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Abstract

Since 1940s, many mathematical models from physics, engineering, chemistry,
biology, economics, etc., have been displayed as autonomous planar systems. A
wide class of autonomous planar systems can be transformed into Liénard-type
systems. Also, due to the well-known paper of I. G. Petrovskii and E. M. Lan-
dis concerning the maximum number of limit cycles of all quadratic differential
systems (the second part of Hilbert's 16th problem), the study of the qualitative
behavior of the solutions of autonomous planar systems of Liénard-type has be-
come more and more important and has attracted the attention of many pure and
applied mathematicians.

The purpose of this thesisis to develop the qualitative theory of autonomous
planar systems of Liénard-type. More explicitly, we give conditions for global
asymptotic stability, existence of local centers and global centers, existence of
oscillatory solutions, existence and nonexistence of periodic solutions, and also
existence and uniqueness of limit cycles for some autonomous planar systems of
generalized Liénard-type. Moreover, in case of having unigueness of limit cy-
cles, the hyperbolicity of the limit cycleisrelevant. We apply different techniques
for different types of systems. The main tools used are some nonlinear integral
inequalities, methods of comparison and some transformation techniques (espe-
cialy the generalization of the Filippov transformation). Furthermore, some pow-
erful methodsfor Liénard systems, especially those developed by G. Villari and F.
Zanolin, are applied in this thesis. We apply the criteriafor existence, uniqueness
and hyperboalicity of limit cycles, existence of centers, existence of oscillatory
solutions, and global asymptotic stability of an uniqueness positive equilibrium
to the Gause-type predator-prey systems and a class of second-order autonomous
systemsfound in the literature. On the other hand, for three-dimensional competi-
tive Lotka-Volterra systems, M. L. Zeeman identified 33 stable equivalent classes.
Among these, only classes 26-31 may have limit cycles. J. Hofbauer and J. W.-H.
So conjectured that the number of limit cyclesisat most two for these systems. We
construct three limit cycles for class 29 without a heteroclinic polycycle in Zee-
man’s classification and thus give a counterexample to Hofbauer and So’s conjec-
ture. For competitor-competitor-mutualist L otka-Volterra systems, we show that
the number of periodic orbits (and hence afortiori of limit cycles) isfinite, and fur-
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thermore, we construct an example with at least two limit cycles. It isaso shown
that, unlike in three-dimensional competitive L otka-Volterra systems, the nontriv-
ia periodic coexistence does happen even if none of the three species can resist
invasion from either of the other species. In this case, new amenable conditions
are given on the coefficients under which the system has no nontrivial periodic
coexistence. These conditions imply that the positive equilibrium, if it exists, is
globally asymptotically stable.
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Chapter 1

Generalized Liénard systems

1.1 Global asymptotic stability

The development of a mathematical theory is often guided by practical problems.
For differential equations, the situation is particularly clear. The driving force
behind the research in autonomous planar systems of Liénard-type was furnished
much more by practical problemsthen by great mathematicians. During the twen-
tieth century, applied electronics advanced rapidly, physicists invented the triode
vacuum tube which was able to produce stable self-excited oscillations of con-
stant amplitude, thus making it possible to propagate sound and pictures through
electronics. However, it was not possible to describe this oscillation phenomenon
by linear differential equations. In 1926, van der Pol first obtained a differential
eguation, which was later named after him, to describe oscillations of constant
amplitude of atriode vacuum tube:

K+ 12 —1Dx+x=0 (u>0). (1.1)

After transforming this equation into an equivalent differential system in the phase

plane
X=Y,
U= s €2

he used graphical methods to prove the existence of an isolated closed orbit (limit
cycle). In 1928, the French engineer A. Liénard first studied the problem of limit
cycles of the equation

X+ f(X)x+g(x) =0 (1.3

or its equivalent differential systems

X=Y,
{ Y=~ (x)y—g(x), (14
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X= y— F (X)7
{ y: —g(X), (15)
where F(x) = [J f(s)ds.

It is worthwhile to mention that, owing to research development from other
fields such as physics, engineering, chemistry, biology, economics, etc., research
on the qualitative theory of autonomous planar systems of Liénard-type has be-
come more important. The main problem in the study of such models consists of
giving a complete description of the behavior of solutionsast — +oco. In general,
this is not possible, due to the complexity of the equations and the phenomena
involved. The aim of the qualitative theory is to give an approximate description
of the behavior of the system by identifying suitable regions of the phase space
where the solutions behave in a similar way.

In recent years, several authors [26, 46, 81] have considered the following
second order differential equation:

%+ (f(x) +K(X)X)%+g(x) = 0, (1.6)

where f, g and k are all continuous functions. Clearly, when k(x) = 0, (1.6)
reduces to the Liénard equation (1.3). Using the transformation y = ay(X)X +
Fy(X), one can change (1.6) into

dt ay(x) 0 1.7
{3——%wmm a7

where ay(x) = exp( g k(s)ds) and Fy(x) = [3ag(s) f(s)ds.
Therefore, motivated by theoretical interest and plausible applications, Qian
[81], Jiang [47] and Sugie [89] investigated a more general nonlinear system:

& — L lh(y) — F()]
% — —a(xg(x).

The global asymptotic stability of the zero solution of a planar autonomous
system is related to the Markus-Yamabe problem. The following conjecture was
explicitly stated by Markus and Yamabe [72] in 1960: If the eigenvalues A,(X),
... An(X) of the Jacobian matrix D fn(x) of a class C! vector field f,: R" — R"
in the n-dimensional space R" all have negative real parts at every x in R" and if
fa(0) = 0, then the origin isaglobally asymptotically stable equilibrium point for
the n-dimensional nonlinear autonomous system of ordinary differential equations
x= fn(X).

The Markus-Yamabe conjecture for the case n = 2 has been given an affirma-
tive answer independently by severa authors[17, 25, 27]. For n > 3, the Markus-
Yamabe conjecture has been proved to be false [4, 5, 10]. Therefore, the Markus-
Yamabe conjecture has been completely solved. However, it is still of interest to

(18)
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give necessary and sufficient conditions to guarantee the zero solution of a planar
autonomous system to be globally asymptoticaly stable [35, 46, 47, 51, 81, 90,
89, 95, 98].

To study the global asymptotic stability of the zero solution of (1.8), the sig-
nificant point is to find conditions for deciding whether all orbits intersect the
isocline h(y) = F(x). We also need to examine the behavior of orbits near the
origin. If system (1.8) has ahomoclinic orbit, then the zero solution of (1.8) is not
even stable. Roughly speaking, if

(i) all positive semiorbits are bounded and cross theisocline h(y) = F(x),

(ii) no nontrivial periodic orbit exists, and

(iii) no homoclinic orbit exists,
then the zero solution of (1.8) is globally asymptotically stable.

Qian[81] established necessary and sufficient conditionsfor the global asymp-
totic stability of the zero solution of (1.8). Under considerably weaker conditions,
Jiang [47] generalized the results of [81]. Sugie [89] investigated the same topic
and obtained an implicit necessary and sufficient condition under which the zero
solution of (1.8) with a(x) = 1isglobally asymptotically stable[89, Theorem 3.1].
Since, in general, it is not an easy matter to verify whether all orbits intersect the
isoclineh(y) = F(x), even for the Liénard system (1.8) witha(x) = 1and h(y) =y
(see, for example, [24, 34, 35, 36, 90, 93, 95, 98], and the references contained
therein), the result of Sugie [89, Theorem 3.1] is of theoretical interest only. For
an application, Sugie [89] considered the system:

& — mly|P sgny — F(x),
t

withm> 0 and p > 1. But the problem of determining what happens when 0 <
p < 1lisleft openin[89].

The aim of Paper | in this thesis is to extend and improve the results men-
tioned above and to derive necessary and sufficient conditions under which the
zero solution of (1.8) is globally asymptotically stable. The main advantage of
our global asymptatic stability criteriaisthat they are explicit, soit is not difficult
to verify them. In addition, our results can be applied to system (1.9) even for
0 < p < 1. We have the following theorems which can be applied to system (1.9)
for 0 < p < +eo.

Theorem 1.1. Suppose that the system (1.8) satisfies the following conditions:

(A;) F(0)=0,a(x) > 0for xe R and xg(x) > 0for x# 0,

(A;) yh(y) > Ofory# 0, h(y) isstrictly increasing and h(=eo) = H-eo;

(A5) F(Gyl(—2) < F(Gy(2)) for any z € (0,min{—Ggy(—ce),Gy(+)})
and F(G,1(—2)) # F(G,1(2) for 0 < z< 1, where Gy(x) = [3a(s)|g(s)|ds,
and the notation 0 < z < 1 denotes z sufficiently small;
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(A3) there exist constants o > %1 and 6 > O such that |F(x)| >0 for 0<
IX| < &, and, for any fixed real number k > 1,

/Oxaj(:zg)(‘s)dsz %rrl(ka\F(x)\) for 0< |x| < 1,

where h—1(u) isthe inverse function of u = h(y);
(Ay) limsup,_ ... F(X) > —ecand liminf,_,__ F(X) < oo,
Then the origin of (1.8) is globally asymptotically stableif and only if

. x 8%(s)g(s) _

e [ 0 1+F_(s)dS+F(X)} - (110
and

. x a%(s)g(s) _

"X”j?‘ip[ 0 TH+F, (50 F(X>] =t (111)

where F_(x) = max{0, —F (x)} and F (x) = max{0,F (x)}.
We have amore general result in Paper |:

Theorem 1.2. Assume that the system (1.8) satisfies the conditions (A) — (A,).
Then the zero solution of (1.8) isglobally asymptotically stableif and only if (1.10)
and (1.11) hold.

In the study of (1.8), it seems reasonable to assume (A;). However, assump-
tion (A,) isstrong. Ontheother hand, itisalsoimportant to find other explicit con-
ditions to decide whether all orbits intersect the isoline h(y) = F(x) and whether
system (1.8) has a homoclinic orbit. For this reason, some attempts have been
made to get some further results for system (1.8).

We state an additional condition:

(A}) yh(y) > 0fory#0, h(y) isstrictly increasing and the curve h(y) = F(X)
iswell defined and continuouson all x € R.

Theorem 1.3. Assumethat the system (1.8) satisfiesthe conditions (Ay), (A7), (A4),
and that all positive semi-orbit are bounded. Then the zero solution of (1.8) is
globally asymptotically stable if and only if system (1.8) has no closed orbits.

Here we give three theorems of nonexistence of closed orbits (see, for exam-
ple, [123] and Paper 1).

Theorem 1.4. Suppose system (1.8) satisfies the conditions (A), (A7), and the
simultaneous equations

do not have a solution (u,x) with —ec < u < 0 and 0 < X < +-oo, Where G(x) =
[3'@%(s)g(s)ds. Then system (1.8) has no closed orbits.
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Theorem 1.5. Suppose that system (1.8) satisfies the conditions (A,) and (A7)
and that the inequality

fw o fx fu  _ f()
a2(u)g(u) — a(x)g(x) @(ug(u) — @(x)g(x)

holds for any (u,x) satisfying G(u) = G(x) with —ec <u< 0 and 0 < X < oo,
Then system (1.8) has no closed orbits.

(or )

Theorem 1.6. Suppose that system (1.8) satisfies the conditions (A,), (A;) and
(A3). Then system (1.8) has no closed orbits.

1.2 Oscillations and centers

In this section we study oscillations of al nontrivial solutions and centers of sys-
tem (1.8). The system (1.8) hasin recent years been the object of intensive studies
with particular emphasis on the asymptotic behavior of solutions (see[47, 81, 89]).
To study the oscillation of solutions of (1.8), as discussed in some recent papers
(see [29, 34, 47, 64, 93, 89, 98, 108, 109, 114]), for the right half plane, a sig-
nificant point is to find conditions ensuring that all positive orbits y*(P) (where
P = (0, p) with p > 0) intersect the characteristic curve h(y) = F (x) and then cross
the negative y-axis; this property of y*(P) plays an important role in the analy-
sis of the center, oscillation, asymptotic stability and boundedness conditions of
(1.8). There have been many studiesin thisdirection in which sufficient conditions
to obtain the above mentioned property of y*(P) were given. For example (see
[18, 24, 35, 36, 73, 75, 77, 101, 120]), no solution of (1.5) approaches the origin
directly in the right half plane (i.e., in anonoscillatory way) if one of the follow-
ing conditions is satisfied (in the following, f(x) := F'(x) if F(x) is continuously
differentiable and G(x) := [§'g(s)ds):

(1) (McHarg [73]) f(x) > 0for x > 0 and there exist k > 0 and a > 0 such that
f(x) <kg(x) for0O<x<a.
(2) (Wendel [101]) There exist k > 0 and a > 0 such that
0< f(x) <kg(x) forO<x<a.
(3) (Nemyckii and Stepanov [75]) There exist o > 211 and a > 0 such that
f(x) >0 and o f (X)F (x) < g(x) forO<x< a.
(4) (Filippov [18]) Thereexist 0 < B < 8 and a > 0 such that

F2(x) < BG(x) for0< x< a.
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(5) (Opial [77]) There exist o > 1 and a > 0 such that

o|F(x)| < /OX |§((t))|du forO<x<a

(6) (Haraand Yoneyama [35], Hara, Yoneyama and Sugie [36], Sugie [90]) If
one of the following conditions holds:

(i) there exists a positive sequence {xn} such that x, — 0 as n — 4o and
F(x,) <0forn>1;
(i) There exist o > § and a > 0 such that

1 g
F —— [ 22X du> _
(x) >0 and F(x)/oF(u)du o for0<x<a

(7) (Yu[120Q]) Thereexist a > 0, k; > 0 and k, < 0 such that

f(X
X)

g

k, <

<k, forO<x<a.

«Q
—~

Our investigation shows that condition (6) is much weaker than condition (4).
The problem concerning the oscillation of solutions of (1.8) with a(x) = 1 has
been studied by some authors (see, for example, [64, 109] and the references cited
therein). Li and Tang [64] discussed the oscillation of solutions of (1.8) with
a(x) = 1 requiring the existence of h’(y) and h’(0) > 0. Yan and Jiang [109]
proved that the solutions of (1.8) with a(x) = 1 are oscillatory under the condi-
tion h'(0) > 0. But the problem of what happens when i (0) = 0 or h'(0) = +oo
remains unsolved. In the present paper, no restrictions on the differentiability of
h(y) are required. We give necessary and sufficient conditions for al nontrivia
solutions of (1.8) being oscillatory. Our theorem can be applied to system (1.8)
even for h'(0) =0, h'(0) = +e and limy .. F(X) sgn X = —oo.

The problem of finding the center of the system (1.5) has been widely stud-
ied and continues to attract attention; see, for example, [77, 90, 95, 98, 101, 108,
115, 120, 127] and the references cited therein. Our purpose is to develop a cen-
ter theory for the system (1.8). This work was motivated by the papers of Hara
and Yoneyama[35] and Sugie [90], in which a detailed analysis of center proper-
ties was given for system (1.5). We will follow closely the presentation of Hara,
Yoneyama and Sugie, and show that all of their results on this subject can be
generalized to (1.8).

Thetechnical tool isbased on anonlinear integral inequality and a phase plane
analysis. Also the methods for Liénard-type systems, especially those devel oped
by Villari and Zanolin [98], Haraand Sugie [34], and Sugie and Hara[93] are also
applied.

In Paper VI, We have the following results:
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Theorem 1.7. Suppose that the conditions (A,), (A;), (Ag) and (A;) are satisfied.
Then all nontrivial solutions of (1.8) oscillateif and only if (1.10) and (1.11) hold.

Theorem 1.8. If conditions (A,), (A;) and (A,) hold, and there exists K, > 0 such
that

(Agx) F(G1(—w))=F(G 1(w)) for 0<w<K,.

Then theoriginisalocal center of (1.8).

Theorem 1.9. Suppose that the origin is a local center of (1.8), and that the
conditions (A,) — (A;) and (A;) are satisfied. Then the origin is a global center
of (1.8) if and only if (1.10) and (1.11) hold.

By a method similar to that of Section 1.2, we can relax condition (A,;). We
have the following further results:

Theorem 1.10. Assume that the system (1.8) satisfies the conditions (A), (A7)
and (Ag) and that all positive semi-orbits are bounded. Then all nontrivial solu-
tions of (1.8) oscillate.

Theorem 1.11.Assumethat the system (1.8) satisfiesthe conditions (A), (A7), (Agx)
and (A,). Thentheoriginisa local center of (1.8).

1.3 Limit cycles for generalized Gause-type predator-
prey systems

The first attempts to describe population cycles mathematically can be found in
Lotka[67] and Volterra[99]. The classical Lotka-Volterrasystemis

X = ax — bxy,
: ’ 112

{ y=cxy—dy, (112
which admits no isolated periodic orbits, and the interior equilibrium is a center
surrounded by neutrally stable orbits. The modelsfor which of Lotkaand Volterra
were later generalized by Gause [21] into the following Gause-type predator-prey
model for consumer-resource interaction:

y = cyp(x) —dy.

The number, x and y, denote the prey and predator densities, respectively. The
function h is the growth function of the predator and this function is assumed to
be continuously differentiable. In the absence of predators, the prey population
should converge towards a positive limit with h(x) > 0 for 0 < x < K, h(x) <0
for x> K or x < 0, and h(x) = 0 for x= K or x = 0. The function p is called

{ x = h(x) — yp(x), (1.13)
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the functional response. This function is expected to be increasing and continu-
ously differentiable. Moreover, it has a unique zero at the origin. The functional
response denotes the number of prey eaten by apredator per unit of time asafunc-
tion of prey density. The constants ¢ and d denote the conversion factor and the
death-rate of the predator, respectively. The conditions are such, that the solutions
of the system (1.13) remain positive and bounded. In the models of Lotka and
Volterra, the functions h and p were assumed to be linear.

Gause-type predator-prey systems can possess unique attractors also when
it does not possess limit cycles. If the unique attractor is an equilibrium, the
Gause-type predator-prey system possesses global stability since the solutions are
bounded and hence the equilibrium must attract all initial conditions, except pos-
sibly initial conditions on the x— and y—axis. Hence, the existence of limit cycles
in Gause-type predator-prey systemsisrelated to the existence and stability of the
positive equilibrium. If there exists a unique positive equilibrium which is unsta-
ble, then there must exist at least one limit cycle. For a Gause-type predator-prey
model under Kolmogorov conditions, May [71] claimed that there must occur a
"unique” stable limit cycle. In response to this, Albrecht et a [1] constructed a
Gause-type predator-prey model satisfying the Kolmogorov conditions for which
there are uncountably many periodic solutions inside an annular region bounded
by two limit cycles. This observation makes the problem of determining con-
ditions which guarantee the uniqueness of limit cycles or the global stability of
positive equilibrium in Gause-type predator-prey systems very challenging.

In this section we consider a general Gause-type predator-prey systems of the
general form

x=y(x) = &(y)p(x), x(0) >0,
{ y=mn(y)ax), y(0) >0, (1.14)

where x and y are functions of t, which represent the prey and predator populations
at agiventimet > 0, respectively. Hence, we will restrict our attention to the first
quadrant and make the following assumptions:

(A1) w(x) € CHO,+e), w(0) = 0 and there exists K > 0 such that y(K) =0
and (x—K)y(x) < 0for x> 0and x # K;
(A2

) £(y),n(y) € CH0,+e), §(0) =0=n(0) =0and &'(y) > Oand n'(y) >
Ofory>0;

(A3) p(x) € CL[0,4-), p(0) = 0 and p(x) > O for x > O;

(A4) q(x) € CH0,+oo), there exists x* € (0,K) such that g(x*) = 0, and (x—
x*)q(x) > 0for x € (0,x*) UJ(X*,K);

(A5) System (1.14) has no equilibrium at infinity except at the infinity of the
positive x-axis and y-axis.



1.3 Limit cycles for generalized Gause-type predator-prey systems 21

We use some transformations of variablesto reduce system (1.14) to the gener-
alized Liénard system (1.8) with a(x) = 1. We present explicit conditions guaran-
teeing the uniqueness of limit cycles (based on atheorem of Gasull and Guillamon
[20]) and results on nonexistence of limit cycles, the global stability of a positive
equilibrium of system and center problems. Further, in the case of having unique-
ness, the limit cycle could bifurcate under small perturbations and the dynamics
of the population could be qualitatively modified. If alimit cycle is hyperbolic
then it will persist under small Cl-perturbations. Hence, the hyperbolicity of a
limit cycle for (1.8) implies the non-appearance of new periodic solutions near to
it and so asimilar behavior for the C-close system, even if it is not of type (1.8).

We have the following results (see, for example, [103]):

Theorem 1.12. Suppose that system (1.14) satisfies the conditions (A1) — (A5),
then the solutions of (1.14) in the interior of the first quadrant are positive and
eventually bounded.

Theorem 1.13. Suppose system (1.14) satisfies the conditions (A1) — (A5). Then
the dynamics of (1.14) in the region Q; = {(X,y) : 0 < X < K,0 <y < +oo} is
equivalent to that of the generalized Liénard system

0= 9(v)—~F(u),
{ V= —g(u), (2.15)

in the region Q, = {(u,v) : xX* —K < u < x*,h~1(—y*) < v < h™1(+e)}, where
F(U) = y(—u+x)/p(=u+x) = &(y"), o(v) = §(h(v) +y") =& (y), 9(u) =
—q(—u+x*)/p(—u+x*), and h(v) is a solution of the initial-value problem
dh(v)/dv=n(h(v)+y*), h(0) = 0.

Therefore, we can establish conditions to ensure the unigueness and hyper-
balicity of limit cycles, the nonexistence of limit cycles, the global stability of a
positive equilibrium of systems and oscillation and to solve center problems by
utilizing a wealth of existing methods or the results for the generalized Liénard
systems (1.8) given in the above sections ([20, 57, 58, 59, 103, 105, 106]).






Chapter 2

A class of second-order
autonomous systems

2.1 Global asymptotic stability of second-order nonlin-
ear differential systems

In aseries papers[52, 53, 54, 55], Krechetov studied the following real system of
two differential equations

X= 1,(x) +h,(x)y,
{ y= f;(X) + hj(x)y, (2.1

where f;(x), f3(x), hy(x) and h,(x) are continuous on R. Using Liapunov func-
tions, he investigated the question of stability, described the configurations of the
domains of stability (when there is no global stability) and constructed estimates
of the boundaries of these domains. Egorov and Kartuzova [16] studied the same
problem and formulated necessary and sufficient conditions for the zero solution
of (2.1) to be globally asymptatically stable under rather restrictive assumptions
on the functions h; (x).

Theorem 2.1. (Egorov and Kartuzova [16]). Suppose that f;(x), f3(x), hy(x)
and h,(x) are continuous on R with f,(0) = f;(0) = 0 and that they satisfy the
following conditions:

(1) hy(x)+h,(x) <0for x#0;

(2) hy(x)h,(x) —h,y(x)hs(x) := o(x) > 0 for x # 0, where h;(x) = Lxx) for
x#0andi=1, 3;

(3) hy(x) # Ofor all x;

(4) hy(x) + 20Me® g for x £ 0,
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Then the zero solution of (2.1) is globally asymptotically stable if and only if

- 8 (X) [y (X)]~2xdx + limsup[¥(X)| = +oo. (2.2)

0 X— oo

Here Hyp(X) i= J3hy(8)[y(s)] dsand W(x) := [y (x) + =]

In Paper I, we investigate the global asymptotic stability of the system (2.1)
without the assumption (4) and condition (2.2) in Theorem 2.1. The transforma-
tion technique plays an important role. Under suitable assumptions, we prove that
the system (2.1) is equivalent to equations of the following type

X=9¢(z—F(x)),
{ z= —g(X), @3

which is ageneralized form of the Liénard system. The study of the system (2.3)
has an independent interest and value.

2.2 Qualitative behavior of second-order systems with
zero diagonal coefficient

In Paper 111, we study the qualitative behavior of the solutions of the following
autonomous system of two differential equations with zero diagonal coefficient

X = Py(¥)0x(X)Y,
{ y= p§<y>Q§<X)X+ P4(Y)d4(X)Y, @4

where p,(y) and g;(x) (i = 2,3,4) are continuous real functions defined on R =
(o0, +oo).

Krechetov [56] studied the global asymptotic behavior of solutions of system
(2.4), described the configurations of the domains of stability (when there is no
global asymptotic stability) and constructed estimates of the boundaries of these
domains. In the study of stability for (2.4), the most important condition given by
Krechetov [56] is

0,(X)q,(x) >0 foral xeR. (2.5

By using the Lyapunov function method, he gave necessary and sufficient condi-
tionsfor the zero solution of (2.4) to be globally asymptotically stable under some
additional assumptions.

In Paper 11, we first introduce the transformation techniques to investigate the
global asymptotic stability of the following system (2.6), the specia case (i.e.,
P3(Y) = py(y)) of system (2.4),

X = Py(Y)da(X)Y;
{ y= pi(y)qg(x)x+ P3(Y) 0, (X)y. (2.6)
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Without the assumption (2.5), in paper [107], under the following conditions

P,(y) >0, ps(y) >0 forall vy, 27
0,(X) >0, g(x) < 0 foral x, :

they transformed system (2.6) into the following Liénard-type system

x=0(z—F(x),
{ z= —g(X), @8

and obtained necessary and sufficient conditions for the zero solution of (2.6)
(resp. (2.8)) to be globally asymptotically stable. Such asystem (2.8) with ¢ (u) =
u arisesin severa different settings: modelling phenomena appearing in the study
of physical, as well as biological, chemical, and economical systems It has natu-
rally been studied by a number of authors [18, 29, 34, 35, 36, 90, 98, 116, 124].
In Paper I11, we investigate the qualitative behavior of system (2.4) without the
assumption (2.5). No restriction on the sign of g,(x) isrequired; we only assume
that

P,(y) >0, p3(y) >0, p,(y) >0 forall y,

0,(X) < 0, g5(x) > 0o0r g,(x) > 0, gg(x) < 0) foral x,

p(y) €CLR), p'(y) > 0 forall y, p(seo) = o, (2.9)
where p(y) := %&)

If p3(y) = p,(y), one case of assumption (2.9) reduces to (2.7). Under assump-
tion (2.9), we prove that system (2.4) is equivalent to a form of system (2.8)
which is a Liénard-type system, and give some conditions for the existence of
oscillatory solutions, the existence of local centers and global centers, and the ex-
istence, uniqueness and hyperbolicity of nontrivial periodic solutions for system

(2.4) (resp. (2.8)).
2.3 Existence and nonexistence of periodic solutions of
general autonomous systems of Liénard-type

In 1942, Levinson and Smith [63] first studied the existence of nonzero periodic
solutions of the general autonomous equation of Liénard-type

X+ f(x,x)x+9g(x) =0 (2.10)
or its equivalent system
X=Y,
. 211
{ y=—f(xy)y—g(x). (1)

Sincethen, many authors have made contributionsto the theory of this system with
regards to the existence of nonzero periodic solutions. The books by Sansone and
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Conti [83], Zhang [124] and Ye [116] contain a summary of the results on this
problem. On reviewing al of the known results, we find that in order to obtain
a criterion for the existence of nonzero periodic solutions, almost every author
required that the restoring force g(x) and damping f (x,y) should be not too small,
that is, f(x,y) should have alower bound in a strip region |x| < d and should be
non-negative outside this strip region, and [ g(x)dx = 4. Ponzo and Wax [79]
gave aresult on the existence of anonzero periodic solution which doesnot require
f(x,y) to have alower bound. Unfortunately, Zheng [126] gave an example

X=Yy,
U= e ey (212

to show that the conditions of Ponzo and Wax cannot guarantee the existence of a
nonzero periodic solution if f(x,y) does not have alower bound. Yu and Huang
[118] aso dealt with the existence of nonzero periodic solutions of (2.11), and
pointed out that system (2.12) has a nonzero periodic solution. Yan and Jiang
[110] considered the system (2.11), and noted that system (2.12) has no nonzero
periodic solution. Also, Wang, Jiang and Yan [100] gave a complete analysis of
global bifurcation for the following system

X=Y,
{ = (@ &)+ 1y—x, (213)

where 6 isaparameter. In addition, it was shown by Lemma5in [100] that system
(2.13) has no nonzero periodic solution when 6 > ¥/qn2/16 ~ 1.7707.
Yu and Huang [119] studied a more general system than (2.11), namely,

x=p(y),
{ Y= —t(xy)py)aly) - r(y)g). (214)

under the assumptions [, ~ g(s)ds= +-- They obtained some sufficient conditions
for the existence of one nonzero periodic solution of (2.14). Moreover, as aresult
of [119] they pointed out that system (2.12) has at least one nonzero periodic
solution.

The purpose of Paper 1V is to study the problem how small the extent for
f(x,y) should be to warrant the existence of nonzero periodic solutions of (2.14).
Our investigation showsthat whether (2.14) hasanonzero periodic solution strongly
depends on the integral = |f(x,y)q(y)|~dy, where || is sufficiently small. We
find some sufficient conditions for the existence of nonzero periodic solutions of
(2.14), roughly speaking, if [ |f(x,y)q(y)| 1dy = +eo for asmall x| and some
additional assumption hold, then (2.14) has at |east one nonzero periodic solution.
Our results allow usto avoid the classical assumptions:

oo
g(x)dx = oo, (2.15)
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f(x,y) > 0 (or > 0) for |x| sufficiently large. (2.16)

In Paper IV we also give some sufficient conditions for nonexistence of periodic
solutions of (2.14), which statethat if [ | f(x,y)q(y)|~1dy (or [~ |f(x,y)q(y)|1dy)
isfinite for asmall |x| and some additional assumptions hold, then there does not
exist anonzero periodic solution of the system (2.14). Some examplesillustrating

our results are given in Paper V.






Chapter 3

Limit cycles in three-dimensional
Lotka-Volterra systems

3.1 A 3D Lotka-Volterra competitive system with three
limit cycles: A falsification of a conjecture by Hof-
bauer and So

Lotka-Volterra (L-V) interaction of n biological species is modeled by a system
of differential equations

dx;

n
5 =% (ri+j21qjuj>, i=1,2,---.,n, (3.1)

where x; represents the number (or density) of individuals of speciesi, the g;’s
are the interaction coefficients, and r; is the per capita growth rate of speciesi
in the absence of interaction. For example, r; > 0 means that speciesi is able to
grow with food from the environment, while r; < 0 means that it cannot survive
when left alone in the environment. One can also have r; = 0 which means that
the population stays constant if the species do not interact.

Although the L-V model is a model that originated from mathematical ecol-
ogy, it plays an important role in many other research fields including optical
maser [60], fluid mechanics [70] and neural networks [76]. Nevertheless, we
would like to emphasize its close relationship with replicator dynamics, which is
an important branch of deterministic dynamical systems motivated by evolution-
ary game theory (see [40, 41]).

The dynamics of the two-dimensional L-V systems is well understood. In
particular, two-dimensional L-V systems cannot have limit cycles: if thereisape-
riodic orbit, then the interior singular point is a center (i.e., surrounded by a con-
tinuum of periodic orbits). Hence a center is a codimension one phenomenon for
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two-dimensional L-V systems. Using numerical simulations, three-dimensiona
L-V systems have been seen to alow aready complicated dynamics: the period
doubling route to chaos and many other phenomena known from the interaction
of the quadratic map have been observed (see[2, 19, 84]).

AnL-V systemwith interaction matrix A= (&) is called competitiveif r; > 0
and & < Oforal 1 <i,j < n. It describes the competition between two or more
species that share and compete for the same resources, habitat or territory (inter-
ference competition). Thisis different from exploitative competition, where indi-
viduals do not directly interfere with one another, but compete indirectly through
their consumption of acommon resource[11]. From the viewpoint of evolutionary
game theory, al replicator dynamics on the standard (n— 1) dimensional simplex
S can be imbedded into a competitive L-V system on R} which has a global
attractor §, [41].

