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Preface 
 

This work concentrates mainly on one-machine optimization 
problems in the field of printed circuit board assembly. The 
modelled problems can be applied also on several other 
applications of the flexible manufacturing systems. 
 The introduction explains the concept of production 
planning and describes the different levels of planning. Some 
historical background of the manufacturing industry is also given. 
An overall description of the flexible manufacturing systems and 
the problems related to their optimization is given next. Finally, 
printed circuit board assembly environment and the working 
principles of the assembly machines as well as a classification of 
the PCB assembly problems is given. 
 Next, the different methods used in solving the 
combinatorial optimization problems (COP) in the publications of 
this work are presented. Three aspects for solving COPs are 
considered: heuristics, lower and upper bounding and exact 
methods.   
 The publications of this work are summarized in section 3. 
For each publication we give a general description of the 
considered problem, ideas about the solution methods and the 
conclusions based on the empirical findings of these studies. 
 Section 4 summarizes the results of this work in a general 
manner. Section 5 lists all the references used in the introduction 
and Section 6 consists of the original publications. 
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Chapter 1 

Introduction 
 
Industrialization was a significant step forward in producing wide 
variety of customer products in the nineteenth century. Before 
industrialism, the production volumes even for simple products 
like nails were quite small and the production process was very 
labour intensive. Now, more than two centuries later the 
industrialization still continues as manufacturing of complex 
products is automatized. The latest phase in this development is 
the rise of the intelligent manufacturing systems (IMS). 
Intelligence in this context usually refers to computers that guide 
the production and are able to make simple decisions by 
themselves.  The complexity of IMSes is remarkable and their 
prices are very high, thus it is important to use them at optimal 
efficiency.  
 Optimizing the production of an entire production plant is 
not possible in practice because their mathematical models 
include thousands of variables and there are tens of ways to 
measure the efficiency of the production. Production plants 
typically have several concurrently operating production lines 
which are used for manufacturing multiple products or a single 
product. The objective in production planning is to create a 
schedule for the individual production steps which uses the 
production lines as efficiently as possible. The efficiency can 
either be measured by the cost, time or quality of the process. It 
is also possible to compromise between these and many other 
objectives in which case one faces a multiobjective optimization 
task.  

From optimization perspective the factory (production 
plant) can be seen as a hierarchical system. On the highest level 
one must decide how the products are distributed to the 
production lines. It is possible that some products can be 
manufactured only on certain lines which set additional difficulties 
on the planning. Once the products have been distributed among 
the lines, the production on them is optimized separately. One 
must decide on the level of a single line, for example, the order 
and speed of manufacturing. Additional constraints, like due 
dates, of the products increase the complexity of the problem in 
practice. On the lowest level of production planning, decisions 
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regarding how to use the individual machines to manufacture a 
single product or part of the product must be made. 
 The hierarchical way of looking the optimization problems 
of a factory is in many cases the only possible due to the 
complexity of the whole production plant. The approach does not 
guarantee the optimality of the production schedule, since the 
different levels of hierarchy do not interact. An optimal solution 
can only be guaranteed by defining the optimizing task as a single 
problem. It has, however, been demonstrated that in several 
practical cases the production efficiency can be improved by 
identifying so called bottleneck parts of the process. In flexible 
manufacturing systems, what this work is about, the bottleneck of 
the process is often a single CNC (computer numerical control) 
machine. Optimizing the production on the level of a single CNC 
machine often brings significant improvement in the total 
efficiency of the production [4,5,6,7].  

In the following two sections we first discuss a specific area 
of flexible manufacturing systems, namely PCB (printed circuit 
board) assembly and then FMSes in general. Although PCB 
assembly lines are FMSes, we deal with them separately from the 
other flexible manufacturing systems. This separation is an 
artificial one, but in PCB assembly tool wear is not an important 
issue. On the other hand it is central in many other fields of 
FMSes. 
 

1.1 Flexible manufacturing systems 
 
The concept of a flexible manufacturing system (FMS) was 
introduced in the 60’s in England. The goal was to automate the 
manufacturing processes of certain consumer products so that the 
production line would operate 24 hours a day and seven days a 
week without interruptions. This goal still remains a fantasy, but 
FMSes provide several other benefits, including [11]: 

• homogenous and improved product quality; 
• reduced production time; 
• better utilization of human workers; and 
• capability of producing several products with the same 

equipment. 
The homogenous quality comes from the machines’ capability to 
repeat the same operations with extreme precision which also 
improves the quality. In comparison to a human worker this is a 
clear advantage since it reduces the possibility of mistakes in the 
production. Machines are also faster in doing things which do not 
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require reasoning. Instead of reserving a large number of people 
to perform a single task, FMS needs only a few people to operate 
it. The capability of manufacturing several products on a single 
line is possible because the production is usually guided by a 
computer numerical control (CNC). In CNC manufacturing, 
switching from the production of one product to another requires 
ideally only changing the control programs of the machines on the 
production lines. 

1.1.1 A Typical flexible manufacturing system 

 
A typical FMS consists of computer numerical controlled (CNC) 
workstations and material handling systems. The CNC 
workstations perform traditional operations of machining like 
drilling and welding.  The material handling system interconnects 
the devices and may perform quality inspections for the parts to 
be manufactured, but it does not perform actual machining 
operations to the parts. The layout of an FMS gives an overall 
idea of how the system works and how the parts move in it. 
Commonly used layouts in FMSes are [12]: 

• progressive layout; 
• closed loop layout; 
• ladder layout; and 
• open field layout. 

In the progressive layout, the part moves always forward on the 
production line. This is the simplest form of an FMS and layout. 
The closed loop layout is a bit more complicated since the part 
can skip machines on the production line. For example, if some 
machine is currently occupied then the part moves to some other 
machine and returns to this one later. It is also possible to use 
this type of FMS to manufacture different types of parts by 
skipping some of the machines completely. In ladder layout the 
part can go to any machine in any order because the machines 
are all connected to the same material transport line. The fact 
that the parts use same transport line limits the processing order 
and part movements in practice. The open field layout is the most 
complex one, since it is able to move the material in any order to 
any machine. There are usually support stations which control the 
movements of the parts. These support stations can also perform 
inspections and change tools to the machines. Figure 1 and Figure 
2 show an example of each layout type. 

The material handling system which is an integral part of 
an FMS can consist of many types of devices. Conveyor belts are 



 

 12 

the most common ones since they transport the parts from a 
machine to another. Automated guided vehicles (AGV) or carts 
are used to transport parts on longer distances. Some FMSes also 
include an automatic storage and retrieval system which 
transports finished products to storage and retrieves materials for 
the machines. 

 

 
Figure 1. Examples of commonly used 

layouts in FMSes.  The loading/ 

unloading stations are on the left of the 

figures. 

 

Figure 2. An example of an open-field 

layout of FMS. There are three 

loading/unloading stations in this 

particular FMS as well as three 

material transporting carts 

1.1.2 Computer numerically controlled machines 

 
The numerical control (NC) machines were developed shortly 
after World War II. These were the predecessors of the CNC 
machines. In NC machines, the instructions were fed in the form 
of punctuation cards or paper tapes. At the beginning of the 
1960’s the first CNC machines were introduced by the MIT 
Servomechanisms laboratory. As comparison to the NC machines 
the programs were fed directly from a computer. This makes the 
control programs easier to update and store. The amount of data 
computers are able to store is also significantly greater than that 
of punctuation cards or paper tapes. The latest development of 
CNC machines is the possibility to feed data directly from CAD 
applications [13]. 
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CNC machines radically extended the possibilities of 
automated manufacturing since they were able to perform many 
operations with greater accuracy than a human operator. The 
CNC machines can, for example, cut materials along curves as 
easily as along straight lines. They are also able to manufacture 
complex three-dimensional objects directly from CAD models.  
 An input of a CNC machine is a computer program and a 
block of material. The sophistication of the machine dictates what 
kind of programs it understands. The input can, for example, be a 
three-dimensional CAD model which is then translated into a 
series of simple commands. The block of material can be almost 
any kind of metal, wood, plastic or even stone depending on the 
type of the CNC machine. 
 CNC machines use tools to process the material blocks. 
Older CNC machines usually have only one type of tool which they 
use to process the incoming material blocks. More sophisticated 
machines have a tool magazine from which they retrieve the tools 
according to a control program. Since the operations are 
performed with changeable tools, one machine is able to perform 
various types of operations to the material blocks. A single 
machine can have one or several of the following common CNC 
tools: 

• drill; 
• lathe; 
• mill; 
• cutter; and 
• weld. 

All of these tools are used to shape the incoming material or to 
join pieces of material together. The techniques used in these 
tools vary greatly. Cutter, for example, can be a laser cutter or an 
EDM (electrical discharge machine). Figure 3 shows an example 
of a CNC machine. 
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Figure 3. An example of a CNC machining center [14]. This machine is capable of 

performing several traditional machining operations like milling, drilling and lathing. 

 

1.1.3 Optimization problems in flexible manufacturing 
systems 

 
An FMS may consist of a single CNC machine and a transport line 
or it can form a whole factory with a complex material handling 
systems and several CNC machines. Therefore, the number of 
problems related to FMSes is very large. The problems can be 
categorized to pre-production and production problems. The pre-
production problems include the placement of the machines 
[15,16,17,18], the number and type of machines included in FMS 
and tool and material acquisition. In the following we recall the 
most studied production problems related to FMSes. The pre-
production problems are out of the scope of this work. 
 The production problems consider the various aspects of 
optimizing the production when a set of FMSes (for example 
several production lines) and a set of jobs to be processed are 
given. The jobs bring additional constraints like due dates, tool 
requirements, order requirements, etc. make  optimization more 
complicated.  
 On the highest level of optimization one has to decide, 
which line each product is manufactured on. In balancing 
problems the products must be distributed to the lines so that 
optimal throughput is reached. This can be done to either one 
product or multiple products. In the latter case we are talking 
about scheduling problems. In single production line problems we 
are given a set of products to be manufactured with an FMS. The 
main problem on this level is how to choose a proper 
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manufacturing order of the products and how to allocate the 
resources, like tools, to the machines. 

The most studied problems are, however, the single 
machine optimization problems. The tool switching (TS) problem 
is one of the most famous problems in the field. In the TS-
problem one is given a set of products (jobs) to be processed on 
a single machine. This machine uses tools to process the jobs and 
each job may require one or several tools in the processing. The 
number of tools the machine can keep simultaneously in its tool 
magazine is limited. The objective is then to choose the 
processing order of the jobs and the tool management decisions 
so that the number of tool switches is minimal. This problem is 
known to be NP-hard [19] and therefore supposed to be difficult 
to solve exactly. The TS-problem has been studied by several 
authors including [19,20,21,22]. All these papers assume that the 
tools consume a uniform amount of space from the tool 
magazine. In many cases this assumption is too restrictive and 
therefore some authors have relaxed this assumption [23,24]. 

Making the tool management decisions is an important part 
of the tool switching -problem when the order of processing the 
jobs is fixed. For uniform sized tools this problem can be solved 
optimally with the KTNS (keep tool needed soonest) -rule [25]. 
We have studied this problem with tools of variable sizes in [24]. 
 In the TS-problem one tries to minimize the number of tool 
switches because tool switches are considered to be so time 
taking that they consume most of the production time. Another 
possible objective is to minimize the average completion time of 
the jobs. This problem can be solved to optimality with the SPT 
(shortest processing time) -rule if we omit the tool switching 
related issues [26]. This problem can be generalized by assuming 
finite life-times for the tools. The problem of wearing tools has 
been studied [27] in the case of a single tool. We have extended 
this problem formulation in [28] to include the use of several 
tools and a tool magazine of limited capacity. We also study the 
stochastic version of the wearing tools problem [29] in which one 
assumes that tool life-times follow some probability distributions. 
 As discussed before, the material handling system is a 
central part of an FMS. Despite of this fact its modelling has been 
omitted in most studies by simply assuming that material 
movements require no time. The importance of modelling the 
material handling systems has, however, been pointed out by 
some authors, including [30,31,32]. Crama [33] introduces a 
general multiserver scheduling model to model the problem 
related to material handling system. This model consists of an 
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input station, an output station, a set of machines and a set of 
servers. The manufactured products are initially in the output 
station from which they end up through the machines and servers 
to the output station. The model assumes that each machine is 
able to process one product at a time and that servers are used 
to load (unload) the products to (from) the machines. Further, 
each server can handle only one product at a time. The objective 
is to devise a schedule for the products and servers in an attempt 
to optimize the production from some perspective, like cycle time. 
 The flow shop scheduling problems model the material 
handling in FMSes and fit to the general model Crama [33]. In 
flow shop -problems the machines are in a form of a line or a 
circle and each product must be processed on each machine in 
the order in which they appear on the line. These problems can 
further be categorized to robotic, hoist and parallel flow shop –
problems. In robotic flow shop –problems [34-39] the objective is 
to minimize the long-run cycle time with an assumption that the 
production continues infinitely long. Another assumption is the 
presence of a unique server only.  

The hoist scheduling –problems [40-43] are closely related 
to the robotic flow shop –problems but they allow multiple 
servers. The products are also assumed to be identical in the 
hoist setting. Another major difference is that the robotic flow 
shop –problems assume a fixed processing time associated to 
each (product, machine) –pair whereas the hoist problems 
assume a time window. This means that the processing can last a 
variable time. This situation is common on complex PCB assembly 
lines. 

The third category of flow shop problems, namely 
multiserver scheduling problems with parallel machines, assumes 
identical machines. It is also assumed that each product is 
processed only on a single machine. This approach has been 
studied for example in [44-47]. 
 

1.2 Printed circuit board assembly 
 
Virtually every electronical device contains a printed circuit board 
(PCB) or several of them and therefore the number of PCBs 
produced worldwide every year is tremendous and increasing 
rapidly. Despite of the many advances in PCB production there 
remains still much to be improved in the usage level of the PCB 
production lines. In some cases the introduction of more complex 
machines has actually lowered the usage level of the equipment 
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while increasing the efficiency in other respects, for example 
some machines are easier to operate and others can assemble 
more complex PCBs. A good introduction to PCB assembly in 
general is given in [8]. 

1.2.1 A typical PCB assembly line 

 
Figure 4 contains a typical configuration of a PCB assembly line. 
The line begins with a loader from which the bare PCBs are 
entered to the line. The next device, which is either solder paste 
or glue dispenser, places solder or glue to the component 
connector positions. The solder is spread over a so called stencil 
which has holes on the component connections while glue is 
placed by a machine to the connector positions directly.  
 

 

Figure 4. An example of PCB assembly production line [9]. 

 
After the soldering process there are one or several high-

speed component placement machines and usually at least one 
high-precision machine. In the example line of Figure 4 the 
machines are identical. The usage of several machines on a line 
increases the throughput. It is also common that one machine is 
not able to place some component types at all and thus several 
different types of machines are needed. Once the components 
have been placed there is a visual inspection system which 
examines that the components are in their correct places and 
orientations. This is necessary because the high speed placement 
machines move the PCBs quite rapidly and the acceleration of the 
board can displace some components during the placement 
process. 

The next phase of the process is the fixation of the 
components. This is done in a reflow oven which heats the PCBs 
and makes the solder paste or glue to melt and this way attaches 
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the components to the PCB. Finally, the finished PCBs are 
unloaded from the production line. 

1.2.2 Component placement machines 

 
The bottleneck of the assembly process can be one of the 
component placement machines and therefore it is common to 
optimize the production from their perspective. The technical 
details of these machines vary greatly between machine 
manufacturers and models. One can, however, categorize them 
when omitting the technical details and concentrating on the main 
working principles. We mention three different types of placement 
machines here. Two of these are commonly used today but the 
axial machines are mentioned as a historical curiosity, only. 

These placement machines have many common parts. First 
one of these is the PCB table which holds the bare PCB on which 
the components are placed. The placement is done by a printing 
head which receives the components from a feeder. In the 
printing head there are one or several nozzles which hold the 
component(s) when moving to the correct position above the 
PCB. Finally, the printing is always guided by a computer program 
which feeds commands to the machine. These commands are 
simple, for example they can order the printing head to move 
certain amount of centimetres on x-axis or y-axis.  
 The working principle of axial machines is shown in Figure 
5. The placement of a single component begins by moving the 
table on which the PCB is to the right position. After this the 
printing head takes the next component from the feeder and 
places it to the PCB. This is iterated as long as all components 
have been placed. The axial machines are one of the oldest 
technologies used in component placement. They are quite 
inflexible because the component must be placed in the order 
placement to the component feeder. The capability of axial 
machines to place different types of components is also 
somewhat limited because they use the same printing head 
configuration for all components. 
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Rotary turret machines are more flexible than the 
traditional axial machines. They operate also on a moving table, 
but the component feeder and the printing head are more 
advanced. The placement in a rotary turret machine begins with 
component retrieval from the feeders. In the first step the feeders 
move to a position which enables the printing head to retrieve the 
component from them. The nozzles which are around the circle-
shaped printing head hold the components during the placement. 
At the same time when a component is picked up from the 
feeder, some other component is placed on the opposite side of 
the printing head. After the placement and retrieval the head 
advances one nozzle position forward and performs the same 
operations. The operating principle of a rotary turret machine is 
illustrated in Figure 6. 
 Currently, the most advanced machine type is the pick-
and-place machine, where the printing head moves and the table 
and feeders remain at fixed positions, see Figure 7. The 
placement operation begins by component retrieval from the 
feeders. The printing head moves to the feeder position in which 
the required component is. Next, the head picks the component 
up to its nozzle and moves to the correct placement position. 
Finally, it places the component to the desired position. There can 
be one or several nozzles in the printing head depending on the 
level of sophistication of the machine and thus it may be possible 
to pick up several components during one retrieval.  
 
 

Figure 5. Rotary turret machine. Figure 6. Axial placement machine. 



 

 20 

 

Figure 7. Pick-and-place machine. 

 

 The component feeders in turret and pick-and-place 
machines can hold thousands of components of several different 
types. The component feeders are side by side and each feeder 
contains several components of certain type. Figure 6 and Figure 
7 demonstrate the so called tape feeders, but there are several 
other techniques including tray, track and bulk feeders. It is 
possible that the machine uses many different types of feeders 
and, in the most advanced machines, the feeder configuration can 
even be modified. See publications I-III of this thesis for more 
information on these variations. 

1.2.3 Optimization problems in PCB assembly 

 
The optimization problems in PCB assembly have been 
traditionally categorized according to the number of machines and 
the number of PCB types manufactured [10]: 

• one PCB type and one machine (1-1); 
• one PCB type and several machines (1-N); 
• multiple PCB types and one machine (1-M); and 
• multiple PCB types and machines (M-N). 

The first category (1-1) of problems is further divided to four 
classes of problems in various studies. 
In the feeder arrangement problems one attempts to organize the 
component types to the feeder slots in a way which maximizes 
the component placement speed. In placement sequencing 
problems one tries to minimize the component placement time by 
performing the placement in an order which minimizes the 
distance travelled by the placement head. In nozzle assignment 
problems one considers the various aspects of how to choose the 
multiple nozzles for the placement heads. In component 
allocation problems one attempts to organize the component 
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types to the feeder in a case where multiple copies of one 
component type may be placed to the feeder. The (1-N)-category 
consists of line balancing problems. The goal is to distribute the 
PCBs to different machines so that the workload is as balanced as 
possible. 
 The PCB assembly problems we study in this work belong 
to the (1-M)-category. In this category there are the problems 
concerning different setup strategies for single machine 
optimization. There are four major different setup strategies [10]: 

• unique setup strategy; 
• minimum setup strategy; 
• group setup strategy; and 
• partial setup strategy. 

The first setup method considers the PCB types in isolation and 
attempts to minimize the placement time on the level of a single 
PCB type. In the minimum setup strategy the objective is to 
minimize the total component setup time. This is achieved by 
ordering the PCB types properly. In the group setup strategy the 
goal is to group the PCB types so that the number of setup 
occasions is minimized. The grouping is formed so that each 
group of PCB types within the grouping can be assembled without 
interruptions, i.e. all the component types needed by the PCB 
types of the group are in the feeder of the assembly machine. 
Finally, the partial setup is a combination of the minimum and 
unique setup strategy. 
 

1.3 Goals and contribution of this research 
 
This work presents several new problems arising in the field of 
FMS. These problems are formulated with mathematical precision 
thus enabling further research of their theoretical properties. The 
publications of this work show the NP-hardness of the studied 
problems as well as their relationships to other known problems. 
This is the first claim of this work –problems we model can not be 
solved in polynomial time unless NP=P (See [48] for an 
introduction to computational complexity. The question of 
whether NP=P or not remains to be unsolved, but it is a generally 
accepted conjecture that it is not. If so, then these problems can 
not solved within polynomial time with a Turing equivalent 
machine.) 
 We present exact solutions for all deterministic optimization 
problems. The sixth publication “Scheduling and Management of 
wearing tools with stochastic lifetimes” studies a complex 
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stochastic optimization problem ([49]) and an analytical solution 
is reachable only for certain types of probability distributions. The 
publication presents theoretically valid lower and upper bounds 
for this problem. In all publications these exact solutions and 
bounds are used as benchmarks for the heuristic methods. Thus, 
the main result of this work is that these hard combinatorial 
optimization problems can be solved in practice nearly optimally 
using heuristic methods. 
 We present firm empirical results about the efficiency of 
the solutions methods in addition to theoretical and procedural 
discussions. A general approach in the empirical testing is the use 
of artificially generated test data. This type of data is more 
challenging for the solution algorithms because they do not have 
any systematic properties, like certain component combinations in 
printed circuit boards. Thus, it is not possible to optimize the 
algorithms for certain type of test data because of the 
stochasticity involved in the problem instances. Another 
important property of our empirical testing is the statistical 
analysis of the results. Although most of the test data is 
generated through randomization, some runs have also been 
performed using real production data. In other runs the 
distribution parameters are chosen so that the generated problem 
instances resemble real test data. 
 The structure of all our publications [24,57,58,59,28,29] is 
summarized to four parts: mathematical formulation, exact 
solutions and bounds, heuristic solutions methods and empirical 
testing. The mathematical formulation enables theoretical 
inspection of the problems. Exact solutions and bounds offer a 
way to evaluate the efficiency of the heuristic solutions. Heuristic 
algorithms give a means to solve practical sized problems 
efficiently. Finally, the empirical testing proves the computational 
efficiency and quality of results of our heuristic methods. 
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Chapter 2 

Solution methods 
 
The problems we study in this work are combinatorial 
optimization problems (COP) along with one stochastic 
optimization problem (SOP). A general description of a 
combinatorial optimization problem is shown Figure 8. The 
definition of a COP consists of an objective function f, a vector of 
decision variables x and a set of constraints on x. A solution of a 
COP is a feasible setting for x which either minimizes or 
maximizes the value of the objective function f. A setting is said 
to be feasible if it fulfils the constraints of the definition. 
 

Minimize 
  f(x)  

Subject to 

  g(x) ≤ b 

  x ≥ 0 

  x is discrete 

Figure 8. Combinatorial optimization problem. 

 
 Although the formulation of Figure 8 does not bind the 
constraints of the variables or define the type of functions one is 
allowed to use, the term combinatorial optimization problem is 
used when the constraint set defines a discrete domain for the 
decisions variables. In addition, this work studies problems for 
which the functions are linear, only. A simple example of a COP is 
the knapsack problem formulated in Figure 9. It is important to 
notice that these formulations describe an infinite set of real-life 
problems because the constraints depend on the particular 
problem instance we are solving.  
 
 Maximize 

  Σi=1,…,N xivi 

 Subject to 

  Σi=1,…,N xiwi ≤ C 

  xi=1,…,N ∈ {0,1} 

 

Figure 9. An example of a simple combinatorial optimization: knapsack problem. The 

objective is to maximize the value of the knapsack while respecting the maximum 

weight C the knapsack can hold. There are N items, the value of item i(=1,…,N) is vi 

and weight wi. The variable xi is 1 if the item i is taken in the knapsack, 0 otherwise.  
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Combinatorial optimization (CO) problems in the field of 
flexible manufacturing systems are commonly NP-hard, including 
the knapsack problem. Exact solution methods for practical sized 
problems require therefore exhaustive computational time. Some 
of these problems can be solved in polynomial time using 
approximation algorithms which guarantee that the solution is 
within certain bounds from the optimal solution. However, the 
problems in PCB assembly considered this work are hard to 
approximate [50]. For this kind of problems one must rely on 
bounding methods and heuristics. Bounding methods are usually 
relaxations of the original problem. Solving these relaxations tells 
us that the value of the optimal solution must lie between certain 
bounds. In general, heuristic methods cannot guarantee anything 
about the quality of the solution; their efficiency can only be 
verified through empirical testing.  

 
2.1 Heuristics 
 
The difficulty of finding exact solutions in combinatorial 
optimization has lead to the wide spread use of heuristics. 
Heuristic algorithms do not necessarily find an optimal solution 
and in some cases not even a feasible solution. Numerous 
empirical studies have however shown that they find near optimal 
results to many hard COPs. 
 Heuristic algorithms can be categorized according to the 
metaheuristic they are based on. The following three subsections 
briefly describe local search, its’ improved version tabu search 
[51] and genetic algorithms (GA) [52]. Local search and tabu 
search rely heavily on the idea of ‘neighbourhood’ while GAs 
exploit contingency and clever coding of the problem space. 

2.1.1 Local search 

 
The first step in local search (also called neighbourhood search) is 
to find a solution which may be either feasible or not. Once this 
has been found it can be improved by looking at its’ neighbouring 
solutions. The idea is to iteratively improve the solution by 
moving from the current solution to a better one in the 
neighbourhood of the current solution.  
 A neighbourhood of a solution S is defined as a set N(S) of 
those solutions which can reached from S by doing a simple 
operation on S. Let us consider the discrete knapsack problem 
defined in Figure 9. In this problem, a candidate solution is a set 
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of items fulfilling the capacity constraint. The neighbourhood of 
this solution can, for example, consist of those solutions in which 
one item has been moved out from the knapsack and some other 
taken in. Figure 10 presents a simple (greedy) heuristic for the 
knapsack problem. The heuristic first creates some initial solution 
which can, for example, be a random selection of items as long as 
the capacity is not exceeded. The algorithm then continues by 
considering swaps of items and chooses the swap giving the best 
value for the knapsack while respecting the capacity constraint. 
This is iterated as long as some improving swap is found. 
 
SolveKnapSack(C, I) : set of items  -- C is the knapsack capacity and 

 Solution := CreateInitialSolution(C,I); -- I is the set of items 

 do       

  Io := I \ Solution;   -- Io is the set of items currently not  

  BestFound := Solution;  -- in the solution 

  for all io ∈ Io do 

   for all i ∈ Solution do 

    Test := (Solution \ {i}) ∩ {io}; 

    If Value(Test) > Value(BestFound) and 

       Weight(Test) ≤ C then  

     BestFound := Test; 

    end if 

   end for 

  end for 
  if Solution <> BestFound then 

   Solution := BestFound; 

  else 

   BestFound := null; 

  end if 
 while BestFound  <> null;   -- Continue as long as the solution 

 return Solution;    -- improves 

  

Figure 10. Simple swap heuristic for the knapsack problem.  

 
 The heuristic method for the knapsack problem is simple 
but it shows the most serious flaw of the local search, that is, the 
convergence to local optimas. The concepts of local and global 
optimum are illustrated with a simple example in Figure 11. In 
local search one always looks at the neighbourhood of the current 
solution and proceeds to the best neighbour. The problem here is 
that many objective functions have several local optimas, i.e. 
points where all the neighbours are worse than the current 
solution. The objective in combinatorial optimization is to find the 
global optimum which is minimal (maximal) value of the objective 
function in the whole feasible domain of the decision variables. 
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Figure 11. The difference of local and global optimum for two variable function f. 

 

2.1.2  Tabu search 

 
The convergence to local optimas in local search can be avoided 
partially by allowing the search algorithm to move to worse 
solutions, too.  The tabu search (TS) [51] accepts moves to 
neighbours which are worse than the current solution while at 
same time maintaining a list of tabu moves which are not allowed 
in the current state. This list usually contains some recently 
visited solutions. Roughly speaking, the local search method can 
be seen as a special case of the tabu search, since its’ tabu 
moves are those which lead to a worse solution than the current 
one.  The best solution is kept in memory because the stopping 
criterion of the algorithm does not guarantee that the last 
solution visited by the algorithm is the best solution met during 
the whole search process. 
 The key components of a tabu search algorithm are: 

• neighbourhood function; 
• aspiration criteria; 
• tabu list; 
• tabu tenure; 
• ending criterion; and 
• coding of tabu moves. 

We explain these components through an example. The local 
search method for the knapsack problem, which was introduced 
in section 2.1.1, is shown again in Figure 12, but now it is 
enhanced with tabu search. The neighbourhood function in the 
example of Figure 12 is stated explicitly with symbol N. The 
function N(K,I) returns the set of solutions in which some pair of 
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items is swapped between the sets K and I. The aspiration criteria 
for this example is that if tabu move leads to a better solution 
than the best solution found so far, the move is allowed. The tabu 
list consists of recently tested solutions and the tabu tenure 
(maximum length of tabu list) is given as parameter T. The 
stopping criterion of our example is the total number of moves, 
which is given by parameter M. Finally, the tabu moves are coded 
as sets of items. Another possibility to code the tabu moves 
would be to remember the items involved in the recent swaps. 
See [51] for detailed discussion of the subject.  
 
SolveKnapsackTS(C, I, M) : set of items -- C is the knapsack capacity and 

 Solution := CreateInitialSolution(C,I); -- I is the set of items 

 NumberOfMoves := 0; 

 do       
  Io := I \ Solution;  -- Io is the set of items currently not  

  BestFound := null;  -- in the solution 

  for all S ∈ N(Solution, Io) do 

   if Weight(S) ≤ C and (not Has(Tabulist, BestFound) or 

   Value(S) < Value(Solution)) then 

    if BestFound = null then     

     BestFound := S; 

    else if Value(S) > Value(BestFound) then 

     BestFound := S; 

   end if 

  end for 
  if Solution <> BestFound then 

   Append(Tabulist, Solution); 

   if Length(Tabulist) ≥ T then 

    RemoveFirst(Tabulist); 

   end if 
   Solution := BestFound; 

  else 

   BestFound := null; 

  end if 
  NumberOfMoves := NumberOfMoves + 1; 

 while NumberOfMoves ≥ M; 

 return Solution; 
 

Figure 12. Tabu search method for the knapsack problem. 
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2.1.3 Genetic algorithms 

 
The evolution of living organisms has been an inspiration to the 
development of genetic algorithms (GA). The idea of GAs is to 
create an initial population of individuals, each individual 
describes a solution to the problem to be solved. Every individual 
is evaluated during each iteration using a suitable fitness 
function. The value of this function tells how good the individual is 
(with respect to the goal of the problem to be solved). The key 
components of a GA are coding an individual, fitness evaluation, 
crossover, mutation and selection. These components are 
discussed next and after that a brief description of the main 
phases of a GA is given. 
 The coding of an individual is done similarly as a gene 
codes the function of living things. A single gene then describes 
some part of the solution. The gene itself can be a number, letter 
or something more complex. The only limitation to the coding is 
that a GA must be able to merge the genes of two individuals so 
that the result is still a valid solution to the problem.  Coding in 
our publications is based on the idea of the problem space search 
[62]. In this technique an individual is simply a vector of real 
numbers, which is interpreted by some algorithm translating the 
vector to the corresponding solution of the original problem. 
 The fitness of an individual is evaluated by using a function 
which translates the solution described by the individual to a 
number. For example, in a process control application, the result 
of this function can be the average processing time of a printed 
circuit board.  
 In the crossover, GA selects two individuals (parents) and 
merges their genes. The selection of the parents can be done in 
several ways, but the GAs of the present study use the 
tournament selection method. The number of tournament rounds 
is selected randomly in our GAs from an interval given as 
parameter. During each tournament round candidate parents are 
selected randomly from the population and compared against 
each others. For example, if the number of tournament rounds is 
1 then the selection of the parents is purely random. After the 
selection of the parents, GA performs the actual crossover. In its 
simplest form crossover takes half of the genes from other parent 
and the rest from the other. The combination of these halves 
forms an offspring which is included in the next generation. 
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 It is common that each individual of the population is 
mutated with a small probability during each iteration. The 
simplest form of the mutation is a replacement operation in which 
one gene of an individual is replaced with a random value gene. 

A genetic algorithm begins by creating an initial population 
of a certain size (given as a parameter). This population is 
commonly created purely random. In the evolution phase GA 
selects the individuals for the next generation through direct 
transfer and crossover as described above. Some percentage of 
the population is transferred directly to the next population and 
the rest are discarded. In order to keep the population size 
constant, a number of offsprings are created through crossover. 
After the creation of the next generation each individual is 
allowed to go through a mutation with a certain probability. The 
evolution phase is repeated a given number of iterations and the 
result of the whole process is the solution described by the 
individual with the best fitness value after the last iteration. See 
[52] for more details on the general structure of GAs. 

 
2.2 Bounding methods 
 
Algorithms used to solve mixed integer linear programs rely 
mainly on the branch-and-bound-method which uses heavily 
lower and upper bounds to make the search converge more 
quickly. Lower bounds can also be used to estimate how close to 
the optimal solution some heuristics can get.  

The idea in lower bounding is to relax some of the problem 
constraints to make it easier to solve and in this way solve 
problems of practical size. Good lower bounds are therefore very 
important in solving combinatorial optimization problems.   

2.2.1 Linearization 

 
The combinatorial optimization problems studied in this work 
contain both discrete and continuous variables. Many efficient 
solution algorithms, like the simplex algorithm, are known for 
problems which have only continuous variables. Solving the 
mixed and discrete optimization problems is known to be an NP-
hard problem and therefore usually only toy-sized problems can 
be solved exactly. 
 In linearization of an optimization problem one simply 
replaces all discrete variables with continuous variables, this is 
clearly a relaxation since the variables have now a greater 
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domain. The problem with this approach is that the lower bounds 
found in this way are usually not tight and therefore have only a 
little practical use. 

2.2.2 Lagrangean relaxation 

 
This method is based on the duality of a mixed integer linear 
programs (see [53]). The basic idea is simple, some of the 
constraints are added to the objective function as a penalty if 
they are broken. The amount of penalty depends on the 
Lagrangean multiplier which is associated to each constraint 
which is moved to the objective function. It can be proved that 
Lagrangean relaxation produces always a lower bound to the 
original problem.  

There are two problems in this type of relaxation. First, we 
must find good Lagrange multipliers in order to get a tight lower 
bound. These multipliers are usually found in an iterative manner, 
for example by using the subgradient optimization technique (see 
[53]). The second problem is that some optimization problems 
are inherently difficult, meaning that one must relax so many 
constraints of the problem that the lower bounds found are not 
tight enough. In the worst case scenario the lower bound can be 
worse than the one found through linear relaxation which is much 
simpler to implement and very fast to calculate. 

 

2.3 Exact methods 
 
Finding exact solutions to many different combinatorial 
optimization problems has turned out to be very difficult in 
practice. The problems we study in this work are all NP-hard, 
which means that there are no polynomial time solution 
algorithms known for them. A generally accepted conjecture is 
that there will never be polynomial time algorithms to solve these 
problems exactly (for all possible problem instances), although it 
is an open question in mathematics. 

2.3.1 Enumeration 

 
The combinatorial optimization problems we study have a finite 
number of solutions. Thus, the simplest way to solve such a 
problem is to enumerate all the possible solutions and choose the 
one giving an optimal solution. It should be noted, however, that 
the number of possible solutions is usually impractically large. For 
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example, one is given a function f and some set of items and the 
task is to find the order of items giving the lowest value for f. 
Now, if the number of jobs is 20 then there are 20! different 
possible solutions. Let us further assume that the computer we 
are using to solve this problem can evaluate 1 000 000 solutions 
per second. Then it would take over 70 000 years to solve this 
problem. The problems we study in this work include orderings 
with more than 100 items. 

2.3.2 Branch-and-bound 

 
Production planning problems studied here can be formulated as 
mixed integer linear programs (MILPs). A general form of a MILP 
is given in Figure 13. MILPs form a special class of the general 
combinatorial optimizations problems formulated in Section 2. A 
mixed integer linear program (MILP) consists of discrete and 
continuous variables, parameter values presented by real 
numbers, a linear objective function to be minimized and some 
linear constraints for the variables. The branch-and-bound 
method is a general solution method for optimization problems, 
but we present it in the context of solving MILPs. This is justified 
because all problems or their bounding methods discussed here 
will be formulated as MILPs. 
  

Minimize 
 

  Σi=1,…,N aixi + Σj=1,…,Mbiyj 

 

Subject to 

  xi ∈ {0,1}  for all i=1,…,N 

  yj ≥ 0   for all j=1,…,M 

  Σi=1,…,N cirxi ≤ dr for all r=1,…,L 

  Σj=1,…,M ejsyj ≤ fs for all s=1,…,K 

 

Figure 13. The general form of a mixed integer linear program (MILP). In mixed 

models we have two sets of variables; one set of variables (x) is constrained to have 

only values in {0,1} and the other set (y) is constrained to positive real numbers. The 

relation of matrices C and E multiplied by the variable values x and y force additional 

linear constraints for these variables. 

