
Lu Yan

Turku Centre Computer Sciencefor

TUCS Dissertations
No 70, December 2005

Systematic Design of
Ubiquitous Systems

Systematic Design of Ubiquitous
Systems

Lu Yan

To be presented, with the permission of the Faculty of Chemical
Engineering of the Åbo Akademi University, for public criticism in
Auditorium 3102 at the Department of Computer Science at Åbo
Akademi University, on December 13th, 2005, at 10 morning.

Department of Computer Science
Åbo Akademi University

2005

Supervisor

Professor Kaisa Sere
Department of Computer Science
Åbo Akademi University
Lemminkäisenkatu 14
FIN-20520 Turku
Finland

Reviewers

Professor Ralf Steinmetz
KOM - Multimedia Communications Lab
Technische Universität Darmstadt
D-64283 Darmstadt
Germany

Professor Nahid Shahmehri
Department of Computer and Information Science (IDA)
Linköpings Universitet
S-58183 Linköping
Sweden

Opponent

Professor Antti Ylä-Jääski
Helsinki University of Technology
P.O. Box 5400
FIN-02015 HUT
Finland

ISBN 951-29-4020-5
ISSN 1239-1883

Acknowledgements

I owe my deepest gratitude to my supervisor, Professor Kaisa Sere, who is a
wonderful scholar and a demanding role model. By giving me the freedom to
choose what, when and why, she often shows me how. Despite her busy schedule,
she has always managed to find time for discussions on various aspects of my
research. Without her continuous encouragement and friendly support combined
with invaluable expert advice, this dissertation would have never been finished.
 Professor Ralf Steinmetz from Technische Universität Darmstadt, Germany and
Professor Nahid Shahmehri from Linköpings Universitet, Sweden have kindly
agreed to review this dissertation and provided valuable feedbacks. Professor Antti
Ylä-Jääski from Helsinki University of Technology, Finland has kindly accepted
the role of opponent for the public defense. I wish to thank them all for their time
and effort.
 I would like to thank the Department of Computer Science at Åbo Akademi
University and Turku Centre for Computer Science (TUCS) for generous financial
support and excellent work environment provided during my studies. I would like
to express my gratitude to the faculty, staff, former members, colleagues and
friends here, for your help, assistance and cooperation, especially Ralph-Johan
Back, Johan Lilius, Xinrong Zhou, Linas Laibinis, Luigia Petre, Marina Waldén,
Elena Troubitsyna, Mauno Rönkkö, Rimvydas Ruksenas, Patrick Sibelius, Zheng
Liang, Juha Plosila, Mats Neovius, Mats Aspnäs, Paul Lindholm, Jan Westerholm,
Linda Grandell, Kim Solin, Marcus Alanen, Pontus Boström, Orieta Celiku,
Fredrik Degerlund, Dubravka Ilic, Sebastien Lafond, Chang Li, Robert Löfman,
Sofia Nygård, Cristina Seceleanu (Cerschi), Qaisar Malik, Leonidas Tsiopoulos,
Dan Österberg, Jincheng Ni, Nayyar Iqbal, Guangcheng Niu, and Moisés Ferrer
Serra. In particular, I would like to thank my first scientific advisor here, Professor
Joakim von Wright, for providing guidance during my Master studies.
 Finally, I would like to thank my parents. Your love, understanding, and
encouragement have helped me complete this work. This dissertation is dedicated
to you.

Turku, November 2005
Lu Yan

ii

List of Original Publications

I. L. Yan, K. Sere. Stepwise Development of Peer-to-Peer Systems. In
Proceedings of the 6th International Workshop in Formal Methods
(IWFM’03), July 2003. British Computer Society Press.

II. L. Yan. Via Firewalls. In Proceedings of the 3rd International Conference

on Grid and Cooperative Computing (GCC’04), October 2004. Lecture
Notes in Computer Science 3252, Springer-Verlag.

III. L. Yan, M. F. Serra, G. Niu, X. Zhou, K. Sere. SkyMin: A Massive Peer-to-

Peer Storage System. In Proceedings of the 3rd International Conference on
Grid and Cooperative Computing (GCC’04), October 2004. Lecture Notes in
Computer Science 3251, Springer-Verlag.

IV. L. Yan, J. Ni. Building a Formal Framework for Mobile Ad Hoc Computing.

In Proceedings of the International Conference on Computational Science
(ICCS’04), June 2004. Lecture Notes in Computer Science 3036, Springer-
Verlag.

V. L. Yan, K. Sere, X. Zhou, J. Pang. Towards an Integrated Architecture for

Peer-to-Peer and Ad Hoc Overlay Network Applications. In Proceedings of
the 10th IEEE International Workshop on Future Trends of Distributed
Computing Systems (FTDCS’04), May 2004. IEEE Computer Society Press.

Shorten version available as: L. Yan. MIN: Middleware for Network-Centric
Ubiquitous Systems. In IEEE Pervasive Computing, Vol. 3, No. 3, July -
September 2004.

VI. L. Yan. Performance Evaluation and Modeling of Peer-to-Peer Systems over

Mobile Ad hoc Networks. Submitted to Performance Evaluation.

Previous version available as: L. Yan. Performance Evaluation and Modeling
of Peer-to-Peer Systems over Mobile Ad hoc Networks. TUCS Technical
Reports, No. 678, Turku Centre for Computer Science, Finland, 2005.

Shorten version available as: L. Yan. Performance Modeling of Mobile P2P
Systems. In Proceedings of the International Conference on Computer
Networks and Mobile Computing (ICCNMC’05), August 2005. Lecture
Notes in Computer Science 3619, Springer-Verlag.

.
VII. L. Yan, K. Sere. Formal Context-Aware Programming in Mobile

Environments. Submitted to Scientific Programming.

iii

Previous version available as: L. Yan, K. Sere. A Formalism for Context-
Aware Mobile Computing. In Proceedings of the 3rd International
Symposium on Parallel and Distributed Computing and the 3rd International
Workshop on Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Networks (ISPDC/HeteroPar’04), July 2004. IEEE
Computer Society Press.

VIII. Z. Liang, L. Yan, J. Plosila, K. Sere. Implementing an Asynchronous Java

Accelerator for Ubiquitous Computing. Submitted to Journal of Embedded
Computing.

Previous version available as: L. Yan, Z. Liang. Accelerating Java for
Ubiquitous Devices. In Proceedings of the 4th International Conference on
Computer and Information Technology (CIT’04), September 2004. IEEE
Computer Society Press.

IX. L. Yan. Formal Verification of a Ubiquitous Hardware Component. In Post-

Proceedings of the First International Conference on Embedded Software
and System (ICESS’04), 2005. Lecture Notes in Computer Science 3605,
Springer-Verlag.

Extended version available as: L. Yan. Formal Verification of a Ubiquitous
Hardware Component. TUCS Technical Reports, No. 637, Turku Centre for
Computer Science, Finland, 2004.

iv

Contents

Part I: Research Summary vii

 Introduction 1
 Software-Intensive Work 4
 Hardware-Intensive Work 12
 Related Work 15
 Final Words 23
 Bibliography 24

Part II: Publication Reprints 33

v

vi

PART I:
RESEARCH SUMMARY

vii

viii

1

1 Introduction

Ever since the last decade, we have been witnessing an age of ubiquity where our
home and workplace are being transformed by distributed computing. Computers
are moving off the desktop and into every part of our lives - our cars, our living
rooms, and even our coat pockets. At the same time, many other devices, from
televisions and music systems to home appliances, are themselves turning into
computers, becoming as intelligent and connected as the PCs of today.
 A decade ago, Mark Weiser1 brought forth the famous comment “The most
profound technologies are those that disappear. They weave themselves into the
fabric of everyday life until they are indistinguishable from it.”, which is de facto
the origin of ubiquitous computing [1, 2, 3]. The essence is the gracefully
integrated software and hardware to support and ease daily activities of human
society. From then on, various projects were launched in universities and
companies around the world on ubiquitous computing, including European
Community’s ambient intelligence (AmI) initiative, Georgia Tech’s Aware Home,
Inria’s Smart Office, Stanford’s iRoom, Cisco’s Internet Home, Essex’s Intelligent
Inhabited Environments, HP’s Cool Town, ATR’s Creative Space, CMU’s Aura,
Xerox’s Smart Media Spaces, IBM’s DreamSpace, KTH’s comHOME,
Microsoft’s EasyLiving, MIT’s Oxygen, Philips’ Home of the Future, UW CSE’s
Portolano, Intel’s Proactive Health, UF’s Assistive Smart House, Keio’s SSLab,
Cambridge’s TIME, etc.
 Ubiquitous systems touch on a broad array of disciplines. Though the above
projects address various aspects of ubiquitous systems, the design methodology of
these systems has not received enough attention. Nonetheless, all of these smart
objects and their applications are to be implemented into our everyday
environments. Those systems should fulfill critical requirements such as reliability,
availability, safety, security, etc. To meet this objective, the systematic design
methodology is needed and should be applied to various stages of ubiquitous
systems design flow, such as specification, refinement, verification, etc.
 In this thesis, efforts towards systematic design of ubiquitous systems are
elaborated. As we were trained with formal methods, several approaches in this
thesis are tailored in the style of formal methods. A formal method for system
development is an approach based on rigorous mathematical foundation, which
aims to establish that the derived implementation adhere correctly to its given
specification. The advantage of using formal methods in system development
process lies in the precise modeling capability and the further verification and
refinement support, which enables a stepwise development from specification to
implementation [4].
 Informal methods, such as UML modeling, network simulation and testing,
hardware software co-design, are also used in some approaches in this thesis. We
argue that there is no one method that fits all, and a synergistic interweaving of

1 Father of “ubiquitous computing”.

2

formal and informal methods will be the better way to our system design process,
where the strength of formal and informal methods complements each other [5, 6].
Therefore, in this thesis, we try to keep a good balance of formal and informal
methods, taking the advantages from both.
 The thesis is organized as an introductory part and a collection of papers. The
introductory part consists of five sections: Section II concentrates on the software
infrastructure - on building and evaluating ubiquitous system software. Section III
is dedicated to hardware infrastructure - on building and accelerating ubiquitous
system hardware. Section IV discusses a number of related works and section V
concludes the thesis with final words. The collection of papers is listed below:

X. L. Yan, K. Sere. Stepwise Development of Peer-to-Peer Systems. In
Proceedings of the 6th International Workshop in Formal Methods
(IWFM’03), July 2003. British Computer Society Press.

XI. L. Yan. Via Firewalls. In Proceedings of the 3rd International Conference

on Grid and Cooperative Computing (GCC’04), October 2004. Lecture
Notes in Computer Science 3252, Springer-Verlag.

XII. L. Yan, M. F. Serra, G. Niu, X. Zhou, K. Sere. SkyMin: A Massive Peer-to-

Peer Storage System. In Proceedings of the 3rd International Conference on
Grid and Cooperative Computing (GCC’04), October 2004. Lecture Notes in
Computer Science 3251, Springer-Verlag.

XIII. L. Yan, J. Ni. Building a Formal Framework for Mobile Ad Hoc Computing.

In Proceedings of the International Conference on Computational Science
(ICCS’04), June 2004. Lecture Notes in Computer Science 3036, Springer-
Verlag.

XIV. L. Yan, K. Sere, X. Zhou, J. Pang. Towards an Integrated Architecture for

Peer-to-Peer and Ad Hoc Overlay Network Applications. In Proceedings of
the 10th IEEE International Workshop on Future Trends of Distributed
Computing Systems (FTDCS’04), May 2004. IEEE Computer Society Press.

Shorten version available as: L. Yan. MIN: Middleware for Network-Centric
Ubiquitous Systems. In IEEE Pervasive Computing, Vol. 3, No. 3, July -
September 2004.

XV. L. Yan. Performance Evaluation and Modeling of Peer-to-Peer Systems over

Mobile Ad hoc Networks. Submitted to Performance Evaluation.

Previous version available as: L. Yan. Performance Evaluation and Modeling
of Peer-to-Peer Systems over Mobile Ad hoc Networks. TUCS Technical
Reports, No. 678, Turku Centre for Computer Science, Finland, 2005.

3

Shorten version available as: L. Yan. Performance Modeling of Mobile P2P
Systems. In Proceedings of the International Conference on Computer
Networks and Mobile Computing (ICCNMC’05), August 2005. Lecture
Notes in Computer Science 3619, Springer-Verlag.

.
XVI. L. Yan, K. Sere. Formal Context-Aware Programming in Mobile

Environments. Submitted to Scientific Programming.

Previous version available as: L. Yan, K. Sere. A Formalism for Context-
Aware Mobile Computing. In Proceedings of the 3rd International
Symposium on Parallel and Distributed Computing and the 3rd International
Workshop on Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Networks (ISPDC/HeteroPar’04), July 2004. IEEE
Computer Society Press.

XVII. Z. Liang, L. Yan, J. Plosila, K. Sere. Implementing an Asynchronous Java

Accelerator for Ubiquitous Computing. Submitted to Journal of Embedded
Computing.

Previous version available as: L. Yan, Z. Liang. Accelerating Java for
Ubiquitous Devices. In Proceedings of the 4th International Conference on
Computer and Information Technology (CIT’04), September 2004. IEEE
Computer Society Press.

XVIII. L. Yan. Formal Verification of a Ubiquitous Hardware Component. In Post-

Proceedings of the First International Conference on Embedded Software
and System (ICESS’04), 2005. Lecture Notes in Computer Science 3605,
Springer-Verlag.

Extended version available as: L. Yan. Formal Verification of a Ubiquitous
Hardware Component. TUCS Technical Reports, No. 637, Turku Centre for
Computer Science, Finland, 2004.

 We briefly summarize some major contributions and give a map to where in the
thesis those contributions appear as follows. The complete and detailed
contributions are available in the summaries of the papers in section II and section
III.

• Integrated formal and informal specification: Paper I, Paper II, Paper III,
and Paper IV.

• Integrated P2P and MANET network architecture: Paper V and Paper VI.
• Formal approach to context-awareness: Paper VII.
• Hardware design and formal verification: Paper VIII and Paper IX.

4

2 Software-Intensive Work

This section concentrates on software infrastructure - on building and evaluating
system software. The papers that have been published about the work in this
section are Paper I - Paper VII, many of which are on software architectures in
ubiquitous networking environments, because a critical issue in the design and
construction of any complex software system is its architecture [149]. In the
following paragraphs, we present a short summary of these papers.
 We started the research on ubiquitous software from neo-distributed systems,
more specifically, peer-to-peer systems. A peer-to-peer system consists of a
distributed set of peer-to-peer nodes. Every node can act both as a server and as a
client. The most characteristic features of a peer-to-peer network are that every
node is able to (a) make information available for distribution to other nodes, (b)
establish a connection to any other node in the network and (c) have access to the
information that the other nodes of the network provide. These systems give rise to
application-level virtual networks with routing mechanisms of their own [7].
 Peer-to-peer systems have recently become a very active research area due to the
popularity and widespread use of peer-to-peer systems today and their potential
uses in future applications. Peer-to-peer systems are characterized by a very large
number of autonomous computing nodes (the peers), which pool together their
resources and rely on each other for data and service. In this way, they offer many
benefits: adaptation, self-organization, load-balancing, fault-tolerance, availability
through massive replication, and the ability to pool together and harness large
amounts of resource. These benefits make peer-to-peer networking a promising
candidate towards ubiquitous networking: after establishing basic connectivity,
ubiquitous devices could self-organize and cooperatively provide network services
that are normally provided by infrastructure servers, which are often absent in
ubiquitous computing environments.

Paper I: Stepwise Development of Peer-to-Peer Systems is a case study of
stepwise development of a Gnutella-like [8] peer-to-peer system where we first
study the peer-to-peer networking paradigm. The reason for choosing Gnutella2 is
that it is the most typical pure peer-to-peer system and also the most studied one:
the Gnutella model enables file sharing without using servers. Unlike a centralized
server network, the Gnutella network does not use a central server to keep track of
all user files.
 At that time this paper was written, the peer-to-peer networking applications,
especially file sharing ones, were booming via the Internet. One search in Google
would return hundreds of peer-to-peer applications, developed academically or
commercially. After using and analyzing various peer-to-peer clients on different
platforms, we identified two common problems of the clients at that time being:

2 Gnutella is a decentralized peer-to-peer file-sharing model developed in 2000 by Nullsoft,
AOL subsidiary and the company that created WinAMP.

5

reliability (Most clients fail to provide satisfactory download service and some
buggy ones even bring down the system during our test) and extendability (Most
clients are implemented in a way that adding new services or functionalities results
to many modifications to the original specifications). These weak points motivated
us to conduct a case study on rigorous development of these kinds of applications.
 As proposed in this paper, an attractive strategy to solve the first problem is to
use formal methods in designing peer-to-peer systems. Formal methods can help
with reliability by minimizing errors in designing peer-to-peer systems. To
improve extendability, we introduce a modular and object-oriented architecture for
peer-to-peer systems, which favors a reusable, composable and extendable design.
Those are the main contributions of this paper. Another novel point in this paper is
that it is the first initiative, as far as is known, to apply formal methods to the
design process of peer-to-peer systems and the result turns out to be positive.
 The final specification in this paper is easily implemented in OO-languages.
Since one of our design goals is to build a reliable peer-to-peer system for all
platforms with possible future extensions to mobile systems such as PDAs and
smart phones, we eventually implemented the formal specification in Java [9],
partly because it is the most popular cross-platform language today. Moreover, the
code is released under GNU public open license to encourage contributions from
the open source community.

Paper II: Via Firewalls is a step further into the previous approach. When
implementing our system in Java, we realized that many networks today are
actually behind firewalls. In peer-to-peer networking settings, firewall-protected
peers may have to communicate with peers outside the firewall. In this case, a
solution should be made to create communication schemes that overcome the
obstacles placed by the firewalls to provide universal connectivity throughout the
network. This problem occurred in real-world experiments and deployments
motivated us to conduct a study of firewalls in peer-to-peer networking and achieve
a way to traverse firewalls.
 Firewalls usually examine the packets of information sent at the transport level
to determine whether a particular packet should be blocked. Each packet is either
forwarded or blocked based on a set of rules defined by the firewall administrator.
 With packet-filtering rules, firewalls can easily track the direction in which a
TCP connection is initiated. A common configuration for these firewalls is to allow
all connections initiated by computers inside the firewall, and restrict all
connections for computers outside the firewall. For example, firewall rules might
specify that users can browse from their computers to a web server on the Internet,
but an outside user on the Internet cannot browse to the protected user’s computer.
In order to traverse these kinds of firewalls, we extended our previous specification
and introduced a new descriptor Push and routing rules, which would effectively
bridge the communication between one peer inside a uni-directional firewall and
the other peer outside.
 Other kinds of common firewalls are port-blocking ones, which usually do not
grant long-time and trusted privileges to ports and protocols other than 80/443 and
http/https respectively. For example, port 21 (standard ftp access) and port 23

6

(standard telnet access) are usually blocked and applications are denied network
traffic through these ports. In this case, http would be the permitted entry to the
network. Using http protocol, for a peer outside to communicate with another peer
inside this firewall, it has to pretend that it is an http server, serving www
documents. In other words, it has to mimic an httpd program. In order to traverse
these kinds of firewalls, we extended our previous architecture and introduced a
new layer as proxy, which would act as a tunnel between peer and the Internet with
the above ideas.
 As an extension of the previous paper, the main contribution of this paper is the
refined specification and software architecture to solve the firewall problems in
real-world peer-to-peer experiments and deployments.

The increasing demand for massive storage systems has spawned an urge for a
large-scale storage solution with scalability, high availability, persistence and
security. Nowadays, the Internet has become less expensive and widespread, which
makes it possible to build an economical massive storage solution over the Internet.
It is possible to build a ubiquitous and global persistent data storage solution
designed to scale to billions of users and devices [12]. Since a major merit of the
peer-to-peer overlay is the enabling technologies that empower the leaf-nodes
underneath [59], one natural application for the overlay peer-to-peer settings is
ubiquitous and global storage.

Paper III: SkyMin: A Massive Peer-to-Peer Storage System is proposed under
the above context. The aim is to design a large-scale, Internet-based storage system
providing scalability, high availability, persistence and security.
 Our approach to constructing this massive storage file system is to implement a
layer on top of existing heterogeneous file systems. The architecture is simply
described as follows. It consists of many FS (File Server) and several NS (Name
Server). NS is the control center and FS is the storage unit. Every node in this
system serves as an access point for users. Nodes are not trusted; they may join the
system at any time and may silently leave the system without warning. Yet, we
hope the system is still able to provide strong assurance, efficient storage access,
load balancing and scalability.
 This paper documents the whole design process of the development of SkyMin
prototype. We start with the functional requirements of our system from both
users’ and system’s view, and then we address the non-functional requirements
with necessary tradeoffs, since some of them are contradictory in nature.
 The system architecture consists of one (or more) central server and many peers
which are connected to the Internet. The server works as a control point to grant the
peer’s access to the storage system, to manage the indexes of the peers’ resources
(files can be accessed by other peers who are members of the whole storage
system), etc. On the other hand, every joined peer contributes part of their local
storage space to the system, and the peer can save and retrieve files to/from the
system.

7

 For the software architecture, we specified the static design with UML class
diagram and the dynamic design with UML sequence diagram. Following the exact
specification, our prototype is implemented in Java with support of MySQL.
 The main contribution of this paper is the detailed specification of our prototype.
It describes detailed accounts of a completed peer-to-peer software-system project
which can serve as a how-to-do-it model for future work in the same field.
Although this prototype is a working subset of the initial goal presented above and
several design elements still need fine-tuning, it is already expressive enough to
support several interesting scenarios, including a groupware for small-scale
information storage in a secure way, and a distributed data center for smart home
appliances.

A mobile ad hoc network (MANET) is a self-organizing and rapidly deployable
network in which neither a wired backbone nor a centralized control exists. The
network nodes communicate with one another over wireless medium. Nodes can
only directly communicate with their neighbors. Therefore, distant nodes must
communicate with one another in a multi-hop fashion. MANET is adaptable to
highly dynamic topology resulted from mobility of network nodes and does not
require any fixed infrastructure such as base stations, therefore, it is an attractive
networking option for connecting mobile devices quickly and spontaneously. Such
merits as self-organizing and rapidly deployable make MANET also a promising
candidate for ubiquitous networking.

Paper IV: Building a Formal Framework for Mobile Ad Hoc Computing is
formal framework from the application developer’s view. After carefully studying
the typical software pattern for MANET applications, we defined a layered
software architecture framework with three key components, Network
Management, Awareness and Interaction, which buildup an intermediate layer
between the software application layer and the ad hoc networking layer.
 This paper specifies our system components with the B method [13], and models
the interactions and message communications between the components with UML
diagrams. In our framework, the three key components model different aspects of
mobile ad hoc computing. Due to the mobility of nodes in MANET, our system is
focused on the awareness of the environments, the connections between nodes and
the communication of nodes. The routing issues are also considered when nodes
are communicating with each other.
 Contributions from this paper are the proposed software architecture and the
detailed specification of each component. It forms a formal framework to enable
applications to be developed based on the three key components, which are
supposed to be executed arbitrarily in MANET. Two case studies were done in
order to testify the feasibility of our approach [14]: one is a peer-to-peer chatting
application BlueChat running on Bluetooth devices and the other is an experiment
of ad hoc network establishment and routing testing using LAN access profile of
Bluetooth [15].

8

Based on the investigations of P2P and MANET, which were already intensively
discussed in the above paragraphs, we found out that P2P and MANET share some
key characteristics: self-organization and decentralization, and both need to solve
the same fundamental problem: connectivity.
 Previously, the P2P and MANET research communities have been working
largely in isolation, while facing many common issues such as self-organization
and decentralization. We argue that it is a promising research direction to bring the
two communities together to merge the techniques used in the two areas and
perhaps discover unified tricks for the convergence of the two overlay network
technologies.
 Therefore, we conducted a study for the convergence of the two overlay network
technologies and proposed an evolving architecture towards integrating the two
technologies in building overlay network applications.

Paper V: Towards an Integrated Architecture for Peer-to-Peer and Ad Hoc
Overlay Network Applications discussed the similarities between the two overlay
networks such as (1) Dynamic topology: A node in P2P and MANET may join or
leave the network at any time and the position of a node in MANET is changing
arbitrarily, which leads to no constant routes for any nodes. Both networks have a
dynamically changing network topology. (2) Hop connection: Connections in P2P
and MANET are established via exchanging beacon messages only between
neighbor nodes. A single hop connection in P2P is typically via TCP links without
physical limits, while a single hop in MANET is via wireless links which are
usually limited by the radio transmission range. (3) Routing protocol: Both P2P
and MANET routing protocols have to deal with dynamic network topologies due
to membership changes or mobility. Typically, a host in P2P and MANET also
serves as a router, and employs some flooding-based routing protocols. These
common characteristics shared by P2P and MANET also lead to the same
fundamental challenge, that is, how to provide connectivity in a completely
decentralized environment.
 MIN architecture is the proposal of future network architecture under the
context: Today’s networks are dependent on wired or wireless infrastructure. This
dependence renders the networks vulnerable to disasters and attacks against the
fixed infrastructure that supports them. Disasters such as floods and earthquakes, as
well as wars and terror strikes, can damage or shutdown the whole network. Thus a
state-of-the-art research direction of nowadays network is on connectivity. A
network architecture that satisfies the above scenario will be radically different
from the current existing network architectures since it cannot rely on a fix
infrastructure and dedicated servers.
 Recent work on P2P overlay networks offers a self-organizing substrate for
decentralized network applications. Our general approach is to build a structured
P2P overlay with existing technologies upon the basic connectivity provided by
MANET in the absence of a dedicated server infrastructure. However, an important
challenge is that existing P2P overlay protocols were designed for the Internet,
which is a very different environment than MANET. The unique characteristics of
this emerging class of networks calls for novel architectures. We present the key

9

challenges as a set of research problems: (1) Self-organizing infrastructure: Wired
networks rely on a fixed infrastructure consisting of routers and DHCP and DNS
servers. Any damage or interfere of the server will probably make the whole
network out of service. Emerging P2P technologies promise to support self-
organizing infrastructure, but these technologies are not directly applicable to the
ad hoc wireless environments, because they are originally designed for the Internet
with constantly stationary nodes, where as nodes are arbitrarily moving in
MANET. (2) Decentralized service: Existing networks depends on dedicated
servers providing centralized basic network services such as naming, authentication
and timing etc. For instance, conventionally there are DHCP and DNS services in a
typical network, while supporting these kinds of critical network services is beyond
the capability of existing P2P networks. Our approach is to build foundations from
P2P systems, but take advantages of the hierarchical overlay structure contributed
by MANET to provide decentralized network services. (3) Integrated routing:
Integrating a P2P routing protocol into a MANET protocol is difficult. P2P
overlays in the Internet rely on the IP routing mechanism which is actually
application-level routing, while such kind of routing is usually carried out in link-
level in MANET. Although typical flooding and multi-hop routing protocols in
MANET are peer-to-peer in natural, P2P routing protocols are not directly
applicable in MANET.
 Based on the above analysis, we propose an evolving architecture which is able
to provide network connectivity in a decentralized fashion and use self-organizing
infrastructures to improve availability of today’s network. In this architecture, ad
hoc wireless networks can be combined with infrastructure-based networks through
ad hoc communications between them. Once basic connectivity is established,
hosts could self-organize and cooperatively provide network services that are
normally provided by infrastructure servers.
 The main contribution of this paper is that it proposes a novel architecture,
integrating P2P and MANET technologies together, to reduce the dependence of
networking on wired and wireless infrastructure, thus extending the reachability of
nowadays networks and increasing their resilience to disasters and attacks. Another
contribution of this work is that it is the first architecture-centric approach, as far as
known, for the construction of overlay network applications that allows us to
define a unified networking environment, taking advantages from both P2P and
MANET technologies.

Paper VI: Performance Evaluation and Modeling of Peer-to-Peer Systems
over Mobile Ad hoc Networks is a step further into the proposed architecture.
With the experiences and lessons learned from our summer projects, we identified
more technical points on P2P and MANET: (a) P2P is generally referred to the
application layer, but MANET is generally referred to the network layer, which is a
lower layer concerning network access issues. Therefore, the immediate result of
this layer partition reflects the difference of the packet transmission methods
between P2P and MANET: the P2P overlay is a unicast network with virtual
broadcast consisting of numerous single unicast packets; while the MANET
overlay always performs physical broadcasting. (b) Peers in P2P overlay are

10

usually referred to static nodes though no priori knowledge of arriving and
departing is assumed, but peers in MANET are usually referred to mobile nodes
since connections are usually constrained by physical factors such as limited
battery energy, bandwidth, computing power, etc.
 We then studied the performance issues of P2P systems over MANET from
users’ point of view since it makes greater impact on the design decisions of such
kinds of systems for mobile operators, value-added service providers and
application developers. Specifically, we want to answer the following questions:
(1) How can we perform an efficient search in mobile P2P systems? (2) and what is
the performance experience when many users try to retrieve data with parallel
downloading scheme?
 To answer the first question, the routing protocols and route discovery efficiency
of different settings for the peer-to-peer overlay and underlying mobile ad hoc
network were further investigated. There are many routing protocols in P2P
networks and MANET respectively, but all of them fall into two basic categories:
broadcast-like and DHT-like. Therefore, we conducted a survey of integrating
these protocols in different ways according to categories. As a result, we show that
the cross-layer approach performs better than separating the overlay from the
access networks.
 To answer the second question, we believe that rigorous analytical models are
definitely needed, which capture the relation between key system parameters and
performance metrics. After characterizing the variability of the system by taking
some preliminary assumptions, we then present a performance model which
captures most facets of mobile peer-to-peer systems. The novelty of our model
comes from the classification of nodes: contributor, leech, seed, and we believe it
is reasonable to have leech (pure downloader) in the model since the realistic
implication of this type may be physically constrained mobile devices (e.g. cellular
phones with limited bandwidth or associated with too expensive data transmission
charge). We then briefly discussed three analytical examples on applying this
model to capture the behavior of the system in steady states.
 The main contribution of this paper lies in the answers to the above two
questions. In other words, we conducted a survey of integrating P2P and MANET
overlays in different ways according to categories and presented a performance
model which captures most facets of mobile peer-to-peer systems. We hope our
results would potentially provide useful guidelines for mobile operators, value-
added service providers and application developers to design and dimension mobile
peer-to-peer systems, and as a foundation for the architecture proposed in the
previous paper.

Along the road of the proposed network architecture, one natural direction is the
ubiquitous application development, since nowadays, mobile computing devices,
such as notebooks, mobile phones, PDAs and digital cameras have gained wide-
spread popularity. Although these devices and their networking capabilities are
becoming increasingly powerful, the design of mobile applications will continue to
be constrained by physical limitations. Mobile devices will continue to be battery-
dependent and users are reluctant to carry heavyweight devices. Networking

11

capabilities will continue to be based on communication with base-stations, with
fluctuations in bandwidth depending on physical location.
 In order to provide acceptable QoS to the users, applications have to be context-
aware [16] and able to adapt to context changes, such as variations in network
bandwidth, exhaustion of battery power or reachability of services on other
devices. This would require application developers, for example, to manage and
process useful context information from the user’s surroundings, and adapt to it
accordingly.

Paper VII: Formal Context-Aware Programming in Mobile Environments is
proposed in order to ease the development of context-aware applications and
ensure the correctness of their designs. In this paper, we extend the classical
actions systems formalism with context information and define the context-aware
action systems that provide a systematic method for managing and processing
context information. The meaning of context-aware action systems is defined in
terms of classical action systems [17], so that the properties of context-aware
action systems can be proved using standard action systems proof techniques.
Moreover, action systems are intended to be developed in a stepwise manner
within an associated refinement calculus [18]. Hence, the development and
reasoning about context-aware action systems can be carried out within this
calculus ensuring the correctness of derived mobile applications.
 Compared to the classical approach, the novelty is the interpretation of context.
Hence, we can say that context-aware action systems form a subset of action
systems. After a brief introduction to our interpretation of context and some
essential notions and properties of this formalism, we present a context-aware
scenario as an example to show how this context-aware action systems framework
can be effectively used to model context-aware services for mobile applications.
The ideas behind this scenario are rooted in the notion that mobile application
development could be simplified if the retrieval and maintenance of context
information were to be delegated to the software support infrastructure without loss
of flexibility and generality, which could be, for instance, a middleware developed
from our previously proposed network architecture.
 The novel contribution of this paper is the formal design and formalism that
facilitate the development of context-aware applications. In particular, we have
described a formal approach to context-aware mobile computing: we offer the
context-aware action systems framework, which provides a systematic method for
managing and processing context information, defined on a subset of the classical
action systems.

Ubiquitous computing poses a great impact on how future software architectures
will be practiced. First, we need architectures suitable for extreme resource-
constrained systems. Second, architectures for these systems have to be
reconfigurable. Third, there is need for architectures that manage and handle
mobility more automatically [149].

12

3 Hardware-Intensive Work

This section concentrates on hardware infrastructure - on building and accelerating
ubiquitous system hardware. The papers that have been published about the work
in this section are Paper VIII and Paper IX, and we present a short summary of
them as follows.
 We started our research on ubiquitous hardware with Java-enabled devices,
partly because nowadays Java has become the most popular and portable language
for its write once, run anywhere promise, which makes it ideal for developing
applications for ubiquitous devices. The platform-independence is achieved via
various Java Virtual Machines (JVMs): Java source codes are compiled into
bytecode streams, which are to be executed in JVMs. Bytecode representations are
in portable formats that allow programs, no matter small applets in embedded
systems or large desktop applications, to run on as many platforms as possible. In
this way the Java technology provides a common application interface regardless
of the underlying platform, allowing a project to be moved to a new platform with
a minimal or even completely without change, as long as the JVM exists for that
platform.
 While the Java technology comes with compromises as well. The most
significant disadvantage of Java applications is on performance: the execution
speed of Java bytecode in JVMs is not as fast as native code written in C/C++. The
software mode execution engine is quite slow in interpreter or bigger code size in
Just-in-time (JIT) compiler. A promising way of performance enhancement is to
implement the JVM in hardware mode (i.e. silicon implementation) which can be
optimized to deliver much better performance than software mode.

Paper VIII: Implementing an Asynchronous Java Accelerator for Ubiquitous
Computing proposed a scheme of hardware accelerated JVM for existing
ubiquitous systems. The accelerator is in ultra low power design, and can be
integrated into existing processors and run time operation systems (RTOS). To
meet the critical constraint of low power consumption of most ubiquitous
consumer devices today, the accelerator is designed in asynchronous style.
 Since one of our design goals is to support as many processors as possible,
coprocessor mode is the best choice, which means that frequently used bytecode
instructions will be executed by the Java accelerator. Another design goal of our
Java accelerator is target for low end ubiquitous devices, where only one CPU
accesses the memory and works as master module in system bus, and the
computing capability of the system is quite limited.
 The workflow of our Java accelerator is briefly described as follows: when the
Java accelerator works with the main processor, the main processor needs to
configure the Java accelerator in the beginning of every Java thread i.e. set new
PC, stack address, segment offset, etc in the Java accelerator. After the beginning
of Java bytecode stream, the main processor halts and the Java accelerator will
fetch bytecode instruction and data from memory. When the Java accelerator

13

encounters trap instructions that the accelerator can’t implement, it sends interrupt
and moves its control to the main processor, and then the main processor will
access the stack cache in the Java accelerator as I/O operations. In bytecode trap
handling, the main processor takes operands from Java stack, executes subroutine
for trapped Java bytecode, and writes the result back into Java stack top. In case
that the next bytecode should be executed in hardware, the main processor halts
and updates PC in the Java accelerator to invoke it. Then the Java accelerator can
continue to use the new result in stack. With this scheme, our Java accelerator can
be integrated into most existing processors, and no bus arbiter is needed.
 The main contribution of this paper is the proposed coprocessor scheme, which
would be suitable for most existing Java-enabled ubiquitous consumer devices.
Some preliminary simulation results of small applets prove that the scheme
provides a new solution to accelerating Java for ubiquitous devices.

Nowadays, advances in silicon technology have made it possible to embed
inexpensive processors, sensors, and actuators in just about anything and
everything. As the result, ubiquitous hardware is becoming more and more
powerful and capable, as well as complex. However, it becomes increasingly
difficult to ensure these devices free of design errors. In most cases, exhaustive
simulation of a medium size design is impossible and the correctness of the design
cannot be assured. This is a serious problem in safety-critical applications, where a
small design error may cause loss of life and extensive damage. Even in the case
where safety is not the primary concern, a design error means costly and time-
consuming rechecking in massive production lines.
 A solution to the problem is to apply formal methods for verification of
correctness of hardware designs - hardware verification. With this approach, the
behavior of hardware is described mathematically, and formal proof is used to
verify the intended behavior. The proofs can be very large and complex, so
mechanical verification tools are often used to assist the verification.

Paper IX: Formal Verification of a Ubiquitous Hardware Component is our
experiences report on formal verification in ubiquitous hardware design, via a
comparative case study of the verification of a circuit design of a seven-segment
LED display decoder.
 A seven-segment LED display is comprised of seven light emitting diodes
(LED). Input signals are applied to the input port of the seven-segment decoder,
and the decoder translates them into ON/OFF status of the seven LEDs. Then,
selected combinations of the LEDs are illuminated to display numeric digits and
other symbols. Such kinds of hardware components are widely used in low-end
ubiquitous consumer devices as the display unit, so it would be interesting to see
how to make sure the circuit design of these components free of errors.
 In this paper, we started with an overview on hardware verification methods,
with the emphasis on approaches using higher order logic [19]. Afterwards, we
selected two popular verification tools, HOL [20] and PVS [21], and illustrated
with some well-understood, but nontrivial examples, then smoothly moved to our
practical verification case study of a seven-segment LED display decoder circuit

14

design. Since we have used both HOL and PVS, known as powerful proof tools, as
the mechanical verification tools in our case, we conclude the paper with a
comparative study of the two proof tools, and some possible future improvement
suggestions for them according to our experiences.
 As suggested, the main contribution of this paper lies in the experiences part.
The treatment is detailed and is based on clear mathematical foundations.
Moreover, it documented a full case study from requirement to specification to
implementation to verification, which results from our personal practical
experiences with tools and methods developed and used in both academic and
industrial environments.

Throughout the history of computing, ubiquitous applications have been pushing
the limits of computing power, especially in terms of real-time computation. On the
other hand, recent advances in microelectronics and communication technology
have allowed large numbers of portable devices to communicate both among
themselves and with a wired or wireless infrastructure. All these above changes
and trends bring us new opportunities as well as challenges in hardware design for
the future ubiquitous devices. We conclude section III with our remark for the
future ubiquitous devices:
 Historically, ubiquitous systems have been highly engineered for a particular
task, with no spontaneous interactions among devices. Recent advances in wireless
communication and sensor and actuator technologies have given rise to a new
genre of ubiquitous systems. This new genre is characterized as self-organizing,
critically resource constrained, and network-centric. The fundamental change is
communication: numerous small devices operating collectively, rather than as
stand-alone devices, form a dynamic, multihop routing network that connects each
device to more powerful networks and processing resources.

15

4 Related Work

In the literature several definitions of the term ubiquitous can be found [1, 2, 3, 22,
23, 24, 25, 26], but a detailed discussion towards the definition of ubiquitous is out
of the scope of this thesis. The work [27, 28, 29, 30, 31, 32] had greatly influenced
our understanding of ubiquitous, and we would like to interpret it as follows:
 Ubiquitous Systems are about computer systems that are available everywhere.
The ubiquitous computers are supposed to be implemented in all kinds of everyday
things, and will communicate with the users of the system, and with each other.
The purpose of ubiquitous computing is to help making its users lives easier, and to
avoid information overload [27].

Figure 1. The Evolution Chain [28]

 In other words, ubiquitous computing is a stepwise evolution from distributed
computing and mobile computing in Figure 1. There are two issues that are
important to make ubiquitous computing work: location and scale. To make a
ubiquitous computer system, you will need a lot of computers located in a lot of
places. These computers will need to be able to locate themselves, to know where
they are. If a computer knows what room it is in, it can adapt its behavior in
significant ways without requiring any artificial intelligence [1]. For ubiquitous
computing to be implemented into our everyday environment, they will have to be
almost everywhere. You will need to have hundreds of computers of different sizes
in each room as the computers will replace all kinds of products, such as
notebooks, thermostats, clocks, blackboards and bulletin boards. To make the
system useful to its users, it also has to be available in all kinds of surroundings,
both inside and outside of buildings. The technology that is required for ubiquitous
computing comes in three parts [1]: (1) cheap, low-power computers that include
equally convenient displays (2) a network that ties them all together (3) software
systems implementing ubiquitous applications.
 In the following paragraphs, we discuss a number of related works and some
possible future directions.
 If we date back to the computing history, P2P is as old as the Internet [57]. It
attracts many attentions during recent years, partly because of the unexpected
success of P2P paradigm in distributed computing [58]. The real prevalence of P2P

16

paradigm over the Internet starts since 2001, due to the widely deployment of P2P
file-sharing applications [59]. In the literature many survey on P2P paradigm can
be found [60, 61, 62, 63, 64]. Academic research in peer-to-peer (P2P) systems has
concentrated largely on efficiency [65], scalability [66], robustness [67], and
security [68] on P2P architecture, services such as indexing and search [69],
dissemination [70] for applications running on top of P2P systems, or even many of
the above [71].
 As a case study to test the feasibility of the architectural decomposition and
formal techniques involved in Paper I and Paper II, Gnutella, was chosen as the
appropriate candidate as the starting point. M. Ripeanu [72] studied the P2P
architecture via Gnutella also, and it was the first kind of systematic description of
Gnutella-like systems in the literature. I. Ivkovic [73] further analyzed the Gnutella
protocol, and advised several research directions and proposals.
 In the above two works, the decentralized content distribution architecture and
the de facto Gnutella protocol were depicted via a reverse-engineering approach. It
should be admitted that they greatly influenced our understanding of P2P, and it
was also the foundation on which the architecture framework in our papers was
based. In our works, we took one step further, from these ad hoc descriptions of the
system to a more systematic requirement document. From a software engineering
practitioner’s view, we refined the requirement presented in the above two papers
and further formalized it into a formal specification which can be followed by other
software engineers. As a testimony, a Gnutella client was developed with our
specification [9].
 Generally, the proposed P2P architecture in this thesis was inspired [74]. D.
Barkai argued that the common services in P2P systems can be thought of as a
middleware layer. One of the principal advantages of a common middleware is that
application developers will no longer be required to keep creating the same basic
services over and over again. Interoperability means that P2P applications can
communicate across different software environments. Peers running Windows or
Linux or any other operating system can share P2P applications. Applications using
different programming languages can communicate and be integrated via a
common middleware. And common middleware provides a mechanism and an
infrastructure for incorporating devices other than PCs and servers. Such devices
include wireless and handheld products and various network appliances.
 Though Intel didn’t release any API with the above ideas, we borrowed this
middleware idea into our specification. The multi-tiers in that paper imply a
modular design and component-based architecture. In our papers, though we didn’t
mention the middleware layer explicitly, the main components that form the
intermediate layer, which glue the network layer and the application layer together,
can be deemed a specific case of middleware. Our work can be deemed as a refined
specification of the architecture proposed from the above paper. Naturally, one
future work for us would be the development of a middleware providing common
services in P2P systems.
 Besides Gnutella, several other typical P2P applications were also extensively
studied. K. W. Ross et al. studied Kazaa, one of the important applications in the
Internet today, both in terms of number of participating users and in traffic volume.

17

They built a measurement platform for collecting and measuring Kazaa’s signaling
traffic. These measurements provide insight on Kazaa’s architecture, protocol, and
overlay behavior [75]. R. Steinmetz et al. studied eDonkey2000 file-sharing
network [89], which was one of the most successful peer-to-peer file-sharing
applications in Germany. They described the eDonkey protocol and measurement
results on network/transport layer and application layer that were made with the
client software and with an open-source eDonkey server extended for these
measurements [76].
 We believe the above two works are valuable, partly because of the popularity of
Kazaa and eDonkey2000. For instance, according to a survey from the computing
center of Turku University [151], the above two applications consume approximate
89% bandwidth of the whole local network traffic within one month observation
period. As a drawback of our papers, we didn’t present a quantitative analysis of
the network traffic for Gnutella [152]. As an integrated part to verify our proposed
architecture, some measurement studies would be done as a future work for the
implemented prototype [9].
 Another significant P2P network is JXTA, also known as an open-source P2P
platform [90]. JXTA technology is a network programming and computing
platform that is designed to solve a number of problems in modern distributed
computing, especially in the area broadly referred to as peer-to-peer computing, or
peer-to-peer networking, or simply P2P [77].
 Though the impact of JXTA has not become as great as expected yet, we believe
it is a promising candidate for the future P2P world. Some future work could be
done on studying the software architecture of JXTA and its implications on the
very large scale distributed systems, or so-called global computing [150].
 The ubiquity of the Internet has made possible a universal storage space that is
distributed among the participating end computers (peers) across the Internet. All
peers assume equal role and there is no centralized server in the space. Such
architecture is collectively referred to as the peer-to-peer (P2P) storage
architecture. Several P2P storage systems have been built; examples include
Freenet [78], OceanStore [79], PAST [80] and CFS [81]. Applications such as
groupware, e-mail, storage repositories for scientific data and visualization,
searching network, distributed file systems and wide-scale shared states can benefit
from such storage systems [82, 83, 84].
 The massive P2P storage system in Paper III was generally inspired by
OceanStore. It is UC Berkeley’s vision on providing global-scale persistent data
[91]. OceanStore is a global persistent data store designed to scale to billions of
users. It provides a consistent, highly-available, and durable storage utility atop an
infrastructure comprised of untrusted servers. Any computer can join the
infrastructure, contributing storage or providing local user access in exchange for
economic compensation. Users need only subscribe to a single OceanStore service
provider, although they may consume storage and bandwidth from many different
providers. The providers automatically buy and sell capacity and coverage among
themselves, transparently to the users. The utility model thus combines the
resources from federated systems to provide a quality of service higher than that
achievable by any single company.

