
Tommi Meskanen

Turku Centre Computer Sciencefor

TUCS Dissertations
No 63, June 2005

On the NTRU Cryptosystem

O n t h e N T R U
C r y p t o s y s t e m

by

Tommi Meskanen

To be presented, with the permission of the Faculty of Mathematics
and Natural Sciences of the University of Turku, for public

criticism in Auditorium XXI of the University on
August 26th, 2005, at 12 noon

University of Turku
Department of Mathematics
FIN-20014 Turku, Finland

2005

Supervisors
Doctor Ari Renvall
Department of Mathematics
University of Turku
FIN-20014 Turku
Finland

Professor Juhani Karhumäki
Department of Mathematics
University of Turku
FIN-20014 Turku
Finland

Reviewers
Professor Cunsheng Ding
Hong Kong University of Science and Technology
Department of Computer Science
Clean Water Bay, Kowloon, Hong Kong
China

Doctor Valtteri Niemi
Nokia Research Center
PL 407
FIN-00045 Nokia Group
Finland

Opponent
Privat Dozent Dr. Walter Unger
Lehrstuhl für Informatik I
RWTH Aachen
D-52056 Aachen
Germany

ISBN 952-12-1570-4
ISSN 1239-1883
Painosalama Oy
Turku, Finland
2005

A c k n o w l e d g e m e n t s

I would like to thank my supervisor Doctor Ari Renvall for his constant
support during this work. Without his suggestions for research and his
valuable comments on my work I would not have finished this thesis.
With deepest gratitude, I thank my other supervisor Professor Juhani
Karhumäki as well as Academy Professor Hannu Nurmi for their support
and for offering outstanding working conditions.

Special thanks are due to Professor Cunsheng Ding and Doctor Valt-
teri Niemi for the preliminary examination of the thesis and their in-
valuable remarks. I would like also to thank Dr. Milla Kibble for the
thorough English revision of this work.

I would like to thank the Department of Mathematics, the Depart-
ment of Political Science and Turku Centre for Computer Science (TUCS)
for providing excellent working environment, and the personnel of both
departments and TUCS for the help and support. In particular, I would
like to thank Dr. Jyrki Lahtonen for all the lectures on finite fields and
Ph. Lic. Paula Steinby for advice of all kinds.

The support of Tekes, Nokia, Setec, Sonera and the Academy of Fin-
land is gratefully acknowledged.

I would like to thank the math department floorball/orienteering club
Luiskaotsat for providing goals and directions besides work.

Finally, I would like to thank my family for everything.

August, 2005

T. M.

C o n t e n t s

1 Introduction 7

2 Public key cryptography 11

3 Preliminaries 15

3.1 Basic definitions . 15

3.2 Theorems of Blichfeldt and Minkowski 19

3.3 The shortest vector problem 22

3.4 Polynomial rings . 26

4 NTRUEncrypt 31

4.1 System descriptions . 31

4.2 Overview . 32

4.3 The current version of NTRUEncrypt 34

4.4 Comparison . 42

4.5 Earlier versions . 43

5 Lattice reduction and security of NTRU 47

5.1 Lattice constants . 49

5.2 Reducing the lattice constants 50

5.3 Zero forcing . 56

5.4 Other ways to reduce the dimension 59

5.5 Summary . 60

6 On lattice reduction algorithms 61

6.1 The LLL algorithm . 61

6.2 Block Korkin-Zolotarev reduction 70

7 Computational results 79

6 C o n t e n t s

8 Attacks against NTRU 83
8.1 Attack controlling the cryptotext 83
8.2 Attack controlling the message representative 84
8.3 Meet-in-the-middle attack 85

9 An Attack against old NTRUEncrypt 89
9.1 First step . 91
9.2 Second step . 91
9.3 Third step . 92
9.4 Computing the private key 93
9.5 Generating suitable blinding polynomials 94
9.6 An example . 95
9.7 A method to create more wrap errors 99
9.8 Remarks and conclusion 100

10 NTRUSign 101
10.1 Key generation . 103
10.2 Signing . 106
10.3 Verification . 106
10.4 Why does the verification work 106
10.5 An example . 108
10.6 An attack . 109

11 Concluding remarks 111

Bibliography 113

Appendix A 117

C H A P T E R 1

I n t r o d u c t i o n

There are two kinds of cryptosystems: private key cryptosystems and
public key cryptosystems.

The private key cryptosystems are an ancient invention. Ever since
the first written language, people have been developing ways to write
down their secrets in a way only they can decipher. One of the simplest
ways to cipher a message with a fixed alphabet is to replace each letter
in the message with the next letter in the alphabet. This method is
often called the Caesar method since there is documented evidence that
Rome’s emperor Caesar used ciphers like this.

One thing common to all private key cryptosystems is that if you know
how to cipher a message then you automatically know how to decipher
the message. Thus the method of ciphering must be kept secret. Once
the ciphering method is compromised the cryptosystem is useless.

All known cryptosystems were private key cryptosystems until the
introduction of the ideas of the public key cryptosystems by Diffie and
Hellman [6] in 1976. Since then, several different protocols for public key
cryptography have been presented (e.g. RSA 1978 [36], the first ideas of
ECC in 1985 [2]).

The topic of this thesis is the public key cryptosystem NTRU. It was
first introduced by Jeffrey Hoffstein, Jill Pipher and Joseph H. Silverman
in 1998 [15]. It operates in the ring of truncated polynomials given by
Z[X]/(XN − 1). The security of the NTRU cryptosystem is based on
the difficulty of finding short vectors in a certain lattice. The larger the
parameter N , the more secure the system is.

NTRU is a probabilistic cryptosystem. The encryption process in-
cludes a random element and therefore one message has several possible
encryptions. The advantage of NTRU over other cryptosystems is that

8 I n t r o d u c t i o n

encryption and decryption are very fast and the key sizes are relatively
small. Also the key generation is fast and easy.

The structure of the thesis is as follows:

In Chapter 2 we introduce the concept of public key cryptography.

In Chapter 3 we state the basic definitions and notations related to
lattices and give some classical theorems. We also explain the vector
problems considered in this work and discuss the properties of certain
polynomial rings which will be used later.

There have been several different versions of the NTRU cryptosystem.
In Chapter 4 we begin by noting the common ideas behind these different
versions. Then we present the different versions in more detail, concen-
trating in particular on the latest version from 2003.

As already noted, the security of NTRU depends on the difficulty
of certain lattice reduction problems. Some NTRU related lattices are
easier to reduce than others of the same dimension. In Chapter 5 we
explain what is meant by lattice reduction. We present some lattice
constants which seem to serve as indicators of the successfulness of the
reduction. We also present some tricks to enhance the lattice reduction
process. Some of the tricks are previously known, but some appear to be
mentioned for the first time in this thesis.

The problem of finding a short vector from a lattice can be solved by
finding a short basis of the lattice. There are several algorithms to find a
short basis. The faster algorithms, however, tend to find longer bases. In
Chapter 6 we present the most commonly used basis reduction algorithms
and highlight the properties of the reduced bases they produce.

In Chapter 7 we apply the ideas of the previous chapters to small
instances of NTRU private keys. We used a computer to break the private
keys from some small instances of NTRU-like private keys. From the
breaking times of these small instances, we estimate the breaking times
of the standard sized keys.

The short history of NTRU has seen many changes in the stand-
ards. The reason for this is that successful attacks have been construc-
ted against earlier versions of the cryptosystem. In Chapter 8 we briefly
present some of these attacks. In Chapter 9 we present our own attack
against NTRU. Due to this and similar attacks, NTRU was once again
modified. Our attack is published in [31].

Finally, in Chapter 10 we present the related NTRUSign signature
protocol. Some vulnerabilities discovered by the author are discussed.

In summary, the goal of this thesis is to provide a unified present-

I n t r o d u c t i o n 9

ation on the NTRU cryptosystem. The original content consists of an
attack against one version of NTRU. Tools for the best known lattice
reduction algorithms to better fit the NTRU environment are developed;
thus giving a more accurate security analysis. Some observations on the
NTRUSign signature scheme are also given.

C H A P T E R 2

P u b l i c k e y
c r y p t o g r a p h y

The idea of symmetric, or private key, cryptosystems is that the com-
municating parties agree on a common key which they use to encrypt
their messages to each other. The same key is used to decrypt, i.e. to
unscramble the encrypted message. Eavesdroppers, who can capture the
exchanged encrypted messages, are unable to understand the messages
as long as the key used remains secret.

One of the weak points of these private key systems is key agreement.
Clearly, before the parties are able to communicate securely, they must
have a way to agree on their key. But how is this possible if all exchanged
messages can be eavesdropped by adversaries.

The development of complexity theory since the 50’s has made it
possible to solve the problem in a revolutionary way. The main idea was
to split the key; one public key for encryption and one private key for
decryption. Party A could then encrypt his/her messages to party B by
using B’s public encryption key. As B’s decryption key is private, only
B can decrypt the messages. In theory, the knowledge of the encryption
key is sufficent to determine the decryption key. However, the system
can be constructed in such a way, that the amount of work required for
cryptanalysis is beyond the scope of any realistic adversary.

For a long time, the speed of the best symmetric cryptosystems was
superior to all suggested public key cryptosystems. Hence it was not
sensible to encrypt large amounts of data with public key systems. In-
stead, one used public key systems to exchange a key for a fast symmetric
system. With the development of computers and algorithms, the public
key cryptosystems have been used more and more.

12 P u b l i c k e y c r y p t o g r a p h y

To explain the ideas of complexity theory we must introduce some
definitions.

The set O(f(n)) comprises all positive functions g(n) for which there
exists constants n0 and c such that g(n) ≤ cf(n) when n > n0.

We denote by P the set of problems that can be solved in polynomial
time using a deterministic algorithm. That is, those problems for which
there is an integer k such that all instances of size n of the problem
can be solved in time O(nk). Such problems are called tractable; all
other problems are called intractable. Problems that have a polynomial
time non-deterministic algorithm constitute the set NP. That is, for
every problem in NP we can check in polynomial time whether a given
candidate is a solution to the problem.

Trivially, P ⊆ NP, but it is not known whether P = NP.

A problem in NP is called NP-complete if finding a polynomial time
algorithm for that problem would mean that there is a polynomial al-
gorithm for all problems in NP and thus we would have P = NP. These
are clearly the hardest problems in NP. The idea of NP-completeness
was introduced by Cook in 1971 [5].

The main building blocks of public key cryptosystems are so-called
one-way functions. Informally, a function f is called one-way if f(x) can
be efficiently computed when x is given, but no efficient algorithm exists
to find x such that f(x) = y when y is given. In other words, the problem
of computing f(x) is in P, but the problem of inverting f is in NP \P.

Despite several decades of intense research, it is not known whether
one-way functions exist or not. But there are some good candidates
which are widely used in practice. As there does not exist a proof of one-
wayness, it is possible that somebody someday will find a fast algorithm
to invert them.

One-way functions cannot be used as cryptosystems: it is impossible
to decrypt. An additional property is needed. A trapdoor one-way func-
tion is a one-way function which can be inverted in polynomial time if
some additional information, the trapdoor, is known. These functions
suit public key systems perfectly: the trapdoor acts as the private de-
cryption key. For more detailed definitions consult [12].

The first proposal [30] for a public key cryptosystem by Merkle and
Hellman in 1978 was based on a knapsack problem. This problem is
NP-complete so, at first glance, a cryptosystem based on it seemed suf-
ficiently difficult to break. Unfortunately NP-completeness only means
that the hardest instances of the problem are difficult. It turned out
that on average the knapsack problem was relatively easy, which made

P u b l i c k e y c r y p t o g r a p h y 13

it unsuitable for cryptographic applications.
The earliest public key system still in use is the RSA cryptosystem

developed by Ronald Rivest, Adi Shamir and Leonard Adleman [36]. The
underlying hard problem in RSA is the integer factorization problem. It is
relatively easy to multiply two large integers; even the “school algorithm”
is efficient enough, as it works in time O(n2). On the other hand, it is
very difficult to determine the factorization of a large integer, especially
if it is a product of two large prime numbers. Integers with 300 digits are
well beyond the best factorization algorithms known today. Although
the factoring problem is not known to be an NP-complete problem, it is
commonly considered hard enough for cryptographic purposes.

Another popular candidate one-way function is modular exponenti-
ation. Given a, e and n, the value ae mod n can be computed in time
O(n3). For the inverse problem, also known as the discrete logarithm
problem, no polynomial time algorithm is known. The famous El Gamal
cryptosystem is based on this fact [10]. The same system can also be
applied in the elliptic curve group [2].

From a theoretical point of view it would be perfect if breaking a
cryptosystem required solving an NP-complete problem. However, for
practical reasons, all instances of the problem that may occur in crypt-
analysis should be hard. Therefore a minimal requirement is that the
problem in question is hard on average. In [1] Miklos Ajtai showed that
certain lattice problems are hard on average, provided they are hard in
the worst case. As a consequence, it seems a good idea to base a public
key system on such problems.

The NTRU encryption system [15] from 1998 is based on the difficulty
of finding a short vector in a lattice, or alternatively the closest lattice
vector to a given vector. The main advantage of NTRU is its speed;
which is comparable to the fastest symmetric systems.

In addition to ordinary message encryption, public key cryptography
also has other applications. From a practical point of view, perhaps
the most important one is the ability to sign digital documents. Some
properties required from a digital signature are impossible to be fulfilled,
or require a so-called trusted third party using symmetric cryptosystems.
The idea is that each signer again creates a pair of keys: one private key
needed to sign documents, and one public key needed to verify the validity
of signatures. There are signature protocols related to most public key
cryptosystems, including RSA, El Gamal and NTRU; see [29].

C H A P T E R 3

P r e l i m i n a r i e s

The NTRU cryptosystem deals with polynomial rings, but is closely
linked to lattices. In order to study it, we need to introduce the ba-
sic properties of lattices. In this chapter we fix notations, present the
basic results and introduce the problems which we will consider later in
this work.

The presentation is modified from lecture notes of Cynthia Dwork [7].
We end this chapter by considering some properties of polynomial rings.

3.1 B A S I C D E F I N I T I O N S

We start this section by defining the inner, or scalar, product of two
vectors v = (v1, v2, . . . , vm) and u = (u1, u2, . . . , um),

(v, u) =
m∑

i=1

viui.

The inner product is commutative and distributive.
The Euclidean norm or the length of a vector v = (v1, v2, . . . , vm) is

defined as

||v|| =
√

(v, v) =

√√√√ m∑
i=1

v2
i .

Let b1, b2, . . . , bn be linearly independent vectors in Rm and let B be
the n × m matrix with these vectors as rows. The lattice generated by
vectors b1, b2, . . . , bn or, alternatively, the basis matrix B, is the set

L(b1, b2, . . . , bn) = L(B) =

{
n∑

i=1

aibi | ai ∈ Z

}

16 P r e l i m i n a r i e s

of all linear combinations over integers of the basis vectors. The dimen-
sion of this lattice is dim(L(B)) = n ≤ m. If m = n the lattice is called
full-dimensional.

Informally, a lattice is a set of intersection points of a regular, infinite
n-dimensional grid.

The vector space generated by vectors b1, b2, . . . , bn or B is

span(b1, b2, . . . , bn) = span(B) =

{
n∑

i=1

aibi | ai ∈ R

}
,

where we have all linear combinations of the basis vectors.

We note that if B′ is the result of applying any of the following oper-
ations to B then L(B) = L(B′):

1. Swap the order of two rows in B.

2. Multiply a row of B by −1.

3. Add an integer multiple of a row to another row of B.

The first two cases are trivial. Also trivially L(B′) ⊆ L(B) in the third
case. Let b′j = bj + cbk, j �= k and b′i = bi, for all i �= j. Now for all
ai ∈ Z,

∑
aibi =

∑
i�=k aib

′
i + (ak − ajc)b

′
k and thus L(B) ⊆ L(B′).

The determinant of a lattice L(B) with basis b1, . . . , bn is defined as

det(L(B)) =
√

det((bi, bj)1≤i,j≤n) =
√

det(BBT).

If n = m we have

det(L(B)) =
√

det(BBT) = | det(B)|.

Because basis vectors are linearly independent, two bases of the same
lattice have the same number of vectors. In the following we show that
the determinant of a lattice does not depend on the selection of the basis.

T H E O R E M 1 Let B and B ′ be n×m real matrices and L(B) = L(B′).
We have det(L(B)) = det(L(B′)).

Proof. The rows of both matrices are two bases for the same lattice so
we have B = UB′ and B′ = V B for some U, V ∈ Zn×n. From these we

3 . 1 B a s i c d e f i n i t i o n s 17

�

�

F I G U R E 3.1: A lattice of dimension 2 with two bases and two funda-
mental parallelepipeds. A fundamental parallelepiped forms a partition-
ing of the space.

obtain det(U) det(V) = 1. Because det(U), det(V) ∈ Z, it follows that
| det(U)| = | det(V)| = 1. We have

det(L(B)) =
√

det(BBT)

=
√

det(V BBT V T)

=
√

det(V B(V B)T))

=
√

det(B′B′T)

= det(L(B′))

�

The fundamental parallelepiped associated with B is the set of points

P (B) =

{
n∑

i=1

aibi | 0 ≤ ai < 1

}
.

We see that v + P (B), v ∈ L(B), form a partition of the space
span(B). In other words, for any u ∈ span(B) there exists a unique

18 P r e l i m i n a r i e s

lattice point v ∈ L(B) such that u ∈ v + P (B). If L = L(B) we also
write P (L) = P (B).

Two vectors v and u are called orthogonal if (v, u) = 0. If S is a space
then we denote by S⊥ the orthogonal space such that every vector of S
is orthogonal to every vector of S⊥.

For a lattice L with basis b1, b2, . . . , bn ∈ Zm we can calculate the
Gram-Schmidt orthogonalization:

b̂1 = b1

b̂j = bj −
j−1∑
i=1

µj,ib̂i, j = 2, . . . , n (3.1)

where

µj,i =
(bj , b̂i)

(b̂i, b̂i)
. (3.2)

Note that vectors b̂j do not necessarily belong to the lattice.

It is easy to see that vectors b̂j are now orthogonal to each other: Let

us assume that vectors b̂1, b̂2, . . . , b̂k−1 are orthogonal, then

(b̂k, b̂j) = (bk, b̂j) −
k−1∑
i=1

µk,i(b̂i, b̂j)

= (bk, b̂j) − (bk, b̂j)

(b̂j , b̂j)
(b̂j , b̂j) = 0

for all j < k.

The Gram-Schmidt orthogonalization process can also be described
using matrices:




b1

b2
...
bn


 =




1
1 0

µj,i
. . .

1






b̂1

b̂2
...

b̂n


 .

If we define µi,i = 1 and µj,i = 0 when i > j we can write the equation
above as

B = (µk,j)1≤j,k≤nB̂.

3 . 2 T h e o r e m s o f B l i c h f e l d t a n d M i n k o w s k i 19

Clearly det((µk,j)1≤j,k≤n) = 1. We have

det(L(B)) =
√

det(BBT)

=

√
det((µk,j)1≤j,k≤nB̂((µk,j)1≤j,k≤nB̂)T)

=
√

det((µk,j)1≤j,k≤nB̂B̂T (µk,j)
T
1≤j,k≤n)

=

√
det(B̂B̂T)

=

n∏
j=1

||b̂j||.

Let us consider the two dimensional parallelogram with sides b1 and
b2. If we name b1 the base then the height of the parallelogram is ||b̂2||.
Thus the area is ||b1||||b̂2|| = ||b̂1||||b̂2||. Next consider the three dimen-
sional parallelepiped spanned by b1, b2, and b3. The base is the parallel-
ogram with sides b1 and b2 and its area is ||b̂1||||b̂2||. The height of the
parallelepiped is ||b̂3|| and thus the volume is ||b̂1||||b̂2||||b̂3||. In general
we obtain

vol(P (B)) =
n∏

i=1

||b̂i||.

We obtained the following theorem:

T H E O R E M 2 The volume of the fundamental parallelepiped equals the
determinant of the lattice.

R E M A R K 3.1 When we talk about the volume we mean the natural
idea of volume. If we wanted to be more formal, we could consider it as
the Lebesgue measure.

3.2 T H E O R E M S O F B L I C H F E L D T A N D
M I N K O W S K I

The following theorem is due to Blichfeldt (1914). We use it as a lemma
for the more interesting Minkowski’s theorem. The more general theor-
ems can be found in [4].

T H E O R E M 3 Let k be a positive integer, L a full-dimensional lattice
in Rn and S ⊂ Rn. If vol(S) > k det(L) then there exist k + 1 distinct
points x1, x2, . . . , xk+1 such that the differences xi − xj are all in L.

20 P r e l i m i n a r i e s

Proof. For each u ∈ L we denote

R(u) = {v | v ∈ P (L), u + v ∈ S}.
For any lattice point u, R(u) is the set of relative locations of points of S
that lie in the fundamental parallelepiped drawn at u. These are pairwise
disjoint sets and

S =
⋃
u∈L

u + R(u).

Thus
vol(S) =

∑
u∈L

vol(R(u)).

If vol(S) > k det(L) we obtain∑
u∈L

vol(R(u)) > k det(L) = k vol(P (L)).

All sets R(u) are contained in the set P (L). By the pigeon hole principle,
the sum of the volumes of R(u) cannot be larger than k vol(P (L)) unless
some point of P (L), say v0, belongs to at least k + 1 sets R(u), say

v0 ∈ R(uj), 1 ≤ j ≤ k + 1,

where the lattice points uj are distinct. Now the points

xj = uj + v0

are in S by the definition of R(u) and

xi − xj = ui − uj ∈ L \ 0,

when i �= j. �

We call a set S symmetric if it is symmetric with respect to the origin,

x ∈ S ⇒ −x ∈ S,

and convex if all points between two points of the set also belong to the
set,

x, y ∈ S ⇒ λx + (1 − λ)y ∈ S,

for all 0 ≤ λ ≤ 1.
The following is a part of the so-called Minkowski’s convex body

theorem.

3 . 2 T h e o r e m s o f B l i c h f e l d t a n d M i n k o w s k i 21

T H E O R E M 4 Let S ⊂ Rn be a symmetric and convex set. Let k
be a positive integer and let L be a full-dimensional lattice in Rn. If
vol(S) > k2n det(L) then S contains at least k pairs of points ±uj ∈ L\0,
1 ≤ j ≤ k, which are distinct from each other.

Proof. Let us assume that vol(S) > k2n det(L) and consider the set Q,

Q = {v | 2v ∈ S}.
This set has volume satisfying the inequality vol(Q) > k det(L). The
previous theorem tells us that there exist k + 1 distinct points xj ∈ Q,
1 ≤ j ≤ k + 1, such that xi − xj ∈ L. We write xj > xi if the first
non-zero component of xj −xi is positive. We re-order the points xj such
that xj > xj+1 always. Now xj > xi for any i > j. Let

uj = xj − xk+1.

These points uj are in L. If ui = uj then xi − xk+1 = xj − xk+1 and thus
i = j. If ui = −uj then xi − xk+1 = −(xj − xk+1) and either xk+1 > xi

or xk+1 > xj , against our ordering. Thus the points

0,±u1, . . . ,±uk

are all distinct. Because xj ∈ Q, we have 2xj ∈ S and, due to symmetry,
−2xj ∈ S for all 1 ≤ j ≤ k − 1. Hence, by convexity and the definition
of the uj, we have

uj =
1

2
2xj +

1

2
(−2xk+1) ∈ S.

The same is true for −uj . �

Let us consider an n-dimensional hypercube with sides of length a
that is centered at the origin. This hypercube has volume an and is

inside a ball of radius
√(

a
2

)2
n. Using this hypercube as set S with

a = 2 n
√

det(B) we obtain the following corollary:

C O R O L L A R Y 1 For any full-dimensional lattice L(B) in Rn, there
exists a lattice point x ∈ L(B) \ 0 such that

||x|| ≤ √
n n
√

det(B).

Thus we have an upper limit for the length of the shortest non-zero
vector of L(B).