For three-dimensional competitive L-V systems, the dynamical possibilities
are more restricted: Hirsch [38] has showed that all nontrivial orbits approach
a “carrying simplex”, a Lipchitz two-dimensional manifold-with-corner homeo-
morphic to the standard simplex in R . Thisthen leads to the Poincaré-Bendixson
theorem for three-dimensional systems, which states that three-dimensional com-
petitive L-V systems behave like general planar systems. Based on the remarkable
result of Hirsch, Zeeman [121] defined a combinatorial equivalence relation on
the set of al three-dimensional L-V competitive systems and identified 33 stable
equivalence classes. Of these, classes 1-25 and classes 32 and 33 exhibit conver-
genceto equilibrium for all orbits, whilelimit cyclesare possiblefor the remaining
6 classes, i.e., in classes 26 to 31 (see[15, 121]). Open problems remain concern-
ing the number of periodic orbits in the later classes. Hofbauer and So [43] first
give an example in class 27 (with heteroclinic polycycle) with two limit cycles
surrounding the interior equilibrium. Recently, Lu and Luo [68] constructed two
limit cyclesin three cases without a heteroclinic polycycle (cases 26, 28 and 29).

Apparently, the main questions now are (i) whether or not there are at most
finitely many limit cycles on the carrying simplex and (ii) whether there can be
more than two limit cycles in three-dimensional competitive L-V systems. Re-
garding question (i) Xiao and Li [102] have proved that the number of limit cycles
of the three-dimensional competitive L-V systemsisfinite if the system does not
have any heteroclinic polycycle. It is a very interesting open problem to prove
whether or not the number of limit cycles of system (1) is finite in the small
neighborhood of the heteroclinic polycycles. Question (ii) isavery difficult prob-
lem. Hofbauer and So [43] conjectured that the number of limit cyclesis at most
two for system (1). Note that the existence of the limit cycles in the references
[43, 102, 68] were all generated by local Hopf bifurcation. The discussion in [43]
impliesthat the maximum order of afocuswould be 2 and that one could not gen-
erate more than two limit cycles from local Hopf bifurcation. This motivated their
belief that two is the maximum number of limit cyclesin three-dimensional com-
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petitive L-V systems. However, it is worthy of note that Hofbauer-So Conjecture
neglects the fact that the global dynamical behavior of system (1) might gener-
ate the third limit cycle by the Poincaré-Bendixson theorem in three-dimensional
competitive L-V systems [88]. If we can construct by generic Hopf bifurcation a
L-V competitive system which is strongly persistent [9] and has two limit cycles
and if thefirst bifurcated (outer) cycleis unstable, then by the Poincaré-Bendixson
theorem in three-dimensional competitive systemswe can get the third limit cycle.

Recently, Lu and Luo [69] were the first to give an examplein class 27 (with
a heteroclinic polycycle) with three limit cycles. This gives a partial answer to
Hofbauer and So’s conjecture. In Paper V, we construct three limit cyclesin case
29 without heteroclinic polycycle and thus give a counterexample to Hofbauer
and So's conjecture which is qualitatively different from that of Lu and Luo. We
conjecture that there also exist three limit cycles in case 26. We leave this as a
future research problem.

3.2 Limit cycles for the competitor-competitor-mutualist
Lotka-Volterra systems

The dynamics of an ecosystem with n > 2 interacting popul ations can be modelled
by the general Lotka-Volterra system

n
% =x(rn+Yax), i=12..n, (32
j=1

where x; is the density of the ith population, r; is the intrinsic growth rate of the
ith population and the coefficient &;; describes the influence of the jth population
upon the ith population (Hofbauer and Sigmund [40]). The signs of &, j and a;;
determine the nature of the interaction between the populationsi and j: the system
(3.2) can describe al of the three basic types of interaction, viz., competition,
collaboration (mutualism) and host-parasite (predator-prey) interactions.

The dynamics of two-dimensional Lotka-Volterra systemsiswell understood.
Bomze [6] gave a complete classification of all possible phase portraits for this
case. In particular, there are no limit cycles in two-dimensional Lotka-Volterra
systems. if there is a periodic orbit, then the equilibriumin | ntR2+ isacenter, that
is, itissurrounded by a continuum of periodic orbits. Asiswell known, thisisthe
case in the classical Lotka-Volterra predator-prey system. It should, however, be
noted that the phase portrait does not reveal the whole dynamics. For example, the
solution may blow up infinite time (thisis clear because the system (3.2) contains
the system X, = x? as a special case).

As one steps from two to higher dimensions the situation becomes far more
complicated and difficult. Using numerical simulations, three-dimensional Lotka
Volterra systems allow aready complicated dynamics. The period doubling route
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to chaos and many other phenomena known from the interaction of the quadratic
map have been observed (see[2, 19, 84]).

For three-dimensional competitive L otka-Volterrasystems, the dynamical pos-
sibilities are more restricted: Hirsch [38] has showed that all nontrivial orbits ap-
proach a “carrying simplex”, a Lipshitz two-dimensional manifold-with-corner
homeomorphic to the standard simplex in R2. Based on this, Zeeman [121] has
given a classification of al possible stable phase portraits of three-dimensional
competitive L otka-Volterra systems and has shown that in some three-dimensional
competitive Lotka-Volterrasystemslimit cycles can indeed occur. Recently, Liang
and Jiang [65] did the same for Competitor-Competitor-Mutualist L otka-Volterra
systems. Hofbauer and So [43], Xiao and Li [102] and Lu and Luo [68] have also
presented examples of three-dimensional competitive L otka-Volterrasystemswith
at least two limit cycles.

In Paper VII, we focus on the limit cycles for the Competitor-Competitor-
Mutualist Lotka-Volterra systems. The specific system we shall consider models
two competing populations that both collaborate with a third one. Such systems
are of great biological relevance. Thetwo competing populations may for instance
represent two different types of the same species (a“resident” and “mutant” in the
terminology of adaptive dynamics, Metz et a. [74]; Geritz et a. [22, 23]). More
models of this type can be found in [28, 65] and the references therein. We shall
prove that the number of nontrivial periodic orbits (and hence a fortiori of limit
cycles) is finite in Competitor-Competitor-Mutualist Lotka-Volterra systems. We
also construct an example of a system of thistype with at least two limit cycles by
using local Hopf bifurcation and analyse the scale of the parameters.

It also deserves to be noted that it is under the assumption M, = a,;a,, —
a;,8,, < Othat Liang and Jiang [65] obtained the existence of the nontrivial limit
cycle, generated by Hopf bifurcation, in Competitor-Competitor-Mutualist L otka-
Volterra systems [65, Theorem 5.5]. Hence in this case, in the competitive sub-
community of two species 1 and 2, at least one can resist invasion by the other.
For the three-dimensional competitive L otka-Volterra systems, van den Driessche
and Zeeman [15] have shown that if none of the species can resist invasion by
either of the others, then there is no periodic orbit and therefore limit cycles do
not exist and global dynamics are known. For the system (0.38), it is obvious
that none of the species can resist invasion by the other in the mutualistic sub-
community of two species 1 and 3, or 2 and 3. Therefore, it is avery interesting
guestion whether there exist periodic orbits in Competitor-Competitor-Mutualist
Lotka-Volterra systems if none of the species can resist invasion by the other in
the competitive subcommunity of two species 1 and 2. We answer this question by
providing an example which has a stable limit cycle. Meanwhile, new amenable
conditions are also given on the coefficientsr;, a; i under which system (3.2) has
no periodic orbits if none of the species can resist invasion from either of the oth-
ers. Thus al trajectories converge to equilibria. Based on this, we also present an
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example of global stability for a positive equilibrium, but the Volterra multipliers
method [65, Theorem 5.6] cannot be applied.
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Abstract. We consider the generalized Liénard system

dx 1

o = r(x) [h(y) — F(x)],

dy

il —a(z)g(z), (0.1)

where a is a positive and continuous function on R = (—o00,00), and F, g and h
are continuous functions on R. Under the assumption that the origin is a unique
equilibrium, we obtain necessary and sufficient conditions for the origin of system
(0.1) to be globally asymptotically stable by using a nonlinear integral inequality.
Our results substantially extend and improve several known results in the literature.

1. Introduction. It is well known that the Liénard equation

¥+ f(z)t +g(x) =0 (1.1)
is of great importance in various applications. Hence, qualitative and asymptotic
behavior of this equation and some of its extensions have been widely studied by a
number of authors; results can be found in many books [14, 18, 19, 23, 31, 32, 33].

In recent years, several authors [8, 15, 22] have considered the following second
order differential equation

T+ (f(z) + k(z)2)x + g(z) =0, (1.2)

where f, g and k are all continuous functions. Clearly, when k(z) = 0, (1.2) is
reduced to the Liénard equation (1.1). Using the transformation y = ag(x)z+Fo(z),
one can change (1.2) into

T - R
Yo —a@l) (1.3)

where ag(z) = exp(fy k(s)ds) and Fy(z) = [; ao(s)f(s)ds. Therefore, motivated
by theoretical interest and plausible applications, Qian[22], Jiang[16] and Sugie[27]
investigated a more general nonlinear system

dzx 1
ar = m[ (y) — F(x)],
B o @) (1.4)

1991 Mathematics Subject Classification. 34D05, 34C05.
Key words and phrases. Homoclinic orbit, periodic solution, Filippov transformation.
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In this paper, we give necessary and sufficient conditions for the global asymp-
totic stability of the zero solution of the system (1.4). we assume that a > 0, F, g
and h are continuous functions which ensure the existence of a unique solution to
the initial value problem.

The global asymptotic stability of the zero solution of a planar autonomous
system is related to the Markus-Yamabe problem. The following conjecture was
explicitly stated by Markus and Yamabe [20] in 1960: If the eigenvalues A\;(z), ...
An(x) of the Jacobian matrix Df, (x) of a class C! vector field f,,: R® — R™ in
the n-dimensional space R™ all have negative real parts at every x in R™ and if
fn(0) = 0, then the origin is a globally asymptotically stable equilibrium point for
the n-dimensional nonlinear autonomous system of ordinary differential equations
&= fu(x).

The Markus-Yamabe conjecture for the case n = 2 has been given an affirmative
answer independently by several authors [5, 9, 10]. For n > 3, the Markus-Yamabe
conjecture has been proved to be false [1, 2, 4]. Therefore, the Markus-Yamabe
conjecture has been completely solved. However, it is still of interest to give neces-
sary and sufficient conditions to guarantee the zero solution of a planar autonomous
system to be globally asymptotically stable [12, 15, 16, 17, 22, 24, 27, 28, 29].

To study the global asymptotic stability of the zero solution of (1.4), the signifi-
cant point is to find conditions for deciding whether all orbits intersect the isocline
h(y) = F(z), and we also need to examine the behavior of orbits near the origin.
If system (1.4) has a homoclinic orbit, then the zero solution of (1.1) is not even
stable. Roughly speaking, if

(i) all positive semiorbits are bounded and cross the isocline h(y) = F(z),

(ii) no nontrivial periodic orbit exists,

(iii) no homoclinic orbit exists,
then the zero solution of (1.4) is globally asymptotically stable.

Recently, Qian [22] established necessary and sufficient conditions for the global
asymptotic stability of the zero solution of (1.4). Under considerably weaker con-
ditions, Jiang [16] generalized the results of [22], Sugie [27] investigated the same
topic and obtained an implicit necessary and sufficient condition under which the
zero solution of (1.4) with a(z) = 1 is globally asymptotically stable [27, Theo-
rem 3.1]. Since, in general, it is not an easy matter to verify whether all orbits
intersect the isocline h(y) = F(z) even for the Liénard system (1.4) with a(z) =1
and h(y) = y (see, for example, [7, 11, 12, 13, 24, 26, 28, 29], and the references
contained therein), the result of Sugie [27, Theorem 3.1] is of theoretical interest
only. For an application, Sugie [27] considered the system

d

di; = mly|” sgn y — F(x),

dy

@y 1.
o g(x), (1.5)

with m > 0 and p > 1. But the problem of what happens when 0 < p < 1 is left
open in [27].

The purpose of the present paper is to extend and improve the results mentioned
above and to derive necessary and sufficient conditions under which the zero solu-
tion of (1.4) is globally asymptotically stable. The main advantage of our global
asymptotic stability criteria is that they are explicit, so that it is not difficult to ver-
ify them. In addition, our results can be applied to system (1.5) even for 0 < p < 1.
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As a corollary of our main results, we have the following theorem which can be
applied to system (1.5) for 0 < p < oo.

Theorem 1.1. Suppose that the system (1.4) satisfies the following conditions:

(Ao) F(0)=0, a(z) >0 for x € R, xg(z) > 0 for x # 0;

(A1) yh(y) >0 fory #0, h(y) is strictly increasing and h(£oo) = too;

(45) F(Gy'(-2) < F(G;(2)) for any = € (0 minGol e Gu(e ) and
F(Gy'(=2)) # F(Gy*(2)) for 0 < z < 1, where Go(x = [y a®(s)lg(s)|ds, and the
notation 0 < z < 1 denotes z sufficiently small;

(A3) there exist constants a > 5 and § > 0 such that |F(z)| > 0 for 0 < |z| <4,
and for any fized real number k > 1,

~

" a?(s)g(s) 1
———=tds > ~h7 (ka|F(z)]) for 0< |z| <1,
/0 [F(s)] k
where h=1(u) is the inverse function of u = h(y);
(A3) limsup, . F(x) > —oo and liminf,_,_ ., F(z) < co.
Then the origin is globally asymptotically stable if and only if

i s UOI Md + P )} 50 (1.6)

and

lim sup [/O fi(s}i((‘?)d — Pz )} o0, (1.7)

where F_(z) = max{0, —F(z)} and Fy(z) = max{0, F(z)}.

Our technique here is based on a nonlinear integral inequality and a transforma-
tion of (1.1) which is similar to the one used by Filippov [6]. Also the methods for
Liénard systems, especially those developed by Villari and Zanolin [29], Hara and
Sugie [11], will be applied in this paper.

The orgnization of this paper is as follows. In section 2 we adapt Filippov’s
transformation to equation (1.4) and prove some auxiliary Lemmas which will be
essential to our proofs. In section 3 we study the problem of the intersection of
semiorbits for (1.4) with the characteristic curve h(z) = F(z). In section 4 we
establish necessary and sufficient conditions for the zero solution of (1.4) to be
globally asymptotically stable, an example illustrating our main result is also given
in this section.

2. Filippov Transformation and Auxiliary Lemmas. We consider the gener-
alized Liénard system

dx 1

dy
Yo aoe), (2.1)

where F(z), g(z), a(z) and h(y) are continuous real functions defined on R.
Throughout this paper, we always assume the conditions (Ag) and (A;) presented
in Theorem 1.1 hold. These assumptions guarantee that the origin is the only criti-
cal point of (2.1). We also assume that the corresponding initial value problem has
a unique solution.
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We call the curve h(y) = F(x) the characteristic curve of system (2.1). We write
vT(P) (resp. v~ (P)) the positive (resp. negative) semiorbit of (2.1) starting at a
point P € R2. For the sake of convenience, we denote

CT={(z,y) 12> 0,h(y) = F(a)}, C~ ={(2,y) 1 = <0,h(y) = F(x)}.
The curves C*, C~ and the y-axis divide the planar domain R? into four parts:

Dy ={(z,y):2 >0, h(y) > F(x)}, D2 ={(x,y):2>0, h(y) < F(x)}.
D3 ={(z,y) 12 <0, h(y) < F(z)}, Ds={(x,y):2<0, h(y) > F(z)}.

Let G(z) = [ a*(s)g(s)ds. Imitating Filippov’s transformation [6], we now trans-
form the system (2.1) as follows. For = > 0 we set
z=z1(x) = G(x), (2.2)

the inverse function of which is denoted by xz = z1(z). We then define
Fi(2) = F(a1(2)), = € (0,G(o0)). (2.3)
Similarly, for z < 0 we write
z = z3(x) = G(x), (2.4)
denote the inverse function of (2.4) by & = x5(z), and define
Fy(z) = F(22(2)), z € (0, G(—0)). (2.5)

The transformation (2.2) & (2.4) turns the system (2.1) into the equivalent equa-
tions

Z—; = Fi(z) — h(y), z € (0,G(x0)), (2.6)
% — Fy(2) — h(y), z € (0, G(—)). (2.7)

for x > 0 and x < 0, respectively. The transformation (2.2) & (2.4) is just Filippov’s
transformation of the generalized Liénard system

dx
Yo yw, (28)

where g*(x) = a?(z)g(x). Thus, we obtain the following proposition.

Proposition 2.1. Assume that (Ag) and (A1) hold. then the qualitative behavior
of (2.1) is the same as that of (2.8).

Throughout this paper we shall suppose that the following condition holds:

(A2) Fy(z) < Fi(z) for z € (0,min{G(—00),G(c0)}) and Fi(z) # F»(z) for all
sufficiently small z > 0.

Lemma 2.2. (see [16, Proposition 2.3] or [30, Lemma 2.1]). Suppose that the
conditions (Ao), (A1) and (Aa) are satisfied. If the positive semiorbit of (2.1)
starting from Py = (0,y1) with y1 > 0 intersects the positive y-axis once more
at Py = (0,y2), then yo < y1. In particular, the system (2.1) (or (2.8)) has no
nontrivial periodic solution.
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Lemma 2.3. Let Y(z), (x) be positive continuous functions defined on 0 < a <
x < b and let w(u) be a positive increasing continuous function for u > 0, and let

“odt
0 = - 2.9
w=[ 5 (29)
exist for u > 0 with Q(0) = 0. Then for A > 0 the inequality

>)\/w ))dt fora <z <b (2.10)
implies the inequality
QY (2)) > )\/mw(t)dt for a <& < b, (2.11)
Proof: Define
—)\/7,/1 ))dt for a < x <b. (2.12)

Then (2.10) can be restated as Y (z) > V(x). Because w(u) is increasing, this may

be rewritten as
w(Y(2) = w(V(z)),

Sy 2 M)
for a < x < b. Using the notation Q(u) introduced in (2.9), we have

dQu(V ()
dx
Now, integrating (2.13) from a to z, we get

0V (2)) ~ V(@) 2 A " p(tyde

Since V(a) = 0, it follows that

> Mp(z) fora <z <b. (2.13)

QV(x)) > )\/1 Y(t)dt for a < x <b. (2.14)
Because Y (z) > V(z) fora <z < b,aand Q(u) is increasing, we obtain by (2.14),
QY (x)) > )\/f P(t)dt for a <z <b.
This completes the proof. ’

3. Intersection of Orbits with the Characteristic Curve. In this section, we
are concerned with conditions ensuring the intersection of y*(P) (resp. v~ (P))
with the characteristic curve of (2.1), for any given P € R2.
The system (2.1) is said to satisfy the assumption (A7) if one of the following
conditions holds:
(AD)1 limsup, . F(z) # —oo;
(A7)2 limsup,_, ., F(z) = —oo, and there exist 3 > 1 and Ny > 0 such that F(z) <
0 for > Ny, and for any fixed k& > 1 and b > Ny, there exists b > b satisfying

" a?(s)g(s) 1 7
——2ds < -h™ " (kGF f >b.
/b F(s) s< o (kBF(x)) for x >

The system (2.1) is said to satisfy (A3 ) if one of the following conditions holds:
(A7)1 liminf, . _ F(x) # oo;



1048 MATS GYLLENBERG AND YAN PING

(A3)2 liminf,_,_ o F(z) = oo, and there exist # > 1 and Ny > 0 such that F(z) > 0
for x < — Ny, and for any fixed & > 1 and b > Ny, there exists b > b satisfying

Ta’(s)g(s) , o1, )
/4, st 2 th™ (kfF(z)) forz < -b.

We say that system (2.1) satisfies the assumption (Aj3) if both (A7) and (A3 ) hold.

Theorem 3.1. Suppose that the conditions (Ag), (A1) and (A3) hold. Then every
positive semiorbit of (2.1) departing from Dy intersects the characteristic curve C
if and only if

, " a’(s)g(s) _
hgljgp {/0 H—T_(s)ds + F(z)| = oo, (3.1)

where F_(z) = max{0, —F(z)}.

Proof: We first prove sufficiency. Suppose the conclusion does not hold. Then
there is a point P = (z9,y0) € D1 such that v"(P) does not intersect C*. Let
(z(t)y(t))(t > 0) be the solution of (2.1) passing through a point P whose maximal
existence interval is [0, w4 ). Note that z/(t) > 0 and 3/(t) < 0 in the region Dy;
hence z(t) is increasing and y(¢) is decreasing as ¢ is increasing. Suppose that z(t)
is bounded, then (x(t),y(t)) stays in the region {(z,y) : 0 < z < K1, h(y) > F(z)}
for some K7 > 0. Hence it must intersect the characteristic curve, which is a
contradiction. Therefore z(t) — 0o as t — w..

Case 1: Suppose limsup,_, . F(z) = oo, that is, there exists a sequence {x,}
such that z, — oo as n — oo and lim, . F(x,) = oo, then (z(t),y(t)) must
intersect the characteristic curve, which is a contradiction.

Case 2: Suppose [;* ‘iff,)_g((f)) dx = oo, then

()~ = - / ale(s))g(x(s))ds

dé — —0

IA
|
—

[ h(yO) +F*(£)

as t — wy. Therefore the orbit of the above solution can be considered as a function
y(x) which is a solution of the equation
dy _ a*(z)g()

dr — h(y) — F(x) 3.2)

and y(x) — —o0 as T — 0.
Case (A7 )1: There exist ¢ > 0 and a sequence {z,,} such that x,, — co (n — c0),

and F(x,) > —c, hence (z(t), y(t)) must intersect the characteristic curve, which
is a contradiction.
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Case (A7 )s: There exists b > N; such that F(z) < 0 and y(z) < 0 for z > b.

Since y(x) is a solution of (3.2), puttlng Hi(u) = [ h(y)dy for u < 0, we have
- — / M
> [ hte) s

for x > b. Hence
Hi(y(z)) = /bm(—hoHl—l)(Hl(y(S))“@g@ds

for z > b. It follows from Lemma 2.3 that

z 2
Ho(Hy (y(z)) > / %ds for = > b, (3.3)

b (s)
where H(u) = [} (hodit)(t). Changing variables H; '(t) = 7, then Hy(u) =

—H; (u), by (3.3), it is easy to see that

T a?(s)g(s
y(z) < -/b ;()g)()ds for z > b. (3.4)

From the assumption (A7 )z, there exist 3 > % and by > b such that
T 2
/ 96) b 1 BF@) for @ > b (3.5)
b F(s)

By virtue of (3.4) and (3.5), we have y(z) < h=1(8F(x)) for z > b;. Because h(y) is
strictly increasing, we obtain h(y(x)) < SF(z) for © > by. Hence F(x) — h(y(z)) >
01 F(z) for x > by, where 8; =1 — . By a similar argument, we have

$ a25 S
Hy(y(x)) - Hi(y(h)) = /b h@(S))MdS

5) = h(y(3))

T @)

> 5 . h(y(s)) F(s) d

v a®(s)g(s
= 5 [ e m )
for x > by. Hence
1 [ 3 a®(s)g(s)
Hi(o@) = 5o [ (o () 7 s

for £ > b;. By Lemma 2.3 one has

mne) = 5 [

va) < o / (2)”ds (3.6)

for > by. From the assumption (A;’)g, there exists by > b; such that

$7a2(s)g(s) S -1 ﬁ T or T
/b1 i < i <ﬂ1F( )) for @ > b. (3.7)

Y
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By virtue of (3.6) and (3.7), we have y(z) < hfl(%F(x)) for x > by. Thus
F(z) —h(y(x)) > BoF(z) for x > by, where 32 = 1— ;% Repeating this procedure,
we obtain two sequences {b,} and {0,} such that 8, = 1 — % and F(z) —
h(y(x)) > BnF(z) for © > b,. If B, >0 (n=1,2,...), then {3,} is decreasing, and
{Bn} converges to some real number A. On the other hand, A =1 — % and 3 > 1
which shows that A is a complex number, which is a contradiction. Hence, 3, < 0
for some n, that is F(x) > h(y(z)) for all z > b, a contradiction. This completes

the proof of sufficiency.
Necessity. Suppose (3.1) does not hold. Then there exist M; > 0 and L > 0

such that F(z) < M for > 0 and [;* {i(?,g((i)) dx < 1. Suppose (z(t),y(t)) is a
solution of (2.1), and (x(0),y(0)) = (L, M1+ Mo+ 1) = P, where My > 0 satisfies
h(My + Mo) > My + 1.

We will show that y(t) > M; + Mg for t > 0. Suppose this is not the case. There
exists t; > 0 such that y(t1) = My + My and My + My < y(t) < My + My + 1 for
all t € [0, t1), and we have

ty
y(t) = M1+M0+1—/
0 h

z(t1) 2
> M- [0 SO0

This is a contradiction. Hence, @(t) = h(y(t)) — F(z(t)) > M1 +1 — F(x(t)) > 1
for all ¢ > 0. Thus the solution (z(t), y(¢)) is unbounded and v+ (P) is above the
characteristic curve h(y) = F(z). This completes the proof.

d¢ > My + M.

In quite the same manner, we can prove the following result.

Theorem 3.2. Suppose that the conditions (Ay), (A1) and (A3) hold. Then every
positive semiorbit of (2.1) departing from Dg intersects the characteristic curve C~
if and only if
" a?(s)g(s)
li ds — F = 3.8
o | [ 5 P = e
where Fy(z) = max{0, F(x)}.

The system (2.1) is said to satisfy the condition (A7) (vesp. (A3)') if —F(z),
—h(—y), a(x), g(z) satisfy the condition (A7) (resp. (
By the transformations ¢ — —t and y — —y in (
results with respect to the negative semiorbits of (2.1).

Theorem 3.3. Suppose that the conditions (Ao), (A1) and (A3)" hold. Then every
negative semiorbit of (2.1) departing from Do intersects the characteristic curve CF
if and only if

" a?(s)g(s)
li ———ds—F = 00, 3.9
T I
Theorem 3.4. Suppose that the conditions (Ao), (A1) and (A3 )" hold. Then every
negative semiorbit of (2.1) departing from Dy intersects the characteristic curve C~
if and only if

I;IEEL;E {/01 Mds + F(x)] = 00. (3.10)
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Remark 3.5. If liminf, .. F(x) > —oo, then (3.1) is equivalent to

lim sup [/OT a’(s)g(s)ds + F(x)} = o0, (3.11)

Tr—00

and if limsup,_, . F(z) < —oo, then (3.8) is equivalent to

lim sup UOI a*(s)g(s)ds — F(:c)} = 00. (3.12)

r——00

Remark 3.6. From the necessity proof of Theorem 3.1 we know that if

ligsogp [/OI m% - F(m)} < 00, (3.13)

then there exists a point P € Dy such that v~ (P) does not intersect C*. Similarly,
if

z 2
lglcrgﬁtg) [/0 %ds + F(ac)] < 00, (3.14)
then there exists a point P € Dy such that v~ (P) does not intersect C'~.

Remark 3.7. If h(y) =y, a(x) = 1, then Theorem 3.1, Theorem 3.2, Theorem 3.3
and Theorem 3.4 give the corresponding results of Hara, Yoneyama and Sugie [13],
and Sugie [24].

Remark 3.8. The condition (A7), is a generalization of the following condition:
(A7 )2+ limsup,_,., F(z) = —oo, and there exist Ny > 0, By > 1 and 3y > 0 such that
h(y) is continuously differentiable on (—oo, —Ni], h/(—y) > % for y > Ny,

F(z) <0 for x > N; and for any b > Ny, there exists b > b satisfying

z 2
/b a;j()f)(s)ds < BoF(x) for x> b.
In fact, if the condition (A;)Q* is satisfied, then there exist Ny > 0, By > % and
Bo > 0 such that h'(—y) > % for y > Ny, and for any fixed real number & > 1,

there exists No > N satisfying kGoF(x) < —Nj for x > Ny, and
hMkBoF(z)) < h(kBoF(x)) — h(kBoF (N2))

7 e F () = F(N2)

= kBoh (f)WF(x)
for z > Ny, where ¢ is between k(o F () and kBy F'(Nz). Since lim, o, F(z) = —o0,
for any b > N, it can be shown that there exist % < B < By and b* > b such that
h(kBoF(z)) < kBF(z) for x > b*. Because h(y) is strictly increasing, we have
BoF(z) < th~!(kBF(z)) for > b*. Hence the condition (A3 )2+ implies (A3 )a.

By the same argument, it can be seen that condition (A3 )2 is a generalization
of the following condition:
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lim, .o F(z) = oo, and there exist N3 > 0, Gy > % and By > 0 such
that h(y) is continuously differentiable on [Ny, oo), h'(y) > % for y > Ny,
F(z) > 0 for < —N; and for any b > Ny, there exists b > b satisfying

* a?(s)g(s) z -
/_b st > BoF(z) for z < —b.

It follows immediately from Remark 3.8 that the condition (Aj3) is a generaliza-
tion of condition (A4) in [16]. Thus, Theorem 3.1 and Theorem 3.2 contain the
Proposition 3.2 in [16]. Moreover, the condition (A3) with a(z) = 1 is a general-
ization of condition (A4) in [30].

4. Global Asymptotic Stability. In order to give a criterion for the zero solution
of (2.1) to be globally asymptotically stable, we must provide a criterion excluding
homoclinic orbits.

The system (2.1) is said to satisfy (AJ) if one of the following three conditions
holds:

(A1)

(A7)2

(4])s

There exists a positive decreasing sequence {z,, } such that z,, — 0 asn — oo
and F(z,) >0 for n > 1;
There exist constants m > 0, p > 0 and d; > 0 such that

[h(y)l = mly|” for 0< —y < —b
and

P

Fi(z) > —az?r+1 for 0< z < 4y,
where 0 < a < m(1 er)(%)(lim ;
There exist constants o > i and d5 > 0 such that

F(z) <0 for 0<x<dy,

and for any fixed real number k > 1,

miaz(s)g(s) S l “kaF (z or z
/0+ F(s) d gkh (kaF(z)) for 0 <z < 1.

The system (2.1) is said to satisfy (A; ) if one of the following three conditions
holds:

(A

(A7)2

(A7)s

There exists a negative increasing sequence {x,,} such that ,, — 0 as n — o0
and F(x,) <0 for n > 1;
There exist constants m > 0, p > 0 and d3 > 0 such that

|h(y)| = m|y[P for 0 <y <ds,

and
Fy(z) < azvit for 0 < z < J3,
where 0 < a < m(1 +p)(1mi;’)ﬁ;

There exist constants o > i and d4 > 0 such that
F(z) >0 for 0 < —z <y,

and for any fixed real number k£ > 1,

/f Cﬂ(ﬁfgg)(S)ds > %h_l(kaF(x)) for 0 < —z < 1.

The system (2.1) is said to satisfy the condition (A4) if both (A}) and (A})

hold.
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Lemma 4.1. Assume that the conditions (Ag) and (A1) are true. Then

(i) if (A]) holds, then for any P = (z¢,y0) € C, the negative semiorbit v~ (P)
must intersect the positive y-azis at (0,y1) with y1 > 0;

(ii) if (Ay) holds, then for any P = (z9,yo) € C—, the negative semiorbit v~ (P)
must intersect the negative y-axis at (0,ys) with ya < 0;

Proof: We only prove (i); (ii) can be proved in a similar way.

Let P = (zo, yo) € CT and (x(t), y(t)) be the solution of (2.1) with z(0) =
Zo, y(0) = yo. By the uniqueness of the solutions of (2.1), we only have to show
that every orbit v~ (P) of (2.1) passing through a point P = (z¢,yo) with 29 > 0
sufficiently small, intersects the positive y-axis at (0, y;) with y; > 0. Since
limy_, o h(y) = 0o, the system (2.1) has no vertical asymptote in the first quadrant.
Therefore, v~ (P) must intersect the y-axis at B(0, y1) with y; > 0. We only have
to show that y; # 0. We do this separately for the different cases of (A} ).

Case (A]);: It is obvious in this case.

Case (AI)Q: In this case the proof is completely analogous to the proof of [16,
Lemma 3.1] or [30, Theorem 2.4].

Case (A])3: It follows from (Ag) that the orbit v~ (P) of (2.1) does not touch
the characteristic curve at any point (z, h=!(F(z))) with 0 < 2 < zo. Thus, we
consider only the region {(z,y) : > 0, h(y) > F(z)}, and F(z) < 0for 0 < z < ds.
Suppose that the conclusion does not hold. Then there exists a point P € Ct such
that v~ (P) does not intersect the positive y-axis. Let (z(t), y(t)) (0 < t < o)
denote the solution of (2.1) which passes through such a point P. Then v~ (P)
must be contained in the fourth quadrant, and x(t) decreases and y(t) increases as
t is increasing. Since the origin is the unique equilibrium of (2.1), lim;—, . x(t) =
lims—, _ oo y(t) = 0. The solution (x(¢), y(¢)) defines a function y = y(x) on 0 < z <
2, which is a solution on 0 < z < d2 of equation (3.2).