18

 With the same idea in OceanStore that the future trend of large scale storage
systems would Internet-based, we, however, implemented a prototype that is more
suitable for the home or small office scale storage. In general, the prototype is a
hybrid P2P system, which has some centralized index nodes and many
decentralized data nodes. As a main drawback, the hybridity in our design exposes
us to the potential risk that any compromise in the index nodes would degrade the
availability of the whole system. While in OceanStore, several advanced
techniques, DHT, replication, and fault-tolerant protocol, are used to assure the
high dependability of the storage system. As a future work, more research would
be done, focusing on the dependability issues of the proposed system.
 Pastry [85] is Microsoft Research’s P2P substrate [86] for massive storage. From
this foundation, they built PAST [87], a large-scale, peer-to-peer archival storage
utility that provides scalability, availability, security and cooperative resource
sharing. Files in PAST are immutable and can be shared at the discretion of their
owner.
 The Cooperative File System (CFS) [81] is MIT’s peer-to-peer readonly storage
system that provides provable guarantees for the efficiency, robustness, and load-
balance of file storage and retrieval. It employs a P2P hash-based system Chord
[88], and implements CFS layers storage on top of an efficient distributed hash
lookup algorithm.
 Those papers suggest the possibility of building a file system with P2P on top of
the Internet. The further implication is a network-centric operation system based on
the proposed file system, instead of a PC-centric operation system nowadays.
Therefore, another future work for us would be infrastructure: since in scientific
research, the data storage demand has reached the PB level [125, 126], it is time to
rethink the atomic building blocks in a large scale distributed storage system. It
would be promising to construct an intelligent network storage system based on
object, instead of disk or cluster.
 Ad hoc networks [92] are a key factor in the evolution of wireless
communications. Self-organized ad hoc networks of PDAs or laptops are used in
disaster relief, conference, and battlefield environments. These networks inherit the
traditional problems of wireless and mobile communications, such as bandwidth
optimization, power control, and transmission-quality enhancement. In addition,
their multihop nature and the possible lack of a fixed infrastructure introduce new
research problems such as network configuration, device discovery, and topology
maintenance, as well as ad hoc addressing and self-routing [93, 94, 95, 96, 97]
 In the literature several related work to Paper IV can be found [98, 99, 100,
101]. For instance, ETH prototyped a testbed [99] that is suitable for the
deployment of large populations of heterogeneous distributed mobile
communication and information systems to support a “smart” networked
environment in everyday objects via Bluetooth-based mobile ad hoc networks.
Besides Bluetooth and WiFi (802.11x), we argue that another emerging new IEEE
standard ZigBee (802.15.4) would also be promising for the ubiquitous networking
[102].
 The above papers mostly address the algorithmic aspects of ad hoc networking,
since the routing and connectivity issues in MANET have been major challenges

19

for a decade. While in our paper, we are mostly interested in the software
architecture aspect of MANET applications. We took a component based
framework in that paper and further specified each component with formal
methods. As a drawback, there is no specific algorithm presented, neither further
quantitative measurement study, which would be a future work. With the
prevalence of wireless sensor networks, which is MANET in nature, we plan to
extend our framework to wireless sensor networks, and some application scenarios
are being investigated. In that case, dependability becomes a must, partly because
data from distributed sensors can be highly sensitive and safety-critical.
 The synergy between P2P overlay and MANET overlay in Paper V and Paper
VI was generally inspired [103]. Y. C. Hu et al. studied the possibility of the merge
of the P2P technology and the MANET technology, and proposed Dynamic P2P
Source Routing (DPSR), a new routing protocol for MANET that exploits the
synergy between P2P and MANET for increased scalability. The first trial system
of this kind, as known, is Proem [104], which is a P2P platform for developing
mobile P2P applications, but it seems to be a rough one and only IEEE 802.11b in
ad hoc mode is supported. 7DS [105] is an attempt to enable P2P resource sharing
and information dissemination in mobile environments, and the proposed
architecture is cited by many later works. ORION [106] is a special-purpose
approach for P2P file sharing tailored to MANET. ORION combines application-
layer query processing with the network layer process of route discovery,
substantially reducing control overhead and increasing search accuracy.
 Compared to the above papers, our papers are more focused on the network
architecture, partly because we believe the architecture is one of the most critical
issues in any complex system. Though the proposed architecture seems promising,
it is still in its early stage. One important issue lacked in our framework is the
management of trust and privacy, which is a critical and challenging topic in
ubiquitous computing. Taking a step further, in a derived middleware from the
specification, it means two important open problems: timely interaction and access
control [155]. As work in progress [156], we have carried out the research on
formalizing trust in a fully decentralized distributed computing environment. In the
future, more work would be done on realizing trust domains, scalable from sensor
networks to grid applications, in which decisions are based on evidence, mitigated
by trust and privacy requirements.
 For the cross-layer routing of P2P and MANET, B. Bhargava et al. conducted a
preliminary survey of cross-layer schemes [107]. Virtual Paths Routing (VPR)
Protocol [108] was proposed for Ad Hoc wireless networks to provide correct,
efficient, and highly dynamic route creation and maintenance between mobile
nodes. Another cross-layer protocol [109] based on Pastry, emphasized the cross-
layer interaction with a pro-active routing protocol at the network layer.
 Though we all agree that cross-layer routing will have potential advantages,
there is actually no off-shelf cross-layer protocol at the moment, as far as known.
In our papers, research in this area has just started, and future work would be done
on further investigating the possibility to introduce DHT to cross-layer routing
schemes.

20

 The general performance issues on P2P and MANET were discussed [110, 111,
112, 113, 114]. In the literature, [115, 116, 117, 118, 119] extensively discussed
the measurement, modeling, and analysis of the peer-to-peer file-sharing with
different approaches. Recently, B. Bakos et al. analyzed a Gnutella-style protocol
query engine on mobile networks with different topologies [120], and T. Hossfeld
et al. conducted a simulative performance evaluation of mobile P2P file-sharing
[121].
 It should be admitted that our model is mostly based on [119], where R. Srikant
et al. proposed a dynamic fluid approach in modeling P2P traffic. The
classification of peer roles in that paper influenced our thinking of mobile P2P
system, because in a mobile environment, this classification would have an even
greater impact on the system behavior. Since this dynamic fluid approach is also
suitable for mobile settings, we applied that model to a mobile P2P system, where
old notions would get new practical meanings. We pointed out some key concepts
such as effective bandwidth, bottleneck bandwidth, which was implied in that
paper, but not explicitly stated. Though it works quite fine according to the
experiment results, there are two important issues lacked in our model, which
would be the future work: (1) the effect of network topology on performance
evaluation (2) the effect of heterogeneous bandwidth capacity of nodes on the
system performance.
 The stepwise system development by refinement in Figure 2, proposed by R.J.
Back and K. Sere via Action Systems [4, 17], is also employed by G. C. Roman via
UNITY [122]. With the prevalence of mobile computing, Mobile UNITY [123]
was proposed as a new model for specifying and reasoning about concurrent
systems that contain dynamically reconfiguring components. Such reasoning is
carried out axiomatically, in the style of standard UNITY. Recently, Context
UNITY [124] was proposed as a further step from Mobile UNITY to address the
problems in the context-aware computing, which is a related work to Paper VII.
 Compared to Context UNITY, it should be admitted that one main drawback in
our formalism is the ad hoc treatment of time, partly because the foundation of our
framework, refinement calculus [18], is not a temporal logic. Therefore in our
paper, time is introduced as an external variable, which makes it hard to model
some real-time requirements and dynamic properties of the system. M. Ronkko
proposed an extension of action systems to address the discrete-time issues for
modeling hybrid systems [157]. As a future work, we would investigate the
possibility of applying this technique to our framework, to achieve a better
treatment of time.
 Many researchers agree that nowadays the key challenge in ubiquitous
computing is context-awareness [158]. Some discussions on context-aware
computing can be found [16, 28, 49, 127, 128]. Since we have gained experiences
in the previous ubiquitous networking research, we envisage a general direction for
us in the future aiming at building a context-aware middleware with the
architectures and communication models from P2P and MANET [153, 154].

21

Figure 2. Stepwise System Development by Refinement

 If we date back to the computing history [57], Java was created as a part of the
Green project [129] specifically for an embedded device, a handheld wireless PDA.
The device was never released as a product, but Java was launched as the new
language for the Internet. Over the time, Java became very popular to build desktop
applications, web services and ubiquitous systems. On the other hand, Java
technology is compromised, and the major drawback is the lack of acceptable
runtime performance.
 In order to improve Java bytecode execution by hardware, Java coprocessor, as
in Paper VIII was proposed to work in conjunction with a main processor. In the
literature, Hard-Int [130] was proposed as an additional architecture for a standard
RISC processor to speed up a JVM interpreter, and simple Java bytecodes are
translated to a sequence of RISC instructions. Delft-Java [131] is a processor for
multimedia applications in Java, i.e. a RISC processor extended with DSP
capabilities and Java specific instructions. Simple JVM instructions are
dynamically translated to the DELFT instruction set. Jazelle [132] is an extension
of the ARM 32-bit RISC processor, which is integrated into the same chip as the
ARM processor. Java bytecodes are translated into sequences of ARM instructions.
Another significant related work is a co-designed JVM based on FPGA technology,
emphasizing reconfigurability [133].
 Compared to the above works, our design goal is more biased toward energy
consumption than speed, because of the nature of ubiquitous devices. We tried to
use some asynchronous circuit design techniques to achieve this goal, but this work
is still in progress. At moment, the coprocessor is validated in the SystemC [159]
model. This high-level simulation model is more a proof of concept, so no overall
quantitative speedup rate and energy consumption estimation are available at this
stage. A hardware implementation of this prototype in FPGA is the foremost task
in our future research.

22

 Formal hardware verification has recently attracted considerable interests due to
the prevalence of ubiquitous computing. The need for correct designs for safety-
critical applications, coupled with the major cost associated with products
delivered late, are the two main factors behind this [134]. In the literature, several
general surveys on hardware verification can be found [135, 136, 137, 138, 139]. In
the past, hardware verification methods have divided into two well-established
approaches: model checking [140] and theorem proving [141].
 Provided that a design can be specified as a finite state machine, model checking
can exhaustively test whether the state machine satisfies a given correctness
property by searching the graph of all possible states that can be reached from a set
of initial states. On the contrary, theorem proving does not search the state space of
a specification directly, but instead searches through the space of correctness
proofs that a specification satisfies a given correctness property.
 In theory, theorem proving is more attractive because it can deal directly with
infinite state space [142]. Therefore we adopted this approach in Paper IX.
Though the case study is so trivial that it is also easy to be completed via model
checking [160], realistic designs of commercial ubiquitous devices often contain
thousands or millions of state variables, far exceeding the reach of current model
checking algorithms. Theorem proving does not directly depend on the size of a
specification’s state, so in principle specifications of unbounded size can be
verified. However, in practice the size of the proof space is too large to be searched
automatically.
 As an extra finding of that case study, we realize that model checking and
theorem proving are complementary technologies and must be integrated to
successfully tackle realistic system designs. In fact, the practical formal verification
in hardware design is usually approaches that combine theorem proving and model
checking [143]. For instance, during the past years, Intel has verified many major
processors it produced [144], including the famous floating point error of Pentium
series [145] and the new released XScale series [146] targeted for ubiquitous
devices. IBM also has a long tradition of hardware verification [147] and applied
various hardware verification methods to its cutting-edge Blue Gene series [148].

23

5 Final Words

Ubiquitous computing names the third wave in computing, just now beginning.
First were mainframes, each shared by many people. Now we are in the personal
computing era, person and machine staring uneasily at each other across the
desktop. Next comes ubiquitous computing, or the age of calm technology, when
technology recedes into the background of our lives. Alan Kay3 calls this Third
Paradigm computing. This has required new work in operating systems, user
interfaces, networks, wireless, displays, and many other areas. We call it
"ubiquitous computing". This is different from PDA's, notebooks, or information at
your fingertips. It is invisible, everywhere computing that does not live on a
personal device of any sort, but is in the woodwork everywhere4.
 In the coming years, the technology industry will be working hard to enable the
devices, software and services in your life to work together in a more seamless
way, creating new ways for technology to enhance your life. Although the changes
you will see will be gradual, the differences between the computing experiences of
today and how you’ll use them five years from now will be like night and day5.

3 “The best way to predict the future is to invent it.” (1971).
4 Mark Weiser’s speech at Xerox PARC (1988).
5 Bill Gate’s speech at CeBIT (2005).

24

Bibliography

[1] M. Weiser. The Computer for the Twenty-First Century. In Scientific American,
Sept. 1991.
[2] M. Weiser. Some Computer Science Problems in Ubiquitous Computing. In
Communications of the ACM, July 1993.
[3] M. Weiser. Hot Topics: Ubiquitous Computing. In IEEE Computer, Oct. 1993.
[4] K. Sere. Stepwise derivation of parallel algorithms. Academic dissertation, Abo
Akademi, 1990.
[5] J. A. Hall. Seven myths of formal methods. In IEEE Software 7(5), pp. 11-19,
Sept. 1990.
[6] J. P. Bowen, M. G. Hinchey. Seven more myths of formal methods. In IEEE
Software 12(4), pp. 34-41, July 1995.
[7] S. Nygard. Implementation of a transaction-based Gnutella search engine.
Master thesis, Abo Akademi, 2004.
[8] Gnutella: http://www.gnutella.com/
[9] N. Iqbal. Development of Gnutella Client with Formal Specification. Master
thesis, Abo Akademi, 2003.
[10] Napster: http://www.napster.com/
[11] Kazaa: http://www.kazaa.com/
[12] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, J. Kubiatowicz. Pond:
the OceanStore Prototype. In Proceedings of the 2nd USENIX Conference on File
and Storage Technologies (FAST '03), March 2003.
[13] J. R. Abrial. The B-Book: Assigning Programs to Meaning. Cambridge
University Press, 1996.
[14] J. Ni. Towards a Systematic Design of Applications for Ad Hoc networks.
Master thesis, Abo Akademi, 2003.
[15] Bluetooth SIG. Bluetooth Specification. http://www.bluetooth.com/
[16] A.K. Dey, G.D. Abowd. Towards a Better Understanding of Context and
Context-Awareness. In Proceedings of the CHI 2000 Workshop on The What, Who,
Where, When, and How of Context-Awareness, April 2000.
[17] R.J. Back, K. Sere. From Action Systems to Modular Systems. In Software -
Concepts and Tools, (1996) 17: 26-39.
[18] R.J. Back, J. Wright. Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science, Springer-Verlag, 1998.
[19] A.Gupta. Formal Hardware Verification Methods: A Survey. In Journal of
Formal Methods in System Design, vol. 1, pp. 151 - 238, 1992
[20] M.Gordon. HOL: A Machine Oriented Formulation of Higher Order Logic.
Technical Report 68, Computer Laboratory, University of Cambridge, 1985
[21] N.Shankar, S.Owre, J.M.Rushby, D.W.J.Stringer-Calvert. PVS System
Guide: http://pvs.csl.sri.com/doc/pvs-system-guide.pdf
[22] M. Weiser. The world is not a desktop. In ACM Interactions, Jan. 1994.
[23] P. Dourish. Where The Action Is: The Foundations of Embodied Interaction.
MIT Press, 2001.

25

[24] V. Bellotti, P. Dourish, A. MacLean. From Users' Themes to Designers
DReams: Developing a Design Space for Shared Interactive Technologies.
Technical Report EPC-91-112, Rank Xerox EuroPARC, Cambridge, UK, 1991.
[25] J. Meyer, L. Staples, S. Minneman, M. Naimark, A. Glassner. Artists and
technologists working together. In Proceedings of the 11th annual ACM
symposium on User interface software and technology, San Francisco, California,
1998.
[26] R. Want, B. Schilit, N. Adams, R. Gold, D. Goldberg, K. Petersen, J. Ellis, M.
Weiser. An Overview of the Parctab Ubiquitous Computing Experiment. In IEEE
Personal Communications, Vol. 2, No.6, pp. 28-43, Dec. 1995.
[27] B. Opshaug. Investigating attitudes towards ubiquitous information systems
and the possibilities to overcome skepticism towards these systems through
corporate branding. Technical Report, PD9, Institutt for Produktdesign, NTNU,
Norway, 2002.
[28] T. Strang, C. Linnhoff-Popien. A Context Modeling Survey. In Proceedings of
the First International Workshop on Advanced Context Modelling, Reasoning And
Management, Nottingham, England, Sept. 2004.
[29] H. Ailisto, A. Kotila, E. Strömmer. Ubicom applications and technologies.
VTT Research Notes 2201, VTT, Finland, 2003.
[30] G. D. Abowd, E. D. Mynatt. Charting past, present, and future research in
ubiquitous computing. In ACM Transactions on Computer-Human Interaction,
Volume 7, Issue 1, March 2000.
[31] U. Saif. Architectures for ubiquitous systems. Technical Report, UCAM-CL-
TR-527, Computer Laboratory, University of Cambridge.
[32] C. Endres, A. Butz, A. MacWilliams. A Survey of Software Infrastructures
and Frameworks for Ubiquitous Computing. In Mobile Information Systems
Journal, January-March, 2005.
[33] MIT Project Oxygen: http://oxygen.lcs.mit.edu/
[34] A. Champaneria. PADCAM: A Portable Human-Centric System for
Handwriting Capture. Master Thesis, MIT, 2002.
[35] A. C. Kao. Design and Implementation of a Generalized Device Interconnect.
Master Thesis, MIT, 2002.
[36] A. Narayanswamy. Real-time Visualization of Abstract Relationships Between
Devices. Master Thesis, MIT, 2003.
[37] J. Brunsman. The Application and Design of the Communication Oriented
Routing Network. Master Thesis, MIT, 2003.
[38] G. Eguchi. Extending CORE for Real World Appliances. Master Thesis, MIT,
2003.
[39] HP Cooltown: http://www.cooltown.com/
[40] J. Barton, T. Kindberg. The Cooltown User Experience. Technical Report
HPL-2001-22, HP Labs, 2001.
[41] P. Debaty, P. Goddi, A. Vorbau. Integrating the Physical World with the Web
to Enable Context-Enhanced Services. Technical Report HPL-2003-192, HP Labs,
2003.

26

[42] S. Pradhan, C. Brignone, J. H. Cui, A. McReynolds, M. Smith. Websign:
Hyperlinks from a Physical Location to the Web. Technical Report HPL-2001-140,
HP Labs, 2001.
[43] R. Hull, J. Reid, A. Kidd. Experience Design in Ubiquitous Computing.
Technical Report HPL-2002-115, HP Labs, 2002.
[44] J. J. Barton, V. Vijayaraghavan. UBIWISE, A Simulator for Ubiquitous
Computing Systems Design. Technical Report HPL-2003-93, HP Labs, 2003.
[45] CMU Project Aura: http://www-2.cs.cmu.edu/~aura/
[46] D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste. Project Aura: Toward
Distraction-Free Pervasive Computing. In IEEE Pervasive Computing, April-June
2002.
[47] J. P. Sousa, D. Garlan. Aura: an Architectural Framework for User Mobility in
Ubiquitous Computing Environments. In Proceedings of the 3rd Working
IEEE/IFIP Conference on Software Architecture, Aug. 2002.
[48] S. W. Cheng, D. Garlan, B. Schmerl, J. P. Sousa, B. Spitznagel, P. Steenkiste,
N. Hu. Software Architecture-based Adaptation for Pervasive Systems. In
Proceedings of the International Conference on Architecture of Computing
Systems (ARCS'02), April, 2002.
[49] G. Judd, P. Steenkiste. Providing Contextual Information to Pervasive
Computing Applications. In Proceedings of IEEE International Conference on
Pervasive Computing (PERCOM), Dallas, March, 2003.
[50] U. Hengartner, P. Steenkiste. Implementing access control to people location
information. In Proceedings of the 9th ACM Symposium on Access Control Models
and Technologies (SACMAT'04), Yorktown Heights, June 2004.
[51] EU Project Disappearing Computer: http://www.disappearing-computer.net/
[52] T. Rodden, A. Crabtree, T. Hemmings, B. Koleva, J. Humble, K. P. Åkesson,
P. Hansson. Between the dazzle of a new building and its eventual corpse:
assembling the ubiquitous home. In Proceedings of the 2004 ACM Symposium on
Designing Interactive Systems, Cambridge, Massachusetts, Aug. 2004.
[53] H. Hutchinson, H. Hansen, N. Roussel, B. Eiderbäck, W. Mackay, B.
Westerlund, B. B. Bederson, A. Druin, C. Plaisant, M. Beaudouin-Lafon, S.
Conversy, H. Evans. Technology probes: inspiring design for and with families. In
Proceedings of the SIGCHI conference on Human factors in computing systems,
2003.
[54] H. W. Gellersen, A. Schmidt, M. Beigl. Multi-sensor context-awareness in
mobile devices and smart artifacts. In ACM Mobile Networks and Applications,
Volume 7, Issue 5, Oct. 2002.
[55] D. Stanton, T. Pridmore, V. Bayon, H. Neale, A. Ghali, S. Benford, S. Cobb,
R. Ingram, C. O'Malley, J. Wilson. Classroom collaboration in the design of
tangible interfaces for storytelling. In Proceedings of the SIGCHI conference on
Human factors in computing systems, 2001.
[56] M. Büscher, M. A. Eriksen, J. F. Kristensen, P. H. Mogensen. Ways of
grounding imagination. In Proceedings of Participatory Design Conference (PDC)
2004, Toronto, Canada, July 2004.
[57] B. Carlson, A. Burgess, C. Miller, L. Bauer. Timeline of Computing History.
In IEEE Computer: http://www.computer.org/computer/timeline/

27

[58] SETI@home: http://setiathome.ssl.berkeley.edu/
[59] A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly Press, 2001.
[60] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard,
S. Rollins, Z. Xu. Peer-to-Peer Computing. Technical Report HPL-2002-57R1, HP
Labs, 2002.
[61] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim. A Survey and
Comparison of Peer-to-Peer Overlay Network Schemes. In IEEE Communications,
March 2004.
[62] A. T. Stephanos, S. Diomidis. A survey of peer-to-peer content distribution
technologies. In ACM Computing Surveys, Volume 36, Issue 4, Dec. 2004.
[63] D. Wallach. A Survey of Peer-to-Peer Security Issues. In International
Symposium on Software Security, 2002.
[64] B. Yang, H. Garcia-Molina. Comparing Hybrid Peer-to-Peer Systems. In
Proceedings of the 27th International Conference on Very Large Data Bases, 2001.
[65] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan. Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In ACM
SIGCOMM, 2001.
[66] P. Felber, K.W. Ross, E.W. Biersack, L. Garces-Erice, G. Urvoy-Keller.
Structured Peer-to-Peer Networks: Faster, Closer, Smarter. In IEEE Data
Engineering Bulletin, 28(1):55-62, 2005.
[67] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, I. Stoica.
The Impact of DHT Routing Geometry on Resilience and Proximity. In ACM
SIGCOMM, 2003.
[68] M. Srivatsa, L. Liu. Vulnerabilities and Security Threats in Structured Overlay
Networks: A Quantitative Analysis. In Proceedings of the 20th IEEE Annual
Computer Security Applications Conference, 2004.
[69] J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. R. Karger, R. Morris. On the
Feasibility of Peer-to-Peer Web Indexing and Search. In Proceedings of IPTPS,
2003.
[70] M. Koubarakis, C. Tryfonopoulos, S. Idreos, Y. Drougas. Selective
information dissemination in P2P networks: problems and solutions. In ACM
SIGMOD, Volume 32, Issue 3, 2003.
[71] M. Roussopoulos, M. Baker, D. S. H. Rosenthal, T. J. Giuli, P. Maniatis, J.
Mogul. 2 P2P or Not 2 P2P? In Proceedings of the Third International Workshop
on Peer-to-Peer Systems, 2004.
[72] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network.
Technical Report TR-2001-26, University of Chicago, Department of Computer
Science, 2001.
[73] I. Ivkovic. Improving Gnutella Protocol: Protocol Analysis and Research
Proposals. Technical report, LimeWire LLC, 2001.
[74] D. Barkai. An Introduction to Peer-to-Peer Computing. In Intel Developer
Update, Intel Labs, Feb. 2000.
[75] J. Liang, R. Kumar, K. W. Ross. Understanding KaZaA. Technical Report,
Polytechnic University, New York, 2004.

28

[76] O. Heckmann, A. Bock, A. Mauthe, R. Steinmetz. The eDonkey File-Sharing
Network. In Workshop on Algorithms and Protocols for Efficient Peer-to-Peer
Applications, Informatik 2004, Sept. 2004.
[77] L. Gong. Project JXTA: A Technology Overview. In IEEE Internet
Computing, May/June, 2001.
[78] I. Clarke, O. Sandberg, B. Wiley, T. W. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. In Proceedings of
Workshop on Design Issues in Anonymity and Unobservability, July 2000.
[79] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R.
Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, B. Zhao. OceanStore:
An Architecture for Global-Scale Persistent Storage. In Proceedings of the Ninth
international Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2000), Nov. 2000.
[80] A. Rowstron, P. Druschel. Storage Management and Caching in PAST, A
Large-Scale, Persistent Peer-to-Peer Storage Utility. In ACM Symposium on
Operating Systems Principles, Oct. 2001.
[81] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica. Wide-Area
Cooperative Storage with CFS. In ACM Symposium on Operating Systems
Principles, Oct. 2001.
[82] W. J. Bolosky, J. R. Douceur, D. Ely, M. Theimer. Feasibility of a Serverless
Distributed File System Deployed on an Existing Set of Desktop PCs. In
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems, June 2000.
[83] H. C. Hsiao, C. T. King. Modeling and Evaluating Peer-to-Peer Storage
Architectures. In Proceedings of the 16th International Parallel and Distributed
Processing Symposium (IPDPS 2002), April 2002.
[84] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, R. Campbell. A Survey of
Peer-to-Peer Storage Techniques for Distributed File Systems. In Proceedings of
IEEE International Conference on Information Technology (ITCC), April 2005.
[85] A. Rowstron, P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), Nov. 2001.
[86] M. Castro, M. Costa, A. Rowstron. Peer-to-peer overlays: structured,
unstructured, or both? Technical Report MSR-TR-2004-73, Microsoft Research,
2004.
[87] P. Druschel, A. Rowstron. PAST: A large-scale, persistent peer-to-peer
storage utility. In HotOS VIII, May 2001.
[88] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F.
Dabek, H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Protocol for
Internet Applications. In IEEE/ACM Transactions on networking, Vol. 11, No. 1,
Feb. 2003.
[89] eDonkey2000: http://www.edonkey2000.com/
[90] JXTA: http://www.jxta.org/
[91] OceanStore: http://oceanstore.cs.berkeley.edu/
[92] F. Baker. An outsider's view of MANET. Internet Engineering Task Force
(IETF) document, 17 March 2002.

29

[93] S. Basagni et al. (eds.). Mobile Ad Hoc Networking, IEEE Press, 2003.
[94] M. Frodigh et al. Wireless Ad Hoc Networking: The Art of Networking
without a Network. In Ericsson Review, No. 4, 2000.
[95] Z. J. Haas, et al. (eds.). Special Issue on Wireless Ad Hoc Networks, IEEE
Journal on Selected Areas in Communications, Vol. 17, No. 8, 1999.
[96] C. E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001.
[97] S. Sesay, Z. Yang, J. He. A Survey on Mobile Ad Hoc Wireless Network. In
Information Technology Journal, 3 (2): 168-175, 2004
[98] F. Kargl, S. Ribhegge, S. Schlott, M. Weber. Bluetooth-based Ad-Hoc
Networks for Voice Transmission. In HICSS’03, 2003.
[99] J. Beutel, O. Kasten, M. Ringwald, F. Siegemund, L. Thiele. Bluetooth Smart
Nodes for Ad-hoc Networks. TIK Report Nr. 167, ETH, 2003.
[100] E. Ferro, F. Potorti. Bluetooth and Wi-Fi wireless protocols: A survey and a
comparison. In IEEE Wireless Communications, vol. 12, no. 1, pp. 12-26, Feb.
2005.
[101] B. Zhen, J. Park, Y. Kim. Scatternet Formation of Bluetooth Ad Hoc
Networks. Technical Report, Samsung Labs, 2003.
[102] J. Zheng, M. J. Lee. Will IEEE 802.15.4 make ubiquitous networking a
reality?: A discussion on a potential low power, low bit rate standard. In IEEE
communications, vol. 42, no. 6, pp. 140-146, June 2004.
[103] Y. C. Hu, S. M. Das, H. Pucha. Exploiting the Synergy between Peer-to-Peer
and Mobile Ad Hoc Networks. In Proceedings of HotOS-IX: Ninth Workshop on
Hot Topics in Operating Systems, Hawaii, May, 2003.
[104] G. Kortuem, J. Schneider, D. Preuitt, T. G. C. Thompson, S. Fickas, Z.
Segall. When Peer-to-Peer comes Face-to-Face: Collaborative Peer-to-Peer
Computing in Mobile Ad hoc Networks. In Proc. 1st International Conference on
Peer-to-Peer Computing (P2P 2001), Linkoping, Sweden, Aug. 2001.
[105] M. Papadopouli, H. Schulzrinne. A Performance Analysis of 7DS a Peer-to-
Peer Data Dissemination and Prefetching Tool for Mobile Users. In Advances in
wired and wireless communications, IEEE Sarnoff Symposium Digest, 2001.
[106] A. Klemm, Ch. Lindemann, O. Waldhorst. A Special-Purpose Peer-to-Peer
File Sharing System for Mobile Ad Hoc Networks. In Proc. IEEE Vehicular
Technology Conf., Orlando, FL, Oct. 2003.
[107] G. Ding, B. Bhargava. Peer-to-peer File-sharing over Mobile Ad hoc
Networks. In Proc. the Second IEEE Annual Conference on Pervasive Computing
and Communications Workshops, Florida, 2004.
[108] A. H. Altalhi, G. G. Richard. Virtual Paths Routing: A Highly Dynamic
Routing Protocol for Ad Hoc Wireless Networks. In Proc. the Second IEEE Annual
Conference on Pervasive Computing and Communications Workshops, Florida,
2004.
[109] M. Conti, E. Gregori, G. Turi. Towards Scalable P2P Computing for Mobile
Ad Hoc Networks. In Proc. the Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops, Florida, 2004.
[110] H. Birck, O. Heckmann, A. Mauthe, R. Steinmetz. The Two-Step Overlay
Network Simulation Approach. In Proceedings of SoftCOM, Split, Croatia, Oct.
2004.

30

[111] L. Voinea, A. Telea, J. J. Wijk. EZEL: a Visual Tool for Performance
Assessment of Peer-to-Peer File-Sharing Network. In Proc. IEEE Symposium on
Information Visualization (INFOVIS '04), Texas, 2004.
[112] P. Triantafillou, C. Xiruhaki, M. Koubarakis, N. Ntarmos. Towards High-
Performance Peer-to-Peer Content and Resource Sharing Systems. In First
Biennial Conference on Innovative Data Systems Research (CIDR 2003),
California, Jan. 2003.
[113] J. Hsu, S. Bhatia, M. Takai, R. Bagrodia, M. Acriche. Performance of Mobile
Ad Hoc Networking Routing Protocols in Realistic Scenarios. In Proceedings of
MILCOM '03, Boston, Oct. 2003.
[114] E. M. Royer, C. K. Toh. A Review of Current Routing Protocols for Ad-Hoc
Mobile Wireless Networks, In IEEE Personal Communications, April 1999.
[115] Z. Ge, D. Figueiredo, S. Jaiswal, J. F. Kurose, D. Towsley. Modeling peer-
to-peer file sharing systems. In Proc. IEEE Infocom, 2003.
[116] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, J.
Zahorjan. Measurement, modeling, and analysis of a peer-to-peer file-sharing
workload. In Proc. 19th ACM symposium on Operating systems principles, 2003.
[117] F. Clevenot, P. Nain. A Simple Fluid Model for the Analysis of the Squirrel
Peer-to-Peer Caching System. In Proc. IEEE Infocom, 2004.
[118] X. Yang, G. Veciana. Service Capacity of Peer to Peer Networks. In Proc.
IEEE Infocom, 2004.
[119] D. Qiu and R. Srikant. Modeling and Performance Analysis of BitTorrent-
Like Peer-to-Peer Networks. In Proc. ACM SIGCOMM, 2004.
[120] B. Bakos, G. Csucs, L. Farkas, J. K. Nurminen. Peer-to-peer protocol
evaluation in topologies resembling wireless networks. An Experiment with
Gnutella Query Engine. In Proc. International Conference on Networks, Sydney,
Oct., 2003.
[121] T. Hossfeld, K. Tutschku, F. U. Andersen, H. Meer, J. Oberender. Simulative
Performance Evaluation of a Mobile Peer-to-Peer File-Sharing System. Research
Report 345, University of Wurzburg, Nov. 2004.
[122] H. C. Cunningham, G. C. Roman.A UNITY-Style Programming Logic for a
Shared Dataspace Language. In IEEE Transactions on Parallel and Distributed
Systems 1, No. 3, July 1990.
[123] G. C. Roman, P. J. McCann, J. Y. Plun. Mobile UNITY: Reasoning and
Specification in Mobile Computing. In ACM Transactions on Software
Engineering and Methodology 6, No. 3, July 1997.
[124] G. C. Roman, C. Julien, J. Payton. A Formal Treatment of Context-
Awareness. In Proceedings of the 7th International Conference on Fundamental
Approaches to Software Engineering (FASE 2004), Lecture Notes in Computer
Science 2984, Springer, March/April 2004.
[125] Fermilab: http://www.fnal.gov/
[126] CERN: http://www.cern.ch/
[127] G. Chen, D. Kotz. A survey of context-aware mobile computing research.
Dartmouth College Technical Report TR2000-381, Nov. 2000.
[128] K. Mitchell. Supporting the Development of Mobile Context-Aware
Computing. Academic Dissertation. Lancaster University, 2002.

31

[129] J. Gosling. A Brief History of the Green Project:
http://today.java.net/jag/old/green/
[130] R. Radhakrishnan. Microarchitectural Techniques to Enable Efficient Java
Execution. Academic Dissertation, University of Texas at Austin, 2000.
[131] C. J. Glossner. The DEFLT-JAVA Engine. Academic Dissertation, Delft
University of Technology, 2001.
[132] Jazelle – ARM Architecture Extensions for Java Applications. White Paper,
ARM.
[133] K. B. Kent. The Co-Design of VirtualMachines Using Reconfigurable
Hardware. Academic Dissertation, University of Victoria, 2003.
[134] C. J. H. Seger. An Introduction to Formal Verification. Technical Report 92-
13, UBC, Canada, 1992.
[135] T. Kropf. Introduction to Formal Hardware Verification. Springer-Verlag,
2000.
[136] T. Kropf. Formal Hardware Verification : Methods and Systems in
Comparison. Lecture Notes in Computer Science 1287, Springer-Verlag, 1997.
[137] Survey of Formal Verification. In IEEE Spectrum, June 1996.
[138] C. Kern, M. Greenstreet. Formal Verification in Hardware Design: A Survey.
In ACM Transactions on Design Automation of Electronic Systems, Vol. 4, April
1999.
[139] M. Yoeli. Formal Verification of Hardware Design, IEEE Computer Society
Press, 1991.
[140] E. M. Clarke, O. Grumberg, D. Peled. Model Checking, MIT Press, 2000.
[141] M. Kaufmann, P. Manolios, J. S. Moore. Computer-Aided Reasoning: An
Approach, Kluwer Academic Publishers, 2000.
[142] E.Clarke, J.Wing. Formal Methods: State of the Art and Future Directions.
CMU Computer Science Technical Report, CMU-CS-96-178, 1996
[143] R. B. Jones, J. W. O´Leary, C. J. H. Seger, M. D. Aagaard, T. F. Melham.
Practical formal verification in microprocessor design. In IEEE Design and Test,
18(4): 16-25, July/August 2001.
[144] J. Harrison. Formal Verification at Intel. In IEEE LICS 2003, Canada, June
2003.
[145] J. O´Leary, X. Zhao, R. Gerth, C. J. H. Seger. Formally verifying IEEE
compliance of floating point hardware. In Intel Technology Journal, 1999.
[146] S. K. Srinivasan, M. N. Velev. Formal Verification of an Intel XScale
Processor Model with Scoreboarding, Specialized Execution Pipelines, and
Imprecise Data-Memory Exceptions. In Formal Methods and Models for Codesign
(MEMOCODE '03), June 2003.
[147] S. Ben-David, C. Eisner, D. Geist, Y. Wolfsthal. Model Checking at IBM. In
Journal of Formal Methods in System Design, 22 (2), 2003.
[148] Special Issue on Blue Gene. IBM Journal of Research and Development,
Vol. 49, No. 2/3, 2005.
[149] D. Garlan. Software Architecture: a Roadmap. In The Future of Software
Engineering, A. Finkekstein (Ed), ACM Press, 2000.

32

[150] J. Bacon. Expectations and reality in distributed systems. In Proceedings of
IASTED International Conference on Parallel and Distributed Computing and
Networks, Insbruck Austria, February 2005.
[151] University of Turku. Data communication statistics:
http://www.cc.utu.fi/english/network/stats/index.html
[152] D. Zeinalipour-Yazti, T. Folias. Quantitative Analysis of the Gnutella
Network Traffic. Technical Report TR-CS-89, Dept. of Computer Science,
University of California, Riverside, June 2002.
[153] P. R. Pietzuch, J. Bacon. Peer-to-peer overlay broker networks in an event-
based middleware. In Proceedings of the 2nd International Workshop on
Distributed Event-Based Systems (DEBS 2003), ACM 2003.
[154] P.R. Pietzuch. Hermes: A scalable event-based middleware. Technical
Report TR590, University of Cambridge, 2004.
[155] J. Bacon, K. Moody. Toward open, secure, widely distributed services. In
Communications of the ACM, Volume 45, Issue 6, June 2002.
[156] M. Neovius. Managing trust in P2P and collaborative computing. Master
Thesis, Abo Akademi, 2005.
[157] M. Ronkko. Stepwise Development of Hybrid Systems. Academic
Dissertation, Abo Akademi, 2001.
[158] J. Coutaz, J. L. Crowley, S. Dobson, D. Garlan. Context is Key. In
Communications of the ACM, Volume 48, Number 3, 2005.
[159] SystemC: http://www.systemc.org/
[160] J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, D.L. Dill. Symbolic
Model Checking for Sequential Circuit Verification. In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 13(4): 401-424, 1994.

33

PART II:
PUBLICATION REPRINTS

34

Paper I

Stepwise Development of Peer-to-Peer
Systems

L. Yan, K. Sere

Available in: Proceedings of the 6th International Workshop in Formal
Methods (IWFM’03), July 2003. British Computer Society Press.

Stepwise Development
of Peer-to-Peer Systems

Lu Yan and Kaisa Sere
Turku Centre for Computer Science (TUCS) and

Department of Computer Science, Åbo Akademi University,
FIN-20520 Turku, Finland

�Lu.Yan, Kaisa.Sere�@abo.fi

Abstract

Peer-to-peer systems like Napster, Gnutella and Kazaa have recently become popular
for sharing information. In this paper, we show how to design peer-to-peer systems
within the action systems framework by combining UML diagrams. We present our
approach via a case study of stepwise development of a Gnutella-like peer-to-peer
system.

Keywords: stepwise, peer-to-peer, action systems, specification, Gnutella

1. INTRODUCTION

Peer-to-peer systems like Napster, Gnutella and Kazaa have recently become popular for sharing
information. People find in peer-to-peer applications a convenient solution to exchange resources
via internet. Two factors have fostered the recent explosive growth of such systems: first, the
low cost and high availablity of large numbers of computing and storage resource, and second,
increased network connectivity. As these trends continue, the peer-to-peer paradigm is bound to
be more popular [9].

Most current distributed systems like the Web follow the client-server paradigm in which a single
server stores information and distributes it to clients upon their requests. Peer-to-peer systems,
which consider that all nodes are equal for sharing information, on the other hand, follow a
paradigm in which each node can store information of its own and establish direct connections
with another node to download information. In this way, the peer-to-peer systems offer attractive
advantages like enhanced load balancing, dynamic information repositories, redundancy and fault
tolerance, content-based addressing and improved searching [11] over the traditional client-server
systems.

Because of the surprisingly rapid deployment of some peer-to-peer applications and the great
advantages of the peer-to-peer paradigm, we are motivated to conduct a study of peer-to-peer
systems and achieve a way to develop such systems. After using and analyzing various peer-
to-peer clients on different platforms, we identified two common problems of clients: reliability
and robustness (Most clients fail to provide satisfactory download service and some buggy ones
even bring down the system during our test) and extendability (Most clients are implemented in
a way that adding new services or functionalities results to lots of modifications to the original
specifications). An attractive strategy to solve the first open problem is to use formal methods
in designing peer-to-peer systems. Formal methods can help with reliability and robustness
by minimizing errors in designing peer-to-peer systems. To improve extendability, we introduce
a modular and object-oriented architecture for peer-to-peer systems. The benefit of object-
orientation can be used to design and implement peer-to-peer systems in a reusable, composable
and extendable way.

In this paper, we show how to design peer-to-peer systems within the action systems framework by
combining UML diagrams. We present our approach via a case study of stepwise development of
a Gnutella-like peer-to-peer system. We start by briefly describing the action systems framework

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 1

Stepwise Development of Peer-to-Peer Systems

to the required extent in Section 2. In Section 3 we give an initial specification of the Gnutella
system. An abstract action system specification is derived in Section 4. In Section 5 we analyze
and refine the system specification introduced in the previous section. We end in Section 6 with
concluding remarks.

2. ACTION SYSTEMS

Action systems have proved to be very suitable for designing distributed systems [1, 2, 3, 6, 13].
The design and reasoning about action systems are carried out with refinement calculus [12].

In this section we will introduce OO-action systems [4], an object-oriented extension of action
systems which we select as a foundation to work on. In this way, we can address our two open
problems in a unified framework with benefits from both formal methods and object-orientation.

An OO-action system consists of a finite set of classes, each class specifying the behaviour of
objects that are dynamically created and executed in parallel.

2.1. Actions

We will consider a fixed set Attr of attributes (variables) and assume that each attribute is
associated with a nonempty set of values. Also, we consider a set Act of actions defined by
the following grammar

� ��� ���������	�
 �� ��
 �� � ��� ����������� ��

Here
 is a list of attributes, � a list of values, � a nonempty set of values, � a predicate over
attributes. Intuitively, ����� is the action which always deadlocks, ���	 is a stuttering action,
 �� �
is a multiple assignment,
 �� � is a random assignment, � � � is a guard of an action, ��� is
an assertion, ����� is the sequential composition of the actions �� and ��, and �� � �� is the
nondeterministic choice between the action �� and ��.

The guard of an action is defined in a standard way using weakest preconditions [14]

���� � ��	��� false�

The action � is said to be enabled when the guard is true.

2.2. Classes and objects

Let CName be a fixed set of class names and OName a set of valid names for objects. We will
also consider a fixed set of object variables OVar assumed to be disjoint from Attr. The only valid
values for object variables are the names for objects in OName. The set of object actions OAct is
defined by extending the grammar of actions as follows

� ��� ��� �� ���������� �� ������

�	����self.m���	��������� ��

Here � � ���, � is an object variable, � is either an object name or the constants self or ��	�� (all
three possibly resulting from the evaluation of an expression), � is a class name, 	 a procedure
name, and� is a method name. Intuitively, � �� � stores the object name � into the object variable
�, ������ creates a new object instance of the class �, � �� ������ assigns the name of the newly
created instance of the class � to the object variable �, 	 is a procedure call, �� is a call of the
method � of the object the name of which is stored in the object variable �, self.m is a call of
the method � declared in the same object, and ��	��� is a call of the method � declared in
the object that created the calling object. Note that method calls are always prefixed by an object
variable or by the constant self or ��	��.

We define the guard ����� of an object action � to be the guard of the action in ��� obtained by
substituting every atomic object action of � with the action ���	, where an atomic object action is

�� � �� �� ������� � �� ������� 	� ��� self.m� ��	���

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 2

Stepwise Development of Peer-to-Peer Systems

The resulting statement is an action in ��� and hence its guard is well defined.

A ����� is a pair � �� � �, where � � ����� is the ���� of the class and � is its ����, that is, a
statement of the form

� � �� ���� �� �� ���
 ��
�
��� �

���� �� ���� � � � ��� ���

	��
 	� � ��� � � � � 	� � ��
�� � ��

��

A class body consists of an object action � and of four declaration sections. In the attribute
declaration the shared attributes in the list �, marked with an asterisk �, describe the variables to
be shared among all active objects. Therefore they can be used by instances of the class � and
also by object instances of other classes. Initially they get values ��. The local attributes in the list

 describe variables that are local to an object instance of the class, meaning that they can only
be used by the instance itself. The variables are initialized to the value
�.

The list � of object variables describes a special kind of variables local to an object instance of
the class. They contain names of objects and are used for calling methods of other objects. We
assume that the lists
� � and � are pairwise disjoint.

A method �� � �� describes a procedure of an object instance of the class. They can be called
by actions of the objects themselves or by actions of another object instance of possibly another
class. A method consists of a method name � and an object action � .

A procedure 	� � �� describes a procedure that is local to the object instances of the class. It can
be called only by actions of the object itself. Like a method, it consists of a procedure name 	 and
an object action forming the body � .

The class body is a description of the actions to be executed repeatedly when the object instance
of the class is activated. It can refer to attributes which are declared to be shared in another
class, and to the object variables and the local attributes declared within the class itself. It can
contain procedure calls only to procedures declared in the class and method calls of the form ��

or ��	��� to methods declared in other classes. Method calls self.m are allowed only if � is a
method declared in the same class. As for action systems, the execution of an object action is
atomic.

2.3. OO-action system

An OO-action system �� consists of a finite set of classes

�� � �� ��� �� �� � � � � � ��� �� ��

such that the shared attributes declared in each �� are distinct and actions in each �� or bodies
of methods and procedures declared in each �� do not contain ��� statements referring to class
names not used by classes in ��. Local attributes, object variables, methods, and procedures
are not required to be distinct.

There are some classes in ��, marked with an asterisk �. Execution starts by the creation of one
object instance of each of these classes. Each object, when created, chooses enabled actions
and executes them. Actions operating on disjoint sets of local and shared attributes, and object
variables can be executed in parallel. They can also create other objects. Actions of different
active objects can be executed in parallel if they are operating on disjoint sets of shared attributes.
Objects interact by means of the shared attributes and by executing methods of other objects.

