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Abstract

Since 1940s, many mathematical models from physics, engineering, chemistry,
biology, economics, etc., have been displayed as autonomous planar systems. A
wide class of autonomous planar systems can be transformed into Liénard-type
systems. Also, due to the well-known paper of I. G. Petrovskii and E. M. Lan-
dis concerning the maximum number of limit cycles of all quadratic differential
systems (the second part of Hilbert’s 16th problem), the study of the qualitative
behavior of the solutions of autonomous planar systems of Liénard-type has be-
come more and more important and has attracted the attention of many pure and
applied mathematicians.

The purpose of this thesis is to develop the qualitative theory of autonomous
planar systems of Liénard-type. More explicitly, we give conditions for global
asymptotic stability, existence of local centers and global centers, existence of
oscillatory solutions, existence and nonexistence of periodic solutions, and also
existence and uniqueness of limit cycles for some autonomous planar systems of
generalized Liénard-type. Moreover, in case of having uniqueness of limit cy-
cles, the hyperbolicity of the limit cycle is relevant. We apply different techniques
for different types of systems. The main tools used are some nonlinear integral
inequalities, methods of comparison and some transformation techniques (espe-
cially the generalization of the Filippov transformation). Furthermore, some pow-
erful methods for Liénard systems, especially those developed by G. Villari and F.
Zanolin, are applied in this thesis. We apply the criteria for existence, uniqueness
and hyperbolicity of limit cycles, existence of centers, existence of oscillatory
solutions, and global asymptotic stability of an uniqueness positive equilibrium
to the Gause-type predator-prey systems and a class of second-order autonomous
systems found in the literature. On the other hand, for three-dimensional competi-
tive Lotka-Volterra systems, M. L. Zeeman identified 33 stable equivalent classes.
Among these, only classes 26-31 may have limit cycles. J. Hofbauer and J. W.-H.
So conjectured that the number of limit cycles is at most two for these systems. We
construct three limit cycles for class 29 without a heteroclinic polycycle in Zee-
man’s classification and thus give a counterexample to Hofbauer and So’s conjec-
ture. For competitor-competitor-mutualist Lotka-Volterra systems, we show that
the number of periodic orbits (and hence a fortiori of limit cycles) is finite, and fur-
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thermore, we construct an example with at least two limit cycles. It is also shown
that, unlike in three-dimensional competitive Lotka-Volterra systems, the nontriv-
ial periodic coexistence does happen even if none of the three species can resist
invasion from either of the other species. In this case, new amenable conditions
are given on the coefficients under which the system has no nontrivial periodic
coexistence. These conditions imply that the positive equilibrium, if it exists, is
globally asymptotically stable.



Part I:
Research summary





Chapter 1

Generalized Liénard systems

1.1 Global asymptotic stability

The development of a mathematical theory is often guided by practical problems.
For differential equations, the situation is particularly clear. The driving force
behind the research in autonomous planar systems of Liénard-type was furnished
much more by practical problems then by great mathematicians. During the twen-
tieth century, applied electronics advanced rapidly, physicists invented the triode
vacuum tube which was able to produce stable self-excited oscillations of con-
stant amplitude, thus making it possible to propagate sound and pictures through
electronics. However, it was not possible to describe this oscillation phenomenon
by linear differential equations. In 1926, van der Pol first obtained a differential
equation, which was later named after him, to describe oscillations of constant
amplitude of a triode vacuum tube:

ẍ+ µ(x2 −1)ẋ+ x = 0 (µ > 0). (1.1)

After transforming this equation into an equivalent differential system in the phase
plane {

ẋ = y,
ẏ = −x+ µ(1− x2)y,

(1.2)

he used graphical methods to prove the existence of an isolated closed orbit (limit
cycle). In 1928, the French engineer A. Liénard first studied the problem of limit
cycles of the equation

ẍ+ f (x)ẋ+g(x) = 0 (1.3)

or its equivalent differential systems

{
ẋ = y,
ẏ = − f (x)y−g(x),

(1.4)
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and {
ẋ = y−F(x),
ẏ = −g(x),

(1.5)

where F(x) =
∫ x

0 f (s)ds.
It is worthwhile to mention that, owing to research development from other

fields such as physics, engineering, chemistry, biology, economics, etc., research
on the qualitative theory of autonomous planar systems of Liénard-type has be-
come more important. The main problem in the study of such models consists of
giving a complete description of the behavior of solutions as t → +∞. In general,
this is not possible, due to the complexity of the equations and the phenomena
involved. The aim of the qualitative theory is to give an approximate description
of the behavior of the system by identifying suitable regions of the phase space
where the solutions behave in a similar way.

In recent years, several authors [26, 46, 81] have considered the following
second order differential equation:

ẍ+( f (x)+ k(x)ẋ)ẋ+g(x) = 0, (1.6)

where f , g and k are all continuous functions. Clearly, when k(x) ≡ 0, (1.6)
reduces to the Liénard equation (1.3). Using the transformation y = a0(x)ẋ +
F0(x), one can change (1.6) into{

dx
dt = 1

a0(x)
[y−F0(x)],

dy
dt = −a0(x)g(x),

(1.7)

where a0(x) = exp(
∫ x

0 k(s)ds) and F0(x) =
∫ x

0 a0(s) f (s)ds.
Therefore, motivated by theoretical interest and plausible applications, Qian

[81], Jiang [47] and Sugie [89] investigated a more general nonlinear system:{
dx
dt = 1

a(x) [h(y)−F(x)],
dy
dt = −a(x)g(x).

(1.8)

The global asymptotic stability of the zero solution of a planar autonomous
system is related to the Markus-Yamabe problem. The following conjecture was
explicitly stated by Markus and Yamabe [72] in 1960: If the eigenvalues λ1(x),
... λn(x) of the Jacobian matrix D fn(x) of a class C1 vector field fn: Rn → Rn

in the n-dimensional space Rn all have negative real parts at every x in Rn and if
fn(0) = 0, then the origin is a globally asymptotically stable equilibrium point for
the n-dimensional nonlinear autonomous system of ordinary differential equations
ẋ = fn(x).

The Markus-Yamabe conjecture for the case n = 2 has been given an affirma-
tive answer independently by several authors [17, 25, 27]. For n ≥ 3, the Markus-
Yamabe conjecture has been proved to be false [4, 5, 10]. Therefore, the Markus-
Yamabe conjecture has been completely solved. However, it is still of interest to
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give necessary and sufficient conditions to guarantee the zero solution of a planar
autonomous system to be globally asymptotically stable [35, 46, 47, 51, 81, 90,
89, 95, 98].

To study the global asymptotic stability of the zero solution of (1.8), the sig-
nificant point is to find conditions for deciding whether all orbits intersect the
isocline h(y) = F(x). We also need to examine the behavior of orbits near the
origin. If system (1.8) has a homoclinic orbit, then the zero solution of (1.8) is not
even stable. Roughly speaking, if

(i) all positive semiorbits are bounded and cross the isocline h(y) = F(x),
(ii) no nontrivial periodic orbit exists, and
(iii) no homoclinic orbit exists,

then the zero solution of (1.8) is globally asymptotically stable.
Qian [81] established necessary and sufficient conditions for the global asymp-

totic stability of the zero solution of (1.8). Under considerably weaker conditions,
Jiang [47] generalized the results of [81]. Sugie [89] investigated the same topic
and obtained an implicit necessary and sufficient condition under which the zero
solution of (1.8) with a(x)≡ 1 is globally asymptotically stable [89, Theorem 3.1].
Since, in general, it is not an easy matter to verify whether all orbits intersect the
isocline h(y) = F(x), even for the Liénard system (1.8) with a(x)≡ 1 and h(y)≡ y
(see, for example, [24, 34, 35, 36, 90, 93, 95, 98], and the references contained
therein), the result of Sugie [89, Theorem 3.1] is of theoretical interest only. For
an application, Sugie [89] considered the system:

{ dx
dt = m|y|p sgn y−F(x),
dy
dt = −g(x),

(1.9)

with m > 0 and p ≥ 1. But the problem of determining what happens when 0 <
p < 1 is left open in [89].

The aim of Paper I in this thesis is to extend and improve the results men-
tioned above and to derive necessary and sufficient conditions under which the
zero solution of (1.8) is globally asymptotically stable. The main advantage of
our global asymptotic stability criteria is that they are explicit, so it is not difficult
to verify them. In addition, our results can be applied to system (1.9) even for
0 < p < 1. We have the following theorems which can be applied to system (1.9)
for 0 < p < +∞.

Theorem 1.1. Suppose that the system (1.8) satisfies the following conditions:
(A0) F(0) = 0, a(x) > 0 for x ∈ R and xg(x) > 0 for x �= 0;
(A1) yh(y) > 0 for y �= 0, h(y) is strictly increasing and h(±∞) = ±∞;
(A∗

2) F(G−1
0 (−z)) ≤ F(G−1

0 (z)) for any z ∈ (0,min{−G0(−∞),G0(+∞)})
and F(G−1

0 (−z)) �≡ F(G−1
0 (z)) for 0 < z � 1, where G0(x) =

∫ x
0 a2(s)|g(s)|ds,

and the notation 0 < z � 1 denotes z sufficiently small;
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(A∗
3) there exist constants α > 1

4 and δ > 0 such that |F(x)| > 0 for 0 <
|x| ≤ δ , and, for any fixed real number k ≥ 1,

∫ x

0

a2(s)g(s)
|F(s)| ds ≥ 1

k
h−1(kα|F(x)|) for 0 < |x| � 1,

where h−1(u) is the inverse function of u = h(y);
(A∗

4) limsupx→+∞ F(x) > −∞ and liminfx→−∞ F(x) < +∞.
Then the origin of (1.8) is globally asymptotically stable if and only if

limsup
x→+∞

[∫ x

0

a2(s)g(s)
1+F−(s)

ds+F(x)
]

= +∞ (1.10)

and

limsup
x→−∞

[∫ x

0

a2(s)g(s)
1+F+(s)

ds−F(x)
]

= +∞, (1.11)

where F−(x) = max{0,−F(x)} and F+(x) = max{0,F(x)}.

We have a more general result in Paper I:

Theorem 1.2. Assume that the system (1.8) satisfies the conditions (A0)− (A4).
Then the zero solution of (1.8) is globally asymptotically stable if and only if (1.10)
and (1.11) hold.

In the study of (1.8), it seems reasonable to assume (A0). However, assump-
tion (A1) is strong. On the other hand, it is also important to find other explicit con-
ditions to decide whether all orbits intersect the isoline h(y) = F(x) and whether
system (1.8) has a homoclinic orbit. For this reason, some attempts have been
made to get some further results for system (1.8).

We state an additional condition:

(A∗
1) yh(y) > 0 for y �= 0, h(y) is strictly increasing and the curve h(y) = F(x)

is well defined and continuous on all x ∈ R.

Theorem 1.3.Assume that the system (1.8) satisfies the conditions (A0),(A
∗
1),(A4),

and that all positive semi-orbit are bounded. Then the zero solution of (1.8) is
globally asymptotically stable if and only if system (1.8) has no closed orbits.

Here we give three theorems of nonexistence of closed orbits (see, for exam-
ple, [123] and Paper I).

Theorem 1.4. Suppose system (1.8) satisfies the conditions (A0),(A
∗
1), and the

simultaneous equations

F(u) = F(x),G(u) = G(x)

do not have a solution (u,x) with −∞ < u < 0 and 0 < x < +∞, where G(x) =∫ x
0 a2(s)g(s)ds. Then system (1.8) has no closed orbits.
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Theorem 1.5. Suppose that system (1.8) satisfies the conditions (A0) and (A∗
1)

and that the inequality

f (u)
a2(u)g(u)

≥ f (x)
a2(x)g(x)

(or
f(u)

a2(u)g(u)
≤ f(x)

a2(x)g(x)
)

holds for any (u,x) satisfying G(u) = G(x) with −∞ < u < 0 and 0 < x < +∞.
Then system (1.8) has no closed orbits.

Theorem 1.6. Suppose that system (1.8) satisfies the conditions (A0),(A
∗
1) and

(A∗
2). Then system (1.8) has no closed orbits.

1.2 Oscillations and centers

In this section we study oscillations of all nontrivial solutions and centers of sys-
tem (1.8). The system (1.8) has in recent years been the object of intensive studies
with particular emphasis on the asymptotic behavior of solutions (see [47, 81, 89]).
To study the oscillation of solutions of (1.8), as discussed in some recent papers
(see [29, 34, 47, 64, 93, 89, 98, 108, 109, 114]), for the right half plane, a sig-
nificant point is to find conditions ensuring that all positive orbits γ+(P) (where
P = (0, p) with p > 0) intersect the characteristic curve h(y) = F(x) and then cross
the negative y-axis; this property of γ+(P) plays an important role in the analy-
sis of the center, oscillation, asymptotic stability and boundedness conditions of
(1.8). There have been many studies in this direction in which sufficient conditions
to obtain the above mentioned property of γ+(P) were given. For example (see
[18, 24, 35, 36, 73, 75, 77, 101, 120]), no solution of (1.5) approaches the origin
directly in the right half plane (i.e., in a nonoscillatory way) if one of the follow-
ing conditions is satisfied (in the following, f (x) := F

′
(x) if F(x) is continuously

differentiable and G(x) :=
∫ x

0 g(s)ds):

(1) (McHarg [73]) f (x) > 0 for x > 0 and there exist k > 0 and a > 0 such that

f (x) < kg(x) for 0 < x < a.

(2) (Wendel [101]) There exist k > 0 and a > 0 such that

0 < f (x) < kg(x) for 0 < x < a.

(3) (Nemyckii and Stepanov [75]) There exist α > 1
4 and a > 0 such that

f (x) > 0 and α f (x)F(x) ≤ g(x) for 0 < x < a.

(4) (Filippov [18]) There exist 0 < β < 8 and a > 0 such that

F2(x) ≤ βG(x) for 0 < x < a.
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(5) (Opial [77]) There exist α > 1
4 and a > 0 such that

α|F(x)| ≤
∫ x

0

g(u)
|F(u)|du for 0 < x < a.

(6) (Hara and Yoneyama [35], Hara, Yoneyama and Sugie [36], Sugie [90]) If
one of the following conditions holds:

(i) there exists a positive sequence {xn} such that xn → 0 as n → +∞ and
F(xn) ≤ 0 for n ≥ 1;

(ii) There exist α > 1
4 and a > 0 such that

F(x) > 0 and
1

F(x)

∫ x

0

g(u)
F(u)

du ≥ α for 0 < x < a.

(7) (Yu [120]) There exist a > 0, k1 > 0 and k2 < 0 such that

k2 ≤
f (x)
g(x)

≤ k1 for 0 < x < a.

Our investigation shows that condition (6) is much weaker than condition (4).
The problem concerning the oscillation of solutions of (1.8) with a(x) ≡ 1 has
been studied by some authors (see, for example, [64, 109] and the references cited
therein). Li and Tang [64] discussed the oscillation of solutions of (1.8) with
a(x) ≡ 1 requiring the existence of h′′(y) and h′(0) > 0. Yan and Jiang [109]
proved that the solutions of (1.8) with a(x) ≡ 1 are oscillatory under the condi-
tion h′(0) > 0. But the problem of what happens when h′(0) = 0 or h′(0) = +∞
remains unsolved. In the present paper, no restrictions on the differentiability of
h(y) are required. We give necessary and sufficient conditions for all nontrivial
solutions of (1.8) being oscillatory. Our theorem can be applied to system (1.8)
even for h′(0) = 0, h′(0) = +∞ and lim|x|→+∞ F(x) sgn x = −∞.

The problem of finding the center of the system (1.5) has been widely stud-
ied and continues to attract attention; see, for example, [77, 90, 95, 98, 101, 108,
115, 120, 127] and the references cited therein. Our purpose is to develop a cen-
ter theory for the system (1.8). This work was motivated by the papers of Hara
and Yoneyama [35] and Sugie [90], in which a detailed analysis of center proper-
ties was given for system (1.5). We will follow closely the presentation of Hara,
Yoneyama and Sugie, and show that all of their results on this subject can be
generalized to (1.8).

The technical tool is based on a nonlinear integral inequality and a phase plane
analysis. Also the methods for Liénard-type systems, especially those developed
by Villari and Zanolin [98], Hara and Sugie [34], and Sugie and Hara [93] are also
applied.

In Paper VI, We have the following results:
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Theorem 1.7.Suppose that the conditions (A0), (A1), (A6) and (A7) are satisfied.
Then all nontrivial solutions of (1.8) oscillate if and only if (1.10) and (1.11) hold.

Theorem 1.8. If conditions (A0), (A1) and (A4) hold, and there exists K0 > 0 such
that
(A3∗) F(G−1(−w)) = F(G−1(w)) for 0 ≤ w < K0.
Then the origin is a local center of (1.8).

Theorem 1.9. Suppose that the origin is a local center of (1.8), and that the
conditions (A0)− (A3) and (A5) are satisfied. Then the origin is a global center
of (1.8) if and only if (1.10) and (1.11) hold.

By a method similar to that of Section 1.2, we can relax condition (A1). We
have the following further results:

Theorem 1.10. Assume that the system (1.8) satisfies the conditions (A0),(A
∗
1)

and (A6) and that all positive semi-orbits are bounded. Then all nontrivial solu-
tions of (1.8) oscillate.

Theorem 1.11.Assume that the system (1.8) satisfies the conditions (A0),(A
∗
1),(A3∗)

and (A4). Then the origin is a local center of (1.8).

1.3 Limit cycles for generalized Gause-type predator-
prey systems

The first attempts to describe population cycles mathematically can be found in
Lotka [67] and Volterra [99]. The classical Lotka-Volterra system is

{
ẋ = ax−bxy,
ẏ = cxy−dy,

(1.12)

which admits no isolated periodic orbits, and the interior equilibrium is a center
surrounded by neutrally stable orbits. The models for which of Lotka and Volterra
were later generalized by Gause [21] into the following Gause-type predator-prey
model for consumer-resource interaction:

{
ẋ = h(x)− yp(x),
ẏ = cyp(x)−dy.

(1.13)

The number, x and y, denote the prey and predator densities, respectively. The
function h is the growth function of the predator and this function is assumed to
be continuously differentiable. In the absence of predators, the prey population
should converge towards a positive limit with h(x) > 0 for 0 < x < K, h(x) < 0
for x > K or x < 0, and h(x) = 0 for x = K or x = 0. The function p is called
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the functional response. This function is expected to be increasing and continu-
ously differentiable. Moreover, it has a unique zero at the origin. The functional
response denotes the number of prey eaten by a predator per unit of time as a func-
tion of prey density. The constants c and d denote the conversion factor and the
death-rate of the predator, respectively. The conditions are such, that the solutions
of the system (1.13) remain positive and bounded. In the models of Lotka and
Volterra, the functions h and p were assumed to be linear.

Gause-type predator-prey systems can possess unique attractors also when
it does not possess limit cycles. If the unique attractor is an equilibrium, the
Gause-type predator-prey system possesses global stability since the solutions are
bounded and hence the equilibrium must attract all initial conditions, except pos-
sibly initial conditions on the x− and y−axis. Hence, the existence of limit cycles
in Gause-type predator-prey systems is related to the existence and stability of the
positive equilibrium. If there exists a unique positive equilibrium which is unsta-
ble, then there must exist at least one limit cycle. For a Gause-type predator-prey
model under Kolmogorov conditions, May [71] claimed that there must occur a
”unique” stable limit cycle. In response to this, Albrecht et al [1] constructed a
Gause-type predator-prey model satisfying the Kolmogorov conditions for which
there are uncountably many periodic solutions inside an annular region bounded
by two limit cycles. This observation makes the problem of determining con-
ditions which guarantee the uniqueness of limit cycles or the global stability of
positive equilibrium in Gause-type predator-prey systems very challenging.

In this section we consider a general Gause-type predator-prey systems of the
general form {

ẋ = ψ(x)−ξ (y)p(x), x(0) ≥ 0,
ẏ = η(y)q(x), y(0) ≥ 0,

(1.14)

where x and y are functions of t, which represent the prey and predator populations
at a given time t ≥ 0, respectively. Hence, we will restrict our attention to the first
quadrant and make the following assumptions:

(A1) ψ(x) ∈C1[0,+∞), ψ(0) = 0 and there exists K > 0 such that ψ(K) = 0
and (x−K)ψ(x) < 0 for x > 0 and x �= K;

(A2) ξ (y),η(y)∈C1[0,+∞), ξ (0) = 0 = η(0) = 0 and ξ ′(y) > 0 and η ′(y) >
0 for y ≥ 0;

(A3) p(x) ∈C1[0,+∞), p(0) = 0 and p(x) > 0 for x > 0;

(A4) q(x) ∈C1[0,+∞), there exists x∗ ∈ (0,K) such that q(x∗) = 0, and (x−
x∗)q(x) > 0 for x ∈ (0,x∗)

⋃
(x∗,K);

(A5) System (1.14) has no equilibrium at infinity except at the infinity of the
positive x-axis and y-axis.



1.3 Limit cycles for generalized Gause-type predator-prey systems 21

We use some transformations of variables to reduce system (1.14) to the gener-
alized Liénard system (1.8) with a(x) ≡ 1. We present explicit conditions guaran-
teeing the uniqueness of limit cycles (based on a theorem of Gasull and Guillamon
[20]) and results on nonexistence of limit cycles, the global stability of a positive
equilibrium of system and center problems. Further, in the case of having unique-
ness, the limit cycle could bifurcate under small perturbations and the dynamics
of the population could be qualitatively modified. If a limit cycle is hyperbolic
then it will persist under small C1-perturbations. Hence, the hyperbolicity of a
limit cycle for (1.8) implies the non-appearance of new periodic solutions near to
it and so a similar behavior for the C1-close system, even if it is not of type (1.8).

We have the following results (see, for example, [103]):

Theorem 1.12. Suppose that system (1.14) satisfies the conditions (A1)− (A5),
then the solutions of (1.14) in the interior of the first quadrant are positive and
eventually bounded.

Theorem 1.13.Suppose system (1.14) satisfies the conditions (A1)− (A5). Then
the dynamics of (1.14) in the region Ω1 = {(x,y) : 0 < x < K,0 < y < +∞} is
equivalent to that of the generalized Liénard system{

u̇ = φ(v)−F(u),
v̇ = −g(u),

(1.15)

in the region Ω2 = {(u,v) : x∗ −K < u < x∗,h−1(−y∗) < v < h−1(+∞)}, where
F(u) = ψ(−u + x∗)/p(−u + x∗)− ξ (y∗), φ(v) = ξ (h(v) + y∗)− ξ (y∗), g(u) =
−q(−u + x∗)/p(−u + x∗), and h(v) is a solution of the initial-value problem
dh(v)/dv = η(h(v)+ y∗), h(0) = 0.

Therefore, we can establish conditions to ensure the uniqueness and hyper-
bolicity of limit cycles, the nonexistence of limit cycles, the global stability of a
positive equilibrium of systems and oscillation and to solve center problems by
utilizing a wealth of existing methods or the results for the generalized Liénard
systems (1.8) given in the above sections ([20, 57, 58, 59, 103, 105, 106]).





Chapter 2

A class of second-order
autonomous systems

2.1 Global asymptotic stability of second-order nonlin-
ear differential systems

In a series papers [52, 53, 54, 55], Krechetov studied the following real system of
two differential equations {

ẋ = f1(x)+h2(x)y,
ẏ = f3(x)+h4(x)y,

(2.1)

where f1(x), f3(x), h2(x) and h4(x) are continuous on R. Using Liapunov func-
tions, he investigated the question of stability, described the configurations of the
domains of stability (when there is no global stability) and constructed estimates
of the boundaries of these domains. Egorov and Kartuzova [16] studied the same
problem and formulated necessary and sufficient conditions for the zero solution
of (2.1) to be globally asymptotically stable under rather restrictive assumptions
on the functions hi(x).

Theorem 2.1. (Egorov and Kartuzova [16]). Suppose that f1(x), f3(x), h2(x)
and h4(x) are continuous on R with f1(0) = f3(0) = 0 and that they satisfy the
following conditions:

(1) h1(x)+h4(x) < 0 for x �= 0;

(2) h1(x)h4(x)− h2(x)h3(x) := δ (x) > 0 for x �= 0, where hi(x) = fi(x)
x for

x �= 0 and i = 1, 3;

(3) h2(x) �= 0 for all x;

(4) h1(x)+ h2(x)H42(x)
x < 0 for x �= 0.
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Then the zero solution of (2.1) is globally asymptotically stable if and only if∫ ±∞

0
δ (x)[h2(x)]

−2xdx+ limsup
x→±∞

|Ψ(x)| = +∞. (2.2)

Here H42(x) :=
∫ x

0 h4(s)[h2(s)]
−1ds and Ψ(x) :=

[
h1(x)+ h2(x)H42(x)

x

]
x

h2(x)
.

In Paper II, we investigate the global asymptotic stability of the system (2.1)
without the assumption (4) and condition (2.2) in Theorem 2.1. The transforma-
tion technique plays an important role. Under suitable assumptions, we prove that
the system (2.1) is equivalent to equations of the following type{

ẋ = φ(z−F(x)),
ż = −g(x),

(2.3)

which is a generalized form of the Liénard system. The study of the system (2.3)
has an independent interest and value.

2.2 Qualitative behavior of second-order systems with
zero diagonal coefficient

In Paper III, we study the qualitative behavior of the solutions of the following
autonomous system of two differential equations with zero diagonal coefficient{

ẋ = p2(y)q2(x)y,
ẏ = p3(y)q3(x)x+ p4(y)q4(x)y,

(2.4)

where pi(y) and qi(x) (i = 2,3,4) are continuous real functions defined on R =
(−∞, +∞).

Krechetov [56] studied the global asymptotic behavior of solutions of system
(2.4), described the configurations of the domains of stability (when there is no
global asymptotic stability) and constructed estimates of the boundaries of these
domains. In the study of stability for (2.4), the most important condition given by
Krechetov [56] is

q2(x)q4(x) > 0 for all x ∈ R. (2.5)

By using the Lyapunov function method, he gave necessary and sufficient condi-
tions for the zero solution of (2.4) to be globally asymptotically stable under some
additional assumptions.

In Paper II, we first introduce the transformation techniques to investigate the
global asymptotic stability of the following system (2.6), the special case (i.e.,
p3(y) ≡ p4(y)) of system (2.4),{

ẋ = p2(y)q2(x)y,
ẏ = p3(y)q3(x)x+ p3(y)q4(x)y.

(2.6)
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Without the assumption (2.5), in paper [107], under the following conditions

p2(y) > 0, p3(y) > 0 for all y,
q2(x) > 0, q3(x) < 0 for all x,

(2.7)

they transformed system (2.6) into the following Liénard-type system{
ẋ = φ(z−F(x)),
ż = −g(x),

(2.8)

and obtained necessary and sufficient conditions for the zero solution of (2.6)
(resp. (2.8)) to be globally asymptotically stable. Such a system (2.8) with φ(u)≡
u arises in several different settings: modelling phenomena appearing in the study
of physical, as well as biological, chemical, and economical systems It has natu-
rally been studied by a number of authors [18, 29, 34, 35, 36, 90, 98, 116, 124].
In Paper III, we investigate the qualitative behavior of system (2.4) without the
assumption (2.5). No restriction on the sign of q4(x) is required; we only assume
that

p2(y) > 0, p3(y) > 0, p4(y) > 0 for all y,
q2(x) < 0, q3(x) > 0 or q2(x) > 0, q3(x) < 0) for all x,
ρ(y) ∈C1(R), ρ ′(y) > 0 for all y, ρ(±∞) = ±∞,

where ρ(y) := yp4(y)
p3(y)

.

(2.9)

If p3(y) ≡ p4(y), one case of assumption (2.9) reduces to (2.7). Under assump-
tion (2.9), we prove that system (2.4) is equivalent to a form of system (2.8)
which is a Liénard-type system, and give some conditions for the existence of
oscillatory solutions, the existence of local centers and global centers, and the ex-
istence, uniqueness and hyperbolicity of nontrivial periodic solutions for system
(2.4) (resp. (2.8)).

2.3 Existence and nonexistence of periodic solutions of
general autonomous systems of Liénard-type

In 1942, Levinson and Smith [63] first studied the existence of nonzero periodic
solutions of the general autonomous equation of Liénard-type

ẍ+ f (x, ẋ)ẋ+g(x) = 0 (2.10)

or its equivalent system {
ẋ = y,
ẏ = − f (x,y)y−g(x).

(2.11)

Since then, many authors have made contributions to the theory of this system with
regards to the existence of nonzero periodic solutions. The books by Sansone and
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Conti [83], Zhang [124] and Ye [116] contain a summary of the results on this
problem. On reviewing all of the known results, we find that in order to obtain
a criterion for the existence of nonzero periodic solutions, almost every author
required that the restoring force g(x) and damping f (x,y) should be not too small,
that is, f (x,y) should have a lower bound in a strip region |x| ≤ d and should be
non-negative outside this strip region, and

∫ ±∞ g(x)dx = +∞. Ponzo and Wax [79]
gave a result on the existence of a nonzero periodic solution which does not require
f (x,y) to have a lower bound. Unfortunately, Zheng [126] gave an example{

ẋ = y,
ẏ = −(x2 −4)(y2 +1)y− x

(2.12)

to show that the conditions of Ponzo and Wax cannot guarantee the existence of a
nonzero periodic solution if f (x,y) does not have a lower bound. Yu and Huang
[118] also dealt with the existence of nonzero periodic solutions of (2.11), and
pointed out that system (2.12) has a nonzero periodic solution. Yan and Jiang
[110] considered the system (2.11), and noted that system (2.12) has no nonzero
periodic solution. Also, Wang, Jiang and Yan [100] gave a complete analysis of
global bifurcation for the following system{

ẋ = y,
ẏ = −(x2 −δ )(y2 +1)y− x,

(2.13)

where δ is a parameter. In addition, it was shown by Lemma 5 in [100] that system
(2.13) has no nonzero periodic solution when δ ≥ 3

√
qπ2/16 ≈ 1.7707.

Yu and Huang [119] studied a more general system than (2.11), namely,{
ẋ = p(y),
ẏ = − f (x,y)p(y)q(y)− r(y)g(x),

(2.14)

under the assumptions
∫ ±∞

0 g(s)ds = +∞ They obtained some sufficient conditions
for the existence of one nonzero periodic solution of (2.14). Moreover, as a result
of [119] they pointed out that system (2.12) has at least one nonzero periodic
solution.

The purpose of Paper IV is to study the problem how small the extent for
f (x,y) should be to warrant the existence of nonzero periodic solutions of (2.14).
Our investigation shows that whether (2.14) has a nonzero periodic solution strongly
depends on the integral

∫ ±∞ | f (x,y)q(y)|−1dy, where |x| is sufficiently small. We
find some sufficient conditions for the existence of nonzero periodic solutions of
(2.14), roughly speaking, if

∫ ±∞ | f (x,y)q(y)|−1dy = ±∞ for a small |x| and some
additional assumption hold, then (2.14) has at least one nonzero periodic solution.
Our results allow us to avoid the classical assumptions:∫ ±∞

0
g(x)dx = +∞, (2.15)
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f (x,y) > 0 (or ≥ 0) for |x| sufficiently large. (2.16)

In Paper IV we also give some sufficient conditions for nonexistence of periodic
solutions of (2.14), which state that if

∫ +∞ | f (x,y)q(y)|−1dy (or
∫ −∞ | f (x,y)q(y)|−1dy)

is finite for a small |x| and some additional assumptions hold, then there does not
exist a nonzero periodic solution of the system (2.14). Some examples illustrating
our results are given in Paper IV.





Chapter 3

Limit cycles in three-dimensional
Lotka-Volterra systems

3.1 A 3D Lotka-Volterra competitive system with three
limit cycles: A falsification of a conjecture by Hof-
bauer and So

Lotka-Volterra (L-V) interaction of n biological species is modeled by a system
of differential equations

dxi

dt
= xi

(
ri +

n

∑
j=1

ai ju j

)
, i = 1,2, · · · ,n, (3.1)

where xi represents the number (or density) of individuals of species i, the ai j’s
are the interaction coefficients, and ri is the per capita growth rate of species i
in the absence of interaction. For example, ri > 0 means that species i is able to
grow with food from the environment, while ri < 0 means that it cannot survive
when left alone in the environment. One can also have ri = 0 which means that
the population stays constant if the species do not interact.

Although the L-V model is a model that originated from mathematical ecol-
ogy, it plays an important role in many other research fields including optical
maser [60], fluid mechanics [70] and neural networks [76]. Nevertheless, we
would like to emphasize its close relationship with replicator dynamics, which is
an important branch of deterministic dynamical systems motivated by evolution-
ary game theory (see [40, 41]).

The dynamics of the two-dimensional L-V systems is well understood. In
particular, two-dimensional L-V systems cannot have limit cycles: if there is a pe-
riodic orbit, then the interior singular point is a center (i.e., surrounded by a con-
tinuum of periodic orbits). Hence a center is a codimension one phenomenon for
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two-dimensional L-V systems. Using numerical simulations, three-dimensional
L-V systems have been seen to allow already complicated dynamics: the period
doubling route to chaos and many other phenomena known from the interaction
of the quadratic map have been observed (see [2, 19, 84]).

