)(x) ∧ S(y) ∧ ¬C(S)(y)] ∧ R(y, x)

=
∨

S∈B

[R(y, x) ∧ C(S)(x) ∧ S(y) ∧ ¬C(S)(y)]

≤
∨

S∈B

(C(S)(y) ∧ ¬C(S)(y)) = 0

because R(y, x) ∧ C(S)(x) ∧ S(y) ≤ C(S)(y), by WFCA. Thus P̃ (x, y) ∧
R(y, x) = 0, hence P̃ (x, y) ≤ ¬R(y, x).

(ii) Suppose C satisfies SFCA. For any x, y ∈ X:
T (P̃ )(x, y) ∧ R(y, x) =

= [P̃ (x, y) ∨
∞∨

n=1

∨

t1,...,tn∈X

(P̃ (x, t1) ∧ . . . ∧ P̃ (tn, y))] ∧ R(y, x) =

= [P̃ (x, y) ∧ R(y, x)] ∨
∞∨

n=1

∨

t1,...,tn∈X

[P̃ (x, t1) ∧ . . . ∧ P̃ (tn, y) ∧ R(y, x)].
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But SFCA implies WFCA, hence by (i), P̃ (x, y)∧R(y, x) = 0. For any
n ≥ 1 and t1, . . . , tn ∈ X we have, according to Lemma 4.2:

P̃ (x, t1)∧ . . .∧ P̃ (tn, y)∧R(y, x) ≤ R(x, t1)∧ . . .∧R(tn−1, tn)∧ P̃ (tn, y)∧
R(y, x) =

= R(y, x) ∧ R(x, t1) ∧ . . . ∧ R(tn−1, tn) ∧ P̃ (tn, y) ≤
≤ T (R)(y, tn) ∧ P̃ (tn, y) =

= T (R)(y, tn) ∧
∨

S∈B

[C(S)(tn) ∧ S(y) ∧ ¬C(S)(y)]

=
∨

S∈B

[T (R)(y, tn) ∧ C(S)(tn) ∧ S(y) ∧ ¬C(S)(y)] ≤

≤
∨

S∈B

(C(S)(y) ∧ ¬C(S)(y)) = 0

because T (R)(y, tn) ∧ C(S)(tn) ∧ S(y) ≤ C(S)(y) (by SFCA). Thus
P̃ (x, t1) ∧ . . . ∧ P̃ (tn, y) ∧ R(y, x) = 0 for any n ≥ 1 and t1, . . . , tn ∈

X, therefore T (P̃ )(x, y) ∧ R(y, x) = 0. By Lemma 3.1 (1), T (P̃ )(x, y) ≤
¬R(y, x).

Remark 6.1 Let C be a fuzzy choice function, S ∈ B and x, y ∈ X. By the
definition of R

R(x, y) ∧ S(x) ∧ C(S)(y) = [
∨

T∈B

(C(T )(x) ∧ T (y))] ∧ S(x) ∧ C(S)(y)

=
∨

T∈B

[S(x) ∧ T (y) ∧ C(T )(x) ∧ C(S)(y)].

Then WFCA is equivalent with the following statement
• For any S, T ∈ B and x, y ∈ X
S(x) ∧ T (y) ∧ C(T )(x) ∧ C(S)(y) ≤ C(S)(x).

Theorem 6.1 For a fuzzy choice function C : B → F(X) the following are
equivalent:

(i) C satisfies WFCA;

(ii) R ⊆ R∗;

(iii) C satisfies WAFRP ◦.

Proof. (i) ⇔ (ii). The following assertions are equivalent:
• R ⊆ R∗;
• For any x, y ∈ X:
∨

S∈B

(C(S)(x) ∧ S(y)) ≤
∧

T∈B

[(T (x) ∧ C(T )(y)) → C(T )(x)];

• For any x, y ∈ X and S, T ∈ B :
C(S)(x) ∧ S(y) ≤ (T (x) ∧ C(T )(y)) → C(T )(x).
• For any x, y ∈ X and S, T ∈ B:
C(S)(x) ∧ S(y) ∧ T (x) ∧ C(T )(y) ≤ C(T )(x).
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In accordance with Remark 6.1, (i) and (ii) are equivalent.

(iii) ⇒ (i) Assume that C satisfies WAFRP ◦. Let x, y ∈ X and S, T ∈ B.
By WAFRP ◦ one gets

S(x) ∧ T (y) ∧ C(T )(x) ∧ C(S)(y) ≤ E(S ∩ C(T ), T ∩ C(S)) =

=
∧

u∈X

[(S(u) ∧ C(T )(u)) ↔ (T (u) ∧ C(S)(u))] ≤

≤ (S(x) ∧ C(T )(x)) ↔ (T (x) ∧ C(S)(x)) ≤

≤ (S(x) ∧ C(T )(x)) → (T (x) ∧ C(S)(x)) =

= [(S(x) ∧ C(T )(x)) → T (x)] ∧ [(S(x) ∧ C(T )(x)) → C(S)(x)] =

= (S(x) ∧ C(T )(x)) → C(S)(x)

because (S(x) ∧ C(T )(x)) → T (x) = 1 (by Lemma 3.1 (4)). It follows
that

S(x) ∧ T (y) ∧ C(T )(x) ∧ C(S)(y) =

= [S(x) ∧ T (y) ∧ C(T )(x) ∧ C(S)(y)] ∧ (S(x) ∧ C(T )(x)) ≤ C(S)(x)

in accordance with Lemma 3.1 (1). According to Remark 6.1, C satisfies
WFCA.

(i) ⇒ (iii) Assume C fulfills WFCA. By Remark 6.1, for any S, T ∈ B
and x, y, u ∈ X we have

S(x) ∧ T (y) ∧ C(S)(y) ∧ C(T )(x) ∧ S(u) ∧ C(T )(u) ≤ S(u) ∧ T (y) ∧
C(T )(u) ∧ C(S)(y) ≤ C(S)(u).

Thus, by Lemma 3.1 (1):

S(x) ∧ T (y) ∧ C(S)(y) ∧ C(T )(x) ≤ (S(u) ∧ C(T )(u)) → C(S)(u) =

= (S(u) ∧ C(T )(u)) → (T (u) ∧ C(S)(u))

and similarly,

S(x)∧T (y)∧C(S)(y)∧C(T )(x) ≤ (T (u)∧C(S)(u)) → (S(u)∧C(T )(u))

The last two inequalities give

S(x)∧T (y)∧C(S)(y)∧C(T )(x) ≤ (S(u)∧C(T )(u)) ↔ (T (u)∧C(S)(u)).

This inequality is true for each u ∈ X, hence

S(x) ∧ T (y) ∧ C(S)(y) ∧ C(T )(x) ≤ E(S ∩ C(T ), T ∩ C(S))

so C satisfies the axiom WAFRP ◦.

Corollary 6.1 WAFRP ◦ ⇒ WAFRP .

Proof. By Proposition 6.1 and Theorem 6.1.

Theorem 6.2 For any fuzzy choice function C : B → F(X) the following
are equivalent:

(i) C satisfies HAFRP ;

(ii) C satisfies SFCA.
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Proof. (i) ⇒ (ii) Assume C satisfies HAFRP . For any S ∈ B and
x, y ∈ X we shall prove that

(a) T (R)(x, y) ∧ S(x) ∧ C(S)(y) ≤ C(S)(x)

The left hand-side in (a) can be written

T (R)(x, y) ∧ S(x) ∧ C(S)(y) =

= [R(x, y) ∨
∞∨

n=1

∨

z1,...,zn∈X

(R(x, z1) ∧ . . . ∧ R(zn, y))] ∧ S(x) ∧ C(S)(y) =

= [R(x, y) ∧ S(x) ∧ C(S)(y)] ∨
∞∨

n=1

∨

z1,...,zn∈X

[R(x, z1) ∧ . . . ∧ R(zn, y) ∧

S(x) ∧ C(S)(y)].

Then proving (a) is equivalent to establishing the following two inequal-
ities:

(b) R(x, y) ∧ S(x) ∧ C(S)(y) ≤ C(S)(x);

(c) For any integer n ≥ 1 and z1, . . . , zn ∈ X:

R(x, z1) ∧ R(z1, z2) ∧ . . . ∧ R(zn, y) ∧ S(x) ∧ C(S)(y) ≤ C(S)(x).

The axiom HAFRP implies WAFRP ◦ then, by Theorem 6.1, C satisfies
WFCA. Then (b) is verified. According to the definition of R

R(x, z1) ∧ R(z1, z2) ∧ . . . ∧ R(zn, y) ∧ S(x) ∧ C(S)(y) =

= [
∨

S1∈B

(C(S1)(x) ∧ S1(z1))] ∧ . . . ∧ [
∨

Sn+1∈B

(C(Sn+1)(zn) ∧ Sn+1(y))] ∧

S(x) ∧ C(S)(y) =

=
∨

S1,...,Sn+1

T (S1, . . . , Sn+1)

where

T (S1, . . . , Sn+1) = C(S1)(x) ∧ S1(z1) ∧ C(S2)(z1) ∧ . . .

∧C(Sn+1)(zn) ∧ Sn+1(y) ∧ S(x) ∧ C(S)(y) =

= [S(x)∧C(S1)(x)]∧ [S1(z1)∧C(S2)(z1)]∧ . . .∧ [Sn(zn)∧C(Sn+1)(zn)]∧

∧[Sn+1(y) ∧ C(S)(y)] =
n+1∧

k=0

[Sk(zk) ∧ C(Sk+1)(zk)]

with S0 = S, z0 = x and zn+1 = y. According to HAFRP :

T (S1, . . . , Sn+1) ≤ E(S ∩ C(S1), S1 ∩ C(S)) ≤
≤ (S(x) ∧ C(S1)(x)) ↔ (S1(x) ∧ C(S)(x)) ≤
≤ (S(x) ∧ C(S1)(x)) → (S1(x) ∧ C(S)(x)) =

= (S(x) ∧ C(S1)(x)) → C(S)(x).

We also have T (S1, . . . , Sn+1) ≤ S(x) ∧ C(S1)(x) hence by Lemma 3.1
(2)

T (S1, . . . , Sn+1) ≤ (S(x)∧C(S1)(x1))∧[(S(x)∧C(S1)(x)) → C(S)(x)] =

= S(x) ∧ C(S1)(x) ∧ C(S)(x) ≤ C(S)(x).

This inequality holds for all S1, . . . , Sn+1 ∈ B hence

R(x, z1) ∧ R(z1, z2) ∧ . . . ∧ R(zn, y) ∧ S(x) ∧ C(S)(y) =

=
∨

S1,...,Sn+1

T (S1, . . . , Sn+1) ≤ C(S)(x).
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Condition (c) was proved so the proof of (i) ⇒ (ii) is finished.

(ii) Assume C fulfills SFCA. Let S1, . . . , Sn ∈ B and z1, . . . , zn ∈ X.
We shall prove that the following inequality holds:

(d)
n∧

k=1

[Sk(zk) ∧ C(Sk+1)(zk)] ≤ E(S1 ∩ C(S2), S2 ∩ C(S1))

where Sn+1 = S1. We remark that

(e)
n∧

k=1

[Sk(zk) ∧ C(Sk+1)(zk)] =

= S1(z1)∧[C(S2)(z1)∧S2(z2)]∧. . .∧[C(Sn)(zn−1)∧Sn(zn)]∧C(S1)(zn) ≤

≤ S1(z1) ∧ R(z1, z2) ∧ . . . ∧ R(zn−1, zn) ∧ C(S1)(zn) ≤

≤ S1(z1) ∧ T (R)(z1, zn) ∧ C(S1)(zn)

because C(S2)(z1) ∧ S2(z2) ≤ R(z1, z2), . . . , C(Sn)(zn−1) ∧ Sn(zn) ≤
R(zn−1, zn).

Let z ∈ X. We shall establish the inequality

(f)
n∧

k=1

[Sk(zk) ∧ C(Sk+1)(zk)] ≤ (S1(z) ∧ C(S2)(z)) → C(S1)(z)

= [S1(z) ∧ C(S2)(z)] → [S2(z) ∧ C(S1)(z))].

By Lemma 3.1 (1), (f) is equivalent to

(g)

n∧

k=1

[Sk(zk) ∧ C(Sk+1)(zk)] ∧ S1(z) ∧ C(S2)(z) ≤ C(S1)(z).

Let us denote by ǫ the left hand side member of the inequality (g). It is
obvious that

ǫ ≤ C(S2)(z1) ∧ C(S2)(z) ≤ S2(z1) ∧ C(S2)(z) ≤ R(z, z1).

By (e) we have ǫ ≤ T (R)(z1, zn) therefore

ǫ ≤ R(z, z1) ∧ T (R)(z1, zn) ≤ T (R)(z, z1) ∧ T (R)(z1, zn) ≤ T (R)(z, zn)

because T (R) is transitive. According to (e), ǫ ≤ C(S1)(zn). We also
have ǫ ≤ S1(z), therefore ǫ ≤ T (R)(z, zn) ∧ S1(z) ∧ C(S1)(zn) ≤ C(S1)(z),
the last inequality following by SFCA. Then (g) was proved.

In accordance with (e) we can write
n∧

k=1

[Sk(zk) ∧ C(Sk+1)(zk)] ∧ S2(z) ∧ C(S1)(z) ≤

≤ S1(z1) ∧ T (R)(z1, zn) ∧ C(S1)(zn) ∧ S2(z) ∧ C(S1)(z) ≤

≤ S2(z) ∧ (C(S1)(z) ∧ S1(z1)) ≤ R(z, z1) ∧ S2(z).

It is obvious that
n∧

k=1

[Sk(zk) ∧ C(Sk+1)(zk)] ≤ C(S2)(z1) hence by using

WFCA
n∧

k=1

[Sk(zk) ∧ C(Sk+1)(zk)] ∧ S2(z) ∧ C(S1)(z) ≤

≤ R(z, z1) ∧ S2(z) ∧ C(S2)(z1) ≤ C(S2)(z).

By this last inequality one infers
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(h)
n∧

k=1

[Sk(zk) ∧ C(Sk+1)(zk)] ≤ (S2(z) ∧ C(S1)(z)) → C(S2)(z) =

= (S2(z) ∧ C(S1)(z)) → (S1(z) ∧ C(S2)(z)).
From (f) and (h) we get for each z ∈ X:
n∧

k=1

[Sk(zk) ∧ C(Sk+1)(zk)] ≤ (S1(z) ∧ C(S2)(z)) ↔ (S2(z) ∧ C(S1)(z)).

Then (d) follows immediately. In a similar way we can show that
n∧

k=1

[Sk(zk) ∧ C(Sk+1)(zk)] ≤ E(S2 ∩ C(S3), S3 ∩ C(S2))

. . .
n∧

k=1

[Sk(zk) ∧ C(Sk+1)(zk)] ≤ E(Sn−1 ∩ C(Sn), Sn ∩ C(Sn−1))

then HAFRP follows. The proof is finished.

Remark 6.2 The results of this section can be summarized in Figure 6.1.

0
SAFRP
HAFRP
 0
WAFRP


*

*
 R
includes
R


WFCA


WAFRP


SFCA


SAFRP


Figure 6.1: Hierarchy of axioms

6.2 A particular class of fuzzy choice functions

In this section a particular class of fuzzy choice function is studied with
emphasis on the rationality conditions discussed in the previous section.

Let X = {x, y} and B = {A, B} where A, B ∈ F(X) are given by
A = αχ{x} + χ{y}; B = χ{x} + βχ{y} (0 ≤ α, β ≤ 1).
Consider the function C : B → F(X) defined by:
(6.2.1) C(A) = γχ{x} + χ{y}; C(B) = χ{x} + δχ{y} (0 ≤ γ ≤ α, 0 ≤

δ ≤ β).
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For any α, β, γ, δ as above, C is a fuzzy choice function on 〈X,B〉. In
this section we will investigate some properties of the fuzzy choice func-
tions introduced by (6.2.1). We will obtain some new information on the
connections between various conditions studied in the previous sections.