22 P r e l i m i n a r i e s

3.3 T H E S H O R T E S T V E C T O R P R O B L E M

The Gamma function, see [24], is defined as

Γ(n) = 2

∫ ∞

0

e−r2

r2n−1dr.

It has, for example, properties Γ(n) = (n − 1)Γ(n − 1) and Γ(1
2
) =

√
π.

T H E O R E M 5 An n-dimensional ball with radius R has volume

Vn(R) =
π

n
2 Rn

Γ(1 + 1
2
n)

.

Proof. We denote by Sn the surface area of the n-dimensional unit ball.
The surface area of an n-dimensional ball with radius r is Snrn−1. We
obtain the volume of a ball with radius R by integrating over the surface
area of all balls with radius smaller than R,

Vn(R) = Sn

∫ R

0

rn−1dr =
SnRn

n
. (3.3)

We can write the integral
∫
�n e−|x|2 in two ways, using the coordinate

representation of x or the fact that the value of e−|x|2 is constant on the
surface of an origin centered ball. We have

Sn

∫ ∞

0

e−r2

rn−1dr =

∫
�n

e−(x2
1+···+x2

n)dx1 · · · dxn

=

(∫ ∞

−∞
e−x2

dx

)n

=

(
2

∫ ∞

0

e−x2

dx

)n

.

Using the Gamma function we can write this as

1
2
SnΓ(1

2
n) = Γ(1

2
)n = (

√
π)n

and we obtain

Sn =
2π

n
2

Γ(1
2
n)

.

We substitute this into (3.3) and obtain

Vn(R) =
π

n
2 Rn

1
2
nΓ(1

2
n)

=
π

n
2 Rn

Γ(1 + 1
2
n)

.

�

3 . 3 T h e s h o r t e s t v e c t o r p r o b l e m 23

Stirling’s approximation for the Gamma function gives us

Γ(1 + n) ≈
√

2πn
(n

e

)n

.

Therefore we obtain

Vn(R) ≈ π
n
2 Rn

√
πn

(
n
2e

)n
2

.

From this we can solve R,

R ≈ (πn)
1
2n

√
n

2πe
Vn(R)

1
n . (3.4)

Let L(B) be a full dimensional lattice. We consider a ball with its center
at the origin and with volume 2n| det(B)|. The ball has radius

R ≈ (πn)
1
2n

√
n

2πe
(2n| det(B)|) 1

n = (πn)
1
2n

√
2n

πe
| det(B)| 1

n .

Using this aproximation we obtain the following corollary from Theorem
4.

C O R O L L A R Y 2 For any full-dimensional lattice L(B) in Rn there
exists a lattice point x ∈ L(B) \ 0 such that ||x|| is at most

(πn)
1
2n

√
2n

πe
| det(B)| 1

n .

The Gaussian heuristic says that we can estimate for a lattice L the
number of lattice points that lie inside some subset S of span(L) as

vol(S)

det(L)
.

We obtain that for some vector v ∈ span(B) the distance of v from the
closest point of L is approximately equal to the radius of an n-dimensional
ball with volume equal to the volume of the fundamental parallelepiped
of the lattice. The intuition here is that the point v always lies inside
a fundamental parallelepiped that is centered at a lattice point. Thus
it would also lie inside any nicely sharped region of the same volume, a
ball, for example. We call the radius R of this ball the critical radius and
have, by (3.4),

R ≈ (πn)
1
2n

√
n

2πe
det(L(B))

1
n ≈

√
n

2πe
det(L(B))

1
n

24 P r e l i m i n a r i e s

F I G U R E 3.2: Gaussian heuristic.

when n is large.
For every lattice L of dimension n we define the successive minima

λ1, . . . , λn as

λi = λi(L) = inf

{
max

j=1,...,i
(||xj||)

∣∣∣xj ∈ L linearly independent

}

for i = 1, . . . , n. We see that always

λ1 ≤ λ2 ≤ · · · ≤ λn.

In the lattices considered in this work, there is always at least one
point in L at distance λ1 from the origin: the shortest vectors of the
lattice. It is possible that there are k linearly independent points at
distance λ1 from the origin. In this case λ1 = λ2 = · · · = λk.

Because the basis vectors b1, . . . , bn are always linearly independent,
we have for all 1 ≤ i ≤ n,

max
j=1,...,i

(||bj||) ≥ λi.

It is possible to find a basis of L such that all of the basis vectors are of
length at most λn.

3 . 3 T h e s h o r t e s t v e c t o r p r o b l e m 25

We define the Hermite constants γn as

γn = sup

{
λ1(L)2

det(L)
2
n

∣∣∣∣L ⊂ Rn is a full-dimensional lattice

}
.

For example γ3 = 2. This means that any three dimensional lattice
with determinant D has a point that is at most of distance

√
2D

1
3 from

the origin.
From corollary 1 we obtain that γn ≤ n. As corollary 2 indicates, this

is not a very strict upper limit.
Here we are interested in finding points of lattice that are as close as

possible to some special point in space. We state two different problems.

Shortest vector problem (SVP): find the shortest non-zero vector
v in a lattice L with basis b1, . . . bn,

v = k1b1 + k2b2 + . . . + knbn,

where (k1, k2, . . . , kn) ∈ Zn \ 0n.

In other words the shortest vector problem means that we need to find
a vector v in the lattice with ||v|| = λ1. We defined λ1 as an infinum but
we can easily see that such a vector exists when basis vectors b1, . . . , bn

have integer elements. The length of every lattice vector is a square root
of a natural number and λ1 ≤ ||b1||. Thus there are only finitely many
possibilities for the length of the shortest vector.

Closest vector problem (CVP): find the vector closest to a ∈ Zm

in a lattice L.

A CVP is related to a SVP of dimension n + 1. Let b1, b2, . . . , bn be
the basis of L and let

bi = (bi1, bi2, . . . , bim)

and
a = (a1, a2, . . . , am).

We construct a new lattice L′ which has basis b′1, b
′
2, . . . , b

′
n, a′ ∈ Zm+1

where

b′i = (bi1, bi2, . . . , bim, 0)

and

a′ = (a1, a2, . . . , am, 1).

26 P r e l i m i n a r i e s

If a lattice point
c = c1b1 + c2b2 + · · · + cnbn

is close to a vector a then a− c is a short vector and there exists a short
vector

a′ − c1b
′
1 − c2b

′
2 − · · · − cnb′n

in the lattice L′. However, this is not necessarily the shortest vector of
L′. For example a′ may be shorter, or it may be that

2a′ − c1b
′
1 − c2b

′
2 − · · · − cnb′n

is very short for some ci ∈ Z. For more on the relationship between CVP
and SVP; see [7].

3.4 P O LY N O M I A L R I N G S

We consider some properties of a polynomial ring Z[x]/(xN − 1). The
elements of this ring are polynomials of degree at most N−1 with integer
coefficients. Ring addition is performed componentwise and the product
is the convolution product of polynomials: for a=a0+a1x+ · · ·+aN−1x

N−1

and b = b0 + b1x + · · ·+ bN−1x
N−1 this is calculated as

a ∗ b =
N−1∑
i=0


 ∑

j+k≡i (N)

ajbkx
i


 .

For example,

(1+2x2+x5)∗(x2 +3x4) = x2 +5x4+6x6 +x7 +3x9 = 1+4x2+5x4 +6x6

in the polynomial ring Z[x]/(x7 − 1).
A polynomial ring Zq[x]/(xN −1) has the same operations as the ring

Z[x]/(xN − 1) except that every coefficient is reduced modulo q. In this
ring some elements have an inverse.

The inverse of a polynomial a in Zq[x]/(xN − 1) is a polynomial
a−1 ∈ Zq[x]/(xN − 1) such that a ∗ a−1 = a−1 ∗ a = 1.

If q is a prime and Zq is a field, then we find the possible inverse of a
polynomial a using the Extended Euclidean Algorithm. If we have that
gcd(a, xN − 1) = 1 then the inverse exists and the algorithm gives us
polynomials u, v ∈ Zq[x]/(xN − 1) such that

u ∗ a + v ∗ (xN − 1) = 1

3 . 4 P o l y n o m i a l r i n g s 27

in Zq[x]. This means that u ∗ a = 1 in Zq[x]/(xN − 1).
The complexity of the Extended Euclidean Algorithm is O(N2 log(q2))

using the school arithmetic; see [29].
If q is a power of a prime p, q = pt, the situation is a little more com-

plicated. Using the Extended Euclidean Algorithm we get polynomials
u, v, c ∈ Zq[x]/(xN − 1) such that

u ∗ a + v ∗ (xN − 1) = 1 − pc

in Zq[x]. This means that u ∗ a = 1− pc in Zq[x]/(xN − 1). We also have

(1 + pc) ∗ u ∗ a = 1 − p2c2

(1 + p2c2) ∗ (1 + pc) ∗ u ∗ a = 1 − p4c4

...

(1 + p2s−1

c2s−1

) ∗ · · · ∗ (1 + p2c2) ∗ (1 + pc) ∗ u ∗ a = 1 − p2s
c2s

in Zq[x]/(xN − 1). If 2s ≥ t we have

(1 + p2s−1

c2s−1

) ∗ · · · ∗ (1 + p2c2) ∗ (1 + pc) ∗ u ∗ a ≡ 1 mod q

and thus

a−1 = (1 + p2s−1

c2s−1

) ∗ · · · ∗ (1 + p2c2) ∗ (1 + pc) ∗ u.

If q has at least two prime factors, we apply the process above separ-
ately to each prime factor. The inverse is then found using The Chinese
Remainder Theorem.

In the following we find the conditions under which the inverse exists
when q = 239 and N = 251. We begin by listing two results for finite
fields without proofs. The first one is about the factorization of xn − 1.

Let gcd(n, p) = 1. We define the cyclotomic coset modulo n containing
s as

Cs = {s, ps, p2s, . . . , prs−1s},
where each pis is reduced modulo n. Here rs is the smallest positive
integer such that prss ≡ s mod n.

Let Fpr be the smallest field of characteristic p that contains all of
the of roots of xn − 1. The following is Theorem 4.11 from [26]:

T H E O R E M 6 Let α be a root of xn − 1 = 0 in Fpr and let m be
its minimal polynomial. Let ζ be a primitive root of unity in Fpr and

28 P r e l i m i n a r i e s

let α = ζ i. If s is the smallest element in the cyclotomic coset mod n
containing i, then

m =
∏
j∈Cs

(x − ζj).

The roots of xn − 1 are powers of a primitive root of unity,

xn − 1 =
n−1∏
i=0

(x − ζ i).

Let us denote by m(s) the minimal polynomial of ζs. The above theorem
implies that

xn − 1 =
∏

s

m(s),

where s runs through a set of coset representatives modulo n. This is the
factorization of xn − 1 into irreducible polynomials over Fp.

Another result we use is The Chinese Remainder Theorem for Poly-
nomials, Theorem 4.1 in [26]:

T H E O R E M 7 Let f1, f2, . . . , fr be distinct and irreducible polynomials
over Fq and let g1, g2, . . . , gr be arbitrary polynomials over Fq. Then
the system of congruences h ≡ gi mod fi, i = 1, 2, . . . , r, has a unique
solution h modulo f1f2 · · · fr.

Let us now consider the case of Z239[x]/(x251 − 1). Because 23950 �≡ 1
mod 250 and 239125 �≡ 1 mod 250, we see that 239i �≡ 1 mod 250 for
all 0 < i < 250. Thus the set C1 has 250 elements and m(1) has degree
250. The polynomial x251 − 1 has two irreducible factors, x − 1 and
m(1) = x250 + x249 + · · ·+ 1 = ϕ(x).

Let us assume that neither x − 1 nor ϕ(x) divides a polynomial
a ∈ Z239[x]. With the Extended Euclidean Algorithm we can find poly-
nomials A1 and A2 in Z239[x] such that{

aA1 ≡ 1 mod x − 1,

aA2 ≡ 1 mod ϕ(x).

Theorem 7 states that there exists a polynomial A such that{
A ≡ A1 mod x − 1,

A ≡ A2 mod ϕ(x).

3 . 4 P o l y n o m i a l r i n g s 29

This means that {
aA = 1 + B(x − 1),

aA = 1 + Cϕ(x)

for some polynomials B and C. Furthermore,

aA = 1 + D(x − 1)ϕ(x)

for some polynomial D and thus A is the inverse of a in Z239[x]/(x251−1).
Conversely, let us assume that a has an inverse A in Z239[x]/(x251−1).

We can write
aA = 1 + D(x − 1)ϕ(x)

for some polynomial D. Thus neither x − 1 nor ϕ(x) divides a.
We have shown:

T H E O R E M 8 A polynomial a ∈ Z239[x]/(x251 − 1) has an inverse if
and only if a(1) �≡ 0 mod 239 and not all coefficients of a are equal.

We need this theorem later when we generate the keys of NTRUEn-
crypt.

C H A P T E R 4

N T R U E n c r y p t

NTRU is a public key cryptosystem proposed by J. Hoffstein, J. Pipher
and J. Silverman. The first version of the NTRU encryption system was
presented at the Crypto ’96 conference; see [15]. The mathematical basis
of these systems lies in polynomial algebra, the fundamental tool being
the reduction of polynomials with respect to two different moduli. It is
the efficiency of NTRU that makes it a potential practical system. It
is significantly faster than its main rivals RSA and ECC (or any other
public key system). Moreover, the computations are very simple, which
makes it suitable for devices with restricted resources, such as smart
cards. On the other hand, the security of these systems is still somewhat
questionable. This is partly due to the relatively short time (so far)
spent studying it. Even more importantly, the NTRU signature scheme
has been broken and subsequently redesigned several times during its
existence.

4.1 S Y S T E M D E S C R I P T I O N S

The NTRU encryption system and the related signature scheme are both
built on polynomial algebra. The basic objects are truncated polynomials
in the ring R = Z[x]/(xN − 1) and the basic tool is the reduction of
polynomials with respect to two relatively prime moduli. The security of
the systems is (hoped to be) based on the difficulty of finding a “short”
factorization for such polynomials. This latter problem is equivalent to
finding a short vector in a certain 2N dimensional lattice, a commonly
known and also widely studied hard problem.

32 N T R U E n c r y p t

4.2 O V E R V I E W

NTRU polynomials a(x) are frequently reduced modulo p and q, the
small and large moduli. The large modulus q is an integer, so reduction
of a(x) = a0 + a1x + a2x

2 + · · ·+ aN−1x
N−1 mod q means just reduction

of each ai modulo q. The small modulus p can also be an integer, but
in some old versions of the NTRU cryptosystem p = 2 + x. In this case
reduction modulo p requires a somewhat more complex algorithm. It is
required that p and q are relatively prime: gcd(p, q) = 1.

The main objects in the systems are “small” polynomials; i.e. poly-
nomials with small coefficients, or polynomials with a small norm (Euc-
lidean length of the coefficient vector).

The public key h is defined by an equation f ∗h = p∗g mod q, where
f and g are small polynomials. The polynomial f should always have
inverses modulo p and q,

f ∗ fp ≡ 1 mod p and f ∗ fq ≡ 1 mod q.

Moreover, the parameters N , p and q are also public, and can be used as
common domain parameters for all users. Polynomials f and g are private
to the key owner. The polynomial g is needed only in key generation.

R E M A R K 4.1 For a polynomial a, a(1) is the sum of the coefficients
of a and therefore it reveals the average of these coefficients. If all coef-
ficients are positive, a(1) is a good indicator of the “smallness” of a.

E N C R Y P T I O N

NTRU is a probabilistic public key cryptosystem, hence one plaintext
message has several possible encryptions.

Encryption of message m is performed by first selecting a message
representative i and a blinding polynomial r, and then computing the
cryptotext

e ≡ i + r ∗ h mod q.

The selection of i and r is performed by first choosing some random data
b and then computing i = ϕ(m, h, b) and r = ρ(m, b). Without going into
the details yet, both will be polynomials with very small coefficients. The
function ϕ is invertible: m and b can be computed given i = ϕ(m, h, b).

4 . 2 O v e r v i e w 33

D E C R Y P T I O N

Decryption is a bit cumbersome, as it does not always succeed. First the
cryptotext e is processed to obtain a candidate message representative
i′, which is then tested to see whether it is valid. If it is not valid, new
candidates are generated until the correct one is found. It is also possible
that decryption fails completely, although the encryption is performed as
intended.

The first task is to compute a ≡ f ∗ e mod q. The coefficients of
a are reduced to an interval [A, A + q), where A is a so-called average
decryption coefficient. A candidate message representative is obtained by
calculating i′ ≡ a ∗ fp mod p. Then candidates m′ and b′ are computed
by reversing ϕ, and from these one gets the candidate blinding polynomial
r′ = ρ(m′, b′). Now the decryptor re-encrypts m′, e′ ≡ i′ + r′ ∗ h mod q,
and if e = e′ then m = m′ and decryption is finished. If e �= e′ then the
value of A is modified and the process is repeated.

The decryption (usually) works, because we always have that a ≡ α
mod q, where

α = f ∗ i + p ∗ r ∗ g.

Clearly, because f ∗fp ≡ 1 mod p, reduction of α∗fp modulo p gives the
correct i. Hence, if α is known exactly (not only modulo q), decryption
succeeds. Because f , i, p, r and g are all small polynomials, the coeffi-
cients of α most likely lie in an interval of length less than q. If this is the
case, α is obtained by reducing the coefficients of a to a proper interval.
The question is how to find the proper interval?

The candidate for the proper interval is first selected as [A, A + q),
where A is called the average coefficient of α, even though the actual
value for the expected average coefficient of α is A + q/2. This is easily
obtained if α(1) is known. We know that α(1) = f(1)i(1)+ r(1)p(1)g(1),
where only i(1) is unknown. But α(1) ≡ a(1) mod q, so we can compute
i(1) mod q. As i is a random binary polynomial, it is very probable that
N/2−q/2 ≤ i(1) < N/2+q/2. Using this assumption, we get the average
decryption coefficient A and the first guess on the proper interval.

If i′ turns out to be invalid, we must assume that a wrap failure has
occurred; i.e. we have selected a wrong interval. To correct this, the
value of A is modified and the process is repeated. If the modifications
of A do not help, two alternatives remain. Either the coefficients of α do
not lie in any interval of length q (this situation is called a gap failure),
or the cryptotext we started with was not a valid cryptotext. In these

34 N T R U E n c r y p t

cases there is no option but to quit (and possibly to send the encryptor
a request to send a new encryption).

R E M A R K 4.2 There are at least two reasons to adopt the “check
back” decryption algorithm described above. Decryption always pro-
duces some candidate message representative i′. If a wrap or gap failure
has occurred, then i′ is incorrect. Using the method above, one can check
whether this is the case. Secondly, this method guarantees that the en-
cryptor can create a valid cryptotext e only if (s)he knows the correspond-
ing plaintext m. This plaintext awareness property is advantageous from
the point of view of hindering some of the most powerful cryptographic
attacks, such as adaptive chosen cryptotext attacks [3]. Specifically, it is
a valid counter-measure against the reaction attack presented in [22].

4.3 T H E C U R R E N T V E R S I O N O F
N T R U E N C R Y P T

At the moment there are two parameter sets in the standard [9], but
others can be added later. Some sets are designed for speed, others for
better security. The parameter set ees251ep4 of [9] states that

• Degree parameter N = 251,

• Large modulus q = 239,

• Small modulus p = 2, and

• The number of coefficients equal to 1 in polynomials F , g, and r is
df = 72, dg = 72, and dr = 72, respectively.

The hash function is SHA-1. A Hash function is a one-way function that
transforms a string of any length into a string of fixed length.

The recent paper [20] by the researchers at NTRU presents a method
for choosing parameters for different security levels.

K E Y S A N D K E Y G E N E R A T I O N

The private key is a polynomial f ∈ R. It is generated as follows: Let F
be a polynomial in R with df randomly chosen coefficients set to 1 and
the rest set to 0. Now f = 1 + 2F . We also require that there exists a
polynomial f−1 ∈ R such that f ∗ f−1 ≡ 1 mod q.

4 . 3 T h e c u r r e n t v e r s i o n o f N T R U E n c r y p t 35

We need another polynomial g ∈ R. Just like F , it has dg randomly
chosen coefficients set to 1 and the rest set to 0. We also require that there
exists a polynomial g−1 such that g ∗g−1 ≡ 1 mod q. This polynomial is
only needed for the generation of the public key. However this polynomial
must be kept secret (or forgotten) because it, with the public key, gives
the secret key.

The public key h is the polynomial in the ring Zq[x]/(xN−1) such that
f ∗h ≡ 2g mod q. This polynomial could also be defined as h ≡ f−1 ∗2g
mod q. Since we require f−1 to exist, the polynomial h also exists.

R E M A R K 4.3 The private key f can be presented as a bit string s
where sj = 1 if and only if fj−1 in f is 2 or 3. Only one coefficient, f0, is
odd. It is possible to specify f using N bits.

The public key h needs more storage space. Every coefficient hj is in
the range [0, q − 1] or, alternatively, in

[− q−1
2

, q−1
2

]
. The size of the key

is about N times log2 q bits, 8 times greater than the size of the private
key when q = 239.

R E M A R K 4.4 If the polynomial f has an inverse, f−1, such that
f ∗ f−1 ≡ 1 mod q, then we can find this inverse using the Extended
Euclidean algorithm. Theorem 8 states that, because f(1) = 145, f−1

always exists. Also g−1 always exists because g(1) = 72.

R E M A R K 4.5 Because f−1 always exists, there are exactly(
251
72

)
≈ 1.19 × 1064

different private keys f with the parameter set ees251ep4. This is also
the number of different polynomials g.

T H E O R E M 9 If q is odd and 2 min(df , dg) + 1 < q, then no two dif-
ferent private keys correspond to the same public key.

Proof. Let f and f ′ be two different private keys and g and g′ two binary
polynomials in R such that g(1) = g′(1) = dg and

f−1 ∗ 2g ≡ f ′−1 ∗ 2g′ mod q.

We multiply the above by f ∗ f ′ and get

2f ′ ∗ g ≡ 2f ∗ g′ mod q

2(1 + 2F) ∗ g ≡ 2(1 + 2F ′) ∗ g′ mod q

2g + 4F ∗ g ≡ 2g′ + 4F ′ ∗ g′ mod q.

36 N T R U E n c r y p t

Because F (1) = F ′(1) = df and g(1) = g′(1) = dg, the coefficients of the
polynomials on both sides of the above equation are non-negative, even
and smaller than 2 + 4 min(df , dg) < 2q. We have

2g + 4F ∗ g = 2g′ + 4F ′ ∗ g′

2g ≡ 2g′ mod 4

g = g′.

We required that g−1 exists and thus

2f ′ ∗ g ≡ 2f ∗ g mod q

2f ′ ≡ 2f mod q

f ′ = f.

We have shown that the private keys must be the same and so there do
not exist two different private keys that correspond to the same public
key. �

R E M A R K 4.6 From this theorem and the previous remark we see that
we can have exactly (

251
72

)2

≈ 1.40 × 10128

different possible public keys h using the parameter set ees251ep4.

E N C R Y P T I O N

For the sake of simplicity, we assume in the following that the parameter
set ees251ep4 is used.

Let m be the binary message which we would like to encrypt. The
length of m must be at most 160 bits when N = 251. We select 80 bits
of random data b. We construct a bit string M ∈ {0, 1}251 as follows:

M = b | l | m | 0̄,

where l is the length of m presented as a binary number of length 8 and
0̄ is a sequence of zeroes such that the length of M is 251 bits.

Let hTrunc be a sequence 80 bits in length calculated from the public
key h and let OID be a 24 bit constant string defined by the standard.
The binary string

z = OID | m | b | hTrunc

4 . 3 T h e c u r r e n t v e r s i o n o f N T R U E n c r y p t 37

m b

M = b | m h

r =MGF(M | h)

R = r ∗ h

i = Hash(R) ⊕ M

e = R + i

F I G U R E 4.1: The encryption of message m with randomness b and
public key h.

is used as a seed for the pseudo random generator to produce the blinding
polynomial r. We give details of the generation of r later.

We need a so-called mask generation function MGF from the ring
Zq[x]/(xN − 1) to ZN

2 . This operation is also discussed in more detail
later.