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 3

Stepwise Development of Peer-to-Peer Systems

Servent
 A

Servent
 F

Servent
 E

Servent
 D

Servent
 B

Servent
 C

 (includes Servent F info)
4. Search Response

3. Search Response
 (includes Servent F info)

1. Search Query

2. Search Query 2. Search Query

2. Search Query2. Search Query

5. File Download

FIGURE 1: Gnutella peer-to-peer model [10]

3. INITIAL SPECIFICATION OF THE GNUTELLA SYSTEM

Gnutella is a decentralized peer-to-peer file-sharing model developed in 2000 by Nullsoft, AOL
subsidiary and the company that created WinAMP [10]. The Gnutella model enables file sharing
without using servers.

Unlike a centralized server network, the Gnutella network does not use a central server to keep
track of all user files. To share files using the Gnutella model, a user starts with a networked
computer A with a Gnutella servent, which works both as a server and a client. Computer A will
connect to another Gnutella-networked computer B and then announce that it is alive to computer
B. B will in turn announce to all its neighbours C, D, E, and F that A is alive. Those computers will
recursively continue this pattern and announce to their neighbours that computer A is alive. Once
computer A has announced that it is alive to the rest of the members of the peer-to-peer network,
it can then search the contents of the shared directories of the peer-to-peer network.

Search requests are transmitted over the Gnutella network in a decentralized manner. One
computer sends a search request to its neighbours, which in turn pass that request along to
their neighbours, and so on. Figure 1 illustrates this model. The search request from computer
A will be transmitted to all members of the peer-to-peer network, starting with computer B, then
to C, D, E, F, which will in turn send the request to their neighbours, and so forth. If one of the
computers in the peer-to-peer network, for example, computer F, has a match, it transmits the file
information (name, location, etc.) back through all the computers in the pathway towards A (via
computer B in this case). Computer A will then be able to open a direct connection with computer
F and will be able to download that file directly from computer F.

4. ACTION SYSTEM SPECIFICATION OF THE GNUTELLA SYSTEM

When taking a step back, it is seen that the Gnutella system enables at least the following
functionalities:

1. Servent can easily join and leave the peer-to-peer network.
2. Servent can publish its content to the shared directories of the peer-to-peer network.
3. Servent can search for and download files from the shared directories of the peer-to-peer

network using keywords.

Based on the simple descriptions above, we can identify that servent should provide three basic
services, connect service, lookup service and download service, as shown in Fig.2. From this

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 4

Stepwise Development of Peer-to-Peer Systems

Connect

Download

Lookup User

Net

Servent

FIGURE 2: Use Case diagram of servent

Download
Service

Connect
Service

Lookup
Service

User Interface

Network

FIGURE 3: Structure diagram of servent

diagram we divide the system into components and derive a component-based structure of
servent in Fig.3.

The statechart diagram Fig.4 shows the joint behaviour of servent. Each state is described by a set
of attributes. We give unique preconditions for entering each state. Table 1 shows preconditions
and invariants for every state of the servent.

An interesting issue to notice is that downloads can be initiated in two ways, i.e. either from a
search result or by directly specifying target information. This design is reasonable because we do
not always need to search the peer-to-peer network to get wanted files. In some cases, name and
location information of files is already available. For example, file exchanges between two friends,
who have already known each other’s IP and shared contents. Take this into consideration, we
provide two ways to initiate downloads.

The first version of action system specification of servent can be derived directly from Fig.4 and
Table 1.

�� �������!������� ! �� � � ��

where the class body in Table 2 consists of attribute declaration, initialisation and a loop of actions
which are chosen for execution in a non-deterministic fashion when enabled. Each action is of the
form � � ! where � is the guard and ! is a statement to be executed when the guard evaluates to

Offline Online

Searching

Downloading

No Match

Match

Finish

Set Keyword

Set TargetConnect

Fail

FIGURE 4: Statechart diagram of servent

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 5

Stepwise Development of Peer-to-Peer Systems

TABLE 1: Preconditions and invariants for states
State Precondition Invariant
Offline �connected 	 keyword = " keyword = " 	 target = "

	 target = "
Online connected 	 keyword = " connected

	 target = "
Searching connected 	 keyword
� " connected 	 target = "

	 target = "
Downloading connected 	 keyword = " connected 	 keyword = "

	 target
� "

TABLE 2: Initial specification of servent

 ! � �� ���� ����������� ��������� �������� ����� �� Offline
��

����� � Offline 	 ����������
����� �� ������

� ����� � ������ 	 �������
� "�
����� �� !����#���

� ����� � ������ 	 ������
� "�
����� �� $����������

� ����� � !����#��� 	 ������ � "�
������� �� "� ����� �� ������

� ����� � !����#��� 	 ������
� "�
������� �� "� ����� �� $����������

� ����� � $���������� �
������ �� "� ����� �� ������

��

��

����. Here connected is a boolean variable; keyword is the search criteria; target is the location
information of shared resources in format filename@IP.

The next step is to apply the design in Fig.3 to our initial specification, which results in three more
classes ConnectService, LookupService and DownloadService. Now the system consists of a set
of classes � ��� � where � is the name of the class and � is its body. On the top level, we have
components of servent

�� �������!������� ! ��� � �������!������� �� ��

� %����	!������� %� ��� $�������!�������$� �� � � ��

The class � �������!������� ! �, marked with an asterisk �, is the root class. At execution
time one object of this class is initially created and this in turn creates other objects by executing
��� statements.

Let us look at the actions in Table 2. We can refine them according to service groups. For example,
action

����� � Offline 	 ���������� ����� �� ������

where Offline and Online are defined in Table 1, can be refined into action

����������� ��������� �� ��������� �

In this paper, however, we skip refinement details here because we do not want to go into details
of semantics of action systems [15] nor refinement rules of refinement calculus [12].

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 6

Stepwise Development of Peer-to-Peer Systems

TABLE 3: Refined specification of servent

 ! � �� ���� ��������� �� false� ������� �� "� ������ �� "
��� � � �������!������� � � %����	!�������

� � $�������!������
���� !��&��������� � ������� �� ��

!��'�������� � ������ �� �
��� � �� �����������!��������

� �� ����%����	!��������
� �� ����$�������!�������

��

����������� ��������� �� ��������� �
� ��������� 	 �������
� "�

������ �� �!����#���������� ������� �� "
� ��������� 	 ������
� "�

�$���������������� ������ �� "
��

��

Download
Service

Connect
Service

Network

Lookup
Service

User Interface

File
RepositoryRouter

FIGURE 5: Schematic diagram of servent

The body of the refined specification of servent is described in Table 3. It models a servent that
provides three basic services (ConnectService, LookupService and DownloadService). When it
connects itself to the peer-to-peer network, users can search the network via !��&������method
and then download files from the search result. Or alternatively, users can directly give target
information via !��'����� method to download files.

5. REFINING GNUTELLA SERVENT

Ultimately, we need to derive an implementable specification for each service in the Guntella
servent. Hence, every service component should be refined. We notice ConnectService and
LookupService share a common functionality that enables appropriate message routing. It is
reasonable to introduce a new component Router to the system as depicted in Fig. 5. This
component will be in charge of routing all the incoming and outgoing messages of the servent.
For DownloadService, we introduce a new component FileRepository in Fig. 5. It will act as a
resource exchanger between servent and network.

5.1. Refining ConnectService

We start by considering ConnectService first. A Gnutella servent connects itself to the peer-to-
peer network by establishing a connection with another servent currently on the network, and this

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 7

Stepwise Development of Peer-to-Peer Systems

TABLE 4: Message format

��� � �� ���� ������	���($�''%� ��	�� info
���� '�������� � � ''% � � � ''% �� ''%� �
��� � � ������ ����� �

������ � �������	���($ �� ���)�� ($ �
''% �� ��
 ''% � ��	� �� �� info �� info �

��

1. Ping

3. Ping 2. Pong

3. Ping

3. Ping

FIGURE 6: Ping - Pong routing[7]

kind of connection is passed around recursively. In order to model the communication between
servents, we define a set of descriptors and inter-servent descriptor exchange rules as follows [7]

Ping Used to actively discover hosts on the network. A servent receiving a Ping descriptor is
expected to respond with one or more Pong descriptors.

Pong The response to a Ping. Includes the address of a connected Gnutella servent and
information regarding the amount of data it is making available to the network.

Furthermore, we need to define the format of Ping descriptor and Pong descriptor. We use the
message format in Table 4, where DescriptorID is a string uniquely identifying the descriptors
on the network. TTL stands for Time To Live, which is the number of times the descriptor will
be forwarded by servent before it is removed from the network. The TTL is the only mechanism
for expiring descriptors on the network. Each servent will decrement the TTL before passing it
on to another servent. When the TTL reaches 0, the descriptor will no longer be forwarded. The
information carried by the message is encoded in info, whose format depends on the variable
type.

The peer-to-peer nature of the Gnutella network requires servents to route network traffic
appropriately. Intuitively, a servent will forward incoming Ping descriptors to all its directly
connected servents. Pong descriptors may only be sent along the same path that carried the
incoming Ping descriptor as shown in Fig.6. This ensures that only servents that routed the Ping
descriptors will see the Pong descriptor in response. A servent that receives a Pong descriptor
with ������	���($ � �, but has not seen a Ping descriptor with ������	���($ � � should remove
the Pong descriptor from the network.

The above routing rules can be illustrated in the statechart diagram Fig. 7. Using the same
techniques as in the previous section, we can translate the diagram into action system
specification and further refine it into Table 5.

The specification of Ping - Pong router models a router that can route Ping - Pong traffic
appropriately. When the router is initiating, it connects itself to the peer-to-peer network by sending
Ping descriptors to other peers. After initiation, it continues receiving incoming message and
replying with apporiate outgoing message . Here descriptorDB is a set storing descriptorID

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 8

Stepwise Development of Peer-to-Peer Systems

ReceivingInitiating

Updating DB Sending Pong Forwarding Ping

Forwarding PongAdding Peers Checking DB

Pong Expired

Received Ping

Ping − Pong Routing

Ping Expired

Received Pong

Fail

FIGURE 7: Statechart diagram of Ping - Pong routing rules

TABLE 5: Specification of Ping - Pong router

*� � �� ���� ��������� �� false� ������	���$+ �� "� 	���� �� "
��� ����������� ����������� ����
���� *���������� � � ����������� �� �������� ������� �

!���� ���� � � ������� �� ���������������
�������� ������� �� ��������

!�������� � � ������� �� ���������������
������info(� �� �#�� (� �
�������� ������� �� ��������

ForwardMsg��� � ��''% � � �
�'�������� �� �������� ������� �� ��

��� !���� ���� �
��

�� 	����
� "� ��������� �� ����
� ����������� !���� ���� � ��
�
�� �����

*���������� ��
if �������������	� � ���� �

������	���$+ �� ������	���$+�
�����������������	���($�
!�������� ��
ForwardMsg�������������

� �������������	� � ���� �
	���� �� 	���� � �����������info(� �
�����������������	���($ � ������	���$+ �

ForwardMsg�������������
fi

��
��

��

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 9

Stepwise Development of Peer-to-Peer Systems

User Interface Router File Repository NET

BroadcastPing()

Ping()

Pong(peer)

ConnectReply()

IncomingPing()

OutgoingPong(servent)

StartConnect()

FIGURE 8: Sequence diagram of a connect session

TABLE 6: Specification of ConnectService

�� � �� ���� ��������� �� false
��� � � *�����
���� �������� � � ���������� �� �����������
��� � �� ����*������

��

information; peers is a set storing its directly and indirectly connected servents information; and
this IP is the IP address of the responding servent. The sequence of a connect session is

summarized in Fig. 8.

In order to reuse the specification in Table 3, we will specify ConnectService without making any
changes in its interface. The specification is shown in Table 6. When ConnectService is initiating,
an instance of Router is created. Then it keeps checking state variable connected in the router
and passing the status to servent.

5.2. Refining LookupService

When we think about LookupService, we follow almost the same paradigm as ConnectService
to specify this component. A Gnutella servent starts a search request by broadcasting a Query
message through the peer-to-peer network. Upon receiving a search request, the servent checks
if any local stored files match the query and sends a QueryHit message back. We use following
descriptors and routing rules to model the communication between servents [7]

Query The primary mechanism for searching the distributed network. A servent receiving a Query
descriptor will respond with a QueryHit if a match is found against its local data set.

QueryHit The response to a Query. This descriptor provides the recipient with enough
information to acquire the data matching the corresponding Query.

The message format in Table 4 has to be revised to adopt the new descriptors. The message type
now includes Ping, Pong, Query and QueryHit, so a minor change is made in Table 7.

The routing rules for Query - QueryHit traffic are similar to the rules for Ping - Pong traffic. A
servent will forward incoming Query descriptors to all its directly connected servents. QueryHit
descriptors may only be sent along the same path that carried the incoming Query descriptor
as shown in Fig. 9. This ensures that only those servents that routed the query descriptors
will see the QueryHit descriptor in response. A servent that receives a QueryHit descriptor with

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 10

Stepwise Development of Peer-to-Peer Systems

TABLE 7: Refined message format

��� � �� ���� ������	���($�''%� ��	�� info
���� '�������� � � ''% � � � ''% �� ''%� �
��� � � ������ �����,�����,����-����

������ � �������	���($ �� ���)�� ($ �
''% �� ��
 ''% � ��	� �� �� info �� info �

��

1. Query

2. Query

3. Query4. Hit

5. Hit

6. Hit

FIGURE 9: Query - QueryHit routing[7]

������	���($ � �, but has not seen a Query descriptor with ������	���($ � � should remove the
QueryHit descriptor from the network.

Like the previous section, we first draw a statechart diagram for the Query - QueryHit routing
rules. Then we translate it into action system specification and further refine it.

In Table 8 we have the body of Query - QueryHit router specification, which models a router
that is in charge of routing Query - QueryHit traffic appropriately. Like a Ping - Pong router,
it keeps receiving incoming message and replying with apporiate outgoing message . Here
descriptorDB is a set storing descriptorID information; myKeyword is a string storing search
criteria; cKeyword is a string storing comparison criteria; filename is a string storing destination
filename; target is the shared resource location information in format filename@IP; and f is an
object of class FileRepository which enables local file search service via Has and Find methods.
Details of class FileRepository will be elaborated in the next section.

The Query - QueryHit router provides searching function via method SetKeyword. Once a keyword
is set, a Query descriptor carrying search criteria is generated and broadcasted in the peer-
to-peer network via method SendQuery. In the mean time, the router keeps receiving Query
and QueryHit descriptors. For an incoming Query descriptor, a query request is passed to
FileRepository. According to the search result, a QueryHit descriptor is sent back in response
via method SendQueryHit if a match is found, otherwise the Query descriptor is further forwarded
via method ForwardMsg. Upon receiving a QueryHit descriptor, it checks its keyword field, and
then sets target information to complete the search session. We summarize the sequence of a
search session in Fig. 10.

Now we specify LookupService with emphasis on specification reuse. The result is shown in Table
9. When LookupService is initiated, an instance of Router is created. It provides Search method
via calling SetKeyword method in the router, and then returning the search result to servent.

Until now we have two action systems, Rc modeling Ping - Pong routing rules and Rl modeling
Query - QueryHit routing rules. We notice the two action systems actually model different aspects
of a full router. Furthermore, we can compose the two action systems together using prioritising
composition [5] to derive the action system specification of a full router

* � �� *� �*� ��

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 11

Stepwise Development of Peer-to-Peer Systems

TABLE 8: Specification of Query - QueryHit router

*� � �� ���� ������	���$+ �� "���&������ �� "�
�&������ �� "� filename �� "� ������ �� "

��� ����������� ����������� ����� . � FileRepository
���� !��&��������� � ��&������ �� ��

*���������� � � ����������� �� �������� ������� �
!���,����� � � ������� �� ��������,�������

������info������� �� ��&�������
�&������ �� ��&������� ������ �� "�
�������� ������� �� ��������

!���,����-��� � � ������� �� ��������,����-�����
������info������� �� �����������info��������
������info.filename �� filename�
������info(� �� �#�� (� �
�������� ������� �� ��������

ForwardMsg��� � ��''% � � �
�'�������� �� �������� ������� �� ��

��

�� ��&������
� "� !���,����� ����&������ � " ��
�
�� �����

*���������� ��
if �������������	� � ,���� �

������	���$+ �� ������	���$+�
�����������������	���($�
if .-��������������info�������� �

filename �� ./ ���������������info���������
!���,����-��� �

� �.-��������������info�������� �
ForwardMsg�������������

fi
� �������������	� � ,����-���

if �����������info������� � �&�������
������ �� �����������info.filename	
�����������info(� � �&������ �� "

� �����������info�������
� �&������	
�����������������	���($ � ������	���$+ �

ForwardMsg�������������
fi

fi
��

��

��

TABLE 9: Specification of LookupService

%� � �� ���� ������ �� "
��� � � *�����
���� !����#��� � ��!��&���������� ������ �� ��������
��� � �� ����*������

��

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 12

Stepwise Development of Peer-to-Peer Systems

User Interface Router File Repository NET

Query(message)

StartSearch(criteria)

BroadcastQuery(message)

QueryHit(replymessage)

SearchReply()

IncomingQuery(keyword)

Lookup(keyword)

LookupReply(filename)

OutgoingQueryHit(target)

FIGURE 10: Sequence diagram of a search session

where on the higher level, we have components of the router

�� *������* ��� ��������*������*� ��� ,����*������*� ��

5.3. Refining DownloadService

DownloadService is relatively simple compared to ConnectService and LookupService. The
primary function of this component is to enable a servent to download files from other servents.
Once a servent receives a QueryHit descriptor, it may initiate the direct download of one of the files
described by the descriptor’s result set. Or alternatively, users can initiate the download directly by
giving complete target information. Files are downloaded out-of-network, i.e. a direct connection
between the source and target servent is established in order to perform the data transfer. File
data is never transferred over the peer-to-peer network.

Additionally, this component provides the local file query function for other servents. It should be
in charge of a local file database which provides data services like add, delete, update, query and
refresh etc. Moreover, it should take full control of local files. Hence we introduce a new component
FileRepository in Table 10, which will satisfy the above requirements for DownloadService. First
of all, we provide SetTarget method to enable file downloads. To make things simple, we assume
that fileDB is simply a set of relations ����� � �file�. We use relation notations [16] dom
and ran for domain and range operations, and � as a domain restriction operator, defined by
! � � � �
� ��
 � � � � 	
 � !�. For incoming Query descriptors, Has and Find methods are
provided to enable local file searches.

Given target information, download action is enabled and servent initiates a download. A
download request is sent to the target servent, and then a file is downloaded via HTTP protocol.
Afterwards, fileDB is refreshed in order to reflect the change of adding new files to the repository.
The sequence of a download session is summarized in Fig. 11.

The last step is to specify DownloadService. From the result in Table 11, we can see that when
DownloadService is initiating, an instance of FileRepository is created. It enables Download by
calling SetTarget method in FileRepository.

At this stage of the design, we finally have a complete set of classes which are refinement results
from the initial specification of servent as follows

�� �������!������� ! ��� � �������!������� �� ��

� %����	!������� %� ��� $�������!�������$� ��

� ��������*������*� ��� ,����*������*� ��

� *������* ��� FileRepository � / ��� ����������� ��

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 13

Stepwise Development of Peer-to-Peer Systems

TABLE 10: Specification of file repository

/ � �� ���� fileDB �� fileDB � filename �� "� ������ �� "
���� !��'�������� � ������� �� ���

-������� � ������ � ����fileDB���
/�������� � �filename �� file 	 �file� � ���������� fileDB��

��

������
� "�
-''� ���������
������ �� "�
Refresh�fileDB�

��

��

User Interface Router File Repository NET

StartDownload(target)

DownloadRequest(target)

DownloadReply()

DownloadResponse(file)

IncomingDownload(target)

OutgoingDownloadReply(file)

FIGURE 11: Sequence diagram of a download session

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 14

Stepwise Development of Peer-to-Peer Systems

TABLE 11: Specification of DownloadService

$� � �� ��� . � FileRepository
���� $���������� � .!��&���������
��� . �� ����FileRepository�

��

6. CONCLUDING REMARKS

We identified two open problems of existing peer-to-peer systems: reliability and robustness and
extendability, and proposed strategies that can be used to solve them. The main contribution
of this paper is an approach to stepwise development of peer-to-peer systems within the action
systems framework by combining UML diagrams. We have presented our approach via a case
study of stepwise development of a Gnutella-like peer-to-peer system.

Our experience shows that it is beneficial to combine informal methods like UML and formal
methods like action systems together in the development of peer-to-peer systems. In the early
stage, we try to catch the characteristic of the system using use case diagrams and statechart
diagrams. Then formal specification in action systems framework is derived by further studying
and elaborating details of these diagrams. In the later stage, sequence diagrams are used to
graphically clarify the structure of the refined action system specification.

Moreover, we find OO-action systems very suitable for designing such kind of systems. The formal
nature of OO-action systems makes it a good tool to built reliable and robust systems. Meanwhile,
the object-oriented aspect of OO-action systems helps to built systems in an extendable way,
which will generally ease and accelerate the design and implementation of new services or
functionalities. Furthermore, the final set of classes in the OO-action system specification is easy
to be implemented in popular OO-languages like Java, C++ or C#.

Peer-to-peer systems have been evolving very quickly. Besides Gnutella, another promising
choice is JXTA [8] from Sun, which has been generating lots of attention. In the future work,
we plan to further investigate this new standard. Moreover, we plan to stepwise implement our
action system specification and develop it into a real peer-to-peer system.

REFERENCES

[1] R.J.R. Back and K. Sere: From Action Systems to Modular Systems. Software - Concepts
and Tools. (1996) 17: 26–39.

[2] R.J.R. Back, A.J. Martin and K.Sere: Specifying the Caltech asynchronous microprocessor.
Science of Computer Programming. (1996) 26: 79–97.

[3] L. Petre, M. Qvist and K. Sere: Distributed Object-Based Control Systems. TUCS Technical
Reports, No 241, February 1999.

[4] M. Bonsangue, J.N. Kok and K. Sere: An approach to object-orientation in action systems.
Proceedings of Mathematics of Program Construction (MPC’98), Marstrand, Sweden, June
1998. Lecture Notes in Computer Science 1422. Springer Verlag.

[5] E. Sekerinski and K. Sere: A Theory of Prioritising Composition. TUCS Technical Reports,
No 5, May 1996.

[6] M. Butler, E. Sekerinski and K. Sere: An Action System Approach to the Steam Boiler
Problem. In Jean-Raymond Abrial, Egon Borger and Hans Langmaack, editors, Formal
Methods for Industrial Applications: Specifying and Programming the Steam Boiler Control.
Lecture notes in Computer Science Vol. 1165. Springer-Verlag, 1996.

[7] Clip2 DSS: Gnutella Protocol Specification v0.4.
Online. http://www.clip2.com/GnutellaProtocol04.pdf.

[8] L. Gong: JXTA: A network programming environment. IEEE Internet Computing, 5(3): 88–95,
May/June 2001.

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 15

Stepwise Development of Peer-to-Peer Systems

[9] M. Ripeanu: Peer-to-peer architecture case study: Gnutella network. Technical Report TR-
2001-26, University of Chicago, Department of Computer Science, July 2001.

[10] I. Ivkovic: Improving Gnutella Protocol: Protocol Analysis and Research Proposals. Technical
report, LimeWire LLC, 2001.

[11] M. Parameswaran, A. Susarla and A.B. Whinston: P2P networking: An information-sharing
alternative. IEEE Computer, 34(7): 31–38, July 2001.

[12] R.J. Back and J. Wright: Refinement Calculus: A Systematic Introduction. Graduate Texts in
Computer Science, Springer-Verlag, 1998.

[13] L. Petre and K. Sere: Coordination Among Mobile Objects. Proceeding of IFIP TC6/WG6
Third International Conference on Formal Methods for Open Object-Based Distributed
Systems (FMOODS’99), Florence, Italy, February 1999.

[14] E.W. Dijkstra: A Discipline of Programming. Prentice-Hall International, 1976.
[15] K. Sere: Stepwise derivation of parallel algorithms. Academic dissertation of Åbo Akademi

Department of Computer Science, 1990.
[16] E. Sekerinski and K. Sere (Eds): Program Development by Refinement: Case Studies Using

the B Method. Springer-Verlag, 1999.

6th International Workshop in Formal Methods (IWFM’03)
The British Computer Society 16

Paper II

Via Firewalls

L. Yan

Available in: Proceedings of the 3rd International Conference on Grid
and Cooperative Computing (GCC’04), October 2004. Lecture Notes in
Computer Science 3252, Springer-Verlag.

��� ��������	

�� ���

����� ������ 	
� �
������ ������ ����� ���
����������
	 �
������ ������� ���
 ������� �����������

��� !"#!" ������ ���$���%
���������	�
�

��������� � $
�
	 ���&
��� �
��� ��� ��'��� (��&�$$�% �� ���� �
 ����
���&
����)� (��&�$$ ��
������ ����� ��� '��� �
 �
��������� &��' �����

������ �'� (��&�$$% �'�� ����� �'
&� '
& �
 ����)� ���� �
 ���� ���
���� �
 &
�� &��' ��*����� �����
	 (��&�$$� &��'�� �'�
�+���
�������
����
� ������� 	����&
�� �� �
������) 	
���$ ��� ��	
���$ ���'
��%
,� �������
�� ����
��' ��� � ���� �����
	 �-������) � .����$$� ���$�
���� �
 ���� ������ �
 ��
���� �
���������� �'�
�)' (��&�$$�%

� �������	�
��

��� 	
�� �� ���������� �������	��� 	� � ����� ���� ��
�� �� ��� ������� ����
���	����
	������ �	�� ���� ������ 	� �� ��
 �� �������� 	������ �������� ���
 �� ��
� ���������� ������� 	� �� �� ���� �� ����� �����
��� 	� ��� ���� ���� ������
��� ��� �	�	��
 �� ����������� 	� � ��� �������
 ���������	��� ���
��� ��������
���
�!����
 	��� � ��� ���������� �������� 	� ��� ����� ���� ���� �"�������
���� �� ��
	��	�� ������� �������� ��
 ���!���� #����!��� ���� �������� ���

�� ����� $�������� ��� �����	�� �������� ��	�� 	��
�
	���� ������	���	��
�� $����	�� ������ ��
 �	�	�	�� ��� ��� ������� ��� �� �	�
	����	���� ���Æ��

��� ���� �� ���������� �������	�� 	� �� ����!� ���
	��	���	�� �������
��	��� ��
 ���!��� ������
 �� ����	�� ��� ������� ���� ��� ���� ��%���� 	�����
���	�� ���� ��� ���!��� ����� ��� ��� ���������� ��	���	��� �� �����	����
�������� �� ��������� 	� �

	�	�� �� ��%����	�� ����� &� � !	�	�� �� �������
��� �������	��� 	� 	� ��������� ��� ���������� ��	���	��� �� ���� 	� ����
��!	��������� ������� ����� ����� ���	����� �� ������	���

'��!	����� ()*� �� ��!� ���	$�
 � +���������	�� ���������� ������ �	��	�
��� ��,������	����
 ���	�� ������� ��������� �� ����	�	�� -#�
	�������
.��� 	�������	�� ���� � ������ 	� /�!�� �� ����	0�
 ���� � ��� �� ��������
��
�� ��� ���	�
 $�������� �� ���������� �������	��� $��������������
 ����
��� ��!� �� ������	���� �	�� ���� ����	
� ��� $������� ���� � �����	�� �����

�� ��
� �� ������ ������	���	�� ������� ���� �!������ ��� ��������� ����

�� ��� $������� �� ��!	
� ��	!����� �������	!	�� ���������� ��� �������� ��	�
���	!���� �� �� ���
��� � ���
� �� $������� 	� ���������� �������	�� ��

���	�!� � ��� �� ���!���� $�������� .� ������ ��� ������ !	� � ���� ���
� ��
�"���
	�� � +������������� ���������� ������ �� ��!	
� �������	!	�� �������
$��������

��	� ��� ����� ��� ��
��	�� ���������� ������� �� ���� �	��
	1�����
�	�
� �� $������� �	��	� ��� ��,������	����
 ���	�� ������� ��������� �� ����
�	�	�� ������ ��
 	������� �����
�� 2����� �����
� ��� ��� �	�� ���	��	�	��
��
 ���������� �� �	�	�	0	�� ������ 	�
��	��	�� ���������� ������� ��
 ���
����$� �� ��,������	�����	�� ��� �� ���
 ��
��	�� ��
 	������� ����������
������� 	� � ��������� ��������� ��
 �"������� ����

&� $������� ��!� !��	��� ������	�� 3�	�����
������ �����
� ����4 ��
 !��	���
�����	�� ��	�	�� 3����� $����	��� ������������� ��� �	�	�	��� ����4� ��� ������
��� ����	�� ����� ��
 ��	���	��� ��!� ����	��
� ��%�	�������� & ������� ���
���	�� ���� $�� ��� �	����	��� ����� �� �� 	�����	��� 	� ��	� ����� ���� ��
�$�� �
�	��	$�
 !���	�� �� ��� ������ �� ����� 	� 2	��)5 6�� �� ��!	
� �������	!	��
������� � �	!��� ��� ��
 � ���	� ��� ������� � �	���� $������7

Internet

FirewallPrivate Peer Public Peer

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

	
�� �� /�
�$�� ��(����
�

��� ���� �� ��� ��� 	� �����	0�
 �� �������� & �����	�� �� ��	�
	����	����
$������� 	�
��	!�
 	� 8���	�� 9� �� 8���	�� : �� ��!	
� � �����	�� �� �������
�	�
 �� $������� ��	�� �	�	� ��� ��� ��� �������� .� ��
 	� 8���	�� ; �	��
������
 ���� ��
 ������
	�� ��������

� ��
�
��	�
���� ��������

#��� �������� �������� ��
�� ��� ���$������
 �� ����� �������
 �������	���
3���� ��� $������ �������
 ������� �� ��������4� ���
��� 	�����
 �������	���
3���� �������� �� ��� $������ �������
 �������4 �� 	���������
 	� 2	�� 9�

����� �������� $������� �"��	�� ��� ������ �� 	�������	�� ���� �� ���
�������� ��!�� ��
�����	�� ������� � ���	����� ����� �����
 �� ������
�
<��� ����� 	� �	���� ������
�
 �� ������
 ����
 �� � ��� �� �����
�$��
 ��
��� $������ �
�	�	�������� .	�� ������$���	�� ������ $������� ��� ���	�� �����
���
	����	�� 	� ��	�� � �=' �������	�� 	� 	�	�	���
� ��� $��� ������ �� ���
�=' ��������� ���
����� ��� ��	%���� 	
���	$�
 �� ��� >��� ���� �����	�� ��

$������ ����� ��� ��� ��	� 	�������	�� �� ������ ���� �����	� �������	��� ���
	�	�	��� 	� ���� ���
	����	��� & ������ ���$�����	�� ��� ����� $������� 	� ��
����� ��� �������	��� 	�	�	���
 �� �������� 	��	
� ��� $������� ��
 �����	�� ���
�������	��� ��� �������� ����	
� ��� $������� 2�� �"����� $������ ����� �	���

Public Peer

(Outside)(Inside)

Private Peer

Firewall Protected Network

Outbound Connection

Inbound Connection

	
�� � ��� �������
��$ ����&�$$

���	�� ���� ����� ��� ������ ���� ���	� �������� �� � ��� ���!�� �� ���������
��� �� ����	
� ���� �� �������� ������ ������ �� ��� �������
 ������ ��������

�� ��
�� �� ���!���� ��	� �	�
 �� $�������� �� 	����
��� � ���
����	��� ��

����	�� ����� ��� ���!���� (9*

���� & ������	�� ���� ������ � $�������
 ���!��� �� �����	���� $�������

���
�� ��� �������� & ���!��� ��� ���
 � '���
����	��� 	� 	� ����	!�� � ?����6	�

����	��� ���� � ���!��� ����
������ ����� 	����	�� �������	����

��� ������� ������ ()* ��� �� �� ��!	��
 �� �
�� ��� ���
����	���� ���
������� ���� ��� 	����
�� ����	 �
��	 ����	 ������� ��
 ����� �� �	���
������� ��� ��
� 	� �����)�

����� �� 0����)� 	
����

��� 1 �2 ���� ������	
���3 ������
�3���3
�	�3 ����
���� �������
� � 1 ��� � " � ��� 41 ���� 5

�
�
 � ������ ������������������
������ �

����
� 1 �������	
��� 41 ������ � 3
��� 41 ��� ��� 3
�	� 41
3 ���� 41 ���� �

6�

@��� � ���!��� ����	!�� � ?����6	�
����	���� 	� ��� 	�	�	��� �
	����
����
���
� ��� 	� 	� 	����	��� �� ������	�� ���
	���� �������	�� 	� ��� ���!��� 	� ���	�

� $������ ����
��� ��� ���	� 	����	�� �������	��� �� 	�� +������� ���� �� ��	�

	���� �������	�� ������ �� ������	���
� ��� ���!��� ������	�� ��� $��
����
���
 ��� ��%���� ���� ��� ���!��� ����	�� ��� $�� ���� ��� $�� 	�����
� 	��� &
���!��� ��� ���
 � '���
����	��� 	� 	� ����	!�� � ?����6	�
����	��� ���� �
���!��� ����
������ ����� 	����	�� �������	����

-��	�� ��� ��!	���
����	���� '	��� '���� ?���� ��
 ?����6	�� '���
��
���	���� ��� �����
 �� ��������� ��� ���������
��� ����	�	!���� '���
����	�
���� ��� ���� �� ���� ����� ��� ���� ��� ���� ����	�
 ��� 	����	�� ?����6	�

����	���� �� 	���������
 	� 2	�� :� ��	� ������� ���� ���� ����� ���!���� ����
�����
 ��� ?����6	�
����	���� �	�� ��� ��� '���
����	���� & ���!��� ����
����	!�� � '���
����	��� �	�� ��������� A �� ��� ��� ��� ���� � ?����6	�

����	��� �	�� ��������� A � �����
 ����!� ��� '���
����	��� ���� ���
��������

2. Query

3. Query4. Hit

5. Hit

6. Hit1. Query

8. Push

9. Push

10. Push
File

7. Push

	
�� �� /��' �
����) 2!6

.� �
�� ��	�
	����	���� $������� �� �

	�� � '��� ������ 	� ����� 9� ��	��
	� �� ���	�� ������ �� ��
��	�� '��� ����	�� ������ 8	��� ��	� ���	�� ������
�������� ��
��� � ���	����� ����� �� � ���� ������� �� ��� ������ 	� �	��
��� ��!	��� ��� ���	�� ������� �� ��
��	�� '	�� � '��� ����	�� ����� ��
 ��
��
��	�� ?���� � ?����6	� ����	�� ����� ��������� ��	�� ��
������� �
��
����
�
(:* ��
��	!� � ��� ���	�� ������ ���	$���	�� �� � ���� ������

	 A �(
 � 	� � �� *�

����� �� ��� �	���� ��!��� �� ��!� ��������� �� ��� ������

�� 	�����	 ��� �������	�����	
 ��

� �����	�����	� ��� ����	������� ��

& ���!��� ��� ��%���� � $�� ��� �� ����	�� � '��� ��%���� ���� �� ��� ���!���
���� ���� ��� ?����6	�
����	���
����	�	�� ��� ������ $��� ��� ���!��� ���� 	�
��� ������ �� ��� '��� ��%���� �����
� ��� ����	� �� ��� '���
����	����
������ �� ������	�� � ��� �='B�' �������	�� �� ��� ��%����	�� ���!���� &�
���	$�
 	� ��� ��$��
 $�� ����	���� 	� ����� :� ���� ���
	���� �������	�� 	�
������	���
� ��� $�������
 ���!��� �����
 	���
	����� ���
 � 6��' +�C ��%����
�	�� ��������� ������� ��
 ���������
��� 	�������	��� ����� �������� ��

���������
��� ��� �' �

���� 	�������	�� �� ��� $�������
 ���!��� ��
 ��� ������
���!��� ��� ��� '��� ��%����� ��
 ������� 	� ��� ��%�����
 $�� 	�������	��� ��
��	� ���� ��� 	�	�	�� �='B�' �������	�� ������� �� �������
 ���� ��	�� 	�
������
 �� ��	�
	����	���� $�������� D���	!	�� ��� 6��' +�C ��%����� ��� ������
���!��� �����
 �"����� ��� �������� ��
 ������� 	�������	�� ��
 ��������� ��
6��' +<� ��%���� �	�� ��� ���!� 	�������	��� &���� ����� ��� $��
������

������ 	� 	
���	��� �� ��� ������ $��
������
 ������ �	����� $�������� .�
������	0� ��� ��%����� �� � '��� ����	�� 	� 2	�� ;�

����� � ����(����
�
	 /��' �
����

�� 1 �2 ���� ������
� 41 �3 � ��!��� 41 �3 ����	
� 41 �3

����
 41 �3 	��������
 41 �3

��� ����������� 4���3��!��� 4���3 " 4 �������������
���� #�������� � 1 ���!��� 41 ��!�����������3

��!���$����$������
�� 41
��� �� 3
��!���$����$����	
� 41 �����������$����$����	
�3
��!���$����$���
���
����� 41 �����������$����$�� 3
��
����� ������� 41 ��!����3

%���������� � 1 ����������� 41 �������� ������� 3
����	������� 1 ��$��� � " �

�$�������
� �3 ��
����� ������� 41 ��
��

����
%���������� �3

� �����������$
�	� 1 �������
�

������
� 41 ������
� � �����������$������
�3

� �����������$����$&��!��� 1 � ��!����

����
 41 �����������$���������	
�7
�����������$����$�� 3

� "$����	�� �
#�������� �

�

� ��!��� 41 �
� �����������$����$&��!��� �1 � ��!���	

�����������$������	
��� � ������	
��� �
����	�����������������

�

� �����������$
�	�1 �����

� �����������$����$���
���
����� 1
��� �� �

	��������
 41 �����������$����$������
�� �

�����������$����$����	
�7
�����������$����$���
���
�����

� �����������$����$���
���
����� �1
��� �� 	
�����������$������
� � ������
� �

����	�����������������
�

�

��

6�

����� �� ����(����
�
	 ($� ���
���
��

' 1 �2 ���� ����	��� 41 �	��3 ����� 41 ����� 3 ������� 3
����	
� 41 �3
����
 41 �3 	��������
 41 �

���� #�
�����
�
� 1 �
����
 41
�3
���������
�
� 1 �	��������
 41
�3
����&��� 1 ��&��� � �����������3
'����&��� 1 �����	
� 41 ��� 	 ����� � �����&���� �������

��

����
 �1 ��
������� 41 ����� 3
���� ()� �
����
�3

����
 41 �3
�������������3

� ����� 1 ������� �

����	�� 41
���
� ����� �1 ������� �

����	�� 41 �	��
�

� 	��������
 �1 ��
���� (�* �	��������
�3
	��������
 41 �3
�������������

��

6�

Router File Repository NET

QueryHit(message)

SetTarget(target)

Download(target)

DownloadFail()

NotifyFirewall()

SendPush(pushtarget)

Broadcast(pushtarget)

ReceivePush(pushtarget)

StartPush(pushtarget)

Match(pushtarget)

	
�� �� �8����� ���)���
	 � /��' �����
�

� �������	�
�� ��������

�� �������� ��������� ������� �	�
 �� ������ $������� ��� ���������	�� $���
������ ��	�� �������
� ��� ����� ������	�� ��
 ������
 �	!	����� �� ���� ��

�������� ����� ���� ��� E� ��
 6��'B6��'8� 2�� �"����� ��� 9) 3�����

��
 2�' ������4 ��
 ��� 9: 3����
��
 ������ ������4 ��� ������� ������
 ��

��	���	��� ���
��	�
 ������� ���Æ� ������� ����� ����� �� ��	� ����� 6��'
3��� E�4 ��� ������ ��� ���� ����� ������	�� �� ��� �������� �������� -��
	�� 6��' �������� ��� � ���!��� �� ������	���� �	�� ������� ���!��� �������
���������	�� $�������� ��� ���!��� ��� �� ������ ���� 	� 	� �� 6��' ���!���
���!	�� ...
��������� �� ����� ���
�� 	� 	� ��	�� �� �	�	�� �� ����� ���
�����

.��� 	� 	� 	����	��� �� ������	�� �� �' �������	�� ������� � $������� ���
���!���� ���� ���
 �� ����
	������ �� ���� ������ ���!� ��	� ������ �� ��!	��
8@=F8 ����� ��	�� 	��� ����� ��
 ��!	�� 8@=F8 ��"� ����	�� �� ����
�	
��� &� 	���������
 	� 2	�� G� 	� ��	�
� �� 6��'������� ������� ��� ��� ���!�����

&���� 	�	�	��	0�	��� ��� 8@=F8 ��"� ������� � �
���
���� ��
 ������ ���
���	�� �������	��� �� ��� +������� ���� &�� ��� 	�������	�� �� �� ���� �� ���
������	�� ���!��� 	� ��������
 �� � -D� ������� 3��	�� ��� +<� �����
 ��
6��'4 ��
 � �!"
������
� !	� 6��' ������� 3��� E�4 	� ��
�� @� ���
����� �	
�� ��� ������ ���!��� ������ ��� ��%���� ��
 � �������	�� 	� ������	��
�	�� ��� ������	�� ���!��� 3�������� �	�� ��� 8@=F8 ��"� 	� ��� ������ ����
!���4� ��� 8@=F8 ��"� 	� ��� ������ ���!��� ��� ���
 ��� 	�������	�� ���� ��
��� ������	�� ���!��� ��
 ��	�� ���� �� 	�� �� ��	� ���� ��������	��� �������
��� ���!���� ��� ������
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

SOCKS Internet

Firewall

SOCKS

Protocol

HTTP

Protocol

Servent
Proxy

	
�� �� ����&�$$ ���'�������� ��� �-������$� �
����

.� �
�� ���������	�� $������� �� �

	�� � ��� ����� �� ��� ����	�������
�� ���!��� 	� 2	�� H� ��	� ����� �	�� ��� �� � ������ ������� ���!��� ��
 	��������
&� ���	$�
 	� ����� ;� ����� ����	!	�� �������� ���� ��� �����	�� ���!���
��
 ����
	�� ���� 	��� 6��' ������� ��� 8@=F8 ��"� ���
� ��� ��������
�� 	������� !	� ��� E�� �� ��� ��!���� ���� ��� 8@=F8 ��"� ���� ����	!	��
�������� ���� 6��' ��� ��

���
	�� ���� 	��� ��	�	��� ������� .	�� ��	�
�

	�	���� ������ ��� ������ ��� ���!���� ���������	�� $������� �	����� ���

������� 	� 	�� ���� ����� .� ������	0� ��� ��%����� �� � 8@=F8 ��"� ����	��
	� 2	�� ��

Download
Service

Connect
Service

Network

Lookup
Service

User Interface

File
RepositoryRouter

SOCKS Proxy

	
�� �� 9�(��� ���'��������
	 �������

Servent SOCKS Proxy Internet

Send(message)

Send(message)

Receive(message)

Receive(message)

EncodeHTTP(message)

DecodeSOCK(message)

	
�� �� �8����� ���)���
	 � :�; ��
-� �����
�

� ������� ���� ��� 	��	���
�� �������

��� �������� $������ 	� �
�������
��
 ����
� �� ���� ��!��� ��������	0�

������ �� ��� �������� .��� ��� ���
	����� ������ ��� ���	�	���� �������
��� ��	���	���� /I�& (;* ���� 8�� ��� ��!	
�
 �� ��������	!� �����	�� ��

����� �� ����(����
�
	 :�; ��
-�

1 �2 ���� +��
�����
 41 (��
�++� 	��
 3
���
���
������
 41 <"

��� �����#��&�
 4 #��&�
3
����#��&�
 4 #��&�
3
���� 4���3 ���� 4���

�
� �����#��&�
 1 ��!�#��&�
�+��
�����
��3
����#��&�
 1 ��!�#��&�
����
���
������
��

��

�������� ������
 �1 ��
���� 41)�����#,- ���������� �����#��&�
$%�������3
�������� ������� 41 �����#��&�
$.��
�������

� ��
����� ������
 �1 ��
���� 41)��������� ������#,- ������#��&�
$%�������3
��
����� ������� 41 ����#��&�
$.��
�������

��

6�

�

���� ��� ��	�
	����	���� $������� ������ �� �

	�� � ���	��� �

��������
��
�� �����
 J���
�0!��� ���!��K� ���� $�������
 ��� ��� �����
� ���� ��� 2��
��� ���������	�� $�������� #	������� ��� ��!	
�
 � �	�	��� �����	�� !	� !	�����
������� �	�� 	�� '�	������'�	�� ������	�� '������� 3''�'4 (H*� ��	� �����	��
����� ���	�������	�� �	�� .	�
��� ����	���� ��� ��	� ������ 	� ����
 �� ���
��	�������!�� �������	�� ��
�� ��
 ����	����� ��� ��� ���������� �������	��
��
���

'��!	����� ()*� �� ��!� ���	$�
 � +���������	�� ���������� ������ �	��	�
��� @@����	�� ������� ��������� �� ����	�	�� -#�
	������� �� ��	� ����
�� ��!� �������
 ��� �����	�� �� ���!���� $������� ��� ���������� �������� .�
��!� �"���
�
 � +������������� ���������� ������ �� �
�� ��	�
	����	���� $���
����� ��
 ���������	�� $������� ��	�� @@����	�� �������� L��	�� ��� �"���
	��
����� �� ����	��� ��� �����
����� ���� ����	��� ������ ��
 	������� �����
�
�������� �� �"���
 ��� ������� M��	
�� ��� ����$�� ���� ������ �����
�� ���
�"��	����� ���� ���� ���� ��� ��,������	����
 ����� �� @@����	�� ������� ����
�� ��	�
 ������� �	�� � ���������� ��������� ��
 �"���
���� ����	��������

'���������� �������	�� 	� ��������� �������	�� ���� �� ������	��� �����
 ��
��� ����	�	���� ��	

�������� �� ���� ���������� ��	���	��� �	�� M	�����
����� F�0�� ��
 �#���� 2	������� ��!� ������ � ����� ��������� �� ����������
�������	�� ��� ��������� �� ��� ������ ����� �� ��� �� �"���� ���� ���	��
�	����
 �������� �	�� 8@&' (�* ��
 	��������� ���� 	��� ���
�!������� ��
���������� ������� �� ��!	
� ���� ��
 ���	���� ������ !	� $��������

�	��������������

��� ������ 	� �������� �� F�	�� 8��� ��
 I	����� N����

�������	��

5% =� >�� ��� ;���� ���4 ������� �������
��� �� ������������ ����
� /�
����
��)�
	 �'� ?�' ���������
��$,
���'
� �� �
���$ 0��'
�� ��,�0@"A�� ���$���
���$���� B�$� !""A% C$����
��� ,
���'
�� �� �
������) ��,���� D�����' �
������

����� /����%

!% �$��! �4 �������	 �������� �������	���� � �!�
:�$���% '���4EE&&&%�$��!%�
�E.����$$�/�
�
�
$"F%��	%

A% C% ��������� ��� ;% ���4 " #����� �� ��������$��� %�
�������� �'� �
������
B
����$% G
$% AH� �
%<� 5HH?%

F% =% .
�)4 &'#"(" ������) �����	

��� �������
���� �CCC �������� �
������)�
#�A�4 <<IH#� 0��EB��� !""5%

#% �% ���
���4 *
������� �������	 ��������(�������� "�	��� 	�� ���	��� �����	��
���'����$ ���
��� =���,��� ==�� !""5%

?% 0�� =������4 +�����	����� �������������� #�������� �������� ,��#�-�
:�$���% '���4EE����%����
�
	�%�
�%

J% ,A�4 ��
��� ./0��� "��� �������� ,�."�-�
:�$���% '���4EE&&&%&A�%
�)%

Paper III

SkyMin: A Massive Peer-to-Peer Storage
System

L. Yan, M. F. Serra, G. Niu, X. Zhou, K. Sere

Available in: Proceedings of the 3rd International Conference on Grid
and Cooperative Computing (GCC’04), October 2004. Lecture Notes in
Computer Science 3251, Springer-Verlag.