First we compute the fuzzy preference relation R:

R(x, x) = R(y, y) = 1;

R(x, y) = (C(A)(x) ∧ A(y)) ∨ (C(B)(x) ∧ B(y)) = β ∨ γ;

R(y, x) = (C(A)(y) ∧ A(x)) ∨ (C(B)(y) ∧ B(x)) = α ∨ δ.

Thus

(6.2.2) R =

(
1 β ∨ γ

α ∨ δ 1

)

.

We also compute the fuzzy relation R∗:

R∗(x, x) = R∗(y, y) = 1;

R∗(x, y) = [(A(x)∧C(A)(y)) → C(A)(x)]∧[(B(x)∧C(B)(y)) → C(B)(x)] =

= α → γ;

R∗(y, x) = [(A(y)∧C(A)(x)) → C(A)(y)]∧[(B(y)∧C(B)(x)) → C(B)(y)] =

= β → δ.

Hence

(6.2.3) R∗ =

(
1 α → γ

β → δ 1

)

.

Proposition 6.2 The fuzzy choice function C defined by (6.2.1) satisfies
WAFRP ◦ if and only if β ∧ (α ∨ δ) = δ and α ∧ (β ∨ γ) = γ.

Proof. The following conditions are equivalent:

• R ⊆ R∗;

• α ∨ δ ≤ β → δ and β ∨ γ ≤ α → γ;

• β ∧ (α ∨ δ) ≤ δ and α ∧ (β ∨ γ) ≤ γ (by Lemma 3.1 (1));

• β ∧ (α ∨ δ) = δ and α ∧ (β ∨ γ) = γ (since γ ≤ α, δ ≤ β).

According to Theorem 6.1 the desired equivalence follows.

Let us compute the fuzzy relation P̃ :

P̃ (x, x) = P̃ (y, y) = 0;

P̃ (x, y) = [C(A)(x)∧A(y)∧¬C(A)(y)]∨ [C(B)(x)∧B(y)∧¬C(B)(y)] =

= β ∧ ¬δ;

P̃ (y, x) = [C(A)(y)∧A(x)∧¬C(A)(x)]∨ [C(B)(y)∧B(x)∧¬C(B)(x)] =

= α ∧ ¬γ.

Therefore

(6.2.4) P̃ =

(
0 β ∧ ¬δ

α ∧ ¬γ 0

)

.

Proposition 6.3 The fuzzy choice function C verifies WAFRP if and only
if α ∧ β ∧ ¬δ = α ∧ β ∧ ¬γ = 0.

82



Proof. The following assertions are equivalent:
• C satisfies WAFRP ;
• P̃ (x, y) ≤ ¬R(y, x) and P̃ (y, x) ≤ ¬R(x, y);
• β ∧ ¬δ ≤ ¬(α ∨ δ) and α ∧ ¬γ ≤ ¬(β ∨ γ);
• α ∧ β ∧ ¬δ = 0 and α ∧ β ∧ ¬γ = 0.

Remark 6.3 Let us take α = 1, γ = 1
2 , β = δ = 2

3 . Since ¬δ = ¬γ = 0,
by Proposition 6.3 one can infer that C satisfies WAFRP . We remark that
α ∧ (β ∨ γ) = 1 ∧ (2

3 ∨ 1
2) = 2

3 6= γ, hence, by Proposition 6.2, the axiom
WAFRP ◦ does not hold. In conclusion the implication

WAFRP ⇒ WAFRP ◦

fails and WAFRP , WAFRP ◦ are not equivalent conditions.

Remark 6.4 We observe that

(6.2.5) T (P̃ ) =

(
α ∧ β ∧ ¬γ ∧ ¬δ β ∧ ¬δ

α ∧ ¬γ α ∧ β ∧ ¬γ ∧ ¬δ

)

.

Since α ∧ β ∧ ¬δ = 0 and α ∧ β ∧ ¬γ = 0 implies α ∧ β ∧ ¬γ ∧ ¬δ = 0,
T (P̃ ) = P̃ , therefore by Proposition 6.3 we also obtain the equivalence

C satisfies SAFRP if and only if α ∧ β ∧ ¬δ = α ∧ β ∧ ¬γ = 0.

In our case B has two members A, B then the axioms WAFRP ◦, SAFRP ◦

and HAFRP are equivalent. Then using again the argument in Remark 6.3
the implication

SAFRP ⇒ HAFRP
does not hold.

Proposition 6.4 For the fuzzy choice function C defined by (6.2.1) the
following are equivalent:

(i) C is G-normal;

(ii) C is M -normal;

(iii) α ∧ β = γ ∧ δ.

Proof. We compute the values of G∗(A) and G∗(B):
G∗(A)(x) = A(x) ∧ [A(x) → R(x, x)] ∧ [A(y) → R(x, y)] = α ∧ (β ∨ γ)
G∗(A)(y) = A(y)∧[A(x) → R(y, x)]∧[A(y) → R(y, y)] = α → (α∨δ) = 1
and similarly, G∗(B)(x) = 1 and G∗(B)(y) = β ∧ (α ∨ δ).
Applying Lemma 3.1 we also compute the values of M∗(A) and M∗(B):
M∗(A)(x) = A(x) ∧ [(A(x) ∧ R(x, x)) → R(x, x)] ∧ [(A(y) ∧ R(y, x)) →

R(x, y)] =
= α ∧ [(α ∨ δ) → (β ∨ γ)] =
= α ∧ [α → (β ∨ γ)] ∧ [δ → (β ∨ γ)]
= α ∧ (β ∨ γ) ∧ (δ → (β ∨ γ))
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= α ∧ (β ∨ γ).

M∗(A)(y) = A(y) ∧ [(A(x) ∧ R(x, y)) → R(y, x)] ∧ [(A(y) ∧ R(y, y)) →
R(y, y)]

= (α ∧ (β ∨ γ)) → (α ∨ δ) = 1

and similarly M∗(B)(x) = 1 and M∗(B)(y) = β ∧ (α ∨ δ).

It follows that G∗(A) = M∗(A) and G∗(B) = M∗(B) and each of (i), (ii)
are equivalent to

• α ∧ (β ∨ γ) = γ and β ∧ (α ∨ δ) = δ

• (α ∧ β) ∨ (α ∧ γ) = γ and (β ∧ α) ∨ (β ∧ δ) = δ

• α ∧ β ≤ γ and α ∧ β ≤ δ

• α ∧ β ≤ γ ∧ δ

• α ∧ β = γ ∧ δ.

Theorem 6.3 Let C be the fuzzy choice function defined by (6.2.1). Then
the following assertions are equivalent

(i) C satisfies WAFRP ◦;

(ii) C is G-normal;

(iii) C is M -normal;

(iv) α ∧ β = γ ∧ δ;

(v) α ∧ (β ∨ γ) = γ and β ∧ (α ∨ δ) = δ.

Proof. According to Propositions 6.2 and 6.4 it suffices to establish the
equivalence of (iv) and (v).

Suppose first α ≤ β. Then α ∧ β = γ ∧ δ if and only if α = γ ∧ δ if and
only if (α = γ and α ≤ δ). Since α ≤ β we have

α ∧ (γ ∨ β) = (α ∧ β) ∨ (α ∧ γ) = α ∨ γ = α

β ∧ (α ∨ δ) = (α ∧ β) ∨ (β ∧ δ) = α ∨ δ

hence [α ∧ (γ ∨ β) = γ if and only if α = γ] and [β ∧ (α ∨ δ) = δ if and
only if α ∨ δ = δ if and only if α ≤ δ]. It follows that for α ≤ β, (iv) if and
only if (v); the case β ≤ α is similar.

6.3 A fuzzy analysis of the Richter theorem

A strict partial ∗-order on X is an irreflexive and ∗-transitive fuzzy relation
on X. The notion of similarity relation has a crucial role in the analysis of
fuzzy phenomena. A ∗-similarity relation E on X is a reflexive, symmetric
and ∗-transitive fuzzy relation. If E is a ∗-similarity relation on X and R
a fuzzy relation on X then E is called a congruence w.r.t. R if E(x, u) ∗
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E(y, v) ∗ R(x, y) ≤ R(u, v) for all x, y, u, v ∈ X. If E is a congruence w.r.t.
R then E(x, u) ∗ R(x, y) ≤ R(u, y) and E(y, v) ∗ R(x, y) ≤ R(x, v) for all
x, y, u, v ∈ X.

Let E be a congruence w.r.t. R. Define a (crisp) binary relation on X:
x ≈ y ⇔ E(x, y) = 1. It is easy to see that if ≈ is an equivalence relation
on X, then one can consider the quotient set Y = X/≈. [x] will denote the
equivalence class of x ∈ X.

Let us consider the fuzzy relation R̃ on Y defined by

(6.3.1) R̃([x], [y]) =
∨

u,v∈X

(E(u, x) ∗ E(v, y) ∗ R(u, v)) for any x, y ∈ X.

Lemma 6.1 The fuzzy relation R̃ is correctly defined, i.e.

(6.3.2)
∨

u,v∈X

(E(u, x) ∗ E(v, y) ∗ R(u, v)) =
∨

u,v∈X

(E(u, x′) ∗ E(v, y′) ∗

R(u, v)) for all x, y, x′, y′ ∈ X such that x ≈ x′ and y ≈ y′.

Proof. Let us denote by α and β the left and the right members in (6.3.2)
respectively.

Let u, v ∈ X. Then
E(u, x) = E(u, x) ∗ E(x, x′) ≤ E(u, x′)
E(v, y) = E(v, y) ∗ E(y, y′) ≤ E(v, y′)
because E(x, x′) = E(y, y′) = 1. Therefore
E(u, x) ∗ E(v, y) ∗ R(u, v) ≤ E(u, x′) ∗ E(v, y′) ∗ R(u, v) ≤ β.
This inequality holds for any u, v ∈ X hence α ≤ β. The converse

inequality follows similarly.

Proposition 6.5 If R is a ∗-transitive fuzzy relation on X then R̃ is also
∗-transitive.

Proof. Let x, y, z ∈ X. By Lemma 3.2 (5)

R̃([x], [y])∗R̃([y], [z]) = [
∨

u,v∈X

(E(u, x)∗E(v, y)∗R(u, v))]∗[
∨

s,t∈X

(E(s, y)∗

E(t, z)∗R(s, t))] =
∨

u,v,s,t∈X

(E(u, x)∗E(v, y)∗R(u, v)∗E(s, y)∗E(t, z)∗R(s, t))

and

R̃([x], [z]) =
∨

u,t∈X

(E(u, x) ∗ E(t, z) ∗ R(u, t)).

Let u, v, s, t ∈ X. Since

E(v, y) ∗ E(s, y) = E(v, y) ∗ E(y, s) ≤ E(v, s)
E(v, s) ∗ R(u, v) ≤ R(u, s)
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R(u, s) ∗ R(s, t) ≤ R(u, t)

it follows that

E(u, x) ∗E(v, y) ∗R(u, v) ∗E(s, y) ∗E(t, z) ∗R(s, t) = E(u, x) ∗E(v, y) ∗
E(s, y)∗E(t, z)∗R(u, v)∗R(s, t) ≤ E(u, x)∗E(v, s)∗E(t, z)∗R(u, v)∗R(s, t) ≤
E(u, x) ∗ R(u, s) ∗ E(t, z) ∗ R(s, t) ≤ E(u, x) ∗ E(t, z) ∗ R(u, t) ≤ R̃([x], [z]).

But this inequality holds for all u, v, s, t ∈ X therefore
R̃([x], [y]) ∗ R̃([y], [z]) ≤ R̃([x], [z]).

Proposition 6.6 If R(x, x) = 0 then R̃([x], [x]) = 0 for all x ∈ X.

Proof. For x ∈ X we have

R̃([x], [x]) =
∨

u,v∈X

(E(u, x) ∗ E(v, x) ∗ R(u, v)) = 0

because E(u, x) ∗ E(v, x) ∗ R(u, v) ≤ R(x, x) = 0.

Corollary 6.2 If R is a strict partial ∗-order on X then R̃ is a strict partial
∗-order on Y .

A fuzzy choice function C is totally ∗-rational if there exists a fuzzy
relation G on X which is reflexive, ∗-transitive and total, and such that

(6.3.3) C(B)(x) = B(x) ∗
∧

y∈X

(B(y) → G(x, y))

for any B ∈ B and x ∈ X.
Let C be a fuzzy choice function. Consider the fuzzy relation R on X

introduced in Definition 4.2 by

(6.3.4) R(x, y) =
∨

B∈B

(C(B)(x) ∗ B(y))

for all x, y ∈ X. Denote by W the ∗-transitive closure of R. The fuzzy
choice function C is ∗-congruous if for any B ∈ B and x, y ∈ X we have

(6.3.5) C(B)(x) ∗ B(y) ∗ W (y, x) ≤ C(B)(y).
The following result generalizes a part of Richter’s theorem.

Theorem 6.4 Every totally ∗-rational fuzzy choice function is ∗-congruous.

Proof. Assume that the fuzzy choice function C : B → F(X) is totally
∗-rational, i.e. there exists a fuzzy relation G on X which is reflexive, ∗-
transitive and total, and such that

C(B)(x) = B(x) ∗
∧

v∈X

(B(v) → G(x, v))
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for all B ∈ B and x ∈ X.

Firstly we will prove that for any x, y ∈ X, the following inequality holds:

(a) R(x, y) ≤ G(x, y).

Let B ∈ B. The total ∗-rationality of C yields

C(B)(x) ≤
∧

v∈X

(B(v) → G(x, v)),

hence C(B)(x) ≤ B(v) → G(x, v) for each v ∈ X. Particularly, C(B)(x) ≤
B(y) → G(x, y), hence, by Lemma 3.1 (1), we get C(B)(x)∗B(y) ≤ G(x, y).
This last inequality holds for any B ∈ B, therefore

R(x, y) =
∨

B∈B

(C(B)(x) ∗ B(y)) ≤ G(x, y).

Let B ∈ B and x, y ∈ X. We must prove that

(b) C(B)(x) ∗ B(y) ∗ W (y, x) ≤ C(B)(y).

Using Lemma 3.5 we compute the left term of (b):

C(B)(x) ∗ B(y) ∗ W (y, x) =

= C(B)(x) ∗ B(y) ∗ [R(y, x) ∨
∞∨

n=1

∨

u1,...,un∈X

(R(y, u1) ∗ . . . ∗ R(un, x))].

In accordance with (a) we get the inequality:

(c) C(B)(x) ∗ B(y) ∗ W (y, x) ≤

≤ C(B)(x) ∗ B(y) ∗ [G(y, x) ∨
∞∨

n=1

∨

u1,...,un∈X

(G(y, u1) ∗ . . . ∗ G(un, x))].

Since G is ∗-transitive, G(y, u1)∗. . .∗G(un, x) ≤ G(y, x) for all u1, . . . , un ∈
X therefore

∨

u1,...,un∈X

(G(y, u1) ∗ . . . ∗ G(un, x)) ≤ G(y, x).

This inequality holds for any n ≥ 1, hence

∞∨

n=1

∨

u1,...,un∈X

(G(y, u1) ∗ . . . ∗ G(un, x)) ≤ G(y, x).
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Then

G(y, x) ∨
∞∨

n=1

∨

u1,...,un∈X

(G(y, u1) ∗ . . . ∗ G(un, x)) = G(y, x)

hence the inequality (c) becomes

(d) C(B)(x) ∗ B(y) ∗ W (y, x) ≤ C(B)(x) ∗ B(y) ∗ G(y, x).

Now we will establish the inequality

(e) C(B)(x) ∗ G(y, x) ≤
∧

v∈X

(B(v) → G(y, v)).

It suffices to show that for any v ∈ X we have

(f) C(B)(x) ∗ G(y, x) ≤ B(v) → G(y, v).