Let
R ≡ r ∗ h mod q

and
m′ = MGF(R) ⊕ M.

Let i ∈ R be the polynomial i =
∑N−1

j=0 m′
jx

j , where m′
j is the (j + 1)th

bit of the binary string m′. Now if

N − q

2
< i(1) <

N + q

2
,

then the cryptotext is
e ≡ R + i mod q.

38 N T R U E n c r y p t

f e

ic = f ∗ e mod 2

Rc = e − ic

Mc = Hash(Rc) ⊕ ic h

mc rc =MGF(Mc | h)

rc ∗ h

F I G U R E 4.2: The decryption of cryptotext e with public key h and
private key f .

Otherwise, we need to try again with a different b. The probability of
having to try again with our parameter set is

P (At least 245 0’s in m′) + P (At least 245 1’s in m′)

=

(
251
245

)
2−245 +

(
251
245

)
2−245 ≈ 10−62.

R E M A R K 4.7 In practice the number of 1’s in the message represent-
ative is always in the desired interval. However an attacker may want to
use message representatives that have very many or very few 1’s. There-
fore we must discard those, at least when decrypting.

D E C R Y P T I O N

Let e ∈ Zq[x]/(xN −1) be the cryptotext which we would like to decrypt.
The key part of the decryption is to guess α = r ∗ 2g + i ∗ f . We know

4 . 3 T h e c u r r e n t v e r s i o n o f N T R U E n c r y p t 39

that α ≡ i mod 2 because f = 1 + 2F . We also know that

α ≡ r ∗ h ∗ f + i ∗ f ≡ f ∗ e mod q.

Let a = f ∗ e. First we compute i(1). From above we see that using
the parameter set ees251ep4 we have

i(1) ≡ a(1) − 2r(1)g(1)

f(1)
≡ a(1) − 10368

145
≡ 212 − 89a(1) mod 239.

We also know that 6 < i(1) < 245 and so we can calculate the exact
value of i(1). If all of the coefficients of α are about the same size then
they should be in the interval [A + 1, A + q], where

A =

⌊
2r(1)g(1) + i(1)f(1)

N

⌋
−
⌈q

2

⌉
=

⌊
10368 + 145i(1))

251

⌋
− 120.

We choose the coefficients of a modulo q from this interval and hope that
they equal those of α.

Let ic ∈ Z2[x]/(xN − 1) and ic ≡ a mod 2. This is our candidate for
the message representative i. Also let

Rc ≡ e − ic mod q.

Let m′
c be a binary string of length 251 where the (j + 1)th bit is the

coefficient of xj in ic.
We use the same hash function as in the encryption and get our

candidate for M ,
Mc = Hash(Rc) ⊕ m′

c.

We denote the fist 80 bits of Mc as bc and interpret the next 8 bits as the
binary representation of lc. The next lc bits we call mc. There should be
some bits left over and those should be zeroes. Otherwise, the decryption
has failed.

Now we proceed as in the encryption: Let hTrunc be a sequence 80
bits long calculated from the public key h and

zc = OID | mc | bc | hTrunc.

This is used as a seed for the pseudo random generator to produce the
candidate for the blinding polynomial rc.

If h ∗ rc is not equal to Rc modulo q then the decryption has failed.
Otherwise, mc is the decrypted message.

40 N T R U E n c r y p t

C O R R E C T N E S S

We assume that the decryptor has guessed α = r ∗ 2g + i ∗ f correctly
as shown above. Now α ≡ i mod 2 because f = 1 + 2F . Therefore the
candidate for the message representative equals the message represent-
ative which the encryptor used: ic = i. The cryptotext was computed
as

e ≡ R + i mod q

and so
Rc ≡ e − ic ≡ R mod q.

Thus
Mc = MGF(Rc) ⊕ MGF(R) ⊕ M = M.

Therefore bc = b, lc = l, mc = m, and the seed for computing rc equals
the seed for r. Finally,

h ∗ rc ≡ h ∗ r ≡ R ≡ Rc mod q

and the decryption is successful.
If the decryptor was unable to guess α we have with very high prob-

ability that ic �= i. Thus

Rc ≡ e − ic �≡ e − i ≡ R mod q

and Mc �= M . Again, with very high probability bc �= b, mc �= m, and
rc �= r. There is now no reason why R(= e − ic) should be anything like
h ∗ rc.

R E M A R K 4.8 As expected, the private key f is needed to correctly
compute a and to decrypt successfully.

T H E F U N C T I O N S N E E D E D

We saw earlier that we need a pseudo random number generator to pro-
duce the blinding polynomial r from the binary string z. The pseudo
random number generator is constructed using a hash function, SHA-1.
SHA-1 generates an output of 160 bits from any bit string of length less
than 264.

To produce an output longer than 160 bits we use a counter c and
compute Hash(z | c) repeatedly for increasing values of c. Here c is the
binary representation of the counter using 32 bits. The procedure is as
follows:

4 . 3 T h e c u r r e n t v e r s i o n o f N T R U E n c r y p t 41

We interpret every 160 bits of the output as 20 binary numbers of 8
bits in the range [0, 255] when N = 251. If N is larger, then we need more
bits per number. To start with we take r to be the zero polynomial. Let
j1 be the first number produced by the pseudo random number generator.
If j1 < N we set the coefficient of xj1 in r to 1. We repeat this for the
next number j2 if it differs from j1. Then we continue reading the output
until we have found dr different values smaller than N , in which case
r has exactly dr coefficients set to 1. Every time we run out of pseudo
random numbers we increase c by one and compute again the value of
Hash(z | c).

We produce the mask generation function for encryption in a similar
way. Let R be a polynomial in R and R2 a binary string of length N ,
where the jth bit is 1 if and only if the coefficient of xj−1 in R is odd.
The mask generated from R is then the first N bits of

Hash(R2 | 032) | Hash(R2 | 0311),

where Hash is SHA-1. Again, if N is larger than two times 160, we merge
more hashes.

The bit string hTrunc is simply formed by joining the binary repres-
entation of the first 10 coefficients h0, . . . , h9 of h using 8 bits.

N O T E S

The small modulus p = 2 must not divide the large modulus q: The
cryptotext is computed as

e ≡ R + i ≡ r ∗ h + i ≡ r ∗ f−1 ∗ p ∗ g + i mod q.

If p | q then e ≡ i mod p and the message can be revealed without key.
In general the gcd of p and q should be 1.

It is possible that not all of the coefficients of α lie in the predicted
interval. According to the researchers at NTRU [43], the probability of
this happening when using the parameter set ees251ep4 is about 10−31

with i(1) = 125. In this case the decryptor is unable to decrypt the
message even when it is normally encrypted. The encryptor cannot know
beforehand whether the decryption will be successful or not.

The polynomials r, g, f , and i have only very small coefficients.
Therefore it is possible to successfully approximate the size of the coeffi-
cients of α(= r∗2g+ i∗f). Some coefficients of h are large and hence the
coefficients of e(= r ∗h+ i) differ significantly in size. If these coefficients

42 N T R U E n c r y p t

were in some interval, for example [B, B + q), where

B =

⌊
r(1)h(1) + i(1)

N

⌋
−
⌈q

2

⌉
,

then it would be easy to find the message representative i: We would
guess i(1), lift e into this interval and compute modulo h. Note that
i(1) < N and so i(1) has little effect on the formula.

It is not mandatory to use SHA-1 as the hash function. There are
also other options in the standard.

A N E X A M P L E

We give a short example to illustrate NTRUEncrypt. Let N = 7, q = 11
and df = dg = dr = 2. Our private key is f = 1+2x4+2x6 and our public
key is h = 1+8x+7x2 +8x3 +x4 +5x5 +6∗x6 ≡ f−1∗2(x+x4) mod 11.
We shall encrypt a message m using randomness b. Let the blinding
polynomial be r = ρ(m, b) = x2 + x3 and the message representative
i = ϕ(m, h, b) = 1 + x + x4 + x5. The cryptotext is now

e = 7 + x + 7x2 + 9x3 + 5x4 + 5x5 + 9x6 ≡ r ∗ h + i mod 11.

The decryptor obtains

a ≡ f ∗ e ≡ 5 + 3x + 2x2 + 4x3 + 7x4 + 3x5 + 4x6 mod 11.

This reduced modulo 2 is the message representative, from which the
message m and the randomness b can be derived. By re-encrypting m
we check that the decryption was successful. Note that

i(1) =
28 − 2 · 2 · 2

5
= 4

and

A =

⌊
2 · 2 · 2 + 4 · 5

7

⌋
−
⌈

11

2

⌉
= −2.

Thus the desired interval for the coefficients of α was [-1,9].

4.4 C O M PA R I S O N

According to several estimates (see for example [16]) the security level of
NTRU with N = 251 is comparable to RSA with 1024 bit numbers or to

4 . 5 E a r l i e r v e r s i o n s 43

NTRU 251 RSA 1024 ECC 163
public key (bits) 2008 1024 164
secret key (bits) 251 1024 163
plaintext block (bits) 160 702 163
ciphertext block (bits) 2008 1024 163
encrypt speed (blocks/sec) 22727 1280 458

(Mbits/sec) 3.6 0.90 0.075
decrypt speed (blocks/sec) 10869 110 702

(Mbits/sec) 1.7 0.077 0.11

T A B L E 4.1: A comparison of NTRUEncrypt, RSA and the elliptic
curves cryptosystem made using a 800MHz Pentium III computer. The
speeds are from the NTRU website [34].

the elliptic curves cryptosystem [2] with a 163 bit field. We now make
some comparisons between these cryptosystems. The numerical data can
be seen in table 4.1.

The key generation of NTRU is very fast. All we need to do is select
random f and g, find the inverse of f and multiply it by 2g. The inverse
is found using the Extended Euclidean algorithm for f and xN − 1. The
key generation is about 500 times faster than the key generation of RSA,
which requires finding two large primes, multiplying them and finding
the secret exponent.

The encryption and decryption are, with NTRU, one or two orders
faster than with RSA or with elliptic curves under the same security level.
Because of the padding schemes, one block in RSA 1024 can encrypt only
702 bits and NTRU message representatives of length 251 bits correspond
to a message of 160 bits.

Because the message representative in NTRU is a binary string and
the cryptotext is a polynomial with coefficients as large as q, the encryp-
ted message is considerably longer than the original message.

The key sizes of NTRUEncrypt are about the same as with RSA and
elliptic curves, the public key of NTRU is twice the length of the RSA
public key.

4.5 E A R L I E R V E R S I O N S

The three main versions of NTRU are from the years 1998, 2002 and
2003. In Chapter 9 we will consider in detail the version of NTRU from
2002. Here we introduce this and the version from 1998 for the sake of

44 N T R U E n c r y p t

N q p df dg dr

107 64 3 15 12 5
167 128 3 61 20 18
263 128 3 50 24 16
503 256 3 216 72 55

T A B L E 4.2: Parameter sets of the first version of NTRU.

completeness.
In the version of NTRU from the year 1998, the small modulus p

was always 3. There were different parameter sets for different security
levels. The parameter N was chosen to be a safe prime, that is to say
a number N such that both N and N−1

2
are primes. The large modulus

was a power of 2.
Let us denote by T (s, t) the polynomials in R with exactly s coef-

ficients equal to 1, t coefficients equal to −1 and remaining coefficients
equal to 0.

We select the polynomial f from the set T (df , df − 1), g from the
set T (dg, dg) and the blinding polynomials r from the set T (dr, dr). The
coefficients of the message representative belong to the set {−1, 0, 1}.
The coefficients of α are centered around zero and thus A = − q

2
. The

parameter sets are listed in table 4.2.
A different version of NTRU was presented in draft 4 of the Efficient

Embedded Security Standard [8] in 2002. The difference is that the small
polynomial is now 2 + x. Thus the message representative can only take
coefficients from the set {0, 1}.

The generation procedure for the private key f is also different. We
can either select an F ∈ T (df , 0) and set f = 1 + (2 + x) ∗ F or we can
choose positive polynomials f1, f2, f3 ∈ R with fi(1) = dfi

and compute

f = 1 + (2 + x) ∗ (f1 ∗ f2 + f3).

Using this procedure, f always has an inverse modulo 2 + x. Because
the inverse fp = 1 we can omit the multiplication by fp from the de-
cryption phase. We only need to check that f has an inverse modulo
q.

The polynomial g is selected from the set T (dg, 0) and the blinding
polynomial is generated from three smaller parts: r = r1 ∗ r2 + r3 where
r1, r2, r3 ∈ R are positive polynomials and ri(1) = dri

.
Because the coefficients of the polynomials are now no longer centered

around zero we need to select a different interval for the coefficients of a

4 . 5 E a r l i e r v e r s i o n s 45

N q p df df1, df2, df3 dg dr1, dr2, dr3

139 64 2 + x 40 40 0,0,40
251 128 2 + x 72 8,8,8 72 8,8,8
347 128 2 + x 64 7,8,8 173 7,8,8
503 256 2 + x 420 20,20,20 251 12,13,14

T A B L E 4.3: Parameter sets of the 2002 version of NTRU.

during decryption.
We first select [A, A + q) to be the candidate for the proper interval,

where A is the expected average coefficient of α = f ∗ i+p∗ r ∗ g. This is
obtained if α(1) is known. Clearly α(1) = f(1)i(1)+ p(1)r(1)g(1), where
only i(1) is not known. But as α(1) ≡ a(1) mod q, we can compute i(1)
mod q. Because i is a random binary polynomial, it is highly probable
that N/2 − q/2 ≤ i(1) < N/2 + q/2. If we make this assumption, we
get the average decryption coefficient A and the first guess on the proper
interval.

A wrap (or gap) error only occurs if at least one coefficient differs
by q/2 from the average. In this case we try the decryption again with
slightly increased and decreased A’s until we give up and declare failure.

R E M A R K 4.9 Even though the small modulus p is now a polynomial
(2+x), it is easy to see that representatives modulo p are (almost) exactly
the binary polynomials in R.

R E M A R K 4.10 Generating F and g from three parts increases the
efficiency of the calculations. At the encryption phase we must compute
r ∗ p ∗ h. The multiplication p ∗ h need only be calculated once for every
public key. However, r is different every time. We have that

r ∗ p ∗ h = r1 ∗ (r2 ∗ (p ∗ h)) + r3 ∗ (p ∗ h).

When the multiplier has small weight, we can replace the convolution
product by a small number of rotations and additions. We can replace
the normal convolution product here by some rotations of p ∗ h and
dr1 + dr2 + dr3 − 2 additions in the ring.

We can do the same trick with f , thus also making the decryption
faster.

C H A P T E R 5

L a t t i c e r e d u c t i o n a n d
s e c u r i t y o f N T R U

In this chapter we consider the following problem: given N , q and a
polynomial h of degree at most N − 1, find polynomials f and g in the
ring R = Z[x]/(xN − 1) with small coefficients such that f ∗ h ≡ 2g
mod q. If we are able to solve this problem then we are able to break
the NTRU cryptosystem. In the later chapters we estimate the security
of NTRU by estimating the complexity of solving this problem.

One of the solutions of this problem is the private key corresponding
to a public key h. With Gaussian heuristic we can see that with high
probability there are no solutions with shorter vectors f and g. Also
with high probability there are no solutions with slightly longer vectors.
However, there are several solutions of the same length.

R E M A R K 5.1 When there is no possibility of misunderstanding, we
denote by f both the polynomial f0 + f1x+ · · ·+ fN−1x

N−1 ∈ R and the
vector

(
f0 f1 . . . fN−1

) ∈ ZN .

We call the vectors

f i =
(
fN−i fN−i+1 · · · fN−1 f0 f1 · · · fN−i−1

)
and the polynomials f ∗ xi in R the rotations of f .

If f ∗h ≡ 2g mod q then also f ∗xi∗h ≡ 2g∗xi mod q. Thus if there
is one solution to our problem then there are several solutions, namely
all the rotations of f and g. Clearly they are all of the same length.
Our aim is to find any one of these solutions. Once we have found one
rotation of f , we have only N possibilities left for the private key f . The

48 L a t t i c e r e d u c t i o n a n d s e c u r i t y o f N T R U

right one can be found by brute force or by some more sophisticated
technique. For example, in the newest version of NTRU, f0 is the only
odd coefficient of f and can thus easily be spotted in any rotation of f .

We can solve the main problem of this chapter by finding the shortest
vector of the lattice L(B) with

B =




b1

b2
...

b2N


 =




1 h0 h1 h2 · · · hN−1

1 0 hN−1 h0 h1 · · · hN−2

1 hN−2 hN−1 h0 · · · hN−3

0
. . .

...
...

...
. . .

...
1 h1 h2 h3 · · · h0

0 qI




=

(
I

−→
h

0 qI

)
.

We note that the rows of B are linearly independent.
In general, given a polynomial h, there is no guarantee that there exist

two small polynomials f and g such that f ∗ h ≡ 2g mod q. However,
in all the cases we are interested in such small polynomials exist.

T H E O R E M 10 If a polynomial h ∈ R has a factorization h ≡ f−1∗2g
mod q, f−1, g ∈ R then the lattice L(B) contains the vector

(
f 2g

)
,

where f ∗ f−1 ≡ 1 mod q.

Proof. The equation h ≡ f−1 ∗ 2g mod q can be written as a system of
equations: ∑

i+j≡k (N)

fihj ≡ 2gk mod q

for 0 ≤ k < N . We can write this system in matrix form as

(
f0 f1 · · · fN−1

)



h0 h1 · · · hN−1

hN−1 h0 · · · hN−2
...

...
. . .

...
h1 h2 · · · h0


≡ (

2g0 2g1 · · · 2gN−1

)
,

where every element is taken modulo q. A vector v belongs to the lattice
L(B) if there exists some u ∈ Z2N such that

u

(
I

−→
h

0 qI

)
= v.

5 . 1 L a t t i c e c o n s t a n t s 49

We have (
f r

)(I
−→
h

0 qI

)
=
(
f 2g

)
for some r ∈ ZN or, equivalently, using the corresponding polynomials,
f ∗ h + qr = 2g. �

Above we considered the problem of finding the private key from the
public key. Next we study a weaker form of attack where we try to find
the plaintext given the cryptotext.

Let r be a blinding polynomial that was used to generate a cryptotext
c and let h be the private key. In the lattice L(B) there is the vector(
r r ∗ h

)
. If we append the basis of this lattice by

(
0 e

)
we get a basis

matrix

Be =


I

−→
h 0̄T

0 qI 0̄T

0̄ e 1


 .

Here we increase the dimension by one to keep the basis linearly in-
dependent. We see that in this new lattice there is a short vector(
r −i −1

)
, where i is the used message representative, for some poly-

nomial s ∈ R:

(
r s −1

)I
−→
h 0̄T

0 qI 0̄T

0̄ e 1


 =

(
r r ∗ h − e + qs −1

)
=
(
r −i −1

)
.

Finding the message representative i reveals the plaintext. Note that
both r and i are binary and unknown to the attacker.

5.1 L A T T I C E C O N S T A N T S

For a “random” lattice L, the Gaussian heuristic says that the length of
the shortest non-zero vector is usually approximately

σ(L) ≈
√

dim(L)

2πe
det(L)

1
dim(L) .

Let us denote the actual shortest vector of the lattice L by λ(L). Practical
experiments have shown that the current lattice reduction techniques find
the actual shortest vector faster when the lattice constant,

c =
λ(L)

σ(L)

√
dim(L),

50 L a t t i c e r e d u c t i o n a n d s e c u r i t y o f N T R U

gets smaller. In other words, it is easier to find shortest vectors that are
small relative to the expected shortest vector.

The remark above suggests that we have two possible ways of facil-
itating our search for the shortest vector: We can modify the lattice in
order to make the shortest vector shorter, or we can make the lattice
more sparse and thus enlarge the size of the expected shortest vector.

For a lattice L with basis matrix


λ h0 h1 h2 · · · hN−1

λ 0 hN−1 h0 h1 · · · hN−2

λ hN−2 hN−1 h0 · · · hN−3

0
. . .

...
...

...
. . .

...
λ h1 h2 h3 · · · h0

0 qI




and balancing constant λ �= 0 we have

σ(L) =

√
2N

2πe
(λq)N

1
2N =

√
Nqλ

πe

and
λ(L) ≈

√
||λf ||2 + ||2g||2.

If we assume that ||f || ≈ ||2g||, then the value of

c =

√
2πe

qλ
(λ2||f ||2 + ||2g||2)

is minimal when λ = 1. The minimal value with the parameter set
ees251ep4 is c ≈ 6.4.

For the lattice L(Be), the length of the expected shortest vector is

about the same (
√

Nq
πe

) but the the length of the actual shortest vector

is λ(L(Be)) ≈ √
N . About half of the components are 1 or −1 and the

other half are 0. In this case, the constant c is approximately 4.2.

5.2 R E D U C I N G T H E L A T T I C E C O N S T A N T S

In the following, we manipulate the lattice according to extra information
we have about f and g. Let us assume that h is a public key generated

5 . 2 R e d u c i n g t h e l a t t i c e c o n s t a n t s 51

according to the latest version of NTRUEncrypt. There exist polynomials
F, g ∈ R with d coefficients equal to 1 and N − d coefficients equal to 0
such that (1 + 2F) ∗ h ≡ 2g mod q. We present some tricks to obtain
lattices with smaller lattice constants.

In the parameter set ees251ep4, which we are mainly interested in,
we have N = 251, q = 239 and d = 72.

T R I C K O N E

The shorter the shortest vector of a lattice, the easier it usually is to find.
The length of vector

(
f 2g

)
is√

||f ||2 + ||2g||2 ≈ 2
√

2d.

Note that we know that there exist vectors f and 2g with d 2’s. We need
to find a vector that is always close to f (and 2g since they are similar).
We take this vector to be a1̄ =

(
a a · · · a

)
. We need to minimize the

distance between
(
f 2g

)
and

(
a1̄ a1̄

)
:√

||f − a||2 + ||2g − a||2 ≈
√

2(d(2 − a)2 + (N − d)a2)

≈ √
2Na2 − 8da + 8d.

The distance is minimal when a ≈ 2d
N

. Thus, the minimum distance is
approximately √

2N

(
2d

N

)2

− 8d
2d

N
+ 8d = 2

√
2d − 2d2

N
.

It is often advantageous to add this vector, a1̄, to the lattice and solve
the new shortest vector problem. This is called the embedding attack.
In our case 2d

N
≈ 1

2
and we multiply every element of the lattice by 2 to

make them all integers. In matrix form this is

(
f r −1

)2I
−→
2h

0 2qI
1̄ 1̄


 =

(
2f − 1̄ 4g − 1̄

)

for some r ∈ ZN .
After this trick,

σ(L) ≈ 2

√
Nq

πe
, λ(L) ≈

√
2 ((N − d) · 12 + d · 32)

52 L a t t i c e r e d u c t i o n a n d s e c u r i t y o f N T R U

and c ≈ 5.4.
Now we have two problems. The first one is that the dimension of

the lattice is smaller than the number of basis vectors. Therefore the
basis vectors are linearly dependent. The second one is that the vector(
a1̄ a1̄

)
is the shortest vector of the lattice. This is not the shortest

vector which we are interested in.
We solve these problems by finding a linearly independent basis and

using some tricks so that
(
a1̄ a1̄

)
is no longer in the lattice. We do not

give the details here.

R E M A R K 5.2 Above we used only approximations of the length of f .
The length of f is actually either

√
4d + 1 or

√
4(d − 1) + 9, depending

on whether f0 is 1 or 3. We used the approximation
√

4d.

The embedding is also useful with L(Be). The length of the shortest
vector in the lattice generated by matrix

Be =


2I

−→
2h 0̄T

0 2qI 0̄T

1̄ 2e − 1̄ 1


 .

is
√

2N + 1. Every coefficient of the shortest vector is ±1. Thus we have
the lattice constant c ≈ 3.0.

Tricks two and three, discussed below, do not work with L(Be) or most
other lattices. They are specific to the way the private key is generated
in NTRUEncrypt.

