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Abstract

Addressing the conflicting requirements of embedded systems has become, in re-
cent years, an important challenge for designers. On the one hand, there is a need
for shorter time-to-market, less costly development cycles for the new products, a
goal that has been traditionally achieved using general purpose processors (GPPs).
Although they can be easily programmed to accomplish specific tasks, GPPs pro-
vide low performance as well as high power consumption and large silicon area.
On the other hand, the increasing demands for functionality and performance of
the current applications require the use of dedicated hardware circuits to boost the
performance of the system, while providing low power consumption and blueprint
area. However, hardware-based solutions are limited by the difficulty in designing,
debugging, and upgrading them.

As a compromise solution, programmable architectures have emerged as a
flexible, high performance, and cost effective alternative for embedded applica-
tions, tailored to process application-specific tasks in an optimized manner. Such
architectures are biased to meet specific performance requirements by using dedi-
cated processing elements implemented in hardware. A controller is used to drive
the activity of these processing elements. Using the program code running on the
controller, programmable architectures may be programmed to serve several ap-
plications. Thus, they provide a good solution for complex applications, where
flexibility is needed not only to accommodate design errors, but also to upgrade
the specifications.

The main challenge in designing programmable architectures is in finding an
appropriate solution to serve as a good compromise between a GPP and a hardware-
based implementation. The continuously increasing complexity of the application
requirements puts additional pressure on the design process. Thus, new techniques
have to be employed to tackle the complexity of both software and hardware speci-
fications by providing abstraction levels, tool support and automation of the devel-
opment process. Such techniques will shorten the time-to-market and reduce the
development costs of new products.

Recently, a new paradigm has gained momentum in the software engineering
field. The model driven paradigm promotes the use of graphical models to specify
the software at various abstraction levels, and of model transformations to refine
the system from abstract specifications to concrete ones.
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In this thesis, we employ the concepts and tools of the model driven paradigm
as a development framework for programmable architectures. Since programmable
architectures are a consistent combination of hardware and software, issues specific
to each of the them need to be addressed. As such, we devise a methodology that
enables the development of the software and hardware specifications in isolation
and, when a certain level of detail is reached, the specifications of the two are
integrated (mapped). Throughout our methodology we adopt the Unified Modeling
Language (UML) as the main modeling language for the application and for the
architecture. Through this choice, we intend to take advantage of already available
UML tool support, not only for graphically editing the specifications, but also for
providing automation of mechanical, repeating design activities.

Two alternative UML-based approaches for the specification of applications
targeted to programmable architectures are discussed. The main emphasis of these
approaches is on identifying the application functionality that needs to be sup-
ported by dedicated resources of the target architecture. The application types that
we address here are in the range of data processing applications like protocol and
multimedia processing. An IPv6 router case study is used to exemplify these ap-
proaches.

At architecture level, we employ model driven concepts to define domain spe-
cific languages (DSLs) for programmable architectures. These DSLs are intended
to provide graphical capabilities and increased abstraction levels (including pro-
gramming models) for modeling the two specific programmable architectures that
we address in this thesis. An IPv6 router and a multimedia processing application
are used as case studies on the selected architectures, respectively.

Having the specifications of both the application and of the architecture in
place, we also look at the process of mapping the application on a selected ar-
chitecture. The process is again placed in a model driven context in order to enable
tool support and automation. The output of the mapping process is a configura-
tion of the architecture for the given application and the program code that will
implement the application on the architecture.

Finally, we show that by taking advantage of the concepts and tools of the
model driven paradigm we can rapidly generate different perspectives (simulation,
estimation, synthesis) of a system in an automated manner. The generated arti-
facts are used as input for the simulation, estimation, design space exploration and
synthesis processes, respectively, of the system under design.
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“All models are wrong, but some of them are useful”
(George Box)
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Chapter 1

Introduction

An embedded system is a special-purpose computing system that is imbricated
(i.e., embedded) in a physical device that it controls. In the last decade, such sys-
tems have become an overwhelming presence in all application areas, ranging from
home appliances, office and hospital equipment to mobile phones, automobiles and
airplanes.