Let v ∈ X. We notice that

C(B)(x) ∗ G(y, x) ∗ B(v) =

= B(x) ∗ [
∧

u∈X

(B(u) → G(x, u))] ∗ G(y, x) ∗ B(v) ≤

≤ B(x) ∗ [B(v) → G(x, v)] ∗ G(y, x) ∗ B(v) =

= B(x) ∗ B(v) ∗ [B(v) → G(x, v)] ∗ G(y, x) ≤

≤ B(x) ∗ G(x, v) ∗ G(y, x) ≤

≤ G(y, x) ∗ G(x, v) ≤ G(y, v)

because B(v) ∗ [B(v) → G(x, v)] = B(v) ∧ G(x, v) ≤ G(x, v) and G is
∗-transitive. In accordance with Lemma 3.1 (1) we obtain the inequality (f).
Thus the inequality (e) was proved.

From (e) we can infer

(g) C(B)(x)∗B(y)∗G(y, x) ≤ B(y)∗
∧

v∈X

(B(v) → G(y, v)) = C(B)(y).

Now the desired inequality (b) follows from (d) and (g). Thus C is ∗-
congruous.

Let C be a (crisp) choice function on 〈X,B〉 with B ⊆ P(X). We shall
relax the criterion in the definition of the rational choice function. We shall
say that C is semirational if there exists a binary relation G on X which is

88



reflexive, transitive and total, and such that for any B ∈ B we have
(6.3.6) C(B) ⊆ B ∩ {x|(x, y) ∈ G for all y ∈ B}.
But C(B) ⊆ B hence the previous relation is equivalent to the condition
(6.3.7) C(B) ⊆ {x|(x, y) ∈ G for all y ∈ B}.
We shall extend this new concept to the fuzzy setting.
Let C be a fuzzy choice function on 〈X,B〉. C is called ∗-semirational

if there exists a fuzzy relation G on X reflexive, ∗-transitive and total, and
such that for any B ∈ B and x ∈ X we have

(6.3.8) C(B)(x) ≤
∧

y∈X

(B(y) → G(x, y)).

Recall that ∗L is the Lukasiewicz t-norm. Let us consider the Lukasiewicz
t-conorm ⊕ (see [31], p. 11):

(6.3.9) a ⊕ b = min(a + b, 1).
Then the operation ⊕ is associative, commutative and a⊕ 0 = 0⊕ a = a

for any a ∈ [0, 1]. In this case the negation is given by ¬a = 1 − a hence
¬¬a = a for any a ∈ [0, 1].

Lemma 6.2 ([26]) For any a, b, c ∈ [0, 1] the following hold:

(a) a ≤ b implies a ⊕ c ≤ b ⊕ c;

(b) a ⊕ (b ∧ c) = (a ⊕ b) ∧ (a ⊕ c);

(c) a ⊕ (b ∨ c) = (a ⊕ b) ∨ (a ⊕ c);

(d) a ⊕ ¬a = 1.

The following result seems to be surprising.

Theorem 6.5 Assume that ∗ is a continuous t-norm. Then every fuzzy
choice function is ∗-semirational.

Proof. Assume C : B → F(X) is a fuzzy choice function. Let us consider
the fuzzy relation P on X defined by

(a) P (x, y) = W (x, y) ∧ ¬W (y, x)
for any x, y ∈ X.
We shall prove that P is ∗-transitive. Let x, y, z ∈ X. Then

P (x, y)∗P (y, z) = [W (x, y)∧¬W (y, x)]∗[W (y, z)∧¬W (z, y)] ≤ W (x, y)∗
W (y, z) ≤ W (x, z)

because W is ∗-transitive. We also have

P (x, y)∗P (y, z)∗W (z, x) = [W (x, y)∧¬W (y, x)]∗ [W (y, z)∧¬W (z, y)]∗
W (z, x) ≤ W (x, y) ∗ ¬W (z, y) ∗ W (z, x) = W (z, x) ∗ W (x, y) ∗ ¬W (z, y) ≤
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W (z, y) ∗ ¬W (z, y) = 0.

In accordance with the property of negation these inequalities infer P (x, y)∗
P (y, z) ≤ ¬W (z, x) hence P (x, y) ∗P (y, z) ≤ W (x, z)∧¬W (z, x) = P (x, z).
Thus P is ∗-transitive.

Now we shall define the fuzzy relation J :

(b) J(x, y) =

{
1 if x = y

W (x, y) ∧ W (y, x) if x 6= y
.

We shall prove that J is a ∗-similarity relation on X. It is clear that
J(x, x) = 1 and J(x, y) = J(y, x) for any x, y ∈ X. For any x, y, z ∈ X such
that x 6= y, y 6= z and x 6= z we have

J(x, y) ∗ J(y, z) = [W (x, y) ∧ W (y, x)] ∗ [W (y, z) ∧ W (z, y)] ≤ W (x, y) ∗
W (y, z) ≤ W (x, z)

and similarly, J(x, y) ∗ J(y, z) ≤ W (z, x). Thus J(x, y) ∗ J(y, z) ≤
W (x, z) ∧ W (z, x) = J(x, z). This inequality is obviously true for the other
cases, hence J is ∗-transitive. Then J is a ∗-similarity relation.

Now we shall prove that J is a congruence w.r.t. P , i.e. for all x, y, u, v ∈
X, J(x, u) ∗ J(y, v) ∗ P (x, y) ≤ P (u, v). Assume x 6= u, y 6= v hence

J(x, u) ∗ J(y, v) ∗ P (x, y) = [W (x, u) ∧ W (u, x)] ∗ [W (y, v) ∧ W (v, y)] ∗
[W (x, y) ∧ ¬W (y, x)] ≤ W (u, x) ∗ W (y, v) ∗ W (x, y) = W (u, x) ∗ W (x, y) ∗
W (y, v) ≤ W (u, v),

because W is ∗-transitive. We also have

J(x, u) ∗ J(y, v) ∗ P (x, y) ∗ W (v, u) ≤ W (u, x) ∗ W (y, v) ∗ ¬W (y, x) ∗
W (v, u) = W (y, v) ∗W (v, u) ∗W (u, x) ∗¬W (y, x) ≤ W (y, x) ∗¬W (y, x) = 0

hence J(x, u) ∗ J(y, v) ∗ P (x, y) ≤ ¬W (v, u). Thus

J(x, u) ∗ J(y, v) ∗ P (x, y) ≤ W (u, v) ∧ ¬W (v, u) = P (u, v).
Hence J is a congruence w.r.t. P .
Now let us consider the equivalence relation ≈ on X: x ≈ y ⇔ J(x, y) =

1. Let Y = X/≈ be the quotient set of X w.r.t. ≈.
By Proposition 6.5 we can consider the following ∗-transitive fuzzy rela-

tion P̃ on Y :

(c) P̃ ([x], [y]) =
∨

u,v∈X

(J(u, x) ∗ J(v, y) ∗ P (u, v))

for any x, y ∈ X. In accordance with Theorem 3.6 there exists a total
∗-transitive fuzzy relation R on Y such that P̃ ⊆ R. Let us define the fol-
lowing fuzzy relation H on X:

(d) H(x, y) = J(x, y) ⊕ R([x], [y])
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for any x, y ∈ X. Let G be the ∗-transitive closure of H. Since H(x, x) ≥
J(x, x) = 1 for each x ∈ X, H is reflexive so G is also reflexive. We also have

G(x, y) ∨ G(y, x) ≥ H(x, y) ∨ H(y, x) ≥ R([x], [y]) ∨ R([y], [x]) > 0

because R is total. Hence G is also total. Of course G is ∗-transitive.
For any B ∈ B and x ∈ B we shall establish the inequality

(e) C(B)(x) ≤
∧

v∈X

(B(v) → G(x, v)).

In order to prove (e) it suffices to show that for any v ∈ X the following
inequality holds:

(f) C(B)(x) ≤ B(v) → G(x, v).

By Lemma 3.1 (1) the inequality (f) is equivalent to the condition

(g) C(B)(x) ∗ B(v) ≤ G(x, v).

Let v ∈ X. In accordance with the definition of R we have

(h) C(B)(x) ∗ B(v) ≤ R(x, v) ≤ W (x, v).

But

H(x, v) = J(x, v)⊕R([x], [v]) ≥ J(x, v)⊕P̃ ([x], [v]) = J(x, v)⊕
∨

s,t∈X

[J(x, s)∗

J(t, v) ∗ P (s, t)] ≥ J(x, v) ⊕ [J(x, x) ∗ J(v, v) ∗ P (x, v)] = J(x, v) ⊕ P (x, v)
because J(x, x) = J(v, v) = 1. Using Lemma 6.2 one gets

J(x, v)⊕P (x, v) = [W (x, v)∧W (v, x)]⊕[W (x, v)∧¬W (v, x)] = (W (x, v)⊕
[W (x, v)∧¬W (v, x)])∧(W (v, x)⊕[W (x, v)∧¬W (v, x)]) ≥ W (x, v)∧[W (v, x)⊕
W (x, v)]∧ [W (v, x)⊕¬W (v, x)] = W (x, v)∧ [W (v, x)⊕W (x, v)] = W (x, v).

Thus W (x, v) ≤ J(x, v) ⊕ P (x, v) ≤ H(x, v), hence, by (h), we obtain

C(B)(x) ∗ B(v) ≤ W (x, v) ≤ H(x, v) ≤ G(x, v).
Hence (g) was proved and C is ∗-semirational.
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Chapter 7

Degree of Dominance

In the literature of fuzzy preference relations there are several ways to define
the dominance (see [16, 33, 43] for a detailed discussion). In general the
dominance is related to a fuzzy preference relation. For a fuzzy preference
relation there exist a lot of ways to define the degree of dominance of an
alternative [4, 5, 6, 7, 16, 33, 38, 43].

The concept of dominance in [4] is related to the act of choice and is
expressed in terms of the fuzzy choice function.

This chapter aims at introducing a notion of degree of dominance of an
alternative x with respect to an available fuzzy subset S of the universe X of
alternatives. The degree of dominance defined here refines Banerjee’s notion
of dominance [4]. Banerjee’s notion of dominance expresses the dominant
position of some alternatives in the set of alternatives. In the decision mak-
ing processes a differentiation of the alternatives according to various criteria
is most of the times necessary. In the real world there are cases when these
criteria are vague due to the partial information that the decision-maker pos-
sesses. The representation of these vague criteria within the choice problems
is done by the available fuzzy sets. If x is an alternative and S is an available
fuzzy set that corresponds to a criterion then the degree of dominance DS(x)
is a number that belongs to the unit interval. This number expresses the
position of alternative x with respect to the other alternatives as a result
of the act of choice. If an alternative has the degree of dominance equal to
1 then it will be dominant with respect to criterion S. With the degree of
dominance one can establish a hierarchy of alternatives with respect to the
criterion defined by S. The difference between Banerjee’s notion of domi-
nance and the degree of dominance introduced in this chapter is that our
notion takes into account all the alternatives, not only the dominant ones.
At the same time, when there are no dominant alternatives (DS(x) 6= 1 for
any x ∈ X) one can select the alternatives with the maximum degree of
dominance.

Briefly, the economic motivation of introducing the degree of dominance

93



resides in:

• the degree of dominance is a concept that allows for a direct hierarchy
of alternatives in accordance with the criteria of choice;

• it is an instrument by which all available alternatives, not only the
dominant ones can be ranked;

• it helps to formulate new axioms of congruence that refine Banerjee’s
[4];

• it offers simple computations for the ranking of alternatives in concrete
problems (see Chapter 8).

The results of the chapter are true for Gödel t-norm.

Section 7.1 is an overview of the context in which Banerjee’s concept
of degree of dominance was formulated. Banerjee [4] formulates a fuzzy
revealed preference theory for his fuzzy choice functions. He studies three
congruence axioms FC1, FC2, FC3. In the same setting, Wang [62] estab-
lishes deeper connections between FC1, FC2, FC3. These three axioms are
formulated in terms of dominance of an alternative x in an available set S
of alternatives.

In Section 7.2 we introduce our notion of degree of dominance. One
result of this section shows that under very loose conditions (particularly
in Banerjee’s case) the degree of dominance of x with respect to S can be
expressed function of degree of dominance of x with respect to fuzzy subsets
of type [x, y], y ∈ X.

In Section 7.3, starting from the concept of degree of dominance de-
fined in the previous section, the congruence axioms FC∗1, FC∗2, FC∗3 for
the class of fuzzy choice functions defined in this thesis are formulated. In
Banerjee’s context, conditions FC1, FC2, FC3 are implied by these three
axioms.

We prove that FC∗1 implies FC∗3 and FC∗2 implies FC∗3.

The degree of dominance allows us to formulate a new revealed preference
axiom WAFRPD. We prove that the axioms WAFRPD and FC∗1 are
equivalent. This theorem parallels a result of Theorem 6.1 which asserts
that the revealed preference axiom WAFRP ◦ is equivalent to FC∗3.

Section 7.3 concludes with an example that shows the relevance of the
concept of degree of dominance for the process of decision making, by estab-
lishing a ranking of alternatives with respect to multiple criteria.

The results of this chapter are based on our paper [22].

7.1 Dominance in Banerjee’s framework

The process of decision making deals in real life with vague preferences,
modelled by fuzzy relations. Orlovsky initiated a theory of choice based on
fuzzy preference relations [38]. He defined a notion of degree of dominance
as a mode of selecting the best alternatives. Several authors have proposed
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other notions that express the dominance of an alternative [5, 6, 7, 16, 33,
38, 43]. These notions start from a fuzzy preference relation.

In [4] Banerjee develops a theory of revealed preference for a class of
choice function whose domain is the family of all non-empty finite subsets
of a universe of alternatives X and whose range consists of non-zero fuzzy
subsets of X. We need to emphasize that Banerjee’s notion of dominance is
directly related to the choice function, not to the fuzzy preference relation.
The degree of dominance defined in this thesis extends Banerjee’s notion of
dominance.

In this section we make a short overview of the results in [4, 62].

Let X be a universal set of alternatives, H the family of non-empty finite
subsets of X and F all non-zero fuzzy subsets of X with finite support.

Recall that a Banerjee fuzzy choice function is a function C : H → F
such that supp C(S) ⊆ S for any S ∈ H. The fuzzy revealed preference
relation R associated with a fuzzy choice function C is defined by ([4]):

(7.1.1) R(x, y) =
∨
{C(S)(x)|S ∈ H, x, y ∈ S}

for any x, y ∈ X. It is obvious that C(S)(x) ≤ R(x, y) for any S ∈ H
and x, y ∈ X.

Let C be a fuzzy choice function, S ∈ H and x ∈ S. x is said to be
dominant in S if C(S)(y) ≤ C(S)(x) for any y ∈ S. The dominance of x
in S means that x has a higher potentiality of being chosen than the other
elements of S. It is obvious that this definition of dominance is related to
the act of choice, not to a preference relation.

Banerjee also considers a second type of dominance, associated to a fuzzy
preference relation.

Let R be a fuzzy preference relation on X, S ∈ H and x ∈ X. x is said
to be relation dominant in S in terms of R if R(x, y) ≥ R(y, x) for all y ∈ S.

Let S ∈ H, S = {x1, . . . , xn}. The restriction of R to S is R|S =

(R(xi, xj))n×n. Then we have the composition R|S ◦C(S) =

n∨

j=1

(R(xi, xj)∧

C(S)(xj)).

In [4] Banerjee introduced the following congruence axioms for a fuzzy
choice function C:

FC1 For any S ∈ H and x, y ∈ S, if y is dominant in S then C(S)(x) =
R(x, y).

FC2 For any S ∈ H and x, y ∈ S, if y is dominant in S and R(y, x) ≤
R(x, y) then x is dominant in S.

FC3 For any S ∈ H, α ∈ (0, 1] and x, y ∈ S, α ≤ C(S)(y) and α ≤
R(x, y) imply α ≤ C(S)(x).

In [62], Wang proved that FC3 holds iff for any S ∈ H, R|S ◦ C(S) ⊆
C(S). Then FC3 is equivalent with any of the following statements:

◦ For any S ∈ H and x ∈ S,
∨

y∈S

(R(x, y) ∧ C(S)(y)) ≤ C(S)(x);
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◦ For any S ∈ H and x, y ∈ S, R(x, y) ∧ C(S)(y) ≤ C(S)(x).
In [62] it is proved that FC1 implies FC2, FC3 implies FC2 and FC1,

FC3 are independent.