 
The problem of solving a general MILP is an NP-hard 

problem and it is possible that the search for the optimal solution 
with the branch-and-bound method takes too long time. In Figure 
14 we have a general the branch-and-bound [54] method for 
MILPs. It forms a search tree in which each node fixes later some 
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discrete variable and forms one branch for each possible value of 
the discrete variable. Once we have reached a leaf and fixed all 
the possible discrete variables we get an upper bound for the 
solution. This upper bound is then used as a pruning method to 
prevent search from branching to directions for which the lower 
bound is larger than the best current solution. The lower bound 
for a certain branch is calculated from the linear relaxation of the 
non-fixed variables. The linear relaxation of a MILP is presented in 
Section 2.3.1. At some point of the search there is only one 
solution left, because the method has searched through the whole 
tree. The time required to do this depends mostly on how well the 
pruning works, which again depends on the problem in question 
and the choice of the order for fixing the values of the variables. 
In many cases creating a problem specific branch-and-bound 
method yields better results than using this general method 
because the variables can then be fixed in such an order that the 
search converges more quickly than in this general approach. 
 
BranchAndBound(C, f, X, Y, UB) : solution value -- C set of constraints, f function to be 

     -- minimized X set of discrete variables, 

 OptimalLP := SolveLP(C, f, X ∩ Y);  -- Y set of continuous variables and 

     -- upper bound for the solution 

 if OptimalLP > UB then Return UB;   

 else if for all x ∈ X | x ∈ {0,1} then 

  if UB < OptimalLP then -- Integer solution was found, checking if 

   UB := OptimalLP; -- it is better than the current best 

 else     -- solution 

  x := Random(x ∈ X | x not integer); -- All 0/1-variables do not 

      -- have an integer value, 

UB1 := BranchAndBound(C ∩ {(x = 0)}, X, Y, UB);      -- therefore one of them is  

  UB := BranchAndBound(C ∩ {(x = 1)}, X, Y, UB1);      -- fixed to either 0 or 1 

 end if 
 

 return UB; 
 

Figure 14. Branch-and-bound method for MILPs.  

 

2.4 Optimization software 
 
There are numerous optimization software packages available 
which can be categorized roughly to the general and application 
specific software. Software packages used for solving the MILP 
models are general since they do not exploit any problem specific 
knowledge in their implementation. We used ILOG Solver [55] to 
implement the MILP models. It is one of the most efficient 
software packages available to linear programming and mixed 
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integer linear programming. The solution algorithm in it uses the 
branch-and-bound-method enhanced with some “rule of thumb” 
knowledge. The models are implemented with OPL-language 
which resembles somewhat traditional procedural languages, like 
the C-language. The definition of the OPL-language contains also 
a scripting language. Scripting makes it possible to create higher 
level system, like sub-gradient optimization, with the optimizer 
which we used in one of our relaxations. The ILOG solver has a 
graphical interface and many techniques to visualize the solution 
and the search for the solution. For example the search tree used 
by the branch-and-bound method can easily be visualized. 
 Application-specific optimization software uses problem-
specific knowledge in searching for good solutions. The way they 
use the problem specific knowledge depends on the type of the 
software – some software systems only seek to improve the 
existing feasible solutions. In this case heuristic algorithms which 
are mainly based on “rules of thumbs” are used. In this type of 
software there is no guarantee of how good the final solution will 
be with respect to the optimal solution. Because heuristic 
algorithms are usually fast and can find good solutions, this type 
of exploitation of problem specific knowledge is quite common. 
The other way of using the knowledge is to enhance some 
algorithm which guarantees an optimal solution to, for example, 
limit the search space. The branch-and-bound method, for 
example, can be enhanced by choosing the order of fixing the 
variables in a way which leads to a smaller search tree for some 
particular problem.  

The flexible manufacturing systems, which we study in this 
work, usually have some vendor-supplied software with them 
which is based on heuristic methods. There are, however, so 
called third party software packages which support several vendor 
machines in single software. In the field of PCB assembly Trilogy 
5000 [56] is an example of such a software package.  



 

 34 



 

 35 

Chapter 3 

Summary of publications 
 

This section briefly summarizes the six publications of this work. 
The first three publications deal with the PCB assembly and 
especially the job grouping problem arising in the single machine 
optimization. The fourth publication is also about PCB assembly 
although it can be applied to other flexible manufacturing systems 
as well. It models a problem which considers the optimization of 
PCB assembly from another perspective, i.e. instead of grouping 
the PCBs it considers a subproblem of ordering the PCBs.  
 The results of the latter two publications can be applied 
widely in the field of flexible manufacturing systems. They 
consider the issue of tool wearing which has been largely omitted 
in the field. Only a couple publications exist which model the tool 
wearing and scheduling problem integrated as we do. The fifth 
publication considers a complicated scheduling problem in CNC 
production in which the tool lifetimes are deterministic. The last 
publication still relaxes the assumption of deterministic lifetimes 
for the tools and assumes that they follow some probability 
distribution. Although these two papers consider different 
problems, these problems have a common objective which is to 
minimize the average completion time of the given job set.  

 
3.1 Grouping PCB assembly jobs with typed 
component feeder units 
 
Most studies concerning the job grouping problem assume that 
the assembly machine is equipped with one linear feeder. The 
present study [57] generalizes the job grouping problem (JGP) by 
relaxing the assumption of a single feeder. Motivation for 
studying this problem comes from the recent advances in PCB 
assembly machine technology. Some new machines are able to 
use several feeders simultaneously which allows the use several 
different feeder types, for example tape, tray and track feeders. 
This makes PCB printing more flexible since it is then possible to 
use more different types of components during a single printing. 
 We formulate the new problem, called job grouping with 
typed feeder units (JGP-T) and show that the basic JGP is a 
special case of the JGP-T. This proves that the JGP-T is also NP-
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hard. Next we discuss the relation of the JGP-T to other problems 
and especially point out that there are similarities between 
clustering and JGP-T.  
 The problem formulation is also translated to an integer 
programming formulation which is later implemented with ILOG 
solver. Four new fast and efficient heuristic algorithms are given 
to solve the JGP-T. They are based on the algorithms developed 
earlier for the basic JGP. The new algorithms differ with respect to 
the similarity measures used. Finally, the efficiency of the 
heuristics is compared against optimal solutions for small problem 
instances. For large problem instances we use a naïve approach 
to quantify the benefit gained from using complex heuristics. 
 We conclude that the JGP-T is hard to solve exactly and 
therefore there is a true need for the heuristics developed in this 
paper. The empirical testing also shows the superiority of the 
tabu search over the other local search methods. The testing 
against the optimal solutions also shows that tabu search method 
gives near optimal results for small problem instances. 

 
3.2 Grouping of PCB assembly jobs in the case of 
flexible feeder units 
 
The most advanced PCB assembly machines are equipped with a 
feeder which is simply a holder for subfeeders (called bins). These 
bins have different restrictions for the component types they can 
accommodate. Further, the feeder sets some restrictions to the 
use of bins, like the maximum number of bins and maximum 
width for the bins. The basic JGP formulation can not model 
problem as complex as this with reasonable accuracy and 
therefore this paper [58] defines the job grouping problem with 
flexible feeder units (JGP-B) and introduce several methods for 
solving it. 
 The NP-hardness of the JGP-B follows from the NP-
hardness of the basic JGP. The JGP-B formulation and its’ integer 
programming translation includes a very large number of discrete 
variables. It is therefore not a surprise that exact solutions are 
found for small problem instances, only. We therefore develop 
heuristic methods for the problem. The heuristics used for the 
JGP-T and the basic JGP offer a good starting point for the 
development of these methods. A new aspect in the JGP-B is the 
modifiable feeder unit which complicates the solution methods 
tremendously. This is due to the fact that checking the feasibility 
of a group is not a simple test as in the previous variants of the 
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JGP. The feasibility check is now an NP-complete problem in itself, 
which follows from the NP-completeness of the bin packing –
problem. Because of the complexity of the feasibility checking one 
must resort on heuristics on this part of the problem as well. We 
introduce two heuristic methods to the feasibility checks. 
 The empirical results show that the integer programming 
formulation which is implemented on the ILOG solver is 
somewhat useless in practice because it is able to solve toy-sized 
problems only. We therefore test the efficiency of our heuristics 
against a naïve approach and against each other. The naïve 
approach is the kind of solution a human operator might be able 
to use.  

Our conclusion is that the heuristic methods we develop 
are useful in practice because they give superior results over the 
naïve method. The testing also shows that the exact solution of 
JGP-B is hard for problem instances of practical size. 

 
3.3 A general approach to grouping of PCB 
assembly jobs 
 
The previous studies concerning the JGP produced a number of 
variant specific algorithms and definitions. This paper [59] 
gathers the different variants of the JGP under a single 
formulation. First we formulate three different variants of the JGP. 
After that, we introduce a general MILP programming formulation 
which solves the three variants of the JGP when they are 
transformed to general form according to the algorithm given 
with the MILP formulation. 
 The MILP model is followed by a short description of 
heuristic methods used earlier to the different variants. After this, 
we developed two new variant independent heuristic algorithms 
to solve the general JGP. These methods are tested against the 
best problem specific methods in the empirical testing section. We 
also test the limits of exact solving by implementing the general 
MILP formulation on ILOG solver. 
 Our conclusion is that the general solution algorithms 
perform equally well as the problem specific algorithms. The 
general MILP formulation is able to solve problems of the same 
size as the problem specific models when certain additional 
constraints are set. The better one of our two new heuristic 
algorithms solves the different JGP variants in some cases even 
better than the previous problem specific methods. 
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3.4 The general two level storage management 
problem 
 
Another approach to the optimization of PCB assembly is to order 
the PCB assembly tasks so that the total number of component 
switches between PCB types is minimal. An important subproblem 
for this so called tool switching problem is the tool loading -
problem. In the tool loading –problem the order of PCB batches is 
fixed and the objective is to minimize the number of tool switches 
by making the tool management decisions intelligently.  

The keep tool needed soonest (KTNS) –rule gives an 
optimal solution to the tool loading -problem if all the tools (or in 
the case of PCB assembly components) use the same amount of 
capacity from the tool magazine. The previous studies concerning 
this problem have either omitted the different sized tools or the 
physical placement of the tools. We extend [24] these models by 
considering tools (components) of different widths and by 
modelling their physical placement to the tool magazine. The 
formulation of the problem is followed by a NP-hardness proof.  
 We actually study two different versions of the general two 
level storage management problem. In the first one we assume 
that each job requires only one tool during its processing. This is 
applicable to some FMSes but not to the PCB assembly. This is 
why we also present solution methods for the case where jobs 
can be processed with several tools each. For the single-tool case 
we propose an algorithm which is based on the ideas of Matzliach 
and Tzur [60]. For the multi-tool case we introduce two new 
algorithms. 
 The integer programming formulation for our problem is 
somewhat complex and the implementation of that formulation is 
not able to solve problems of practical size, even small problems 
turn out be difficult. To test the efficiency of the heuristics we 
point out that if we omit the physical placement of the tools we 
get a lower bounding method for the problem. We therefore use 
the integer programming formulation of Matzliach and Tzur to 
calculate lower bounds for our problem instances. 
 The heuristics are compared empirically against random, 
naïve and lower bound methods. The results show that the new 
heuristics are superior over the naïve and random methods. They 
also perform very well with respect to the lower bounds.  
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3.5 Job ordering and management of wearing tools 
in flexible manufacturing 
 
This paper [28] formulates a scheduling problem arising in the 
FMSes. In the scheduling with wearing tools (SWT) –problem one 
must create a production plan which minimizes the average 
completion time of the given jobs. It is supposed that the CNC 
machine uses limited life-time tools to process the jobs. The 
contribution of this research is a new way of modelling the tool 
magazine. Previous studies concerning this problem have 
assumed that the machine uses only tools of one tool type to 
process parts. We extend this model by allowing the use of 
several tool types and a limited capacity of the magazine.  

A traditional approach to tool management and scheduling 
has been to omit the completion times of the jobs from the 
minimization objective and to concentrate on the minimization of 
the number of tool switches. This traditional approach assumes 
that the job processing times are dominated by the tool switching 
times. Technological advances of the CNC machines have, 
however, reduced the switching times considerably thus giving 
additional motivation for studying the SWT-problem. Another 
assumption has been that tool switches occur due to part mix. 
However, studies have shown that tool switches occurring 
because of tool wear may be much more likely than the ones 
occurring due to part mix [61]. 

This paper begins with a mathematical formulation of the 
SWT-problem which is followed by NP-hardness proof and an 
integer programming solution. The IP-solution needs a large 
number of discrete variables and is thus unusable in practice 
expect for small problem instances. We therefore present three 
heuristics to solve the problem: a simple local search, a genetic 
algorithm and a combination of these. These three methods all 
use tool switch policy (TSP) which we develop first. The SWT-
problem is solved in two steps. In the first step we fix some order 
and in the second step we calculate the average cost for this 
order. For example, the local search method makes some 
changes to the job processing the order of the jobs and re-
calculates the average cost. The same is repeated as long as the 
average cost decreases. 

Because this problem is new, we consider two different 
relaxations to it in order to determine lower bounds for the 
solutions. The linear relaxation is used as a comparison method to 
the Lagrangean relaxation. The results are somewhat 
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disappointing, since the Lagrangean relaxation with subgradient 
optimization is not able to find significantly better lower bounds 
than the simple linear relaxation.  

The empirical results include four test runs. The purpose of 
the first run is to find out how large problems can be solved 
exactly by implementing the IP-model on the ILOG solver. The 
second test is used to fine-tune our heuristics. The third test 
compares the heuristic solutions against optimal solutions. The 
final test compares the efficiency of the heuristics against each 
other and a naïve solution for large problem instances. 

We conclude that exact solving of the SWT-problem is 
limited to small problems only. Lower bounding through 
Lagrangean relaxation is not able to produce high quality bounds 
in reasonable time: the results are not significantly better than 
those by linear relaxation. We therefore find the SWT-problem 
hard to relax. 

 
3.6 Job scheduling and Management of wearing 
tools with stochastic lifetimes 
 
This paper [29] considers a stochastic optimization problem which 
is an extension to the scheduling with wearing tools (SWT) –
problem considered in the previous paper. In this problem, called 
Job scheduling with stochastic tool lifetimes (JSSTL), we are given 
a set of jobs to be processed on a single CNC machine. The jobs 
are processed with tools which have limited life-times. In the 
previous paper we assumed that these life-times depend only on 
the type of the tool. It is assumed  in the present study that the 
life-times vary between different tools of same type following 
some probability distribution. This brings additional difficulty to 
the formulation because a tool may break down during the 
processing of a job. In this case the unfinished job must be 
discarded and started from the beginning. The problem now calls 
for a schedule which minimizes the expected average processing 
time of the jobs. The actual realized average processing time 
depends on the physical tools used to process the jobs. 
 The problem definition is followed by an example and a 
discussion about the lower bounding. The lower bounding method 
works only if certain assumptions about the probability 
distributions of the lifetimes are made. The first assumption is 
that the tools must last at least certain time which is longer than 
any of the jobs require in processing. One must also assume that 
the tools have some upper limit to their life-time after which the 
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tool must be changed. With these assumptions the IP-model of 
the SWT-problem can be used to calculate the lower bounds of 
the JSSTL-problem. 
 Exact solution of this problem seems to be extremely 
difficult or impossible. This is due to the fact that there are an 
infinite number of tool realization combinations which can occur. 
The only possibility would be to devise an integral over the 
possible life-time realizations. Even for much simpler stochastic 
optimization problems these analytical solutions have been 
tedious and in some cases not even possible. It is hence highly 
unlikely that such a solution would be possible for the JSSTL-
problem. 
 Our solution to this problem is the use of a genetic 
algorithm which solves the problem in two parts. The orderings of 
the jobs are coded as individuals and the fitness function 
calculates an approximation of the expected average processing 
cost (EAPC) for the individuals. The fitness function approximates 
the EAPC by simulating the job processing runs. The number of 
samples varies between 100 to 2000 depending on the size of 
problem. As for the deterministic version of this problem, the 
fitness function employs a tool switch policy to make the tool 
management decisions while evaluating the cost for a certain 
order and realizations of the tools. Our tool switch policy (TSP) for 
this problem uses a greedy heuristic which attempts to minimize 
the expected processing time of the next job. 
 One of the major goals of our empirical testing was to find 
out how many sampling runs are required in order to get the 
variance of the EAPC low enough for later evaluation of the 
efficiency of our GA. Another major goal was to compare the GA 
solutions to lower bound and upper bounds. Finally, we evaluated 
the value of stochastic information by comparing a TSP which 
uses expected life-times and the TSP designed specifically to 
exploit the information about the probability distributions of the 
tools. 
 We concluded that an analytical solution to the problem we 
study seems impossible due to the complexity of the problem. 
The bounding methods we developed give tight bounds for small 
problem instances. The GA along with the TSP gives near optimal 
results to small problem instances. Also, the value of stochastic 
information which we approximated in the empirical testing is 
substantial. 
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Chapter 4 

Conclusions 
 
The studies concerning tool switching in FMSes assume usually 
fixed sized tools. It is, however, common that in many real world 
applications, like PCB assembly, tools (in this case component 
feeders) have variable widths. This feature of the problem is 
modelled in three publications of this work concerning PCB 
assembly. In addition, they model the assembly machines more 
accurately than previous studies concerning the job grouping 
problem (JGP). The first publication [57] which studies typed 
feeder units, models a problem in which components can have 
variable widths and variable feeder types (JGP-T). This makes the 
modelling more accurate because it is common nowadays that the 
machines can use several different packaging techniques (feeder 
types) for the components. We showed that this problem is NP-
hard and give a mathematical formulation. The algorithms we 
devised were based on the previous studies considering the 
simpler variants of this problem. Comparison to exact solutions 
clearly indicated the efficiency of our algorithms.  

In the second publication [58] we modelled an even more 
complex assembly machine in which the tool magazine (feeder) 
has a structure that can be changed quickly (JGP-B). This 
extension to the JGP makes the problem a lot more complicated 
and exact solutions can be calculated only for very small problem 
instances. The algorithms we developed were compared against 
naïve methods. 
 In the third publication [24] we studied the two level 
storage management problem with variable width tools. Previous 
studies concerning this problem have not modelled the physical 
placement of the tools to the magazine. Our problem formulation 
models the tool magazine physically accurately and therefore the 
solutions of our algorithms can be used directly in real world 
applications. We also showed that this problem is NP-hard and 
formulated it as a MILP. We devised several heuristic algorithms 
for the two variations of the problem and compared them against 
lower bounds. The comparison as well as running time analysis 
showed that these algorithms find near optimal results in an 
acceptable time. 
 The wearing tools problem in flexible manufacturing 
systems has been largely omitted in the studies concerning tool 
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switching. Only a few studies addressing this problem exists 
although tool wearing has been shown to be an important issue in 
FMSes. Most studies consider tool switching occurring due to the 
part mix, but it has been reported that tool switching occurring 
due to tool wearing can be much more frequent [61].  

We modelled two new problems concerning tool wearing in 
FMSes. The first one [28] extended an existing study [27] which 
assumed one tool type. Our formulation allows several tool types 
and a limited capacity magazine. This problem is applicable to 
many of the existing CNC machines which are a central part of 
flexible manufacturing systems. The latter publication [29] 
generalized the problem further and instead of deterministic tool 
life-times it assumed that the life-times follow some probability 
distributions.  

Both of the wearing tools problems were solved using 
genetic algorithms. The coding of a solution was based on 
problem space search [62]. We showed that these algorithms 
give near optimal results by comparing them exact solutions and 
lower bounds. The exact solution was possible to the deterministic 
version of the problem, only. For the stochastic problem we were 
only able to solve lower bounds. It turned out that using 
stochastic information in GA gives a significant advantage over 
the expected life-time solution. 
 Despite of the increase in computational power and the 
development of new algorithms for solving MILP models there 
remains still a true need for problem specific heuristics as shown 
by our research. In many complex combinatorial optimization 
problems the known metaheuristics find near optimal results. 
Especially, the genetic algorithms can be applied to a wide variety 
of combinatorial optimization problems when the input is coded in 
a suitable way. 
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Abstract. A variant of the classical job grouping problem (JGP) in printed circuit board (PCB) assembly is
considered. Studies on JGPs have assumed a single feeder from which the components are retrieved and then
placed on the PCB. Recent advances in technology have made it possible to use several different kinds (types) of
feeders at the same time. In a JGP, the aim is to group the PCBs so that the cardinality of the grouping is minimal
and each group can be processed without rearranging the contents of the feeder. In the job grouping problem with
several feeder types (JGP-T) the goal is the same but instead of one linear feeder we have several feeders and each
component is associated with a given feeder type which restricts its placement. We give a mathematical formulation
for the JGP-T and show that it is hard to solve to optimality for problems of practical size. The connections of
JGP-T to known problems are discussed. We also propose several efficient heuristics and compare their results
against optimal solutions.

Key Words: combinatorial optimization, electronics assembly, heuristics, job grouping

1. Introduction

The traditional setting of the job grouping problem (JGP) assumes that we have a set of part
types (or jobs) to be processed on a flexible manufacturing machine, and the processing
of each such part type requires that certain tools have been installed on the machine. In
the context of printed circuit board (PCB) assembly, a ‘part type’ corresponds to a certain
PCB type, and the ‘tools’ are the electronic components to be installed on the board. For
efficiency reasons, PCBs are typically processed as batches of the same PCB type, and
each such batch is considered as a component assembly job. Since different board types
usually require different components, and the assembly machinery has certain capacity for
them, the setting of the machine must be changed from time to time in order to manufac-
ture all PCBs in a production plan. This change of tools or components, is called a setup
occasion.

∗To whom correspondence should be addressed.
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The number of setup occasions should be small, since they are time-consuming in practice
(Tang and Denardo, 1988). This motivates the job grouping problem, where we want to
partition the set of part types into a minimal number of groups such that the part types of
a group can be processed without interrupting tool switches. This means that the current
collection of tools in the machine is sufficient to produce all part types in the group, and
the number of groups (setup occasions) is minimal.

The JGP has been studied broadly (Crama, Kolen, Oerlemans, and Spieksma, 1994;
Smed, Johnsson, Puranen, Leipälä, and Nevalainen, 1999), and there exist several efficient
heuristic algorithms to solve it approximately. Although the problem is NP-hard (Crama and
Oerlemans, 1994), some real-life instances can be solved to optimality with 0/1-formulation
and efficient integer programming software, or by constraint logic programming (Knuutila,
Puranen, Johnsson, and Nevalainen, 2001). The problem itself is of practical importance,
since its solution can give significant savings in high-mix-low-volume -manufacturing en-
vironments (Johnsson, 1999).

The classic JGP is no longer the only version of practical importance. Some recent flexible
PCB placement machines use several feeders of different types. This lowers machinery costs
and gives freedom in manufacturing. Specialized feeder types are needed due to the different
sizes and packaging techniques of the components. For example, the General Surface Mount
Application Machine of Universal (www.uic.com) supports a versatile set of alternative
feeder technologies, including tape, track, multi-tube, and matrix tray feeders. Each feeder
has some fixed capacity and is capable of handling a certain packaging technology, see
Figure 1 for the organization of such machine. These packaging technologies define the
type of each feeder.

The present paper studies the above extension of the JGP with multiple feeders of several
types (JGP-T). As in the common JGP, pre-emption of the processing is not allowed and the
order of processing the groups has no effect on the production costs. The latter assumption

Figure 1. A possible configuration of four component and feeder types.
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is valid when all feeders are changed or rearranged at once (using changeable feeder banks),
or the change time is small in comparison to the fixed costs.

We start by giving a mathematical formulation of the problem in Section 2. In Sections 3
and 4 we propose a family of heuristics for JGP-T. Section 5 contains results of practical
tests with these algorithms. The paper is closed by concluding remarks in Section 6.

2. Mathematical formulation of JGP-T

The formal definition of JGP-T and its integer programming formulation follows the ideas
and terminology of Tang and Denardo (1988) whenever suitable.

2.1. Definition of JGP-T

A JGP-T problem has the following concepts:

• There are nfeeders ∈ N different feeder types, and a fixed capacity c f ∈ N associated with
each f = 1, . . . , nfeeders. The types express the kind of technology used in the feeding of
the electronic components, and the capacities correspond to the total number of feeder
slots in the feeders for each such technology.

• There are ncomp ∈ N different component types, with an associated feeder type f (i) ∈
{1, . . . , nfeeders} and capacity requirement r (i) ∈ N for each i = 1, . . . , ncomp. The
numbers r (i) stand for the amount of capacity (number of feeder slots, area in a tray)
the components require in their feeder. This requirement is extended to sets of com-
ponent types in the natural way, and the feeder type—restricted capacity requirement
r (T ) | f T ⊆ {1, . . . , ncomp} is defined as

r (T ) | f =
∑

i∈T, f (i)= f

r (i).

• There is a set J = {1, . . . , nparts} of part types (e.g. PCB types). We denote with Tj the
set of all component types of part j .

• A group is any set of part types. A group is feasible if no capacity constraint is violated
for any feeder type. Let S ⊆ J . Then T (S) denotes the set of components of the parts in
S, that is T (S) = ⋃

j∈S Tj . Now, the feasibility of groups can be stated formally as

r (T (S)) | f ≤ c f for all f = 1, . . . , nfeeders.

• A grouping is any set of groups. Grouping S of J is feasible, if S is a partition of J ) and
each member of S is feasible.

The job grouping problem with several feeder types (JGP-T) is to find a feasible grouping
of J with a minimum number of groups. In comparison to the JGP we have introduced the
feeder types f = 1, . . . , nfeeders, capacities c f for each feeder type f , and the feeder types
f (i) for each component type i . Other concepts have been preserved the same.
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2.2. JGP-T as an integer programming problem

JGP has been formulated as a mathematical optimization problem in many works
(Nemhauser and Wolsey, 1988; Crama, Oerlemans, and Spieksma, 1994). Our formulation
of JGP-T is an extension of the one in Knuutila et al. (2001). We use below the abbreviation
‘iff’ for ‘if and only if’.

Let ngroups be an upper bound for the number of groups in the solution. Now, if the
problem is solvable then ngroups ≤ nparts. Since each j ∈ J must be placed in some Sk ∈ S

(1 ≤ k ≤ ngroups), we denote the group containing j by a decision variable x jk , where

x jk = 1 iff j ∈ Sk for all j = 1, . . . , nparts, k = 1, . . . , ngroups.

The contents of T (Sk) are expressed with an ncomp-ary vector uk , where

uki = 1 iff i ∈ T (Sk) for all i = 1, . . . , ncomp.

Since our aim is to minimize the number of groups, we introduce a 0/1-decision variable sk

for each tentative group Sk , such that sk is 1 iff Sk is used in the grouping, i.e. Sk �= ∅.
Recall the function f (i), which returns the feeder type in which components of type i

can be stored. The restrictions on the decision variables are now:

∑

i : f (i)= f

uki ∗ r (i) ≤ sk ∗ c f for k = 1, . . . , ngroups, f = 1, . . . , nfeeders (1)

x jk ≤ uki for all i ∈ Tj , j = 1, . . . , nparts, k = 1, . . . , ngroups

(2)
ngroups∑

k=1

x jk = 1 for j = 1, . . . , nparts (3)

uki ≤ sk for k = 1, . . . , ngroups, i = 1, . . . , ncomp (4)

uki ∈ {0, 1} for k = 1, . . . , ngroups, i = 1, . . . , ncomp

x jk ∈ {0, 1} for j = 1, . . . , nparts, k = 1, . . . , ngroups

sk ∈ {0, 1} for j = 1, . . . , nparts, k = 1, . . . , ngroups (5)

Constraint (1) is for the capacity restrictions (2) ensures that part j can be placed in group
k only if all of it’s components are there (3) causes each part to appear in exactly one group,
and (4) allocates a group if we place any components into it.

Program JGP-T. Minimize

ngroups∑

k=1

sk

subject to (1)–(5).
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Since the above formulation may have many equivalent solutions (e.g., permutations), it
is useful to add auxiliary restrictions ruling out at least some of these. First, the groups are
allocated in the lexical order:

sk ≥ sk+1 for all k = 1, . . . , ngroups − 1. (6)

Secondly, we demand that the groups are arranged in a descending order (according to their
size).

nparts∑

j=1

x j,k+1 ≤
nparts∑

j=1

x jk for k = 1, . . . , ngroups − 1. (7)

Observe that we have avoided using the component-part matrix which appears commonly
in the formulations of the standard JGP. The role of this matrix is now taken by the sets
Tj in constraint (2). Furthermore, we could use a weaker constraint x jk ≤ sk (for k =
1, . . . , ngroups) for the placement of parts into groups, but this is dominated by constraint
(4). Finally note that if we fix the grouping size and just test whether a grouping of given
size exists, we can simplify the model by eliminating variables sk from it.

2.3. Relation of JGP-T to known optimization problems

One can consider JGP-T as a clustering problem (Jain and Dubes, 1988; Mirkin, 1996),
where the part groups correspond to clusters and the purpose is to find the minimal number
of clusters fulfilling the inclusion condition for the components in each part. Although this
condition is strange for most clustering situations, we think that many similarity measures
applied in efficient clustering algorithms are also applicable in grouping problems.

JGP-T is also related to the capacitated facility location problem (CFLP) (Aikens, 1985;
Mirchandani and Francis, 1990; Chudak and Shmoys, 1999). Here we can interpret the
feeders as capacitated facilities which must serve the parts (sites). As a difference to the
CFLP we have multiple request demands (components) in each site and also the service
types at the facilities are of different types (feeder types). In addition, distances between
the facilities and sites do not play a role in JGP-T, unlike in CFLP. When comparing the
mathematical models of the two problems, especially constraints 2 and 3 are similar. This lets
us to believe that optimization techniques (Reeves, 1995; Papadimitriou and Steiglitz, 1998)
used for solving hard combinatorial problems (like clustering, set covering, partitioning,
bin packing etc.) are strong candidates for the solution of JGP-T, too.

Interpretation of JGP-T as a generalization of JGP is immediate: a JGP model has only
one feeder and thus only one feeder type. This gives us many benefits. First, the solution
techniques proposed for JGP are good candidates for building blocks for JGP-T techniques.
Secondly, complexity bounds for JGP can be utilized when analyzing JGP-T. Especially,
it has been shown (Crama and van de Klundert, 1999) that JGP is a generalization of the
set covering problem and thus NP-hard. We therefore know also that JGP-T is NP-hard.
Thirdly, following from the properties of the set covering problem, approximation of JGP
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even with a factor of d log nparts (d < 1/4) is extremely improbable (cf. Theorem 7 in Crama
and van de Klundert, 1999), and therefore JGP-T must be at least as hard to approximate.
Nevertheless, exact solutions of JGP can often be found for problems of practical size using
mathematical programming packages (Knuutila et al., 2001). Moreover, the most efficient
heuristics give nearly optimal results for practical problems. Thus, by relaxing JGP-T to
JGP we get lower bounds for JGP-T in cases where the exact solving is impossible.

3. Local search heuristics for JGP-T

Since the heuristics proposed in this work are based on our JGP algorithms (Smed et al.,
1999; Knuutila et al., 2001), we start by recalling them briefly.

3.1. JGP algorithms

The JGP heuristic begins by creating a singleton grouping S0 = {{ j} | j = 1, . . . , nparts}
and it then greedily merges groups according to some similarity metric of groups. This is
iterated as long as the grouping remains legal.

The similarity of two component sets, sim, is defined as the accumulated capacity re-
quirement of their common components:

sim(T1, T2) =
∑

i∈T1∩T2

r (i), (T1, T2 ⊆ {1, . . . , ncomp}),

and the similarity of groups is sim(S1, S2) = sim(T (S1), T (S2)). We omit a detailed dis-
cussion of different similarity metrics. This is because the choice of the metric is not that
crucial in the initial phase of our JGP-T algorithms: the groupings created using them will
only serve as a starting point for the later steps. For more information on metrics, see (Shtub
and Maimon, 1992).

Our local search algorithms for (untyped) JGP start from an initial grouping S0, select
a pair of groups to be merged, perform the merging (which usually leads to an illegal
grouping) and then attempt to repair the result by moving parts from a group to another or
by swapping parts between two groups. In order to do this we need heuristics to choose
from a given grouping S:

• groups S1, S2 to be merged;
• groups S1, S2 and a part j ∈ S1 such that j will be moved from S1 to S2; and
• groups S1, S2 and parts j1 ∈ S1 and j2 ∈ S2 such that j1 and j2 will be swapped between

S1 and S2.
The merging heuristics (called merge rules) select S1 and S2 to be merged by the

following three rules. Let S′ = S1 ∪ S2 and the total feeder capacity ctotal.

• [M1] sim(S1, S2) is maximal;
• [M2] the capacity requirement r (T (S′)), is minimal; and
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• [M3] sim(S1, S2) is maximal and r (T (S′)) ≤ (ctotal + b), where b ≥ 0 is some small
constant.

The aim of the move operations is to transform an illegal grouping to feasible. Since
this can not usually be done with one step, each move only tries to make the grouping ‘less
infeasible’. Let S1 ∈ S be a (randomly chosen) infeasible group, S2 ∈ S\{S1}, j ∈ S1,
S′

1 = S1\{ j} and S′
2 = S2 ∪ { j}. We use three repair rules, i.e. heuristics for selecting

the groups S1, S2 and part j :

• [R1] the increase in the requirement of S2, r (T (S′
2)) − r (T (S2)), is minimal;

• [R2] the decrease in the requirement of S1, r (T (S1)) − r (T (S′
1)), is maximal;

• [R3] R1 and R2 are combined;

r (T (S1)) − r (T (S′
1)) − r (T (S′

2)) + r (T (S2)) = max!

Swapping is performed by selecting S1, S2 ∈ S and j1 ∈ S1, j2 ∈ S2 such that j1 and j2
are swapped between S1 and S2. This is done so that the resulting grouping (S′) has minimal
requirement

∑
S∈S′ r (T (S)):

r (T (S1)\{ j1} ∪ { j2}) + r (T (S2)\{ j2} ∪ { j1}) = min!

We next devise similar selection heuristics for JGP-T by re-defining the concepts of
‘similarity’ and ‘excess’ to take the feeder types into account. The problem is, that this can
be done in several ways, and it is hard to predict their relative merits.

3.2. Similarity heuristics for JGP-T

When applying the ideas of the JGP algorithms to JGP-T, we must recast all the rules of
Section 3.1 into typed format. We start by defining typed set similarity sim(T1, T2). It is then
used in the selection criteria for moving and swapping; in particular we must also revise
the concept of feeder capacity excess to consider feeder types.

Let T1 and T2 be two sets of components and F ′ the set of types occurring in them;
F ′ = { f (i) | i ∈ T1 ∪ T2}. We have (at least) the following choices for sim(T1, T2):

• MAX: sim(T1, T2) = max f =1,...,nfeeders r (T1 ∩T2) | f , the maximal requirement of common
components for one type;

• MIN: sim(T1, T2) = min f ∈F ′ r (T1 ∩ T2) | f , the minimal requirement of common com-
ponents for one occurring type; and

• SUM: sim(T1, T2) = ∑
f =1,...,nfeeders

r (T1 ∩ T2) | f , the requirement of all common com-
ponents.

Note that

max
f ∈F ′

r (T1 ∩ T2) | f = max
f =1,...,nfeeders

r (T1 ∩ T2) | f,
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and

∑

f =1,...,nfeeders

r (T1 ∩ T2) | f =
∑

f ∈F ′
r (T1 ∩ T2) | f = r (T1 ∩ T2).

The last case (SUM) coincides with the untyped case. MAX and MIN consider only the types
with the largest and smallest common requirement, respectively. These can be interpreted
as upper and lower bounds of the overall similarity. The similarities direct merging process:
we hope that S′ = S1 ∪ S2 will be the “smaller” the more similar S1 and S2 are. In particular,
we assume it is more probable for S′ to be a feasible group, or at least it is closer to being
one.

Note that we use the set F ′ in MIN, because otherwise the similarity of any two (even
identical) sets would be 0 whenever |F ′| �= nfeeders. A similar problem occurs when defin-
ing the average requirement over all types: should we divide the sum with |F ′| or nfeeders?
Denote these cases with AVG1 and AVG2. AVG1 may seem more reasonable, because we
wouldn’t like to ‘punish’ sets T1 and T2 for the reason that they both fail to contain com-
ponents of some types. AVG2, however, is invariant to the distribution of components into
types.

Example 1. Consider the component sets T1 = {1, . . . , 100} and T2 = T1, the requirements
r (i) = 1 for i = 1, . . . , 100, and the type distributions (nfeeders = 100):

1. f (1) = f (2) = · · · = f (100) (|F ′| = 1);
2. f (1) = 1, f (2) = · · · = f (100) = 2 (|F ′| = 2); and
3. f (i) = i, i = 1, . . . , 100 (|F ′| = 100) .

We then have the following results for different similarity functions and type distributions
(in their respective order):

• MAX: sim(T1, T2) = 100, 99, 1;
• MIN: sim(T1, T2) = 100, 1, 1;
• AVG1: sim(T1, T2) = 100, 50, 1;
• AVG2: sim(T1, T2) = 1, 1, 1.

We do not commit ourselves to any particular way of computing the similarities, but
define the algorithms to work with any of them. The parameter SIM denotes one of the
values MAX, MIN, AVG1 and AVG2. For example, the similarity of two sets T1 and T2 is
determined by calling a general function SIM(T1, T2, SIM).