An L-V system with interaction matrix A = (ai j) is called competitive if ri > 0
and ai j < 0 for all 1 ≤ i, j ≤ n. It describes the competition between two or more
species that share and compete for the same resources, habitat or territory (inter-
ference competition). This is different from exploitative competition, where indi-
viduals do not directly interfere with one another, but compete indirectly through
their consumption of a common resource [11]. From the viewpoint of evolutionary
game theory, all replicator dynamics on the standard (n−1) dimensional simplex
Sn can be imbedded into a competitive L-V system on Rn

+ which has a global
attractor Sn [41].

For three-dimensional competitive L-V systems, the dynamical possibilities
are more restricted: Hirsch [38] has showed that all nontrivial orbits approach
a “carrying simplex”, a Lipchitz two-dimensional manifold-with-corner homeo-
morphic to the standard simplex in R3

+. This then leads to the Poincaré-Bendixson
theorem for three-dimensional systems, which states that three-dimensional com-
petitive L-V systems behave like general planar systems. Based on the remarkable
result of Hirsch, Zeeman [121] defined a combinatorial equivalence relation on
the set of all three-dimensional L-V competitive systems and identified 33 stable
equivalence classes. Of these, classes 1-25 and classes 32 and 33 exhibit conver-
gence to equilibrium for all orbits, while limit cycles are possible for the remaining
6 classes, i.e., in classes 26 to 31 (see [15, 121]). Open problems remain concern-
ing the number of periodic orbits in the later classes. Hofbauer and So [43] first
give an example in class 27 (with heteroclinic polycycle) with two limit cycles
surrounding the interior equilibrium. Recently, Lu and Luo [68] constructed two
limit cycles in three cases without a heteroclinic polycycle (cases 26, 28 and 29).

Apparently, the main questions now are (i) whether or not there are at most
finitely many limit cycles on the carrying simplex and (ii) whether there can be
more than two limit cycles in three-dimensional competitive L-V systems. Re-
garding question (i) Xiao and Li [102] have proved that the number of limit cycles
of the three-dimensional competitive L-V systems is finite if the system does not
have any heteroclinic polycycle. It is a very interesting open problem to prove
whether or not the number of limit cycles of system (1) is finite in the small
neighborhood of the heteroclinic polycycles. Question (ii) is a very difficult prob-
lem. Hofbauer and So [43] conjectured that the number of limit cycles is at most
two for system (1). Note that the existence of the limit cycles in the references
[43, 102, 68] were all generated by local Hopf bifurcation. The discussion in [43]
implies that the maximum order of a focus would be 2 and that one could not gen-
erate more than two limit cycles from local Hopf bifurcation. This motivated their
belief that two is the maximum number of limit cycles in three-dimensional com-
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petitive L-V systems. However, it is worthy of note that Hofbauer-So Conjecture
neglects the fact that the global dynamical behavior of system (1) might gener-
ate the third limit cycle by the Poincaré-Bendixson theorem in three-dimensional
competitive L-V systems [88]. If we can construct by generic Hopf bifurcation a
L-V competitive system which is strongly persistent [9] and has two limit cycles
and if the first bifurcated (outer) cycle is unstable, then by the Poincaré-Bendixson
theorem in three-dimensional competitive systems we can get the third limit cycle.

Recently, Lu and Luo [69] were the first to give an example in class 27 (with
a heteroclinic polycycle) with three limit cycles. This gives a partial answer to
Hofbauer and So’s conjecture. In Paper V, we construct three limit cycles in case
29 without heteroclinic polycycle and thus give a counterexample to Hofbauer
and So’s conjecture which is qualitatively different from that of Lu and Luo. We
conjecture that there also exist three limit cycles in case 26. We leave this as a
future research problem.

3.2 Limit cycles for the competitor-competitor-mutualist
Lotka-Volterra systems

The dynamics of an ecosystem with n≥ 2 interacting populations can be modelled
by the general Lotka-Volterra system

ẋi = xi(ri +
n

∑
j=1

ai jx j), i = 1,2, ...,n, (3.2)

where xi is the density of the ith population, ri is the intrinsic growth rate of the
ith population and the coefficient ai j describes the influence of the jth population
upon the ith population (Hofbauer and Sigmund [40]). The signs of ai j and a ji
determine the nature of the interaction between the populations i and j: the system
(3.2) can describe all of the three basic types of interaction, viz., competition,
collaboration (mutualism) and host-parasite (predator-prey) interactions.

The dynamics of two-dimensional Lotka-Volterra systems is well understood.
Bomze [6] gave a complete classification of all possible phase portraits for this
case. In particular, there are no limit cycles in two-dimensional Lotka-Volterra
systems: if there is a periodic orbit, then the equilibrium in IntR2

+ is a center, that
is, it is surrounded by a continuum of periodic orbits. As is well known, this is the
case in the classical Lotka-Volterra predator-prey system. It should, however, be
noted that the phase portrait does not reveal the whole dynamics. For example, the
solution may blow up in finite time (this is clear because the system (3.2) contains
the system ẋi = x2

i as a special case).
As one steps from two to higher dimensions the situation becomes far more

complicated and difficult. Using numerical simulations, three-dimensional Lotka-
Volterra systems allow already complicated dynamics. The period doubling route
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to chaos and many other phenomena known from the interaction of the quadratic
map have been observed (see [2, 19, 84]).

For three-dimensional competitive Lotka-Volterra systems, the dynamical pos-
sibilities are more restricted: Hirsch [38] has showed that all nontrivial orbits ap-
proach a “carrying simplex”, a Lipshitz two-dimensional manifold-with-corner
homeomorphic to the standard simplex in R3

+. Based on this, Zeeman [121] has
given a classification of all possible stable phase portraits of three-dimensional
competitive Lotka-Volterra systems and has shown that in some three-dimensional
competitive Lotka-Volterra systems limit cycles can indeed occur. Recently, Liang
and Jiang [65] did the same for Competitor-Competitor-Mutualist Lotka-Volterra
systems. Hofbauer and So [43], Xiao and Li [102] and Lu and Luo [68] have also
presented examples of three-dimensional competitive Lotka-Volterra systems with
at least two limit cycles.

In Paper VII, we focus on the limit cycles for the Competitor-Competitor-
Mutualist Lotka-Volterra systems. The specific system we shall consider models
two competing populations that both collaborate with a third one. Such systems
are of great biological relevance. The two competing populations may for instance
represent two different types of the same species (a “resident” and “mutant” in the
terminology of adaptive dynamics, Metz et al. [74]; Geritz et al. [22, 23]). More
models of this type can be found in [28, 65] and the references therein. We shall
prove that the number of nontrivial periodic orbits (and hence a fortiori of limit
cycles) is finite in Competitor-Competitor-Mutualist Lotka-Volterra systems. We
also construct an example of a system of this type with at least two limit cycles by
using local Hopf bifurcation and analyse the scale of the parameters.

It also deserves to be noted that it is under the assumption M12 = a11a22 −
a12a21 < 0 that Liang and Jiang [65] obtained the existence of the nontrivial limit
cycle, generated by Hopf bifurcation, in Competitor-Competitor-Mutualist Lotka-
Volterra systems [65, Theorem 5.5]. Hence in this case, in the competitive sub-
community of two species 1 and 2, at least one can resist invasion by the other.
For the three-dimensional competitive Lotka-Volterra systems, van den Driessche
and Zeeman [15] have shown that if none of the species can resist invasion by
either of the others, then there is no periodic orbit and therefore limit cycles do
not exist and global dynamics are known. For the system (0.38), it is obvious
that none of the species can resist invasion by the other in the mutualistic sub-
community of two species 1 and 3, or 2 and 3. Therefore, it is a very interesting
question whether there exist periodic orbits in Competitor-Competitor-Mutualist
Lotka-Volterra systems if none of the species can resist invasion by the other in
the competitive subcommunity of two species 1 and 2. We answer this question by
providing an example which has a stable limit cycle. Meanwhile, new amenable
conditions are also given on the coefficients ri,ai j, under which system (3.2) has
no periodic orbits if none of the species can resist invasion from either of the oth-
ers. Thus all trajectories converge to equilibria. Based on this, we also present an
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example of global stability for a positive equilibrium, but the Volterra multipliers
method [65, Theorem 5.6] cannot be applied.
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ẍ+ f1(x)ẋ+ f2(x)ẋ
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Abstract. We consider the generalized Liénard system

dx

dt
=

1

a(x)
[h(y) − F (x)],

dy

dt
= −a(x)g(x), (0.1)

where a is a positive and continuous function on R = (−∞,∞), and F , g and h
are continuous functions on R. Under the assumption that the origin is a unique

equilibrium, we obtain necessary and sufficient conditions for the origin of system

(0.1) to be globally asymptotically stable by using a nonlinear integral inequality.
Our results substantially extend and improve several known results in the literature.

1. Introduction. It is well known that the Liénard equation

ẍ+ f(x)ẋ+ g(x) = 0 (1.1)

is of great importance in various applications. Hence, qualitative and asymptotic
behavior of this equation and some of its extensions have been widely studied by a
number of authors; results can be found in many books [14, 18, 19, 23, 31, 32, 33].
In recent years, several authors [8, 15, 22] have considered the following second
order differential equation

ẍ+ (f(x) + k(x)ẋ)ẋ+ g(x) = 0, (1.2)

where f , g and k are all continuous functions. Clearly, when k(x) ≡ 0, (1.2) is
reduced to the Liénard equation (1.1). Using the transformation y = a0(x)ẋ+F0(x),
one can change (1.2) into

dx

dt
=

1
a0(x)

[y − F0(x)],

dy

dt
= −a0(x)g(x), (1.3)

where a0(x) = exp(
∫ x

0
k(s)ds) and F0(x) =

∫ x

0
a0(s)f(s)ds. Therefore, motivated

by theoretical interest and plausible applications, Qian[22], Jiang[16] and Sugie[27]
investigated a more general nonlinear system

dx

dt
=

1
a(x)

[h(y) − F (x)],

dy

dt
= −a(x)g(x). (1.4)

1991 Mathematics Subject Classification. 34D05, 34C05.
Key words and phrases. Homoclinic orbit, periodic solution, Filippov transformation.
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In this paper, we give necessary and sufficient conditions for the global asymp-
totic stability of the zero solution of the system (1.4). we assume that a > 0, F , g
and h are continuous functions which ensure the existence of a unique solution to
the initial value problem.

The global asymptotic stability of the zero solution of a planar autonomous
system is related to the Markus-Yamabe problem. The following conjecture was
explicitly stated by Markus and Yamabe [20] in 1960: If the eigenvalues λ1(x), ...
λn(x) of the Jacobian matrix Dfn(x) of a class C1 vector field fn: Rn → Rn in
the n-dimensional space Rn all have negative real parts at every x in Rn and if
fn(0) = 0, then the origin is a globally asymptotically stable equilibrium point for
the n-dimensional nonlinear autonomous system of ordinary differential equations
ẋ = fn(x).

The Markus-Yamabe conjecture for the case n = 2 has been given an affirmative
answer independently by several authors [5, 9, 10]. For n ≥ 3, the Markus-Yamabe
conjecture has been proved to be false [1, 2, 4]. Therefore, the Markus-Yamabe
conjecture has been completely solved. However, it is still of interest to give neces-
sary and sufficient conditions to guarantee the zero solution of a planar autonomous
system to be globally asymptotically stable [12, 15, 16, 17, 22, 24, 27, 28, 29].

To study the global asymptotic stability of the zero solution of (1.4), the signifi-
cant point is to find conditions for deciding whether all orbits intersect the isocline
h(y) = F (x), and we also need to examine the behavior of orbits near the origin.
If system (1.4) has a homoclinic orbit, then the zero solution of (1.1) is not even
stable. Roughly speaking, if

(i) all positive semiorbits are bounded and cross the isocline h(y) = F (x),
(ii) no nontrivial periodic orbit exists,
(iii) no homoclinic orbit exists,

then the zero solution of (1.4) is globally asymptotically stable.
Recently, Qian [22] established necessary and sufficient conditions for the global

asymptotic stability of the zero solution of (1.4). Under considerably weaker con-
ditions, Jiang [16] generalized the results of [22], Sugie [27] investigated the same
topic and obtained an implicit necessary and sufficient condition under which the
zero solution of (1.4) with a(x) ≡ 1 is globally asymptotically stable [27, Theo-
rem 3.1]. Since, in general, it is not an easy matter to verify whether all orbits
intersect the isocline h(y) = F (x) even for the Liénard system (1.4) with a(x) ≡ 1
and h(y) = y (see, for example, [7, 11, 12, 13, 24, 26, 28, 29], and the references
contained therein), the result of Sugie [27, Theorem 3.1] is of theoretical interest
only. For an application, Sugie [27] considered the system

dx

dt
= m|y|p sgn y − F (x),

dy

dt
= −g(x), (1.5)

with m > 0 and p ≥ 1. But the problem of what happens when 0 < p < 1 is left
open in [27].

The purpose of the present paper is to extend and improve the results mentioned
above and to derive necessary and sufficient conditions under which the zero solu-
tion of (1.4) is globally asymptotically stable. The main advantage of our global
asymptotic stability criteria is that they are explicit, so that it is not difficult to ver-
ify them. In addition, our results can be applied to system (1.5) even for 0 < p < 1.
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As a corollary of our main results, we have the following theorem which can be
applied to system (1.5) for 0 < p <∞.

Theorem 1.1. Suppose that the system (1.4) satisfies the following conditions:
(A0) F (0) = 0, a(x) > 0 for x ∈ R, xg(x) > 0 for x �= 0;
(A1) yh(y) > 0 for y �= 0, h(y) is strictly increasing and h(±∞) = ±∞;
(A∗

2) F (G−1
0 (−z)) ≤ F (G−1

0 (z)) for any z ∈ (0,min{−G0(−∞), G0(∞)}) and
F (G−1

0 (−z)) �≡ F (G−1
0 (z)) for 0 < z � 1, where G0(x) =

∫ x

0
a2(s)|g(s)|ds, and the

notation 0 < z � 1 denotes z sufficiently small;
(A∗

3) there exist constants α > 1
4 and δ > 0 such that |F (x)| > 0 for 0 < |x| ≤ δ,

and for any fixed real number k ≥ 1,∫ x

0

a2(s)g(s)
|F (s)| ds ≥ 1

k
h−1(kα|F (x)|) for 0 < |x| � 1,

where h−1(u) is the inverse function of u = h(y);
(A∗

4) lim supx→∞ F (x) > −∞ and lim infx→−∞ F (x) <∞.
Then the origin is globally asymptotically stable if and only if

lim sup
x→∞

[∫ x

0

a2(s)g(s)
1 + F−(s)

ds+ F (x)
]

= ∞ (1.6)

and

lim sup
x→−∞

[∫ x

0

a2(s)g(s)
1 + F+(s)

ds− F (x)
]

= ∞, (1.7)

where F−(x) = max{0,−F (x)} and F+(x) = max{0, F (x)}.
Our technique here is based on a nonlinear integral inequality and a transforma-

tion of (1.1) which is similar to the one used by Filippov [6]. Also the methods for
Liénard systems, especially those developed by Villari and Zanolin [29], Hara and
Sugie [11], will be applied in this paper.

The orgnization of this paper is as follows. In section 2 we adapt Filippov’s
transformation to equation (1.4) and prove some auxiliary Lemmas which will be
essential to our proofs. In section 3 we study the problem of the intersection of
semiorbits for (1.4) with the characteristic curve h(x) = F (x). In section 4 we
establish necessary and sufficient conditions for the zero solution of (1.4) to be
globally asymptotically stable, an example illustrating our main result is also given
in this section.

2. Filippov Transformation and Auxiliary Lemmas. We consider the gener-
alized Liénard system

dx

dt
=

1
a(x)

[h(y) − F (x)],

dy

dt
= −a(x)g(x), (2.1)

where F (x), g(x), a(x) and h(y) are continuous real functions defined on R.
Throughout this paper, we always assume the conditions (A0) and (A1) presented
in Theorem 1.1 hold. These assumptions guarantee that the origin is the only criti-
cal point of (2.1). We also assume that the corresponding initial value problem has
a unique solution.
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We call the curve h(y) = F (x) the characteristic curve of system (2.1). We write
γ+(P ) (resp. γ−(P )) the positive (resp. negative) semiorbit of (2.1) starting at a
point P ∈ R2. For the sake of convenience, we denote

C+ = {(x, y) : x > 0, h(y) = F (x)}, C− = {(x, y) : x < 0, h(y) = F (x)}.
The curves C+, C− and the y-axis divide the planar domain R2 into four parts:

D1 = {(x, y) : x ≥ 0, h(y) > F (x)}, D2 = {(x, y) : x ≥ 0, h(y) < F (x)}.
D3 = {(x, y) : x ≤ 0, h(y) < F (x)}, D4 = {(x, y) : x ≤ 0, h(y) > F (x)}.

Let G(x) =
∫ x

0
a2(s)g(s)ds. Imitating Filippov’s transformation [6], we now trans-

form the system (2.1) as follows. For x > 0 we set

z = z1(x) = G(x), (2.2)

the inverse function of which is denoted by x = x1(z). We then define

F1(z) = F (x1(z)), z ∈ (0, G(∞)). (2.3)

Similarly, for x < 0 we write

z = z2(x) = G(x), (2.4)

denote the inverse function of (2.4) by x = x2(z), and define

F2(z) = F (x2(z)), z ∈ (0, G(−∞)). (2.5)

The transformation (2.2) & (2.4) turns the system (2.1) into the equivalent equa-
tions

dz

dy
= F1(z) − h(y), z ∈ (0, G(∞)), (2.6)

dz

dy
= F2(z) − h(y), z ∈ (0, G(−∞)). (2.7)

for x > 0 and x < 0, respectively. The transformation (2.2) & (2.4) is just Filippov’s
transformation of the generalized Liénard system

dx

dt
= h(y) − F (x),

dy

dt
= −g∗(x), (2.8)

where g∗(x) = a2(x)g(x). Thus, we obtain the following proposition.

Proposition 2.1. Assume that (A0) and (A1) hold. then the qualitative behavior
of (2.1) is the same as that of (2.8).

Throughout this paper we shall suppose that the following condition holds:
(A2) F2(z) ≤ F1(z) for z ∈ (0,min{G(−∞), G(∞)}) and F1(z) �≡ F2(z) for all

sufficiently small z > 0.

Lemma 2.2. (see [16, Proposition 2.3] or [30, Lemma 2.1]). Suppose that the
conditions (A0), (A1) and (A2) are satisfied. If the positive semiorbit of (2.1)
starting from P1 = (0, y1) with y1 > 0 intersects the positive y-axis once more
at P2 = (0, y2), then y2 < y1. In particular, the system (2.1) (or (2.8)) has no
nontrivial periodic solution.
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Lemma 2.3. Let Y (x), ψ(x) be positive continuous functions defined on 0 < a ≤
x ≤ b and let ω(u) be a positive increasing continuous function for u > 0, and let

Ω(u) =
∫ u

0+

dt

ω(t)
(2.9)

exist for u > 0 with Ω(0) = 0. Then for λ > 0 the inequality

Y (x) ≥ λ

∫ x

a

ψ(t)ω(Y (t))dt for a ≤ x ≤ b (2.10)

implies the inequality

Ω(Y (x)) ≥ λ

∫ x

a

ψ(t)dt for a ≤ x ≤ b. (2.11)

Proof: Define

V (x) = λ

∫ x

a

ψ(t)ω(Y (t))dt for a ≤ x ≤ b. (2.12)

Then (2.10) can be restated as Y (x) ≥ V (x). Because ω(u) is increasing, this may
be rewritten as

ω(Y (x)) ≥ ω(V (x)),

V ′(x)
ω(V (x)) ≥ λψ(x)

for a < x ≤ b. Using the notation Ω(u) introduced in (2.9), we have

dΩ(V (x))
dx

≥ λψ(x) for a < x ≤ b. (2.13)

Now, integrating (2.13) from a to x, we get

Ω(V (x)) − Ω(V (a)) ≥ λ

∫ x

a

ψ(t)dt.

Since V (a) = 0, it follows that

Ω(V (x)) ≥ λ

∫ x

a

ψ(t)dt for a ≤ x ≤ b. (2.14)

Because Y (x) ≥ V (x) for a ≤ x ≤ b, and Ω(u) is increasing, we obtain by (2.14),

Ω(Y (x)) ≥ λ

∫ x

a

ψ(t)dt for a ≤ x ≤ b.

This completes the proof.

3. Intersection of Orbits with the Characteristic Curve. In this section, we
are concerned with conditions ensuring the intersection of γ+(P ) (resp. γ−(P ))
with the characteristic curve of (2.1), for any given P ∈ R2.

The system (2.1) is said to satisfy the assumption (A+
3 ) if one of the following

conditions holds:
(A+

3 )1 lim supx→∞ F (x) �= −∞;
(A+

3 )2 lim supx→∞ F (x) = −∞, and there exist β > 1
4 and N1 > 0 such that F (x) <

0 for x ≥ N1, and for any fixed k ≥ 1 and b ≥ N1, there exists b̄ > b satisfying∫ x

b

a2(s)g(s)
F (s)

ds ≤ 1
k
h−1(kβF (x)) for x ≥ b̄.

The system (2.1) is said to satisfy (A−
3 ) if one of the following conditions holds:

(A−
3 )1 lim infx→−∞ F (x) �= ∞;
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(A−
3 )2 lim infx→−∞ F (x) = ∞, and there exist β > 1

4 and N1 > 0 such that F (x) > 0
for x ≤ −N1, and for any fixed k ≥ 1 and b ≥ N1, there exists b̄ > b satisfying

∫ x

−b

a2(s)g(s)
F (s)

ds ≥ 1
k
h−1(kβF (x)) for x ≤ −b̄.

We say that system (2.1) satisfies the assumption (A3) if both (A+
3 ) and (A−

3 ) hold.

Theorem 3.1. Suppose that the conditions (A0), (A1) and (A+
3 ) hold. Then every

positive semiorbit of (2.1) departing from D1 intersects the characteristic curve C+

if and only if

lim sup
x→∞

[∫ x

0

a2(s)g(s)
1 + F−(s)

ds+ F (x)
]

= ∞, (3.1)

where F−(x) = max{0,−F (x)}.
Proof: We first prove sufficiency. Suppose the conclusion does not hold. Then
there is a point P = (x0, y0) ∈ D1 such that γ+(P ) does not intersect C+. Let
(x(t)y(t))(t ≥ 0) be the solution of (2.1) passing through a point P whose maximal
existence interval is [0, ω+). Note that x′(t) > 0 and y′(t) < 0 in the region D1;
hence x(t) is increasing and y(t) is decreasing as t is increasing. Suppose that x(t)
is bounded, then (x(t), y(t)) stays in the region {(x, y) : 0 < x < K1, h(y) > F (x)}
for some K1 > 0. Hence it must intersect the characteristic curve, which is a
contradiction. Therefore x(t) → ∞ as t→ ω+.

Case 1: Suppose lim supx→∞ F (x) = ∞, that is, there exists a sequence {xn}
such that xn → ∞ as n → ∞ and limn→∞ F (xn) = ∞, then (x(t), y(t)) must
intersect the characteristic curve, which is a contradiction.

Case 2: Suppose
∫ ∞
0

a2(x)g(x)
1+F−(x) dx = ∞, then

y(t) − y0 = −
∫ t

0

a(x(s))g(x(s))ds

= −
∫ t

0

a2(x(s))g(x(s))
h(y(s)) − F (x(s))

ẋ(s)ds

= −
∫ x(t)

x0

a2(ξ)g(ξ)
h(y(s)) − F (ξ)

dξ

≤ −
∫ x(t)

x0

a2(ξ)g(ξ)
h(y0) + F−(ξ)

dξ → −∞

as t→ ω+. Therefore the orbit of the above solution can be considered as a function
y(x) which is a solution of the equation

dy

dx
= − a2(x)g(x)

h(y) − F (x)
(3.2)

and y(x) → −∞ as x→ ∞.

Case (A+
3 )1: There exist c > 0 and a sequence {xn} such that xn → ∞ (n→ ∞),

and F (xn) ≥ −c, hence (x(t), y(t)) must intersect the characteristic curve, which
is a contradiction.
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Case (A+
3 )2: There exists b > N1 such that F (x) < 0 and y(x) < 0 for x ≥ b.

Since y(x) is a solution of (3.2), putting H1(u) =
∫ u

0
h(y)dy for u ≤ 0, we have

H1(y(x)) −H1(y(b)) =
∫ x

b

H ′
1(y(s))

a2(s)g(s)
F (s) − h(y(s))

ds

≥
∫ x

b

h(y(s))
a2(s)g(s)
F (s)

ds

=
∫ x

b

(h ◦H−1
1 )(H1(y(s))

a2(s)g(s)
F (s)

ds

for x ≥ b. Hence

H1(y(x)) ≥
∫ x

b

(−h ◦H−1
1 )(H1(y(s))

a2(s)g(s)
−F (s)

ds

for x ≥ b. It follows from Lemma 2.3 that

H2(H1(y(x)) ≥
∫ x

b

a2(s)g(s)
−F (s)

ds for x ≥ b, (3.3)

where H2(u) =
∫ u

0+
dt

(−h◦H−1
1 )(t)

. Changing variables H−1
1 (t) = τ , then H2(u) =

−H−1
1 (u), by (3.3), it is easy to see that

y(x) ≤
∫ x

b

a2(s)g(s)
F (s)

ds for x ≥ b. (3.4)

From the assumption (A+
3 )2, there exist β > 1

4 and b1 > b such that∫ x

b

a2(s)g(s)
F (s)

ds ≤ h−1(βF (x)) for x ≥ b1. (3.5)

By virtue of (3.4) and (3.5), we have y(x) ≤ h−1(βF (x)) for x ≥ b1. Because h(y) is
strictly increasing, we obtain h(y(x)) ≤ βF (x) for x ≥ b1. Hence F (x)− h(y(x)) ≥
β1F (x) for x ≥ b1, where β1 = 1 − β. By a similar argument, we have

H1(y(x)) −H1(y(b1)) =
∫ x

b1

h(y(s))
a2(s)g(s)

F (s) − h(y(s))
ds

≥ 1
β1

∫ x

b1

h(y(s))
a2(s)g(s)
F (s)

ds

=
1
β1

∫ x

b1

(h ◦H−1
1 )(H1(y(s))

a2(s)g(s)
F (s)

ds

for x ≥ b1. Hence

H1(y(x)) ≥ 1
β1

∫ x

b1

(−h ◦H−1
1 )(H1(y(s))

a2(s)g(s)
−F (s)

ds

for x ≥ b1. By Lemma 2.3 one has

H2(H1(y(x))) ≥ 1
β1

∫ x

b1

a2(s)g(s)
−F (s)

ds,

y(x) ≤ 1
β1

∫ x

b1

a2(s)g(s)
F (s)

ds (3.6)

for x ≥ b1. From the assumption (A+
3 )2, there exists b2 > b1 such that∫ x

b1

a2(s)g(s)
F (s)

ds ≤ β1h
−1

(
β

β1
F (x)

)
for x ≥ b2. (3.7)
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By virtue of (3.6) and (3.7), we have y(x) ≤ h−1( β
β1
F (x)) for x ≥ b2. Thus

F (x)−h(y(x)) ≥ β2F (x) for x ≥ b2, where β2 = 1− β
β1

. Repeating this procedure,
we obtain two sequences {bn} and {βn} such that βn = 1 − β

βn−1
and F (x) −

h(y(x)) ≥ βnF (x) for x ≥ bn. If βn > 0 (n = 1, 2, . . .), then {βn} is decreasing, and
{βn} converges to some real number λ. On the other hand, λ = 1 − β

λ and β > 1
4

which shows that λ is a complex number, which is a contradiction. Hence, βn ≤ 0
for some n, that is F (x) ≥ h(y(x)) for all x ≥ bn, a contradiction. This completes
the proof of sufficiency.

Necessity. Suppose (3.1) does not hold. Then there exist M1 > 0 and L > 0
such that F (x) < M1 for x ≥ 0 and

∫ ∞
L

a2(x)g(x)
1+F−(x) dx < 1. Suppose (x(t), y(t)) is a

solution of (2.1), and (x(0), y(0)) = (L, M1 +M0 + 1) = P , where M0 > 0 satisfies
h(M1 +M0) ≥M1 + 1.

We will show that y(t) > M1 +M0 for t > 0. Suppose this is not the case. There
exists t1 > 0 such that y(t1) = M1 +M0 and M1 +M0 < y(t) ≤ M1 +M0 + 1 for
all t ∈ [0, t1), and we have

y(t1) = M1 +M0 + 1 −
∫ t1

0

a2(x(s))g(x(s))
h(y(s)) − F (x(s))

ẋ(s)ds

≥ M1 +M0 + 1 −
∫ x(t1)

L

a2(ξ)g(ξ)
1 + F−(ξ)

dξ > M1 +M0.

This is a contradiction. Hence, ẋ(t) = h(y(t)) − F (x(t)) > M1 + 1 − F (x(t)) > 1
for all t ≥ 0. Thus the solution (x(t), y(t)) is unbounded and γ+(P ) is above the
characteristic curve h(y) = F (x). This completes the proof.

In quite the same manner, we can prove the following result.

Theorem 3.2. Suppose that the conditions (A0), (A1) and (A−
3 ) hold. Then every

positive semiorbit of (2.1) departing from D3 intersects the characteristic curve C−

if and only if

lim sup
x→−∞

[∫ x

0

a2(s)g(s)
1 + F+(s)

ds− F (x)
]

= ∞, (3.8)

where F+(x) = max{0, F (x)}.
The system (2.1) is said to satisfy the condition (A+

3 )′ (resp. (A−
3 )′) if −F (x),

−h(−y), a(x), g(x) satisfy the condition (A+
3 ) (resp. (A−

3 )).
By the transformations t → −t and y → −y in (2.1), we have the following

results with respect to the negative semiorbits of (2.1).

Theorem 3.3. Suppose that the conditions (A0), (A1) and (A+
3 )′ hold. Then every

negative semiorbit of (2.1) departing from D2 intersects the characteristic curve C+

if and only if

lim sup
x→∞

[∫ x

0

a2(s)g(s)
1 + F+(s)

ds− F (x)
]

= ∞, (3.9)

Theorem 3.4. Suppose that the conditions (A0), (A1) and (A−
3 )′ hold. Then every

negative semiorbit of (2.1) departing from D4 intersects the characteristic curve C−

if and only if

lim sup
x→−∞

[∫ x

0

a2(s)g(s)
1 + F−(s)

ds+ F (x)
]

= ∞. (3.10)
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Remark 3.5. If lim infx→∞ F (x) > −∞, then (3.1) is equivalent to

lim sup
x→∞

[∫ x

0

a2(s)g(s)ds+ F (x)
]

= ∞, (3.11)

and if lim supx→−∞ F (x) < −∞, then (3.8) is equivalent to

lim sup
x→−∞

[∫ x

0

a2(s)g(s)ds− F (x)
]

= ∞. (3.12)

Remark 3.6. From the necessity proof of Theorem 3.1 we know that if

lim sup
x→∞

[∫ x

0

a2(s)g(s)
1 + F+(s)

ds− F (x)
]
<∞, (3.13)

then there exists a point P ∈ D2 such that γ−(P ) does not intersect C+. Similarly,
if

lim sup
x→−∞

[∫ x

0

a2(s)g(s)
1 + F−(s)

ds+ F (x)
]
<∞, (3.14)

then there exists a point P ∈ D4 such that γ−(P ) does not intersect C−.

Remark 3.7. If h(y) ≡ y, a(x) ≡ 1, then Theorem 3.1, Theorem 3.2, Theorem 3.3
and Theorem 3.4 give the corresponding results of Hara, Yoneyama and Sugie [13],
and Sugie [24].

Remark 3.8. The condition (A+
3 )2 is a generalization of the following condition:

(A+
3 )2∗ lim supx→∞ F (x) = −∞, and there exist N1 > 0, β0 >

1
4 and β̄0 > 0 such that

h(y) is continuously differentiable on (−∞, −N1], h′(−y) ≥ β0
β̄0

for y ≥ N1,
F (x) < 0 for x ≥ N1 and for any b ≥ N1, there exists b̄ > b satisfying

∫ x

b

a2(s)g(s)
F (s)

ds ≤ β̄0F (x) for x ≥ b̄.

In fact, if the condition (A+
3 )2∗ is satisfied, then there exist N1 > 0, β0 >

1
4 and

β̄0 > 0 such that h′(−y) ≥ β0
β̄0

for y ≥ N1, and for any fixed real number k ≥ 1,
there exists N2 > N1 satisfying kβ̄0F (x) ≤ −N1 for x ≥ N2, and

h(kβ̄0F (x)) < h(kβ̄0F (x)) − h(kβ̄0F (N2))

= kβ̄0h
′(ξ)

F (x) − F (N2)
F (x)

F (x)

for x > N2, where ξ is between kβ̄0F (x) and kβ̄0F (N2). Since limx→∞ F (x) = −∞,
for any b ≥ N1, it can be shown that there exist 1

4 < β < β0 and b∗ > b such that
h(kβ̄0F (x)) < kβF (x) for x ≥ b∗. Because h(y) is strictly increasing, we have
β̄0F (x) ≤ 1

kh
−1(kβF (x)) for x ≥ b∗. Hence the condition (A+

3 )2∗ implies (A+
3 )2.