7.2 Degree of dominance

In this section we shall define a notion of degree of dominance in the frame-
work of the fuzzy choice functions introduced in this thesis. This kind of
dominance is attached to a fuzzy choice function and not to a fuzzy prefer-
ence relation. It shows to what extent, as the result of the act of choice, an
alternative has a dominant position among others.

We fix a fuzzy choice function C : B → F(X).
Recall that the fuzzy revealed preference relation R on X associated with

C is defined by

R(x, y) =
∨

S∈B

(C(S)(x) ∧ S(y))

for any x, y ∈ X (cf. Definition 4.2 (i)).
Particularizing this definition for the case when C is a Banerjee choice

function we obtain the fuzzy relation defined by (7.1.1).
As seen in the previous section, the concept of dominance appears es-

sentially in the expression of congruence axioms FC1-FC3. We define now
the degree of dominance of an alternative x with respect to a fuzzy subset
S. This will be a real number that shows the position of x among the other
alternatives.

Definition 7.1 Let S ∈ B and x ∈ X. The degree of dominance of x in S
is given by

DS(x) = S(x) ∧
∧

y∈X

[C(S)(y) → C(S)(x)]

= S(x) ∧ [(
∨

y∈X

C(S)(y)) → C(S)(x)].

If DS(x) = 1 then we say that x is dominant in S.

Remark 7.1 Let S be a crisp subset of X. Identifying S with its charac-
teristic function we have the equivalences:

DS(x) = 1 iff S(x) = 1 and C(S)(y) ≤ C(S)(x) for any y ∈ X
iff x ∈ S and C(S)(y) ≤ C(S)(x) for any y ∈ S.

This shows that in this case we obtain exactly the notion of dominance
of Banerjee.

Remark 7.2 In accordance with Definition 7.1, x is dominant in S iff

S(x) = 1 and
∨

y∈X

C(S)(y) = C(S)(x).
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Remark 7.3 Assume that C satisfies (H1), i.e. C(S)(y0) = 1 for some

y0 ∈ X. In this case
∨

y∈X

C(S)(y) = 1 therefore DS(x) = C(S)(x).

Lemma 7.1 If [x, y] ∈ B then D[x,y](x) = C([x, y])(y) → C([x, y])(x).

Proof. Since C([x, y]) ⊆ [x, y] we have C([x, y])(z) = 0 for z 6∈ {x, y}.
Then

D[x,y](x) = [x, y](x) ∧
∧

z∈X

[C([x, y])(z) → C([x, y])(x)]

= [C([x, y])(x) → C([x, y])(x)] ∧ [C([x, y])(y) → C([x, y])(x)]

= C([x, y])(y) → C([x, y])(x).

Proposition 7.1 For any S ∈ B and x, y ∈ X we have

(i) C(S)(x) ≤ DS(x) ≤ S(x);

(ii) S(x) ∧ DS(y) ∧ [C(S)(y) → C(S)(x)] ≤ DS(x).

Proof. (i) According to Lemma 3.1 (4), C(S)(x) ≤ (
∨

y∈X

C(S)(y)) →

C(S)(x)

hence C(S)(x) ≤ S(x) ∧ [(
∨

y∈X

C(S)(y)) → C(S)(x)] = DS(x).

(ii) By Lemma 3.1 (12) the following inequality holds for any z ∈ X:

[C(S)(z) → C(S)(y)] ∧ [C(S)(y) → C(S)(x)] ≤ C(S)(z) → C(S)(x).

Thus

[C(S)(y) → C(S)(x)] ∧ DS(y) ∧ S(x) =

= [C(S)(y) → C(S)(x)] ∧
∧

z∈X

[C(S)(z) → C(S)(y)] ∧ S(x) ∧ S(y) =

= S(y) ∧ S(x) ∧
∧

z∈X

([C(S)(z) → C(S)(y)] ∧ [C(S)(y) → C(S)(x)]) ≤

≤ S(x) ∧
∧

z∈X

[C(S)(z) → C(S)(x)] = DS(x).

Remark 7.4 By Proposition 7.1, DS(x) > 0 for some x ∈ X. Then the
assignment S 7→ DS is a fuzzy choice function D : B → F(X). According
to Remark 7.3, if C satisfies (H1) then C = D. It implies that the study
of the degree of dominance is interesting for the case when hypothesis (H1)
does not hold.

Remark 7.5 For S ∈ B and x ∈ X we define the sequence (Dn
S(x))n≥1 by

induction:

D1
S(x) = DS(x); Dn+1

S (x) = S(x) ∧
∧

y∈X

[Dn
S(y) → Dn

S(x)].
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By Proposition 7.1 (i) we have C(S)(x) ≤ D1
S(x) ≤ . . . ≤ Dn

S(x) ≤ . . . ≤

D∞
S (x) ≤ S(x), where D∞

S (x) =
∞∨

n=1

Dn
S(x). The assignments S 7→ Dn

S,

n ≥ 1 and S 7→ D∞
S provide new fuzzy choice functions.

The following definition generalizes Banerjee’s notion of dominant rela-
tion in S in terms of R.

Definition 7.2 Let Q be a fuzzy preference relation on X, S ∈ B and x ∈ X.
The degree of dominance of x in S in terms of Q is defined by

DQ
S (x) = S(x) ∧

∧

y∈X

[(S(y) ∧ Q(y, x)) → Q(x, y)]

If DQ
S (x) = 1 then we say that x is dominant in S in terms of Q .

Example 7.1 Consider the set of alternatives X = {x, y} and the criterion
S = aχ{x}+bχ{y} for which the choice function is given by C(S) = αχ{x}+
βχ{y}, 0 < α < a < 1, 0 < β < b < 1.

We intend to calculate the sequences (Dn
S(x))n≥1, (Dn

S(y))n≥1.

Case β ≤ α

D1
S(x) = DS(x) = a ∧ (β → α) = a

D1
S(y) = DS(y) = b ∧ (α → β) = b ∧ β = β

D2
S(x) = a ∧ (β → a) = a, D2

S(y) = b ∧ (a → β)

D3
S(x) = a, D3

S(y) = b ∧ (a → β)

In general Dn
S(x) = a, Dn

S(y) = b ∧ (a → β) for n ≥ 2.

The case α ≤ β is treated analogously.

7.3 New congruence axioms

The congruence axioms FC1, FC2, FC3 play an important role in Baner-
jee’s theory of revealed preference. The formulation of FC1, FC2 uses the
notion of dominance and FC3 is a generalization of Weak Congruence Axiom
(WCA).

In this section we introduce the congruence axioms FC∗1, FC∗2, FC∗3
which are refinements of axioms FC1, FC2, FC3. Axioms FC∗1 and FC∗2
are formulated in terms of degree of dominance. FC∗3 is Weak Fuzzy Con-
gruence Axiom (WFCA) defined in Section 4.1.

FC∗1 For any S ∈ B and x, y ∈ X the following inequality holds:

S(x) ∧ DS(y) ≤ R(x, y) → C(S)(x).

FC∗2 For any S ∈ B and x, y ∈ X the following inequality holds:

S(x) ∧ DS(y) ∧ (R(y, x) → R(x, y)) ≤ DS(x).

FC∗3 For any S ∈ B and x, y ∈ X the following inequality holds:

98



S(x) ∧ C(S)(y) ∧ R(x, y) ≤ C(S)(x).

The form FC∗1 is derived from FC∗3 by replacing DS(y) by C(S)(y).
By Remarks 7.3 and 7.4, DS(x) (resp. DS(y)) can be viewed as a substitute
of C(S)(x) (resp. C(S)(y)).

If hypothesis (H1) holds, then by Remark 7.3, DS(y) = C(S)(y) and by
Lemma 3.1 (1) axioms FC∗1 and FC∗3 are equivalent.

Remark 7.6 Let S ∈ B and x, y ∈ X. Thus
C(S)(x) ∧ S(x) ∧ DS(y) = C(S)(x) ∧ DS(y)

= C(S)(x) ∧ S(y) ∧
∧

z∈X

[C(S)(z) → C(S)(y)]

≤ C(S)(x) ∧ S(y) ≤ R(x, y)
hence, by Lemma 3.1 (1), S(x)∧DS(y) ≤ C(S)(x) → R(x, y). Therefore,

if FC∗1 holds then S(x) ∧ DS(y) ≤ R(x, y) ↔ C(S)(x).

Remark 7.7 Assume FC∗3 holds. Then for any S ∈ B and x ∈ X:
∨

y∈X

[S(x) ∧ C(S)(y) ∧ R(x, y)] ≤ C(S)(x).

Assume that R is reflexive (for example if (H1), (H2) hold).
Since C(S)(x) ≤ S(x) ∧ C(S)(x) ∧ R(x, x) it follows that

C(S)(x) =
∨

y∈X

[S(x) ∧ C(S)(y) ∧ R(x, y)].

Remark 7.8 Notice that FC∗3 appears under the name WFCA (Weak
Fuzzy Congruence Axiom).

Proposition 7.2 FC∗1 ⇒ FC∗3.

Proof. S(x) ∧ C(S)(y) ∧ R(x, y) ≤ S(x) ∧ DS(y) ∧ R(x, y) ≤ C(S)(x),
hence FC∗1 ⇒ FC∗3.

Example 7.2 shows that FC∗3 does not necessarily imply FC∗1.

Example 7.2 Let X = {a, b} and A = aχ{x} + bχ{y}, C(A) = sχ{x} +
tχ{y}, B = cχ{x} + dχ{y}, C(B) = uχ{x} + wχ{y}, where 0 < s ≤ a,
0 < t ≤ b, 0 < u ≤ c, 0 < w ≤ d.

Then C is a fuzzy choice function on 〈X,B〉 where B = {A, B}.
Applying Definition 4.2 (i) one obtains:
R(x, x) = s ∨ u, R(x, y) = (s ∧ b) ∨ (u ∧ d),
R(y, x) = (t ∧ a) ∨ (w ∧ c), R(y, y) = t ∨ w.
We compute now the degrees of dominance:
DA(x) = a ∧ (t → s)
DA(y) = b ∧ (s → t)
DB(x) = c ∧ (w → u)
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DB(y) = d ∧ (u → w).

If FC∗1 holds then DA(x) ∧ A(x) ∧ R(x, x) ≤ C(A)(x), i.e. a ∧ (t →
s)∧ (s∨u) ≤ s. If we assume t = w < s < u < a then a∧ (t → s)∧ (s∨u) =
a ∧ 1 ∧ u = u > s, hence FC∗1 does not hold.

The axiom FC∗3 holds iff the following inequalities are verified:

(1) A(x) ∧ C(A)(y) ∧ R(x, y) ≤ C(A)(x)

(2) A(y) ∧ C(A)(x) ∧ R(y, x) ≤ C(A)(y)

(3) B(x) ∧ C(B)(y) ∧ R(x, y) ≤ C(B)(x)

(4) B(y) ∧ C(B)(x) ∧ R(y, x) ≤ C(B)(y).

The first condition can be written: a ∧ t ∧ [(s ∧ b) ∨ (u ∧ d)] ≤ s. By
distributivity this inequality is equivalent to a ∧ t ∧ u ∧ d ≤ s. But s ≤ a
hence a ∧ t ∧ u ∧ d ≤ s iff t ∧ u ∧ d ≤ s.

We have proved that (1) is equivalent to

(1’) t ∧ u ∧ d ≤ s.

In a similar way (2), (3) and (4) are equivalent to

(2’) s ∧ w ∧ c ≤ t

(3’) w ∧ s ∧ b ≤ u

(4’) u ∧ t ∧ b ≤ w.

If t = w < s < u < a the inequalities (1’)-(4’) are verified, hence FC∗3
holds. Thus FC∗3 does not necessarily imply FC∗1.

Proposition 7.3 FC∗3 ⇒ FC∗2.

Proof. Let S ∈ B and x, y ∈ X. By R(y, x) ≥ C(S)(y) ∧ S(x), Lemma
3.1 (10), (2) and FC∗3 we get for any z ∈ X:

C(S)(z) ∧ S(x) ∧ [C(S)(z) → C(S)(y)] ∧ [R(y, x) → R(x, y)] =

= S(x) ∧ C(S)(z) ∧ C(S)(y) ∧ [R(y, x) → R(x, y)] ≤
≤ C(S)(z) ∧ (C(S)(y) ∧ S(x)) ∧ [(C(S)(y) ∧ S(x)) → R(x, y)] =

= C(S)(z) ∧ S(x) ∧ C(S)(y) ∧ R(x, y) ≤
≤ S(x) ∧ C(S)(y) ∧ R(x, y) ≤ C(S)(x).

Hence, by Lemma 3.1 (1):

S(x)∧ [C(S)(z) → C(S)(y)]∧ [R(y, x) → R(x, y)] ≤ C(S)(z) → C(S)(x).

Since this inequality holds for any z ∈ X we obtain:

S(x) ∧ DS(y) ∧ [R(y, x) → R(x, y)] =

= S(x) ∧ S(y) ∧
∧

z∈X

[C(S)(z) → C(S)(y)] ∧ [R(y, x) → R(x, y)] ≤

≤ S(x) ∧
∧

z∈X

(S(x) ∧ [C(S)(z) → C(S)(y)] ∧ [R(y, x) → R(x, y)]) ≤

≤ S(x) ∧
∧

z∈X

[C(S)(z) → C(S)(x)] = DS(x).

Proposition 7.4 If FC∗1 holds then DS(x) ≤ DR
S (x) for any S ∈ B and

x ∈ X.
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Proof. By absurdum, assume that there exist S ∈ B and x ∈ X such
that

DS(x) 6≤ DR
S (x) = S(x) ∧

∧

y∈X

[(S(y) ∧ R(y, x)) → R(x, y)].

Since DS(x) ≤ S(x), there exists y ∈ X such that DS(x) 6≤ (S(y) ∧
R(y, x)) → R(x, y) hence

DS(x) ∧ S(y) ∧ R(y, x) 6≤ R(x, y), i.e. R(x, y) < DS(x) ∧ S(y) ∧ R(y, x).

According to FC∗1 we have DS(x) ∧ S(y) ∧ R(y, x) ≤ C(S)(y). By the
definition of DS(x), DS(x) ≤ C(S)(y) → C(S)(x), therefore

DS(x) ∧ S(y) ∧ R(y, x) ≤ C(S)(y) ∧ [C(S)(y) → C(S)(x)]

= C(S)(x) ∧ C(S)(y) ≤ C(S)(x) ∧ S(y)

≤ R(x, y).

We have obtained the contradiction R(x, y) < R(x, y), hence the propo-
sition is proved.

Theorem 7.1 Assume that the fuzzy choice function C fulfills (H2). Then
axiom FC∗1 implies that for any S ∈ B and x ∈ X we have

DS(x) = S(x) ∧
∧

y∈X

[S(y) → D[x,y](x)].

Proof. By Proposition 7.4 one gets

D[x,y](x) ≤ DR
[x,y](x) ≤ R(y, x) → R(x, y)

for any x, y ∈ X. Hence, by Lemma 3.1 (10), (11)

S(y) → D[x,y](x) ≤ S(y) → (R(y, x) → R(x, y)) = ((S(y) ∧ R(y, x)) →
R(x, y).

Thus using Lemma 3.1 (11), (2)

C(S)(y) ∧ [S(y) → D[x,y](x)] ≤ C(S)(y) ∧ [(S(y) ∧ R(y, x)) → R(x, y)]

= C(S)(y) ∧ S(y) ∧ [S(y) → (R(y, x) → R(x, y))]

= C(S)(y) ∧ S(y) ∧ [R(y, x) → R(x, y)]

= C(S)(y) ∧ [R(y, x) → R(x, y)].

Since R(y, x) ≥ C(S)(y)∧S(x) we have S(x)∧C(S)(y) = S(x)∧C(S)(y)∧
R(y, x) hence, by Lemma 3.1 (11), (2) and Proposition 7.2 one gets

S(x) ∧ C(S)(y) ∧ [S(y) → D[x,y](x)]

= S(x) ∧ C(S)(y) ∧ R(y, x) ∧ [S(y) → D[x,y](x)]

≤ S(x) ∧ C(S)(y) ∧ R(y, x) ∧ [R(y, x) → R(x, y)]

= S(x) ∧ C(S)(y) ∧ R(y, x) ∧ R(x, y)

≤ S(x) ∧ C(S)(y) ∧ R(x, y) ≤ C(S)(x).