Addressing the conflicting requirements of embedded systems has become, in
recent years, an important challenge for designers. On the one hand, there is a
need for shorter time-to-market, less costly development cycles for the new prod-
ucts, a goal that has been traditionally achieved by using general purpose pro-
cessors (GPPs). Although they can be easily programmed to accomplish specific
tasks, GPPs provide low performance as well as high power consumption and large
silicon area. On the other hand, the increasing demands for functionality and per-
formance of the current applications require the use of dedicated hardware circuits
to boost the performance of the system. Consequently, extremely complicated ap-
plication specific integrated circuits (ASICs) started to be developed. An ASIC is
an integrated circuit customized for a specific problem. Being a hardware-based
solution, it provides high performance, and low power consumption and blueprint
area. The drawback is that their design process is expensive, and once the final
product is obtained it cannot be modified anymore. As such, ASICs are limited by
the difficulty in designing, debugging and upgrading them.

1.1 Programmable Architectures

As a compromise solution, application specific instruction set processors (ASIPs)
have emerged as a flexible, high performance and cost effective alternative for em-
bedded applications, tailored to process application-specific tasks in an optimized
manner. ASIPs are biased to meet specific performance requirements by using ded-
icated processing elements implemented in hardware, in order to support the tasks
demanding high performance. A controller is used to drive the activity of these
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processing elements. Using the program code running on this controller, ASIPs
may be programmed to serve several applications. Thus, they provide a good solu-
tion for complex applications, where flexibility is needed not only to accommodate
design errors, but also to upgrade the specifications [31].

There are several terms used when referring to ASIPs: programmable embed-
ded systems, programmable platforms, programmable architectures or heteroge-
nous architectures. Throughout this study we will use the terms ASIP and pro-
grammable architecture interchangeably. In the context of this thesis, the term
architecture refers to an abstract representation of a hardware device. By being
programmable the functionality of this device may be modified to serve applica-
tion specific purposes.

Being an optimized solution for a given application, or for a set of applications,
ASIPs provide improved performance as compared to the general purpose proces-
sors. According to some researchers [72], this increase can be of 2 to 100 times.
Nevertheless, since ASIPs are not fully hardware-based solutions they can be sev-
eral times slower as compared to a corresponding ASIC solution. Even with this
drawback, the payoff is far greater in terms of flexibility and upgradability. Pro-
grammable architectures bring important benefits like rapid time-to-market, flexi-
bility of design and, consequently, an increased product life-time and upgradability.

The main challenge in designing ASIPs is finding an appropriate architecture to
serve as a good compromise between a GPP and an ASIC. Ideally, the architecture
should be optimized for a family of applications, such that more than one applica-
tion can be served by the same ASIP. Additional aspects that enable the successful
development of ASIPs are discussed in [53].

There are basically two categories of approaches used for embedded system de-
sign: top-down and meet-in-the-middle. In the top-down approach [49, 86, 118], a
high-level system specification is gradually refined towards implementation. When
enough detail is gathered, the refined specification is partitioned into hardware and
software, and co-designed. Such approaches are also known as hw/sw co-design.
The top-down approaches are typically based on a model of computation (MOC),
in which notions of formal semantics for communication and concurrency are de-
fined. The methods in this category focus on the properties of the application and
on the simulation of the system as a whole, but generally the implementation ob-
tained is less efficient for families of applications and for applications using several
distinct algorithms. An overview of top-down approaches may be found in [139].

In the meet-in-the-middle approaches, the application and the architecture are
developed independently. A top-down design flow is used to specify the appli-
cation. The architecture is developed following a bottom-up flow, in which the
functionality it provides is identified starting from its hardware layer. When both
specifications are complete, the application is mapped onto the architecture. Such
an approach enables the reuse of software and hardware, reducing development
times and design effort. The price to pay is the significant effort in designing com-
plex libraries, since any new hardware component has to be designed from scratch.
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Fig. 3. The Y-chart with lightbulbs indicating the three areas that influence perfor-
mance of programmable architectures.

they can propose improvements, i.e., other parameter values, resulting in an-
other architecture instance (this interpretation process is indicated in Figure 2
by the lightbulb). This procedure can be repeated in an iterative way until a
satisfactory architecture for the complete set of applications is found. The fact
that the performance numbers are given not merely for one application, but for
the whole set of applications is pivotal to obtaining architecture instances that
are able to execute a set of applications and obey set-wide design objectives.