By the same argument, it can be seen that condition (A−
3 )2 is a generalization

of the following condition:



1052 MATS GYLLENBERG AND YAN PING

(A−
3 )2∗ limx→−∞ F (x) = ∞, and there exist N1 > 0, β0 > 1

4 and β̄0 > 0 such
that h(y) is continuously differentiable on [N1, ∞), h′(y) ≥ β0

β̄0
for y ≥ N1,

F (x) > 0 for x ≤ −N1 and for any b ≥ N1, there exists b̄ > b satisfying∫ x

−b

a2(s)g(s)
F (s)

ds ≥ β̄0F (x) for x ≤ −b̄.

It follows immediately from Remark 3.8 that the condition (A3) is a generaliza-
tion of condition (A4) in [16]. Thus, Theorem 3.1 and Theorem 3.2 contain the
Proposition 3.2 in [16]. Moreover, the condition (A+

3 ) with a(x) ≡ 1 is a general-
ization of condition (A4) in [30].

4. Global Asymptotic Stability. In order to give a criterion for the zero solution
of (2.1) to be globally asymptotically stable, we must provide a criterion excluding
homoclinic orbits.

The system (2.1) is said to satisfy (A+
4 ) if one of the following three conditions

holds:
(A+

4 )1 There exists a positive decreasing sequence {xn} such that xn → 0 as n→ ∞
and F (xn) ≥ 0 for n ≥ 1;

(A+
4 )2 There exist constants m > 0, p > 0 and δ1 > 0 such that

|h(y)| ≥ m|y|p for 0 < −y < −δ1
and

F1(z) ≥ −az p
p+1 for 0 < z < δ1,

where 0 < a < m(1 + p)( 1+p
mp )

p
(1+p) ;

(A+
4 )3 There exist constants α > 1

4 and δ2 > 0 such that

F (x) < 0 for 0 < x ≤ δ2,

and for any fixed real number k ≥ 1,∫ x

0+

a2(s)g(s)
F (s)

ds ≤ 1
k
h−1(kαF (x)) for 0 < x� 1.

The system (2.1) is said to satisfy (A−
4 ) if one of the following three conditions

holds:
(A−

4 )1 There exists a negative increasing sequence {xn} such that xn → 0 as n→ ∞
and F (xn) ≤ 0 for n ≥ 1;

(A−
4 )2 There exist constants m > 0, p > 0 and δ3 > 0 such that

|h(y)| ≥ m|y|p for 0 < y < δ3,

and
F2(z) ≤ az

p
p+1 for 0 < z < δ3,

where 0 < a < m(1 + p)( 1+p
mp )

p
(1+p) ;

(A−
4 )3 There exist constants α > 1

4 and δ4 > 0 such that

F (x) > 0 for 0 < −x ≤ δ4,

and for any fixed real number k ≥ 1,∫ x

0−

a2(s)g(s)
F (s)

ds ≥ 1
k
h−1(kαF (x)) for 0 < −x� 1.

The system (2.1) is said to satisfy the condition (A4) if both (A+
4 ) and (A−

4 )
hold.
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Lemma 4.1. Assume that the conditions (A0) and (A1) are true. Then
(i) if (A+

4 ) holds, then for any P = (x0, y0) ∈ C+, the negative semiorbit γ−(P )
must intersect the positive y-axis at (0, y1) with y1 > 0;

(ii) if (A−
4 ) holds, then for any P = (x0, y0) ∈ C−, the negative semiorbit γ−(P )

must intersect the negative y-axis at (0, y2) with y2 < 0;

Proof: We only prove (i); (ii) can be proved in a similar way.
Let P = (x0, y0) ∈ C+ and (x(t), y(t)) be the solution of (2.1) with x(0) =

x0, y(0) = y0. By the uniqueness of the solutions of (2.1), we only have to show
that every orbit γ−(P ) of (2.1) passing through a point P = (x0, y0) with x0 > 0
sufficiently small, intersects the positive y-axis at (0, y1) with y1 > 0. Since
limy→∞ h(y) = ∞, the system (2.1) has no vertical asymptote in the first quadrant.
Therefore, γ−(P ) must intersect the y-axis at B(0, y1) with y1 ≥ 0. We only have
to show that y1 �= 0. We do this separately for the different cases of (A+

4 ).
Case (A+

4 )1: It is obvious in this case.
Case (A+

4 )2: In this case the proof is completely analogous to the proof of [16,
Lemma 3.1] or [30, Theorem 2.4].

Case (A+
4 )3: It follows from (A0) that the orbit γ−(P ) of (2.1) does not touch

the characteristic curve at any point (x, h−1(F (x))) with 0 ≤ x < x0. Thus, we
consider only the region {(x, y) : x > 0, h(y) > F (x)}, and F (x) < 0 for 0 < x < δ2.
Suppose that the conclusion does not hold. Then there exists a point P ∈ C+ such
that γ−(P ) does not intersect the positive y-axis. Let (x(t), y(t)) (0 ≤ t < ∞)
denote the solution of (2.1) which passes through such a point P . Then γ−(P )
must be contained in the fourth quadrant, and x(t) decreases and y(t) increases as
t is increasing. Since the origin is the unique equilibrium of (2.1), limt→−∞ x(t) =
limt→−∞ y(t) = 0. The solution (x(t), y(t)) defines a function y = y(x) on 0 ≤ x ≤
δ2, which is a solution on 0 < x < δ2 of equation (3.2).

It follows from limx→0+ y(x) = 0 that y(x) < 0 for 0 < x ≤ δ2. By assumption
(A+

4 )3, there exist α > 1
4 and x1 ∈ (0, δ2) such that F (x) < 0 for 0 < x ≤ x1, and

∫ x

0+

a2(s)g(s)
F (s)

ds ≤ h−1(αF (x)) for 0 < x ≤ x1. (4.1)

Now, we restrict our attention to the interval (0, x1]. PuttingH1(u) =
∫ u

0
h(y)dy

for u ≤ 0, we have by (3.2), for any sufficiently small ε > 0,

H1(y(x)) −H1(y(ε)) =
∫ x

ε

H ′
1(y(s))

a2(s)g(s)
F (s) − h(y(s))

ds

≥
∫ x

ε

h(y(s))
a2(s)g(s)
F (s)

ds

=
∫ x

ε

(h ◦H−1
1 )(H1(y(s))

a2(s)g(s)
F (s)

ds

for ε ≤ x ≤ x1. Hence

H1(y(x)) ≥
∫ x

ε

(−h ◦H−1
1 )(H1(y(s))

a2(s)g(s)
−F (s)

ds

for ε ≤ x ≤ x1. It follows from Lemma 2.3 that

H2(H1(y(x)) ≥
∫ x

ε

a2(s)g(s)
−F (s)

ds for ε ≤ x ≤ x1, (4.2)
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where H2(u) =
∫ u

0+
dt

(−h◦H−1
1 )(t)

. Changing variables H−1
1 (t) = τ , it is easy to see

that H2(u) = −H−1
1 (u). By (4.2), we have

y(x) ≤
∫ x

ε

a2(s)g(s)
F (s)

ds for ε ≤ x ≤ x1. (4.3)

(i) If
∫ x1

0+
a2(s)g(s)

F (s) ds = −∞, we reach a contradiction by (4.3).

(ii) If
∫ x1

0+
a2(s)g(s)

F (s) ds > −∞, we see from (4.3) that

y(x) ≤
∫ x

0+

a2(s)g(s)
F (s)

ds for 0 < x ≤ x1. (4.4)

By virtue of (4.1) and (4.4), we have y(x) ≤ h−1(αF (x)) for 0 < x ≤ x1. Because
h(y) is strictly increasing, we obtain h(y(x)) ≤ αF (x) for 0 < x ≤ x1. Since
y = y(x) is above the characteristic curve h(y) = F (x), we have 1

4 < α < 1. Let
α1 = 1−α, then we get that F (x)−h(y(x)) ≥ α1F (x) for 0 < x ≤ x1. In a similar
way, for any sufficiently small ε > 0, we have by (3.2)

H1(y(x)) −H1(y(ε)) =
∫ x

ε

h(y(s))
a2(s)g(s)

F (s) − h(y(s))
ds

≥ 1
α1

∫ x

ε

h(y(s))
a2(s)g(s)
F (s)

ds

for ε ≤ x ≤ x1. Therefore

H1(y(x)) ≥ 1
α1

∫ x

ε

h(y(s))
a2(s)g(s)
F (s)

ds

=
1
α1

∫ x

ε

(−h ◦H−1
1 )(H1(y(s))

a2(s)g(s)
−F (s)

ds

for ε ≤ x ≤ x1. By Lemma 2.3 we have

H2(H1(y(x)) ≥ 1
α1

∫ x

ε

a2(s)g(s)
−F (s)

ds,

y(x) ≤ 1
α1

∫ x

ε

a2(s)g(s)
F (s)

ds

for ε ≤ x ≤ x1. Hence

y(x) ≤ 1
α1

∫ x

0+

a2(s)g(s)
F (s)

ds (4.5)

for 0 < x ≤ x1. By assumption (A+
4 )3, there exists x2 ∈ (0, x1) such that∫ x

0+

a2(s)g(s)
F (s)

ds ≤ α1h
−1(

α

α1
F (x)) (4.6)

for 0 < x ≤ x2. By virtue of (4.5) and (4.6), we have y(x) ≤ h−1( α
α1
F (x)) for

0 < x ≤ x2. Because h(y) is strictly increasing, we get h(y(x)) ≤ α
α1
F (x) for

0 < x ≤ x2. Thus, F (x) − h(y(x)) ≥ α2F (x) with α2 = 1 − α
α1

. Repeating this
procedure, we obtain two sequences {xn} and {αn} such that αn = 1 − α

αn−1
and

F (x) − h(y(x)) ≥ αnF (x) for 0 < x ≤ xn. If αn ≤ 0, we have a contradiction.
Suppose αn > 0 (n = 1, 2, . . .), then {αn} is decreasing, and hence {αn} converges
to some real number λ. On the other hand, λ = 1 − α

λ and α > 1
4 show that λ is a

complex number, which is a contradiction. This completes the proof.

We now state our main result.
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Theorem 4.2. Assume that the system (2.1) satisfies the conditions (A0) − (A4).
Then the zero solution of (2.1) is globally asymptotically stable if and only if (3.1)
and (3.8) hold.

Proof: Necessity. If either (3.1) or (3.8) is false, then Theorem 3.1 and Theorem
3.2 imply that (2.1) has at least one unbounded solution lying in D1 or D3. Thus,
the origin is not globally asymptotically stable.

Sufficiency. The proof is similar to that of Theorem 3.3 in [16] and Theorem 3.1
in [27], so we omit it.

Remark 4.3. If h(y) ≡ y, a(x) ≡ 1, then Lemma 4.1 gives the corresponding
results of Hara, Yoneyama and Sugie [13] and Sugie [24].

Remark 4.4. The condition (A+
4 )3 is a generalization of the following condition:

(A+
4 )3∗ there exist constants α0 > 0 and δ > 0 such that h(y) is continuously differ-

entiable on [−δ, 0],
F (x) < 0 for 0 < x ≤ δ

and ∫ x

0+

a2(s)g(s)
F (s)

ds ≤ α0F (x) for 0 < x ≤ δ,

where α = h′(0)α0 >
1
4 .

In fact, if the condition (A+
4 )3∗ is satisfied, then there exist constants 0 < δ̄ < δ

and 1
4 < ᾱ < α such that h′(y) > ᾱ

α0
for −δ̄ ≤ y ≤ 0, and for any fixed real number

k ≥ 1, we have
1
k
h−1(kᾱF (x)) =

1
k
h−1(kᾱF (x)) − 1

k
h−1(0)

=
1
k

dh−1(u)
du

|u=ξ kᾱF (x), kᾱF (x) < ξ < 0

=
ᾱF (x)

h′(h−1(ξ))
> α0F (x) for 0 < x� 1.

Thus the condition (A+
4 )3∗ implies the condition (A+

4 )3.
By the same argument, it can be seen that the condition (A−

4 )3 is a generalization
of the following condition:

(A−
4 )3∗ there exist constants α0 > 0 and δ > 0 such that h(y) is continuously differ-

entiable on [0, δ],
F (x) > 0 for − δ ≤ x < 0

and ∫ x

0−

a2(s)g(s)
F (s)

ds ≥ α0F (x) for − δ ≤ x < 0,

where α = h′(0)α0 >
1
4 .

Therefore, the condition (A4) is a generalization of condition (A3) in [16] and
condition (A10) in [30]. Hence, Lemma 4.1 contains Lemma 3.1 in [16].

Remark 4.5. If a(x) ≡ 1, then by condition (A4)2, Lemma 4.1 is seen to be a
generalization of Theorem 4.6 and Theorem 4.12 of Sugie [27]. But our results hold
also for 0 < p < 1.
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Remark 4.6. Theorem 4.2 is a generalization of [16, Theorem 3.3]. This follows
from Remark 3.8 and Remark 4.4. Our results do not need the differentiability
condition of h(y). Moreover, Theorem 4.2 can be applied to system (1.3) even for
0 < p < 1.

Example 4.7. In system (2.1), we take a(x) ≡ 1, h(y) = |y| 12 sgny, g(x) = 4x3,
and

F (x) =




−x for x ≥ 1,
−x3 for 0 ≤ x < 1,
2x3 for −1 < x < 0,
2x for x ≤ −1.

Then
∫ −∞
0

g(x)dx =
∫ ∞
0
g(x)dx = ∞, and for 0 < z <∞,

F2(z) = F (−z 1
4 ) < F (z

1
4 ) = F1(z).

Hence (A0), (A1) and (A2) are satisfied. Because
∫ x

0+
g(s)
F (s)ds = −4x for 0 < x < 1,

and because for any fixed real number k ≥ 1,, one has∫ x

0+

g(s)
F (s)

ds = −4x ≤ −kx6 =
1
k
h−1(kF (x))

for 0 < x� 1, the condition (A+
4 )3 is satisfied. For any b > 1 and fixed real number

k ≥ 1, we have ∫ x

b

g(s)
F (s)

ds = −4
3
x3 +

4
3
b3,

1
k
h−1(kF (x)) = −kx2,

it is clear that (A+
3 )2 is satisfied. It is obvious that (A−

3 )1, (A−
4 )1, (3.1) and (3.8) are

also satisfied. Thus, by Theorem 4.2, the zero solution is globally asymptotically
stable. However, h(y) = |y| 12 sgny, p = 1

2 , and limy→±∞ h′(y) = 0, hence, the
condition (A+

4 ) in [16] is not satisfied. Therefore, the result of [16] cannot be
applied to this example.
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1 INTRODUCTION

In a series papers [1–4], Krechetov studied the following real system of

two differential equations

_xx ¼ f1ðxÞ þ h2ðxÞy,
_yy ¼ f3ðxÞ þ h4ðxÞy,

ð1Þ
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where f1ðxÞ, f3ðxÞ, h2ðxÞ and h4ðxÞ are continuous on R. Using

Liapunov functions, he investigated the question of stability in

the large, described the configurations of the domains of stability

(when there is no global stability) and constructed estimates of the

boundaries of these domains. Egorov and Kartuzova [6] studied the

same problem and formulated necessary and sufficient conditions

for the zero solution of (1) to be globally asymptotically stable

under rather restrictive assumptions on the functions hiðxÞ. We

quote this result here.

THEOREM 1.1 (Egorov and Kartuzova) Suppose that f1ðxÞ, f3ðxÞ, h2ðxÞ
and h4ðxÞ are continuous on R with f1ð0Þ ¼ f3ð0Þ ¼ 0 and that they

satisfy the following conditions:

(1) h1ðxÞ þ h4ðxÞ < 0 for x 6¼ 0;

(2) h1ðxÞh4ðxÞ � h2ðxÞh3ðxÞ :¼ �ðxÞ > 0 for x 6¼ 0, where hiðxÞ ¼
fiðxÞ=x for x 6¼ 0 and i ¼ 1, 3;

(3) h2ðxÞ 6¼ 0 for all x;

(4) h1ðxÞ þ h2ðxÞH42ðxÞ=x < 0 for x 6¼ 0.

Then the zero solution of (1) is globally asymptotically stable if and

only if

Z �1

0

�ðxÞ½h2ðxÞ��2x dxþ lim sup
x!�1

j�ðxÞj ¼ þ1 ð2Þ

Here H42ðxÞ :¼
R x

0
h4ðsÞ½h2ðsÞ��1 ds, �ðxÞ :¼ h1ðxÞ þ h2ðxÞH42ðxÞ=x½ �x=

h2ðxÞ.
In the paper [5], Krechetov considered the following autonomous

system of two differential equations with zero diagonal coefficient

_xx ¼ p2ð yÞq2ðxÞy
_yy ¼ p3ð yÞq3ðxÞxþ p4ð yÞq4ðxÞy ð3Þ

and studied the same problems as in the previous papers [1–4]. In the

study of stability for (1), the most crucial condition added by Egorov

and Kartuzova [6] is (4) in Theorem 1.1, while for (3), the most impor-

tant condition given by Krechetov [5] is

q2ðxÞq4ðxÞ > 0 for all x: ð4Þ
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The purpose of the present article is to investigate the global asymp-

totic stability of the systems (1) and (3) without the assumption (4) in

Theorem 1.1 and inequality (4) above. The transformation technique

plays an important role in this paper. Under suitable assumptions,

we shall prove that the systems (1) and (3) are equivalent to the

equations of the following type

_xx ¼ �ðz� FðxÞÞ,
_zz ¼ �gðxÞ, ð5Þ

which is a generalization of the Liénard system. Study the system (5)

has an independent interest.

The organization of this article is as follows. In Section 2, we give

suitable transformations which change the systems (1) and (3) into

the form of (5). In Section 3, we study the problem of the intersection

of positive semiorbits for (5) with the characteristic curve z ¼ FðxÞ. In
Section 4, we give necessary and sufficient conditions for the origin of

(1) and (3) to be globally asymptotically stable. Some examples illus-

trating the results are given in this paper.

2 TRANSFORMATIONS FOR (1) AND (3)

First, we transform the system (1). Suppose that

h2ðxÞ 6¼ 0 for all x: ð6Þ

Without loss of generality, we may assume that h2ðxÞ < 0 for all x. If

h2ðxÞ > 0, then we replace y by � y. Using the substitution

y ¼ H42ðxÞ � z ð7Þ

where H42ðxÞ is given in the Theorem 1.1 of Egorov and Kartuzova,

we obtain that

_xx ¼ g1ðxÞ � h2ðxÞz
_zz ¼ �g3ðxÞ: ð8Þ
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Here g1ðxÞ :¼ f1ðxÞ þ h2ðxÞH42ðxÞ, g3ðxÞ :¼ f3ðxÞ � h4ðxÞf1ðxÞ½h2ðxÞ��1 ¼
�x�ðxÞ½h2ðxÞ��1. Obviously, the qualitative behavior of (8) is the same

as that of the system

_xx ¼ z� g1ðxÞ
h2ðxÞ ,

_zz ¼ g3ðxÞ
h2ðxÞ ,

ð9Þ

which is a Liénard system. Therefore, we obtain the following propo-

sition.

PROPOSITION 2.1 If h2ðxÞ 6¼ 0, then the qualitative behavior of (1) is the

same as that of (9).

Next, we restrict our attention to the system (3). Here we only con-

sider the case p3ð yÞ � p4ð yÞ. Under this restriction, the system (3)

becomes

_xx ¼ p2ð yÞq2ðxÞy,
_yy ¼ p3ð yÞq3ðxÞxþ p3ð yÞq4ðxÞy: ð10Þ

The basic assumption given in [5] is

pið yÞ > 0 for all y and i ¼ 2, 3,

q2ðxÞ > 0, q3ðxÞ < 0, q4ðxÞ > 0 for all x: ð11Þ

In the following, we only assume that

p2ð yÞ > 0, p3ð yÞ > 0 for all y

q2ðxÞ < 0, q3ðxÞ > 0 for all x: ð12Þ

In this situation, p2ð yÞq2ðxÞy and �y have the same sign. Thus, the

qualitative behavior of (10) is identical to that of the system

_xx ¼ �y

_yy ¼ � p3ð yÞq3ðxÞ
p2ð yÞq2ðxÞ x� p3ð yÞq4ðxÞ

p2ð yÞq2ðxÞ y: ð13Þ
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From (13), we obtain the second order equation

€xx ¼ p3ð� _xxÞq3ðxÞ
p2ð� _xxÞq2ðxÞ x� p3ð� _xxÞq4ðxÞ

p2ð� _xxÞq2ðxÞ _xx: ð14Þ

It follows from (14) that

d

dt
�
Z � _xx

0

p2ðsÞ
p3ðsÞ dsþ

Z x

0

q4ðsÞ
q2ðsÞ ds

� �
¼ q3ðxÞ

q2ðxÞ x:

Letting  ð yÞ ¼ R y

0
p2ðsÞ=p3ðsÞ ds and introducing the substitution

z ¼ � ð� _xxÞ þ
Z x

0

q4ðsÞ
q2ðsÞ ds:

We change the system (13) into

_xx ¼ � �1

Z x

0

q4ðsÞ
q2ðsÞ ds� z

� �
,

_zz ¼ q3ðxÞ
q2ðxÞ x:

If we let � denote  �1 and replace x and z by �x and �z respec-

tively, then we obtain

_xx ¼ �ðz� FðxÞÞ,
_zz ¼ �gðxÞ, ð15Þ

where FðxÞ ¼ � R�x

0
ðq4ðsÞ=q2ðsÞÞ ds and gðxÞ ¼ �ðq3ð�xÞ=q2ð�xÞÞx.

PROPOSITION 2.2. Under the assumption (12), the qualitative behavior

of (10) is just the same as that of (15).

Remark 2.1. For the case p3ð yÞ 6� p4ð yÞ, we assume that �0ð yÞ > 0 for

all y, where �ð yÞ :¼ yp4ð yÞ=p3ð yÞ. We transform the system (3), using

the substitution z ¼ �ð yÞ, we have

_yy ¼ p3ð yÞq3ðxÞxþ p3ð yÞq4ðxÞz,
d

dz
��1ðzÞ� �

_zz ¼ p3ð��1ðzÞÞq3ðxÞxþ p3ð��1ðzÞÞq4ðxÞz,
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we change the system (3) into

_xx ¼ p2ð��1ðzÞÞ �
�1ðzÞ
z

q2ðxÞz,
_zz ¼ �0ð��1ðzÞÞp3ð��1ðzÞÞq3ðxÞxþ �0ð��1ðzÞÞp3ð��1ðzÞÞq4ðxÞz,

the following discussion is similar to that of the case p3ð yÞ � p4ð yÞ, we
leave this to another paper.

3 INTERSECTION WITH THE CHARACTERISTIC CURVE OF (15)

The curve L : z ¼ FðxÞ is called the characteristic curve of (15). Let

Lþ ¼ fðx, FðxÞÞ: x � 0g and L� ¼ fðx, FðxÞÞ: x < 0g:

Then L ¼ Lþ [ L�. In (15), if �ðuÞ � u, then it is a Liénard system.

Villari and Zanolin [7] and Hara, Yoneyama and Sugie [8] have given

necessary and sufficient conditions for all positive semiorbits to inter-

sect the characteristic curve. Employing the techniques in [7,8], we

shall study the more general system (15).

First of all, we present the basic conditions. We assume that

ðC1Þ FðxÞ and gðxÞ are continuous on R with Fð0Þ ¼ 0 and

xgðxÞ > 0 for x 6¼ 0 and �ðuÞ is continuous differentiable

and strictly increasing with �ð0Þ ¼ 0 and �ð�1Þ ¼ �1.

ðC2Þ For any fixed number k > 0, there exists MðkÞ > 0 with

MðkÞ � k for 0 < k � 1 such that

j�ðkuÞj � MðkÞ�ðjujÞ for all u: ð16Þ

Sometimes, we only need the condition

ðC0
2Þ For any fixed k 2 ð0, 1� and u 2 R,

j�ðkuÞj � k�ðjujÞ: ð17Þ

For example, if �ðuÞ ¼ u3, then ðC2Þ and ðC0
2Þ are satisfied.

PROPOSITION 3.1. If ðC1Þ is satisfied, then for any initial point pðx0, z0Þ,
(15) has a unique trajectory passing through p.
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Proof By Peano’s Theorem (see [9, p. 10]), (15) has at least one

solution ðxðtÞ, zðtÞÞ satisfying xð0Þ ¼ x0 and zð0Þ ¼ z0. Along such a

solution, we have

dz

dx
¼ � gðxÞ

�ðz� FðxÞÞ , ð18Þ
zðx0Þ ¼ z0: ð19Þ

In order to prove this proposition, we only have to prove that if

p 6¼ O ¼ ð0, 0Þ, then the initial value problem (18) and (19) has a

unique solution.

(i) Suppose p 62 L, that is, z0 6¼ Fðx0Þ. Then there exists a rectangle

E : jx� x0j � a and jz� z0j � b such that E does not intersect

L. Therefore, ðC1Þ implies that @=@z½gðxÞð�ðz� FðxÞÞÞ�1� is

continuous on E. Applying the Picard–Lindelöf Theorem, we

know that the initial value problem (18) and (19) has a

unique solution on E.

(ii) Suppose p 2 L, that is, z0 ¼ Fðx0Þ, for example, x0 > 0. If the

conclusion is not true in this case, then (18) has two solutions

z ¼ ziðxÞ with ziðx0Þ ¼ z0 for i ¼ 1, 2 and z1ðxÞ 6� z2ðxÞ for

x1 � x < x0 without loss of generality, we may assume

that z ¼ ziðxÞ ðx 2 ½x1, x0�Þ is under the characteristic curve L

for i ¼ 1, 2. Thus, there is an x� 2 ½x1, x0Þ with z1ðx�Þ >
z2ðx�Þ. Set

�xx ¼ supfx: x 2 ½x�, x0Þ such that z1ðsÞ > z2ðsÞ for any s 2 ½x�, x�g:

Then, z1ðxÞ > z2ðxÞ for x 2 ½x�, �xxÞ and z1ð �xxÞ ¼ z2ð �xxÞ. This shows

that (18) has two solutions passing through the point ð �xx, z1ð �xxÞÞ. The
first step (i) implies that ð �xx, z1ð �xxÞÞ 2 L.

Hence, �xx ¼ x0. Using (18), we obtain that

dðz1ðxÞ � z2ðxÞÞ
dx

¼ gðxÞð�ðz1ðxÞ � FðxÞÞ � �ðz2ðxÞÞ � FðxÞÞ
�ðz1ðxÞ � FðxÞÞ�ðz2ðxÞ � FðxÞÞ ð20Þ

It follows from ðC1Þ that �ðuÞ is strictly increasing with u�ðuÞ > 0

for u 6¼ 0. Therefore, from ziðxÞ � FðxÞ < 0 for x 2 ½x�, x0Þ and
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i ¼ 1, 2, z2ðxÞ < z1ðxÞ and (20), we can conclude that

dðz1ðxÞ � z2ðxÞÞ
dx

> 0 for x 2 ½x�, x0Þ:

This implies that z1ðxÞ � z2ðxÞ is strictly increasing on ½x�, x0�. Thus,
z1ðxÞ � z2ðxÞ < z1ðx0Þ � z2ðx0Þ ¼ 0, that is, z1ðxÞ < z2ðxÞ for

x 2 ½x�, x0Þ, a contradiction. This completes the proof.

The system (15) is said to satisfy ðCþ
3 Þ if one of the following two

conditions holds:

ðCþ
3 Þ1 lim supx!þ1 FðxÞ > �1 ;

ðCþ
3 Þ2 there exist constants N > 0 and � > 1=4 such that FðxÞ < 0

for all x � N and for any b � N, there exists �bb > b satisfying

Z x

b

gðsÞ
�ð�FðsÞÞ ds � ��FðxÞ for all x � �bb:

The system (15) is said to satisfy ðC�
3 Þ if one of the following two

conditions holds:

ðC�
3 Þ1 lim infx!�1 FðxÞ < þ1 ;

ðC�
3 Þ2 There exist constants N > 0 and � > 1=4 such that FðxÞ > 0

for x � �N and for any b > N, there exists �bb > b satisfying

Z x

�b

gðsÞ
�ðFðsÞÞ ds � �FðxÞ for all x � � �bb: ð21Þ

The system (15) is said to satisfy ðC3Þ if both ðCþ
3 Þ and ðC�

3 Þ hold.
For example, if �ðuÞ ¼ u3, gðxÞ ¼ x3 and FðxÞ ¼ �jxj1=3. Then

lim supx!þ1 FðxÞ ¼ �1, for any b > 0, we have

Z x

b

gðsÞ
�ð�FðsÞÞ ds ¼

x3

3
� b3

3
for all x � b,

it is obvious that ðCþ
3 Þ2 and ðC�

3 Þ1 are satisfied. Thus ðC3Þ is satisfied.
THEOREM 3.1 Suppose that the conditions ðC1Þ, ðC2Þ and ðCþ

3 Þ
hold. Then every positive semiorbit of (15) departing from D1 ¼
fðx, zÞ ¼ x � 0, z > FðxÞg intersects the characteristic curve Lþ if and
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only if

lim sup
x!þ1

Z x

0

gðsÞ
�ð1þ F�ðsÞÞ dsþ FðxÞ

� �
¼ þ1, ð22Þ

where F�ðxÞ ¼ maxf0, � FðxÞg.
Proof: Sufficiency Suppose this is not the case. Then there is a point

p ¼ ðx0, z0Þ 2 D1 such that the positive semiorbit Oþð pÞ of (15) does
not intersect Lþ. Let x ¼ xðtÞ and z ¼ zðtÞ for t 2 ½0, !þÞ be the sol-

ution of (15) passing through p. Then we claim that

lim
t!!þ

xðtÞ ¼ þ1: ð23Þ

If (23) is not true, then limt!!þ xðtÞ ¼ x� < þ1. Let p� ¼
ðx�, Fðx�ÞÞ 2 Lþ and op� be the characteristic curve arc from O to

p�. Then Oþð pÞ is contained in the bounded domain surrounded by

z-axis, z ¼ z0, x ¼ x� and op�. Thus, limt!!þðxðtÞ, zðtÞÞ must exist

and is an equilibrium of (15). But from ðC1Þ, the origin is the unique

equilibrium of (15). This implies that x� ¼ 0. However, xðtÞ > x0 for

t > 0 and hence x� > x0 � 0 which is a contradiction. This shows

that (23) is true. Therefore, the solution ðxðtÞ, zðtÞÞ determines a func-

tion z ¼ zðxÞ defined on ½x0, þ1Þ which lies above Lþ and is strictly

decreasing. Clearly,

z0 > lim
x!þ1 zðxÞ � lim sup

x!þ1
FðxÞ, ð24Þ

now, (24) shows that all positive semiorbits of (15) starting from D1

intersect Lþ as long as lim supx!þ1 FðxÞ ¼ þ1. Here we do not

require condition ðC2Þ. Therefore, it suffices to consider the case

lim supx!þ1 FðxÞ < þ1.

Suppose that ðCþ
3 Þ1 holds. Then it follows from (24) that zðxÞ is

bounded on ½x0,þ1Þ. From the definition of F�ðxÞ, we have

zðxÞ � FðxÞ � z0 þ F�ðxÞ � kð1þ F�ðxÞÞ ð25Þ

where k ¼ maxf1, jz0jg. From ðC2Þ, �ðuÞ is strictly increasing. This fact,

together with (25) and (16), yields

�ðzðxÞ � FðxÞÞ � �ðkð1þ F�ðxÞÞÞ � MðkÞ�ð1þ F�ðxÞÞ for all x � x0:
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Thus,

zðxÞ � z0 ¼ �
Z x

x0

gðsÞ
�ðzðsÞ � FðsÞÞ ds

� � 1

MðkÞ
Z x

x0

gðsÞ
�ð1þ F�ðsÞÞ ds ðx � x0Þ: ð26Þ

Letting x ! þ1 in (26) and applying (22), we conclude that

limx!þ1 zðxÞ ¼ �1, contradicting ðCþ
3 Þ1 and (24). We note that if

lim infx!þ1 FðxÞ > �1 then we can prove that zðxÞ ! �1 as

x ! þ1 without the assumption ðC2Þ.
Assume that ðCþ

3 Þ2 is true. From the proof in the last paragraph, we

only have to consider the case limx!þ1 zðxÞ ¼ �1. Let �1 ¼ 1� �
and define �nþ1 ¼ 1� �=�n. If 1=4 < � < 1, then it is easy to prove

that 0 < �n < 1 and f�ng is a strictly decreasing sequence. Now, we

choose a sufficiently large number N such that zðxÞ < 0 and

FðxÞ < 0 for all x � N. Applying ðCþ
3 Þ2, we can find b1 � N such

that for all x � b1,

zðxÞ � zðNÞ ¼ �
Z x

N

gðsÞ
�ðzðsÞ � FðsÞÞ ds � �

Z x

N

gðsÞ
�ð�FðsÞÞ ds � �FðsÞ:

ð27Þ

From (27) it immediately follows that for x � b1,

0 < zðxÞ � FðxÞ � ð�� 1ÞFðxÞ: ð28Þ

Thus, we have 1=4 < � < 1. Using ðC1Þ and ðC2Þ again, we obtain

�ðzðxÞ�FðxÞÞ��ðð��1ÞFðxÞÞ� ð1��Þ�ð�FðxÞÞ¼�1�ð�FðxÞÞ ðx�b1Þ:

By ðCþ
3 Þ2, there exists b2 > b1, such that for all x � b2,

zðxÞ � zðb1Þ ¼ �
Z x

b1

gðsÞ
�ðzðsÞ � FðsÞÞ ds � � 1

�1

Z x

b1

gðsÞ
�ð�FðsÞÞ ds

� �

�1
FðxÞ,
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that is, when x � b2, we have

0 < zðxÞ � FðxÞ < �

�1
� 1

� �
FðxÞ ¼ ��2FðxÞ:

Continuing this procedure, we can prove that there is a sequence fbng
such that 0 < zðxÞ � FðxÞ � ��nFðxÞ for all x � bn. Since 1=4 < � < 1,

�n is a positive decreasing sequence, hence, limn!þ1 �n ¼ � exists.