SkyMin: A Massive Peer-to-Peer Storage System

Lu Yan1, Moisés Ferrer Serra2, Guangcheng Niu2, Xinrong Zhou1,
and Kaisa Sere1

1 Turku Centre for Computer Science (TUCS) and Department of Computer Science, Åbo
Akademi University, FIN-20520 Turku, Finland

{lyan, xzhou, kaisa}@abo.fi
2 Department of Computer Science, Åbo Akademi University, FIN-20520 Turku, Finland

{mferrer, gniu}@abo.fi

Abstract. The aim of the project SkyMin is to design a large-scale, Internet-
based storage system providing scalability, high availability, persistence and
security. Every node serves as an access point for clients. Nodes are not trusted;
they may join the system at any time and may silently leave the system without
warning. Yet, the system is able to provide strong assurance, efficient storage
access, load balancing and scalability. Our approach to construct a massive
storage file system on Internet is to implement a layer on top of existing het-
erogeneous file systems. The architecture is as follows: it consists of lots of FS
(File Server) and one or some NS (Name Server). NS is the control center. Us-
ers can access the file system from every node.

1 Introduction

The aim of the project SkyMin is to build a global storage system, based on peer-to-
peer (p2p) technology, and running on Internet [1] [2] [3] [4]. In that system we en-
counter a central node (Name Server) and a lot of peers (File Servers). The relation-
ship between the peers and the name server is modeled as client-server paradigm,
while between the peers themselves is pure p2p (they work as client and server at the
same time). Every node can join the system at any time, and leave it silently (without
warning).

The system is specially tailored for groups with limited budgets that need to store
and share information in a secure way, making it easily available for everyone (the
peers will store the information, and all the shared space will be available for the
whole group). No special skills are required for the peer user, since the application
values a user-friendly design; only some administrative skills are required for running
the name server since the correct behavior of the system depends on the appropriate
configuration and administration of the name server.

The remainder of the paper is organized as follows. We start with the requirement
specification in Section 2. We present the architecture of SkyMin in Section 3 and
more design details in Section 4. In Section 5, the implementation and test are dis-
cussed. We conclude the paper in Section 6.

2 Requirement Specification

As mentioned earlier, the system is based on the implementation of two different
applications: the File Server (from now on just “peer”) and the Name Server (from
now on just “server”). While the server program will not be used “directly” by most
end users (except the administrators), but the peer program will be.

2.1 Functionality

The functionality requirement of the system is intended to hide all the complexity
of the system. Therefore, although more sophisticated functionality is provided (such
as login/logout etc.), the main functionality of the system is the one described in Ta-
ble 1.

Table 1. Main Functionality

Feature Functionality that provide
Add User Add users to a group (p2p network group)
Remove User Remove an existing user from a group (p2p network group)
Server application functionality

Feature Functionality that provide
Search Allow the user to lookup files
Download Get (read) files from the shared space
Upload Put (write) files to the shared space
Delete Delete a file from the shared space
Peer application functionality

2.2 More specification points

Although we have introduced the main functionality of the system from the user’s
point of view, we have to regard that the server side holds a very important role de-
termining the communication between peers (each peer will be connected to the
server, and it decides how the connections will be done). Therefore, we need to refine
our functionality requirement to better specify the behavior of the system. We present
a list with these important (and/or clarifying) points:

− Nodes can join and leave silently. There is no change in the data availability. Nei-
ther is there any change in the behavior of other nodes.

− Storing data means copying a file from a node (located in a user computer, but not
in the shared space), to the storage space, if there is enough space in the storage
system. If there is no space available, the system prompts an error message.

− The system must not store duplicated files in the same node.

− A name server may store information of several groups. A user should not be able
to access information that is out of the scope of his/her own group.

− The system does not need to support a user running multiple instances of the pro-
gram at the same time (for example, over different groups).

2.3 Non-functional requirements

Non-functional requirements are required for the system. Some of them are contradic-
tory, so we have to make some tradeoff among these requirements:

− Scalability: there is no restriction on the number of nodes that can simultaneously
join a group (and the performance must not be affected).

− High availability: redundancy in the storage system (allow duplicates and provide
mechanisms/algorithms to guarantee the availability of resources).

− Persistence: the system should be capable of nonstop running.

− Security: a very important feature, since the information traveling over Internet
might be private and should not be accessible to people out of the p2p group.

− Reliability: strongly related to persistence; the server side must be error tolerant.
(Some kind of recovering mechanism must be provided for that.) The peer side
should also be reliable (for example, the server crashes but the peer continues the
communication with the other peers).

− Load balancing: store information in an efficient way, not randomly.

3 System Architecture

The SkyMin framework is a global storage system, as shown in Fig. 1, based on p2p
technology. This system consists of one (or more) central server and many peers
which are connected to Internet. The server works as a control point to grant the
peer’s access to the storage system, to manage the indexes of the peers’ resources
(files can be accessed by other peers who are members of the whole storage system),
etc. On the other hand, every joined peer contributes a slice of their local storage
space to the system, and the peer can save and retrieve files to/from the system.

With this picture in mind, it was clear that we were going to develop two different
applications that should interact. Therefore we encapsulate each of them in a package:
one for the peer and one for the server.

Fig. 1. System Architecture

3.1 Peer-side architecture

There are several tasks that the peer should be able to perform. These tasks can be
summarized as:

− Receive and analyze the user’s commands.

− Send its resource information to the server and maintain it periodically.

− Send user’s requests to the server and process the server’s response.

− Work as a server itself to respond to other peer’s download or upload request.
Note that some of these tasks are more complicated than the other ones. Therefore

several classes are used for them. According to the requirement specification of our
peer system, we built the following classes to accomplish these tasks in Fig. 2:

The “Peer” class holds the main logic of the peer program in the peer application.
It starts the system, (taking care of program variables, server in the background, login,
etc) and accepts commands from the user and process them (doing corresponding
actions). The “Shell” class handles the user input; it parses the input. If the user’s
command makes no sense, this class will prompt an error message. The “Proto-
colMsg” class holds the information of building different messages for different pur-
poses (e.g. search, upload, etc.). This class keeps the protocol information of within
messages (each message has a unique identifier, and this class keeps that information).
The “PeerResource” class is used for constructing a message for sending the peer
resources. The class allows sending different kinds of resources, including peer space
(maximum available space) and files.

F

 Server
 +

Database

Peer 1

Non-shared space

Shared

Peer 2 Peer 3 Peer ... Peer N

The storage system

.

Fig. 2. Peer Class Diagram

It is the “MessageTransport” class that takes the responsibility of the message
transportation over Internet. Possible exceptions that may occur during this transpor-
tation are built on the “MessageTransportException” class which extends the
“WrappedThrowable” class. So far, all messages are sent in a homogeneous way,
thanks to the protocol. Messages are sent identically; with the identifier provided with
the “ProtocolMsg” class, they can be properly interpreted.

The peer also runs a server thread in the background, which is an object of the
“PeerServer” class. This class implements a listener to a specific port; when a mes-
sage arrives (a peer wants to connect), the process will be controlled by a “Connec-
tionHandler” object.

The “Item” class is used to build the content of messages. Items are text ones, but
can be extended to support files. This is done by the class “FileItem”. Items are fi-
nally encapsulated in a message (the “Message” class) and therefore can be sent. The
“Instd” class provides several functions with different purposes. It is like a utility
class which builds the identifier of files and also takes care of reading from the stan-
dard input.

The “PeerDownload” class is responsible to manage the process when the peer
wants to download a file. It connects the peer and updates the pertinent information in
the server. The “PeerUpload” class has the same purpose as the previous class except
that the peer wants to perform an upload. The “Config” class is responsible for read-
ing the configuration file and load program variables.

3.2 Server-side architecture

There are also several tasks that the server should be able to perform. These can be
summarized as:

− Receive and analyze the user’s commands.

− Listen to a port for incoming connections.

− Handle incoming connections.

− Interpret peer messages and send proper answers.

− Add or remove users to/from a group.
As before, some functions are more complex than the other ones. Therefore they

will be implemented in several classes. The server class diagram is shown in Fig. 3.

Fig. 3. Server Class Diagram

Some classes have the same behavior here as in the peer side, even when working
in a little different way (one clear example is the shell, which carries out the same
work but process different commands). Therefore “Shell”, “Config”, “Instd”, “Item”,
“FileItem”, “Message”, “MessageTransport”, “MessageTransportException”,
“WrappedThrowable” and “ProtocolMsg” do not need further explanation.

The “Server” class is like the “Peer” class in the peer side. It performs all the ini-
tializations and prepares the system for working. The “MultithreadedRemoteFile-
Server” is analogous to the “PeerServer” in the other package. It implements the

listener to a specific port for incoming connections. The “ConnectionHandler” is used
to handle the incoming connections.

4 System Design

The behavior of the system can be explained by sequence diagrams. We will see
sequence diagrams for the peer and for the server.

In the sequence diagrams there are some descriptions like Msg(keyword). This de-
fines the protocol of our system; it means that the system expects some messages and
reacts to the received one and/or the expected one. That is the reason between peer
and server and between peer and peer all the descriptions are of the type Msg(x).
These keywords are implemented in the class “ProtocolMsg”.

4.1 Peer-side dynamic design

Login. The first important scenario that we have (not use case) is the login process in
Fig. 4.

Fig. 4. Login sequence diagram

In the login process we can see that first of all, the peer loads the variables, then it
tries to connect the server, providing user name and password, encapsulated in the
login message. The server checks the database whether the user is allowed and noti-
fies the peer. Then the peer sends the information of its resources to the server, en-
capsulated in a perresources message. The server tries to update the databases with
this information, and if the update is performed successfully, the server notifies it to
the peer with an okresources message. If any operation fails, the peer will abort start-
ing the program.

Search. Here the situation is easy to understand in Fig. 5. The peer sends a search
message that contains a query, in order to find the file. The server passes the query to
the database and retrieves the result. If the result is not empty (the normal case), the
server will answer the peer with an oksearch message. Otherwise, the server answers
with an emptyquery message.

Fig. 5. Search sequence diagram

Download. In the download scenario in Fig. 6, first of all a search is needed (before
the user downloads a specific file, he/she needs to know where it is). The following
steps 1 to 4 are the same as a normal search. After that, the user selects one of the
files provided by the search operation to download, and sends the information to the
server in a downloadrequest message. The server searches the database for the best
available peer, and answers with an okdownloadrequest message. Then the peer
connects the other peer asking for the file (download message), and the second peer
answers as well (startdownload message). Finally, when the download completes, the
peer will update its information resources in the database.

Fig. 6. Download sequence diagram

Different variations can be appreciated in the system. For example, if there is no
suitable peer for download, the server will answer with an emptyquery. So the peer
realizes it. Also an error message can come from the second peer, aborting the
downloading process.

Upload. Here the situation is shown in Fig. 7. The peer sends an uploadrequest
message, telling the ID and the size of the file to upload. Then the server checks the
database which peer is the best to upload, and answers an okuploadrequest (note that
the server can also answer an uploadnotrequired message), specifying the best peer to
upload (note that the own peer that makes the request can also be the peer chosen).
Then the peer contacts the chosen peer by an upload message, and waits for the
answer (startupload). Finally, after the file is sent, the peer informs the server about
its new resources, and the server updates the database.

Fig. 7. Upload sequence diagram

Delete. The diagram in Fig. 8 is quite simple. The user deletes the file from his/her
own shared space with the delete command. Then the peer sends an updateresource
message to the server, who updates the database.

Fig. 8. Delete sequence diagram

Exit. As shown in Fig. 9, when leaving the program, the peer sends a message to the
server (logout) to notify it. The server deletes all the references in the tables of this
peer, and then sends an oklogout message to the peer.

Fig. 9. Logout sequence diagram

4.2 Server-side dynamic design

Add user. When adding a user to the group, the command is received from the
standard input and processed in the shell class. After the system parses it, an SQL
grant statement will be executed, and the database will be updated. The diagram is
shown in Fig. 10.

Fig. 10. Add user sequence diagram

Remove user. Similar to the add user command, except that the SQL statement to be
executed is a revoke instead of a grant. The diagram is shown in Fig. 11.

Fig. 11. Remove user sequence diagram

Exit. When the server makes an exit, first it needs to destroy (close) the thread that is
listening to the port for incoming connections. After that it clears all the tables in
skymin database, so that the tables will be consistent when the server restarts again
(no rows in any table). The diagram is shown in Fig. 12.

Fig. 12. Exit sequence diagram

5 Implementation and Test

The SkyMin application is implemented in Java 1.4.2, a language that is platform
independent. Therefore, it can be run in any platform with JVM support; but since
third party programs are used, in order to run it properly, some requirements are
needed in the system:

− Java Runtime Environment (JRE v1.4 or higher)

− Connection to Internet (owning a valid IP address)

− MySQL (v4.0.18 or higher)

− ODBC driver for MySQL.

5.1 Database

The SkyMin uses only one database, named skymin and managed by MySQL. The
peer application inserts and retrieves information to/from the database, but through
the server application. So it is the server side that takes the responsibility of accessing
the database. Our database is compound by two tables:

− Users: this table keeps track of the information of every peer that joins the network
currently (maintains the information of the users that are logged in).

− Files: this table stores the information of the files that every user has (one entry for
each file a user has).

Users table. The users table has 7 fields:

− UserID: this stores the IP of the user, which is used as its identification. Therefore
it is the primary key of the table. This field is a variable string of 30 or less charac-
ters.

− UserName: here we store the alias of the user (the one he/she typed when logging
in). This field is a variable string of 16 or less characters.

− Port: it stores the port number that the peer is using for listening incoming requests.
It is an integer.

− MaxSpace: this field stores the maximum capacity of the sharing folder in bytes.

− FreeSpace: this field is similar to the previous one. It keeps information about how
much free space (also in bytes) currently in the peer.

− Ratio: this field is a float result of the division FreeSpace/MaxSpace. It is used in
some algorithms in our program.

− Counter: this field is an integer used to control the state of the peers (alive or not).
This field is reserved for the future, not used in the current release.

Files table. The files table has 4 fields:

− FileID: is a unique identifier of the file. It is a variable char of 32 bytes.

− FileName: the name of the file. It has a limit of 255 characters.

− FileSize: the size of the file.

− UserID: this stores the owner of the file (where the file is located). It is used as a
relating key with the other table.

Queries. The database answers to the following queries in different scenarios:

− Insert a row to the users table: when a user logs in.

− Delete a row from the users table: when a user logs out.

− Modify the users table: when the program modifies the content of the shared space
of a peer, FreeSpace and Ratio must be properly updated.

− Insert a row to the files table: when a new file appears in the shared space.

− Delete a row from the files table: when a file disappears from the shared space.

− Search the files table by name: when a peer makes a search request.

− Search the files table by FileID: when a peer makes a download or upload request.

− Search the users table by Ratio: when a peer makes an upload request.

− Count users and files: when a peer makes an upload request.

5.2 Test

Since Java is our main programming language, we use JUnit for testing it. The ap-
proach of compiling overnight without error and test by hand is also used. In this way,
we minimize the amount of errors in further testing phases. A systematic summary of
the testing methodologies and time lines that we used to test our system is shown in
Table 2.

Table 2. Task-oriented functional tests

 Module Integrated System Stress Regression Acceptance
Timeline After

finish-
ing each
module

After mod-
ule test

After
inte-
grated
test

After
system
test

After modi-
fication,
before an
alpha, beta,
final release

After regression
test, when de-
livering a stable
release

Iter. 1 OK OK OK OK OK Not needed
Iter. 2 OK OK OK OK OK Not needed
Iter. 3 OK OK OK OK* OK* OK

The element OK* reflects the fact that despite that no more errors have been detected, the test team agrees
on the need of more tests in order to assure a high quality product, free of errors.

6 Concluding Remarks

The increasing demand for massive storage systems has spawned an urge for a large-
scale storage solution with scalability, high availability, persistence and security.
Nowadays, Internet has become cheap and widespread, which makes it possible to
build an economical massive storage solution over Internet.

In this paper, we proposed SkyMin, a global storage system, based on peer-to-peer
(p2p) technology, and running on Internet, specially tailored for groups with limited
budgets to store and share information in a secure way. This paper presented a proto-
type implementation of the architecture and design elements of SkyMin; several de-
sign elements still need fine-tuning (e.g. in the current release, there is no support for
transport-level security; more sophisticated protocols like SSH will be incorporated in
the next release). The rise of pervasive computing has brought new innovative design
ideas for our architecture. In the future work, more design elements will be further
refined in favor of ubiquity and mobility to make SkyMin a massive storage solution
for the pervasive computing era.

Acknowledgements

We would like to acknowledge the support from Elena Troubitsyna.

References

1. L. Yan and K. Sere: Developing Peer-to-Peer Systems with Formal and Informal Methods.
In Proceedings of the 2nd International Workshop on Refinement of Critical Systems: Meth-
ods, Tools and Developments (RCS'03). Turku, Finland, June 2003.

2. L. Yan and K. Sere: Stepwise Development of Peer-to-Peer Systems. In Proceedings of the
6th International Workshop in Formal Methods (IWFM'03). Dublin, Ireland, July 2003.
Electronic Workshops in Computing (eWiC), British Computer Society Press.

3. L. Yan, K. Sere, and X. Zhou: Peer-to-Peer Networking with Firewalls. In WSEAS Transac-
tions on Computers, 3(2): 566-571, 2003.

4. L. Yan, K. Sere, X. Zhou, and J. Pang: Towards an Integrated Architecture for Peer-to-Peer
and Ad Hoc Overlay Network Applications. In Proceedings of the 10th IEEE International
Workshop on Future Trends in Distributed Computing Systems (FTDCS 2004). Suzhou,
China, May 2004. IEEE Computer Society Press.

Paper IV

Building a Formal Framework for Mobile
Ad Hoc Computing

L. Yan, J. Ni

Available in: Proceedings of the International Conference on Computa-
tional Science (ICCS’04), June 2004. Lecture Notes in Computer Science
3036, Springer-Verlag.

�������� � 	
���� 	����
�� �
� �
��� �� �
�

�
�������

�� ��� ��� ���	
��� �

����� ������ 	
� �
������ ������ ����� ���
����������
	 �
������ ������� ���
 ������� �����������

��� !"#!" ������ ���$���%
�������� �	�
�����	�������	

��������� &
��$� �� '
� ���(
�� �&��)�� �� �� ���
�
�
�� ������
	 �
��$� �
���
�
������� �� (���$��� $����% &��)� �
�� �
� ��*���� ��� +,�� ��	����������� ���- �� ����
�����
��� �-���	
��� �� �� �� ���������� ���(
����.
���
� 	
� �
�������. �
��$� ������� *����$�
��� ��
�����
��$�% �-�� ����� �������� � 	
���$ 	����(
�� �
(���� � ���������� ����.� 	
�
&��)� ���$�����
��% �� �-�� ������ (� ��+�� � $������ ���-�������� 	
� �
��$� �� -
�
�
������. ��� ��
�
�� � ����$�(��� $���� (��- �-��� ��� �
��
����� ���(��� �
	�(���
���$�����
� $���� ��� �� -
� ���(
����. $����% � 	
���$ �����+����
� 	
� �
��$� �� -
�
�
������. �� �-�� ���-�������� �� ������� �� �-� / ���-
�%

� �������	�
��

� ������ ��
�	 ������� ������ �� � ��������������� ��� �� ���! �� ��!���� ������� �� �
�	

����
�� � ����� ��	����� ��� � 	���������� 	������ �"����# �
� ������� ����� 	������	��� ���

��� ����
�� �$�� �������� ������# ���� 	�� ���! ����	��! 	������	��� ���
 �
��� ����
����#
�
�������% ������� ����� ���� 	������	��� ���
 ��� ����
�� �� � ������
� ���
��� &'(# ����
�� ��� ����� ��
��
�! �!����	 �� ����! �������� ���� �������! �� ������� ����� ��� ���� ���
��)���� ��! *"�� ���������	���� ��	
 �� ���� ��������% �
�������% �� �� �� �����	��$� ����������
� ���� ��� 	����	���� ������ ��$�	��)��	��! ��� � ����������! &'+(#

�� ��$��� ��	
 � �!���� ��� ������ ��
�	 	�� �����% �� ��*�� � ��!���� ��	
���	���� �� ,��#
' ���
 �
��� ��! 	�� ������- ������� �	
	����
� ��	��
��� ��� �
���	����
% �
�	
 ������
� ���������� ��!�� ������� �������� � ��	����� ��!�� ��� ��
�	 ���������� ��!��# .� � �	��!
�
� �!���� 	�� ������ ���
 �
� / ���
�� &0(&1(&2(% ��� ����� �
� ������	����� ��� �������
	������	������ ������� 	�� ������ ���
 3�� �������� &''(#

4� �
�� � ��% �� ������ � ������ ��������� ��� ������ ��
�	 	�� ����� �� �
� �� ��� �������
�

 ��5�	� �� �367 �
�� �� ��� 	�������! ������� ��% ��� � 	�� ���� �������� � �	�*	����� �� ������
��
�	 	�� ����� ��� ���� �" ������� ������� 	�� �� ����� �� &8(#

�
� ���� �� �
� � �� �� ����	����� �� �������# 7�	���� + ��*��� ���� �����*������� �� ����
	����"� ��� ��$��������# �
� � �	�*	����� �� �
��� ��! 	�� ������ �� �
� ��	
���	���� �� ��������
�� 7�	���� 9# .� ��� �� 7�	���� : ���
 	��	������ �������#

� ���� ������� ��� ���
�������

4� ����� �� � �	��! �
� ���� 	����"� ��� ��$��������% �� ��*�� ��6;4� �������� ���
������
�� �� �
� / ��������% �
�	
 ��� �� �� �������� �� �
� � �	�*	����� �� �!���� 	�� ������
�� �
� ��"� ��	����# �������� �� ��*��� ��� �
� ������� 	����"� ��� ��$�������� �� ����
��� ������
�� �� ��*��� �� �
� ������� ����������� �� ������ ��
�	 	�� �����# �� �� �"�� ��%
�������� �� � �	�*�� �� �������#

Application

In
te

ra
ct

io
n

A
w

ar
en

es
s

N
et

w
or

k
M

an
ag

em
en

t

Networking

Incoming Data Outgoing Data

	
�� �� 0������ ���-��������

������� ��������

��	�

����� � ������� < � ������� % ���������� � �

�������� < � �������� % �������� �

�
��	��	�

� ��

��
���	���

� �� � �����

��

4� �
� �������� � �	�*	�����% �
��� ��� �
��� ����- ����� ������� ��� ��������# �
�!
��� ��*��� �� ��� �� �����% ��� �� 	������	����� ��������% ��� ��� �� ������� �������� �� ��
�	
��������# �
� �������
�� ��� ��=����� ��������- ������� ��� ����������# �
� �������

�� ���� ��� �
� 	������	����� ������� �����# �
� ���������� �� ���� �
�� � ����� �� ������# �
�
�������� 	������� �� ��� ����� �� ������� ��������- �������������� ��)����� ��� ��������������
�� �!�% �
�	
 ��� ���� �� �
� ��	��
��� 	�� ����� �� ����	� ������ �����# �
� ����>� 4? � ��

�� � 	������� �� �
� ��������% �
�	
 �� �� �� ������ �� ���! �� @?�7 �� �������! � ���� ��
��������#

� ���� �	�
��	����

��� ������� ����������

�
��� �� �� 	������� �� ����! �� 	���������� ������� �� ����# 4� ����� �� ���� � ���������������
�������% ��� �� ��� ������
� ������� �! ���������� �	����% �� �� ��	�����! ��
�$� �
� �������
���������� �� �$��! ���� �� ����#

4� �
� � �	�*	����� �� ������� ����������% �
��� ��� �
��� / ��	
����-
���	
	��� �������

��� ��

�����# �� �
��� �� ,��# +%
���	
	��� ��	����� ������� ��� ��

����� ��� 	���� �
���
� ��������#

netManager

ConnectormodeSet

INCLUDES INCLUDES

SEES

	
�� � ���(
�� &���.�����

�
��� ��� ��� ����� �� �� ��� �� ������� - ���	�$������ �� �������	�$������# .
�� � ���� �� ��
���	�$������ ����% �� 	�� �� ���	�$���� �! ��
�� �����# @�
������% �� 	����� �� ���	�$���� ��
����# �
� ��

����� �� ���� �� 	����	� �� ���	����	� ����
��� ����� �� ����# .��
 �
���
��	
����% � ���� 	�� ����% 5��� �� ���$� �������� $�� 	����	���� �� ���	����	���� ����
��� �����
�
�� �� �� �� ���	�$������ ����#

�
�
���	
	��� ������� �
� �	��$����� �� �
� �!���� ��� � ���� 	����	���� ������ �� ����
���
�����# .
�� �
������ ���� �
� �!����% �
�
���	
	��� ���	����	�� ��� 	����	����� ��� ��� �
�
���� ���� �������	�$������ ����# 4�
�� �
� ��������� � ��������-

� !��
��� � 5��� �
� ������� ��� 	����	� ��� ����	��� ����� ����� �� �
� ������� ���� ������#
� ���	����� � 	����	� ��	�� ����� �	��$��! �
�� �
�
���
�� ����	��� ���� ��	����	��� �����
����� �� � ���� �
� ������� �� ����!�#

� "�	#���� � ��� ���� ���� �������	�$������ ��� ���	����	� ��� ������ �����#

�������
���	
	���

����

	�	������� % ��������

�������

������� % ��

�����

����	�
��

������� �<

���
������� < �����#��	$"� � %���%����� �< ��

���� ��

����"" � %���%����� �

��� �

 !"������ �<

���
������� < �����#��	$"� � %���%����� � %��&�� �< ��

����

�	 %���%����� < ��

���� �����

����""

����	 %��&�� < ��

���� ��

����"" � %���%����� �

����

��� "��	"
� % "�
���
�

����� "��	"
� � %���%����� �

"�
���
� � %��&��

����

������ "��	"
� �� %��&��

���� ��

��� � "��	"
� �

���� "�
���
� �� %���%�����

���� �����

��� � "�
���
� �

���

���

���

��� �

#��$���� �<

��� ����

���� ���������#���� � �����

����""

���

��

��% �������&&

��������� �� ������ 	�� ����� �� ���� �� ����� � 	������ ��$�������� �� ����� �� ������ ��
� ���� 	����"� �� ������ �!����� &+(# 4� �
�� � ��% �� ��	�� �� ����	���� ���� 4? ��� ��	������
��	����� ���� �	����#

��"� ���'����& �
��� ��� ��� ����� �� ���� ����	�����- "��	" 	�	��
��� � �!���� 	�� ����	�
� ��	�� ���� ���
�� �
� ����� ������������ �����A ������ 	�	��
��� � �!���� �
���� ���� �� ����
�� ����	� � �������! ������ ���� ���
 � ����� 4?# 4� ��	�� ���������% � ���� ����	�� ��� ����
���
����� ��� �
� ����	��� ����� ���� �� 	����	��� ��� ���� �� � ���� �
� �� ����! �� �������

�	
	����
�# 4� ������ ���������% � ���� ����� �� *�� ��� ������ �� 	����	� � �������! ������
���� ���
 � ����� 4?#

��'����� ��&&��� ���'�&&��� 4� ������� ���������% � ���� ��	����� ��	����� ��������
�		������ �� �
� ������ �� ���� �	����# �
��� ��� ��� ����� �� �������� �� ����- 	�����
��	����� ������� ��� ������� �������# 4� �
� ��	��$�� ������� �� � 	������	����� �������% �
�
�!���� 	
�	�� �
� �	���
���% ��� �
�� ��	��$�� �� �������� �
� �	��� �		������ �� �
� ��"�

� 4? �� �
� �����# 4� 	��� �
� 4? �� ����	���������% �
� �!���� ���� �� ��� � ������ �����# �
���
��� ��� ����� �� ������� ��������- ����� ��)���� ��� ����� �� �!# �
� ����� ��)���� �������� ��
� ������� ��� ����	���� � ������ ���� ��� �
� ����� �� �! �������� �� � �� �! ������� �
�� �
�
����������� ���� ��	��$�� � ��������# 4� �
� ��	����� ������� �� � ������� �������% �
� �!����
���� ��	��� �
� ������� �		������ �� �
� 	������ ������� ����	��� �� ����#

������� 	�	�����

����

������� % �������� % ��

�����

�������

[myID]

Forward
markID and
Broadcast

Report Link Broken

Receive

Get Incoming
 Message

[CommMSG]

Identify Route
 Message

Identify Comm
 Message

[routeReq]

addRoute ()

Reply Report Routes Got

Identify Route
Message

[routeRep]

[others]

addRoute ()

[myID]
[in LINKND]

[others]
[myID][others]

	
�� �� ���
���. &����.� 1�
������.

������
��

��	�

��& < � �����#� % ����	�� % ��� ������ % "�
� $��	� % ����� ���" % �	���� $��	��	�� �

(����)���

���
��� ������� % ���
��� �������� % ���������
��

��(�����	

���
��� ������� � ������� � ����� �

���
��� �������� � �������� � ����� �

���������
�� � �������� �		 ��'(��

���	������	�
�

���
��� ������� -< �� � ���
��� �������� -< �� �

���������
�� -< ��

����	�
��

	
�
� ���������* �<

���
������� < �����#��	$"�

����

������ ��� ���

����� ��� � �������

����

�	 ���
��� ������� � ��� � < � ��

���� 	
� -< �����#�

����	 ���
��� ������� � ��� � � %��&��

���� 	
� -< ����	��

���� 	
� -< "�
� $��	�

���

���

�� ��� ���

����� ��� � ��������

����

������ ��� < ��������

����

�	 ���
��� �������� � ��� � < � ��

����

	������� � ���������
�� � ��� � � �

	
� -< ����� ���"

���� 	
� -< �	���� $��	��	��

���

���� ��� < ��������

����

�	 ���
��� �������� � ��� � < � ��

����

	������� � ���������
�� � ��� � � �

	
� -< ��� ������

���� 	
� -< ����	��

���

���

���

���

���

��

4� ��6;4� 	�	�����% �
��� ��� �
��� �� ������ ���	�����- ���
��� ������� �� � ���	����
�� �������! �
� 4? �� �
�� �
� 	������	����� ������� �� ����A ���
��� �������� �� � ���	���� ��
	
�	� �� �
�� �
� ������� ������� �� ���� ��� ���������
�� �� � ���	���� �� ��� ����� �����������
���� ��������# �
� � ������� 	�	��
���� 	
�	�� ��	����� �������� ��� ��	����� �
��# �
�
 ��	������ ��	����� �� �
��� �� �
� ���$� � �	�*	����� ��� �
� �	��$��! ������� �� �������
 ��	������ �� �
��� �� ,��# 9#

��� ������'����

4�����	���� �����! 	��	���� 	������	����� ����� ������� �����# .� 	������� �� � ����� �������
��� �
� ������	��$� 	������	����� ������� �����# 4� ��	
 � �������% �
� ����	� ��� �����������
����� �"	
���� �������� ��� � ���� ������� ����������� ��� 	������	�����#

�� �
��� �� ,��# :% �
�� �
� �!���� � ��� ��	
 � ������� ��� ������ ������	��$� 	������	�����%
�
� ����	� ���� ���� ����	� � ����� ���� �
� ������� ����� �� ����	� � ��� ����� �� ���	
 �
�
����������� ����# 4� �
��� �� �� �$������� ����� �� �
� ����������� ���� �� ��� ����	��� �� �
�
�������% �
� � ����� ������� ����� ��� � ������� ������� �� ���� ��	� �� �
� ����	� ����# 4� �

Node
Session

1. open

1.1 any_route

1.1.1 no_route_info

awareNodes

1.2 any_route

1.2.1 no_route_info

1.3 session_fail

RouteInfo

1.1.1.1[no_route]aware_remote_node

If awareMSG gets routeRep
from remote node, it will add

route into RouteInfo

	
�� �� 2�����. ����
� 	
� ����������� �
���������
�

��		������ 	���% ��	� � ����� �� �$�������% � 	������	����� ������� ������� �
� ����	� ���� ���
����������� ���� �� 	������ ��� �
� ������	��$� 	������	����� ������#

�
��� ��� ��� ���� �� �
� � �	�*	����� �� �
���	����
- ��	����� �� ������	��$� 	������	�����
��� ����� ���������	� �
�� � ������ ����� �� ����	���#

���"��� ��&&���& ��" ���� ��'����� /����� ������� � �������% � ���� �
���� ����	� �
����� ���� �
� ������� �����# @�	� � ����� �� ����	���% �
� ���� 	�� ����� 	������	����� ���
�������� ��� ���� $�� �
� �����# 4� �
� ���� 	����� ����	� ��! �����% �
� �!���� ���� �����! �
�� ��
����� �� �$�������# 4� ��!
� �� ��� �� � ������ ����� �� �
� ������	��$� �������% ���
����! �����
���������	� ��� ��	�$��! ��� ������# 4� � ��		������ 	���% �
� ����	� ��� ����������� ����� ���
�� ������	��$� 	������	����� ��� ��	����� �������� ��� 	
�	��� ��� ��	�����# �
� � �	�*	�����
�� �
��� �� �������#

������� �����
��	���

����

������� % ��������

�������

������
��

��	�

�(�(� < � ��(����(% ����'(� %)���& �

(����)���

��
�������� % �����
���	�� % ���������

��(�����	

��
�������� � ������� � ��� � ������
�� � �

�����
���	�� � �(�(� �

��������� � ��� � ������
�� �

���	������	�
�

��
�������� -< �� � �����
���	�� -<)���& � ��������� -< ��

����	�
��

��� '����� �� �
� � �<

���
� � �����

����

��� ��"����������

����� ��"���������� � ��� � ������
�� �

����

�	
� � ��"����������

���� ��������� -< ��"����������

���� �����
���	�� -< ����'(�

���

���

��� �

'��� � ��� � �<

��� ��� � ������� � ��������� �< ��

���� ��
�������� � ��� � -< ��������� �

�����
���	�� -< ��(����(

��� �

&���'+�� �� � ����� � �<

��� ����� � ��� � ������
�� �

���� ��������� -< �����

��� �

�� ��)���� �<

��� �����
���	�� < ��(����(� ��������� �< ��

����

��� ���

����� ��� � ������� � ��� < ����������

����

����#������ � ������
�� �� � ��������� � � �

�����
���	�� -<)���&

���

���

��

�� �� ���������'� ��" ��'�$��, ?����� �
� ������	��$� 	������	�����% �
� ������� �� ���
��! ���
� �� 	
����� ��� �� ���
� ���� �� � ������ �����# �
�� ����� ���������	� ��� ��	�$��!
��� ������ ��� ������	��$� 	������	�����# ,����� B �
���
�� � ����� �� ��	�$���� �
�� �
� �!��

��� ����� �
�� �
� ����� �� ������# 4� ��� ������% �� �� ������� �
�� ����� �� ������ ���	�$��!
 ����	��� ��� ����# ,�� �"�� ��% �
�� ����	� ���� 7 �� 	������	����� ���
 ����������� ����
?% 7 ����� ���� �	���� �� ? ����� ���
 �
� ����	��� �����# ?����� �
��� 	������	�����% �� 7
���� �� ���� �
�� �
� 	������	����� ����� �� ������% 7 �����>� ���� �� �����	�$�� � ��� �����
����������! ��	���� 7 ���
�
�$� ����	��� ��$���� ������ �� �
� ��$���� ���	�$��!# 4� 	�� �
��
	
���� ����
�� �$������� ����� ��� �� ��	� �
� ������ ���# 3���� ��� �
� ������ ��� ��� ���	
����
�� �
� �����������% �
� �!���� ���� ����� ����� ���	�$��! ����� &'C(#

RouteRecovery RouteInfo

awareNode

Session

2 : route break
5 [have route]: switch route

3 : any route

4 [no route]: detect remote node

1 [route break]: remove route

	
�� �� 3
��� &���������� ��� 3��
����

��- ��#�����&+�! �. ���!�����&

�
��� ��� �
��� 	�� ������ �� �
� �!���� � �	�*	�����% �
�	
 ��� ����� � ���
 ���� / ��	
����#
��� �����*��� ��	
���� �������� ��� ������
�� ��� ���� �� � �	��! �
� 	����"� ��� ��$�����
���� �� ������ ��
�	 	�� �����# �
� 	�� ����� ������� �	
	����
� �� 	�� ���� �� �
���
��	
����-
���	
	��� ������� ��� ��

�����% ��� �
� 	�� ����� ��	��
���
�� ��� ��	
����-
	�	������� ��� 	�	�����# �
��� ��� ��� ��	
����- �����
��	���
 ��� ���������#�� �� �
�
	�� ����� �
���	����
,�� �
� �
��� �!����% �
� ���������
� �� ��	
���� ���
�� 	�� ������
��� ������� 	�� ������ �� �
��� �� ,��# 0#

� ���	���
�� �������

�
�� � �� � �	�*�� � ������ ��������� ������� �
� � ��	����� ��$��� ���� ��� ��
�	 	�� ���
���# 4� ��� �!����% �
��� ��! 	�� ������ ����� ��=����� �� �	�� �� ������ ��
�	 	�� �����# ?��
�� �
� �������! �� ����� �� ����% �
� �!���� �� ��	���� �� �
� ��������� �� ��� ��$���������%
�
� 	����	����� ������� ����� ��� �
� 	������	����� �� �����# �
� ������� ������� ��� ����
	��������� �
�� ����� ��� 	������	����� ���
 ��	
 ��
��#

�
� ���� �� �
� � �	�*	����� �� � ������ ��������� �� ������ � ��	������ �� �� ��$��� �� ����� ��
�
� �
��� 	�� ������% �
�	
 ��� �� �� �"�	���� ����������! �� ����# 4� ��� 	������ �� ��������
���� �� �
�� ��������� $�� � /�������
 ������� &9(% ��� ���� �" ��������
�$� ���� ���� �������
��$��� ��� ��� ������� ������ 	�� ����� ����� �� ����# �
� *��� ��� �� � ������� ��� 	
���
���� � ��	�����)"���*	� ������� �� /�������
 ��$�	�� &:(# �
� ��	��� ��� �� �� �" ������� ��
��
�	 ������� ��������
���� ��� ������� ������� ����� �� �		��� D��*�� �� /�������
 ��������
��	
�������� &B(#

�� � ������ ����% �� �" �	� �� �� ��$� �
� �!���� �� �� ��� ������������� ����	���# 4� �
�
��������� 	�� ����� �� �	� �� ����% �
� �!���� ���� �� �������� �� �� ���� �����������% �#�#

netManager

modeSet

Connector

Network Management

awareNodes

awareMSG

Awareness

Communication

RouteMaintain

Interaction

RouteInfoAdHocNet

INCLUDESSEES

	
�� �� 3�$���
��-��
	 �
��
�����

���$�	� ���������% ���� ��������� ���� �� ��	�� ������ ���� �
� ��	��
��� 	�� �����# 3��������!%
�� ��� �� ��$��� ��� ��	
 � �!���� �� � ���������� �� �� ��� ��=����� �������� �� ������
� ��	������ �� ��� 	�� �����! �� ��=����� ��$�	��#

	��� ����������

�
�� ���� ��� �� ����� �! �
� ��$�"� �� ��� �������
� ��5�	� ����	��� �! E���� 7���% ���
�� ��� �������� ��� E����>� 	�����������#

��!����	��

4%)% &% 3
��� ��� �% 5%�
-� � ������ �� 	
���� ��
��� ������� ��� �� ��� ������ �������� ���
������ �))) 1���
��$ �
���������
�� 6�!�� 76 ##� ����$ 4888%

!% �% �$��� ��� 9% /��$��
�� 	���������� ������ ��� ��������� �� 	��
�� !"���� �/& ������
:
����$� ;
$ <8� �
 < = 7� !"""%

<% �-� 2Æ��$ /$���

�- 9������� -���>??(((%�$���

�-%�
�%
7% /$���

�- �@� #�
���� ! ���$������ -���>??(((%�$���

�-%�
�%
#% �% &% �
�����
� % ��-������� 3% �
�-�(�$ ��� �% 1% �.��(�$� � ����� �������
�� ��� 	���������

����� � ������� %����� ������ �&���� #�
���� ����� �" �''' ()*+,, �-���� �))) �1����
1-
���,� ���A
��� ����$!""<%

6% :% 3% �����$� .�� #�#���/ ��������� �������� � �������� �������.� ���������� 1����� 4886%
B% 5% 0��
 ��� '% '��.-�
�� ! ���$����� �� #/ �� �����
���� 0���� �� # .������ �������$ �
$$�.�

1����� 0
��
�� 4886%
C%)% ��������� ��� 5% ��� �)���� ������� ������ ��� �" ��$�����/ 	��� !
���� 0���� �� #

������ ����.�� ;��$�.� 4888%
8% :% ��� .������ � !"������ ������ ��� �� ��� ������ � ��������� &����� �-����� ���
 ��������

!""<%
4"% D% E�� % ;% 5���-������-� ��� % 5% ������-�� � 1�������� ��� �������� ��
��� �� ������ �� 2��

�������� 1�
������.�
	 �-� �))) ���2�2& !""<� �� ��������
� ��� !""<%
44%)% @����� 3% '�$�� 3% :
-��
� ��� :% ;$�������� ������ ������� �����
� 9��$��� 488#%

4!% % �
��
� ��� :% &������ ������ �� ��� ��������� 3����4/ ��
��� ������ ���������� ���
�� ���
����
���� �������������� ���-% 3��% 3�� !#"4� �)��� :��% 4888%

Paper V

Towards an Integrated Architecture for
Peer-to-Peer and Ad Hoc Overlay Network
Applications

L. Yan, K. Sere, X. Zhou, J. Pang

Available in: Proceedings of the 10th IEEE International Workshop on
Future Trends of Distributed Computing Systems (FTDCS’04), May 2004.
IEEE Computer Society Press.

Shorten version available as: L. Yan. MIN: Middleware for Network-
Centric Ubiquitous Systems. In IEEE Pervasive Computing, Vol. 3, No. 3,
July - September 2004.

Towards an Integrated Architecture for Peer-to-Peer and Ad Hoc Overlay
Network Applications

Lu Yan, Kaisa Sere, Xinrong Zhou
Turku Centre for Computer Science (TUCS) and

Åbo Akademi University
FIN-20520 Turku, FINLAND

{Lu.Yan, Kaisa.Sere, Xinrong.Zhou}@abo.fi

Jun Pang
Centrum voor Wiskunde en Informatica (CWI)

P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands
Jun.Pang@cwi.nl

Abstract

Peer-to-peer (P2P) networks and mobile ad hoc
networks (MANET) share some key characteristics: self-
organization and decentralization, and both need to
solve the same fundamental problem: connectivity. We
motivate a study for the convergence of the two overlay
network technologies and sketch an evolving
architecture towards integrating the two technologies in
building overlay network applications.

1. Introduction

Peer-to-peer (P2P) systems are self-organizing,
decentralized overlay networks, in which participating
nodes contribute resources and cooperate to provide a
service. Mobile ad hoc network (MANET) is an
autonomous system of mobile hosts (also serving as
routers) connected by wireless links, the union of which
forms a communication network with arbitrary
communication topologies. A P2P network consists of a
dynamically changing set of nodes connected via an
infrastructure-based network, while a MANET consists
of mobile nodes communicating with each other using
multi-hop wireless links.

P2P and MANET share some key characteristics: self-
organization and decentralization, which lead to a lot of
similarities between the two overlay networks [2]:

• Dynamic topology. A node in P2P and MANET
may join or leave the network at any time and the
position of a node in MANET is changing arbitrarily,
which leads to no constant routes for any nodes.

Both networks have a dynamically changing
network topology.

• Hop connection. Connections in P2P and
MANET are established via exchanging beacon
messages only between neighbor nodes. A single
hop connection in P2P is typically via TCP links
without physical limits, while a single hop in
MANET is via wireless links which are usually
limited by the radio transmission range.

• Routing protocol. Both P2P and MANET
routing protocols have to deal with dynamic network
topologies due to membership changes or mobility.
Typically, a host in P2P and MANET also serves as
a router, and employs some flooding-based routing
protocols.