By Lemma 3.1 (1) this yields

S(x) ∧ [S(y) → D[x,y](x)] ≤ C(S)(y) → C(S)(x).
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This last inequality holds for each y ∈ X hence

S(x) ∧
∧

y∈X

[S(y) → D[x,y](x)] = S(x) ∧
∧

y∈X

(S(x) ∧ [S(y) → D[x,y](x)]) ≤

≤ S(x) ∧
∧

y∈X

[C(S)(y) → C(S)(x)] = DS(x).

Now we shall establish the converse inequality. We know that C(S)(x)∧
S(y) ≤ R(x, y). By Proposition 7.4 the following inequalities hold

DS(x) ≤ DR
S (x) ≤ (S(y) ∧ R(y, x)) → R(x, y) for any y ∈ X.

Then by Lemma 3.1 (1):

DS(x) ∧ S(y) ∧ R(y, x) ≤ R(x, y).

Since C([x, y])(y) ≤ R(y, x) we get

DS(x) ∧ S(y) ∧ C([x, y])(y) ≤ DS(x) ∧ S(y) ∧ R(y, x) ≤ R(x, y).

Thus by FC∗3 we obtain

DS(x)∧S(y)∧C([x, y])(y) ≤ C([x, y])(y)∧R(x, y) = [x, y](x)∧C([x, y])(y)∧
R(x, y) ≤ C([x, y])(x).

It follows that

DS(x) ∧ S(y) ∧ C([x, y])(y) ≤ C([x, y])(x)

hence, by Lemma 3.1 (1) and Lemma 7.1

DS(x) ∧ S(y) ≤ C([x, y])(y) → C([x, y])(x) = D[x,y](x).

Applying again Lemma 3.1 (1) we obtain DS(x) ≤ S(y) → D[x,y](x) for
each y ∈ X hence

DS(x) ≤ S(x) ∧
∧

y∈X

[S(y) → D[x,y](x)].

The formulation of axiom FC∗3 has Lemma 2.1 in [62] as starting point.
The following result establishes the equivalence of FC∗3 with a direct gen-
eralization of FC3.

Proposition 7.5 The following assertions are equivalent:

(1) The axiom FC∗3 holds;

(2) For any S ∈ B, x, y ∈ X and α ∈ (0, 1],

S(x) ∧ S(y) ∧ [α → C(S)(y)] ∧ [α → R(x, y)] ≤ α → C(S)(x).

Proof. By Lemma 3.2 (1)

S(x) ∧ S(y) ∧ [α → C(S)(y)] ∧ [α → R(x, y)] = S(x) ∧ S(y) ∧ [α →
(C(S)(y) ∧ R(x, y))],

hence, by Lemma 3.1 (1) the inequality in (2) is equivalent to

S(x) ∧ S(y) ∧ α ∧ [α → (C(S)(y) ∧ R(x, y))] ≤ C(S)(x).

According to Lemma 3.1 (2)

S(x)∧S(y)∧α∧ [α → (C(S)(y)∧R(x, y))] = S(x)∧S(y)∧α∧C(S)(y)∧
R(x, y) = S(x) ∧ C(S)(y) ∧ R(x, y) ∧ α

because C(S)(y) ≤ S(y). Thus the inequality in (2) is equivalent to

(a) S(x) ∧ C(S)(y) ∧ R(x, y) ∧ α ≤ C(S)(x).
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Assuming FC∗3 holds, the inequality (a) also holds since α ≤ 1. Con-
versely, if in (a) one takes α = 1 one obtains FC∗3.

Definition 7.3 Let C be a fuzzy choice function on 〈X,B〉. We define the
fuzzy relation R2 on X by

R2(x, y) =
∧

S∈B

[(S(x) ∧ DS(y)) → C(S)(x)].

Remark 7.9 Let C be a fuzzy choice function, S ∈ B and x, y ∈ X. By
Definition 4.2 (i)

R(x, y) ∧ S(x) ∧ DS(y) = [
∨

T∈B

(C(T )(x) ∧ T (y))] ∧ S(x) ∧ DS(y)

=
∨

T∈B

[S(x) ∧ T (y) ∧ C(T )(x) ∧ DS(y)].

Then FC∗1 is equivalent to the following statement
• For any S, T ∈ B and x, y ∈ X
S(x) ∧ T (y) ∧ C(T )(x) ∧ DS(y) ≤ C(S)(x).

In Section 4.1 the following revealed preference axiom was considered:
WAFRP ◦ For any S, T ∈ B and x, y ∈ X the following inequality holds:
[S(x) ∧ C(T )(x)] ∧ [T (x) ∧ C(S)(x)] ≤ E(S ∩ C(T ), T ∩ C(S)).
Theorem 6.1 asserts that WAFRP ◦ and FC∗3 = WFCA are equivalent.
A problem is if we can find a similar result for condition FC∗1. In order

to obtain an answer to this problem we introduce the following axiom:
WAFRPD For any x, y ∈ X and S, T ∈ B,
[S(x) ∧ C(T )(x)] ∧ [T (y) ∧ DS(y)] ≤ I(S ∩ C(T ), T ∩ C(S)).

Theorem 7.2 For a fuzzy choice function C : B → F(X) the following are
equivalent:

(i) C satisfies FC∗1;

(ii) R ⊆ R2;

(iii) C satisfies WAFRPD.

Proof. (i) ⇔ (ii). The following assertions are equivalent:
• R ⊆ R2;
• For any x, y ∈ X:
∨

S∈B

(C(S)(x) ∧ S(y)) ≤
∧

T∈B

[(T (x) ∧ DT (y)) → C(T )(x)];

• For any x, y ∈ X and S, T ∈ B :
C(S)(x) ∧ S(y) ≤ (T (x) ∧ DT (y)) → C(T )(x).
• For any x, y ∈ X and S, T ∈ B:
C(S)(x) ∧ S(y) ∧ T (x) ∧ DT (y) ≤ C(T )(x).
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In accordance with Remark 7.9, (i) and (ii) are equivalent.

(iii) ⇒ (i) Assume that C satisfies WAFRPD. Let x, y ∈ X and S, T ∈ B.
By WAFRPD one gets

S(x) ∧ T (y) ∧ C(T )(x) ∧ DS(y) ≤ I(S ∩ C(T ), T ∩ C(S)) =

=
∧

u∈X

[(S(u) ∧ C(T )(u)) → (T (u) ∧ C(S)(u))] ≤

≤ (S(x) ∧ C(T )(x)) → (T (x) ∧ C(S)(x)) =

= [(S(x) ∧ C(T )(x)) → T (x)] ∧ [(S(x) ∧ C(T )(x)) → C(S)(x)] =

= (S(x) ∧ C(T )(x)) → C(S)(x)

because (S(x) ∧ C(T )(x)) → T (x) = 1 (by Lemma 3.1 (5)). It follows
that

S(x) ∧ T (y) ∧ C(T )(x) ∧ DS(y) =

= [S(x) ∧ T (y) ∧ C(T )(x) ∧ DS(y)] ∧ (S(x) ∧ C(T )(x)) ≤ C(S)(x)

in accordance with Lemma 3.1 (1). According to Remark 7.9, C satisfies
FC∗1.

(i) ⇒ (iii) Assume C fulfills FC∗1. By Remark 7.9, for any S, T ∈ B and
x, y, u ∈ X we have

S(x)∧T (y)∧DS(y)∧C(T )(x)∧S(u)∧C(T )(u) ≤ S(u)∧T (y)∧C(T )(u)∧
DS(y) ≤ C(S)(u).

Thus, by Lemma 3.1 (1):

S(x) ∧ T (y) ∧ DS(y) ∧ C(T )(x) ≤ (S(u) ∧ C(T )(u)) → C(S)(u) =

= (S(u) ∧ C(T )(u)) → (T (u) ∧ C(S)(u))

This inequality is true for each u ∈ X, hence

S(x) ∧ T (y) ∧ DS(y) ∧ C(T )(x) ≤ I(S ∩ C(T ), T ∩ C(S))

so C satisfies the axiom WAFRPD.

Let W be the transitive closure of the fuzzy preference relation R. We
notice that axioms FC∗1-FC∗3 are expressed in terms of R. If R is replaced
with W the following three congruence axioms are obtained:

SFC∗1 For any S ∈ B and x, y ∈ X the following inequality holds:

S(x) ∧ DS(y) ≤ W (x, y) → C(S)(x).

SFC∗2 For any S ∈ B and x, y ∈ X the following inequality holds:

S(x) ∧ DS(y) ∧ (W (y, x) → W (x, y)) ≤ DS(x).

SFC∗3 For any S ∈ B and x, y ∈ X the following inequality holds:

S(x) ∧ C(S)(y) ∧ W (x, y) ≤ C(S)(x).

SFC∗3 is exactly the congruence axiom SFCA (Strong Fuzzy Congru-
ence Axiom) defined in Section 4.1.

Proposition 7.6 SFC∗1 ⇒ SFC∗3.

Proof. Similar to the proof of Proposition 7.2.

Proposition 7.7 SFC∗3 ⇒ SFC∗2.
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Proof. Let S ∈ B and x, y ∈ X. We observe that W (x, y) ≥ R(x, y) ≥
C(S)(x) ∧ S(y). Therefore, using SFC∗3 we get for any z ∈ X:

C(S)(z) ∧ S(x) ∧ [C(S)(z) → C(S)(y)] ∧ [W (y, x) → W (x, y)] =

= S(x) ∧ C(S)(z) ∧ C(S)(y) ∧ [W (y, z) → W (x, y)] ≤

≤ C(S)(z) ∧ (C(S)(y) ∧ S(x)) ∧ [(C(S)(y) ∧ S(x)) → W (x, y)] =

= C(S)(z) ∧ (C(S)(y) ∧ S(x)) ∧ W (x, y) ≤

≤ S(x) ∧ C(S)(y) ∧ W (x, y) ≤ C(S)(x).

We proceed next as in the proof of Proposition 7.3.

Extending our results from Chapter 6 we have introduced new axioms of
congruence expressed in terms of the degree of dominance and we have estab-
lished relationships between them and some axioms of revealed preference.
These results can be summarized in Figure 7.1.
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Figure 7.1: Axioms of revealed preference and congruence

The bottom line of the diagram contains axioms of revealed preference;
the other lines contain axioms of congruence. An open problem is to com-
plete the above diagram with an axiom of revealed preference equivalent to
FC∗2.

Example 7.3 will clarify the notion of degree of dominance. Given a set
of alternatives and a set of criteria we want to establish the hierarchical
structure induced by each criterion. Finally we define an aggregated degree
of dominance and we determine the overall hierarchy.

Example 7.3 Consider a universe of alternatives X = {x1, x2, x3, x4, x5}
and a set of criteria B = {S1, S2, S3}, where

S1 = 0.3χ{x1} + 0.5χ{x2} + 0.2χ{x3} + 0.2χ{x4} + 0.6χ{x5}, C(S1) =
0.1χ{x1} + 0.2χ{x2} + 0.2χ{x3} + 0.1χ{x4} + 0.3χ{x5};

S2 = 0.2χ{x1} + 0.4χ{x2} + 0.3χ{x3} + 0.5χ{x4} + 0.4χ{x5}, C(S2) =
0.1χ{x1} + 0.3χ{x2} + 0.2χ{x3} + 0.4χ{x4} + 0.1χ{x5};

S3 = 0.4χ{x1} + 0.3χ{x2} + 0.2χ{x3} + 0.2χ{x4} + 0.6χ{x5}, C(S3) =
0.3χ{x1} + 0.2χ{x2} + 0.2χ{x3} + 0.1χ{x4} + 0.4χ{x5}.
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The degrees of dominance of alternative xi, i = 1, . . . , 5 with respect to
criterion Sj , j = 1, . . . , 3 calculated according to Definition 7.1 are repre-
sented in the following table:

DSi
(xj) x1 x2 x3 x4 x5

S1 0.1 0.2 0.2 0.1 0.6

S2 0.1 0.3 0.2 0.5 0.1

S3 0.3 0.2 0.2 0.1 0.6

Figure 7.2 indicates the hierarchy of alternatives for each of the three
criteria. According to criterion S1, the alternative with the greatest poten-
tiality of being chosen is x5, alternatives x2 and x3 can be equally chosen
with the degree 0.2 and alternatives x1 and x4 have the least chance of being
chosen 0.1, etc.
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Figure 7.2: The hierarchy of alternatives induced by criteria S1, S2, S3

Define the aggregated degree of dominance of an alternative x: D(x) =
1
n

∑

S∈B

DS(x), where n=card B.

In our case:
D(x1) = 0.5

3 , D(x2) = 0.7
3 , D(x3) = 0.2, D(x4) = 0.7

3 , D(x5) = 1.3
3

The hierarchy of alternatives determined by the aggregated degree of
dominance is given by D(x1) < D(x3) < D(x2) = D(x4) < D(x5). Overall,
we notice that alternative x5 has the greatest chances of being selected and
alternative x1 the least.
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Chapter 8

Applications

In making a choice, a set of alternatives and a set of criteria are usually
needed.

According to [67], the alternatives and the criteria are defined as follows:
”Alternatives are usually mutually exclusive activities, objects, projects,

or models of behaviour among which a choice is possible”.
”Criteria are measures, rules and standards that guide decision making.

Since decision making is conducted by selecting or formulating different at-
tributes, objectives or goals, all three categories can be referred as criteria.
That is, criteria are all those attributes, objectives or goals which have been
judged relevant in a given decision situation by a particular decision maker
(individual or group)”.

In the real world the human vagueness and imprecision prevail and fuzzy
logic is introduced as a tool for modelling the acts of choice.

In this chapter we shall present three possible applications of fuzzy re-
vealed preference theory. They represent models of decision making based
on the ranking of alternatives according to fuzzy choices. An agent’s decision
is based on the ranking of alternatives according to different criteria. This
ranking is obtained by using fuzzy choice problems and the instrument by
which it is established is the degree of dominance associated with a fuzzy
choice function.

8.1 Application 1

8.1.1 Negotiations on electronic markets

Electronic markets are online markets whose actors and actions correspond
to the conventional ones. An electronic market is analogous to a shop where
a trading activity takes place. Electronic markets exist in various forms,
the most common being the online shopping market. The main actors on
an electronic market are buyers and sellers. They meet online, exchange
information, negotiate and trade.
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There are several distinctions between the physical and the virtual mar-
ket. They differ in size and in the range of services. The main advantage of an
electronic market over a physical one is that the participants (especially buy-
ers) have a larger diversity of information on existing products and services
and quick and easy access to them. This gives the opportunity to the buyer
(=consumer) to specify his preferences and to determine his preference-based
choices. Consequently the seller will adapt to the consumer’s preferences and
will try to find the best mechanisms to satisfy customer’s demand.

In real life usually the preferences and the choices of both buyers and
sellers are vague, therefore the contact between buyers and sellers on the
electronic market takes the form of a multi-stage negotiation, characterized
by repeated offers and counter-offers. At the very end, the consumer will
make an exact choice, but in the process of decision making, this choice is
vague. This vagueness of preferences and choices arises from various reasons,
for example the incapacity of the buyer to choose among different products
due to subjective reasons, or for negotiation issues (attributes of products or
value-added services e.g. price, warranties, delivery times, return policies cf.
Kurbel et al. [30]). Papers [30, 34] make an exhaustive analysis and classi-
fication of multi-agent electronic markets and different types of negotiations
with vague preferences.

There are several criteria to classify multi-agent electronic markets [35].

A first classification of multi-agent electronic markets is according to the
number of actors that are involved in the process of negotiation. There can
be one buyer and multiple sellers, one seller and multiple buyers, multiple
buyers and multiple sellers. These possible three situations are illustrated
in Figure 8.1, where B denotes the buyer and S denotes the seller [34, 25].