It is important to notice that the Y-chart approach clearly identifies three
core issues that play a role in finding feasible programmable architectures, i.e., ar-
chitecture, mapping, and applications. Be it individually or combined, all three
issues have a profound influence on the performance of a design. Besides de-
signing a better architecture, a better performance can also be achieved for a
programmable architecture by changing the way the applications are described,
or the way a mapping is performed. These processes can also be represented by
means of lightbulbs and instead of pointing an arrow with a lightbulb only to
the architecture, we also point arrows with lightbulbs back to the applications
and the mapping, as shown in Figure 3. Nevertheless, the emphasis is on the
process represented by the arrow pointing back to the architecture instance box.

Finally, we remark that the Y-chart approach leads to highly tuned archi-
tectures. By changing the set of applications, an architecture can be made very
general or the opposite, very specific. Hence, it is the set of applications that
determines the level of flexibility required by the architecture.

3 Design Space Exploration Using the Y-Chart Approach

The Y-chart approach provides a scheme allowing designers to compare architec-
tural instances based on quantitative data. Using an architecture template [8,10],
we can produce a set of architecture instances: we systematically select for all
parameters p in the parameter set P of the architecture template AT distinct

Figure 1.1: The Y-chart approach [74]

In this thesis, we adopt the second category to develop programmable archi-
tectures. Our choice is justified by two reasons: the architectures that we address
promote the reuse of intellectual property (IP) components at different levels of
abstraction, and such architectures are intended to be used as an implementation
platform for several applications of the same family.

The Y-chart approach. The Y-chart approach [73, 74] is a generic framework
for designing programmable architectures, in which the architecture is tuned to
provide the performance required by a set of applications. Being based on a meet-
in-the-middle flow, the Y-chart approach promotes the idea of a clear distinction
between the application and the architecture, each being developed independently.
The implementation of the application onto an instance of the architecture (i.e., a
configuration) is done through a mapping process. The general view of the ap-
proach is shown in Figure 1.1. The application running on a given architecture
instance is obtained through the mapping process and the performance of the re-
sulting implementation is evaluated in the Performance Analysis step.

All three main artifacts of the approach (i.e., application, architecture and map-
ping) are considered to be equally important in achieving an optimal configuration
of the architecture. Therefore, although the performance numbers aim mainly at
suggesting improvements of the proposed configuration(s), the other two artifacts
may also be targeted. For instance, some of the algorithms may be optimized at
application-level, or the mapping process modified based on certain heuristics. The
mapping process is performed iteratively until satisfactory performance numbers
are obtained. The process of trying out different architectural configurations to find
“the optimal” one is also known as design space exploration.
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1.2 The Model Driven Paradigm

Due to the increasing complexity of computing systems and to the diversification
of tasks that they need to perform, novel system specification techniques became
necessary. Raising the level of abstraction at which the systems are programmed
is one solution. Abstracting computer systems has been a recurring issue over
the years. If computers were mainly programmed using machine language in the
1960s, high-level programming languages like C, Fortran and Pascal were devel-
oped and used in the 1970s. Still, this was not enough due to the increasing com-
plexity of the specifications, and consequently, a revolutionary paradigm appeared
in the next decade. The paradigm was based on a simple observation: “Everything
is an object”. As a result, the object-oriented view was adopted on a large scale
and became widely used in the software industry. Nevertheless, the abstraction
level provided by the object-orientation reached its limits too; it is not able to cope
with the high complexity of the software any more. Consequently, a new paradigm
shift took place: “Everything is a model”. The idea was not completely new. Since
the mid 1970s, fields like domain engineering and database systems became aware
of the necessity of using models as first-class citizens during system specification.