The common characteristics shared by P2P and
MANET also lead to the same fundamental challenge,
that is, how to provide connectivity in a completely
decentralized environment. Thus, we are motivated to
study the convergence of the two overlay network
technologies in terms of the design goals and principles
of their routing protocols.

Previously, the P2P and MANET research
communities have been working largely in isolation,
while facing many common issues like self-organization
and decentralization. We argue that it is a promising
research direction to bring the two communities together
to merge the techniques used in the two areas and
perhaps discover unified tricks for the convergence of the
two overlay network technologies. As a supporting
example, in this paper, we sketch an evolving
architecture developed as part of the Ad Hoc Networking
project at TUCS towards an integrated architecture for
peer-to-peer and ad hoc overlay network applications.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

Figure 1: MIN Architecture

The remainder of the paper is organized as follows.
We first discuss the research problems of P2P and
MANET architectures in the next section. In Section 3,
we describe the integrated architecture of P2P and
MANET. Section 4 concludes the paper with future
research efforts.

2. Research Problems

Today’s networks are dependent on wired or wireless
infrastructure. This dependence renders the networks
vulnerable to disasters and attacks against the fixed
infrastructure that supports them. Disasters like floods
and earthquakes, as well as wars and terror strikes, can
damage or shutdown the whole network. Thus a state-of-
the-art research direction of nowadays network is on
connectivity.

A network architecture that satisfies the above
scenario will be radically different from the current
existing network architectures since it cannot rely on a
fix infrastructure and dedicated servers. Recent work on
P2P overlay networks [5], [6], [7] offers a self-organizing
substrate for decentralized network applications. Our
general approach is to build a structured P2P overlay
with existing technologies upon the basic connectivity
provided by MANET in the absence of a dedicated server
infrastructure. However, an important challenge is that
existing P2P overlay protocols were designed for the
Internet, which is a very different environment than
MANET. The unique characteristics of this emerging
class of networks calls for novel architectures. We
present the key challenges as a set of research problems.

• Self-organizing infrastructure. Wired
networks rely on a fixed infrastructure consisting of
routers and DHCP and DNS servers. Any damage or
interfere of the server will probably make the whole
network out of service. Emerging P2P technologies
promise to support self-organizing infrastructure,
but these technologies are not directly applicable to
the ad hoc wireless environments [3], because they
are originally designed for the Internet with
constantly stationary nodes, where as nodes are
arbitrarily moving in MANET.

• Decentralized service. Existing networks
depends on dedicated servers providing centralized
basic network services like naming, authentication
and timing etc. For instance, conventionally there
are DHCP and DNS services in a typical network,
while supporting this kind of critical network
services is beyond the capability of existing P2P
networks. Our approach is to build foundations from
P2P system, but take advantages of the hierarchical
overlay structure contributed by MANET to provide
decentralized network services.

• Integrated routing. Integrating a P2P routing
protocol into a MANET protocol is difficult. P2P
overlays in the Internet rely on the IP routing
mechanism which is actually application-level
routing, while such kind of routing is usually carried
out in link-level in MANET [4], [8], [16]. Although
typical flooding and multi-hop routing protocols in
MANET are peer-to-peer in natural, P2P routing
protocols are not directly applicable in MANET due
to the namespace problem.

Wired Network Wireless Network

Basic Network Service Advanced Network Service

Network Management Awareness Interaction

Connect Service Lookup Service Exchange Service
Routing

Development Toolkit User Interface API

End User

Link Layer

Network Layer

Application Layer

User Layer

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

3. The Integrated Architecture

We propose an evolving architecture which is able to
provide network connectivity in a decentralized fashion
and use self-organizing infrastructures to improve
availability of today’s network. In this architecture, ad
hoc wireless networks can be combined with
infrastructure-based networks through ad hoc
communications between them. Once basic connectivity
is established, hosts could self-organize and cooperatively
provide network services that are normally provided by
infrastructure servers.

Figure 1 shows the preliminary architecture of a
subsystem we are building called the MIN that is aimed
at addressing a subset of the problems listed in Section 2.
The MIN is being built on top of an application-level P2P
overlay over a link-level MANET, but the architecture is
not specific to the implementation environment. We have
chosen to focus on two issues, self-organizing
infrastructure and integrated routing, which we believe to
be fundamental. We feel that decentralized service could
be elevated to a higher level of programming abstraction
than typical one.

3.1 Application Layer

The MIN architecture provides an abstract layer called
application layer. This layer is mostly a structured P2P
overlay, which is illustrated in Fig. 2.

Previously [1], we have specified a P2P overlay
structure in OO-action systems [14]. As an example, you
can see the specification of a host.

HOST = |[
attr
connected := false;
keyword := NULL;
target := NULL

obj
c: ConnectService;
l: LookupService;
e: ExchangeService

meth
SetKeyword(k) = Keyword := k;
SetTarget(t) = target := t

init
c := new(ConnectService);
l := new(LookupService);
e := new(ExchangeService)

do
 NOT(connected)
 connected := c.Connect()

[] connected AND keyword NULL
target := l.Search(keyword);

keyword := NULL
[] connected AND target NULL

e.Exchange(target);
target := NULL

od
]|

As shown in this specification, three key services are
identified in this layer: connect service, lookup service
and exchange service [12].

• Connect service. A host connects itself to the
P2P overlay by establishing a connection with
another host currently on the network, and this kind
of connection is passed around recursively.

• Lookup service. Once a host is connected to the
P2P overlay, i.e. it has announced its existence to
other members of the P2P overlay, it can then
lookup the contents of the P2P overlay. Lookup
requests are transmitted in a decentralized manner.
One host sends a lookup request to its neighbors,
which in turn pass the request along to their
neighbors, and so on. Once a host in the P2P overlay
has a match, it transmits the hit information back
through all the intermediate hosts in the pathway
towards the requesting host.

• Exchange service. The exchange service can be
evoked in an either aggressive or passive manner.
Due to the nature of P2P overlay, data are
exchanged out-of-network, i.e. a direct exchange
between the source and target hosts. Data are never
transferred over the P2P overlay.

A

C

D

B

E

Exchange

FailLookup

Connect

F

Figure 2: P2P Overlay

3.2 Link Layer

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

To support ad hoc networking, the MIN architecture
provides a link layer that allows application-level
connections to result in connections to the appropriate
logical links, which are either real wired and wireless
links or virtual links among hosts. There are three key
components in this layer: network management,
awareness and interaction.

Previously [9], we have specified this layer in the B
method [10]. As an example, you can see the
specification of the general context of ad hoc networking
environments.

MACHINE AdHocNet

SETS
NODES;
CommMSG = { commMsg; routeError };
RouteMSG = { routeReq, routeRep }

CONSTANTS
myID

PROPERTIES
NODESmyID ∈

END

In the AdHocNet specification, there are three sets:
NODES, CommMSG and RouteMSG. They are defined as
set of nodes, set of communication messages, and set of
routing messages in ad hoc networks. The CommMSG
has two different elements: commMsg and routeError.
The commMsg is used for the communication between
nodes. The routeError is used when a route is broken.
The RouteMSG consists of two kinds of routing messages:
routeReq(route request) and routeRep(route reply), which
are used in the Awareness component to detect remote
nodes. The node's ID myID is a constant in the
AdHocNet, which is an important property of NODES to
identify a node in networks.

3.2.1 Network Management

Network management is the manager of node
connections, which is an important aspect for the
MANET design. In general, we consider not only
mobility, but also restorability of networking. With this
component, a host should be able to set the mode of the
node, form, join or leave a network, and manage its
connections. As a host is moving arbitrarily,
disconnections may happen at any time due to the limited
radio transmission range. In order to keep the network
working, it is necessary to update the network topology

periodically. Moreover, in order to form a self-organizing
network, and support multi-hop routing in forwarding
packages, it is necessary to have the network manager in
every host.

In the specification of network management, there are
three components: netManager, modeSet and Connector.
The relationship of components is shown in Fig. 3.

netManager

ConnectormodeSet

INCLUDES INCLUDES

SEES

Figure 3: Network Management

The netManager includes modeSet and Connector,
and uses their operations. In ad hoc networking, it
manages activities of the system and updates connections
to neighbor nodes. There are two modes that can be set in
modeSet, either discoverable or non-discoverable. When
a node is in discoverable mode, it can be discovered by
other nodes in the network. Otherwise, it cannot be
discovered if it is in non-discoverable mode. The
Connector is used when a node wants to connect or
disconnect its neighbors. For instance, in the network
setup stage, a node can join into networks by connecting
its neighbor nodes which are in discoverable mode. Once
the connections are ready, the network is established.
When shutting down the system, the netManager
disconnects all the connections to neighbor nodes and
sets the node into non-discoverable mode.

3.2.2 Awareness

Awareness of mobile computing is used to sense a
certain environment in order to present and update
context of mobile systems [11]. In our system, we focus
on detecting local and remote nodes and processing
incoming messages. The awareness of our system is
divided into two parts.

• Node awareness. There are two kinds of
awareness of node detections: local awareness – system
can detect local nodes within the radio transmission
range; remote awareness – system should also be able
to detect a friendly remote node whose ID is already
known. In local awareness, a node detects its neighbor
nodes and the detected nodes will be connected and
used to update topologies in Network Management. In
remote awareness, a node tries to find out friendly

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

remote nodes with known IDs and possible routes for
communication.

• Message awareness. In message awareness, a
node processes incoming messages according to the
format of data packets. There are two kinds of messages
in networking: communication message and routing
message. In our specification, the communication
message is used for communication between nodes, and
there are two types of routing message: route request
message and route reply message. Due to the different
types of messages, the processing will be different. As
shown in Fig. 4, if the received message is a
communication message, the system will check the
packet head, and receive or forward this message
depending on the next hop ID on the route. In case this
ID is unrecognizable, the system will report a broken
route. If the incoming message is a routing message,
the system will process this message according to the
routing protocols in our system.

[myID]

Forward
markID and
Broadcast

Report Link Broken

Receive

Get Incoming
 M essage

[CommM SG]

Identify Route
 M essage

Identify Comm
 M essage

[routeReq]

addRoute()

Reply Report Routes Got

Identify Route
Message

[routeRep]

[others]

addRoute()

[myID]
[in LINKND]

[others]
[myID][others]

Figure 4: Incoming Message Processing

3.2.3 Interaction

Interaction mainly concerns communication links
between nodes. We consider an opening session for
interactive communication between nodes. In such a
session, the source and destination nodes can send and
receive messages and update routing information for
communication.

Node
Session

1. open

1.1 any_route

1.1.1 no_route_info

awareNodes

1.2 any_route

1.2.1 no_route_info

1.3 session_fail

RouteInfo

1.1.1.1[no_route]aware_remote_node

If awareMSG gets routeRep
from remote node, it will add

route into RouteInfo

Figure 5: Opening Session

As shown in Fig. 5, when the system opens such a
session and starts interactive communication, the source
node will select a route from the routing table or detect a
new route to reach the destination node. If there is no
available route or the destination node is not detected in
the network, the opening session fails and a failure
message is sent back to the source node. In successful
case, once a route is available, a communication session
between the source node and destination node is created
and the interactive communication starts.

In the interactive communication, topologies might be
changed and it will lead to route breaks or changes. Thus
the route maintenance and recovery are needed for
interactive communication. Figure 6 shows how the route
is recovered when the system knows that the route is
broken. In our design, it is assumed that multiple routes
discovery protocols are used. For example, when source
node S is communicating with destination node D, S
sends data packets to D along with the selected route.
During their communication, if S gets to know that the
communication route is broken, S doesn't need to
rediscover a new route immediately because S might
have detected several routes in the previous discovery. It
can then choose another available route and replace the
broken one. If none of the routes reaches to the
destination, the system will start route discovery again.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

RouteMaintain RouteInfo

awareNode

Session

2 : route break
4 [have route]: switch route

3 : any route leave

5. [no route]: detect remote node

1 [route break]: remove route

5.1 [no route]: detecting

Figure 6: Route Recovery

3.3 Integrated Routing

The primary challenge with using a P2P routing
protocol in MANET is the fact that P2P overlays in the
wired Internet rely on the IP routing infrastructure to
perform hop-by-hop routing between neighbor nodes in
the overlay. Thus the key problem in the integration is
that P2P overlay routing protocols run in a logical
namespace but MANET routing protocols run in a
physical namespace. A possible solution to the
integration is to build a one-to-one mapping between the
IP address of the mobile nodes and their node IDs in the
namespace, and replace the routing table entries which
used to store IP addresses with source routes.

For instance, to integrate a Gnutella-like [12] P2P
protocol into a DSR-like [15] MANET protocol, unique
node IDs are first assigned to nodes in a MANET as is
done in P2P overlay on top of the Internet. Node IDs can
be generated by hashing the IP addresses of the hosts
using collision-resistant hashing functions like SHA-1
[13], thus obtaining a unique node ID for each node in
the network. The mobile nodes in the ad hoc network can
then form a P2P overlay in the same fashion as in the
Internet. Nodes can handle join, leave and fail actions in
a similar way as before. The structure of the routing
states is also similar as before, with one exception: the
routing table stores the source route to reach the
destination node ID, not just a simple IP address. To
route a data packet, a message key is first generated by
hashing the destination IP address, and then the message
is routed in the overlay similarly to in the overlay on top
of the Internet. The only difference is that each overlay
hop in ad hoc networks is a multi-hop source route, while
each overlay hop in the Internet is a multi-hop IP route.

4. Conclusions and Future Work

The main contribution of this work is that it proposes
a novel architecture, integrating P2P and MANET
technologies together, to reduce the dependence of
networking on wired and wireless infrastructure, thus

extending the reachability of nowadays networks and
increasing their resilience to disasters and attacks.
Another contribution of this work is that it is the first
architecture-centric approach for the construction of
overlay network applications that allows us to define a
unified networking environment, taking advantages from
both P2P and MANET technologies.

The work presented in this paper is in its early stages.
At present we are evaluating the initial version of the
MIN framework through analysis, simulation, and a
prototype implementation. In the formal respect, a
complete formal specification of the architecture is being
underway. As a future work, in particular, performance
modeling and evaluation of integrating P2P and MANET
routing protocols will be undertaken. A further future
work of our research is to implement a middleware in
this integrated architecture for use by developers of
overlay network applications.

Acknowledgements

The authors are grateful for Jincheng Ni and Nayyar
Iqbal’s contribution to this project.

References

[1] L. Yan and K. Sere, Stepwise Development of Peer-
to-Peer Systems, Proceedings of the 6th International
Workshop in Formal Methods (IWFM’03), Dublin,
Ireland, July 2003. Electronic Workshops in Computing
(eWiC), British Computer Society (BCS).

[2] Y. C. Hu, S. M. Das, and H. Pucha, Exploiting the
synergy between peer-to-peer and mobile ad hoc
networks. In Proceedings of HotOS-IX: 9th Workshop on
Hot Topics in Operating Systems, May 2003.

[3] C. Blake and R. Rodrigues, High availability,
scalable storage, dynamic peer network: Pick two. In
Proc. HotOS IX, Kauai, Hawaii, May 2003.

[4] M. Castro, P. Druschel, A. -M. Kermarrec, and A.
Rowstron, SCRIBE: A large-scale and decentralized
application-level multicast infrastructure. IEEE JSAC,
20(8), Oct. 2002.

[5] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen,
Ivy: A read/write peer-to-peer file system. In Proc. of the
5th Symposium on Operating System Design and
Implementation (OSDI 2002), Boston, MA, December
2002.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

[6] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J.
Kubiatowicz, Bayeux: An architecture for scalable and
fault-tolerant wide-area data dissemination. In
NOSSDAV, June 2001.

[7] P. F. Tsuchiya, Landmark hierarchy: a new hierarchy
for routing in very large networks. In Proc. of MobiHOC,
Standford, CA, Aug. 2000.

[8] S. Ratnasamy, M. Handley, R. Karp, and S.Shenker,
Application-level multicast using content-addressable
networks, In NGC, Nov. 2001.

[9] L. Yan, J. Ni and K. Sere, Towards a Systematic
Design for Ad hoc Network Applications, Proceedings of
the 15th Nordic Workshop on Programming Theory
(NWPT'03), Oct. 2003.

[10] E. Sekerinski and K. Sere (Eds), Program
Development by Refinement: Case Studies Using the B
Method, Springer-Verlag, 1999.

[11] T. Selker and W. Burleson, Context-aware Design
and Interaction in Computer System, IBM Systems
Journal, Vol. 39, No. 3 & 4, 2000.

[12] I. Ivkovic, Improving Gnutella Protocol: Protocol
Analysis and Research Proposals, Technical reports,
LimeWire LLC, 2001.

[13] FIPS 180-1, Secure Hash Standard, Technical
Report Publication 180-1, Federal Information
Processing Standard (FIPS), NIST, US Department of
Commerce, Washington D.C., April 1995.

[14] M. Bonsangue, J. N. Kok and K. Sere, An approach
to object-orientation in action systems, Proceedings of
Mathematics of Program Construction (MPC’98),
Martstrand, Sweden, June 1998. LNCS 1422, Springer
Verlag.

[15] D. B. Johnson and D. A. Maltz, Dynamic Source
Routing in Ad Hoc Wireless Networks. In T. Imielinski
and H. Korth (Eds), Mobile Computing, chap. 5, p. 153-
181, Kluwer Academic Publishers, 1996.

[16] W. Adjie-Winoto, E. Schwartz and H. Balakrishnan,
An Architecture for Intentional Name Resolution and
Application-level Routing. MIT Technical Reports, TR-
775, 1999.

Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems (FTDCS’04)

0-7695-2118-5/04 $20.00 © 2004 IEEE

Paper VI

Performance Evaluation and Modeling of
Peer-to-Peer Systems over Mobile Ad hoc
Networks

L. Yan

Previous version available as: L. Yan. Performance Evaluation and Mod-
eling of Peer-to-Peer Systems over Mobile Ad hoc Networks. TUCS Tech-
nical Reports, No. 678, Turku Centre for Computer Science, Finland,
2005.

Submitted to Performance Evaluation.

Shorten version available as: L. Yan. Performance Modeling of Mobile
P2P Systems. In Proceedings of the International Conference on Com-
puter Networks and Mobile Computing (ICCNMC’05), August 2005. Lec-
ture Notes in Computer Science 3619, Springer-Verlag.

TUCS Technical Report
No 678, March 2005

Performance Evaluation and Modeling of
Peer-to-Peer Systems over Mobile Ad hoc
Networks

Lu Yan

Åbo Akademi University, Department of Computer Science

Abstract

With the advance in mobile wireless communication technology and the increasing
number of mobile users, peer-to-peer computing, in both academic research and
industrial development, has recently begun to extend its scope to address problems
relevant to mobile devices and wireless networks. This paper is a performance study of
peer-to-peer systems over mobile ad hoc networks. We show that cross-layer approach
performs better than separating the overlay from the access networks with the
comparison of different settings for the peer-to-peer overlay and underlaying mobile ad
hoc network. We then present a performance model which captures most facets of
mobile peer-to-peer systems. We hope our results would potentially provide useful
guidelines for mobile operators, value-added service providers and application
developers to design and dimension mobile peer-to-peer systems.

Keywords: Mobile, Peer-to-Peer, Performance, Modeling, Evaluation

TUCS Laboratory
Distributed Systems Design Laboratory

1

1. Introduction

Peer-to-Peer (P2P) computing is a networking and distributed computing paradigm
which allows the sharing of computing resources and services by direct, symmetric
interaction between computers. With the advance in mobile wireless communication
technology and the increasing number of mobile users, peer-to-peer computing, in both
academic research and industrial development, has recently begun to extend its scope to
address problems relevant to mobile devices and wireless networks.

Mobile Ad hoc Networks (MANET) and P2P systems share a lot of key
characteristics: self-organization and decentralization, and both need to solve the same
fundamental problem: connectivity. Although it seems natural and attractive to deploy
P2P systems over MANET due to this common nature, the special characteristics of
mobile environments and the diversity in wireless networks bring new challenges for
research in P2P computing.

Currently, most P2P systems work on wired Internet, which depends on application
layer connections among peers, forming an application layer overlay network. In
MANET, overlay is also formed dynamically via connections among peers, but without
requiring any wired infrastructure. So, the major differences between P2P and MANET
in this paper are (a) P2P is generally referred to the application layer, but MANET is
generally referred to the network layer, which is a lower layer concerning network
access issues. Thus, the immediate result of this layer partition reflects the difference of
the packet transmission methods between P2P and MANET: the P2P overlay is a
unicast network with virtual broadcast consisting of numerous single unicast packets;
while the MANET overlay always performs physical broadcasting. (b) Peers in P2P
overlay are usually referred to static nodes though no priori knowledge of arriving and
departing is assumed, but peers in MANET are usually referred to mobile nodes since
connections are usually constrained by physical factors like limited battery energy,
bandwidth, computing power, etc.

The above similarities and differences between P2P and MANET lead to an
interesting but challenging research on P2P systems over MANET. In fact, this scenario
seems feasible and promising, and possible applications include car-to-car
communication in a field-range MANET, an e-campus system for mobile e-learning
applications in a campus-range MANET on top of IEEE 802.11, and a small applet
running on mobile phones or PDAs enabling mobile subscribers exchange music, ring
tones and video clips via Bluetooth, etc.

This paper is a performance study of peer-to-peer systems over mobile ad hoc
networks. In the following section we will review previous work on P2P and MANET.
After comparing different settings for the peer-to-peer overlay and underlaying mobile
ad hoc network, we show that cross-layer approach performs better than separating the
overlay from the access networks in section 3. In section 4, we present a performance
model which captures most facets of mobile peer-to-peer systems. In section 5, we
apply our analytical model to practical network design problems and analyze some
important QoS issues. Finally, section 6 concludes the paper.

2

2. Background and State-of-the-Art

Since both P2P and MANET are becoming popular only in recent years, the research on
P2P systems over MANET is still in its early stage. The first documented system is
Proem [1], which is a P2P platform for developing mobile P2P applications, but it
seems to be a rough one and only IEEE 802.11b in ad hoc mode is supported. 7DS [2] is
another primitive attempt to enable P2P resource sharing and information dissemination
in mobile environments, but it is rather a P2P architecture proposal than a practical
application. In a recent paper [3], Passive Distributed Indexing was proposed for such
kind of systems to improve the search efficiency of P2P systems over MANET, and in
ORION [4], a Broadcast over Broadcast routing protocol was proposed. The above
works focus on either P2P architecture or routing schema design, but how efficient is
the approach and what is the performance experienced by users are still in need of
further investigation.

Previous work on performance study of P2P over MANET is mostly based on the
simulative approach and no concrete analytical model is introduced. Performance issues
of this kind of systems are first discussed [5] with experiment results. There is a survey
of such kind of systems [6] but no further conclusions were derived. There are also
some sophisticated experiments and discussions [7] on P2P communication in MANET.
Recently, B. Bakos etc. with Nokia Research analyzed a Gnutella-style protocol query
engine on mobile networks with different topologies [8], and T. Hossfeld etc. with
Siemens Labs conducted a simulative performance evaluation of mobile P2P file-
sharing [9]. However, all above works fall into practical experience report category and
no performance models are proposed.

We believe that to understand the performance issues, rigorous analytical models are
needed, which capture the relation between key system parameters and performance
metrics. In the remaining sections we present our efforts on performance evaluation of
mobile peer-to-peer systems, especially from users’ point of view, e.g. what is the
performance experience of a user in mobile P2P systems? We then present a
performance model which captures most facets of mobile peer-to-peer systems. We
hope our results would potentially provide useful guidelines to design and dimension
mobile peer-to-peer systems.

3. Performance Evaluation of P2P over MANET

As stated before, we, in this paper, focus only on the performance of P2P systems over
MANET from users’ point of view since it makes greater impact on the design
decisions of such kind of system for mobile operators, value-added service providers
and application developers. Specifically, we want to answer the following questions: (1)
How can we perform an efficient search in mobile P2P systems? (2) and what is the
performance experience when many users try to retrieve data with parallel downloading
scheme? (We leave the answer to the second question to section 4 and 5.) To answer the
first question, the routing protocols and route discovery efficiency of different settings
for the peer-to-peer overlay and underlaying mobile ad hoc network should be further
investigated.

3

There are many routing protocols in P2P networks and MANET respectively. For
instance, one can find a very substantial P2P routing scheme survey from HP Labs [10],
and US Navy Research publish ongoing MANET routing schemes [11]; but all above
schemes fall into two basic categories: broadcast-like and DHT-like. More specifically,
most early P2P search algorithms, such as in Gnutella [12], Freenet [13] and Kazaa [14],
are broadcast-like and some recent P2P searching, like in eMule [15] and BitTorrent
[16], employs more or less some feathers of DHT. On the MANET side, most on-
demand routing protocols, such as DSR [17] and AODV [18], are basically broadcast-
like. Therefore, we here introduce different approaches to integrate these protocols in
different ways according to categories.

3.1. Broadcast over Broadcast

A rudimental approach is to employ a broadcast-like P2P routing protocol at the
application layer over a broadcast-like MANET routing protocol at the network layer.
Intuitively, in these settings, every routing message broadcasting to the virtual
neighbors at the application layer will result to a full broadcasting to the corresponding
physical neighbors at the network layer.

Figure 1. Broadcast over Broadcast

 The scheme is illustrated in Figure 1 with a searching example: peer A in the P2P
overlay is trying to search for a particular piece of information, which is actually
available in peer B. Due to the broadcast mechanism, the search request is transmitted to
A’s neighbors, and recursively to all the members in the network, until a match is found
or timeout. There is a blue line representing the routing path at the application layer.
Then we map this searching process into the MANET overlay, where node A0 is the
corresponding mobile node to the peer A in the P2P overlay, and B0 is related to B in
the same way. Since the MANET overlay also employs a broadcast-like routing
protocol, the request from node A0 is flooded (broadcast) to its directly connected

4

neighbors, which themselves flood their neighbors etc., until the request is answered or
a maximum number of flooding steps occur. The route establishing lines in that network
layer is highlighted in red, where we can find that there are few overlapping routes
between these two layers though each of them employs a broadcast-like protocol.

We have studied Guntella [19], a typical broadcast-like P2P protocol [20]. This is a
pure P2P protocol, as shown in Figure 2, in which no advertisement of shared resources
(e.g. directory or index server) occurs. Instead, each request from a peer is broadcasted
to its directly connected peers, which themselves broadcast this request to their directly
connected peers etc., until the request is answered or a maximum number of broadcast
steps occur. It is easy to see that this protocol requires a lot of network bandwidth, and it
does not prove to be very scalable. The complexity of this routing algorithm is O(n) [21,
22].

Figure 2. Broadcast-like P2P Protocol

Generally, most on-demand MANET protocols, like DSR [23] and AODV [24], are

broadcast-like in nature [25]. Previously, we have studied AODV, one typical
broadcast-like MANET protocol [26]. As shown in Figure 3, in that protocol, each node
maintains a routing table only for active destinations: when a node needs a route to a
destinations, a path discovery procedure is started, based on a RREQ (route request)
packet; the packet will not collect a complete path (with all IDs of involved nodes) but
only a hop count; when the packet reaches a node that has the destination in its routing
table, or the destination itself, a RREP (route reply) packet is sent back to the source
(through the path that has been set-up by the RREQ packet), which will insert the
destination in its routing table and will associate the neighbour from which the RREP
was received as preferred neighbour to that destination. Simply speaking, when a source
node wants to send a packet to a destination, if it does not know a valid route, it initiates
a route discovery process by flooding RREQ packet through the network. AODV is a
pure on-demand protocol, as only nodes along a path maintain routing information and
exchange routing tables. The complexity of this routing algorithm is O(n) [27].

5

Figure 3. Broadcast-like MANET Protocol

This approach is probably the easiest one to implement, but the drawback is also

obvious: the routing path of the requesting message is not the shortest path between the
source and destination (e.g. the red line in Figure 1), because virtual neighbors in the
P2P overlay are not necessarily physical neighbors in the MANET overlay, and actually
these nodes might be physically far away from each other. Therefore, the resulting
routing algorithm complexity of this broadcast over broadcast scheme is unfortunately
O(n2) though each layer’s routing algorithm complexity is O(n) respectively.

It is not practical to deploy such kind of scheme for its serious scalability problem
due to the double broadcast. Taking the energy consumption portion into consideration,
which is critical to mobile devices, the double broadcast will also cost a lot of energy,
and make it infeasible in cellular wireless networks.

3.2. DHT over Broadcast

The scalability problem of broadcast-like protocols has long been observed and many
revisions and improvement schemas are proposed [28, 29, 30]. To overcome the
scaling problems in broadcast-like protocols where data placement and overlay network
construction are essentially random, there are a number of proposals on structured
overlay designs. Distributed Hash Table (DHT) [31] and its varieties [32, 33, 34]
advocated by Microsoft Research seem to be promising routing algorithms for overlay
networks. Therefore it is interesting to see the second approach: to employ a DHT-like
P2P routing protocol at the application layer over a broadcast-like MANET routing
protocol at the network layer.
 The scheme is illustrated in Figure 4 with the same searching example. Compared to
the previous approach, the difference lies in the P2P overlay: in a DHT-like protocol,
files are associated to keys (e.g. produced by hashing the file name); each node in the
system handles a portion of the hash space and is responsible for storing a certain range
of keys. After a lookup for a certain key, the system returns the identity (e.g. the IP
address) of the node storing the object with that key. The DHT functionality allows
nodes to put and get files based on their key, and each node handles a portion of the
hash space and is responsible for a certain key range. Therefore, routing is location-
deterministic distributed lookup (e.g. the blue line in Figure 4).

6

Figure 4. DHT over Broadcast

Figure 5. DHT-like P2P Protocol

DHT was first proposed by Plaxton [35], and soon proved to be a useful substrate for
large distributed systems. A number of projects are proposed to build Internet-scale
facilities layered above DHTs, among them are Chord [31], CAN [32], Pastry [33],
Tapestry [34] etc. As illustrated in Figure 5, all of them take a key as input and route a
message to the node responsible for that key. Nodes have identifiers, taken from the
same space as the keys. Each node maintains a routing table consisting of a small subset
of nodes in the system. When a node receives a query for a key for which it is not
responsible, the node routes the query to the hashed neighbor node towards resolving
the query. In such a design, for a system with n nodes, each node has O(log n)
neighbors, and the complexity of the DHT-like routing algorithm is O(log n) [36].

Additional work is required to implement this approach, partly because DHT requires
periodical maintenance (i.e. it is just like an Internet-scale hash table, or a large

7

distributed database): since each node maintains a routing table (i.e. hashed keys) to its
neighbors according to the DHT algorithm, following a node join or leave, there is
always a nearest key reassignment between nodes.

DHT over Broadcast approach is obviously better than the previous one, but it still
does not solve the shortest path problem as in the Broadcast over Broadcast scheme.
Though the P2P overlay algorithm complexity is optimized to O(log n), the mapped
message routing in the MANET overlay is still in the broadcast fashion with complexity
O(n); the resulting algorithm complexity of this approach is as high as O(n log n).

This approach still requires a lot of network bandwidth, and hence does not prove to
be very scalable, but could be efficient in limited communities, such as a company
network.

3.3. Cross-Layer Routing

A further step of the Broadcast over Broadcast approach would be a Cross-Layer
Broadcast. Due to the similarity of Broadcast-like P2P and MANET protocols, the
second broadcast could be skipped if the peers in the P2P overlay would be mapped
directly into the MANET overlay, and the result of this approach would be the merge of
application layer and network layer (i.e. the virtual neighbors in P2P overlay overlaps
the physical neighbors in MANET overlay).

Figure 6. Cross-Layer Broadcast

 The scheme is illustrated in Figure 6, where the advantage of this cross-layer
approach is obvious: the routing path of the requesting message is the shortest path
between source and destination (e.g. the blue and red lines in Figure 6), because the
virtual neighbors in the P2P overlay are de facto physical neighbors in the MANET
overlay due to the merge of two layers. Thanks to the nature of broadcast, the algorithm
complexity of this approach is O(n), making it suitable for deployment in relatively
large scale networks, but still not feasible for Internet scale networks.

8

Figure 7. Cross-Layer DHT

It is also possible to design a Cross-Layer DHT in Figure 7 with the similar

inspiration, and the algorithm complexity would be optimized to O(log n) with the merit
of DHT, which is advocated to be efficient even in Internet scale networks. The
difficulty in that approach is implementation: there is no off-the-shelf DHT-like
MANET protocol as far as we know, though recently, some research projects, like Ekta
[37], towards a DHT substrate in MANET are proposed.

As an answer to Question 1, we show the cross-layer approach performs better than
separating the overlay from the access networks, with the comparison of different
settings for the peer-to-peer overlay and underlaying mobile ad hoc network in above
four approaches in Table 1.

Table 1. How efficient does a user try to find a specific piece of

data?

 Efficiency Scalability Implementation
Broadcast over Broadcast O(n2) N.A. Easy

DHT over Broadcast O(n log n) Bad Medium
Cross-Layer Broadcast O(n) Medium Difficult

Cross-Layer DHT O(log n) Good N.A.

4. Modeling Download Performance

The download performance modeling is a relatively new issue compared to the search
performance modeling, which was already extensively studied in some P2P and
MANET research [38, 39, 40]. In this section, we present our efforts towards a
performance model of downloading in such kind of systems, and thus answer Question

9

2: “what is the performance experience when many users try to retrieve data with
parallel downloading scheme?”

4.1. Preliminary Assumptions

Though early research on modeling has mainly focused on routing performance and
searching efficiency, recently, there were some works on modeling the download
performance. The Markov chain approach has been brought forth [41] for a queue
system model and some measurement studies were mentioned [42]; more recently,
Stochastic fluid models are studied [43, 44, 45], which provide a more intuitive and
deterministic approach. Our work uses the same approach as [45, 46]; but taking the
idea into mobile environments, more realistic scenarios and physical constraints should
be introduced, and old notions should have new interpretations.
 Since the introduction of Tornado Code [47, 48] has been a popular technique on
recently parallel downloading systems, here we assume: (1) the parallel download
process in our model is Tornado-like, which reduces the requirement for coordination
and signalling. Due to the limited bandwidth of existing wireless networks (probably
accompanied with expensive data transmission charge, e.g. cellular network), (2) it is
reasonable to allow the pure downloader (i.e. leech) exist in the system. Therefore, as
illustrated in Figure 8, there are three types of peers in our model: (a) normal peer (i.e.
contributor), which owns part of the file (i.e. ordinary downloader), but still allows
others to download from itself. This type is the most common one and it actually
constitutes the majority in our system. (b) pure downloader (i.e. leech), which just
downloads but never uploads. The realistic implication of this type may be physically
constrained mobile devices (e.g. cellular phones with limited bandwidth or associated
with too expensive data transmission charge). (c) pure uploader (i.e. seed), which
already have all pieces of the file but still stays in the system to allow others to
download from itself. The realistic implication of that type may be content publishers
(e.g. mobile operator’s service point).

Figure 8. Three Types of Peers

 Although there is heterogeneity in realistic infrastructure [49], such as bandwidth,
latency, availability, etc., here we make a trade-off between the simplicity of the model
and its ability to capture all facets, and assume (3) all peers in our model have equal
capacity (i.e. all peers have the same upload and download bandwidth). With the above

10

assumptions and the parameters in Table 2, we can derive that at time t, there are β x(t)
leeches and (1- β) x(t) contributors in our system.

Table 2. Parameters Used in the Model

Parameter Meaning
x(t) Number of downloaders (i.e. contributors and leeches) at time t
β Selfish rate (i.e. leech portion)

y(t) Number of seeds at time t
λ Arrival rate of new download request (Possion process)
μ Upload bandwidth of each peer
τ Download bandwidth of each peer
ρ Abort rate of downloaders
κ Leave rate of seeds

4.2. The Model

The queue-like model of one peer in our system is illustrated in Figure 9. As noted here,
during the download and upload process, it is also possible that peers will get offline or
abort the process, and in order to make the model simple, here we use abort rate ρ and
leave rate κ to model these interrupted processes.

Figure 9. Queue-Like Model of One Peer

In a P2P download and upload scheme, it is natural to expect more on the download
side (i.e. this implies τ ≥ μ); so taken the download bandwidth constraint into account,
the total upload bandwidth should be min(μ((1- β) x(t) + y(t)), τ x(t)), and the arrival and
departure rate of download request will be λ and min(μ((1- β) x(t) + y(t)), τ x(t)) + ρ x(t))
respectively. The arrival and departure rate of upload request will be min(μ((1- β) x(t) +
y(t)), τ x(t)) and κ y(t). Thus the fluid model is derived as

t
x t()d

d
λ min μ 1 β−()x t() y t()+ τx t(),⎡⎣ ⎤⎦⎡⎣ ⎤⎦− ρx t()−

11

t
y t()d

d
min μ 1 β−()x t() y t()+ τx t(),⎡⎣ ⎤⎦⎡⎣ ⎤⎦ κy t()−

In a steady state, the number of downloaders and seeds should be independent of time

(i.e. d(x(t))/dt) = d(y(t))/dt = 0); and then if we define
1
ι

1
1 β−

1
μ

1
κ

−⎛⎜
⎝

⎞⎟
⎠

⋅

where ι can be interpreted as effective upload bandwidth compared to nominal upload
bandwidth μ (i.e. after considering the impact of leeches), those equations can be solved
as

x t()

y t()
⎛
⎜
⎝

⎞
⎟
⎠

λ

τ 1
ρ

τ
+⎛

⎜
⎝

⎞
⎟
⎠

λ

κ 1
ρ

τ
+⎛

⎜
⎝

⎞
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

when
1
τ

1
ι

≥

x t()

y t()
⎛
⎜
⎝

⎞
⎟
⎠

λ

ι 1
ρ

ι
+⎛

⎜
⎝

⎞
⎟
⎠

λ

κ 1
ρ

ι
+⎛

⎜
⎝

⎞
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

when
1
τ

1
ι

<

where the limited download bandwidth and limited upload bandwidth is the constraint
respectively. Furthermore, if we define

1
φ

max
1
τ

1
ι
,⎛⎜

⎝
⎞⎟
⎠

where φ can be interpreted as bottleneck bandwidth intuitively, we obtain the solution as

x t()

y t()
⎛
⎜
⎝

⎞
⎟
⎠

λ

φ 1
ρ

φ
+⎛

⎜
⎝

⎞
⎟
⎠

λ

κ 1
ρ

φ
+⎛

⎜
⎝

⎞
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Finally, we derive the average download time for a peer with Little’s Law [50]

where

1
φ

max
1
τ

1
ι
,⎛⎜

⎝
⎞⎟
⎠

12

5. Performance Analysis with the Model

In the model presented in the previous section, it is clear that different settings of β, μ, τ,
ρ and κ will lead to different performance; so in this section we will use our analysis
model to provide some insights in the network.

5.1. Selfish Peers

For a fixed set of network parameters, we first study the impact of β on the network
performance. The realistic interpretation of β is interesting, which is somehow related to
peer strategy and incentive mechanism (i.e. selfish peers or leeches).

Figure 10. Impact of β on Network Performance

The network parameters we have chosen are: μ = 12kbps, τ = 20kbps, ρ = 10kbps, κ0

= 50kbps, κ1 = 12kbps, κ2 = 2kbps. In this scenario, we consider the effect of selfish
peers. Intuitively, the existing leeches will degrade the system performance because
they just download from others and never upload. The red curve in Figure 10 for κ0 =
50kbps justifies our intuition.

From the observation, it is obvious that Time is a non-decreasing function of β. We
can also find the upper bound and lower bound of Time if we consider two extreme
cases: β = 1 (i.e. all downloaders are selfish and no one uploads to others) and β = 0 (i.e.
there is no leeches in the system).

At this point, we are all happy with our intuition; but if we change the value of κ into
κ1 = 12kbps and κ2 = 2kbps, something strange happens. As shown in Figure 10 as two
overlapped horizontal lines, the network performance is constant, independent of β. We
briefly comment on this situation: recall the bottleneck bandwidth definition in the
previous section, it actually means the downloading bandwidth is the bottleneck since μ
≥ κ; in such a situation, the leeches make no harm to the system since the whole system
performance is constrained by the limited download speed (i.e. selfishness is not always
harmful).

13

From this phenomenon, we argue that it is reasonable to introduce leeches into our
model as in our preliminary assumptions, and actually there are lots of leeches existed
in realistic systems. In other words, what is real is rational and what is rational is real.1

5.2. Download Bandwidth’s Role

In the previous subsection, we have seen the download bandwidth’s impact on the
system performance. Intuitively, increasing the download bandwidth will lead to a
shorter downloading time, as often observed in our daily experiences; but is this
common sense always true? Now we study the impact of τ on the system performance
(i.e. download bandwidth’s role).

Figure 11. Impact of τ on Network Performance

The network parameters we have chosen are: β = 0.2, μ = 12kbps, ρ = 2kbps, κ =
50kbps. Shown as the red curve in Figure 11, Time is a non-increasing function of τ.
Besides, we can also derive the upper bound and lower bound of Time if we set τ = 0
(i.e. the download channel is actually blocked) and τ = ∞ (i.e. the download bandwidth
is much higher than upload bandwidth) respectively.

 The left half part of the curve justifies our intuition perfectly, but the right half seems
to yaw from the common sense. The key to the phenomenon is still bottleneck
bandwidth: initially, when τ increases, Time decreases accordingly because download
bandwidth is the bottleneck now; however, once τ becomes big enough, increasing τ
will not decrease Time any more, because the download bandwidth is no longer the
bottleneck of the system performance.

In fact, if we consider the impact of μ on network performance (i.e. upload
bandwidth’s role), we will get a similar curve. From these phenomena, we argue that
there are not always performance gains with increased download bandwidth, and the
key to network performance gains is to keep a good balance of download bandwidth

1 Taken from Hegel's famous dictum Das Wirkliche sei vernuenftig und das Vernuenfitige wirklich.

14

and upload bandwidth, and actually to increase bottleneck bandwidth. In other words,
every coin has two sides.2

5.3. Importance of Seeds

The seeds are a special kind of peers, which upload but don’t download. Compared to
leeches, seeds can be deemed as selfless peers. Intuitively, it is very important to have
seeds in the system; and in this subsection, we study the impact of κ on the system
performance (i.e. seeds’ contribution).

Figure 12. Impact of κ on Network Performance

The network parameters we have chosen are: β = 0.2, μ = 2kbps, ρ = 1kbps, τ0 =
1kbps, τ1 = 2kbps, τ2 = 6kbps, τ3 = 20kbps. With the curves shown in Figure 12, we are
now not surprised to see the divisions of these curves and their singular points, because
we already know their roots in the bottleneck bandwidth concept. Here we just briefly
comment on the situation τ2 = 6kbps because this speed seems to coincide with the
practical speed of our daily cellular networks (e.g. GPRS): the ideal scenario is κ = 0
(i.e. all seeds are persistent in the network), where the lower bound of Time resides. As
κ increases, initially, the slight loss of seeds doesn’t degrade the system performance
since the system is download bandwidth constrained; however, once κ is big enough,
the system turns into upload bandwidth constrained, and the system performance
degrades sharply with the loss of seeds; this also explains the singular point in the curve.

The realistic interpretation of seeds is service points or completed downloaders (but
not all completed downloaders become seeds due to the existence of leeches), and the
realistic meaning of the phenomenon is: it would be an effective way for mobile
operators to improve QoS in such kind of systems via providing more service points.

2 Ancient proverb.

15

6. Concluding Remarks

In this paper, we first studied the peer-to-peer systems over mobile ad hoc networks
with a comparison of different settings for the peer-to-peer overlay and underlaying
mobile ad hoc network. We show that cross-layer approach performs better than
separating the overlay from the access networks. After characterizing the variability of
the system by taking some preliminary assumptions, we then present a performance
model which captures most facets of mobile peer-to-peer systems. We also briefly
discussed three analytical examples on apply this model to capture the behavior of the
system in steady states.

In order to make the paper concise, we didn’t use the model to analyze the system in
inequilibrious states, though it is not hard to simulate these cases with the given fluid
model. We hope our results would potentially provide useful guidelines for mobile
operators, value-added service providers and application developers to design and
dimension mobile peer-to-peer systems, and as a foundation for our long term goals [51,
52].

References

[1] G. Kortuem, J. Schneider, D. Preuitt, T. G. C. Thompson, S. Fickas, Z. Segall.

When Peer-to-Peer comes Face-to-Face: Collaborative Peer-to-Peer Computing
in Mobile Ad hoc Networks. In Proc. 1st International Conference on Peer-to-
Peer Computing (P2P 2001), Linkoping, Sweden, August 2001.

[2] M. Papadopouli and H. Schulzrinne. A Performance Analysis of 7DS a Peer-to-
Peer Data Dissemination and Prefetching Tool for Mobile Users. In Advances in
wired and wireless communications, IEEE Sarnoff Symposium Digest, 2001,
Ewing, NJ.

[3] C. Lindemann and O. Waldhorst. A Distributed Search Service for Peer-to-Peer
File Sharing in Mobile Applications. In Proc. 2nd IEEE Conf. on Peer-to-Peer
Computing (P2P 2002), 2002.

[4] A. Klemm, Ch. Lindemann, and O. Waldhorst. A Special-Purpose Peer-to-Peer
File Sharing System for Mobile Ad Hoc Networks. In Proc. IEEE Vehicular
Technology Conf., Orlando, FL, October 2003.

[5] S. K. Goel, M. Singh, D. Xu. Efficient Peer-to-Peer Data Dissemination in
Mobile Ad-Hoc Networks. In Proc. International Conference on Parallel
Processing (ICPPW '02), IEEE Computer Society, 2002.

[6] G. Ding, B. Bhargava. Peer-to-peer File-sharing over Mobile Ad hoc Networks.
In Proc. 2nd IEEE Conf. on Pervasive Computing and Communications
Workshops. Orlando, Florida, 2004.

[7] H.Y. Hsieh and R. Sivakumar. On Using Peer-to-Peer Communication in
Cellular Wireless Data Networks. In IEEE Transaction on Mobile Computing,
vol. 3, no. 1, January-March 2004.

16

[8] B. Bakos, G. Csucs, L. Farkas, J. K. Nurminen. Peer-to-peer protocol evaluation
in topologies resembling wireless networks. An Experiment with Gnutella Query
Engine. In Proc. International Conference on Networks, Sydney, Oct., 2003.