A second classification regards the type of the electronic market: business-
to-business, business-to-consumer and consumer-to-consumer.

A third classification takes into account the number of negotiation issues.
There exist negotiations over one issue (usually this is the price) or several
issues.

A fourth classification concerns the level of vagueness of the preferences
on the negotiation issues. These preferences can be crisp or fuzzy; the fuzzi-
ness of the preferences generates the offers and the counter-offers in a nego-
tiation [34]. If all preferences are crisp, the negotiation becomes very simple,
taking the form of a comparison of preferences from each party’s side; in this
case counter-offers are not present. In complex negotiations preferences of
consumers and sellers are usually fuzzy or combined.

Papers [34, 35] overview different types of electronic markets, with crisp
and/or vague preferences of buyers and/or sellers. We recall here one exam-
ple of electronic markets as it has been described by [34, 30, 35].

This example refers to Frictionless Commerce online shopping market
(wwww.frictionless.com), an electronic market based on search and compar-
ison of products according to their price and value. The negotiation in the
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Figure 8.1: Three types of negotiation on electronic markets (source [34, 25])

framework of Frictionless Commerce involves one seller and multiple buyers.
Consumers’ preferences are vague, while the seller’s proposals are crisp. This
electronic market will help consumers rank their fuzzy preferences by means
of multi-attribute utility theory.

8.1.2 A multi-issue negotiation model

In [15] Van de Walle et al. discuss a negotiation situation on an electronic
market with one seller and multiple buyers (Case 2 in Figure 8.1). The
negotiation takes place according to multiple criteria that regard attributes
of the products or services negotiated. In this subsection we will give a short
description of their model.

A person wants to sell a product on an electronic market and he has to
choose one buyer among several buyers. The negotiation issues here refer
to the multiple criteria that consist of the attributes of the product (e. g.
price, delivery times etc.). The negotiator (=seller) receives offers from the
potential buyers and consequently, he defines his preferences, represented by
a fuzzy preference relation on the set of alternatives (=buyers). By analyzing
this fuzzy preference relation by means of α-cut levels, at different stages of
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the negotiation, the offers of the buyers will be ranked.

The simplest and most common solution for choosing the best buyer is
to evaluate each offer by associating a weight to every negotiable issue, to
calculate a weighted sum for each offer and to choose the offer with the
highest value. This solution assumes that all offers are comparable. In the
model proposed in [15] the ranking of the offers is partial, based on pairwise
comparisons, compared to other approaches where the rank order was linear.
This approach is closer to real life situations.

Next we give the main steps of the approach in [15].

Suppose there are m criteria C1, . . . , Cm and n offers x1, . . . , xn of n
buyers. The preference of the seller with respect to the values specified by
the buyers are represented in a matrix P = (pij)n×m. The real number
pij ∈ [0, 1] shows the degree of preference of the seller with respect to the
value offered by xi on criterion Cj . The row Pi = (pi1, . . . , pim) is the vector
of the seller’s preferences with respect to the i-th buyer. A pairwise com-
parison between vectors Pi and Pj , i, j = 1, . . . , n is required in order to
establish a ranking of the offers. For such vectors Pi and Pj the real number
Inc(Pi, Pj) shows the degree of inclusion of Pi in Pj :

(8.2.1) Inc(Pi, Pj) = 1
m

m∑

k=1

min(1, 1 − Pik + Pjk).

This degree of inclusion is summarized in the matrix D = (Inc(Pi, Pj))n×n

that is a fuzzy preference relation on the set of alternatives X = {x1, . . . , xn}.
Notice that P is reflexive but not transitive. By computing its transitive clo-
sure Q one obtains a fuzzy preorder. The properties of matrix Q allow for a
better interpretation of the offers [15].

Starting from Q, we consider the α-cuts at various levels, obtaining crisp
preorders Qα, α ∈ (0, 1] [16]. Each preorder Qα leads to an equivalence
relation Eα:

(8.2.2) (x, y) ∈ Eα iff (x, y) ∈ Qα ∧ (y, x) ∈ Qα

Denote by [x]α the equivalence class of x ∈ X with respect to Eα. Define
the order relation ≤α on the quotient set X/Eα of the equivalence classes:

(8.2.3) [x]α ≤α [y]α iff (x, y) ∈ Qα.

With ≤α one can establish a hierarchy of offers for each criterion.

[15] gives a numerical illustration of this model by Hasse diagrams.
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8.1.3 A negotiation model based on choices

This subsection studies a modified form of the problem described in the
previous subsection. If there the ranking of alternatives is based on a fuzzy
preference relation, here this ranking will result from a fuzzy choice function.
We will arrive at a choice problem, and for the ranking of offers for each
criterion we will apply the degree of dominance introduced in Chapter 7.
Our results build on the Gödel t-norm.

We start from a similar situation as above and we indicate a way to
obtain the matrix P of fuzzy preferences. A person wants to sell a product
described by some attributes and he registers it on an electronic market. He
has to choose one buyer among several buyers for his product, and his choice
will be made according to the offers that he gets. The offers are made with
respect to the criteria given by the attributes of the product. Therefore we
are again in face of a multiple-criteria negotiation problem with one seller
and multiple buyers.

Our treatment of the problem differs from [15]. In [15] the ranking of
alternatives is derived from a somehow given fuzzy preference relation and
not from the act of choice. In our case the ranking of alternatives is based
on a choice function associated with a preference relation P and on some
(crisp) available sets of alternatives defined by the thresholds e1, . . . , en.

The negotiation issues (=criteria) are denoted by C1, . . . , Cm. The seller
proposes the values b1, . . . , bm for his product. The i-th potential buyer of
the product responds with the offer ai1, . . . , aim. In order to have a fuzzy
choice problem, we can assume that 0 < aij ≤ 1, respectively 0 < bj ≤ 1 for
any i = 1, . . . , n, j = 1, . . . , m. Otherwise, this can be obtained by dividing
all values aij , bj by a convenient power of 10. In this way the values aij , bj

preserve their initial values, hence the preferences remain the same.

These values are summarized in the following table:

C1 C2 . . . Cm

Seller’s offer b1 b2 . . . bm

First buyer’s offer a11 a12 . . . a1m

Second buyer’s offer a21 a22 . . . a2m

. . .

n-th buyer’s offer an1 an2 . . . anm

The values proposed by the seller generally differ from the values pro-
posed by the buyers. The distance |bj − aij | measures the closeness of the
values that belong to the buyers and to the seller with respect to criterion
j. If |bj − aij | < |bj − akj | then obviously the seller will prefer the offer aij

to the offer akj . The number pij = 1− |bj − aij | will represent the degree to
which the seller prefers his value bj to the value aij suggested by the buyer i
on criterion j. If the number pij tends to 1, then aij reaches bj therefore the
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seller and the buyer i reach consensus with respect to negotiation issue j.
When pij reaches 0 then there will be a disensus between them. The values
pij are represented in a matrix P with n rows and m columns .

Consider now similarly as in the previous model [15] the matrix D =
(Inc(Pi, Pj))n×n, where Pi is the i-th row and Inc(Pi, P j) is given by (8.2.1).
According to [15], matrix D on the set of the buyers comprises the inclusion
degrees of the rows Pi. Denote by Q = (qij)n×n the transitive closure of D.

In different stages of negotiation, it is possible that the buyers’offers are
exaggerated for the seller. Therefore we need to introduce the thresholds
e1, . . . , en ∈ (0, 1). If |bj − aij | ≤ ej then we say that the values aij are
admissible. By introducing these thresholds, the buyers whose offers differ
to a large extent from the seller’s proposal are eliminated.

Define the crisp subsets S1, . . . , Sm of X:

(8.3.1) Sj = {xi ∈ X||bj − aij | ≤ ej}.

Take B = {S1, . . . , Sm} and 〈X,B〉 is the choice space . In this manner
we have obtained a context similar to Banerjee’s [4], with the difference that
here B contains only S1, . . . , Sm.

On the choice space 〈X,B〉 define the fuzzy choice function C by

(8.3.2) C(Sj)(xi) =
∧

y∈Sj

Q(xi, y)

for any j = 1, . . . , m and xi ∈ Sj .

Remark 8.1 Note that by identifying a crisp subset of X with its character-
istic function, the fuzzy choice function defined in (8.3.2) is a particular case
of the class of fuzzy choice functions introduced by (4.2.2) (see also Remark
4.8).

In this context the degree of dominance DSj
(xi) gets the form:

(8.3.3) DSj
(xi) =

∧

y∈X

[C(Sj)(y) → C(Sj)(xi)] =

=
∧

y∈Sj

[C(Sj)(y) → C(Sj)(xi)].

The degree of dominance DSj
(xi) reflects the dominance of alternative

xi with respect to criterion j. Ordering the set {DSj
(x1), . . . , DSj

(xn)} one
obtains a ranking of alternatives x1, . . . , xn with respect to criterion j.

The fuzzy choice function defined by us is based on the preferences pij

derived from the buyers’offers and on the values bj proposed by the seller;
obviously the seller’s choices are potential. The fuzzy choice function gives
the seller information about the ranking of alternatives by means of potential
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choices. This information helps the seller to negotiate with those buyers
situated in a superior position in this hierarchy.

8.1.4 A numerical illustration

In this subsection we shall illustrate the theoretical analysis from above with
a simple example.

Consider the case of a seller that registers a product on an electronic mar-
ket and describes it according to three criteria, for example Price , Delivery
time and Warranty . Five buyers are interested in buying this product. The
following table summarizes the reservation prices proposed by the seller and
the reservation prices of the buyers:

C1 C2 C3

Seller’s offer 0.5 0.6 0.7

First buyer’s offer 0.47 0.57 0.41

Second buyer’s offer 0.45 0.55 0.55

Third buyer’s offer 0.39 0.56 0.68

Fourth buyer’s offer 0.48 0.58 0.67

Fifth buyer’s offer 0.46 0.53 0.66

The values of the thresholds are e1 = 0.05, e2 = 0.06 and e3 = 0.07.

Next we present the main results.

The matrix P of the preferences of the seller has the form

P =









0.97 0.97 0.71
0.95 0.95 0.85
0.89 0.96 0.98
0.98 0.98 0.97
0.96 0.93 0.96









.

For example the value p11 = 0.97 represents the degree to which the
seller prefers his reservation price to the first buyer’s reservation price with
respect to the first criterion (in this case the degree of preference is very
high). If we compare the reservation prices of the five potential buyers with
respect to the first criterion of the product and look at the first column of
P , to a high degree the seller will prefer to keep his reservation price to the
offers of the buyers.

We compute next the degrees of inclusion Inc(Pi, Pj) according to (8.2.1)
and we obtain the matrix D:
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D =









1 0.98 0.97 1 0.98
0.95 1 0.98 1 0.99
0.91 0.95 1 0.99 0.98
0.90 0.94 0.96 1 0.97
0.91 0.96 0.97 1 1









.

The transitive closure of D is matrix Q:

Q =









1 0.98 0.98 1 0.98
0.95 1 0.98 1 0.99
0.95 0.96 1 0.99 0.98
0.95 0.96 0.97 1 0.97
0.95 0.96 0.97 1 1









.

The crisp sets S1, S2 and S3 corresponding to the three criteria that
characterize the product are given by (8.3.1):

S1 = {x1, x2, x4, x5}

S2 = {x1, x2, x3, x4}

S3 = {x1, x2, x3}

The corresponding fuzzy choice functions are:

C(S1) = 0.98χ{x1} + 0.95χ{x2} + 0.95χ{x4} + 0.95χ{x5}

C(S2) = 0.98χ{x1} + 0.95χ{x2} + 0.95χ{x3} + 0.95χ{x4}

C(S3) = 0.98χ{x1} + 0.95χ{x2} + 0.95χ{x3}.

The corresponding degrees of dominance are represented in the table:

DSi
(xj) x1 x2 x3 x4 x5

S1 1 0.95 0 0.95 0.95

S2 1 0.95 0.95 0.95 0

S3 1 0.95 0.95 0 0

The aggregated degrees of dominance are:

D(x1) = 1, D(x2) = 0.95, D(x3) = 0.63, D(x4) = 0.63, D(x5) = 0.31.

Therefore the order of the offers is

D(x5) < D(x3) = D(x3) < D(x2) < D(x1).

According to each of the three criteria, the seller will choose the first offer
that is dominant. This option will remain if the overall degree of dominance
is considered.
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8.1.5 Discussion

In this section we have developed a simple multi-issue negotiation model
with one seller and multiple buyers.

The vagueness of the preferences and choices that characterizes the trans-
actions on electronic markets and that is specific to the process of decision-
making is very difficult to model. So far there exist some agent-based e-
marketplaces that try to represent this vagueness. Comprehensive classifi-
cations and descriptions of existing agent-based e-marketplaces with crisp
and/or fuzzy preferences of sellers and buyers are made by [34, 35, 30].

In the negotiation stages between the buyers’offers and the seller’s pro-
posals big differences might exist. By introducing the thresholds e1, . . . , en,
these differences will be eliminated. By the presence of the thresholds our
model differs from [15]. Another difference consists in the way the alterna-
tives are ranked. In [15] the ranking is based on a preference relation and
here the ranking is based on the degree of dominance, that directly expresses
the act of choice.

8.2 Application 2

8.2.1 Adverse selection

One characteristic of the markets is the asymmetry of information existing
between two parties in a transaction. Together with moral hazard, a typical
problem that usually appears as a result of information asymmetry is known
as adverse selection .

We shortly describe this typical situation. Asymmetry of information
appears when one party in a transaction is better informed than the other
party. It mainly concerns the attributes of a product.

Asymmetry of information is the main reason for the phenomenon known
in the literature as adverse selection. The most well-known situation of
adverse selection has been analyzed by Akerlof [1] for the market of used
cars(=lemons). Two types of cars are sold on a market at the same price:
used cars and new cars. The sellers perfectly know the quality of the cars
while the buyers do not know what type of cars they buy. Consequently
only the used cars will dominate the market and they will drive away the
good-quality cars. This situation has negative consequences, in the sense
that the market cannot allocate the products efficiently and that leads to
market failures.

In this section we propose a model of decision making based on the
ranking of alternatives according to fuzzy choices. Here the criteria are
derived from the partial information existing in the model.

Our model tries to correct the adverse selection that appears as the
result of asymmetric information between buyers and sellers by interpreting
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the vectors that contain the partial information(=quality) as criteria for the
buyers in decision-making.

8.2.2 The mathematical model

A company wants to buy m types of products P1, . . . , Pm. To acquire them
n potential sellers present their offers x1, . . . , xn. On these products certain
information such as the cost, the delivery time etc. exists, but also partial
information such as the quality of the products exists. The partial informa-
tion on the quality of the products is summarized in the following table:

P1 P2 . . . Pm

First seller’s information a11 a12 . . . a1m

Second seller’s information a21 a22 . . . a2m

. . .

n-th seller’s information an1 an2 . . . anm

The number aij ∈ (0, 1], i = 1, . . . n, j = 1, . . . , m describes the quality of
the product Pj in offer xi. From the n offers (=alternatives) only one has to
be chosen. For a better decision, the company hires m experts, one for each
product. The experts can say an opinion only on the certain information
regarding the product. In making its choice, the company should also take
into consideration the partial information, reflected by the vectors aj =
(a1j , . . . , anj), j = 1, . . . , m. When deciding on the offer xi, the company
will consider the aggregated opinion of the experts and the information in
vectors aj. This is the reason why we might consider these vectors as criteria
in the process of decision making. This fact will appear later in the analysis.

The result of the expertise of the k-th expert is given in a matrix Qk =
(qk

ij) of dimension n×n. For simplicity we assume that the matrices Q1, . . . , Qm

are Boolean. In interpretation, qk
ij = 1 means that the k-th expert considers

the offer xi at least as good as offer xj as far as the quality of product Pk is
concerned.

Two natural conditions are imposed on the elements of Qk:

(a) qk
ii = 1 for any i = 1, . . . , n

(b) Either qk
ij = 1 or qk

ji = 1 for any i, j = 1, . . . , n, i 6= j.