Let us examine the merging rule M3 for selecting the groups in the untyped case. M3 tells
us to select S1, S2 ∈ S such that sim(S1, S2) is maximal and r (T (S1) ∪ T (S2)) ≤ (ctotal + b).
Unfortunately, this does not work as such for the typed case, since ‘ctotal’ is now specific
for each type. We therefore define function EXCESS(T, SIM) which considers separately the
excess max{r (T ) | f − c f , 0} for each type f and returns the maximal, minimal or average
excess depending on the parameter SIM.
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3.3. Selecting two groups for merging

Merging heuristics M1 and M2 use only the metric sim(S1, S2), but M3 uses also the concept
of excess. Similarity and excess can be defined in (at least) four different ways, it would
be possible to use a different value of SIM for SIM(T1, T2, SIM) and EXCESS(T, SIM). This
would lead to 4 + 4 + 16 = 24 different ways of making the merging decision (4 ways to
apply rule M1 etc.). In order to keep the situation simple we use the same similarity for
both cases. This is justified by assuming that similarity and excess should ‘support’ each
other: large similarity sim(S1, S2) should lead to a small excess when S1 and S2 are merged.

Routine SELECTGROUPPAIR(S, SIM, MER) implements the heuristic selection for merg-
ing. Its arguments are the current grouping S, the similarity SIM, and merging rule MER,
and it returns the best group according to rule MER. We favor the pair with smaller excess
in ties (for rule M3).

3.4. Selecting a part and a group for moving

Recall the repair rules of JGP (Section 3.1). When moving a part j from S1 to S2 one
can minimize the increase of S2 (R1); maximize the decrease of S1 (R2); or minimize
the overall result (R3). As before, for JGP-T, we consider minimum, maximum and average
excesses over all types. All possible combinations of repair rules and typed similarities are
encapsulated into function:

MOVEVALUES(S1, S2, j, SIM, REP)

where REP is one of R1, R2, and R3, see Figure 2. We give preference to moves that make
the source group S1 empty (thus decreasing the size of the grouping). Note that the types
that give the largest decrease and the least increase may be (and quite often are) different
when SIM is MIN or MAX.

Example 2. The choice of SIM and REP (12 possibilities) has a notable effect on the repair
process. Consider the bad choice R1, MIN. Then j in S2 is determined by the type f for

Figure 2. Function computing the heuristic value of a move operation.
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which r (T (S2 ∪ {c})) | f − c f is minimal (MIN). Rule R1 selects the group-part -pair with
the smallest such value. Suppose that

• j = {1, 2, . . . , 100}, f (1) = 1, and f (2) = · · · = f (100) = 2;
• j ′ = {2, 101}, where f (101) = 3;
• T (S2) = {3, 102}, where f (102) = 3;
• c1 = c2 = c3 = 1.

If r (i) = 1 for all i = 1, . . . , 102 we get

EXCESS(T (S2), MIN) = min{1 − 1, 1 − 1} = 0,

MOVEVALUE(S1, S2, j, MIN, R1) = min{1 − 1, 100 − 1, 1 − 1} − 0 = 0,

MOVEVALUE(S1, S2, j ′, MIN, R1) = min{2 − 1, 2 − 1} − 0 = 1,

and we would prefer j to j ′. However, the groups resulting from the corresponding moves
have overall excesses of 99 (for j) and 2 (for j ′). Thus, using R1 and MIN leads to a very
misleading estimator for the repair value.

Figure 3 contains the implementation of routine SELECTMOVE which returns the best
triple S1, S2, j (according to SIM and REP). Note that the selection of S1 is restricted on
illegal groups. Since R2 measures only the value of S1, the choice of S2 can be arbitrary
when REP = R2.

Figure 3. Selecting the best move operation.
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3.5. Swapping of parts

As before, we must analyze the capacity excesses for each type. Routine

SELECTSWAP(S, SIM)

selects the objects of the swap operation (2 groups and 2 parts) by iterating over all alter-
natives and selecting the best local improvement, i.e. the swap maximizing the difference
between the current excess and the excess after the swap.

4. Algorithms for JGP-T

One can combine the merge-, move- and swap-operations of Section 3 in many alternative
ways to form up a working JGP-T algorithm. We examine four such variants in the order
of increasing complexity.

4.1. Greedy clustering algorithm

The main use of the clustering algorithm

GREEDY(SIM): grouping

is to produce an initial solution for the improvement algorithms. It also serves as a compari-
son point for other methods. GREEDY starts from an initial grouping of singular groups (one
for each part). Group pairs with maximal SIM(S1, S2, SIM) value are then merged as long
as the capacity constraints are not violated. Note that we do not use SELECTGROUPPAIR in
the selection, since GREEDY is designed to work without any merge rule and also because
it considers only mergings that preserve the feasibility.

4.2. Local and global search

Algorithm

LOCALJGP-T(S, SIM, MER, REP, maxIter): grouping

starts from an initial grouping (e.g. one given by GREEDY) which it tries to improve further.
If the grouping becomes illegal, we attempt to repair by using move and swap operations.
There are many possibilities to select the order of the operations, we use a randomized
strategy:

• decide whether to move or swap by a probabilistic coin toss;
• determine the locally best operands using either SELECTMOVE or SELECTSWAP and exe-

cute the operation;
• bound the amount of allowed repair operations by a constant (to guarantee termination).
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Note that we do not check whether the selected operation actually decreases the amount of
excess in the grouping. This is because the selection routines themselves aim to return such
decreasing operations, and return ‘worse’ ones only when there’s no alternative.

If the repairing was successful (or the grouping was feasible in the first place), the current
grouping is decreased by one group by merging the two groups returned by SELECTGROUP-
PAIR, after which the repair process is repeated. In an unsuccessful case we return the last
legal grouping. Thus, if the initial grouping (given to LOCALJGP-T) was illegal and the
algorithm fails to repair it, the grouping remains illegal.

Algorithm

GLOBALJGP-T(S, SIM, MER, REP, timeLimit): grouping

makes several local searches using LOCALJGP-T. The first search is done using the result
of GREEDY as the starting point; the later ones are done from randomly created (possibly
illegal) groupings. Searches are performed until a given time limit is exceeded.

4.3. Tabu search algorithm

In order to implement a tabu search (TS) algorithm for JGP-T, we need a neighborhood
function, an improvement function and an aspiration criterium for groupings. The neigh-
borhood of a grouping is defined as the set of groupings which can be reached from the
current one by swapping a part pair between two groups or by moving a single part from
a group to another. These two operations also form the contents of the tabu list during the
search. The aspiration criterium allows a tabu operation to be used if it would decrease the
number of groups in the current grouping. The tabu search algorithm.

TS(S, SIM, REP, Tenure, Limit): grouping

is similar to LOCALJGP-T with the following differences:

• groups are not explicitly merged but groupings get smaller as a consequence of move
operations; and

• current grouping is always feasible.

5. Computational results

The goals of our testing were

• to find out which choices for SIM, MER and REP work best for JGP-T;
• to compare Local, Global and Tabu searches using the most promising parameter com-

binations from the previous test; and
• to compare the results to optimal solutions (when possible).
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Our test data is based on a real-life case consisting of 157 electronic components, 41 PCB
types and 4 different feeder types. The capacity requirements of the components are between
3 and 7 units, and the feeder capacities vary between 100 and 500. Tests were executed
on randomly drawn PCB type samples of size 25. Almost all of our algorithms performed
equally well for these cases. In order to discover differences between the alternatives we
therefore generated a larger synthetic test case of 200 PCB types as follows. First, the
component sets of the 41 real PCB types were randomly divided into two halves (yielding
82 sets). We then drew random pairs from these halves (from the population of size 82×81 =
7452) and synthesized a new PCB as the union of these pairs. Each new PCB was checked
for duplicates and the process was continued until we had 200 different PCB types in total.
Tests were then executed by taking samples of 100 PCB types from this set of 200. Both
the Global and Tabu search used a time limit of 60 seconds, and the tabu tenure was 30.
The maximum number of iterations in the Local was 1000.

We used ILOG Solver and our integer programming formulation to see whether the solu-
tions generated by our heuristics were optimal. This was done by verifying that the problem
had no solution when the grouping was constrained to be one group smaller. It turned out that
the running times of ILOG were impractically large (taking several days to solve) for sam-
ples of 30 PCB types and up, while (untyped) JGP instances of 50 PCB types are normally
easy to solve optimally (Knuutila et al., 2001). However, all the problems of size 25 were
solved reasonably fast (all but one of our test cases were solved in less than 15 minutes).

5.1. Finding out candidates for SIM, MER and REP

The first series of tests was performed to filter out the most and least promising candidate
combinations for SIM, MER, and REP to be examined further. The test data consisted of 30
samples of size nparts = 100 from the population of 200 synthesized PCBs. We tried all the
different combinations of heuristic algorithms, and computed the average grouping sizes
for each value of SIM (MIN, MAX, AVG1, AVG2), MER (M1, M2, M3), and REP (R1, R2,
R3). These averages were obtained by summing up all the results from combinations having
a particular value for SIM (9), MER (12), and REP (12). By this kind of averaging we can
for example find a SIM-choice which works well for the possible MER- and REP-choices
in general. We omit here data for all possible (SIM, MER, REP)-combinations.

Table 1 contains average grouping sizes from our test runs. The rows for MER and REP
are empty for the greedy algorithm, because its results are affected by the similarity rule
only. For the same reason, rows for MER are empty for TS. The results hint that that rule
MAX could be the best value for SIM (and MIN the worst). A closer examination supports
this observation strongly. First, when all the 36 combinations were sorted according to the
average group sizes, value SIM = MIN took the last 9 positions and value MIN = MAX
took 9 out of the 10 first positions. Secondly, pairwise t-test of MAX against MIN, AVG1,
and AVG2 revealed that the difference is statistically significant with a confidence level of
over 99.5% for all cases.

The selection of MER and REP does not seem to have much effect to the results. Although
M1 and R2 give slightly better average results than the other values, the differences are not
statistically significant.
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Table 1. Results of the 30 test runs for samples of 100
PCB types. The numbers indicate the average grouping size,
where averages are computed over different parameter com-
binations; 9 cases for SIM, and 12 cases for MER and REP.

Average |S|

Greedy Local Global Tabu

SIM

MIN 7.67 7.60 7.60 5.36

MAX 4.55 4.54 4.54 4.50

AVG1 4.77 4.77 4.77 4.59

AVG2 5.13 5.13 5.13 4.74

MER

M1 – 5.41 5.41 –

M2 – 5.43 5.43 –

M3 – 5.44 5.44 –

REP

R1 – 5.43 5.43 4.77

R2 – 5.41 5.40 4.77

R3 – 5.44 5.44 4.78

5.2. Comparision of search algorithms

The best individual combinations of the ones tested in the previous section were MAX/M3/
R1 and MAX/M3/R3 (average grouping size 4.50), while combinations MAX/M2/R1,
MAX/M2/R2 and MAX/M3/R2 were only slightly worse. The results of Table 1 suggest
that no matter what the values are, TS gives the smallest groupings. Table 2 contains the
results for these 5 parameter combinations. TS is still best in all combinations, but the
differences are not statistically significant. The larger differences with other parameter

Table 2. Results of different algorithms using the 5 best param-
eter combinations (30 test runs for samples of 100 PCB types).

Average |S|

Parameters Greedy Local Global Tabu

MAX/M3/R1 4.53 4.50 4.50 4.47

MAX/M3/R3 4.53 4.50 4.50 4.47

MAX/M2/R1 4.53 4.53 4.53 4.47

MAX/M2/R2 4.57 4.53 4.53 4.47

MAX/M3/R2 4.53 4.53 4.53 4.50
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Table 3. Results of different algorithms using
‘good’ (MAX/M3/R1) and ‘bad’ (MIN/M1/R1) pa-
rameter combinations, compared against optimal so-
lutions (30 test runs for samples of 25 PCB types).

Average |S|

Method MAX/M3/R1 MIN/M1/R1

Greedy 3.03 3.53

Local 3.03 3.53

Global 3.03 3.37

Tabu 3.03 3.20

MIP (ILOG) 3.00 3.00

values (especially when SIM is MIN) show that TS is least sensitive to the quality of the
initial grouping provided by Greedy algorithm. One can also observe that the results for
Local and Global searches are identical, and that Greedy was only slightly inferior to Local
(and Global). Actually, Global was able to improve the grouping only in 2 cases out of
the 1080 tested. This is quite different from the results with JGP, where the difference was
statistically significant (Smed et al., 1999; Knuutila et al., 2001).

5.3. Comparision to optimal solutions

We ran similar tests for smaller problems of 25 real PCBs sampled from the population
of 41 in order to find out how close to the optimum the best methods are able to get. For
problems of this size, all the proposed algorithms found an optimal solution for 29 out of
the 30 test cases (when the best parameter values were used). Tabu search got quite close
to optimum even with bad parameter combinations. The results of Table 3 show that the
parameters have a remarkable effect on the quality of the result of all search methods, and
also that our methods produce almost optimal results for this problem set.

6. Concluding remarks

The job grouping problem in the case of several feeder types was discussed. The problem
is a natural generalization of the well-known standard JGP. Since modern PCB assembly
production uses multiple different packaging techniques, the types of feeders and electronic
components should be included also in the mathematical model of JGP. While the introduc-
tion of the feeder/component types seems to cause only moderate changes in the problem
description, the effect on the solution algorithms turned out to be significant. The reason
for this lies in the difficulties of measuring the similarity of two PCB types when searching
for advantageous local modifications of the present grouping.

JGP-T resembles several known hard combinatorial optimization problems (e.g., cluster-
ing and capacitated facility location). It is thus no coincidence that our solving efforts use
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similar local and global optimization techniques as have been used with these problems. In
particular, we constructed four solution algorithms (Greedy, Local search, Global search
and Tabu search) and used parameterized options for defining the similarity, merging rules
and repair rules. The tests of Section 5 were performed to analyze the role of these parame-
ters and the importance of using more complex heuristics instead of simple greedy solution.
We used rather large problem instances in the tests in order to make the differences between
the various parameter settings more clear. According to our previous experience with JGP
one may then get more variation in the results. A drawback of the large problem sizes was
our unability to solve the problems to optimality. It is however interesting to know that
when considering small problem instances (|S| ≤ 4 in an optimal solution) with 25 PCB
types, almost all of our heuristic algorithms also found an optimal solution. Tabu search
gave the overall best results while the Local abd Global search algorithms and the Greedy
algorithm worked equally well in practice. In the light of related research, we expect that
evolutionary algorithms were also a good candidate for the JGP-T.

As future directions for this line of research we note that a simplifying assumption was
made that each component has a unique feeder type. In practice, it is possible that the
same component can be placed in the feeder unit using different feeder types. Another
modification to the basic setting is the availability of flexible feeders (so called feeder
boxes) (Hirvikorpi, Knuutila, Johnsson, and Nevalainen, 2003). Despite the fact that we are
only taking the first faltering steps in this research, many ideas and algorithms have been
already implemented in the Trilogy5000 engineering system for assembly and test of PCB
boards of Valor Ltd (www.valor.com).
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Change costs between jobs in printed circuit board assembly depend on the number of component
change occasions. Component changes are necessary due to the restricted feeder capacity. Grouping
assembly jobs decreases the number of setup occasions. The job grouping problem asks for a minimal
cardinality grouping.

This paper studies a generalization of the job grouping problem where the feeder unit is capable of
holding sub-units, called feeder boxes. There is a limited set of boxes available in an auxiliary storage,
and the feeder unit has certain limitations for the feeder boxes it may hold. The task in job grouping
problem with boxes (JGP-B) is to group the jobs into a minimal number of groups in such a way
that capacity and feeder restrictions are not violated. Exact solving of the JGP-B is restricted to small
problem instances only. Several heuristics are proposed and their operation is tested experimentally.

Keywords: Electronics assembly; Single machine job grouping; Heuristics; Combinatorial
optimization

1. Introduction

Manufacturing processes of printed circuit board (PCB) assembly offer several different alter-
natives to increase production efficiency. Minimizing the time factors of the various job phases
often gives a significant speedup and research on the methods of production control has
therefore gained substantial interest, see Tang and Denardo (1988), McGinnis et al. (1992),
Crama (1997), Crama et al. (2002), and Smed (2002) for some literature on the subject. One
fruitful track in this research has focused on the minimization of the number of job change
occasions. Switching from the production of a batch of PCBs of a particular type (often called
a job or a PCB job) to another on an automated component placement machine requires several
time-consuming operations. Some of these operations demand a fixed time, like changing the
numeric control program or supplying a new batch of bare PCBs to the machine. The total cost
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of these operations depends on the proper selection of batch sizes. Finding a balance between
low storage levels and excessive job change costs is the key to minimize these costs.

The other type of operation times are variable in their nature.Although the presence of these
variable cost factors depends mostly on the production machinery, the following three occur in
most environments. First, the width of the conveyor belt has to be properly fitted for each PCB
batch. This demands manual work taking at least a few minutes. Second, with surface mounted
technology, the fixation of the electronic components is done in an oven, which should have a
temperature profile correct for the current PCB. The different temperature specifications of two
successive PCB types may require time consuming adjustment of the oven. The third variable
cost factor is caused by component changes that originate from the fact that the necessary
electronic components of the next PCB type must be present in the feeder unit prior to their
placement.

The two first-mentioned variable costs are essential in many situations, but still a common
approach has been to omit them (see however the fuzzy logic formulation of job grouping in
Johtela et al. (1999)), or to handle the jobs in batches of similar urgency, width, or temperature
demands. This policy is in line with the practice of showing several good solution candidates to
the production engineer so the final decision can be left to a human expert and some unwanted
situations, including the above-mentioned demands of certain width and temperature, could
be avoided. Thus, most of the methods documented in the literature deal with minimizing the
number of job groups when the feeder setup is the only criterion in their construction (see
Crama et al. (1994) and Johnsson (1999) for references on scheduling PCB assembly jobs).

This paper considers the production control of a single placement machine in the case of
the so-called high-mix low-volume production which means that the focus is in the operation
of a single machine which may be a member of a production line, but is the bottleneck of the
process, too. Further, the production program includes in this case many different types of
relatively small PCB batches. So, the setup operation times dominate the production time and
are more essential in the optimization than the time for placement itself.

Another even more essential assumption is that the feeder unit comprises a linear array
of component positions which can be filled by components side by side. This kind of an
abstraction is accurate enough for several surface mount devices (SMD) with a turret-like
placement mechanism and a horizontally moving feeder unit (Landers et al. 1994). While most
previous studies of the job grouping problem (JGP) use this abstraction, it is important to realize
that even minor technical details of modern placement machines may degrade the accuracy
of the model significantly. For example, the feeder unit may consist of removable sub-units,
and the boundaries of these sub-units may not be crossed by components demanding several
slots of feeder capacity. Note that this particular problem can often be solved satisfactorily
by decreasing the total capacity of the feeder unit to compensate the losses on the sub-unit
boundaries (Smed et al. 1999).

The basic JGP (with a linear feeder unit) is known to be NP-hard (Crama et al. 1994).
Even its known approximation algorithms have very bad worst-case limits, as shown in the
work of Crama and van de Klundert (1999). The cited work also contains an analysis of the
approximability of tool management problems. However, the exact solution of JGP has been
recently computed for several problem instances of practical size using efficient mixed inte-
ger programming (MIP) and Constraint Programming packages (ILOG Solver), see Knuutila
et al. (2001). In addition, several very efficient heuristics have been developed for the prob-
lem (Shtub and Maimon 1992, Bhaskar and Narendran 1996, Leon and Peters 1996, Knuutila
et al. 2001).

The job grouping problem becomes much more complicated if the assumption of a homoge-
nous component feeder does not hold. This is the case when the machine is capable of handling
components which are delivered by using different packaging technologies like feeder reels
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(as traditionally assumed above), tubes, trays, etc. The components have now, in addition to
the type and width, the input medium type. Heuristics presented for this so-called job grouping
problem with different component types (JGP-T) use similar ideas as for the regular JGP, see
Knuutila et al. (2004). However, exact solutions are now unreachable for large problems due
to the increased complexity, and even the heuristics become relatively involved.

This paper considers a still more general problem, called job grouping problem with feeder
boxes (JGP-B). JGP-B has recently become actual due to the progress in technologies of
component placement machines. As in the previous variants of JGP, this variant calls for
a job grouping of minimal cardinality. The difference between JGP and JGP-B lies in the
organization of the feeder unit. In order to gain extra flexibility, the unit is constructed to
contain several separate feeder boxes that can be changed when switching jobs. The feeder
unit of the machine has a certain maximal capacity (width) for storing the boxes and there is
a collection (multiset) of boxes of different types to select from in an auxiliary storage.

The feeder boxes used in contemporary component placement machines are divided into
fixed and flexible ones.† Fixed boxes are treated as a special case of flexible ones, since it is
possible to store only components of a given constant width in them, and each component
consumes the same amount of slots (equal to the width of the component) from the available box
capacity. Flexible boxes have the extra advantage that they can hold components of different
(allowed) widths. The capacity calculation is now, however, more complicated: a component
may consume more than its nominal width from the capacity of a box. This excess is stated in
the specifications of each box type for each allowed component width. What complicates the
situation even more is that the feeder unit sets two different constraints on the feeder boxes:
both the maximal number of feeder boxes and the summed up width of the boxes in the unit
are restricted. Finally, the number of different available boxes is restricted simply because
of financial reasons; the boxes are costly and therefore manufacturers want to acquire only a
small number of boxes.

To sum up, the JGP-B calls for a minimal cardinality grouping when the set of jobs and
set of boxes are given. The boxes of each job group must fit in the feeder unit, boxes must be
selected from the given set, and the components of all jobs of the same group must fit in the
selected boxes simultaneously. An important observation is that the basic JGP is a relaxation
of the present problem.

This exposition of JGP-B is organized as follows. Section 2 defines the JGP-B formally and
translates it to a MIP form. The same section also discusses the connection of JGP-B to the set-
covering problem. Section 3 introduces heuristic solution algorithms for the problem. These
algorithms apply several local search operations specialized for the feeder and box constraints.
Section 4 contains a comparison of the proposed algorithms using grouping problems of
practical size. The paper is concluded in section 5.

2. Problem statement

This section describes the JGP-B solely in terms of PCB assembly. However, JGP-B may well
find its application in other flexible manufacturing environments than PCB assembly, and the
interested reader is advised to consult Hirvikorpi et al. (2003) for a general set-theoretical
problem setting of JGP-B.

†The feeder magazines Tape Magazine and TM-Flex Magazine of MYDATA (cf. MY-9) are examples of this kind
of technology, see http://www.mydata.com/ for more information.
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2.1 Basic notation

The following components form an instance of JGP-B.

• The set of components E. Each component e ∈ E has a width (feeder capacity requirement)
w(e) ∈ N and w(E) is the set of all different widths in E.

• The set of jobs C. Each job (PCB type) c ∈ C is a subset of E, i.e. a job is totally characterized
by the set c of its components (note that this is the set of component types the PCB consists
of, the actual numbers of occurrences of different component types are not included in this
model). Each c ∈ C and width k ∈ w(E) together defines the subset of those components
of c which have a specific width k as E(c, k) = {e ∈ c | w(e) = k}.

• The multiset of feeder boxes B. Each feeder box b ∈ B has the following three properties:
– v(b) ∈ N, the internal box width (i.e. the capacity of the box);
– w(b) ∈ N, the external box width (i.e. the total width allocated from the feeder unit

capacity) and
– a(b) ⊆ w(E), the set of allowed component widths.

• The feeder unit is described with two parameters:
– the maximal total width of boxes wmax ∈ N and
– the maximal total number of boxes nmax ∈ N.

Based on the above notation, a box b ∈ B

• can hold a component e ∈ E only if w(e) ∈ a(b) (provided there is enough free space in b),
• ‘box b is fixed’ if |a(b)| = 1 and
• ‘box b is flexible’ if |a(b)| > 1.

Note also that it is reasonable to assume that

w(E) ⊆
⋃
b∈B

a(b)

i.e. there is at least one box type for each component width, and also that v(b) ≤ w(b) (the
internal width of boxes does not exceed their external width).

2.2 Placing components into boxes

When a component of width k is placed in b (k ∈ a(b)), it allocates at least k units of the
capacity from b. In the PCB assembly it is typical that this allocation is exactly k if box b is
fixed, but slightly larger than k in the flexible case. Mapping s: B × w(E) → R formalizes
this property by giving each (box, component width)-pair (b, k) the capacity allocated by
a component of width k in box b. This formulation also assumes that there is no slack for
fixed-type boxes, i.e. if a(b) = {k} then s(b, k) = k; and, in general, the allocation is always
at least equal to the actual width of the components: s(b, k) ≥ k. The two restrictions are by
no means essential in the formulation, they just make the formulation of certain concepts (like
total allocation of a component set in a box) a bit simpler.

Note that the problem of placing a set of components (of different widths) into a given
multiset of boxes (of restricted widths) is clearly the well-known problem of bin-packing (see
Martello and Toth (1990), for example), which is here further complicated by the fact that the
allocations s(b1, k) and s(b2, k) may be different for some b1, b2 ∈ B. Similarly, it is possible
that the ‘absolute slack’ s(b, k) − k and ‘relative slack’ s(b, k)/k are different for different
component widths k (even in the same box). There is a simplifying factor too: since the slack
s(b, k) is minimal for the fixed boxes (s(b, k) = k), and it is not possible to place anything
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else than components of width k into these boxes, a solution algorithm to this box bin-packing
problem can first use all of their capacity (and the choice of these components can be random)
and thus reduce the problem size considerably.

2.3 Groupings

A solution of JGP-B requires the formulation of the concepts group and grouping.

• A group g is a subset of the set of jobs (g ⊆ C). The set of all components of g is denoted by
E(g). Each g and k ∈ w(E) together define the set E(g, k) = ⋃

c∈g E(c, k) which contains
all the components of width k that appear in the jobs of g.

• A grouping G of C is a set of groups with the property
⋃

g∈G g = C. Because a grouping
must contain all the jobs of C, there is at least one feeder setting (corresponding to a group of
jobs) such that each particular job has all of its components in the feeder unit simultaneously.
Observe that this does not rule out the possibility that a job may belong to several groups.

The components E(gi) of each group gi ∈ G should be placed in the feeder unit. This means
that we must select some subset of boxes Bi ⊆ B and assign each e ∈ E(gi) to some b ∈ Bi .
Formally, each group gi is associated with a multiset of selected boxes Bi and component-
box assignment αi : E(gi) → Bi . It is required that if αi(e) = b then w(e) ∈ a(b), i.e. only
components of allowed widths can be placed into any box.

2.4 Feasibility

An important concept in the formulation of JGP-B is the ‘feasibility of grouping G’.
This concept, however, requires the definitions of ‘feasibility of Bi’ and the ‘feasibility of
group gi’.

• A multiset of boxes Bi ⊆ B is feasible with respect to nmax and wmax if |Bi | ≤ nmax and

w(Bi) =
∑
b∈Bi

w(b) ≤ wmax

This definition says that the number of the feeder boxes and their total width should fit the
constraints of the feeder unit.

• Group gi is feasible with respect to Bi , if the boxes of Bi can hold all the components of gi .
More formally, there must exist a totally defined component-box assignment αi : E(gi) →
Bi such that

∑

e∈α−1
i (b)

s(b, w(e)) ≤ v(b) for all b ∈ Bi

Note that in practice the space allocation is not always commutative, i.e. different permutations
of components may require different amounts of capacity. The standard way around this
difficulty is to first find the groupings and then decide on the ordering of the components in
the group.

A grouping G is feasible with respect to a box multiset B and constants wmax, nmax ∈ N

if there is for each gi ∈ G a multiset of selected boxes Bi ⊆ B such that gi is feasible with
respect to Bi and Bi is feasible with respect to wmax and nmax. Thus, a total characterization
of a feasible grouping G consists of a set of (feasible) triplets (gi, Bi, αi), i = 1, . . . , |G|.
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Figure 1. A JGP-B problem (E = {e1, . . . , e10}, C = {c1, . . . , c5}, B = {b1, . . . , b4}) and a grouping of size 2.

2.5 A JGP-B example

Figure 1 contains an illustration of a JGP-B problem. There is one flexible box (b4) and three
fixed boxes (b1, b2 and b3). The width of the feeder unit is 18 and it can hold up to four boxes
simultaneously. The optimal solution is also shown in figure 1.

2.6 Mixed integer programming formulation of JGP-B

This section formulates the JGP-B. An instance of JGP-B:

• E, the set of components;
• C, the set of jobs;
• B, the multiset of boxes;
• wmax, the maximal total width of boxes in the feeder unit (bound on w(Bi)) and
• nmax, the maximal allowed number of boxes in the feeder unit (bound on |Bi |),
asks for a feasible grouping G with minimal cardinality.

The JGP-B is much more complicated to solve than the basic JGP. This is due to the
fact that in addition to a minimal-size grouping, it asks for each group a set of boxes and a
mapping of components to these boxes. The difficulty here is that even solving the feasibility
of a group against a box set is a generalization of the bin-packing problem (which is known
to be hard). The difficulty of the feasibility checking comes from the fact that the order of
placing the components into boxes has an effect on the result. Note further that, theoretically,
searching for all feasible box multisets from the multiset of all boxes is a hard problem.
However, the small number and relatively large width of the boxes makes this problem easier
in practice.

Our JGP-B formulation translates itself to a constraint satisfaction problem which is
solvable by modern optimization packages (e.g. ILOG Solver). The translation is as follows:

W = max{w(e) | e ∈ E};
K = maximum number of groups (≤|C| if the problem is solvable);
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eiq = 1 if the width of component i is q, 0 otherwise (i = 1, . . . , |E|, q = 1, . . . , W ) and
Aij = 1 if component i is required by job j , 0 otherwise (i = 1, . . . , |E|, j = 1, . . . , |C|).

The decision variables are:

xjk = 1 if job j is in group k, 0 otherwise (j = 1, . . . , |C|, k = 1, . . . , K);
ybk = 1 if box b is in the configuration of group k, 0 otherwise (b = 1, . . . , |B|, k = 1, . . . , K)

and
zibk = 1 if component i is in box b of group k, 0 otherwise, (i = 1, . . . , |E|, b = 1, . . . , |B|,
k = 1, . . . , K).

A solution of the JGP-B must satisfy the following constraints:

∑
k=1,...,K

xjk ≥ 1 for all j = 1, . . . , |C| (1)

∑
i=1,...,|E| q=1,...,W

eiqzibks(b, q) ≤ v(b) for all b = 1, . . . , |B| and k = 1, . . . , K (2)

∑
b=1,...,|B|

zibk ≥ xjkAij for all i = 1, . . . , |E|, j = 1, . . . , |C| and k = 1, . . . , K (3)

∑
b=1,...,|B|

ybkw(b) ≤ wmax for all k = 1, . . . , K (4)

zibk ≤ ybk for all i = 1, . . . , |E|, b = 1, . . . , |B| and k = 1, . . . , K (5)

xjk, ybk, zibk ∈ {0, 1} for b = 1, . . . , |B|, i = 1, . . . , |E|,
j = 1, . . . , |C| and k = 1, . . . , K (6)

In this formulation there is a fixed number of groups K and the minimal K is found by
repeated solution trials of the satisfaction problem (1)–(6). Constraint (1) says that every job
must be in at least one group. Constraint (2) demands that no capacities are exceeded in any
box. Constraint (3) forces the components which are needed by a job to be in the feeder.
Constraint (4) says that the boxes must fit into the feeder unit. Finally, constraint (5) requires
that boxes which have components assigned to them are marked as allocated in the group.

Some additional constraints could be added to limit the search space, like:

∑
j=1,...,|C|

xjk ≤
∑

j=1,...,|C|
xj,k+1 for all k = 1, . . . , K − 1 (7)

∑
b=1,...,|B|

zibk ≤ 1 for all i = 1, . . . , |E| and k = 1, . . . , K (8)

Constraint (7) says that the groups must be in order of increasing size. Constraint (8) demands
that a component is placed in one box only in a group.
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2.7 A JGP-B example solution

The following description is a simple example of a JGP-B instance and its solution (see
figure 1):

• E = {e1, . . . , e10}, where
– w(e1) = w(e2) = w(e3) = w(e4) = 1;
– w(e5) = w(e6) = w(e7) = 2;
– w(e8) = w(e9) = 3 and
– w(e10) = 4.

• C = {c1, . . . , c5}, where
– c1 = {e1, e3, e4, e6, e8, e9};
– c2 = {e2, e4, e5, e6};
– c3 = {e1, e3, e7, e8, e9};
– c4 = {e2, e4, e6, e10} and
– c5 = {e1, e3, e6, e8}.

• B = {b1, . . . , b4}, where
– a(b1) = {1}, a(b2) = {2}, a(b3) = {3}, a(b4) = {2, 4};
– s(b1, 1) = 1, s(b2, 2) = 2, s(b3, 3) = 3, s(b4, 2) = 3, s(b4, 4) = 5;
– v(b1) = 3, v(b2) = 4, v(b3) = 6, v(b4) = 8 and
– w(b1) = 4, w(b2) = 5, w(b3) = 7, w(b4) = 9.

• wmax = 18.
• nmax = 5.

This problem has a minimal grouping G = {(g1, B1, α1), (g2, B2, α2)}, where

• g1 = {c1, c3, c5};
• B1 = {b1, b2, b3};
• for E(g1) = {e1, e3, e4, e6, e7, e8, e9} we have

– α1(e1) = α1(e3) = α1(e4) = b1;
– α1(e6) = α1(e7) = b2;
– α1(e8) = α1(e9) = b3;

• g2 = {c2, c4};
• B2 = {b1, b2, b4};
• for E(g2) = {e2, e4, e5, e6, e10} we have

– α2(e2) = α2(e4) = b1;
– α2(e5) = α2(e6) = b2 and
– α2(e7) = α2(e10) = b4.

To prove that the grouping G is a solution to the described JGP-B instance, the formulation of
the problem requires that it is feasible and of minimal cardinality. The box multisets B1 and
B2 are feasible with respect to nmax and wmax, since

• |B1| = |B2| = 3 ≤ nmax = 5;
• w(B1) = 4 + 5 + 7 = 16 ≤ wmax = 18 and
• w(B2) = 4 + 5 + 9 = 18 ≤ wmax.

Group g1 is feasible with respect to B1 = {b1, b2, b3}, since

• ∑
e∈α−1

1 (b1)
s(b1, w(e)) = 3 ∗ s(b1, 1) = 3 ≤ v(b1) = 3;

• ∑
e∈α−1

1 (b2)
s(b2, w(e)) = 2 ∗ s(b2, 2) = 4 ≤ v(b2) = 4 and

• ∑
e∈α−1

1 (b3)
s(b3, w(e)) = 2 ∗ s(b3, 3) = 6 ≤ v(b3) = 6.
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Finally, group g2 is feasible with respect to B2 = {b1, b2, b4}, since

• ∑
e∈α−1

2 (b1)
s(b1, w(e)) = 2 ∗ s(b1, 1) = 2 ≤ v(b1);

• ∑
e∈α−1

2 (b2)
s(b2, w(e)) = 2 ∗ s(b2, 2) = 4 ≤ v(b2) and

• ∑
e∈α−1

2 (b4)
s(b4, w(e)) = s(b4, 2) + s(b4, 4) = 8 ≤ v(b4) = 8.

The analysis above shows that grouping G is feasible because both g1 and g2 are feasible.
It is also of minimal cardinality because placing the PCBs to a one group gall would require
a box set Ball for which {b1, b3, b4} ⊆ Ball, otherwise the boxes of Ball are not able to hold
components of all widths given in the problem instance definition. This kind of box set does
not fit in the feeder (due to wmax) which means that no grouping of cardinality 1 is feasible.

3. Heuristic solution algorithms

This section considers four heuristic algorithms for JGP-B. The first one is a simple greedy
algorithm which serves as a basis for the comparison. The other three algorithms use operations
of merging, redistribution and splitting. These have been successful in previous clustering
algorithms and this study therefore adapts them to solve the hard combinatorial optimization
problem in question.

The difficulty in the JGP-B is that it includes two hard decisions to be made simultane-
ously. One is the selection of a job group spanning a certain set of components and the other
is the selection of suitable boxes for the components of each component set. One way to
partially overcome this complexity is to consider these two problems in separation. There-
fore, the idea in the three algorithms is to alternate between the search for advantageous box
multisets and groupings of jobs. The aim is that both groupings and box multisets adapt to
the restrictions placed on the other. This idea is visible especially in algorithms MERGEG
and SPLITG. In addition to this, the third algorithm REDISTRG uses redistribution operations
and applies some randomization while enhancing a grouping by moving and swapping jobs
between groups.

In order to aid the understanding of the four grouping algorithms this section first introduces
two methods for the selection and improving of box sets. The first one is a brute-force method
which simply checks all feasible (maximal) subsets of B. The second is an improvement
method based on local search. The algorithm using merge operations for grouping (MERGEG)
is parameterized to use either of these routines.

3.1 Searching and improving box multisets

The grouping algorithms of the next sections utilize an improvement algorithm which tries to
recover from a situation where a grouping attempt runs out of feeder capacity, i.e. at least one
group gi ∈ G is not feasible† with respect to Bi . We propose here a brute force and a local
search algorithm for this purpose.