Obviously, � 2 ½0, 1� is a real number. But from the definition of �n,

we have � ¼ 1� �=�, � >1=4, which implies that � is a complex

number, which is a contradiction. This proves the sufficiency.

Necessity Suppose that (22) is not true. Then there exist numbers

M,L > 0 such that

FðxÞ � M for all x � 0 and

Z þ1

L

gðxÞ
�ð1þ F�ðxÞÞ dx < 1:

Let ðxðtÞ, zðtÞÞ be the solution of (15) with ðxð0Þ, zð0ÞÞ ¼ ðL,M þ 2Þ.
Then we assert that zðtÞ >M þ 1 for all t � 0. Otherwise, there is a

� > 0 such that zðtÞ >M þ 1 for t 2 ½0, �Þ and zð�Þ ¼ M þ 1. Thus

zðtÞ �FðxðtÞÞ �M þ 1� ðM �F�ðxðtÞÞÞ ¼ 1þF�ðxðtÞÞ

for all t 2 ½0, ��:
Integrating, we have

M þ 1 ¼ zð�Þ ¼ M þ 2�
Z �

0

gðxðsÞÞ
�ðzðsÞ � FðsÞÞ x

0ðsÞ ds

� M þ 2�
Z �

0

gðxðsÞÞð�ð1þ F�ðxðsÞÞÞÞ�1x0ðsÞ ds

� M þ 2�
Z þ1

L

gð�Þ
�ð1þ F�ð�ÞÞ d� >M þ 1:

This causes a contradiction and proves the necessity.

In quite the same manner, we can prove the following result.

THEOREM 3.2 Suppose that the conditions ðC1Þ, ðC2Þ and ðC�
3 Þ

hold. Then every positive semiorbit of (15) starting from D3 ¼
fðx, zÞ : x � 0, z < FðxÞg intersects the characteristic curve L�
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if and only if

lim sup
x!�1

Z x

0

gðsÞ
�ð1þ FþðsÞÞ ds� FðxÞ

� �
¼ þ1, ð29Þ

where FþðxÞ ¼ maxf0, FðxÞg.
The system (15) is said to be satisfying the condition ðCþ

3 Þ0 (ðC�
3 Þ0) if

�FðxÞ, gðxÞ and �ðuÞ satisfy the condition ðCþ
3 Þ (ðC�

3 Þ).
By the transformations t ! �t and z ! �z in (15), we have the

following results with respect to the negative semiorbits of (15).

THEOREM 3.3 Let �, F and g satisfy the conditions ðC1Þ, ðC2Þ and

ðCþ
3 Þ0. If �ðuÞ is an odd function, then every negative semiorbit of (15)

starting from a point in D2 ¼ fðx, zÞ : x � 0, z < FðxÞg intersects the

characteristic curve Lþ at a point Bðx1, Fðx1ÞÞ with x1 > 0 if and

only if

lim sup
x!þ1

Z x

0

gðsÞ
�ð1þ FþðsÞÞ ds� FðxÞ

� �
¼ þ1: ð30Þ

THEOREM 3.4 Let �, F and g satisfy the conditions ðC1Þ, ðC2Þ and

ðC�
3 Þ0. If �ðuÞ is an odd function, then every negative semiorbit of (15)

starting from a point in D4 ¼ fðx, zÞ : x � 0, z > FðxÞg intersects the

characteristic curve L� at a point Bðx2, Fðx2ÞÞ with x2 < 0 if and

only if

lim sup
x!�1

Z x

0

gðsÞ
�ð1þ F�ðsÞÞ dsþ FðxÞ

� �
¼ þ1: ð31Þ

Remark 3.1 If lim infx!þ1 FðxÞ > �1, then (22) is equivalent to

lim sup
x!þ1

Z x

0

gðsÞ dsþ FðxÞ
� �

¼ þ1, ð32Þ

and if lim supx!�1 FðxÞ < þ1, then (29) is equivalent to

lim sup
x!�1

Z x

0

gðsÞ ds� FðxÞ
� �

¼ þ1: ð33Þ
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From the proof of Theorem 3.1, we know that the conclusion of the

Theorem 3.1 is also true if lim infx!þ1 FðxÞ > �1 and ðC2Þ and

(22) are replaced by ðC0
2Þ and (32) respectively. Similarly, suppose

that lim supx!�1 FðxÞ < þ1. Then the result of Theorem 3.2 also

holds when ðC2Þ and (29) are replaced by ðC0
2Þ and (33) respectively.

Remark 3.2 From the necessity proof of Theorem 3.1, we know that if

lim sup
x!þ1

Z x

0

gðsÞ
�ð1þ FþðsÞÞ ds� FðxÞ

� �
< þ1, ð34Þ

then there exists a point p 2 D2 such that O�ð pÞ does not intersect Lþ.
Similarly, if

lim sup
x!�1

Z x

0

gðsÞ
�ð1þ F�ðsÞÞ dsþ FðxÞ

� �
< þ1, ð35Þ

then there exists a point p 2 D4 such that O�ð pÞ does not meet L�.

4 THE GLOBAL STABILITY OF THE ZERO SOLUTION OF (15)

In order to give a criterion for the zero solution of (15) to be globally

asymptotically stable, we must provide a criterion for non-existence of

nontrivial periodic solution for (15). To this end, we introduce trans-

formations similar to those of Filippov’s [10].

Let GðxÞ ¼ R x

0 gðsÞ ds. If x > 0, then we set

u ¼ u1ðxÞ ¼ GðxÞ, u 2 ð0, Gðþ1ÞÞ, ð36Þ

the inverse function of which is denoted by x ¼ x1ðuÞ. Replacing

xð> 0Þ in FðxÞ by x ¼ x1ðuÞ, we have

F1ðuÞ ¼ Fðx1ðuÞÞ, u 2 ð0, Gðþ1ÞÞ: ð37Þ

Similarly, if x < 0, then we write

u ¼ u2ðxÞ ¼ GðxÞ, u 2 ð0, Gð�1ÞÞ, ð38Þ
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whose inverse function is given by x ¼ x2ðuÞ. Thus, substituting

x ¼ x2ðuÞ in FðxÞ if x < 0, we obtain

F2ðuÞ ¼ Fðx2ðuÞÞ, u 2 ð0, Gð�1ÞÞ: ð39Þ

Therefore, the Eq. (15) in the cases x > 0 and x < 0 are equivalent to

the following two equations, respectively:

du

dz
¼ ��ðz� F1ðuÞÞ, u 2 ð0, Gðþ1ÞÞ ð40Þ

du

dz
¼ ��ðz� F2ðuÞÞ, u 2 ð0, Gð�1ÞÞ: ð41Þ

Now we introduce the condition ðC4Þ :

F2ðuÞ � F1ðuÞ if u 2 ð0, minfGð�1Þ,Gðþ1ÞgÞ and
F1ðuÞ 6� F2ðuÞ if 0 < u � 1

where the notation 0 < u � 1 denotes u sufficiently small.

PROPOSITION 4.1. Suppose that the conditions ðC1Þ, ðC2Þ and ðC4Þ are
satisfied. If the positive semiorbit of (15) starting from A0 ¼ ð0, z0Þ 	
ðz0 > 0Þ again intersects the positive z-axis at A1 ¼ ð0, z1Þ, then

z1 < z0. In particular, (15) has no nontrivial periodic solutions.

Proof Let OþðA0Þ denote the positive semiorbit passing through A0.

Assume that the conclusion is false. Then z1 � z0. Therefore, the orbit

arc A0A1 
 OþðA0Þ must intersect the negative z-axis at B ¼ ð0, z�1Þ
with z�1 < 0. Let u ¼ u1ðzÞ and u ¼ u2ðzÞ be the solutions of (40)

and (41) with the initial condition uiðz�1Þ ¼ 0 for i ¼ 1, 2. Then

u ¼ uiðzÞ is defined on ½z�1, z0� for i ¼ 1, 2. Since z1 � z0, we have

u2ðz0Þ � u1ðz0Þ ¼ 0: ð42Þ

The condition ðC4Þ implies that F2ðuÞ � F1ðuÞ for all

u 2 ð0, minfGð�1Þ,Gðþ1ÞgÞ. Therefore, it follows from ðC2Þ that

��ðz� F2ðuÞÞ � ��ðz� F1ðuÞÞ, for all z and

u 2 ð0, minfGð�1Þ, Gðþ1ÞgÞ: ð43Þ
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Applying Kamke’s Theorem (see [11, p. 29]), we know that if (43)

holds and u2ðz�1Þ � u1ðz�1Þ then u2ðzÞ � u1ðzÞ for all z 2 ½z�1, z0�. On

the other hand, Coppel discussed in [11, p. 30] that u2ðz0Þ ¼ u1ðz0Þ if
and only if u1ðzÞ coincides with u2ðzÞ on ½z�1, z0�, that is,

u1ðzÞ � u2ðzÞ for any z 2 ½z�1, z0�. We claim that u2ðzÞ < u1ðzÞ for all

z 2 ðz�1, z0�. Suppose this is not the case, then there exists a point

z� 2 ðz�1, z0� such that u2ðz�Þ ¼ u1ðz�Þ. This implies that u1ðzÞ � u2ðzÞ
for all z 2 ½z�1, z

��. Hence F1ðu1ðzÞÞ � F2ðu1ðzÞÞ for all z 2 ½z�1, z
��,

that is, F1ðuÞ � F2ðuÞ for u 2 ð0, u1ðz�Þ�, contradicting ðC4Þ. This

proves that our claim is true. In particular, u2ðz0Þ < u1ðz0Þ, contradict-
ing (42). The proof is complete.

The system (15) is said to satisfy ðCþ
5 Þ if one of the following con-

ditions holds:

ðCþ
5 Þ1 there exists a positive decreasing sequence fxng such that

xn ! 0 as n ! þ1 and FðxnÞ � 0 for each n;

ðCþ
5 Þ2 there exist constants a > 0 and � > 1=4 such that FðxÞ < 0

for 0 < x � a and

Z x

0

gðsÞ
�ð�FðsÞÞ ds � ��FðxÞ for 0 < x � a:

The system (15) is said to satisfy ðC�
5 Þ if one of the following con-

ditions holds:

ðC�
5 Þ1 there is a negative increasing sequence fxng such that xn ! 0

as n ! þ1 and FðxnÞ � 0 for each n ;

ðC�
5 Þ2 there are constants b < 0 and � > 1=4 such that FðxÞ > 0 for

b � x < 0 and

Z x

0

gðsÞ
�ðFðsÞÞ ds � �FðxÞ for b � x < 0:

The system (15) is said to satisfy the condition ðC5Þ if both ðCþ
5 Þ and

ðC�
5 Þ hold.

LEMMA 4.1 Assume that the conditions ðC1Þ and ðC2Þ are true. Then

(i) if ðCþ
5 Þ holds, then for any p ¼ ðx0, z0Þ 2 Lþ, the negative semior-

bit O�ð pÞ must intersect the positive z-axis at ð0, zpÞ with zp > 0 ;
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(ii) if ðC�
5 Þ holds, then for any p ¼ ðx0, z0Þ 2 L�, the negative semi-

orbit O�ð pÞ must intersect the negative z-axis at ð0, zpÞ with

zp < 0.

Proof We only prove (i); (ii) can be proved in a similar way.

Let p ¼ ðx0, z0Þ 2 Lþ and ðxðtÞ, zðtÞÞ be the solution of (15) with

xð0Þ ¼ x0, zð0Þ ¼ z0 whose maximal existence interval is ð!�,!þÞ. By
ðC1Þ, �ðþ1Þ ¼ þ1. Therefore, (15) has no vertical asymptote in the

first quadrant. This implies that every negative semiorbit of (15)

passing the point p 2 D1 [ Lþ in the first quadrant must intersect

the positive z-axis. By Proposition 3.1, there exists a unique orbit of

(15) passing through a given initial point. Hence if O�ð pÞ intersects
the positive z-axis, then for any q ¼ ðx, FðxÞÞ 2 Lþ with x � x0
O�ðqÞ also intersects the positive z-axis.

First, assume that ðCþ
5 Þ1 holds. Then there exists a decreasing

sequence fxng such that xn ! 0 as n ! þ1 and FðxnÞ � 0 for each

n. Let pn ¼ ðxn, znÞ with zn ¼ FðxnÞ. The facts presented in the above

paragraph show that O�ð pnÞ intersects the positive z-axis for each n.

Therefore, all negative semiorbits O�ð pÞ passing through p 2 Lþ

must intersect the positive z-axis.

Next, assume that ðCþ
5 Þ2 holds. We assert that all negative semi-

orbits passing through p ¼ ðx0, z0Þ 2 Lþ with 0 < x0 � a intersect the

positive x-axis and therefore intersect the positive z-axis. Otherwise,

then there exists p 2 Lþ with 0 < x0 � a such that O�ð pÞ is contained
in the fourth quadrant. Let ðxðtÞ, zðtÞÞ ð�1 < t � 0Þ denote the sol-

ution of (15) passing through such a point p ¼ ðx0,Fðx0ÞÞ. Then xðtÞ
decreases and zðtÞ increases as t is decreasing. Since the origin is the

unique equilibrium of (15), xðtÞ ! 0 and zðtÞ ! 0 as t ! þ1.

Because the solution ðxðtÞ, zðtÞÞ defines a function z ¼ zðxÞ � 0 on

0 < x � x0, which is a solution of the Eq. (18) from 0 to x, we

obtain that

zðxÞ ¼ �
Z x

0

gðsÞ
�ðzðsÞ � FðsÞÞ ds

� �
Z x

0

gðsÞ
�ð�FðsÞÞ ds � �FðxÞ for 0 < x � x0, ð44Þ
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where the second inequality follows from ðCþ
5 Þ2. Define �1 ¼ 1� �

and �n ¼ 1� �=�n�1. Then, we shall prove that

�nFðxÞ � FðxÞ � zðxÞ < 0 ð45Þ

for all x 2 ð0, x0Þ and each n.

From (44), it follows immediately that (45) is true for n ¼ 1.

Suppose (45) holds for n ¼ m. Then we have 0 < �m < 1 and

�ðzðxÞ � FðxÞÞ � �ð��mFðxÞÞ � �m�ð�FðxÞÞ. The same procedure as

used in proof of (44) shows that

zðxÞ � � 1

�m

Z x

0

gðsÞ
�ð�FðsÞÞ ds �

�

�m
FðxÞ for 0 < x � x0,

and this implies that �mþ1FðxÞ � FðxÞ � zðxÞ < 0 for all x 2 ð0, x0Þ.
By induction, (45) is true for every n. It follows from FðxÞ < 0 for

0 < x � x0 and (45) that �n > 0 for each n. Therefore, 0 < �n < 1

for n � 1 and �n is decreasing. Suppose that �n ! � as n ! þ1.

Then � is a real number which satisfies the algebraic equation

� ¼ 1� �=�. However, from � > 1=4, it follows that � is a complex

number. This desired contradiction shows that our conclusion is true

and completes the proof.

THEOREM 4.1 Suppose that the system (15) satisfies the conditions ðC1Þ
through ðC5Þ. Then the origin is globally asymptotically stable if and

only if (22) and (29) hold.

Proof: Necessity If either (22) or (29) is false, then Theorem 3.1 and

3.2 implies that (15) has at least one unbounded solution lying in D1 or

D3. Thus, the origin is not globally asymptotically stable.

Sufficiency Suppose that (22) and (29) hold. We shall prove that the

origin is globally asymptotically stable.

By ðC1Þ, �ð�1Þ ¼ �1, which implies that (15) has no vertical

asymptote. Hence, all positive semiorbits departing from D2 [D4

enter D1 [D3 or converge to the origin and all positive semiorbits

starting from D1 and D3 will intersect Lþ and L� respectively if (22)

and (29) hold. Thus, all points in the plane R2 can be divided into
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two classes:

S1 ¼
n
p 2 R2: there is t0 � 0 such that ’tð pÞ 2 D2 or

’tð pÞ 2 D4 for t � t0

o

and

S2 ¼ p 2 R2:Oþð pÞ spirals around the origin
� �

,

where ’tð pÞ denotes the solution of (15) passing through p. The above

arguments show that R2 ¼ S1 [ S2.

Suppose that p 2 S1. Then ’tð pÞ 2 D2 [D4 for t � t0. Without loss

of generality, we may assume that ’tð pÞ ¼ ðxðtÞ, zðtÞÞ 2 D2 for t � t0.

Therefore, ’tð pÞ is bounded and xðtÞ, zðtÞ is decreasing as t increases.

Thus, the !-limit set of such an orbit Oþð pÞ must be a singleton. Since

the origin is a unique equilibrium of (15), this singleton point is cer-

tainly the origin.

Suppose that p 2 S2. Then Oþð pÞ spirals around the origin. From

the condition ðC4Þ and Proposition 4.1, Oþð pÞ is bounded and its

!-limit set !ð pÞ cannot have a homoclinic orbit if the conditions

ðC1Þ through ðC5Þ hold, that is, there cannot exist q 2 R2 with q 6¼ O

such that limt!þ1 ’tðqÞ ¼ O and limt!�1 ’tðqÞ ¼ O. Suppose, to

reach a contradiction, that such a point q exists. Proposition 4.1

implies that O�ðqÞ cannot spiral around the origin. Hence, there

exists t1 < 0 such that for t � t1 either ’tðqÞ 2 D1, in this case,

FðxÞ < 0 for 0 < x � 1, or ’tðqÞ 2 D3, in which case, FðxÞ > 0 for

0 < �x � 1. Without loss of generality, we may assume that

’tðqÞ 2 D1 for t � t1 and FðxÞ < 0 for 0 < x � 1. Applying Theorem

3.1, we obtain that Oþð’tðqÞÞ intersects Lþ, that is, there is t2 > t1
such that ’t2ðqÞ 2 Lþ. This implies that ’tðqÞ 2 D1 for all t � t2.

However, applying Lemma 4.2 to (15), we know that O�ð’t2 ðqÞÞ will
intersect the positive z-axis, which is a contradiction. This shows

that the system (15) cannot have a homoclinic orbit. This fact and

the Poincare-Bendixson theorem now allow us to conclude that all

positive semiorbits converge to the origin.

It remains to be shown that the origin is locally Liapunov stable.

Suppose the origin is unstable. Then, by definition, for some "0 > 0
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there are sequences pn ! O and tn � 0 such that

’tð pnÞ 2 Bð"0Þ for 0 � t � tn ð46Þ

and ’tnð pnÞ 2 @Bð"0Þ where Bð"0Þ ¼ fðx, zÞ : x2 þ z2 � "20g and @Bð"0Þ
denotes the boundary of Bð"0Þ. Since @Bð"0Þ is compact, we can

assume qn ¼ ’tn ð pnÞ ! q as n ! þ1. We claim that tn ! þ1 as

n ! þ1. If not, then there is a subsequence ftnkg such that

tnk ! � < þ1 as k ! þ1. Then pnk ¼ ’�tnk
ðqnk Þ ! ’��ðqÞ as

k ! þ1, that is, ’��ðqÞ ¼ O, and hence q ¼ O. However,

q 2 @Bð"0Þ. This produces the desired contradiction and proves our

claim. We shall prove that O�ðqÞ is bounded. For any � > 0, there is

an N such that tn � � for n � N. Hence, from (46), we have

’��ðqnÞ ¼ ’tn��ð pnÞ 2 Bð"0Þ for n � N: ð47Þ

Letting n ! þ1 in (47), we have ’��ðqÞ ¼ limn!1 ’tn��ð pnÞ 2
Bð"0Þ. Since � is arbitrary, we obtain that ’��ðqÞ 2 Bð"0Þ for � > 0,

that is, O�ðqÞ 
 Bð"0Þ. The global attractivity property proved in the

above paragraph implies that 	ðqÞ cannot be a limit cycle, and hence

O 2 	ðqÞ. If 	ðqÞ ¼ f0g, then the orbit OðqÞ passing through q is homo-

clinic. If 	ðqÞ 6¼ fOg, then the Poincare-Bendixon theorem implies that

	ðqÞ contains a homoclinic orbit. But we have proved that under the

conditions ðC1Þ through ðC5Þ the system (15) does not have a homo-

clinic orbit. This contradiction proves that the origin is globally

asymptotically stable and completes the proof of the theorem.

Remark 4.1 If ’ðuÞ ¼ u, then Theorem 4.1 generalized the corre-

sponding results of Hara and Yoneyama [13,14] who gave only the

sufficient conditions.

Finally, we shall apply Theorem 4.3 to the systems (1) and (10). Let

�ð yÞ � y,FðxÞ ¼ x=h2ðxÞ h1ðxÞ þ h2ðxÞH42ðxÞ=x½ � ¼ �ðxÞ,gðxÞ ¼�g3ðxÞ=
h2ðxÞ ¼ �ðxÞx½h2ðxÞ��2 and u ¼ GðxÞ ¼ R x

0
�ðsÞ=h22ðsÞsds. With these

notations, we can obtain the function F1ðuÞ and F2ðuÞ in (37) and (39).

COROLLARY 4.1 Let the functions f1ðxÞ, f3ðxÞ, h2ðxÞ and h4ðxÞ be con-

tinuous on R. Suppose that h2ðxÞ 6¼ 0 for all x and �ðxÞ > 0 for all

x 6¼ 0. Assume that the conditions ðC3Þ through ðC5Þ hold. Then the
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origin of (1) is globally asymptotically stable if and only if

lim sup
x!þ1

Z x

0

gðsÞ
1þ F�ðsÞ dsþ FðxÞ

� �
¼ þ1

and

lim sup
x!�1

Z x

0

gðsÞ
1þ FþðsÞ ds� FðxÞ

� �
¼ þ1:

We note that in the system (15) if there exists a constant a <
ffiffiffi
8

p
such that F1ðuÞ � �a

ffiffiffi
u

p
and F2ðuÞ � a

ffiffiffi
u

p
for 0 < u � 1, then ðC5Þ is

satisfied. Thus, the results of [15] are corollaries of Theorem 4.1

with ’ðuÞ ¼ u.

Example 4.1 Consider the system of differential equations

_xx ¼ �x2ðx3 þ xþ 1Þ � y,

_yy ¼ 5x6ðx3 þ xþ 1Þ þ 2xþ 5x4y: ð48Þ

In (48), f1ðxÞ ¼ �x2ðx3 þ xþ 1Þ, f3ðxÞ ¼ 5x6ðx3 þ xþ 1Þ þ 2x, h2ðxÞ �
�1 and h4ðxÞ ¼ 5x4. By calculation, we have

h1ðxÞ ¼ �xðx3 þ xþ 1Þ, h3ðxÞ ¼ 2þ 5x6ðx3 þ xþ 1Þ
�ðxÞ ¼ h1h4 � h2h3 � 2, H42ðxÞ ¼ �x5

h1ðxÞ þ h4ðxÞ ¼ 4x4 � x2 � x > 0 for jxj sufficiently large,

h1ðxÞ þ h2ðxÞH42ðxÞ
x

¼ �xðxþ 1Þ > 0 for � 1 < x < 0:

Therefore, the conditions (1) and (4) in Egorov and Kartuzova’s

Theorem are not satisfied, that is, Egorov and Kartuzova’s Theorem

cannot be applied to (48). However, in our notation,

FðxÞ ¼ x3 þ x and gðxÞ ¼ 2x:

It is easy to prove that for such FðxÞ and gðxÞ the conditions

ðC3Þ through ðC5Þ hold and limjxj!þ1 sgnxFðxÞ ¼ þ1. Therefore,
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applying Corollary 4.1, we conclude that the origin is globally asymp-

totically stable.

COROLLARY 4.2 Let pið yÞ ði ¼ 2, 3Þ and qjðxÞ ð j ¼ 2, 3, 4Þ be contin-
uous on R and (12) be satisfied. Assume that the inverse function �ðuÞ of
the function u ¼ R y

0
ðp2ðsÞ=p3ðsÞÞ ds satisfies ðC1Þ and ðC0

2Þ, and FðxÞ ¼
� R�x

0 ðq4ðsÞ=q2ðsÞÞ ds and gðxÞ ¼ �ðq3ð�xÞ=q2ð�xÞÞx satisfy ðC4Þ and

ðC5Þ. If lim supx!�1
R x

0 ðq4ðsÞ=q2ðsÞÞ ds < þ1 and lim infx!þ1
R x

0 	
ðq4ðsÞ=q2ðsÞÞ ds > �1, then the zero solution of (10) is globally asymp-

totically stable if and only if

lim inf
jxj!þ1

Z x

0

sq3ðsÞ
q2ðsÞ ds� sgnx

Z x

0

q4ðsÞ
q2ðsÞ ds

� �
¼ �1: ð49Þ

Corollary 4.2 follows from Remark 3.1.

Example 4.2 Consider the system with zero diagonal coefficient

_xx ¼ �yð1þ x4Þ½1þ ð1þ y2Þ3=2�
_yy ¼ ð1þ y2Þ3=2ð1þ x4Þxþ ð1þ y2Þ3=2ð1þ x4Þðx� x2Þy: ð50Þ

By calculation, we have

u ¼  ð yÞ ¼
Z y

0

1þ ð1þ s2Þ3=2
ð1þ s2Þ3=2 ds ¼ yþ yffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
p

FðxÞ ¼
Z �x

0

ð1þ s4Þðs� s2Þ
1þ s4

¼ x3

3
þ x2

2

gðxÞ ¼ x

It is easy to check that FðxÞ and gðxÞ satisfy the conditions ðC1Þ,
ðC3Þ, ðC4Þ and ðC5Þ. Moreover, limjxj!þ1 FðxÞsgnx ¼ þ1 and there-

fore, (49) holds. Let y ¼  �1ðuÞ :¼ �ðuÞ. Then �ðuÞ is an odd function

on R with �ð�1Þ ¼ �1. For any u 2 ½0, 1Þ and k 2 ð0, 1�, we have

ku ¼ kyþ kyffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p �  ðkyÞ:
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Therefore, �ðkuÞ � ky ¼ k�ðuÞ, that is ðC0
2Þ is true. From Corollary

4.2, it follows that the zero solution of (50) is global asymptotically

stable. However, g4ðxÞ ¼ ð1þ x4Þðx� x2Þ changes sign on R. Hence,

the result of Krechetov [5] cannot be applied to (50).

Remark 4.2 In the papers [16–19], the second author gave other con-

ditions to guarantee that every solution of a second-order differential

equation converges. In the forthcoming paper, we will discuss the

existence of homoclinic orbits, existence of oscillatory solutions, and

existence of centers of system (15).
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Abstract

This paper investigates the qualitative behavior of solutions of the autonomous planar system
with zero diagonal coefficient ẋ = p2(y)q2(x)y, ẏ = p3(y)q3(x)x + p4(y)q4(x)y. Under suitable
assumptions, the necessary and sufficient conditions for all solutions to be oscillatory, and for the ori-
gin to be a global center are established. The theorems on the existence and uniqueness of nontrivial
periodic solutions are also proved.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

This paper is devoted to the investigation of the qualitative behavior of the solutions of
the autonomous system of two differential equations with zero diagonal coefficient

ẋ = p2(y)q2(x)y, ẏ = p3(y)q3(x)x + p4(y)q4(x)y, (1.1)

where pi(y) and qi(x) (i = 2,3,4) are continuous real functions defined on R =
(−∞, +∞).

Krechetov [8] studied the global asymptotic behavior of solutions of system (1.1), de-
scribed the configurations of the domains of stability (when there is no global asymptotic
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stability) and constructed estimates of the boundaries of these domains. In the study of
stability for (1.1), the most important condition given by Krechetov [8] is

q2(x)q4(x) > 0 for all x ∈ R, (1.2)

by using the Lyapunov function method, he gave necessary and sufficient conditions for
the zero solution of (1.1) to be globally asymptotically stable under some additional as-
sumptions.

Recently, Yan and Jiang [12] first introduced the transformation techniques to inves-
tigate the global asymptotic stability of the following system (1.3), the special case (i.e.,
p3(y) ≡ p4(y)) of system (1.1),

ẋ = p2(y)q2(x)y, ẏ = p3(y)q3(x)x + p3(y)q4(x)y (1.3)

without the assumption (1.2). In paper [12], under the following conditions

p2(y) > 0, p3(y) > 0 for all y,

q2(x) > 0, q3(x) < 0 for all x, (1.4)

they transformed system (1.3) into the following generalized Liénard system

ẋ = φ
(
z − F(x)

)
, ż = −g(x), (1.5)

and obtained necessary and sufficient conditions for the zero solution of (1.3) (respectively
(1.5)) to be globally asymptotically stable. Such system (1.5) with φ(u) ≡ u arises in sev-
eral different settings, modelling phenomena appearing in the study of physical, as well as
biological, chemical, and economical systems, it naturally has been studied by a number of
authors [1–5,10,11,13,14]. The main problem connected to the study of such models con-
sists of giving a complete description of the behavior of solutions as t → +∞. In general,
this is not possible, due to the complexity of the equations and the phenomena involved.
The aim of the qualitative theory is to give an approximate description of the behavior of
the system, by identifying suitable regions of the phase space, where the solutions behave
in a similar way.

In the present paper, we shall investigate the qualitative behavior of system (1.1) without
the assumption (1.2). Especially, we shall pay our attention to the oscillation, center, exis-
tence and uniqueness of nontrivial periodic solutions of system (1.1) (respectively (1.5)).
In this paper, no restriction on the sign of q4(x) is required, we only assume that

p2(y) > 0, p3(y) > 0, p4(y) > 0 for all y,

q2(x) < 0, q3(x) > 0 (or q2(x) > 0, q3(x) < 0) for all x,

ρ(y) ∈ C1(R), ρ′(y) > 0 for all y, ρ(±∞) = ±∞, where ρ(y) := yp4(y)

p3(y)
.

(1.6)

If p3(y) ≡ p4(y), one case of assumption (1.6) reduces to (1.4). Under assumption (1.6),
we shall prove that system (1.1) is equivalent to a form of system (1.5) which is a Liénard-
like system, the investigation of the qualitative behavior of solutions of system (1.5) has
independent interest and value. For example, applying the results in this paper, the follow-
ing system and equation have a unique nontrivial periodic solution,
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ẋ = x3 − 3x5 + 3x7 − x9 + 3
(
x6 − 2x4 + x2)y + 3

(
x − x3)yy2 + y3,

ẏ = −x, (1.7)

and

ẍ + 3
(
x2 − 1

)
ẋ5/3 + 3xẋ2/3 = 0. (1.8)

The technique tool of this paper is based on some transformations (including Filippov’s
transformation [1]), and the methods for Liénard systems, especially those developed by
Villari and Zanolin [11], Hara and Sugie [3].

The organization of this paper follows. In Section 2 we introduce suitable transforma-
tions which change (1.1) into the form of (1.5), present assumptions and some auxiliary
lemmas which will be essential to our proofs. In Section 3 we give the necessary and suffi-
cient conditions for all solutions of (1.5) to be oscillatory and for the origin to be a global
center. In Section 4 we give the theorems of existence and uniqueness of nontrivial periodic
solutions of (1.5). A brief discussion is given in Section 5.

2. Transformation for (1.1) and auxiliary lemmas

In this section, we first transform system (1.1) into a Liénard-like system, and then state
some results which will be useful in subsequent sections.

We transform system (1.1), suppose that the assumption (1.6) is satisfied, we only dis-
cuss the case q2(x) < 0, q3(x) > 0 for all x , the other case (i.e., q2(x) > 0, q3(x) < 0 for
all x) can be considered in a similar way. By using the substitution u = ρ(y), where ρ(y)

is given in (1.6), from (1.1), we have

ẏ = p3(y)q3(x)x + p3(y)q4(x)u,

d

du

[
ρ−1(u)

]
u̇ = p3

(
ρ−1(u)

)
q3(x)x + p3

(
ρ−1(u)

)
q4(x)u,

we change system (1.1) into

ẋ = ρ−1(u)p2
(
ρ−1(u)

)
q2(x),

u̇ = ρ′(ρ−1(u)
)
p3

(
ρ−1(u)

)
q3(x)x + ρ′(ρ−1(u)

)
p3

(
ρ−1(u)

)
q4(x)u, (2.1)

by assumption (1.6), ρ−1(u)p2(ρ
−1(u))q2(x) and −u have the same sign, it is easy to see

that the qualitative behavior of (1.1) is identical to that of the system

ẋ = −u,

u̇ = −ρ′(ρ−1(u))p3(ρ
−1(u))q3(x)

ρ1(u)p2(ρ−1(u))q2(x)
x − ρ′(ρ−1(u))p3(ρ

−1(u))q4(x)

ρ1(u)p2(ρ−1(u))q2(x)
u, (2.2)

where ρ1(u) = ρ−1(u)/u for u �= 0, ρ1(0) = limu→0 ρ−1(u)/u. From (2.2), we get

ẍ + ρ′(ρ−1(−ẋ))p3(ρ
−1(−ẋ))q4(x)

ρ1(−ẋ)p2(ρ−1(−ẋ))q2(x)
ẋ − ρ′(ρ−1(−ẋ))p3(ρ

−1(−ẋ))q3(x)

ρ1(−ẋ)p2(ρ−1(−ẋ))q2(x)
x = 0.