Condition (a) says that any offer should be at least as good as itself.
Condition (b) says that any two offers xi and xj are comparable, so only one
has to be chosen. This way the opinion of each expert is modelled as a crisp
preference relation, reflexive and total.

The information collected from all experts is aggregated in the matrix
Q = (qij)n×n:

qij = 1
m

m∑

k=1

qk
ij , i, j = 1 . . . , n.
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The information given by matrix Q regards the m products.

The sum

m∑

k=1

qk
ij in the expression of qij represents the information from

the experts that think that offer xi is at least as good as offer xj

Notice that 0 < qij ≤ 1 for all i, j = 1, . . . , n, hence Q is a fuzzy preference
relation. The number qij shows the degree to which the expertise overall
decided that alternative xi is at least as good as alternative xj . Obviously
Q is reflexive.

So far we have a preference fuzzy relation given by Q and m vectors
aj = (a1j , . . . , anj), j = 1, . . . , m. As discussed above, the vectors a1, . . . ,am

can be considered criteria that the company should consider in choosing the
best offer.

Now we are in the position to formulate a problem with fuzzy choices.
For simplicity we will use the Gödel t-norm.

Denote by S = {x1, . . . , xn} the set of alternatives (=offers) and by
S1, . . . , Sm the fuzzy subsets of X:

Sj(xi) = aij for all i = 1, . . . , n, j = 1, . . . , m.

Denote B = {S1, . . . , Sm}. 〈X,B〉 represents the fuzzy choice space .

Next we investigate this choice problem.

To the fuzzy preference relation Q on X we assign a fuzzy choice function
C : B → F(X) defined by C(S) = G(S, Q) for any S ∈ B (Definition
4.6 and (4.2.2)). Then for any S ∈ B and x ∈ X we have C(S)(x) =

S(x) ∧
∧

y∈X

[S(y) → Q(x, y)].

Recall that for this fuzzy choice function, C(S)(x) is the degree of truth
of the statement ”x is one of the Q-greatest alternatives satisfying criterion
S”.

In theory it is possible to find S ∈ B, such that C(S)(xi) = 0 for i =
1, . . . , n. In this case C is no longer a fuzzy choice function. As we cannot
repeat the expertise until C becomes a fuzzy choice function, we have to
make the assumption that for any S ∈ B, C(S)(xi) > 0, for any i = 1, . . . , n.
This assumption is very realistic in practice: for each of the m products there
will always exist some information regarding its quality from each seller.

Once the fuzzy choice function has been constructed, two issues are
raised:

1) To find to what extent the mathematical form of the choice (given by
C) matches the expertise;

2) To find a procedure to establish the hierarchy of the alternatives ac-
cording to each of the m criteria and overall.

We discuss now these issues.

1) The fuzzy choice function C has been generated by the fuzzy pref-
erence relation Q which was decided by the experts. In its turn, the fuzzy
choice function C generates a fuzzy revealed preference relation R (Defini-
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tion 4.2 (i))

R(xi, xj) =
∨

S∈B

[C(S)(xi) ∧ S(xj)]

for any alternatives xi, xj ∈ X.

The fuzzy revealed preference relation R reflects the preferences of the
company displayed by the act of choosing and Q reflects the preferences
of the company according to the expertise. Since in theory R is not always
reflexive, we will replace the elements of the main diagonal with 1. In practice
this assumption is normal.

The fuzzy choice function C reflects faithfully the expertise if Q and R
are sufficiently close to each other. The closeness between Q and R can
be measured with the grade of similarity . There are several modalities to
define it. Recall such measures [63]:

M(Q, R) =







1 if Q = R = ∅
∑

x,y∈X

min(Q(x, y), R(x, y))

∑

x,y∈X

max(Q(x, y), R(x, y))
otherwise

L(Q, R) = 1 − maxx,y∈X |Q(x, y) − R(x, y)|.

S(Q, R) =







1 if Q = R = ∅
∑

x,y∈X

|Q(x, y) − R(x, y)|

∑

x,y∈X

|Q(x, y) + R(x, y)|
otherwise

For instance, choosing the first grade of similarity we say that ”the choice
is made with the grade of similarity M(Q, R)”.

2) To establish the hierarchy of the alternatives with respect to each cri-
terion we will apply the degree of dominance , concept studied in the previous
chapter. As seen before, the degree of dominance ranks the alternatives with
respect to the act of choice and not to the preference relation. Recall the
definition of the degree of dominance DS(x) of an alternative x with respect
to a criterion S (Definition 7.1):

DS(x) = S(x) ∧
∧

y∈X

[C(S)(y) → C(S)(x)].

DS(x) reflects x’s position among the other alternatives according to
criterion S. The set of real numbers {DS(x)|x ∈ X} will be ordered such
that we will obtain a hierarchy of alternatives according to S. For a global
hierarchy of the offers we also apply the aggregated degree of dominance in-
troduced in the previous chapter:
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D(x) = 1
card(B)

∑

S∈B

DS(x)

By ordering the elements of the set {D(x)|x ∈ X} one obtains an overall
hierarchy of alternatives.

In the final act of making a choice, the company will decide which offer
to choose.

These considerations provide an algorithm for solving the choice problem,
that will be described in the next subsection.

8.2.3 An algorithm

In this subsection we propose an algorithm for solving the choice problem
described previously.

The input data are the following:

n=the number of alternatives (offers);

m=the number of criteria;

m=the number of experts;

Q1, . . . , Qm=Boolean matrices that describe the results of the expertise
where Qk = (qk

ij) for any k = 1, . . . , m;

S1, . . . , Sm=the fuzzy subsets of the available set of alternatives X =
{x1, . . . , xn}, where

Sj = a1jχ{x1} + a2jχ{x2} + . . . + anjχ{xn} for j = 1, . . . , m.

The steps of the algorithm are:

Step 1

The fuzzy preference relation Q obtained by the aggregation of individual
preference relations Q1, . . . , Qm is calculated:

Q = 1
m

m∑

k=1

Qk.

Step 2

The fuzzy choice function C associated to the fuzzy preference relation
Q is calculated:

C(Sj)(xi) = Sj(xi) ∧
n∧

u=1

[Sj(xu) → Q(xi, xu)]

= aij ∧
n∧

u=1

[auj → qiu]

for any j = 1, . . . , m and i = 1, . . . , n.
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Step 3

The fuzzy revealed preference relation R associated to C is calculated:

R(xi, xj) =
m∨

t=1

[C(St)(xi) ∧ St(xj)]

for any i, j = 1, . . . , n.

A minimal condition on preference relations is reflexivity. In case when
R is not reflexive, we substitute R with its reflexive closure R′, i.e. the fuzzy
relation obtained by replacing the elements of R’s main diagonal with 1.

Step 4

We compute the grade of similarity of the initial fuzzy preference relation
Q and the fuzzy revealed preference relation R′:

M(Q, R′) =

n∑

i,j=1

(Q(xi, xj) ∧ R′(xi, xj))

n∑

i,j=1

(Q(xi, xj) ∨ R′(xi, xj))

.

Step 5

We calculate the degree of dominance of alternative xi with respect to
the criterion Sj and the aggregated degree of dominance of xi.

DSj
(xi) = Sj(xi) ∧

∧

y∈X

[C(Sj)(y) → C(Sj)(xi)],

i = 1, . . . , n, j = 1, . . . , m.

D(xi) = 1
m

m∑

j=1

DSj
(xi), i = 1, . . . , n.

Step 6

Ordering the set {DSj
(x1), . . . , DSj

(xn)} one obtains a hierarchy of the
set of alternatives with respect to Sj . Ordering the set {D(x1), . . . , D(xn)}
one obtains a global hierarchy of alternatives.

8.2.4 A numerical illustration

In this subsection we shall illustrate the above algorithm with a simple ex-
ample.

Take the particular case n = 5 alternatives, m = 3 criteria. The set of
alternatives is X = {x1, . . . , x5}.

The activity of the three experts is materialized in the following prefer-
ence matrices:
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Q1 =









1 0 1 0 1
1 1 0 0 1
0 1 1 1 0
0 1 1 1 1
1 0 1 1 1









, Q2 =









1 0 0 1 0
0 1 1 1 0
1 1 1 1 1
1 0 1 1 0
1 0 1 0 1









,

Q3 =









1 1 1 0 1
0 1 1 1 0
1 0 1 1 1
1 1 0 1 1
0 1 0 1 1









The three criteria are given by the following fuzzy subsets of S

S1 = 0.3χ{x1} + 0.6χ{x2} + 0.8χ{x3} + 0.5χ{x4} + 0.6χ{x5};
S2 = 0.4χ{x1} + 0.7χ{x2} + 0.8χ{x3} + 0.9χ{x4} + 0.2χ{x5};
S3 = 0.7χ{x1} + 0.6χ{x2} + 0.5χ{x3} + 0.1χ{x4} + 0.4χ{x5}.

We follow the steps formulated in the previous subsection.

Step 1

The matrix of the fuzzy preferences Q is obtained from Boolean matrices
Q1, Q2 and Q3:

Q =









1 1
3

2
3

1
3

2
3

1
3 1 2

3
2
3

1
3

2
3

2
3 1 1 2

3
2
3

2
3

2
3 1 2

3
2
3

1
3

2
3

2
3 1









.

Step 2

The fuzzy choice function resulting from Q is computed by:

C(Sj)(xi) = Sj(xi) ∧
5∧

u=1

(Sj(xu) → Q(xi, xu)), i = 1, . . . , 5, j = 1, . . . , 3.

For example,

C(S1)(x1) = S1(x1) ∧ [S1(x1) → Q(x1, x1)] ∧ [S1(x2) → Q(x1, x2)] ∧
[S1(x3) → Q(x1, x3)] ∧ [S1(x4) → Q(x1, x4)] ∧ [S1(x5) → Q(x1, x5)] = 0.3 ∧
[0.3 → 1] ∧ [0.6 → 1

3 ] ∧ [0.8 → 2
3 ] ∧ [0.5 → 1

3 ] ∧ [0.6 → 2
3 ] = 0.3.

After all computations, we obtain the table:
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C(Sj)(xi) x1 x2 x3 x4 x5

S1 0.3 1
3 0.8 0.5 1

3

S2
1
3

1
3

2
3

2
3

1
3

S3
1
3

1
3 0.5 0.1 1

3

Step 3

The elements of the fuzzy revealed preference matrix R associated to C
are calculated by the formula:

R(xi, xj) = [C(S1)(xi) ∧ S1(xj)] ∨ [C(S2)(xi) ∧ S2(xj)] ∨ [C(S3)(xi) ∧
S3(xj)], i, j = 1, . . . , 5.

The matrix R is :

R =









1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

0.5 2
3 0.8 2

3 0.6
0.4 2

3
2
3

2
3 0.5

1
3

1
3

1
3

1
3

1
3









.

We replace R by its reflexive closure R′.

R′ =









1 1
3

1
3

1
3

1
3

1
3 1 1

3
1
3

1
3

0.5 2
3 1 2

3 0.6
0.4 2

3
2
3 1 0.5

1
3

1
3

1
3

1
3 1









.

Step 4

Now we find out how similar matrices Q and R′ are. For this, first we
compute:

Q ∧ R′ =









1
3

1
3

1
3

1
3

1
3

1
3 1 1

3
1
3

1
3

0.5 2
3 1 2

3 0.6
0.4 2

3
2
3 1 2

3
1
3

1
3

1
3

1
3 1









, Q ∨ R′ =









1 1
3

1
3

1
3

1
3

1
3 1 2

3
2
3

2
3

2
3

2
3 1 1 2

3
2
3

2
3

2
3 1 0.5

2
3

1
3

2
3

2
3 1









.

The grade of similarity of Q and R′ is M(Q, R′) =

5∑

i,j=1

(Q ∧ R′)(xi, xj)

5∑

i,j=1

(Q ∨ R′)(xi, xj)

=

11.83
16.5 = 0.71.
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Steps 5 and 6

The degrees of dominance of alternatives in X with respect to criteria
S1, S2 and S3 are represented in the table:

DSj
(xi) x1 x2 x3 x4 x5

S1 0.3 1
3 0.8 0.5 1

3

S2
1
3

1
3 0.8 0.9 0.2

S3
1
3

1
3 0.5 0.1 1

3

The aggregated degrees of dominance of the alternatives are

D(x1) = 0.322, D(x2) = 0.333, D(x3) = 0.7, D(x4) = 0.5, D(x5) =
0.288.

Therefore the order of the alternatives is: D(x5) < D(x1) < D(x2) <
D(x4) < D(x3).

8.2.5 Discussion

In this subsection we will make an analysis of the results from the previous
section in the context of our example.

We deal with a situation where a company wants to buy 3 types of
products. The offers come from 5 producers. The set of alternatives (=offers)
is given by S = {x1, . . . , x5}.

The partial information on the product i (e.g. its quality) is represented
in the vector ai:

a1 = (0.3, 0.6, 0.8, 0.5, 0.6);

a2 = (0.4, 0.7, 0.8, 0.9, 0.2);

a3 = (0.7, 0.6, 0.5, 0.1, 0.4).

It means that a11 = 0.3 represents the degree to which information on
the quality of the first product given by the first producer exists.

The certain information on the products (e.g. cost, delivery times) is also
taken into consideration, by the participation of 3 experts in the decision
making. For example, q1

12 = 1 means that the first expert considers that x1

is preferred to x2, etc. The overall expertise is reflected in the aggregated
matrix Q of fuzzy preferences. The element q12 = 1

3 can be interpreted as
offer x1 is preferred to offer x2 with the degree of intensity 1

3 .

From the fuzzy choice functions obtained above the fuzzy revealed pref-
erence R′ is derived. Offer 1 is revealed preferred to the other offers with
the degree 1

3 and the same applies for offer 2, etc.

One first conclusion shows that the result of the expertise coincides with
the preferences of the company based on fuzzy choices with the grade of
similarity 0.71.
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Another conclusion is that according to criterion S1, the company might
choose offer 3, according to criterion S2 offer 4 and according to criterion S3

offer 3. If the company takes into account all criteria, it might choose offer
3.

This application assumed that there is no conflict on the experts’judgements.
An open problem is what happens in case of a conflict on the experts’judgements.

8.3 Application 3

A producer manufactures m types of products P1, . . . , Pm. Every year he
organizes an auction to sell his products. n companies x1, . . . , xn are inter-
ested in participating in this auction. The bidding concerns the right to sell
the products. The sales obtained in year T are given in the following table:

P1 P2 . . . Pm

x1 a11 a12 . . . a1m

x2 a21 a22 . . . a2m

. . .

xn an1 an2 . . . anm

where aij denotes the number of units of product Pj sold by company
xi in year T . For the year T + 1 the producer would like to increase the
number of sales with the n companies. The companies give an estimation
of the sales for year T + 1 contained in a matrix (cij) with n rows and m
columns; cij denotes the number of units of product Pj that the company xi

estimates to sell in year T + 1.

In making his choice, the producer will those companies that have an
efficient sales market, good marketing, and a good image. The decision
analysis will require two aspects:

(a) the sales aij for year T ;

(b) the estimated sales cij for year T + 1.

The sales for year T can be considered results of the act of choice, or more
clearly, values of a choice function, and the preferences will be given by the
revealed preference relation associated to these choice functions. With the
resulting preference relation and the estimated sale for the year T +1, a fuzzy
choice function can be defined. This choice function will be used to rank the
companies with respect to each type of product. Dividing the values aij and
cij respectively by a power of 10 conveniently chosen we may assume that
0 ≤ aij , cij ≤ 1 for each i = 1, . . . , n and j = 1, . . . , m.

In establishing the mathematical model the following steps are needed:

–(A) To build a fuzzy choice function from the sales of year T .

The set of alternatives is X = {x1, . . . , xn}.
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For each j = 1, . . . , m denote by Sj the subset of X whose elements are
those companies that have had ”good” sales for product Pj in year T . Only
the companies whose sales are greater than a threshold ej are considered.

If H = {S1, . . . , Sm} then 〈X,H〉 is a fuzzy choice space (we will identify
Sj with its characteristic function). The sales (aij) of year T lead to a choice
function C ′ : H → F(X) defined by:

(1) C ′(Sj)(xi) = aij

for each j = 1, . . . , m and xi ∈ Sj .