It follows from lim,_,o+ y(z) = 0 that y(x) < 0 for 0 < & < d2. By assumption
(A])3, there exist a > 1 and z1 € (0,d2) such that F(z) <0 for 0 < z < x1, and

a*(s)g(s) -1
/w st <h7H(aF(z)) for 0 <z <. (4.1)

Now, we restrict our attention to the interval (0, z1]. Putting Hy(u) = [, h(y)dy
for u < 0, we have by (3.2), for any sufficiently small € > 0,

Hi(y(x)) — Hi(y(e)) = Hi(y(s)

for e < x < x;. Hence
r _ a?(s)g(s
Hi(y(e)) 2 [ (o H) () A as
for e < a < 1. It follows from Lemma 2.3 that

T a?(s)g(s
Hy(Hi(y(x)) > / —(F)(gs())ds fore <z <z, (4.2)
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where Ha(u) = [ # Changing variables H; '(t) = 7, it is easy to see
that Ho(u) = —H; *(u). By (4.2), we have
" a®(s)g(s)
< —_— f <z <. 4.
y(a:)_/E F(s) ds fore <z <z (4.3)
(i) If oo = ;f()f( 2(8)a(s) js — o0, we reach a contradiction by (4.3).
(i) If f F()g)(g) ds > —oo, we see from (4.3) that
" a?(s)g(s)
< ———=ds for 0 < z. 4.4
y(a:)_/OJr F(s) s for0 <o <y (4.4)

By virtue of (4.1) and (4.4), we have y(z) < h™1(aF(x)) for 0 < x < 1. Because
h(y) is strictly increasing, we obtain h(y(z)) < aF(z) for 0 < = < x;. Since
y = y(z) is above the characteristic curve h(y) = F(z), we have 1 < a < 1. Let
a1 = 1 —a, then we get that F(z) — h(y(x)) > an F(z) for 0 < < x;. In a similar

way, for any sufficiently small € > 0, we have by (3.2)

z a?(s)g(s
H@) - HE) = [ h(y(s))Mds
> o [ e s
for e < x < x1. Therefore
x a?(s)g(s
Hiya) > [ hys) &),

a1 J. F(s)

L e (e P9
= o | o)

for e <z < x;. By Lemma 2.3 we have

Hy(H(y(z) > — /x‘ﬁ(s)g(s)ds,

a —F(s)
1 ["a%(s)g(s)
< — d
y(‘r) — 041 R F(S) S
for e < x < z1. Hence
1 [7a®(s)g(s)
< — ——d 4.5
o) < o [ s (45)
for 0 < < 7. By assumption (Ai)g, there exists xz € (0, z1) such that
a®(s)g(s) 1o
——Sds < ah7 (—F(z 4.6
s < an (S @) (16)

for 0 < z < x3. By virtue of (4.5) and (4.6), we have y(z) < h™ (= F(z)) for
0 < x < z9. Because h(y) is strictly increasing, we get h(y(z)) < o - F(x) for
0 <z < z9. Thus, F(z) — h(y(z)) = a2F(x) with ap =1 — 2. Repeatmg this

procedure, we obtain two sequences {z,} and {a,} such that a, =1 — %~ and

F(z) — h(y(x)) > apF(x) for 0 < z < z,. If o, < 0, we have a contradiction.
Suppose a, >0 (n=1,2,...), then {«a,} is decreasing, and hence {a,} converges
to some real number A. On the other hand, A =1 — ¢ and o > % show that A is a
complex number, which is a contradiction. This completes the proof.

We now state our main result.
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Theorem 4.2. Assume that the system (2.1) satisfies the conditions (Ag) — (A4).
Then the zero solution of (2.1) is globally asymptotically stable if and only if (3.1)
and (3.8) hold.

Proof: Necessity. If either (3.1) or (3.8) is false, then Theorem 3.1 and Theorem
3.2 imply that (2.1) has at least one unbounded solution lying in Dy or D3. Thus,
the origin is not globally asymptotically stable.

Sufficiency. The proof is similar to that of Theorem 3.3 in [16] and Theorem 3.1
in [27], so we omit it.

Remark 4.3. If h(y) = y, a(x) = 1, then Lemma 4.1 gives the corresponding
results of Hara, Yoneyama and Sugie [13] and Sugie [24].

Remark 4.4. The condition (A} )3 is a generalization of the following condition:

(A])3% there exist constants ag > 0 and J > 0 such that h(y) is continuously differ-
entiable on [—4, 0],
F(z) <0 for 0<az<§

and e s
/ Mds <agF(z) for0<z <9,
o+ F(s)
where o = B’ (0)ag > 1.
In fact, if the condition (Af)s* is satisfied, then there exist constants 0 < § < &
and § < & < « such that A'(y) > O% for —4 < y < 0, and for any fixed real number
k > 1, we have

1, ol 1,
Eh (kaF(z)) = Eh (kaF(m))—Eh (0)

1 dh=1(u)
= ———— |u=¢ kaF aF
— lu=e kaF (z), kaF(x) <&<0
aF(z)
= ——— >k for 0 < 1.
AGaG) aoF(x) for S
Thus the condition (A} )3* implies the condition (A} )s.
By the same argument, it can be seen that the condition (A, )3 is a generalization

of the following condition:
(Ay )s* there exist constants og > 0 and § > 0 such that h(y) is continuously differ-
entiable on [0, ],
F(x)>0 for—d <z <0
and

/7 az;f()g)(s)dsZaoF(x) for —6<z<0,
where o = 7/ (0)ag > 1.
Therefore, the condition (A4) is a generalization of condition (As) in [16] and
condition (Aj9) in [30]. Hence, Lemma 4.1 contains Lemma 3.1 in [16].

Remark 4.5. If a(z) = 1, then by condition (A4)2, Lemma 4.1 is seen to be a
generalization of Theorem 4.6 and Theorem 4.12 of Sugie [27]. But our results hold
also for 0 < p < 1.
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Remark 4.6. Theorem 4.2 is a generalization of [16, Theorem 3.3]. This follows
from Remark 3.8 and Remark 4.4. Our results do not need the differentiability
condition of h(y). Moreover, Theorem 4.2 can be applied to system (1.3) even for
0<p<l

Example 4.7. In system (2.1), we take a(z) = 1, h(y) = |y|zsgny, g(z) = 4a?,
and

—x forz>1,

—2% for0<z<l,

223 for —1 <z <0,

2x for x < —1.

Then [, g(x)dz = [, g(z)dx = oo, and for 0 < z < oo,

F(z) =

Fy(z) = F(—27) < F(27) = Fy(2).

Hence (Ag), (A1) and (Az) are satisfied. Because [, 1%((?) ds=—4z for 0 <z < 1,

and because for any fixed real number k > 1,, one has

“ g(s) — 4y _xﬁzl—l z
/0+F(s)ds— 4 < —ha® = 2h~ (BF (7))

for 0 < z < 1, the condition (A} )3 is satisfied. For any b > 1 and fixed real number

k > 1, we have
“g(s) _ _é 3 é 3
/b F(s)ds— 37 4—3b7
1
%h_l(kF(x)) = —ka?,

it is clear that (A7 )s is satisfied. It is obvious that (A3 )1, (4} )1, (3.1) and (3.8) are

also satisfied. Thus, by Theorem 4.2, the zero solution is globally asymptotically

stable. However, h(y) = |y|%sgny, p = %, and lim, 1. A'(y) = 0, hence, the

condition (Af) in [16] is not satisfied. Therefore, the result of [16] cannot be
applied to this example.
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1 INTRODUCTION

In a series papers [1-4], Krechetov studied the following real system of
two differential equations

x = fi(x) + ha(x)y,

. (D
Y =f3(x) + ha(x)y,
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where f1(x), f3(x), ho(x) and h4(x) are continuous on R. Using
Liapunov functions, he investigated the question of stability in
the large, described the configurations of the domains of stability
(when there is no global stability) and constructed estimates of the
boundaries of these domains. Egorov and Kartuzova [6] studied the
same problem and formulated necessary and sufficient conditions
for the zero solution of (1) to be globally asymptotically stable
under rather restrictive assumptions on the functions #;(x). We
quote this result here.

THEOREM 1.1 (Egorov and Kartuzova) Suppose that fi(x), f3(x), h(x)
and hy(x) are continuous on R with f1(0) = f3(0) =0 and that they
satisfy the following conditions:

(1) hi(x) + ha(x) < 0 for x #0;

2) hi(x)ha(x) = hay(x)h3(x) :=8(x) >0 for x#0, where hi(x)=
fix)/x for x A0 and i = 1, 3;

(3) ha(x) # 0 for all x;

4 h(x)+ h(x)Hp(x)/x < 0 for x #0.

Then the zero solution of (1) is globally asymptotically stable if and
only if

+o0
f 8(x)[hz(x)]_2x dx + lim sup |¥(x)| = +o0 (2)
0 x—=+o0
Here Hy(x) = [ ha()[ha(s)] ™" ds, W(x) := [y (x) + ho(xX) Haz(x)/x]x/
o (x).
In the paper [5], Krechetov considered the following autonomous
system of two differential equations with zero diagonal coefficient

X = p(»)q2(x)y
¥ = p3(»)q3(x)x + pa( y)qa(x)y 3)

and studied the same problems as in the previous papers [1-4]. In the
study of stability for (1), the most crucial condition added by Egorov
and Kartuzova [6] is (4) in Theorem 1.1, while for (3), the most impor-
tant condition given by Krechetov [5] is

g2(x)g4(x) > 0 for all x. (4)
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The purpose of the present article is to investigate the global asymp-
totic stability of the systems (1) and (3) without the assumption (4) in
Theorem 1.1 and inequality (4) above. The transformation technique
plays an important role in this paper. Under suitable assumptions,
we shall prove that the systems (1) and (3) are equivalent to the
equations of the following type

X = ¢(z — F(x)),
z=—g(x), (©)

which is a generalization of the Liénard system. Study the system (5)
has an independent interest.

The organization of this article is as follows. In Section 2, we give
suitable transformations which change the systems (1) and (3) into
the form of (5). In Section 3, we study the problem of the intersection
of positive semiorbits for (5) with the characteristic curve z = F(x). In
Section 4, we give necessary and sufficient conditions for the origin of
(1) and (3) to be globally asymptotically stable. Some examples illus-
trating the results are given in this paper.

2 TRANSFORMATIONS FOR (1) AND (3)
First, we transform the system (1). Suppose that
h(x) #0 forall x. (6)

Without loss of generality, we may assume that /,(x) < 0 for all x. If
hy(x) > 0, then we replace y by — y. Using the substitution

y=Hp(x) -z (7

where Hy(x) is given in the Theorem 1.1 of Egorov and Kartuzova,
we obtain that

X = g1(x) — ha(x)z
z=—g3(x). (®)
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Here g1(x) := /1 (x) + ha(x) Hia(x), g3(x) :=/3(x) — ha(0)fi ()[a(x)] ™" =
—x8(x)[h(x)]~". Obviously, the qualitative behavior of (8) is the same
as that of the system

P g1(x)
ha(x)’
.0 ®
hy(x)’

which is a Liénard system. Therefore, we obtain the following propo-
sition.

ProrosiTioN 2.1 If hy(x) # 0, then the qualitative behavior of (1) is the
same as that of (9).

Next, we restrict our attention to the system (3). Here we only con-
sider the case p3(y) = ps(y). Under this restriction, the system (3)
becomes

x = pa(y)q2(x)y,
¥ = p3(Mq3(x)x + p3(¥)qa(x)y. (10)

The basic assumption given in [5] is

pi(»)>0 forally and i=2, 3,
g2(x) > 0, g3(x) <0, g4(x) > 0 for all x. (11)

In the following, we only assume that

p2(y) >0, p3(y) >0 forall y
g2(x) < 0, g3(x) > 0 for all x. (12)

In this situation, p2(y)g2(x)y and —y have the same sign. Thus, the
qualitative behavior of (10) is identical to that of the system

X=-y
_ W) ps(y)q4(X)y
P(N@(x)" paAy)ga(x)”

(13)
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From (13), we obtain the second order equation

o - 23000 - pa(—X)qa()
PA=X)q2(x)"  pa(=X)qa(x) "

(14)
It follows from (14) that

d / ~ pa(s) / " qa(s) ] 3(x)

— |- ——ds+ | —=ds|=—=nx.

dr |: o p3(s) 0 g2(5) q2(x)
Letting ¥(y) = f(; p2(s)/p3(s)ds and introducing the substitution

¥ qa(s) g
q(s)

2= v+ [
0
We change the system (13) into

o [T9a0) _>
X=v </0 6]2(S)ds °)

. q3(x)
Tt

If we let ¢ denote ¥~ and replace x and z by —x and —z respec-
tively, then we obtain

X =z — F(x)),

15
£ = —g(x). ()

where F(x) = — [ (qa(5)/q2(s)) ds and g(x) = —(g3(=x)/q2(=x)x.

ProrosiTioN 2.2.  Under the assumption (12), the qualitative behavior
of (10) is just the same as that of (15).

Remark 2.1.  For the case p3(y) # pa(y), we assume that p'(y) > 0 for
all y, where p(y) := yps(y)/p3(y). We transform the system (3), using
the substitution z = p(y), we have

¥ =p3(Vq3(x)x + p3(y)qa(x)z,

d
[p7'(2)]z = p3(p™ 1 (2)g3(x)x + p3(p~ ' (2))ga(x)z,

dz
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we change the system (3) into

(2

=0 (0 ' @)p3(p~ ' @)g3(x)x + 0 (07 @)pa(p~ " (2))qa(x)z,

X =pa(p~'(2)) (X)z,

the following discussion is similar to that of the case p3(y) = pa(y), we
leave this to another paper.

3 INTERSECTION WITH THE CHARACTERISTIC CURVE OF (15)

The curve L:z = F(x) is called the characteristic curve of (15). Let
LT ={(x, F(x)):x >0} and L™ = {(x, F(x)):x < 0}.

Then L = LY U L™, In (15), if ¢(u) = u, then it is a Liénard system.
Villari and Zanolin [7] and Hara, Yoneyama and Sugie [8] have given
necessary and sufficient conditions for all positive semiorbits to inter-
sect the characteristic curve. Employing the techniques in [7,8], we
shall study the more general system (15).

First of all, we present the basic conditions. We assume that

(C;) F(x) and g(x) are continuous on R with F(0) =0 and
xg(x) > 0 for x #0 and ¢(u) is continuous differentiable
and strictly increasing with ¢(0) = 0 and ¢(+o00) = Fo0.

(Cy) For any fixed number k > 0, there exists M(k) > 0 with
M(k) =k for 0 < k < 1 such that

|p(ku)] < M(k)p(lul) for all w. (16)

Sometimes, we only need the condition
(C5) For any fixed k € (0, 1] and « € R,
lp(ku)| < kg(|ul). 7

For example, if ¢(u) = u*, then (C,) and (C}) are satisfied.

ProrosiTioN 3.1.  If (C)) is satisfied, then for any initial point p(xy, zo),
(15) has a unique trajectory passing through p.
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Proof By Peano’s Theorem (see [9, p. 10]), (15) has at least one
solution (x(7), z(f)) satisfying x(0) = x¢ and z(0) = zy. Along such a
solution, we have

dz _ glx)
&= - F) (9
z(xg) = zp. (19)

In order to prove this proposition, we only have to prove that if
p # 0 = (0, 0), then the initial value problem (18) and (19) has a
unique solution.

(1) Suppose p & L, thatis, zg # F(xo). Then there exists a rectangle
E :|x —x9| <aand |z— zg| < b such that E does not intersect
L. Therefore, (C;) implies that 98/9z[g(x)(¢(z — F(x)))~'] is
continuous on E. Applying the Picard-Lindel6f Theorem, we
know that the initial value problem (18) and (19) has a
unique solution on E.

(i) Suppose p € L, that is, zg = F(xp), for example, x¢ > 0. If the
conclusion is not true in this case, then (18) has two solutions
z = z;(x) with zi(xg) =z9 for i=1,2 and z;(x) # z2(x) for
X] < x < xg without loss of generality, we may assume
that z = z;(x) (x € [x1, x0]) is under the characteristic curve L
for i=1, 2. Thus, there is an x* € [x, xo) with z;(x*) >
z7(x*). Set

X = sup{x: x € [x*, x9) such that z{(s) > z»(s) for any s € [x*, x]}.

Then, z;(x) > zp(x) for x € [x*, X) and z;(X) = z3(x). This shows
that (18) has two solutions passing through the point (x, z;(x)). The
first step (i) implies that (x, z;(x)) € L.

Hence, x = xy. Using (18), we obtain that

d(z1(x) = 22(x)) _ g()(@(z1(x) = F(x)) = ¢(22(x)) — F(x)) (20)
dx B(z1(x) = F(x))p(z22(x) — F(x))

It follows from (C;) that ¢(u) is strictly increasing with u¢p(u) > 0
for u#0. Therefore, from z;(x)— F(x) <0 for x € [x* xy) and
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i=1,2, z5(x) < z1(x) and (20), we can conclude that

d(z1(x) — z2(x))

>0 for xe[x*, xp).
dx

This implies that z;(x) — z2(x) is strictly increasing on [x*, x¢]. Thus,
z1(x) — 22(x) < z1(x0) — z2(x0) =0, that is, z;(x) < z(x) for
X € [x*, xg), a contradiction. This completes the proof.

The system (15) is said to satisfy (CY) if one of the following two
conditions holds:

(C;r)l llm Superroo F(X) > —00
(CY), there exist constants N > 0 and g > 1/4 such that F(x) <0
for all x > N and for any b > N, there exists b > b satisfying

*gs)

, Pz PE) forall xzb.

The system (15) is said to satisfy (C3) if one of the following two
conditions holds:

(C7) liminf,, o F(x) < 400 ;
(C3), There exist constants N > 0 and g > 1/4 such that F(x) > 0
for x < —N and for any b > N, there exists b > b satisfying

/:% ds > BF(x) for all x < —b. ey

The system (15) is said to satisfy (Cs) if both (C7) and (C3) hold.
For example, if ¢(u) =1, g(x)=x> and F(x) = —|x|'/3. Then
limsup,_, ., F(x) = —oo, for any b > 0, we have

o g(s) X3 b
—= _ds=——— forall x>b,
b P(—F(s)) 33

it is obvious that (CY), and (C3), are satisfied. Thus (C3) is satisfied.

TuEOREM 3.1  Suppose that the conditions (C1), (C2) and (CY)
hold. Then every positive semiorbit of (15) departing from D, =
{(x,z) = x > 0,z > F(x)} intersects the characteristic curve L* if and
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only if

lim sup
X—>+00

[ T g(s)
o (1 + F_(5))

where F_(x) = max{0, — F(x)}.

ds + F(x):| = +o00, (22)

Proof: Sufficiency Suppose this is not the case. Then there is a point
p = (x0, zo) € Dy such that the positive semiorbit O*(p) of (15) does
not intersect L. Let x = x(¢) and z = z(¢) for ¢ € [0, w,) be the sol-
ution of (15) passing through p. Then we claim that

llim x(t) = +o0. (23)

— w4
If (23) is not true, then Ilim,,,, x(f) =x" <+oco. Let p*=
(x*, F(x*)) € L™ and op* be the characteristic curve arc from O to
p*. Then O™ (p) is contained in the bounded domain surrounded by
z-axis, z =z, x =x* and op*. Thus, lim,., (x(f), z(¢)) must exist
and is an equilibrium of (15). But from (C)), the origin is the unique
equilibrium of (15). This implies that x* = 0. However, x(f) > x, for
t >0 and hence x* > xo > 0 which is a contradiction. This shows
that (23) is true. Therefore, the solution (x(z), z(¢)) determines a func-
tion z = z(x) defined on [xg, + 0o) which lies above L1 and is strictly
decreasing. Clearly,

zo > lim z(x) > limsup F(x), 24)
X¥—>+00 X—+400

now, (24) shows that all positive semiorbits of (15) starting from D,
intersect L™ as long as limsup,_, ., F(x) = +oo. Here we do not
require condition (C;). Therefore, it suffices to consider the case
limsup,_, o, F(x) < 4o00.

Suppose that (C{), holds. Then it follows from (24) that z(x) is
bounded on [xy, + 00). From the definition of F_(x), we have

2(x) — F(x) < 2o + F_(x) < k(1 + F_(x)) (25)

where k£ = max{1, |z|}. From (C3), ¢(u) is strictly increasing. This fact,
together with (25) and (16), yields

P(2(x) — F(x)) < k(1 + F_(x))) = M(k)p(1 + F_(x)) for all x = x.
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Thus,
e g(s)
=== | Sem-Foy ©
1 T g(s)

S TM® ), g+ ey B E @0

Letting x — +o0o in (26) and applying (22), we conclude that
lim,_, o z(x) = —o0, contradicting (C7), and (24). We note that if
liminf,_, ;o F(x) > —oo then we can prove that z(x) > —oo as
x — +oo without the assumption (C»).

Assume that (C7), is true. From the proof in the last paragraph, we
only have to consider the case limy_ o z(x) = —00. Let 81 =1—-p8
and define B,,1 =1 —B/8,. If 1/4 < B < 1, then it is easy to prove
that 0 < 8, < 1 and {B8,} is a strictly decreasing sequence. Now, we
choose a sufficiently large number N such that z(x) <0 and
F(x) <0 for all x> N. Applying (C{),, we can find b; > N such
that for all x > by,

X

88) oo [ _8B

A0 =N == o - Fon B =y s Ry B =P
@7)
From (27) it immediately follows that for x > by,
0 < 2(x) = F() < (B — DF(x). (28)

Thus, we have 1/4 < 8 < 1. Using (C) and (C3) again, we obtain

P(2(x) = F(x)) = p((B— DF(x)) = (1 = HP(=F(x)) = p1p(—F (x)) (x = by).

By (CY),, there exists b, > by, such that for all x > b,

Y g(s) L O

x)—zb)=—=| T ds<—— | 5 d

(=20 == | Sem—Fo) “ = "B )y, Fon @
SEF(X),

Bi
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that is, when x > b,, we have

0 <z(x)— F(x) < (% - 1>F(x) = —BF(x).

Continuing this procedure, we can prove that there is a sequence {b,}
such that 0 < z(x) — F(x) < —B,F(x)forall x > b,. Since 1/4 < B < 1,
B, is a positive decreasing sequence, hence, lim,_ B, = A exists.
Obviously, A € [0, 1] is a real number. But from the definition of 8,
we have A =1— /A, B >1/4, which implies that A is a complex
number, which is a contradiction. This proves the sufficiency.

Necessity Suppose that (22) is not true. Then there exist numbers
M, L > 0 such that

g(x)
¢(1 + F_(x))

Let (x(#), z(¢)) be the solution of (15) with (x(0), z(0)) = (L, M + 2).
Then we assert that z(#) > M + 1 for all z > 0. Otherwise, there is a
T > 0 such that z(¢) > M + 1 for t € [0, ) and z(t) = M + 1. Thus

—+00
F(x)<M forall x>0 and / dx < 1.
L

20) = F(x(0)) =2 M + 1= (M = F_(x(1))) = 1 + F_(x(9))

for all ¢ € [0, 7].
Integrating, we have

M+1=zt)=M+2— /t(p &) X'(s)ds
0

(2(s) — F(s))
=M+2- /0 g1+ F-(x()) ™' ¥ (s) s

M- (9)

7 _ 5%
S A ERTS)

de> M+ 1.

This causes a contradiction and proves the necessity.
In quite the same manner, we can prove the following result.

THEOREM 3.2 Suppose that the conditions (C1), (C2) and (C3)
hold. Then every positive semiorbit of (15) starting from D3 =
{(x,z): x <0, z< F(x)} intersects the characteristic curve L~
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if and only if

. O B
‘i“ish‘op[/ o0+ i) &~ F(x)] =t ()

where F,(x) = max{0, F(x)}.

The system (15) is said to be satisfying the condition (CY) ((C3)') if
—F(x), g(x) and ¢(u) satisfy the condition (C{) ((Cy)).

By the transformations ¢t — —¢ and z — —z in (15), we have the
following results with respect to the negative semiorbits of (15).

THeEOREM 3.3 Let ¢, F and g satisfy the conditions (Cy), (C») and
(CY). If ¢(u) is an odd function, then every negative semiorbit of (15)
starting from a point in Dy = {(x, z): x >0, z < F(x)} intersects the
characteristic curve LT at a point B(xy, F(xy)) with x; >0 if and
only if

. O .
lilﬂi‘iop[f o0+ o) ° F(x)}_m' G0)

THEOREM 3.4 Let ¢, F and g satisfy the conditions (Cy), (C) and
(C3). If ¢(u) is an odd function, then every negative semiorbit of (15)
starting from a point in Dy = {(x, z): x <0, z > F(x)} intersects the
characteristic curve L™ at a point B(xy, F(x;)) with x; <0 if and
only if

llxrziliop[/ o f_(; o) ds+F(x)i| = Ho0. (31

Remark 3.1 If liminf,_, ;o F(x) > —oo, then (22) is equivalent to

lim sup [/\ g(s)ds + F(x)] = 400, (32)
0

X— 400

and if limsup,_, o F(x) < +oo, then (29) is equivalent to

lim sup[ / " o(s) ds F(x)} = 400. (33)
0

X—>—00
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From the proof of Theorem 3.1, we know that the conclusion of the
Theorem 3.1 is also true if liminf,_, . F(x) > —oo and (C,) and
(22) are replaced by (C5) and (32) respectively. Similarly, suppose
that limsup,_,_., F(x) < +o0o. Then the result of Theorem 3.2 also
holds when (C,) and (29) are replaced by (C5) and (33) respectively.

Remark 3.2 From the necessity proof of Theorem 3.1, we know that if

[ T g(s)

imsup| ) o1+ £56)

X—>+00

m—F@q<+w, (34)

then there exists a point p € D, such that O~(p) does not intersect L.
Similarly, if

lim sup
X—>—00

[ T g(s)

A m ds + F(x):| < +OO, (35)

then there exists a point p € D4 such that O~ (p) does not meet L~.

4 THE GLOBAL STABILITY OF THE ZERO SOLUTION OF (15)

In order to give a criterion for the zero solution of (15) to be globally
asymptotically stable, we must provide a criterion for non-existence of
nontrivial periodic solution for (15). To this end, we introduce trans-

formations similar to those of Filippov’s [10].
Let G(x) = [y g(s)ds. If x > 0, then we set

u=1u(x)=G(x), uc (0, G(+00)), (36)

the inverse function of which is denoted by x = x;(u). Replacing
x(> 0) in F(x) by x = x1(u), we have

Fi(u) = F(x1(w), u € (0, G(+00)). (37)
Similarly, if x < 0, then we write

u=u(x) =G(x), ue, G-)), (38)



694 Y. PING AND J. JIFA

whose inverse function is given by x = xp(u). Thus, substituting
x = x3(u) in F(x) if x < 0, we obtain

Fy(u) = FOow), u € (0, G(—00)). (39)

Therefore, the Eq. (15) in the cases x > 0 and x < 0 are equivalent to
the following two equations, respectively:

= —¢p(z — Fi(u)), u € (0, G(+00)) (40)

du
dz
du
= —¢(z — F2(w)), u € (0, G(—00)). 41)

z

Now we introduce the condition (Cy) :

Fy(u) < Fi(u) if u € (0, min{G(—o00), G(+00)}) and
Fiuw#£FLwif 0<uk1

where the notation 0 < u <« 1 denotes u sufficiently small.

ProrosiTioN 4.1.  Suppose that the conditions (Cy), (Cs) and (Cy) are
satisfied. If the positive semiorbit of (15) starting from Ay = (0, zy) x
(zo > 0) again intersects the positive z-axis at A; = (0, z1), then
z1 < zo. In particular, (15) has no nontrivial periodic solutions.

Proof Let O7(Ay) denote the positive semiorbit passing through Aq.
Assume that the conclusion is false. Then z; > z,. Therefore, the orbit
arc AgA; C O*(Ay) must intersect the negative z-axis at B = (0, z_;)
with z_; < 0. Let u =u;(z) and u = uy(z) be the solutions of (40)
and (41) with the initial condition w#;(z_;) =0 for i=1,2. Then
u = u;(z) is defined on [z_1, zo] for i = 1, 2. Since z; > zy, we have

ur(zo) > uy(zg) = 0. (42)

The condition (Cs) implies that F(u) < Fi(u) for all
u € (0, min{G(—00), G(4+00)}). Therefore, it follows from (C5) that

—¢(z — K,(u)) < —¢(z — Fi(u)), for all z and
u € (0, min{G(—o00), G(400)}). (43)
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Applying Kamke’s Theorem (see [11, p. 29]), we know that if (43)
holds and ux(z_1) < ui(z_1) then ur(z) < uy(z) for all z € [z_1, zp]. On
the other hand, Coppel discussed in [11, p. 30] that ux(zo) = u;(zp) if
and only if wu;(z) coincides with wup(z) on [z_j,zo], that is,
u1(z) = up(z) for any z € [z_1, zg]. We claim that u(z) < u;(z) for all
z € (z_1,2z0]- Suppose this is not the case, then there exists a point
z* € (z_1, zo] such that uy(z*) = u1(z*). This implies that u;(z) = uy(2)
for all z € [z_1,z*]. Hence Fi(ui(z)) = F>(ui(z)) for all z € [z_y, z*],
that is, Fi(u) = F>(u) for u € (0,u;(z*)], contradicting (Cyg). This
proves that our claim is true. In particular, uy(zo) < u;(zp), contradict-
ing (42). The proof is complete.

The system (15) is said to satisfy (C7) if one of the following con-
ditions holds:

(C¥), there exists a positive decreasing sequence {x,} such that
x, = 0 as n — +o0 and F(x,) > 0 for each n;

(C¥), there exist constants a > 0 and B > 1/4 such that F(x) <0
for 0 < x <a and

T g(s)
o H(—F(s)

The system (15) is said to satisfy (C5) if one of the following con-
ditions holds:

ds > —BF(x) for0<x<a.

(C5), thereis a negative increasing sequence {x,} such that x, — 0
as n — +oo and F(x,) <0 for each n ;
(C5), thereare constants b < 0 and g > 1/4 such that F(x) > 0 for
b<x<0and
T g(s)
o PF(s)

The system (15) is said to satisfy the condition (Cs) if both (C7) and
(C3) hold.

ds < BF(x) forb<x<0.

LemMA 4.1 Assume that the conditions (Cy) and (Cy) are true. Then

(1) if (CT) holds, then for any p = (xo,z0) € LT, the negative semior-
bit O~ (p) must intersect the positive z-axis at (0,z,) with z, > 0 ;
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(i) if (C3) holds, then for any p = (xo,z0) € L™, the negative semi-
orbit O~(p) must intersect the negative z-axis at (0,z,) with
z, < 0.

Proof We only prove (i); (i) can be proved in a similar way.

Let p = (x0, z0) € L™ and (x(?), z(f)) be the solution of (15) with
x(0) = xo, z(0) = zop whose maximal existence interval is (w_,®,). By
(C1), ¢p(400) = +o00. Therefore, (15) has no vertical asymptote in the
first quadrant. This implies that every negative semiorbit of (15)
passing the point p € D; U L™ in the first quadrant must intersect
the positive z-axis. By Proposition 3.1, there exists a unique orbit of
(15) passing through a given initial point. Hence if O~ (p) intersects
the positive z-axis, then for any ¢ = (x, F(x)) € LT with x> xg
O~ (q) also intersects the positive z-axis.

First, assume that (C{), holds. Then there exists a decreasing
sequence {x,} such that x, — 0 as n — +oo and F(x,) > 0 for each
n. Let p, = (x,, z,) with z, = F(x,). The facts presented in the above
paragraph show that O~ (p,) intersects the positive z-axis for each n.
Therefore, all negative semiorbits O~(p) passing through p e L*
must intersect the positive z-axis.