[9] T. Hossfeld, K. Tutschku, F. U. Andersen, H. Meer, J. Oberender. Simulative
Performance Evaluation of a Mobile Peer-to-Peer File-Sharing System.
Research Report 345, University of Wurzburg, Nov. 2004.

[10] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S.
Rollins, Z. Xu. Peer-to-Peer Computing. Technical Report HPL-2002-57, HP
Labs.

[11] MANET Implementation Survey. Available at
http://protean.itd.nrl.navy.mil/manet/survey/survey.html

[12] Gnutella: http://www.gnutella.com/
[13] Freenet: http://freenet.sourceforge.net/
[14] Kazaa: http://www.kazaa.com/
[15] eMule: http://www.emule-project.net/
[16] BitTorrent: http://bittorrent.com/
[17] DSR IETF draft v1.0. Available at

http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt
[18] AODV IETF draft v1.3. Available at

http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-13.txt
[19] Clip2. The gnutella protocol specification v0.4 (document revision 1.2).

Available at http://www9.limewire.com/developer /gnutella protocol 0.4.pdf, Jun
2001.

[20] L. Yan and K. Sere. Stepwise Development of Peer-to-Peer Systems. In Proc.
6th International Workshop in Formal Methods (IWFM'03). Dublin, Ireland,
July 2003.

[21] M. Ripeanu, I. Foster and A. Iamnitch. Mapping the Gnutella Network:
Properties of Large-Scale Peer-to-Peer Systems and Implications for System
Design. In IEEE Internet Computing, vol. 6(1) 2002.

[22] Y. Chawathe, S. Ratnasamy, L. Breslau, S. Shenker. Making Gnutella-like P2P
Systems Scalable. In Proceedings of ACM SIGCOMM, 2003.

[23] D. B. Johnson, D. A. Maltz. Dynamic Source Routing in Ad-Hoc Wireless
Networks. In Mobile Computing, Kluwer, 1996.

[24] C. E. Perkins and E. M. Royer. The Ad hoc On-Demand Distance Vector
Protocol. In Ad hoc Networking. Addison-Wesley, 2000.

[25] F. Kojima, H. Harada and M. Fujise. A Study on Effective Packet Routing
Scheme for Mobile Communication Network. In Proc. 4th Intl. Symposium on
Wireless Personal Multimedia Communications, Denmark, Sept. 2001.

[26] L. Yan and J. Ni. Building a Formal Framework for Mobile Ad Hoc Computing.
In Proc. International Conf. on Computational Science (ICCS 2004). Krakow,
Poland, June 2004. LNCS 3036, Springer-Verlag.

[27] E. M. Royer and C. K. Toh. A Review of Current Routing Protocols for Ad-Hoc
Mobile Wireless Networks. In IEEE Personal Communications, April 1999.

[28] Q. Lv, S. Ratnasamy and S. Shenker. Can Heterogeneity Make Gnutella
Scalable? In Proc. 1st International Workshop on Peer-to-Peer Systems (IPTPS
'02), Cambridge, MA, March 2002.

17

[29] B. Yang and H. Garcia-Molina. Improving Search in Peer-to-Peer Networks. In
Proc. Intl. Conf. on Distributed Systems (ICDCS), 2002.

[30] Y. Chawathe, S. Ratnasamy, L. Breslau, and S. Shenker. Making Gnutella-like
P2P Systems Scalable. In Proc. ACM SIGCOMM 2003, Karlsruhe, Germany,
August 2003.

[31] I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan. Chord: A
Scalable Peer-To-Peer Lookup Service for Internet Applications. In Proc. ACM
SIGCOMM, 2001.

[32] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Schenker. A scalable
content-addressable network. In Proc. Conf. on applications, technologies,
architectures, and protocols for computer communications, ACM, 2001.

[33] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proc. IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), Heidelberg,
Germany, pages 329-350, November, 2001.

[34] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz.
Tapestry: A Resilient Global-scale Overlay for Service Deployment. In IEEE
Journal on Selected Areas in Communications, January 2004, Vol. 22, No. 1.

[35] C. Plaxton, R. Rajaraman, A. Richa. Accessing nearby copies of replicated
objects in a distributed environment. In Proc. ACM SPAA, Rhode Island, June
1997.

[36] S. Ratnasamy, S. Shenker, I. Stoica. Routing Algorithms for DHTs: Some Open
Questions. In Proc. 1st International Workshop on Peer-to-Peer Systems, March
2002.

[37] H. Pucha, S. M. Das and Y. C. Hu. Ekta: An Efficient DHT Substrate for
Distributed Applications in Mobile Ad Hoc Networks. In Proc. 6th IEEE
Workshop on Mobile Computing Systems and Applications, December 2004, UK.

[38] R. Schollmeier and I. Gruber. Routing in Peer-to-Peer and Mobile Ad Hoc
Networks. A Comparison. In Proc. International Workshop on Peer-to-Peer
Computing, Pisa, Italy, 2002.

[39] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword Searching. In Proc.
Middleware, 2003.

[40] S. Corson and J. Macker. Mobile Ad Hoc Networking (MANET): Routing
Protocol Performance Issues and Evaluation Considerations. RFC 2501, Jan.
1999.

[41] Z. Ge, D. Figueiredo, S. Jaiswal, J. F. Kurose, D. Towsley. Modeling peer-to-
peer file sharing systems. In Proc. IEEE Infocom, 2003.

[42] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy and J.
Zahorjan. Measurement, modeling, and analysis of a peer-to-peer file-sharing
workload. In Proc. 19th ACM symposium on Operating systems principles, 2003.

[43] F. Clevenot and P. Nain. A Simple Fluid Model for the Analysis of the Squirrel
Peer-to-Peer Caching System. In Proc. IEEE Infocom, 2004.

[44] X. Yang and G. Veciana. Service Capacity of Peer to Peer Networks. In Proc.
IEEE Infocom, 2004.

[45] D. Qiu and R. Srikant. Modeling and Performance Analysis of BitTorrent-Like
Peer-to-Peer Networks. In Proc. ACM SIGCOMM, 2004.

18

[46] F. L. Piccolo, G. Neglia. The Effect of Heterogeneous Link Capacities in
BitTorrent-Like File Sharing Systems. In Proc. Intl. Workshop on Hot Topics in
Peer-to-Peer Systems (HOT-P2P'04), Oct, 2004.

[47] J. Byers, M. Luby, M. Mitzenmacher. Accessing Multiple Mirror Sites in
Parallel: Using Tornado Codes to Speed Up Downloads. In Proc. IEEE Infocom,
1999.

[48] J. W. Byers, J. Considine, M. Mitzenmacher and S. Rost. Informed Content
Delivery Across Adaptive Overlay Networks. In Proc. ACM SIGCOMM, 2002.

[49] S. Saroiu, P.K. Gummadi, S.D Gribble. A Measurement Study of Peer-to-Peer
File Sharing Systems. In Proc. Multimedia Computing and Networking
(MMCN’02), 2002.

[50] P. J. Denning and J. P. Buzen. The Operational Analysis of Queueing Network
Models. In ACM Computer Survey, 1978.

[51] L. Yan, K. Sere, X. Zhou, and J. Pang. Towards an Integrated Architecture for
Peer-to-Peer and Ad Hoc Overlay Network Applications. In Proc. 10th IEEE
International Workshop on Future Trends of Distributed Computing Systems
(FTDCS 2004), May 2004.

[52] L. Yan. MIN: Middleware for Network-Centric Ubiquitous Systems. In IEEE
Pervasive Computing, Vol. 3, No. 3, 2004.

Paper VII

Formal Context-Aware Programming in
Mobile Environments

L. Yan, K. Sere

Previous version available as: L. Yan, K. Sere. A Formalism for Context-
Aware Mobile Computing. In Proceedings of the 3rd International Sympo-
sium on Parallel and Distributed Computing and the 3rd International
Workshop on Algorithms, Models and Tools for Parallel Computing on
Heterogeneous Networks (ISPDC/HeteroPar’04), July 2004. IEEE Com-
puter Society Press.

Submitted to Scientific Programming.

Formal Context-Aware Programming in Mobile Environments

Lu Yan, Kaisa Sere
Turku Centre for Computer Science (TUCS) and

Department of Computer Science, Åbo Akademi University,
FIN-20520 Turku, Finland.
{Lu.Yan, Kaisa.Sere}@abo.fi

Abstract

Mobile devices, such as mobile phones and PDAs, have
gained wide-spread popularity. Applications for this kind
of mobile devices have to adapt to changes in context, such
as variations in network bandwidth, battery power, connec-
tivity, reachability of services and hosts, and so on. In this
paper, we define context-aware action systems that provides
a systematic method for managing and processing context
information. The meaning of context-aware action systems
is defined in terms of classical action systems, so that the
properties of context-aware action systems can be proved
using standard action systems proof techniques. We de-
scribe the essential notions of this formalism and illustrate
the framework with examples on context-aware services for
mobile applications.

1 Introduction

Mobile computing devices, such as notebooks, mobile
phones, PDAs and digital cameras have gained wide-spread
popularity. Although these devices and their networking ca-
pabilities are becoming increasingly powerful, the design
of mobile applications will continue to be constrained by
physical limitations. Mobile devices will continue to be
battery-dependent and users are reluctant to carry heavy-
weight devices. Networking capabilities will continue to
be based on communication with basestations, with fluctua-
tions in bandwidth depending on physical location. In order
to provide acceptable QoS to the users, applications have
to be context-aware [1] [2] [3] and able to adapt to context
changes, such as variations in network bandwidth, exhaus-
tion of battery power or reachability of services on other de-
vices. This would require application developers, for exam-
ple, to manage and process useful context information from
the user’s surroundings, and adapt to it accordingly. How-
ever, doing so would be extremely tedious and error-prone
[4]. In order to ease the development of context-aware ap-

plications and ensure the correctness of their designs, we
need new foundational ideas and principles.

Action systems [5], UNITY [23], and other similar state-
based approach have proved to be effective in modeling and
reasoning about distributed systems. In this paper, we ex-
tend the classical actions systems formalism with context
information and define a novel context-aware action sys-
tems that provides a systematic method for managing and
processing context information. The meaning of context-
aware action systems is defined in terms of classical ac-
tion systems, so that the properties of context-aware ac-
tion systems can be proved using standard action systems
proof techniques. Moreover, action systems are intended
to be developed in a stepwise manner within an associated
refinement calculus [6]. Hence, the development and rea-
soning about context-aware action systems can be carried
out within this calculus ensuring the correctness of derived
mobile applications [16].

Related works include Topological Action systems [15]
which extends classical actions systems with a special topo-
logical variable location, Mobile UNITY [24] which is an
extension of classical UNITY with a semantics based on
temporal logic, and Ambient Calculus [25], a calculi ap-
proach dedicated to mobility in networks. Mobility aspect
of distributed computing was extensively studied in those
works, but no context-awareness was introduced. Recently,
G. C. Roman extended the notion of Mobile UNITY and
constructed a formal model of Context UNITY [26], which
can be deemed as a simultaneous work related to our ap-
proach.

We proceed as follows. In Section 2, the action system
formalism is extended with a notion of context. We describe
some essential notions and properties of this formalism in
Section 3. In Section 4, we illustrate the framework with ex-
amples on context-aware services for mobile applications.
The concluding remarks are presented in Section 5.

Table 1. Abstract Syntax of Context
context � resourceList

resourceList � resource resourceList | ε
resource � rname oname valueList
valueList � value valueList | ε

Table 2. Formal Form of Context-Aware Ac-
tion Systems

A = |[context c;
import i;
export e := e0;
var v := v0;
do A od

]|

2 Context-Aware Action Systems

We define the notion context based on a collection of
relations constraining when the computation can take place
or where the data can reside. The abstract syntax of context
is listed in Table 1, where rname ∈ R, being R ⊂ Σ∗, the set
of all valid resource names over our alphabet Σ; value ∈ V,
being V the set of all possible values of resources in R (e.g.
IP address for hosts in reach, etc.); oname ∈ O, being O the
set of all valid operator names that can be applied to values
of monitorable resources (e.g. equals, lessThan).

We define the basic unit of execution in a context-aware
mobile system to be a context-aware action system. Such a
system comprises several sections and has the formal form
as shown in Table 2. The first four sections are for context
and variable declaration or use, while the last describes the
computation involved in A. Alternatively, we can write A
in the explicit form as shown in Table 3.

The context section describes a set of context relations
associated with A. The abstract syntax of c is defined in
Table 1. The content of this section can be optional. If not

Table 3. Explicit Form of Context-Aware Ac-
tion Systems

A = |[import i;
export e := e0;
var v := v0;
do A od

]| @c

Table 4. Definition of WP

wp(abort,P) = false
wp(skip,P) = P

wp(x := v,P) = P[x/v]
wp(b→ A,P) = (b⇒ wp(A,P))
wp(A1; A2,P) = wp(A1,wp(A2,P))

wp(�IAi,P) = ∀i ∈ I.wp(Ai,P)
wp(if b then A1 = (b⇒ wp(A1,P) ∧ ¬b⇒ wp(A2,P))

else A2 fi,P)

specified, c is assigned to a default empty set φ, and the
system degrades into a classical action system.

The import section describes the imported variables i
that are not declared, but used in A. The variables i are
declared in some other context-aware action systems, and
thus they model the communication between context-aware
action systems.

The export section describes the exported variables e de-
clared by A. They can be used within A and also within
other context-aware action systems that import them. Ini-
tially, they get the values e0. If the initialization is missing,
arbitrary values from the type sets of e are assigned as initial
values.

The var section describes the local variables of context-
aware action system A. They can be used only within A.
Initially they are assigned values i0, or, if the initialization
is missing, some arbitrary values from their type sets.

Technically, all the used variables in context, import,
and export sections are global variables, and only variables
defined in var section are local ones.

The do · · · od section describes the computation involved
in A. An action is an atomic statement that can change
the values of the local or global variables of the context-
aware action system. An action A is defined by the follow-
ing grammar:

A � abort|skip|x := v|if b then A1 elseA2 fi|
b→ A|A1; A2|A1 � A2

Here x is a list of attributes, v a list of values, b a predicate.
Intuitively, abort is the action which always deadlocks, skip
is a stuttering action, x := v is a multiple assignment, b→ A
is a guarded action, A1; A2 is the sequential composition of
two actions A1 and A2, if b then A1 else A2 fi is the condi-
tional composition of two actions A1 and A2, and A1 � A2 is
the nondeterministic choice between two actions A1 and A2.

The semantics of an action A is described in terms of the
weakest precondition predicate transformer, in the style of
Dijkstra [7]. Given a predicate P, the details of the defini-
tion of the function wp(A,P) is listed in Table 4.

An important property of an action is its enabledness.
The central part of this concept is the guard condition.
We say that an action behaves miraculously when it es-
tablishes the postcondition false, which models an abort-
ing state. Classically, the guard condition gA defined as
gA = ¬wp(A, false) gives those states in which an action
behaves non-miraculously. In the context-aware action sys-
tems framework, we extend the the guard condition gA via
incorporating context into the guard. The guard of the ac-
tion A can now be defined as gdA = c ∧ gA, where c is the
context and gA is the guard condition. An action A within
a context-aware action system is said to be enabled, if its
guard gdA evaluates to true. Action A can be chosen for
execution only if it is enabled.

A context-aware action system is thus a set of actions
operating on local and global variables. First, the variables
are created and initialized. Then, repeatedly, enabled ac-
tions are non-deterministically chosen and executed. Ac-
tions operating on disjoint sets of variables can be executed
in parallel. The computation terminates if no action is en-
abled, otherwise it continues infinitely. Actions are taken
to be atomic, meaning that if an enabled action A is chosen
for execution, then it is executed to completion without any
interference from other actions of the system. This ensures
that a parallel execution of a context-aware action system
gives the same results as a sequential non-deterministic ex-
ecution.

Compared to the classical action system approach, we
can notice that the new thing here is the interpretation of
context. Hence, we can say that context-aware action sys-
tems forms a subset of action systems. Intuitively, mobile
computing can be modeled easily within our context-aware
action systems framework, since mobility can always be
treated as a special kind of context, i.e. spatial context. If
we restrict the context part of our formalism into a set con-
taining only location information, this formalism degrades
into topological action systems [15], which is dedicated to
mobile distributed computing. The similar phenomena can
also be observed in Roman’s paradigm of Context UNITY
[26] and Mobile UNITY [24].

3 Essence of Context-Aware Action Systems

In this section we consider some essential notions and
properties of context-aware action systems. The most im-
portant concepts in context-aware action systems are paral-
lel composition and prioritizing composition [8].

3.1 Parallel composition

We have defined the context-aware action system as the
basic unit of execution. In order to model a complex system,
we still need a way to compose several context-aware action

systems together. We first define the parallel composition of
context-aware action systems. Consider the context-aware
action systemsA and B below:

A = |[import i; B = |[import j;
export e := e0; export f := f0;
var v := v0; var w := w0;
do A od do B od

]| @c1]| @c2

where the global and local variables declared inA andB are
required to be distinct. We define the parallel composition
A||B of the context-aware action systemsA and B to be the
context-aware action system:

A||B = |[context c1, c2;
import k;
export h := h0;
var u := u0;
do c1 → A � c2 → B od

]|
where k = (i ∪ j) − h, h = e ∪ f and u = v ∪ w. The
initial values of the variables and the actions in A||B con-
sist of the initial variables and actions of the original action
systems. The binary parallel composition operator || is as-
sociative and commutative and thus extends naturally to the
parallel composition of a finite set of context-aware action
systems.

3.2 Prioritizing composition

We start by defining the prioritizing composition of ac-
tions, and then consider the prioritizing composition of ac-
tion systems.

Let A, B,C be actions. The prioritizing composition
A//B selects the first operand if it is enabled, otherwise the
second, the choice being deterministic.

A//B = A � ¬gdA→ B

Since A = gdA → A, the above definition can be equiva-
lently stated as:

A//B = gdA→ A � ¬gdA→ B

The prioritizing composition of two actions is enabled if
either operand is:

gd(A//B) = gdA ∨ gdB

Prioritizing composition of actions is associative, allow-
ing parentheses to be omitted in repeated applications.

(A//B)//C = A//(B//C)

Prioritizing composition of actions distributes over choice
to the right, but does not distribute over choice to the left in
general.

A//(B � C) = (A//B) � (A//C)

Let A and B be context-aware action systems given be-
low:

A = |[import i; B = |[import j;
export e := e0; export f := f0;
var v := v0; var w := w0;
do A od do B od

]| @c1]| @c2

where the global and local variables declared inA andB are
required to be distinct. The prioritizing compositionA//B
combinesA and B in a way that preference is given to the
action of A. The choice between the action of A and B is
deterministic in the sense that when both are enabled, the
action ofA is taken.

A//B = |[context c1, c2;
import k;
export h := h0;
var u := u0;
do c1 → A // c2 → B od

]|

where k = (i ∪ j) − h, h = e ∪ f and u = v ∪ w. The initial
values of the variables and the actions inA||B consist of the
initial variables and actions of the original action systems.

Prioritizing composition of context-aware action sys-
tems is associative, allowing us to omit parentheses in re-
peated application.

(A//B)//C = A//(B//C)

Let G be a context-aware action system without local vari-
ables, i.e. of the form

G = |[import i;
export e := e0;
do G od

]| @c

Prioritizing composition with a context-aware action system
without local variables distributes over parallel composition
to the right, but does not distribute over parallel composition
to the left in general:

G//(A||B) = (G//A)||(G//B)

3.3 Nesting

The number of entities that share a resource might
change within a complex system. This feather is modeled
for context-aware action systems by hiding (or revealing)
exported (or local) variables. We define the nesting |[A]| of
the context-aware action systemA as follows:

|[A]| = |[|[import z;
export y := y0;
var x := x0;
do B od]|@a]|

= |[import z;
var y, x := y0, x0;
do C od]| @a

The exported variable y inA is a local variable in the nested
action system |[A]|. Therefore, y is provided as an exported
variable only to a certain domain and hidden from other do-
mains. Some security means can be modeled using this fea-
ture.

4 Context-Aware Mobile Computing

Using the framework of context-aware action systems,
we can now model mobile computing in an extremely dy-
namic context: location changes all the time while moving
around with our portable devices, and so the services and
devices in reach; local resource availability varies quickly
as well, such as memory availability, bandwidth and bat-
tery power. In order to maintain reasonable QoS to the
users, applications have to be context-aware. In this sec-
tion, we examine a representative set of context-aware ser-
vices found in the literature, abstract their key features, and
suggest ways to model them in the context-aware action sys-
tems framework.

4.1 Conference assistant example

Initial work in context-aware computing resulted in the
development of applications that can use context definitions
to support everyday behaviors, such as Active Badge [9]
and PARCTab [10]. Another kind of typical context-aware
applications relate to the development of guides, e.g. Cy-
berguide [11] and GUIDE [12]. Therefore, we present a
context-aware scenario similar to [13] and [14] as an exam-
ple to show how this context-aware action systems frame-
work can be effectively used to model context-aware ser-
vices for mobile applications.

Imagine that Kaisa is attending a conference with her
own Smart Phone. When arriving at the conference loca-
tion, she is provided with a mobile application to be in-
stalled on her own portable device that, based on a wireless

Environm ental View

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 N

Applic ation Developer's View

... ...

Environm ent

Middlew are

Sensor Ac tuator

Figure 1. The Overall Infrastructure

network infrastructure, allow attendees to access the pro-
ceedings online, browse through the technical program, se-
lect the presentation they wish to attend and exchange mes-
sages with other attendees. These services may have to be
delivered in different ways when requested in different con-
texts, in order to meet the users’ needs.

4.1.1 Modeling the environment

The ideas behind this scenario are rooted in the notion that
mobile application development could be simplified if the
retrieval and maintenance of context information were to be
delegated to the software support infrastructure without loss
of flexibility and generality as shown in Figure 1.

To ease the prototyping of a context aware application,
we proposed a middleware for network-centric ubiquitous
systems in [22] from which an application developer can
derive specific services. This layer takes care of most low-
level context-aware functions: collecting sensor data, com-
bining data from multiple sensors, translating sensor data
into alternate formats, and contains the infrastructure re-
quired for distributed peer-to-peer storage, communication
via XML over HTTP, and software event monitoring.

Here we introduce a simplified model of the environment
in this paper, which just retrieves and maintains necessary
environment variables, i.e.

Middleware = Sensor ||Actuator

where Sensor and Actuator, modeled via classical action
systems in Table 5, make the context information accessible

Table 5. Sensor and Actuator

Sensor = |[import read;
export value;
var env;
do

read = true→ value = env;
read = f alse

od
]|

Actuator = |[import write, value;
var env;
do

write = true→ env = value;
write = f alse

od
]|

and updated from the application developer’s view; more
sophisticated models can be found in [21]. The benefit of
this approach is obvious: since context information actually
belongs to the environmental view, given proper middle-
ware, application developers will usually focus on service
construct and not necessarily care too much about the low-
level context-aware operations; thus it will ease application
development by taking advantage of this abstraction.

4.1.2 Reminding service

In the remaining part of the paper, we focus on an applica-
tion developer’s view and more details are given on service
derivation within our context-aware action systems frame-
work.

Let us consider a reminding service that alerts an at-
tendee of the coming presentation to attend 5 minutes before
it starts. Based on the functionality of Kaisa’s Smart Phone,
the following profiles can be used to remind her of com-
ing events: sound alert, particularly useful to capture user
attention in noisy and open air place; and vibra alert, to
capture user attention without disturbing anyone else (e.g.
when attending a talk).

We model the reminding service in context-aware action
systems as follows. The reminding service Reminder is a par-
allel composition of sound alter service A sound and vibra
alert serviceAvibra in Table 6, i.e.

Reminder = Asound ||Avibra

We model the current time and the coming presentation as
imported variables now and talk, and current status of our
service as an export variable alert. Then, we store our pref-
erence in the variable schedule for reference. The context-

Table 6. Alert Services

Asound = |[imp now, talk;
exp alert;
var schedule;
do

schedule.time − now > 5
∨now > schedule.time
→ alert := off
� 0 < schedule.time − now < 5
→ if schedule.title = talk
→ alert := sound fi

od
]| @outdoor

Avibra = |[imp now, talk;
exp alert;
var schedule;
do

schedule.time − now > 5
∨now > schedule.time
→ alert := off
� 0 < schedule.time − now < 5
→ if schedule.title = talk
→ alert := vibra fi

od
]| @conference

aware action system formalism has context information c to
constrain at what situation a service is delivered. For the
reminding service we define, there are two sorts of context:
outdoor profile and conference profile, where

outdoor = {location = outside}
conference = {location = conferenceRoom}

Using the properties presented in the previous section
and the techniques discussed in [15] and [16], we can trans-
form these context-aware action systems into one action
system and further refine it within its associated refinement
calculus [6]. A possible result is shown in Table 7.

With the above refined specification, we can derive a de-
sign pattern [19] as shown in Figure 2 to ease the software
development for reminding service: as an attendee moves
around the conference places, his or her context variable,
location, defined to contain the current location informa-
tion, changes in response to the available context. If the new
context matches some particular locations, the attendee’s re-
minding policy is updated to adapt the application to the
new environment.

Table 7. Reminding Service

Reminder = |[context outdoor, conference;
imp now, talk, location;
exp alert;
var schedule;
do

schedule.time − now > 5
∨now > schedule.time
→ alert := off
� 0 < schedule.time − now < 5
→ if schedule.title = talk
→ if location = outside
→ alert := sound

� location = conferenceRoom
→ alert := vibra fi

fi
od

]|

4.1.3 Messaging service

The messaging service enables an attendee to exchange
messages with other attendees. Attendees can exchange
messages using the following profiles: SMS, to exchange
messages in plain text; MMS, to send messages comprising
a combination of text, sounds, images and video; EMS, to
send encrypted messages. The messaging service is an ex-
ample of peer-to-peer service, where any number of peers
may participate in the delivery of the service.

Let us assume, for example, another attendee Lu is will-
ing to exchange messages with Kaisa, but he is using a PDA,
which has a different profiling policy than the Smart Phone.
We model this with two context-aware action systems:

Entrance

Conference
 Room

Reception

�
�A ttendee

�
A ttendee

C

C

Loc ation

Loc ation

Figure 2. Reminding Service

Table 8. Contexts for Smart Phone and PDA
Profile Context
SMSphone

MMSphone bandwidth > 70%
battery > 50%

EMSphone battery > 20%
SMSPDA bandwidth > 5%
MMSPDA bandwidth > 40%

battery > 25%
EMSPDA bandwidth > 75%

Kaisa = SMSphone||MMSphone||EMSphone

Lu = SMSPDA ||MMSPDA ||EMSPDA

where the contexts are defined in Table 8. Note that no con-
text information is associated to SMSphone context of Kaisa’s
profile: this means that this action is always available, re-
gardless of current context. At any time, attendees may
change their preferences through the user interface that the
conference application provides; the application, in turn,
dynamically updates the context information encoded in
their profiles, in order to take the new preference into ac-
count.

The interesting part of the messaging service is the spec-
ification of context itself. Let us consider, for example,
the messaging service is requested when Kaisa’s bandwidth
is greater than 70% and battery availability is greater than
50%, all three profiles: SMSphone, MMSphone and EMSphone

can be applied. In this sample, the messaging service will be
delivered via SMS, MMS and EMS simultaneously, which is
unnecessary and should be avoid in the real world.

In case we need to ensure that a service is delivered via
only one context-aware action system even if several dif-
ferent context-aware action systems can be used, a conflict
[4] may arise due to the different contexts themselves or
due to changes in context. There has been some research
on conflict resolution and several schemes are proposed. A
critical literature review in this area can be found in [17].
In the context-aware action system framework, we imple-
ment a priority assignment scheme [18] for conflict resolu-
tion, where the order of prioritizing composition reflects the
user’s preferences.

Kaisa = MMSphone//EMSphone//SMSphone

Lu = EMSPDA//MMSPDA//SMSPDA

4.2 The whole system

Let us imagine that, at the moment, the attendee Lu
opens his Tablet PC to enable better communication with

Table 9. Contexts for Tablet PC
Profile Context
SMStab

MMStab bandwidth > 25%
battery > 10%

EMStab battery > 5%

Kaisa. Obviously, this kind of mobile devices has a differ-
ent profiling policy than the previous two. We model the
situation with a new context-aware action system L′u:

L′u = Lu1||Lu2

Lu1 = EMSPDA//MMSPDA//SMSPDA

Lu2 = MMStab//EMStab//SMStab

where the contexts are defined in Table 9. As the result, the
messaging service is now modeled as follows:

Kaisa||L′u = Kaisa||(Lu1||Lu2)

The final application is a parallel composition of all in-
volved service providers:

Services

= Reminder||(Kaisa||L′u)
= (Asound ||Avibra)||(Kaisa||(Lu1||Lu2)
= Asound ||Avibra||(MMSphone//EMSphone//SMSphone)
||(EMSPDA//MMSPDA//SMSPDA)
||(MMStab//EMStab//SMStab)

and the whole system is modeled as the interaction between
the application view and the environment view:

System = Services ||Middleware

where services leads to the final program to be deployed
into attendee’s mobile devices, and middleware is the sup-
porting software existed in attendee’s mobile devices and
preinstalled at the conference venue.

5 Concluding Remarks

The increasing popularity of portable devices and recent
advances in wireless network technologies are facilitating
the engineering of new classes of distributed systems, which
present challenging problems to designers. To harness the
flexibility and power of these rapidly evolving, network
and mobile computing systems, and in particular, to meet
the need for context-awareness and adaptation, we need to
come up with new foundational ideas and effective princi-
ples for building and analyzing such systems.

The novel contribution of this paper is the formal design
and formalism that facilitate the development of context-
aware applications. In particular, we have described a for-
mal approach to context-aware mobile computing: we offer
the context-aware action systems framework, which pro-
vides a systematic method for managing and processing
context information, defined on a subset of the classical ac-
tion systems. Besides the essential notions and properties
of this formalism, we demonstrate how this formalism can
effectively be used to model context-aware services for mo-
bile applications with examples.

Future improvements and extensions of the context-
aware action systems framework span towards different di-
rections. Conflict resolution has been a very active research
field in context-aware mobile computing. In our paper,
we implement a static conflict resolution scheme like [18]
within the context-aware action systems framework, i.e. it
is up to the user’s preferences to decide the way of conflict
resolution. As a future work, we plan to introduce more dy-
namic schemes like [20] to the context-aware action system
framework towards a better utilization of context informa-
tion.

References

[1] B. Schilit, N. Adams, and R. Want. Context-Aware
Computing Applications. In Proceedings of the Work-
shop on Mobile Computing Systems and Applications.
Santa Cruz, CA, Dec. 1994.

[2] P.J. Brown, J.D. Bovey, and X. Chen. Context-Aware
Applications: from the Laboratory to the Market-
place. In IEEE Personal Communications. 4(5): 58-
64, 1997.

[3] A.K. Dey and G.D. Abowd. Towards a Better Under-
standing of Context and Context-Awareness. In Pro-
ceedings of the CHI 2000 Workshop on The What,
Who, Where, When, and How of Context-Awareness.
The Hague, Netherlands, April 2000.

[4] L. Capra, W. Emmerich, and C. Mascolo. CARISMA:
Context-Aware Reflective mIddleware System for
Mobile Applications. In IEEE Transactions on Soft-
ware Engineering. October 2003. (Vol. 29, No. 10).

[5] R.J.R. Back and K. Sere. From Action Systems to
Modular Systems. In Software - Concepts and Tools.
(1996) 17: 26-39.

[6] R.J. Back and J. Wright. Refinement Calculus: A Sys-
tematic Introduction. Graduate Texts in Computer Sci-
ence, Springer-Verlag, 1998.

[7] E.W. Dijkstra: A Discipline of Programming.
Prentice-Hall International, 1976.

[8] E. Sekerinski and K. Sere. A Theory of Prioritizing
Composition. In The Computer Journal. Vol. 39, No.
8, 1996.

[9] A. Harter and A. Hopper. A distributed location sys-
tem for the active office. In IEEE Networks. (1994) 8:
62–70.

[10] R. Want. An overview of the PARCTab ubiquitous
computing environment. In IEEE Personal Communi-
cations. (1995) 2: 28–33.

[11] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper,
and M. Pinkerton. Cyberguide: A mobile context-
aware tour guide. In ACM Wireless Networks. (1997)
3: 421–433.

[12] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and
C. Efstratiou. Experiences of developing and deploy-
ing a context-aware tourist guide: The GUIDE project.
In Proceedings of the 6th annual international confer-
ence on Mobile computing and networking. Boston,
MA, 2000.

[13] A.K. Day, D. Salber, G.D. Abowd, and M. Futakawa.
The Conference Assistant: Combining Context-
Awareness with Wearable Computing. In Proceedings
of the 3rd International Symposium on Wearable Com-
puters. San Francisco, CA, Oct. 1999.

[14] A. Asthana, M. Cravatts, and P. Kryzyzanowski. An
Indoor Wireless System for Personalized Shopping
Assistance. In Proceedings of IEEE Workshop on Mo-
bile Computing Systems and Applications. Santa Cruz,
CA, Dec. 1994.

[15] L. Petre, K. Sere, and M. Waldén. A Topological Ap-
proach to Distributed Computing. In Proceedings of
WDS’99 - Workshop on Distributed Systems. Iasi, Ro-
mania, Sept. 1999. ENTCS 28, Elsevier Science.

[16] K. Sere and M. Waldén. Data Refinement of Remote
Procedures. In Proceedings of the International Sym-
posium on Theoretical Aspects of Computer Software
(TACS97). Sendai, Japan, Sept. 1997. LNCS 1281,
Springer-Verlag.

[17] A.V. Lamsweerde, R. Darimont, and E. Letier. Manag-
ing Conflicts in Goal-Driven Requirements Engineer-
ing. In IEEE Transactions on Software Engineering.
Vol. 24, No. 11, Nov. 1998.

[18] R.M. Sivasankaran, J.A. Stankovic, D. Towsley, B.
Purimetla, and K. Ramamritham. Priority Assignment
in Real-Time Active Databases. In The International
Journal on Very Large Data Bases. Vol. 5, No. 1, Jan-
uary 1996.

[19] F. Buschmann, R. Meunier, H. Rohnert, P. Sommer-
lad, and M. Stal. Pattern-Oriented Software Architec-
ture, A System of Patterns. John wiley & Sons, 1996.

[20] L. Capra, W. Emmerich, and C. Mascolo. A Micro-
Economic Approach to Conflict Resolution in Mobile
Computing. In Proceedings of the 10th International
Symposium on the Foundations of Software Engineer-
ing (FSE-10). Charleston, South Carolina, USA, Nov.
2002.

[21] L. Yan, K. Sere, X. Zhou, and J. Pang. Towards an
Integrated Architecture for Peer-to-Peer and Ad Hoc
Overlay Network Applications. In Proceedings of the
10th IEEE International Workshop on Future Trends
of Distributed Computing Systems (FTDCS 2004).
Suzhou, China, May 2004.

[22] L. Yan. MIN: Middleware for Network-Centric Ubiq-
uitous Systems. In IEEE Pervasive Computing, Vol. 3,
No. 3, July - September 2004.

[23] K. Chandy and J. Misra. Paralle Program Design: A
Foundation. Addison-Wesley, 1998.

[24] G. C. Roman and P. J. McCann. A Notation and Logic
for Mobile Computing. In Formal Methods in System
Design, Vol. 20, No. 1, 2002, pp. 47-68.

[25] L. Cardelli and A. D. Gordon. Mobile Ambients.
In Foundations of Software Science and Computa-
tional Structures. LNCS 1378, pp. 140-155, Springer-
Verlag, 1998.

[26] G. C. Roman, C. Julien and J. Payton. A Formal Treat-
ment of Context-Awareness. In Proceedings of the
7th Fundamental Approaches to Software Engineer-
ing Conference (FASE 2004). Barcelona, Spain, April
2004. LNCS 2984, Springer-Verlag.

Paper VIII

Implementing an Asynchronous Java Ac-
celerator for Ubiquitous Computing

Z. Liang, L. Yan, J. Plosila, K. Sere

Previous version available as: L. Yan, Z. Liang. Accelerating Java for
Ubiquitous Devices. In Proceedings of the 4th International Conference
on Computer and Information Technology (CIT’04), September 2004.
IEEE Computer Society Press.

Submitted to Journal of Embedded Computing.

 1

Abstract—Java is ideal for embedded and network computing

applications. In this paper, we propose a hardware accelerated
JVM with an asynchronous java accelerator, which can be
integrated with most existing processors and run time operation
systems. The architecture of the java accelerator was specially
designed for low power consumption: 1. The chip is designed in
asynchronous style and no clock is needed. 2. A novel branch
prediction unit and decoded bytecode caches are integrated to
eliminate the need of external memory access to the least. 3. The
instruction folding unit specially designed for java bytecodes can
effectively improve performance and decrease power
consumption. Finally, hardware/software co-simulation with
SystemC is discussed.

Keywords—Asynchronous circuit design, System level

modeling, Low power design, JVM, Java bytecode.

I. INTRODUCTION
AVA is the most popular and portable languages for its “
write once, run any where” promise. It is expected that this

enabling technology will make it much easier to develop
portable software and standardized interfaces that span a
spectrum of hardware platforms.

Java applications are first compiled into bytecode streams to
execute in the Java Virtual Machine (JVM). Bytecode
representations are portable formats that allow programs,
whether small applets in embedded systems or large desktop
applications, to run on many platforms. The core of the JVM
implementation is the execution engine that executes bytecode
instructions. It is important that the JVM provides an efficient
execution/runtime environment across diverse hardware
platforms.

A significant disadvantage of Java applications in embedded
systems is the low performance. The software mode execution
engine is quite slow in interpreter or bigger code size in
Just-in-Time (JIT) compiler [1]. Silicon implementation can be
optimized to deliver much better performance than software
mode.

The power consumption in embedded systems comes from
two sources: processor instruction operation and memory
access. Chip architecture and fabrication technology are key to
limiting power consumption.

In this paper, we propose a scheme of hardware accelerated
JVM for existing embedded systems. The accelerator is

designed for low power consumption, and can be integrated
into most existing processors and run time operation systems
(RTOS). To meet the low power constraint, the accelerator is
completely designed in asynchronous style.

The remainder of this paper is organized as follows. We
introduce the internal architecture of the JVM and system
workflow with Java accelerator in Section 2. Asynchronous
circuit design style, as well as the benefits, is introduced in
Section 3. The architecture of our asynchronous Java
accelerator is presented in Section 4. In section 5, the system
level simulation and system power estimation are stated. We
conclude the paper in Section 6.

II. JVM SYSTEM FRAMEWORK
Each Java application runs inside its own Java virtual

machine. In the Java virtual machine specification, the behavior
of a virtual machine instance is described in terms of
subsystems, memory areas, data types and instructions. These
components describe an abstract inner architecture of the
abstract Java virtual machine. As shown in Fig.1, each Java
virtual machine has a class loader subsystem, which is a
mechanism for loading types (classes and interfaces) when
given fully qualified names. Each JVM also has an execution
engine, which is a mechanism responsible for executing the
instructions contained in the methods of loaded classes. The
Java virtual machine organizes the memory it needs to execute
a program into several runtime data areas.

Each thread of a running Java application is a distinct
instance of the virtual machine’s execution engine. In a thread,
bytecode execution can be implemented in either software or
hardware [2]:

 --Interpreter: it’s just like a software emulation of the
virtual machine, in this case, Java interpreter has an additional
overhead and more executing cycles than just the bytecodes.

 --Just-in-Time (JIT) compiler: it compiles a Java method
into native instructions on the fly and caches the native
sequence. The JIT compilers’ memory requirement is pretty
high for embedded systems and pervasive computing
applications.

Implementing an Asynchronous Java
Accelerator for Ubiquitous Computing

Zheng Liang, Lu Yan, Juha Plosila, Kaisa Sere Member, IEEE

J

 2

Fig. 1. Internal Architecture of JVM

 --Hardware accelerator: one is to translate the bytecode

into binary machine code of native main processor; another
mode is to work as coprocessor which specially executes the
bytecode instruction.

 -- Java native processor: implements the JVM directly on
silicon. It not only avoids the overhead of translation of the
bytecodes to another processor’s native language, but also
provides support for Java runtime features.
Since our target is for most existing processors, coprocessor
mode is the best choice, which means frequently used bytecode
instructions are to be executed by the java accelerator.

Our java accelerator is designed for low end embedded
equipments, where only one CPU accesses memory and works
as master module in system bus.

Fig. 2. Connection for Java Accelerator

As shown in Fig. 2, during program running, java accelerator

is a filter between main processor and external memory. If the
main processor are executing non-java task, or the address of
accessed memory is out of current java stack, the java
accelerator will be transparent.

When the java accelerator works with the main processor,
the processor needs to configure the java accelerator in the
beginning of every java thread. (i.e. set new PC, stack address,
segment offset, etc in the java accelerator) Such kind of
information storing will consume some I/O space of the
processor. After the beginning of a java bytecode stream, the
processor halts and the java accelerator will fetch bytecode
instructions and data from memory. As shown in Fig.3, when
the java accelerator encounters trap instruction which the
accelerator can’t implement, it sends interrupt and moves its
control to the processor, and the processor will access the stack
cache in the java accelerator as I/O operations.

Fig. 3. JVM Workflow

In bytecode trap handling, the main processor takes operands

from java stack, executes subroutines for trapped java
bytecodes, and writes results back to java stack top. In case that
the next bytecode should be executed in hardware, the main
processor halts and updates PC in the java accelerator to invoke
it. In this way, the java accelerator will be able to continue to
use the new result in stack. With this scheme, our java
accelerate can be integrated into most existing processors, and
no bus arbiter is needed.

III. ASYNCHRONOUS DESIGN
Three main areas may benefit from an asynchronous design

style: global synchronization, performance and power
consumption.

A. Global synchronization
With the increase of the degree of on-chip integration, it is

becoming increasingly difficult to maintain the global
synchronization required in a clocked system. The difficulty
lies in distributing the clock signal across the silicon in such a
way that all elements receive a transition of the clock at the
same time. If the clock skew is large, the clock period must be
extended to ensure correct operation, and as a result, the
maximum frequency is limited by the on-chip skew. Since
asynchronous circuits have no global clock, there is no such
constraint to satisfy and the complex clock driver network is
not required.

The java accelerator is a small chip with limited area. The
clock skew, if designed in synchronous, is not so obvious to
baffle performance improving. But if we integrate the
accelerator core into the SoC platform, the synchronization
problem still remains. Furthermore, the java bytecode
instructions are in variable length. It’s more convenient to
design the control logic with asynchronous circuits.

 3

B. Performance
Normal synchronous design is optimized for worst-case

conditions. The minimum clock period (and hence maximum
frequency) is constrained by the operation that takes the longest
time to complete.

The speed of a particular operation is affected by a number of
independent factors:

 --Variation in silicon processing of CMOS circuits leads to
variation in transistor strengths between limits.

 --Logic functions may have certain input data values that
require more time to evaluate than the average case.

 --The power supply voltage and temperature of a CMOS
circuit affects its speed.

Within an asynchronous system it is possible to construct
circuits optimized for the typical case; worst-case operations
usually take longer time.

C. Power consumption
In CMOS technology, the power dissipated is proportional to

the frequency of the clock, and the clock line tree itself is a
heavy load, requiring large drivers. Decreasing the power
supply can reduces the power, but there are limits to how low
the supply voltage can go before the device stops functioning
correctly. In an asynchronous system without any clock,
actually only the required function module works, so it doesn’t
dissipate any power in modules that are not required.

The other advantage of asynchronous system is its EMC
ability and Modularity. There are also disadvantages of the
asynchronous design can’t be ignored.

In a synchronous system, every processing stage must
complete its activity in less than the duration of the clock period.
An asynchronous system requires extra hardware to allow each
block to perform local synchronizations to pass data to other
blocks. Furthermore, to exploit data-dependent evaluation
times, extra completion detection logic is needed. It adds
complexity that results to larger circuits and more difficult
design process.

Verification is also difficult due to the non-deterministic
behavior of arbiter element, and deadlock is not easy to detect
without exhaustive state space exploration. Testing for
fabrication faults in asynchronous systems is another major
obstacle due to the nondeterministic behavior of arbiter
elements.

As an accelerator, the java accelerator is a small chip.
Although maybe the power consumption of clock tree is not a
big part comparing with other module, the asynchronous style
is quite convenient for the micro-pipeline design in the java
accelerator.

In our java accelerator, 4-phase handshake protocol was
applied. Generally, 4-phase protocol control circuits are often
simpler than those of the equivalent 2-phase systems. The
signaling lines can be used to drive level-controlled latches and
the like directly. The single-rail encoding was applied for data
representation in the java accelerator, which is simpler than any
other data presentation scheme. The die area requirements are
similar to those of asynchronous designs, so any arithmetic

components constructed for reuse in asynchronous systems can
be used in this scheme.

Thus, the java accelerator chip is designed in asynchronous
style for the strict power limitation in embedded systems.

Manual designing any complex asynchronous system is
difficult. Balsa [3] is both a framework for synthesizing
asynchronous (clockless) hardware systems and the language
for describing such systems. The advantage of this approach is
that the compilation is transparent: there is a one-to-one
mapping between the language constructs in the specification
and the intermediate handshake circuits that are produced.

The whole accelerator was first described in the Balsa
language. With the toolkit provided by Manchester University,
synthesis and simulation were done. But the completely
synthesized chip has unoptimized performance and die area, so
the final gate level design was carried out with hand drawing
combining the Balsa synthesis tool. The silicon design based on
UMC 0.13µm technology of the chip is underway.

IV. ACCELERATOR ARCHITECTURE
In this section, the function and architecture of our

embedded java accelerator are specified.
The java accelerator is the only chip manufactured in this

work. Our java accelerator is an independent coprocessor to
facilitate java application running. It can be integrated easily
with most existing 32/16 bits embedded processors and
operation systems. About 130 bytecode instructions are
implemented in hardware, and the rest are done in software
with interpreter mode.

There are totally 245 java bytecode instructions, where
standard bytecode opcodes ranging from 0 to 201, quick
bytecodes ranging from 203 to 245. In this chip, we only
consider hardware implementation of standard bytecode
instructions. The quick bytecodes can be implemented by
software interpreter.