The model driven paradigm caught ground rapidly in the software engineer-
ing field and, in consequence, the shift from textual object-oriented languages like
C++ and Java towards modeling languages was quite natural. This new category of
languages provide higher level of abstraction and benefit from a visual modeling
environment, for system specification. One such language is the Unified Modeling
Language (UML) [94]. UML provides a collection of graphical notations (i.e., di-
agrams) to be used for specifying various aspects of a software system. Although
relying on an object-oriented basis, UML is intended to be a general-purpose mod-
eling language. It can be applied to a wide range of application domains, primarily
to those that are object-oriented or component-based in nature. One important fea-
ture of UML is that it allows for the definition of domain specific languages (DSL),
or in the UML terminology profiles, using its extensibility mechanism (i.e., stereo-
types, tagged values and constraints). Although at the time of publishing this thesis
version 2.0 of UML has been officially adopted, the research discussed in this the-
sis has been performed with respect to version 1.4 of UML. However, with some
adaptations, the research results discussed in this study may be extended and ap-
plied also to UML 2.0.

The Model Driven Architecture (MDA) [93], as promoted by the Object Man-
agement Group (OMG), has been, since the very beginning, the driving force
behind the new mentioned paradigm shift. The underlying principle of MDA is
moving the focus of design from implementation concerns to solution modeling.
MDA proposes the use of models and model transformations as the main artifacts
of evolving the system specification from requirements to implementation. UML
has been proposed as the default modeling language of MDA. Additional UML-
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independent modeling languages (i.e., metamodels) can be defined and used within
MDA, as we will discuss in Chapter 2.

In a recent panel discussion [104], it was argued that MDA had reached a cer-
tain level of maturity for software development. However, there are still many
issues waiting to be addressed regarding the development of the system, as a com-
bination of hardware and software. In this thesis, we intend to take a small step
further, towards investigating some of these issues in the context of programmable
architectures.

1.3 Contributions of this Thesis

Embedded systems are a consistent combination of software and hardware, in
which both artifacts are equally important during the development process. Typ-
ically, different specification techniques and tools are used for each of them, cre-
ating a discrepancy in the way the system specification is perceived as a whole.
We consider that common specification techniques should be applied both for ap-
plication and architecture, yet adapted to the specific nature of each of them, in
order to capture their particular details. Similar proposals have been made by other
researchers [35, 42, 111].

The current thesis presents a model driven methodology for the development of
embedded systems and, in particular, of programmable architectures. Throughout
this work, UML is used as modeling language for the systems under consideration.

From a high-level perspective, the contribution of this thesis is three-fold:

• we define a set of techniques to address some of the development issues of em-
bedded applications and programmable architectures, tailored to address specific
problem domains like protocol and multimedia processing;

• we use the principles and tools of the model driven paradigm to support the
previously defined methodology;

• we provide a starting point for the defined methodologies to be adapted and
reused for other application domains.

In the following, we discuss the problems addressed in this thesis, and for each
problem statement, we briefly list the solutions provided in this study.

1.3.1 Model Driven Application Specification

Problem. The applications targeted to programmable architectures have been
traditionally specified either in machine language, or in a high-level programming
language (typically C). In the latter case, the resulting application specification
is mapped onto the architecture using specialized tools. Currently, this approach
cannot cope with the increasing complexity of specifications anymore, thus more
elaborated methods for the application specification are needed. Not only the use of
higher levels of abstraction is required, but also a systematic application analysis.
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On the one hand, such techniques allow the designer to focus on the relevant details
of the specification at different development stages. On the other hand, they reduce
the risk of missing functionality at later phases of the development process, which
would delay the development cycle considerable. The optimized hardware is one of
the key aspects of ASIPs. The hardware resources of the architecture are the ones
providing an increased performance, as compared to a software-based approach.
Hence, one of the most important issues in ASIP design is that, from the application
specification, one can identify complex and frequently used processing tasks to be
implemented using dedicated hardware.

Solution. In Chapters 3 and 4, we examine applications in the protocol processing
and multimedia processing domains. Such applications are typically data-driven
applications, where the main focus is on the order of the computations that affect
this data, rather than on the state of the system.

We adopt UML as the modeling language for the application specification. Two
systematic methods for analyzing the application are proposed.