Next, assume that (CY), holds. We assert that all negative semi-
orbits passing through p = (x¢,z) € LT with 0 < xo < « intersect the
positive x-axis and therefore intersect the positive z-axis. Otherwise,
then there exists p € LT with 0 < xy < @ such that O~(p) is contained
in the fourth quadrant. Let (x(7), z(¢)) (—oo < t < 0) denote the sol-
ution of (15) passing through such a point p = (xg, F(x)). Then x(7)
decreases and z(7) increases as ¢ is decreasing. Since the origin is the
unique equilibrium of (15), x(r) > 0 and z(f) > 0 as t— +oo.
Because the solution (x(¢),z(¢)) defines a function z = z(x) <0 on
0 < x < x9, which is a solution of the Eq. (18) from 0 to x, we
obtain that

Y A 1)
) = /0 oCo) - F)
Y g(s)

< _ 0 mdsfﬂF(}c) for 0 < x < xo, (44)
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where the second inequality follows from (CY),. Define g =1— 8
and B8, = 1 — B/B,—1- Then, we shall prove that

BnF(x) < F(x) — z(x) < 0 (45)

for all x € (0, x¢) and each n.

From (44), it follows immediately that (45) is true for n=1.
Suppose (45) holds for n =m. Then we have 0 < B, <1 and
P(z(x) — F(x)) < ¢(—BmF(x)) < Budp(—F(x)). The same procedure as
used in proof of (44) shows that

X

&ds<£F(x) for 0 < x < xq,

=g ) s—Fe) “ = B,

and this implies that 8,1 F(x) < F(x) — z(x) < 0 for all x € (0, xo).
By induction, (45) is true for every n. It follows from F(x) < 0 for
0 <x <x9 and (45) that 8, > 0 for each n. Therefore, 0 < 8, < 1
for n > 1 and B, is decreasing. Suppose that 8, — A as n — +oc.
Then A is a real number which satisfies the algebraic equation
A =1— B/A. However, from B > 1/4, it follows that A is a complex
number. This desired contradiction shows that our conclusion is true
and completes the proof.

THEOREM 4.1  Suppose that the system (15) satisfies the conditions (Cy)
through (Cs). Then the origin is globally asymptotically stable if and
only if (22) and (29) hold.

Proof: Necessity If either (22) or (29) is false, then Theorem 3.1 and
3.2 implies that (15) has at least one unbounded solution lying in D; or
Ds. Thus, the origin is not globally asymptotically stable.

Sufficiency Suppose that (22) and (29) hold. We shall prove that the
origin is globally asymptotically stable.

By (C)), ¢(+o0) = £oo, which implies that (15) has no vertical
asymptote. Hence, all positive semiorbits departing from D, U Dy
enter D; U D3 or converge to the origin and all positive semiorbits
starting from D; and D; will intersect L™ and L~ respectively if (22)
and (29) hold. Thus, all points in the plane R? can be divided into
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two classes:

S| = [p € R%: there is 7y > 0 such that ¢,(p) € D, or

@(p) € Dy for ¢t > ro}
and

S> = {p € R O™ (p) spirals around the origin},

where ¢,(p) denotes the solution of (15) passing through p. The above
arguments show that R>=5S,US,.

Suppose that p € S;. Then ¢,(p) € D, U Dy for t > t,. Without loss
of generality, we may assume that ¢,(p) = (x(¢), z(¢)) € D, for t > t.
Therefore, ¢;(p) is bounded and x(7), z(7) is decreasing as ¢ increases.
Thus, the w-limit set of such an orbit O( p) must be a singleton. Since
the origin is a unique equilibrium of (15), this singleton point is cer-
tainly the origin.

Suppose that p € S,. Then O*(p) spirals around the origin. From
the condition (C4) and Proposition 4.1, O*(p) is bounded and its
w-limit set w(p) cannot have a homoclinic orbit if the conditions
(C)) through (Cs) hold, that is, there cannot exist ¢ € R*> with ¢ # O
such that lim,, ;o ¢/(¢) = O and lim,,_ ¢;(¢) = O. Suppose, to
reach a contradiction, that such a point ¢ exists. Proposition 4.1
implies that O~ (g) cannot spiral around the origin. Hence, there
exists 71 <0 such that for ¢ <1t either ¢,(gq) € D;, in this case,
F(x) <0 for 0 < x <« 1, or ¢/q) € D3, in which case, F(x) > 0 for
0 < —x <« 1. Without loss of generality, we may assume that
¢(q) € Dy for t < t; and F(x) <0 for 0 < x <« 1. Applying Theorem
3.1, we obtain that O*(¢,(¢)) intersects L*, that is, there is 7, > 1
such that ¢,(¢) € L*. This implies that ¢;(q) € D, for all ¢ < 1.
However, applying Lemma 4.2 to (15), we know that O~ (¢, (g)) will
intersect the positive z-axis, which is a contradiction. This shows
that the system (15) cannot have a homoclinic orbit. This fact and
the Poincare-Bendixson theorem now allow us to conclude that all
positive semiorbits converge to the origin.

It remains to be shown that the origin is locally Liapunov stable.
Suppose the origin is unstable. Then, by definition, for some g, > 0
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there are sequences p, — O and ¢, > 0 such that

@i(pn) € B(gy) for 0 <r=<1, (46)

and ¢, (p,) € 3B(sg) where B(so) = {(x, 2) : x> + 22 < &3} and 3B(s)
denotes the boundary of B(egy). Since 9B(gy) is compact, we can
assume ¢, = ¢,,(pn) = ¢ as n — +oo. We claim that ¢, - +oo as
n— 4o0o. If not, then there is a subsequence {7, } such that
e > w <+00 as k— +oo. Then p, =9, (4n)— ¢-u(q) as
k — +oo, that is, ¢_,(¢9) =0, and hence ¢q= 0. However,
q € 0B(gp). This produces the desired contradiction and proves our
claim. We shall prove that O~(g) is bounded. For any 7 > 0, there is
an N such that ¢, > 7 for n > N. Hence, from (46), we have

gpfr(qn) = (pt,ﬁr(pn) € B(EO) for n>N. (47)

Letting n — 400 in (47), we have ¢_.(q) =lim,_ o ¢1,—(pn) €
B(gg). Since t is arbitrary, we obtain that ¢_.(q) € B(gy) for v > 0,
that is, O~ (g) C B(ep). The global attractivity property proved in the
above paragraph implies that a(g) cannot be a limit cycle, and hence
O € a(g). If a(g) = {0}, then the orbit O(g) passing through ¢ is homo-
clinic. If a(q) # {0}, then the Poincare-Bendixon theorem implies that
a(q) contains a homoclinic orbit. But we have proved that under the
conditions (C;) through (Cs) the system (15) does not have a homo-
clinic orbit. This contradiction proves that the origin is globally
asymptotically stable and completes the proof of the theorem.

Remark 4.1 1f ¢(u) = u, then Theorem 4.1 generalized the corre-
sponding results of Hara and Yoneyama [13,14] who gave only the
sufficient conditions.

Finally, we shall apply Theorem 4.3 to the systems (1) and (10). Let
¢(y) = y.F(x) = x/Ia(xX)[hi(x) + ha(x) Har(x)/ x] = W(x),8(x) =—g3(x)/
I (x) = 8(x)x[h(x)] 2 and u = G(x) = fOY 8(s)/h3(s)sds. With these
notations, we can obtain the function F(«) and F>(u) in (37) and (39).

CoRrOLLARY 4.1 Let the functions f1(x), f3(x), hy(x) and ha(x) be con-

tinuous on R. Suppose that hy(x) # 0 for all x and §(x) > 0 for all
x £ 0. Assume that the conditions (Cs) through (Cs) hold. Then the
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origin of (1) is globally asymptotically stable if and only if

. T gs) B

and

lerEEI:op [/(; T Fs) -f(li)_(s) ds — F(x)i| = +o00.

We note that in the system (15) if there exists a constant a < /8
such that Fy(u) > —a/u and F>(u) < a/u for 0 < u <« 1, then (Cs) is
satisfied. Thus, the results of [15] are corollaries of Theorem 4.1
with ¢(u) = u.

Example 4.1 Consider the system of differential equations

x=-x+x+1)—y,
Y = 5x5(x* + x4 1) 4 2x + 5x*y. (48)

In 48), fi(x) = —=x>(x3 + x + 1), f3(x) = 5x°(x + x + 1) + 2x, Io(x) =
—1 and h4(x) = 5x*. By calculation, we have

h(x) = —x(x*+x+1), hx)=2+5x+x+1)
8(x) = hhy — hahy =2,  Hp(x) = —x°
I (x) 4+ ha(x) = 4x* — x> — x > 0 for |x| sufficiently large,

ha(xX)Hy(x)
=

h(x) + —x(x+1)>0for —1 <x<0.

Therefore, the conditions (1) and (4) in Egorov and Kartuzova’s
Theorem are not satisfied, that is, Egorov and Kartuzova’s Theorem
cannot be applied to (48). However, in our notation,

F(x)=x>+x and g(x)=2x.

It is easy to prove that for such F(x) and g(x) the conditions
(C3) through (Cs) hold and lim|y_, 4o sgnxF(x) = 4+o00. Therefore,
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applying Corollary 4.1, we conclude that the origin is globally asymp-
totically stable.

CoROLLARY 4.2 Let pi(y) (i =2, 3) and gj(x) (j =2, 3, 4) be contin-
uous on R and (12) be satisfied. Assume that the inverse function ¢(u) of
the function u = jg (p2(s)/p3(s)) ds satisfies (Cy) and (C), and F(x) =
— Jo "(qa(s)/qa(9)) ds and g(x) = —(g3(—=x)/q2(—=x)x satisfy (C4) and
(Cs). If limsup,_, ., [y (q4(s)/q2(s)) ds < +oo and liminfy_, 4o [; %
(94(8)/q2(s)) ds > —o0, then the zero solution of (10) is globally asymp-
totically stable if and only if

L " 5q3(5) Y qals)
1{m1nf|:f0 ) ds — sgnx/0 m dsi| = —o0. (49)

Corollary 4.2 follows from Remark 3.1.

Example 4.2 Consider the system with zero diagonal coefficient

%= —p(1 +xH[1 + 1+ 77
=140+ 3N+ 1+ D)0+ =Dy, (50)

By calculation, we have

V14 (14522
uzlﬂ(y)zfo (7)ds:y+ z

1+ )" i
_ _x(l+s4)(s—s2)_x3 x2

F(x)—/0 T+ —3+2

g(x)=x

It is easy to check that F(x) and g(x) satisfy the conditions (C),
(C3), (C4) and (Cs). Moreover, lim|y_, 4o F(x)sgnx = 400 and there-
fore, (49) holds. Let y = ¥~ !(u) := ¢(u). Then ¢(u) is an odd function
on R with ¢(d+00) = +oo. For any u € [0, o0) and k € (0, 1], we have

ky

V142

ku=ky+

< Y(ky).



702 Y. PING AND J. JIFA

Therefore, ¢(ku) < ky = k¢(u), that is (C4) is true. From Corollary
4.2, it follows that the zero solution of (50) is global asymptotically
stable. However, g4(x) = (1 + x*)(x — x?) changes sign on R. Hence,
the result of Krechetov [5] cannot be applied to (50).

Remark 4.2 In the papers [16-19], the second author gave other con-
ditions to guarantee that every solution of a second-order differential
equation converges. In the forthcoming paper, we will discuss the
existence of homoclinic orbits, existence of oscillatory solutions, and
existence of centers of system (15).
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Abstract

This paper investigates the qualitative behavior of solutions of the autonomous planar system
with zero diagonal coefficient x = p2(y)g2(x)y, y = p3(3)g3(x)x + pa(y)q4(x)y. Under suitable
assumptions, the necessary and sufficient conditionsfor al solutionsto be oscillatory, and for the ori-
ginto be aglobal center are established. The theorems on the existence and uniqueness of nontrivial
periodic solutions are also proved.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

This paper is devoted to the investigation of the qualitative behavior of the solutions of
the autonomous system of two differential equations with zero diagonal coefficient

X = p2(y)g2(x)y, y = p3()q3(x)x + pa(y)qa(x)y, (1.1

where p;(y) and ¢;(x) (i = 2,3,4) are continuous real functions defined on R =
(—00, +00).

Krechetov [8] studied the global asymptotic behavior of solutions of system (1.1), de-
scribed the configurations of the domains of stability (when there is no global asymptotic
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E-mail address: ping.yan@utu.fi (P. Yan).

0022-247X/$ — see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2003.11.006
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stability) and constructed estimates of the boundaries of these domains. In the study of
stability for (1.1), the most important condition given by Krechetov [8] is

q2(x)qa(x) >0 foralxeR, (1.2

by using the Lyapunov function method, he gave necessary and sufficient conditions for
the zero solution of (1.1) to be globally asymptotically stable under some additional as-
sumptions.

Recently, Yan and Jiang [12] first introduced the transformation techniques to inves-
tigate the global asymptotic stability of the following system (1.3), the specia case (i.e.,
p3(y) = pa(y)) of system (1.1),

X =p2(y)g2x)y, ¥ =pa(y)g3(x)x + p3(y)qalx)y (1.3)
without the assumption (1.2). In paper [12], under the following conditions

p2(y) >0, p3(y) >0 foraly,

g2(x) > 0, g3(x) <0 foral x, (1.4
they transformed system (1.3) into the following generalized Liénard system
i=¢(z-F(x), i=-g), (1.5)

and obtained necessary and sufficient conditionsfor the zero solution of (1.3) (respectively
(1.5)) to be globally asymptotically stable. Such system (1.5) with ¢ (1) = u arisesin sev-
era different settings, modelling phenomena appearing in the study of physical, aswell as
biological, chemical, and economical systems, it naturally has been studied by a number of
authors[1-5,10,11,13,14]. The main problem connected to the study of such models con-
sists of giving a complete description of the behavior of solutionsas+ — +o0. In general,
thisis not possible, due to the complexity of the equations and the phenomena involved.
The aim of the qualitative theory is to give an approximate description of the behavior of
the system, by identifying suitable regions of the phase space, where the solutions behave
inasimilar way.

In the present paper, we shall investigate the qualitative behavior of system (1.1) without
the assumption (1.2). Especially, we shall pay our attention to the oscillation, center, exis-
tence and uniqueness of nontrivial periodic solutions of system (1.1) (respectively (1.5)).
In this paper, no restriction on the sign of g4(x) is required, we only assume that

p2(y) >0, p3(y) >0, pa(y) >0 foraly,
g2(x) <0, g3(x) >0 (orgz(x) >0, g3(x) <0) foral x,
_ypa(y)

T ops(y)
(1.6)

If p3(y) = pa(y), one case of assumption (1.6) reduces to (1.4). Under assumption (1.6),
we shall provethat system (1.1) is equivalent to aform of system (1.5) whichisaLiénard-
like system, the investigation of the qualitative behavior of solutions of system (1.5) has
independent interest and value. For example, applying the resultsin this paper, the follow-
ing system and equation have a unique nontrivial periodic solution,

p(MeCYR),  p'(y)>0 fordly, p(£oo)=+oo, wherep(y):
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i=x3 -3+ x4 3(x6 -2+ xz)y +3(x — x3)yy2 +y°3,

y=—x, 1.7)
and

i43(x%—1)2°3 + 3?3 =0. (1.8)

Thetechniquetool of this paper is based on some transformations (including Filippov’s
transformation [1]), and the methods for Liénard systems, especially those developed by
Villari and Zanolin [11], Haraand Sugie [3].

The organization of this paper follows. In Section 2 we introduce suitable transforma-
tions which change (1.1) into the form of (1.5), present assumptions and some auxiliary
lemmas which will be essential to our proofs. In Section 3 we give the necessary and suffi-
cient conditions for al solutions of (1.5) to be oscillatory and for the origin to be a global
center. In Section 4 we give the theorems of existence and uniqueness of nontrivial periodic
solutions of (1.5). A brief discussion isgivenin Section 5.

2. Transformation for (1.1) and auxiliary lemmas

In this section, we first transform system (1.1) into a Liénard-like system, and then state
some results which will be useful in subsequent sections.

We transform system (1.1), suppose that the assumption (1.6) is satisfied, we only dis-
cuss the case g2(x) < 0, g3(x) > O for al x, the other case (i.e., g2(x) > 0, g3(x) < 0 for
all x) can be considered in a similar way. By using the substitution u = p(y), where p(y)
isgivenin (1.6), from (1.1), we have

¥y = p3(y)g3(x)x + pa3(y)ga(x)u,

d
- [p~ )it = pa(p ™ (w))g3(x)x + p3(p ™t (w))qa(x)u,

we change system (1.1) into

&= p twpa(pHw))g2(x),

i =p (07 W) pa(p W) ga()x + o' (0L w)) pa(p 1 w))ga(x)u, (2.1)
by assumption (1.6), p~1(u) p2(p~1(u))g2(x) and —u have the same sign, it is easy to see
that the qualitative behavior of (1.1) isidentical to that of the system

X =—u,

_ Pt @) pap tw)gat) - p'(p” ) p3(p” ()qa(x)
p1() p2(p~1(u))g2(x) p1() p2(p~(u))g2(x)
where p1(u) = p~1(u) /u for u # 0, p1(0) = lim,_.0 p~1(u)/u. From (2.2), we get

u, (2.2

¢y P D) Pa(p (—0)ga) . p/(p =8 pa(p”H(—8)g3(x)

; . X - - =0.
p1(—%) p2(p~L(—x))g2(x) p1(—%) p2(p~L(—x))g2(x)

(2.3)
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It follows from (2.3) that

d /xq4(s) ; / p1()p2(p~(s) gs(x)
— s — ds | — X =
dt ) q2(s) ) o' (p=1(s)) p3(p~1(s)) g2(x)

Letting

[ 1) p2(0Xs)
w(y)=/ p1(s)p2(p

, P (p71(5) pa(p~(s))

and introducing the substitution

X

qa(s)

Z=—1ﬁ(—5c)+/ ds.
4 q2(s)
We change system (2.3) into
i=—yt / q4(s) ds — 7 5= q3(X)x' (2.4)
J q2(s) ’ g2(x)
If we let ¢ denote 1 and replace x and z by —x and —z, respectively, then we obtain
i=¢(z-Fx), z=-—g), (2.5)
where
F(x)= —/ 94(5) ds and g(x)= —Mx.
q2(s) q2(—x)

0

Lemma 2.1.Under the assumption (1.6), the qualitative behavior of (1.1) isthe same as
that of (2.5).

In the following, we shall present the basic assumptions and auxiliary lemmas. We
assume that

(C1) F(x)andg(x) arecontinuouson R with F(0) =0andxg(x) > 0for x # 0and ¢ (1)
is continuous differentiable and strictly increasing with ¢ (0) = 0 and ¢ (£o00) =
+o0.

(C2) For any fixed number k > 0, there exists M (k) > O with M(k) =k for 0 <k <1
such that

|6 (ku)| < M(K)¢p(lul)  for all u.

Sometimes, we only need the condition
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(C3) Foranyfixedk € (0, 1]andu € R,
| (k)| < kop(lul).

Lemma 2.2 (see [12, Proposition 3.1]). If (C1) is satisfied, then for any initial point
p(xo0, z0), (2.5) has a unique orbit passing through p.
We call thecurve L: z = F(x) the characteristic curve of (2.5), we denote
LT ={(x,F(x)): x>0} and L~ ={(x, F(x)): x <0}.
Let G(x) = [y g(s)ds. If x > 0, then we set
u=u1(x) =G(x), ue (0, G(+ox)), (2.6)

the inverse function of which is denoted by x = x1(u). Replacing x(> 0) in F(x) by x =
x1(u), we have

Fi(u) = F(xl(u)), ue (0, G(+oo)). (2.7)
Similarly, if x < 0, then we write
u=ux(x)=G(x), wue (0, G(—oo)), (2.8

whose inverse function is given by x = x2(u). Thus, substituting x = x2(u) in F(x) if
x < 0, weobtain

Fo(u) = F(x2(u)), u€ (0, G(—00)). (2.9)

Therefore, Egs. (2.5) in the cases x > 0 and x < O are equivalent to the following two
equations, respectively:

Z_Z = 6z — i), ue(0,G(+o0), (2.10)
d
d_bz‘ =—¢(z— F2w)), ue(0,G(—00)). (2.11)

Now we introduce the condition (C3). The system (2.5) is called to satisfy the condition
(C3) if the following condition hold:

Fi(u) = F2(u) foru € (0, min{G(+00), G(—00)}),

where F1 (1) and F2(u) aregivenin (2.10) and (2.11).

If the condition (C3) istrue, then Egs. (2.10) and (2.11) areidentical in (0, min{G (4-00),
G(—00)}), employing an argument similar to that in [4,10], we have the following lemma
which shows that the orbit of (2.5) have deformed mirror symmetry about the z-axis.

Lemma 2.3.Suppose that the conditions (C1) and (C3) are satisfied, G (+00) = G(—00).
If an orbit of (2.5) starting from A = (0, z4) (z4 > 0) passesthrough a point B = (0, z)
(zp < 0), then it reachesthe point A again.
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3. The oscillation and the global center for system (2.5)

First, we give the result on the oscillation of all solutions for (2.5). A solution
(x (1), z(t)) of (2.5) isoscillatory if there are two sequences {z,} and {z, } tending monoton-
icaly to +o0 such that x(z,) = 0 and z(t,) = O for every n > 1. Asis usuad in the
investigation of oscillation properties, by solution, we mean those which are defined in
the future. Some attempts have been made to find necessary as well as sufficient conditions
on F, ¢ and g for solutions of (2.5) to be continued in the future [7].

The system (2.5) is said to satisfy (Cj) if one of the following conditions holds:

(Cj)l there exists a positive decreasing sequence {x, } such that x, — 0 asn — 400 and
F(x,) <0foreachn;
(Cj)z there exist constantsa > 0 and 8 > ;11 suchthat F(x) >0for0<x <a and
8(s)
@ (F(s))
0

ds>BF(x) forO<x<a.

The system (2.5) is said to satisfy (C, ) if one of the following conditions holds:

(C,)1 there is a negative increasing sequence {x,} such that x, — 0 asn — 400 and
F(x,) > 0foreachn;
(C,)2 thereareconstantsh < 0 and g > ;11 suchthat F(x) <Oforb<x <0and
g(s)

The system (2.5) is said to satisfy the condition (Cy) if both (Cj) and (C, ) hold.

Lemma 3.1.Assume that the conditions (C1) and (C3) hold. If the condition (Cj() ((op)
is satisfied, then every positive semiorbit of (2.5) passing through (xg, F (xg)) with xg > 0
(x0 < 0) will intersect the negative z-axis (the positive z-axis).

Proof. Supposethat (Cj{) holds. Thenit iseasy to seethat if the positive semiorbit O+ (p)
with po = (xo, F(x0)) € LT intersects the negative z-axis, then O (p) aso intersects the
negative z-axis for every p = (x, F(x)) € L* with x > xo. Thus, in order to prove the
conclusion, we only haveto provethat there existsasequence { p,} C L™ suchthat p, — 0
and O (p,) intersects the negative z-axis for every n.

If (Cj)l istrue, then there is a positive decreasing sequence {x,} such that x, — 0 as
n — oo and F(x,) <0 for n > 1. Since (2.5) has no vertical asymptote, O (p,) must
intersect the negative z-axis. So the conclusion in this situation is proved.

Supposethat F(x) > 0for0<x <a and (Cj()z is satisfied. If the conclusionis false,
then there exists a point po(xo, F(xo)) with xo > 0 such that O™ (pp) does not intersect
the negative z-axis. Then O (po) must be contained in the first quadrant and its w-limit
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set isthe origin. Let (x(z), z(¢)) be the solution of (2.5) passing through po. Then such a
solution defines a function z = z(x) on 0 < x < xg whichisasolution on 0 < x < xg of
the following equation

dz _ gx)

dx ¢ —Fx)
Clearly, 0 < z(x) < F(x) for 0 < x < xo. Without loss of generality, we may assume that
xo < a. Sincez = z(x) isunder L™ and ¢ (x) is strictly increasing, we have

0> ¢(z(x) = F(x)) = ¢(—F(x)) = —¢(F(x)).

where the last inequality follows from (C5) with k = 1. Therefore, integrating (3.1) from
0 to x, we obtain that

X X

86) o [ 8
J 9o —Fo 7] )

(3.1)

Z(x) =— ds > BF(x) forO<x<xo. (32

Here the last inequality follows from condition (Cj{)z. From (3.2), wehave 8 < 1.
Let 1 =1and 8,+1 =1— B/B,. Thenfrom (3.2), we get that

O< F(x) —z(x) < B1F(x) for0<x < xo.
By induction and the same method as the proof of (3.2), we can prove that
O< F(x)—z(x) < BpF(x) for0<x < xpandeachn.

Thus, {B,} is a positive decreasing sequence which must converge to a real number .
From B,41=1- 8/8, and %1 < B <1, weaobtain that » =1 — g/Ar. Therefore, A isa
complex number, a contradiction. This provesthelemma. O

The system (2.5) is said to satisfy (C;r) if one of the following two conditions holds:

(CH1 limsup,_, | o F(x) > —00;
(C;)z there exist constants N > 0 and 8 > ;11 such that F(x) <O for all x > N and for
any b > N, thereexists b > b satisfying
g(s)

b/m‘“?—ﬁﬂﬂ foral x > b.

The system (2.5) is said to satisfy (Cy) if one of the following two conditions holds:

(Cg)1 liminf, o F(x) < 400;
(C5)2 There exist constants N > 0 and g > % such that F(x) > 0 for x < —N and for
any b > N, thereexists b > b satisfying

X

g(s)
J, D (F(s))

ds > BF(x) foralx<—b.
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The system (2.5) is said to satisfy (Cs) if both (C;“) and (Cg) hold.

Lemma 3.2 (see [12, Theorem 3.1]). Suppose that the conditions (C1), (C2), and (C;)
hold. Then every positive semiorbit of (2.5) departing from D1 = {(x,2): x >0, z >
F(x)} intersects the characteristic curve L if and only if

. h g(s) _

where F_(x) = max{0, —F (x)}.

Lemma 3.3 (see [12, Theorem 3.2]). Suppose that the conditions (C1), (C2), and (Cy)
hold. Then every positive semiorbit of (2.5) starting from D3 = {(x,2): x <0, z < F(x)}
intersects the characteristic curve L~ if and only if

j [ 8 _

where F (x) = max{0, F(x)}.

Remark 3.1.1f liminf,_, { » F(x) > —o0, then (3.3) is equivalent to
X

Iimsup|:/ g(s)ds + F(x)] = 400, (3.5

X—>+00
0

and if limsup,_, _,, F(x) < 400, then (3.4) is equivalent to

X

Iimsup|:/g(s) ds — F(x):| = +o00. (3.6)

X——00
0

It follows from the proof of sufficiency of Theorem 3.1 in [12] that the conclusion of
Lemma 3.2 is aso true if liminf,_ 1o F(x) > —o0, (3.3) is replaced by (3.5) and the
condition (C2) is removed. Similarly, suppose that limsup, _, _, F(x) < +oo. Then the
result of Lemma 3.3 also holds when (3.4) is replaced by (3.6) and the condition (C>) is
removed. From the proof of necessity of Theorem 3.1 in [12], we know that if

: [ 50

then there exists apoint p € D2 = {(x,z): x > 0, z < F(x)} such that O~ (p) does not
intersect L™. Similarly, if
g(s)

lim sup[0 7(15(1 )

X—>—00

ds + F(x):| < 400, (3.8
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then there exists apoint p € Dg = {(x, 2): x <0, z > F(x)} such that O~ (p) does not
intersect L—.

Theorem 3.4.Assume that the conditions (C1), (C2), (Cs), and (Cs) are satisfied. Then
all nontrivial solutions of (2.5) are oscillatory if and only if (3.3) and (3.4) hold.

Proof. From Lemmas 3.2 and 3.3, the necessity is obvious. Now we give the proof of
sufficiency.

Let p € R? with p # 0. Then it follows from Lemmas 3.2 and 3.3 that O (p) must
intersect the characteristic curve L, where we have used the fact that (2.5) has no any
asymptote. Therefore, in order to prove the conclusion, we only have to prove that if
p € LT(L™) then O*(p) must intersect L™ (L ™) again. Lemma 3.1 impliesthat O (p)
must intersect the negative z-axis (the positive z-axis). Applying Lemma3.4 (Lemma3.3),
we know that O (p) will intersect L~ (L ™). Using the fact that (2.5) has no any asymp-
tote once again, we obtain that O (p) intersects L™ (L ™) again. Thisimplies al positive
semiorbits spiral around the origin. This completesthe proof. O

Remark 3.2.1f ¢ (u) = u, then Theorem 3.4 gives the results of [5].

Next, we give the result on aglobal center for (2.5). The origin is called to be a global
center for (2.5) if al orbits of (2.5) are closed curves surrounding it.

If the condition (C3) is true and G (+00) = G(—o0), then Egs. (2.10) and (2.11) are
identical. Therefore, O (p) is closed as long as O (p) spirals around the origin. The
global center result can be immediately obtained from Theorem 3.4 and Lemma 2.3.

Theorem 3.5.Suppose that the conditions (C1), (C2), (C3), (C4), and (Cs) are satisfied,
G (+00) = G(—00). Then the origin of (2.5) is a global center if and only if (3.3) and
(3.4) hold.

Remark 3.3.1f ¢ (u) = u, then Theorem 3.5 reduces to the results of [10].

Remark 3.4.1f lim,_, y oo inf F(x) > —oco and lim,_, _, Sup F(x) < +oo and we replace
(C2), (3.3),and (3.4) by (C5), (3.5), and (3.6), respectively, then the conclusion of Theo-
rem 3.5isalso true.

Example 3.1.Consider the system with zero diagonal coefficient

i=—(1+x)[1+ (1+9)*y,

y=(1+ x2) (1+ y2)3/2x +2(1+ xz)x Sinx2(1 + y2)3/2, (3.9
in which pa(y) = 1+ (1 + y»%¥2, p3(») = pa(y) = 1+ y)¥?, g2(x) = =1 + 29,
g3(x) = (14 x?), and g4(x) = 2(1 + x?)x sinx?. Thus,

y

p2(s) y
:l]/ = d = —|— s
n=rom O/PS(S) I Ty




M. Gyllenberg et al. / J. Math. Anal. Appl. 201 (2004) 322-340 331

—X —X

Fx)=-— / q4(s) ds = / 2ssins?ds =1— COSxZ,
q2(s)
0
_ o q3(=x)
gx)= qz(_x)x =

Itiseasy to seethat y = ¥ ~1(u) := ¢ () satisfied (C5). Obviously, ¢ (), F(x), and g(x)
satisfy the conditions (C1), (C3), (C, )1, and (Cs). Moreover, (3.3) and (3.4) are imme-
diately satisfied. In order to prove that the origin of (3.9) is a global center, it remains to
check (C})2

X s
—=——ds
lim fO P(F(s)) _

TR b 28ndZe (P o

which shows that there exist numbersa > 0 and 8 > ‘—11 such that

- 3
O/ qb(;(s)) ds > BF(x) forO<x <a.

In other words, (Cj{)z istrue. By Remark 3.4, the origin of (3.9) isaglobal center.

4. Existence and uniqueness of nontrivial periodic solutions

Throughout this section, we assume that ¢ (#) is an odd function. The system (2.5) is
said to satisfy (cg ) if one of the following conditions holds:

(Cg)l there exists a positive decreasing sequence {x, } such that x, — 0 asn — +o0 and
F(x,) > 0foreachn;
(Cg)z there exist constantsa > 0 and 8 > 711 suchthat F(x) <Ofor0<x <aand
g(s)

J mdS>—ﬁF(x) for0< x <a.

The system (2.5) is said to satisfy (Cy) if one of the following conditions holds:

(Cg )1 there is a negative increasing sequence {x,} such that x, — 0 asn — +oo and
F(x,) <0foreachn;
(Cg )2 thereareconstants b < 0 and g > 711 suchthat F(x) >0forb<x <0and
8(s)
J D (F(s))

ds>BF(x) forb<x<DO.

The system (2.5) is said to satisfy the condition (Cg) if both (C;{) and (Cg) hold.
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Lemma 4.1 (see [12, Lemma 4.1]). Assume that the conditions (C1) and (C2) are true.
Then

i) if (C;{) holds, then for any p = (xq, z0) € L™, the negative semiorbit O~ (p) must
intersect the positive z-axis at (0, z,) withz, > O;

(ii) if (Cg) holds, then for any p = (xo,z0) € L™, the negative semiorbit O~ (p) must
intersect the negative z-axis at (0, z,,) with z,, < 0.