T R I C K T W O

We now consider the problem from the point of view of an attacker trying
to break a given NTRU key. The attacker knows that there exists an f
such that f = 1 + 2F . Trivially we can write

2F · 2 −
N−1∑
i=0

xi = 4F −
N−1∑
i=0

xi

and because

(1 + 2F) ∗ 2h + 2qr −
N−1∑
i=0

xi = 4g −
N−1∑
i=0

xi,

5 . 2 R e d u c i n g t h e l a t t i c e c o n s t a n t s 53

we have

2F ∗ 2h + 2qr −
(

N−1∑
i=0

xi − 2h

)
= 4g −

N−1∑
i=0

xi.

In matrix form we can write the above as

(
2F r −1

)2I
−→
2h

0 2qI
1̄ 1̄ − 2h


 =

(
4F − 1̄ 4g − 1̄

)
.

We move the scalar 2 and get

(
F r −1

)4I
−→
4h

0 2qI
1̄ 1̄ − 2h


 =

(
4F − 1̄ 4g − 1̄

)
.

This means that
F ∗ 4h + 2qr + 2h = 4g

and because the attacker knows h he also knows the parity of the coeffi-
cients of r if 2 � q. Let r = 2r′ + r′′ where r′′ ∈ Z2[x]/(xN − 1) is known
by the attacker. We now have

(
F r′ −1

)4I
−→
4h

0 4qI
1̄ 1̄ − 2h − 2qr′′


 =

(
4F − 1̄ 4g − 1̄

)
.

After trick two

σ(L) ≈ 4

√
Nq

πe
, λ(L) =

√
2 ((N − d) · 12 + d · 32)

and c ≈ 2.7.
Again we note that we do not have a linearly independent basis.

However, we can easily find one. Unlike in the previous case, now the
length of

(
1̄ 1̄ − 2h − 2qr′′

)
is quite large compared to the length of(

4F − 1̄ 4g − 1̄
)
, so this does not give us any problems.

R E M A R K 5.3 The rotations of 4F − 1̄ and 4g− 1̄ do not belong to the
lattice. The last row of the matrix breaks the symmetry. For example,
the lattice point we get using the vector corresponding to polynomials
F ∗ x and r′ ∗ x,

(
F 1 r′1 −1

)4I
−→
4h

0 4qI
1̄ 1̄ − 2h − 2qr′′




=
(
4F 1 − 1̄ 4g1 − 2h1 + 2h − 2qr′′1 + 2qr′′ − 1̄

)
,

54 L a t t i c e r e d u c t i o n a n d s e c u r i t y o f N T R U

is not short. The first part (4F 1 − 1̄) is short, but the second is not.

T R I C K T H R E E

The attacker knows the weight of f , g, h, and r′′. Therefore (s)he can
calculate the weights of r and r′:

r(1) =
2g(1) − f(1)h(1)

q
and

r′(1) = r(1) − r′′(1).

For any scalar m we have

(
F r′ −1

)4I
−→
4h 0̄T

0 4qI m̄T

1̄ 1̄ − 2h − 2qr′′ mr′(1)


 =

(
4F − 1̄ 4g − 1̄ 0

)
.

Alternatively, (call this trick 3B) we can use the knowledge we have about
F . The weight of F is d. We can write

(
F r′ −1

)
−−−→
4 + 1̄

−−−−→
4h + 1̄

0 4qI

1 + d 1 + d − 2h − 2qr′′


 =

(
4F − 1̄ 4g − 1̄

)
.

This time we have added 1 to every element in the first N rows of the
matrix of trick two and added d to every element of the last row. In the
end these cancel each other out.

The length of the target vector λ(L) stays the same after either ver-
sion of trick three but the determinant of L increases together with the
dimension of L. The quantity σ(L) is now slightly larger than before,
resulting in a small decrease in c. The size of this decrease depends on
the value of h and is much smaller than the decrease in c obtained using
tricks one or two.

We cannot use trick three for the lattice L(Be) because we do not
know the weights of r or i.

By applying trick one, we succeeded in reducing the lattice constant
of L(Be) to 3.0. On the other hand, the lattice constant of L(B) is 2.7
after trick two. Thus it seems that finding the private key using L(B) is
easier than finding the plaintext using L(Be).

5 . 2 R e d u c i n g t h e l a t t i c e c o n s t a n t s 55

R E M A R K 5.4 In the paper [16], the writers give an alternative defin-
ition of the lattice constants. The writers define the length of a vector
v = (v1, v2, . . . , vn) as the centered norm

||v||c =

√√√√ n∑
i=1

(
vi − 1

n

n∑
j=1

vj

)2

=

√√√√ n∑
i=1

v2
i −

1

n

(
n∑

i=1

vi

)2

.

After trick two their constants are the same as the constants defined here.
The last row is selected in such a way that the length of the shortest
vector is its centered norm (that is, the average value of its components
is 0).

T R I C K S F O R I N V E R S E O F P U B L I C K E Y

Above we tried to find small polynomials f and g such that f ∗h ≡ 2g
mod q. We could also write this equation as f ≡2g∗h−1 mod q. Because
g has an inverse, we know that h−1 ≡ f ∗ 2−1g−1 mod q also exists. In
matrix form we have

(
2g s

)(I
−→
h−1

0 qI

)
=
(
2g f

)

for some vector s ∈ ZN or, equivalently, using corresponding polynomials,
2g ∗ h−1 + qs = f . As with trick one, we have

(
2g s −1

)2I
−−→
2h−1

0 2qI
1̄ 1̄


 =

(
4g − 1̄ 2f − 1̄

)
.

Trick two does not work completely. We get

(
g s −1

)4I
−−→
4h−1

0 2qI
1̄ 1̄


 =

(
4g − 1̄ 4F + 2e1 − 1̄

)
(5.1)

where e1 =
(
1 0 · · · 0

)
and

g ∗ 4h−1 + 2qs = 4F + 2.

We could proceed as with trick two, divide s into two parts s = 2s′ + s′′

and replace 2qI by 4qI in the matrix in (5.1). Doing so would result in

56 L a t t i c e r e d u c t i o n a n d s e c u r i t y o f N T R U

the loss of an important property of the lattice. Until now, all of the
rotations of 4g and 2F +2 have belonged to the lattice. If we follow trick
two we need to fix the location of the element to which 2 is added.

If we want the lattice to be symmetric such that all rotations of 2g
and f belong to the lattice, the best we can do is to use (5.1) with the
ideas of trick three. We have

s(1) =
f(1) − 2g(1)h−1(1)

q

and, for any scalar m,

(
g s −1

)4I
−−→
4h−1 0̄T

0 2qI m̄T

1̄ 1̄ ms(1))


 =

(
4g − 1̄ 4F + 2e1 − 1̄ 0

)
.

5.3 Z E R O F O R C I N G

Next we consider a method called zero forcing. The idea of this attack
is due to Alexander May [27, 28].

Let us still consider the NTRU-lattice L with matrix(
IN

−→
h

0 qIN

)
.

If we know or guess that, for example, the coefficient of x42 in f is 0, then
we can reduce the dimension of this lattice. We obtain a new lattice L′,
and a basis for it, by removing the row corresponding to x42 from the basis
matrix of L. As a result, the new basis matrix has a column consisting of
zeros. This column can naturally also be removed. We obtain the square
matrix (

IN−1 H ′

0 qIN

)
which has dimension 2N − 1. Let f ′ be the vector in Z250 with f ′

i = fi

for 0 ≤ i ≤ 41, and f ′
i = fi+1 for 42 ≤ i ≤ 249. For the original matrix

we have that (
f r

)(IN

−→
h

0 qIN

)
=
(
f 2g

)
.

Thus, for the new matrix, if our guess was right, we have

(
f ′ r

)(IN−1 H ′

0 qIN

)
=
(
f ′ 2g

)
.

5 . 3 Z e r o f o r c i n g 57

Let us consider the lattice constants. We have

σ(L′) ≈
√

2N − 1

2πe
q

N
2N−1 < σ(L)

and
λ(L′) = λ(L).

Thus c gets smaller and the lattice reduction techniques become faster.

R E M A R K 5.5 In his original article, May had a different approach to
the reduction. Instead of removing a row and a column, he multiplied
a column by a large integer θ. Thus the element corresponding to this
column was zero in all the short vectors of the resulting lattice. The
length of the shortest vector of the new lattice was in this case√

2N

2πe

√
qθ

1
2N .

If θ is large enough, the shortest vector is longer than above. However,
a huge θ slows down the calculations and thus the method of removing
a row and a column is considered better.

Instead of guessing that one coefficient of f is zero we can guess a
whole pattern of coefficients to be zeroes. The more coefficients we guess
to be zero, the faster the reduction becomes.

It is enough that there is a matching pattern of zeroes in one of the
rotations of f . If f ′ = f · xi, g′ = g · xi, and r′ = r · xi we see that the
equality (

f ′ r′
)(IN

−→
h

0 qIN

)
=
(
f ′ 2g′)

holds for any i and that ||f || = ||f ′|| and ||g|| = ||g′||.
We can always find an index i such that f ′

42 = 0 when f ′ = f · xi.
With our parameter set we can even find an index i such that f ′

42 = f ′
43 =

f ′
44 = f ′

45 = 0. There are always at least four consecutive zero coefficients
in f . With high probability there are more than four consecutive zeroes.

T H E O R E M 11 The probability of guessing correctly a pattern of r
zeroes in any rotation of f ∈ Z[x]/(xN − 1) with N − d zeroes is approx-
imately

1 −
(

1 −
d−1∏
i=0

(
1 − r

N − i

))N

.

58 L a t t i c e r e d u c t i o n a n d s e c u r i t y o f N T R U

Proof. The probability of guessing correctly a pattern of r zeroes in f is(
N−d

r

)
(

N
r

) =
(N − r)(N − r − 1) · · · (N − r − d + 1)

N(N − 1) · · · (N − d + 1)
=

d−1∏
i=0

(
1 − r

N − i

)
.

If we assume that probability of success is always the same for all the
rotations of f we get

Prob(succes with at least one rotation)

= 1 − Prob(failure with all rotations)

≈ 1 − Prob(failure with f)N

≈ 1 − (1 − Prob(success with f))N

≈ 1 −
(

1 −
d−1∏
i=0

(
1 − r

N − i

))N

.

�

The problem with this approach is that the zero patterns in different
rotations of f are not independent. The least probable pattern of r
zeroes turns out to be r consecutive zeroes. The best choice seems to
be guessing a random pattern of zeroes. Doing so would mean that the
generator of the keys cannot prepare against the attack.

Let us next consider the advantage in guessing a pattern. Later in
this thesis we state that the logarithm of the time required to solve the
CVP of size N is about αN + β for some α and β. Let P (r) be the
probability of guessing a valid pattern of length r and let T (r) be the
time needed to solve the CVP after we have guessed a pattern of length
r. The expected advantage of guessing is measured by

Gain = P (r) · T (0)

T (r)

≈

1 −

(
1 −

d−1∏
i=0

(
1 − r

N − i

))N

 10αr.

Using this formula we can estimate the optimal size for the pattern.

R E M A R K 5.6 Here we used the function

T (r) = 10α(N−r)+β

5 . 4 O t h e r w a y s t o r e d u c e t h e d i m e n s i o n 59

for the time it takes to solve the CVP after we have guessed correctly
a pattern of zeroes of length r. This is at best a rough estimate. The
reduced matrices have different balancing constants and the ratio of ones
and zeroes in the target vectors is also different.

PA R A L L E L I Z A T I O N

Next we shall consider how much faster the CVP can be solved if we
have several computers instead of one. We need to know which pattern
length is optimal for some number of computers. We try to minimize the
function which tells us how much time we need to solve the CVP using
K computers, after we have guessed K patterns of length r:

TotalTime(K, r) =
T (r)

P (Guessed right at least once)

=
T (r)

1 − P (Guessed wrong every time)

=
T (r)

1 − (1 − P (r))K

≈ 10α(N−r)+β

1 −
(
1 −∏d−1

i=0

(
1 − r

N−i

))KN
.

Using this function we can find the optimal pattern length rK for every
K. The expected advantage of using K computers is

Gain(K) =
TotalTime(1, r1)

TotalTime(K, rK).

Remark 5.6 also applies here.

5.4 O T H E R W AY S T O R E D U C E T H E
D I M E N S I O N

Let us fist recall that the rows of matrix

L =

(
IN

−→
h

0 qIN

)

are the basis vectors b1, . . . , b2N . We call the first N rows the h-rows and
the last N rows the q-rows.

60 L a t t i c e r e d u c t i o n a n d s e c u r i t y o f N T R U

Above we eliminated one of the h-rows in matrix L. This resulted in a
zero column in the matrix. We then removed this column and afterwards
the matrix had dimension 2N − 1 and determinant qN .

What if we remove one of the q-rows, for example the row number
(251 + 42) = 293? The target vector we are interested in,

(
f g

)
, is still

in the lattice if the coefficient of x41 in g equals the coefficient of x41 in
f ∗h (that is, if the reduction modulo q is redundant with this coefficient).
If this is true, the CVP for the new, lower dimensional lattice solves the
CVP for the original lattice. Or, instead, we could replace the basis
vector b293 with its multiple, 2b293. This trick works if the coefficient of
x41in g equals the coefficient of x41 in f ∗ h modulo 2q. In this case the
determinant of the resulting lattice is 2qN .

Instead of rows, one could remove some columns. If we remove one
of the columns on the right hand side, then one of the q-rows turns into
a zero row. If we also remove this row then the resulting matrix has
dimension 2N − 1 and determinant qN−1.

The remaining option is to remove one of the columns on the left hand
side. Doing so would make the rows linearly dependant thus enabling us
to remove a row. Let bi be the basis vector that lost its 1 on the left
hand side when we removed the column i. Let us assume that one of the
coefficients of h, hj say, is 1 (or −1). Let k ≡ i + j mod 251. We can
present b251+k as a linear combination of other vectors b�:

b251+k = qbi +
∑

1≤�≤251
� �=k

a�b251+�,

where a� ∈ Z. Thus we must remove vector b251+k from the basis. The
resulting matrix has dimension 2N − 1 and determinant qN−1.

5.5 S U M M A R Y

Our tricks (one to three) are alternatives to the other techniques men-
tioned at the end of this chapter. Because the rotations of the keys do
not belong to the changed lattices, we need to guess correctly a zero run
in f , rather than in any of the rotations of f . Thus the zero forcing tech-
nique is not efficient in this case. Similarly the parallelization method
above is now useless.

However, we could always remove some columns, as in Section 5.4,
and speed up the computations slightly.

C H A P T E R 6

O n l a t t i c e r e d u c t i o n
a l g o r i t h m s

In this chapter we shall present some algorithms for lattice reduction.
The algorithms aim to find a basis that has the shortest possible vectors.
In particular we hope to find a basis where one of the basis vectors is the
shortest vector of the lattice. These algorithms work for any lattice, not
just the lattices which we have presented earlier. The same algorithms
can be used, for example, to factorize polynomials.

All of our lattices are integral lattices, i.e. all of the elements of the
basis vectors are integers.

We presented the Gram-Schmidt orthogonalization b̂1, b̂2, . . . , b̂n of a
basis b1, b2, . . . , bn in Chapter 3:

b̂1 = b1

b̂j = bj −
j−1∑
i=1

µj,ib̂i, j = 2, . . . , n,

where

µj,i =
(bj , b̂i)

(b̂i, b̂i)
.

6.1 T H E L L L A L G O R I T H M

In their seminal paper [25], Lenstra, Lenstra and Lovász present a poly-
nomial time algorithm for finding a short vector of a lattice. A basis of

62 O n l a t t i c e r e d u c t i o n a l g o r i t h m s

a lattice is called LLL-reduced if it is size-reduced, i.e.

|µj,i| ≤ 1

2
, 1 ≤ i < j ≤ n, (6.1)

and if

δ||b̂i||2 ≤ µ2
i+1,i||b̂i||2 + ||b̂i+1||2 when i = 1, . . . , n − 1 (6.2)

for some δ ∈ (1
4
, 1).

The first part of the algorithm, size-reducing, is easy. We can size-
reduce vector bj by replacing it in the basis by vector

bnew
j = bj −

j−1∑
i=1

[µj,i] bi,

where [µj,i] denotes the integer closest to µj,i. Clearly the new basis
generates the same lattice as the original.

The second part is more tricky. The right hand side of inequality (6.2)
is the square of the length of the component of bi+1 orthogonal to space
span(b1, b2, . . . , bi−1). The length of the component of bi orthogonal to
this space is ||b̂i||. If inequality (6.2) does not hold, then we can make
it hold by swapping the basis vectors bi and bi+1. This changes the
quantities µi,j and µi+1,j. Furthermore, inequality (6.2) may no longer
hold for i − 1.

The parameter δ controls how strict inequality (6.2) is. If δ is close
to 1, the resulting basis may have shorter vectors but it will take more
swaps and time to find them.

Later we shall present a polynomial time algorithm for LLL-reduction,
but first we consider some properties of LLL-reduced lattices.

The following lemma gives us an upper bound for the length of the
LLL-reduced basis vectors bi using the length of the orthogonalized vec-
tors b̂j .

L E M M A 1 Let b1, b2, . . . , bn be an LLL-reduced basis for a lattice L in
Rn and let b̂1, b̂2, . . . , b̂n be defined as above. We have

||bi||2 ≤
(

4

4δ − 1

)j−1

||b̂j||2 for 1 ≤ i ≤ j ≤ n.

Proof. From (6.2) and (6.1) we have

||b̂i+1||2 ≥ (δ − µ2
i+1,i)||b̂i||2 ≥ 4δ − 1

4
||b̂i||2

6 . 1 T h e L L L a l g o r i t h m 63

for 1 ≤ i < n and, by induction,

||b̂i||2 ≤
(

4

4δ − 1

)j−i

||b̂j||2, (6.3)

where 1 ≤ i ≤ j ≤ n. Because the vectors b̂i are orthogonal, from (3.1)
and (6.1) we obtain

||bj||2 = ||b̂j||2 +

j−1∑
i=1

µ2
j,i||b̂i||2

≤ ||b̂j ||2 +

j−1∑
i=1

1

4

(
4

4δ − 1

)j−i

||b̂j ||2

=

(
1 +

1

4

(
4

4δ−1

)j − 4
4δ−1

4
4δ−1

− 1

)
||b̂j||2

=

(
1 +

4δ − 1

4
· 1

5 − 4δ

((
4

4δ − 1

)j

− 4

4δ − 1

))
||b̂j||2

≤
(

4

4δ − 1

)j−1

||b̂j||2

for all 1 ≤ j ≤ n. From this and (6.3) we get

||bi||2 ≤
(

4

4δ − 1

)i−1

||b̂i||2 ≤
(

4

4δ − 1

)j−1

||b̂j ||2

for all 1 ≤ i ≤ j ≤ n. �

The following lemma shows that we can use the length of the LLL-
reduced basis vectors to obtain a bound for the length of linearly inde-
pendent vectors.

L E M M A 2 Let b1, b2, . . . , bn be an LLL-reduced basis for a lattice L in
Rn and, for any t ≤ n, let x1, x2, . . . , xt be linearly independent in L. We
have that

||bt||2 ≤
(

4

4δ − 1

)n−1

· max(||x1||2, ||x2||2 . . . , ||xt||2).

Proof. We choose k such that xi is in L(b1, . . . , bk) for all i = 1, . . . , t
but such that x� is not in L(b1, . . . , bk−1) for some � ∈ {1, . . . , t}. The

64 O n l a t t i c e r e d u c t i o n a l g o r i t h m s

distance of x� from the closest point in L(b1, . . . , bk−1) is some integer
multiple of ||bk||. Therefore

||x�||2 ≥ ||b̂k||2.
We know that k ≥ t: we cannot represent t linearly independent

vectors as linear combinations of less than t vectors bi. Using the previous
lemma we get

||bt||2 ≤
(

4

4δ − 1

)k−1

||b̂k||2 ≤
(

4

4δ − 1

)n−1

||b̂k||2 ≤
(

4

4δ − 1

)n−1

||x�||2.

�

We defined earlier the successive minima λ1, . . . , λn as

λi = λi(L) = inf

{
max

j=1,...,i
(||xj||)

∣∣∣xj ∈ L linearly independent

}

for i = 1, . . . , n.
Using the two lemmata above we can prove:

T H E O R E M 12 Let b1, b2, . . . , bn form an LLL-reduced basis for a lat-
tice L in Rn and let λ1, λ2, . . . , λn denote the successive minima on L.
Then we have(

4

4δ − 1

)1−i

λ2
i ≤ ||bi||2 ≤

(
4

4δ − 1

)n−1

λ2
i for 1 ≤ i ≤ n.

Proof. The upper bound follows directly from the previous lemma. For
the lower bound we note that

λ2
i ≤ max(||b1||2, ||b2||2 . . . , ||bi||2)

and, by Lemma 1,

||bi||2 ≤
(

4

4δ − 1

)j−1

||b̂j||2 ≤
(

4

4δ − 1

)j−1

||bj||2

when 1 ≤ i ≤ j ≤ n. �

In practice, the bounds for ||bi||2 are much tighter. In particular, ||b1||
is much smaller than the upper limit given above. However, as n gets
larger, b1 is usually not the shortest vector of the lattice.

The algorithm for LLL-reduction is:

6 . 1 T h e L L L a l g o r i t h m 65

k = 2
While k ≤ n do

size-reduce the vector bk and update µkj for j = 1, . . . , k − 1

If δ||b̂k−1||2 > µ2
k,k−1||b̂k−1||2 + ||b̂k||2

Then Swap(bk, bk−1)
k = max(k − 1, 2)

Else k = k + 1
Return b1, . . . , bn

Let us consider the number of arithmetic operations needed. We
define

di = det((bj , bk)1≤j,k≤i) (6.4)

for 0 ≤ i ≤ n. If we consider bj and b̂j as row vectors, it can be easily
seen that

di = det((b1, . . . , bi)(b1, . . . , bi)
T)

= det((b̂1, . . . , b̂i)(b̂1, . . . , b̂i)
T) det((µk,j)1≤j,k<i)

2

= det((b̂j , b̂k)1≤j,k≤i)

=

i∏
j=1

||b̂j ||2 (6.5)

for 0 ≤ i ≤ n. This is due to (µk,j)1≤j,k<i being a lower triangular matrix,

and the fact that µj,j = 1, and (b̂j , b̂k) = 0 for all j �= k. We also define

D =
n−1∏
i=1

di.

T H E O R E M 13 Let L ⊂ Zn be a lattice with basis b1, b2, . . . , bn, and
let B be a real number greater than or equal to 2 such that ||bi||2 ≤ B for
all 1 ≤ i ≤ n. Then the number of arithmetic operations needed by the
basis reduction algorithm is O(n5 log B), and the integers on which these
operations are performed each have length O(n log B).

Proof. At the beginning of the algorithm we have di ≤ Bi and thus

D ≤ B
n(n−1)

2 . Every time we perform a swap, some dk−1 is reduced by
a factor greater than δ and all other di’s remain unchanged. Hence D is
reduced by a factor greater than δ. From (6.4) we see that every di ∈ Z

66 O n l a t t i c e r e d u c t i o n a l g o r i t h m s

and from (6.5) we see that di > 0 because ||b̂j||2 > 0. Thus D is always
greater than or equal to 1 and a swap is performed at most O(n2 log B)
times. Between two swaps k can be incremented at most O(n) times.
Every time k changes we need O(n2) operations for size-reduction and
updating µkj. In total at most O(n5 log B) arithmetic operations can be
performed before D reduces to a number less than one.

We noted earlier that di ≤ Bi and therefore the di’s are of the desired
length. Let us first show that the di’s are the only denominators we need.
The following three properties are proved below:

||b̂j||2 =
dj

dj−1
1 ≤ i ≤ n (6.6)

dj−1b̂j ∈ Zn 1 ≤ j ≤ n (6.7)

diµj,i ∈ Z i ≤ i < j ≤ n. (6.8)

Equation (6.6) is obvious from (6.5). For (6.7) we write

bj − b̂j =

j−1∑
i=1

sj,ibi, where sj,i ∈ R.

When we take the inner product of both sides with different bk, we get
the following system of equations:

(bj , bk) =

j−1∑
i=1

sj,i(bi, bk), 1 ≤ k ≤ j − 1.