In Chapter 3, a UML-based application specification process is presented. The
goal of this process is to allow the identification of the system functionality starting
from the written requirements. An existing method for functional decomposition of
the specification [48] is adopted and complemented to serve our goals. The main
contribution of the chapter is that we suggest the combination of collaboration
diagrams and activity diagrams for performing the behavioral analysis of specific
types of applications. The approach benefits from the hierarchical decomposition
of activity diagrams, to identify distinct pieces of functionality of the application.
In addition, systematic steps for transforming different models of the system are
proposed. Our approach is intended for specific application domains (e.g., data-
driven applications), where we are more interested in the sequence of processing
tasks that the system performs, rather than in its state at given moment.

In Chapter 4, the combination of UML diagrams and data-flow diagrams (DFDs)
for application specification is proposed. This research has been motivated by the
observation that, in certain situations, UML is not able to adequately represent all
the perspectives of a system. Several contributions are presented in this chapter, as
follows:

• based on previous work in combining UML and DFD [45], we propose a process
for application specification, in which the perspectives provided by DFD and
UML are interplayed at different abstraction levels;

• following the same guidelines found in [45], we introduce a systematic approach
for transforming DFDs into UML models and vice-versa. Although the pro-
posed approach may look artificial in some situations, the main objective is to
provide support for automation;

• by taking advantage of a UML-based tool and its scripting facilities, we also
implement model transformations to support the previously mentioned combi-
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nations. During this process, we show how both UML and DFD models can be
interrogated and transformed, using model scripts.

1.3.2 Model Driven Architecture Specification

Similarly to the software specifications, the hardware specifications are also con-
fronted with increasing complexity. In order to tackle this complexity and to
shorten the development cycle of new products, abstractions of the hardware archi-
tecture, programming models and appropriate design frameworks are required [131].

We investigate these research goals on two concrete programmable architec-
tures, namely TACO [132] and MICAS [109].

Hardware Abstraction

Problem. Managing the complexity of hardware specifications requires the de-
velopment of abstract views of hardware implementations. As for software, ab-
stractions have to be defined at several levels, starting from logical circuits and
continuing with the components of the architecture, each capturing only details
relevant to a given step of the development. Similarly to software specifications,
the hardware specification techniques gradually increased their level of abstraction
over the years. If initially hardware was designed in terms of transistors and logic
gates, nowadays, hardware description languages (HDLs) (e.g., VHDL, Verilog)
and even object-oriented system-level specification languages (e.g., SystemC) have
become very popular in industrial environments.

Solution. In this thesis, we examine the use of UML as a domain specific language
(DSL) for programmable architectures. Such a language takes one step forward in
the abstraction hierarchy, placing itself on top of the existing hardware specification
languages like SystemC, VHDL, Verilog, etc.; in addition, it provides a visual
representation of architecture components. Moreover, we rely on UML-based tools
to provide tool support for the defined DSLs. The approach allows us to edit models
of the hardware architecture and to provide automation for generating different
artifacts from these models.

We suggest the use of UML as a hardware modeling language, in order to
benefit not only from the graphical UML notations and tools, but also from the
model driven principles for abstraction, tool support and automation.

In Chapter 5, we use UML to define a visual DSL for modeling the TACO
[132] programmable architecture. The DSL uses UML-based notations, such that
it may be used in any UML tool without the need of tool customization. We also
show that by taking advantage of appropriate tool support, we can rapidly create
configurations of the architecture in a graphical environment, and enforce their ar-
chitectural consistency. In addition, a component library has been implemented
to provide support for automation and reuse, when using the TACO DSL. Several
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automated transformations are proposed for transforming the TACO models into
simulation and synthesis models, respectively, or for rapidly estimating the physi-
cal characteristics of the created configurations.

In Chapter 6, we define a DSL for modeling a programmable multimedia ar-
chitecture, namely MICAS [109]. The contributions of this chapter are as follows:

• the proposed DSL models the specifications of the MICAS hardware architec-
ture at several levels of abstraction. A conceptual level is used to focus on
the functionality of the components, a detailed level to refine the communica-
tion mechanisms between components, and an implementation level specifies
the system in terms of “off-the-shelf” IP blocks;

• several transformations are defined to evolve the hardware specification from
one abstraction level to another. Some of these transformations are manual (i.e.,
based on designer’s intervention), others are automatable. In addition, support
for generating the simulation model of the architecture is provided;

• to enable automation and reuse, several component libraries are proposed, which
encode not only components of the hardware architecture, but also design deci-
sions in architecting the system. The elements of the library are expressed using
concepts of the MICAS DSL, and benefit from the corresponding tool support;

• we propose a series of customizations of the UML tool that we use to assist the
design process.