Remark 4.1.Thecondition (C5 )2 of [12] should be (Cg )2 inthis paper (i.e., theinequality
sign < inthe condition (Cy )2 of [12] should be >).

Theorem 4.2.Supposethat (C1), (C2), (CS), (C5), (Cg), (3.4), (3.5), and (3.7) hold. If
F1(u) < Fo(u) for 0 < u « 1, then (2.5) has at least one nontrivial periodic solution.

Proof. Since (C1), (C2), and (Cj() are satisfied, it follows from Lemma 3.1 that every
positive semiorbit of (2.5) passing through (xg, F (xp)) with xg > 0 will intersect the neg-
ative z-axis. Thus, for —zg > 0 sufficiently small, by Lemma 4.1, (2.10) has a solution
u = u1(z) with u1(zo) = 0 which is defined on [zg, z1] with z1 > 0 and u(z1) = 0. Let
po = (0, zo). Then, by Lemma 3.3, the positive semiorbit O (po) will meet L~. We as-
sert that for sufficiently small —zg, O (pg) must intersect the positive z-axis at (0, z2)
with z2 > z1. Let u = uz(z) be the solution of (2.11) with u2(zo) = 0. It follows from
the condition F1(u) < F2(u) (0 < u <« 1) and the proof of Proposition 4.1 of [12] that
u1(z) <uz(z) if z > zo and z is in the common existence interval of u1(z) and u»(z).
Since u2(0) > u1(0) > 0, thus, O (p) meets the negative x-axis and hence intersects the
positive z-axis at p2(0, z2). Moreover, zo > z1. Let p1 = (0,z1) and p1pz be the orbit
arc of 0T (p1) and p2p1 be the closed segment from po to p1. Then C = p1ps U pap1
is a Jordan curve and the exterior of C is positively invariant. By (3.7) and Remark 3.1,
there exists a point p in the negative z-axis such that O~ (p) does not intersect L*. Such
apoint p must be in the exterior of C. Applying Lemma 3.3, we conclude that O™ (p)
meets L~ and therefore entersinto D;. From (3.7), it is easy to seethat F(x) > —M for
some M > 0. Thus, by (3.5) and Remark 3.1, we know that O (p) must intersect L™ and
hence meetsthe negative z-axis at ¢ which lies above p. Therefore, O™ (p) isbounded and
spirals around the origin asin Fig. 1. The Poincare-Bendixson theorem impliesthat w (p)
isanontrivial periodic solution. The proof iscomplete. O

Inasimilar way, we can prove the following

Theorem 4.3.Supposethat (C1), (C2), (C;), (CS), (C), (3.3), (3.6), and (3.8) hold. If
F1(u) < F2(u) for 0 < u <« 1, then (2.5) has at least one nontrivial periodic solution.

Theorem 4.4.Let (C1) and (C5) hold. Assume that F' is continuously differentiable with
F'(x):= f(x) > 0for x ¢ [a,b], f(0) <0and F(b) — F(a) > 0, wherea <0 < b. If

| Ilim sup[G (x) + F(x) sgnx| = +o0, 4.1

then (2.5) has at least one nontrivial periodic solution.
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Z

Fig. 1.

Proof. Under the assumptions of thistheorem, it is not difficult to provethat all nontrivial
solutions of (2.5) are oscillatory. Sincelim); | oo % = Ouniformly for all x € [a, b],
for any ¢ > 0, there exists Mgy > 0 such that

g(x) -

¢(z— F(x)) b—a

Furthermore, thereis M1 > My such that for |yg| > M1 the solution z = z(x) of (3.1) with

z(0) = yp is defined on [a, b] and |z(x)| = Mo for all x € [a, b]. Thus, for any x1,x2 €
[a, b], it followsfrom (4.2) that

forall x € [a, b] and |z| > Mo. 4.2

|z(x1) — z(x2)| <e. (4.3)
Let @(y) = [y ¢ (o) do. Then @(y) isan even function. Define
V(x,2)=®(z— F(x)) + G(x). (4.4)
Thus, along a solution of (2.5), we have
av
— =0 = F(x). (4.5)

Let po = (0, yo) with yo > 0. Then O*(po) crosses the negative z-axis at go(0, yg). If
limyo—s 100 ¥§ = y* > —00, then O~ (¢*) doesnot intersect L* whereq™* = (0, y*). There-
fore, O+ (¢*) isbounded. From f(0) < 0 and (4.5), we obtained that the originisarepeller.
The Poincare-Bendixson theorem impliesthat w (¢*) isanontrivial periodic solution. Sup-
posethat y* = —oo and choose e = %(F(b) — F(a))in(4.2) and (4.3). Then, thereis Mz >
Mi+ F(b) — F(a) suchthat y; < —(M1+ F(b) — F(a)) aslongas yo > M2. Now, wefix
the point po = (0, yo) with yo > M2. The remain proof makes use of the following Fig. 2.
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The points A, B, C, D, and Py have the coordinates (b, y;), (b, y;), (a,z7), (a,z}),
and (0, y1), respectively. we shall prove that y1 < yg. Since f(x) > O for x ¢ [a, b], it
follows from (4.5) that

o (y; —F(b)>(y, — Fb)). (4.6)
?(z; — F(a)) > ¢(zf — F(a)). (4.7)

We note that @ is an even function and is strictly increasing on [0, co). Therefore, (4.6)
and (4.7) imply that

v —F(b)>F(b)—y,, F(a) -z, >z} — F(a).

That is,
yi > —y, +2F(b), (4.8)
2 <—z; +2F(a). (4.9)

By (4.3), we have
Yi=Zi, Yy —Zas Yy —Yo<¢ (4.10)

wheree = %(F(b) — F(a)). Combining (4.8), (4.9) with (4.10), we concludethat y1 < yo.
Hence O (po) is bounded and w (po) is a nontrivial periodic solution. The proof is com-
plete. O

In the following, we consider a specia form of (2.5)

i=(z—F@)”™h =g (4.11)
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Theorem 4.5.Let g(x) and f(x) := F’(x) be continuousfor all x with the properties:

(i) xg(x) > 0for x #0;
(i) F'(x) :== f(x) >0 for x ¢ [a, B], f(x) <O for x € [a, B] Wwhere o <0 < B and
F(b) — F(a) > 0for somea <o and b > B;
(iii) G(a) =G(B) where G(x) = 5 g(0) do;
(iv) 1impx 5 400[G(x) + F(x) sgnx] = 4-o0.

Then (4.11) has exactly one nontrivial periodic solution which is exponentially asymp-
totically, orbitally stable.

Proof. The existence of a nontrivial periodic solution has been given in Theorem 4.4. It
remains to prove the uniqueness.
Supposethat I": x = x(r), z =z(¢) for 0< ¢ < T isany nontrivial periodic solution of
(4.11) whose characteristic multiplier is
T

y:—/@w+b@m—F@0m%f@0Dm.
0

Let yo = fOT (z(t) — F(x(6))? f (x (1)) dt. Then, it suffices to prove that yo > 0.
Defining the function

(z — F(x))?*?

Vix,2)= W + G(x)
and restricting V on the periodic orbit I", we have
(z(1) = F(x(1)))*"*2
V() = 201 D) + G(x(0).
Therefore,
av 4n+2
- = —fx®)(z0) — F(x@®))™" . (4.12)

Choose a positive number 7 < mingg; <7 V (). Then we change the form of (4.12) into

1 4dv n
T+ 20+ D (e = F0) " f (o)
_ _ 2n
_ 2n+ 1DH(G(x) Vhi(}zl F(x)) f(x) (4.13)
Integrating (4.13) from O to T, we obtain that
T
. _ 2n
yo=/ (G(x(1) —h)(z(@) = F(x ()" f(x(®)) dr. (4.14)
Vit)—h
0

In order to prove yo > 0, we only have to show that we can choose a suitable number £
such that

(G(x(®) —h) f(x()) =0 foralze[0,T].
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Assume that V(r) attains the minimum value at r = 19 € [0, T'], then it follows
from (4.12) that f (x(z0)) = 0. We claim that z(70) # F (x(t0)). In the following, we will
prove our claim. Suppose the contrary, that is, z(fg) = F(x(tp)). Since the orbit I does
not pass through the origin, z(zg) = —g(x(10)) # 0. Thus, z(¢) — F(x(¢)) = z(t0) + z(t0) x
(t —t0) — F(x(t0)) — f(x(t0))x(t0)(t — t0) + o(t — t0) = —g(x(t0))(t — t0) + o(t — o).
From the first equation of (4.11), we have

 (g(x(0))*
2(n+1)

Therefore, for |t — o] sufficiently small, either x(¢) > x(70) or x () < x(¢p). Thisimplies
that either f(x(r)) <0or f(x(¢)) > Oaslongas |z — to| issufficiently small. From (4.12),
we can conclude that in a neighborhood of #g, V (¢) is strictly monotone. In other words,
V (¢) cannot attains the minimum value at ¢ = 7, a contradiction arises. This proves our
claim that z(zg) # F (x(t0)).

Leth = G(x(to)), by theaboveclaim, wehave (z(to) — F (x(t0)))%2 > 0and h < V (¢)
forall t. Since f(x(10)) =0, x(tg) =« or B and h = G () = G(B). By the assumption (ii)
and (iii) f(x)(G(x) —h) > Ofor any x # «, B. It follows from (4.14) that yo > 0. By The-
orem 11.3 of [6, p. 256], the nontrivia periodic solution is exponentially, asymptotically,
orbitally stable. This completesthe proof. O

x (1) = x(10) = (t — 10" 2 + o((t — 10)*"*?).

Theorem 4.6.Let F/(x) := f(x) and g(x) be continuousfor all x with the properties:

(i) xg(x) >0for x #0;
(ii) f(x)>0for |x| > A,xF(x) <0for |x] < Aand F(A) = F(—A)=0;
(i) limp— +00[G(x) + F(x) sgnx] = 4o00.

Then (4.11) has exactly one nontrivial periodic solution which is exponentially asymp-
totically, orbitally stable.

Proof. Themethod of the following proof isdueto Sansone (see[9] or [14]). The existence
of periodic solution follows from Theorem 4.4. We only give the proof of the uniqueness.
Let

2(n+1)
A(x,z) = 201D + G(x).
Then, along a solution of (4.11), we have
di n
T =g = (- F)™].
From the assumption (ii), it follows that
di n
= —g()[z2 — (z - F(x))2 +l] >0 foral|x| < A. (4.15)

Using (4.15), we can prove that the points (—A, 0) and (A, 0) must be in the interior of
any periodic orbit. Suppose that (4.11) has two periodic orbits Iy and I'>. Without loss of
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Fig. 3.

generality, we may assumethat Iy isin theinterior I';. It is easy to see that

ozfdx:fkﬁﬂuwz—Fu»”“L& (i=12). (4.16)
I I

In the following, we shall prove that

fﬁ<fm. (4.17)
I I

(4.16) and (4.17) imply that the nontrivial periodic orbit of (4.11) is unique. Thefollowing
proof will make use of the Fig. 3.

Ontheorbit arc A; B;, we have z = z; (x) for |x| < A which isthe solution of (3.1). By
(4.16), we can calculate that

A
_ ) 2041 _ (o (o) 2n+1
/‘MZ/ g)[(zi(x)) (zi(x) — F(x)) ]dx fori—12.
(zi(x) — F(X))+1
A:B; -4
Thus,
/ ) — / dx
A1B1 A2B;

A

__ f g()[(@1(0) (@2(x) — F))** — (22(x) za(x) — F(x))*" ]

dx.
[(z1(x) = F(x))(z2(x) — F(x))]"+1 *

(4.18)
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Since z1(x)(z2(x) — F(x)) — z2(x)(z2(x) — F(x)) = F(x)(z2(x) — z1(x)), we have
[z1(x)(z2(x) — F(x)) — z2(x)(z1(x) — F(x))Isgnx > 0O for O < |x| < A. Together this
inequality and (4.18), we have

/ dr > f dn. (4.19)

A1BL 2B

Similarly, we can prove that

/ dr> / dn. (4.20)

Cib1 Gy

On the orbit arc B/la we have x = x1(z) and on the orbit arc E/ZFZ we have x = x2(2).
From (4.16), we obtain that

ZCl
[ ar= [ = Fua@) " a: e
B By

B1C1
ZF2
/ = / (241 (2 — F(ra())? ™ dz.

where z¢, = zp, := z1 and zp, = zg, := z2. Obvioudy, x2(z) > x1(z) for z1 < z < z2.
The assumption (ii) impliesthat F(x) isstrictly increasing if |x| > A. Hence F (x2(z)) >
F(x1(z)) fordl z € (z1, z2).

l - _i dh = f [(z = Fr2@))™*" = (e = F(ra2))* ] dz > 0.

B1Cy1 EyFp

that is,
/d)»> / dir. (4.21)
BiC1 ExF

In asimilar way, we can show that

/ d > / dn. (4.22)

D1A; GoHo

Since x[z%t1 — (z — F(x))?*1] > Ofor dl |x| > A, from (4.15), we conclude that
f di <0, (4.23)
L

where L = By E»U FaC2UDyGo2U Ho A . Fromtheinequalities (4.19) to (4.23), we deduce
that (4.17). The proof iscomplete. O
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In the following, we apply the resultsin this section to the systems (1.7) and (1.8).
Rewriting (1.7), we have

i=y-(2-0] y=-x (4.24)

Itisnot difficult to show that (4.24) satisfies all properties of Theorem 4.4 or Theorem 4.5.
Therefore, (4.24) has a unique limit cycle.
If the two sides of (1.8) are divided by % ~%/3, we have

7P +3(x% - 1)k +3x =0,

that is,
|:x1/3+ <x_3 —x>} +x=0
d 3
Let
r=x34 <x_33 —x>
Then

= |:z— <x—33—x>r, f=—x. (4.25)

Applying Theorem 4.4 or Theorem 4.5 to (4.25), we immediately obtain that (4.25) has
auniquelimit cycle.

5. Brief discussion

Krechetov [8] studied the global asymptotic behavior of solutions of system (1.1) by us-
ing the Lyapunov function method, and he gave necessary and sufficient conditionsfor the
zero solution of (1.1) to be globally asymptotically stable under the main condition (1.2)
and some other assumptions. In paper [12] the authors first introduced the transforma-
tion techniques to investigate the global asymptotic stability of system (1.3), the special
case of system (1.1) with p3(y) = pa(y). Under the condition (1.4), they transformed
system (1.3) intothe generalized Liénard system (1.5) without the assumption (1.2) and ob-
tained necessary and sufficient conditionsfor the zero solution of (1.3) (respectively (1.5))
to be globally asymptotically stable. Moreover, they also found conditions for deciding
whether all positive (respectively negative) nontrivial orbit of (1.5) intersect the character-
istic curve z = F(x) and obtained sufficient conditions under which there is no homoclinic
orbit for (1.5).

Motivated by paper [12], we find that no restriction on the sign of g4(x) is required
for (1.1) under assumption (1.6) (it should be noticed that if p3(y) = pa(y) one case of
assumption (1.6) reducesto (1.4)). By introducing suitable transformations we prove that
system (1.1) is equivalent to a form of system (1.5) under assumption (1.6). In this pa-
per we have investigated the qualitative behavior of systems (1.1) and (1.5). Especialy,
we give the necessary and sufficient conditions for all nontrivial solutions of (1.1) (re-
spectively (1.5)) to be oscillatory and for the origin to be a global center, and we aso
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study the existence and uniqueness of nontrivial periodic solutions of system (1.1) (respec-
tively (1.5)). Furthermore, we establish the sufficient conditions under which no solution
of (1.5) approaches the origin directly in the right (or left) half plane (i.e., in a nonoscilla-
tory way), which playsan important rolein the analysis of oscillation and center conditions
of (1.5).
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or its equivalent system

X =y,
{J'f = —/(x,y)y — g(x). (@)

Since then, many authors have made contributions to the theory of this system regard-
ing the existence of nonzero periodic solutions. The books by Sansone and Conti [4],
Zhang et al. [13] and Ye et al. [10] contain a summary of the results on this problem.
On reviewing all the known results, we find that in order to obtain a criterion for the
existence of nonzero periodic solutions almost every author required that the restoring
force g(x) and damping f(x, y) should be not too small, that is, f(x,y) should have a
lower bound in a strip region |x| < d and should be nonnegative outside this strip
region, and [ oo g(x)dx = 400. Ponzo and Wax [3] gave a result on the existence of
a nonzero periodic solution which does not require f(x,)) to have a lower bound.
Unfortunately, Zheng [14] gave an example

X=y,
{y=4ﬁ—aoﬂ4»—x 3

to show that the conditions of Ponzo and Wax cannot guarantee the existence of a non-
zero periodic solution if f(x, y) has not a lower bound. Yu and Huang [11] also dealt
with the existence of nonzero periodic solutions of (2), and pointed out that system
(3) has a nonzero periodic solution. Yan and Jiang [8] considered the system (2),
they noted that system (3) has no nonzero periodic solution. Also, Wang et al. [7]
gave a complete analysis of global bifurcation for the following system

xX=y,
{yz%ﬁ—mwﬂ4»—m @

where § is a parameter. In addition, it was shown by Lemma 5 in [7] that system (4) has
no nonzero periodic solution when § > /gn?/16 ~ 1.7707.
Yu and Huang [12] studied a more general system than (2), namely,
{ x=p»), 5)
y ==/, 0)p()g(y) — r(y)g(x),

under the assumptions foioo g(s) ds = +o0, they obtained some sufficient conditions for
the existence of one nonzero periodic solution of (5). Moreover, as a result of [12] they
pointed out that system (3) has at least one nonzero periodic solution.

In the present article we study the generalized Liénard system (5), where the functions
(), q(), r(»), g(x) and f(x, y) are continuous for all values of their arguments, and are
subject to the conditions which ensure that the existence of unique solution to the initial
value problem.

The purpose of this article is to study the problem of how small the extent for f(x, y)
should be to warrant the existence of nonzero periodic solutions of (5). Our investiga-
tion shows that whether (5) has a nonzero periodic solution strongly depends on the
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integral [ oo |/(x,y)g(»)| " 'dy, where |x]| is sufficiently small. The article is organized
as follows: In Section 2 we find some sufficient conditions for the existence of nonzero
periodic solutions of (5), roughly speaking, if fioo | £(x, v)g(»)| " dy = +o0 for a small
|x| and some additional assumptions hold, then (5) has at least one nonzero periodic
solution. Our results allow to avoid the classical assumptions:

+00
/ g(x)dx = 4o0, (6)
0

f(x,y) >0 (or >0) for |x| sufficiently large. (7

In Section 3 we give some sufficient conditions about nonexistence of periodic
solutions of (5), the main results in this section are Theorems 3.1 and 3.2 which state
that if [T £ (x,»)g0)|'dy (or [~ 1f(x,»)q(»)|"'dy) is finite for a small |x| and
some additional assumptions hold, there does not exist a nonzero periodic solution
of the system (5). Some examples illustrating our results are given in this article.

2. EXISTENCE OF NONZERO PERIODIC SOLUTIONS

In this section, we give sufficient conditions for the existence of nonzero periodic
solutions of (5).
At first we assume:

(Ey) xg(x) > 0 for all x#0;

(£2) f(0,0) < 0;

(E3) g(») and r(y) are positive on R, yp(y) > 0 for all y#0, and liminf, 1o [p(V)I/
r(y) > 0;

(E4) There exist constants a < 0,b > 0 and a function fo(x) € C((—o00,a]U [b,+00))
such that f(x,y)q(y) > fo(x) for x € [—00,a] U [b,4+00),y € R. G(x) = ](')x g(s) ds,
Fr(x) = f; fo(s)ds (x = b) and F~(x) = fa " fo(s)ds (x < a) satisfy the following
conditions (EJ); and (Ej); respectively,

(Ef); liminfy 00 FT(x) > —00,
(EZ_)Z lim Supx—>+oo(G(x) + F+()C)) = +00;
(Ep)y limsup,_, o F~(x) < +o0,
(E4_)2 lim Supxﬁfoo(G(x) - F_()C)) = 4o00.
(E5) There exist functions ¢(x) € Cla, b] and h(y) € C(R) such that

(Es) f(x,») = o(x)h(y) fora < x < b,y €R,
(Es), For every constant m > 0, there is a positive number c(m) such that

lpOD)Ih(»)q(y)
()

> ¢(m) for |y| > m, and

/+oo L oo
1 (Ey)q(Ey)
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THEOREM 2.1  Assume that the conditions (E|)—(Es) hold, and that the following condition
is satisfied.

(Es) There exist a constant @y < a and a function A(x) € C!((—o0, ag], (0, +00)) such
that

P(A(XDA'(x) + p(A(x)) [ (x, A))g(A(x)) + r(A(x))g(x) = 0,

for x € (—o0, ap].

Then (5) has at least one nonzero periodic solution.

Before proving Theorem 2.1, we introduce some notations. Let LT = (0, b]x
{0}, L~ =[a,0) x {0}. Q;’O ={(x.y): x<apy >0}, 2 ={(x,y): x>b,y>0}. The
positive and negative x-axis are denoted by X~ and X~ respectively. Y and Y~
denote the positive and negative y-axis respectively. If xo € R, we write L} =
{(x0,»): ¥y > 0}, Ly, = {(x0,): y < 0}. Furthermore, we denote throughout this article
by ¥ (p) and y~(p), respectively, the positive and negative semi-trajectory of (5) passing
through an arbitrary point p at time 0, y(p) = y*(p) U ¥~ (p), and let [0, T},) denote the
right maximal interval of y*(p), where T}, < +oc.

First of all, we establish several lemmas which will play an important role in the
proof of Theorem 2.1 in the sequel.

LemmA 2.1 If the conditions (E), (E;) and (E3) are satisfied then the origin is the only
critical point of (5), and it is locally repulsive.

Proof 1In view of conditions (£7) and (E3), it is easy to see that the origin is a unique
critical point of (5). Next, we will show that the origin is repulsive. Set

Gwzﬂlm@

B Y p(s)
Ax,y) = G(x) + ; @ds.

From (£)) and (E3), it is clear that for 0 < ¢ <« 1 the curve A(x, y) = c is a closed curve
surrounding the origin. By (£>) and (E3), for 0 < ¢ < I, along the closed curve
A(x,y) = ¢ we have

Gey) | SEIPOI0) oy o ®

dt r(y)

Hence the origin is locally repulsive. This completes the proof of Lemma 2.1.

LemMA 2.2 Assume the conditions (E\)~(Es) hold, p e Q}. Then y*(p) must
intersect LY.

Proof Suppose the conclusion is false. Since dx/dt=p(y) >0 for y >0 and
dy/dt = —r(y)g(x) >0 on X, it follows that y*(p) will stay in the region Qf =
{(x,): x <a,y > 0}. Let (x(¢),»(¢)) be the coordinates of y™(p),(x(0),y(0)) = p. By
Lemma 2.1, we know that no solution can approach the origin except itself. Since
QF does not contain any equilibrium, the Poincaré-Bendixson Theorem tells us that
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yT(p) must be unbounded. It is easy to see that there exist a increasing sequence
{ox} € (0, Tp) and a constant a € (ao, a] satisfying

lim x(oy) = a, lim y(ox) = +o0. 9)
k—+o0 k—+00
Because the origin is locally repulsive and dy/df > 0 on X, it is obvious that there

exists a constant y > 0 such that y(f) > y for 0 < ¢ < T,,. Therefore, from the condition
(E3) it is sure that there exists a constant M > 0 such that

p((0)
r(y(1)

By (E3), (E4) and (5), we have

>M for0<t<T,

(%, 1)q()p(y) — y(y)g(x)
< —~fo(¥)p(y) — r(y)g(x), (10)

for 0 <t < T,. Now, integrating (10) from 0 to o} along y*(p), we get

¥or) = (0) < — /0 (fo(x(s» + ’(y(sgfg’(;“”)p@@» ds

- /0 " (fo(x(S)) ("(”))pm ) ds

(0%)
z_/ (f()+‘£) (1)
(0)

By (9), the right of (11) is bounded, the left of (11) is positive infinite, which is a contra-
diction. Hence y*(p) must intersect L. The proof of Lemma 2.2 is complete.

LEMMA 2.3 If the conditions (E)), (E»), (Es) and (Es) are satisfied, p € L. Then y™(p)
must intersect Y.

Proof Suppose this is not the case. Let (x(¢), y(y)) be the coordinates of y*(p), (x(0),
¥(0)) = p. Then by an argument similar to the Lemma 2.2, there must exist an increas-
ing sequence {f;} C (0, 7),) and a constant a; € (a, 0] satisfying

Iim x(t;) = ay, lim y(t;) = +oo0. (12)
k—+o0 k— 400
By (E3), (E5) and (5), we obtain

= /(. )p(1)a(y) — r(»)g(x)

< —()h(p()q(y) — r(y)g(x)
b r(1g(0)
h(y)q(y) di = TP =0y

(13)
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for 0 <t < T),. Integrating (13) from 0 to 7, along y*(p), we have

V(1) dy tx r(y(s) )g(x(v)) )
_ | )
Lo 10000 = (0 st P

__ [ _r(s)g(2)
= A @@+mmmmm)” (9

Since dy/dt > 0 on the negative x-axis and the origin is locally repulsive, it is easy to see
that there is a constant y; > 0 such that y(f) > y, for 0 < ¢ < T,,. From (E5), we know
that there exists a constant mg > 0 such that (p(y())h(y(£)q(¥(1))/r(y(¢))) = my for
t € [0, T,). Therefore, by (£5) and (12), the right of (14) is bounded, the left of (14) is
positive infinite, which is a contradiction. Thus, y™(p) must intersect the positive
y-axis. This completes the proof of Lemma 2.3.

LEMMA 2.4 Assume the conditions (E), (E>), (E3) and (Es) hold, p € Y*t. Then y*(p)
must intersect L't U L} .

Proof Since dx/dt = p(y) > 0 for y > 0, if y*(p) does not intersect L*, by using an
exactly similar argument as in the proof of Lemma 2.3, then y*(p) must intersect L; .
This completes the proof of Lemma 2.4.

LEMMA 2.5 Assume that the conditions (E\)~(Es) hold and that p € L. Then y*(p)
must intersect X

Proof Suppose it is not the case. Since dx/dt = p(y) > 0 for y > 0, it follows that y*(p)
will stay in the region ;. Let (x(¢), (7)) be the coordinates of ¥ (p), (x(0), »(0)) = p.
Because there is no critical point of (5) in € under the conditions of Lemma 2.5,
according to the theory of limit sets, it is certain that y*(p) is unbounded.

On the other hand, it follows from (5) that

d )
= = /(P00 — (). (15)

Integrating (15) from 0 to 7 € [0, T},) along y*(p), by (E4) we have

v (1) t
dy = — /0 (f (x, () + r(»)g(x)) ds

»(0)

s—Af@mmwmww

s—ﬁhumww

(1)
= — fo(z)dz

x(0)
= —F(x(1)) + F(x(0)). (16)



GENERAL AUTONOMOUS SYSTEM OF LIENARD TYPE 741

Then (16) implies
(1) = y(0) = —F(x(1)) + F(x(0)),

and condition (£4) imply that y(7) is bounded from above for ¢ € [0, 7,,). Thus, it is sure
that there exists a constant M; > 0 such that 0 < y(f) < M, for all t € [0, T),).

Notice that y*(p) is unbounded, it is clear that lim,_, 1, x(1) = 400. In the following,
we are going to obtain a contradiction. Let

M; =1+ max p_(y)

o<y=m r(y)’

Integrating (15) from 0 to ¢ along y*(p), we have

»(0) t
f dy=— /0 (£ Ce(8). 1(5NPONA((5)) + r(r($)gx(s)) d

»(0)
- f (fb()c(s)) + M)pw» ds

((5))
/ (1 + g(x(s))) ax)
ds
x (1) x(1)
f(2)dz — — g(z)dz
x(0) x(0)

= F(x(t) + F(x(0)) Miz Gx(1) + Miz G(x(0)).

This implies

1 -1 1
(1) = y(0) - A (F(x(1) + G(x(1)) — M1y (x(1)) + F(x(0)) + A G(x(0). (A7)

In view of (EJ);, (E;), and lim,.7. x(f) = 400, it is easy to see that inequality (17)
implies liminf,, 7 (1) = —oo. Buf this contradicts the fact that y(t) > 0 for all
t€[0,7},), and hence yT(p) must intersect X This completes the proof of Lemma 2.5.

By an argument similar to Lemmas 2.3-2.5 above, we can prove the following
Lemma 2.6.

LeMMA 2.6 If the conditions (E|)—~(Es) hold, p € X*. Then y*(p) must intersect Y~
and X~ .

Proof of Theorem 2.1 According to Lemma 2.1, the origin is a unique critical point
of (5) and is repulsive. For 0 < ¢ <« 1, the oval A(x,y) =c¢ can serve as an inner
bound for the annulus, and the trajectories of (5) cross this closed curve from its interior
to its exterior.

Now let us complete the outer bound.



742 P. YAN AND J. JIANG

Let Py = (ag, A(ap)). In view of Lemmas 2.2 and 2.3, we see that y*(Py) will intersect
Y at some point P,. Then, it follows from Lemmas 2.4-2.6 that y*(Py) through point
P, will intersect X~ at some point P,.

Along the curve y = A(x), we have

dy dA(x) r(yg(x)  dA(x)
El(S)_ e =—f(x,»)q() — 20) dx
_ A/ (x, A(x)g(A(x) + 1(A(x)g(x) + p(A))dA(x)/dx)
P(A(x))

<0

for x € (—o0, ag], which shows that y*(Py) through point P, cannot cross the curve
y = A(x) (—00 < x < ap). Therefore, by Lemmas 2.3 and 2.4, y*(P,) through P, will
intersect Y again at some point P3, the above proof and the uniqueness of solutions
of (5) show that P; is under P,. Then the trajectories of (5) cross the closed curve
P3P, P, P; from its exterior into its interior. This completes the outer bound for the
annulus. Hence, by the Poincaré-Bendixson Theorem, system (5) has at least one
nonzero periodic solution. The proof of Theorem 2.1 is complete.

A slight modification in the proof of Theorem 2.1 leads to the following Theorem 2.2.

THEOREM 2.2 Assume that the conditions (E1)—(Es) hold, and the following condition is
satisfied.

(E) There exist a constant by > b and a function A(x) € C'((by, + 00), (—00,0)) such
that

PAG)A'(x) + p(A(x)) f (x, A(x))q(A(x)) + r(A(x))g(x) <0,

for all x € [bg, + 00).
Then (5) has at least one nonzero periodic solution.

CoRrOLLARY 2.1  Suppose that the conditions (E|)—(Es) hold, and that one of the following
two conditions is satisfied.

(E7) There exist a constant ayp < a and a function A'(x) € C!((—o0, ag), (0 + o)) such
that

PAG))A'(x) + p(AX))fo(x) + r(A(x))g(x) = 0,

for all x € (—o0, ay];

(E7) There exist a constant by > b and a function A(x) € C'([bg, + 00), (—00,0)) such
that

PAG))A'(x) + p(AX))fo(x) + r(A(x))g(x) <0,

for all x € [by, + 0).

Then (5) has at least one nonzero periodic solution.
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Obviously, when the conditions (£3) and (£4) hold, the conditions (E¢) and (Ef)
imply (EF) and (E7) respectively. Hence, Corollary 2.1 is a direct corollary of
Theorems 2.1 and 2.2.

Remark 2.1 For the system (2) the condition (E3) holds naturally, therefore, our
Theorems 2.1 and 2.2 are available for (2).

Remark 2.2 1If p(y)=y,q(y)=1,r(y) =1, then system (5) reduces to system (2),
and the condition (F5) is the condition (E4) of [8]. Our theorem includes the cases
where f(x,y) has no lower bound in the strip region |x| < d, f(x, y) isn’t nonnegative
in |x| > K where K is an arbitrary positive number, and G(£oo) < 400. Hence
Theorems 2.1 and 2.2 extend and improve the corresponding results of [1-3, 5, 6, 8,
9, 11-13].

Example 2.1 Let aj,ay,a3 and B be the positive numbers, and o, < (1/3),a; > «3.