The determinant of this system is

det((bi, bk)1≤i,k≤j−1) = dj−1.

Using Cramer’s rule we get that dj−1sj,i ∈ Z. Thus

dj−1b̂j = dj−1bj −
j−1∑
i=1

dj−1sj,ibi ∈ Zn

for all 1 ≤ j ≤ n. This proves (6.7). We then get (6.8) directly from
(6.6) and (6.7):

diµj,i = di
(bj , b̂i)

(b̂i, b̂i)
= di−1(bj , b̂i) = (bj , di−1b̂i) ∈ Z.

6 . 1 T h e L L L a l g o r i t h m 67

Now we consider the size of the bj , b̂j , and µj,i. At the start of

the algorithm we have ||b̂j ||2 ≤ ||bj ||2 ≤ B and during the algorithm

max(||b̂j||) does not increase. So we have

||b̂j||2 ≤ B

all of the time.
Now we consider bj . Because µ2

j,i ≤ 1
4
, after every size-reduction of bj

we get

||bj ||2 =

j∑
i=1

µ2
j,i||b̂i||2 ≤ ||b̂j||2 +

j − 1

4
max

i=1,...,j−1
(||b̂i||2)

≤
(

1 +
j − 1

4

)
B. (6.9)

Using the Cauchy-Schwarz inequality we get

µ2
j,i =

(bj , b̂i)
2

||b̂i||4
≤ ||bj||2||b̂i||2

||b̂i||4
≤ ||bj||2

||b̂i||2
=

di−1||bj||2
di

. (6.10)

After size-reduction of bk the above inequality holds for all i < k. We ob-
tain an upper limit in terms of Bj using (6.9), (6.10) and the inequalities
1 ≤ ||dj|| ≤ Bj,

µ2
j,i ≤

(
3 + j

4

)
Bi.

Therefore the numerators are of length at most O(n log B).
Let us now consider µ2

j,i during the size-reduction of bj . Because

bnew
j = bj − [µj,i] bi

then we also have that

µnew
j,k = µj,k − [µj,i] µi,k

for all k = 1, . . . , j − 1. Let us denote by Mj the largest of the µj,i for
1 ≤ i ≤ j. Clearly after one reduction Mnew

j ≤ Mj + 1
2
(Mj + 1

2
). Note

that, because i < j, bi is already size-reduced and |µi,k| ≤ 1
2
. We see that

each of the j − 1 size-reductions of bj increases Mj by at most about a
factor of 3

2
. Because at the start of the algorithm

µ2
j,i ≤

(
3 + i

4

)
Bj ,

68 O n l a t t i c e r e d u c t i o n a l g o r i t h m s

we have

µ2
j,i ≤

(
3

2

)2(j−1) (
3 + i

4

)
Bj

during the size-reduction.
To summarize, bj , b̂j and µj,i can all be represented as rational num-

bers with numerators and denominators of length O(n log B).
�

R E M A R K 6.1 The number of arithmetic operations required by the
LLL-reduction algorithm is actually O(n4 log B), if we keep track of all
of the µk,j’s all of the time and update the values from previous values,
rather than using the definitions and inner products.

A N L L L E X A M P L E

To get a better understanding of the behaviour of the LLL-algorithm we
present a small example. We consider a basis b1, b2 where b1 = (3, 0) and
b2 = (4, 2). Here we use δ = 0.9.

b1

b2

b1

b2b̂2

We have µ2,1 = 11
3

and b̂2 = (0, 2). This means that if we subtract b1

from b2 then the basis will get shorter.

b1

b2b̂2

b2

b1

b̂2

Now b2 = (1, 2) and µ2,1 = 1
3
. Therefore the basis is size-reduced.

However, we must swap vectors b1 and b2 because

0.9 × 9 >
1

32
× 9 + 4.

6 . 1 T h e L L L a l g o r i t h m 69

This means that b2 is considerably closer than b1 to the subspace gener-
ated by the previous basis vectors (in this case, 0). Now we have µ2,1 = 3

5

and b̂2 = (22
5
,−11

5
). Again, we must subtract b1 from b2 to make the basis

shorter.

b2

b1

b̂2

We have b2 = (2,−2) and µ2,1 = −2
5
. The basis is size-reduced and

b1 is shorter than b2:

0.9 × 5 ≤ 22

52
× 5 + 7

1

5
.

Basis b1, b2 is now LLL-reduced and the candidate for the shortest vector
is b1.

D E E P I N S E R T I O N S

There exist several improvements to the LLL-algorithm. For example,
the so-called deep insertion of bk; see [37].

Let us consider the following basis: b1 = (16, 0, 0), b2 = (8, 14, 0) and
b3 = (0, 0, 15). This basis is LLL-reduced for any δ and b̂2 = (0, 14, 0)
and b̂3 = (0, 0, 15). However, we would like to find a basis where the
first vector is as short as possible. In this case this is b3, b1, b2. This is
also an LLL-reduced basis of the same lattice. In the LLL-algorithm we
consider only the swapping of two consecutive basis vectors. In the deep
insertion variant we check whether swapping the basis vector with any
of the previous ones gives us a better basis.

The improved version of the algorithm is as follows:

70 O n l a t t i c e r e d u c t i o n a l g o r i t h m s

k = 2
While k ≤ n do

size-reduce the vector bk and update µkj for j = 1, . . . , k − 1
j = 1
While j < k do

If δ||b̂j||2 >
∑k−1

i=j µ2
k,i||b̂i||2 + ||b̂k||2

Then (bi, bi+1, . . . , bk) = (bk, bi, . . . , bk−1)
k = max(j − 1, 1)

Else j = j + 1
k = k + 1

Return b1, . . . , bn

This algorithm cannot be shown to be polynomial time using The-
orem 13. Let us consider the loop invariant

D =

n−1∏
i=1

||b̂i||2(n−i)

in the proof of Theorem 13. With the normal LLL-algorithm, D decreases
with every swap. This is not the case with the deep insertions version.
Let us again consider the basis b1, b2, b3. Here D = 164 × 142 = 35842.
After deep insertion, the basis is b3, b1, b2 and D = 154 × 162 = 36002.
Thus the proof of Theorem 13 cannot be applied to this algorithm.

However, if we specify that, for some constant c, either j < c or
k−j < c, then the deep insertions version of the algorithm can be shown
to be polynomial time.

6.2 B L O C K K O R K I N - Z O L O T A R E V
R E D U C T I O N

It turns out that, in practice, the LLL-reduction is not efficient enough
to find the shortest vector when n is large. We now consider a slightly
different reduction method from [42].

Let
πi : Rn → span(b1, b2, . . . , bi−1)

⊥

denote the orthogonal projection so that

v − πi(v) ∈ span(b1, b2, . . . , bi−1)

for any vector v.

6 . 2 B l o c k K o r k i n - Z o l o t a r e v r e d u c t i o n 71

R E M A R K 6.2 We note that

πi(bj) =

j−1∑
s=i

µj,sb̂s + b̂j

because

bj −
j−1∑
s=i

µj,sb̂s − b̂j =

i−1∑
s=1

µj,sb̂s ∈ span(b1, b2, . . . , bi−1).

Using these notions we can write condition (6.2) as

δ||πi(bi)|| ≤ ||πi(bi+1)|| i = 1, . . . , n − 1.

If L is a lattice then the set πi(L) is also a lattice. First we show that
the mapping πi is linear.

Let a, b ∈ R and u, v ∈ Rn. We show that

aπi(u) + bπi(v) = πi(au + bv)

by proving that

aπi(u) + bπi(v) − πi(au + bv) ∈ span(b1, b2, . . . , bi−1)

∩ span(b1, b2, . . . , bi−1)
⊥.

We have

au + bv − πi(au + bv) ∈ span(b1, b2, . . . , bi−1)

⇒ a(u − πi(u)) + aπi(u) + b(v − πi(v)) + bπi(v) − πi(au + bv)

∈ span(b1, b2, . . . , bi−1)

⇒ aπi(u) + bπi(v) − πi(au + bv) ∈ span(b1, b2, . . . , bi−1)

because u − πi(u), v − πi(v) ∈ span(b1, b2, . . . , bi−1). But we also have

aπi(u) + bπi(v) − πi(au + bv) ∈ span(b1, b2, . . . , bi−1)
⊥

and thus
aπi(u) + bπi(v) = πi(au + bv).

If L has a basis b1, . . . , bn then for any v ∈ πi(L) we have

v = πi(a1b1 + · · · + anbn) = aiπi(bi) + · · ·+ anπi(bn).

72 O n l a t t i c e r e d u c t i o n a l g o r i t h m s

On the other hand, all the πi(bj) for i ≤ j ≤ n are linearly independent.
If they were not we would have for some ai ∈ R

πi(bj) =

j−1∑
s=i

asπi(bs),

which would mean that bj ∈ span(b1, . . . , bj−1). But this is not true as
all vectors bi are linearly independent. Thus πi(L) is a lattice with basis
πi(bi), . . . , πi(bn).

A basis is a Korkin-Zolotarev basis if it is size-reduced and b̂i is the
shortest vector in the lattice πi(L). This means that b1 is the shortest
vector of the lattice L. If we could find a Korkin-Zolotarev basis of any
lattice in a feasible time then we could also find the shortest vector of
the lattice in a feasible time. Therefore it seems improbable that there
is a fast algorithm for finding a Korkin-Zolotarev basis.

There is, however, an algorithm for finding the shortest vector in any
lattice which runs in super-exponential time. It was presented by Kannan
[23].

T H E O R E M 14 The shortest nonzero vector of lattice L with an LLL-
reduced basis b1, . . . , bn can be found after at most n

n
2
+o(n) arithmetic

operations.

Proof. We denote by L2 the lattice with basis b2, . . . , bn. Let us assume
first that ||b1|| ≤ λ1(L2). All lattice vectors v =

∑n
i=1 vibi shorter than

b1 satisfy

||v||2 =

n∑
j=1

(
n∑

k=j

vkµk,j

)2

||b̂j ||2 < ||b1||2.

As every term on the left hand side is non-negative and µj,j = 1, we get(
vj +

n∑
k=j+1

vkµk,j

)2

||b̂j||2 < ||b1||2

for all 1 ≤ j ≤ n. Further, we have

n∑
k=j+1

vkµk,j − ||b1||
||b̂j ||

< vj <
n∑

k=j+1

vkµk,j +
||b1||
||b̂j ||

.

Thus, there are at most
⌊
2 ||b1||
||b̂j ||

⌋
+ 1 possible integer values for every vj,

when (vj+1, . . . , vn) is fixed.

6 . 2 B l o c k K o r k i n - Z o l o t a r e v r e d u c t i o n 73

If ||b̂j|| > 2||b1||, there is only one possibility for vj so the basis vector
bj can be omitted when we count the number of possibilities. So, without

loss of generality, we can assume that we always have that ||b̂j || ≤ 2||b1||.
Now in total at most

n∏
j=1

(⌊
2
||b1||
||b̂j ||

⌋
+ 1

)

choices for (v1, . . . , vn) exist. Because ||b1||
||b̂j || ≥

1
2
, this number of choices is

at most

4n
n∏

j=1

||b1||
||b̂j ||

≤ 4nλ1(L2)
n−1

det(L2)

≤ 4(16γn−1)
n−1

2

≤ 4(16n)
n−1

2 = n
n
2
+o(n).

Here the first inequality is due to the assumption that ||b1|| ≤ λ1(L2),
the second to the definition of γn, and the third to the fact that γn ≤ n.

Similarly, if we have that ||b1|| > λ1(L2) then the number of choices
for (v1, v2, . . . , vn) is at most

n∏
j=1

(⌊
2
λ1(L2)

||b̂j||

⌋
+ 1

)
≤ 4n λ1(L2)

||b1||
λ1(L2)

n−1

det(L2)

≤ 4(16n)
n−1

2 = n
n
2
+o(n).

The theorem follows when we note that we need n2 multiplications to
compute ||v||. �

The above theorem describes an algorithm for finding the shortest
vector in a lattice. First we find an LLL-reduced basis and then we find
recursively the shortest vector of the lattice L(bi, . . . , bn) with the help of
the shortest vector of L(bi+1, . . . , bn). There is always a limited number
of candidates for the shortest vector. Unfortunately this algorithm does
not work in polynomial time. To make the algorithm more efficient and
usable in practice we can relax somewhat the requirements.

A basis is called block reduced with block size β if it is size-reduced
and there is no non-zero vector in the lattice πi(L(bi, . . . , bmin(i+β−1,n)))

shorter than δ||b̂i|| for some δ < 1.

74 O n l a t t i c e r e d u c t i o n a l g o r i t h m s

Here we are required to find the shortest vector in the lattice gener-
ated by β basis vectors. This vector can be found using the algorithm of
Kannan described above. Because β is constant the algorithm of Kannan
finds the shortest vector in polynomial time.

We do not find a block reduced basis just by finding the shortest
vector of a lattice of dimension β n times. Every time we find a new
shortest vector to our basis, the previous β − 1 basis vectors may no
longer be the shortest vectors in the lattice generated by their next β−1
basis vectors.

The following algorithm by Schnorr and Euchner [42] finds a basis
that is block reduced with block size β.

LLL(b1, . . . bn)
z = 0
j = 0
While z < n − 1 do

j = j + 1
k = min(j + β − 1, n)
If j = n Then j = 1

k = β
Using the Algorithm of Kannan Find Shortest

v =
k∑

i=j

viπj(bi)

Set bnew =
∑k

i=j vibi

h = min(k + 1, n)
If δ||πj(bj)||2 > ||v||2
Then LLL(b1, . . . bj−1, b

new, bj , . . . , bh) starting from bj

z = 0
Else LLL(b1, . . . bh) with δ = .99 starting from bh−1

z = z + 1

In the algorithm, j goes cyclically through all integers 1, . . . , n − 1
until

δ||b̂j||2 ≤ λ1(πj(L(bj , bj+1, . . . , bk)))
2 (6.11)

for n − 1 consecutive values of j. When the inequality (6.11) holds for
all j the basis is block reduced. The number of consecutive successes is
counted by variable z.

6 . 2 B l o c k K o r k i n - Z o l o t a r e v r e d u c t i o n 75

If condition (6.11) does not hold for j then we add the smaller vector
bnew in the set of basis vectors before bj . The new set of basis vectors
is now linearly dependant and we use the LLL-algorithm to find a new
linearly independent basis. Note that the basis vectors b1, b2, . . . , bj−1

remain unchanged and so are LLL-reduced and we know the values of
µi,k, 0 ≤ i, k ≤ j − 1. After this the number of basis vectors is again
reduced to n.

If condition (6.11) holds then we use the LLL-algorithm for the vectors
b1, b2, . . . , bh to make sure that the basis used by the algorithm of Kannan
at the next step is LLL-reduced.

The next theorem gives us information on the size of the basis vectors
we get using block reduction. The proof is from a paper [38] by Schnorr.

L E M M A 3 For every block size β block reduced basis b1, . . . , bn with

n ≥ β we have for M = max(||b̂n−β+2||, . . . , ||b̂n||) that ||b1|| ≤ γ
n−1
β−1

β M .

Proof. We extend the basis b1, . . . , bn by β − 2 additional vectors to

b−β+3, . . . , b−1, b0, b1, . . . , bn

so that the new vectors are orthogonal to all basis vectors, and all of the
new vectors are of the same length as b1. This basis is still block reduced
with block size at least β. Thus b̂i is the shortest vector in the lattice
πi(L(bi, . . . , bi+β−1)) and

det(L(bi, . . . , bi+β−1)) = ||b̂i||||b̂i+1|| · · · ||b̂i+β−1||
for i = −β + 3, . . . , n − β + 1. By definition of the Hermite constant γβ

we have

||b̂i||β ≤ γ
β
2
β ||b̂i||||b̂i+1|| · · · ||b̂i+β−1|| for i = −β + 3, . . . , n − β + 1.

When we multiply all of these n − 1 inequalities together we get

||b̂−β+3||β||b̂−β+4||β · · · ||b̂n−β+1||β ≤
γ

β(n−1)
2

β ||b̂−β+3||1||b̂−β+4||2 · · · ||b̂1||β−1||b̂2||β · · · ||b̂n−β+1||β
||b̂n−β+2||β−1 · · · ||b̂n−1||2||b̂n||1.

We can simplify this to

||b̂−β+3||β−1||b̂−β+4||β−2 · · · ||b̂0||2||b̂1||1 ≤
γ

β(n−1)
2

β ||b̂n−β+2||β−1 · · · ||b̂n−1||2||b̂n||1.

76 O n l a t t i c e r e d u c t i o n a l g o r i t h m s

Here the vectors on the left hand side of the equation are all of the same
length and those on the right hand side are all of length at most M . We
get

||b1||
β(β−1)

2 ≤ γ
β(n−1)

2
β M

β(β−1)
2

and thus

||b1|| ≤ γ
n−1
β−1

β M.

�

Using this lemma we get a limit for the size of the block reduced basis
vectors.

T H E O R E M 15 Every block size β block reduced basis b1, . . . , bn of lat-
tice L satisfies

λ2
i ≤ γ

2 i−1
β−1

β

i + 3

4
||bi||2

for i = 1, . . . , n.

Proof. We have by definition

λ2
i ≤ max(||b1||2, . . . , ||bi||2).

It follows from the inequality ||bj ||2 ≤ ||b̂j ||2 +
∑j−1

k=1 µ2
j,k||b̂k||2 that

λ2
i ≤

(
1 + (i − 1)

1

22

)
max(||b̂1||2, . . . , ||bi||2)

≤i + 3

4
max(||b̂1||2, . . . , ||b̂i||2). (6.12)

Lemma 3 applied to a basis πj(bj), . . . , πj(bi) yields the inequalities

||b̂j || ≤ γ
i−j
β−1

β max(||b̂i−β+2||2, . . . , ||b̂i||2) (6.13)

for 1 ≤ j ≤ i − β + 1. For i − β + 2 ≤ j ≤ i, we have

||b̂j|| ≤ ||πj(bi)|| ≤ ||bi|| (6.14)

because the basis was block reduced with block size β > i− j. From this
and (6.13) we see that the inequality

||b̂j || ≤ γ
i−j
β−1

β ||bi|| (6.15)

holds for 1 ≤ j ≤ i − β + 1. Because γβ ≥ 1, (6.14) implies that (6.15)
also holds for i − β + 2 ≤ j ≤ i. Applying (6.15) to (6.12) proves the
theorem. �

6 . 2 B l o c k K o r k i n - Z o l o t a r e v r e d u c t i o n 77

There is a relationship between block reduced and LLL-reduced bases.

T H E O R E M 16 Let 1
3
≤ δ ≤ 1. A basis b1, b2, . . . , bn ∈ Rn is reduced

with block size 2 if and only if it is LLL-reduced.

Proof. Assume first that a basis b1, b2, . . . , bn is reduced with block size
2. Then

δ||b̂k||2 ≤ ||πk(vkbk + vk+1bk+1)||2
for all (vk, vk+1) ∈ Z2 \ (0, 0), where 1 ≤ k ≤ n − 1. This implies that

δ||b̂k||2 ≤ ||πk(bk+1)||2 = ||µk+1,kb̂k + b̂k+1||2.

Hence b1, b2, . . . , bn is LLL-reduced.
Conversely, we assume that b1, b2, . . . , bn is LLL-reduced and show

that the inequality

||πk(vkbk +vk+1bk+1)||2 = (vk +µk+1,kvk+1)
2||b̂k||2 +v2

k+1||b̂k+1||2 ≥ δ||b̂k||2

holds for all (vk, vk+1) ∈ Z2 \(0, 0). We have three cases. If vk+1 = 0 then
|vk| ≥ 1 and the inequality holds. If vk+1 = ±1 then |µk+1,kvk+1| ≤ 1

2

and the minimal value for the left hand side occurs when vk = 0. Now
the inequality is of the form

µ2
k+1,k||b̂k||2 + ||b̂k+1||2 ≥ δ||b̂k||2,

which holds because the basis is LLL-reduced. If |vk+1| ≥ 2, the lower
bound follows from the inequalities

4||b̂k+1||2 ≥ 4(δ − 1

4
)||b̂k||2 ≥ δ||b̂k||2.

Here the first inequality follows from the fact that the basis is LLL-
reduced and the second inequality holds because δ ≥ 1

3
.

�

The algorithm for calculating the block Korkin-Zolotarev reduction
is not known to be polynomial. However, if we need to find the smallest
vector of the lattice, it usually gives the result faster than LLL.

We can further speed up the calculations using block Korkin-Zolotarev
reduction with the Schnorr-Hörner pruning heuristic [41]:

Suppose that we have a lattice L with basis b1, . . . , bn and that we
are trying to find a vector v =

∑n
i=1 cibi shorter than length c. Let us

78 O n l a t t i c e r e d u c t i o n a l g o r i t h m s

assume that we have gone through basis vectors bt+1, . . . , bn and fixed
integers vt+1, . . . , vn. We denote L2 = L(b1, . . . , bt),

u1 =
n∑

j=t+1

(
n∑

k=j

vkµk,j

)
b̂j

and

u2 =
t∑

j=1

(
n∑

k=t+1

vkµk,j

)
b̂j .

At this point, our objective is to find a point w in lattice L2 such that
v = w + u2 + u1 and ||v|| < c. We have w, u2 ∈ span(L2) and u1 ∈
span(L2)

⊥. Thus
||v||2 = ||w + u2||2 + ||u1||2

and

||w + u2|| <
√

c2 − c2
1,

where we denote c1 = ||u1||.
Let S(r) be the volume of a t-dimensional ball with radius r. The

Gaussian heuristic states that there are about

vol(S(
√

c2 − c2
1))

det(L2)

points w in L2 that are closer than
√

c2 − c2
1 to the point −u2.

The pruning means that if this ratio is smaller than 2−p for a selected
pruning parameter p, we decide that we cannot find a short vector with
the chosen vt+1, . . . , vn. In other words, if finding a vector short enough
becomes too improbable, we retreat in the recursion and try to find it
later with different integers vt+1, . . . , vn.

The algorithm for this and the basic BKZ-reduction can be found in
[42].

C H A P T E R 7

C o m p u t a t i o n a l r e s u l t s

In the following our aim is to approximate the time taken to find out the
private key of NTRUEncrypt when the parameter set ees251ep4 [9] is
used. According to this parameter set we have N = 251, q = 239, p = 2
and df = dg = 72. To this end we generated some smaller instances of
NTRU-lattices with the same characteristics and studied them.

The key characteristics of the NTRU-lattice

L =

(
I

−→
h

0 qI

)

with dimension 2N are

a =
N

q

and

c =
λ(L)

σ(L)

√
dim(L),

where σ(L) denotes the expected length of the shortest vector of lattice
L obtained using the Gaussian heuristic, and λ(L) denotes the actual
shortest vector of lattice L which gives us the private key. Using the
parameter set ees251ep4 and trick 3B of Chapter 5, the values of these
lattice constants are a ≈ 1.05 and c ≈ 2.7.

For any N we can now find q, df and dg with which we can generate
NTRU keys that correspond to an NTRU-lattice with dimension 2N and
with the same lattice constants as in the real case. Furthermore, we select
these parameters so that q is odd and df = dg is even. For instance, with

80 C o m p u t a t i o n a l r e s u l t s

N = 100, we choose q = 95 and dF = dg = 30. Now a ≈ 1.053 and

c ≈
√

2 ((N − d) · 12 + d · 32)

4
√

Nq
πe

√
2N =

√
(70 + 30 · 9)πe

4 · 95
≈ 2.764.

Our procedure was as follows: first we generated the small NTRU-like
private and public keys randomly, five instances of every size. Then we
used trick 3B on the NTRU-lattice of every instance. Finally we solved
the shortest vector problem of every lattice using the Block Korkin-
Zolotarev reduction. We always started with a small block size and
increased it until the resulting basis revealed the private key. If the block
size was too small, the small vector revealed was usually one of the ori-
ginal basis vectors – a vector with one component equal to 4q and the rest
equal to zero. It is conjectured, based on extensive tests at NTRU, that
the smallest successful block size increases linearly with the dimension
(when the lattice constants remain the same).