The hardware architecture of MICAS is simulated using the SystemC [100] lan-
guage, an extension of C++ for hardware specification. Thus, the hardware per-
spective of MICAS is transformed into SystemC specifications. In addition, differ-
ent configuration-related information, which is not directly representable in Sys-
temC, has to be taken into account during simulation. Hence, a C++-based DSL
for MICAS is defined, to enable the integration of the generated information within
the MICAS simulation environment.

Programming Models

Problem. In recent years, several programmable processors were developed, es-
pecially in the area of protocol processing [58]. Soon after, the difficulty in pro-
gramming them, due to their complex architecture and the variable instruction set,
became an obstacle to using them in practice [84]. Consequently, the use of a
programming model of the architecture has been suggested [71, 74] to provide not
only an abstraction of the hardware details, but also a functional view of the ar-
chitecture. Such a model facilitates programming the architecture by allowing the
designer to focus on the functionality that the architecture provides, rather than on
the hardware implementation of this functionality.

Solution. In the above context, we investigate the use of UML to specify program-
ming models for the two graphical programmable architectures addressed in this
thesis, that is TACO and MICAS.
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In Chapter 5, we define a programming model for the TACO architecture. For
this purpose, we introduce a number of programming primitives and map them
onto the concepts of the TACO platform. In addition, we express these primitives
using UML concepts and include them in the TACO DSL. As we show in the same
chapter, the approach enables us to store the programming primitives of TACO in
the same library, together with the hardware components of TACO. Moreover, the
proposed programming model enables the designer to program the TACO archi-
tecture using a higher-level programming language than the one provided by the
machine assembly language of TACO.

In Chapter 6, we propose a programming model for the MICAS architecture.
Similarly to TACO, the MICAS programming model is defined for abstracting the
details of the hardware components, and it is embedded within the MICAS DSL.
The programming model is defined at two levels of abstraction, each of them fo-
cusing on a specific view of the architecture. Furthermore, the programming model
provides a graphical interface that is integrated with the MICAS DSL and conse-
quently, it benefits from a similar tool support.

In order to integrate the MICAS programming model within the MICAS simu-
lation environment, the MICAS C++–based DSL is enhanced to represent also the
programming model of the architecture. The approach enables us to obtain the co-
simulation model from the MICAS DSL models automatically, in a “push-button”
manner.

Design Frameworks

Problem. An optimal tuning of the architecture, with respect to the application
requirements can be realized by employing collections of customized tools needed
to configure, compile, analyze, optimize, simulate, explore and synthesize archi-
tectural configurations. Programmable architectures are usually accompanied by
custom design frameworks that enable the designer to squeeze the optimal per-
formance out of a given architecture. Such a design framework should provide
several features. Out of them, the Architectural estimation is one of the key ones.
Embedded systems in general, and hardware in particular, imply high cost of de-
signing and manufacturing. Therefore, it is important to be able to estimate the
characteristics of the final product as early as possible in the development process.
System-level estimation is of particular importance to embedded systems, since, by
their definition, they are systems that must comply with tight constraints in terms
of size, energy consumption and cost. Based on the estimation results, the archi-
tectural design space exploration is performed. During this process, the designer
evaluates several architectural configurations and selects the one(s) complying best
with the requirements of the application. Simulation represents an equally impor-
tant technique in developing programmable architectures. To prevent and detect
inherent errors in the specifications of both the application and the architecture, the
simulation has to be performed at different levels of abstraction, with respect to
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both functional and non-functional requirements of the system. Finally, once the
configuration of a given programmable architecture is chosen to implement an ap-
plication, the hardware synthesis enables the specification of the configuration in a
hardware description language and also its synthesis, using specific synthesis tools.
Furthermore, an important feature of such a design framework is its capability of
rapid generation of different models (e.g., simulation, synthesis, estimation, etc.)
of the system, starting from its DSL models.

Solution. In our research, we examine the possibility that the principles of the
UML and of the model driven paradigm are used to implement custom design
frameworks for the two programmable architectures under investigation.