3.1.1 Brute force search for a feasible box multiset (BFBOXES). This approach is appli-
cable when the size of the box multiset B is small. The simplest way would be to consider
all (feasible) subsets of B, but BFBOXES proceeds slightly more intelligently because it con-
siders maximal subsets only. A subset B ′ of B is maximal, if w(B ′) ≤ wmax, |B ′| ≤ nmax and

†We return to the test of feasibility in a while, but at this point it is supposed that one can simply decide whether a
group is feasible or not.
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either |B ′| = nmax or w(B ′) + w(b) > wmax for all b ∈ B\B ′. It is easy to verify that if there
exists some Bi ⊆ B such that group gi is feasible with respect to Bi , it is always possible to
extend Bi to a maximal subset B ′ of B by simply adding new boxes into it as long as possi-
ble. It thus suffices to consider maximal subsets, only. However, even this modification may
leave an unbearable amount of candidates left; for example in the case where each b ∈ B has

v(b) = w(b) = 1 and each e ∈ E has w(e) = 1, we have
(

|B|
wmax

)
maximal subsets to consider.

Function BFBOXES considers all maximal subsets B ′ of B and it returns the first B ′ which is
found to be feasible with gi . If there is no such B ′, the function returns the empty set.

3.1.2 Heuristic improvement of the box multiset (HIBOXES). Let us denote by U(gi, Bi)

the minimum number of unplaced components of group gi when using the feeder box multiset
Bi . This number is hard to determine exactly in general due to the inherent complexity of
the bin-packing problem which should be solved for flexible boxes. However, the number
of unplaced components is used only in a heuristic way when evaluating the different box
multisets. The HIBOXES therefore is content to search for a rough approximation of the minimal
number of components left over when filling Bi in an optimal way. It approximates this value
by considering all boxes b ∈ Bi in order of ascending |a(b)| (i.e. fixed boxes are examined
first) and by placing the components of E(g) into each b in turn (placement of e into b is
possible if w(e) ∈ a(b) and there is enough free capacity left in b).

The HIBOXES uses these U -values to facilitate the process of transforming infeasible groups
or box multisets to feasible; a group or a box multiset with the minimal violation of feasibility
(i.e. the smallest U -value) is chosen. The same action gives also a heuristic answer whether
group gi is feasible with respect Bi . We have implemented this check as routine ISFEASIBLE

which returns ‘true’ if U(gi, Bi) = 0 and ‘false’ otherwise.
The heuristic improvement algorithm HIBOXES tries to improve a given box multiset Bi by

swapping boxes between Bi and B\Bi . Note that the selection of single boxes is a greedy
action and HIBOXES might get better results by changing several boxes at a time. Routine
HIBOXES considers all possible swappings of boxes b1 ∈ Bi and b2 ∈ (B\Bi) and computes
the improvement

U(gi, Bi) − U(gi, Bi\{b1} ∪ {b2})

for each such operation. A swap operation giving the maximal improvement is chosen, and the
swap is made if it releases capacity in the feeder. Swapping of boxes may also release empty
space in the feeder. In that case HIBOXES tries to fill the free space with one or more boxes. The
selection of a new box to box multiset Bi uses the following simple rule: select b ∈ B\Bi such
that Bi ∪ b is feasible and U(gi, Bi) − U(gi, Bi ∪ b) is maximal. This rule (implemented as
routine SELECTBOX) attempts to maximize the local improvement in the remaining unplaced
components in a greedy way. The whole improvement process is iterated until no changes can
be made.

3.2 Greedy grouping (GREEDYG)

The greedy grouping starts by forming a group of a single job and augmenting it iteratively
with new jobs according to the order of component similarities between remaining jobs and
the group constructed so far. A new group is created when the augmentation of the present
group would violate the feasibility constraint. The feasibility of a candidate group is checked
by the BFBOXES algorithm of section 3.1.
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The GREEDYG algorithm gets as an input a set of jobs (C), a set of boxes (B), feeder unit
width (wmax) and a maximal allowed number of boxes in the feeder unit (nmax). The result is
a feasible job grouping (G). The method is as follows:

• Pick a random c ∈ C and create a new singular group g = {c}.
• Sort all unplaced jobs c′ ∈ C according to |c′ ∩ E(g)| into a descending order.
• Consider each c′ in this order and add c′ into g if there is a feasible box multiset for the

augmented group {c′} ∪ g.
• Iterate the same process for the remaining jobs.

Note that although this greedy algorithm may be too tedious to be performed manually, its
basic idea should be reasonable to any human operator.

3.3 Grouping by merging (MERGEG)

The method of this section uses the well-known technique of hierarchial clustering, which has
turned out to be effective in practice (Kaukoranta 2000). What makes the situation with JGP-B
radically different and more difficult are the two feeder unit constraints stating the maximal
number of boxes and the possible box multisets. The MERGEG therefore applies the ideas from
clustering as a starting point only.

The grouping process begins by creating an initial grouping of |C| singular groups for
which a feasible multiset of boxes is determined with the brute force method (BFBOXES).
It then merges these groups greedily as long as possible. The MERGEG first calculates the
intersections of the component sets for each group pair to select a proper order of merging
operations, and considers the feasibility of the merge operations in the descending order of
the cardinalities of these intersection sets. The search for a feasible box multiset is done at
the merge steps using either the brute force method or the heuristic improvement method of
section 3.1. This choice is given by parameter r (r = BFBOXES or HIBOXES). The first feasible
merge is performed and the same process (including the re-computation of the intersections)
is iterated until no feasible merge is possible.

The algorithm MERGEG gets as its input parameters r , C, B, wmax and nmax. The result of
the algorithm is either a feasible final grouping G or the empty set if no grouping was found.
The implementation is outlined in figure 2.

For the sake of simplicity, the implementation of MERGEG does not pay much attention to
the optimization of the running time. The intersections, for example, are determined on each
iteration and the result of a merge operation is recalculated even if no changes were made to
the group pair since the previous iteration of the algorithm.

3.4 Grouping by redistributing (REDISTRG)

While the MERGEG-technique joins whole groups and preserves the feasibility at each step, it
is possible to fill the free space in the boxes more carefully. REDISTRG does this by moving
individual jobs instead of groups, and by repairing groups which lose their feasibility (because
of the redistribution) back to feasible. The idea is related to the JGP-algorithm ‘HG3’ of
Knuutila et al. (2001).

Function REDISTRG gets as its input a feasible initial grouping G (e.g. one created with
MERGEG) and a bound t for its execution time. The aim of REDISTRG is to decrease the number
of groups of G. It selects a random group from G and redistributes its jobs randomly to the
remaining groups. If the resulting grouping is feasible, it repeats the same process; otherwise it
tries to repair the infeasible grouping by alternating between changes of the grouping and the



40 T. Knuutila et al.

Figure 2. Pseudocode for ‘grouping by merging’ algorithm MERGEG.

box multisets (the latter task is done with routine HIBOXES). If this process leads to a feasible
grouping, REDISTRG re-iterates the above steps. If, however, the grouping remains infeasible,
it restarts from the previous feasible grouping and selects another group to be distributed.
The algorithm terminates after a given amount of time (t) and it returns the smallest feasible
grouping found.

Figure 3 contains a pseudocode of REDISTRG. Here, UNPLACEDCOMPONENTS sums up the U -
function values of all group-box multiset pairs in G. Routine MOVEJOBS moves jobs from an
infeasible group to other groups until no moves preserving the feasibility of the target groups
are possible. MOVEJOBS tries the move-outs greedily by using the original lexical ordering of
the jobs and groups as the trial order.

3.5 Grouping by splitting (SPLITG)

The MERGEG (and consequently REDISTRG) performs agglomerative clustering by moving from
a large number of groups to a smaller one. The SPLITG turns the idea of MERGEG around by
starting with a large group consisting of all jobs. This is then split into smaller parts until a
feasible grouping is found. The SPLITG has two decisions to consider: the selection of a group
to split and performing the actual splitting.

A natural heuristic to select a group to split is once again based on the U -function. Supposing
that grouping G is infeasible, SPLITG first selects the ‘most infeasible’ group of G, i.e. the one
with a maximal U -value. The actual splitting of the group is performed so that the two new
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Figure 3. Pseudocode for ‘grouping by redistributing’ algorithm REDISTRG.

groups are approximately of the same size, and their contents are assigned in randomly. New
groups start with the same box multiset as the split group had originally.

A pseudocode of SPLITG is shown in figure 4. Routine SELECTGROUPTOSPLIT selects the ‘most
infeasible’ group, routine SPLITGROUP implements the splitting process and routine SWAPJOBS

considers all swappings of job pairs such that one member of the swap is in an infeasible
group and the other member is in a feasible group. The group pair which gives the maximal
improvement based on the U -value is chosen for splitting.

4. Experimental results

We generated a set of test data with the same charasteristics as real data. Generated data was
used in order to perform statistical tests on the performance of different solution algorithms;
a large number of observations is needed to draw any conclusions of statistical significance.
The test runs were performed on Pentium 4 2.0 GHz with 512 Mb main memory.

Figure 4. Pseudocode for ‘grouping by splitting’ algorithm SPLITG.
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4.1 Test problems

A component library containing the data of ca. 4000 electronic components was used when
generating the test data. The set of components E was created by selecting randomly 18%
(583) of these (to keep running times acceptable). After this we created a master set of 300 test
jobs by first choosing for each ci (i = 1, . . . , 300) the size |ci | randomly from a user-defined
interval (e.g. [12, . . . , 30]) and then assigning the drawn amount of different randomly chosen
components to ci . The problem instances were finally formed by sampling (without repetitions)
the desired number of different jobs from this generated set. When comparing the heuristics
to each other, we used sample sizes of |C| = 30 and |C| = 60, and the results were averaged
over 40 different samples.A comparison to optimal solutions was possible for smaller problem
instances (|C| = 8 with 24 components in each; 30 problem instances).

The generation of boxes was based on the occurrence frequencies of different component
widths in PCBs. The following procedure was used to generate box multisets:

1. Compute the frequencies f (w, c) of different component widths for each w ∈ w(E) and
c ∈ C: f (w, c) = |{e ∈ c | w(e) = w}|.

2. Compute for each width w ∈ w(E) its maximal frequency fmax(w) within C: fmax(w) =
max{f (w, c) | c ∈ C}.

3. Sort these maximal frequencies into descending order f1, f2, . . . .

4. Let f1 = fmax(w). Create 3 boxes of fixed type with capacity w ∗ fmax(w).
5. Let f2 = fmax(wi) and f3 = fmax(wj ). Create 2 boxes of fixed type with capacity wi ∗

fmax(wi) and 2 boxes of capacity wj ∗ fmax(wj ).
6. Create one box of fixed type for all remaining widths w with capacity 2 ∗ w ∗ fmax(w).

The flexible boxes were created such that one flexible box can hold components from a certain
width range and these ranges do not overlap.

We let w(E) = {1, 2, 3, 4, 5, 7, 9}, and the multiset of boxes derived using the method just
described be

B = {b1, b1, b1, b2, b2, b3, b3, b4, b5, b6, b7, b8, b8, b9, b10}
where boxes types b1 to b7 are fixed and b8, b9 and b10 are flexible. The properties a(bi), v(bi)

and w(bi) for i = 1, . . . , 10 are given in table 1 for each box type bi . Note that the numbers
v(bi) and w(bi) use different scales (otherwise the internal capacity would exceed the external
one). Table 1 contains also the space allocations s(bi, w) of components. The total width wmax

of the feeder unit was 9 and the maximal number of boxes nmax was 9, too.

Table 1. Box types used in the tests.

Box a v w s

b1 1 24 1 1
b2 2 16 1 2
b3 3 36 1 3
b4 4 28 1 4
b5 5 30 1 5
b6 7 14 1 7
b7 9 18 1 9
b8 {1, 2, 3} 12 1 {1.3, 2.3, 3.4}
b9 {4, 5} 15 1 {4.5, 5.3}
b10 {7, 9} 15 1 {8.1, 10.5}
Note: The space allocations s for flexible boxes are given in the same
order as the respective widths in column a.
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Table 2. A sample of grouping sizes for |C| = 30, test 1.

Test MERGEG(H) REDISTRG SPLITG GREEDYG MERGEG(B)

1 5 5 5 6 5
2 6 5 5 7 5
3 6 6 6 7 6
4 5 5 5 7 5
5 6 5 6 7 6
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

40 6 5 6 7 6

Average 5.28 5.13 5.4 6.4 5.25
Standard deviation 0.45 0.40 0.50 0.59 0.44

Table 3. A sample of grouping sizes for |C| = 60, test 2.

Test MERGEG(H) REDISTRG SPLITG GREEDYG

1 9 9 9 13
2 9 9 10 12
3 9 9 9 13
4 9 9 9 11
5 9 9 9 12
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

40 9 9 10 12

Average 9.2 9.05 9.65 12.18
Standard deviation 0.61 0.50 0.62 0.75

4.2 Experiments

In what follows, the notations MERGEG(H) and MERGEG(B) denote the use of MERGEG
with the options r = HIBOXES and r = BFBOXES, respectively. For small problem instances
(|C| = 8) we evaluated the heuristics against optimal solutions. Because optimal solutions
were not available for large problem instances (|C| = 30 and |C| = 60), we compared the
results of GREEDYG, MERGEG(H), MERGEG(B), REDISTRG† and SPLITG against each other. We
performed the following six sets of tests:

1. Each problem instance consisted of 30 jobs and the grouping was repeated 40 times for
different problem instances, see table 2 for the results.

2. Each problem instance consisted of 60 jobs, and the grouping was again performed to see
the effect of the problem size on the number of groups and the running times for different
solution algorithms, see table 3. The results of MERGEG(B) have been omitted due to the
large running times of the method.

3. This test was created to measure the effect of the number of different boxes on the running
time of MERGEG (using both brute force and heuristic box set improvement technique). The
test problems were the same as in the test 1, but the box multiset was increased to contain
2 new flexible boxes of type b8 and one of type b9, see table 4.

4. The purpose of this test run was to measure the running time of MERGEG as a function of
|B| for BFBOXES and HIBOXES, see table 5.

5. In this test run we observed the grouping sizes as a function of the timelimit set for the
REDISTRG method, see table 6.

†Recall that the initial grouping of REDISTRG is computed by MERGEG(H).
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Table 4. A sample of grouping sizes and running times for
large box multisets, test 3.

MERGEG(H) MERGEG(B)

Test |G| Time (s) |G| Time (s)

1 5 2 5 261
2 6 3 5 315
3 6 4 6 297
4 5 4 5 272
5 6 2 6 265
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

40 6 4 6 311

Average 5.28 3.15 5.23 287

Table 5. Average running times of the
algorithms, test 4.

Average running time

Algorithm Test 1 Test 2

MERGEG(H) 2.1 7.2
REDISTRG 32.1 67.1
SPLITG 2.2 27.4
GREEDYG 1.3 2.5

6. The initial grouping given to the REDISTRG method affects the final result. We measured
the grouping sizes when using both the MERGEG and SPLITG methods to create the initial
grouping. See table 7.

7. The MILP formulation of JGP-B was implemented with ILOG CPLEX. The heuristic
results given by REDISTRG were compared against the optimal ones for small problem
instances. Table 8 shows the results.

The results of tables 2 and 3 show that REDISTRG gives the best groupings for the test problems
of this study. The differences from the other two algorithms are relatively small but still
systematic.

When testing the statistical significance of these results (with a paired t-test) we observed
that for problems with 30 jobs REDISTRG gave statistically significantly (p = 2.04%) smaller
groups than MERGEG(H) and SPLITG (t = 2.62 and t = 3.44, respectively). REDISTRG was able

Table 6. The grouping sizes given by REDISTRG as a function of time.

Algorithm

Test MERGEG REDISTRG(30) REDISTRG(60) REDISTRG(120) REDISTRG(240)

1 4 4 4 4 4
2 5 4 4 4 4
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

40 5 5 5 5 5

Average 4.60 4.50 4.40 4.38 4.38
Standard deviation 0.50 0.51 0.50 0.49 0.49

Note: Time limits are given in seconds inside the parenthesis. The number of jobs is 30.
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Table 7. Comparing the results of REDISTRG when using MERGEG and SPLITG as the initial grouping.

Algorithm

Test MERGEG SPLITG REDISTRG(MERGEG) REDISTRG(SPLITG)

1 4 5 4 4
2 5 5 5 4
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

40 5 5 5 5

Average 4.60 4.65 4.48 4.38
Standard deviation 0.50 0.48 0.51 0.49

Note: Time limit of REDISTRG was 4 minutes, and the number of jobs was 30.

to improve the initial grouping (given by MERGEG(H)) in 5 cases out of 40. The same obser-
vation holds also for the larger (60 jobs) problem instances, moreover algorithm MERGEG(H)
was now significantly better than SPLITG (t = 4.77). The greedy algorithm was clearly worse
than the other three algorithms, as expected. There were, however, 4 cases out of 40 where
the results of MERGEG(B) and the greedy algorithm were the same. We note that the results of
MERGEG(B) and MERGEG(H) do not differ statistically for the smaller problem size, although
there are cases where the two algorithms find groupings of different sizes (in both directions).

The results of table 4 clearly show that the brute force search is much slower than the
heuristic improvement technique even with relatively small box multisets. The increase in
the running time is (as expected) exponential when the size of the box multiset increases.
Although the exhaustive search gives smaller groupings for some test cases, the difference is
not significant (t = 1.00).

Table 5 shows that the good results of REDISTRG are paid for in larger running times. Recall
that one can adjust the execution time of REDISTRG, so the running times may be shorter in
practice. In comparison to MERGEG(H), the running times of REDISTRG are almost tenfold, while
the solutions are close to each other for these two methods. Note, however, that even a small
improvement (in grouping size) is often a remarkable achievement in the actual production
time. Finally, method SPLITG seems to be quite sensitive to the problem size.

One can observe from figure 5 the exponential increase in the execution time of BFBOXES

with respect to the box set size |B|. MERGEG with HIBOXES shows near linear running times
with respect to box set size as expected.

It is observed from table 6 that the average grouping size decreases until the time limit
reaches two minutes. For practical situations this is not a limiting factor for the use of REDISTRG

Table 8. Comparing the results of the MERGEG and REDISTRG
against the optimal solutions calculated with ILOG CPLEX.

Algorithm

Test MERGEG REDISTRG Optimal

1 3 3 3
2 4 4 4
.
.
.

.

.

.
.
.
.

.

.

.

30 3 3 3

Average 3.3 3.2 3.0
Standard deviation 0.60 0.55 0.50

Note: Problem instances consist of 8 jobs, 24 components and 4 feeder boxes.
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Figure 5. Running time comparison of MERGEG when BFBOXES or HIBOXES.

method. The running times could easily be scaled with a factor of 10 and the methods would
still be useful.

It is observed from table 7 that there is no statistical difference when using MERGEG or
SPLITG in REDISTRG. The slight difference in the results might originate from the fact that the
groups created by SPLITG are already ‘redistributed’ in the sense that it moves singular jobs
in order to make the grouping legal. Conversely, MERGEG combines larger blocks of jobs and
this tends to leave more empty space in the feeder configuration.

We were able to solve optimally one problem instance of size 10 jobs and 30 components
within the time limit of three hours. We also considered 30 problem instances with 8 jobs and
24 components. Out of these problems we managed to solve 29 within a time limit of one
hour. In this test run 87% of the solutions found by REDISTRG were also optimal, see table 8.
When considering the fast increase in the number of decision variables with respect to the
number of jobs and components, it is highly unlikely that problems of practical size (e.g. 30
jobs, 200 components) could be solved exactly within reasonable timelimits.

5. Concluding remarks

The paper defined a variant of the job grouping problem in which the feeder unit of a component
placement machine is organized as a bed for a set of feeder boxes. The boxes are removable,
and each of them has a specific capacity and width. Because of the relatively high cost of
these boxes, there is usually only a certain limited storage of different boxes available. Boxes
come in two main types: fixed and flexible. The aim in JGP-B is to form a minimal size
grouping from a set of PCB jobs such that the components of the PCB types in a group fit in
the boxes and that the boxes fit in the feeder unit at the same time. The problem is clearly a
generalization of the common job grouping problem in PCB assembly and it appears in the
production control of modern component placement machines. The main new issue here is the
selection of a suitable box multiset that increases the complexity of the problem significantly.

Three heuristic algorithms were given for the JGP-B by utilizing the general ideas from
clustering and the common JGP-algorithms. The improvement of the selected box multiset was
a cornerstone in these algorithms. Both the brute-force and heuristic algorithm were proposed
for this purpose. The results of the experimental tests show that in the case of 60 jobs the naive
algorithm GREEDYG gives in an average 35% weaker results than the best proposed method
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(REDISTRG). In addition, the brute force method for box selection turned out to be very slow
due to the large number of possible box configurations.

The differences between the various techniques were seemingly rather small when the
number of groups is concerned. One should, however, keep in mind that the cost of the extra
work caused by even a single group is high.

There are several areas for further development in this research. In particular, implementa-
tion decisions should be analyzed in more detail and we could consider other alternatives for
the given algorithms. Below are a few examples:

• The heuristic algorithm used to verify the feasibility of a grouping (function ISFEASIBLE)
is quite simple. A more involved technique might use the feeder capacity more tightly and
give in some cases smaller groupings.

• Our earlier JGP implementation of many repair routines (like function SWAPJOBS, see
Knuutila et al. (2001)) allowed operations even if some of the groups did not remain
feasible. A similar approach could be applied to the JGP-B problem, too.

• Function SPLITG divides groups so that the PCB jobs are placed randomly into the target
groups. Another possibility would be to place similar jobs into the same new group.

One unaddressed, but yet important, research problem is to combine JGP-B with finding the
smallest (or least expensive) box multiset from some global set. This would give a valuable
aid to production engineers when deciding which boxes to acquire for the production. As
mentioned in the introduction, the production control situation contains several additional
aspects which have been omitted in the research of JGP, JGP-T and JGP-B. Their consideration
could be handled by hybridizing the JGP formulation with the traditional tool switching
problem. This would lead to a computationally hard but interesting combinatorial optimization
problem.

It is hard to make precise comparisons between the different settings of JGP. We have
previously solved problems of similar size (30 jobs) with linear, uniform feeder units and
found typically minimal groupings of sizes 3 and 4, while their number was between 4 and
5 for JGP-T. With JGP-B the groupings found are typically of size 5 or 6. A natural reason
for this effect is the increase in the demands caused by the various restrictions added. One
should thus avoid the too simple conclusion that the increase is due to weaker algorithm design
or that this kind of equipment should be avoided in general: the more sophisticated machines
increase significantly the usability of the production facilities in other respects.
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Abstract

A two-level storage management problem arising in flexible manufacturing systems is studied. We consider the case
of several different types of PCBs (printed circuit board) to be processed with a component assembly machine. The PCB
processing order is fixed and all components to be assembled to a PCB should be in the feeder of the machine before
starting the processing of the PCB in question. Our task is to perform the component switches between the primary
storage (feeder) and the secondary storage (component reel shelves) so that the overall switching cost of the component
reels is minimal. The component reel switches are necessary because of the limited capacity of the machine feeder.

The ‘‘Keep Tool Needed Soonest’’ policy is known to be optimal when component reel widths are equal. A more
general problem in which different component reels have different widths is considered here. In contrast to previous
studies by Matzliach and Tzur [The online tool switching problem with non-uniform tool size, International Journal
of Production Research 36 (12) (1998) 3407–3420] we assume that reorganizations of the feeder are necessary in order
to place a wider component reel into the feeder where the free space is fragmented into smaller pieces. In PCB assembly
the reorganization costs are substantial. The objective is then to minimize the sum of the costs for component switches
between the two storage levels and the reorganizations of the feeder.
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1. Introduction

Increasing the production efficiency in flexible manufacturing systems can be approached from several
different perspectives [3]. One possibility is to minimize the total time used for the tool changes, which leads
to the so called tool switching problem [4]. In this problem a set of parts of different types are processed by
a single machine. The machine processes the parts with some tools which vary from part to part. The prop-
er tools should be in the tool magazine of the machine prior to starting the processing of a certain part.
Each time a new tool is inserted into the magazine some manual actions must be taken. Tool changes
are necessary due to the limited capacity of the tool magazine. In order to decrease this work one has to
determine a processing sequence of the parts and a tool change policy which minimizes the total change
work.

We can consider the management of the tool magazine as a two-level storage management (SM) problem
where the tool magazine serves as a primary storage of limited capacity and the auxiliary storage is large.
Instead of tools we can then speak of items to be stored. The term pairs (primary storage, item) and (tool
magazine, tool) are therefore used interchangeably in the following text. The first pair of concepts under-
lines the general use of the problem while the second pair draws our attention to the concrete situation in
flexible manufacturing.

As a concrete example consider the case of a single printed circuit board (PCB) assembly machine and
several different types of PCBs to be processed. Each of these PCBs requires the insertion of certain types of
components by the means of an automatic high speed machine. The machine has a feeder which holds all
the components the machine can print directly. The feeder has a limited capacity and it is usually a lot smal-
ler than the number of different component types the PCBs require in whole. This is why the machine�s
operation must be interrupted once in a while, new components must be loaded to the feeder and some
of the old ones must be removed. One then has a situation equivalent to the tool switching problem of flex-
ible machines. The order of the PCB assembly jobs must be selected so that the number of component
switches in and out of the feeder is minimal.

Each PCB assembly job consists actually of a batch of bare PCBs of the same type, i.e. the layout of the
printed circuits is fixed as well as the sets of electronic components to be assembled on them. This problem
consists of two parts—in the first subproblem one must select the order in which the PCB assembly jobs are
processed. After this has been done, the feeder change operations must be managed. This paper concen-
trates on the latter subproblem where we have actually again a two level storage of components. The ma-
chine can only insert components which are in the primary storage (feeder). Other components are supposed
to reside in the shelves of the secondary storage in the vicinity of the machine area. Our problem is to min-
imize the total cost of moving the components when the sequence of processing is known in advance. This
means that we have already selected the order of the PCB assembly jobs and we know which components
are needed and when.

One way to classify the PCB assembly problems is to do it according to the number of PCB types and
production machines in use [8]. The component change problem of this paper belongs to the multiple PCB,
one machine—category (M-1). This category considers the setup strategies including unique, minimum,
group and partial setup [11]. Our problem is a part of the minimum setup problem. Crama et al. [5] classify
the PCB assembly problems to eight subclasses (SP1–SP8) [5]. The classes SP1–SP4 are for multiple ma-
chines, while classes SP5–SP8 are concerned with one PCB assembly machine problems but only with
one PCB type. Our problem can not therefore be directly placed into this hierarchy.

The ‘‘Keep Tool Needed Soonest’’ (KTNS) policy was developed by Tang and Denardo [16] for the two-
level SM problem and it has been shown to be optimal (see [4,16]). According to this policy, components
are removed only when the storage becomes full and components which are needed latest in the future are
removed. However, the rule is optimal only when handling components of the same size. In this paper we
generalize the situation by considering a problem where components have different sizes (widths). This type



Fig. 1. Fragmented linear primary storage (feeder); insertion of a 2 slots wide item (component).
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of problem was first considered by Matzliach and Tzur [13], who gave a proof for its NP-completeness and
developed an optimal solution with integer programming along with heuristics. 1

Our point of view still differs from that of [13] in the way of organizing the items in the primary storage.
The abstraction made by Matzliach and Tzur assumed that the primary storage does not require any kind
of costly reorganization during the process. They considered the primary storage only as a single number
indicating its capacity. In the cases like the PCB assembly with fast chip shooter insertion machines we must
also consider the placement of the components to the feeder which is arranged as an array of feeder slots.
For example, Fig. 1 shows a situation where we want to insert a 2 slots wide component in a linearly or-
dered feeder and there are currently two feeder slots of size 1 free. In [13] it was no problem that the free
slots are not neighbours in the storage. In the case considered here, one cannot put the new component to
the feeder without moving or removing one of the components already in there. Therefore, the formulation
of Section 2 takes into account the current placement of the components, too.

Our research problem is related to several other problems from manufacturing and systems program-
ming. One way is to see it as a special kind of the well-known tool switching problem, see [6] for the case
of uniform tool sizes (one magazine slot per tool) and infinite tool lives. We observe that the SM-problem
studied in the present paper is static in the sense that all tool requests and their order are known prior to the
management decisions. This assumption is valid in many practical cases but there are important situations
where the problem is dynamic in nature. Matzliach and Tzur [12] consider the tool switching problem also
in the dynamic situation, where the future requests are not known before they occur. This makes the tool
management still much harder, and online algorithms for the problem have very weak worst case perform-
ance limits.

The two-level SM-problem is one form of demand paging appearing in the implementation of virtual
memory systems. The task here is to select a victim page in the primary memory to make room for a
new page that caused a page fault. A large set of paging algorithms have been proposed. They, however,
are of the online type and the page frames are of uniform size. For more information, see standard text-
books on operating systems [15]. Management of segmented computer memory calls for a technique for allo-
cating and deallocating data/program segments of variable sizes from a central memory of a limited size [9].
The problem is, however, of the dynamic type, only one segment is reserved in turn, and the reuse of seg-
ments is not considered. See also Mookerjee [14] for dynamic management of two-level storage in case of
fixed sized segments.

Another practical situation of the tool management is the machine-level control of computer numerical
control (CNC) machines, see the work by Avci and Akturk [2] for tool magazine management and sequenc-
ing of machine operations for a batch of jobs. One has, on this level of operation control, to decrease the
tooling and tool operating costs while maintaining the feasibility of precedence, tool magazine capacity,
tool lives and tool availability constraints.

Another related problem deals with the tool changes due to the wearing of tools (finite life times). When
the order of the jobs is not fixed, one can schedule the jobs and plan the necessary tool changes so that the
1 See [7] for a preliminary version of the present paper. Tzur and Altman [18] have published independently a work on a joint
problem of making job sequencing, tool switching and tool locating decisions. For the two last subproblems they give heuristics which
are very different from ours.
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total average completion time of the jobs is minimized. Akturk et al. [1] suppose that the job processing
times are constant and known a priori, but only one tool type with known constant life and unlimited avail-
ability is in use.

Tooling can also be seen in a wider context as a factor of the total costs of manufacturing. Turkcan et al.
[17] consider a two objective scheduling model for multiple parallel CNC machines where the objectives are
minimizing the manufacturing cost (including tooling costs) and the total weighted tardiness. The model
proposes several different schedules depending on the weighting of the two objectives. Arrangement of
the tool magazine is not considered explicitly in this important work.

The presentation is organized as follows. In Section 2 we give a formulation of the general two-level stor-
age management problem (GSM-1) in the case of single tool requests, i.e. each PCB assembly job uses only
one tool (component) at a time. Section 3 presents an integer programming formulation to the GSM-1-
problem. In Section 4 we develop a new heuristic to solve the GSM-1-problem. Section 5 gives numerical
results computed with the algorithms presented in [13] and with our methods. Section 6 introduces algo-
rithms for the multitool request case (GSMM) and Section 7 summarizes the numerical results for our heu-
ristics and the algorithms presented in [13]. The paper is closed with some conclusions in Section 8.
2. Problem definition of GSM-1

We assume that a set of parts P(jPj = T) and set of tools I is given. Each part j 2 P should be processed
by using a single tool dj 2 I with a flexible production machine. The tools are changeable so that a subset of
the tools used by all parts can be held in the tool magazine from which they can be picked up to the actual
processing. The remaining subset of tools is stored in an auxiliary storage nearby the machine, see Fig. 2.

The tool magazine is organized to consist of K slots and each tool i 2 I (components in PCB assembly)
reserves a certain number vi of adjacent slots of the magazine, depending on the physical dimensions of the
tool. In the context of PCB-assembly the tool magazine, which is called feeder, stores actually a set of com-
ponents of each type. Each set is organized as a component reel, stick, etc., usually of large capacity. On the
other hand, parts in PCB-assembly are batches of PCBs of identical layouts. This causes that component
reels now and then run out of components (a ‘‘tool wears out’’). However, the replenishment of the com-
ponents is supposed to be a relatively fast operation and, unlike the CNC machines of metal industry, the
Fig. 2. The use of a linear tool magazine.
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change of component reels or sticks can be made on demand while processing a PCB without any conse-
quences to the quality of the product. In addition, the number of consumed components is independent on
the feeder management politics. We can therefore omit the modeling and suppose infinite tool lives here for
the component reels. In order to simplify the notations, if there is no risk of confusion, we next speak in-
stead of component reels simply of components.

We further assume that the order of the parts has been fixed and all tools do not fit the magazine simul-
taneously. This latter assumption holds in typical manufacturing situations, where the usage profile of tools
is commonly very skewed: some components are needed in majority of PCBs while there are several com-
ponents placed on few PCB types only (note that the problem becomes trivial in the rare case where all tools
fit the magazine simultaneously). With these assumptions the limited capacity of the magazine causes that
we are forced to change tools in the magazine. This can only be done by removing some tools to make place
for a new tool to be inserted. Because the tools are of different sizes it might be advantageous to remove two
or more small tools to release slots for a larger tool. If these slots are non-adjacent we have a fragmented
free space in the magazine which should be unified prior to the insertion of the new tool. We suppose that a
transfer cost ci is associated with each tool operation including removal, insertion and move of a tool. The
general two-level storage management problem with single tool request per job (GSM-1) asks for a tool
change policy which minimizes the total costs for tool management operations for a fixed ordering of
the processing the parts.

Each tool i is expressed by two parameters: width vi and transfer cost ci. In order to add flexibility to the
problem definition, we introduce three cost factors for different types of transferring operations: removal cr,
insertion ca, and move cm. These factors are then used for weighting the ci-values at different update
operations.

While the above parameters define an instance of the GSM-1-problem, a solution can be expressed as a
sequence of the primary storage (i.e. magazine) states S(t) (t = 1, . . . , T) giving the subset of tools and their
positions in the magazine when processing part t.

To sum up, an instance of the GSM-1-problem is defined by the following parameters:

K 2 N magazine capacity as a number of slots;
T 2 N number of tool requests;
I � N set of tools. All tools i 2 I have the following properties:
ci 2 N cost for transferring tool i;
vi 2 N capacity in number of magazine slots consumed by tool i;
dt 2 I tool required at time t = 1, . . . , T;
ca 2 R cost factor for insertion operation;
cr 2 R cost factor for removal operation;
cm 2 R cost factor for move operation.

Note that ci may depend on size vi, while ca, cr and cm describe the relative costs of different storage
operations.

A solution of the problem can be stated as a sequence t = 1, . . . , T of primary storage states. A primary
storage state (PSS) S(t) is an ordered pair (Jt, at), where:

• Jt is the set of tools in the primary storage at moment t (Jt � T).
• at gives the magazine (i.e. primary storage) assignment of the tools, i.e. it is an injective mapping i# p

where p 2 [1, K] for all i 2 Jt and it tells the leftmost magazine slot consumed by tool i. The magazine
slots are indexed from 1 to K.
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Our notation is similar to that of [13], except for the explicit definition of the primary storage states and
the allowed changes between them. We observe that the notations can be easily translated to the PCB
assembly terminology.

The inclusion of tool move costs (cm > 0) causes an essential complication of the solution process be-
cause we must now ascertain that any two tools in the magazine do not collide, i.e. their slot allocations
are disjoint. This is stated by the following property:

Primary storage state S(t) = (Jt, at) is feasible with respect to K and dt, if and only if

(1) at(i) 2 [1, K � vi + 1] for all i 2 Jt, meaning that all tools are in proper slots inside the magazine.
(2) Either atði1Þ þ vi1 6 atði2Þ or atði2Þ þ vi2 6 atði1Þ for all i1, i2 2 Jt and i1 5 i2, meaning that different

tools in PSS do not use the same slots.
(3)

P
i2J t vi 6 K, i.e. the sum of tool sizes in PSS does not exceed the given capacity.

(4) dt 2 Jt, i.e. the tool used by part t is in the tool magazine at moment t.

Conditions 3 and 4 have been added to aid the description of the solution process. The first of these is
redundant because it follows from conditions 1 and 2. The next notation expresses for two tool magazine
states S1 and S2 those tools which are present in both states but in different slots. The concept is useful when
calculating the transfer costs for tool moves.

Tool difference set D(S1, S2) for primary storage states S1 = (J1, a1) and S2 = (J2, a2) is defined as
follows:
DðS1; S2Þ ¼ fi j i 2 J 1 \ J 2 and a1ðiÞ 6¼ a2ðiÞg:
We can now calculate the switch cost between primary storage states S1 = (J1, a1) and S2 = (J2, a2) as the
sum of costs of the removed, moved and inserted tools:
cðS1; S2Þ ¼ cr
X

i2J1�J2

ci þ cm
X

k2DðS1;S2Þ
ck þ ca

X
I2J2�J1

cl: ð1Þ
We suppose here that the tool management proceeds by first performing the removals, then moves and fi-
nally the insertions. The moves between two feasible storage states can then be done in two phases: by
removing and inserting all the tools to be moved.