The reductions have been computed using the NTL C-library and a
733MHz Pentium computer. The results are shown in table 7.1. The
times given are for reduction with the smallest successful block size. We
omitted the time waisted on unsuccessful tries when the block size was
too small.

We have plotted the logarithms of the breaking times of these small
instances in figure 7.1. It has been conjectured by the researches at
NTRU that these points are approximately on a straight line. This seems
more or less to be the case also here. If we are convinced that the
instances with N = 251 are also on this line we can approximate how
hard it would be to break the private key with this method.

We can calculate from the data that the equation of the regression
line is

log10 T = 0.1749 × N − 14.15.

When N = 251, the breaking time would be about 5.6×1029 seconds with
this computer. We can transform this into MIPS-years by multiplying
by 733 and dividing by the number of seconds in a year. The result is
about 1.3 × 1025 MIPS-years.

We have also tried different versions of Block Korkin-Zolotarev re-
duction. The best variant, according to our tests, used Givens rotations
(see [13]) instead of Gram-Schmidt orthogonalization. The parameter δ
was 0.99.

One way to improve the performance of the reduction is to use some
pruning constant. With a small pruning constant, 6, the algorithm indeed

C o m p u t a t i o n a l r e s u l t s 81

N b1 T1 b2 T2 b3 T3 b4 T4 b5 T5

100 20 2000 22 6500 21 1500 21 2400 21 1500
101 22 2400 20 1000 22 10 000 21 7400 21 4000
102 22 9600 22 8500 22 580 22 7200 22 33 000
103 23 10 400 23 21 000 23 29 000 21 5000 18 800
104 22 7800 22 11 000 22 15 000 22 5400 23 7800
105 22 16 000 23 5900 23 37 000 23 17 000 22 11 000
106 23 80 000 23 15 000 22 23 000 22 53 000 22 24 000
107 22 5300 23 40 000 22 36 000 22 38 000 23 59 000
108 24 33 000 23 156 000 23 122 000 22 5300 22 12 000
109 24 140 000 23 30 000 23 60 000 23 180 000 23 100 000
110 22 33 000 24 550 000 22 6000 24 210 000 23 200 000
111 23 260 000 23 8500 24 440 000 24 470 000 24 1100 000
112 23 450 000 23 230 000 24 1200 000 24 370 000 24 720 000
113 25 1400 000 23 13 000 24 260 000 24 190 000 24 1200 000
114 24 1700 000 24 1300 000 23 190 000 23 220 000 24 1500 000
115 24 980 000 25 1600 000 25 4100 000 24 630 000 25 590 000

T A B L E 7.1: A table of the block size needed to reveal the secret key
and the time taken in seconds for five different instances for each size.

gave us the result faster once the right block size was found. We noticed
that the block size increased rapidly with the dimension. Furthermore,
due to the more erratic nature of the algorithm, block sizes larger than the
smallest successful one sometimes failed to give the result. We discarded
this method because finding a successful block size for which the answer
was returned quickly took too many tries. With a pruning constant of
10, the algorithm behaved almost as if there had been no pruning and
no increase in speed was detected.

The researchers at NTRU performed a similar experiment to approx-
imate the breaking time. They solved several instances of NTRU lattices
with lattice constants c = 1.73 and a = 0.535. These constants are smal-
ler than those used by us. They used the same method as we did to
approximate the breaking time of an NTRU lattice of size N = 251. In
general, the reduction terminates faster for lattices when either of the
lattice constants is reduced in size. Thus their approximation works as
a lower limit for a lattice with larger lattice constants. Their result for
the breaking time was about 7× 1014 MIPS-years.

Furthermore, they employed the zero-forcing methods to reduce the
lower limit of the breaking time to 1.37 × 1013 MIPS-years. This result

82 C o m p u t a t i o n a l r e s u l t s

100 105 110 115

3

4

5

6

F I G U R E 7.1: Base 10 logarithms of breaking times for N = 100 . . . 115
and the linear regression line.

requires that all of the rotations of the short vector are also in the lattice.
However, this is not the case here. As we noted earlier this is true only
before trick two or using lattices derived from h−1. In these cases the
lattice constants are even larger than in our experiments.

R E M A R K 7.1 The matrix of trick 3B has one more row than column.
We simply omit the first row to get a square matrix and a lattice cor-
responding to it. This means that we have guessed that the constant
coefficient of the private key f is 1. The probability of this guess being
correct is 179

251
≈ 71%. Alternatively, we could have guessed that the con-

stant coefficient equals 3 and combined the first and last row into one
row. Strictly speaking we should multiply our speed estimates by a small
constant greater than one.

R E M A R K 7.2 Before applying the reduction algorithm we random-
ized the order of the rows. This seemed to speed up the process.

C H A P T E R 8

A t t a c k s a g a i n s t N T R U

In this chapter we present some attacks against different versions of
NTRU. We outline two chosen cryptotext attacks against previous ver-
sions of NTRU as well as the most well-known attack against any NTRU
version. First we consider how the parameter N , the degree of the redu-
cing polynomial, must be chosen.

If the parameter N were to be selected as a power of 2, then we could
use the Fast Fourier Transformation to compute the convolution product.
But in article [11] Gentry showed that N must be a prime. If d divides
N we define

f(d) =

d−1∑
i=0


N

d
−1∑

j=0

fdj+i


 xi.

Clearly f(d) ∈ Z[x]/(xd−1). If f∗h = g then also f(d)∗h(d) = g(d). Instead
of a lattice of dimension 2N we can now try to find a short vector in a
lattice of dimension 2d defined by the matrix(

I(d) h(d)

0 qI(d)

)
.

A short vector in this lattice gives us significant partial information about
the private key.

8.1 A T T A C K C O N T R O L L I N G T H E
C R Y P T O T E X T

The message, or the message representative, did not have enough padding
in the first versions of NTRU. As a consequence, it was vulnerable to

84 A t t a c k s a g a i n s t N T R U

chosen-ciphertext attacks. Several attacks and padding improvements
were presented in [22, 32, 14].

The basic idea of these attacks was simple. Decryption failures leak
out information. Let us suppose that the encryptor finds out whether
a decryption is a success or not. A decryption failure means that not
all of the coefficients of f ∗ e are in the desired interval. Because the
encryptor knows and can even choose e, (s)he can gain information about
f . For example, if (s)he can choose almost any e, then (s)he can make
small changes to it until the decryption fails. When (s)he finds several
cryptotexts similar to each other, only some of which can be decrypted,
(s)he can deduce the private key f .

Let us say that for some e the decryption is a success and for e′ = e+1
it fails. This means that f ∗ e has at least one coefficient very close to
one of the limits of the interval. Suppose that the coefficient of x� was
large. Because the decryption of e′ is taken to fail, the polynomial

f ∗ e′ = f ∗ e + f

has at least one coefficient that is not in the interval. With high prob-
ability this is the coefficient of x�. This means that the coefficient f� is
larger than zero. Now the success of decryptions of e+xj reveals whether
the f�+j is larger than zero or not.

To render this attack impossible the generation procedure of message
representatives was changed.

The main idea is that the decryption never succeeds if the encryp-
tion is not of the correct form. Therefore the attacker cannot select the
cryptotext e freely, making the previous attack impossible.

8.2 A T T A C K C O N T R O L L I N G T H E
M E S S A G E R E P R E S E N T A T I V E

There are several attacks even against the revised version of NTRU.
In late 2002, attacks were published by at least three different groups
[18, 35, 31] (two of these papers were later combined [17]).

The main idea of the attacks is as follows. The difference between the
largest and the smallest coefficient of α = f ∗ i + p ∗ r ∗ g is on average
62 when N = 251. The attacker can cause a wrap failure if (s)he has
the means to add about 33 to the largest coefficient of α. Note that the
largest coefficient of α is on average A+31 and a coefficient of size A+ 128

2

causes a wrap failure.

8 . 3 M e e t - i n - t h e - m i d d l e a t t a c k 85

Because we need to be able to find out m and b from i at the decryp-
tion phase, the mapping ϕ(m, h, b) must be invertible. The attacker uses
this property to find a message m and a randomness b that generate the
message representative i which (s)he wants to use. In effect (s)he can
choose the i in α.

In their attack, the authors of [17] use message representatives that
have the same zero coefficients as the polynomial (1+x) ∗D ∗F15, where
D ∈ T (4, 0) and F15 ∈ T (15, 0). The message representative is always
binary but (1 + x) ∗ D ∗ F15 does not need to be. We have that

f ∗ i ≈ (1 + x) ∗ (2 + x) ∗ F ∗ D ∗ F15.

Let us consider F ∗F15. The constant coefficient of this product is large if
F and F15(x

−1) have several common nonzero coefficients. If all nonzero
coefficients of F15(x

−1) match nonzero coefficients of F , then one of the
coefficients of 3x∗F ∗F15 is at least 45. With high probability this causes
a wrap error.

In the attack we try to find polynomials F15 that generate wrap errors
with several different polynomials D. In this way we can make sure
that the wrap errors occur because of the F15. When we have found
enough different polynomials F15 that generate wrap errors we combine
the results to get the polynomial F .

8.3 M E E T- I N - T H E - M I D D L E A T T A C K

In the so-called meet-in-the-middle attack (see [19]), the key is broken in

time O(2
M
2) if the private key is chosen from a space of 2M elements.

The idea of the attack is as follows. We divide the private key space
into two equally large parts; f1 goes through the first part, and we store
the results of multiplications f1 ∗h. Next we let f2 go through the second
of the two parts and check whether we have an f1 ∗ h stored such that

f1 ∗ h + f2 ∗ h ≡ pg mod q,

where g is a binary polynomial.
In practice we have f = 1 + 2F and F with 72 coefficients set to 1.

We set 36 of the first 126 coefficients of F1 to be one and 36 of the last
125 coefficients of F2 to be one. All other coefficient of F1 and F2 are
zeroes. Now there always exists a rotation of F that is equal to some
F1 + F2. Note that the 1 in the formula of f causes us problems and we

86 A t t a c k s a g a i n s t N T R U

do not necessarily have a rotation of f equal to 1 + 2F1 + 2F2. But we
do have f ∗ xi = xi + 2F1 + 2F2 for some i.

There are
(
126
36

)
different polynomials F1. In the first step we go

through all of these polynomials and multiply them by h. We save some
storage space if we do not store the result, but instead store only the
most significant bit of the first k coefficients. We call the place where
the bits of F1 ∗ h are stored the bin of F1 ∗ h.

We are interested in the polynomials F1 and F2 with the property
that F1 ∗ h + (F2 + 1

2
xi) ∗ h is a binary polynomial.

In the second step we go through all i, 127 ≤ i ≤ 250, for all possible
polynomials F2 and calculate −(F2 + 1

2
xi)∗h. If in the first step we found

an F1 ∗ h belonging to this bin, then we check whether 2F1 + 2F2 + xi

is a rotation of the private key. This is done by checking whether the
polynomial F1 ∗ h + (F2 + 1

2
xi) ∗ h is binary. We also need to check

the polynomials F1 ∗ h from the bins corresponding to any of the 2k

polynomials we get by adding one to any of the first k coefficients of
−(F2 + 1

2
xi) ∗ h.

R E M A R K 8.1 Let the first four coefficients of −(F2 + 1
2
xi) ∗ h be

238, 7, 127 and 144. This polynomial belongs to bin (1, 0, 0, 1) if k = 4.
We also need to check the polynomials F1∗h in bins (0, 0, 0, 1), (0, 0, 1, 1)
and (1, 0, 1, 1) because, for example,

(0, 7, 128, 144)− (238, 7, 127, 144) ≡ (1, 0, 1, 0) mod 239.

Let us now estimate the running time and memory consumption of
this attack. We denote by Tc the time it takes to calculate f1 ∗ h and by
Tl the time it takes to find f1 from some bin or to store f1 in a bin.

The expected running time of the first step is

T1 =

(
126

36

)
(Tc + Tl).

In the second step we do the convolution, check a certain number of
bins and, if some of the bins are nonempty, recalculate the corresponding

convolution products. The expected number of bins to check is
(
1 + 2

239

)k

and the expected size of a bin is (
126
36

)
2k

.

The expected running time of the second step is thus

T2 = 125

(
125

36

)(
Tc +

(
1 +

2

239

)k
(

Tl +

(
126
36

)
2k

Tc

))
.

8 . 3 M e e t - i n - t h e - m i d d l e a t t a c k 87

It can be seen that the larger the selected k, the faster the attack. On
the other hand, with a larger k the memory consumption also increases.
The storage of the first step requires at least(

126

36

)
k

bits of memory.

C H A P T E R 9

A n A t t a c k a g a i n s t o l d
N T R U E n c r y p t

Our attack is based on the observation that blinding polynomials r with
large coefficients generate wrap errors more frequently than polynomials
with small coefficients. Therefore, by a careful selection of pairs (m, b)
(which determine r), one can increase the probability of wrap errors.
This probability gives us useful information about the private key.

Throughout this chapter we assume that the parameter set ees251ep1
of [8] is used. Thus, N = 251, p = 2+x and q = 128. The private key f is
of the form f = 1 + p ∗F , where F (1) = 72 (and thus f(1) = 217). Both
of these polynomials have non-negative coefficients. The polynomial g is
binary with 72 1’s: g(1) = 72.

We assume that the blinding polynomial is generated from three com-
ponents: r = r1 ∗ r2 + r3, where each ri(1) = 8 (algorithm 3.3.2.2 in [8]).
Most of the coefficients of the ri’s are therefore 0, only a few equal 1.
Coefficients larger than 1 are possible, but they are few and far between.
It follows that the coefficients of r are also very small: r(1) = 72. Most
coefficients are 0’s and 1’s (as the average is 72/251). However, larger
values also appear, this time more frequently than in the ri’s. The main
tools in our attack are polynomials which have a suitably large number
of “large” coefficients (≥ 4 or 5, for instance).

As noted earlier, the wrap failure occurs if at least one coefficient of
α = f ∗ i + p ∗ r ∗ g differs by q/2 from the average. Our goal is to

• Generate pairs (m, b) so that the wrap error probability correlates
with the coefficients of p ∗ g;

90 A n A t t a c k a g a i n s t o l d N T R U E n c r y p t

βi :

r−i :

.....
.....

.....
.....

.....
.

.....
.....

.....
.....

.....
.

.....
.....

.....
.....

.....
.

.....
.....

.....
.....

.....
.

F I G U R E 9.1: The four large coefficients of r match the large coeffi-
cients of β, resulting in a higher wrap error frequency.

• Increase the wrap error probability to such a level that the differ-
ences between distinct types of polynomials p ∗ g can be detected
efficiently.

Our goals are achieved by generating pairs (m, b) such that the resulting
blinding polynomial r has some large coefficients. In the following we
denote r =

∑
rix

i, g =
∑

gix
i and β = p ∗ g =

∑
βix

i. Clearly,
βi ∈ {0, 1, 2, 3}, and if we learn βi then both gi and gi−1 are revealed.
For example, if βi = 3 then gi = gi−1 = 1. Also, the 72 indices i for
which βi ≥ 2 are exactly those for which gi = 1.

We increase the wrap probability by trying to make some coefficient
of β ∗ r (and hence also α) exceptionally large. Suppose that βu+ij = 3
and that the coefficients rv−ij are large for some indices u, v and i1, . . . , is
(additions in subindices are reduced modulo N). Then all of the large
coefficients rv−ij contribute partly to the same coefficient of β ∗ r. More
specifically, the coefficient of xu+v in β ∗ r is at least 3

∑s
j=1 rv−ij . As the

rest of the non-zero coefficients of r contribute to random terms in β ∗ r,
it is obvious that wrap failures become more frequent than normally.

The attack consists of four steps. In the first step we attempt to
locate four 3’s of β. After the second step we should have learned 15 3’s
of β. In the third step we spot the rest of β’s coefficients that are at least
2, thus revealing g. The final step consists of computing the private key
f from g and from the public key h.

In steps 1 and 2 we use blinding polynomials with four coefficients
ri ≥ 4. For this purpose, denote by Mk

4×4(i0, . . . , i3) a set of k pairs
(m, b) such that for some u ∈ {0, 1, . . . , 250} the coefficients ru+ij ≥ 4
(j = 0, 1, 2, 3), where r = ρ(m, b). In step 3 we use blinding polynomials
with one coefficient at least 5. A set of pairs (m, b) resulting in this kind
of blinding polynomial is denoted by M1×5.

All probabilities given below are estimates based on our implement-
ations.

9 . 1 F i r s t s t e p 91

9.1 F I R S T S T E P

Our first goal is to locate four large coefficients of β = p ∗ g in one of
its cyclic shifts xu ∗ β. For this purpose we encrypt messages in the sets
M1000

4×4 (i0, i1, i2, i3). Clearly, the quadruples (i0, i1, i2, i3) corresponding
to four 3’s of β induce a high wrap probability. In this case the large
coefficients of r contribute to some term of β ∗ r by 4 × 4 × 3 = 48,
and therefore this term of α has a fair chance of exceeding the av-
erage by q/2 = 64, thus causing a wrap failure. Therefore the set
M1000

4×4 (i0, i1, i2, i3) that most frequently induces wrap failures most prob-
ably gives βu−i0 = βu−i1 = βu−i2 = βu−i3 = 3 (for some index u). The
set-up is depicted in figure 9.1.

Luckily it is not necessary to go through all sets M1000
4×4 (i0, i1, i2, i3).

The average number of 3’s in β is 72 · 71
251

≈ 20, and therefore a random
guess of four indices has a reasonable chance (roughly 1%) of hitting four
3’s in one of β’s rotations. Therefore, if we randomly select, say, 1000
quadruples and of these select the quadruple which causes the most wrap
failures, most probably we have found four 3’s.

In our tests we made 1000 guesses for (i0, i1, i2, i3), generated 1000
encryptions for each such quadruple, and counted the number of wrap
failures. The probability that this process found four 3’s in β turned out
to be 90%. In most of the erroneous cases we found three 3’s and a 2.
With 200 sets of 200 messages, the probability of success was 1

6
and with

a probability of 40% we found three 3’s and a 2.

9.2 S E C O N D S T E P

In the first step we learned i0, i1, i2 and i3 such that βu−i0 = βu−i1 =
βu−i2 = βu−i3 = 3 for some u. Next we exploit these to find more large
coefficients of β. More specifically, the goal is that after this step we will
have found 15 3’s (or possibly a combination of 15 3’s and 2’s) in β. Note
that the probability that β has at least 15 3’s is roughly 97%.

First we encrypt all of the messages in the sets M1000
4×4 (i0, i1, i2, k),

M1000
4×4 (i0, i1, i3, k), M1000

4×4 (i0, i2, i3, k) and M1000
4×4 (i1, i2, i3, k) for all values

of k, 0 ≤ k ≤ 250, k �= ij . The wrap probability depends in this case on
the coefficient βu−k: the higher the wrap probability, the larger βu−k is
(see figure 9.2). We make the assumption that the 11 k’s with the highest
wrap probabilities give 11 large coefficients βu−k (3’s and possibly a few
2’s among them).

This approach has one problem. It is possible that, for example,

92 A n A t t a c k a g a i n s t o l d N T R U E n c r y p t

βi : ?

r−i :

.....
.....

.....
.....

.....
.

.....
.....

.....
.....

.....
.

.....
.....

.....
.....

.....
.

.....
.....

.....
.....

.....
.

F I G U R E 9.2: The four large coefficients of r match three known large
coefficients of β and the position corresponding to k. The number of wrap
errors at step 2 gives us information about the coefficient corresponding
to k.

for some v �= u the coefficients of xv−i0 , xv−i1 , xv−i2 in β are also 3’s.
In this case there is a good chance that βu−k is selected to be large,
even though it is not. Fortunately we have a good chance of detecting
such situations, as then the number of wrap errors generated by the
M1000

4×4 (i0, i1, i2, k)’s is greater than the number of wrap errors generated in
the other three cases. If this is the case, we can replace M1000

4×4 (i0, i1, i2, k)
by some M1000

4×4 (i0, i1, i4, k), where most probably βu−i4 = 3 based on
information from the other three cases.

Using the sets of 1000 messages, after finding four 3’s in step 1, the
sum of the 15 indices found in step 2 was in our tests always at least
41. On the other hand, if we found three 3’s and a 2, then the sum of
the 15 indices was at least 41 in half of our tests and at least 37 with a
probability of 90%.

Using the sets of 200 messages and having found four 3’s in step 1,
the sum of the 15 indices was at least 41 with a probability of 70% and
always at least 37. With three 3’s and one 2, the sum was at least 37
with a probability of 1

3
.

9.3 T H I R D S T E P

We have now found 15 3’s (or 2’s) in β ∗ xu for some u. Our strategy is
to test the largeness of the remaining terms one at a time. We also test
whether the 15 coefficients found earlier really are large.

Let βu−j be the coefficient to be examined, and assume that the coef-
ficients βu−i0 , . . . , βu−i14 are known to be large. We use blinding poly-
nomials r with one peak: rv ≥ 5 for some v. Moreover, we assume that∑14

�=0 rv−j+i� ≥ 25. (If j = i� then the term rv is excluded from the sum.)
Assuming that the average of the known large coefficients βu−i� is at least

9 . 4 C o m p u t i n g t h e p r i v a t e k e y 93

2.5, then the coefficient of xu+v−j in r∗β is at least 2.5×25+5×βu−j. The
consequence is that wrap failures are quite probable, and the probability
is strongly influenced by βu−j.

We test each index βu−j by selecting and encrypting (say) 1000 pairs
(m, b) such that the resulting blinding polynomial satisfies the conditions
above. Then we sort the indices u − j according to the number of wrap
failures. The 72 highest wrap failure rates give us the 72 large βu−j ’s
(those that equal 2 or 3). And, as already observed, these values reveal
the polynomial g ∗ xu.

Our tests have shown that this step is the most accurate and can
correct any errors made in the previous steps.

When the sum of the 15 indices of step 2 was 41 and sets of 1000
messages were used, this step almost always revealed β. With sets of 200
messages, we failed to spot on average four 1’s in g. In the case where
the sum of the 15 indices was 37 and sets of 1000 messages were used,
we failed to spot on average one 1 in g.

It seems impractical to construct a sufficiently large database of pairs
(m, b) for every 16-tuple of indices u, i0, . . . , i14. Fortunately this is not
necessary. It is sufficient to have a database of pairs (m, b) such that the
resulting blinding polynomial has the required peak. If the peak value is
≥ 5, then roughly one out of 30 peak polynomials can be used to test βu

w.r.t. indices i0, . . . , i14. Hence, a database of 30000 pairs (m, b) that
result in a peak polynomial is large enough. For each index to be tested
there are roughly 1000 suitable pairs in the database.

9.4 C O M P U T I N G T H E P R I VA T E K E Y

Let us finally show how to compute the private key f from the polynomial
g which we now know. Denote ϕ(x) = xN−1

x−1
= x250 +x249 +x248 + · · ·+1.

As ϕ decomposes into five prime factors of degree 50, with a very high
probability gcd(h, ϕ) = 1 in Z2[x], where h ≡ f−1 ∗ p ∗ g mod 128 is the
public key. Thus, we can find out the polynomials H0, a and b such that

h ∗ H0 − a ∗ ϕ = 1 − 2b

94 A n A t t a c k a g a i n s t o l d N T R U E n c r y p t

using the Extended Euclidean algorithm. We also have

h ∗ H0 ≡1 − 2b mod ϕ

h ∗ H0 ∗ (1 + 2b) ≡1 − 4b2 mod ϕ

h ∗ H0 ∗ (1 + 2b) ∗ (1 + 4b2) ≡1 − 16b4 mod ϕ

h ∗ H0 ∗ (1 + 2b) ∗ (1 + 4b2) ∗ (1 + 16b4) ≡1 − 256b8 mod ϕ.

The polynomial H = H0 ∗ (1 + 2b) ∗ (1 + 4b2) ∗ (1 + 16b4) is called the
pseudo inverse of h in the ring Z128[x]/(x251 − 1).