At bytecode level, 45 out of 255 bytecodes constitute 90
percent of most dynamic bytecode streams. Except when using
smaller block sizes for data caches or using branch predictors
specially tailored for indirect branches, optimizing caches and
branch predictors will not have a major impact on performance
of interpreted java execution [1].

For standard bytecodes, integer division and remainder, all
the float point arithmetic instructions are implemented in
software. For long operands, “mul”, “div” and “rem” are done
in software. Most array instructions are also done in software.
Such scheme can guarantee the control signals are hard wired,
so only simple control logic is needed.

The chip frame is shown in Fig. 4. To meet the requirement
of most low end microcontrollers, the external data is 16 bits;
the internal data bus is 32 bits; the instruction and data caches
are 2k bytes (16 bytes per line).

 4

Java
Accelerator

Instruction
Cache

Data Cache

Memory
Bus

Interface

CPU
Interface

RD

WD

IAddr

DAddr

ABus

DBus

Fig. 4. Chip Architecture

The CPU interface works like an asynchronous SRAM or

flash memory, and the memory bus interface only provides the
asynchronous read/write control to SRAM and flash memory.
In this way, except the test clock input in the scan chain for
JTAG test, no other clock is needed.

The java accelerator core is basically a single issue RISC like
processor. It can concurrently load 2 words from register,
execute some operation, and then store one word result into
register. All the operations of java bytecodes are based on java
stack. We make the register file as java stack top window, so
for the bytecodes based on stack top, our java accelerator can
work like a RISC processor.

Bytecode instructions are variable length instructions. For
hardware implementation, the instruction length ranges from 1
to 5 bytes. Direct execution of bytecodes on stack based
embedded processors is invariably constrained by the limitation
of the stack architecture for accessing operands. Folding is an
optimization implemented in such architectures to coalesce
multiple stack based instructions to a single RISC-style
instruction with optimized data accessing. Thus, both power
and execute time are saved.

The datapath pipeline has 6 stages:
1) F: Instruction Fetch.
2) D: Instruction Decode, check the possibility of instruction

folding.
3) R: Register access, detect the exact operand address, and

produce the new address for variable loading, as well as
the target address.

4) E: Execution unit, arithmetic and logic operation, send
read request to cache.

5) C: Cache access, receive loaded data, or send result to
cache write buffer.

6) W: Write the result back into register or variable area.
For a single issue RISC like processor, bytecode instructions

will be executed serially in the order as fetched. The main
execution unit in datapath includes 32 bits ALU and barrel
shifter.

A. Instruction fetch unit
Like a normal RISC pipeline, the first stage of the java

accelerator is “instruction fetch”. As shown before, some
instructions can be folded and executed as one instruction. To
detect the folding instructions, 7 bytes is adequate, including
index bytes, and the biggest length should be 8 bytes. So the
instruction buffer should be 16 bytes. In case that the higher 8

bytes are consumed by the folding unit, the rest half buffer will
transfer to replace the bytes that have been consumed. When
branch instruction encountered and new PC out of the
instruction buffer, the buffer will be flushed and the new
bytecode stream will be directly assigned to I[15:8] within 2
fetch operations.

I0I1I2I3

I4I5I6I7

I8 I11

Instruction Cache Unit

I10

Instruction Decoder

I9

I15 I12I13I14

LDLDLDLD

Fig. 5. Instruction Buffer Unit

In Fig. 5, LD means length decoder, which detects the length

of every bytes sent from instruction fetch unit. To facilitate
instruction folding in the next stage, all hardware implemented
bytecode instructions are divided into 6 classes and with 6 bits
to identify:

 --NF (unable to be fold)
 --LV (load variable)
 --OP (consume top 2 stack words and push result back)
 --MEM (store stack top into variable area)
 --OP1 (consume 1 stack word)
 --OP2 (consume 2 stack words)
When trap instruction to be executed, the java accelerator

won’t send interrupt signal until all other 5 pipelines are idle.
When branch instruction encountered, the instruction buffer
chain will halt till new PC is set.

In the instruction buffer, originally 8 bits unit will really
occupy 19 bits:
1) 8 bits for bytecode instruction code
2) 6 bits to identify hardware bytecode instruction: NF, LV,

OP, MEM, OP1, OP2
3) 2 bits to present PC uncertain instruction: Trap, Branch
4) 3 bits for instruction length

B. Instruction decode unit
The instruction decode unit gets the operation control from

the higher 8 bits of the instruction buffer. For its RISC like
architecture, up to 4 bytecode instructions can be executed as 1

 5

instruction in the java accelerator. After the decode unit, 4 part
signals will be sent to the next stage. (RS1, RS2: address index
of 2 operands, OP_CODE: operation control signal, RD:
address of destination.)

The microcode ROM is designed for the implementation of
complicate bytecode as “return” instructions. In OP_CODE,
one bit will show if the microcode should follow the decoded
bytecodes.

Two special caches are integrated into the decode unit,
where the extended branch target buffer (EBTB) cache is for
branch prediction, and the decoded bytecode cache (DBC) is to
improve performance and save power.

1) Instruction folding unit
There are 5 instruction folding sets:
 --A constant load or a local load followed by an ALU

instruction.
 --An ALU operation followed by a local store.
 --A constant load or local load followed by an ALU

instruction followed by a local store.
 --Two constant and/or local loads followed by an ALU

instruction.
 --Two constant and/or local loads followed by an ALU

instruction followed by a local store.
When “NF” flag of the highest instruction byte is set, the

folding unit will be bypassed to save power.
2) Decoded OP_CODE Format

Instruction decoder will generate direct control signals for
execution units. OP_CODE is composed of 26 bits control
signal:

 --Push, Store, Pop: Stack operation
 --Double, Quadruple: Operand or index bytes number
 --Add, Sub, Mul: Arithmetic operation
 --LeftShift, RightShift, Unsigned: Shift operation
 --And, OR, XOR: Bitwise operation
 --Convert: “i2l, l2i, i2b, i2c, i2s” are located in RS2_byte1
 --ifeq, ifne, iflt, ifge, ifgt, ifle: Conditional branch operation
 --SetPC: Update PC with ALU result
 --SetOPTOP[3:0]: Update stack top in different mode
 --Microcode: successor operation control signal will come

from microcode ROM
3) RS1/RS2 and RD format

The format of RS1/RS2 and RD are shown in Fig. 6. In RS1
(The constant operand is in the format of 8 bits immediate
operand):

 --V1:
a) 1: RS1_Byte1:RS1_Byte2 is the offset of the variable to be

loaded.
b) 0: RS1 is not variable.

 --W1:
a) 1: RS1_Byte1:RS1_Byte2 is 16 bits immediate operand; if

negative, sign extend to 32 bits.
b) 0: RS1 is not 16 bits operand.

 --B1:
a) 1: Ignore RS1_Byte1; RS1_Byte2 is 8 bits immediate

operand; if negative, sign extend to 32 bits.
b) 0: RS1 is not 8 bits operand.

In RS2, the V2, W2 and B2 bits are with the same definition.

V1 W1 B1 RS1_Byte1 RS1_Byte2

V2 W2 B2 RS2_Byte1 RS2_Byte2

V Q D RD_Byte1 RD_Byte2

RS1

RS2

RD

Fig. 6. Source operand and destination address after decode

In RD:
 --V:

a) 1: Store operation: RD_Byte1:RD_Byte2 is the target
variable offset.

b) 0: no store operation.
 --Q:

a) 1: Branch operation: address is determined by 4 index
bytes as offset.

b) 0: no branch with 4 bytes offset.
 --D:

a) 1: Branch operation: address is determined by 2 index
bytes as offset.

b) 0: no branch with 2 bytes offset.
4) Control signal of multi destination instruction

Generally, only one word will be stored in one instruction
(only one write port in stack cache). But some bytecodes will
store multi words into stack. Such multi destination instructions
are mainly about long and double operation, duplicate, return
instruction:

 --Load/store const Long/Double
 --Load/Store Var Long/Double
 --Dup, Dup2
 --Swap
 --Add/Sub Long
 --negate Long
 --shift Long
 --bitwise Long
 --return operation
The multi destination instruction is controlled by microcode

after decoded.
5) Decoded bytecode cache

In superscalar and VLIW processors, an intermediate
organization called fill unit [4] is applied as hardware assist to
compact micro-operations that are generated from sequentially
fetched instructions into a decoded instruction cache. In our
java accelerator, the bytecode instruction fetch, bytecode
decoding and folding are definitely in the critical path, and
because of the uncertainty with bytecode instruction length and
consumed bytes by folding logic, the next instruction address to
be fetched must wait for the computation of decode and folding
logic. Both delay and power consumption is significant in this
period. When bytecode loop encountered, the repeated
instruction fetching, decoding and folding operation can be
avoided if the execution control signal has been stored and will

 6

be read when needed.
To save time and power in loop, decoded bytecode cache

(DBC) was applied to store the decoded operation control
signal. Its architecture is shown in Fig. 7.

Bytecode
address

Folded control
code

Successor
offset

Fig. 7. Line format in DBC

In every line of DBC (above frame), the first field is

“bytecode address” which is the beginning address of the
decoded bytecode instruction group, followed by the exact
control signal next pipeline stage needed, and the last is the
address offset of successor bytecode instruction or the
consumed bytecode bytes in decoder.

DBC only stores the bytecodes in program loop. When the
decoder gets the consumed bytes and generates the new
bytecode address, DBC will be sent with this address. If hit,
“folded control code” will be read out and sent to the next
pipeline stage. The successor offset can be used to generate the
new fetch address and certainly such address should be checked
in DBC first.

For the control codes fetched from DBC instead of the long
way from memory to decoder, more time can be used to search
the match within DBC. So a large DBC is tolerant. The miss
penalty of DBC is the delay of DBC itself. We invoke DBC
when branch backward happened, and update DBC when
backward branch taken for a second time. When in nested loops,
if the internal loop was already in DBC, it’s not necessary to
write it into DBC again. (The begin and end address of every
loop is also appended).

The DBC is organized as a 64 entry 2-way associated cache.
6) Branch prediction

When conditional branch instruction encountered, the
processor pipeline will be stalled till the branch condition has
been reached. So the branch prediction accuracy is a major
performance-affecting factor in pipelined processor. To
decrease the additional delay, both static and dynamic branch
prediction have been applied in modern processor design. The
static branch prediction is quite simple with the strategy that
branch taken when backward and not taken when forward. The
dynamic branch prediction needs specified hardware logic to
store the branch history.

According to the instruction statistic from benchmark in Tab.
1, the conditional branch instruction is undoubtedly a
significant part in java application [5]. To improve the
performance in our java processor and match the cost constraint,
we propose a branch prediction scheme to work with DBC,
which is suitable for bytecode instruction set.

Tab. 1. Statistic of branch instruction in SPEC JVM98

 Branch Total Bytecodes

compress 6.1% 951990234
Jess 9.6% 8126332
Db 10.2% 2035798

Javac 8.6% 5958654
Mpegaudio 8.4% 115748387

Mtrt 5.1% 50683565
jack 11.0% 175740325

Dynamic branch prediction uses information gathered during

the run-time of the program to predict branch direction. The
techniques, such as branch target buffers (BTB), pattern history
table (PHT), branch target address cache (BTAC), to keep track
of the direction branch is likely to take. The implementation of
dynamic branch prediction requires dedicated hardware and
sizeable chip area, thus its cost is big. However, the more
expensive, the better performance of the processor [6].

BTAC is a set of associative memory, in which each line
contains: the address of branch or jump instruction, the most
recent target address for that branch or jump, the information
that permit a prediction as to whether or not the branch will be
taken. To keep the size of BTAC small, only predicted taken
branch addresses are stored. BTB is an extension to BTAC, not
only the branch target address is stored but also the target
instruction itself.

For variable length bytecodes, we modify BTB and make the
new prediction unit to match the character of bytecodes. We
call it Extended BTB (EBTB). As shown in Fig. 8, each line of
EBTB contains the branch address (after instruction folding),
folded control code (as in DBC), branch offset, successor offset
(if no branch taken), and prediction bits. The EBTB will be
organized as a 64 entry full associated cache. For embedded
applications, this EBTB can keep track of the most recent
branch operations.

Branch address Folded control
code

Branch
 offset

Successor
offset

Prediction
bits

Fig. 8. Line format of EBTB

EBTB runs with DBC. The branch instruction stored in

EBTB is the bytecodes that has been folded. The folded branch
instruction will only be stored in EBTB, so there is no conflict
between the branch addresses of EBTB and DBC. The
combination of the two caches is shown in Fig. 9.

After consumed bytes length computed by the decoder, the
new PC will be compared against the address in EBTB and
DBC. If hit, the folded control code in EBTB or DBC will be
read and sent to the next pipeline stage when it’s ready.
Simultaneously, branch target address from EBTB or next

 7

address from DBC will be read and sent back to compare if the
new address is still in the two caches. Only when the new PC is
not in EBTB and DBC, it will be sent to fetch unit. For
bytecode stream loops, such scheme will eliminate the need of
memory access to the least.

Next AddrTarget Addr

DBCEBTB

Instruction
Decoder

Fetch Address Generator

Fig. 9. Address generator for instruction fetch

There are two bits in prediction bits field, so 4 states map the

direction of branch: strongly taken, weakly taken, weakly not
taken, strongly not taken. As shown in Fig. 10, the state
machine is the same as UltraSPARC scheme.

(11)
stronly
taken

(10)
weakly
taken

(01)
weakly not

taken

(00)
stronly not

taken

Fig. 10. State machine of prediction bits

As shown in Fig. 11, the two-bit predictor scheme uses only

the recent behavior of a single branch to predict the future of
that branch. The exact accuracy statistic is underway, but the
advantage of this prediction scheme is evident.

C. Register access unit
Although most operands are from the stack cache register,

there are still some from local variable area outside the stack
cache. When loading variables, the real location should be
checked. If it’s not in stack cache, it needs to be read from
cache or main memory.

The stack cache register module has 2 read ports and 1 write
port. It can concurrently read 2 operands and simultaneously
write 1 word into register. That is the reason to fold
multi-bytecode into one instruction.

Invoking methods in java is expensive as it requires the
setting up of an execution environment and a new stack for
each new method.

1) Java accelerator control registers
--Program Counter Register (PC)

 --Constant Pool Base Pointer Register (CONST_POOL)
 --Java accelerator control register
 --ST_Limit: the lowest address for java stack
 --Processor Status Register (PSR): half bits are for trap

handler address
 --Data segment address offset register
 --Instruction segment offset register
 --Data mask register
 --Instruction mask register
 --Thread frame register
 --Thread S_VAR register
 --SC_TOP register
 --SC_Bottom register
 --Breakpoint register

JA Init

PC generate

PC in
EBTB/DBC ?

Read DBC
I_buffer

Decoder

Former
Microcode

end?

Execute opcode

Microcode
instruction?

Microcode end

Generate Consumed
bytes/Branch address

Y

N

N
Y

NY

Fig. 11. Workflow of PC generation

2) Operand dependency

Operand dependency needs to be detected before loading
word from stack cache. If the operand locates in the address
that the former instruction writes back, the operand will be
loaded from ALU result temporary register, not from stack
cache. There are 3 line FIFO queues followed ALU to store
temporary ALU results.

When load from memory operation encountered, a “NOP”
instruction will be inserted to wait until the required data has
been stored into the temporary register.

3) Detection of register operand access
In 64 stack cache registers, address point to stack top is just

 8

the 6 LSB (least significant bits) of 32 bits SC_TOP. The 6 bits
stack cache bottom address mapping to SC_Bottom is also 6
LSB of SC_Bottom.

Fig. 12. Stack Cache Register

As shown in Fig. 12, with the method invoke or return, the

stack cache will overflow or underflow. If overflow or
underflow is detected, the pipeline will halt, and then move
register contents into cache memory when overflow, or add
more stack contents flow SC_Bottom when underflow. Such
transfer between stack cache register and cache memory should
be executed automatically, and every time up to 4 words should
be transferred because 4 words compose 1 line.

D. Cache access interface
In the first version our java accelerator, the direct mapped

cache is integrated. Since the core SRAM can be generated by
memory compile tools, it’s easy to implement it in layout and
extract the timing parameters. The basic frame is shown in Fig.
13.

Fig. 13. Direct mapped cache module

When fetching a line from main memory, the new line will

be stored in “Line Fetch Buffer”, and then send the required
word into the java accelerator. Because of no access to SRAM
module, no precharge operation is needed. Thus, power is
saved.

When fetching word from SRAM module, the corresponding
line will be fetched into “Line Buffer”. If the followed read and
write are only focused on this line, no precharge is needed too.
So power is saved.

To keep cache coherence, the data cache in the java
accelerator should be designed in “write through” strategy,
which means when the accelerator writes data into cache; it will
also write the data into memory.

E. Pipeline Control
The pipeline of our java accelerator is shown in Fig.14. The

pipeline halts when the following conditions encountered:
1) Trap bytecode instruction

If trap instruction is detected in “instruction fetch”, the “IF”
stage will halt. After all successor pipeline stages idle, the java
processor will send INT signal to the main processor.

2) Stack cache underflow/overflow
The stack cache is the slide head window for stack in

memory. If more operands than permitted need to be pushed
into stack, it will move the old register content to corresponding
memory unit. Or if too few registers hold the stack content, it
will load more sequential stack from memory. When the stack
cache exchanges data between the java accelerator and memory,
stages following “RC” will halt.

3) Breakpoint
When PC value matches the breakpoint, which is set in initial

state, the later stages of RC will continue till pipeline halts.
4) External halt

When external hold signal is set, all pipeline stages will halt
until the external hold signal cleared.

Bytecode Instruction Buffer

Bytecode Decoder and Folding Unit
(EBTB,DBC,Microcode_ROM)

PC Update

RS1 RS2 Operation Control RD

Register
Access,Operand
Dependency
check&Read

Tmp1 Tmp2

Operation Control RD

Register Access
Check

Operation Control RD

Operation Control RD

OPTOP
Update

SC_Bottom
Update

Result_tmp Zero/sign check

Barrel
shifter

32 bits
ALU

Extern_Reg

WR_Reg RD

RD

IF

DF

RC

EX

MC

WB

Fig. 14. Pipeline and datapath

 9

V. SYSTEM SIMULATION
Before the final java accelerator chip manufactured, the java

application was running on a virtual environment. The virtual
platform was constructed based on ARMulator, the emulator of
ARM processor in instruction level. The java accelerator was
constructed with SystemC language. The RTOS was based on
Uclinux, and the JVM was modified from Kaffe [7].

The optimizing target is critical low power consumption. We
set different weight values for separate operations. Because the
java accelerator is designed in asynchronous circuits, the power
consumption resides in functional components. For the whole
system, the power consumption can be estimated. The power
consumption difference between JIT compiler JVM and our
hardware accelerated JVM has been researched. In our case,
significant power consumption resides in memory read/write
operations. The SystemC accelerator emulator works as a child
process invoked by JVM.

Peripheral Model

ARMulator

ARM7 Core Model

A
R
M

B
i
n
a
r
y

C
o
d
e

Uclinux OS

JVM

Java Hardware
Accelerator (systemC)

Java Applet
J
a
v
a

A
P
I

C
l
a
s
s

Class Loader

Execution Engine

Fig. 15. Virtual JVM Platform

In the virtual environment in Fig. 15, HW/SW co-design was

carried on. To monitor RTOS running is difficult in a real
hardware platform, but in a virtual software platform, every
program step can be traced easily.

VI. CONCLUSION AND FUTURE WORK
The scheme proposed in this paper is suitable for

accelerating java execution for pervasive computing. The
simulation results of small applets show that the combining of
EBTB and DBC provides a new solution for java processor
design.

To further minimize the power consumption, more research
should be done to restrain the concurrent work of EBTB and
DBC, and FP unit should be integrated to minimize the control
transfer between the main processor and java accelerator.

REFERENCES
[1] Ramesh Radhakrishnan, etc, “Java Runtime Systems: Characterization

and Architectural Implications”, IEEE Transactions on computers, Vol.
50, No. 2, Feb. 2001.

[2] M. Watheq El-kharashi, Josh Pfrimmer, etc. , “A Design Space Analysis
of Java Processors”, in Proc. IEEE Pacific Rim 2003 Conference,
Victoria, Canada, August 2003.

[3] Balsa. See http://www.cs.man.ac.uk/apt/projects/balsa/index.html.
[4] Ramesh Radhakrishnan, Deependra Talla and Lizy Kurian John,

“Allowing for ILP in an Embedded Java Processor,” in Proc. the 27th
International Symposium on Computer Architecture, June 2000.

[5] The Standard Performance Evaluation Corporation. SPEC JVM98
benchmarks. See http://www.specbench.org/osg/jvm98.

[6] Karthik Thangarajan, Wagdy Mahmoud, etc, “Survey of branch
prediction schemes of pipelined processors”, in Proc. the Thirty-Fourth
Southeastern Symposium on System Theory, Alabama, March 2002.

[7] Kaffe JVM. See http://www.kaffe.org.

Paper IX

Formal Verification of a Ubiquitous Hard-
ware Component

L. Yan

Extended version available as: L. Yan. Formal Verification of a Ubiqui-
tous Hardware Component. TUCS Technical Reports, No. 637, Turku
Centre for Computer Science, Finland, 2004.

Available in: Post-Proceedings of the First International Conference on
Embedded Software and System (ICESS’04), 2005. Lecture Notes in Com-
puter Science 3605, Springer-Verlag.

Formal Verification of a Ubiquitous
Hardware Component

Lu Yan
Turku Centre for Computer Science
Lemminkäisenkatu 14 A, 20520 Turku, Finland
lyan@abo.fi

TUCS Technical Report

No 637, November 2004

Abstract

The paper begins by discussing various approaches to hardware specification and
verification. The main emphasis is on using mechanical verification tools to assist
the verification process. The case study is the verification of a seven-segment LED
display decoder circuit design, in which two popular verification tools, HOL and
PVS, are compared and evaluated.

Keywords: Hardware verification, formal methods, ubiquitous systems

TUCS Laboratory
Distributed Systems Design Laboratory

1 Introduction

The development of microelectronics has allowed hardware designers to build
remarkably complex devices. However, it becomes increasingly difficult to ensure
these devices free of design errors. In most cases, exhaustive simulation of a
medium size design is impossible and the correctness of the design cannot be
assured. This is a serious problem in safety-critical applications, where a small
design error may cause loss of life and extensive damage. Even in the case where
safety is not the primary concern, a design error means costly and time-consuming
rechecking in massive production lines.

A solution to the problem is to apply formal methods for verification of cor-
rectness of hardware designs - hardware verification. With this approach, the be-
havior of hardware is described mathematically, and formal proof is used to verify
the intended behavior. The proofs can be very large and complex, so mechanical
verification tools are often used to assist the verification.

We illustrate our experiences with formal verification in ubiquitous hardware
design via a comparative case study of the verification of a circuit design of seven-
segment LED display decoder: A seven-segment LED display is comprised of
seven light emitting diodes (LED). Input signals are applied to the input port of
the seven-segment decoder, and the decoder translates them into ON/OFF status
of the seven LEDs. Then, selected combinations of the LEDs are illuminated to
display numeric digits and other symbols.

2 What is formal hardware verification

We consider a formal hardware verification problem to consist of formally estab-
lishing that an implementation satisfies a specification. The term implementation
(Imp) refers to the hardware design that is to be verified. This entity can corre-
spond to a design description at any level of the hardware abstraction hierarchy,
not just the final physical layout (as is traditionally regarded in some areas). The
term specification (Spec) refers to the property with respect to which correctness
is to be determined. It can be expressed in a variety of ways - as a behavioral
description, as an abstracted structural description, as a timing requirement etc.

In particular, we do not address directly the problem of specification valida-
tion, i.e. whether the specification means what it is intended to mean, whether it
really expresses the property one desires to verify, whether it completely charac-
terizes correct operation etc. A specification for a particular verification problem
can itself be made the object of scrutiny, by serving as an implementation for
another verification problem at a conceptually higher level. Similarly, at the low-
est end too, we do not specifically address the problem of model validation, i.e.
whether the model used to represent the implementation is consistent, valid, cor-
rect etc. It is obvious that the quality of verification can only be as good as the
quality of the models used.

1

Bottom Level Implementation

Top Level Specification

Level i Implementation
 Level i+1 Specification

 Level i+1 Implementation
Level i+2 Specification

Figure 1: Hierarchical verification[1]

An important feature of the above formulation is that it admits hierarchical
verification corresponding to successive levels of the hardware abstraction hierar-
chy. Typically, the design of a hardware system is organized at different levels of
abstraction, the topmost level representing the most abstract view of the system
and the bottommost being the least abstract, usually consisting of actual layouts.
Verification tasks can also be organized naturally at these same levels. An im-
plementation description for a task at any given level, serves also as a statement
of the specification for a task at the next lower level, as shown in Figure 1. In
this manner, top-level specifications can be successively implemented and veri-
fied at each level, thus leading to implementation of an overall verified system.
Hierarchical organization not only makes this verification process natural, it also
makes the task tractable. By breaking this large problem into smaller pieces that
can be handled individually, the verification problem is made more manageable.
It effectively increases the range of circuit sizes that can be handled in practice.

2.1 Hardware verification method

Two things are needed for any method of hardware verification based on rigorous
specification and formal proof. The first is a formal language for describing the
behaviors of hardware and expressing proposition about it. The ideal language is
expressive enough to describe hardware in a natural concise notation yet still has
a well-understood and reasonably simple semantic. The second requirement is a
deductive calculus for proving propositions expressed in this language. It must be
logically sound and it should be powerful enough to allow one to prove all the true
propositions about hardware behavior that arise in practice.

Various formal languages and associated proof techniques have been proposed
as a basis for hardware verification. These range from special-purpose hardware
description languages with ad hoc proof rules to systems of formal logic and
subsets of ordinary mathematics. Formal methods for reasoning about hardware
behavior have been based, for example, on algebraic techniques, various kinds
of temporal logic, functional programming techniques, predicate calculus, and
higher order logic.

The details of the verification methods based on these different formalisms
vary, but many of them share a common general approach. This typically involves
the following four steps:

2

1. Write a formal specification S to describe the behavior that the device to be
verified must exhibit for it to be considered correct.

2. Write a specification for each kind of primitive hardware component used in
the device. These specifications are intended to describe the actual behavior
of real hardware components.

3. Define an expression D which describes the behavior of the device to be
proved correct. The definition of D has the general form

D = P1 + · · · + Pn

where P1, · · · , Pn specify the behavior of the constituent parts of the device
and + is a composition operator which models the effect of wiring compo-
nents together. The expressions P1, · · · , Pn used here are instances of the
specifications for primitive devices defined in step 2.

4. Prove that the device described by the expression D is correct with respect
to the specification S. This is done by proving a theorem of the form

� D satisfies S

where ’satisfies’ is some satisfaction relation on specifications of hardware
behavior. This correctness theorem asserts that the behavior described by D
satisfies the specification of intended behavior S.

When the device to be proved correct is large, this method is usually applied
hierarchically. The design is structured into a hierarchy of components and sub-
components, and specifications that describe primitive components at one level
of the hierarchy then become specifications of intended behavior at the next level
down. The structure of the proof mirrors this hierarchy: the top-level specification
is shown to be satisfied by an appropriate connection of components; at the next
level down, each of these components is shown to be correctly implemented by
a connection of sub-components, and so on down to the lowest level, where the
components used correspond to devices available as hardware primitives.[31]

2.2 Hardware verification using higher order logic

The version of higher order logic described here was developed by Mike Gordon
at the University of Cambridge. The main difference between first order logic and
higher order logic is that higher order logic allows quantification over predicates.
The ability to quantify over predicate symbols leads to a greater power of expres-
siveness in higher order logic. Another significant difference is that higher order
logic admits higher order predicates and functions, i.e. arguments and results of

3

predicates and functions can themselves be predicates or functions. This allows
functions to be manipulated just like ordinary values, which leads to a more math-
ematically elegant formalism.

The following short description of higher order logic is not complete, although
it covers important notations of the logic, which provides some background infor-
mation for the later example. A full description of higher order logic can be found
at [17].

Types Higher order logic is a typed logic. The syntax of types in higher order
logic is given by

σ ::= c|v|(σ1, . . . , σn)op

where σ, σ1, . . . , σn range over types, c ranges over type constants, v ranges
over type variables, and op ranges over n-ary type operators.

Terms The notation of terms in higher order logic can be viewed informally as
an extension of the conventional syntax of predicate calculus in which vari-
ables can range over functions and functions can take functions as argu-
ments or yield functions as results. The syntax of terms in higher order
logic is given by

M ::= c|v|(MN)|λv.M

where c ranges over constants, v ranges over variables, and M and N range
over terms.

Sequents, theorems and inference rules A sequent is written Γ � P , where Γ
is a set of boolean terms called assumptions and P is a boolean term called
the conclusion. When the set Γ is empty, the notation � P is used. In this
case, P is a formal theorem of the logic. The same notation is used for the
axioms of the logic. All inference rules of the logic can be found at Table 1.

The approach to specifying hardware behavior in higher order logic is to spec-
ify the behavior of a device by describing the combinations of values that can be
observed on its external wires. A specification is expressed formally in logic by a
boolean-valued term whose free variables correspond to these external wires. This
term imposes a constraint on the values of these variables. To reflect the behavior
of the device it specifies, the term is chosen so that the combinations of values that
satisfy this constraint are precisely those which can be observed simultaneously
on the corresponding external wires of the device itself.

As an example, consider the device Dev shown below.

Deva

b

c

d

4

Table 1: Inference rules of higher order logic
1. ASSUME: {P}�P

2. REFL: �N=N

3. BETA CONV: �(λv.N)M=N [M/v]

4. ABS: Γ�M=N
Γ�(λv.M)=(λv.N)

(v not free in Γ)
5. INST TYPE: Γ�P

Γ�P [σ1,...,σn/α1,...,αn]

6. DISCH: Γ�P
Γ−{Q}�Q⊃P

7. MP: Γ1�P⊃Q Γ2�P
Γ1∪Γ2�Q

8. SUBST: Γ1�N ′
1 ... Γn�Nn=N ′

n Γ�P

Γ1∪...∪Γn∪Γ�P [N ′
1,...,N ′

n/N1,...,Nn]

This device has four external wires: a, b, c, and d. A specification of its behav-
ior in logic is therefore a boolean-valued term of the form S[a, b, c, d], constructed
so that for all values of the free variables a, b, c and d:

S[a, b, c, d] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T if the values a, b, c, and d could occur
simultaneously on the corresponding
external wires of the device Dev

F otherwise

This approach to specifying hardware describes its behavior only in terms of
the values that can be observed externally. No information about internal state is
used in a specification. Furthermore, there is no distinction between the inputs
and the outputs of a device; the constraint imposed by a specification on its free
variables need not be a functional one. Of course, the free variables in a specifica-
tion need not stand for the values on the physical wires of an actual circuit; they
may represent more abstract externally observable quantities. Both specifications
of hardware primitives and specifications of the intended behavior of designs can
therefore be expressed by this method.

Once a design has been constructed, its correctness can be expressed by a
proposition which asserts that this design in some sense satisfies an appropriate
specification of required or intended behavior. The most direct way of formulating
this satisfaction of a design is asserted by a theorem of the form

� D[v1, . . . , vn] = S[v1, . . . , vn],

Where the term D[v1, . . . , vn] is the design of the device asserted to be correct
and the term S[v1, . . . , vn] is the specification of required behavior. This theorem
states that the truth-values denoted by these two terms are the same for any as-
signment of values to the free variables v1, . . . , vn. This is usually appropriate for
small and relatively simple hardware designs; for more complex designs, it is of-
ten impractical to express correctness this way, because in most real products, any

5

xi1

i2
o

Figure 2: Implementation of two input AND gate

complete logically equivalent specification is likely to be too large and complex
to reflect the designer’s intent. Hence it is wise to build a partial specification for
the design. In this case, the satisfaction relation used to express correctness must
therefore express a relationship between a strong constraint (design) and weaker
one (specification) rather than strict equivalence. Suppose that D[v1, . . . , vn] and
S[v1, . . . , vn] are the design of the device and the partial specification of required
behavior respectively. We can formulate this satisfaction relationship as

� D[v1, . . . , vn] ⇒ S[v1, . . . , vn].

2.3 A small example

The basic idea of this approach is to embed both implementation and the specifi-
cation in higher order logic. The correctness statements, like that every behavior
of the implementation satisfies the specification, are then cast in terms of prov-
ing some relation in higher order logic. To illustrate this process, we use a trivial
example to show many of the underlying ideas.

The task is to show that assuming the NAND gate and the NOT gate behave
as specified, then combining them as in Figure 2 yields a two input AND gate. In
order to achieve this, we need to carry out four steps:

1. Specify the implementation of the AND gate.

2. Specify the behavioral models for the NAND and NOT gates.

3. Specify the intended behavior of the AND gate.

4. Prove that the implementation satisfies its intended behavior.

There are several ways to specify the implementation of the AND gate in
higher order logic. The most common way of doing this is using existential quan-
tification to ’hide’ the internal connections, and we would get:

� AND IMP (i1, i2, o) = ∃x.NAND(i1, i2, x) ∧ NOT (x, o).

The behavioral model of the NAND and NOT gates can also be done in many
ways in higher order logic. Furthermore, different behavioral models can be used
depending on the amounts of details needed or desired. Here, we will use a simple
zero-delay model of their behavior. Hence,

6

Table 2: Proof in higher order logic
Step Proof Explanation

0 AND IMP (i1, i2, o) assumption
1 ∃x.NAND(i1, i2, x) ∧ NOT (x, o) by def. of AND IMP
2 NAND(i1, i2, x) ∧ NOT (x, o) strip off ∃x.
3 NAND(i1, i2, x) left conjunct of 2
4 x = ¬(i1 ∧ i2) by def. of NAND
5 NOT (x, o) right conjunct of 2
6 o = ¬x by def. of NOT
7 o = ¬(¬(i1 ∧ i2)) substitution 4 into 6
8 o = (i1 ∧ i2) simplify using ¬(¬(t)) = t
9 AND SPEC(i1, i2, o) by def. of AND SPEC

� NAND(i1, i2, o) = o = ¬(i1 ∧ i2),
� NOT (i, o) = o = ¬i.

In a similar way, the desired behavior of the AND gate can be written as

� AND SPEC(i1, i2, o) = o = i1 ∧ i2.

We are now faced with the task of formally proving that the implementation
satisfies the specification. Before we do this, however, we need to define what
it means for an implementation to satisfy some specification. Again, there are
several ways of expressing this. In this case, we choose to verify that the behavior
of the implementation implies the behavior of the specification; thus we want to
verify

AND IMP (i1, i2, o) ⇒ AND SPEC(i1, i2, o)

is a valid theorem. A ’hand proof’ of this result might look like Table 2.
Although the above manual proof may appear tedious, it is still much shorter

than the complete formal proof. The above example is also very simple. However,
since we have the full expressive power of higher order logic at our disposal, it is
quite simple to generalize the behavioral model for the individual components. In
this way, delays and delay models, for example, can be introduced. Of course, the
more complex the behavior model is, the more complex the correctness proof will
be.[3]

3 The ubiquitous hardware

We illustrate our approach by a case study of the verification of a circuit design of
seven-segment LED display decoder [20] [30] as shown below.

7

abcdefg

W X Y Z

a

b

c

d

e

f
g

7 Seg LED

Seven-segment Decoder

R

A seven-segment LED display is comprised of seven light emitting diodes
(LED). Input signals are applied to the input port of the seven-segment decoder,
and the decoder translates them into ON/OFF status of the seven LEDs. Then,
selected combinations of the LEDs are illuminated to display numeric digits and
other symbols.

3.1 From description to specification

The primary function of the decoder is to turn on/off corresponding LEDs based
on inputs. Let W, X, Y, Z represent the input port of the decoder, then we get
sixteen possible combinations of the four input signals, which means any digit (0
- 9) and some letters (A - F) can be displayed on the seven-segment LED display.
Let a, b, c, d, e, f, g represent the output port of the decoder, and let on be 1 and
off be 0, then we can create a truth table like Table 3 for describing the intended
behavior of the decoder.

3.2 From specification to implementation

Intuitively, the abstraction of seven-segment decoder is a four-input seven-output
switching function. One possible approach is to build up the circuit directly from
the specification, but here we consider another approach based on partition-and-
merge algorithm.[28][5]

First we divide the four-input seven-output switching function into seven four-
input one-output normal functions, then implement each function separately. When
all functions are ready, we put together all parts and get the final implementation.
In this way, the complexity of the design task is greatly reduced. The drawback is
probably some redundancy, but this can be refined in the final merging stage.

We shall go into more details of the implementation of one part as an example.
The representation function is the abstraction of the intended behavior of LED
a, which takes four input signals W, X, Y, Z and generate one output signal a
correspondingly.

8

Table 3: Truth table for the switching function
Display Input (W X Y Z) Output (a b c d e f g)

0 0000 1111110
1 0001 0110000
2 0010 1101101
3 0011 1111001
4 0100 0110011
5 0101 1011011
6 0110 1011111
7 0111 1110000
8 1000 1111111
9 1001 1111011
A 1010 1110111
B 1011 0011111
C 1100 1001110
D 1101 0111101
E 1110 1001111
F 1111 1000111

W

X

Y

Z

a4-Input
Function

WX
YZ

1

1

1

1

1

11

1

1

1

11

Figure 3: Karnaugh map for 4-input function

1. The first step is to build up the truth table like Table 4 for this four-input
one-output function. This is actually a reduced version of Table 3.

2. With the truth table, we can get a logic expression directly.

a = W X Y Z+W X Y Z+W X Y Z+W X Y Z+W X Y Z+W X Y Z+
W X Y Z + W X Y Z + W X Y Z + W X Y Z + W X Y Z + W X Y Z

3. With the initial implementation, we can refine it with emphasis on reducing
the sum of minimal terms[13] in order to minimize hardware resource us-
age. The most common approach is to use a Karnaugh map to achieve this
kind of refinement.[2][14] The process is illustrated in Figure 3.

4. After refinement, we get a more concise logic expression:

a = Y Z + X Z + W Y + X Y + W Z + W X Z + W X Y

9

Table 4: Truth table of 4-input function
Input (WXY Z) Output (a)

0000 1
0001 0
0010 1
0011 1
0100 0
0101 1
0110 1
0111 1
1000 1
1001 1
1010 1
1011 0
1100 1
1101 0
1110 1
1111 1

5. Although this refinement result is good enough, we should also consider
more practical issues like technology, cost, etc.. Here we choose to make
the design mainly with NAND gates.

a = Y Z · X Z · W Y · X Y · W Z · W X Z · W X Y

6. Now it is time to translate the refinement result into schematic design. The
diagram is straight forward, as shown in Figure 4.

7. The final step is to design the real circuit based on the schematic design.
Here we choose the NAND gate model and the tool discussed in [27][33]

X

Z

W

Y

a

Figure 4: Schematic design for 4-input function

10

W

X

Y

Z

Y

Y

X

Y

W

X

Z

W

a

Figure 5: Circuit design for 4-input function

as the atomic element to build up the whole design. The result is shown in
Figure 5.

Now the design task of the first part is completed. With the same method, we
can design the other six parts:

b = W X · X Z · W Y Z · W Y Z · W Y Z

c = W X · Y Z · W X · W Y · W Z

d = W Y · W X Z · X Y Z · X Y Z · X Y Z

e = W X · Y Z · W Y · X Z

f = Y Z · W X · W Y · X Z · W X Y

g = W X · Y Z · W Z · X Y · W X Y

We notice that remaining parts are very similar to the first part in logic expres-
sions, which will also lead to very similar system infrastructures. In order to keep
the text concise, we don’t list down the designs of the other six parts due to the
similarity in these design results.

11

4 Verification in HOL

HOL is a general theorem proving system developed at the University of Cam-
bridge that is based on higher order logic. HOL is not a fully automated theorem
prover but is more than simply a proof checker, falling somewhere between these
two extremes. HOL has several nice features as a verification environment:

• Several built-in theories, including booleans, individuals, numbers, prod-
ucts, sums, lists, and trees. These theories build on the five axioms that
form the basis of higher order logic to derive a large number of theorems
that follow from them.

• Rules of inference for higher order logic. These rules contain not only
the eight basic rules of inference from higher order logic, but also a large
body of derived inference rules that allow proofs to proceed using larger
steps. The HOL system has rules that implement the standard introduction
and elimination rules for Predicate Calculus as well as specialized rules for
rewriting terms.

• A large collection of tactics. Examples of tactics include REWRITE TAC
which rewrites a goal according to some previously proven theorem or def-
inition, GEN TAC which removes unnecessary universally quantified vari-
ables from the front of terms, and EQ TAC which says that to show two
things are equivalent, we should show that they imply each other.

• A proof management system that keeps track of the state of an interactive
proof session.

• A metalanguage, ML, for programming and extending the theorem prover.
Using the metalanguage, tactics can be put together to form more powerful
tactics, new tactics can be written, and theorems can be aggregated to form
new theories for later use. The metalanguage makes the verification system
extremely flexible.

4.1 HOL Overview

The logic of the HOL system is built on higher order logic. The core of the system
is rather small. It is built on 5 axioms (Table 5) and 8 rules of inference (Table 6).

The HOL theorem prover uses an ASCII approximation (Table 7) to standard
logic notation. One of the types that have been declared is the type of terms in the
HOL logic. To enter the term which is a conjunction of two boolean variables A
and B, just type the following:

- Term ‘A /\ B‘;
> val it = ‘‘A /\ B‘‘ : term

12

Table 5: HOL axioms
1. BOOL CASES AX

� ∃b : bool.(b = T) ∨ (b = F)
2. IMP ANTISYM AX

� ∃b1b2.(b1 ⇒ b2) ⇒ (b2 ⇒ b1) ⇒ (b1 = b2)
3. ETA AX

� ∃f : α → β.(λx.fx) = f
4. SELECT AX

� ∃P : α → bool.Px ⇒ P (εP)
5. INFINITY AX

� ∃f : ind → ind.One Onef ∧ ¬(Ontof)

Table 6: HOL core inference rules
1. Assumption Introduction

ASSUME: {P}�P

2. Reflexivity
REFL: �N=N

3. Beta Conversion
BETA CONV: �(λv.N)M=N [M/v]

4. Abstraction
ABS: Γ�M=N

Γ�(λv.M)=(λv.N)
(v not free in Γ)

5. Type Instantiation
INST TYPE: Γ�P

Γ�P [σ1,...,σn/α1,...,αn]

6. Discharging Assumption:
DISCH: Γ�P

Γ−{Q}�Q⊃P

7. Modus Ponens
MP: Γ1�P⊃Q Γ2�P

Γ1∪Γ2�Q

8. Substitution

SUBST: Γ1�N ′
1 ... Γn�Nn=N ′

n Γ�P

Γ1∪...∪Γn∪Γ�P [N ′
1,...,N ′

n/N1,...,Nn]

13

Table 7: HOL notation
HOL Notation Standard Notation Meaning
T �, true true
F ⊥, false false
t ¬t not t
t1 \ /t2 t1 ∨ t2 t1 or t2
t1/ \ t2 t1 ∧ t2 t1 and t2
t1 ==> t2 t1 ⇒ t2, t1 ⊃ t2 t1 implies t2
t1 = t2 t1 = t2 t1 equals t2
t1 = t2 t1 ≡ t2 t1 equivalent to t2
\x.t λx.t lambda function notation
!x.t ∀x.t t holds for all x
?x.t ∃x.t t holds for some x
?!x.t ∃!x.t t holds for precisely one x
@x.t εx.t an x for which t holds
if t1 then t2 else t3 t1 → t2|t3 if t1 then t2 else t3
t1 > t2 t1 > t2 t1 is greater than t2
t1 >= t2 t1 ≥ t2 t1 is greater or equal than t2
t1 < t2 t1 < t2 t1 is less than t2
t1 <= t2 t1 ≤ t2 t1 is less or equal than t2

Another way to do the same thing is to type the string we want to parse be-
tween the special quotation marks (--‘ and ‘--). We can enter the term as
follows:

- (--‘A /\ B‘--);
> val it = ‘‘A /\ B‘‘ : term

Terms in the HOL logic are represented by the ML datatype term. The HOL
logic is also typed. The term we just entered was a boolean. The types of the HOL
logic are represented by another ML datatype called hol type. The function
type of: term -> hol type will tell you the HOL type of a term.

The HOL logic can be conservatively extended with new types and new con-
stants. The simplest way to add a new constant c is to give a definition of the form
c = t where t is a closed term (a term without free variables). An extension by
constant definition is always a conservative extension, i.e., it is guaranteed not to
introduce inconsistencies.

The ML function used to define a new function is new definition:(string
* term) -> thm. For example, a tripling operation can be introduced on the
natural numbers by evaluating:

new_definition("triple_DEF",(--‘tpl = \x. x + x + x‘--));

14

The constant definition facility also allows arguments to be given on the left
hand side; we could have written:

new_definition("triple_DEF",(--‘tpl x = x + x + x‘--));

This adds the constant tpl:num->num to the logic and stores the definition
in the current theory file under the name triple DEF. Note that this does not
bind the definition to a name in the current environment (actually, it is bound to
the name it). If we want to bind the definition to the name triple DEF, then
we should evaluate:

val triple_DEF =
new_definition("triple_DEF",(--‘tpl x = x + x + x‘--));

Now suppose we have already decided what goal we would like to prove in
HOL and started a proving process by typing set goal command. What would
be the best strategy to attack the goal? A very general scheme would be the
following:[15]

1. Check whether it is possible to prove (or at least simplify) your goal using
existing HOL theorems;

2. If not, expand definitions of all (or some) constants in the goal conclusion;

3. Simplify the goal conclusion (by using beta conversion, removing quan-
tifiers, splitting the goal into simpler subgoals, moving a part of the goal
conclusion into the goal assumptions, doing boolean case analysis, ...);

4. Check whether it is possible to prove (or at least simplify) the goal con-
clusion by rewriting it with trivial rewrites (REWRITE TAC []) and/or the
goal assumptions (ASM REWRITE TAC []);

5. If a goal is still not proved, repeat the procedure starting from the step 1.

4.2 Hardware verification using HOL

The hardware verification process in HOL usually has three steps:[11]

1. Describe the specification

2. Describe the implementation

3. Prove that the implementation meets the specification

15

?
x

y

z

Mystery Device Observations

x y z

on on off

on on off

off off on

Figure 6: Hardware model in HOL

x y

Figure 7: NOT gate

The first step in the verification of hardware is to write a formal specification
of the required behavior for the design in HOL. How do we describe a device?
The general approach is to model it as a black box in Figure 6. We neglect de-
tailed infrastructure inside the box and only concentrate on its response to the
environment outside the box.