General two-level storage management problem (GSM-1). We are given K; T 2 N, I � N, ca, cr, cm 2 R, d
and we want to find primary storage states S(t), t = 1, . . . , T, for which
X
t¼1;...;T

cðSðt � 1Þ; SðtÞÞ ¼ min ð2Þ
and the primary storage states are feasible with respect to the capacity K and tool requests dt (t = 1, . . . , T).
The two-level SM-problem without reorganization costs [13] can be seen as a special case of this problem

by setting ca = cr = 1 and cm = 0. This is because the primary storage can then always be reorganized with-
out any cost. This also shows that the GSM-1-problem is NP-hard since the solution algorithm for it would
also solve the SM-problem with zero cost reorganizations which is already known to be NP-hard [13]. One
possible way to reorganize the primary storage is to defragment it every time when a tool is removed. By
defragmentation we mean that all the tools are removed and placed sequentially to the primary storage
starting from slot 1.

If we perform the reorganization in the way described in connection of Eq. (1) it is reasonable to set the
values of the constants ca = cr = 1 and cm = 2 due to the two-phase remove–insert operations described
above.
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3. Mathematical programming solution to GSM-1-problem

Let the set of tools be I = [1, N]. For all t = 0, . . . , T and i = 1, . . . , N we define the decision variables
xi,t to be 1 if tool i is in the primary storage at time t, and 0 otherwise, i.e. for a particular PSS S(t) =
(Jt, at):
xi;t ¼
1 if x 2 J t;

0 if x 62 J t:

�

We assume for the sake of simplicity that ca = cr = 1 and cm = 2ca. This turns the objective function (2) to
the form:
X

t¼1;...;T

X
i¼1;...;N

cijxi;t � xi;t�1j ¼ min : ð20Þ
Defining yi,t = jxi,t � xi,t�1j, (2 0) can be rewritten as
X
t¼1;...;T

X
i¼1;...;N

ciyi;t ¼ min : ð3Þ
The restrictions on the variables xi,t and yi,t are:
xi;t; yi;t 2 f0; 1g ði ¼ 1; . . . ;N ; t ¼ 1; . . . ; T Þ; ð4aÞ

zi;t 2 f1; . . . ;Kg ði ¼ 1; . . . ;N ; t ¼ 1; . . . ; T Þ; ð4bÞ

xi;0 ¼ 0 ði ¼ 1; . . . ;NÞ; ð5Þ

xdt ;t ¼ 1 ðt ¼ 1; . . . ; T Þ; ð6Þ

yi;t P ðxi;t � xi;t�1Þ ^ yi;t P �ðxi;t � xi;t�1Þ ði ¼ 1; . . . ;N ; t ¼ 1; . . . ; T Þ: ð7Þ
Eq. (5) states that we start from an empty primary storage state. Eq. (6) ensures that the tool needed by the
present job is stored in the magazine and constraint (7) states that yi,t is the absolute value of xi,t � xi,t�1.

We still have to take care of the feasibility of the storage allocations. Let us therefore denote with zi,t the
leftmost location index of tool i at time t. The location is relevant only if xi,t = 1, too. The restrictions on
the locations are
zi;t þ vi 6 K ði ¼ 1; . . . ;N ; t ¼ 1; . . . ; T Þ; ð8Þ

ðxi;t þ xj;t 6 1Þ _ ðzi;t þ vi 6 zj;tÞ _ ðzj;t þ vj 6 zi;tÞ ði; j ¼ 1; . . . ;N ; i > j; t ¼ 1; . . . ; T Þ: ð9Þ
Constraint (8) ensures that the right end of the tool magazine is not overridden. Constraint (9) prohibits
overlapping of two tools at a given moment of time. The GSM-1-problem thus calls for minimizing (2 0)
subject to constraints (4)–(9).
3.1. An example

Consider a simple example where jIj = 5 and T = 15. Fig. 3a illustrates the problem setting. An optimal
solution found by ILOG solver [19] is shown in Fig. 3b.



Fig. 3. An example of the general SM-problem and its solution: (a) problem; (b) optimal solution.
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4. Heuristic solution for GSM-1

Two efficient heuristics for the two-level SM-problem without reorganization costs are given by Matzli-
ach and Tzur [13]. The first of these expresses the solution as a binary matrix where the rows stand for tools
and the columns for part indices. The tools which are in the primary storage when processing a part are
given by matrix elements of value 1. The number of tool switches can then be minimized by minimizing
the number of zero blocks in the rows. This method can be seen as a global way of looking the problem,
see also [4,13] in the context of tool switching problem.

The second algorithm is iterative and makes greedy decisions. It uses a generalization of the KTNS-rule
by considering, in addition to the time elapsed until the next usage of tools, the transfer costs. An extra
difficulty originates here from the fact that a particular tool to be inserted to the magazine may demand
the removal of several smaller tools. One must therefore consider the costs of subsets of tools in the mag-
azine and choose among these the most promising at each time point.

Both of the above algorithms could be modified to take into account the reorganization cost of the tool
magazine. We propose here a heuristic based on the idea of the second algorithm by Matzliach and Tzur. A
reason for this is that we can choose the subset of tools for removals in a rather straightforward way when
the decisions deal with sequentially ordered tools instead all possible subsets of tools.
4.1. Tool distance metric

When inserting tools into the primary storage, one of the following three things can happen. First, there
can be plenty of room for the new tool and we must choose where to place it. This is why we need a rule
which chooses the place for each tool to be inserted. Secondly, there is only one possible set of free slots for
the tool. In the third case, which is the most difficult one, the primary storage is full or does not have en-
ough contiguous capacity for the new tool. In this case we must select one or more tools to be removed. In
some cases the other possibility would be to reorganize the primary storage by moves of tools, but the move
operation is too expensive to be useful in our cost model (1) because every move costs twice as much as
remove (cm = 2).
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Let us define for all i 2 I and t 2 T the so-called tool distance dist(i, t). This value gives for tool i at time t
the number of periods until it will be used the next time:
distði; tÞ ¼
m if dtþm ¼ i and dtþs 6¼ i for s ¼ 1; . . . ;m� 1;

T if dtþs 6¼ i for s ¼ 1; . . . ; T � t:

�

We can now define for any set of tools J � I the weighted distance (called w-distance) to the next usage of
the tools in J [13]:
wðJ ; tÞ ¼
P

i2Jdistði; tÞ=jJ jP
i2J ci

:

4.2. Tool removal selection heuristic

We can use the w-distance to measure the attractiveness of different tool sets to be removed. All of these
sets, however, are not suitable because we require that the tools to be removed free enough contiguous
capacity for the tool we are about to insert. In particular, suppose that we are about to insert tool dt
and the primary storage state is S(t � 1) = (M, a1). Consider a tool set J � Mn{dt}. Tools of J can be re-
moved for making place for tool dt if and only if there is a PSS S(t) = (M [ {dt} � J, a2) which is feasible
with respect to capacity K and a1(i) = a2(i) for all i 2 M � J. If this is true, we say that J is valid for removal.
This means that in order to check the validity of a tool set we must find a injective mapping a2 which gives a
slot for every tool in the set M [ {dt} � J.

When selecting the tools to be removed we actually have a smaller number of options than in the model
with zero reorganization costs: the tools should be sequential in the primary storage. This is because, if we
would allow removals of tools which are not sequentially placed in the primary storage then we would be
forced to make unnecessary removals and some reorganization with this strategy. Our heuristic for selecting
a valid group of tools is given in Fig. 4. The primary routine selectToolsToRemove has four input param-
eters: the tool we are about to insert (toola), current primary storage state (S = (J, a)), time index (t) and the
size of the primary storage (K). The routine searches through all sequential tool sets of cardinality from 1 to
jJj and it returns the set toolsr which is valid for removal and the w-distance is maximal. The auxiliary rou-
tine isValidRemoval tests whether or not the given tool set toolsr is valid for removal when inserting toola to
S. This is done by forming a new storage state R, without toolsr. The routine hasEmptySpaceFor is then
called for R and toola. The routine returns true if there is space for toola in R, otherwise the result is false
(note that this test is trivial in the problem without reorganization costs [13]).

In addition to the heuristics given above we need a rule for selecting the best position for the tool to be
inserted. Several rules are known in the literature for this kind of problem [9]. The problem is to choose the
best possible area from the free ones so that the future insertions can be handled with as little work as pos-
sible. We choose the space which is the smallest possible for the tool we are inserting (known as the Best Fit
method). Two things can then happen: the size of the tool is the same as the size of the free space or the free
space is larger than needed. In the latter case we must select the position of the tool within the chosen free
space. We then simply place the tool at the beginning (i.e. left end) of the free area.

4.3. Time complexity analysis of the removal heuristic

In the worst case we have jJj = K. This happens when all the components in the PSS are of size 1 and the
whole capacity is in use. This means that the three loops in the routine selectToolsToRemove consume time
O(K3). In the innermost loop the tools in J are accessed in the order of the slot numbers. The sorting can be
done before the main loop in an O(K logK) time. Routine isValidForRemoval is executed in the worst case



Fig. 4. Tool removal heuristics.
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K2 times because of the number of the different sized sequences of tools. Each call demands O(K2) time. The
time complexity of the selection routine is therefore O(K4). It can, however, be improved by using the fol-
lowing windowing system. Let us assume that we need an empty space of size e slots. Now we can search the
space by moving a window of size e from slot 1 to the slot K � e + 1. On every slot we calculate the w-
distance for the tools within the window and we select finally the window position which yields the larg-
est w-distance. A tool is considered to be within the window if any of the slots is occupied by the tool. After
we have calculated the best window position the routine returns the tool set it contains. Now, the number
of different subsets of tools is at most K and therefore the overall complexity of this improved routine is
O(K3).

4.4. Heuristic solution algorithm SMA for the GSM-1-problem

The algorithms given above can be collected to algorithm SMA which solves the GSM-1 problem heu-
ristically. The algorithm proceeds iteratively through the tool requests. At each iteration t = 1, . . . , T it
checks whether the tool dt is already in the primary storage. If this is not true SMA first checks if there
is empty space for the tool and inserts it if such a space is found. In the opposite case SMA removes a tool
set by using the method described earlier. After the removal it inserts the new tool and advances t. Algo-
rithm SMA (Fig. 5) has input parameters: tool set I, capacity K and tool requests d. The result is a sequence
S(1), . . . , S(T) of primary storage states and the cost of this solution.
Fig. 5. SMA algorithm.
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5. Experimental results for the one tool per job case

In the following test runs we evaluate the efficiency of SMA against the exact solutions. For this purpose
we implemented the model of Section 3 (called OPT) for ILOG solver. It is, however, unlikely that ILOG is
able to solve all the problem instances within reasonable time. Because of this, we use the exact solution
method of the basic SM-problem (called LB) by Matzliach and Tzur [13] as a lower bound. We also use
two naive algorithms (Naive and Random) as a benchmark. This enables us to evaluate the benefits gained
by using more complex heuristic like SMA. Another purpose of these test runs is to estimate the contribu-
tion of the reorganization costs to the total switching cost. In the following test runs the cost factors are
ca = 1, cr = 1 and cm = 2. It is also possible in our test cases that the same tool appears several times in
a row.

The Naive algorithm keeps only one tool at a time in the primary storage. This is why it is a kind of the
worst case solving algorithm. The Random algorithm works iteratively by inserting tools to primary stor-
age as they are needed. When the primary storage comes full it simply removes random tools from the stor-
age until there is enough space for the tool we want to insert.

Problem set 1 uses the following parameters: N = 25 (number of tools), T = 100 (number of parts)
and K = 20, 50, 100, 150, 200 and for Heuristic 2 L = 3 (maximum cardinality of the tool removal set,
see [13]). Tool sizes are taken from uniform distribution of (7, 13). The problems are of proportional type
which means that ci/vi is constant for all tools i 2 I. The results are averaged over 30 problem instances. It
turned out that all the problem instances were too hard to be solved optimally by ILOG. On the other
hand, the lower bounds were easy to find. Statistical analysis with pairwise t-test shows that there is a very
significant difference (p = 0.01) between the naive algorithms and SMA, see Table 2. The difference between
SMA and the lower bound method (LB) is, however, not statistically significant for all capacities at this
confidence level. Based on the results shown in Tables 1 and 2, SMA method is efficient in cost when com-
pared against lower bound and naive methods. The running time for SMA is less than one second on Pen-
tium 4 2.0 GHz for all problem instances in our test run. This is more than adequate for practical
applications.

Problem set 2 uses the same parameters as set 1, but the transfer costs of the tools are all equal (=1).
Note that the widths of the components are still different. This kind of situation is usual in the context
of PCB assembly where widths of the component reels are not essential to the manual operation times
of the component changes, but they make the feeder management more complicated. We observe from
the results of Tables 3 and 4 that SMA finds solutions which are on the average only 3–12% worse than
the lower bound. These bounds are almost identical to those of test run 1. Based on this, SMA works effi-
ciently also when the transfer costs are not proportional.
Table 1
Summary of the results for the problem set 1 where N = 25, T = 100, tool costs are proportional to the widths and tool sizes are taken
from uniform distribution of (7, 13)

Algorithm Capacity

20 50 100 150 200

Avg S.D. Avg S.D. Avg S.D. Avg S.D. Avg S.D.

SMA 1840 86.4 1270 94.9 782 89.6 503 75.5 331 54.1
Naive 1990 76.4 1990 76.4 1990 76.4 1990 76.4 1990 76.4
Random 1890 73.7 1660 96.6 1280 124 897 149 548 125
LB 1790 100 1160 84.5 700 78.7 453 63.6 309 41.8

In each cell we have the averaged costs of 30 problems instances. The running times of the heuristics varied between 0.1 and 0.5 seconds
and the running time of LB varied between 10 and 600 seconds for a Pentium 4 2.0 GHz with Windows 2000 operating system.



Table 2
SMA algorithm is compared against the naive methods and lower bound method LBM

Comparison algorithm Capacity

20 50 100 150 200

t-Test Cost factor t-Test Cost factor t-Test Cost factor t-Test Cost factor t-Test Cost factor

Naive * 0.925 * 0.638 * 0.393 * 0.233 * 0.156
Random – 0.973 * 0.760 * 0.611 * 0.561 * 0.604
LBM – 1.03 * 1.09 * 1.12 * 1.11 – 1.07

The left subcells show cases (marked by �*�) where the differences are statistically very significant (p = 0.01, paired t-test). The right
subcells give the average cost factor which is average SMA cost divided by average comparison algorithm cost.

Table 3
Summary of the results for the problem set 2 where N = 25, T = 100, tool costs are all equal (=1) and tool sizes are taken from uniform
distribution of (7, 13)

Algorithm Capacity

20 50 100 150 200

Avg S.D. Avg S.D. Avg S.D. Avg S.D. Avg S.D.

SMA 181 4.25 124 6.48 77.1 6.36 49.6 6.50 32.7 4.14
Naive 199 0 199 0 199 0 199 0 199 0
Random 188 4.13 165 6.71 128 10.3 89.5 12.8 54.9 11.6
LB 175 5.00 115 5.65 69.0 587 44.5 5.07 31.0 3.37

In each cell we have the averaged costs of 30 problems instances. The running times of the heuristics varied between 0.1 and 0.5 seconds
and the running time of LB varied between 10 and 600 seconds for a Pentium 4 2.0 GHz with Windows 2000 operating system.

Table 4
Statistical analysis of the problem set 2

Comparison algorithm Capacity

20 50 100 150 200

t-Test Cost factor t-Test Cost factor t-Test Cost factor t-Test Cost factor t-Test Cost factor

Naive * 0.910 * 0.623 * 0.387 * 0.249 * 0.164
Random * 0.963 * 1.33 * 0.602 * 0.554 * 0.596
LBM * 1.03 * 1.08 * 1.12 * 1.11 – 1.05

SMA algorithm is compared against the naive methods and lower bound method LBM. The left subcells shows cases (marked by �*�)
where the differences are statistically very significant (p = 0.01, paired t-test). The right subcells give the average cost factor which is
average SMA cost divided by average comparison algorithm cost.
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6. The case of multi-tool requests

Generalizing the GSM-1-problem to a situation where multiple tools are required during a time period

(called GSMM) makes the problem a lot harder to solve. The GSM-1-problem was relatively easy because
we could remove all the tools necessary from the primary storage and bring a single tool to the empty space
found in this way. When considering the case where a job uses multiple tools, one can meet a situation
where simply removing tools is not sufficient. For this, consider the simple example in Fig. 6. Here, all
the tools in the primary storage are required also during the next time period and we still need to insert
a new tool which requires two slots. The only option is to reorganize the tools already in the primary stor-



Fig. 6. Reorganizing the primary storage by moving the tools.

Fig. 7. Linear amount of moves required to reorganize the primary storage.
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age. In order to do this, we need two kinds operations: moves and removes. Removes are needed when there
is not enough empty space for a tool to be inserted. Moves are necessary when we are not able to remove
enough tools from the primary storage because they are needed also during the current time period.

Another interesting fact is that in the worst case scenario one needs a linear amount of moves with respect
to the capacity of the primary storage. To see this consider the case presented in Fig. 7. We have a primary
storage with capacity K, and K/4 tools of size 2 located in slots 2, 4, 6, . . . , K/2. All these tools are needed
also during period t. We want to insert tool i of size K/2. Placing this tool into the primary storage requires
K/4 moves, since all the tools in the primary storage must be moved.

We next propose two heuristics for the GSMM-problem. These algorithms use rather different ideas. The
first one (SMMT-1) allocates a large contiguous area for the tools while the second one (SMMT-2) makes a
distributed stepwise allocation.

6.1. Contiguous allocation, SMMT-1

Algorithm SMMT-1 starts by checking whether there is enough space for all the tools to be inserted. If
this is true, they are simply inserted as in SMA. In the other case, we first remove the tools in dt and then
insert all the tools in dt as a single aggregated ‘‘super-tool’’ of size

P
i2dtmi. This is done similarly as in SMA.

Now, removing tools needed at step t corresponds to the rearrangement operation of the primary storage.
The pseudocode for SMMT-1 is shown in Fig. 8. The parameters of the algorithm are like for the SMA-
algorithm, except that dt denotes now a set of tools. SMMT-1 uses subroutine smmtInsert, which is also
used by the SMMT-2.

6.2. Distributed allocation, SMMT-2

The allocation of large contiguous areas from the primary storage may cause large transfer costs if the
primary storage is fragmented. The problem may be avoided by inserting the tools of dt one by one. We
propose a heuristic SMMT-2 which keeps record of the tools we still need to insert. Let us suppose that
toolset J will be inserted into the primary storage. The heuristics chooses randomly one tool i from J

and inserts it in the primary storage. If i fits then another tool from J is taken and the process is iterated
until all the tools have been inserted. When the tool does not fit in the primary storage, the w-distance



Fig. 8. Pseudocode of SMMT-1 algorithm.
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Fig. 9. Pseudocode of SMMT-2 algorithm.
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metric is used to choose a set of tools toolsr to be removed from the primary storage. The tools in toolsr
which are not needed during this time period (toolsrndt) are sent to the secondary storage. Other tools which
are needed during the current time period, toolsr \ dt, are merged to set J so that they will be inserted later.
In this way, the algorithm reorganizes some parts of the primary storage.

SMMT-2 has the potential defect of creating an infinite loop of insertions and removals. These kinds of
cycles can be detected by remembering all the previous (PSS, J)-pairs. Even this is not necessary since we
can always switch to the heuristic used by SMMT-1 when the cost of the insertions and removals becomes
larger than the cost of the super-tool heuristic. This is the method the actual implementation of SMMT-2
uses. For the pseudocode of SMMT-2, see Fig. 9.

One might think that the tools which are needed during the current time period and are already in pri-
mary storage would need a larger weight because when removing them they must also be reinserted. How-
ever, this is not necessarily the case because the w-distance of these tools is zero and their costs thus reduce
the w-distance.
7. Experimental results for the multi-tool case

The following set of tests measures the performance of the heuristics described in Section 6. The solu-
tions found by SMMT-1 and SMMT-2 are evaluated against each other to find out whether the added com-
plexity of the SMMT-2 pays off. The second objective is to measure them against the lower bounds found
by using the model of Matzliach and Tzur [13] (called LBM). The results are also evaluated against naive
methods (Naive and Random, see Section 5) to confirm that more elaborate heuristics give significantly bet-
ter results and are therefore indispensable. Differences are analysed with paired t-test.

Problem set 3 was created with parameters N = 25, T = 40 and K = 60, 100, 150, 200. Tool sizes were
taken from the uniform distribution of (7, 13). The transfer costs for all tools are equal to their sizes. Tool
set cardinalities for each time period were taken from the uniform distribution (1, 4). Each tool had an
equal probability to be chosen in each of these tool sets. The results were averaged over 30 randomly gen-
erated problem instances. Table 5 shows a summary of the test results. We observe that SMMT-2 outper-
forms clearly SMMT-1. The difference is rather large for large capacities and SMMT-2 compares
surprisingly well even with the lower bounds found by LBM. The running times for all heuristics were be-
tween 0.1 and 0.6 seconds and the running time of LBM implemented with ILOG solver varied from 15 to
650 seconds. The results are slightly worse for SMMT-2 when compared against the LBM than in the sin-
Table 5
Summary of the results for problem set 3 where N = 25, T = 40, K = 60, 100, 150, 200 tool sizes are uniformly distributed from (7, 13),
transfer costs are proportional and the tool set cardinality is from uniform distribution of (1, 4)

Algorithm Capacity

80 120 160 200

Avg S.D. Avg S.D. Avg S.D. Avg S.D.

SMMT-1 4320 363 3400 338 2440 365 1480 265
SMMT-2 2700 277 1760 200 1130 156 687 132
Naive 5070 286 5070 286 5070 286 5070 286
Random 3850 360 3090 363 2310 284 1520 257
LBM 2340 254 1490 182 942 132 560 99.3

The cells of the table show the average cost over 30 problem instances and the standard deviation of the costs. The running times of the
heuristics varied between 0.2 and 1.0 seconds and between 15 and 650 seconds for the LBM when using Pentium 4 2.0 GHz with
Windows 2000 operating system.



Table 6
Summary of the results for problem set 4 where N = 25, T = 40, K = 60, 100, 150, 200 tool sizes are uniformly distributed from (7, 13),
transfer costs are all equal (=1) and the tool set cardinality is from uniform distribution of (1, 4)

Algorithm Capacity

80 120 160 200

Avg S.D. Avg S.D. Avg S.D. Avg S.D.

SMMT-1 426 30.1 335 26.6 242 11.6 147 28.5
SMMT-2 261 20.1 171 16.8 111 11.6 66.4 11.0
Naive 503 19.9 503 19.9 503 19.9 503 19.9
Random 382 27.8 305 28.8 228 22.4 151 20.4
LBM 232 18.5 146 14.1 92.3 10.4 55.1 7.67

The cells of the table show the average cost over 30 problem instances and the standard deviation of the costs. The running times of the
heuristics varied between 0.2 and 1.0 seconds and between 15 and 650 seconds for the LBM when using Pentium 4 2.0 GHz with
Windows 2000 operating system.
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gle-tool case when comparing SMA and LBM. The differences between SMMT-2 and all other methods in
Table 5 were statistically very significant (p = 0.01) for all cases.

The problem set 4 uses the same parameters as set 3, but the transfer costs of the tools are all equal (=1)
although the widths of the components are still different, cf. problem set 2. We observe from the results of
Table 6 that SMMT-2 finds solutions which are on the average only 13–21% worse than the lower bounds.
These bounds are almost identical to those of test run 1. Again, all differences for SMMT-2 are statistically
very significant. Based on this, SMMT-2 works efficiently also when the transfer costs are not proportional.
8. Conclusions

The general two-level SM-problem with a single tool per part (GSM-1) and its multi-tool extension
(GSMM) were considered. It was assumed that each tool needs a contiguous area from the primary storage.
Another assumption was that one cannot defragment the primary storage without the cost of moving tools.
In the mathematical optimization model it was assumed that moves are performed as a two-phase action of
remove–insert operations. This is a pessimistic view due to the possibility that in some cases it is possible to
use chains of moves directly to the new places. But on the other hand, these kind of operations are hardly
realistic in practice.

Three heuristics and an integer programming method were proposed to solve the GSM-1 and GSMM
problems. The numerical results with integer programs showed clearly the need for heuristic solutions.
Optimal solutions took a very long time to calculate even for small problem instances. The optimal solution
of GSM-1 could not be found for any of the problems with 100 tool requests within the time limit of three
days. The simple SM-variants of this size were solved easily, however.

The numerical results show that the heuristic solutions are on the average quite close to the optimal solu-
tions in the test cases. The algorithms are very fast for problems of practical size. The new algorithms take
advantage of the fact that in the GSM problem we have a restricted number of options when selecting the
tool set to be removed: one has only to consider those subsets of tools which are sequentially ordered in the
primary storage. This is sufficient if the move cost cm � ca + cr. If however, the move cost is much smaller
than the joint cost for insertion and removal, one should allow that the tools to be removed are scattered.
Then, the new tool may fit the free space better and some greater tools which are needed soon may stay in
the primary storage.

Two heuristics for the multi-tool case were proposed: SMMT-1 and SMMT-2. SMMT-1 uses the super-
tool heuristics when inserting tools. SMMT-2 uses a method where the tools are inserted one by one, but it
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also uses the super-tool heuristics as a backup strategy when the iterative insertion procedure would cost
more than the super-tool heuristics. It turned out that the iterative method saves much work.

The research on the tool switching and job grouping [10] have omitted the magazine reorganization
costs. The methods given in this work are readily applicable in these two, otherwise well studied problems.
One can instead of the (approximative) KTNS-rule use now the more realistic multitool heuristics. Another
topic of research deals the organization of the magazine. A linear tool magazine was assumed as is common
in PCB assembly machines. The situation changes slightly if the magazine is circular so that the first slot
follows physically the last one.
References

[1] M.S. Akturk, J.B. Ghosh, E.D. Gunes, Scheduling with tool changes to minimize total completion time: A study of heuristics and
their performance, Naval Research Logistics 50 (2003) 15–30.

[2] S. Avci, M.S. Akturk, Tool magazine arrangement and operations sequencing on CNC machines, Computers Operation Research
23 (11) (1996) 1069–1081.

[3] Y. Crama, J. van de Klundert, The approximability of tool management problems, Technical Report rm96034, Maastricht
Economic Research School on Technology and Organisation, 1996.

[4] Y. Crama, A.W.J. Kolen, A.G. Oerlemans, F.C.R. Spieksma, Minimizing the number of tool switches on a flexible machine, The
International Journal of Flexible Manufacturing Systems 6 (1994) 33–53.

[5] Y. Crama, J. van de Klundert, F.C.R. Spieksma, Production planning problems in printed circuit board assembly, Working Paper
GEMME 9925, University de Liege, 1999.

[6] H. Djellab, K. Djellab, M. Gourgand, A new heuristic based on a hypergraph representation for the tool switching problem,
International Journal of Production Economics 64 (2000) 165–176.

[7] M. Hirvikorpi, K. Salonen, T. Knuutila, O.S. Nevalainen, General two level storage management problem-reconsideration of the
KTNS-rule, Technical Report 532, TUCS-Turku Centre for Computer Science, 2003.

[8] M. Johnsson, Operational and tactical level optimization in printed circuit board assembly, PhD thesis, Turku University, 1999.
[9] D.E. Knuth, The Art of Computer Programming, vol. 1, 3rd Ed., pp. 435–456, 1998.
[10] T. Knuutila, O. Nevalainen, A reduction technique for weighted grouping problems, European Journal of Operational Research

140 (2002) 590–605.
[11] V.J. Leon, A. Peters, A comparison of setup strategies for printed circuit board assembly, Computers & Industrial Engineering 34

(1) (1998) 219–234.
[12] B. Matzliach, M. Tzur, The online tool switching problem with non-uniform tool size, International Journal of Production

Research 36 (12) (1998) 3407–3420.
[13] B. Matzliach, M. Tzur, Storage management of items in two levels of availability, European Journal of Operational Research 121

(2000) 363–379.
[14] V.S. Mookerjee, Policies for data archival in hierarchical storage management, European Journal of Operational Research 138

(2002) 413–435.
[15] A.S. Tanenbaum, Modern Operating Systems, second ed., Prentice-Hall, 2001, pp. 200–201.
[16] C.S. Tang, E.V. Denardo, Models arising from a flexible manufacturing machine, part I: Minimization of the number of tool

switches, Operations Research 36 (5) (1988) 767–777.
[17] A. Turkcan, M.S. Akturk, R.H. Storer, Nonidentical parallel CNC machine scheduling, International Journal of Production

Research 41 (10) (2003) 2143–2168.
[18] M. Tzur, A. Altman, Minimization of tool switches for a flexible manufacturing machine with slot assignment of different tool

sizes, IIE Transactions 36 (2004) 95–110.
[19] <http://www.ilog.com/products/solver/>, ILOG Solver.

http://www.ilog.com/products/solver/


  



 

 

 
 
 
 
 
 
 
 
Publication IV 
 
Hirvikorpi M., Johnsson M., Knuutila T. and Nevalainen O.S.,  A 
General Approach to Grouping of PCB Assembly Jobs. To appear 
in International Journal of Computer Integrated Manufacturing, 
2004. 
 



  



 

 

 

 

 

 

 

 

 

 

 

 

 

A General Approach to Grouping of PCB 

Assembly Jobs 

 

 

Mika Hirvikorpi
2

,
  
Timo Knuutila

2
, Mika Johnsson

1 
and Olli S. Nevalainen

2
. 

 
 

1
Valor Computerized Systems OY, Ruukinkatu 2, 20540 Turku 

 

2
Turku University,  Department of Information Technology and TUCS 

Lemminkäisenkatu 14 A, 20520 Turku 

 



 2 

Abstract 

 

Ordering of batches of printed circuit boards (PCB) has a significant impact to the efficiency of the 

electronic component placement processes. Through PCB batch grouping we aim to minimize the 

total setup time between batches. Batch groups are formed so that each group can be handled with 

one component setup. The job grouping problem calls for a set of groups with minimal cardinality.  

This paper considers three variants of the job grouping problem under a single formulation. 

A generic mathematical formulation which solves all three of them is given. The variants are 

abstractions of machine organizations used in present day manufacturing systems. Inspired by the 

new formulation of the exact solution method a joint heuristics suited for all the three problems is 

also constructed. Benefits of the new algorithm are its conceptual simplicity, adaptivity to different 

machine layouts and competitive computational efficiency. 

 

Keywords: Printed circuit board, component placement, electronics manufacturing, surface 

mounted components, flexible machines
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1. Introduction 

 

One of the most important processes in electronic industry is the placement of electronic 

components on printed circuit boards (PCBs). This is done by using high precision automated 

placement machines. When working with only one placement machine, there are several different 

ways to organize the component insertions (Leon and Peters 1998): 

• every batch of identical PCBs can be handled separately, 

• the order in which the PCBs are processed can be selected so that the overall setup time is 

minimized, and 

• the number of setup occasions can be minimized by grouping the PCB batches. 

The first organization is common for ‘low mix – high volume’ production, in which one has 

only few different PCB types to manufacture but the production volumes are very large. In this type 

of production, most of the time is spent on the actual placement of the components and optimization 

is more fruitful on the level of a single PCB type. Optimization on this level is called operational, 

see Johnsson 1999 for the categorization. One of the main issues on the operational level is the 

optimization of the movements of the printing head and this way minimizing the printing time. 

Selecting the processing order of PCBs properly is beneficial when the production volumes 

are medium sized and the overall time used for tool switches is substantial. The problem here is to 

find such a processing order and component management decisions for the batches that the total 

number of component switches is minimized. The component switches are made between different 

types of PCB batches because the feeder (holder of the components) of the component placement 

machine is of limited capacity. This approach assumes that each component switch requires certain 

fixed time, so the overall time required for the component switches is simply the sum of the 

individual switching times. The calculation of exact solutions for the tool switching problem are 

possible only for small problem instances because it is NP-hard, as shown by Crama et al. 1994. 

Several efficient heuristics have been proposed for the problem, see Van Hop 2003, Hertz at al. 

1998, Bard 1988 and Al-Fawzan and Al-Sultan 2003. Study of Al-Fawzan and Al-Sultan 2003 

considers a new heuristic approach for the tool switching problem. Shirazi and Frizelle 2001 study 

the current state of industry in applying the methods developed for the tool switching problem to 

practice.  

 The third approach of PCB component placement assumes fixed time setup events, i.e. 

component loading is either based on a full tear-down or on the use of several changeable feeders. 

Therefore, by minimizing the number of setup events one minimizes the total time used for the 
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component setups. The job grouping problem (JGP)  asks for a feasible minimal cardinality 

grouping of the PCB batches. A group of PCB batches is said to be feasible if all the components 

required by the batches within the group fit in the feeder simultaneously. After the groups have 

been formed, each group can be processed without any interruption. Grouping of jobs is favorable 

especially when the number of different PCB types is large and the production volumes are small.  

This approach is actually an application of the group technology (GT) which is applied widely in 

the field of flexible manufacturing systems. 

 The present study concentrates to the job grouping problem, which has significant impact 

on the production costs of medium and small volume producers. The JGP is well known and it has 

been studied extensively in the past, see Carmon et al. 1989, Hashiba and Chang 1992 and Maimon 

and Shtub 1991. The flexible component placement machines using new technological solutions of 

arranging the component feeder require new novel algorithms. In particular, we study here three 

different types of component placement machines and describe their impact on the formulation and 

solution of the grouping problem. 

 The basic JGP assumes a linear feeder unit which is composed of a certain number of slots 

to store the component reels. It has been assumed in most reports that each component reel takes 

one slot of the feeder capacity. However, this assumption rarely holds in practice nowadays – there 

are usually at least 3-4 different widths of component reels. A review of different approaches to 

solving the JGP is given by Knuutila et al. 2001. These approaches include exact solving by using 

logic and mathematical programming. They also introduced several heuristics which gave near 

optimal results in practical tests. The approximability of the JGP has been studied by Crama and 

Klundert 1996. They also show that JGP is NP-hard. 

The second variant of the JGP (called JGP-T) assumes that the placement machine can 

handle several different types of feeders at the same time (c.f. Universal GSMs). For example there 

can be separate areas for tape feeders, tray feeders and tube feeders. Because all the traditional 

algorithms for solving the JGP assume only one linear feeder unit with certain capacity, they clearly 

cannot handle this type of feeder organization. Knuutila et al. 2004 showed that this problem is NP-

hard, presented an exact solution through mathematical programming and developed heuristic 

solution algorithms for it. 

The JGP-B (Hirvikorpi et al. 2004), which is the third variant of JGP, assumes a machine 

which uses separate feeder boxes and the feeder unit itself is only a holder for these boxes. There 

are usually several different types of boxes in use and each box type has different limitations for the 

component types it can accommodate. This makes the problem a lot harder, because, in addition to 

searching the grouping, one must also find a suitable feeder configuration for each group. 
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Until now these three problems have been considered separately by using algorithms 

specially suited for the particular problem variant in question. In the present study it is demonstrated 

how all of them can be formulated as a special case of JGP-B. Although this is a rather simple 

technical matter, it rises a more important question dealing the applicability of the JGP-B 

algorithms for the simpler problems. When trying to evaluate the practical usefulness we took 

another look at the solution algorithms of JPG-B and reorganized them by applying the most 

successful ideas of the effective JGP and JGP-T heuristics, see Maimon and Shtub 1991 and 

Knuutila et al. 2001. As a basis of this, a new JGP-B heuristic is introduced. The algorithm is 

profiled for  problem instances used in previous studies for all the three problems. 

 The rest of the presentation is organized as follows. Section 2 defines the different variants 

of the JGP mathematically. Section 3 presents a MILP formulation which is able to solve all the 

problems of section 2. Section 4 introduces problem variant independent heuristic algorithms for the 

JGP. In order to keep the representation self-contained we recall shortly the methods used for the 

standard JGP and JGP-T. The efficiency of the new heuristic and exact solution methods is profiled 

and compared to previous methods in section 5. The paper is concluded in section 6. 

2. Definitions 

The variants of the JGP have several common concepts which are defined first. The difference of 

the problem settings lies in the organization of the feeder unit. Because of this it is justified to 

divide the definitions into two parts. The first part consists of the component and PCB definitions 

and the second part deals with the feeder organization. The following formulations do not directly 

follow any mathematical formulation presented earlier for the JGP, instead see Knuutila et al. 2001, 

Knuutila et al. 2004 and Hirvikorpi et al. 2004 for specialized definitions of JGP, JGP-T and JGP-

B. 

 In all the three job grouping problems one is given a set of component types E and a set of 

PCB types C. Each PCB type is considered as a collection of component types. The technology of 

placement machines enables us to handle the PCB types as sets of component types, i.e. in JGP one 

does not worry about the actual number of occurrences of each component type on the PCBs. This 

is due to the fact that the feeder of the component placement machine is limited with respect to the 

number of different component types, but the supply of a certain component type is considered to 

be infinite. The reason for this assumption is that the component packages contain a large number 

of identical components and individual packages can be changed quickly when needed. The PCB 

types and component types are defined formally as follows: 
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W set of widths of component types W⊂ , 

E set of component types, each component type e∈E has the width property w(e)∈W, and 

 for each subset E’ of E the following properties are defined: 

 w(E’)  the sum of widths for component types in E’, 

 w(E’,w’) the sum of widths for component types of width w’ in E’, 

C set of PCB types, for each PCB type c∈C it holds: c⊆E, 

G a set of groups of PCB types, each group g∈G has the following properties: 

 w(g)  the sum of widths of the components in g, and 

 E(g)  set of all components in g, i.e. the set ∪c∈ g c . 