We have

p ∗ g ∗ H ≡ f ∗ f−1 ∗ p ∗ g ∗ H ≡ f ∗ h ∗ H ≡ f mod ϕ, 128,

where f−1 is the inverse of f modulo x251 − 1 in Z128[x]. Therefore

f ≡ p ∗ g ∗ H + cϕ mod x251 − 1, 128

for some c ∈ Z128. From the condition

f(1) = p(1)g(1)H(1) + cϕ(1)

we obtain c ≡ (217 − 216 × H(1)) × 251−1 mod 128.

9.5 G E N E R A T I N G S U I T A B L E B L I N D I N G
P O LY N O M I A L S

As mentioned above, we assume that the blinding polynomial r is con-
structed from three parts: r = r1 ∗ r2 + r3, where each ri(1) = 8. The
parts ri are generated (algorithm 3.3.2.2 of [8]) by selecting 8 random
indices j0, . . . , j7 (repetitions allowed) and setting ri = xj0 + . . .+xj7. In
theory, the “random” indices are not random, they are determined by the
message m, random data b and some specified pseudo-random number
generator. However, we obtain a similar distribution of r’s via random
selection (assuming that the chosen PRNG is secure).

We note that there are about 6.5 × 105 different quadruples modulo
rotations when N = 251.

In the attack we needed two types of blinding polynomials. The
following probabilities are obtained by generating blinding polynomials
randomly.

9 . 6 A n e x a m p l e 95

• About one pair (m, b) out of 10000 pairs produces a blinding poly-
nomial r = ρ(m, b) which has four coefficients of values at least
four. Such polynomials are needed for about 6.5 × 105 quadruples
(i0, i1, i2, i3). The construction of the whole database requires about
6.5 × 1012 message representative generations. Computing these
seems to be the most demanding task of the attack. In fact, the
whole database requires approximately 20 gigabytes of memory.

• Roughly one pair (m, b) out of 250 pairs produces a blinding poly-
nomial r = ρ(m, b) with one coefficient of value at least five.

It should be noted that if the parts ri are required to be binary poly-
nomials, it is much harder to generate r’s with large enough coefficients
and the construction of the databases will take a longer time. Altern-
atively, one could modify the attack to use somewhat smaller blinding
polynomials, which again would result in a lower success probability. It
would still be possible to apply a similar attack.

9.6 A N E X A M P L E

Next we show an example of the attack:
We attack a system with a private key f and a public key h ≡ f−1∗p∗g

mod q. Just for reference, we list the coefficients of the polynomials f
and β = (2 + x) ∗ g from the smallest to the largest exponent:

f : 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 2, 3, 3, 1, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0, 0, 0, 0, 2, 3, 3,
5, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0,
0, 0, 0, 0, 0, 2, 1, 0, 0, 2, 3, 3, 1, 2, 1, 2, 3, 3, 3, 3, 1, 0, 0, 2, 5, 4, 1, 0, 0, 0, 0, 0, 2, 1, 2, 3,
1, 0, 0, 2, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 0, 2, 1, 2, 3, 1, 0, 0, 0, 0, 2,
1, 0, 0, 0, 2, 1, 4, 2, 0, 2, 3, 1, 0, 4, 4, 1, 0, 2, 1, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0,
0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 4, 4, 3, 1, 0, 0, 2, 1, 2, 3,
3, 1, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 2, 1, 2, 3, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0

β: 0, 0, 0, 0, 2, 1, 2, 1, 0, 2, 1, 2,3, 3, 3, 1, 2, 1, 0, 0, 0, 2, 1, 2, 1, 0, 0, 2, 1, 2, 1, 0, 2, 1, 0, 0,
0, 2, 1, 2, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 2, 3, 1, 0, 0, 2, 3, 3, 3, 3, 1, 0, 0, 2, 1, 2, 3, 1, 0, 0, 0, 0,
0, 2, 1, 0, 0, 2, 3, 1, 2, 3, 1, 2, 1, 0, 2, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 2, 1, 0, 2, 1, 2, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 2, 1, 2, 1, 0, 0, 2, 1,
2, 3, 3, 1, 0, 0, 0, 0, 2, 1, 2, 3, 3, 3, 1, 0, 0, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 1, 0,
0, 0, 0, 2, 3, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 2, 3, 1, 0, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2,
1, 2, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 1

96 A n A t t a c k a g a i n s t o l d N T R U E n c r y p t

quadruple wrap errors
21,159,204,205 11
37,53,60,224 10
44,67,88,166 10
68,75,112,221 10
9,118,226,236* 10
1,16,118,172 9
9,53,197,240* 9

T A B L E 9.1: Step 1. List of best choices for the quadruple corresponding
to four 3’s. Quadruples marked with a star do not correspond to four
3’s in β and choosing one of them would cause some problems for the
attack.

Step 1: We picked 1000 random quadruples and sets M1000
4×4 (i0, i1, i2, i3).

After we encrypted and decrypted all one million messages, the quad-
ruples that generated the most wrap errors were listed in table 9.1.
We selected the best quadruple (21, 159, 204, 205), which induced 11
wrap errors. We made a guess that for some index u it is true that
βu−21 = βu−159 = βu−204 = βu−205 = 3. There is no way for the real
attacker to know whether this is true, but we can see from the list of
coefficients of β that it is for u = 217.

Step 2: For indices k ∈ {0, 1, . . . , 80}, we encrypted messages in the sets
M1000

4×4 (21, 159, 204, k), M1000
4×4 (21, 159, 205, k), M1000

4×4 (21, 204, 205, k) and
M1000

4×4 (159, 204, 205, k) and observed the number of wrap errors. Results
can be seen in table 9.2. We have included the coefficients β217−k in the
last column to demonstrate their correlation with the number of wrap
errors induced. We added the 11 k’s with largest wrap error rates to the
four indices picked in step 1. The 15 indices were then

17, 18, 21, 22, 33, 40, 41, 60, 61, 62, 71, 72, 159, 204 and 205.

Note that we only examined about one third of the indices, and therefore
β217−k < 3 for some of the k’s which were picked. But this does not mat-
ter, as all large coefficients of β ∗ x217 will be found in step 3. Naturally,
more reliable results are obtained if we go through all indices.

Step 3: The next task was to find 1000 suitable pairs (m, b) ∈ M1×5 for
each index k ∈ {0, 1, . . . , 250} (as described earlier). Again, we observed
the number of wrap errors encountered (table 9.3). We assumed that the

9 . 6 A n e x a m p l e 97

k wrap errors
0 4+2+2+7=15 2
1 1+1+7+3=12 1
2 2+2+4+7=15 2
3 0+1+3+0=4 0
4 0+0+1+3=4 0
5 1+1+1+1=4 0
6 1+1+1+3=6 1
7 6+0+2+7=15 2
8 0+1+2+7=10 0
9 1+1+1+2=5 0
10 0+1+2+2=5 0
11 2+0+0+2=4 0
12 2+0+0+2=4 0
13 0+0+2+2=4 0
14 0+1+2+1=4 0
15 0+0+4+4=8 0
16 2+5+5+2=14 1
17 8+5+6+6=25 3
18 2+7+6+6=21 2
19 1+1+3+5=10 0
20 2+4+1+9=16 1
21 n/a 3
22 8+2+13+4=27 2
23 2+2+5+1=10 0
24 2+0+0+3=5 0
25 2+2+1+1=6 0
26 1+0+4+2=7 0

k wrap errors
27 0+2+2+0=4 0
28 2+3+4+3=12 0
29 1+0+2+4=7 0
30 1+0+3+3=7 1
31 4+4+7+4=19 2
32 1+2+3+6=12 1
33 6+8+6+7=27 3
34 2+3+9+1=15 2
35 1+1+3+1=6 0
36 0+0+4+2=6 0
37 0+0+1+1=2 0
38 0+1+1+4=6 0
39 0+4+2+6=12 1
40 10+5+10+15=40 3
41 3+3+4+10=20 2
42 1+2+7+9=19 0
43 0+0+4+3=7 0
44 1+0+2+6=9 0
45 1+0+2+2=5 0
46 0+2+0+1=3 0
47 0+1+1+3=5 0
48 0+2+0+4=6 0
49 1+1+2+2=6 0
50 2+2+3+4=11 1
51 7+1+3+5=16 2
52 2+0+10+2=14 1
53 1+1+7+5=14 2

k wrap errors
54 0+0+2+0=2 0
55 0+0+0+3=3 0
56 0+0+1+5=6 0
57 1+1+2+0=4 0
58 2+1+2+1=6 0
59 1+4+3+1=9 1
60 4+7+12+7=30 3
61 8+8+11+5=32 3
62 4+9+21+14=48 3
63 1+3+12+1=17 2
64 1+1+3+0=5 1
65 0+2+5+5=12 2
66 2+0+3+4=9 0
67 0+1+0+7=8 0
68 1+2+3+0=6 0
69 0+1+0+0=1 0
70 0+3+6+1=10 1
71 6+6+4+8=24 3
72 6+9+7+10=32 3
73 4+5+9+2=20 2
74 1+2+3+1=7 1
75 0+4+5+6=15 2
76 3+0+9+1=13 0
77 0+1+0+2=3 0
78 5+3+4+5=17 1
79 1+5+3+2=11 2
80 3+3+3+3=12 1

T A B L E 9.2: Step 2. Wrap error counts for the first 81 k’s. In the last
column there is the corresponding coefficient of x217−k in β.

72 largest wrap counts – anything over 80 here – corresponded to 2’s and
3’s in some rotation of β. A correct assumption here would lead to the
discovery of a rotation of the polynomial g. In our case the guess was
indeed true: we discovered g ∗ x217. However, the attacker must proceed
to the next step to check the validity of the obtained g.

Step 4: Let g′ be the polynomial found in step 3. Our final task was
to compute f ′ such that f ′−1 ∗ p ∗ g′ ≡ h mod q, where h is the public
key. Applying the method described earlier we obtained f ′ = f ∗ x217,
and the key was broken.

In this example we did not use actual messages to generate useful
blinding polynomials. Instead, for steps 1 and 2 we selected random

98 A n A t t a c k a g a i n s t o l d N T R U E n c r y p t

k errors
0 105 2
1 46 1
2 85 2
3 19 0
4 16 0
5 27 0
6 46 1
7 101 2
8 43 0
9 9 0
10 16 0
11 14 0
12 19 0
13 29 0
14 15 0
15 19 0
16 72 1
17 192 3
18 140 2
19 39 0
20 45 1
21 208 3
22 131 2
23 25 0
24 13 0
25 23 0
26 21 0
27 18 0
28 20 0
29 20 0
30 44 1
31 93 2
32 59 1
33 216 3
34 105 2
35 23 0
36 23 0
37 18 0
38 19 0
39 52 1
40 217 3
41 129 2

k errors
42 48 0
43 40 0
44 24 0
45 13 0
46 18 0
47 17 0
48 36 0
49 20 0
50 44 1
51 125 2
52 62 1
53 105 2
54 22 0
55 14 0
56 25 0
57 19 0
58 24 0
59 53 1
60 210 3
61 222 3
62 228 3
63 116 2
64 38 1
65 100 2
66 23 0
67 16 0
68 18 0
69 22 0
70 47 1
71 201 3
72 202 3
73 116 2
74 46 1
75 107 2
76 30 0
77 18 0
78 48 1
79 101 2
80 45 1
81 91 2
82 26 0
83 53 1

k errors
84 91 2
85 48 0
86 41 0
87 49 0
88 23 0
89 22 0
90 21 0
91 17 0
92 15 0
93 26 0
94 13 0
95 44 1
96 101 2
97 30 0
98 21 0
99 11 0
100 43 1
101 108 2
102 27 0
103 16 0
104 19 0
105 23 0
106 21 0
107 20 0
108 19 0
109 21 0
110 16 0
111 8 0
112 24 0
113 44 1
114 94 2
115 60 1
116 101 2
117 25 0
118 41 1
119 117 2
120 29 0
121 16 0
122 42 1
123 104 2
124 26 0
125 41 1

k errors
126 93 2
127 13 0
128 11 0
129 18 0
130 60 1
131 97 2
132 22 0
133 54 1
134 105 2
135 55 1
136 200 3
137 122 2
138 52 1
139 197 3
140 137 2
141 26 0
142 16 0
143 50 1
144 110 2
145 18 0
146 14 0
147 19 0
148 14 0
149 27 0
150 70 1
151 197 3
152 117 2
153 51 1
154 108 2
155 40 0
156 19 0
157 43 1
158 203 3
159 199 3
160 214 3
161 205 3
162 113 2
163 17 0
164 22 0
165 63 1
166 223 3
167 116 2

k errors
168 30 0
169 38 1
170 118 2
171 26 0
172 25 0
173 68 1
174 116 2
175 30 0
176 22 0
177 47 1
178 97 2
179 46 1
180 94 2
181 22 0
182 23 0
183 17 0
184 53 1
185 116 2
186 37 0
187 50 1
188 98 2
189 52 1
190 121 2
191 25 0
192 19 0
193 72 1
194 121 2
195 67 1
196 109 2
197 32 0
198 19 0
199 16 0
200 33 1
201 88 2
202 55 1
203 208 3
204 221 3
205 227 3
206 136 2
207 40 1
208 115 2
209 28 0

k errors
210 42 1
211 93 2
212 49 1
213 95 2
214 34 0
215 29 0
216 23 0
217 23 0
218 42 1
219 81 2
220 29 0
221 19 0
222 14 0
223 13 0
224 22 0
225 29 0
226 45 1
227 92 2
228 22 0
229 48 1
230 105 2
231 40 0
232 24 0
233 23 0
235 13 0
235 50 1
236 91 2
237 28 0
238 12 0
239 19 0
240 18 0
241 11 0
242 14 0
243 18 0
244 18 0
245 10 0
246 19 0
247 49 1
248 95 2
249 27 0
250 56 1

T A B L E 9.3: Step 3. Wrap error counts for all k’s. In the last column
there is the coefficient of x217−k in β.

9 . 7 A m e t h o d t o c r e a t e m o r e w r a p e r r o r s 99

binary polynomials with weight 56 and added 4 to four coefficients. For
step 3 we selected random binary polynomials with weight 45, added 5
to one coefficient and distributed the rest of the weight, 22, randomly
between 15 coefficients.

9.7 A M E T H O D T O C R E A T E M O R E W R A P
E R R O R S

The attack which we have described would be more efficient if wrap
failures occurred more frequently. And, in fact, we can make this happen.
As noted before, the generation function of the message representative i
from the message m and randomness b is invertible. Therefore, we can
select messages m such that, for example, i(1) > N/2 + q/2. Then the
average coefficient of α, i.e. A, is computed to be too small (by 110 if
N = 251) and wrap errors are inevitable. The decryptor is still able to
correct the error if (s)he tries to correct A as stated in the standard. The
number of corrections needed depends on the largest coefficient of α.

Our attack exploited the connection between the largest coefficient
of α and a guess on the polynomial g. Then, a large coefficient was
detected by wrap errors, which occurred quite rarely. Using this new
approach we get information on the largest coefficient in every decryption
process, provided that we can find out how many changes were made to
A before the decryption succeeded. This information can be obtained by
measuring the time it takes to decrypt a message.

We expect the modification sketched above to be significantly more
efficient than the original one.

Although not specified in the standards, NTRU recommends that
the polynomial g does not have any two consecutive coefficients equal to
1 [18]. Therefore the coefficients of p ∗ g are all smaller than 3, which
makes our basic attack less effective. However, it seems that the modified
approach would still work.

The starting point for this modification of the attack was that it is
easy to find messages with representatives of large weight. Several other
attacks are based on the same property, see [32, 14, 35]. These attacks
do not require blinding polynomials with large coefficients. Indeed, even
in the binary case, there are serious security implications if wrap or gap
errors occur too frequently.

100 A n A t t a c k a g a i n s t o l d N T R U E n c r y p t

9.8 R E M A R K S A N D C O N C L U S I O N

The starting assumption in our attack is that the attacker can detect
wrap failures. An obvious method would be to measure the time taken
to decrypt a message. To make the attack impossible, one could make
the decryption algorithm constant time, as if wrap failures occurred every
time. A more efficient way would be to simulate wrap failures every now
and then. Also, the decryption machinery could count the number of
wrap failures it faces. If they occur too frequently, the key should be
changed.

The counter-measure we would like to recommend is to always require
that the blinding polynomial r is binary. Specifically r should not be
constructed from two or more smaller parts.

The generation of the required databases M4×4 and M1×5 can (and
must) be done off-line. The workload of generating these sets could be
divided over the whole internet, for example. The same library can be
used to break any NTRU key.

Our attack is by no means optimized; most probably similar ideas
can be further developed to extract g more efficiently. For example, one
could use blinding polynomials with different patterns or even larger coef-
ficients. Also we have ignored that the coefficients of β obey a certain
pattern. For example, a 3 is always preceded by another 3 or a 2. Fi-
nally, it is not necessary to discover g exactly. If we find a close enough
approximation, we can apply some lattice reduction methods to extract
f (and g).

It should also be mentioned that although the attack is designed
against a particular set of parameters, it can be modified to beat effi-
ciently any parameter set, as long as one can generate blinding polyno-
mials with large coefficients. The complexity seems to be linear with
respect to N , the degree of the polynomials. However, the number of
quadruples increases more rapidly, so the construction of the databases
becomes more troublesome.

C H A P T E R 10

N T R U S i g n

As with the NTRUEncrypt public key cryptosystem, there are several
versions of the NTRU signature scheme. The current version is called
NTRUSign. Before this there was a system called NSS, NTRU Signature
Scheme. NTRUSign is defined in the same EESS standard as NTRUEn-
crypt [9]. In the following we outline the characteristics of NTRUSign.

The lattices of NTRUSign are very similar to those of NTRUEncrypt
and the underlying problem is the closest vector problem. All the oper-
ations are performed in the ring

R = Z[x]/(xN − 1),

exactly as in NTRUEncrypt.
We define the centered norm of vector v = (v1, v2, . . . , vn) as

||v||2c =

n∑
i=1

(
vi − 1

n

n∑
j=1

vj

)2

=

n∑
i=1

v2
i −

1

n

(
n∑

i=1

vi

)2

.

R E M A R K 10.1 If we project the vector into the space orthogonal to(
1 1 · · · 1

)
and take the Euclidean norm we get the centered norm

of the original vector. It turns out that the centered norm is a better
measure than the Euclidean norm. Moreover, the attacker can always
work with the centered norms. We have

Z[x]

(xn − 1)
� Z × Z[x]

(xn−1 + xn−2 + · · ·+ x + 1)
.

R E M A R K 10.2 The centered norm is quasi-multiplicative, that is,

||v ∗ u||c ≈ ||v||c · ||u||c.

102 N T R U S i g n

Let us denote u =
∑n−1

i=0 (c + ui)x
i and v =

∑n−1
i=0 (d + vi)x

i, where∑n−1
i=0 ui =

∑n−1
i=0 vi = 0, and let u ∗ v = w =

∑n−1
i=0 wix

i. The aver-
age coefficient of w is 1

n
w(1) = 1

n
u(1)v(1) = ncd and

wi =

n−1∑
j=0

(c + uj)(d + vi−j)

=
n−1∑
j=0

cd +
n−1∑
j=0

cvi−j +
n−1∑
j=0

duj +
n−1∑
j=0

ujvi−j

=ncd +

n−1∑
j=0

ujvi−j.

Here we reduced the indices modulo n when needed. Thus

||w||c =

n−1∑
i=0

(
n−1∑
j=0

ujvi−j

)2

=

n−1∑
i=0

n−1∑
j=0

(ujvi−j)
2 + 2

n−1∑
i=0

∑
0≤j,k<n

j �=k

ujukvi−jvi−k

=||u||c · ||v||c + 2s,

where the terms of s mostly cancel each other out, if u and v are random
enough.

R E M A R K 10.3 We can also show that

||v + u||2c ≈ ||v||2c + ||u||2c.
Let v = (v1, v2, . . . , vn) and u = (u1, u2, . . . , un). We have

||v + u||2c =

n∑
i=1

(
vi + ui − 1

n

n∑
j=1

(vj + uj)

)2

=
n∑

i=1

(
vi − 1

n

n∑
j=1

vj

)2

+
n∑

i=1

(
ui − 1

n

n∑
j=1

uj

)2

+ 2

n∑
i=1

((
vi − 1

n

n∑
j=1

vj

)(
ui − 1

n

n∑
j=1

uj

))

=||v||2c + ||u||2c + 2s

1 0 . 1 K e y g e n e r a t i o n 103

for some s. On the other hand

n∑
i=1

(
vi − 1

n

n∑
j=1

vj

)
=

n∑
i=1

vi − n
1

n

n∑
j=1

vj = 0.

If the vectors are random enough, the quantity s is very close to 0.

We are interested in the centered norms of v mod q. There are sev-
eral ways to compute this. One way is to put the coefficients into the
interval [− q

2
+ t, q

2
+ t] for all t = 0, . . . , q − 1 and to check when the

centered norm is minimal. Another way would be to do as with NTRUEn-
crypt: Let us assume that q is even. Let k ≡ n−1v(1) − q

2
mod q and

−q < k ≤ 0. Now let v̄ ≡ v mod q, where the coefficients of v̄ lie in the
interval [k, k + q − 1]. The centered norm of v mod q is ||v̄||.

In the following, we are mainly considering the case with parameter
values N = 251, q = 128, df = 73, dg = 71 and NormBound= 310.

10.1 K E Y G E N E R A T I O N

Let f be a polynomial in R with df randomly selected coefficients set
to 1 and the rest set to 0. Let f be such that there exists an inverse
f−1 such that f ∗ f−1 ≡ 1 modulo q. Let g be a polynomial in R with
dg arbitrarily selected coefficients set to 1 and the rest set to 0 and let
h ≡ f−1 ∗ g mod q.

First we find polynomials F1, G1 ∈ R such that

f ∗ G1 − g ∗ F1 = 1.

First note that there are polynomials u, v, k1, k2 ∈ Z[x] such that

f ∗ v + k1 ∗ (xN − 1) = Rf ,

g ∗ u + k2 ∗ (xN − 1) = Rg,

in Z[x] where Rf and Rg are integers. If Rf and Rg are coprimes we
can apply the Extended Euclidean algorithm to obtain integers α and β
satisfying

αRf + βRg = 1.

Putting above three equations together we get

(αv) ∗ f + (βu) ∗ g ≡ 1 mod xN − 1.

104 N T R U S i g n

Now we have found the polynomials F1 = −βu and G1 = αv.
We denote F ′ = qF1 and G′ = qG1. Let

Bfg =

(−→
f −→g−→
F ′ −→

G ′

)
=




f0 f1 · · · fN−1 g0 g1 · · · gN−1

fN−1 f0 · · · fN−2 gN−1 g0 · · · gN−2
...

...
. . .

...
...

...
. . .

...
f1 f2 · · · f0 g1 g2 · · · g0

F ′
0 F ′

1 · · · F ′
N−1 G′

0 G′
1 · · · G′

N−1

F ′
N−1 F0 · · · F ′

N−2 G′
N−1 G′

0 · · · G′
N−2

...
...

. . .
...

...
...

. . .
...

F ′
1 F ′

2 · · · F ′
0 G′

1 G′
2 · · · G′

0




and

Bh =

(
I −→g
0 qI

)
=




1 h0 h1 · · · hN−1

1 0 hN−1 h0 · · · hN−2

. . .
...

...
. . .

...
0 1 h1 h2 · · · h0

q
q 0

0
. . .

0 q




.

T H E O R E M 17 Matrices Bfg and Bh generate the same lattices, i.e.

L(Bfg) = L(Bh).

Proof. Using previous notations let

U =

(−→
U 1

−→
U 2−→

U 3
−→
U 4

)

where

U1 = G1 − F1 ∗ h,

U2 =
−g + f ∗ h

q
,

U3 = −qF1 and

U4 = f.

1 0 . 1 K e y g e n e r a t i o n 105

We have

U1 ∗ f + U2 ∗ F ′ = G1 ∗ f − F1 ∗ h ∗ f − g ∗ F1 + f ∗ h ∗ F1 = 1,

U1 ∗ g + U2 ∗ G′ = G1 ∗ g − F1 ∗ h ∗ g − g ∗ G1 + f ∗ h ∗ G1 = h,

U3 ∗ f + U4 ∗ F ′ = −qF1 ∗ f + f ∗ gF1 = 0 and

U3 ∗ g + U4 ∗ G′ = −qF1 ∗ g + f ∗ gG1 = g.