Observations of this mystery device can help us to describe hardware in HOL
logic:

• Wires can have the value on or off. We model them with boolean variables.

• Devices constrain the values that can be observed on the attached wires. We
model these with predicates on wires.

Following this approach, it is possible to express any combinatorial circuit
with NOT (Figure 7), AND (Figure 8) and OR (Figure 9) gates, as well as with
some means for a line to be tied HI or LO (Figure 10).

val NOT_DEF =
new_definition("NOT_DEF",(--‘NOT x x’ =
(x’ = ˜x)‘--));

val AND_DEF =
new_definition("AND_DEF",(--‘AND (x,y) x’ =
(x’ = (x /\ y))‘--));

val OR_DEF =
new_definition("OR_DEF",(--‘OR (x,y) x’ =
(x’ = (x \/ y))‘--));

x

y
z

Figure 8: AND gate

16

x

y
z

Figure 9: OR gate

−

+

Figure 10: Power and ground

val HI_DEF =
new_definition("HI_DEF",(--‘HI x = (x = T)‘--));

val LO_DEF =
new_definition("LO_DEF",(--‘LO x = (x = F)‘--));

In practice, it is possible to construct any combinatorial circuit purely from
NAND (Figure 11) gates or purely from NOR (Figure 12) gates. And, since it is
easier to fabricate circuits that only use one kind of gates, this is what is actually
done in industrial practice.

val NAND_DEF =
new_definition("NAND_DEF",(--‘NAND (x,y) x’ =
(x’ = ˜(x /\ y))‘--));

val NOR_DEF =
new_definition("NOR_DEF",(--‘NOR (x,y) x’ =
(x’ = ˜(x \/ y))‘--));

For example, the implementation of a OR gate by using only NAND gates
(Figure 13) can be defined in HOL as below:

val OR_IMP = new_definition("OR_IMP",
(--‘OR_IMP (x, y) x’ = (? a b c d.

(HI a) /\ (HI b) /\ (NAND (x, a) c) /\
(NAND (y, b) d) /\ (NAND (c, d) x’))‘--));

x

y
z

Figure 11: NAND gate

17

x

y
z

Figure 12: NOR gate

x

y

a

b

c

d

x’

Figure 13: Implementation of OR gate by using only NAND gates

Hereby we can do the verification of the circuit. We would like to know that
our design for an OR gate in terms of NAND gates actually functions as an OR
gate is supposed to. To establish this fact, we must do the following:

1. Begin the proof by rewriting with definitions.

- set_goal([], (--‘!x y x’. OR_IMP (x, y) x’ ==>
OR (x, y) x’‘--));

> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!x y x’. OR_IMP (x,y) x’ ==> OR (x,y) x’

: proofs
- e(REWRITE_TAC[OR_IMP, OR_DEF]);
OK..
1 subgoal:
> val it =

!x y x’.
(?a b c d.
HI a /\ HI b /\ NAND (x,a) c /\
NAND (y,b) d /\ NAND (c,d) x’) ==>
(x’ = x \/ y)

: goalstack
- e(REWRITE_TAC[HI_DEF, NAND_DEF]);
OK..

18

1 subgoal:
> val it =

!x y x’.
(?a b c d.

a /\ b /\ (c = ˜(x /\ a)) /\ (d = ˜(y /\ b)) /\
(x’ = ˜(c /\ d))) ==> (x’ = x \/ y)

: goalstack

2. The next step is to strip the goal down to its simplest form.

- e(REPEAT STRIP_TAC);
OK..
1 subgoal:
> val it =

x’ = x \/ y

0. a
1. b
2. c = ˜(x /\ a)
3. d = ˜(y /\ b)
4. x’ = ˜(c /\ d)
: goalstack

3. To prove the goal, we may need to use De Morgans Law. 1

- e(ASM_REWRITE_TAC[DE_MORGAN_THM]);
OK..

Goal proved.
[.....] |- x’ = x \/ y

Goal proved.
|- !x y x’.

(?a b c d.
a /\ b /\ (c = ˜(x /\ a)) /\ (d = ˜(y /\
b)) /\ (x’ = ˜(c /\ d))) ==> (x’ = x \/ y)

Goal proved.
|- !x y x’.

(?a b c d.

1Another approach is to use boolean cases analysis. This is the theorem proving equivalent of
using truth tables. The tactic is called BOOL CASES TAC.

19

HI a /\ HI b /\ NAND (x,a) c /\
NAND (y,b) d /\ NAND (c,d) x’) ==>
(x’ = x \/ y)

> val it =
Initial goal proved.
|- !x y x’. OR_IMP (x,y) x’ ==>
OR (x,y) x’ : goalstack

4.3 LED case study

In order to make the verification process simpler, we use a step-wise approach to
the whole case. First we prove that the schematic design (Figure 4) satisfies our
original description (Table 4). Then we prove that the circuit design (Figure 5)
meets the requirements of the schematic design.

The specification of each component and thus the whole schematic design is
shown below:

val NOT_DEF =
new_definition("NOT_DEF",

(--‘NOT a x = (x = ˜a)‘--));
val NAND_DEF =
new_definition("NAND_DEF",

(--‘NAND a b x = (x = ˜(a /\ b))‘--));
val NAND3_DEF =
new_definition("NAND3_DEF",

(--‘NAND3 a b c x = (x = ˜(a /\ b /\ c))‘--));
val NAND7_DEF =
new_definition("NAND7_DEF",

(--‘NAND7 a b c d e f g x =
(x = ˜(a /\ b /\ c /\ d /\ e /\ f /\ g))‘--));

val LED_A_DEF =
new_definition("LED_A_DEF",

(--‘LED_A_DEF w x y z a =
(a = if ((w = F) /\ (x = F) /\ (y = F) /\
(z = T)) \/
((w = F) /\ (x = T) /\ (y = F) /\ (z = F)) \/
((w = T) /\ (x = F) /\ (y = T) /\ (z = T)) \/
((w = T) /\ (x = T) /\ (y = F) /\ (z = T))
then F else T)‘--));

val LED_A_IMP =
new_definition("LED_A_IMP",

(--‘LED_A_IMP w x y z a =

20

?tw tx ty tz t1 t2 t3 t4 t5 t6 t7.
(NOT w tw) /\ (NOT x tx) /\ (NOT y ty) /\
(NOT z tz) /\ (NAND y tz t1) /\ (NAND tx tz t2) /\
(NAND tw y t3) /\ (NAND x y t4) /\ (NAND w tz t5)
/\ (NAND3 tw x z t6) /\ (NAND3 w tx ty t7) /\
(NAND7 t1 t2 t3 t4 t5 t6 t7 a)‘--));

To facilitate proving process, we try to use several high-level automation tools
in the HOL system which allow us to automatically prove or substantially sim-
plify some logical formulas. The most popular automation tools are Simpli-
fier (simpLib), Decision Procedures (decisionLib), and First-order Prover
(mesonLib). These three libraries together with some other helpful functions
are incorporated into one big library - bossLib. With the help of high-level
automation tools, the proof length is greatly reduced.

- load "bossLib";
- load "simpLib";
- load "mesonLib";
- open bossLib;
- open simpLib;
- open mesonLib;

Hereby we can carry out the verification process:

1. Begin the proof by rewriting with definitions.

- set_goal([],(--‘!w x y z a.
LED_A_IMP w x y z a ==> LED_A_DEF w x y z a‘--));

> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!w x y z a. LED_A_IMP w x y z a ==>
LED_A_DEF w x y z a

: proofs
- e(REWRITE_TAC[LED_A_IMP, LED_A_DEF]);
OK..
1 subgoal:
> val it =

!w x y z a.
(?tw tx ty tz t1 t2 t3 t4 t5 t6 t7.

NOT w tw /\ NOT x tx /\ NOT y ty /\
NOT z tz /\ NAND y tz t1 /\
NAND tx tz t2 /\ NAND tw y t3 /\

21

NAND x y t4 /\ NAND w tz t5 /\
NAND3 tw x z t6 /\ NAND3 w tx ty t7 /\
NAND7 t1 t2 t3 t4 t5 t6 t7 a) ==>

(a =
(if

˜w /\ ˜x /\ ˜y /\ z \/ ˜w /\ x /\ ˜y
/\ ˜z \/ w /\ ˜x /\ y /\ z \/ w /\ x
/\ ˜y /\ z

then
F

else
T))

: goalstack
- e(REWRITE_TAC[NOT_DEF, NAND_DEF,

NAND3_DEF, NAND7_DEF]);
OK..
1 subgoal:
> val it =

!w x y z a.
(?tw tx ty tz t1 t2 t3 t4 t5 t6 t7.

(tw = ˜w) /\ (tx = ˜x) /\ (ty = ˜y) /\
(tz = ˜z) /\ (t1 = ˜(y /\ tz)) /\
(t2 = ˜(tx /\ tz)) /\ (t3 = ˜(tw /\ y)) /\
(t4 = ˜(x /\ y)) /\ (t5 = ˜(w /\ tz)) /\
(t6 = ˜(tw /\ x /\ z)) /\ (t7 = ˜(w /\ tx
/\ ty)) /\ (a = ˜(t1 /\ t2 /\ t3 /\ t4 /\
t5 /\ t6 /\ t7))) ==>

(a =
(if

˜w /\ ˜x /\ ˜y /\ z \/ ˜w /\ x /\ ˜y /\ ˜z
\/ w /\ ˜x /\ y /\ z \/ w /\ x /\ ˜y /\ z

then
F

else
T))

: goalstack

2. Use Simplifier to simplify the expression.

- e(SIMP_TAC std_ss []);
OK..
1 subgoal:

22

> val it =
!w x y z.
y /\ ˜z \/ ˜x /\ ˜z \/ ˜w /\ y \/ x /\ y \/
w /\ ˜z \/ ˜w /\ x /\ z \/ w /\ ˜x /\ ˜y =
(w \/ x \/ y \/ ˜z) /\ (w \/ ˜x \/ y \/ z) /\
(˜w \/ x \/ ˜y \/ ˜z) /\ (˜w \/ ˜x \/ y \/ ˜z)

: goalstack

3. Remove universally quantified variables from the front of the subgoal.

- e(REPEAT GEN_TAC);
OK..
1 subgoal:
> val it =

y /\ ˜z \/ ˜x /\ ˜z \/ ˜w /\ y \/ x /\ y \/
w /\ ˜z \/ ˜w /\ x /\ z \/ w /\ ˜x /\ ˜y =
(w \/ x \/ y \/ ˜z) /\ (w \/ ˜x \/ y \/ z) /\
(˜w \/ x \/ ˜y \/ ˜z) /\ (˜w \/ ˜x \/ y \/ ˜z)

: goalstack

4. Use boolean cases analysis and rewrite the results.

- e(BOOL_CASES_TAC(--‘w:bool‘--) THEN REWRITE_TAC[]);
OK..
2 subgoals:
> val it =

y /\ ˜z \/ ˜x /\ ˜z \/ y \/ x
/\ y \/ x /\ z =
(x \/ y \/ ˜z) /\ (˜x \/ y \/ z)

y /\ ˜z \/ ˜x /\ ˜z \/ x /\ y
\/ ˜z \/ ˜x /\ ˜y =
(x \/ ˜y \/ ˜z) /\ (˜x \/ y \/ ˜z)

: goalstack

5. Use First-order Prover to prove the goal. (Since we get two subgoals now,
we should apply this tactic to both of them.)

23

- e(MESON_TAC[]);
OK..
Meson search level:

Goal proved.
|- y /\ ˜z \/ ˜x /\ ˜z \/ x /\ y \/

˜z \/ ˜x /\ ˜y = (x \/ ˜y \/ ˜z)
/\ (˜x \/ y \/ ˜z)

Remaining subgoals:
> val it =

y /\ ˜z \/ ˜x /\ ˜z \/ y \/ x /\
y \/ x /\ z = (x \/ y \/ ˜z) /\
(˜x \/ y \/ z)

: goalstack
- e(MESON_TAC[]);
OK..
Meson search level:

Goal proved.
|- y /\ ˜z \/ ˜x /\ ˜z \/ y \/ x /\

y \/ x /\ z = (x \/ y \/ ˜z) /\
(˜x \/ y \/ z)

Goal proved.
|- y /\ ˜z \/ ˜x /\ ˜z \/ ˜w /\ y

\/ x /\ y \/ w /\ ˜z \/ ˜w /\ x
/\ z \/ w /\ ˜x /\ ˜y =
(w \/ x \/ y \/ ˜z) /\ (w \/ ˜x
\/ y \/ z) /\ (˜w \/ x \/ ˜y \/
˜z) /\ (˜w \/ ˜x \/ y \/ ˜z)

Goal proved.
|- !w x y z.

y /\ ˜z \/ ˜x /\ ˜z \/ ˜w /\ y \/
x /\ y \/ w /\ ˜z \/ ˜w /\ x /\ z
\/ w /\ ˜x /\ ˜y =
(w \/ x \/ y \/ ˜z) /\ (w \/ ˜x \/
y \/ z) /\ (˜w \/ x \/ ˜y \/ ˜z)
/\ (˜w \/ ˜x \/ y \/ ˜z)

Goal proved.
|- !w x y z a.

24

(?tw tx ty tz t1 t2 t3 t4 t5 t6 t7.
(tw = ˜w) /\ (tx = ˜x) /\ (ty = ˜y)
/\ (tz = ˜z) /\ (t1 = ˜(y /\ tz)) /\
(t2 = ˜(tx /\ tz)) /\ (t3 = ˜(tw /\ y))
/\ (t4 = ˜(x /\ y)) /\ (t5 = ˜(w /\ tz))
/\ (t6 = ˜(tw /\ x /\ z)) /\ (t7 = ˜(w
/\ tx /\ ty)) /\ (a = ˜(t1 /\ t2 /\ t3 /\
t4 /\ t5 /\ t6 /\ t7))) ==>

(a =
(if

˜w /\ ˜x /\ ˜y /\ z \/ ˜w /\ x /\ ˜y
/\ ˜z \/ w /\ ˜x /\ y /\ z \/ w /\ x
/\ ˜y /\ z

then
F

else
T))

Goal proved.
|- !w x y z a.

(?tw tx ty tz t1 t2 t3 t4 t5 t6 t7.
NOT w tw /\ NOT x tx /\ NOT y ty /\
NOT z tz /\ NAND y tz t1 /\
NAND tx tz t2 /\ NAND tw y t3 /\
NAND x y t4 /\ NAND w tz t5 /\
NAND3 tw x z t6 /\ NAND3 w tx ty t7 /\
NAND7 t1 t2 t3 t4 t5 t6 t7 a) ==>

(a =
(if

˜w /\ ˜x /\ ˜y /\ z \/ ˜w /\ x /\ ˜y
/\ ˜z \/ w /\ ˜x /\ y /\ z \/ w /\ x
/\ ˜y /\ z

then
F

else
T))

> val it =
Initial goal proved.
|- !w x y z a. LED_A_IMP w x y z a ==>
LED_A_DEF w x y z a : goalstack

The next step is to prove that our circuit design meets all the requirements of
our schematic design, where the whole proof is very similar to the above proof.
In order to keep the text concise, we don’t list down those proofs.

25

When the verification task of the first part is completed, we verify the other
six parts with the same method. For the same reason, here we don’t list down the
proofs of the other six parts due to the similarity in these verification processes.

5 Verification in PVS

PVS stands for Prototype Verification System, and as the name suggests, it is a
prototype environment for specification and verification. The primary purpose
of PVS is to provide formal support for conceptualization and debugging in the
early stages of the lifecycle of the design of a hardware or software system. The
primary emphasis in the PVS proof checker is on supporting the construction of
readable proofs[24]. There are some nice features of PVS which make it a popular
verification tool:[25]

• An expressive specification language that augments classical higher order
logic with a sophisticated type system containing predicate subtypes, and
with parameterized theories and a mechanism for defining abstract datatypes
such as lists and trees.

• A powerful interactive theorem prover. The basic deductive steps in PVS are
large compared with many other systems: there are atomic commands for
induction, quantifier reasoning, automatic conditional rewriting, simplifica-
tion using arithmetic and equality decision procedures and type information,
and propositional simplification using binary decision diagrams. Model
checking capabilities used for automatically verifying temporal properties
of finite state systems are also integrated into PVS.

• A friendly (but not advanced) user interface which is strongly integrated
with Emacs.

5.1 PVS overview

The PVS specification language is built on classical typed higher-order logic with
the usual base types bool, nat, rational, real among others and the
function type constructor [A -> B]. A distinctive feature of the PVS specifi-
cation language is predicate subtyping. A subtype {x: A | P(x)} consists
of exactly those elements a of type A satisfying predicate P(a). Predicate sub-
types are used to explicitly constrain the domain and ranges of operations in a
specification and to define partial functions.

A PVS specification consists of a number of theories. A theory is a collection
of declarations: types, constants (including functions), axioms that express prop-
erties about the constants, and theorems and lemmas to be proved. Theories may
import other theories and may be parametric in types and constants.

26

A proof goal in PVS is represented by a sequent. PVS differs from most proof
checkers in providing primitive inference rules that are quite powerful, which
also perform steps such as quantifier instantiation, rewriting, beta-reduction, and
boolean simplification. Proofs and partial proofs can be saved, edited, and rerun.

To illustrate the above ideas, we consider a simple example to introduce the
PVS system. Suppose the file sum.pvs2 contains:

sum: THEORY
BEGIN

n: VAR nat

sum(n): RECURSIVE nat =
(IF n = 0 THEN 0 ELSE n + sum(n - 1) ENDIF)
MEASURE id

closed_form: THEOREM sum(n) = (n * (n + 1))/2

END sum

This specifies a theory called sum in which:[18]

1. The variable n is declared to have the (predefined) type nat;

2. a function sum is defined recursively (the well-foundness of the recursion
is explicitly justified by the supplied measure - n in this example);

3. a theorem called closed form is conjectured.

If we run PVS on the file sum.pvs, an Emacs window containing its contents
will pop up. To prove it3, we type META-x prove. This initiates the parsing and
typechecking of the theory containing the conjecture. This takes a few seconds
and one is then prompted with Rule? for a proof command. Responding to it
with (induct "n") results in the output:4

Rule? (induct "n")
Inducting on n on formula 1,
this yields 2 subgoals:
closed_form.1 :

|-------
{1} sum(0) = 0 * (0 + 1) / 2

2This file can be found in ./pvs/Examples directory.
3Alternatively, the official proof given by the PVS team can be found in

./pvs/Examples/sum.prf file.
4Alternatively, the proof can be done fully automatically by responding to it with

(induct-and-simplify "n").

27

As in HOL, the subgoals are stacked and the first one is presented to the user,
followed by another prompt for a proof command. This goal is solved using PVS
proof command (grind). The subgoal is popped and the remaining goal is
presented:

Rule? (grind)
sum rewrites sum(0)
to 0

Trying repeated skolemization, instantiation,
and if-lifting,

This completes the proof of closed_form.1.

closed_form.2 :

|-------
{1} FORALL j:

sum(j) = j * (j + 1) / 2 IMPLIES
sum(j + 1) = (j + 1) * (j + 1 + 1) / 2

This is also solved automatically by PVS proof command (grind).

Rule? (grind)
sum rewrites sum(1 + j)
to 1 + j + sum(j)

Trying repeated skolemization, instantiation,
and if-lifting,

This completes the proof of closed_form.2.

Q.E.D.

The theory has now been proved, and typing META-x spt shows the proof
status of the theory:

Proof summary for theory sum
sum_TCC1......proved - complete [U](n/a s)
sum_TCC2......proved - complete [U](n/a s)
closed_form......proved - complete [O](0.31 s)
Theory totals: 3 formulas, 3 attempted,

3 succeeded (0.31 s)

28

AND

AND

AND

OR

OR

a

b

c

z

d

e

f

g

Figure 14: Majority voting circuit[7]

5.2 Hardware verification using PVS

Because the popularity of Gordon’s style[19][12] of specifying hardware compo-
nents in higher order logic, PVS takes the same approach as HOL. The behavior
of hardware components is specified by defining predicates that state which com-
binations of values can appear on their external ports. The behavior of device
built by wiring together smaller devices is represented by conjoining the predi-
cates that specify the behaviors of their components with logical conjunction and
using existential quantification to hide internal signals.

We illustrate PVS approach by showing a small example of the verification
of majority voting circuit[6][7] in PVS. The circuit in Figure 14 is a simplified
version of a majority voting circuit as found in nuclear reactors or avionics where
three computers each do the same task. If at least two computers signal to do the
same thing (i.e. at least two of a, b and c are high) then z is high and the task is
performed; otherwise z is low and the task is not performed.[26][23]

We first write the specification that asserts the right relationships between in-
puts (a, b and c) and output (z). The specification is written in a way that is free
of implementation detail, and we will not describe any AND/OR gates, just the
relationship that ought to hold between the inputs and the outputs. We then write
the implementation in terms of the AND/OR gates. Finally, we must prove that:
implementation ⇒ specification.

The specification and implementation written in the PVS description language
are shown below:

1 major_vote: THEORY
2
3 BEGIN
4
5 % input and output variables
6 a, b, c, z: VAR bool
7
8 % conversion function
9 cnf(x: bool): int =

29

10 (IF x THEN 1 ELSE 0 ENDIF)
11
12 % specify the required behavior
13 spec(a, b, c, z): bool =
14 z = (cnf(a) + cnf(b) + cnf(c) >= 2)
15
16 % define and_gate
17 and_gate(v, w, x: bool): bool =
18 x IFF (v AND w)
19
20 % define or_gate
21 or_gate(v, w, x: bool): bool =
22 x IFF (v OR w)
23
24 % describe the implementation
25 implementation(a, b, c, z): bool =
26 (EXISTS (d, e, f, g: bool):
27 and_gate(a, b, d)
28 AND and_gate(b, c, e)
29 AND and_gate(c, a, f)
30 AND or_gate(d, e, g)
31 AND or_gate(g, f, z))
32
33 % the result of cnf is either 0 or 1
34 sanity_check_1: THEOREM
35 (FORALL (d: bool): cnf(d) = 0 OR cnf(d) = 1)
36
37 implementation_correctness: THEOREM
38 implementation(a, b, c, z) IMPLIES

spec(a, b, c, z)
39
40 END major_vote

At line 6 we define the boolean variables a, b, c and z. Thus, wherever these
variables occur free in the sequel, they will have type bool.

In order to write a succinct specification for majority voting, we first define
the conversion function cnf at line 9 by:

cnf: bool → int

The function takes an argument of type bool and returns a value of type int.
At line 9, the cnf function is defined as follows:

cnf(x) = (if x then 1 else 0)

30

The if/then/else operator takes as its first argument a boolean expression, and
as its second and third operator, arguments of type INT . It returns a value of type
int. With the help of the conversion function, lines 13 and 14 define specification
as being a boolean expression in the input and output variables as shown.

We now want to see if we can implement the specification with hardware gates
which are defined at line 17 and 21. The boolean expression (v OR w) at line 22
is a well-formed formula of the PVS logic, where v and w are boolean variables.
”OR” is the PVS notation for standard logical v ∨ w; the same ”OR” symbol is
also used in the theorem at line 35.

The implementation in terms of AND/OR gates is described at line 25. Im-
plementation correctness, i.e. implementation ⇒ specification is stated as a the-
orem to be proved at line 37. The two theorems at lines 34 and 37 are proved
automatically in this case:

sanity_check_1 :

|-------
{1} (FORALL (d: bool): cnf(d) = 0 OR cnf(d) = 1)

Rule? (grind)
cnf rewrites cnf(d)
to (IF d THEN 1 ELSE 0 ENDIF)

Trying repeated skolemization, instantiation,
and if-lifting,
Q.E.D.

implementation_correctness :

|-------
{1} FORALL (a, b, c, z: bool):

implementation(a, b, c, z) IMPLIES
spec(a, b, c, z)

Rule? (grind)
and_gate rewrites and_gate(a, b, d)
to d IFF (a AND b)

and_gate rewrites and_gate(b, c, e)
to e IFF (b AND c)

and_gate rewrites and_gate(c, a, f)
to f IFF (c AND a)

or_gate rewrites or_gate(d, e, g)
to g IFF (d OR e)

or_gate rewrites or_gate(g, f, z)

31

to z IFF (g OR f)
implementation rewrites
implementation(a, b, c, z)
to EXISTS (d, e, f, g: bool):

d IFF (a AND b) AND e IFF (b AND c)
AND f IFF (c AND a) AND g IFF (d OR e)
AND z IFF (g OR f)

cnf rewrites cnf(a)
to (IF a THEN 1 ELSE 0 ENDIF)

cnf rewrites cnf(b)
to (IF b THEN 1 ELSE 0 ENDIF)

cnf rewrites cnf(c)
to (IF c THEN 1 ELSE 0 ENDIF)

spec rewrites spec(a, b, c, z)
to z =

((IF a THEN 1 ELSE 0 ENDIF) +
(IF b THEN 1 ELSE 0 ENDIF) +
(IF c THEN 1 ELSE 0 ENDIF)
>= 2)

Trying repeated skolemization, instantiation,
and if-lifting,
Q.E.D.

5.3 LED case study

Follow the same approach as 4.3, first we prove that the schematic design (Figure
4) satisfies our original description (Table 4). Then we prove that the circuit design
(Figure 5) meets the requirements of the schematic design. Like 4.3, here we only
show the first part of the whole verification.

The schematic components and connections are modeled in PVS[10] as below:

logic_gates: THEORY

BEGIN

% input and output
W, X, Y, Z, a: VAR bool

% define not_gate
not_gate(i, j: bool): bool =

j = NOT i

% define 2 input nand_gate
nand_gate2(i, j, k: bool): bool =

32

k = NOT (i AND j)

% define 3 input nand_gate
nand_gate3(i0, i1, i2, j: bool): bool =

j = NOT (i0 AND i1 AND i2)

% define 7 input nand_gate
nand_gate7(i0, i1, i2, i3, i4, i5, i6, j: bool)

: bool = j = NOT (i0 AND i1 AND i2 AND i3 AND
i4 AND i5 AND i6)

% specification
spec(W, X, Y, Z, a): bool =

NOT a = (W = FALSE AND X = FALSE AND Y = FALSE
AND Z = TRUE) OR (W = FALSE AND X = TRUE
AND Y = FALSE AND Z = FALSE) OR

(W = TRUE AND X = FALSE AND Y = TRUE AND
Z = TRUE) OR (W = TRUE AND X = TRUE AND
Y = FALSE AND Z = TRUE)

% implementation
imp(W, X, Y, Z, a): bool =

(EXISTS (tw, tx, ty, tz, t1, t2, t3, t4, t5,
t6, t7: bool):
not_gate(W, tw) AND not_gate(X, tx) AND
not_gate(Y, ty) AND not_gate(Z, tz) AND
nand_gate2(Y, tz, t1) AND nand_gate2(tx,
tz, t2) AND nand_gate2(tw, Y, t3) AND
nand_gate2(X, Y, t4) AND nand_gate2(W,
tz, t5) AND nand_gate3(tw, X, Z, t6) AND
nand_gate3(W, tx, ty, t7) AND nand_gate7
(t1, t2, t3, t4, t5, t6, t7, a))

implementation_correctness: THEOREM
imp(W, X, Y, Z, a) IMPLIES spec(W, X, Y, Z, a)

END logic_gates

The proof is automatically done with PVS proof command (grind):

implementation_correctness :

|-------
{1} FORALL (W, X, Y, Z, a: bool):

33

imp(W, X, Y, Z, a) IMPLIES
spec(W, X, Y, Z, a)

Rule? (grind)
not_gate rewrites not_gate(W, tw)
to tw = NOT W

not_gate rewrites not_gate(X, tx)
to tx = NOT X

not_gate rewrites not_gate(Y, ty)
to ty = NOT Y

not_gate rewrites not_gate(Z, tz)
to tz = NOT Z

nand_gate2 rewrites nand_gate2(Y, tz, t1)
to t1 = NOT (Y AND tz)

nand_gate2 rewrites nand_gate2(tx, tz, t2)
to t2 = NOT (tx AND tz)

nand_gate2 rewrites nand_gate2(tw, Y, t3)
to t3 = NOT (tw AND Y)

nand_gate2 rewrites nand_gate2(X, Y, t4)
to t4 = NOT (X AND Y)

nand_gate2 rewrites nand_gate2(W, tz, t5)
to t5 = NOT (W AND tz)

nand_gate3 rewrites nand_gate3(tw, X, Z, t6)
to t6 = NOT (tw AND X AND Z)

nand_gate3 rewrites nand_gate3(W, tx, ty, t7)
to t7 = NOT (W AND tx AND ty)

nand_gate7 rewrites nand_gate7(t1, t2, t3, t4,
t5, t6, t7, a) to a = NOT (t1 AND t2 AND t3
AND t4 AND t5 AND t6 AND t7)

imp rewrites imp(W, X, Y, Z, a)
to a = NOT (NOT (Y AND NOT Z) AND NOT

(NOT X AND NOT Z) AND NOT (NOT W AND Y)
AND NOT (X AND Y) AND NOT (W AND NOT Z)
AND NOT (NOT W AND X AND Z) AND NOT

(W AND NOT X AND NOT Y))
spec rewrites spec(W, X, Y, Z, a)
to NOT a = (NOT W AND NOT X AND NOT Y AND Z)

OR (NOT W AND X AND NOT Y AND NOT Z)
OR (W AND NOT X AND Y AND Z) OR
(W AND X AND NOT Y AND Z)

Trying repeated skolemization, instantiation,
and if-lifting,
Q.E.D.

34

When the verification task of the first part is completed, we can verify the
other six parts with the same method. In order to keep the text concise, we don’t
list down the proofs of the other six parts due to the similarity in these verification
processes.

6 A Comparison of HOL and PVS

There is an overwhelming number of different proof tools available(e.g. in [4]
one can find references to over 60 proof tools). All have particular applications
that they are especially suited for. Since we have used HOL and PVS as the
mechanical verification tools in the previous chapters, hereby it is desirable to do
a comparative study of the two proof tools, because both are known as powerful
proof tools for higher order logic, which have shown their capabilities in non-
trivial applications.

Generally, although HOL and PVS are similar to each other and shares a lot
of common features, partly because they are all based on higher order logic and
for supporting formal methods applications with proof, there are still some differ-
ences. In this section we wish to discuss in some detail our own, more personal,
experiences with regards to the case study:

• The meta-language of HOL is ML; hence HOL type system is similar to the
type system of ML, which form the basis of the higher order logic theory.
(see 4.1).

PVS is written in Lisp and implements classical typed higher order logic
with an extension of predicate subtypes (see 5.1). PVS has many built-in
types and uses type constructors to build complex types.

• The specification language of HOL is a ML-style one, which uses the ML
datatype term to represent the HOL logic; theories are created in ML func-
tions by new definition (see 4.1).

val NOT_DEF =
new_definition("NOT_DEF",

(--‘NOT a x = (x = ˜a)‘--));

Take a look into the case study in 4.3, we can see that the specification con-
sists of the hardware components specification, the target hardware device
specification composed with above components’ specification, (and the cor-
rectness relationship to be proved by set goal, which looks like a part of
the proof).

set_goal([],(--‘!w x y z a.
LED_A_IMP w x y z a ==> LED_A_DEF w x y z a‘--));

35

The specification language of PVS is rich, containing many different type
constructors and predicate subtypes (see 5.1). Unlike HOL, the syntax is
more fixed; many language constructs, such as IF and CASES are built-in
to the language. A specification is usually divided in several theories and
theories can import other theories. Although from the case study in 5.3, we
can find out that the specification is organized similarly to 4.3, there are two
obvious differences:

– Variables have to be declared before using (there is no default datatype
mechanism for undefined variables).

% input and output
W, X, Y, Z, a: VAR bool

– The correctness relationship to be proved is within THEORY.

logic_gates: THEORY

...

implementation_correctness: THEOREM
imp(W, X, Y, Z, a) IMPLIES spec(W, X, Y, Z, a)

END logic_gates

• HOL supports both forward and backward proving, but it emphasizes on
backward proving by supplying many useful tactics for it. A tactic trans-
forms the proof goal into several subgoals (see 4.2). HOL has a large col-
lection of tactics as well as many proving tools. In the process of proving
4.3, we need to load such tools from libraries by load before proving be-
cause they don’t automatically “stand forward” when applicable.

load "bossLib";
load "simpLib";
load "mesonLib";

A thorough look of HOL libraries beforehand will help us to get familiar
with some of powerful proving tools.

PVS has many tools in the core system which can be automatically invoked
(see 5.2). We are quite impressed in the process of proving 5.3; such tools
are built-in to the system and are ready to use by invoking grind etc.

implementation_correctness :

|-------

36

{1}FORALL (W, X, Y, Z, a: bool):
imp(W, X, Y, Z, a) IMPLIES spec(W, X, Y, Z, a)

Rule? (grind)

Another difference is that after supplying a tactic, the system repeatedly
apply it to the current goal until no changes in the current state. A PVS
tactic is like a REPEAT HOL tactic in this way.

e(REPEAT GEN_TAC);

• The most famous difference between HOL and PVS is that the former is a
LCF-style prover, which has better security, user extensibility and also ways
to import and export proofs to other provers.

When comparing HOL and PVS we realized that both tools had their advan-
tages and disadvantages. If we want to built our own ideal proof tool, it should
combine the best of both worlds: [8][29][32]

The logic Predicate subtyping gives so much extra expressiveness and protection
against semantical errors, that this should be supported.

The specification language The specification language should be readable, ex-
pressive and easily extendible. For function application, we have a slight
preference for the bracketless syntax of HOL.

The prover The ideal prover has powerful proof commands for classical reason-
ing and rewriting, including ordered rewriting. A tactic should return a list
of possible next states, as this is useful to try all possible instantiations.
Also, decision procedures should be available. Preferably, these decision
procedures are not built in to the kernel, but written in the tactical language,
so that they can not cause soundness problems. The style of the interactive
proof commands of PVS is preferred over that of HOL, because this is more
intuitive.

System organization To ensure soundness of the proof tool, the system should
have a small kernel. The code of the tool should be freely available, so that
users can easily extend it for their own purpose and implement bug fixes.

The proof manager and user interface The tool should keep track of the proof
trace. Proofs are best represented as trees, because this is more natural,
compared to a linear structure. The tree representation also allows easy
navigation through the proof, supported by a visual representation of the
tree.

37

7 Concluding remarks and future work

The paper began with an overview on hardware verification methods, with the
emphasis on approaches using higher order logic. We selected two popular ver-
ification tools, HOL and PVS, and started with some well-understood, but non-
trivial examples, then smoothly moved to a practical verification case study of a
seven-segment LED display decoder circuit design.

When applying these two tools to our case, we found PVS was easier to use
probably because of some “engineering philosophy” in it. However, we also found
that PVS was not an open system, which makes it unsuitable for certain kinds of
work requiring more flexibilities. Besides, we also found that there were many
opportunities for future work in this case study:

• When writing this paper, I found that today the formal verification commu-
nity suffers from a lack of meaningful and widely distributed examples for
evaluating the performance of verification tools. Existing examples in the
area of theorem proving are either toyish or trivial. More realistic hardware
examples have little documentation and few property specifications. The
benefits of a set of examples are many. It will motivate the development of
new algorithms. It will also facilitate comparisons across tools and provide
case studies of verification methodologies for users.

• In my opinion, it should be possible to simultaneously ensure the secure
extensibility of HOL and the usability and power of PVS. One possible
hypopaper is to implement a PVS-style proof environment in HOL.

• Both tools lack a user-friendly interface. PVS is strongly integrated with
Emacs. The de facto interface for HOL is hol-mode (also based on
Emacs). There are some more advanced user interfaces based on Tcl/Tk,
but they only work for particular versions of HOL.

Over the last two decades hardware verification has moved from academic
research to a rapidly growing commercial technology.[16] In the past, verification
methods have divided into two well-established approaches: theorem proving and
model checking.[9] We focus on theorem proving approach in the whole paper.
Model checking is a technique that relies on building a finite model of a system
and checking that a desired property holds in that model.

In contrast to theorem proving, model checking is completely automatic and
fast, sometimes producing an answer in a matter of minutes. The main disadvan-
tage of model checking is the state explosion problem.

Theorem proving can deal directly with infinite state space. It relies on tech-
niques like structural induction to prove over infinite domains, but theorem provers
usually require interaction with a human so that the theorem proving process is
slow and often error-prone.

One of the most promising directions in hardware verification is combining
model checking and theorem proving, ideally to benefit from the advantages of

38

both approaches. One way is to employ model checking as a decision procedure
within a deductive framework, as is partly done in tools such as HOL and PVS;
another way is to use deduction to obtain a finite state abstraction of an implemen-
tation that can be verified using model checking.

Another promising direction in hardware verification is to make specification
methods and tools more user-friendly. Although industry is adopting techniques
like model checking and theorem proving to complement the more traditional
one of simulation, there are still a lot of problems for industry applications. (i.e.
The notations are too obscure, and the tool is too hard to use.) Ideally, people
from industry expect to use the formal hardware specification language as simply
a means of communicating ideas to others or of documenting their own designs.
They would use tools like model and proof checkers with as much ease as they use
compilers. Therefore, we should strive to make our notations and tools accessible
to non-experts.

References

[1] A.Gupta. Formal Hardware Verification Methods: A Survey. Journal of For-
mal Methods in System Design, vol. 1, pp. 151 - 238, 1992

[2] C.Max. Bebop to the Boolean Boogie. LLH Technology Publishing, 1997

[3] C.-J.H.Seger. An Introduction to Formal Hardware Verification. Technical
Report, University of British Columbia, Computer Science Department,
Number TR-92-13, 1992

[4] Database of Existing Mechanized Reasoning Systems: available at
http://www-formal.stanford.edu/clt/ARS/systems.html

[5] D.D.Gajski, F.Vahid, S.Narayan, and J.Gong. Specification and Design of
Embedded System. Prentice Hall, 1994

[6] D.Gries, F.B.Schneider. A Logical Approach to Discrete Math. Springer-
Verlag, 1993

[7] D.Gries, F.B.Schneider. Equational Propositional Logic. available at
http://www.ariel.cs.yorku.ca/ logicE/

[8] D.Griffioen, M.Huisman. A Comparison of PVS and Isabelle/HOL. Theorem
Proving in Higher Order Logics: 11th International Conference, vol. 1479,
pp. 123 - 142, Springer, 1998

[9] E.Clarke, J.Wing. Formal Methods: State of the Art and Future Directions.
CMU Computer Science Technical Report, CMU-CS-96-178, 1996

39

[10] G.C.Gopalakrishnan. An Overview of Formal Mathematical Reason-
ing with Applications to Digital System Verification. available at
http://www.cs.utah.edu/formal verification

[11] J.Grundy. COMP8033: Mechanical Verification Web Site:
http://cs.anu.edu.au/student/comp8033/

[12] J.J.Joyce. More Reasons Why Higher-Order Logic is a Good Formalism
for Specifying and Verifying Hardware. International Workshop on Formal
Methods in VLSI Design, 1991.

[13] J.M.Rabaey. Digital Integrated Circuits: A Design Perspective. Prentice
Hall, 2002

[14] KarnaughMap v1.2: available at http://www.puz.com/sw/karnaugh/karnaugh 12.htm

[15] L.Laibinis. Mechanical Verification Course Web Site:
http://www.abo.fi/ linas.laibinis/MechVer/MechVer.html

[16] M.Gordon. 21 Years of Hardware Verification. Talk given at the Royal
Society, 1998. available at http://www.cl.cam.ac.uk/ mjcg/BDD/facs21-
talk.ps.gz

[17] M.Gordon. HOL: A Machine Oriented Formulation of Higher Order Logic.
Technical Report 68, Computer Laboratory, University of Cambridge, 1985

[18] M.Gordon. Notes on PVS from a HOL perspective. available at
http://www.cl.cam.ac.uk/users/mjcg/pvs.ps.gz

[19] M.Gordon. Why higher-order logic is a good formalism for specifying and
verifying hardware. Formal Aspects of VLSI Design, pp. 153 - 177, North-
Holland, 1986

[20] MichiganTech Web Site: http://www.ee.mtu.edu/faculty/schulz/
lab courses/EE2301 fall00/pages/week 4 bcd to seven segment.html

[21] M.John, S.Smith. Application-Specific Integrated Circuits. Addison-Wesley,
1997

[22] M.Srivas, H.Rue, D.Cyrluk. Hardware Verification Using PVS. Formal
Hardware Verification - Methods and Systems in Comparison, Lecture Notes
in Computer Science, vol. 1287, pp. 156 - 205, Springer, 1997

[23] N.Leveson. Safeware: System Safety and Computers. Addison-Wesley,
1996.

[24] N.Shankar, S.Owre, J.M.Rushby, D.W.J.Stringer-Calvert. PVS System
Guide. available at http://pvs.csl.sri.com/doc/pvs-system-guide.pdf

40

[25] N.Shankar, S.Owre, J.M.Rushby, D.W.J.Stringer-Calvert. PVS Prover
Guide. available at http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

[26] N.Storey. Safety Critical Computer Systems. Addison-Wesley, 1996.

[27] R.J.Baker, H.W.Li, D.Boyce. CMOS: Circuit Design, Layout, and Simula-
tion. John Wiley and Sons publishers, 1998

[28] S.S.Skiena The Algorithm Design Manual. Springer-Verlag, 1997

[29] S.Tahar, P.Curzon, and J.Lu. Three Approaches to Hardware Verification:
HOL, MDG and VIS Compared. Formal Methods in Computer-Aided De-
sign, Lecture Notes in Computer Science, vol. 1522, pp. 433 - 450, Springer,
1998

[30] Tokyo Denki University Web Site: http://www.d.dendai.ac.jp/vhdl/decoder.html

[31] T.Melham. Higher Order Logic And Hardware Verification. Cambridge Uni-
versity Press, 1993

[32] V.Zammit. A Comparative Study of Coq and HOL. Proceedings of the 10th
International Workshop on Theorem Proving in Higher Order Logic. vol.
1275, pp. 323 - 337, Springer, 1997

[33] Windows LASI: layout system for Windows. available at
http://members.aol.com/lasicad/index.htm

41

31. Jianming Liang
32. Tiberiu Seceleanu
33. Tero Aittokallio

34. Ivan Porres
35. Mauno Rönkkö
36. Jouni Smed
37. Vesa Halava
38. Ion Petre
39. Vladimir Kvassov

40. Franck Tétard

41. Jan Manuch
42. Kalle Ranto
43. Arto Lepistö
44. Mika Hirvensalo
45. Pentti Virtanen

46. Adekunle Okunoye

47. Antonina Kloptchenko
48. Juha Kivijärvi
49. Rimvydas Rukš nas
50. Dirk Nowotka
51. Attila Gyenesei

, Dynamic Chest Images Analysis
, Systematic Design of Synchronous Digital Circuits

, Characterization and Modelling of the Cardiorespiratory System
in Sleep-disordered Breathing

, Modeling and Analyzing Software Behavior in UML
, Stepwise Development of Hybrid Systems

, Production Planning in Printed Circuit Board Assembly
, The Post Correspondence Problem for Marked Morphisms

, Commutation Problems on Sets of Words and Formal Power Series
, Information Technology and the Productivity of Managerial

Work
, Managers, Fragmentation of Working Time, and Information

Systems
, Defect Theorems and Infinite Words
, Z -Goethals Codes, Decoding and Designs

, On Relations between Local and Global Periodicity
, Studies on Boolean Functions Related to Quantum Computing

, Measuring and Improving Component-Based Software
Development

, Knowledge Management and Global Diversity - A
Framework to Support Organisations in Developing Countries

, Text Mining Based on the Prototype Matching Method
, Optimization Methods for Clustering

, Formal Development of Concurrent Components
, Periodicity and Unbordered Factors of Words

, Discovering Frequent Fuzzy Patterns in Relations of Quantitative
Attributes

4

ë

52. Petteri Kaitovaara
53. Petri Rosendahl
54. Péter Majlender

55. Seppo Virtanen

56. Tomas Eklund
57. Mikael Collan

58. Dag Björklund
59. Shengnan Han

60. Irina Georgescu
61. Ping Yan
62. Joonas Lehtinen
63. Tommi Meskanen
64. Saeed Salehi
65. Jukka Arvo
66. Mika Hirvikorpi

67. Adrian Costea
68. Cristina Seceleanu
69. Luigia Petre
70. Lu Yan

, Packaging of IT Services – Conceptual and Empirical Studies
, Niho Type Cross-Correlation Functions and Related Equations
, A Normative Approach to Possibility Theory and Soft Decision

Support
, A Framework for Rapid Design and Evaluation of Protocol

Processors
, The Self-Organizing Map in Financial Benchmarking

, Giga-Investments: Modelling the Valuation of Very Large
Industrial Real Investments

, A Kernel Language for Unified Code Synthesis
, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
, Rational Choice and Revealed Preference: A Fuzzy Approach

, Limit Cycles for Generalized Liénard-type and Lotka-Volterra Systems
, Coding of Wavelet-Transformed Images
, On the NTRU Cryptosystem

, Varieties of Tree Languages
, Efficient Algorithms for Hardware-Accelerated Shadow Computation

, On the Tactical Level Production Planning in Flexible
Manufacturing Systems

, Computational Intelligence Methods for Quantitative Data Mining
, A Methodology for Constructing Correct Reactive Systems

, Modeling with Action Systems
, Systematic Design of Ubiquitous Systems

Turku Centre for Computer Science

TUCS Dissertations

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics and Business Administration

Department of Computer Science

Institute for Advanced Management Systems Research

Institute of Information Systems Sciences

�

�

�

�

�

ISBN 951-29-4020-5

ISSN 1239-1883

	Diss_70_Yan.pdf
	ISBN 951-29-4020-5
	ISSN 1239-1883
	Acknowledgements
	 List of Original Publications
	 Contents
	1 Introduction
	 2 Software-Intensive Work
	 3 Hardware-Intensive Work
	 4 Related Work
	 5 Final Words
	 Bibliography