2.1. The basic JGP 

The traditional feeder organization in component placement machines is the linear feeder, which 

consists of sequentially ordered slots for storing the components. The number of slots in the feeder 

(K) is called the capacity of the feeder. Depending on the actual widths of the components placed in 

the feeder, it can accommodate up to K different component types. Each component type e∈E 

allocates w(e) (≥1) slots from the feeder.  

 

Figure 1. A component placement machine with a linear component feeder. 

 

Figure 1 demonstrates the working principle of a component placement machine with a 

linear feeder. The bare PCBs enter the machine on the conveyer belt from the left. Inside the 

machine there is a moving printing head which places the components on the PCB. Depending on 

the type of the printing head it can retrieve one or several components from the feeder at the same 

time. In some machines the position of the feeder is fixed and the printing head retrieves the 

components itself while in others the feeder moves. 
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It is assumed in the job grouping problem that the whole feeder is either replaced with 

another (by changing removable feeder units or so-called feeder banks) or totally reloaded when 

advancing to the assembling of the next batch of PCBs. This is why the setup event between PCB 

batches takes a fixed time and thus the number of setup events is the factor to be minimized. As 

stated above, the machine operator adds more components to the feeder during the processing if 

some component type is about run out. It is however not easy to change the component types since 

it would require changing the machine control program which guides the printing. 

  

A grouping G is said to be feasible with respect to a given capacity K if and only if for all g∈G it 

holds w(g)≤K.  

 

We can now define the basic Job grouping problem with a  linear feeder (JGP): given a set of PCB 

types C, a set of component types E and capacity K, find a feasible grouping G with minimal 

cardinality.  

2.2 JGP-T 

While the common JGP is restricted to the use of a single feeder, new technological advances have 

removed this limitation, and some machines, like Universal GSM-1 (Knuutila et al. 2004), are able 

to use several techniques simultaneously. In practice this is implemented so that the machine has 

several feeders each of which has a certain capacity. Figure 2 shows the working principle of a 

component placement machine of this kind. In contrast to a machine equipped with one linear 

feeder the printing head now retrieves components from several different stations according to the 

feeder type of the component. Otherwise the working principle is the same. 
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Figure 2. A component placement machine with multiple feeders. 

 

 In addition to the width, each component type e∈E has now also the feeder type t(e)∈T, 

where T⊂ Ν is the set of all feeder types. The function w is extended as follows: 

 

w(E’,t’) the sum of widths of component types E’⊆E  for feeder type t’. 

 

The feeder configuration F  is now described by type dependent capacities: 

 

F(t’)  the capacity of type t’ feeder. 

 

Grouping G is said to be t-feasible with respect to a given feeder configuration F and the feeder 

type set T if and only if for all g∈G and t’∈T holds: w(E(g),t’)≤F(t’). 

 

Job grouping problem with feeder types (JGP-T): given a set of PCB types C, set of component 

types E and feeder configuration F, find a t-feasible grouping G of minimal cardinality. 

2.3 JGP-B 

 

The job grouping problem can be generalized further by increasing the flexibility of the placement 

machine. Some of the most recent machines (e.g. MyData), use a feeder unit arranged to a set of 

replaceable boxes. These belong to two categories, simple and flexible, according to the restrictions 

on the component types they can hold. 



 9 

 

 

Figure 3. A component placement machine with a flexible feeder unit. 

 

Simple boxes can hold component types of a certain single width only. A simple box has a 

fixed capacity which indicates how many component types it can store simultaneously. A flexible 

box can store components of several different widths at the same time, but a component type may 

consume more slots than its nominal width would indicate in these boxes. This is the cost paid from 

the extra flexibility. For example if we have a component of width two it might occupy three slots 

in a flexible box. The situation is further complicated by the fact that there are usually more boxes 

available than the feeder can hold simultaneously. The number of boxes the feeder can hold 

depends on the external width of the boxes. This is because the feeder itself has certain maximal 

width. Figure 3 shows an example of this type of machine. The feeder is now simply a holder for 

the boxes. 

 The job grouping problem with a flexible feeder requires the following notations:  

B set of boxes, each b∈B has the following properties: 

 w(b)  the external width of box b, 

 K(b)  the capacity of box b, 

 u(b,e)  number of slots the component type e uses from box b, 

 a(b)  set of allowed component type widths (for simple boxes |a(b)|=1) in b. 

 

F flexible feeder unit: 

 w(F)  width of the feeder unit F, 

 n(F)  maximum number of boxes the feeder F can hold simultaneously. 
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Mapping function m:E’�B’ is said to be feasible with respect to a set of boxes B’⊆B and a set of 

component types E’ if : 

1) m(e)∈B’ for all e∈E’, 

2) w(e)∈a(m(e)) for all b∈B’ and e∈E’, 

3) )(),(
)(

bKebu
bem

≤∑ ∈
for all b∈B’. 

 

Group g is said to be feasible with respect to a set of boxes B’  if there exists a mapping function m 

which is feasible with respect to B’ and E(g). 

 

Box set B’⊆B is feasible with respect to feeder F if |B’|≤n(F) and ∑ ∈
≤

'
)()(

Bb
Fwbw . 

 

Grouping G is b-feasible with respect to a box set B and feeder unit F, if for all groups g∈G, there 

exists a feasible box set B’⊆B which is feasible with respect to F. 

 

Job grouping problem for flexible feeder (JGP-B): when given a set of PCB types C, a set of 

component types E, a set of boxes B and feeder unit F, find a b-feasible grouping G with minimal 

cardinality. 

3. Exact solution 

The studies Knuutila et al. 2001, Knuutila et al. 2004 and Hirvikorpi et al. 2004 present 

mathematical programming models specific for the three job grouping problems of the previous 

section. We next give a generic model which can be specialized to the variants in a simple and 

efficient way. It is our hypothesis that the generalized model is able to solve problem instances of 

roughly the same size for all these problem variants as the previous problem specific models. This 

hypothesis is tested in section 5. The parameters of the new JGP-G model are as follows (i=1,…,|E|, 

k=1,…,|B|, j=1,…,|C|): 

 

eik the number of slots consumed by component type i from box k,  

cij 1 if PCB type j requires the component type i, 0 otherwise, 

cj the number of component types in PCB type j, 

bk the width of box k, 

dk the capacity of box k, 



 11 

N the maximum number of boxes the feeder can hold, 

W the width of the feeder, and 

U an upper bound for the number of groups (U≤|C|). 

 

The decision variables are (l=1,…,U): 

 

xjl 1 if PCB type j is in group l, 0 otherwise, 

ykl 1 if box k is in the feeder configuration of group l, 0 otherwise, 

zl 1 if group l is not empty, 0 otherwise, 

mikl 1 if component type i is in box k of the feeder configuration of group l, 0 otherwise. 

 

The general job grouping problem (JGP-G) can be defined as follows:  

 

minimize 

 ∑ = Ul lz
,...,1

          (1) 

 

subject to 

 ∑ =
≤

||,...,1
||

Cj ljl Czx     for all l=1,…,U   (2) 

jljEi Bk iklij xcmc ≥∑ ∑= =
))((

||,...,1 ||,...,1
  for all l=1,…,U, j=1,…,|C|,  (3) 

 ∑ =
≤

||,...,1 Bk kl Ny     for all l=1,…,U   (4) 

∑ =
≤

||,...,1 Bk kkl Wby     for all l=1,…,U   (5) 

∑ =
≤

||,...,1 Ei
kiklik dme     for all l=1,…,U, k=1,…,|B|  (6a) 

klBk lik ym ≤∑ = ||,....,1' '     for all i=1,…,|E|, k=1,…,|B|, 

      l=1,…,U    (6b) 

 ∑ =
≥

Ul jlx
,...,1

1     for all j=1,…,|C|.   (7) 

 

Formula (1) gives the number of groups which is to be minimized. An upper bound for the number 

of groups U can be obtained from a heuristic algorithm, for example. Constraint (2) says that a 

group is not empty if any of the PCB types is assigned to it. Constraint (3) demands that if a PCB 

type is assigned to a certain group then all its component types are mapped to the feeder 
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configuration of that group. Constraints (4) and (5) state that the box sets of the groups are suitable 

for the feeder with respect to the number of boxes N and their total width W. Constraint (6a) 

quarantees that the capacities of the boxes are not exceeded and constraint (6b) prevents from using 

boxes which are not in the configuration of the group. It also states that component can be set to one 

box in a group, only. Constraint (7) requires that each PCB type is assigned to at least one group. 

 The basic JGP can be solved with this model by transforming the feeder to a single flexible 

box with a given capacity C. JGP-T requires the transformation of each feeder type to a flexible 

box. In addition the parameter eik must force the constraints concerning feeder types. Assume that 

the feeder type of component type i is k, then the parameter eik is set to the width of the component 

type i.  For other boxes it is set to dk+1 which makes it impossible to put the component to any other 

box. Similarly, for a JGP-B instance the eik is set to dk+1 if the box is unsuitable to hold the width of 

component type i. 
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4. Heuristics 

Even the basic JGP is algorithmically hard (i.e. it is NP-hard, see Crama and Oerlemans 1994). 

Solving it optimally is not possible within reasonable time for large number of PCBs. Even its 

accurate approximation has been proved to be hard (Crama and Klundert 1996). With the latest 

integer and logic programming software one can (with good luck) solve problems of size 30 PCBs 

optimally, as reported in Knuutila et al. 2001. The advantage of using logic programming is that 

one can easily add case-specific constraints like ordering relations, which increase the flexibility of 

the solution method, see Knuutila et al. 2001. Larger problems can be solved rather easily with 

heuristic algorithms. These algorithms do not guarantee the optimality of the solutions but usually 

the results are near optimal (Knuutila et al. 2001).  

 The algorithms we present in this section rely on the same principles as those in see 

Knuutila et al. 2001, Knuutila et al. 2004 and Hirvikorpi et al. 2004. Inspired by the general 

formulation of section 3, the new algorithms are independent on the problem variant and their 

structure has been simplified. The use of multiple start points for local search in feasibility checks is 

also new and the ITER-G algorithm is original to this work. 

4.1 Mapping of components 

Depending on the problem variant, the mapping of component types to the feeder can be a simple 

test or an NP-hard problem. For the basic JGP all the component types are mapped to the only 

possible place, namely the linear feeder. In JGP-T components are mapped according to the 

component feeder types, which is still a trivial problem. JGP-B, however, complicates things 

essentially because in addition to mapping of the component types to the boxes one must choose a 

feasible set of boxes to the feeder organization. The algorithms presented later in this section use a 

heuristic (createMapping) to perform this task. Because these algorithms are suitable for all 

problem variants, this selection heuristic must be designed to handle also the most complicated 

problem JGP-B. 

The problem of checking the feasibility of a group in JGP-B is a generalization of the bin 

packing problem. Hirvikorpi et al. 2004 use a two phase greedy heuristic (fillBoxes) to perform this 

test. In the first phase the simple boxes are filled, because they are able to accommodate 

components of certain width only. In the second phase the flexible boxes are filled in a greedy 

manner. This feasibility check is loose in the sense that the filling of the boxes is usually not 

optimal. However, the bin packing problem is NP-hard and the number of the feasibility checks 

made by the grouping algorithms is so large that a fast heuristic is required.  
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 In addition to feasibility checking one must find a feasible feeder configuration for each 

group. Hirvikorpi et al. 2004 consider two different techniques to search for a suitable feeder 

organization. The other one is based on the brute force search, which simply tries all feasible box 

combinations. The second heuristic is iterative and it is based on local search (implemented in 

improveConfiguration). Both algorithms have two phases. In the first phase they choose some set of 

boxes and the second phase uses the greedy feasibility check to create the mapping. If the 

configuration does not pass the greedy feasibility check then of the algorithms move to the next box 

combination and repeats the process. 

The combined mapping and feeder configuration search routine (createMapping) receives as 

an input the component type set, feeder parameters and one or several initial component type 

mappings, see figure 4. These initial mappings serve as a starting point for the local search 

(improveConfiguration). 

 

createMapping(E, B, F, f1, f2, …, fn) : configuration 

 for i:=1 to n do     -- testing if any of the initial feeder configurations 

  if |fillBoxes(E,fi)|≤0 then return fi;  -- is legal with respect to the given element set 

 end for 

 

 for i:=1 to n do 

  f:=improveConfiguration(E,B,F,fi);  -- doing local search for all initial feeder configurations 

  if  |fillBoxes(E,f)|≤0 then return f;  -- and testing their feasibility 

 end for 

 return φ;     -- no suitable feeder configuration was found 

 

Figure 4. Construction of a feasible feeder box configuration. The routine returns a subset of boxes (feeder 

configuration) from B to which the element set E can be mapped legally. The feeder configurations f1, f2, …, 

fn are used as starting points for the heuristic search of feasible feeder configuration. The heuristic search is 

implemented in improveConfiguration (Hirvikorpi et al. 2004). Fillboxes returns the set of component types 

left over from the configuration. 

 

 The generalized JGP heuristic allows temporarily violating the box capacity constraints and 

then repairs them (Knuutila et al. 2001). The concept of the feasibility of groups is therefore 

changed to a quantitative measure giving the degree of violation of the capacity constraints of a 

group or a single group. This measure is implemented in function feasibility which returns the sum 

of widths of the components left over from the given feeder configuration(s), see figure 5. 
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feasibility(G, B, F) : integer    -- returns the feasibility of a grouping G with respect to 

 sum:=0;      -- to the box collection B and feeder F 

 for all groups (g,f)∈G do    -- sums the feasibilities of the groups within the 

  sum:=sum+feasibility(E(g),F,B,f);  -- given grouping 

 end for 

 return sum; 

 

feasibility(E, B, F, f1, f2, …, fn) : integer   -- calculates the feasibility of the given element set E  

 min:=φ;      -- with respect to the given box set B, feeder F 

 for i:=1 to n do     -- and the given initial feeder configurations f1, f2, …, fn 

  f:=improveConfiguration(E,B,F,fi); 

  curr:=Σe∈fillBoxes(E,f) w(e) 

  if min=φ or else min>curr then min:=curr; 

 end for 

 return min; 

 

Figure 5. Feasibility function for groups and groupings. Fillboxes returns the set of component types left 

over from the configuration. 

4.2 Grouping by merging 

The method in many efficient heuristics is first to group similar PCBs greedily and then use swap 

and move operations to improve the solution. The algorithm of figure 6 uses this method and it is 

applicable to all the three problem variants if the feasibility check is implemented according to the 

JGP-B and the simpler variants are transformed to this form the way described in section 3. The 

function similarity(g1, g2) returns the number of component types common to the given groups, e.g. 

similarity(g1, g2)=|E(g1)∪E(g2)|. 



 16 

GROUPER-G(C, B,F) : grouping     -- creates a feasible grouping of C with 

  G:={{(c,createMapping(c,B,F, φ))} | c ∈ C}; -- respect to box set B and feeder F 

  do 

   Gnew:= φ; 

   for all group pairs (g1,f1), (g2,f2) ∈ G in order of descending similarity(g1,g2) do 

    f:=createMapping(E(g1) ∪E(g2), B, F, f1, f2); 

    if f≠≠≠≠φ then 

     gm:={g1 ∪ g2};        

     Gnew:=(G \ {(g1,f1),(g2,f2)}) ∪ {(gm,f)}; 

     break 

    end if 

   end for 

   If Gnew ≠≠≠≠φ then G:=Gnew ; 

  while Gnew≠≠≠≠φ 

  return G 

 

Figure 6. The pseudocode of GROUPER-G-algorithm. 

 

The GROUPER-G algorithm performs the merge only if the resulting group is feasible. The 

solution can therefore be improved further by allowing the capacity constraints to be violated 

momentarily. The ITER-G algorithm performs merges which cause capacity restriction violations. It 

then tries swaps and moves of PCBs between the groups to make the grouping feasible again. The 

group pair to be merged is chosen so that the capacity overrun is minimal, see figure 7.  
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ITER-G(C,B,F) : grouping       -- a grouping algorithm which allows  

-- temporary capacity violations 

 G:=GROUPER-G(C,B,F);      -- create an initial grouping 

 Do 

  merged:=false; 

  for all group pairs (g1,f1),(g2,f2)∈G in order of    -- try merging groups in order of 

          descending feasibility(E(g1∪g2), B, F, f1, f2) do  -- descreasing similarity 

   gm:={g1 ∪ g2};     

   Gnew:=(G \ {(g1,f1), (g2,f2) }) ∪ {(gm,f1)};  -- merge groups and try to 

   improveGrouping(Gnew, B, F);   -- find a configuration for it 

   if feasible(Gnew, B, F) then   -- if configuration was found then 

    G:=Gnew;    -- the merging was successful 

    merged:=true; 

    break 

   end if 

  end for 

 while merged 

 

improveGrouping(G, B, F) : grouping 

 do 

  improvement:=feasibility(G, B, F); 

  for all (g,f)∈G, not feasible(g, B, F, f) do   -- try fixing the groups which are  

   for all c∈g do     -- not feasible 

    for all g2∈G, feasible(g2, B, F ,f2) do 

     if feasible({c}∪g2, B, F, f2) then 

      g2:=g2 ∪ {c}; 

      f2:=createMapping(E(g2), f2, B, F); 

      g:=g \ {c}; 

     end if 

    end for 

   end for 

  end for 

  improvement:=feasibility(G, B, F)-improvement;  -- continue iterating as long as the

 while improvement>0;      -- capacity overrun continues to  

-- decrease 

 

Figure 7. A generic job grouping algorithm ITER-G which allows temporary capacity violations. 
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5. Empirical testing 

One of the goals in the empirical tests is to find out how large problems can be solved exactly by 

the MILP-formulation of section 3. Another goal is to assess the efficiency of the problem variant 

independent algorithm of section 4. We use for all variants the same implementation of ITER-G and 

the problems are transformed to JGP-G according to the guidelines of section 3.  The algorithm 

ITER-G is benchmarked against the best specialized algorithms from Knuutila et al. 2001, Knuutila 

et al. 2004 and Hirvikorpi et al. 2004. The third goal is to measure the increase in running time 

when moving from the basic JGP to JGP-B. All test runs were performed on a 2,0 GHz Pentium 4. 

5.1 Test data 

The test data were generated through randomization. First, we create a set of component types when 

the size of the set is given as a parameter. For each component type the width and the feeder type 

are selected from a given interval randomly. Next, the PCBs are created so that the number of 

component types on each PCB is selected randomly from the given interval. The component types 

are also selected random to the PCB. 

 Feeder generation for the basic JGP is rather trivial since the capacity is the only parameter. 

The capacity is calculated based on the PCBs created earlier and it is set to be twice as large as the 

largest PCB. The “size” of a PCB is the sum of the widths of the component types on it. For the 

JGP-T the feeder configuration is created in the same way as for the basic JGP except that the 

capacities of the feeders are calculated for each feeder type separately. 

 Box sets of JGP-B instances are created by selecting a combination of widths to each box. 

For example, assume that component types are of three different widths. Then, we create one box 

for each different width, one box for each different combination of two widths and finally one box 

which is able to hold the all widths. The capacity of each box is calculated as follows: 

 

1. For all component widths k∈W 

 Let max(k) be max{w(c,k) | c∈C}. 

2. For each box b 

 Let C(b) be the average of max(k) where k∈a(b). 

 

Component types in these boxes use more slots than their nominal width. The extra space used 

depends on the number of widths the box is able to hold. For two widths the components use 10 % 

more space than their nominal width and for three widths it is 20 % etc.   
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5.2 Exact solutions 

Two common factors to different problem variants are the number of PCBs and the number of 

component types. The JGP-T adds the number of feeder types to these factors. In JGP-B the total 

number of boxes is the third essential factor. We measure the size of a problem according to the 

number of PCBs. For the JGP-T problem instances the number of feeder types is fixed to 3. For the 

JGP-B instances the number of boxes is either 3 or 6 and the feeder is able to hold 2 or 3 of these 

simultaneously, respectively. 

 The results of the first test run are summarized in table 1. It is observed that ILOG  Solver 

was not able to solve problems of 20 PCBs and over in time limit of one hour without imposing an 

additional constraint. The following constraint was set for the JGP and JGP-T instances: 

ykl = 1    for all k=1,…,|C| and l=1,…,U.   (8) 

 

Constraint (8) fixes the feeder configuration. This limits the size of the search quite drastically and 

pushes the limits of exact solving up 20 PCBs for JGP and 25 PCBs for JGP-T. Constraint (8) can 

not be set to the JGP-B instances because the feeder configuration is not fixed in them. For the JGP-

B instances the search space had to be limited with tighter constraints. The following capacity 

constrain was also added: 

∑ =
≤

||,...,1 Ei
klkiklik ydme   for all l=1,…,U, k=1,…,|B|.    (9) 

 

This essentially says that the capacity of a box is 0 for certain group if it is not assigned to the box 

configuration of the groups. Although this constraint follows logically from constraints (6a) and 

(6b) this kind of redundancy is in some cases helpful. 

 

Number of PCBs Problem 

type 10 15 20 25 30 

JGP 10 10 7
 

0 
*) 

0 
*) 

JGP-T
 10 10 10

 
4 

*) 
0 

*) 

JGP-B
 0** 0 0 0 0 

 *)
 additional constraint (8) was added to the constraint set to solve these 

 **) additional constraints (8) and (9) helped to solve problems of size 8 PCBs. 

 

Table 1. The number of problems solved (out of 10) for different numbers of PCBs using the JGP-G model 

when implemented on ILOG Solver. The number of components is 5 times the number of PCBs, the number 

of feeder types is 3 and the number of boxes is 6. Timelimit is set to one hour.  
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5.3 Efficiency of the variant independent algorithm 

The first test run for the ITER-G compares the solutions against best known problem variant 

specific algorithms HG3 (Knuutila et al. 2001), TS (Knuutila et al. 2004) and RedistrG (Hirvikorpi 

et al. 2004), see table 2. The performance of the ITER-G is impressive since it is able to find better 

solutions for the JGP and JGP-T instances for all problem variants. The difference between ITER-G 

and HG3 is statistically very significant. 

 

Problem variant  

Algorithm JGP JGP-T JGP-B 

ITER-G 13,00 9,70 12,77 

HG3 (Knuutila et 

al. 2001) 

14,20 - - 

TS (Knuutila et 

al. 2004) 

- 9,77 - 

RedistrG 

(Hirvikorpi et al. 

2004) 

- - 12,57 

 

Table 2. Comparison of ITER-G and the best known algorithms for different variants of JGP. The numbers in 

the cells are averages of the grouping sizes over 30 problem instances. The number of PCBs is 60 in each 

problem instance, there are 300 component types, 3 feeder types and 6 boxes. Timelimit of HG3 is set to 2 

minutes, tabu tenure for TS is 30 moves and time limit for TS is also 2 minutes. The difference between HG3 

and ITER-G is statistically very significant (paired t-test). 

5.4 Comparison of running times 

The running time of ITER-G depends strongly on the number of PCBs, the number of component 

types and the number of boxes. Table 3 shows the running time of ITER-G as a function of the 

number of PCBs and the number of boxes. One can see that the number of boxes and the number of 

PCBs scales the running time quadratically. Based on the results given by Hirvikorpi et al. 2004, 

the incresase in the running time would be exponential if this test would use the brute-force method 

to find the feeder configurations.  
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Number of PCBs Number of  

boxes 30 60 90 120 

8 0,12 1,55 6,28 18,22 

9 0,13 1,66 6,09 14,43 

10 0,19 1,41 5,38 15,71 

11 0,25 1,74 6,40 17,28 

12 0,37 2,20 7,26 18,63 

13 0,55 2,88 8,56 19,68 

14 0,83 3,87 10,35 22,19 

 

Table 3. Running time of ITER-G in seconds as a function of the number of boxes and number of PCBs.  

 

6. Conclusions 

Three important variants of the job grouping problem were discussed. The variants differ with 

respect to the component feeder types and feeder unit organizations. Although the differences are 

apparently small they have a significant impact on the solution algorithms and the computation 

time. 

We discussed the mathematical definitions of the variants. A mathematical program (JGP-

G) was formulated. The program is able to solve all the variants when they are transformed 

suitably.The variant independent heuristic (ITER-G) is related to the variant dependent heuristic 

algorithms developed in earlier studies. A new idea in the search of feeder configurations is to use 

multiple starting points for the local search. 

The empirical results show that the general mathematical program is able to solve equal 

sized problems as the previous variant specific programs. The heuristics were also shown to be 

statistically as efficient as the problem specific algorithms. The results also showed that the new 

heuristic is fast enough for practical sized problems. 

The standard JGP is commonly somewhat more complicated than described here. Johnsson 

1999 note that some of the fast chip shooters organize the linear feeder to several smaller so-called 

feeder banks. For example, certain component placement machines organize their 160 slot feeder to 

four feeder banks of 40 slots each. A complicating factor here is that the boundaries of the feeder 

banks can not be crossed by component packages. Depending on the component widths this may 

waste some feeder slots. Modelling this detail is superseded in previous studies by using smaller 

capacity for the feeder. It is interesting to see that JGP-B gives an efficient new way to formulate 

this open problem which has until now been largely bypassed.  
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 Further research is needed to developed better lower bounds for the variants of the JGP. 

Another interesting topic of research is the definition of the problem size reductions; these have 

only been studied for the basic JGP.  
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Abstract 

This paper considers a scheduling problem arising in the flexible manufacturing 

systems. It is assumed that a CNC machine processes a set of jobs with a set of wearing 

tools. The tool magazine of the machine has a given capacity and each job requires 

some subset of tools. The goal is to minimize the average completion time of the jobs 

by choosing their processing order and the tool management decisions intelligently. 

Previous studies concerning this problem have either omitted the tool wearing or 

assumed one tool type, only.  

This study gives a mathematical formulation for the problem when the tool life-

times are deterministic. We show that problems of practical size cannot be solved to 

optimality within reasonable time. We therefore consider genetic algorithms and local 

search methods to the problem. When the solutions of these new algorithms are 

compared against the optimal solutions and lower bounds, they are nearly optimal. 

Keywords: CNC production, combinatorial optimization, job scheduling, tool wear, tool 
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1. Introduction 

The current trend in manufacturing is the widespread use of flexible manufacturing 

systems (FMS) which are able to manufacture variety of products with high quality and 

speed. In production planning one attempts to organize the production to as efficient as 

possible. The optimization of production efficiency is especially important in the fields 

of industry where competition is hard and therefore production planning has become an 

important area of research. In optimizing the production efficiency it is often useful to 

identify the bottlenecks of the process and to optimize the production from their 

perspective. The bottleneck in FMSes is in many cases a CNC machine which is used 

inefficiently.  

In the scheduling with wearing tools (SWT) -problem we are given a set of jobs 

to be processed with a single CNC machine. The task is then to create a production plan 

which minimizes  the average completion time of the jobs. The CNC machine uses 

limited life-time tools to process the jobs. The capacity of the tool magazine of the CNC 

machine limits the number of tools it can use simultaneously. Tools are removed 

(added) from (to) the magazine because their life-time has been consumed or because 

the job to be processed requires a tool which is not currently in the magazine. The 

problem is further complicated by the fact that one can switch tools between jobs, only. 

The reason for this is the possible degrade in quality and long fixed time associated to 

each interruption.  

Scheduling with wearing tools was first considered by Akturk et al. (2002). 

Their problem formulation considered a case where there is only one tool type. We 

expand this model to include several tool types and a tool magazine. The motivation for 

studying this problem comes from the fact that tool switches due to the tool wearing are 
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in some cases much more likely (ten times) than due to the part mix, see Gray et al. 

(1993).  

Most of the studies concerning tool management and scheduling have 

concentrated on tool switches occurring due to the part mix. One exception here is the 

work of Akturk and Avci (1996) who developed a method for handling tool allocation 

and machining conditions. In their paper, the scheduling of CNC machines was not 

considered. It seems that the scheduling literature has omitted the tool management. On 

contrast to that, similarities to our study and the work by Akturk et al. (2002), can be 

found from the models which handle machine breakdowns and maintenance. Many of 

these models assume only one breakdown which in our case is not realistic since tool 

wearing occurs quite frequently. One exception to this is the study of Qi et al. (1999) 

who considers scheduling with multiple maintenance intervals which are of variable 

length. The model in Akturk et al. (2002) is equivalent to the model of Qi et al. (1999).  

A traditional approach to tool management and scheduling has been to omit the 

completion times of the jobs from the minimization objective and to concentrate on the 

minimization of the number of tool switches. Tang and Denardo (1988) have developed 

‘Keep The Tool Needed Soonest’ –policy which minimizes the number of tool switches 

for a fixed order of jobs. This problem is known as the tool loading -problem. The joint 

problem of job ordering and tool loading, called tool switching –problem, calls for a 

similar production plan as the SWT-problem but the objective is to minimize the 

number of tool switches.  The tool switching –problem has been studied for example by 

Bard (1988), Crama et al. (1994) and Hertz et al. (1998).  This traditional approach 

assumes that the job processing times are dominated by the tool switching times. 

Technological advances of the CNC machines have, however, reduced the switching 

times considerably thus giving additional movitation for studying the SWT-problem.  



 4 

In some areas of production, like printed circuit board (PCB) assembly, a 

common approach has been to minimize the number of setup events. The job grouping 

problem (JGP) calls for a feasible minimal cardinality grouping of a given job set. A 

grouping is feasible if each group of jobs within the grouping can be processed without 

interruptions. The JGP setting assumes that setup events require some fixed time, i.e. 

the number of tool switches made during a setup does not affect to the duration of the 

event. To mention a few, the basic job grouping problem has been studied by Crama 

and Klundert (1996), Knuutila et al. (2001) and Smed (2002). Recent advances in the 

PCB assembly machines have made the basic JGP somewhat impractical. Knuutila et 

al. (2003) and Hirvikorpi et al. (2004) study new variants of the JGP. The operating 

principles of the modern component placement machines are considered more 

accurately in these variants. 

In certain types of CNC production different tools require variable amount of 

space from the tool magazine of the CNC machine, a fact which many of the existing 

studies concerning tool management problems fail to model. In PCB assembly, for 

example, the components which are placed to the bare PCBs come in many different 

widths and it is not unsual that one component is three times as wide as some other 

component. Some of the recent studies concerning tool management problems take this 

fact to account, for example Tzur and Altman (2004) study the tool switching problem 

for tools of variable width. They also model the physical placement of the tools to 

magazine, see Chen et al. (2002) for the definition of this so called dynamic storage 

allocation problem. Matzliach and Tzur (2002) study the tool loading -problem for 

variable widths of tools but they do not model the physical placement of the tools to the 

magazine. As a continuation to their paper Hirvikorpi et al. (2004b) study the tool 

loading problem and dynamic storage allocation problem integrated, i.e. they also 
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model the physical placement of the tools.  In PCB assembly, Knuutila et al. (2001) and 

Hirvikorpi et al. (2004) model the variable width tools but not their physical placement. 

 Applications of the scheduling with wearing tools -problem can be found in 

PCB assembly and CNC machine production in general. In the context of PCB 

assembly the “jobs” are batches of PCB boards of the same type and the “tools” are 

electronic components which are placed on the board by a component assembly 

machine. The life-time of a tool is in this case the number of components of same type 

which can be loaded into the feeder unit (corresponding to the magazine). In CNC 

production, the tools can be for example drill bits or cutting tools and jobs are different 

types of industrial parts which are processed by a CNC machine. 

It is well known that the Shortest Processing Time (SPT) –rule (Brassard and 

Bratley 1996) minimizes the average completion time for a single machine if we omit 

tool wearing and tool switches.  In this paper we formulate the SWT-problem and show 

that the SPT-rule does not perform well if tool wearing and tool switches are taken into 

account. Because of this, we introduce more elaborate heuristic methods for solving the 

SWT –problem and show that they perform very well with respect to optimal solutions. 

We also consider lower bounding –methods and give an optimal solution to our 

problem. 

 The rest of the paper is organized as follows. Section 2 defines the scheduling 

with wearing tools -problem (SWT) formally. Section 3 presents an integer 

programming formulation for the problem. Section 4 introduces two heuristic 

algorithms based on evolutionary and local search methods. Section 5 discusses 

different lower bounding methods for the SWT-problem.  Empirical results about the 

efficiency of the heuristic methods are presented in Section 6. The paper is closed with 

some concluding remarks in Section 7. 
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2. Problem definition 

A central part of the problem definition in the field of production planning and control 

is the machine abstraction. Because CNC machines vary greatly from the technological 

perspective, our abstraction fixes a minimal set of assumptions about the working 

principle of the machine. First, we assume that the CNC machine uses wearable tools to 

process jobs and that the machine is able to use only the tools which are in the tool 

magazine. Capacity of the tool magazine indicates how many tools it can hold 

simultaneously which means that each tool consumes a uniform amount of space from 

the tool magazine. Furthermore, tools which are not in the magazine are stored in the 

vicinity of the machine and a time cost (called switching cost) is associated with each 

tool addition and removal. Finally, the structure of the magazine is assumed to be such 

that the location of a tool in the magazine does not affect to the switching time. 

 We say that a tool is a physical instance of some tool type and associate with 

each tool type a deterministic life-time and a switching cost. Life-time is the time of 

proper functioning for a tool of certain tool type and switching cost indicates the time 

required to add (remove) this type of tool to (from) the magazine. Life-time depends 

only on the tool type, an assumption which eliminates the variance on the time of proper 

functioning between different physical instances of a tool type. These life-times can be 

approximated for CNC machines when making certain assumptions on the conditions of 

the job processing, see Akturk and Avci (1996). 

 Each job requires some set of tool types in processing and therefore we define 

for each (job, tool type)–pair a deterministic processing time. We assume that this 

processing time is less than the life time of a tool type for all pairs, otherwise the job in 

question could never be processed. The time required to process a job is the sum of the 

individual (job, tool type) –pair processing times. Further, once the processing of a job 
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has began, it must be completed without interruptions, i.e. no tool switches to the 

magazine of the machine are allowed. Technically the switches may be possible but 

each interruption of the machine requires in addition to individual tool switching times a 

certain fixed time which can be an order of magnitude longer than the tool switching 

times. In some cases there is also a possible degrade in quality when the processing is 

interrupted, therefore these interruptions are not allowed. 

Let linear time be the sum of processing times of all jobs in J and quadratic time 

the sum of completion times of the jobs in J, see Fig. I. The average completion time of 

the jobs in J is the quadratic time divided by the number of jobs (|J|). The objective in 

the SWT-problem is to minimize this time. 
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Figure I. The concepts of linear time cl and quadratic time cq when processing the jobs J={j1 , 

…, j5}.  The schedule includes some tool operations like tool addition and removal between the 

jobs. 

 

We use the following notations to define the SWT-problem formally: 

 

T set of tool types, 

 ci  time required for tool addition (removal) to (from) the magazine for tool 

type i∈T, 
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 li life-time of tool type i∈T, 

 

J set of jobs, 

 pj total processing time of job j∈J, 

 pi,j processing time of job j∈J for tool type i∈T, 

 Tj the set of tool types required by job j∈J,  Tj ⊆T, 

 

K capacity of the tool magazine. 

 

Magazine state S=(M,α) is an ordered pair where M is the set of tool types currently in 

the magazine and function α:T�Ν where i∈M gives the remaining life-time of the tool 

of tool type i. If i∉M then α(i)=0. An implicit consequence of this definition is that there 

is at most one physical instance of certain tool type simultaneously in the magazine. S0 

is used from now on to indicate an empty magazine state. 

 

State switch  cost c(S1,S2) for the two magazine states S1=(M1, α1) and S2=(M2, α2) is the 

total time used for tool removals, additions and replacements (changing worn out tools) 

to switch state S1 to state S2 and it is defined as follows: 
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The first term of c(S1, S2)  sums up the costs of the removed and added tools and the 

second one counts for the costs of the replaced tools. Notice that tool replacement is 
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considered as a two phase operation, since the tool must first be removed and then 

added. State switches are made between the jobs.  

 

Job j is feasible with respect to magazine state S=(M, α) if and only if α(i) ≥ pi,j for all 

i∈Tj, i.e. the tools of the magazine state S have enough life-time left to process the job j. 

 

A magazine state is legal with respect to capacity K if and only if |M|≤K. It is assumed 

here that each tool uses the same amount of capacity and therefore the capacity is 

calculated simply as the number of tools the magazine can hold simultaneously. 

 

State transition is defined as a triplet (S1,j,S2), where S1 and S2 are magazine states and j 

is a job. State transition describes the change occurring in magazine state when 

processing job j. 

 

We say that transition (S1,j,S2) where S1=(M1, α1), S2=(M2, α2) and j∈J is legal if and 

only if: 

1) j is feasible with respect to S1, 

2) α1(i)= α2(i)+pi,j for all i∈Tj, 

3) α1(i)= α2(i) for all i∈M1\Tj, 

4) M1=M2. 

Condition 1 guarantees that the initial magazine state S1 is feasible with respect to job j, 

otherwise it cannot be processed with magazine state S1. Conditions 2 and 3 enforce that 

the tools wear out properly during the processing of j. Finally, condition 4 guarantees 

that tools are not added (removed) to (from) the magazine during the processing of j. 
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Figure II. An example of a production plan of 4 jobs, 4 tools and a magazine of capacity 2. The 

numbers inside the boxes indicate which tool type is removed, added or used in the processing 

of a job. For tool switches the direction of the arrow indicates the type of tool switch: arrow 

down is tool addition, arrow up is tool removal and two-headed arrow is tool replacement. The 

magazine state in each phase is described below the processing order and the length of the bar 

illustrates the remaining life-time of the tool. 