Thus,
UBfg = Bh.

Furthermore,

det(U) = (G1 − F1 ∗ h) ∗ f + (−g + f ∗ h) ∗ F1 = 1.

These equations together imply that

L(Bfg) = L(Bh).

�

The private signing key will consist of a small basis for the lattice
Bfg. However, the polynomials F ′ and G′ are not small enough for this
purpose. But a slight modification of them will suffice.

We denote by [f] the polynomial where each coefficient of f is rounded
to the closest integer. It is easy to see that if

k =

[
f(x−1) ∗ F ′(x) + g(x−1) ∗ G′(x)

f(x−1) ∗ f(x) + g(x−1) ∗ g(x)

]

and
F = F ′ − k ∗ f, G = G′ − k ∗ f

then the matrix (−→
f −→g−→
F

−→
G

)

generates the lattice L(Bfg) and

||F ||c ≈ ||f ||c
√

N

12
||G||c ≈ ||g||c

√
N

12
.

We justify the approximations later.
The private signing key of this signature scheme will be (f, g, F, G).

The public verification key is h. These keys generate two different bases
for the same matrix.

106 N T R U S i g n

10.2 S I G N I N G

The signature of a message m will be a lattice vector close to
(
0 i

)
,

where i is the message representative of m. Here “close to” means that
the distance is at most some predefined limit, namely NormBound.

The process of signing m starts by computing i ∈ Zq[x]/(xN − 1)
using some selected hash function. This method is public as it needs to
be done by the verifiers of the signature as well.

Let

B =

[−F ∗ i

q

]
and b =

[
f ∗ i

q

]
.

The signature s of the message is

s ≡ f ∗ B + F ∗ b mod q.

10.3 V E R I F I C A T I O N

Suppose that we want to verify that s is the signature of message m, and
that we know the public verification key of the (claimed) signer, h. The
first task is to compute

t ≡ h ∗ s mod q

where
(
s t

)
is the lattice point. It only remains to be checked that the

centered norm of (
s t

)− (
0 i

)
is at most the size of the NormBound constant.

10.4 W H Y D O E S T H E V E R I F I C A T I O N
W O R K

The signer wants to find a lattice point near the vector

J =
(
0 i

)
.

1 0 . 4 W h y d o e s t h e v e r i f i c a t i o n w o r k 107

(S)he can see the secret short basis of the lattice directly from (f, g, F, G).
If the secret basis is short it is also almost orthogonal and the lattice point

(
s t

)
=
(
B b

)(f g
F G

)

=

[(
0 i

) 1

q

(
G −g
−F f

)](
f g
F G

)

=

[(
0 i

)(f g
F G

)−1
](

f g
F G

)

is near J .
Next we approximate the centered norm of F and G. The polynomials

f and g were chosen to satisfy ||f ||c ≈ ||g||c ≈ c
√

N . We have

F (x) =F ′(x) − f(x) ∗
[
f(x−1) ∗ F ′(x) + g(x−1) ∗ G′(x)

f(x−1) ∗ f(x) + g(x−1) ∗ g(x)

]

=F ′(x) − f(x) ∗ f(x−1) ∗ F ′(x) + g(x−1) ∗ G′(x)

f(x−1) ∗ f(x) + g(x−1) ∗ g(x)
+ f(x) ∗ A(x)

=F ′(x) − f(x−1) ∗ f(x) ∗ F ′(x) + g(x−1) ∗ f(x) ∗ G′(x)

f(x−1) ∗ f(x) + g(x−1) ∗ g(x)

+ f(x) ∗ A(x),

where the coefficients of A are in the interval [−1
2
, 1

2
]. We substitute

f ∗ G′ = g ∗ F ′ + q into the equation above and get

F (x) =
qg(x−1)

f(x−1) ∗ f(x) + g(x−1) ∗ g(x)
+ f(x) ∗ A(x).

Because ||f(x)||c = ||f(x−1)||c ≈ ||g(x)||c = ||g(x−1)||c, Remark 10.3
gives us

||f(x−1)∗f(x) + g(x−1)∗g(x)||c ≈
√

||f(x−1)∗f(x)||2c + ||g(x−1)∗g(x)||2c
≈
√

2||g(x−1)||2c .
In addition, if the coefficients of A are uniformly distributed in the inter-

val [−1
2
, 1

2
], the centered norm of A is approximately

√
N
12

. This is due

to the fact that the square of the average coefficient is

∫ 1
2

− 1
2

x2dx = 2

/1
2

0

x3

3
=

1

12
.

108 N T R U S i g n

Because of its quasi-multiplicativity, the centered norm of F (x) has an
upper limit which is approximately

q||g(x−1)||c√
2||g(x−1)||2c

+ ||f(x)||c||A(x)||c ≈ q

c
√

2N
+

cN√
12

≈ cN√
12

.

The same approximation holds for G.
We have shown that ||f ||c ≈ ||g||c ≈ c

√
N and ||F ||c ≈ ||G||c ≈ cN√

12
.

We have (
s t

)− (
0 i

)
=
(
A a

)(f g
F G

)
,

where the coefficients of a and A are in the interval [−1
2
, 1

2
]. We assume

that these coefficients are uniformly distributed on this interval. The

centered norms of a and A are approximately
√

N
12

. Because of the quasi-

multiplicativity we have

|| (s t
)− (

0 i
) ||2c = ||A ∗ f + a ∗ F ||2c + ||A ∗ g + a ∗ G||2c

≈ ||A ∗ f ||2c + ||a ∗ F ||2c + ||A ∗ g||2c + ||a ∗ G||2c
≈ 2

(
N

12
c2N +

N

12

c2N2

12

)

≈ c2N2

6
+

c2N3

72
.

With our parameter set the square root of this quantity equals 216 and
c = 0.45. Thus we have a hefty safety margin, as the parameter Norm-
Bound equals 310.

10.5 A N E X A M P L E

Figure 10.1 describes a lattice with a short basis (4, 1), (−1, 2). Using
this basis we can calculate a lattice point (s, t) close to (0, 5):

(
4 1
−1 2

)−1

=

(
2
9

−1
9

1
9

4
9

)
,

(
0 5

)(2
9

−1
9

1
9

4
9

)
=
(

5
9

20
9

) ≈ (
1 2

)
and

(
1 2

)(4 1
−1 2

)
=
(
2 5

)
.

1 0 . 6 A n a t t a c k 109

v1

v2

u2

u1

(0, i) (s, t)

F I G U R E 10.1: A lattice with two bases (v1 = (4, 1), v2 = (−1, 2)
and u1 = (1,−2), u2 = (0, 9)), the message representative i = 5 and the
signature s = 2.

With the same method and a longer basis (1,−2), (0, 9) we can only find
a point which is further away from (0, 5):

(
0 5

)(1 2
9

0 1
9

)
=
(
0 5

9

) ≈ (
0 1

)
,

(
0 1

)(1 −2
0 9

)
=
(
0 9

)
.

However, anybody with this kind of basis can verify that (s, t) belongs
to the lattice:

s ∗ h = 2 ∗ −2 ≡ 5 = t mod 9.

10.6 A N A T T A C K

The idea of the attack discussed in this section is that two signatures that
are very close to each other give us more information about the private
key than the public key alone.

Let us assume that we have acquired two signatures s and s′ generated
with the same private key. Let L be the lattice generated by this key. The
vectors (s, t) and (s′, t′) belong to the lattice L when t ≡ s∗h mod q and
t′ ≡ s′ ∗ h mod q. Therefore their difference also belongs to the lattice.
With some luck we have s−s′ = ±xk ∗f , and the private key is revealed.

110 N T R U S i g n

We performed some experiments to approximate the probability of
this happening. If the distance between the message representatives i
and i′ was at least 5, the probability was far too small to have any
practical relevance. But in the extreme case, when i and i′ differed by
only one, the private key was found with probability 1%.

If we were to find two messages with adjacent message representatives
we could break any private key with probability 1%. We would only need
to persuade our victim to sign those two messages.

It is highly unlikely to be able to find messages whose representatives
are close enough. However, we can improve the described method.

Our first improvement is quite trivial. It is enough to find represent-
atives with some rotations close to each other.

A better improvement is achieved by noting that the polynomial f has
smaller coefficients than the polynomial F . When signing two message
representatives i and i′ we calculate

B =

[−F ∗ i

q

]
, b =

[
f ∗ i

q

]

and

B′ =

[−F ∗ i′

q

]
, b′ =

[
f ∗ i′

q

]
.

If the representatives are relatively close to each other, the polynomials
B and B′ differ from one another but the polynomials b and b′ are the
same. Then the difference of the signatures is s−s′ ≡ f∗(B−B′) mod q.
Both f and B − B′ are polynomials with small coefficients. Thus with
high probability we have s − s′ = f ∗ (B − B′). If an attacker succeeds
in acquiring the signatures s and s′ of the selected i and i′, he can easily
calculate the private key f .

We have estimated the probability that b equals b′. If the distance of
i and i′ (or a rotation of i′) is 10, then the probability is about 1%.

Still, it is impossible to say if such representatives exist. However, if
such a pair were to exist it could be used against all the private keys.

C H A P T E R 11

C o n c l u d i n g r e m a r k s

In this thesis we have considered the NTRU public key systems. Main
emphasis has been on the security of the encrypytion system.

The most severe attacks against NTRU encryption systems have been
based on the occurrences of wrap errors. One of these attacks is described
in Chapter 9. Consequently, the system has been modified. In the current
version of the system the parameters have been selected in such a way
that the probability of wrap errors is negligible. Therefore attacks of this
kind are no longer a threat.

Any public key cryptosystem can be attacked in two ways: either one
tries to learn the private key given the public key, or one tries to learn
the plaintext given the cryptotext. In the NTRU case these problems can
be reduced to the problem of finding small vectors in the NTRU-lattice.
No efficient algorithm for this problem is known. Better methods are
continuously being developed, see [32, 39, 40], but the advances have not
been significant. A small increase in the size of the parameters seems to
be enough to cancel out the effects of the little faster reduction methods.

B i b l i o g r a p h y

[1] M. Ajtai, Generating Hard instances of Lattice Problems. Elec-
tronic Colloquium on Computational Complexity, TR96-007, 1996,
http://www.eccc.unitrier.de/eccc/

[2] I. Blake, G. Seroussi and N. Smart, Elliptic Curves in Cryptography.
Cambridge University Press, Cambridge, 1999.

[3] D. Bleichenbacher, Chosen Ciphertext Attacks against Protocols
Based on the RSA Encryption Standard PKCS#1. Advances in
Cryptology - Crypto ’98, Springer-Verlag, 1992.

[4] J. W. S. Cassels, An Introduction to the Geometry of Numbers.
Springer-Verlag, Berlin, 1971.

[5] S. A. Cook, The complexity of theorem proving procedures. Proc.
3rd Ann. ACM Symp. on Theory of Computing, Association for
Computing machinery, New York, 151-158, 1971.

[6] W. Diffie and M. Hellman, New directions in cryptography. IEEE
Transactions on Information Theory IT-22, 644-654, 1976.

[7] C. Dwork, Lattices and Their Application to Cryptography. Lecture
Notes, Stanford University, 1998.

[8] Efficient Embedded Security Standard (EESS) #1: Draft 4. Con-
sortium for Efficient Embedded Security, March, 2002.

[9] Efficient Embedded Security Standard (EESS) version 2.0. Consor-
tium for Efficient Embedded Security, June, 2003.

[10] T. El Gamal, A public key cryptosystem and signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory
IT-31, 496-473,1976.

114 B i b l i o g r a p h y

[11] C. Gentry, Key Recovery and Message Attacks on NTRU-
Composite. Advances in Cryptology - Eurocrypt 2001, LNCScience
2045, Springer-Verlag, 2001.

[12] O. Goldreich. Foundations of Cryptography: Volume 1, Basic Tools.
Cambridge University Press, 2001.

[13] G. H. Golub and C. F. van Loan, Matrix computations. The Johns
Hopkins University Press, Baltimore, 1989.

[14] D. Han, J. Han, D. Kwon and J. Hong, A New Chosen Ciphertext
Attack against NTRU. Unpublished manuscript.

[15] J. Hoffstein, J. Pipher and J. H. Silverman, NTRU: A Ring-Based
Public Key Cryptosystem. Algorithmic Number Theory (ANTS III),
Portland, OR, June 1998, J.P. Buhler (ed.), LNCS 1423, Springer-
Verlag, Berlin, 267-288, 1998.

[16] J. Hoffstein, J. H. Silverman and W. Whyte, Estimated Break-
ing Times for NTRU Lattices. Technical Report #12, available at
www.ntru.com.

[17] N. Howgrave-Graham, P. Q. Nguyen, D. Pointcheval, J. Proos,
J. H. Silverman, A. Singer and W. Whyte, The Impact of Decryption
Failures on the Security of NTRU Encryption. Advances in Crypto-
logy - CRYPTO 2003, LNCS 2729, Springer-Verlag, Berlin, 226-246,
2003.

[18] N. Howgrave-Graham, P. Q. Nguyen, D. Pointcheval, A. Singer and
W. Whyte, Padding Schemes and Decryption Failures in NTRUEn-
crypt. Unpublished manuscript.

[19] N. Howgrave-Graham, J. H. Silverman and W. Whyte, A Meet-In-
The-Middle Attack on an NTRU Private Key. Technical Report #4,
Version 2, available at www.ntru.com.

[20] N. Howgrave-Graham, J. H. Silverman and W. Whyte, Choosing
Parameter Sets for NTRUEncrypt with NAEP and SVES. Unpub-
lished manuscript, available at www.ntru.com.

[21] IEEE P1363.1. Standard Specification for Public-Key Cryptographic
Techniques Based on Hard Problems over Lattices.

B i b l i o g r a p h y 115

[22] É. Jaulmes and A. Joux, A Chosen-Ciphertext Attack against
NTRU. Advances in Cryptology - Crypto 2000, LNCS 1880,
Springer-Verlag, Berlin, 20-35, 2000.

[23] R. Kannan, Minkowski’s convex body theorem and integer program-
ming. Mathematics of Operations Research, Vol 12 No. 3, 415-440,
1987.

[24] N. N. Lebedev, Special functions and their applications. Dover Pub-
lications, 1972.

[25] A. K. Lenstra, H. W. Lenstra, and L. Lovasz, Factoring Polynomials
with Rational Coefficients. Math. Ann. 261, 515-534, 1982.

[26] R. Lidl and G. Pilz, Applied Abstract Algebra. Springer-Verlag, Ber-
lin, 1984.

[27] A. May, Cryptanalysis of NTRU. Unpublished preprint, 1999. Avail-
able at http://www.informatik.uni-frankfurt.de/˜alex/ntru.ps

[28] A. May and J. H. Silverman, Dimension reduction methods for con-
volution modular lattices. Conference on Lattices and Cryptography
(CaLC 2001), LNCS 2146, Springer-Verlag, 111-127.

[29] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of applied
cryptography. CRC Press, 1997.

[30] R. Merkle and M. Hellman, Hiding information and signatures in
trapdoor knapsacks. IEEE Transactions in Information Theory IT-
24, 525-530, 1978.

[31] T. Meskanen and A. Renvall, A Wrap Error Attack against
NTRUEncrypt. To appear in Discrete applied mathematics.

[32] P. Q. Nguyen and D. Pointcheval, Analysis and Improvements of
NTRU Encryption Paddings. Advances in Cryptology - CRYPTO
2002, Lecture Notes in Computer Science 2442, Springer-Verlag,
Berlin, 210-225, 2002.

[33] P. Q. Nguyen and D. Stehlé, Floating-Point LLL Re-
visited. Proceedings of Eurocrypt ’05. Available from
http://www.di.ens.fr/˜pnguyen/pub.html

[34] www.ntru.com.

116 B i b l i o g r a p h y

[35] J. Proos, Imperfect Decryption and an Attack on the
NTRU Encryption Scheme. Technical report, available at
http://www.cacr.math.uwaterloo.ca/tech reports.html.

[36] R. Rivest, A. Shamir and L. Adleman, A method for obtaining di-
gital signatures and public-key cryptosystems. Commun. ACM 21,
120-126, 1978.

[37] C. P. Schnorr, A hierarchy of polynomial time lattice basis reduction
algorithms. Theoretical Computer Science, 53, 201-224, 1987.

[38] C. P. Schnorr, Block Korkin-Zolotarev Bases and Successive Min-
ima. Technical report, 1996, www.mi.informatik.uni-frankfurt.de/
research/papers/schnorr.block korkine zolotarev.1994.ps.gz

[39] C. P. Schnorr, Lattice Reduction by Random Sampling and Birthday
Methods, STACS 2003, Computer Science 2607, 145-156, Springer-
Verlag, Berlin, 2003.

[40] C. P. Schnorr, Fast LLL-Type Lattice Reduction. Available at
http://www.mi.informatik.uni-frankfurt.de/research/papers.html

[41] C. P. Schnorr and H. H. Hörner, Attacking the Chor–Rivest Crypto-
system by Improved Lattice Reduction. Eurocrypt’95, LNCS 921
(1995), Springer Berlin, 1-12.

[42] C. P. Schnorr and M. Euchner, Lattice Basis Reduction: Improved
Practical Algorithms and Solving Subset Sum Problems. Math. Pro-
gramming 66, 181-199, 1994.

[43] J. H. Silverman and W. Whyte, Estimating Decryption Failure
Probabilities for NTRUEncrypt. Technical Report #18, available
at www.ntru.com.

A p p e n d i x A

The PARI/GP code we used to generate NTRU-like lattices:

{

n=115; /* Set the parameters */

d=32;

q=109;

setrand(71104);

lb=matrix(n*2,n*2); /* Set matrix dimensions */

f=Mod(1+2*bigtau(d,0,n),x^n-1); /* Generate the keys */

g=Mod(bigtau(d,0,n),x^n-1);

h=2*g*inverse(f,q,n);

h=redu(h,q,n);

i=1; /* Generate the matrix */

lb[1,1]=1;

while(i<=n,

lb[n+i,1]=polcoeff(h,i-1);

i++;

);

j=2;

while(j<=n,

i=2;

while(i<=2*n,

lb[i,j]=lb[i-1,j-1];

i++;

);

lb[1+n,j]=lb[2*n,j-1];

j++;

);

i=n+1;

118 A p p e n d i x A

while(i<=2*n,

lb[i,i]=q;

i++;

);

firstline=lb[,1]; /* Tricks one and two */

lb=lb*4; /* and the embedding */

i=1;

while(i<=n,

lb[i,1]=-1;

i++;

);

while(i<=2*n,

lb[i,1]=2*firstline[i]-1;

if(lb[i,1]%4==1,lb[i,1]-=q*2,);

if(lb[i,1]%4==-3,lb[i,1]+=q*2,);

i++;

);

i=1;

write1("ofb", "["); /* Output the lattice */

while(i<=2*n,write("ofb", lb[,i]~);i++);

write("ofb", "]");

write("fgh",f);

write("fgh",g);

write("fgh",h);

}

A p p e n d i x A 119

The C++ code we used to find the shortest vectors of NTRU-like
lattices:

#include "NTL/LLL.h"

#include "stdio.h"

static long EndCondition(const vec_ZZ& z)

{ // Check whether we have

long i,n; // found the result

n=z.length();

for(i=1;i<=n;i++)

if (z(i)>3 || z(i)<-3) return 0;

cerr << z;

cout << z;

return 1;

}

main()

{

int i,j,n2,beta;

mat_ZZ L,LL;

double t;

cin >> L; // The lattice

cin >> df; // The weight of the result

cin >> beta; // Starting block-size

n2=L.NumRows(); // The dimension of L

for(i=1;i<=n2/2;i++) // Trick 3B

for(j=1;j<=n2;j++)

L(i,j)+=1;

for(i=1;i<=n2;i++)

L(1,i)-=df+1;

swap(L(1),L(n2));

for(i=2;i<n2;i++) { // Randomize order of rows

j=RandomBnd(n2-i)+i+1;

swap(L(i),L(j));

}

for(i=beta;i<70;i++) {

cerr << i << "\n";

120 A p p e n d i x A

cout << i << "\n";

LL=L;

t=GetTime(); // Start timer

G_BKZ_FP(LL,0.99,i,0,EndCondition,0); // Call BKZ

cerr << (GetTime()-t) << "\n";

cout << (GetTime()-t) << "\n";

cerr << LL(1) << "\n";

cout << LL(1) << "\n";

}

}

25. Shuhua Liu

26. Jaakko Järvi

27. Jan-Christian Lehtinen

28. Martin Büchi
29. Elena Troubitsyna
30. Janne Näppi
31. Jianming Liang
32. Tiberiu Seceleanu
33. Tero Aittokallio

34. Ivan Porres
35. Mauno Rönkkö
36. Jouni Smed
37. Vesa Halava
38. Ion Petre
39. Vladimir Kvassov

40. Franck Tétard

41. Jan Manuch
42. Kalle Ranto
43. Arto Lepistö
44. Mika Hirvensalo
45. Pentti Virtanen

46. Adekunle Okunoye

47. Antonina Kloptchenko
48. Juha Kivijärvi
49. Rimvydas Rukš nas
50. Dirk Nowotka
51. Attila Gyenesei

, Improving Executive Support in Strategic Scanning with Software
Agent Systems

, New Techniques in Generic Programming : C++ is More Intentional
than Intended

, Reproducing Kernel Splines in the Analysis of Medical
Data

, Safe Language Mechanisms for Modularization and Concurrency
, Stepwise Development of Dependable Systems

, Computer-Assisted Diagnosis of Breast Calcifications
, Dynamic Chest Images Analysis

, Systematic Design of Synchronous Digital Circuits
, Characterization and Modelling of the Cardiorespiratory System

in Sleep-disordered Breathing
, Modeling and Analyzing Software Behavior in UML

, Stepwise Development of Hybrid Systems
, Production Planning in Printed Circuit Board Assembly
, The Post Correspondence Problem for Marked Morphisms

, Commutation Problems on Sets of Words and Formal Power Series
, Information Technology and the Productivity of Managerial

Work
, Managers, Fragmentation of Working Time, and Information

Systems
, Defect Theorems and Infinite Words
, Z -Goethals Codes, Decoding and Designs

, On Relations between Local and Global Periodicity
, Studies on Boolean Functions Related to Quantum Computing

, Measuring and Improving Component-Based Software
Development

, Knowledge Management and Global Diversity - A
Framework to Support Organisations in Developing Countries

, Text Mining Based on the Prototype Matching Method
, Optimization Methods for Clustering

, Formal Development of Concurrent Components
, Periodicity and Unbordered Factors of Words

, Discovering Frequent Fuzzy Patterns in Relations of Quantitative
Attributes

4

ë

52. Petteri Kaitovaara
53. Petri Rosendahl
54. Péter Majlender

55. Seppo Virtanen

56. Tomas Eklund
57. Mikael Collan

58. Dag Björklund
59. Shengnan Han

60. Irina Georgescu
61. Ping Yan
62. Joonas Lehtinen
63. Tommi Meskanen

, Packaging of IT Services – Conceptual and Empirical Studies
, Niho Type Cross-Correlation Functions and Related Equations
, A Normative Approach to Possibility Theory and Soft Decision

Support
, A Framework for Rapid Design and Evaluation of Protocol

Processors
, The Self-Organizing Map in Financial Benchmarking

, Giga-Investments: Modelling the Valuation of Very Large
Industrial Real Investments

, A Kernel Language for Unified Code Synthesis
, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
, Rational Choice and Revealed Preference: A Fuzzy Approach

, Limit Cycles for Generalized Liénard-type and Lotka-Volterra Systems
, Coding of Wavelet-Transformed Images
, On the NTRU Cryptosystem

Turku Centre for Computer Science

TUCS Dissertations

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics and Business Administration

Department of Computer Science

Institute for Advanced Management Systems Research

Institute of Information Systems Sciences

�

�

�

�

�

ISBN 952-12-1570-4

ISSN 1239-1883