This context is similar to Banerjee [4]. There H contains all non-empty
finite subsets of X.

–(B) The choice function C ′ gives a fuzzy revealed preference relation R
on X defined cf. Remark 4.2:

(2) R(xi, xj) =
∨
{C ′(Sk)(xi)|xi, xj ∈ Sk} =

∨
{aik|xi, xj ∈ Sk}

for any xi, xj ∈ X.

R(xi, xj) represents the degree to which alternative xi is preferred to
alternative xj as a consequence of current sales.

Since in most cases R is not reflexive, we replace it by its reflexive closure
R′.

–(C) From the fuzzy revealed preference matrix R′ and the matrix cij of
estimated sales one can define a fuzzy choice function C, whose values will
estimate the potential sales for the year T +1. Starting from C one will rank
the alternatives for each type of product.

The set of alternatives is X = {x1, . . . , xn}. For each j = 1, . . . , m Aj

will denote the fuzzy subset of X given by

(3) Aj(xi) = cij for any i = 1, . . . , n.

Take A = {A1, . . . , Am}. One obtains the fuzzy choice space 〈X,A〉.
The choice function C : A → F(X) is defined by (see Remark 4.2.2)

(4) C(Aj)(xi) = Aj(xi) ∧
n∧

k=1

[Aj(xk) → R′(xi, xk)]

= cij ∧
n∧

k=1

[cij → R(xi, xk)]

for any i = 1, . . . , n and j = 1, . . . , m.

Applying the degree of dominance for the fuzzy choice function C one
will obtain a ranking of the companies with respect to each product. This
ranking gives the information that the mathematical model described above
offers to the producer with respect to the sales activity for the following year.

We present next the algorithm of this problem.

The input data are:

m= the number of types of products

n=the number of companies

aij=the matrix of sales for year T

cij=the matrix of estimated sales for year T + 1

(e1, . . . , em)=the threshold vector
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Assume 0 ≤ aij ≤ 1, 0 ≤ cij ≤ 1 for any i = 1, . . . , n and j = 1, . . . , m.

From the mathematical model we can derive the following steps:

Step 1 Determine the subsets S1, . . . , Sm of X = {x1, . . . , xn} by

Sk = {xi ∈ X|aik ≥ ek}, k = 1, . . . , m.

Step 2 Compute the matrix of revealed preferences R = (R(xi, xj)) by

R(xi, xj) =
∨

xi,xj∈Sk

aik.

Replace R with its reflexive closure R′.

Step 3 Determine the fuzzy sets A1, . . . , Am

Aj = cijχ{x1} + . . . + cnjχ{xn} for j = 1, . . . , m

Step 4 Obtain the choice function C applying (3)

Step 5 Determine the degrees of dominance DAj
(xi), i = 1, . . . , n and

j = 1, . . . , m.

Step 6 Rank the set of alternatives with respect to each product Pj by
ranking the set {DAj

(x1), . . . , DAj
(xn)}.

For a better understanding of this model we present a numerical illustra-
tion. Consider the initial data m = 3 products and n = 5 companies willing
to sell these products.

The sales for year T are given in the following table:

P1 P2 P3

x1 0.3 0.6 0.7

x2 0.8 0.1 0.5

x3 0.7 0.6 0.1

x4 0.1 0.8 0.7

x5 0.8 0.1 0.7

The estimated sales for year T + 1 are given in the following table:

P1 P2 P3

x1 0.5 0.7 0.7

x2 0.8 0.3 0.6

x3 0.8 0.7 0.2

x4 0.2 0.8 0.8

x5 0.8 0.2 0.8

The thresholds are e1 = e2 = e3 = 0.2.

We follow now the steps described above.

Step 1 The subsets S1, S2, S3 of X are:

S1 = {x1, x2, x3, x5}, S2 = {x1, x3, x4}, S3 = {x1, x2, x4, x5}.

Step 2 We compute the matrix of revealed preferences R. Then we
replace it by its reflexive closure R′.
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R =









0.7 0.7 0.6 0.7 0.7
0.8 0.8 0.8 0.5 0.8
0.7 0.7 0.7 0.6 0.7
0.8 0.8 0.8 0.8 0.7
0.8 0.8 0.8 0.7 0.8









. R′ =









1 0.7 0.6 0.7 0.7
0.8 1 0.8 0.5 0.8
0.7 0.7 1 0.6 0.7
0.8 0.8 0.8 1 0.7
0.8 0.8 0.8 0.7 1









.

For example, R(x1, x2) =
∨

x1,x2∈Sk

a1k = a11 ∨ a13 = 0.3 ∨ 0.7 = 0.7.

Step 3 The fuzzy sets A1, A2, A3 are:

A1 = 0.5χ{x1} + 0.8χ{x2} + 0.8χ{x3} + 0.2χ{x4} + 0.8χ{x5};

A2 = 0.7χ{x1} + 0.3χ{x2} + 0.7χ{x3} + 0.8χ{x4} + 0.2χ{x5};

A3 = 0.7χ{x1} + 0.6χ{x2} + 0.2χ{x3} + 0.8χ{x4} + 0.8χ{x5}.

Step 4 The corresponding fuzzy choice functions are:

C(A1) = 0.5χ{x1} + 0.8χ{x2} + 0.7χ{x3} + 0.2χ{x4} + 0.8χ{x5}

C(A2) = 0.6χ{x1} + 0.3χ{x2} + 0.6χ{x3} + 0.8χ{x4} + 0.2χ{x5}

C(A3) = 0.7χ{x1} + 0.5χ{x2} + 0.2χ{x3} + 0.7χ{x4} + 0.7χ{x5}.

Step 5 The corresponding degrees of dominance are represented in the
table:

DAj
(xi) x1 x2 x3 x4 x5

A1 0.5 0.8 0.7 0.2 0.8

A2 0.6 0.3 0.6 0.8 0.2

A3 0.7 0.5 0.2 0.8 0.7

The producer needs to decide one contractor according to the dominant
values for each criterion. According to criterion A1,

DA1
(x4) < DA1

(x1) < DA1
(x3) < DA1

(x2) = DA1
(x5),

therefore companies 2 and 5 will be chosen.

According to criterion A2,

DA2
(x5) < DA2

(x2) < DA2
(x1) = DA2

(x3) < DA2
(x4),

therefore company 4 will be chosen.

According to criterion A3,

DA3
(x3) < DA3

(x2) < DA3
(x1) = DA3

(x5) < DA3
(x4),

therefore company 4 will be chosen.

In the situation described above the sales of year T are regarded as the
result of the act of choice. As such we deal with a first problem of fuzzy
choices (in the sense of Banerjee) where the choice function C ′ is defined by
the values of the sales of year T .
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The fuzzy revealed preference relation R associated with C ′ expresses
the preferences of the buyers in year T . R gives only partial information on
the manner in which the sales of year T + 1 will occur.

Estimative values of the sales of year T +1 will be taken into account. For
instance, these estimative values can be obtained by statistical samplings.
By combining the estimations of year T + 1 with the preferences of year T
one obtains a new fuzzy choice problem (in the general sense of this thesis)
that models the sales of year T + 1.

The multicriterial hierarchy of alternatives obtained from the second
fuzzy choice problem will be useful to the company in organizing the sales
of year T + 1.
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Chapter 9

Summary and Conclusions

Most individual or group activities can be considered to be acts of choice
between feasible alternatives. An agent must be able to choose some alter-
natives from an available set of alternatives. This is the intuitive idea behind
the notion of choice function or consumer.

According to Uzawa [61], the behavior of a consumer is rational if ”he has
a definite preference over all conceivable commodity bundles and he chooses
those commodity bundles that are optimum with respect to his preference
subject to budgetary constraints”.

Then the rationality is to find a ”good binary relation” R such that
the choice is determined by the R-greatest elements of any available sets of
alternatives.

In the real world most preferences are vague, consequently they are more
adequately modelled by fuzzy binary relations.

Some authors have studied the case when preferences are vague but the
act of choice is exact [5, 6, 7, 16, 33, 38].

Banerjee’s thesis [4] is that ”If preferences are permitted to be fuzzy, it
seems natural to permit the choice functions to be fuzzy as well. This also
tallies with the experience.” He studies the revealed preference theory for a
class of fuzzy choice functions.

In [4, 43, 58, 62, 64] fuzzy choice functions in different forms have been
studied.

Our notion of fuzzy choice function differs from that of Banerjee where
the domain of the choice function is made only of finite (crisp) sets of alter-
natives. In this thesis it is assumed that both the domain and the range of
a choice function are made of fuzzy sets. For a fuzzy set S in the domain
of the choice function and for an alternative x the real number S(x) can be
considered as the availability degree of x.

Any continuous t-norm ∗ leads to a different set theory; the operations
with fuzzy sets and fuzzy relations are expressed by means of the t-norm ∗,
residuum → and negation ¬ associated to ∗. This is the main motivation of
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our attempt to develop a general theory of fuzzy revealed preference for an
arbitrary continuous t-norm. Besides the generality of some definitions and
propositions, another argument is the specificity of the results for different
t-norms.

The contributions of this thesis can be grouped in five main themes.

I. Revealed preference and congruence axioms for fuzzy choice functions.

II. Rationality and normality of fuzzy choice functions.

III. Consistency conditions for fuzzy choice functions.

IV . Degree of dominance for fuzzy choice functions.

V . Applications.

In this thesis two notions of rationality for fuzzy choice functions have
been introduced: M -rationality and G-rationality. Both assume the exis-
tence of a fuzzy preference relation Q. M -rationality (resp. G-rationality)
extends to fuzzy sets the notion of the set of Q-maximal (resp.Q-greatest)
elements of an available set of alternatives. When Q is the fuzzy preference
relation defined by (3.2.5), M -normality and G-normality of fuzzy choice
functions are obtained.

In connection with these notions axioms of revealed preference WAFRP ,
SAFRP and congruence WFCA, SFCA have been studied. This study has
been done in the thesis in two contexts.

The first was in the line with the Uzawa-Arrow-Sen theory [60, 2, 49, 48,
50] in which the domain of the choice function includes all finite subsets of
alternatives. At a fuzzy level, correspondingly, hypotheses (H1) and (H2)
have been found.

The main result of Section 5.1 is Theorem 5.1 in which axioms WAFRP ,
SAFRP , WFCA, SFCA and four other conditions of rationality are com-
pared. Some equivalences or implications are true for an arbitrary continuous
t-norm, others only for Lukasiewicz or Gödel t-norms. The Gödel t-norm is
more effective for revealed preference axioms (conditions (i)-(iv) are equiv-
alent) and the Lukasiewicz t-norm is more effective for congruence axioms
(conditions (v) -(vi) are equivalent). The example in Section 5.5 establishes
the limitations of this theorem. Reflecting on Theorem 5.1 and the associated
example it can be said that the product t-norm has a reduced significance
in fuzzy revealed preference theory.

A second setting for axioms of revealed preference and congruence follows
the Richter-Hansson-Suzumura theory [41, 27, 54]. In this case hypothe-
ses (H1) and (H2) are lifted. In [27, 54], WARP and SARP have been
used in equivalent forms expressed in terms of C-connected sequences. For
fuzzy choice functions these equivalent forms have led to axioms WAFRP ◦,
SAFRP ◦ which are different from WAFRP and SAFRP . Another axiom of
revealed preference HAFRP , the fuzzy version of axiom HARP introduced
by Hansson in [27] has been considered. In Chapter 6 the equivalences be-
tween WFCA and WAFRP ◦, SFCA and HAFRP have been established.
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Open problem 1: No result on SAFRP ◦ has been obtained. Is there
any relation between SAFRP ◦ and the rest of the axioms?

In [4] Banerjee studies in a different context fuzzy forms of revealed pref-
erence and congruence axioms. The choice functions in Banerjee’s axioms
are defined in combinations of operations with Gödel and Lukasiewicz t-
norms. In this thesis a different approach has been adopted, working only
with a fixed t-norm.

Open problem 2: Could Banerjee’s results [4] be formulated and proved
for the fuzzy choice functions considered in this thesis?

The last section of Chapter 6 attempts to obtain the Richter theorem [41]
in a fuzzy context. A choice function is totally ∗-rational if it is rationalizable
by a fuzzy preference relation which is reflexive, ∗-transitive and total. This
is the fuzzy version of a rational choice function in Richter’s terminology
[41, 42]. We prove that any totally ∗-rational fuzzy choice function is ∗-
congruous (i.e. it satisfies SAFRP for an arbitrary continuous t-norm ∗).
One implication of Richter theorem is obtained henceforth.

Open problem 3: Is the converse true: any ∗-congruous choice function
is totally ∗-rational?

Trying to follow Richter’s proof in order to obtain this implication, the
concept of ∗-semirational fuzzy choice function was necessary. In Section
6.3 a surprising result has been obtained: any fuzzy choice function is ∗-
semirational. To prove this fact the fuzzy version of the Szpilrajn theorem,
which was proved in Section 3.3, is needed.

As mentioned already, the third type of contributions refers to consis-
tency conditions, which involve properties concerning the expansion or con-
traction of the feasible sets of alternatives. Under hypotheses (H1) and (H2)
it was especially intended to study conditions Fα, Fβ, Fγ and Fδ, the fuzzy
forms of properties α, β, γ and δ studied by Sen in [49, 48, 50].

For example, we prove that a fuzzy choice function verifies Fα and Fβ
if and only if WFCA holds (Theorem 5.2). Another result shows that the
fuzzy preference relation R is quasi-transitive if and only if Fδ is verified.

Open problem 4: In this thesis we have not obtained any result con-
cerning condition Fγ. Can Sen’s results on condition γ [48] be extended in
our context?

Open problem 5: The consistency conditions Fα, Fβ and Fγ have
been studied for the Gödel t-norm. Are they still true for an arbitrary
continuous t-norm or for a particular t-norm?

Open problem 6: In this thesis specifically the concepts of G-rationality
and G-normality have been analyzed. Can significant results be obtained
concerning the M -rationality and M -normality of fuzzy choice functions?

In the literature on multiple criteria decision making ( see e.g. [67]) it has
been often emphasized how important the selection of alternatives is for the
act of choice. Usually the alternatives are not clearly differentiated, therefore
their ranking according to various criteria is needed. This facilitates the
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process of decision making.
In Chapter 7 we have introduced the concept of degree of dominance of

an alternative, as a method of ranking the alternatives according to different
criteria. These criteria can be taken as the available sets of alternatives.

The degree of dominance of an alternative x in an available set S of
alternatives reflects x’s position towards the other alternatives (with respect
to S). This notion expresses the dominance of an alternative with regard to
the act of choice, not to a preference relation. With the degree of dominance
one can build a hierarchy of alternatives for each available set S. If one
defines a concept of aggregated degree of dominance (that unifies the degrees
of dominance with regard to various available sets) one obtains an overall
hierarchy of alternatives.

In Chapter 7 we have considered the degree of dominance DQ
S (x) of x

in S in terms of Q, where Q is an arbitrary fuzzy relation on X. If Q is a
fuzzy revealed preference relation associated with a fuzzy choice function C,
we have proved that DS(x) ≤ DQ

S (x), x ∈ X and S ∈ B.
Open problem 7: Characterize the fuzzy choice functions C on the

fuzzy choice space 〈X,B〉 such that DS(x) = DQ
S (x) for any x ∈ X and

S ∈ B.
Open problem 8: By replacing DS(x) with DQ

S (x) one can formulate
axioms of congruence analogous to FC∗1, FC∗2 and FC∗3. What might be
the dependencies between these new axioms and how are they connected to
FC∗1, FC∗2 and FC∗3?

The analysis of the three applications of Chapter 8 leads to the following
conclusions:

• all these applications describe concrete economic situations where par-
tial information or human subjectivity appears;

• the mathematical modelling is done by formulating some fuzzy choice
problems where criteria are represented by fuzzy available sets of alterna-
tives;

• the degree of dominance is the mathematical instrument on which the
algorithms of multicriterial hierarchy are based.
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