 

Production plan P is an ordered set of state transitions P={(S1,j1,S2), …, (S2n-1,jn,S2n)}. 

We say that production plan P is legal with respect to capacity K and job set J if and 

only if: 

1) j1, j2, …, jn is a permutation of J, 

2) state transitions (S1,j1,S2), …, (S2n-1,jn,S2n) are legal, 

3) magazine states S1, …, S2n are legal with respect to capacity K.  

An example of a production plan is given in Fig. II. This particular plan is for a problem 

instance of 4 jobs, 4 tools and capacity 2 tool magazine. 

 

Cost function Cplan(P) for production plan P={(S1,j1,S2), …, (S2|T|-1,j|T|,S2|T|)} is: 
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Formula (1) calculates the quadratic time (see Fig. 1) of the production plan P. Because 

the completion times of the jobs are not directly available in the production plan they 

must be summed up. The processing time of the first job 
1j

p  delays all the |T|-1 jobs 

after it by the time 
1j

p so it must be multiplied by |T|-1. The tool switches before the 

first job delay all the jobs by the time c(S0,S1) thus it must be multiplied by |T|. The 

contribution of each job to the quadratic time is summed up similarly in formula (1). 

 

Scheduling with wearing tools  problem (SWT):  given tool type set T, job set J and 

capacity K find a production plan P which is legal with respect to capacity K and job set 

J and  Cplan(P) =min! 

 

Formula (1) is quite similar to the objective function of the single tool problem studied 

by Akturk et al. (2002) but the cost calculation between the jobs is more complex due to 

the multiple tool types and variable tool type switching times. 

 We defined for each job j the total processing time pj and for each tool i the 

processing time pi,j. If we assume that ∑ ∈
=

jTi
jji pp ,  then we do not need the value pj. 

We should not however make this assumption in general because it is possible that the 

job is processed with several tools at the same time (c.f. PCB assembly with a dual-

cantry placement machines). It is also possible that some jobs require longer preparation 

or post-processing than others. These times can be included in the job processing time. 

 If we consider the single tool problem presented in Akturk et al. (2002) we 

observe that it is a special case of the SWT-problem stated above. This can be seen as 

follows. Let us assume that we are given an instance of the single tool problem with 
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TC tool switching time, 

pj processing time of job j  where j=1,…,k. 

 

Our task is then to sequence the n jobs and perform the tool switches in such a way that 

the average job completion time is minimized. This can be transformed to an instance of 

the SWT-problem simply by defining: 

 

Tool set  T={1}, c1=TC and l1=TL, 

Set of jobs J={1, 2,…,k} and for all j∈J: p1,j=pj and Tj={1}, 

Capacity of the magazine K=1. 

 

Then, an optimal solution to SWT-problem instance would give an optimal solution to 

the original problem instance. It has been shown by Akturk et al. (2002) that the single-

tool change problem is NP-hard and therefore the SWT-problem is also NP-hard. 

  

3. MILP formulation for the SWT-problem 

The MILP formulation for the SWT-problem is useful when evaluating the efficiency of 

the heuristic algorithms of Section 4. It will also also be used as a basis of the Lagrange 

relaxation described in Section 5. Let us first define the problem parameters: 

 

Tcount number of tools (i=1,…,Tcount), 

Jcount number of jobs (j=1,…,Jcount), 

li lifetime of tool type i tool, 

ci time required to add or remove tool type i tool 

pj total processing time of job j, 



 13 

pi,j processing time of job j for tool type i, 

hi,j 1 if job j requires tool type i, 0 otherwise, and 

K number of tools the magazine can hold simultaneously. 

 

The decision variables are (t=1,…,Jcount): 

 

xj,t 1 if job j is processed at time t, 0 otherwise, 

bi,t remaining life-time of the tool type i at time t, before processing t
th

 job, 

ai,t remaining life-time of the tool type i at time t, after processing t
th

 job, 

zi,t 1 if tool type i is in the magazine at the time t, 0 otherwise, 

si,t 1 if tool type i is removed or added at the time t, 0 otherwise, 

ri,t 1 if tool type i is replaced at time t, 0 otherwise. 

 

The SWT-problem can then be stated as: 

 

∑ ∑∑ ∑ = == =
=++−+−

countJt countTi
ititi

countJt countJj
jtj crstPpxtP
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s.t.         

∑ =
−=

countJj
jitjtiti pxba

,...,1
,,,,   i=1,…,Tcount, t=1,…,Jcount   (3)

  

∑ =
=

countJj
tjx

,...,1
, 1    t=1,…,Jcount     (4) 

∑ =
=

countJt
tjx

,...,1
, 1    j=1,…,Jcount     (5) 

∑ =
≥

countJj
jitjti hxz

,...,1
,,,    i=1,…,Tcount, t=1,…,Jcount   (6)  

si,t ≥ zi,t – zi,t-1    i=1,…,Tcount, t=1,…,Jcount   (7) 
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si,t ≥ zi,t-1 – zi,t    i=1,…,Tcount, t=1,…,Jcount   (8) 

si,t ≤ (1-zi,t)+(1-zi,t-1)   i=1,…,Tcount, t=1,…,Jcount   (9) 

ri,t ≥ (bi,t – ai,t-1) / li – si,t  i=1,…,Tcount, t=1,…,Jcount   (10)  

∑ =
≤

countTi
ti Kz

,...,1
,    t=1,…,Jcount     (11)  

zi,t li ≥ ai,t,    i=1,…,Tcount, t=1,…,Jcount   (12a) 

zi,t li ≥ bi,t,    i=1,…,Tcount, t=1,…,Jcount   (12b)  

xj,t, zi,t, si,t, ri,t ∈{0,1},   i=1,…,Tcount, j,t=1,…,Jcount   (13) 

ai,t, ≥ 0,    i=1,…,Tcount, t=1,…,Jcount   (14a) 

bi,t ≥ 0,     i=1,…,Tcount,  t=1,…,Jcount   (14b) 

zi,0 = ai,0 = 0    i=1,…,Tcount     (15). 

 

Objective function (2) calculates the quadratic time and is essentially same as function 

(1).  Constraint (3) binds the transition variables so that tool wearing actually occurs. 

The next two constraints guarantee that every job is processed exactly once. Constraint 

(6) says that all the tools required during each time period must be in the magazine. The 

following constraints (7) and (8) enforce that whenever a tool is added or removed its 

decision variable is set to 1. Constraint (9) prevents the addition of a tool when a 

replacement of the tool type in question is needed. This must be enforced because tool 

addition is cheaper than tool replacement. Tool replacement occurs when tool removal 

or addition is not made, but the life-time of the tool increases from the previous time 

period (10). Constraint (11) says that the given magazine capacity must not be 

exceeded. If tool type is not in the magazine its life-time must be 0, this is formalized 

with constraint (12). The constraints (13) and (14) set the domains for the decision 

variables and constraint (15) says that the processing starts with an empty tool 

magazine. 
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 Note that in this formulation a tool is always replaced by a new one when 

removed from the magazine. This is the case even if its remaining life-time were long 

enough to allow further use. A simple instance of the SWT-problem is shown in Fig. III.  

 

Figure III. Simple SWT-problem instance. The capacity of the tool magazine is K=2.   

 

4. Heuristics 

This section introduces two different methods for solving the SWT-problem. The first 

one is a simple local search which starts with the SPT-order and improves it by making 

changes to the job processing order. The second method is a genetic algorithm which 

utilizes randomness in the search. Both of these methods are guided by a cost function 

which calculates the average cost for a certain order of jobs. The cost function must find 

the optimal tool switches for a fixed job processing order in order to minimize the 
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average job processing time. To solve this, what we call the tool scheduling –problem, 

the cost function applies a tool switching policy which we develop first. 

 

4.1 Tool switching policy 

The tool scheduling -problem is trivial if the magazine can accommodate only one tool 

at a time (and each job requires one tool only), see Akturk et al. (2002). In this case the 

tool is switched when it can no longer process the next job in the order. This happens 

when it’s life-time expires or the next job requires a different tool. However, in the case 

of multiple tool types and a tool magazine capable of storing several tools 

simultaneously, we have more degrees of freedom and the costs depend on the decisions 

in the management of the magazine.  

 The solution methods for the SWT-problem we present later require that the cost 

function which solves the tool scheduling –problem is fast. This is due to the fact that 

one run of the genetic algorithm (GA) may make hundreds of thousands of cost 

evaluations. A greedy heuristic which proceeds iteratively through the job sequence and 

makes locally best tool switches is therefore our choice. There are three types of 

situations tool switching policy must solve: 

1) tool which is needed by the next job is not in the magazine, 

a) there is space in the magazine for the tool or 

b) the magazine is full, 

2) tool is worn out, i.e. it is not able to process the next job, 

3) tool is able to process the next or is not needed by the next job. 

The cases 1a, 2 and 3 are trivial. In case 1a our tool switching policy simply adds the 

new tool to the magazine and in case 2 the worn out tool is replaced with a new tool. In 

case 3 no action is necessary. The case 1b is more complex because we must remove a 
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tool which is currently in the magazine. The Keep Tool Needed Soonest (KTNS) –rule 

is optimal for the basic tool loading –problem. It is easy to see that the KTNS-rule is not 

optimal in the case of wearing tools when minimizing the average processing time. For 

this, consider a case where there is a completely worn out tool in the magazine, i.e. this 

tool cannot process any more jobs. It is then more cost-efficient to remove this tool than 

any other tool with the same removal cost. KTNS would not necessarily select this tool 

because it does not consider the remaining life-time of tools at all. Another problem 

with KTNS is that it does not take the removal costs of the tools into account either. 

Based on this we formulate a revised  removal rule.  

 The easiest way to incorporate the remaining life time of tools to the removal 

rule is to compare the wearing out times instead of the times when they are needed the 

next time. We propose a rule which Keeps the Tool which Wears out Last  (KTWL). 

The wearing out times, which are calculated from the jobs still to be processed, are also 

divided by the switching costs. The tools which are not used any more are naturally put 

at the front of the list of removals. This kind of rule has several appealing properties: 

• completely worn out tools are removed first according to their switching costs, 

• tools with long life-times are removed rarely from the magazine, 

• tools with the same usage distance are selected based on the removal cost, 

• both of the new factors, life-time and switching costs, are taken into account. 

A problem with this rule is that if the life-times are long in comparison to the processing 

times then all tools can have the same wearing-out time. The KTWL-rule chooses the 

tool with the lowest switching cost. This means that the rule makes an implicit 

assumption that the tools are not removed from the magazine before they are completely 

worn. The smaller the magazine is with respect to the number of tools and the longer the 
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life-times, the worse this rule will work. The rule can be improved by combining the 

KTNS and KTWL rules to a HYBRID-rule by the formula: 

 

dhybrid(i,r,O,t)=(f*dktns(i,O,t) + (1-f)*dktwl(i,r,O,t)) / ci   

 (16). 

 

In this formula O is the processing order of the jobs, t is the current index in O, i is the 

tool type for which we are calculating the rule value and r is the remaining life-time of 

the tool of type i. Functions dktns and dktwl calculate the values of the KTNS and KTWL 

rules. The function dktns calculates the distance to the next job using tool type i and dktwl 

calculates the distance when the tool (i,r) will wear out. These functions quantify their 

values as number of jobs, for example if dktwl returns value 2 then the tool (i,r) wears out 

before the t+3
th

 job. Parameter f is a weighting factor for the two rules. 

We are now ready to formulate our heuristic for the tool scheduling –problem 

(SWTC, see Appendix A for implementation). Let us assume that the current magazine 

state is S and the next job of the sequence is j. For every tool type i in Tj there are three 

main cases which we outlined above. In case 1 the heuristic adds a tool of tool type i to 

the magazine if it isn’t full. If the magazine is full, the removal rule is applied to select a 

tool which is then replaced. In case 2 the tool is replaced with a tool of same type and in 

case 3 no action is necessary. The SWTC-algorithm proceeds iteratively through the job 

sequence given by the parameter jobs and maintains the magazine state. The parameter 

K is the capacity of the magazine and R gives the rule to be used (KTNS, KTWL or the 

weighted combination of these – HYBRID). Upon return the value of SWTC is the 

quadratic time of the job sequence.  
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4.2 k-optimal local search 

The SPT-rule (shortest processing time first) together with our tool switching policy 

solves the SWT-problem heuristically. This simple rule ignores the life-times and 

magazine allocations of the tools totally. Although the average cost for the SPT-order 

may be far from optimal, this order can still be used as a starting point for local search 

algorithms.  

 The k-optimal local search algorithm (LS(k)) searches in the neighborhood of 

the currently best solution and greedily proceeds to the direction of better solutions 

according to the SWTC-algorithm. The neighborhood consists of all orderings which 

can be reached with a chain of the length at most k changes. A change is either a swap 

of two jobs in the sequence or a move of a job into a new position. The maximal chain 

length k is given as a parameter. LS(k) proceeds greedily to the best possible new 

solution in the neighborhood of the current solution if it is better than the current one. 

The same is reiterated until no improvement is found. 

 

4.3 Genetic algorithm 

The GAPSM algorithm described in this section is a modification of the GAPS, which 

was developed by Akturk et al. (2002) for the single tool problem. Interested reader is 

referred to Reeves 1995 (pp.151-188) for a general description of a genetic algorithm 

(GA) and Akturk et al. (2002) for the description of the original GAPS algorithm. 

GAPSM has many technical details which are not of great importance here, therefore 

only an overall description of the algorithm is given. The key components of a GA 

include coding an individual, fitness evaluation, crossover, mutation and selection. 

These components are described next and after that a brief description of the main 

phases of GAPSM is given. 
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 In the SWT-problem a set of jobs J is given as an input. Each individual of 

GAPSM population describes some permutation of the jobs in J. In order to make our 

GA work, the individuals must be coded so that they can describe all the |J|! possible 

permutations. The coding of an individual is based on the idea of problem space search, 

see Storer et al (1983); an individual appears as a vector of perturbation factors, which 

are real numbers from the interval (0,1]. These are used as multipliers of the processing 

time of the jobs. Now, it is possible to use almost any kind of deterministic base 

heuristic to calculate an order for the jobs from these perturbed processing times. 

Determinism means here that when given certain processing times, the heuristic 

produces always the same order. GAPSM uses the SPT-rule which sorts the jobs in 

order of increasing processing times. It is easy to see that by choosing the perturbation 

factors properly, one can generate any of the permutations of the jobs by applying the 

SPT-rule to these perturbed processing times. In this way, an individual which is an 

ordering of the jobs is described fully by two components: a perturbation vector and the 

base heuristic. 

 The fitness of an individual is evaluated in two steps. First, GAPSM creates with 

the SPT-rule (our base heuristic) a job sequence. The processing times which have been 

multiplied with the perturbation vector of the individual are used in the first step. In the 

second step, the result of the first step serves as an input to the SWTC-algorithm. Its 

result (the average processing cost for the given order) is the fitness of the individual. 

This is the major difference between GAPS (Akturk et al. 2002) and GAPSM, since 

GAPS uses a different kind of fitness evaluation heuristic. 

 In the crossover, parents are chosen by tournament selection. The number of 

tournament rounds is selected randomly from an interval which is given as a parameter. 

For example, if the number of tournament rounds is 0 then the selection of the parents is 
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purely random. After the selection of the parents, the algorithm takes the first half of the 

perturbation factors from the other parent and the second half from the other. These 

halves are then catenated to form an offspring. 

 Each individual in the population is allowed to mutate with a small probability 

during each iteration of the GAPSM. When a mutation event occurs, the algorithm 

selects one random position in the perturbation vector of the individual in question and 

replaces it with a random number from interval (0,1]. 

 During each iteration of GAPSM one offspring is created in the manner describe 

above. This offspring then replaces the worst individual (i.e. the one with the highest 

average processing cost) of the current population. All the other individuals are directly 

transferred to the next iteration. 

GAPSM algorithm begins by creating an initial population of certain size (a 

parameter). The perturbation factors of the initial population are chosen from the 

uniform distribution of (0,1]. In the evolution phase GAPSM forms a new generation of 

the individuals as described above. The evolution phase continues given number of 

iterations and the final result of GAPSM is the job sequence of the individual with the 

best fitness after the last iteration. 

 

4.4 Using local search in GA 

There are several ways to incorporate the k-optimal search to the GA of section 4.3.  

The most obvious and simple way to improve the population is to apply the k-optimal 

algorithm to the individuals of the final population. GAPSM2 uses this technique 

because there is no guarantee that the individuals of the population are even locally 

optimal when GAPSM finishes. 



 22 

 Instead of doing post-processing like in GAPSM2, one can try to do the 

improvements along the way as GAPSM iterates. This, however, imposes the question 

of how to change the individuals. One must notice that changing the perturbation factors 

of the individuals is the only way to modify the order of the jobs due to the use of the 

base heuristic (see section 4.3).  This also means that the local search algorithm of 

section 4.2 can not be used directly. One cannot swap the factors directly in order to 

swap two jobs in the job sequence: proper rescaling of the factors is necessary. 

 The algorithm GAPSM3 subjects a given percentage (a parameter) of the 

population for improving moves at each iteration. These improving moves replace the 

mutations of GAPSM. In the manipulation, a single improving move for two sequential 

components of the perturbation vector is made. Move operation manipulates the 

perturbation factors of the jobs in a way which makes them swap their positions when 

the base heuristic is applied. More general swaps are avoided in order to cut down 

running times. The GAPSM3 uses also the k–optimal search after the evolution phase to 

find the (local) optimums for the individuals of the final population. 

 

5. Lower bounds for the SWT-problem 

The exact solution formulation of  section 3 uses a plenty of 0/1-variables; |J|
2
+5|J||T| 

in total. Because of this and the fact that the SWT-problem is NP-hard, we find it highly 

unlikely that optimal solutions for problems of reasonable size (e.g. 100 jobs, 20 tools) 

are found within bearable timelimits.  

 A simple way to calculate the lower bounds is to use a linear relaxation of the 

problem. In linear relaxation one simply replaces all integer variables with real 

variables. After this the linear problem can be solved with the standard simplex 
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algorithm which is normally efficient enough for practical sized problems. The problem 

with this approach is that the bounds found in this way are often quite loose. 

 

5.1 Lagrange relaxation 

Another more sophisticated and efficient method is the Lagrange relaxation (see Reeves 

1995, chapter 6 for example). The idea is to relax some of the constraints and move 

them to the objective function. The relaxed constraints are multiplied with factors which 

affect to the quality of the lower bound. It can be shown (using the dual problem) that 

the optimal value for the relaxed problem is always a lower bound for the original 

problem.  In the following, we use the subgradient method for tuning the constraint 

multipliers. 

The decision variables x and z are the ones we are actually looking for in the 

model of section 3. The other variables can either be derived from these or are not of 

interest. We studied several different relaxations but none of them gave significant 

improvements in running times or, if running times were fast, the quality of the bound 

was not significantly better than with the linear relaxation. The first attempt was to relax 

the constraints (4) and (5). These were moved to the objective function (1) in the form: 

 

∑ ∑= =
−+−

countJj countJt
tjttjt xvxu

,...,1 ,...,1
,, )1()1(      (17) 

 

where u  and v are the Lagrange multipliers for these constraints. This relaxation gave 

significant improvement in the running times but the lower bounds were loose, only a 

bit tighter than using the linear relaxation. Several other relaxations were tested but 

none of them worked satisfactorily.  
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5.2 The SPT-order 

The SPT-order is optimal if we omit the tool switches. This gives rather weak lower 

bound when the time of tool switches take a considerable time with respect to the 

processing time. In order to be able to add the tool switches to the schedule we need to 

simplify the problem so that the SPT-order is optimal even with the tool switches. The 

simple example in Fig. IV shows that even if the capacity of the magazine is considered 

to be infinite and the processing of a job can be interrupted, the SPT-rule is still 

suboptimal.  

 

 

Figure IV. The suboptimality of the SPT-order in a simplified SWT-problem instance where the 

tool switching time is 1 for all tools. In the schedule T1,…,4 is a tool add. Tool life-times are 1, 1, 

1 and 2. 

 

The suboptimality is caused here by the multi-tool property of the problem. In order to 

make the SPT optimal we would have to simplify the problem to a single tool problem 

and allow processing interruptions. 

  

6. Empirical results 

We wanted to find out how large problems can be solved to optimality within 

reasonable time by implementing the mathematical model of section 3. Another goal 

was to assess the heuristics of this research against the optimal solutions. This was, 
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however, possible for small problem instances, only. We therefore compare the 

heuristics experimentally for problems of larger size. 

The problem instances were generated with randomization. For the data generation 

process the following parameters were given: 

• number of jobs |J|, 

• number of tools |T|, 

• capacity K, 

• interval for the number of tools per job Toolsjob, 

• interval of processing times of jobs Jobtimes, 

• interval of tool life-times Toollife-times, 

• interval of tool switching times Toolswitch-times. 

Uniform distribution was used for all the intervals in the data generation process. The 

program definition described in section 3 was implemented with the ILOG solver. 

 The purpose of the first test run was to evaluate how large problem instances can 

be solved to the optimality within reasonable time. This information is important for 

two reasons. First, we need it when designing the remaining test runs, especially when 

evaluating the heuristics againts the optimal solutions. Secondly, it is interesting to see 

whether optimal solution of problem instances of practical size can be expected. Two 

critical factors affect to the number of decision variables of the MILP formulation: tool 

set size and the number of jobs. We therefore consider three types of problem instances: 

high-, medium- and low tool usage problems. In high tool usage problems the number 

of different tools used by the jobs is small and in low tool usage problems the number 

different tools used by the jobs is large. In the high tool usage problems the size of tool 

set is 10% of the size of the job set. For medium and low usage problems these 

percentages are 20 and 40. Table I shows the percentage of the problems which the 



 26 

ILOG system was able to solve successfully. All tests were performed on Pentium 4 

2,0GHz, 512 Mb main memory and Windows 2000. 

 

Table I. Exact solution of SWT-problem. The table shows the percentage of the problem 

instances (out of 30) that ILOG solver was able to solve to optimality within a limit of one hour. 

The parameters used in the generating process of this test data are summarized in appendix B.  

Number of jobs 

Tool usage 10 12 16 20 

High 100 % 100 % 100 % 3.3 % 

Med 100 % 90 % 3.3 % 0.0 % 

Low 97 % 43 % 0.0 % 0.0 % 

 

 

In test run 2 the aim was to find out how the different tool removal rules affect 

to the processing costs. In the heuristic algorithms the choice of the rule guides the 

search and this is why we decided to solve the costs of 1000 random orders for each 

problem instead of searching for the best possible orders. This kind of test makes it 

possible to evaluate the tool switching policy as isolated from the search procedure. The 

hypothesis was that for smaller problems in which the tool life times are long in 

comparison to the total completion time, the KTNS works better than KTWL. This is 

important for later test runs, because we would like to find out the “best” tool switching 

policy. It would allow us to use the same tool switching policy for all runs. The hybrid 

rule based on the KTNS and KTWL was therefore tested with several factors and the 

best one is reported in Table III. From the results we can see that the KTNS is always 

worse than the hybrid or KTWL. Surprisingly, the KTWL is in most cases better than 

the hybrid rule, although it has some obvious flaws. The optimal setting for the factor of 
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the hybrid rule in this test run is between 0.35-0.6. Inside this interval the differences 

were statistically insignificant.  

 

Table II. Effect of the removal rules to the average cost. The test data was generated with the 

following parameters: |J|={20,30,50,100}, T=10, K=4,  Toolsjob~U(1,2),  Toollife-times~U(7,9) and 

Toolswitch-times~U(2,3). The numbers are averages of quadratic times of 1000 random orderings.  

 Number of jobs 

 20 30 50 100 

Rule average stdev average stdev average stdev average stdev 

KTNS 1728 135,8 4170 177,5 11740 409,4 50860 1563 

KTWL 1723 121,3 3946 106,8 10670 284,3 45300 1887 

Hybrid 1725 121,2 3950 99,70 10700 275,1 45200 1686 

 

 The test run 3 compares the heuristic solutions to the optimal solutions. It can be 

seen from Table III that at least for small problem instances the heuristics are very 

effective. The number of jobs (12) and tool category (med) was chosen according to the 

test run 1. It can be seen from Table III that all the heuristics find near optimal solutions 

for the small problem instances. The GAPSM3 algorithm is on the average best and its 

standard deviation is also the smallest. 
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Table III. Comparison of the optimal and heuristic solutions. The “average” indicates the 

average cost of 30 problems, “stdev” is the standard deviation of these costs, “smallest” and 

“largest” are the percentages of the deviations from optimal solutions and “Optimal solutions” 

indicates the number of optimal solutions for the algorithm. The test data were generated with 

the following parameters: |J|=12, T=2, K=2,  Toolsjob=1,  Toollife-times~U(7,9) and Toolswitch-

times~U(1,3).  

Algorithm 

 Opt GAPSM GAPSM2 GAPSM3 SPT LS(2) 

Average 409 412 411 411 439 416 

Stdev 50.9 50.8 50.6 50.6 53.7 51.2 

Smallest 

difference 

0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 2,97 % 

Largest 

difference 

0.00 % 1,31 % 1,31 % 1,31 % 12,8 % 5,02 % 

Optimal 

solutions 

28 13 23 24 0 7 

 

 

 The test run 4 is used to find out the differences between the heuristic algorithms 

for larger problem instances. From the computational experience of the test run 2, we 

use the KTWL rule in our tool switching policy. One can see from Table IV that 

GAPSM2 is the overall winner, although the local search is surprisingly close to it.  
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Table IV. Comparison of the different heuristic methods for large problem instances. “Average” 

is the average cost of 30 problems, “stdev” indicates the standard deviation of the costs and 

“best” tells the number of lowest costs for the algorithm. Local search uses maximum depth k=2 

and tool switching policy applies the KTWL-rule in tool removals. The number of iterations for 

GAPSM1/2/3 is 50000, size of the population size is 400 and the mutation probability is 0.01. 

The following parameters were used in the generation process of the test data: |J|=100, T=20, 

K=4,  Toolsjob~U(1,3),  Toollife-times~U(7,12) and Toolswitch-times~U(2,4).  

 GAPSM GAPSM2 GAPSM3 SPT LS(2) 

Average 38980 32550 32580 44280 32620 

Stdev 1660 1280 1290 1760 1240 

Best 0 12 10 0 8 

 

7. Conclusions 

A scheduling problem with wearing tools was considered. The previous studies on this 

subject have either omitted the tool switches due to tool wear completely or 

concentrated on a single tool problem. The problem definition (SWT) of present 

research includes cases where there are multiple tools, every job can use a set of 

different tools and the capacity of the magazine for storing the tools in the processing 

machine is limited. This is a generalization of the problem presented by Akturk et al 

(2002) and it is also a NP-hard problem. 

 An optimal solution in a form of an integer formulation was given. The number 

of decision variables in this model is 5|T||J|+|J|
2
, where T is the set of tools and J is the 

set of jobs. It was observed that problem instances of practical size were unsolvable 

within reasonable time limits. Our model can, however, be used for smaller problem 

instances to obtain an idea of how close our heuristic solutions are to optimal solutions. 

 Several heuristics to the SWT-problem were introduced.  The k-optimal local 

search is a very simple and fast hill-climbing algorithm which makes only improving 
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moves to the job sequence. Initial job sequence can be obtained, for example, by using 

the shortest processing time first –rule. The GAPSMx-algorithms are more complex and 

also more efficient, and they are based on the idea of the “problem space search”. On a 

coarse level these algorithms are quite similar to the one designed by Akturk et al 

(2002). The main difference lies in the cost evaluation function which must now 

consider the magazine capacity and the multiple tools used by a job. From empirical 

testing it was observed that the best algorithm of these was for small problem instances 

always within 1.3% from the optimal solution cost and on the average 0.11%. 

 In addition to solution algorithms, two lower bounding methods were 

considered. The first one is based on linear relaxation. The other lower bound, based on 

the Lagrange relaxation of the integer formulation did not give significant 

improvements in running time. 

 The SWT-problem could still be generalized. One possibility were to allow tools 

of different sizes. In some applications, like PCB assembly, it is common that one tool 

may require several positions from the magazine. In these cases the capacity is 

calculated as slots instead of number of tools it can hold. 

Because of the limited capacity of the tool magazine it is possible in this 

problem formulation that a tool is removed from the magazine before it is completely 

worn out. This raises the practical issue of how to deal with old tools which could still 

be used for some jobs. The formulation of the problem allows adding used tools, but our 

heuristics and the MILP formulation add only unused tools because the cost function 

does not include the tool usage costs. If these are included, one must either use 

multiobjective optimization or use single objective optimization with several different 

factors. This would also require that costs are assigned for all tools. 
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Two important assumptions were made in this paper: deterministic tool-life and 

uninterrupted processing of jobs. Interruption between different tools could be allowed 

but the constant “switching event” cost was considered to be so high that it would not 

be beneficial. It would also complicate the problem definition and thus make it even 

harder to solve. Further research on problems with stochastic tool life-times and 

interruptions are planned. 

Further, it was assumed that the tool magazine is empty at the beginning of the 

scheduling. In dynamic job scheduling this needs not to be the case but the scheduling 

will be done on the fly from a situation where a number of jobs has been already 

processed. 
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Appendix A. Job sequence cost evaluation algorithm SWTC 

SWTC(jobs, K, R) : totaltime 

 totaltime:=0   -- average time 

 usedtime:=0   -- processing time so far 

 M:=∅    -- setting tool magazine empty 

 For all i ∈ T do 

  α(i):=0   -- setting life-times of the tools to zero 

 End for 

 

 For t=1 to length(jobs) do 

  j:=jobs(t) 

  For all i ∈ Tj do 

   If  i ∉ M then 

    If |M| ≥ K then  -- if magazine is full then apply removal rule 

     let r:=chooseToolToBeRemoved(jobs, R, M, α, t) 

     M:=M \ {r} 

     α(r):=0 

     usedtime:=usedtime+cr 

    end if 

    M:=M ∪ {i} 

    α(i):=li 

    usedtime:=usedtime+ci 

   else if  α(i)<pj,i then -- otherwise add the tool 

    usedtime:=usedtime+2*ci 

    α(i):=li 

   end if 

  End for 

  totaltime:=totaltime+usedtime 

  usedtime:=usedtime+pj 

 End for  
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chooseToolToBeRemoved(jobs, R, M, α, t): tool 

 

 j:=jobs(t); besti:=null; bestv:=0 

 For all i ∈ M do 

  If  i ∉Tj  then   -- checking for tools which can be removed 

   dktns := -1  

   ri:= α(i)   -- remaining life time of tool i 

   tc:=t   -- current time index 

   while ri>0 and tc≤length(jobs) do 

    e:=jobs(tc) -- the job of the current time index 

    if i ∈ Te then  

if dktns=-1 then dktns:=tc-t 

     ri:=ri – pj,i 

    end if 

    tc:=tc+1 

   end while 

   dw:=tc – t 

 

   if R==KTNS then dis:=dktns 

   else if R==KTWL then dis:=dw 

   else             

dis:=(factor*dktns + (1-factor)*dw) / ct -- hybrid rule 

   if dis>bestv then bestv:=dis; besti:=i    

  end if 

 return besti
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Appendix B. The generation parameters for the test data of test run 1 

 

Number of 

jobs 

Size of the 

tool set 

Capacity Number of 

tools per job 

Job 

processing 

times 

Tool  

life-times 

Tool 

switching 

times 

12 low, 

     med, 

     high 

1 

2 

4 

1 

2 

4 

1 

“” 

“” 

U(3,7)  

“” 

“” 

U(7,9)  

“” 

“” 

U(1,3)  

“” 

“” 

16 low, 

     med, 

     high 

1 

3 

6 

1 

3 

4 

1 

U(1,2) 

U(1,2) 

U(3,6) 

“” 

“” 

U(7,9) 

“” 

“” 

U(1,3) 

“” 

“” 

20 low, 

     med, 

     high 

2 

4 

8 

2 

4 

4 

U(1,2) 

“” 

“” 

U(3,6) 

“” 

“” 

U(7,9) 

“” 

“” 

U(1,3) 

U(1,4) 

U(1,4) 
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Abstract 
 

The problem of scheduling jobs using several wearing tools is studied. The lifetimes of the tools are 

stochastic and one flexible manufacturing machine provided with a limited capacity tool magazine 

processes all the jobs. Problem here is to minimize the expected average completion time of the 

jobs by choosing the processing order of the jobs and tool management decisions wisely. This kind 

of situation is met in planning the production control of CNC-machines. 

 Previous studies concerning this problem have either assumed deterministic lifetimes for 

tools or omitted the wearing of tools. In our formulation of the problem, tool lifetimes are supposed 

to be stochastic and to follow some known probability distribution.  

We give a mathematical formulation for the problem. Lower and upper bound methods are 

introduced along with a genetic algorithm solving the problem heuristically. Empirical tests indicate 

that when the stochastic information is taken into account, we can reduce the average job processing 

time considerably. 

 

Keywords: CNC production, job scheduling, tool wear, stochastic tool lifetimes, heuristic 

algorithms



 

1. Introduction 
 

This paper considers the problem of Job Scheduling with Stochastic Tool Lifetimes (JSSTL). 

JSSTL-problem arises in an environment which consists of a single manufacturing machine using 

wearing tools to process some jobs (called also parts). The job set is known in advance and the task 

is to select an order of the jobs and make such tool management decisions that the expected average 

processing time of the jobs is minimized. While the order of processing the jobs is free, it is 

supposed that the order of using different tools on a given job is specific to the particular job. The 

later assumption refers to a situation where the precedence of the processing steps with different 

tools defines a total ordering. The JSSTL-problem is stochastic in the sense that the lifetimes of the 

tools follow known tool specific probability distributions. Tools can be switched only between jobs 

and the number of tools the machine can use is limited by the capacity of the tool magazine. Tools 

which are not in the magazine are kept in a secondary storage in the vicinity of the machine. A time 

cost is associated with each tool switch. If a tool is broken during the processing of a job, the 

unfinished job is discarded and it is processed again from the beginning. It is assumed that each 

time a tool is loaded in the tool magazine it is “new”, i.e. no partially worn tools are reloaded.  

Tool management literature considers tool switching occurring due to the job mix. The 

objective there is to minimize the total number of tool switches (for a fixed order of jobs) or to 

minimize the number of switching instants by grouping the jobs, see Knuutila et al. (2001). For 

infinite tool lifetimes the KTNS-rule developed by Tang and Denardo (1988) minimizes the number 

of tool switches when the order of jobs is fixed and the capacity demands of the tool magazine 

space for each tool are uniform, this was shown by Crama et al. (1994).  The study of Gray et al. 

(1993) shows, however, that tool switching occurring due to the tool wear may be ten times more 

frequent than one occurring due to the job mix.  

In the scheduling literature the tool switching is usually omitted completely. The simplest 

form of scheduling is the case where a set of jobs with certain fixed processing times is given and  

task is to choose such a processing order that the average completion time of the jobs is minimal. 

This problem can be solved for the single machine case exactly by using the shortest-processing-

time-order (SPT-rule). A more complex scheduling model including machine breakdowns with 

stochastic repair times was studied by Adiri et al. (1989). They proved that the SPT-rule minimizes 

the expected total flow time if the breakdown times are negative exponentially distributed. This 

same model with deterministic repair times was also considered by Lee and Liman (1992), who 

proved that the SPT-order is always within factor of 9/7 of the optimal flow time. Two-machine 

models has been studied by Lee (1996,1997). Common to these models is the assumption that 

breakdown or maintenance occurs only once during the processing of the jobs.  

 Qi et al. (1999) consider a single machine scheduling problem with multiple maintenance 

intervals of variable duration. Their model is equivalent to the one considered by Akturk et al. 

(2002) who seem to be the first authors to study the tool wear in scheduling. Their model allows the 

use of one tool type which has a deterministic lifetime. Although quite simple, this kind of 

formulation is relevant because it is not unusual that only one tool is used to process several 

different jobs, for example in a cutting application. A more general formulation of the wearing tools 

problem was given by Hirvikorpi et al. (2003) who allowed the use of several tool types and 

supposed that the capacity of the tool magazine is limited. This formulation assumed deterministic 

lifetimes and equal sizes for the tools. The present paper extends the model of Hirvikorpi et al. 

(2003) by relaxing the assumption on deterministic lifetimes but still keeping the equal widths. This 

brings us to a situation where the lifetimes of the tools are stochastic with known probability 

density functions. A natural question then rises how to plan the tool management and processing 

order in such a way that the processing of the jobs is as efficient as possible (in the sense of the 
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expected average completion time of the jobs). A good tool management plan should avoid 

breakdowns of tools under operation but also excessive tool changes. 

 

 Taylor’s tool-life formula is a traditional way of calculating the lifetime of a tool when 

certain parameters like cutting speed and cutting depth are given. The formulation of the JSSTL-

problem (see section 2) assumes that these parameters are fixed before the processing. Although 

this makes the model less accurate for certain types of tools, it allows us to use any kind of tool for 

which the lifetime probability distribution is known. Using Taylor’s formula in the formulation 

would limit it’s use. 