In the first part of Chapter 7, the simulation framework of the MICAS archi-
tecture is described. There are two main contributions related to this topic:

• we propose an approach that integrates the programming model of the architec-
ture within the MICAS simulation model;

• using the object-oriented mechanisms of SystemC and the C++ DSL of MICAS,
we show how to define a fully reusable SystemC component library, which al-
lows the customization of module instances at run-time.

Both contributions have enabled the automated generation of the simulation model
of a given MICAS configuration starting from the models of the MICAS DSL.

Targeting the TACO architecture, Chapter 5 suggests the use of the tool support
corresponding to the TACO DSL as a design framework. To accomplish this task
several steps are taken:

• we propose that the already existent simulation, estimation and synthesis mod-
els of TACO (presented in detail in [132]) are included into the TACO DSL.
The approach brings two benefits: a) it enriches the expressiveness of the DSL
with estimation information that may be used in a UML-based tool, to rapidly
estimate the physical characteristics of different configurations; b) it allows one
to generate the simulation and synthesis code of a given configuration from the
models of the TACO DSL;

• taking advantage of the enhanced TACO DSL and of the inclusion of the new
information in the TACO component library, we propose a set of automated
transformations that generate both the estimates of the created architectural con-
figurations, and the simulation and synthesis code of each configuration.

The second part of Chapter 7 should be seen as a validation of the TACO design
framework proposed in Chapter 5. Thus, we discuss a case study in performing de-
sign space exploration of the TACO architecture. The study is intended to show that
possessing tools to rapidly create configuration, simulation and estimation models
of the TACO architecture, allows us to perform system-level exploration within a
relatively short time-frame.
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As a general contribution on the model driven architecture specification topic,
we attempt to show that graphical modeling languages like UML are suitable to
model various abstraction layers of programmable architectures. As such, model-
ing languages can be employed not only for the specification of different perspec-
tives of the hardware, but also for defining and representing programming models.
In addition, we show that by taking advantage of the existing model driven and
UML-based tooling environments, one can provide customized design frameworks
to assist the work of the designer, not only through model editing capabilities, but
also through transformational support.

1.3.3 Model Driven Support for the Mapping Process

Problem. Mapping the application on a given architecture is a well-known issue
of ASIP design, due to the conceptual gap between the application and the ar-
chitecture. The programming model of the architecture was suggested by many
researchers [74, 118], as a means to narrow this gap by providing not only a higher
level abstraction of the architecture, but also by using concepts similar to the ones
of the application specification.

Solution. In this study, we examine the benefits brought by such a program-
ming model, in case of mapping the application specification onto the TACO pro-
grammable architecture.

Chapter 5 contributes to this research topic as follows:

• we show that having both the application specification and the programming
model of the architectures expressed using similar concepts (as suggested in
[74]) facilitates the mapping process. Furthermore, we show that employing
the same modeling language (i.e., UML) for both the application specification
and for the programming model of the architecture, enables us to use the same
UML tool to support the mapping process. The approach is beneficial not only
in editing both models, but also in automating the steps of the mapping process
through model transformations.

• we define a systematic approach in which the application specification may be
mapped onto the specification of the TACO architecture. The mapping process is
decomposed into several steps, such that as many of them become automatable.

1.4 Related Work

Based on the topics addressed in this thesis, we can divide the work related to this
study into roughly three categories: UML-based methodologies, combination of
UML and DFD, and programming models for programmable architectures. For
each topic, we have selected for discussion several existing related studies that we
consider relevant in our context, without claiming that the list is exhaustive.
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1.4.1 UML-based Methodologies

There are many general approaches that address the specification of embedded sys-
tems in the context of UML and of the model driven paradigm. These approaches
typically propose general-purpose methodologies and profiles for embedded sys-
tems, which could also be adopted for the specification of concrete programmable
architectures.

These approaches may be classified following several criteria. For instance,
some of the approaches focus on the entire development process [29, 43, 83, 114],
while others address only specific parts [33, 76, 97, 98]. A different categorization
may be obtained if we consider the artifact of the development process that they
mainly address: application specification [33, 43, 114], architecture specification
[28, 43, 97, 106], or the mapping process [76]. Nevertheless, the approach that
most of them adopt is customizing the UML elements to represent different per-
spectives of the system and to allow the connection of the suggested methodologies
with external tools.