(2.3)
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It follows from (2.3) that

d

dt

[ x∫
0

q4(s)

q2(s)
ds −

−ẋ∫
0

ρ1(s)p2(ρ
−1(s))

ρ′(ρ−1(s))p3(ρ−1(s))
ds

]
− q3(x)

q2(x)
x = 0.

Letting

ψ(y) =
y∫

0

ρ1(s)p2(ρ
−1(s))

ρ′(ρ−1(s))p3(ρ−1(s))
ds

and introducing the substitution

z = −ψ(−ẋ) +
x∫

0

q4(s)

q2(s)
ds.

We change system (2.3) into

ẋ = −ψ−1

( x∫
0

q4(s)

q2(s)
ds − z

)
, ż = q3(x)

q2(x)
x. (2.4)

If we let φ denote ψ−1 and replace x and z by −x and −z, respectively, then we obtain

ẋ = φ
(
z − F(x)

)
, ż = −g(x), (2.5)

where

F(x) = −
−x∫
0

q4(s)

q2(s)
ds and g(x) = −q3(−x)

q2(−x)
x.

Lemma 2.1.Under the assumption (1.6), the qualitative behavior of (1.1) is the same as
that of (2.5).

In the following, we shall present the basic assumptions and auxiliary lemmas. We
assume that

(C1) F (x) and g(x) are continuous on R with F(0) = 0 and xg(x) > 0 for x �= 0 and φ(u)

is continuous differentiable and strictly increasing with φ(0) = 0 and φ(±∞) =
±∞.

(C2) For any fixed number k > 0, there exists M(k) > 0 with M(k) ≡ k for 0 < k � 1
such that∣∣φ(ku)

∣∣ � M(k)φ
(|u|) for all u.

Sometimes, we only need the condition
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(C′
2) For any fixed k ∈ (0, 1] and u ∈ R,∣∣φ(ku)

∣∣ � kφ
(|u|).

Lemma 2.2 (see [12, Proposition 3.1]). If (C1) is satisfied, then for any initial point
p(x0, z0), (2.5) has a unique orbit passing through p.

We call the curve L: z = F(x) the characteristic curve of (2.5), we denote

L+ = {(
x,F (x)

)
: x > 0

}
and L− = {(

x,F (x)
)
: x < 0

}
.

Let G(x) = ∫ x

0 g(s) ds. If x > 0, then we set

u = u1(x) = G(x), u ∈ (
0,G(+∞)

)
, (2.6)

the inverse function of which is denoted by x = x1(u). Replacing x(> 0) in F(x) by x =
x1(u), we have

F1(u) = F
(
x1(u)

)
, u ∈ (

0,G(+∞)
)
. (2.7)

Similarly, if x < 0, then we write

u = u2(x) = G(x), u ∈ (
0,G(−∞)

)
, (2.8)

whose inverse function is given by x = x2(u). Thus, substituting x = x2(u) in F(x) if
x < 0, we obtain

F2(u) = F
(
x2(u)

)
, u ∈ (

0,G(−∞)
)
. (2.9)

Therefore, Eqs. (2.5) in the cases x > 0 and x < 0 are equivalent to the following two
equations, respectively:

du

dz
= −φ

(
z − F1(u)

)
, u ∈ (

0,G(+∞)
)
, (2.10)

du

dz
= −φ

(
z − F2(u)

)
, u ∈ (

0,G(−∞)
)
. (2.11)

Now we introduce the condition (C3). The system (2.5) is called to satisfy the condition
(C3) if the following condition hold:

F1(u) ≡ F2(u) for u ∈ (
0,min

{
G(+∞),G(−∞)

})
,

where F1(u) and F2(u) are given in (2.10) and (2.11).
If the condition (C3) is true, then Eqs. (2.10) and (2.11) are identical in (0,min{G(+∞),

G(−∞)}), employing an argument similar to that in [4,10], we have the following lemma
which shows that the orbit of (2.5) have deformed mirror symmetry about the z-axis.

Lemma 2.3.Suppose that the conditions (C1) and (C3) are satisfied, G(+∞) = G(−∞).
If an orbit of (2.5) starting from A = (0, zA) (zA > 0) passes through a point B = (0, zB)

(zB < 0), then it reaches the point A again.
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3. The oscillation and the global center for system (2.5)

First, we give the result on the oscillation of all solutions for (2.5). A solution
(x(t), z(t)) of (2.5) is oscillatory if there are two sequences {tn} and {τn} tending monoton-
ically to +∞ such that x(tn) = 0 and z(τn) = 0 for every n � 1. As is usual in the
investigation of oscillation properties, by solution, we mean those which are defined in
the future. Some attempts have been made to find necessary as well as sufficient conditions
on F , φ and g for solutions of (2.5) to be continued in the future [7].

The system (2.5) is said to satisfy (C+
4 ) if one of the following conditions holds:

(C+
4 )1 there exists a positive decreasing sequence {xn} such that xn → 0 as n → +∞ and

F(xn) � 0 for each n;
(C+

4 )2 there exist constants a > 0 and β > 1
4 such that F(x) > 0 for 0 < x � a and

x∫
0

g(s)

φ(F (s))
ds � βF(x) for 0 < x � a.

The system (2.5) is said to satisfy (C−
4 ) if one of the following conditions holds:

(C−
4 )1 there is a negative increasing sequence {xn} such that xn → 0 as n → +∞ and

F(xn) � 0 for each n;
(C−

4 )2 there are constants b < 0 and β > 1
4 such that F(x) < 0 for b � x < 0 and

x∫
0

g(s)

φ(−F(s))
ds � −βF(x) for b � x < 0.

The system (2.5) is said to satisfy the condition (C4) if both (C+
4 ) and (C−

4 ) hold.

Lemma 3.1.Assume that the conditions (C1) and (C′
2) hold. If the condition (C+

4 ) ((C−
4 ))

is satisfied, then every positive semiorbit of (2.5) passing through (x0,F (x0)) with x0 > 0
(x0 < 0) will intersect the negative z-axis (the positive z-axis).

Proof. Suppose that (C+
4 ) holds. Then it is easy to see that if the positive semiorbit O+(p)

with p0 = (x0,F (x0)) ∈ L+ intersects the negative z-axis, then O+(p) also intersects the
negative z-axis for every p = (x,F (x)) ∈ L+ with x > x0. Thus, in order to prove the
conclusion, we only have to prove that there exists a sequence {pn} ⊂ L+ such that pn → 0
and O+(pn) intersects the negative z-axis for every n.

If (C+
4 )1 is true, then there is a positive decreasing sequence {xn} such that xn → 0 as

n → ∞ and F(xn) � 0 for n � 1. Since (2.5) has no vertical asymptote, O+(pn) must
intersect the negative z-axis. So the conclusion in this situation is proved.

Suppose that F(x) > 0 for 0 < x � a and (C+
4 )2 is satisfied. If the conclusion is false,

then there exists a point p0(x0,F (x0)) with x0 > 0 such that O+(p0) does not intersect
the negative z-axis. Then O+(p0) must be contained in the first quadrant and its ω-limit
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set is the origin. Let (x(t), z(t)) be the solution of (2.5) passing through p0. Then such a
solution defines a function z = z(x) on 0 � x � x0 which is a solution on 0 < x � x0 of
the following equation

dz

dx
= − g(x)

φ(z − F(x))
. (3.1)

Clearly, 0 < z(x) < F(x) for 0 < x < x0. Without loss of generality, we may assume that
x0 � a. Since z = z(x) is under L+ and φ(u) is strictly increasing, we have

0 > φ
(
z(x) − F(x)

)
� φ

(−F(x)
)
� −φ

(
F(x)

)
,

where the last inequality follows from (C′
2) with k = 1. Therefore, integrating (3.1) from

0 to x, we obtain that

z(x) = −
x∫

0

g(s)

φ(z(s) − F(s))
ds �

x∫
0

g(s)

φ(F (s))
ds � βF(x) for 0 < x � x0. (3.2)

Here the last inequality follows from condition (C+
4 )2. From (3.2), we have β < 1.

Let β1 = 1 and βn+1 = 1 − β/βn. Then from (3.2), we get that

0 < F(x) − z(x) < β1F(x) for 0 < x � x0.

By induction and the same method as the proof of (3.2), we can prove that

0 < F(x) − z(x) � βnF(x) for 0 < x � x0 and each n.

Thus, {βn} is a positive decreasing sequence which must converge to a real number λ.

From βn+1 = 1 − β/βn and 1
4 < β < 1, we obtain that λ = 1 − β/λ. Therefore, λ is a

complex number, a contradiction. This proves the lemma. �
The system (2.5) is said to satisfy (C+

5 ) if one of the following two conditions holds:

(C+
5 )1 lim supx→+∞ F(x) > −∞;

(C+
5 )2 there exist constants N > 0 and β > 1

4 such that F(x) < 0 for all x � N and for
any b � N , there exists b̄ > b satisfying

x∫
b

g(s)

φ(−F(s))
ds � −βF(x) for all x � b̄.

The system (2.5) is said to satisfy (C−
5 ) if one of the following two conditions holds:

(C−
5 )1 lim infx→−∞ F(x) < +∞;

(C−
5 )2 There exist constants N > 0 and β > 1

4 such that F(x) > 0 for x � −N and for
any b > N , there exists b̄ > b satisfying

x∫
−b

g(s)

φ(F (s))
ds � βF(x) for all x � −b̄.
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The system (2.5) is said to satisfy (C5) if both (C+
5 ) and (C−

5 ) hold.

Lemma 3.2 (see [12, Theorem 3.1]). Suppose that the conditions (C1), (C2), and (C+
5 )

hold. Then every positive semiorbit of (2.5) departing from D1 = {(x, z): x � 0, z >

F(x)} intersects the characteristic curve L+ if and only if

lim sup
x→+∞

[ x∫
0

g(s)

φ(1 + F−(s))
ds + F(x)

]
= +∞, (3.3)

where F−(x) = max{0,−F(x)}.

Lemma 3.3 (see [12, Theorem 3.2]). Suppose that the conditions (C1), (C2), and (C−
5 )

hold. Then every positive semiorbit of (2.5) starting from D3 = {(x, z): x � 0, z < F(x)}
intersects the characteristic curve L− if and only if

lim sup
x→−∞

[ x∫
0

g(s)

φ(1 + F+(s))
ds − F(x)

]
= +∞, (3.4)

where F+(x) = max{0,F (x)}.

Remark 3.1.If lim infx→+∞ F(x) > −∞, then (3.3) is equivalent to

lim sup
x→+∞

[ x∫
0

g(s) ds + F(x)

]
= +∞, (3.5)

and if lim supx→−∞ F(x) < +∞, then (3.4) is equivalent to

lim sup
x→−∞

[ x∫
0

g(s) ds − F(x)

]
= +∞. (3.6)

It follows from the proof of sufficiency of Theorem 3.1 in [12] that the conclusion of
Lemma 3.2 is also true if lim infx→+∞ F(x) > −∞, (3.3) is replaced by (3.5) and the
condition (C2) is removed. Similarly, suppose that lim supx→−∞ F(x) < +∞. Then the
result of Lemma 3.3 also holds when (3.4) is replaced by (3.6) and the condition (C2) is
removed. From the proof of necessity of Theorem 3.1 in [12], we know that if

lim
x→+∞ sup

[ x∫
0

g(s)

φ(1 + F+(s))
ds − F(x)

]
< +∞, (3.7)

then there exists a point p ∈ D2 = {(x, z): x � 0, z < F(x)} such that O−(p) does not
intersect L+. Similarly, if

lim
x→−∞ sup

[ x∫
0

g(s)

φ(1 + F−s))
ds + F(x)

]
< +∞, (3.8)
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then there exists a point p ∈ D4 = {(x, z): x � 0, z > F(x)} such that O−(p) does not
intersect L−.

Theorem 3.4.Assume that the conditions (C1), (C2), (C4), and (C5) are satisfied. Then
all nontrivial solutions of (2.5) are oscillatory if and only if (3.3) and (3.4) hold.

Proof. From Lemmas 3.2 and 3.3, the necessity is obvious. Now we give the proof of
sufficiency.

Let p ∈ R2 with p �= 0. Then it follows from Lemmas 3.2 and 3.3 that O+(p) must
intersect the characteristic curve L, where we have used the fact that (2.5) has no any
asymptote. Therefore, in order to prove the conclusion, we only have to prove that if
p ∈ L+(L−) then O+(p) must intersect L+(L−) again. Lemma 3.1 implies that O+(p)

must intersect the negative z-axis (the positive z-axis). Applying Lemma 3.4 (Lemma 3.3),
we know that O+(p) will intersect L−(L+). Using the fact that (2.5) has no any asymp-
tote once again, we obtain that O+(p) intersects L+(L−) again. This implies all positive
semiorbits spiral around the origin. This completes the proof. �
Remark 3.2.If φ(u) ≡ u, then Theorem 3.4 gives the results of [5].

Next, we give the result on a global center for (2.5). The origin is called to be a global
center for (2.5) if all orbits of (2.5) are closed curves surrounding it.

If the condition (C3) is true and G(+∞) = G(−∞), then Eqs. (2.10) and (2.11) are
identical. Therefore, O+(p) is closed as long as O+(p) spirals around the origin. The
global center result can be immediately obtained from Theorem 3.4 and Lemma 2.3.

Theorem 3.5.Suppose that the conditions (C1), (C2), (C3), (C4), and (C5) are satisfied,
G(+∞) = G(−∞). Then the origin of (2.5) is a global center if and only if (3.3) and
(3.4) hold.

Remark 3.3.If φ(u) ≡ u, then Theorem 3.5 reduces to the results of [10].

Remark 3.4.If limx→+∞ infF(x) > −∞ and limx→−∞ supF(x) < +∞ and we replace
(C2), (3.3), and (3.4) by (C′

2), (3.5), and (3.6), respectively, then the conclusion of Theo-
rem 3.5 is also true.

Example 3.1.Consider the system with zero diagonal coefficient

ẋ = −(
1 + x2)[1 + (

1 + y2)3/2]
y,

ẏ = (
1 + x2)(1 + y2)3/2

x + 2
(
1 + x2)x sinx2(1 + y2)3/2

, (3.9)

in which p2(y) = 1 + (1 + y2)3/2, p3(y) = p4(y) = (1 + y2)3/2, q2(x) = −(1 + x2),
q3(x) = (1 + x2), and q4(x) = 2(1 + x2)x sinx2. Thus,

u = Ψ (y) =
y∫

0

p2(s)

p3(s)
ds = y + y√

1 + y2
,
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F(x) = −
−x∫
0

q4(s)

q2(s)
ds =

−x∫
0

2s sin s2 ds = 1 − cosx2,

g(x) = −q3(−x)

q2(−x)
x = x.

It is easy to see that y = Ψ −1(u) := φ(u) satisfied (C′
2). Obviously, φ(u), F(x), and g(x)

satisfy the conditions (C1), (C3), (C
−
4 )1, and (C5). Moreover, (3.3) and (3.4) are imme-

diately satisfied. In order to prove that the origin of (3.9) is a global center, it remains to
check (C+

4 )2

lim
x→0+

∫ x

0
s

φ(F (s))
ds

F (x)
= lim

x→0+
1

2 sinx2φ(F(x))
= +∞,

which shows that there exist numbers a > 0 and β > 1
4 such that

x∫
0

s3

φ(F(s))
ds � βF(x) for 0 < x � a.

In other words, (C+
4 )2 is true. By Remark 3.4, the origin of (3.9) is a global center.

4. Existence and uniqueness of nontrivial periodic solutions

Throughout this section, we assume that φ(u) is an odd function. The system (2.5) is
said to satisfy (C+

6 ) if one of the following conditions holds:

(C+
6 )1 there exists a positive decreasing sequence {xn} such that xn → 0 as n → +∞ and

F(xn) � 0 for each n;
(C+

6 )2 there exist constants a > 0 and β > 1
4 such that F(x) < 0 for 0 < x � a and

x∫
0

g(s)

φ(−F(s))
ds � −βF(x) for 0 < x � a.

The system (2.5) is said to satisfy (C−
6 ) if one of the following conditions holds:

(C−
6 )1 there is a negative increasing sequence {xn} such that xn → 0 as n → +∞ and

F(xn) � 0 for each n;
(C−

6 )2 there are constants b < 0 and β > 1
4 such that F(x) > 0 for b � x < 0 and

x∫
0

g(s)

φ(F (s))
ds � βF(x) for b � x < 0.

The system (2.5) is said to satisfy the condition (C6) if both (C+
6 ) and (C−

6 ) hold.
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Lemma 4.1 (see [12, Lemma 4.1]). Assume that the conditions (C1) and (C2) are true.
Then

(i) if (C+
6 ) holds, then for any p = (x0, z0) ∈ L+, the negative semiorbit O−(p) must

intersect the positive z-axis at (0, zp) with zp > 0;
(ii) if (C−

6 ) holds, then for any p = (x0, z0) ∈ L−, the negative semiorbit O−(p) must
intersect the negative z-axis at (0, zp) with zp < 0.

Remark 4.1.The condition (C−
5 )2 of [12] should be (C−

6 )2 in this paper (i.e., the inequality
sign � in the condition (C−

5 )2 of [12] should be �).

Theorem 4.2.Suppose that (C1), (C2), (C+
4 ), (C−

5 ), (C+
6 ), (3.4), (3.5), and (3.7) hold. If

F1(u) � F2(u) for 0 < u 	 1, then (2.5) has at least one nontrivial periodic solution.

Proof. Since (C1), (C2), and (C+
4 ) are satisfied, it follows from Lemma 3.1 that every

positive semiorbit of (2.5) passing through (x0,F (x0)) with x0 > 0 will intersect the neg-
ative z-axis. Thus, for −z0 > 0 sufficiently small, by Lemma 4.1, (2.10) has a solution
u = u1(z) with u1(z0) = 0 which is defined on [z0, z1] with z1 > 0 and u(z1) = 0. Let
p0 = (0, z0). Then, by Lemma 3.3, the positive semiorbit O+(p0) will meet L−. We as-
sert that for sufficiently small −z0, O+(p0) must intersect the positive z-axis at (0, z2)

with z2 � z1. Let u = u2(z) be the solution of (2.11) with u2(z0) = 0. It follows from
the condition F1(u) � F2(u) (0 < u 	 1) and the proof of Proposition 4.1 of [12] that
u1(z) � u2(z) if z � z0 and z is in the common existence interval of u1(z) and u2(z).

Since u2(0) � u1(0) > 0, thus, O+(p) meets the negative x-axis and hence intersects the
positive z-axis at p2(0, z2). Moreover, z2 � z1. Let p1 = (0, z1) and p̂1p2 be the orbit
arc of O+(p1) and p2p1 be the closed segment from p2 to p1. Then C = p̂1p2 ∪ p2p1
is a Jordan curve and the exterior of C is positively invariant. By (3.7) and Remark 3.1,
there exists a point p in the negative z-axis such that O−(p) does not intersect L+. Such
a point p must be in the exterior of C. Applying Lemma 3.3, we conclude that O+(p)

meets L− and therefore enters into D1. From (3.7), it is easy to see that F(x) � −M for
some M > 0. Thus, by (3.5) and Remark 3.1, we know that O+(p) must intersect L+ and
hence meets the negative z-axis at q which lies above p. Therefore, O+(p) is bounded and
spirals around the origin as in Fig. 1. The Poincare–Bendixson theorem implies that ω(p)

is a nontrivial periodic solution. The proof is complete. �
In a similar way, we can prove the following

Theorem 4.3.Suppose that (C1), (C2), (C+
4 ), (C+

5 ), (C+
6 ), (3.3), (3.6), and (3.8) hold. If

F1(u) � F2(u) for 0 < u 	 1, then (2.5) has at least one nontrivial periodic solution.

Theorem 4.4.Let (C1) and (C′
2) hold. Assume that F is continuously differentiable with

F ′(x) := f (x) > 0 for x /∈ [a, b], f (0) < 0 and F(b) − F(a) > 0, where a < 0 < b. If

lim|x|→∞ sup
[
G(x) + F(x) sgnx

] = +∞, (4.1)

then (2.5) has at least one nontrivial periodic solution.
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Fig. 1.

Proof. Under the assumptions of this theorem, it is not difficult to prove that all nontrivial
solutions of (2.5) are oscillatory. Since lim|z|→∞ g(x)

φ(z−F(x))
= 0 uniformly for all x ∈ [a, b],

for any ε > 0, there exists M0 > 0 such that∣∣∣∣ g(x)

φ(z − F(x))

∣∣∣∣ <
ε

b − a
for all x ∈ [a, b] and |z| � M0. (4.2)

Furthermore, there is M1 > M0 such that for |y0| > M1 the solution z = z(x) of (3.1) with
z(0) = y0 is defined on [a, b] and |z(x)| � M0 for all x ∈ [a, b]. Thus, for any x1, x2 ∈
[a, b], it follows from (4.2) that∣∣z(x1) − z(x2)

∣∣ < ε. (4.3)

Let Φ(y) = ∫ y

0 φ(σ) dσ. Then Φ(y) is an even function. Define

V (x, z) = Φ
(
z − F(x)

) + G(x). (4.4)

Thus, along a solution of (2.5), we have

dV

dt
= −f (x)φ2(z − F(x)

)
. (4.5)

Let p0 = (0, y0) with y0 > 0. Then O+(p0) crosses the negative z-axis at q0(0, y∗
0 ). If

limy0→+∞ y∗
0 = y∗ > −∞, then O−(q∗) does not intersect L+ where q∗ = (0, y∗). There-

fore, O+(q∗) is bounded. From f (0) < 0 and (4.5), we obtained that the origin is a repeller.
The Poincare–Bendixson theorem implies that ω(q∗) is a nontrivial periodic solution. Sup-
pose that y∗ = −∞ and choose ε = 1

2 (F (b)−F(a)) in (4.2) and (4.3). Then, there is M2 >

M1 +F(b)−F(a) such that y∗
0 < −(M1 +F(b)−F(a)) as long as y0 > M2. Now, we fix

the point p0 = (0, y0) with y0 > M2. The remain proof makes use of the following Fig. 2.
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Fig. 2.

The points A,B,C,D, and P1 have the coordinates (b, y+
b ), (b, y−

b ), (a, z−
a ), (a, z+

a ),
and (0, y1), respectively. we shall prove that y1 < y0. Since f (x) > 0 for x /∈ [a, b], it
follows from (4.5) that

Φ
(
y+
b − F(b)

)
> Φ

(
y−
b − F(b)

)
, (4.6)

Φ
(
z−
a − F(a)

)
> Φ

(
z+
a − F(a)

)
. (4.7)

We note that Φ is an even function and is strictly increasing on [0,∞). Therefore, (4.6)
and (4.7) imply that

y+
b − F(b) > F(b) − y−

b , F (a) − z−
a > z+

a − F(a).

That is,

y+
b > −y−

b + 2F(b), (4.8)

z+
a < −z−

a + 2F(a). (4.9)

By (4.3), we have

y1 − z+
a , y−

b − z−
a , y+

b − y0 < ε (4.10)

where ε = 1
2 (F (b)− F(a)). Combining (4.8), (4.9) with (4.10), we conclude that y1 < y0.

Hence O+(p0) is bounded and ω(p0) is a nontrivial periodic solution. The proof is com-
plete. �

In the following, we consider a special form of (2.5)

ẋ = (
z − F(x)

)2n+1
, ż = −g(x). (4.11)
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Theorem 4.5.Let g(x) and f (x) := F ′(x) be continuous for all x with the properties:

(i) xg(x) > 0 for x �= 0;
(ii) F ′(x) := f (x) > 0 for x /∈ [α,β], f (x) < 0 for x ∈ [α,β] where α < 0 < β and

F(b) − F(a) > 0 for some a < α and b > β;
(iii) G(α) = G(β) where G(x) = ∫ x

0 g(σ) dσ ;
(iv) lim|x|→+∞[G(x) + F(x) sgnx] = +∞.

Then (4.11) has exactly one nontrivial periodic solution which is exponentially asymp-
totically, orbitally stable.

Proof. The existence of a nontrivial periodic solution has been given in Theorem 4.4. It
remains to prove the uniqueness.

Suppose that Γ : x = x(t), z = z(t) for 0 � t � T is any nontrivial periodic solution of
(4.11) whose characteristic multiplier is

γ = −
T∫

0

(2n + 1)
(
z(t) − F

(
x(t)

))2n
f

(
x(t)

)
dt.

Let γ0 = ∫ T

0 (z(t) − F(x(t)))2nf (x(t)) dt. Then, it suffices to prove that γ0 > 0.

Defining the function

V (x, z) = (z − F(x))2n+2

2(n + 1)
+ G(x)

and restricting V on the periodic orbit Γ, we have

V (t) = (z(t) − F(x(t)))2n+2

2(n + 1)
+ G

(
x(t)

)
.

Therefore,
dV

dt
= −f

(
x(t)

)(
z(t) − F

(
x(t)

))4n+2
. (4.12)

Choose a positive number h < min0�t�T V (t). Then we change the form of (4.12) into

1

V − h

dV

dt
+ 2(n + 1)

(
z − F(x)

)2n
f (x)

= 2(n + 1)(G(x) − h)(z − F(x))2nf (x)

V − h
. (4.13)

Integrating (4.13) from 0 to T , we obtain that

γ0 =
T∫

0

(G(x(t)) − h)(z(t) − F(x(t)))2nf (x(t))

V (t) − h
dt. (4.14)

In order to prove γ0 > 0, we only have to show that we can choose a suitable number h

such that(
G

(
x(t)

) − h
)
f

(
x(t)

)
� 0 for all t ∈ [0, T ].



336 M. Gyllenberg et al. / J. Math. Anal. Appl. 291 (2004) 322–340

Assume that V (t) attains the minimum value at t = t0 ∈ [0, T ], then it follows
from (4.12) that f (x(t0)) = 0. We claim that z(t0) �= F(x(t0)). In the following, we will
prove our claim. Suppose the contrary, that is, z(t0) = F(x(t0)). Since the orbit Γ does
not pass through the origin, ż(t0) = −g(x(t0)) �= 0. Thus, z(t) − F(x(t)) = z(t0) + ż(t0) ×
(t − t0) − F(x(t0)) − f (x(t0))ẋ(t0)(t − t0) + o(t − t0) = −g(x(t0))(t − t0) + o(t − t0).

From the first equation of (4.11), we have

x(t) − x(t0) = − (g(x(t0)))
2n+1

2(n + 1)
(t − t0)

2n+2 + o
(
(t − t0)

2n+2).
Therefore, for |t − t0| sufficiently small, either x(t) � x(t0) or x(t) � x(t0). This implies
that either f (x(t)) � 0 or f (x(t)) � 0 as long as |t − t0| is sufficiently small. From (4.12),
we can conclude that in a neighborhood of t0, V (t) is strictly monotone. In other words,
V (t) cannot attains the minimum value at t = t0, a contradiction arises. This proves our
claim that z(t0) �= F(x(t0)).

Let h = G(x(t0)), by the above claim, we have (z(t0)−F(x(t0)))
2n+2 > 0 and h < V (t)

for all t . Since f (x(t0)) = 0, x(t0) = α or β and h = G(α) = G(β). By the assumption (ii)
and (iii) f (x)(G(x)− h) > 0 for any x �= α,β. It follows from (4.14) that γ0 > 0. By The-
orem 11.3 of [6, p. 256], the nontrivial periodic solution is exponentially, asymptotically,
orbitally stable. This completes the proof. �
Theorem 4.6.Let F ′(x) := f (x) and g(x) be continuous for all x with the properties:

(i) xg(x) > 0 for x �= 0;
(ii) f (x) > 0 for |x| > ∆, xF(x) < 0 for |x| < ∆ and F(∆) = F(−∆) = 0;

(iii) lim|x|→+∞[G(x) + F(x) sgnx] = +∞.

Then (4.11) has exactly one nontrivial periodic solution which is exponentially asymp-
totically, orbitally stable.

Proof. The method of the following proof is due to Sansone (see [9] or [14]). The existence
of periodic solution follows from Theorem 4.4. We only give the proof of the uniqueness.

Let

λ(x, z) = z2(n+1)

2(n + 1)
+ G(x).

Then, along a solution of (4.11), we have

dλ

dt
= −g(x)

[
z2n+1 − (

z − F(x)
)2n+1]

.

From the assumption (ii), it follows that

dλ

dt
= −g(x)

[
z2n+1 − (

z − F(x)
)2n+1]

> 0 for all |x| < ∆. (4.15)

Using (4.15), we can prove that the points (−∆,0) and (∆,0) must be in the interior of
any periodic orbit. Suppose that (4.11) has two periodic orbits Γ1 and Γ2. Without loss of
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Fig. 3.

generality, we may assume that Γ1 is in the interior Γ2. It is easy to see that

0 =
∮
Γi

dλ =
∮
Γi

[
z2n+1 − (

z − F(x)
)2n+1]

dz (i = 1,2). (4.16)

In the following, we shall prove that∮
Γ2

dλ <

∮
Γ1

dλ. (4.17)

(4.16) and (4.17) imply that the nontrivial periodic orbit of (4.11) is unique. The following
proof will make use of the Fig. 3.

On the orbit arc AiBi, we have z = zi(x) for |x| < ∆ which is the solution of (3.1). By
(4.16), we can calculate that

∫
ÂiBi

dλ =
∆∫

−∆

−g(x)[(zi(x))2n+1 − (zi(x) − F(x))2n+1]
(zi(x) − F(X))2n+1 dx for i = 1,2.

Thus, ∫
Â1B1

dλ −
∫

Â2B2

dλ

= −
∆∫

−∆

g(x)[(z1(x)(z2(x) − F(x)))2n+1 − (z2(x)(z1(x) − F(x)))2n+1]
[(z1(x) − F(x))(z2(x) − F(x))]2n+1

dx.

(4.18)
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Since z1(x)(z2(x) − F(x)) − z2(x)(z1(x) − F(x)) = F(x)(z2(x) − z1(x)), we have
[z1(x)(z2(x) − F(x)) − z2(x)(z1(x) − F(x))] sgnx > 0 for 0 < |x| < ∆. Together this
inequality and (4.18), we have∫

Â1B1

dλ >

∫
Â2B2

dλ. (4.19)

Similarly, we can prove that∫
Ĉ1D1

dλ >

∫
Ĉ2D2

dλ. (4.20)

On the orbit arc B̂1C1 we have x = x1(z) and on the orbit arc Ê2F2 we have x = x2(z).

From (4.16), we obtain that

∫
B̂1C1

dλ =
zC1∫

zB1

[
z2n+1 − (

z − F
(
x1(z)

))2n+1]
dz and

∫
Ê2F2

dλ =
zF2∫

zE2

[
z2n+1 − (

z − F
(
x2(z)

))2n+1]
dz,

where zC1 = zF2 := z1 and zB1 = zE2 := z2. Obviously, x2(z) > x1(z) for z1 � z � z2.

The assumption (ii) implies that F(x) is strictly increasing if |x| > ∆. Hence F(x2(z)) >

F(x1(z)) for all z ∈ (z1, z2).∫
B̂1C1

dλ −
∫

Ê2F2

dλ =
z1∫

z2

[(
z − F

(
x2(z)

))2n+1 − (
z − F

(
x1(z)

))2n+1]
dz > 0,

that is,∫
B̂1C1

dλ >

∫
Ê2F2

dλ. (4.21)

In a similar way, we can show that∫
D̂1A1

dλ >

∫
Ĝ2H2

dλ. (4.22)

Since x[z2n+1 − (z − F(x))2n+1] > 0 for all |x| > ∆, from (4.15), we conclude that∫
L

dλ < 0, (4.23)

where L = B̂2E2 ∪F̂2C2 ∪D̂2G2 ∪Ĥ2A2. From the inequalities (4.19) to (4.23), we deduce
that (4.17). The proof is complete. �
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In the following, we apply the results in this section to the systems (1.7) and (1.8).
Rewriting (1.7), we have

ẋ = [
y − (

x3 − x
)]3

, ẏ = −x. (4.24)

It is not difficult to show that (4.24) satisfies all properties of Theorem 4.4 or Theorem 4.5.
Therefore, (4.24) has a unique limit cycle.

If the two sides of (1.8) are divided by ẋ−2/3, we have

ẋ−2/3ẍ + 3
(
x2 − 1

)
ẋ + 3x = 0,

that is,

d

dt

[
ẋ1/3 +

(
x3

3
− x

)]
+ x = 0.

Let

z = ẋ1/3 +
(

x3

3
− x

)
.

Then

ẋ =
[
z −

(
x3

3
− x

)]3

, ż = −x. (4.25)

Applying Theorem 4.4 or Theorem 4.5 to (4.25), we immediately obtain that (4.25) has
a unique limit cycle.