Then the following system

!

x=|y[*sgny,
y=—(+x"+ )" (/x2+ X2yl = (B+sin* xp) " )1+ [pI*)|y[“'sgny  (18)

— (L ™)1 4+ 272

has at least one nonzero periodic solution.

Proof For this system, we have p(y) = |y[*'sgny,q(y) =1+ [y|**,r(y) =1 + [y|=,
6 p) =1+ 32+ )2+ 2yl = (B+sin* xp) %) and g(x) = x(1 4+ xH) 72,
Obviously, G(+o00) < 400, it is easy to know that the conditions (E;), (E,) and
(E3) hold. Choose b= —a=1, fo(x) = |x| — B~V/2, then f(x,»)q(y) > fo(x) for x e
(—o0,—1]1U (1, +00), y € R, on the other hand, by some computation, we have

2

X _ﬁ—l/zx_l_'_ﬁ—l/z,

FH(x) = /1 wds =5 :

F_(x) :/ f()(S‘)dS = ——— ,B_I/ZX—F— _ ,8_1/2.
—1 2 2

Thus, the conditions (E); and (E;); hold (i=1,2). Let ¢(x) = |x| — B~ "/?> and
h(y) = (1+)'7, then f(x,y) = (1+)7)"(1x| = p7'7?) for x € [-1, 1],y € R, and
+00 dy
R A— +OO,
/1 h(£y)g(£y)

it is clear that the condition (£5) holds. We next prove that condition (£¢) holds.
Set A(x) = 6 — ¢*. Then we get

im [p(A()A'(x) + p(A) (x, A())g(A(x)) + r(A(x))g(x)] = +o00,
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which implies that there exists a constant ¢y < —1 such that
PAMX))A'(x) + p(AX))f (x, A(X)g(A(x)) + r(A(x))g(x) > 0

for all x < ay, and so (Eg) holds. Therefore, it follows from Theorem 2.1 that the
conclusion of Example 2.1 is true.

3. NONEXISTENCE OF NONZERO PERIODIC SOLUTIONS

In Section 2, we have proved that if fioo |f(x, ¥)g)|~'dy = oo for a |x| suffi-
ciently small and some additional assumptions hold, then (5) has at least a nonzero
penodlc solution. In this section, we shall consider the converse case, i.e.,
j | £(x,¥)q(»)| " dy is finite for every small |x|, and prove the following Theorem 3.1.

THEOREM 3.1  Assume (5) satisfies the following conditions:
(Hy) xg(x) > 0 for all x+#0;
(Hy) q(y) and r(y) are positive on R, yp(y)>0 for all y#0, and

(H3) There exist constant a < 0,b > 0 a negative integrable function ¢(x) defined on [a, b]

and a continuous function h(y) > 0 for y #0 such that

(H3), f(x V) = @(0)h(y) for a < x < b,y € R;
(H3)y [o ™ dv/h(0)a() < [§" ¢(x) dx, where a; < 0, G(ar) = min{G(a), G()}.

Then (5) has no nonzero pertoa’lc solution.

Proof Set

G(x) = /O g(s) ds,

")
r(s )

it is obvious that the curve of constant energy I' : A(x,y) = G(x)+ fg (p(s)/r(s))ds =
G(ay) is closed in the strip region ¢ < x < b, — 00 < y < +00. Because,

dx PP (0)9()

e (5) ) >0, fory#0, (19)
then the trajectories of (5) cross this closed curve A(x, y) = G(a;) from its interior to its
exterior. This proves that the region surrounded by I' is negatively invariant and
a(p) =0 for each p e T

Now let 4 = (ay,0), (x(7), (1)) be the coordinates of y*(4), (x(0), y(0)) = 4. If yT(A4)
intersects Y at B(0,7)(y > 0), then, along the solution arc 4B, we have

AMx,p) = G(x) +

dy r(y)g(x)
o —f(x, »)q(y) — 20)
> —p(xX)h(y)q(y)
Loy
H0)a0) dx = @(x). (20)
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Integrating (20) from «; to 0, we get

[ o = - fo e = [ o

Because /() > 0,¢(y) > 0 for y > 0, then

—+00 dy v dy .
/0 h(y)q(y) >/o h(»)q(y) Z/o @(x) dx,

which contradicts the condition (F3),. This implies that y*(A) is located in the strip
region: a; < x < 0,y > 0. Since

(0 _

L = (00 — ()

= —p()h(y)p(»)g(y) — r(»)g(x) = 0,

for 1€[0,74),y(t) is increasing on [0,7,), and thus lim, .7, »() =+oc and
lim,_, _oo(x(2), ¥(¢)) = (0,0). We have proved that there exists a trajectory y(A4) of (5)
such that one side of it tends to the origin and the other side approaches to infinity.
Therefore, (5) has no nonzero periodic solutions. This proves Theorem 3.1.

Similarly, we can prove the following Theorem 3.2.

THEOREM 3.2 Assume (5) satisfies the following conditions:

(F1) xg(x) > 0 for all x#0;

(£2) q(y) and r(y) are positive on R, yp(y) > 0 for all y#0, and liminf,_ 1o (Ip(y)|/
() > 0;

(F3) There exist constants a < 0,b > 0, a negative integrable function ¢(x) defined on
la, b] and a continuous function h(y) > 0 for y #0 such that

(F3); [(x,9) = p(0h(y) for a <x < b,y € R;
(F3)y fo = (dy/h(»)q(») = [y ¢(x)dx, where by > 0, G(b;) = min{G(a), G(b)}.

Then (5) has no nonzero periodic solutions.

Remark 3.1 Let p#0, under the conditions of Theorems 3.1 and 3.2, we can prove
that y*(p) is unbounded. In fact, if it is not the case, then by (19), w(p) does not contain
the origin O. The Poincaré-—Bendixson Theorem implies that w(p) is a limit cycle. Since
w(p) is a Jordan curve and the trajectory y(A) passing through A(a;,0) connects the
origin and infinity, w(p) must intersect y(A), this contradicts the uniqueness of initial
value problems. Hence y*(p) is unbounded.

Remark 3.2 Choose a; = —</3m/4, since f0+°° dy/(1 +y?) = m/2, Theorem 3.1 implies
that if § > /972/16 ~ 1.77, (4) has no nonzero periodic solution. The result of Zheng
[14] regarding (3) is included in our results.
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[1] identified 33 stable nullcline equivalence classes. Among these, only
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1 Introduction

Lotka-Volterra (L-V) competition is modelled by a system of differential
equations describing the competition between two or more species that share
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and compete for the same resources, habitat or territory (interference com-
petition). The n-dimensional competitive L-V model is

n

ddiz = T bi—Zaijxj N i:1,2,~- ,n, (1)
j=1

where z; is the number or density of species i, b; is the intrinsic growth rate

of species i, a;;’s are the interaction coefficients. The parameters b; and a;;

are strictly positive.

The dynamics of the 2-dimensional L-V competition model is well un-
derstood. If two species compete, there are no periodic solutions and all
bounded orbits converge to an equilibrium point (see [3]). For 3-dimensional
competitive L-V systems, the dynamical possibilities are more restricted
than for general L-V systems: Hirsch [4] has shown that all nontrivial or-
bits approach a “carrying simplex”, a Lipchitz 2-dimensional manifold-with-
corner homeomorphic to the standard simplex in Ri via radial projection.
This then leads to a Poincaré-Bendixson theorem for 3-dimensional com-
petitive systems (see [5]). Recently, the existence and global attractivity
of the carrying simplex have also been verified in time-periodic competitive
L-V systems ([6]). Based on the remarkable result of Hirsch, Zeeman [1]
defined a combinatorial equivalence relation on the set of all 3-dimensional
L-V competitive systems and identifies 33 stable equivalence classes. Of
these, only classes 26-31 may have limit cycles (see [1, 7]). Open problems
remain concerning the number of limit cycles. Hofbauer and So [2] were
the first to give an example in class 27 (with a heteroclinic polycycle) with
two limit cycles surrounding the interior equilibrium. Lu and Luo [8] have
constructed two limit cycles in three cases without a heteroclinic polycycle
(classes 26, 28 and 29).

Apparently, the main questions now are (i) whether or not there are at
most finitely many limit cycles on the carrying simplex; (ii) whether there
can be more than two limit cycles in classes 26-31. For question (i), Xiao
and Li [9] have proved that the number of limit cycles of the 3-dimensional
competitive L-V systems is finite if the system does not have a heteroclinic
polycycle. Question (ii), as pointed out by Hofbauer and So [2], is a very
difficult problem and they conjectured that the number of limit cycles is at
most two for 3-dimensional L-V competitive systems.

Recently, Lu and Luo [10] were the first to give an example in class 27
(with a heteroclinic polycycle) with three limit cycles. This gives a partial
answer to Hofbauer’s and So’s conjecture. In this paper, we will construct
three limit cycles in class 29 without a heteroclinic polycycle (see Figure



/3

Figure 1: The phase portraits on X of class 29 with interior fixed point. The fixed point
notation is as in [1].

1) and thus give a counterexample to Hofbauer’s and So’s conjecture which
is qualitatively different from that of Lu and Luo [10]. We conjecture that
there also exist three limit cycles in class 26.

2 An example with three limit cycles

In this section, we present an example of a 3-dimensional competitive L-V
system with at least three limit cycles in class 29 without a heteroclinic
polycycle.

The idea for constructing such an example with three limit cycles is as
follows: We consider a 3-dimensional competitive L-V system of class 29
in Zeeman'’s classification, which is indeed uniformly persistent [11], and
where the unique interior fixed point F has the following properties: (a)
There is a pair of purely imaginary eigenvalues at E; (b) The first focal value
vanishes, and (c) the second local value is positive. Thus FE is a weak focus of
multiplicity 2 repelling on its center manifold. This implies the existence of
an asymptotically stable limit cycle I'y by the Poincaré-Bendixson theorem



on the carrying simplex Y. If we now change some of the parameters slightly,
the equilibrium will undergo a generic Hopf bifurcation, that is, the interior
equilibrium F first becomes a weak focus of multiplicity 1 attracting on its
center manifold and will be surrounded by another, smaller, unstable limit
cycle I's; then one of the parameters is changed slightly so that a supercritical
Hopf bifurcation occurs, and hence F becomes a focus repelling on Y and be
surrounded by the smallest stable limit cycle I's of the three existing limit
cycles.

The remaining work is to check to which class in Zeeman’s classification
the constructed system belongs. Using Zeeman’s notation, we have R;; =
sgn(aij) and Qkk = Sgn(ﬁkk), with Oéij = biaji/a“' — bj = (ARZ)J — bj and
Brr = (AQg )k — by.. Here R; is the equilibrium on the x;-axis, and Q is the
positive equilibrium on the plane of z; = 0.

If Q33 = =1,Ri12 = —1,R13 = —1,Ry1 = —1,Ro3 = 1,R31 = 1,R3p =
—1, then the system (1) belongs to class 29 in Zeeman'’s classification.

Consider the 3-dimensional competitive L-V system

z; = i [A(E — x)]4, 1=1,2,3, (2)
where
2 29
A=(aj)=| &5 1 p

9 79 181
100 6 36

with two positive parameters p and A. A necessary condition (see [9]) that
A has a positive real eigenvalue and a pair of purely imaginary eigenvalues
is

det(A) = (A1 + Az + Asz) - trA,

3
where tr(A) = >0, aii, Al = agazs — agzase, Az = ajjasz — ai3as;

and As3 = ajjase — ajsas;. Then a simple calculation yields that p =
148137475 11422593 _ s _

100576061 — 100c76oaa N Let yi = 1 — i, @ = 1,2,3, and set z = Ty, then
system (2) is transformed to a new one whose linear part is in the block

diagonal form

_ 632955  156919212655475 _ 11422593 A 0

z1
46118 255200938877256. _ 100576964
linear vart — 9473544 632955 0 -
part =1 951752950 846118 2
0 0 289 z
36 3
where y = col(y1,¥2,3), 2 = col(z1, 22, 23), and
27 253 148137475 _ 11422593
136 36 100576964 — 100576964

340041807 _130300794949)\ 387 _ﬁ @)\ 19109734275 4 11702860525/\
201153928 201153928 26 6 2615001064 1810385352

4



This can be reduced to the 2-dimensional case by computing the center
manifold

23 = F (21, 22) = fa(21,22) + f3(21, 22) + fa(21, 22) + h.o.t.,

where f; = Z;’:O Cij 21" 729, and h.o.t. denotes the terms with order greater
than or equal to five. Solving for the ¢;;’s and substituting by appealing to
the method in [8] one obtains a rather complicated and lengthy expression
of the first focal value LV, and the second focal value LV5:

Ji(A) g1(\)
Lvy = , LVa = )
'R0 92(N)
where
fl(/\) = —7139120625(588761603083785384127036661508498136883449032)\4

—106455914322289196814231211749634245778787T7716A3
+58800212557536279681971948183832470586407248122)\2
—1101389478200010951301095794163405443768451794 75\
+105100051109054286534963651334843321925555528125),
f2(A) = 3937373499268036(153302801402250836060884765780160734488\3
+40989603583253410085518837697636475507225)\2
+3185752890442594033776136333117816292625000
+56932577068027366681632696744684683338250000),

and g1(A) is a polynomial of 14 terms with degree 13 and g2(A) is a polyno-
mial of 13 terms with degree 12.

We computed LV, and LVs as a rational number using the computer
algebraic system Maple. In the following, we choose a = 9.229462, b =
9.229464. A straightforward calculation yields that LV; has a unique root
Ao € (a,b) and LV; > 0 for X € (a, A\g), LVi <0 for A € (Ao, b).

Moreover, LVa > 0 for A € (a,b), det(A) < 0 for A € (a,b), and p =
WBLITITS — L2298 X > 0 for A € (a,b). It follows that for A € (a,b) system
(2) is a competitive system that satisfies the condition of the eigenvalues,
that is, for A € (a,b) the equilibrium E of system (2) has a negative real
eigenvalue and a pair of purely imaginary eigenvalues.

Since for any A € (a,b), Q33 = —1, Rj2 = —1, Rj3 = —1, Rg; = —1,
Ros =1, R31 = 1, R3a = —1, the system (2) belongs to class 29 in Zeeman’s
classification.

Now, we can construct three limit cycles for system (2). We have already
shown that there exists A\g € (a,b) such that LV; = 0 and LV, > 0. This




implies that FE is repelling on its center manifold (which is on the carrying
simplex ¥). On the other hand, it is easy to see that the system (2) is
uniformly persistent. Then it follows from the Poincaré-Bendixson theorem
of the 3-dimensional competitive system that there exists an asymptotically
stable limit cycle on the carrying simplex . To obtain the second limit
cycle, perturb Ag to become slightly larger so that LV; < 0 and adjust p
such that yu = }égé%ggi — 11010452726599634 A which keeps the linear part of the system
(2) in a center-focus form, then the second limit cycles bifurcates. In order

to obtain the third limit cycle, we need the following lemma.

Lemma 2.1 Consider the following matriz

129
—227 —55 A
Ae=| —155 -1 -np—c¢
y 136
9 19 181
100 6 36

with two real parameters A\, €, where p = iégé%ggi — 11010452726599634>" e > 0.

Then there exists an €9 > 0, such that the real part of the conjugate
complex roots of Ay, is positive for each X € (a,b) and 0 < e < &g.

proof. The characteristic equation of matrix A . is

X -

26 _
—% —1-A —p—e |=0,
_99 79 _181 _ Y
100 6 36
which implies
< 289, < -
(}\ + %)()\2 + )\0) + cpe = 0,

- 170771 99 y 79, 79 _ 148137475 _ 11422593 4461929
where Ao = J5555 — 1002~ 6 4~ 65> # = T00576064 — 100576064 €0 = 38700 -

We take g = ﬁ. Then g € (1.2,1.5) for all A € (a,b), € € (0,<0).
We claim that there exists a positive constant o € (0, 2¢) (where € € (0,¢¢))
such that

< 289 -5 < - 289 - < < 289
A+ 5N+ X)) +eoe= A+ o +a) (AN —ad+ X+ a5 +a)). (3)
36 36 36
To prove the claim, we only have to prove that there exists a € (0, 2¢) such

that

289 - 289 289 _
— A — =—A .
(e +a)0o+ a5 +a) = =0 + e
In fact, set
289 - 289
p(z) = (% +2)(Ao + l‘(% + ).



Then
gO(O) 289)\0 < cpe + 289)\0,

o(2) = (289 +2¢)(Xo + 25(289 +2€)) > coe + BN,

where ¢ € (0,e9). By the Intermediate Value theorem, there exists o €
(0,2¢) such that () = coe + 32 Ao, that is, (32 + @) (ho + a(35 + @) =
29 X\o + coe, hence the claim is true. The lemma follows directly from (3)
and a>0. 1

Now we return to the existence of the third limit cycle. Changing A, o to
Ay (e € (0,g9)) so slightly that the former two limit cycles are kept intact,
it follows from Lemma 2.1 that F undergoes a supercritical Hopf bifurcation
which implies that E will be surrounded by a new limit cycle which is the
smallest of the three existing limit cycles.
Remark 2.1. The process of our construction is very artificial and technical.
We should admit that the parameter in our example where three limit cycles
coexist is extremely small (just in an interval with length 2 x 1076). They
would be impossible to find by numerical integration. Since the second
focal value seems to be closely related to the center problem (see [2]), we
conjecture that the maximum order of a focus would be 2 and the maximum
number of limit cycles in the 3-dimensional L-V competitive systems is 3.

Acknowledgements. The authors are very grateful to two anonymous
referees for valuable corrections, comments and suggestions which consider-
ably improved the presentation of this paper.

References

[1] M.L. Zeeman, Hopf bifurcations in competitive three-dimensional
Lotka-Volterra systems, Dynamics and Stability of Systems, 8, 189-217,
(1993).

[2] J. Hofbauer and J.W.-H. So, Multiple limit cycles for three dimensional
Lotka-Volterra Equations, Appl. Math. Lett., 7, 65-70, (1994).

[3] J. Hofbouer and K. Sigmund, “Evolutionary Games and Population
Dynamics”, Cambridge University Press, Cambridge, (1998).

[4] M.W. Hirsch, Systems of differential equations which are competitive
or cooperative I1I: Competing species, Nonlinearity, 1, 51-71, (1988).



[5]

[10]

[11]

H.L. Smith, Monotone Dynamical Systems: An Introduction to the
Theory of Competitive and Cooperative Systems, Math. Surveys
Monogr., Vol. 41, Amer. Math. Soc., Providence, (1995).

Y. Wang and J. Jiang, Uniqueness and attractivity of the carrying sim-
ples for the discrete-time competitive dynamical systems, J. Differential
Equations, 186, 611-632, (2002).

P. van den Driessche and M.L. Zeeman, Three-dimensional competitive
Lotka-Volterra systems with no periodic orbits, SIAM J. Appl. Math.,
58, 227-234, (1998).

Z. Lu and Y. Luo, Two limit cycles in three-dimensional Lotka-Volterra
systems, Computer and Mathematics with Applications, 44, 51-66,
(2002).

D. Xiao and W. Li, Limit cycles for the competitive three dimensional
Lotka-Volterra system, J. Differential Equations, 164, 1-15, (2000).

Z. Lu and Y. Luo, Three limit cycles for a three-dimensional Lotka-
Volterra competitive system with a heteroclinic cycle, Computer and
Mathematics with Applications, 46, 231-238, (2003).

G. Butler, H.I. Freedman and P. Waltman, Uniformly persistent sys-
tems, Proc. Amer. Math. Soc., 96, 425-430, (1986).



Paper VI

Gyllenberg, M. and Yan, P, Necessary and sufficient condi-
tions for oscillations and centers of generalized Liénard sys-
tems, (submitted).






Necessary and Sufficient Conditions for
Centers and Oscillations of
Generalized Liénard Systems

Mats Gyllenberg® and Ping Yan® ® *

¢ Department of Mathematics, University of Turku,

FIN-20014 Turku, Finland

b Rolf Nevanlinna Institute, Department of Mathematics and statistics,
P.O. Box 68, FIN-00014 University of Helsinki, Finland

Abstract: In this paper we study the second-order nonlinear differential
systems of Liénard-type & = ﬁ[h(y) —F(2)], y = —a(x)g(x). We establish
necessary and sufficient conditions to insure that all nontrivial solutions are
oscillatory and the origin is a center by using a nonlinear integral inequality.
Our results substantially extend and improve previous results known in the

literature.

Key words: Generalized Liénard system, nonlinear integral inequality,
oscillation, center.

*Corresponding author



1 Introduction

This paper is concerned with the centers and oscillations of solutions of a
generalized Liénard system of the type

dz 1
dy
) 1)

The system (1) has in recent years been the object of intensive studies with
particular emphasis on the asymptotic behavior of solutions (see [13, 20,
25]), because it can be considered as a natural generalization of the Liénard
System

e )
] ¢l

As the system (2) appears in many mathematical models in physics, engi-
neering, chemistry, biology, economics, etc., it naturally has been studied by
a number of authors; many results can be found in the books [2, 11, 14, 21,
34, 35, 36].

It is well known that system (1) is of great importance in various ap-
plications, many other systems can be transformed into this form. Hence,
qualitative and asymptotic behavior of this system and some of its exten-
sions have been widely studied by many authors. To study the oscillation
of solutions of (1), as discussed in some recent papers (see [5, 8, 13, 15, 24,
25, 27, 29, 30, 31]) with a(x) = 1, for the right half plane, a significant
point is to find conditions ensuring that all positive orbits 41 (P) (where
P = (0, p) with p > 0) intersect the characteristic curve h(y) = F(x) and
then cross the negative y-axis; this property of v (P) plays an important
role in the analysis of the center, oscillation, asymptotic stability and bound-
edness conditions of (1). There have been many works in this direction in
which sufficient conditions to obtain the above mentioned property of v+ (P)
were given. For example (see [3, 4, 9, 10, 18, 17, 19, 28, 35]), no solution
of (1) with h(y) = y and a(z) = 1 approaches the origin directly in the
right half plane (i.e., in a nonoscillatory way) if one of the following con-
ditions is satisfied (in the following, f(z) := F'(x) if F(x) is continuously
differentiable and G(z) := [ g(s)ds):



(1) (McHarg [18]) f(z) > 0 for z > 0 and there exist £ > 0 and a > 0
such that
f(z) < kg(z) for 0 <z <a.

(2) (Wendel [28]) There exist & > 0 and a > 0 such that
0< f(z) < kg(z) for 0 <z < a.
(3) (Nemyckii and Stepanov [17]) There exist a > 1 and a > 0 such that
f(x) >0,af(x)F(x) < g(x) for 0 <z < a.
(4) (Filippov [3]) There exist 0 < 8 < 8 and a > 0 such that
F?(z) < BG(z) for 0 <z < a.

(5) (Opial [19]) There exist a > § and a > 0 such that

* g(u)
alF(z)| < / du for 0 <z < a.
o |[F(u)]
(6) (Hara and Yoneyama [9], Hara, Yoneyama and Sugie [10], Sugie [22])
If one of the following conditions holds:

(i) there exists a positive sequence {x,} such that z,, — 0 as n — oo
and F(z,) <0 for n > 1;
(i) There exist o > + and a > 0 such that

1 (" g(w)
F(z) >0, F(:n)/o F(u)dUZOz for 0 <z < a.

(7) (Yu [35]) There exist a > 0, k1 > 0 and k2 < 0 such that
(z)

ko < ——= <k forO<z<a.
(z)

Our investigation in this paper shows that condition (6) is much weaker
than condition (4) (see Remark 5.5 in this paper). The problem concerning
the oscillation of solutions of (1) with a(x) = 1 has been studied by some
authors (see, for example, [15, 30] and the references cited therein). Li and
Tang [15] discussed the oscillation of solutions of (1) with a(z) = 1 requiring
the existence of h”(y) and A'(0) > 0. Yan and Jiang [30] proved that the
solutions of (1) with a(xz) =1 are oscillatory under the condition A'(0) > 0.
But the problem of what happens when A’/(0) = 0 or h/(0) = co remains

Q [



unsolved. In the present paper, no restrictions on the differentiability of h(y)
are required. We give necessary and sufficient conditions for all nontrivial
solutions of (1) being oscillatory. Our theorem can be applied to system (1)
even for h'(0) = 0, h'(0) = oo and lim|y|_, F'(x) sgn x = —oo. Our results
substantially extend and improve some results known in the literature.

Another purpose here is to develop a center theory for the system (1).
This work was motivated by the papers of Hara and Yoneyama [9] and Sugie
[25], in which a detailed analysis of center properties was given for system
(2). We will follow closely the presentation of Hara, Yoneyama and Sugie,
and show that all of their results on this subject can be generalized to (1).

The technical tool of this paper is based on a nonlinear integral inequality
and a phase plane analysis. Also the methods for Liénard-type systems,
especially those developed by Villari and Zanolin [27], Hara and Sugie [8],
and Sugie and Hara [23] will be applied in our paper

The organization of this paper is as follows. In Section 2 we agree on
some notation, present assumptions and some lemmas which will be essential
to our proofs. In Section 3, we give some sufficient conditions of a local center
for (1). In particular, we point out that the results of [37] in Section 3 are
indeed corollaries of Hara and Yoneyama [9] and Sugie [25]. In Section 4,
we give some sufficient and necessary conditions of a global center for (1).
Moreover, we also point out that the results of [37] in Section 4 are corollaries
of Sugie [25]. In Section 5 we give sufficient and necessary conditions for the
oscillation of all solutions of (1). Some examples illustrating the results are
also given in this paper.

2 Notation and Preliminaries

We consider the generalized Liénard system

dx 1
dy
U —a(z)g(z), (3)

where F(x), g(z), a(x) and h(y) are continuous real functions defined on R
satisfying:

(Ao) F(0)=0, a(z) > 0 for z € R, zg(z) > 0 for = # 0;

(A1) yh(y) >0 for y # 0, h(y) is strictly increasing and h(+oo) = £o0.



These assumptions guarantee that the origin is the only critical point of (3).
We also assume that the initial value problem always has a unique solution.

We call the curve h(y) = F(z) the characteristic curve of system (3).
We write v (P) (resp., v~ (P)) the positive (resp., negative) semiorbit of
(3) starting at a point P € R2. For the sake of convenience, we denote

Dy ={(z,y): x>0, h(y) > F(x)}, D2 ={(z,y) :2>0, h(y) < F
Dy ={(z,y) :2 <0, h(y) < F(2)}, Ds={(z,y):2<0, h(y) > F(z)}.

F,(z) = max{0, F(z)}, F_ (x) maX{O F(x)},
— [ 2(5)g(s)(1 + Fy()) s, T_(2) = [ a?(s)g(s)(L + F_(s))~'ds.
Y+ ={(0,y) : y >0}, Y‘Z{(O,y):y<0},

Ct ={(z,y) 12 >0, h(y) = F(x)}, G(x) = [ a*(s)lg(s)lds.
Then by (Ap), G(z) is strictly increasing, and therefore, the inverse function
G~ H(w) of w = G(x) exists.
Throughout this paper we shall suppose that the following conditions
hold:

(A2) [y~ a®(s)g(s)ds = [~ a*(s)g(s)ds;

(43) F(G™(~w)) = F(G Y (w)) for 0 < w < M,
where M = min{G(c0), G(—o00)} (M may be c0).

If F(z) and a?(x)g(x) are even and odd functions, respectively, then it
is obvious that (A3) and (As) are satisfied and that all the orbits of (3)
have mirror symmetry about the y-axis in the phase space. Moreover, for
example, if F(z) = 3z, a(zr) = 1 and g(z) = 2z for z > 0, and F(x) =
—3v2x, a(r) = 1 and g(z) = 4x for x < 0, then (As) and (Aj3) are also
satisfied.

Firstly, employing an argument similar to that in [9, 22], we show that
under the conditions (Az) and (As), the orbits of (3) have deformed mirror
symmetry about the y-axis.

Lemma 2.1 Suppose that the conditions (As) and (As) are satisfied. If an
orbit of (3) starting from a point A(0,ya) with ya > 0 passes through a point
B(0,yp) with yp < 0, then it reaches the point A again.

proof. Consider an orbit of (3) which starts from a point A(0,y4) with
ya > 0 and passes through a point B(0,yp) with yp < 0. We denote this



orbit by T'(x,y) and write T1(z,y) = {(z,y) € T : * > 0} and T(z,y) =
{(z,y) € T : 2 < 0}. Let K = [~ a®(z)g(z)dz (K may be co) and let the
mapping ¢ : (z,y) — (u,v) defined by
" 2G(x) for >0
—/—2G(z) for z <0,
vo= .
Then we can see that the image @, (u, v) of T1(z,y) is an orbit of the system
v = h(v)— F*(u),

/
voo= —u,

defined on (—v2K, v2K) x R, where
F*(u) = { F(Gj(%uf)g for 0<u< 2K
F(G7Y(—=3u?) for —V2K <u<0.
In fact, for any point (u,v) € o7y,
du _ d*(2)g(x) h(y) - F(=)

v\ 2G@) —d(x)g(@)
hv) = F*(u)

—Uu

Note that the curve o7, (u,v) contains the points A and B. It follows from
(As) and (A3z) that F*(u) is an even function on (—v2K, v/2K). Hence,
the curve o7, (—u,v) is also an orbit of (3) which contains the points A and
B. Let T3(x,y) be the inverse image of pr, (—u,v) under the mapping ¢.
Then for any point (z,y) € T3,

dr  /=2G(@) h(v) - F(G™Y(%))

dy a*(z)g(x) —u

h(v) — F(x)

—a*(x)g(x)

Thus, T5(x, y) is an orbit of (3) which starts from the point B and arrives at
the point A. Since the solutions of (3) are unique, T5(x,y) and T5(z,y) coin-
cide, and hence the orbit T'(x,y) reaches the point A again. This completes
the proof.

Remark 2.1. If the condition (As) holds for w > 0 sufficiently small, then
all the orbits of (3) near the origin have deformed mirror symmetry with
respect to the y-axis.



Lemma 2.2 Let Y(x), ¢(z) be positive continuous functions in 0 < a <
x < b and let w(u) be a positive increasing continuous function for u > 0,
and let Qu) = [} % exists for u > 0 with (0) = 0. Then for X\ > 0 the
inequality

Y(z) > )\/x@b(t)w(Y(t))dt for a <z <b (4)
implies the inequality
QY (z) > )\/x@b(t)dt fora <z <b (5)
proof. Define
V() = A / (WY ($)dt fora < <b. (6)

Then (4) can be restated as Y (x) > V(z). Because w(u) is increasing, this
may be rewritten as follows

wY (z)) = w(V (),

V' (x
Sy = ()

for a < x < b. By making use of the notation Q(u), we have

dQ(V(x))

. > Mp(z) fora <z <b. (7)

Now, integrating from a to z, we get by (7),
V() - V(@) 2 [ vl
Since V' (a) = 0, it follows that
V(@) > A / " w(t)dt fora <z <b. (8)

Because Y (x) > V(z) for a < x < b, and Q(u) is increasing, we obtain by
() )
QY (z)) > )\/ Y(t)dt for a <z <b.

This completes the proof.



3 Conditions of a Local Center

Definition 3.1. The origin is called a local center for (3) if all the orbits of
(3) in some neighbourhood of it are closed curves surrounding it.

Now, we state the assumptions on (3). The assumption (A4p) through
(As) have been presented in Section 2.

The assumption which guarantees that the origin is a local center of
system (3) is given by (A4). The system (3) is said to satisfy (A4) if one of
the following conditions holds:

(A4)1 there exists a positive decreasing sequence {z, } such that z,, — 0
as n — oo and F(z,) =0 for n > 1;

(A4)2 there exist constants m > 0, p > 0 and d; > 0 such that |h(y)| >
m|y|P for 0 < |y| < &1, and

|F(GH(w))| < aw 1 for 0 < w < 1,

P
where 0 < a < m(1 —I—p)(%) (+r) , and the notation 0 < w < 1 denotes w
sufficiently small;

(A4)3 there exist constants a > 1 and d, > 0 such that [F(z)| > 0 for
0 < x < 09, and for any fixed real number k > 1,

IMS 1—1 a x or "
/0+ 17 (s)| d Zkh (ka|F(z)]) for 0 <z <1,

where h~!(u) is the inverse function of u = h(y).