 The presentation is organized as follows. Section 2 defines the Job Scheduling with 

Stochastic Tool Lifetimes –problem. Section 3 considers two different lower bounding methods and 

calculation of an upper is also discussed. Section 4 introduces a heuristic cost evaluation algorithm 

when the order of jobs is predefined. This algorithm is used to guide the search process in the 

genetic algorithm (GA) designed for solving the joint problem of scheduling and tool management, 

as presented later in the same section. Section 5 presents empirical results computed using the lower 

bound methods and our GA. The paper is concluded in section 6. 

2. Definition of the JSSTL-problem 
 

In the Job Scheduling with Stochastic Tool Lifetimes  –problem (JSSTL) a set of jobs J to be 

processed with a single machine is given. The jobs are processed with one or several tools each, and 

the time for using a tool depends on the tool-job combination. The tools are used serially in a fixed 

order specific to each job. The machine is able to use only the tools which are in its tool magazine 

at the moment of starting the processing of the job. This magazine is of limited capacity. Each tool 

reserves the same amount of the capacity of the magazine and the time for changing a tool depends 

on the tool type, only. It is further assumed that the magazine can hold only a subset of the tools all 

the jobs require in whole. The lifetimes of the tools follow some known probability distributions. If 

a tool breaks down during the processing, the unfinished job is discarded and it is processed from 

begin again with (at least partially) renewed tool collection. The problem itself is to choose such a 

processing order of the jobs and tool management decisions that the expected average completion 

time of jobs is minimized. This formulation does therefore put no extra cost to jobs during which a 

tool has broken. In the following presentation the concepts cost and time are used interchangeably. 

 

2.1 Basic concepts 

 

While the main idea of solving the JSSTL-problem is simple, the formulation needs definition of 

new concepts. Tool realization stands for one individual tool with a certain lifetime. When the 

processing of the jobs begins there is some set ξ of tool realizations. For this set, ξ(i,l)∈Ν  stands for 

the lifetime of the l:th realization of tool i. For the sake of simplicity this definition assumes that 

there is a potentially unlimited number of realizations of each tool the processing requires. 

 Two more concepts are linear time (cost) and quadratic time (cost) denoted by cl and cq, see 

Fig. 1. Assume that a set of jobs J has been processed in some order. The linear time is the sum of 

realized processing times of all jobs in J. This time is stochastic and depends on the particular tool 

realizations observed when processing the jobs. Note that a particular job may need several 

realizations of a certain tool due to the possible tool break-downs. Quadratic time is the sum of 

completion times of the jobs in J. Dividing the quadratic time with the number of jobs (|J|) gives the 
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average completion time of the jobs of J for one set of tool life realizations. The objective in the 

JSSTL-problem is to minimize this average completion time of the jobs. 
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Figure 1. Illustration of the concepts of linear time cl and quadratic time cq when processing the jobs J={j1 , 

j2 , j3 , j4 , j5}. There is a tool management interval of variable duration between each job. 

 

2.2 A two-phase stochastic model for the JSSTL-problem 

 

We use a two-phase stochastic model for defining the JSSTL-problem. In the first phase, we choose 

the processing order of the jobs, the magazine states (see below) and the reload decisions of the 

tools between jobs. In the second phase, a cost function is used to calculate the incurred cost for all 

possible realization sets of the tools. These costs are weighted with their probabilities and then 

summed up to form the average cost under the condition that the decisions of the first phase have 

been made. The difficulty in defining even the cost function for a stochastic problem like this is the 

possibility of an infinite sequence of events (break-downs). This is why recursion is needed in the 

calculation of the costs.  

 

2.2.1 Problem instance 

 

The following parameters describe an instance of the JSSTL-problem: 

 

T set of tools, 

ci  the time required to remove (load) tool i∈T  from (to) the tool magazine (this 

is called the handling cost of tool i; the cost does not depend on the current 

allocation of tools in the magazine). 

  

J set of jobs, 

  Tj the set of tools required by job j∈J,  Tj ⊆T, 

Tj,n      the n:th  tool  required by job j (a fixed ordering of using tools is supposed for 

each job), 

  pj,n the processing time of the n:th tool for job j. 

 

K capacity of the tool magazine (the number of tools it can hold simultaneously; each 

tool consumes a single “slot” of the magazine), 
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2.2.2 Operation plan 

 

In order to define an operation plan which describes a solution to a JSSTL-problem instance, the 

concept of process state needs to be defined: 

S process state S is a three-tuple (M, R, j), where j is the job to be processed next, M is 

the set of tools currently in the magazine and R⊆M is the set of tools which have 

been reloaded just before processing job j. The projection function j(S) returns the 

job of the process state, M(S) returns the tool set currently in the magazine and R(S) 

gives the reload set. 

             

Process state S=(M, R, j) is said to be valid if and only if Tj ⊆M and feasible with respect to capacity 

K if |M|≤K. 

 

An operation plan A is defined to be a sequence of process states A=(S1 , S2 , …, S|J|). It thus fixes 

the tool management decisions and the processing order of the jobs.  

 

We say that an operation plan A=(S1 , S2 , ... , S|J|) is legal if  

1) all the process states Sk , k=1,…,|J| are valid and legal with respect to the capacity K and 

2) 
||

1

J

k =
∪ { j(Sk)} = J. 

 

2.2.3 Tool management sets and events 

 

Tool usage set U consists of three-tuples (i, r, u) where i∈T, r∈Ν and u∈R. The tuple describes the 

consumed time u for n:th realization of tool i. A tool usage set keeps record of how the tools are 

used during the processing. In addition, we define the following functions: β(U, i) returns the latest 

realization index of tool i found from set U and α(U, i) gives the consumed time for the lastest 

realization of tool i. 

 

We must define two events before we can give a cost function for processing the jobs. Assume that 

job j is currently processed with the n:th required tool, the current tool usage set is U (giving the 

consumed times of tools for j) and the set of tool realizations is ξ (the realized lifetimes ξ(i, l) are 

drawn from the lifetime distributions).  

 

Then the Tool process event is defined as follows: 

 

if α(Tj,n , U)+pj,n≤ ξ(Tj,n , β(Tj,n , U)) then the new tool usage set is U ∪ {sok}, where   

so=(Tj,n , β(Tj,n , U), α(Tj,n , U)+pj,n).  

 

This event stands for the case of successful processing of the job j by tool Tj,n in which case the tool 

usage set U is augmented by a new element sok for Tj,n.  

 

Tool reloading event is defined as follows: 

  

if n≤|Tj| and α(Tj,n)+pj,n≥ ξ(Tj,n , β(Tj,n , U)) then the new tool usage set is U ∪ {sfail}, where  
sfail =(Tj,n , β(Tj,n , U)+1, 0). 

      

This event occurs when the current realization of tool Tj,n is not able to process job j, i.e. Tj,n breaks 
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while it is used. 

 

2.2.4 Cost functions 

 

We can now formulate job processing cost function Pc(j,U,ξ,n,c). Function Pc calculates a 2-tuple 

consisting of the linear cost c of processing job j and the (updated) tool usage set U. The input 

parameters for Pc are: 

 

j job to be processed, 

U current tool usage set, 

ξ set of tool realizations, 

n current tool index used to process job j and 

c the incurred linear cost from the previous steps. 

 

Function Pc is defined as follows: 
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In the first case the job j is processed with n:th tool and the current realization of this tool is able to 

do its task, this corrensponds to the tool process event defined above. In the second case the 

situation is opposite to the above, the current realization of the n:th tool required by the job j is not 

able to process the job and a tool reload event occurs. This incurs twice the handling cost (i.e. 

remove and then load a new realization) of the broken tool and job j must be restarted with tool 1 

again. In the last case job j has been processed with all tools it requires and the processing of job j is 

ready. Function Pc then returns the incurred linear cost c and the tool usage set U after processing 

job j. 

 

The procedure PLANc calculates the average job processing cost of a given operation plan A and 

tool-life realization ξ. The general form of the procedure is:  

 

PLANc(A, k, ξ, cq, cl, U).  

 

Parameter A is the operation plan we are calculating the cost for, k is the index of the current job in 

the operation plan, cq is the quadratic time incurred, cl is the linear time incurred so far and U tells 

the state of the magazine. Now we can define the total cost of the operation plan A for the tool 

realization ξ: 

 

PLANc(A,ξ) : returns integer  

return PLANc(A, 1, ξ, 0, 0, {}); 

 

This first part of the definition is a wrapper function, simplifying the notation to be presented later. 

The general case of the procedure PLANc is defined as follows: 

 

PLANc(A, k, ξ, cq, cl, U) : returns integer 

 

 Let (Mcurr , Rcurr , jcurr) = A(k) 



 

 8 

Ustart =U ∪ {(i,β(U,i)+1,0) |  i∈ Rcurr};  -- Ustart is the new magazine state after 

      -- tool reloading has been made 

creload =  2 c(Rcurr);     -- cost of replacing the tools in this state 

(cprocess,Uprocessed)= Pc(jcurr ,Ustart , ξ,1,0);   -- calculating the cost of processing jcurr  

-- and the new magazine state 

 cfinish=cl + creload + cprocess;     -- finishing time of the job jcurr 

 

 if k<|J| then 

 

Let (Mnext , Rnext , jnext) = A(k+1);  -- Tremove is the set of tools to be  

Tremove = Mnext \ Mcurr;    -- removed when moving to the next  

-- state 

Uready=Uprocessed ∪    -- updating the tool realizations for the 

{(i, β(Uprocessed , i)+1,0) | i∈ Tremove};    -- removed tools 

 

cstate= creload + cprocess + c(Tremove);   -- cost of the state  

return PLANc (A , k+1 , ξ , cq+ cfinish ,  -- calculating the cost for the rest of  

cl+ cstate , Uready)   -- the operation plan  

 else 

  return  (cq + cfinish)/|J|     -- returning the average cost 

 

2.2.5 Definition of the JSSTL-problem 

   

The problem of  Job Scheduling with Stochastic Tool Lifetimes (JSSTL) is defined as follows:  for 

given capacity K, job set J and tool set T,  find a legal operation plan A for which   

 

Eξ(PLANc(A,ξ))=min!         (1) 

 

The operator Eξ denotes the expected value over all tool realizations (ξ) drawn from the given tool-

life distributions. 

 

2.2.6 An example 

 

 

Consider a JSSTL-problem instance consists of 4 jobs to be processed with 4 tools, see Fig. 2. 

Between each job the operation plan describes tool loadings (arrow down), removals (arrow up) and 

reloadings (two-headed arrow). The numbers in the figure indicate which tool is in question, for 

example job 1 is processed with tools 1 and 2, in this order. The tool magazine states are shown 

below the processing order. The height of a bar in tool magazine indicates the remaining lifetime of 

a tool. The capacity of the tool magazine is 2. No tool break-downs are shown in this simple 

example. 
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Figure 2. An example of an operation plan with 4 tools, 4 jobs and magazine capacity of 2 tools. 

 

3. Bounding methods 
 

One can use the MILP model of Hirvikorpi et al. (2003) (see also Appendix A) to calculate lower 

bounds for JSSTL-problem instances if certain assumptions about the lifetimes of the tools are 

made. The additional assumption is that the probability of a breakdown for each tool i∈T is 1 for 

lifetimes greater than a fixed finite time maxi. Otherwise, it is possible that some tool never breaks 

down and the lower bound would not hold. With this assumption the lower bound LBmax can be 

calculated by using the model of Hirvikorpi et al. (2003).  

Another possibility of calculating lower bounds for the problem is to assume infinite 

lifetimes for tools. The benefit of this approach is that we need not worry about the probability 

distributions of the tool-lifes. With this assumption the following model can be used to solve lower 

bounds of JSSTL-problem instances. As in section 2, let ci , K, pj and  (i=1,2,…,T and j,t=1,2,…,P) 

stand for the tool handling costs, the capacity of the tool magazine and the total processing times of 

the jobs, respectively. In addition, let define hj,i to be 1 if job j requires tool i and 0 otherwise. 
 

The decision variables are: 

 

xj,t 1, if job j is processed as the t:th in the sequence, 0 otherwise; 

zi,t 1, if tool i is in the magazine when processing the t:th job in the sequence, 0 otherwise; 

si,t 1, if tool i is removed or added before beginning the processing of the t:th job, 0 otherwise. 

 

The LBinf -problem can then be stated as: 

 

minimize 

∑t=1,…,T (p-t+1)(∑j=1,...,P  xj,t pj + ∑i=1,…,T si,t ci)      (2) 

 

subject to         

 ∑j=1,...,P xj,t = 1          (3) 

 ∑t=1,...,P xj,t = 1          (4)  

 zi,t ≥ ∑j=1..P xj,t hj,i         (5)  

 si,t ≥ zi,t – zi,t-1          (6) 

 si,t ≥ zi,t-1 – zi,t          (7) 

 ∑i=1,...,T zi,t ≤ K          (8)  

 xj,t, zi,t, si,t ∈ {0,1}         (9) 

 zi,0 = 0           (10). 
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The objective function (2) calculates the quadratic processing time. The inner summation of (2) 

consists of two parts: job processing time and tool management time (see Fig. 1). The constraints 

(3) and (4) guarantee that every job is processed exactly once. Constraint (5) says that all the tools 

required during each time period must be in the magazine. The following two constraints guarantee 

that whenever a tool is added or removed, its decision variable s is set to 1. Constraint (8) says that 

the given capacity must not be exceeded. Constraint (9) sets the domains for the decision variables 

and constraint (10) says that the tool magazine is originally empty. 

 If the occurrence of tool-lifes shorter than the processing times are allowed, then the upper 

bound for the JSSTL-problem instance is infinite. This is due to the fact that we may have to 

process some job an infinitely long time due to repeated breakdowns of some tools. One could, 

however, calculate upper bounds which hold with certain probability, but this seems to be rather 

complicated. Other possibility would be to assume that each tool i∈T lasts at least a certain 

minimum time mini. For all tools, mini has to be greater than or equal to the maximal processing 

time of tool i among all jobs, then each job can be processed within the lifetime of one tool. With 

this assumption the upper bound UBmin is calculated by using the model of Hirvikorpi et al. (2003) 

and assuming lifetimes mini for all tools. 

 

4. Heuristics for the JSSTL-problem 
 

The JSSTL-problem can be solved heuristically by using local search methods, see Reeves (1995). 

The solution presented here uses a genetic algorithm (GA) which is guided by a deterministic or 

stochastic cost evaluation algorithm (DCEA, SCEA). DCEA makes the tool management decisions 

by using the average lifetimes for the tools. SCEA exploits the stochastic information in the tool 

management decisions. Both of these cost evaluation algorithms are based on simulation. 

 

4.1 Cost evaluation based on the average lifetime, DCEA 

 

The method used in the deterministic cost evaluation algorithm is similar to the one described by 

Hirvikorpi et al. (2003).  The algorithm proceeds iteratively through the tool requests. During each 

iteration DCEA first makes some tool management decisions and then determines the processing 

cost of the current job using simulation. 

The tool management decisions DCEA must make are loading, removal and reloading 

decisions. Tool loadings are made if some of the tools the current job requires are not in the 

magazine. If the magazine runs out of the capacity when loading the tools, the algorithm must 

choose some of the tools to be removed. These tools are selected by using the removal rules 

introduced by Hirvikorpi et al. (2003). The KTNS-rule (Keep Tool Needed Soonest) chooses the 

tool which is needed latest. The KTWL (Keep Tool which Wears out Last) removes the tool which 

wears out first and the HYBRID calculates a weighted sum of KTNS and KTWL. Tools which are 

already in the magazine and are needed by the next job are reloaded if their remaining lifetime is 

shorter than the next job requires. Because the tool lifetimes are stochastic the algorithm uses the 

expected lifetimes of the tools when making the decisions. 

Once DCEA has made the necessary tool magament decisions, it simulates the processing of 

the current job. Because the real lifetimes for the tools are not known a tool may break during the 

processing. In this case the DCEA discards the unfinished job, reloads the broken tool and 

processes the job from the beginning again. This process is iterated as many times as necessary. 

When the current job has been processed successfully it moves to the next job.  
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The pseudocode of DCEA is in Fig. 3. The algorithm uses as its input J, the ordered set of 

jobs, K, the capacity of the tool magazine and R, the rule for tool removals (KTNS/ KTWL/ 

HYBRID). One should notice that in practice it is advisable to run the cost evaluation several times 

and calculate the average cost of these runs in order to get a better approximation for the expected 

cost of the given order. This is because each run calculates the cost of one realization set of tool 

lifetimes, only.  

 

DCEA(J, K, R) : average cost 

 let quadratictime = 0; 

 let lineartime = 0; 

 For all jobs j in order given in J 

  if tools needed by j are not in the magazine then 

   load the required tools and use the removal rule R if necessary; 

   add the tool management time to lineartime; 

  reload the tools which are too worn out (i.e. can not handle the job j when 

measured with the expected lifetime) and add the time required to reload them to 

lineartime; 

 

  quadratictime = quadratictime + lineartime; 

 

  for all tools i required by j 

   if tool i breaks down during processing then 

    reload the tool and begin the processing of j from the begin; 

   else 

    add the processing time with tool i to lineartime; 

 return quadratictime /|J| 

 
Figure 3. Deterministic cost evaluation algorithm. 

 

4.2 Stochastic cost evaluation, SCEA 

 

The main phases of the stochastic cost evaluation algorithm (SCEA) are the same as for DCEA. 

However, when making the tool management decisions, SCEA takes the advantage of the stochastic 

information (i.e. tool lifetime distributions) which is supposed to be known. 

For the removal decisions similar rules as for the deterministic case apply. The DCEA used 

the expected lifetime of tools when making the removal decisions. Using the expected lifetime 

means that certain percentage of the tools break down before reaching this age. Additional notation 

is needed to describe the stochastic rules: 

 

Pi(l)  the probability of tool i that the lifetime is less than equal to l,  

li(u) the lifetime of the tool i for which the theoretical breakdown probability is 

greater than or equal to u (i.e. li(u)= )(1
uPi

− ). 

 

Instead of using the expected lifetimes in the removal decisions, we parametrize the rules with the 

u-value and use the corresponding lifetime li(u) when making the tool management decisions. The 

u-value is one of the parameters of the SCEA and it enables the algorithm user to control the risk of 

tool breakdowns.  

 A greedy approach in minimizing the cost of a process plan would be to make such reload 

decisions that the expected cost of processing the next job j is minimized. Let us next formulate the 
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expected cost of processing j when the state of the tools in the magazine is known. This formulation 

requires two additional notations. Let 

 

IPi(t, d)  be the probability that tool i∈T  breaks down during the time interval [t,t+d]. 

 

The expected cost EC(j,U) of processing job j when the current status of tools is known through U 

is: 

 

EC(j, U) = EC  (j, U, 1),  

 

where 
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The recursive function EC  stands for the expected remaining cost for job j when processing it with 

tools Tj,n,Tj,n+1, …, ||, jTjT . In the first case of EC  the recursion ends because job j has been processed 

with all tools it requires. In the second case there are two possible events that can occur: tool 

process event or tool reloading event (see section 2) .  Function EC calculates recursively the 

expected cost for both of these events and weights them with their probabilities.  

The only way of minimizing the value of EC  for given j and U is to change the initial state 

of tools U. More precisely, one has to decide which tools are reloaded. A brute force approach 

would be to try all combinations of reloadings and choose the one with the lowest expected cost. 

There are, however, exponential number of such combinations with respect to the number of tools 

required by j. Furthermore, the exact evaluation of EC  leads to infinite recursion. Exact evaluation 

is however not needed if an approximate of its value is satisfactory. For an approximate value the 

depth of the recursion can be limited by setting a probability limit parameter pcut which cuts the 

recursion when the probability of the recursion path drops below this level.  

Our heuristic for tool reloads (SCEA) calculates for each tool i in the magazine the gain (i.e. 

the decrease) in the expected cost if i is reloaded. It then chooses the reloading for which the gain is 

largest. Once the reloading has been done the reloading gains are evaluated again and another 

selection is made. This is repeated as long as the expected cost decreases. Figure 4 shows SCEA on 

a coarse level. Two additional parameters, when compared to DCEA are given, the u-value and pcut. 

Through the u-value we can control the risk of tool breakdowns during the processing and the pcut 

limits the recursion when evaluating EC as described before. The u-value is given as a parameter to 

the removal rules (marked with R(u) in the pseudocode). 
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SCEA(J, K, R, u, p
cut

) : average cost 

 let quadratictime = 0; 

 let lineartime = 0; 

 For all jobs j in order given in J 

 

  if tools needed by j are not in the magazine then 

   load the required tools and use the removal rule R(u) if necessary; 

   add the time required to lineartime; 

  while the expected cost decreases 

calculate the change in the expected cost for all tools not yet reloaded; 

if the largest change is positive then 

reload the tool and add the reloading time to lineartime; 

 

  quadratictime = quadratictime + lineartime; 

 

  for all tools i required by j 

   if tool i breaks down during processing job j then 

    reload the tool and restart the processing of j from the beginning; 

add the handling time of the broken tool and the time used before 

breakdown to lineartime;     

   else 

    add the processing time with tool i to lineartime; 

 

 return quadratictime /|J| 

 
Figure 4. Stochastic cost evaluation algorithm. 

 

4.3 A genetic algorithm for job scheduling, SSA 

 

The stochastic scheduler algorithm (SSA) described in this section is a modification of the genetic 

algorithm GAPSM by Hirvikorpi et al. (2003).  The GAPSM was developed for the deterministic 

version of this problem. For a general description of a genetic algorithm (GA) and for the 

description of the original GAPS algorithm, see Reeves (1995) and Akturk et al. (2002).  

SSA has many technical details which are not of general interest, therefore only an overall 

description of the algorithm is given here. The key components of a GA include coding an 

individual, fitness evaluation, crossover, mutation and selection. These components are discussed 

next and after that a brief description of the main phases of SSA is given. 

 The coding of an individual is based on the idea of the problem space search, see Storer et 

al. (1983). In the JSSTL-problem a set of jobs J is given as an input. A single individual of SSA 

describes some permutation of the jobs in J. The individuals are therefore coded so that they can 

describe all the |J|! possible permutations: an individual is coded as a vector of perturbation factors, 

which are real numbers from interval (0,1]. Each job in J is associated with a factor which is used as 

a multiplier to the processing time of the job in question. It is now possible to use almost any kind 

of deterministic base heuristic to calculate an order for the jobs from these perturbed processing 

times. The heuristic must be deterministic in the sense that when it is given certain processing 

times, it produces always the same order. SSA uses the SPT-rule which sorts the jobs to an order of 

increasing processing times. It is now easy to see that by choosing the perturbation factors for the 

jobs properly, one can generate any of the permutations of the jobs by applying the SPT-rule to 
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these perturbed processing times. In this way, an individual which is an ordering of the jobs is 

described fully by two components: a perturbation vector and the fixed base heuristic. 

 The fitness of an individual is evaluated in two steps. In the first step SSA uses the SPT-

heuristic (our base heuristic) to create an ordered sequence of the jobs. The processing times which 

have been perturbed (multiplied) with the perturbation vector of the individual are used in this step. 

In the second step SSA uses the result of the first step as an input to the cost evaluation algorithm 

(DCEA or SCEA). The result given by cost evaluation algorithm, which is an approximate of the 

average processing cost for the given order, is the fitness of the individual. (This is the major 

difference between GAPSM and SSA, since GAPSM uses a deterministic cost evaluation algorithm 

due to the different nature of the problem it solves.) 

 In the crossover, parents are chosen by tournament selection. During each tournament round 

candidate parents are selected randomly from the population and compared against the current ones. 

The number of tournament rounds is selected randomly from an interval which is given as 

parameter. For example, if the number of tournament rounds is 0 then the selection of the parents is 

purely random. After the selection of the parents, the algorithm performs one-point crossover by 

taking the first half of the perturbation factors from the other parent and the rest from the other. 

These halfs are then catenated to form an offspring. 

 Each individual in the population is allowed to mutate with a small probability during each 

iteration. When mutation event occurs, the algorithm selects one random position in the 

perturbation vector of the individual in question and replaces it with a random number from inteval 

(0,1]. 

 During each iteration of SSA, one offspring is created in a manner described earlier. This 

offspring then replaces the individual in the current population which has the worst fitness (i.e. 

highest average processing cost). All the other individuals are directly transferred to the next 

iteration. 

The SSA algorithm begins by creating an initial population of certain size (given as a 

parameter). This population is created purely random so that for each individual every perturbation 

factor is chosen from a uniform distribution of (0,1]. In the evolution phase SSA selects the 

individuals for the next generation through direct transfer and crossover as described. After the 

selection each individual of the next generation is allowed to go through a mutation with a certain 

probability (a parameter). The evolution phase is repeated a given number of iterations and the 

result of the SSA is the order described by the individual with the best fitness after the last iteration. 

 

5. Empirical results 
 

The following test runs are based on synthesized data but the various parameters used in the 

synthesization process were given by our industrial partners. It is important to realize that the 

number of tools and jobs vary greatly depending on the size of manufacturing facility and the type 

of parts processed. For example a manufacturer producing large engines uses a flexible machine for 

which the capacity of the tool magazine is several hundreds of tools. In contrast to this, small work 

shops can have machines for which the capacity of the tool magazine is less than 20 tools.  

Based on the examples given above we use three different problem sets with 30 instances in 

each. These sets were created with the following parameters: 20 jobs with 1 tool (called small), 50 

jobs with 8 tools (medium) and 100 jobs with 20 tools (large). The tool lifetimes were taken from 

the uniform distribution U(10,90), the job processing times from U(1,10) and tool loading 

(removal) times from U(1,5). The number of tools per job for small problem instances is 1, medium 

problem instances a random number from U(1,2) and large problem instances from U(1,4). The 

capacities of the tool magazine are 1, 4 and 8. These parameters are used as default in the following 

test runs.  
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The evaluation of the expected average processing cost (EAPC) is based on sampling of tool 

realizations. Each run of DCEA or SCEA calculates the cost of one possible tool realization set and 

is thus one sample. Averaging these samples gives an approximate of the EAPC for a given order of 

jobs. 

We have two goals in our testing. The primary goal is to evaluate the performance of the 

SSA. In order do this we must first tune the parameters of the cost evaluation algorithms. The most 

important parameter is the number of samples used per cost evaluation. This is due to the fact that if 

the variance of the cost evaluation is too large then the results given by the SSA are not reliable. It 

is also possible that for variances large enough the cost evaluation algorithm is not able to guide the 

search to improving directions. The second parameter which needs to be tuned is the u-value which 

controls the risk of tool break downs during the processing.  Our secondary goal in testing is to find 

out what is gained by using the stochastic information in the optimization. One possible way to do 

this is to compare the results of DCEA and SCEA. 

  

5.1 Estimating the variance 

 

The first set of test runs measures the standard deviation of the cost evaluation algorithms. This is 

necessary to be able to find out a reasonable number of samples needed per cost evalution for 

DCEA and SCEA. Another objective is to find out how the problem size affects the standard 

deviation of the cost evaluation algorithm. From Fig. 5 one can see that the standard deviation 

diminishes rapidly as a function of the number of samples. As expected, the deviations decrease as 

the number of jobs gets larger. This is due to the fact that even minor changes in the job schedule 

have then larger proportional effect to the cost for small problem instances than for large ones. 

Based on these results 200 samples are used for medium and large problem instances in later test 

runs. For small problem instances additional test runs for 300, 500 and 1000 samples were made 

(data not shown). It turned out that the deviation was small enough for our purposes (5.5 % of the 

mean) when using 1000 samples per cost evaluation. 
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Figure 5. Standard deviation of the average processing cost for SCEA when the number of samples varies 

between 1 and 200.  The standard deviation is calculated by evaluating the cost 30 times for a random order 

with the given number of samples. The deviation is normalized by the mean of the processing cost. For 

larger problem instances (e.g. 50 and 100 jobs) the deviation is small enough (5.5% of the mean) when the 

number of samples is 200. For small problem instances more sampling (1000 samples) is required. 
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5.2 Tuning the stochastic cost evaluation algorithm (SCEA) 

 

Another important parameter in the cost evaluation is the u-value which determines the lifetimes 

used in the removal rules of SCEA and DCEA. An ideal situation would be a universal u-value for 

all problem sizes.  
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Figure 6. Tuning the u-value for the stochastic cost evaluation algorithm (SCEA).  

 

Figure 6 shows the dependence of the average processing cost as a function of the u-value. 

The u-value 0.0 is the only one showing difference of statistical importance (pairwise t-test, 

confidence 0.99) for both small and large problem instances when compared to other u-values. This 

difference is caused by tool changes and tool breakdowns in the beginning of the schedule. For 

small problem instances a too aggressive tool change politic (small u-value) causes a larger average 

processing cost because the tool changes have then a larger proportional effect than in large 

problem instances. Based on this test we use the u-value 0.5 for small problem instances and 0.0 for 

large problem instances.  

 

5.3 Evaluating performance of the stochastic scheduler algorithm (SSA) 
performance 

 

The overall performance of SSA is profiled against lower and upper bounds in this test run. The 

distribution parameters are chosen so that all jobs can be processed even if any tool breaks down as 

soon as possible. The bounds are evaluated by using the model presented by Hirvikorpi et al. 

(2003), see Appendix A. Figure 7 summarizes the results of this test. For these small problem 

instances the SSA works quite efficiently: the lower bound costs and SSA costs have no difference 

of statistical significance, when tested with paired t-test (confidence 99%). 
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Figure 7. Comparing the proposed genetic algorithm (SSA) against the lower and upper bounds for problem 

instances of  12 jobs and 3 tools. The lower bound, upper bound and SSA(DCEA) costs are shown 

proportional to the SSA(SCEA) cost. The number of iterations for SSA is 10000, the size of the population is 

200, the number of tournament rounds is taken from U(0,2) and mutation probability is 0.01. The tool 

lifetimes are taken from uniform distribution U(10,90), job processing times from U(1,10), the number of 

tools per job is 1 and the capacity of the tool magazine is 2. The upper bound uses the maximum lifetimes 

and the lower bound the minimum lifetimes. Two upper bound instances where not solved by the ILOG 

within time limit of one hour. The paired t-test shows that the lower bound and SSA results are from the 

same distribution with very high confidence (99%). The running times for SSA were less than one minute for 

all instances. 

 

5.4 Approximating the benefit from stochastic information 

 

The final test run measures the benefit from using stochastic information in the cost evaluation by 

comparing the results of DCEA and SCEA. Figure 8 shows that the average benefit is 7.8 %. In 

stochastic programming this benefit is called the value of the stochastic solution (VSSI), see Birge 

and Louveaux (1997). Based on the numbers presented in Birge and Louveaux (1997) for VSSI our 

7.8 % can be considered as a good result. 
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Figure 8. Comparing the cost evaluation algorithms for small problems. The values are based on the average 

1000 random orders and they are calculated in proportion to the SCEA cost. The number of approximation 

rounds is 200 and the u-value is 0.0.  
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6. Conclusions 
 

Stochastic scheduling and tool management was considered in this work. We gave a mathematical 

definition for the job scheduling with stochastic tool lifetimes  (JSSTL) –problem. The complexity 

of the problem prohibited us from using standard methods, like scenario and analytical approaches 

for solving this problem. The complexity was due to the recursive nature of the problem which 

requires, in a case of tool break down, to return to the earlier stages of the processing of the jobs. 

 After defining the problem we considered lower and upper bounds for the JSSTL-problem. 

Two models LBmax and LBinf for calculating the lower bounds were considered. The model 

presented in the appendix allows us to calculate a lower bound if we assume that all tools have 

some finite maximum lifetime. The model LBinf assumes infinite lifetimes for all tools and is more 

general. This gives looser lower bounds but it also allows us to calculate the lower bound for 

problem instances without restricting the probability distributions. Another advantage is that LBinf  

is somewhat easier to solve exactly because the number of discrete variables is considerably lower 

than in LBmax. The lower bounds can be calculated in restricted cases. The restriction is that the 

probability of a tool breakdown must be 0 for lifetimes smaller than any single job requires in it’s 

processing, model LBmin is based on this assumption. 

 We presented two cost evaluation algorithms, which both rely on sampling. The processing 

cost is evaluated by calculating the average of several hundreds of samples. The DCEA algorithm 

does not take advantage of the stochastic information related to the problem because it uses 

expected lifetimes in the removal and reload decisions. The SCEA algorithm uses knowledge about 

the tool probability distributions. In the removal rules, one can adjust the used lifetimes through the 

u-value, which makes it possible to control the risk of a tool break down during the job processing. 

The algorithm uses also an approximate of the EC-function to evaluate the expected processing time 

of the next job with a certain tool magazine state. This method helps us to make better tool reload 

decisions. The genetic algorithm (SSA) is basically the same as GAPSM which was presented by 

Hirvikorpi et al. (2003). The major difference is that the search is guided either the by DCEA or 

SCEA. 

 The empirical results indicate that the SSA is able to solve the JSSTL-problem near 

optimally for small problem instances. The running times of SSA were acceptable for practical 

applications. The difference between DCEA and SCEA was statistically significant. On the average 

SCEA gave 7.8 % lower average cost than DCEA thus proving that using stochastic information in 

solving the JSSTL-problem is beneficial. The sampling method used in the approximation of the 

expected cost proved to be accurate enough when using reasonable number of samples. 

 The mathematical formulation of JSSTL is rather complex and it cannot be solved with the 

existing optimization packages. Simplifying the problem to a form which enables one to use 

traditional (i.e. analytical or scenario) approaches requires more work. The cost function also 

includes only the time cost, material costs incurring from discarded jobs are not included to the 

model. Taking these into account requires the use of multi-objective optimization which 

complicates the situation even further. Another, quite straightforward possibility, is to assign a 

monetary cost for the time used, too, and then minimize the total cost incurred. 
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Appendix A. Integer Formulation of the SWT-problem 
 

The SWT-problem can be stated as follows, see Hirvikorpi et al. (2003). A set of jobs to be 

processed in a minimal average time with a single machine is given. A job requires a set of tools 

which must be placed in the magazine of the assembly machine before processing of the job begins. 

The tool set used by a job is a subset of of all tools and these sets are more or less similar to each 

others so that even identical sets may occure. The capacity of the tool magazine is limited and we 

assume that it is less than the joint capacity needed by all tools of the jobs. This problem is further 

complicated by the facts that each tool has a limited life-time (i.e. the time of proper functioning, 

when used), tool changes can only be done in between of jobs and each tool change takes certain 

amount of time to perform. It is supposed that the life-time of a tool is deterministic but it may be 

different for different tools. Further, the demand for tool changes between jobs means that the 

processing of a job can not be interrupted after it has been started. 

 

Problem instance parameters (i=1,..., |T|, j,t=1,...,|J|): 

 

ci  switch time of tool i, 

li life-time of tool i, 

pj processing time of job j∈ J, 

pi,j processing time of job j∈ J for tool i∈ T, 

Tj the set of tools required by job j∈ J,  Tj ⊆ T, 

hi,j 1 if job j requires tool i, 0 otherwise,  

K capacity of the tool magazine as counted in the number of tools. 

 

The decision variables are: 

 

xj,t 1 if job j is processed at time t, 0 otherwise, 

bi,t remaining life-time of the tool i at time t, before processing t
th

 job, 

ai,t remaining life-time of the tool i at time t, after processing t
th

 job, 

zi,t 1 if tool i is in the magazine at the time t, 0 otherwise, 

si,t 1 if tool i is removed or added at the time t, 0 otherwise, 

ri,t 1 if tool i is reloaded at time t, 0 otherwise. 

 

The SWT-problem can then be stated as: 

 

minimize  

∑t=1..T (P-t+1)(∑j=1,...,P xj,t pj + ∑i=1,…,T (si,t + 2 ri,t) ci)     (11) 

 

subject to         

 ai,t = bi,t - ∑j=1..P xjt pj,t         (12)  

 ∑j=1,...,P xj,t = 1          (13) 

 ∑t=1,…,P xj,t = 1          (14)  

 zi,t ≥ ∑j=1..P xj,t hi,j         (15)  

 si,t ≥ zi,t – zi,t-1          (16) 

 si,t ≥ zi,t-1 – zi,t          (17) 

 si,t ≤ (1-zi,t)+(1-zi,t-1)         (18) 

 ri,t ≥ (bi,t – ai,t-1) / li – si,t        (19)  

 ∑i=1,...,T zi,t ≤ K          (20)  
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 zi,t li ≥ ai,t, bi,t          (21)  

 xj,t, zi,t, ai,t, bi,t ∈ {0,1}         (22) 

 0 ≤ ai,t, bi,t          (23)  

 zi,0 = ai,0 = 0          (24). 

 

Constraint (12) binds the transition variables so that tool wearing actually occurs. The next two 

constraints guarantee that every job is processed exactly once. Constraint (16) says that all the tools 

required during each time period must be in the magazine. The following two constraints guarantee 

that whenever a tool is added or removed its decision variable s is set to one 1. Constraint (18) 

prevents the addition of a tool when the reload of that tool is needed. This is because the tool 

addition is cheaper in the objective function and we must prevent the adding when the tool is 

already in the magazine. Tool reload occurs when tool removal or addition is not made, but the life-

time of the tool increases from the previous time period (19). Constraint (20) says that the given 

capacity must not be exceeded. If tool type is not in the magazine its life-time must be 0, this is 

formalized with constraint (21). The constraints (22) and (23) set the domains for the decision 

variables and constraint (24) says that we start with an empty tool magazine. 
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