5. Brief discussion

Krechetov [8] studied the global asymptotic behavior of solutions of system (1.1) by us-
ing the Lyapunov function method, and he gave necessary and sufficient conditions for the
zero solution of (1.1) to be globally asymptotically stable under the main condition (1.2)
and some other assumptions. In paper [12] the authors first introduced the transforma-
tion techniques to investigate the global asymptotic stability of system (1.3), the special
case of system (1.1) with p3(y) ≡ p4(y). Under the condition (1.4), they transformed
system (1.3) into the generalized Liénard system (1.5) without the assumption (1.2) and ob-
tained necessary and sufficient conditions for the zero solution of (1.3) (respectively (1.5))
to be globally asymptotically stable. Moreover, they also found conditions for deciding
whether all positive (respectively negative) nontrivial orbit of (1.5) intersect the character-
istic curve z = F(x) and obtained sufficient conditions under which there is no homoclinic
orbit for (1.5).

Motivated by paper [12], we find that no restriction on the sign of q4(x) is required
for (1.1) under assumption (1.6) (it should be noticed that if p3(y) ≡ p4(y) one case of
assumption (1.6) reduces to (1.4)). By introducing suitable transformations we prove that
system (1.1) is equivalent to a form of system (1.5) under assumption (1.6). In this pa-
per we have investigated the qualitative behavior of systems (1.1) and (1.5). Especially,
we give the necessary and sufficient conditions for all nontrivial solutions of (1.1) (re-
spectively (1.5)) to be oscillatory and for the origin to be a global center, and we also
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study the existence and uniqueness of nontrivial periodic solutions of system (1.1) (respec-
tively (1.5)). Furthermore, we establish the sufficient conditions under which no solution
of (1.5) approaches the origin directly in the right (or left) half plane (i.e., in a nonoscilla-
tory way), which plays an important role in the analysis of oscillation and center conditions
of (1.5).
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This article gives some sufficient conditions for the existence and nonexistence of nonzero periodic solutions
of the general autonomous system of Liénard type

_xx ¼ pðyÞ,
_yy ¼ �f ðx, yÞpðyÞqðyÞ � rðyÞgðxÞ:




The main purpose of this article is to study the problem of how small the extent for the function f ðx, yÞ should
be to guarantee the existence of nonzero periodic solutions of this system. With some standard additional
assumptions, we prove that if

Z �1
j f ðx, yÞqðyÞj�1dy ¼ �1 for a small jxj,

then the system has at least one nonzero periodic solution, otherwise, the system has no nonzero periodic
solution.
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1. INTRODUCTION

In 1942, Levinson and Smith [2] first studied the existence of nonzero periodic solutions
of the general autonomous equation of Liénard type

€xxþ f ðx, _xxÞ _xxþ gðxÞ ¼ 0 ð1Þ
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or its equivalent system

_xx ¼ y,
_yy ¼ �f ðx, yÞy� gðxÞ:



ð2Þ

Since then, many authors have made contributions to the theory of this system regard-
ing the existence of nonzero periodic solutions. The books by Sansone and Conti [4],
Zhang et al. [13] and Ye et al. [10] contain a summary of the results on this problem.
On reviewing all the known results, we find that in order to obtain a criterion for the
existence of nonzero periodic solutions almost every author required that the restoring
force g(x) and damping f ðx, yÞ should be not too small, that is, f ðx, yÞ should have a
lower bound in a strip region jxj � d and should be nonnegative outside this strip
region, and

R�1
gðxÞ dx ¼ þ1. Ponzo and Wax [3] gave a result on the existence of

a nonzero periodic solution which does not require f ðx, yÞ to have a lower bound.
Unfortunately, Zheng [14] gave an example

_xx ¼ y,
_yy ¼ �ðx2 � 4Þðy2 þ 1Þy� x



ð3Þ

to show that the conditions of Ponzo and Wax cannot guarantee the existence of a non-
zero periodic solution if f ðx, yÞ has not a lower bound. Yu and Huang [11] also dealt
with the existence of nonzero periodic solutions of (2), and pointed out that system
(3) has a nonzero periodic solution. Yan and Jiang [8] considered the system (2),
they noted that system (3) has no nonzero periodic solution. Also, Wang et al. [7]
gave a complete analysis of global bifurcation for the following system

_xx ¼ y,
_yy ¼ �ðx2 � �Þðy2 þ 1Þy� x,



ð4Þ

where � is a parameter. In addition, it was shown by Lemma 5 in [7] that system (4) has
no nonzero periodic solution when � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q
2=163

p
� 1:7707.

Yu and Huang [12] studied a more general system than (2), namely,

_xx ¼ pðyÞ,
_yy ¼ �f ðx, yÞpðyÞqðyÞ � rðyÞgðxÞ,



ð5Þ

under the assumptions
R�1
0 gðsÞ ds ¼ þ1, they obtained some sufficient conditions for

the existence of one nonzero periodic solution of (5). Moreover, as a result of [12] they
pointed out that system (3) has at least one nonzero periodic solution.

In the present article we study the generalized Liénard system (5), where the functions
pðyÞ, qðyÞ, rðyÞ, gðxÞ and f ðx, yÞ are continuous for all values of their arguments, and are
subject to the conditions which ensure that the existence of unique solution to the initial
value problem.

The purpose of this article is to study the problem of how small the extent for f ðx, yÞ
should be to warrant the existence of nonzero periodic solutions of (5). Our investiga-
tion shows that whether (5) has a nonzero periodic solution strongly depends on the
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integral
R �1 j f ðx, yÞqðyÞj�1dy, where jxj is sufficiently small. The article is organized

as follows: In Section 2 we find some sufficient conditions for the existence of nonzero
periodic solutions of (5), roughly speaking, if

R �1 j f ðx, yÞqðyÞj�1 dy ¼ �1 for a small
jxj and some additional assumptions hold, then (5) has at least one nonzero periodic
solution. Our results allow to avoid the classical assumptions:

Z �1

0

gðxÞ dx ¼ þ1, ð6Þ

f ðx, yÞ > 0 ðor � 0Þ for jxj sufficiently large: ð7Þ

In Section 3 we give some sufficient conditions about nonexistence of periodic
solutions of (5), the main results in this section are Theorems 3.1 and 3.2 which state
that if

Rþ1 j f ðx, yÞqðyÞj�1dy (or
R�1 j f ðx, yÞqðyÞj�1dy) is finite for a small jxj and

some additional assumptions hold, there does not exist a nonzero periodic solution
of the system (5). Some examples illustrating our results are given in this article.

2. EXISTENCE OF NONZERO PERIODIC SOLUTIONS

In this section, we give sufficient conditions for the existence of nonzero periodic
solutions of (5).

At first we assume:

(E1) xgðxÞ > 0 for all x 6¼ 0;
(E2) f ð0, 0Þ < 0;
(E3) qðyÞ and r(y) are positive on R, ypðyÞ > 0 for all y 6¼ 0, and lim infy!�1 jpðyÞj=

rðyÞ > 0;
(E4) There exist constants a < 0, b > 0 and a function f0ðxÞ 2 Cðð�1, a�[ ½b,þ1ÞÞ

such that f ðx, yÞqðyÞ � f0ðxÞ for x 2 ½�1, a� [ ½b,þ1Þ, y 2 R. GðxÞ ¼ R x

0
gðsÞ ds,

FþðxÞ ¼ R x

b
f0ðsÞ ds ðx � bÞ and F�ðxÞ ¼ R x

a
f0ðsÞ ds ðx � aÞ satisfy the following

conditions ðEþ
4 Þi and ðE�

4 Þi respectively,
ðEþ

4 Þ1 lim infx!þ1 FþðxÞ > �1,
ðEþ

4 Þ2 lim supx!þ1ðGðxÞ þ FþðxÞÞ ¼ þ1;
ðE�

4 Þ1 lim supx!�1 F�ðxÞ < þ1,
ðE�

4 Þ2 lim supx!�1ðGðxÞ � F�ðxÞÞ ¼ þ1.

ðE5Þ There exist functions ’ðxÞ 2 C½a, b� and hðyÞ 2 CðRÞ such that

ðE5Þ1 f ðx, yÞ � ’ðxÞhðyÞ for a � x � b, y 2 R,
ðE5Þ2 For every constant m>0, there is a positive number c(m) such that

jpðyÞjhðyÞqðyÞ
rðyÞ � cðmÞ for jyj � m, and

Z þ1

1

dy

hð�yÞqð�yÞ ¼ þ1:
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THEOREM 2.1 Assume that the conditions ðE1Þ–ðE5Þ hold, and that the following condition
is satisfied.

ðE6Þ There exist a constant a0 < a and a function AðxÞ 2 C1ðð�1, a0�, ð0,þ1ÞÞ such
that

pðAðxÞÞA0ðxÞ þ pðAðxÞÞ f ðx,AðxÞÞqðAðxÞÞ þ rðAðxÞÞgðxÞ � 0,

for x 2 ð�1, a0�.
Then (5) has at least one nonzero periodic solution.
Before proving Theorem 2.1, we introduce some notations. Let Lþ ¼ ð0, b�	

f0g,L� ¼ ½a, 0Þ 	 f0g. �þ
a0
¼ fðx, yÞ: x � a0, y > 0g, �þ

b ¼ fðx, yÞ: x � b, y > 0g. The
positive and negative x-axis are denoted by X� and X� respectively. Yþ and Y�

denote the positive and negative y-axis respectively. If x0 2 R, we write Lþ
x0

¼
fðx0, yÞ: y > 0g,L�

x0
¼ fðx0, yÞ: y < 0g. Furthermore, we denote throughout this article

by �þðpÞ and ��ðpÞ, respectively, the positive and negative semi-trajectory of (5) passing
through an arbitrary point p at time 0, �ðpÞ ¼ �þðpÞ [ ��ðpÞ, and let ½0,TpÞ denote the
right maximal interval of �þðpÞ, where Tp � þ1.

First of all, we establish several lemmas which will play an important role in the
proof of Theorem 2.1 in the sequel.

LEMMA 2.1 If the conditions ðE1Þ, ðE2Þ and ðE3Þ are satisfied then the origin is the only
critical point of (5), and it is locally repulsive.

Proof In view of conditions ðE1Þ and ðE3Þ, it is easy to see that the origin is a unique
critical point of (5). Next, we will show that the origin is repulsive. Set

GðxÞ ¼
Z x

0

gðsÞ ds,

�ðx, yÞ ¼ GðxÞ þ
Z y

0

pðsÞ
rðsÞ ds:

From ðE1Þ and ðE3Þ, it is clear that for 0 < c � 1 the curve �ðx, yÞ ¼ c is a closed curve
surrounding the origin. By ðE2Þ and ðE3Þ, for 0 < c � 1, along the closed curve
�ðx, yÞ ¼ c we have

d�ðx, yÞ
dt

jð5Þ¼ � f ðx, yÞp2ðyÞqðyÞ
rðyÞ > 0 for all y 6¼ 0: ð8Þ

Hence the origin is locally repulsive. This completes the proof of Lemma 2.1.

LEMMA 2.2 Assume the conditions ðE1Þ–ðE4Þ hold, p 2 �þ
a0
. Then �þðpÞ must

intersect Lþ
a .

Proof Suppose the conclusion is false. Since dx=dt ¼ pðyÞ > 0 for y>0 and
dy=dt ¼ �rðyÞgðxÞ > 0 on X�, it follows that �þðpÞ will stay in the region �þ

a ¼
fðx, yÞ: x � a, y > 0g. Let ðxðtÞ, yðtÞÞ be the coordinates of �þðpÞ, ðxð0Þ, yð0ÞÞ ¼ p. By
Lemma 2.1, we know that no solution can approach the origin except itself. Since
�þ

a does not contain any equilibrium, the Poincaré–Bendixson Theorem tells us that
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�þðpÞ must be unbounded. It is easy to see that there exist a increasing sequence
f�kg 
 ð0,TpÞ and a constant �aa 2 ða0, a� satisfying

lim
k!þ1

xð�kÞ ¼ �aa, lim
k!þ1

yð�kÞ ¼ þ1: ð9Þ

Because the origin is locally repulsive and dy=dt > 0 on X�, it is obvious that there
exists a constant �yy > 0 such that yðtÞ � �yy for 0 � t < Tp. Therefore, from the condition
ðE3Þ it is sure that there exists a constant M>0 such that

pðyðtÞÞ
rðyðtÞÞ � M for 0 � t < Tp:

By ðE3Þ, ðE4Þ and (5), we have

dy

dt
¼ �f ðx, yÞqðyÞpðyÞ � �ðyÞgðxÞ
� �f0ðxÞpðyÞ � rðyÞgðxÞ, ð10Þ

for 0 � t < Tp. Now, integrating (10) from 0 to �k along �þðpÞ, we get

yð�kÞ � yð0Þ � �
Z �k

0

f0ðxðsÞÞ þ rðyðsÞÞgðxðsÞÞ
pðyðsÞÞ

� �
pðyðsÞÞ ds

� �
Z �k

0

f0ðxðsÞÞ þ gðxðsÞÞ
M

� �
pðyðsÞÞ ds

¼ �
Z ð�kÞ

xð0Þ
f0ðzÞ þ gðzÞ

M

� �
dz: ð11Þ

By (9), the right of (11) is bounded, the left of (11) is positive infinite, which is a contra-
diction. Hence �þðpÞ must intersect Lþ

a . The proof of Lemma 2.2 is complete.

LEMMA 2.3 If the conditions ðE1Þ, ðE2Þ, ðE3Þ and ðE5Þ are satisfied, p 2 Lþ
a . Then �

þðpÞ
must intersect Yþ.

Proof Suppose this is not the case. Let ðxðtÞ, yðyÞÞ be the coordinates of �þðpÞ, ðxð0Þ,
yð0ÞÞ ¼ p. Then by an argument similar to the Lemma 2.2, there must exist an increas-
ing sequence ftkg 
 ð0,TpÞ and a constant �aa1 2 ða, 0� satisfying

lim
k!þ1

xðtkÞ ¼ �aa1, lim
k!þ1

yðtkÞ ¼ þ1: ð12Þ

By ðE3Þ, ðE5Þ and (5), we obtain

dy

dt
¼ �f ðx, yÞpðyÞqðyÞ � rðyÞgðxÞ
� �’ðxÞhðyÞpðyÞqðyÞ � rðyÞgðxÞ

1

hðyÞqðyÞ
dy

dt
� �’ðxÞpðyÞ � rðyÞgðxÞ

hðyÞqðyÞ , ð13Þ
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for 0 � t < Tp. Integrating (13) from 0 to tk along �þðpÞ, we have

Z yðtkÞ

yð0Þ

dy

hðyÞqðyÞ � �
Z tk

0

’ðxðsÞÞ þ rðyðsÞÞgðxðsÞÞ
pðyðsÞÞhðyðsÞÞqðyðsÞÞ

� �
pðyðsÞÞ ds

¼ �
Z xðtkÞ

a

’ðzÞ þ rðyðsÞÞgðzÞ
pðyðsÞÞhðyðsÞÞ

� �
dz: ð14Þ

Since dy=dt > 0 on the negative x-axis and the origin is locally repulsive, it is easy to see
that there is a constant �yy1 > 0 such that yðtÞ � �yy, for 0 � t < Tp. From ðE5Þ2 we know
that there exists a constant m0>0 such that ðpðyðtÞÞhðyðtÞÞqðyðtÞÞ=rðyðtÞÞÞ � m0 for
t 2 ½0,TpÞ. Therefore, by ðE5Þ and (12), the right of (14) is bounded, the left of (14) is
positive infinite, which is a contradiction. Thus, �þðpÞ must intersect the positive
y-axis. This completes the proof of Lemma 2.3.

LEMMA 2.4 Assume the conditions ðE1Þ, ðE2Þ, ðE3Þ and ðE5Þ hold, p 2 Yþ. Then �þðpÞ
must intersect Lþ [ Lþ

b .

Proof Since dx=dt ¼ pðyÞ > 0 for y>0, if �þðpÞ does not intersect Lþ, by using an
exactly similar argument as in the proof of Lemma 2.3, then �þðpÞ must intersect Lþ

b .
This completes the proof of Lemma 2.4.

LEMMA 2.5 Assume that the conditions ðE1Þ–ðE5Þ hold and that p 2 Lþ
b . Then �

þðpÞ
must intersect Xþ.

Proof Suppose it is not the case. Since dx=dt ¼ pðyÞ > 0 for y>0, it follows that �þðpÞ
will stay in the region �þ

b . Let ðxðtÞ, yðtÞÞ be the coordinates of �þðpÞ, ðxð0Þ, yð0ÞÞ ¼ p.
Because there is no critical point of (5) in �þ

b under the conditions of Lemma 2.5,
according to the theory of limit sets, it is certain that �þðpÞ is unbounded.

On the other hand, it follows from (5) that

dy

dt
¼ �f ðx, yÞpðyÞqðyÞ � rðyÞgðxÞ: ð15Þ

Integrating (15) from 0 to t 2 ½0,TpÞ along �þðpÞ, by ðE4Þ we have

Z yðtÞ

yð0Þ
dy ¼ �

Z t

0

ð f ðx, yÞpðyÞqðyÞ þ rðyÞgðxÞÞ ds

� �
Z t

0

f ðx, yÞpðyÞqðyÞ ds

� �
Z t

0

f0ðxÞpðyÞ ds

¼ �
Z xðtÞ

xð0Þ
f0ðzÞ dz

¼ �FðxðtÞÞ þ Fðxð0ÞÞ: ð16Þ
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Then (16) implies

yðtÞ � yð0Þ � �FðxðtÞÞ þ Fðxð0ÞÞ,

and condition ðE4Þ imply that y(t) is bounded from above for t 2 ½0,TpÞ. Thus, it is sure
that there exists a constant M1>0 such that 0 < yðtÞ � M1 for all t 2 ½0,TpÞ.

Notice that �þðpÞ is unbounded, it is clear that limt!T�
p
xðtÞ ¼ þ1. In the following,

we are going to obtain a contradiction. Let

M2 ¼ 1þ max
0� y�M1

pðyÞ
rðyÞ :

Integrating (15) from 0 to t along �þðpÞ, we have

Z yðtÞ

yð0Þ
dy ¼ �

Z t

0

ðf ðxðsÞ, yðsÞÞpðyðsÞÞqðyðsÞÞ þ rðyðsÞÞgðxðsÞÞÞ ds

� �
Z t

0

f0ðxðsÞÞ þ rðyðsÞÞgðxðsÞÞ
pðyðsÞÞ

� �
pðyðsÞÞ ds

� �
Z t

0

f0ðxðsÞÞ þ gðxðsÞÞ
M2

� �
dxðsÞ
ds

ds

¼ �
Z xðtÞ

xð0Þ
f ðzÞ dz� 1

M2

Z xðtÞ

xð0Þ
gðzÞ dz

¼ �FðxðtÞÞ þ Fðxð0ÞÞ � 1

M2
GðxðtÞÞ þ 1

M2
Gðxð0ÞÞ:

This implies

yðtÞ � yð0Þ � 1

M2
ðFðxðtÞÞ þ GðxðtÞÞÞ �M2 � 1

M2
FðxðtÞÞ þ Fðxð0ÞÞ þ 1

M2
Gðxð0ÞÞ: ð17Þ

In view of ðEþ
4 Þ1, ðEþ

4 Þ2 and limt!T�
p
xðtÞ ¼ þ1, it is easy to see that inequality (17)

implies lim inf t!T�
p
yðtÞ ¼ �1. But this contradicts the fact that yðtÞ > 0 for all

t 2 ½0,TpÞ, and hence �þðpÞ must intersect Xþ. This completes the proof of Lemma 2.5.

By an argument similar to Lemmas 2.3–2.5 above, we can prove the following
Lemma 2.6.

LEMMA 2.6 If the conditions ðE1Þ–ðE5Þ hold, p 2 Xþ. Then �þðpÞ must intersect Y�

and X�.

Proof of Theorem 2.1 According to Lemma 2.1, the origin is a unique critical point
of (5) and is repulsive. For 0 < c � 1, the oval �ðx, yÞ � c can serve as an inner
bound for the annulus, and the trajectories of (5) cross this closed curve from its interior
to its exterior.

Now let us complete the outer bound.
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Let P0 ¼ ða0,Aða0ÞÞ. In view of Lemmas 2.2 and 2.3, we see that �þðP0Þ will intersect
Yþ at some point P1. Then, it follows from Lemmas 2.4–2.6 that �þðP0Þ through point
P1 will intersect X

� at some point P2.
Along the curve y ¼ AðxÞ, we have

dy

dx
jð5Þ � dAðxÞ

dx
¼ �f ðx, yÞqðyÞ � rðyÞgðxÞ

pðyÞ � dAðxÞ
dx

¼ � pðAðxÞÞf ðx,AðxÞÞqðAðxÞÞ þ rðAðxÞÞgðxÞ þ pðAðxÞÞðdAðxÞ=dxÞ
pðAðxÞÞ

� 0

for x 2 ð�1, a0�, which shows that �þðP0Þ through point P2 cannot cross the curve
y ¼ AðxÞ ð�1 < x � a0Þ. Therefore, by Lemmas 2.3 and 2.4, �þðP0Þ through P2 will
intersect Yþ again at some point P3, the above proof and the uniqueness of solutions
of (5) show that P3 is under P2. Then the trajectories of (5) cross the closed curve
P3P2P2P3 from its exterior into its interior. This completes the outer bound for the
annulus. Hence, by the Poincaré–Bendixson Theorem, system (5) has at least one
nonzero periodic solution. The proof of Theorem 2.1 is complete.

A slight modification in the proof of Theorem 2.1 leads to the following Theorem 2.2.

THEOREM 2.2 Assume that the conditions ðE1Þ–ðE5Þ hold, and the following condition is
satisfied.

ðE0
6Þ There exist a constant b0 > b and a function AðxÞ 2 C1ððb0, þ1Þ, ð�1, 0ÞÞ such

that

pðAðxÞÞA0ðxÞ þ pðAðxÞÞ f ðx,AðxÞÞqðAðxÞÞ þ rðAðxÞÞgðxÞ � 0,

for all x 2 ½b0,þ1Þ.
Then (5) has at least one nonzero periodic solution.

COROLLARY 2.1 Suppose that the conditions ðE1Þ–ðE5Þ hold, and that one of the following
two conditions is satisfied.

ðEþ
7 Þ There exist a constant a0 < a and a function A0ðxÞ 2 C1ðð�1, a0�, ð0þ1ÞÞ such

that

pðAðxÞÞA0ðxÞ þ pðAðxÞÞf0ðxÞ þ rðAðxÞÞgðxÞ � 0,

for all x 2 ð�1, a0�;
ðE�

7 Þ There exist a constant b0 > b and a function AðxÞ 2 C1ð½b0,þ1Þ, ð�1, 0ÞÞ such
that

pðAðxÞÞA0ðxÞ þ pðAðxÞÞf0ðxÞ þ rðAðxÞÞgðxÞ � 0,

for all x 2 ½b0,þ1Þ.
Then (5) has at least one nonzero periodic solution.
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Obviously, when the conditions ðE3Þ and ðE4Þ hold, the conditions ðE6Þ and ðE0
6Þ

imply ðEþ
7 Þ and ðE�

7 Þ respectively. Hence, Corollary 2.1 is a direct corollary of
Theorems 2.1 and 2.2.

Remark 2.1 For the system (2) the condition ðE3Þ holds naturally, therefore, our
Theorems 2.1 and 2.2 are available for (2).

Remark 2.2 If pðyÞ � y, qðyÞ � 1, rðyÞ � 1, then system (5) reduces to system (2),
and the condition ðE5Þ is the condition ðE4Þ of [8]. Our theorem includes the cases
where f ðx, yÞ has no lower bound in the strip region jxj � d, f ðx, yÞ isn’t nonnegative
in jxj � K where K is an arbitrary positive number, and Gð�1Þ < þ1. Hence
Theorems 2.1 and 2.2 extend and improve the corresponding results of [1–3, 5, 6, 8,
9, 11–13].

Example 2.1 Let 	1,	2,	3 and � be the positive numbers, and 	2 � ð1=3Þ,	1 � 	3.
Then the following system

_xx ¼ jyj	1 sgn y,
_yy ¼ �ð1þ x2 þ y2Þ1=3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x2jyj

p
� ð�þ sin2 xyÞ�1=2Þð1þ jyj	2Þjyj	1 sgn y

� ð1þ jyj	3 Þxð1þ x2Þ�3=2

8>>><
>>>:

ð18Þ

has at least one nonzero periodic solution.

Proof For this system, we have pðyÞ ¼ jyj	1 sgn y, qðyÞ ¼ 1þ jyj	2 , rðyÞ ¼ 1þ jyj	3 ,
f ðx, yÞ ¼ ð1þ x2 þ y2Þ1=3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x2jyj

p
� ð�þ sin2 xyÞ�1=2Þ and gðxÞ ¼ xð1þ x2Þ�3=2.

Obviously, Gð�1Þ < þ1, it is easy to know that the conditions ðE1Þ, ðE2Þ and
ðE3Þ hold. Choose b ¼ �a ¼ 1, f0ðxÞ ¼ jxj � ��1=2, then f ðx, yÞqðyÞ � f0ðxÞ for x 2
ð�1,�1� [ ð1,þ1Þ, y 2 R, on the other hand, by some computation, we have

FþðxÞ ¼
Z x

1

f0ðsÞ ds ¼ x2

2
� ��1=2x� 1

2
þ ��1=2,

F�ðxÞ ¼
Z x

�1

f0ðsÞ ds ¼ � x2

2
� ��1=2xþ 1

2
� ��1=2:

Thus, the conditions ðEþ
4 Þi and ðE�

4 Þi hold ði ¼ 1, 2Þ. Let ’ðxÞ ¼ jxj � ��1=2 and
hðyÞ ¼ ð1þ y2Þ1=3, then f ðx, yÞ � ð1þ y2Þ1=3ðjxj � ��1=2Þ for x 2 ½�1, 1�, y 2 R, and

Z þ1

1

dy

hð�yÞqð�yÞ ¼ þ1,

it is clear that the condition ðE5Þ holds. We next prove that condition ðE6Þ holds.
Set AðxÞ ¼ 6� ex. Then we get

lim
x!�1½pðAðxÞÞA0ðxÞ þ pðAðxÞÞf ðx,AðxÞÞqðAðxÞÞ þ rðAðxÞÞgðxÞ� ¼ þ1,
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which implies that there exists a constant a0 < �1 such that

pðAðxÞÞA0ðxÞ þ pðAðxÞÞf ðx,AðxÞÞqðAðxÞÞ þ rðAðxÞÞgðxÞ > 0

for all x � a0, and so ðE6Þ holds. Therefore, it follows from Theorem 2.1 that the
conclusion of Example 2.1 is true.

3. NONEXISTENCE OF NONZERO PERIODIC SOLUTIONS

In Section 2, we have proved that if
R�1 j f ðx, yÞqðyÞj�1dy ¼ �1 for a jxj suffi-

ciently small and some additional assumptions hold, then (5) has at least a nonzero
periodic solution. In this section, we shall consider the converse case, i.e.,R �1 j f ðx, yÞqðyÞj�1dy is finite for every small jxj, and prove the following Theorem 3.1.

THEOREM 3.1 Assume (5) satisfies the following conditions:

ðH1Þ xgðxÞ > 0 for all x 6¼ 0;
ðH2Þ q(y) and r(y) are positive on R, ypðyÞ > 0 for all y 6¼ 0, and

lim infy!�1 jpðyÞj=rðyÞ > 0;
ðH3Þ There exist constant a < 0, b > 0 a negative integrable function ’ðxÞ defined on ½a, b�

and a continuous function hðyÞ > 0 for y 6¼ 0 such that

ðH3Þ1 f ðx, yÞ � ’ðxÞhðyÞ for a < x < b, y 2 R;

ðH3Þ2
Rþ1
0 dy=hðyÞqðyÞ � R a1

0 ’ðxÞ dx, where a1<0, Gða1Þ ¼ minfGðaÞ,GðbÞg.
Then (5) has no nonzero periodic solution.

Proof Set

GðxÞ ¼
Z x

0

gðsÞ ds,

�ðx, yÞ ¼ GðxÞ þ
Z y

0

pðsÞ
rðsÞ ds,

it is obvious that the curve of constant energy � : �ðx, yÞ ¼ GðxÞþ R y

0 ðpðsÞ=rðsÞÞds ¼
Gða1Þ is closed in the strip region a � x � b, �1 < y < þ1. Because,

d�

dt
jð5Þ¼ � f ðx, yÞp2ðyÞqðyÞ

rðyÞ > 0, for y 6¼ 0, ð19Þ

then the trajectories of (5) cross this closed curve �ðx, yÞ ¼ Gða1Þ from its interior to its
exterior. This proves that the region surrounded by � is negatively invariant and
	ðpÞ ¼ 0 for each p 2 �.

Now let A ¼ ða1, 0Þ, ðxðtÞ, yðtÞÞ be the coordinates of �þðAÞ, ðxð0Þ, yð0ÞÞ ¼ A. If �þðAÞ
intersects Yþ at Bð0, �yyÞð �yy > 0Þ, then, along the solution arcAB, we have

dy

dx
¼ �f ðx, yÞqðyÞ � rðyÞgðxÞ

pðyÞ
� �’ðxÞhðyÞqðyÞ

1

hðyÞqðyÞ
dy

dx
� �’ðxÞ: ð20Þ
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Integrating (20) from a1 to 0, we get

Z �yy

0

dy

hðyÞqðyÞ � �
Z 0

a1

’ðxÞ dx ¼
Z a1

0

’ðxÞ dx:

Because hðyÞ > 0, qðyÞ > 0 for y>0, then

Z þ1

0

dy

hðyÞqðyÞ >
Z �yy

0

dy

hðyÞqðyÞ �
Z a1

0

’ðxÞ dx,

which contradicts the condition ðF3Þ2. This implies that �þðAÞ is located in the strip
region: a1 � x < 0, y � 0. Since

dyðtÞ
dt

¼ �f ðx, yÞpðyÞqðyÞ � rðyÞgðxÞ
� �’ðxÞhðyÞpðyÞqðyÞ � rðyÞgðxÞ � 0,

for t 2 ½0,TAÞ, yðtÞ is increasing on ½0,TAÞ, and thus limt!T�
A
yðtÞ ¼ þ1 and

limt!�1ðxðtÞ, yðtÞÞ ¼ ð0, 0Þ. We have proved that there exists a trajectory �ðAÞ of (5)
such that one side of it tends to the origin and the other side approaches to infinity.
Therefore, (5) has no nonzero periodic solutions. This proves Theorem 3.1.

Similarly, we can prove the following Theorem 3.2.

THEOREM 3.2 Assume (5) satisfies the following conditions:

ðF1Þ xgðxÞ > 0 for all x 6¼ 0;
ðF2Þ q(y) and r(y) are positive on R, ypðyÞ > 0 for all y 6¼ 0, and lim infy!�1 ðjpðyÞj=

rðyÞÞ > 0;
ðF3Þ There exist constants a < 0, b > 0, a negative integrable function ’ðxÞ defined on

½a, b� and a continuous function hðyÞ > 0 for y 6¼ 0 such that

ðF3Þ1 f ðx, yÞ � ’ðxÞhðyÞ for a < x < b, y 2 R;
ðF3Þ2

R�1
0 ðdy=hðyÞqðyÞÞ � R b1

0 ’ðxÞ dx, where b1>0, Gðb1Þ ¼ minfGðaÞ,GðbÞg.
Then (5) has no nonzero periodic solutions.

Remark 3.1 Let p 6¼ 0, under the conditions of Theorems 3.1 and 3.2, we can prove
that �þðpÞ is unbounded. In fact, if it is not the case, then by (19), !ðpÞ does not contain
the origin O. The Poincaré–Bendixson Theorem implies that !ðpÞ is a limit cycle. Since
!ðpÞ is a Jordan curve and the trajectory �ðAÞ passing through Aða1, 0Þ connects the
origin and infinity, !ðpÞ must intersect �ðAÞ, this contradicts the uniqueness of initial
value problems. Hence �þðpÞ is unbounded.
Remark 3.2 Choose a1 ¼ � ffiffiffiffiffiffiffiffiffiffi

3
=43
p

, since
Rþ1
0 dy=ð1þ y2Þ ¼ 
=2, Theorem 3.1 implies

that if �>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
2=163

p
� 1:77, (4) has no nonzero periodic solution. The result of Zheng

[14] regarding (3) is included in our results.
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1 Introduction

Lotka-Volterra (L-V) competition is modelled by a system of differential
equations describing the competition between two or more species that share
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and compete for the same resources, habitat or territory (interference com-
petition). The n-dimensional competitive L-V model is

dxi

dt
= xi


bi −

n∑
j=1

aijxj


 , i = 1, 2, · · · , n, (1)

where xi is the number or density of species i, bi is the intrinsic growth rate
of species i, aij ’s are the interaction coefficients. The parameters bi and aij

are strictly positive.
The dynamics of the 2-dimensional L-V competition model is well un-

derstood. If two species compete, there are no periodic solutions and all
bounded orbits converge to an equilibrium point (see [3]). For 3-dimensional
competitive L-V systems, the dynamical possibilities are more restricted
than for general L-V systems: Hirsch [4] has shown that all nontrivial or-
bits approach a “carrying simplex”, a Lipchitz 2-dimensional manifold-with-
corner homeomorphic to the standard simplex in R

3
+ via radial projection.