Lemma 3.1 If conditions (Ag), (A1) and (A4) hold, then for any P =
(an yO) € C+;

(i) v~ (P) must intersect Y at A0, ya) with ya > 0;

(i) vT(P) must intersect Y~ at B(0, yp) with yg < 0.

proof. We only prove (ii); (i) can be proved in a similar way.

Let P = (x9, yo) € CT and (z(t), y(t)) be the solution of (3) with
x(0) = xo, y(0) = yo. By the uniqueness of the solutions of (3), we only
have to show that every orbit v (P) of (3) passing through P = (x¢, yo) (0 <
xo < 1) intersect Y~ at B(0, yg) with yp < 0. Since limy_,_ h(y) = —oo,
the system (3) has no vertical asymptote in the fourth quadrant. Therefore,



" (P) must intersect the y-axis at B(0, yg) with yg < 0. We still have to
show that yp # 0. We do this separately for the different cases of (Ay).

Case (A4)1: It is obvious in this case.

Case (A4)2: In this case the proof is completely analogous to the proof
of [13, Lemma 3.1} or [29, Theorem 2.4].

Case (A4)s3: It follows from (Ap) that the orbit 4 (P) of (3) does not
touch the characteristic curve at any point (z, h='(F(z))) with 0 < x < .
Thus, we consider only the region {(z,y) : © > 0, h(y) < F(z)}.

If F(z) < 0 for 0 < x < xg, it is clear that yp < 0. Suppose that
F(z) > 0 for 0 < = < z¢ and that the conclusion does not hold. Then
there exists a point P € CT such that v*(P) does not intersect Y. Let
(x(t), y(t)) (0 <t < o0) denote the solution of (3) which passes through
such a point P. Then v (P) must be contained in the first quadrant, and
x(t) decreases and y(t) decreases as t is increasing. Since the origin is the
unique equilibrium of (3), lim;_o z(¢) = lim¢— y(t) = 0. The solution
(x(t), y(t)) defines a function y = y(x) on 0 < x < xp, which is a solution
on 0 < z < xg of the following equation

by a@)el)
dr = hy) - F(o) ©)

It follows from lim, o+ y(x) = 0 that y(x) > 0 for 0 < = < zy. By as-
sumption (A4)3, there exist o > ; and z1 € (0, o) such that F(z) > 0 for
0<z<ap, and

IMS “(aF(z or r<ux
/0+ ) ds > h™ aF(z)) for 0 <z < 1. (10)

Now, we restrict our attention to the interval (0, x1]. Putting H;(u) =
Iy h(y)dy, we have by (9), for any 0 < e < 1,

F(s) = h(y(s))

r a?(s)g(s
Hiy(e) ~ Hiye) = [ 1 (y(s) =9y
> [ hipten TS g,



for e < x < x1. Hence

z a?(s)g(s
i) > [ <hoH11><H1<y<s>>}2§)”ds

for e < x < x7. It follows from Lemma 2.2 that

T 2
Hy(Hy(y(x)) > / Mds fore <z < aq, (11)
e F(s)
where Ha(u) = [} —%— ho H . Changing variables H; '(t) = 7, it is easy to

see that HQ( ) =H; (u ) By (11), we have
y(z) > /x aZ(ffgg)(s)ds for e <o < ;. (12)

(i) If [o3 & ;f()sg)(s) ds = oo, we reach a contradiction by (12).

(i) If [ “ ;f()g)(s) ds < 0o, we see from (12) that

* a®(s)g(s)
> ——=2ds for 0 < z. 13
y(:::)_/0+ F(s) s for 0 <a <ua; (13)
By virtue of (10) and (13), we have y(z) > h~'(aF (z)) for 0 < = < 1.
Because h(y) is strictly increasing, we obtain h(y(x)) > aF(z) for 0 < z <
x1. Since y = y(x) is under the characteristic curve h(y) = F(x), we have
1 <a <1 Let a; = 1—a, then we get that F'(z) — h(y(z)) < oy F(z) for
0 <z < x1. In a similar way, for any 0 < ¢ < 1, we have

z a?(s)g(s
i) - mE) = | h(y(s))F(“chzs

s) = h(y(s))
I a*(s)g(s)
> 071 . h(y(s)) F(S) ds
for ¢ < x < x1. Therefore
* a’(s)g(s
Hy(y(a) > (j 5 h(y(s»(ng“ds

10



for e <z < z;. By Lemma 2.2, we have

L[ @e0s)

M) > o [ S
L[ @e0s)

wo) = oo S

for e < x < x1. Hence
1 x 2
y(z) > / Mds (14)

for e <z < x;. By assumption (A4)s, there exists o € (0, x1) such that

T 2
/0+ a(;,gg)(s)ds > (2 F W) (15)
for 0 < & < xg. By virtue of (14) and (15), we have y(z) > h_l(o%F(a?)) for
0 <z < z9. Because h(y) is strictly increasing, we get h(y(z)) > - F(x)
for 0 < = < z3. Thus, F(x) — h(())<a2F()w1tha2—1—&
Repeating this procedure, we obtain two sequences {x,} and {ay} such
that o, = 1 — 3% and F(z) — h(y(z)) < apF(z) for 0 < z < . If
a, < 0, we have a contradiction. Suppose a,, > 0 (n = 1,2,...), then
(an—an_1)(1—an) = —aptan—a < —(ap—3)? <0, {a,} is decreasmg, and
hence {a,} converges to some real number A. On the other hand, A =1—§
and o > i show that A is a complex number, which is a contradiction. This
completes the proof.

From Lemma 2.1 and Lemma 3.1, we deduce the following theorem.

Theorem 3.1 If conditions (Ag), (A1), (A3) and (A4) hold, then the origin
is a local center of system (3).

From Theorem 3.1 and Remark 2.1, we obtain the following result.

Corollary 3.1 If conditions (Ag), (A1) and (A4) hold, and there exists
Ky > 0 such that

(Azx)  F(G7'(—w)) = F(GH(w)) for 0 <w < Ky,

then the origin is a local center of system (3).

11



If h(y) =y, a(x) = 1, then Corollary 3.1 gives the results of Opial [19],
Hara and Yoneyama [9] and Sugie [22] as follows.

Corollary 3.2 Let h(y) = vy, a(z) = 1, and conditions (Ap) and (As) (or
(Asx)) hold, and let either of the following two conditions hold.

(Asx)1  there exists a positive sequence {x,} such that x, — 0 as n — oo
and F(x,) =0 forn>1;

Ayx)o there exist constants o > + and &3 > 0 such that |F(z)| > 0 for
1
0 <z <9d3, and

“ g(s)
ds > «o|F(z)| for 0 <z < §3.
| s = olF() :

Then the origin is a local center of system (3).

Remark 3.1. If there exist 4 > 0 and a continuous function r(z) such that
forO0<z < dy

(1) r(z) = [F(z)] >0,

2) & Jok 89ds > a >,

X x
/ 9(s) ds > / @ds > ar(x) > o|F(z)|
o+ [F(s)] o+ 7(5)

for 0 < & < d4. Obviously, the condition (A4*)2 is satisfied. Hence, the
results of [37] in Section 3 are corollaries of Corollary 3.2. Thus, Theorem
2.1 and Theorem 2.2 of [35] are corollaries of Corollary 3.2. Moreover, the
results of McHarg [18] and Wendel [28] in Section 1 are all results of Corollary
3.2.

then

Remark 3.2. The condition (A4)s3 is a generalization of the following con-
dition (Agx)s.

(Ayx)s there exist constants ap > 0 and d5 > 0 such that h(y) is continu-
ously differential on [0, d5], |F/(z)] > 0 for 0 < z < 5, and

T a?(s)g(s)
——"ds > qp|F(x)] for 0 <ax <1,
Lo e

12



where @ = 1/(0)ag > 3.

In fact, if the condition (A4*)s is satisfied, then there exist constants
0<d< 5 and%<o?<asuchthath’(y)>%for()gygg,andforany
fixed real number k£ > 1, we have

1, 1y, 1,
Pk H(ka|F(z)]) = zh H(ka| F(2)]) — h7H(0)

Kk
1dh™!

- 1 du(“) e kalF(z)], 0 < € < ka|F(x)]

- m < ap|F(z)| for 0 <z < 1.

Thus the condition (A4%)3 implies the condition (Ay4)s.
From Theorem 3.1 and Remark 3.2, we obtain the following result.

Corollary 3.3 If conditions (Ayp), (A1) and (As), and either of the con-
ditions (A4x)1 and (Agx)3 hold, then the origin is a local center of system

(3).

Remark 3.3. If a(xz) = 1, Corollary 3.3 reduces to Theorem 2.3 of [29].
Moreover, we also have

Corollary 3.4 If conditions (Ap), (A1) and (As«) hold, and suppose
(C1) there exists K > 0 such that yh(y) > Ky?,
(Ca) there exist a > 0 and r(z) € C%(R), for 0 < x < a, we have

(1) r(=) = |F(z)] >0,
xr a2 S S
() gl sz a>

Then the origin is a local center of system (3).

proof. For any fixed real number &, we have

L) L 1 [T ase(s), o
\F<x>|/o F(s) 27'(55)/0 s) TR

that is

xa2 s s o o .
/0 m‘“ > g |F@)l= ICLCF;((')’ = %h_l(ka\F(:r)l), 0<z< 1.

Hence the condition (A4)s in our paper is satisfied. The origin is a local
center of (3) by Corollary 3.1.
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Remark 3.4. If a(x) = 1, then the Theorem 2 of [32] is a result of Corollary
3.4.

Remark 3.5. If a(xz) = 1, then by condition (A4)2, Lemma 3.1 is seen to
be a generalization of Theorem 4.6 and Theorem 4.12 of Sugie [22]. But our
result holds also for 0 < p < 1.

Example 1. In system (3), we take a(z) = 1, h(y) = y*sgn y, and

T\T for x>0 [ x for x>0
F(z) _{ —zV/8x2 for z <0, g(x)—{ 2z for x <0.

Then it is easy to prove that [, ™ g(z)dz = [;° g(z)dz = oo, and for 0 <
w < 00,

PG (~w)) = F(—m — V8w = F(v2w) = F(G™'(w)).

It is also clear that f
number k > 1,

“9(s)
/0+F( )d >kh Y(kF(z)) for 0 <z <1,

thus (A4)2 is satisfied. Then the origin is a local center for (3) by Theorem
3.1.

Example 2. In system (3), we take a(z) =1, h(y) = v/|y|sgn y, and
3x for >0 2z for x>0
F(x) = { —3v2z for x <0, g(x) = {433 for x <O.

Thenf0 da:—fo x)dr = 0o, and for 0 < w < oo,

PG (w)) = F(—\/@ — 3 = F(v/) = F(G(w))

Hence (Ag), (A1) and (As3) are satisfied. It is easy to prove that [, lgp((i)) s

%IL‘ for x > 0, and for any fixed real number k > 1,

? g(s) 1
[ 8tz bt wre) foro<r <,

therefore (A4)2 is satisfied. Then the origin is a local center for (3) by
Theorem 3.1.
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4  Conditions of a Global Center

Definition 4.1. The origin is called a global center for (3) if all orbits of
(3) are closed curves surrounding it.

The final assumption presented here is to guarantee that all positive
(resp., negative) semiorbits v (P) (resp., 7~ (P)) for P € Dy, (resp., P €
Ds) intersect C'.

We say (3) satisfies the assumption (As) if both (AF) and (A7) hold.

The system (3) is said to satisfy (A3) if one of the following conditions
holds:

(A;_)l limg oo F(2) # —00;

(Af)2  limy_ooF () = —o0, and there exist 8 > % and N; > 0 such
Ehat F(z) <0 for x > Ny, and for any fixed k > 1 and b > Ny, there exists
b > b satisfying

T a’(s)g(s) 1, b
/b e < Y(kBF(z)) for @ > b.

The system (3) is said to satisfy (A;) if one of the following conditions
hold:

(A5 )1 A2B-F(x) # oo

T—00

(A7 )2 im_p(2) = oo, and there exist § > % and N; > 0 such that

r—00

F(x) > 0 for x > Ny, and for any fixed k > 1 and b > Ny, there exist b > b
satisfying

" @(s)gls), 1, i
> _h > b.
/b F(s) ds > k:h (kBF(z)) forx>b
Lemma 4.1 Suppose that system (3) satisfies (Ag) and (A1). Then
(i) If (AZ) holds, then for any P € Dy, v (P) intersects CT if and only
if
lim, 0o (P—(z) + F(z)) = oc; (16)
(ii) If (A5) holds, then for any P € Do, v~ (P) intersects C™ if and only
if
lim, oo (T (z) — F(2)) = oc. (17)
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proof. We prove only (i); (ii) can be proved in a similar way.

Sufficiency. Suppose the conclusion is false. Then there is a point P =
(z0, yo) € Dy such that y+(P) does not intersect CT. Let (z(t), y(t))(t >
0) be the solution of (3) passing through such a point P whose maximal
existence interval is [0, w;). Note that 2/(t) > 0 and y/(t) < 0 in the
region D1, hence x(t) is increasing and y(t) is decreasing as t is increasing.
Suppose that z(t) is bounded, then (z(t), y(t)) stays in the region {(z,y) :
0 <z < Ky, and h(y) > F(x)} for some K; > 0. Hence it must intersect
the characteristic curve, which is a contradiction. Therefore x(t) — oo as
t— wi.

Case 1: Suppose lim, ... F(z) = oo, that is, there exists a sequence
{zn} such that z,, — co(n — o0) and lim,,_,~ F(x,) = 00, then (z(t), y(t))
must intersect the characteristic curve, which is a contradiction.

a?(z)g(x)

Case 2: Suppose fooo 177 (2)

dxr = oo, then

y(t) —m = — /0 a(x(s))g(x(s))ds

z(t) (
= ‘/xo h(yo) + F_(€)

as t — wy. Then the orbit of the above solution can be considered as a
function y(z) which is a solution of the equation (9), and y(z) — —oo as
x — 0.

Case (As)1: There exist ¢ > 0 and a sequence {x,} such that z, —

oo (n — o0), and F(x,) > —c, hence (z(t), y(t)) must intersect the charac-
teristic curve, which is a contradiction.

Case (As)2: There exists b > Nj such that F(z) < 0 and y(z) < 0 for
x > b. Since y(x) is a solution of (9), putting Hz(u) = [ h(y)dy for u <0,
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we have

Hs(y(z)) — H3(y(b)) =

for x > b. Hence

r a?(s)g(s
Ha(y(e)) = [ (ho Hy ) (Haly(9) "0 ds

for x > b. It follows from Lemma 2.2 that

z 2
Hy(Hs(y(z)) > / )96) 1 for > 0, (18)
b —F(s)
where Hy(u f0+ STOR Changing variable H; ' (t) = 7, then Hy(u) =
—H; ' (u), by (18), 1t is easy to see that
* a?(s)g(s)
y(x </ ds for x > b. 19
@< [ 5 (19)

From the assumption (A7 )2, there exist 3 > % and by > b such that

* a’(s)g(s) -
/b F(s) ds <h YBF(z)) forz>by. (20)

By virtue of (19) and (20), we have y(z) < h™1(3F(z)) for z > b;. Because
h(y) is strictly increasing, we obtain h(y(z)) < BF(x) for x > b;. Hence
F(x) — h(y(z)) > B1F(x) for x > by, where 54 = 1 — 3. By a similar
argument, we have

Hy(y(a)) — Hy(y(br)) — /mh(y(s))Fg(zds

v
| —
\H
>
—
<
—
w
~—
N—
IS)
[
—
®
SN—
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—
®
N—
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for x > b1. Hence

r a’(s)g(s
Hfo@) > 5 [ (e 17 () s

for x > b1. By Lemma 2.2, it can be shown that

1 (" a*(s)g(s)
Hy(Hs(y(x)) = B /b1 T(S)d&
1 [T a*(s)g(s)
v < o [ (21)
for x > b1. From the assumption (A;‘)z, there exists by > b; such that
v a*(s)g(s) 1, B
/b1 st < G1h (EF(SU)) for = > bo. (22)

By virtue of (21) and (22), we have y(z) < h_l(gF(fL‘)) for x > by. Thus

F(x) — h(y(z)) > PoF(x) for © > by, where B3 = 1 — % Repeating this

procedure, we obtain two sequences {b,} and {3, } such that 3, =1 — ﬁnﬁ_ -
and F(x) — h(y(x)) > pBpF(z) for x > b,. If 3, >0 (n =1,2,...), then
{Bn} is decreasing, and {(3,,} converges to some real number A, on the other
hand A =1 — g and g > % show that A is a complex number, which is a
contradiction. Hence, 3, < 0 for some n, that is F(z) > h(y(x)) for all
x > by, a contradiction. This completes the proof of sufficiency.

Necessity. Suppose (16) does not hold. Then there exist M; > 0 and

L > 0 such that F(z) < M; for z > 0 and [}~ Cﬁ(fﬂi);q((;c))da: < 1. Suppose
(x(t), y(t)) is a solution of (3), and (x(0); y(0)) = (L, M1+ My +1) =P
where My > 0 satisfying h(M; + My) > M; + 1.

We will show that y(t) > M; + My for ¢t > 0. Suppose not. There exists
t1 > 0 such that y(tl) = My + My and M7 + My < y(t) < M; + My + 1 for
all t € [0, t1), and we have

t1
y(tl) = M1+M0+1—/
o h

a
> Mjp+My+1-— —r
= 1+ Mo + /L T4 F

This is a contradiction. Hence, 4(t) = h(y(t))—F(xz(t)) > M+1—F(x(t)) >
1 for all ¢ > 0. Thus the solution (z(t), y(¢)) is unbounded and y*(P) is
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above the characteristic curve h(y) = F(z). Thus the necessity is proved.
This completes the proof.

We now state our main result.

Theorem 4.1 Suppose that the origin is a local center of (3), and that the
conditions (Ag) — (As) and (As) are satisfied. Then the origin is a global
center of (3) if and only if (16) and (17) hold.

proof. Sufficiency. By the uniqueness of the solutions of (3) and the fact
that the origin is a local center of (3), no orbit of (3) tends to the origin.
To prove the theorem, we must show that the orbits of (3) starting from all
the points in D; (i =1, 2, 3, 4) are closed curves surrounding the origin.

Consider the orbit of (3) starting from a point (zo, yo) € Di. Then
by Lemma 4.1, this orbit intersects the characteristic curve at some point
(1, h~Y(F(x1)) with 27 > 0. It follows from (Ap) that the orbit does
not touch again the characteristic curve at any point (z, h=!'(F(x)) with
0 < 2 < zy. Since limy,_o h(y) = —oo, the system (3) has no vertical
asymptote in the fourth quadrant. Therefore, the orbit must cross the y-
axis at a point B(0, yg) with yp < 0.

By replacing t by —t, we can also see that the orbit crosses the y-axis at
a point A(0, ya) with y4 > 0. Thus by Lemma 2.1, the orbit reaches the
point A again, and so the orbit is a closed curve surrounding the origin.

By a similar argument, the orbit of (3) starting from a point in Dy, D3
or Dy is also closed, thus the origin is a global center of (3).

Necessity. Suppose that the condition (16) or (17) does not hold. Then
it follows immediately from Lemma 4.1 that the origin is not a global center
of (3). The proof of Theorem 4.1 is now complete.

If h(y) =y, a(z) = 1, then Theorem 4.1 reduces to the result of Sugie
[22] as follows.

Corollary 4.1 Let h(y) =y, a(x) = 1 and suppose that the origin is a local
center of (3) and that the conditions (Ao), (A2), (A3) and (As) are satisfied.
Then the origin is a global center of (3) if and only if (16) and (17) hold.

Corollary 4.2 If conditions (Ag), (A1) and (As) hold, and suppose

(C1) limy oo F(x) > —00, lim, .o inf F(z) < oo,

(Cs) there exists K > 0 such that yh(y) > Ky? and one of the following
conditions holds

19



(i) there exist a > 0, r(z) € C*(R), for 0 < x < a,
(1) r(z) > |F(x)| >0,
(2) 5 Jo 49ds > a >,

(ii) there exists a > 0 such that for 0 < z < a

K [" g(s) 1
7(z) /0 Pl &=2>

(iii) there exist « >0, v >0, a > 0 such that for 0 < x < a
|F(2)] < alG(x)]

where % <y <1ora<+v8K, 7:%.
Then the origin is a global center of (3) if and only if (16) and (17) hold.

proof. From Remark 3.1, it is easy to see that the condition (i) is equiv-
alent to condition (ii), by Corollary 3.4, we know the condition (A4)s is a
generalization of condition (i) and (ii).
Suppose the condition (iii) is satisfied and F(x) does not satisfy the
condition (A4); in our paper, then |F(z)| >0 for 0 <z < a1 < a.
If%<7<1,a>0,thenwehave

K (% g(s) K[ g
F<x>/o Fs)® 2 a(G(xm/o a G
= Ao C@) G,

From G(0) = 0, if a; is sufficiently small, then F( 3 Iy 1%“((2 ds > 1> 1 for
0 < z < ay, hence the condition (ii) is satisfied.
If v = %, a < V8K, then from above,

K [* g(s) K 1
ds > > —
7) /0 F(s)® = T—va? ~ 4
thus the condition (ii) is also satisfied. Therefore, the condition (Cs) implies

the condition (A4) in our paper, by Theorem 3.1 and Theorem 4.1, we know
the origin is a global center of (3) if and only if (16) and (17) hold.
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Remark 4.1. If a(xz) = 1, then Theorem 3 of [32] is a result of Corollary
4.2.

Remark 4.2. It is easy to see that Theorem 3.1 of [35], and Theorem 4.1,
Theorem 4.2, Theorem 4.4 and Theorem 4.5 of [37] are all corollaries of
Corollary 4.1, and that our results cover the corresponding results of [9].

Remark 4.3. The condition (A7) is a generalization of the following
condition (A7 )a-.

(A;_)Q* lim, oo F(z) = —o00, and there exist Ny > 0, 3y > % and Gy > 0
such that h(y) is continuously differentiable on (—oo, —Ni], h/(—y) > g—g
for y > Ny, F(z) < 0 for # > Nj and for any b > Ny, there exists b > b

satisfying
T 2
/b st < BoF(x) for x >b.

In fact, if the condition (A7 )e« is satisfied, then there exist Ny > 0,
Bo > % and 3y > 0 such that h/(—y) > % for y > Ny, and for any fixed real
number k > 1, there exists Ny > Ny satisfying kBoF(z) < —Nj for x > Na,
and

hkBoF (x)) < h(kBoF (x)) — h(kBoF(N2))

g 11y (@) = F(Na)

= kboh (§)TF($)
for 2 > No, where ¢ is between k3o F () and kByF(N3). Since lim, .o, F(z) =
—00, for any b > Ny, it can be shown that there exist i < (B < Bpand b* > b
such that h(kBoF(x)) < kBF(z) for x > b*. Because h(y) is strictly in-
creasing, we have GoF(z) < +h~Y(kBF(z)) for x > b*. Hence the condition
(Agr)g* 1mphes (A;)Q

By the same argument, it can be seen that condition (Aj )2 is a gener-
alization of the following condition (Aj )a-

(A5 )2 lim,; . F(x) = oo, and there exist Ny > 0, Fp > % and

Bo > 0 such that h(y) is continuously differentiable on [Ny, o), h'(y) > g—g
for y > Ny, F(z) > 0 for # > Nj and for any b > Ny, there exists b > b
satisfying
T a?(s)g(s) _ _
—2=2ds > BoF(x) forx>0b.
| 5 @
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Remark 4.4. If a(z) = 1, the Theorem 4.1 is a generalization of [29,
Theorem 2.1]. This follows from Remark 4.3.

Example 3. In system (3), we take a(z) =1, h(y) = |y|%sgn y and

4xsingaz for z>1

4z for 0<z<1
Fx) = —2x for —2<zx<0

2rsin fx for x < -2,

%afz for £>1

%x% for 0<zx<1
g(ﬂj) = 3 z\ 1

_Z(_§)2 for —2<x<0

—3z72 for x < -2.

Then it is easy to show that

/Ooo g(@)de = /OOO g(@)dz = g

and 5 5
5=2u for I<w<3
w3 for 0<w<1

andfor1§w<g,

6 12 3

PG (—w) = F(-s—5) = e = F(s—2) = F(G "} (w)).

Hence (Az) and (A3) are satisfied. It is also clear that [, ff_,((i)) ds = %x% for
0 < xz < 1, and that for any fixed real number k > 1,

" 9(s) l -1 T or T
/0+ F(S)dsz S (RF(2) for0 <z <1

Thus (A4)2 is satisfied. It is obvious that (Ag), (A1) and (As) are also
satisfied. Then the origin is a local center for (3) by Theorem 3.1. It follows
from Theorem 4.1 that the origin is a global center for (3).
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5 Conditions of Oscillation

In this section, we give our main result about necessary and sufficient con-
ditions for the oscillation of solutions of (3). We assume that all solutions
of (3) can be continued in the forward direction up to t = co. A solution
(x(t), y(t)) of (3) is oscillatory if there are two sequences {t,} and {7}
tending monotonically to co such that z(t,) = 0 and y(7,,) = 0 for every
n > 1.

We say that (3) satisfies the assumption (Ag) if both (Ad) and (Ag)
hold.

The system (3) is said to satisfy (Ag) if one of the following conditions
holds:

(Ad)1 There exists a positive decreasing sequence {z,,} such that z,, — 0 as
n — oo, and F(z,) <0 for n > 1;

(A$)2 There exist constants a > 1 and §; > 0 such that
F(z)>0 for 0<ax <4y,

and for any fixed real number k > 1,

””L(x)g(s) S 1 “(kaF(x or T
/O+ o) ds > - h™! (kaF(z)) for 0 <z <1,

where h~!(u) is the inverse function of u = h(y), and the notation
0 < x < 1 denotes x sufficiently small.

The system (3) is said to satisfy (Ag) if one of the following conditions
holds:

(Ag )1 There exists a negative decreasing sequence {x,} such that x,, — 0 as
n — oo, and F(z,) > 0 for n > 1;

(Ag )2 There exist constants a > 1 and d, > 0 such that
F(z) <0 for 0 < —x < 09,

and for any fixed real number k > 1,

/m ‘ﬂ(lf()j)(s)ds < %h—l(mF(m)) for 0< —z < 1.
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Lemma 5.1 Suppose that the conditions (Ao), (A1), and (Ag) hold. Then
for any P = (x9, yo) € CT, the positive semiorbit v+ (P) intersects the
negative y-aris.

By a similar argument, we have the following lemma in the left half
plane.

Lemma 5.2 Suppose that the conditions (Ag), (A1), and (Ag ) hold. Then
for any P = (zo, yo) € C~, the positive semiorbit v (P) intersects the
positive y-axis.

Remark 5.1. If h(y) = y and a(z) = 1, then condition (A4f)2 is the
condition (ii) of (6) in Section 1 (cf. [9, 10, 22]).

By the above discussion, the condition (Ag) is a generalization of condi-
tion (Ag) in [13], condition (Ajp) in [30], condition (Az) in [30], and condition
(C) in [15].

The final assumptions presented here are to guarantee that all positive
orbits y*(P) for € Dy (resp., P € D3) intersect C* (resp., C7).

We say (3) satisfies the assumption (A7) if both (A7) and (A7) hold.
The system (3) is said to satisfy (A7) if one of the following conditions
holds:

(A;r)l lim SUPz— 00 F(l’) 7é — 00

(A)s limsup,_ .., F(z) = —o0, and there exist 8 > + and N; > 0 such that
F(az) < 0 for > Np, and for any fixed k > 1 and b > N, there exists
b > b satisfying

/m Mds < hil(kﬂF(x)) for = > 0.
b

=

The system (3) is said to satisfy (A ) if one of the following conditions
hold:

(A7) liminf, . F(x) # oo;
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(A7)2 liminf, ._ F(z) = oo, and there exist 8 > 1 and Ny > 0 such that
F(x) >0 for x > — Ny, and for any fixed ¥ > 1 and b > Ny, there
exist b > b satisfying

*a?(x)g(s) 1 )
/—b st = %h l(kﬁF(fU)) for x > —b.

Lemma 5.3 Suppose that the conditions (Ao), (A1), and (AT) hold. Then
every positive semiorbit of (3) departing from Dy intersects the characteristic
curve CF if and only if

T—00

x 2
lim sup [/0 %ds + F(x)| = oo, (23)
where F_(x) = max{0, —F(z)}.
In a similar way, we can prove the following lemma in the left half plane.

Lemma 5.4 Suppose that the conditions (Ao), (A1), and (A7) hold. Then
every positive semiorbit of (3) departing from D3 intersects the characteristic
curve C'~ if and only if

| el g 1
lirgﬁgf [/0 mds F(z)| = oo, (24)

where Fy (z) = max{0, F(z)}.

Remark 5.2. If h(y) = y and a(z) = 1, then the conditions (A1)s and
(A7 )2 are the conditions (A7) and (A5) in [10] respectively, the condition
(AT)s is the condition (C3)q in [22].

Remark 5.3. By the above discussion, the condition (A7) is a generalization
of condition (A4) (with a(z) = 1) in [13] and condition (A3) (with a(z) = 1)
in [30]. Moreover, the condition (A7) is a generalization of condition (Ay4)
(with a(z) = 1) in [29].

We are now in the position to give our main result about necessary and

sufficient conditions for the oscillation of solutions of system (3).

Theorem 5.1 Suppose that the conditions (Ap), (A1), (As) and (A7) are
satisfied. Then all nontrivial solutions of (3) oscillate if and only if (23)
and (24) hold.
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Proof. Necessary. If either (23) or (24) is false, then Lemma 5.3 and Lemma
5.4 imply that (3) has at least one unbounded solution lying in D; or Ds.
Thus the necessity is proved.

Sufficiency. We prove the sufficiency by contradiction. Suppose that
there exist a solution (z(t), y(t)) of (3) and Tp > 0 such that x(t) # 0 for
all t > Tp. We consider the case z(t) > 0 for all ¢ > Ty. The Lemma 5.1
implies that (x(t), y(t)) does not tend to (0, 0) as t — co.

(i) suppose (z(Tb), y(Tv)) € D1, the Lemma 5.3 shows that there exist
T1 > Ty such that (x(t), y(t)) intersects the characteristic curve h(y) = F(x)
at t = T1. Then x(t) and y(t) are decreasing for all ¢ > 7). Thus there exists
Ko > 0 such that

xz(t) — Ko ast— oo (25)
y(t) = —o00 ast— oo
z(t) <z(Th) forallt>T.

For t > T}, we have

£(t) — 2(Ty) = / L (h(y(s)) - F(a(s))ds

T a(m)
tq
< / o0y (V) = i ooy {F ()}

/A
— —00 ast— oo,

which contradicts (25).

(ii) Suppose (z(1v), y(Tp)) € D2, by a similar method used in the case
(i), we can reach a contradiction. In case z(t) < 0 for all ¢t > Tp, we have also
a contradiction by an argument similar to the one above. Hence all solution
of (3) are oscillatory. Thus the proof of Theorem 5.1 is now complete.

Remark 5.4. Theorem 5.1 is a generalization of Theorem 1 in [30] and
Theorem 1 in [15], this follows from Remark 2.2 and 2.4. Our results do
not need the differentiability condition of h(y), our Theorem 3.1 can be
applied to system (3) even for A'(0) = 0, h/(0) = oo, h/(+o0) = 0, and
lim,| o F'(7) sgn z = —oo0.

If h(y) = y and a(x) = 1, by Theorem 5.1 and Remarks 5.1 and 5.2,
we have the following corollary which is the result of Hara, Yoneyama and
Sugie [10].
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Corollary 5.1 Suppose that (3) with h(y) =y and a(x) = 1 has a unique
solution, and that the conditions (Ag), (A1), (Ag) and (A7) are satisfied.
Then all nontrivial solutions of (3) with h(y) =y and a(x) = 1 oscillate if
and only if (28) and (24) hold.

Remark 5.5. In system (3), we take h(y) =y, g(z) =z, a(x) = 1, and

2z for = > %,
2x3nf:pgn (
T3n—T3n+1
P(z) = 3326n \ for @340 <2 < 3041,
o (2 = T3ng3) + 203013 for 343 < @ < T3nga,
0 for x =0,

—4dx — 22 for x <0,

T — x3n) + 23, for x3,41 < < a3y,

_ 1 _
where z, = -, n=1,2,....