This then leads to a Poincaré-Bendixson theorem for 3-dimensional com-
petitive systems (see [5]). Recently, the existence and global attractivity
of the carrying simplex have also been verified in time-periodic competitive
L-V systems ([6]). Based on the remarkable result of Hirsch, Zeeman [1]
defined a combinatorial equivalence relation on the set of all 3-dimensional
L-V competitive systems and identifies 33 stable equivalence classes. Of
these, only classes 26-31 may have limit cycles (see [1, 7]). Open problems
remain concerning the number of limit cycles. Hofbauer and So [2] were
the first to give an example in class 27 (with a heteroclinic polycycle) with
two limit cycles surrounding the interior equilibrium. Lu and Luo [8] have
constructed two limit cycles in three cases without a heteroclinic polycycle
(classes 26, 28 and 29).

Apparently, the main questions now are (i) whether or not there are at
most finitely many limit cycles on the carrying simplex; (ii) whether there
can be more than two limit cycles in classes 26-31. For question (i), Xiao
and Li [9] have proved that the number of limit cycles of the 3-dimensional
competitive L-V systems is finite if the system does not have a heteroclinic
polycycle. Question (ii), as pointed out by Hofbauer and So [2], is a very
difficult problem and they conjectured that the number of limit cycles is at
most two for 3-dimensional L-V competitive systems.

Recently, Lu and Luo [10] were the first to give an example in class 27
(with a heteroclinic polycycle) with three limit cycles. This gives a partial
answer to Hofbauer’s and So’s conjecture. In this paper, we will construct
three limit cycles in class 29 without a heteroclinic polycycle (see Figure
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Figure 1: The phase portraits on Σ of class 29 with interior fixed point. The fixed point
notation is as in [1].

1) and thus give a counterexample to Hofbauer’s and So’s conjecture which
is qualitatively different from that of Lu and Luo [10]. We conjecture that
there also exist three limit cycles in class 26.

2 An example with three limit cycles

In this section, we present an example of a 3-dimensional competitive L-V
system with at least three limit cycles in class 29 without a heteroclinic
polycycle.

The idea for constructing such an example with three limit cycles is as
follows: We consider a 3-dimensional competitive L-V system of class 29
in Zeeman’s classification, which is indeed uniformly persistent [11], and
where the unique interior fixed point E has the following properties: (a)
There is a pair of purely imaginary eigenvalues at E; (b) The first focal value
vanishes, and (c) the second local value is positive. Thus E is a weak focus of
multiplicity 2 repelling on its center manifold. This implies the existence of
an asymptotically stable limit cycle Γ1 by the Poincaré-Bendixson theorem
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on the carrying simplex Σ. If we now change some of the parameters slightly,
the equilibrium will undergo a generic Hopf bifurcation, that is, the interior
equilibrium E first becomes a weak focus of multiplicity 1 attracting on its
center manifold and will be surrounded by another, smaller, unstable limit
cycle Γ2; then one of the parameters is changed slightly so that a supercritical
Hopf bifurcation occurs, and hence E becomes a focus repelling on Σ and be
surrounded by the smallest stable limit cycle Γ3 of the three existing limit
cycles.

The remaining work is to check to which class in Zeeman’s classification
the constructed system belongs. Using Zeeman’s notation, we have Rij =
sgn(αij) and Qkk = sgn(βkk), with αij = biaji/aii − bj = (ARi)j − bj and
βkk = (AQk)k − bk. Here Ri is the equilibrium on the xi-axis, and Qk is the
positive equilibrium on the plane of xk = 0.

If Q33 = −1, R12 = −1, R13 = −1, R21 = −1, R23 = 1, R31 = 1, R32 =
−1, then the system (1) belongs to class 29 in Zeeman’s classification.

Consider the 3-dimensional competitive L-V system

ẋi = xi[A(E − x)]i, i = 1, 2, 3, (2)

where

A = (aij) =




2 129
26 λ

27
136 1 µ
99
100

79
6

181
36




with two positive parameters µ and λ. A necessary condition (see [9]) that
A has a positive real eigenvalue and a pair of purely imaginary eigenvalues
is

det(A) = (A11 + A22 + A33) · trA,

where tr(A) =
∑3

i=1 aii, A11 = a22a33 − a23a32, A22 = a11a33 − a13a31

and A33 = a11a22 − a12a21. Then a simple calculation yields that µ =
148137475
100576964 − 11422593

100576964λ. Let yi = 1 − xi, i = 1, 2, 3, and set z = Ty, then
system (2) is transformed to a new one whose linear part is in the block
diagonal form

linear part =




−632955
846118

156919212655475
255299938877256 − 11422593

100576964λ 0
94122741
21152950

632955
846118 0

0 0 289
36







z1

z2

z3




where y = col(y1, y2, y3), z = col(z1, z2, z3), and

T =




27
136 −253

36
148137475
100576964 − 11422593

100576964λ
99
100

79
6 −3

340041807
201153928 + 300794949

201153928λ 387
26 + 79

6 λ 19109734275
2615001064 + 11702860525

1810385352 λ


 .
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This can be reduced to the 2-dimensional case by computing the center
manifold

z3 = F (z1, z2) = f2(z1, z2) + f3(z1, z2) + f4(z1, z2) + h.o.t.,

where fi =
∑i

j=0 cijz1
i−jz2

j , and h.o.t. denotes the terms with order greater
than or equal to five. Solving for the cij

′s and substituting by appealing to
the method in [8] one obtains a rather complicated and lengthy expression
of the first focal value LV1 and the second focal value LV2:

LV1 =
f1(λ)
f2(λ)

, LV2 =
g1(λ)
g2(λ)

,

where

f1(λ) = −7139120625(588761603083785384127036661508498136883449032λ4

−10645591432228919681423121174963424577878777716λ3

+58800212557536279681971948183832470586407248122λ2

−110138947820001095130109579416340544376845179475λ
+105100051109054286534963651334843321925555528125),

f2(λ) = 3937373499268036(153302801402250836060884765780160734488λ3

+40989603583253410085518837697636475507225λ2

+3185752890442594033776136333117816292625000λ
+56932577068027366681632696744684683338250000),

and g1(λ) is a polynomial of 14 terms with degree 13 and g2(λ) is a polyno-
mial of 13 terms with degree 12.

We computed LV1 and LV2 as a rational number using the computer
algebraic system Maple. In the following, we choose a = 9.229462, b =
9.229464. A straightforward calculation yields that LV1 has a unique root
λ0 ∈ (a, b) and LV1 > 0 for λ ∈ (a, λ0), LV1 < 0 for λ ∈ (λ0, b).

Moreover, LV2 > 0 for λ ∈ (a, b), det(A) < 0 for λ ∈ (a, b), and µ =
148137475
100576964 − 11422593

100576964λ > 0 for λ ∈ (a, b). It follows that for λ ∈ (a, b) system
(2) is a competitive system that satisfies the condition of the eigenvalues,
that is, for λ ∈ (a, b) the equilibrium E of system (2) has a negative real
eigenvalue and a pair of purely imaginary eigenvalues.

Since for any λ ∈ (a, b), Q33 = −1, R12 = −1, R13 = −1, R21 = −1,
R23 = 1, R31 = 1, R32 = −1, the system (2) belongs to class 29 in Zeeman’s
classification.

Now, we can construct three limit cycles for system (2). We have already
shown that there exists λ0 ∈ (a, b) such that LV1 = 0 and LV2 > 0. This
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implies that E is repelling on its center manifold (which is on the carrying
simplex Σ). On the other hand, it is easy to see that the system (2) is
uniformly persistent. Then it follows from the Poincaré-Bendixson theorem
of the 3-dimensional competitive system that there exists an asymptotically
stable limit cycle on the carrying simplex Σ. To obtain the second limit
cycle, perturb λ0 to become slightly larger so that LV1 < 0 and adjust µ
such that µ = 148137475

100576964− 11422593
100576964λ which keeps the linear part of the system

(2) in a center-focus form, then the second limit cycles bifurcates. In order
to obtain the third limit cycle, we need the following lemma.

Lemma 2.1 Consider the following matrix

Aλ,ε =




−2 −129
26 −λ

− 27
136 −1 −µ − ε

− 99
100 −79

6 −181
36




with two real parameters λ, ε, where µ = 148137475
100576964 − 11422593

100576964λ, ε > 0.
Then there exists an ε0 > 0, such that the real part of the conjugate

complex roots of Aλ,ε is positive for each λ ∈ (a, b) and 0 < ε < ε0.

proof. The characteristic equation of matrix Aλ,ε is
∣∣∣∣∣∣
−2 − λ̄ −129

26 −λ
− 27

136 −1 − λ̄ −µ − ε
− 99

100 −79
6 −181

36 − λ̄

∣∣∣∣∣∣
= 0,

which implies

(λ̄ +
289
36

)(λ̄2 + λ̄0) + c0ε = 0,

where λ̄0 = 170771
10608 − 99

100λ− 79
6 µ− 79

6 ε, µ = 148137475
100576964− 11422593

100576964λ, c0 = 4461929
35100 .

We take ε0 = 1
10000 . Then λ̄0 ∈ (1.2, 1.5) for all λ ∈ (a, b), ε ∈ (0, ε0).

We claim that there exists a positive constant α ∈ (0, 2ε) (where ε ∈ (0, ε0))
such that

(λ̄ +
289
36

)(λ̄2 + λ̄0) + c0ε = (λ̄ +
289
36

+ α)(λ̄2 −αλ̄ + λ̄0 + α(
289
36

+ α)). (3)

To prove the claim, we only have to prove that there exists α ∈ (0, 2ε) such
that

(
289
36

+ α)(λ̄0 + α(
289
36

+ α)) =
289
36

λ̄0 + c0ε.

In fact, set

ϕ(x) = (
289
36

+ x)(λ̄0 + x(
289
36

+ x)).
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Then
ϕ(0) = 289

36 λ̄0 < c0ε + 289
36 λ̄0,

ϕ(2ε) = (289
36 + 2ε)(λ̄0 + 2ε(289

36 + 2ε)) > c0ε + 289
36 λ̄0,

where ε ∈ (0, ε0). By the Intermediate Value theorem, there exists α ∈
(0, 2ε) such that ϕ(α) = c0ε + 289

36 λ̄0, that is, (289
36 + α)(λ̄0 + α(289

36 + α)) =
289
36 λ̄0 + c0ε, hence the claim is true. The lemma follows directly from (3)
and α > 0. �

Now we return to the existence of the third limit cycle. Changing Aλ,0 to
Aλ,ε (ε ∈ (0, ε0)) so slightly that the former two limit cycles are kept intact,
it follows from Lemma 2.1 that E undergoes a supercritical Hopf bifurcation
which implies that E will be surrounded by a new limit cycle which is the
smallest of the three existing limit cycles.
Remark 2.1. The process of our construction is very artificial and technical.
We should admit that the parameter in our example where three limit cycles
coexist is extremely small (just in an interval with length 2 × 10−6). They
would be impossible to find by numerical integration. Since the second
focal value seems to be closely related to the center problem (see [2]), we
conjecture that the maximum order of a focus would be 2 and the maximum
number of limit cycles in the 3-dimensional L-V competitive systems is 3.

Acknowledgements. The authors are very grateful to two anonymous
referees for valuable corrections, comments and suggestions which consider-
ably improved the presentation of this paper.
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1 Introduction

This paper is concerned with the centers and oscillations of solutions of a
generalized Liénard system of the type

dx

dt
=

1
a(x)

[h(y) − F (x)],

dy

dt
= −a(x)g(x). (1)

The system (1) has in recent years been the object of intensive studies with
particular emphasis on the asymptotic behavior of solutions (see [13, 20,
25]), because it can be considered as a natural generalization of the Liénard
system

dx

dt
= y − F (x),

dy

dt
= −g(x). (2)

As the system (2) appears in many mathematical models in physics, engi-
neering, chemistry, biology, economics, etc., it naturally has been studied by
a number of authors; many results can be found in the books [2, 11, 14, 21,
34, 35, 36].

It is well known that system (1) is of great importance in various ap-
plications, many other systems can be transformed into this form. Hence,
qualitative and asymptotic behavior of this system and some of its exten-
sions have been widely studied by many authors. To study the oscillation
of solutions of (1), as discussed in some recent papers (see [5, 8, 13, 15, 24,
25, 27, 29, 30, 31]) with a(x) ≡ 1, for the right half plane, a significant
point is to find conditions ensuring that all positive orbits γ+(P ) (where
P = (0, p) with p > 0) intersect the characteristic curve h(y) = F (x) and
then cross the negative y-axis; this property of γ+(P ) plays an important
role in the analysis of the center, oscillation, asymptotic stability and bound-
edness conditions of (1). There have been many works in this direction in
which sufficient conditions to obtain the above mentioned property of γ+(P )
were given. For example (see [3, 4, 9, 10, 18, 17, 19, 28, 35]), no solution
of (1) with h(y) ≡ y and a(x) ≡ 1 approaches the origin directly in the
right half plane (i.e., in a nonoscillatory way) if one of the following con-
ditions is satisfied (in the following, f(x) := F

′
(x) if F (x) is continuously

differentiable and G(x) :=
∫ x
0 g(s)ds):
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(1) (McHarg [18]) f(x) > 0 for x > 0 and there exist k > 0 and a > 0
such that

f(x) < kg(x) for 0 < x < a.

(2) (Wendel [28]) There exist k > 0 and a > 0 such that

0 < f(x) < kg(x) for 0 < x < a.

(3) (Nemyckii and Stepanov [17]) There exist α > 1
4 and a > 0 such that

f(x) > 0, αf(x)F (x) ≤ g(x) for 0 < x < a.

(4) (Filippov [3]) There exist 0 < β < 8 and a > 0 such that

F 2(x) ≤ βG(x) for 0 < x < a.

(5) (Opial [19]) There exist α > 1
4 and a > 0 such that

α|F (x)| ≤
∫ x

0

g(u)
|F (u)|du for 0 < x < a.

(6) (Hara and Yoneyama [9], Hara, Yoneyama and Sugie [10], Sugie [22])
If one of the following conditions holds:

(i) there exists a positive sequence {xn} such that xn → 0 as n → ∞
and F (xn) ≤ 0 for n ≥ 1;

(ii) There exist α > 1
4 and a > 0 such that

F (x) > 0,
1

F (x)

∫ x

0

g(u)
F (u)

du ≥ α for 0 < x < a.

(7) (Yu [35]) There exist a > 0, k1 > 0 and k2 < 0 such that

k2 ≤ f(x)
g(x)

≤ k1 for 0 < x < a.

Our investigation in this paper shows that condition (6) is much weaker
than condition (4) (see Remark 5.5 in this paper). The problem concerning
the oscillation of solutions of (1) with a(x) ≡ 1 has been studied by some
authors (see, for example, [15, 30] and the references cited therein). Li and
Tang [15] discussed the oscillation of solutions of (1) with a(x) ≡ 1 requiring
the existence of h′′(y) and h′(0) > 0. Yan and Jiang [30] proved that the
solutions of (1) with a(x) ≡ 1 are oscillatory under the condition h′(0) > 0.
But the problem of what happens when h′(0) = 0 or h′(0) = ∞ remains
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unsolved. In the present paper, no restrictions on the differentiability of h(y)
are required. We give necessary and sufficient conditions for all nontrivial
solutions of (1) being oscillatory. Our theorem can be applied to system (1)
even for h′(0) = 0, h′(0) = ∞ and lim|x|→∞ F (x) sgn x = −∞. Our results
substantially extend and improve some results known in the literature.

Another purpose here is to develop a center theory for the system (1).
This work was motivated by the papers of Hara and Yoneyama [9] and Sugie
[25], in which a detailed analysis of center properties was given for system
(2). We will follow closely the presentation of Hara, Yoneyama and Sugie,
and show that all of their results on this subject can be generalized to (1).

The technical tool of this paper is based on a nonlinear integral inequality
and a phase plane analysis. Also the methods for Liénard-type systems,
especially those developed by Villari and Zanolin [27], Hara and Sugie [8],
and Sugie and Hara [23] will be applied in our paper

The organization of this paper is as follows. In Section 2 we agree on
some notation, present assumptions and some lemmas which will be essential
to our proofs. In Section 3, we give some sufficient conditions of a local center
for (1). In particular, we point out that the results of [37] in Section 3 are
indeed corollaries of Hara and Yoneyama [9] and Sugie [25]. In Section 4,
we give some sufficient and necessary conditions of a global center for (1).
Moreover, we also point out that the results of [37] in Section 4 are corollaries
of Sugie [25]. In Section 5 we give sufficient and necessary conditions for the
oscillation of all solutions of (1). Some examples illustrating the results are
also given in this paper.

2 Notation and Preliminaries

We consider the generalized Liénard system

dx

dt
=

1
a(x)

[h(y) − F (x)],

dy

dt
= −a(x)g(x), (3)

where F (x), g(x), a(x) and h(y) are continuous real functions defined on R
satisfying:

(A0) F (0) = 0, a(x) > 0 for x ∈ R, xg(x) > 0 for x �= 0;

(A1) yh(y) > 0 for y �= 0, h(y) is strictly increasing and h(±∞) = ±∞.
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These assumptions guarantee that the origin is the only critical point of (3).
We also assume that the initial value problem always has a unique solution.

We call the curve h(y) = F (x) the characteristic curve of system (3).
We write γ+(P ) (resp., γ−(P )) the positive (resp., negative) semiorbit of
(3) starting at a point P ∈ R2. For the sake of convenience, we denote

D1 = {(x, y) : x ≥ 0, h(y) > F (x)}, D2 = {(x, y) : x > 0, h(y) ≤ F (x)},
D3 = {(x, y) : x ≤ 0, h(y) < F (x)}, D4 = {(x, y) : x < 0, h(y) ≥ F (x)}.

F+(x) = max{0, F (x)}, F−(x) = max{0, −F (x)},
Γ+(x) =

∫ x
0 a2(s)g(s)(1 + F+(s))−1ds, Γ−(x) =

∫ x
0 a2(s)g(s)(1 + F−(s))−1ds.

Y + = {(0, y) : y > 0}, Y − = {(0, y) : y < 0},
C+ = {(x, y) : x > 0, h(y) = F (x)}, G(x) =

∫ x
0 a2(s)|g(s)|ds.

Then by (A0), G(x) is strictly increasing, and therefore, the inverse function
G−1(w) of w = G(x) exists.

Throughout this paper we shall suppose that the following conditions
hold:

(A2)
∫ −∞
0 a2(s)g(s)ds =

∫ ∞
0 a2(s)g(s)ds;

(A3) F (G−1(−w)) = F (G−1(w)) for 0 < w < M ,
where M = min{G(∞), G(−∞)} (M may be ∞).

If F (x) and a2(x)g(x) are even and odd functions, respectively, then it
is obvious that (A2) and (A3) are satisfied and that all the orbits of (3)
have mirror symmetry about the y-axis in the phase space. Moreover, for
example, if F (x) = 3x, a(x) ≡ 1 and g(x) = 2x for x ≥ 0, and F (x) =
−3

√
2x, a(x) ≡ 1 and g(x) = 4x for x ≤ 0, then (A2) and (A3) are also

satisfied.
Firstly, employing an argument similar to that in [9, 22], we show that

under the conditions (A2) and (A3), the orbits of (3) have deformed mirror
symmetry about the y-axis.

Lemma 2.1 Suppose that the conditions (A2) and (A3) are satisfied. If an
orbit of (3) starting from a point A(0, yA) with yA > 0 passes through a point
B(0, yB) with yB < 0, then it reaches the point A again.

proof. Consider an orbit of (3) which starts from a point A(0, yA) with
yA > 0 and passes through a point B(0, yB) with yB < 0. We denote this
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orbit by T (x, y) and write T1(x, y) = {(x, y) ∈ T : x ≥ 0} and T2(x, y) =
{(x, y) ∈ T : x < 0}. Let K =

∫ ∞
0 a2(x)g(x)dx (K may be ∞) and let the

mapping ϕ : (x, y) → (u, v) defined by

u =
{ √

2G(x) for x ≥ 0
−√−2G(x) for x < 0,

v = y.

Then we can see that the image ϕT1(u, v) of T1(x, y) is an orbit of the system

u′ = h(v) − F ∗(u),
v′ = −u,

defined on (−√
2K,

√
2K) × R, where

F ∗(u) =
{

F (G−1(1
2u2)) for 0 ≤ u <

√
2K

F (G−1(−1
2u2)) for −√

2K < u < 0.

In fact, for any point (u, v) ∈ ϕT1 ,

du

dv
=

a2(x)g(x)√
2G(x)

· h(y) − F (x)
−a2(x)g(x)

=
h(v) − F ∗(u)

−u
.

Note that the curve ϕT1(u, v) contains the points A and B. It follows from
(A2) and (A3) that F ∗(u) is an even function on (−√

2K,
√

2K). Hence,
the curve ϕT1(−u, v) is also an orbit of (3) which contains the points A and
B. Let T3(x, y) be the inverse image of ϕT1(−u, v) under the mapping ϕ.
Then for any point (x, y) ∈ T3,

dx

dy
=

√−2G(x)
a2(x)g(x)

· h(v) − F (G−1(u2

2 ))
−u

=
h(v) − F (x)
−a2(x)g(x)

.

Thus, T3(x, y) is an orbit of (3) which starts from the point B and arrives at
the point A. Since the solutions of (3) are unique, T2(x, y) and T3(x, y) coin-
cide, and hence the orbit T (x, y) reaches the point A again. This completes
the proof.

Remark 2.1. If the condition (A3) holds for w > 0 sufficiently small, then
all the orbits of (3) near the origin have deformed mirror symmetry with
respect to the y-axis.
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Lemma 2.2 Let Y (x), ψ(x) be positive continuous functions in 0 < a ≤
x ≤ b and let ω(u) be a positive increasing continuous function for u > 0,
and let Ω(u) =

∫ u
0+

dt
ω(t) exists for u > 0 with Ω(0) = 0. Then for λ > 0 the

inequality

Y (x) ≥ λ

∫ x

a
ψ(t)ω(Y (t))dt for a ≤ x ≤ b (4)

implies the inequality

Ω(Y (x) ≥ λ

∫ x

a
ψ(t)dt for a ≤ x ≤ b. (5)

proof. Define

V (x) = λ

∫ x

a
ψ(t)ω(Y (t)dt for a ≤ x ≤ b. (6)

Then (4) can be restated as Y (x) ≥ V (x). Because ω(u) is increasing, this
may be rewritten as follows

ω(Y (x)) ≥ ω(V (x)),

V ′(x)
ω(V (x)) ≥ λψ(x)

for a < x ≤ b. By making use of the notation Ω(u), we have

dΩ(V (x))
dx

≥ λψ(x) for a < x ≤ b. (7)

Now, integrating from a to x, we get by (7),

Ω(V (x)) − Ω(V (a)) ≥ λ

∫ x

a
ψ(t)dt.

Since V (a) = 0, it follows that

Ω(V (x)) ≥ λ

∫ x

a
ψ(t)dt for a ≤ x ≤ b. (8)

Because Y (x) ≥ V (x) for a ≤ x ≤ b, and Ω(u) is increasing, we obtain by
(8),

Ω(Y (x)) ≥ λ

∫ x

a
ψ(t)dt for a ≤ x ≤ b.

This completes the proof.
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3 Conditions of a Local Center

Definition 3.1. The origin is called a local center for (3) if all the orbits of
(3) in some neighbourhood of it are closed curves surrounding it.

Now, we state the assumptions on (3). The assumption (A0) through
(A3) have been presented in Section 2.

The assumption which guarantees that the origin is a local center of
system (3) is given by (A4). The system (3) is said to satisfy (A4) if one of
the following conditions holds:

(A4)1 there exists a positive decreasing sequence {xn} such that xn → 0
as n → ∞ and F (xn) = 0 for n ≥ 1;

(A4)2 there exist constants m > 0, p > 0 and δ1 > 0 such that |h(y)| ≥
m|y|p for 0 < |y| < δ1, and

|F (G−1(w))| ≤ aw
p

p+1 for 0 < w 	 1,

where 0 < a < m(1 + p)(1+p
mp )

p
(1+p) , and the notation 0 < w 	 1 denotes w

sufficiently small;

(A4)3 there exist constants α > 1
4 and δ2 > 0 such that |F (x)| > 0 for

0 < x ≤ δ2, and for any fixed real number k ≥ 1,
∫ x

0+

a2(s)g(s)
|F (s)| ds ≥ 1

k
h−1(kα|F (x)|) for 0 < x 	 1,

where h−1(u) is the inverse function of u = h(y).

Lemma 3.1 If conditions (A0), (A1) and (A4) hold, then for any P =
(x0, y0) ∈ C+,

(i) γ−(P ) must intersect Y + at A(0, yA) with yA > 0;
(ii) γ+(P ) must intersect Y − at B(0, yB) with yB < 0.

proof. We only prove (ii); (i) can be proved in a similar way.
Let P = (x0, y0) ∈ C+ and (x(t), y(t)) be the solution of (3) with

x(0) = x0, y(0) = y0. By the uniqueness of the solutions of (3), we only
have to show that every orbit γ+(P ) of (3) passing through P = (x0, y0) (0 <
x0 	 1) intersect Y − at B(0, yB) with yB < 0. Since limy→−∞ h(y) = −∞,
the system (3) has no vertical asymptote in the fourth quadrant. Therefore,
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γ+(P ) must intersect the y-axis at B(0, yB) with yB ≤ 0. We still have to
show that yB �= 0. We do this separately for the different cases of (A4).

Case (A4)1: It is obvious in this case.

Case (A4)2: In this case the proof is completely analogous to the proof
of [13, Lemma 3.1] or [29, Theorem 2.4].

Case (A4)3: It follows from (A0) that the orbit γ+(P ) of (3) does not
touch the characteristic curve at any point (x, h−1(F (x))) with 0 ≤ x < x0.
Thus, we consider only the region {(x, y) : x > 0, h(y) < F (x)}.

If F (x) < 0 for 0 < x ≤ x0, it is clear that yB < 0. Suppose that
F (x) > 0 for 0 < x ≤ x0 and that the conclusion does not hold. Then
there exists a point P ∈ C+ such that γ+(P ) does not intersect Y −. Let
(x(t), y(t)) (0 ≤ t < ∞) denote the solution of (3) which passes through
such a point P . Then γ+(P ) must be contained in the first quadrant, and
x(t) decreases and y(t) decreases as t is increasing. Since the origin is the
unique equilibrium of (3), limt→∞ x(t) = limt→∞ y(t) = 0. The solution
(x(t), y(t)) defines a function y = y(x) on 0 ≤ x ≤ x0, which is a solution
on 0 < x < x0 of the following equation

dy

dx
= − a2(x)g(x)

h(y) − F (x)
. (9)

It follows from limx→0+ y(x) = 0 that y(x) > 0 for 0 < x ≤ x0. By as-
sumption (A4)3, there exist α > 1

4 and x1 ∈ (0, x0) such that F (x) > 0 for
0 < x ≤ x1, and

∫ x

0+

a2(s)g(s)
F (s)

ds ≥ h−1(αF (x)) for 0 < x ≤ x1. (10)

Now, we restrict our attention to the interval (0, x1]. Putting H1(u) =∫ u
0 h(y)dy, we have by (9), for any 0 < ε 	 1,

H1(y(x)) − H1(y(ε)) =
∫ x

ε
H ′

1(y(s))
a2(s)g(s)

F (s) − h(y(s))
ds

≥
∫ x

ε
h(y(s))

a2(s)g(s)
F (s)

ds

=
∫ x

ε
(h ◦ H−1

1 )(H1(y(s))
a2(s)g(s)

F (s)
ds

9



for ε ≤ x ≤ x1. Hence

H1(y(x)) ≥
∫ x

ε
(h ◦ H−1

1 )(H1(y(s))
a2(s)g(s)

F (s)
ds

for ε ≤ x ≤ x1. It follows from Lemma 2.2 that

H2(H1(y(x)) ≥
∫ x

ε

a2(s)g(s)
F (s)

ds for ε ≤ x ≤ x1, (11)

where H2(u) =
∫ u
0+

dt
(h◦H−1

1 )(t)
. Changing variables H−1

1 (t) = τ , it is easy to

see that H2(u) = H−1
1 (u). By (11), we have

y(x) ≥
∫ x

ε

a2(s)g(s)
F (s)

ds for ε ≤ x ≤ x1. (12)

(i) If
∫ x1

0+
a2(s)g(s)

F (s) ds = ∞, we reach a contradiction by (12).

(ii) If
∫ x1

0+
a2(s)g(s)

F (s) ds < ∞, we see from (12) that

y(x) ≥
∫ x

0+

a2(s)g(s)
F (s)

ds for 0 < x ≤ x1. (13)

By virtue of (10) and (13), we have y(x) ≥ h−1(αF (x)) for 0 < x ≤ x1.
Because h(y) is strictly increasing, we obtain h(y(x)) ≥ αF (x) for 0 < x ≤
x1. Since y = y(x) is under the characteristic curve h(y) = F (x), we have
1
4 < α < 1. Let α1 = 1 − α, then we get that F (x) − h(y(x)) ≤ α1F (x) for
0 < x ≤ x1. In a similar way, for any 0 < ε 	 1, we have

H1(y(x)) − H1(y(ε)) =
∫ x

ε
h(y(s))

a2(s)g(s)
F (s) − h(y(s))

ds

≥ 1
α1

∫ x

ε
h(y(s))

a2(s)g(s)
F (s)

ds

for ε ≤ x ≤ x1. Therefore

H1(y(x)) ≥ 1
α1

∫ x

ε
h(y(s))

a2(s)g(s)
F (s)

ds

=
1
α1

∫ x

ε
(h ◦ H−1

1 )(H1(y(s))
a2(s)g(s)

F (s)
ds
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for ε ≤ x ≤ x1. By Lemma 2.2, we have

H2(H1(y(x)) ≥ 1
α1

∫ x

ε

a2(s)g(s)
F (s)

ds,

y(x) ≥ 1
α1

∫ x

ε

a2(s)g(s)
F (s)

ds

for ε ≤ x ≤ x1. Hence

y(x) ≥ 1
α1

∫ x

0+

a2(s)g(s)
F (s)

ds (14)

for ε ≤ x ≤ x1. By assumption (A4)3, there exists x2 ∈ (0, x1) such that
∫ x

0+

a2(s)g(s)
F (s)

ds ≥ α1h
−1(

α

α1
F (x)) (15)

for 0 < x ≤ x2. By virtue of (14) and (15), we have y(x) ≥ h−1( α
α1

F (x)) for
0 < x ≤ x2. Because h(y) is strictly increasing, we get h(y(x)) ≥ α

α1
F (x)

for 0 < x ≤ x2. Thus, F (x) − h(y(x)) ≤ α2F (x) with α2 = 1 − α
α1

.
Repeating this procedure, we obtain two sequences {xn} and {αn} such
that αn = 1 − α

αn−1
and F (x) − h(y(x)) ≤ αnF (x) for 0 < x ≤ xn. If

αn ≤ 0, we have a contradiction. Suppose αn > 0 (n = 1, 2, . . .), then
(αn−αn−1)(1−αn) = −αn+αn−α < −(αn−1

2)2 ≤ 0, {αn} is decreasing, and
hence {αn} converges to some real number λ. On the other hand, λ = 1− α

λ
and α > 1

4 show that λ is a complex number, which is a contradiction. This
completes the proof.

From Lemma 2.1 and Lemma 3.1, we deduce the following theorem.

Theorem 3.1 If conditions (A0), (A1), (A3) and (A4) hold, then the origin
is a local center of system (3).

From Theorem 3.1 and Remark 2.1, we obtain the following result.

Corollary 3.1 If conditions (A0), (A1) and (A4) hold, and there exists
K0 > 0 such that

(A3∗) F (G−1(−w)) = F (G−1(w)) for 0 ≤ w < K0,

then the origin is a local center of system (3).
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If h(y) ≡ y, a(x) ≡ 1, then Corollary 3.1 gives the results of Opial [19],
Hara and Yoneyama [9] and Sugie [22] as follows.

Corollary 3.2 Let h(y) ≡ y, a(x) ≡ 1, and conditions (A0) and (A3) (or
(A3∗)) hold, and let either of the following two conditions hold.

(A4∗)1 there exists a positive sequence {xn} such that xn → 0 as n → ∞
and F (xn) = 0 for n ≥ 1;

(A4∗)2 there exist constants α > 1
4 and δ3 > 0 such that |F (x)| > 0 for

0 < x ≤ δ3, and
∫ x

0+

g(s)
|F (s)|ds ≥ α|F (x)| for 0 < x ≤ δ3.

Then the origin is a local center of system (3).

Remark 3.1. If there exist δ4 > 0 and a continuous function r(x) such that
for 0 < x < δ4

(1) r(x) ≥ |F (x)| > 0,

(2) 1
r(x)

∫ x
0+

g(s)
r(s)ds ≥ α > 1

4 ,

then ∫ x

0+

g(s)
|F (s)|ds ≥

∫ x

0+

g(s)
r(s)

ds ≥ αr(x) ≥ α|F (x)|

for 0 < x < δ4. Obviously, the condition (A4∗)2 is satisfied. Hence, the
results of [37] in Section 3 are corollaries of Corollary 3.2. Thus, Theorem
2.1 and Theorem 2.2 of [35] are corollaries of Corollary 3.2. Moreover, the
results of McHarg [18] and Wendel [28] in Section 1 are all results of Corollary
3.2.