Then G(x) = %2, F(0)=0, F(z) <2z for 0 <z < §, F(z) =2z for z > 3,
and F(x) = —4x — 22 for < 0. Thus (Ap), (A1), (45)1, (AD)1, (A7)1,
(23) and (24) are satisfied. For any = € (0, 1), we can choose n (sufficiently

large) such that 0 < zg,42 < 3,41 < x, and

x T3n+1 T3n+1 3
1 / g(s) ds > 3/ g(s) s — 3/ S e e 3(6n)°(6n + 3) - %
0 T T

F@) Jor F8) 72 Jous e o T 4B+ 1)2(3n + 2)2

for 0 < z < 3. The condition (A{), is satisfied. Therefore, by Corollary
5.1, all nontrivial solutions oscillate.

Because F?(z,) = 8G(z,) when z, = - (n = 1,2,...), it follows that
condition (4) in Section 1 is not satisfied. By the above discussion, condition
(A )2 is satisfied, hence, the condition (6) in Section 1 is really weaker than
condition (4). The condition (6) is similar to (5) of Opial [19], but condition
(6) is more precise. Moreover, condition (6) is a generalization of conditions
(1), (2), (3), (4), and (7) in Section 1.

Example 4. In system (3), we take a(x) = 1, h(y) = y%, g(z) ==z
F(z) = —z|z|?, where 3 is a real number such that 0 < 8 < 3.
Then (Ao), (A1), (Ad)1, (Ag )1, (23) and (24) are satisfied. Since h™(u) =

u3, for any b > 1 and fixed real number k > 1, we have

5 and

. k T90s) s 1 (5-8) _p(5-8)) —
B Fry ), R A G ) =

)
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therefore (AF)y is satisfied. Similarly, (A7) is also satisfied. Then all
nontrivial solutions oscillate by Theorem 5.1. However h'(0) = oo and
R/ (£o00) = 0, the previous results of [15, 30] cannot be applied to this exam-
ple. It is easy to see from Remark 5.4 and Example 4 that our Theorem 5.1
can find more extensive applications.

Acknowledgement. This research has been supported by the Academy of

Finland.
References

[1] Conti, R., Centers of planar polynomial system. A review, Le Matem-
atiche LIIT (1998), 207-240.

[2] Farkas, M., “Periodic Motions”, Springer-Verlag, New York, Berlin,
1994.

[3] Filippov, A.F., Sufficient conditions for the existence of stable limit
cycles of second order equations, Mat. sb. 30 (1952), 171-180.

[4] Graef, J.R., On the generalized Liénard equation with negative damp-
ing, J. Differential Equations 12 (1972), 34-62.

[5] Gyllenberg, M. and Yan, P. The generalized Liénard systems, Discrete
and Continuous Dynamical Systems 8 (2002), 1043-1057.

[6] Gyllenberg, M. Yan, P. and Jiang, J.F., The qualitative behavior of
a second-order system with zero diagonal coefficient, J. Math. Anal.
Appl. 291 (2004), 322-340.

[7] Han, M.A., Conditions for the differential equations & = ¢(y) — F(x),
y = —g(x) to have a center, Nanjing Daxue Xuebao Shuxue Bannian
Kan 2 (1985), no. 2, 235-237.

[8] Hara, T. and Sugie, J., When all trajectories in the Liénard plane cross

the vertical isocline? Nonlinear Differential Equations Appl. 2 (1995),
527-551.

Hara, T. and Yoneyama, T., On the global center of generalized Liénard
equation and its application to stability problems, Funkcial. Ekvac. 28
(1985), 171-192.

28



[10]

[11]

[12]

[13]

[18]

[19]

[20]

[21]

Hara, T., Yoneyama, T. and Sugie, J., A necessary and sufficient condi-
tion for oscillation of the generalized Liénard equation, Ann. Mat. Pura
Appl. 154 (1989), 223-230.

Hirsch, M.W. and Smale, S., “Differential Equations, Dynamical Sys-
tems, and Linear Algebra”, Academic Press, New York, 1974.

LaSale, J.P. and Lefschetz, S., “Stability by Liapunov’s Direct
Method”, Academic Press, New York, 1961.

Jiang, J.F., The global stability of a class of second order differential
equations, Nonlinear Anal. 28 (1997), 855-870.

Lefschetz, S., “Differential Equations: Geometric Theory”, Dover, New
York, 1977.

Li, L.Y. and Tang, L.W., Note on the oscillation of the solution for
generalization Liénard equations, Annals of Differential Equations 14
(1998), no. 2, 219-223.

McHarg, E.A., A differential equation, J. London Math. Soc. 32 (1947),
83-85.

Nemyckii, V.V. and Stepanov, V.V., ”Qualitative Theory of Ordinary
Differential Equations”, English ed., Princeton Univ. Press, Princeton,
NJ, 1960.

McHarg, E.A., A differential equation, J. London Math. Soc. 32 (1947),
83-85.

Opial, Z., Sur un théorem de A. Filippov, Ann. Polon. Math. 5 (1958),
67-75.

Qian, C., On global asymptotic stability of second order nonlinear dif-
ferential systems, Nonlinear Anal. 22 (1994), 823-833.

Sansone, G. and Conti, R., “Non-Linear Differential Equations”, Perg-
amon, Elmsford, New York, 1964.

Sugie, J., The global centre for the Liénard system, Nonlinear Anal. 17
(1991), 333-345.

Sugie, J. and Hara, T., Non-existence of periodic solutions of the
Liénard system, J. Math. Anal. Appl. 159 (1991), 224-236.

29



[24]

33]

[34]

[35]

Sugie, J. and Hara, T., Existence and non-existence of homoclinic tra-
jectories of the Liénard system, Discrete and Continuous Dynam. Sys-
tems 2 (1996), 237-254.

Sugie, J., On global asymptotic stability of systems of Liénard type, J.
Math. Anal. Appl. 219 (1998), 140-164.

Villari, G., On the qualitative behaviour of solutions of Liénard equa-
tion, J. Differential Equations 67 (1987), 269-277.

Villari, G. and Zanolin, F., On a dynamical system in the Liénard plane.
Necessary and sufficient conditions for the intersection with the vertical
isocline and applications, Funkcial. Ekvac. 33 (1990), 19-38.

Wendel, J.G., On a Van Der Pol equation with odd coefficients, J.
London Math. Soc. 24 (1949), 65-67.

Yan, P. and Jiang, J.F., Concerning the center of the generalized
Liénard systems, J. System Sci. & Math. Scis. 19 (1999), 353-358.

Yan, P. and Jiang, J.F., A necessary and sufficient condition for oscil-
lation of the generalized Liénard system, Math. Appl. 13 (2000), no. 4,
16-20.

Yang, X.J., sufficient conditions for oscillation of the Liénard equation,
Chin. Ann. of Math. 21B (2000), no. 1, 55-65.

Yang, Q.G. The center problem for generalized Liénard equation, J.
System Sci. & Math. Scis. 18 (1998), 374-379.

Ye, Y.Q. et al., “Theory of Limit Cycles”, Transl. Math. Monogr., Vol.
66, Amer. Math. Soc., Providence, 1986.

Yoshizawa, T., “Stability Theory by Liapunov’s Second Method”,
Math. Soc. Japan, Tokyo, 1966.

Yu, S.X. and Zhang, J.Z., On the Center of the Liénard equation, J. of
Differential Equations 102 (1993), 53-61.

Zhang, Z.F. et al., “Qualitative Theory of Ordinary Differential Equa-
tions”, Transl. Math. Monogr., Vol. 101, Amer. Math. Soc., Providence,
1992.

Zhou, Y.R. and Wang, X.R., On the Conditions of a center of the
Liénard equation, J. Math. Anal. Appl. 180 (1993), 43-59.

30



Paper VII

Gyllenberg, M., Yan, P, and Wang, Y., Limit cycles for the
competitor-competitor-mutualist Lotka-Volterra systems, (re-

vised).






Limit Cycles for the
Competitor-Competitor-Mutualist
Lotka-Volterra Systems”

Mats Gyllenberg®, Ping Yan® ® Tand Yi Wang®

@ Department of Mathematics, University of Turku,

FIN-20014 Turku, Finland

b Rolf Nevanlinna Institute, Department of Mathematics and statistics,
P.O. Box 68, FIN-00014 University of Helsinki, Finland
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occur in the Competitor-Competitor-Mutualist Lotka-Volterra systems

1 =z1(r — anx — a1222 + a13x3),
&g = x2(ry — a2121 — a2 + azzx3),
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where 7;, a;; are positive real constants. (c.f., [16]). In this paper, we shall
construct an example with at least two limit cycles, and furthermore, we will
show that the number of periodic orbits (and hence a fortiori of limit cy-
cles) is finite. It is also showed that, contrary to three-dimensional competi-
tive Lotka-Volterra systems, the nontrivial periodic coexistence does happen
even if none of the three species can resist invasion from either of the others.
In this case, new amenable conditions are given on the coefficients under
which the system has no nontrivial periodic coexistence. These conditions
imply that the positive equilibrium, if it exists, is globally asymptotically
stable.
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1 Introduction

The dynamics of an ecosystem with n > 2 interacting populations can be
modelled by the general Lotka-Volterra system

n
i :Z'i('f'i‘i‘zaijwj)’ 1=1,2,...,n, (1)
Jj=1

where z; is the density of the ith population, r; is the intrinsic growth
rate of the ith population and the coefficient a;; describes the influence of
the jth population upon the ith population (Hofbauer and Sigmund [12]).
The signs of a;; and aj; determine the nature of the interaction between the
populations i and j: the system (1) can describe all of the three basic types of
interaction, viz., competition, collaboration (mutualism) and host-parasite
(predator-prey) interactions.

The dynamics of two-dimensional Lotka-Volterra systems is well under-
stood. Bomze [3] gave a complete classification of all possible phase portraits
for this case. In particular, there are no limit cycles in two-dimensional
Lotka-Volterra systems: if there is a periodic orbit, then the equilibrium
in IntRﬁ_ is a center (that is, it is surrounded by a continuum of periodic
orbits). As is well known, this is the case in the classical Lotka-Volterra
predator-prey system. It should, however, be noted that the phase portrait
does not reveal the whole dynamics. For example, the solution may blow
up in finite time (this is clear because the system (1) contains the system
Z; = z? as a special case).

As one steps from two to higher dimensions the situation becomes far
more complicated and difficult. By using numerical simulations, three-
dimensional Lotka-Volterra systems allow already complicated dynamics.
The period doubling route to chaos and many other phenomena known from
the interaction of the quadratic map have been observed (see [1, 7, 21]).

For three-dimensional competitive Lotka-Volterra systems, the dynami-
cal possibilities are more restricted: Hirsch [11] has showed that all nontrivial
orbits approach a “carrying simplex”, a Lipshitz two-dimensional manifold-
with-corner homeomorphic to the standard simplex in ]Ri. Based on this,
Zeeman [26] has given a classification of all possible stable phase portraits of
three-dimensional competitive Lotka-Volterra systems and has shown that in



some three-dimensional competitive Lotka-Volterra systems limit cycles can
indeed occur. Recently, Liang and Jiang [16] did the same for Competitor-
Competitor-Mutualist Lotka-Volterra systems. Hofbauer and So [13], Xiao
and Li [25] and Lu and Luo [17] have also presented examples of three-
dimensional competitive Lotka-Volterra systems with at least two limit cy-
cles.

In this paper, we focus on the limit cycles for the Competitor-Competitor-
Mutualist Lotka-Volterra systems. The specific system we shall consider
models two competing populations that both collaborate with a third one.
Such systems are of great biological relevance. The two competing popu-
lations may, for instance, represent two different types of the same species
(a “resident” and “mutant” in the terminology of adaptive dynamics, Metz
et al. [18]; Geritz et al. [8, 9]). More models of this type can be found in
[10, 16] and the references therein.

In the following sections, we shall prove that the number of nontrivial
periodic orbits (and hence a fortiori of limit cycles) is finite in Competitor-
Competitor-Mutualist Lotka-Volterra systems. We also construct an exam-
ple of a system of this type with at least two limit cycles by using local Hopf
bifurcation and analyse the scale of the parameters.

It also deserves to be noted that it is under the assumption My =
ajragy — ajgaz < 0 that Liang and Jiang [16] obtained the existence of
the nontrivial limit cycle, generated by Hopf bifurcation, in Competitor-
Competitor-Mutualist Lotka-Volterra systems [16, Theorem 5.5]. Hence in
this case, in the competitive subcommunity of two species 1 and 2, at least
one can resist invasion by the other. For the three-dimensional competi-
tive Lotka-Volterra systems, van den Driessche and Zeeman [6] have shown
that if none of the species can resist invasion by either of the others, then
there is no periodic orbit and therefore limit cycles do not exist and global
dynamics are known. For the system (2), it is obvious that none of the
species can resist invasion by the other in the mutualistic subcommunity
of two species 1 and 3, or 2 and 3. Therefore, it is a very interesting ques-
tion whether there exist periodic orbits in Competitor-Competitor-Mutualist
Lotka-Volterra systems if none of the species can resist invasion by the other
in the competitive subcommunity of two species 1 and 2. In this paper, we
shall answer this question by providing an example which has a stable limit
cycle. Meanwhile, new amenable conditions are also given on the coefficients
7i, a5, under which system (1) has no periodic orbits if none of the species
can resist invasion from either of the others. Thus all trajectories converge
to equilibria. Based on this, we also present an example of global stability
for a positive equilibrium, but the Volterra multipliers method [16, Theorem



5.6] cannot be applied.

The paper is organized as follows: In Section 2 we formulate the model
and provide a review of some relevant related results. The main results are
presented in Section 3 and full proofs are given in Section 4 and 5.

2 Background material

The Lotka-Volterra system (1) which models such a community takes the
form

T = z1(r1 — 1171 — a1272 + a1373) = 71 f1(7) = Fi(2),
j?2 = 272(7“2 — 42171 — 9222 + a23$3) = J?QFQ(I) = FQ(J?), (2)
#3 = x3(r3 + az121 + a32w2 — azzw3) = x3f3(x) = F3(x),

where z = (z1,72,73) € R} = {z:2; >0 for i =1,2,3}, r; > 0 and a;; > 0
for 4,5 = 1,2,3. For obvious biological reasons, we restrict our attention to
the closed positive orthant R:i and we denote the open positive orthant by
IntR3 . Let F' = (Fy, Fy, F3) in (2). It is easy to check that the Jacobian

DF(z) has the form
-D B
c —d)’

in which D is a 2 X 2 matrix, B is a 2 x 1 matrix, C' is a 1 X 2 matrix and
d is a positive real number. Each off-diagonal element of D is nonnegative,
and B and C are nonnegative matrices.

Note that the backward flow ¢;(-) of (2) is type-K monotone, that is,
z <k yimplies p;x <p @y forallt <0 and z,y € Ri (where x < y means
z; < y; for i = 1,2 and z3 > y3) (see [22, 15]). Liang and Jiang [16] used
the theory of monotone dynamical systems, together with the index the-
ory of fixed points, to prove that there exists an invariant two-dimensional
Lipschitz manifold V' attracting all nontrivial orbits provided (2) is dissi-
pative. Therefore the Poincaré-Bendixson theorem holds in Competitor-
Competitor-Mutualist Lotka-Volterra systems . Based on this, Liang and
Jiang [16] have also given a classification of all possible stable phase portraits
of Competitor-Competitor-Mutualist Lotka-Volterra systems.

Motivated by the fundamental assumptions of the classification of three-
dimensional competitive Lotka-Volterra systems in [26], we hereafter always
assume that system (2) is dissipative and each equilibrium in R \ IntR3
is hyperbolic (see [16]). The system (2) is called dissipative if there is a



compact totally invariant set which uniformly attracts each compact set of
initial values.

The restriction of (2) to the ith coordinate axis is the logistic equation
#; = x;(r; — ax;), which has an equilibrium at the carrying capacity R; =
ri/as;. Furthermore, the assumption of dissipation implies that the following
two subsystems of (2) are also dissipative:

&1 = z1(r1 — a1z + a1323), )
_ I

¥'3 = x3(r3 + az121 — a33x3),

Ty = x2(ry — age®a + az3x3), 2))
_ J

¥'3 = 13(r3 + az222 — a3373),

where I = {1,3} and J = {2,3}. Since systems (27) and (2;) are coopera-
tive, it follows from Smith [23] or Jiang [14] that (27) and (2) are dissipative
if and only if

M3 = arra33 — arzazr > 0,

Ms3 = azpazz — azzaze > 0,

respectively. The systems(27) and (2;) have the interior equilibria R;3 and
Ros which are globally asymptotically stable in IntH}" and IntHj, respec-
tively. Here IntH;” = {z € R} :2; > Ofori € Tand2; = 0 fori ¢ I},
similarly for IntH;. Since each subsystem of R? is invariant under (2),
we abuse notation somewhat and allow R; to denote a point in Ry, Ri or
Ri and Ri3 and Rs3 to denote points in Ri or Ri. By the assumption of
hyperbolicity, the stability of B3 (R23) can be determined by the sign of
Ly (Ly), where

Ly = ri(asia23 — a21a33) + ra2(aiass — aizasi) + r3(ai1a23 — a13a21),

_ (3)
Ly=m (0220433 - a23a32) + 72 (al3a32 - a12033) + 7“3((113&22 - 012023)-

More precisely, R;3 is asymptotically stable (unstable) if and only if L; < 0
(L; > 0) for i = 1,2. Tt follows from [14] that an equilibrium exists in IntR%
if Ly, Ly > 0.

The following theorem of Liang and Jiang [16] shows that there exists
an invariant hypersurface V' which is topologically and geometrically simple
and for which all the orbits in IntRﬁ_ are asymptotic to an orbit in V. In
particular, all nontrivial periodic orbits lie on V.

First some notation. A vector v is called positive if v € Int]R:i. Let
the set K = {z € R? : 2; > 0 for i = 1,2 and 23 < 0} and IntK be the



interior of K. Two points u,v € R are K-related if either v — v € IntK or
v—u € IntK. A set S is called K-balanced if no two distinct points of S are
K-related.

Theorem 2.1 (Liang and Jiang) There ezists an invariant K-balanced
Lipschitz submanifold V, which is homeomorphic to R%r, such that every
orbit in IntRﬁ_ of the dissipative system (2) is asymptotic to an orbit in V.
In particular, all positive equilibria and nontrivial periodic orbits lie on V.

Since the dynamics of a planar competitive or cooperative system are
trivial (see [12]), the long term dynamics of (2) on R3 are completely deter-
mined by the dynamics on V. It is also important to note that Terescik’s
result [24] implies that V5 = V NIntR? is actually C'. See also Benaim [2]
the conditions under which Vj is C* (k > 1).

If there is no equilibrium in the interior of the invariant manifold V,
then the dynamics of (2) is trivial. Therefore we are interested only in the
case when (2) has a positive equilibrium in the interior of V' and the equi-
librium is found to be non-degenerative using the results in [16]. Without
loss of generality, we can assume that F = (1,1, 1) is a positive equilibrium
of (2) and has no zero eigenvalues. However, we should notice that the co-
efficients of F' are strictly restricted in this case. Note that if E is a positive
equilibrium of (2), then, by [16], (2) is dissipative provided that

a1 0  —a3
detM > 0, where M = 0 a99 —a93 . (4:)
—a3r —as2 as3

3 Statement of Main Results
We now state our main results. The proofs follow in Sections 4 and 5.

Theorem 3.1 Assume that system (2) is dissipative with a;; > 0 and r; >
0, i,7 = 1,2,3. Then the number of periodic orbits (and hence a fortiori
number of limit cycles) is finite. Furthermore, there exist some a;; > 0 and
r; > 0 such that (2) has at least two limit cycles.

Remark 3.1. Theorem 3.1 shows that the number of periodic orbits of the
dissipative system (2) is at most finite and that there is an example of (2)
with at least two limit cycles. It is an interesting open problem to determine
an upper bound (or better still, the maximum) of the number of limit cycles.



Remark 3.2. Note that the first statement of Theorem 3.1 is not a direct
corollary of Zhu and Smith [27, Theorem 1.2], because the irreducible condi-
tion cannot hold on the boundary of R3 , but the orbit of (2) could intersect
with GR:_)’,_.

Remark 3.3. According to Theorem 3.1, there does not exist a center of
(2), and hence the dynamics on V is not Hamiltonian, which implies that
the invariant hypersurface V' cannot be flat (see [19]).

Remark 3.4. It is very interesting to ask whether the dynamics on V' can
be determined by its edges ([28]).

Liang and Jiang [16] proved that (2) has a periodic solution if My =
a11a22 — a12a21 < 0. Note that if Mo < 0, then either A2 or A9y or both Ao
and A91 are negative. The ecological interpretation of this is that at least one
of the species 1 and 2 can resist invasion by the other. For three-dimensional
competitive Lotka-Volterra systems, van den Driessche and Zeeman [6, 28]
have shown that if none of the species can resist invasion by the others, then
there is no periodic orbit, so global dynamics is known. Note that for (2) it is
obvious that no species can resist invasion by the other species in the mutu-
alistic subcommunity of species 1 and 3, or 2 and 3. The following theorem
shows that the result of van den Driessche and Zeeman does not generalize
to Competitor-Competitor-Mutualist Lotka-Volterra Systems. We also pro-
vide the sufficient conditions to guarantee that system (2) has no periodic
orbits if none of the species can resist invasion by any of other species. Thus
all orbits converge to equilibria.

Theorem 3.2 It is possible that a nontrivial periodic orbit for the dissi-
i

pative system (2) ezists even if Njj = rj — —=— >0 for 1 < i # j < 2.
Lo

27
However, if in addition,

riazr 72032 . ¢riasz T2633
ax < min 5
{a11’a22} {a13’a23 }’ ()

then there are no periodic orbits for the dissipative system (2).

Remark 3.5. In [16, Theorem 5.6], Liang and Jiang also gave a sufficient
condition which ensures the nonexistence of periodic orbits. However, their
results do not be applied to the following example:

Example 1: Consider the matrix

3 6 —6
A= 2 4.0001 —4.00083
-1 =3 10



and r = (3,1.99927,6) in the type-K competitive Lotka-Volterra system
It is easy to see that there is a unique positive equilibrium F. Let

R— 2&11 aig + da21 S — QATI ATZ + dA§1
a12 + daoy 2daos ’ T2 + dA;l 2dA§2 ’

where A* = (A};) is the adjoint matrix of —A. A straightforward calculation
yields that detR > 0 if and only if 2.90662 < d < 3.09638, while detS > 0 if
and only if 2.53289 < d < 2.72075. Obviously, {d: detR > 0} N {d : detS >
0} = 0, and hence the Volterra multipliers method in [16, Theorem 5.6] can
not be applied in this case.

However, our Theorem 3.2 can be applied in this case. By evaluating (3)
and (4), we obtain that system (6) is dissipative and uniformly persistent.
Furthermore, system (6) also satisfies A\j2 > 0 and Ay; > 0 and condition
(5). Therefore, it follows from Theorem 3.2 and the Poincaré-Bendixson
theorem that E is globally asymptotically stable in IntRi.

4 Proof of Theorem 3.1

We first present an example of a Competitor-Competitor-Mutualist Lotka-
Volterra System (2) with at least two limit cycles, followed by the proof of
the finiteness of the number of nontrivial periodic orbits.

The idea for constructing such an example with two limit cycles is as fol-
lows: we consider a Competitor-Competitor-Mutualist Lotka-Volterra Sys-
tem which is uniformly persistent and for which the unique interior fixed
point has a pair of purely imaginary eigenvalues, but is repelling on its cen-
ter manifold. This implies the existence of an asymptotically stable (or a
pair of semistable) limit cycle(s) by the Poincaré-Bendixson theorem. If we
now change the parameters slightly, the fixed point will undergo a subcrit-
ical Hopf bifurcation. The interior equilibrium will become stable and will
be surrounded by another, smaller, unstable limit cycle.

The same idea has been applied in [13, 25] to construct two limit cycles in
three-dimensional competitive Lotka-Volterra systems. However, it is much
more difficult to give an example of a Competitor-Competitor-Mutualist
Lotka-Volterra System (2) with two limit cycles since many more essential
conditions are restricted in our case, such as dissipation, uniform persis-
tence and the conditions restricted to the coefficients if we assume that
E = (1,1,1) is the positive equilibrium, etc. Indeed, in our example the



parameter range in which the two limit cycles coexist is rather small and so
these two limit cycles would be very hard to find by numerical integration.

Consider the Competitor-Competitor-Mutualist Lotka-Volterra System

z; = zi[A(E — x));, 1=1,2,3, (7)
where
1
A= (ai]‘) = % 1 -A
_i -1 &
10 5

with two real parameters p and A. Note that p and A should be positive
such that r; = (AE); > 0 for all i = 1,2,3. According to linear algebra, the
necessary conditions that —A has a negative real eigenvalue and a pair of
purely imaginary eigenvalues are

det(A) = (Ma3z + Mi3 + Mi3) - trA,

3
where tr(A) =7 ay, Moz = aspass — agszasze, M3 = a11a33 — ajzaz; and
M12 = G922011 — A12a271. A simple calculation yields that A = 140—2657 — %,u

Let y; = x; — 1,4 =1,2,3, and set z = Ty. Then system (7) is transferred
to a new one whose linear part is in the block diagonal form

1187 9409 _ 107 ~
_ 1070 90950 -85 1
linearpart = CTel T 017 29
0 0 —5 Z3
where y = col(y1, y2,y3), z = col(z1, 29, 23), and
_ 2257 12 1067 _ 107u
_— §50 i 25 8
o\ o P u 1067°_ 97
i g 11 _Wer  Jip
2 T8 5 T 425 85

This can be reduced to the two-dimensional case by computing the center
manifold

2 2
23 = G(Zl,ZQ) = a112] +a122122 + ag9z; + h.o.t.,

where h.o.t. denotes the terms with order greater than or equal to three.
Solving for the a;;'s and substituting leads to a rather complicated and
lengthy expression of first focal value LV as following

_9n (1)
92(1) ’

1

9



where

g1(p) = 856(570903636000001% + 7055224638550043
—196136513479725u2 — 1232788354933301 -+ 194300080257591),
go(p) = 14553375(191134325043 + 3633977737512
+1946423867401 + 201213446059).

We computed LV; as a rational number using the computer algebraic sys-
tem Maple. Now choose any p € (1.14422,1.99439). We have p > 0,
A=M8_107), >0, r; = (AE); >0 (i = 1,2,3) and LV} > 0. A straight-
forward calculation also yields that L; > 0,Ls > 0 in (3) and detM > 0 in
(4). Therefore, the Lotka-Volterra system (7) is dissipative and uniformly
persistent. Moreover, E is repelling on its center manifold (which is on the
hypersurface V'). This implies the existence of an asymptotically stable (or
a pair of semistable) limit cycle(s) on the hypersurface V. If we change the
parameter y slightly, F will undergo a subcritical Hopf bifurcation, which im-
plies that E will become stable and will be surrounded by another smaller
unstable limit cycle. Just as we mentioned above, the parameter range is
rather small. We use the graphing capability of Maple to illustrate our
findings (see Figure 1).

Now we focus on the finiteness of the number of nontrivial periodic orbits.
According to the classification theorem ([16, Theorem 5.1]), the periodic
orbits can only occur in the case of L; > 0 and Lg > 0. Since system (2) is
dissipative, we claim that ¢; is permanent if Ly > 0 and Ls > 0. Indeed,
let M be the maximal compact invariant set for ¢ i, Then f3(z) > 0

for every x € M. So M is unsaturated (see [20, Definition 3.3] ). Note that
the maximal compact invariant set for ¢| or3 1s K = MU {0, R3, R13, Ros}.
Since L; > 0 and Ls > 0, it is easy to see that K admits an unsaturated
Morse decomposition (see [20, Definition 4.1]). By [20, Theorem 4.3] , ¢, is
permanent in ]Ri, which means that there exists a bounded open subset D
in ]Ri_ such that every orbit in ]Ri_ will enter into D. Now it is easy to check
that F' = (z1f1,z2f2,z3f3) satisfies the hypotheses (H1) — (H4) in [27, p.
145] in D. Then, by [27, Theorem 1.2] with an alternative cone, there exist
at most finite periodic orbits in D. Thus, we have completed the proof of
Theorem 3.1.

10
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Figure 1: We take p = 6/5, A = 1 and the initial value (1,1.001,1). In (a), time ¢ runs from
0 to 100. In (b), time ¢ runs from 0 to 10000. (a) and (b) are the same, which implies that
E = (1,1,1) is repelling on its center manifold, and hence that there exists the limit cycle
shown in this figure. We have to say that the limit cycle is very small. If we change the
parameter p = 6/5 slightly, F will undergolsi subcritical Hopf bifurcation, which implies
that E will become stable and will be surrounded by another smaller unstable limit cycle,
which is very hard to be displayed by numerical simulation. (c),(d) and (e) show the
variation of z,y, z as time ¢ runs.



zit)

Figure 2: P, = (2,1,1) and P> = (0.9,1,1) are two initial values of Example 2.

5 Proof of Theorem 3.2

We first present an example which implies that there may exist a nontrivial
periodic orbit in Competitor-Competitor-Mutualist Lotka-Volterra System
(2) even if A3 > 0 and Ay > 0.

Example 2: Consider the Competitor-Competitor-Mutualist Lotka-Volterra
System (6) with

13 0.0125 -—-11
A= 280 3 —6
-7 -1 9

and r = (2.0125,277,1). Obviously, E is the unique positive equilibrium and
A1z = 233.654 and A9; = 0.858333. It is also easy to compute that L; > 0
and Lo > 0in (2) and detM > 0in (2). Hence, system (6) is dissipative and
uniformly persistent. Furthermore, E is hyperbolic and locally unstable on
the hypersurface V', which implies that (6) has at least one stable nontrivial
periodic orbit (see Figure 2).

Now we turn our attention to the second statement of Theorem 3.2. In
order to prove Theorem 3.2, we first need the following lemma which is due
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to Busenberg and van den Driessche [4].

Lemma 5.1 Let F : R? — R3 be a Lipschitz vector field and let y(t) be a
closed piecewise C' curve bounding an orientable C' surface S C R® with
normal vector n. If there exists a vector field G : R? — R3, defined and C!
in a neighborhood of S such that

(ii) curlG-n >0 (<0) on S;
(iii) curlG-n#0 on S,

then y(t) is not a periodic orbit of & = F(x) traversed in the positive direction
with respect to n.

Suppose that system (2) has a nontrivial periodic orbit y(¢). Then y(#)
encloses a region S C Vp = IntR3. N V. Recall from section 2 that Vj is C*
and K-balanced, so for z € S, the tangent plane 7,5 to S at x exists and is
K-balanced. Hence, we claim that the normal vector n = (ny,n9,n3) to S
at z belongs to Int K U(—Int K). Indeed, suppose, without loss of generality,
that nqy > 0,n9 > 0 and n3 > 0. Then (ny,n9,n3) - (n3,n3, —(n1 +nz)) = 0.
So (n3,ng.—(n1+mns)) € T,.S, contradicting the fact that 73,5 is K-balanced.
We have proved the claim. Now we may assume that

n = (ny,ng,ng) € IntK (8)

for every z € S.
Let F = (Fy, Fy, F3) in (2). Define G : IntR3 — R3 by

1 T
G(z) = F(z) x rory |,
12273 *
—r I3

where r* satisfies the following inequality

r1a31 72032 % . ¢ri1asz 12033
ax < r® < min . 9
{a11’a22} {a13’a23} ()

Obviously, G - F = 0 and a straightforward calculation yields

w

%(7“16122 — T2012) + é(ﬁ%a —r*a13)
curlG = %(7"2@33 — ’I"*azg) + m—l?)(’f'gau — ’1"10,21)

—(=r*a11 +r1a31) + 7 (—r*ag + roaz)
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Recall that Aj2 > 0 and Ag; > 0, then it follows from (8) and (9) that
curlG-n > 0 on S. Thus we may conclude from Lemma 5.1 that ~(¢) is not
a nontrivial periodic orbit. This completes the proof.

Acknowledgement. Ping Yan and Yi Wang are grateful to Dr. Shengqgiang

Liu for his help on Maple programme.
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