Remark 3.2. The condition (A4)3 is a generalization of the following con-
dition (A4∗)3.

(A4∗)3 there exist constants α0 > 0 and δ5 > 0 such that h(y) is continu-
ously differential on [0, δ5], |F (x)| > 0 for 0 < x ≤ δ5, and

∫ x

0+

a2(s)g(s)
|F (s)| ds ≥ α0|F (x)| for 0 < x 	 1,
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where α = h′(0)α0 > 1
4 .

In fact, if the condition (A4∗)3 is satisfied, then there exist constants
0 ≤ δ̄ < δ5 and 1

4 < ᾱ < α such that h′(y) > ᾱ
α0

for 0 ≤ y ≤ δ̄, and for any
fixed real number k ≥ 1, we have

1
k
h−1(kᾱ|F (x)|) =

1
k
h−1(kᾱ|F (x)|) − 1

k
h−1(0)

=
1
k

dh−1(u)
du

|u=ξ kᾱ|F (x)|, 0 < ξ < kᾱ|F (x)|

=
ᾱ|F (x)|

h′(h−1(ξ))
< α0|F (x)| for 0 < x 	 1.

Thus the condition (A4∗)3 implies the condition (A4)3.
From Theorem 3.1 and Remark 3.2, we obtain the following result.

Corollary 3.3 If conditions (A0), (A1) and (A3), and either of the con-
ditions (A4∗)1 and (A4∗)3 hold, then the origin is a local center of system
(3).

Remark 3.3. If a(x) ≡ 1, Corollary 3.3 reduces to Theorem 2.3 of [29].
Moreover, we also have

Corollary 3.4 If conditions (A0), (A1) and (A3∗) hold, and suppose
(C1) there exists K > 0 such that yh(y) ≥ Ky2,
(C2) there exist a > 0 and r(x) ∈ C2(R), for 0 < x < a, we have

(1) r(x) ≥ |F (x)| > 0,

(2) K
r(x)

∫ x
0

a2(s)g(s)
r(s) ds ≥ α > 1

4 .

Then the origin is a local center of system (3).

proof. For any fixed real number k, we have

1
|F (x)|

∫ x

0

a2(s)g(s)
|F (s)| ≥ 1

r(x)

∫ x

0

a2(s)g(s)
r(s)

ds ≥ α

K
,

that is∫ x

0

a2(s)g(s)
|F (s)| ds ≥ α

K
|F (x)| =

kα|F (x)|
kK

≥ 1
k
h−1(kα|F (x)|), 0 < x 	 1.

Hence the condition (A4)3 in our paper is satisfied. The origin is a local
center of (3) by Corollary 3.1.
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Remark 3.4. If a(x) ≡ 1, then the Theorem 2 of [32] is a result of Corollary
3.4.

Remark 3.5. If a(x) ≡ 1, then by condition (A4)2, Lemma 3.1 is seen to
be a generalization of Theorem 4.6 and Theorem 4.12 of Sugie [22]. But our
result holds also for 0 < p < 1.

Example 1. In system (3), we take a(x) ≡ 1, h(y) = y2sgn y, and

F (x) =
{

x
√

x for x ≥ 0
−x

4
√

8x2 for x < 0,
g(x) =

{
x for x ≥ 0
2x for x < 0.

Then it is easy to prove that
∫ −∞
0 g(x)dx =

∫ ∞
0 g(x)dx = ∞, and for 0 ≤

w < ∞,

F (G−1(−w)) = F (−√
w) = 4

√
8w3 = F (

√
2w) = F (G−1(w)).

It is also clear that
∫ x
0+

g(s)
F (s)ds = 2

√
x for x > 0, and for any fixed real

number k ≥ 1, ∫ x

0+

g(s)
F (s)

ds ≥ 1
k
h−1(kF (x)) for 0 < x 	 1,

thus (A4)2 is satisfied. Then the origin is a local center for (3) by Theorem
3.1.

Example 2. In system (3), we take a(x) ≡ 1, h(y) =
√|y|sgn y, and

F (x) =
{

3x for x ≥ 0
−3

√
2x for x < 0,

g(x) =
{

2x for x ≥ 0
4x for x < 0.

Then
∫ −∞
0 g(x)dx =

∫ ∞
0 g(x)dx = ∞, and for 0 ≤ w < ∞,

F (G−1(−w)) = F (−
√

w

2
) = 3

√
w = F (

√
w) = F (G−1(w)).

Hence (A0), (A1) and (A3) are satisfied. It is easy to prove that
∫ x
0+

g(s)
F (s)ds =

2
3x for x > 0, and for any fixed real number k ≥ 1,∫ x

0+

g(s)
F (s)

ds ≥ 1
k
h−1(kF (x)) for 0 < x 	 1,

therefore (A4)2 is satisfied. Then the origin is a local center for (3) by
Theorem 3.1.
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4 Conditions of a Global Center

Definition 4.1. The origin is called a global center for (3) if all orbits of
(3) are closed curves surrounding it.

The final assumption presented here is to guarantee that all positive
(resp., negative) semiorbits γ+(P ) (resp., γ−(P )) for P ∈ D1, (resp., P ∈
D2) intersect C+.

We say (3) satisfies the assumption (A5) if both (A+
5 ) and (A−

5 ) hold.
The system (3) is said to satisfy (A+

5 ) if one of the following conditions
holds:

(A+
5 )1 limx→∞F (x) �= −∞;

(A+
5 )2 limx→∞F (x) = −∞, and there exist β > 1

4 and N1 > 0 such
that F (x) < 0 for x ≥ N1, and for any fixed k ≥ 1 and b ≥ N1, there exists
b̄ > b satisfying

∫ x

b

a2(s)g(s)
F (s)

ds ≤ 1
k
h−1(kβF (x)) for x ≥ b̄.

The system (3) is said to satisfy (A−
5 ) if one of the following conditions

hold:

(A−
5 )1 lim

x→∞F (x) �= ∞;

(A−
5 )2 lim

x→∞F (x) = ∞, and there exist β > 1
4 and N1 > 0 such that

F (x) > 0 for x ≥ N1, and for any fixed k ≥ 1 and b ≥ N1, there exist b̄ > b
satisfying ∫ x

b

a2(s)g(s)
F (s)

ds ≥ 1
k
h−1(kβF (x)) for x ≥ b̄.

Lemma 4.1 Suppose that system (3) satisfies (A0) and (A1). Then
(i) If (A+

5 ) holds, then for any P ∈ D1, γ+(P ) intersects C+ if and only
if

limx→∞(Γ−(x) + F (x)) = ∞; (16)

(ii) If (A−
5 ) holds, then for any P ∈ D2, γ−(P ) intersects C+ if and only

if
limx→∞(Γ+(x) − F (x)) = ∞. (17)
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proof. We prove only (i); (ii) can be proved in a similar way.
Sufficiency. Suppose the conclusion is false. Then there is a point P =

(x0, y0) ∈ D1 such that γ+(P ) does not intersect C+. Let (x(t), y(t))(t ≥
0) be the solution of (3) passing through such a point P whose maximal
existence interval is [0, ω+). Note that x′(t) > 0 and y′(t) < 0 in the
region D1, hence x(t) is increasing and y(t) is decreasing as t is increasing.
Suppose that x(t) is bounded, then (x(t), y(t)) stays in the region {(x, y) :
0 < x < K1, and h(y) > F (x)} for some K1 > 0. Hence it must intersect
the characteristic curve, which is a contradiction. Therefore x(t) → ∞ as
t → ω+.

Case 1: Suppose limx→∞F (x) = ∞, that is, there exists a sequence
{xn} such that xn → ∞(n → ∞) and limn→∞ F (xn) = ∞, then (x(t), y(t))
must intersect the characteristic curve, which is a contradiction.

Case 2: Suppose
∫ ∞
0

a2(x)g(x)
1+F−(x) dx = ∞, then

y(t) − y0 = −
∫ t

0
a(x(s))g(x(s))ds

= −
∫ t

0

a2(x(s))g(x(s))
h(y(s)) − F (x(s))

ẋ(s)ds

= −
∫ x(t)

x0

a2(ξ)g(ξ)
h(y(s)) − F (ξ)

dξ

≤ −
∫ x(t)

x0

a2(ξ)g(ξ)
h(y0) + F−(ξ)

dξ → −∞

as t → ω+. Then the orbit of the above solution can be considered as a
function y(x) which is a solution of the equation (9), and y(x) → −∞ as
x → ∞.

Case (A5)1: There exist c > 0 and a sequence {xn} such that xn →
∞ (n → ∞), and F (xn) ≥ −c, hence (x(t), y(t)) must intersect the charac-
teristic curve, which is a contradiction.

Case (A5)2: There exists b > N1 such that F (x) < 0 and y(x) < 0 for
x ≥ b. Since y(x) is a solution of (9), putting H3(u) =

∫ u
0 h(y)dy for u ≤ 0,
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we have

H3(y(x)) − H3(y(b)) =
∫ x

b
H ′

3(y(s))
a2(s)g(s)

F (s) − h(y(s))
ds

≥
∫ x

b
h(y(s))

a2(s)g(s)
F (s)

ds

=
∫ x

b
(h ◦ H−1

3 )(H3(y(s))
a2(s)g(s)

F (s)
ds

for x ≥ b. Hence

H3(y(x)) ≥
∫ x

b
(−h ◦ H−1

3 )(H3(y(s))
a2(s)g(s)
−F (s)

ds

for x ≥ b. It follows from Lemma 2.2 that

H4(H3(y(x)) ≥
∫ x

b

a2(s)g(s)
−F (s)

ds for x ≥ b, (18)

where H4(u) =
∫ u
0+

dt
(−h◦H−1

3 )(t)
. Changing variable H−1

3 (t) = τ , then H4(u) =

−H−1
3 (u), by (18), it is easy to see that

y(x) ≤
∫ x

b

a2(s)g(s)
F (s)

ds for x ≥ b. (19)

From the assumption (A+
5 )2, there exist β > 1

4 and b1 > b such that

∫ x

b

a2(s)g(s)
F (s)

ds ≤ h−1(βF (x)) for x ≥ b1. (20)

By virtue of (19) and (20), we have y(x) ≤ h−1(βF (x)) for x ≥ b1. Because
h(y) is strictly increasing, we obtain h(y(x)) ≤ βF (x) for x ≥ b1. Hence
F (x) − h(y(x)) ≥ β1F (x) for x ≥ b1, where β1 = 1 − β. By a similar
argument, we have

H3(y(x)) − H3(y(b1)) =
∫ x

b1

h(y(s))
a2(s)g(s)

F (s) − h(y(s))
ds

≥ 1
β1

∫ x

b1

h(y(s))
a2(s)g(s)

F (s)
ds

=
1
β1

∫ x

b1

(h ◦ H−1
3 )(H3(y(s))

a2(s)g(s)
F (s)

ds
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for x ≥ b1. Hence

H3(y(x)) ≥ 1
β1

∫ x

b1

(−h ◦ H−1
3 )(H3(y(s))

a2(s)g(s)
−F (s)

ds

for x ≥ b1. By Lemma 2.2, it can be shown that

H4(H3(y(x)) ≥ 1
β1

∫ x

b1

a2(s)g(s)
−F (s)

ds,

y(x) ≤ 1
β1

∫ x

b1

a2(s)g(s)
F (s)

ds (21)

for x ≥ b1. From the assumption (A+
5 )2, there exists b2 > b1 such that

∫ x

b1

a2(s)g(s)
F (s)

ds ≤ β1h
−1(

β

β1
F (x)) for x ≥ b2. (22)

By virtue of (21) and (22), we have y(x) ≤ h−1( β
β1

F (x)) for x ≥ b2. Thus

F (x) − h(y(x)) ≥ β2F (x) for x ≥ b2, where β2 = 1 − β
β1

. Repeating this

procedure, we obtain two sequences {bn} and {βn} such that βn = 1− β
βn−1

and F (x) − h(y(x)) ≥ βnF (x) for x ≥ bn. If βn > 0 (n = 1, 2, . . .), then
{βn} is decreasing, and {βn} converges to some real number λ, on the other
hand λ = 1 − β

λ and β > 1
4 show that λ is a complex number, which is a

contradiction. Hence, βn ≤ 0 for some n, that is F (x) ≥ h(y(x)) for all
x ≥ bn, a contradiction. This completes the proof of sufficiency.

Necessity. Suppose (16) does not hold. Then there exist M1 > 0 and
L > 0 such that F (x) < M1 for x ≥ 0 and

∫ ∞
L

a2(x)g(x)
1+F−(x) dx < 1. Suppose

(x(t), y(t)) is a solution of (3), and (x(0); y(0)) = (L, M1 + M0 + 1) = P
where M0 > 0 satisfying h(M1 + M0) ≥ M1 + 1.

We will show that y(t) > M1 + M0 for t > 0. Suppose not. There exists
t1 > 0 such that y(t1) = M1 + M0 and M1 + M0 < y(t) ≤ M1 + M0 + 1 for
all t ∈ [0, t1), and we have

y(t1) = M1 + M0 + 1 −
∫ t1

0

a2(x(s))g(x(s))
h(y(s)) − F (x(s))

ẋ(s)ds

≥ M1 + M0 + 1 −
∫ x(t1)

L

a2(ξ)g(ξ)
1 + F−(ξ)

dξ > M1 + M0.

This is a contradiction. Hence, ẋ(t) = h(y(t))−F (x(t)) > M +1−F (x(t)) >
1 for all t ≥ 0. Thus the solution (x(t), y(t)) is unbounded and γ+(P ) is
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above the characteristic curve h(y) = F (x). Thus the necessity is proved.
This completes the proof.

We now state our main result.

Theorem 4.1 Suppose that the origin is a local center of (3), and that the
conditions (A0) − (A3) and (A5) are satisfied. Then the origin is a global
center of (3) if and only if (16) and (17) hold.

proof. Sufficiency. By the uniqueness of the solutions of (3) and the fact
that the origin is a local center of (3), no orbit of (3) tends to the origin.
To prove the theorem, we must show that the orbits of (3) starting from all
the points in Di (i = 1, 2, 3, 4) are closed curves surrounding the origin.

Consider the orbit of (3) starting from a point (x0, y0) ∈ D1. Then
by Lemma 4.1, this orbit intersects the characteristic curve at some point
(x1, h−1(F (x1)) with x1 > 0. It follows from (A0) that the orbit does
not touch again the characteristic curve at any point (x, h−1(F (x)) with
0 ≤ x < x1. Since limy→−∞ h(y) = −∞, the system (3) has no vertical
asymptote in the fourth quadrant. Therefore, the orbit must cross the y-
axis at a point B(0, yB) with yB < 0.

By replacing t by −t, we can also see that the orbit crosses the y-axis at
a point A(0, yA) with yA > 0. Thus by Lemma 2.1, the orbit reaches the
point A again, and so the orbit is a closed curve surrounding the origin.

By a similar argument, the orbit of (3) starting from a point in D2, D3

or D4 is also closed, thus the origin is a global center of (3).
Necessity. Suppose that the condition (16) or (17) does not hold. Then

it follows immediately from Lemma 4.1 that the origin is not a global center
of (3). The proof of Theorem 4.1 is now complete.

If h(y) ≡ y, a(x) ≡ 1, then Theorem 4.1 reduces to the result of Sugie
[22] as follows.

Corollary 4.1 Let h(y) ≡ y, a(x) ≡ 1 and suppose that the origin is a local
center of (3) and that the conditions (A0), (A2), (A3) and (A5) are satisfied.
Then the origin is a global center of (3) if and only if (16) and (17) hold.

Corollary 4.2 If conditions (A0), (A1) and (A3) hold, and suppose

(C1) limx→∞F (x) > −∞, limx→∞ inf F (x) < ∞,

(C2) there exists K > 0 such that yh(y) ≥ Ky2 and one of the following
conditions holds
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(i) there exist a > 0, r(x) ∈ C2(R), for 0 < x < a,

(1) r(x) ≥ |F (x)| > 0,

(2) K
r(x)

∫ x
0

g(s)
r(s)ds ≥ α > 1

4 ,

(ii) there exists a > 0 such that for 0 < x < a

K

F (x)

∫ x

0

g(s)
F (s)

ds ≥ α >
1
4
,

(iii) there exist α > 0, γ > 0, a > 0 such that for 0 < x < a

|F (x)| ≤ α|G(x)|γ

where 1
2 < γ < 1 or α <

√
8K, γ = 1

2 .

Then the origin is a global center of (3) if and only if (16) and (17) hold.

proof. From Remark 3.1, it is easy to see that the condition (i) is equiv-
alent to condition (ii), by Corollary 3.4, we know the condition (A4)3 is a
generalization of condition (i) and (ii).

Suppose the condition (iii) is satisfied and F (x) does not satisfy the
condition (A4)1 in our paper, then |F (x)| > 0 for 0 < x < a1 < a.

If 1
2 < γ < 1, α > 0, then we have

K

F (x)

∫ x

0

g(s)
F (s)

ds ≥ K

α(G(x))γ

∫ x

0

g(s)
α(G(s))γ

ds

=
K

(1 − γ)α2
(G(x))−γ(G(x))1−γ .

From G(0) = 0, if a1 is sufficiently small, then K
F (x)

∫ x
0

g(s)
F (s)ds ≥ 1 > 1

4 for
0 < x < a1, hence the condition (ii) is satisfied.

If γ = 1
2 , α <

√
8K, then from above,

K

F (x)

∫ x

0

g(s)
F (s)

ds ≥ K

(1 − γ)α2
>

1
4
,

thus the condition (ii) is also satisfied. Therefore, the condition (C2) implies
the condition (A4) in our paper, by Theorem 3.1 and Theorem 4.1, we know
the origin is a global center of (3) if and only if (16) and (17) hold.
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Remark 4.1. If a(x) ≡ 1, then Theorem 3 of [32] is a result of Corollary
4.2.

Remark 4.2. It is easy to see that Theorem 3.1 of [35], and Theorem 4.1,
Theorem 4.2, Theorem 4.4 and Theorem 4.5 of [37] are all corollaries of
Corollary 4.1, and that our results cover the corresponding results of [9].

Remark 4.3. The condition (A+
5 )2 is a generalization of the following

condition (A+
5 )2∗ .

(A+
5 )2∗ limx→∞F (x) = −∞, and there exist N1 > 0, β0 > 1

4 and β̄0 > 0
such that h(y) is continuously differentiable on (−∞, −N1], h′(−y) ≥ β0

β̄0

for y ≥ N1, F (x) < 0 for x ≥ N1 and for any b ≥ N1, there exists b̄ > b
satisfying ∫ x

b

a2(s)g(s)
F (s)

ds ≤ β̄0F (x) for x ≥ b̄.

In fact, if the condition (A+
5 )2∗ is satisfied, then there exist N1 > 0,

β0 > 1
4 and β̄0 > 0 such that h′(−y) ≥ β0

β̄0
for y ≥ N1, and for any fixed real

number k ≥ 1, there exists N2 > N1 satisfying kβ̄0F (x) ≤ −N1 for x ≥ N2,
and

h(kβ̄0F (x)) < h(kβ̄0F (x)) − h(kβ̄0F (N2))

= kβ̄0h
′(ξ)

F (x) − F (N2)
F (x)

F (x)

for x > N2, where ξ is between kβ̄0F (x) and kβ̄0F (N2). Since limx→∞ F (x) =
−∞, for any b ≥ N1, it can be shown that there exist 1

4 < β < β0 and b∗ > b
such that h(kβ̄0F (x)) < kβF (x) for x ≥ b∗. Because h(y) is strictly in-
creasing, we have β̄0F (x) ≤ 1

kh−1(kβF (x)) for x ≥ b∗. Hence the condition
(A+

5 )2∗ implies (A+
5 )2.

By the same argument, it can be seen that condition (A−
5 )2 is a gener-

alization of the following condition (A−
5 )2∗

(A−
5 )2∗ limx→∞ F (x) = ∞, and there exist N1 > 0, β0 > 1

4 and
β̄0 > 0 such that h(y) is continuously differentiable on [N1, ∞), h′(y) ≥ β0

β̄0

for y ≥ N1, F (x) > 0 for x ≥ N1 and for any b ≥ N1, there exists b̄ > b
satisfying ∫ x

b

a2(s)g(s)
F (s)

ds ≥ β̄0F (x) for x ≥ b̄.
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Remark 4.4. If a(x) ≡ 1, the Theorem 4.1 is a generalization of [29,
Theorem 2.1]. This follows from Remark 4.3.

Example 3. In system (3), we take a(x) ≡ 1, h(y) ≡ |y| 32 sgn y and

F (x) =




4x sin π
2 x for x ≥ 1

4x for 0 ≤ x < 1
−2x for − 2 ≤ x < 0
2x sin π

4 x for x < −2,

g(x) =




3
2x−2 for x ≥ 1
3
2x

1
2 for 0 ≤ x < 1

−3
4(−x

2 )
1
2 for − 2 < x < 0

−3x−2 for x ≤ −2.

Then it is easy to show that
∫ −∞

0
g(x)dx =

∫ ∞

0
g(x)dx =

5
2

and

G−1(w) =




3
5−2w for 1 ≤ w < 5

2

w
2
3 for 0 ≤ w < 1

−2w
2
3 for − 1 ≤ w < 0

− 6
5+2w for − 5

2 < w < −1.

For 0 ≤ w < 1,

F (G−1(−w)) = F (−2w
2
3 ) = 4w

2
3 = F (w

2
3 ) = F (G−1(w))

and for 1 ≤ w < 5
2 ,

F (G−1(−w)) = F (− 6
5 − 2w

) =
12

5 − 2w
= F (

3
5 − 2w

) = F (G−1(w)).

Hence (A2) and (A3) are satisfied. It is also clear that
∫ x
0+

g(s)
F (s)ds = 3

4x
1
2 for

0 < x 	 1, and that for any fixed real number k ≥ 1,
∫ x

0+

g(s)
F (s)

ds ≥ 1
k
h−1(kF (x)) for 0 < x 	 1.

Thus (A4)2 is satisfied. It is obvious that (A0), (A1) and (A5) are also
satisfied. Then the origin is a local center for (3) by Theorem 3.1. It follows
from Theorem 4.1 that the origin is a global center for (3).
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5 Conditions of Oscillation

In this section, we give our main result about necessary and sufficient con-
ditions for the oscillation of solutions of (3). We assume that all solutions
of (3) can be continued in the forward direction up to t = ∞. A solution
(x(t), y(t)) of (3) is oscillatory if there are two sequences {tn} and {τn}
tending monotonically to ∞ such that x(tn) = 0 and y(τn) = 0 for every
n ≥ 1.

We say that (3) satisfies the assumption (A6) if both (A+
6 ) and (A−

6 )
hold.

The system (3) is said to satisfy (A+
6 ) if one of the following conditions

holds:

(A+
6 )1 There exists a positive decreasing sequence {xn} such that xn → 0 as

n → ∞, and F (xn) ≤ 0 for n ≥ 1;

(A+
6 )2 There exist constants α > 1

4 and δ1 > 0 such that

F (x) > 0 for 0 < x ≤ δ1,

and for any fixed real number k ≥ 1,
∫ x

0+

a2(x)g(s)
F (s)

ds ≥ 1
k
h−1(kαF (x)) for 0 < x 	 1,

where h−1(u) is the inverse function of u = h(y), and the notation
0 < x 	 1 denotes x sufficiently small.

The system (3) is said to satisfy (A−
6 ) if one of the following conditions

holds:

(A−
6 )1 There exists a negative decreasing sequence {xn} such that xn → 0 as

n → ∞, and F (xn) ≥ 0 for n ≥ 1;

(A−
6 )2 There exist constants α > 1

4 and δ2 > 0 such that

F (x) < 0 for 0 < −x ≤ δ2,

and for any fixed real number k ≥ 1,
∫ x

0−

a2(x)g(s)
F (s)

ds ≤ 1
k
h−1(kαF (x)) for 0 < −x 	 1.
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Lemma 5.1 Suppose that the conditions (A0), (A1), and (A+
6 ) hold. Then

for any P = (x0, y0) ∈ C+, the positive semiorbit γ+(P ) intersects the
negative y-axis.

By a similar argument, we have the following lemma in the left half
plane.

Lemma 5.2 Suppose that the conditions (A0), (A1), and (A−
6 ) hold. Then

for any P = (x0, y0) ∈ C−, the positive semiorbit γ+(P ) intersects the
positive y-axis.

Remark 5.1. If h(y) ≡ y and a(x) ≡ 1, then condition (A+
6 )2 is the

condition (ii) of (6) in Section 1 (cf. [9, 10, 22]).

By the above discussion, the condition (A6) is a generalization of condi-
tion (A3) in [13], condition (A10) in [30], condition (A2) in [30], and condition
(C) in [15].

The final assumptions presented here are to guarantee that all positive
orbits γ+(P ) for ∈ D1 (resp., P ∈ D3) intersect C+ (resp., C−).

We say (3) satisfies the assumption (A7) if both (A+
7 ) and (A−

7 ) hold.
The system (3) is said to satisfy (A+

7 ) if one of the following conditions
holds:

(A+
7 )1 lim supx→∞ F (x) �= −∞;

(A+
7 )2 lim supx→∞ F (x) = −∞, and there exist β > 1

4 and N1 > 0 such that
F (x) < 0 for x ≥ N1, and for any fixed k ≥ 1 and b ≥ N1, there exists
b̄ > b satisfying

∫ x

b

a2(x)g(s)
F (s)

ds ≤ 1
k
h−1(kβF (x)) for x ≥ b̄.

The system (3) is said to satisfy (A−
7 ) if one of the following conditions

hold:

(A−
7 )1 lim infx→−∞ F (x) �= ∞;
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(A−
7 )2 lim infx→−∞ F (x) = ∞, and there exist β > 1

4 and N1 > 0 such that
F (x) > 0 for x ≥ −N1, and for any fixed k ≥ 1 and b ≥ N1, there
exist b̄ > b satisfying∫ x

−b

a2(x)g(s)
F (s)

ds ≥ 1
k
h−1(kβF (x)) for x ≥ −b̄.

Lemma 5.3 Suppose that the conditions (A0), (A1), and (A+
7 ) hold. Then

every positive semiorbit of (3) departing from D1 intersects the characteristic
curve C+ if and only if

lim sup
x→∞

[∫ x

0

a2(x)g(s)
1 + F−(s)

ds + F (x)
]

= ∞, (23)

where F−(x) = max{0, −F (x)}.
In a similar way, we can prove the following lemma in the left half plane.

Lemma 5.4 Suppose that the conditions (A0), (A1), and (A−
7 ) hold. Then

every positive semiorbit of (3) departing from D3 intersects the characteristic
curve C− if and only if

lim sup
x→−∞

[∫ x

0

a2(x)g(s)
1 + F+(s)

ds − F (x)
]

= ∞, (24)

where F+(x) = max{0, F (x)}.

Remark 5.2. If h(y) ≡ y and a(x) ≡ 1, then the conditions (A+
7 )2 and

(A−
7 )2 are the conditions (A+

2 ) and (A−
2 ) in [10] respectively, the condition

(A+
7 )2 is the condition (C3)2 in [22].

Remark 5.3. By the above discussion, the condition (A7) is a generalization
of condition (A4) (with a(x) ≡ 1) in [13] and condition (A3) (with a(x) ≡ 1)
in [30]. Moreover, the condition (A+

7 ) is a generalization of condition (A4)
(with a(x) ≡ 1) in [29].

We are now in the position to give our main result about necessary and
sufficient conditions for the oscillation of solutions of system (3).

Theorem 5.1 Suppose that the conditions (A0), (A1), (A6) and (A7) are
satisfied. Then all nontrivial solutions of (3) oscillate if and only if (23)
and (24) hold.
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Proof. Necessary. If either (23) or (24) is false, then Lemma 5.3 and Lemma
5.4 imply that (3) has at least one unbounded solution lying in D1 or D3.
Thus the necessity is proved.

Sufficiency. We prove the sufficiency by contradiction. Suppose that
there exist a solution (x(t), y(t)) of (3) and T0 > 0 such that x(t) �= 0 for
all t ≥ T0. We consider the case x(t) > 0 for all t ≥ T0. The Lemma 5.1
implies that (x(t), y(t)) does not tend to (0, 0) as t → ∞.

(i) suppose (x(T0), y(T0)) ∈ D1, the Lemma 5.3 shows that there exist
T1 > T0 such that (x(t), y(t)) intersects the characteristic curve h(y) = F (x)
at t = T1. Then x(t) and y(t) are decreasing for all t ≥ T1. Thus there exists
K0 ≥ 0 such that

x(t) → K0 as t → ∞ (25)

y(t) → −∞ as t → ∞
K0 ≤ x(t) ≤ x(T1) for all t ≥ T1.

For t ≥ T1, we have

x(t) − x(T1) =
∫ t

T1

1
a(x)

(h(y(s)) − F (x(s))ds

≤
∫ t

T1

1
a(x)

(h(y(s)) − minK0≤x≤x(T1){F (x)})ds

→ −∞ as t → ∞,

which contradicts (25).
(ii) Suppose (x(T0), y(T0)) ∈ D2, by a similar method used in the case

(i), we can reach a contradiction. In case x(t) < 0 for all t ≥ T0, we have also
a contradiction by an argument similar to the one above. Hence all solution
of (3) are oscillatory. Thus the proof of Theorem 5.1 is now complete.

Remark 5.4. Theorem 5.1 is a generalization of Theorem 1 in [30] and
Theorem 1 in [15], this follows from Remark 2.2 and 2.4. Our results do
not need the differentiability condition of h(y), our Theorem 3.1 can be
applied to system (3) even for h′(0) = 0, h′(0) = ∞, h′(±∞) = 0, and
lim|x|→∞ F (x) sgn x = −∞.

If h(y) ≡ y and a(x) ≡ 1, by Theorem 5.1 and Remarks 5.1 and 5.2,
we have the following corollary which is the result of Hara, Yoneyama and
Sugie [10].
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Corollary 5.1 Suppose that (3) with h(y) ≡ y and a(x) ≡ 1 has a unique
solution, and that the conditions (A0), (A1), (A6) and (A7) are satisfied.
Then all nontrivial solutions of (3) with h(y) ≡ y and a(x) ≡ 1 oscillate if
and only if (23) and (24) hold.

Remark 5.5. In system (3), we take h(y) ≡ y, g(x) ≡ x, a(x) ≡ 1, and

F (x) =




2x for x ≥ 1
3 ,

2x3n−x3
6n

x3n−x3n+1
(x − x3n) + 2x3n for x3n+1 ≤ x ≤ x3n,

x3
6n for x3n+2 ≤ x ≤ x3n+1,
2x3n+3−x3

6n
x3n+3−x3n+2

(x − x3n+3) + 2x3n+3 for x3n+3 ≤ x ≤ x3n+2,

0 for x = 0,
−4x − x2 for x ≤ 0,

where xn = 1
n , n = 1, 2, ....

Then G(x) = x2

2 , F (0) = 0, F (x) ≤ 2x for 0 < x < 1
3 , F (x) = 2x for x ≥ 1

3 ,
and F (x) = −4x − x2 for x ≤ 0. Thus (A0), (A1), (A−

6 )1, (A+
7 )1, (A−

7 )1,
(23) and (24) are satisfied. For any x ∈ (0, 1

3), we can choose n (sufficiently
large) such that 0 < x3n+2 < x3n+1 < x, and

1
F (x)

∫ x

0+

g(s)
F (s)

ds ≥ 3
2

∫ x3n+1

x3n+2

g(s)
F (s)

ds =
3
2

∫ x3n+1

x3n+2

s

x3
6n

ds =
3(6n)3(6n + 3)

4(3n + 1)2(3n + 2)2
>

3
4

for 0 < x < 1
3 . The condition (A+

6 )2 is satisfied. Therefore, by Corollary
5.1, all nontrivial solutions oscillate.

Because F 2(zn) = 8G(zn) when zn = 1
3n (n = 1, 2, ...), it follows that

condition (4) in Section 1 is not satisfied. By the above discussion, condition
(A+

6 )2 is satisfied, hence, the condition (6) in Section 1 is really weaker than
condition (4). The condition (6) is similar to (5) of Opial [19], but condition
(6) is more precise. Moreover, condition (6) is a generalization of conditions
(1), (2), (3), (4), and (7) in Section 1.
Example 4. In system (3), we take a(x) = 1, h(y) = y

1
3 , g(x) = x5, and

F (x) = −x|x|β, where β is a real number such that 0 ≤ β < 1
2 .

Then (A0), (A1), (A+
6 )1, (A−

6 )1, (23) and (24) are satisfied. Since h−1(u) =
u3, for any b > 1 and fixed real number k ≥ 1, we have

lim
x→∞

k

h−1(kF (x))

∫ x

b

g(s)
F (s)

ds = lim
x→∞

1
(5 − β)k2x3(1+β)

(x(5−β)−b(5−β)) = ∞,
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therefore (A+
7 )2 is satisfied. Similarly, (A−

7 )2 is also satisfied. Then all
nontrivial solutions oscillate by Theorem 5.1. However h′(0) = ∞ and
h′(±∞) = 0, the previous results of [15, 30] cannot be applied to this exam-
ple. It is easy to see from Remark 5.4 and Example 4 that our Theorem 5.1
can find more extensive applications.
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