Embedded UML [83] is a proposal for a methodology and a profile for spec-
ification, design, and verification of embedded real-time systems. The authors
propose a synthesis of attractive concepts of existing approaches in the real-time,
co-design, platform-based and functional design. The use of reactive objects is
suggested as a better match for embedded systems as compared to active objects.
Reactive objects react to stimuli from the environment and eventually provide a
response. The behavior of these objects is specified in terms of state diagrams or
code. In addition, extensions of UML are considered for functional encapsulation
and composition, communication specification, and performance evaluation dur-
ing the mapping process. The methodology could be seen more as a conceptual
framework for modeling embedded systems, rather than a concrete approach.

The methodology proposed by Chen et al. [29] addresses the network process-
ing application domain. The requirements of the system are captured in a use case
diagram with annotated performance requirements. The structure and the behavior
of the system are identified from use cases, and the performance requirements are
propagated. Interaction diagrams are used to model the interaction of the objects,
and the internal behavior of the later is expressed either in terms of state machines
or activity diagrams. The methodology follows a functional decomposition of the
system specification, until the latter can be expressed in terms of concepts defined
by the UML Platform profile [28]. The profile defines several abstraction levels
of the architecture. The architecture layer models the physical hardware of the
platform. The application programming interface (API) layer models the logical
services provided by the architecture. The application specific programming layer
represents a collection of domain-specific services provided by the platform to im-
plement the application. Concrete UML diagrams are chosen to model each layer,
and stereotypes are defined to customize the elements of each diagram. A num-
ber of quality of service (QoS) parameters like throughput, area, power, size, are
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defined for the elements of each abstraction layer using UML tagged values. The
stereotypes of the UML Platform profile are defined in concordance with the con-
cepts of the Metropolis design framework [16], enabling the translation of UML-
based models into the language of the Metropolis framework, where communi-
cation refinement, partitioning, simulation and exploration of the architecture are
performed. The approach in [29] is similar to the one that we propose in Chapter
3, since it follows a functional decomposition of the system specification. At the
moment, our approach does not take into consideration performance requirements.
In addition, we propose a systematic method in which the functionality of the ap-
plication is identified, whereas the above mentioned methodology is more generic.
At architecture level, the methodology in [28] resembles our approach in Chap-
ters 5 and 6 in two aspects: it provides several layers of abstraction of hardware
(including a programming interface), and the physical properties of the architec-
ture components are modeled using UML tagged values similar to our approach
in TACO. However, in our approach the mapping of the application onto archi-
tecture is currently performed with respect to the functional requirements of the
application without the assistance of specialized exploration tools.

Another design methodology is proposed by De Jong [33]. The methodology
starts also with use case diagrams from which the specification of the system ex-
pressed in terms of objects and message sequence charts is obtained. The internal
behavior of the objects is expressed in SDL [62], to provide an executable speci-
fication. The missing aspect of this methodology is the connection with the spec-
ification of the architecture. Conceptually, the approach is similar to ours, except
that we aim at mapping the resulting specification onto the concepts of selected
programmable architecture.

The UML-RT [114] defines both a methodology and a profile that are based
on the Real-Time Object Oriented Modeling (ROOM) [115]. A capsule concept
is used for specifying the structure of the system. A capsule is basically an active
object, that is, an object that has its own thread of control and may initiate control
activities with other objects. The internal behavior of a capsule is represented
using statecharts and follows a run-to-completion pattern. The communication
between capsules uses a message-passing protocol. The UML-RT profile is mainly
intended to capture behavior for simulation and synthesis purposes, and is limited
with respect to modeling the architecture and performance of the system. One
similarity between the UML-RT and the approach we promote in Chapter 3 stands
in the fact that the capsule diagrams of UML-RT are similar to the collaboration
diagrams we use. The difference is encountered in the way the functionality of
a capsule and respectively, of an object is decomposed. In UML-RT a complex
capsule may be hierarchically decomposed into several simple capsules whose state
machines are combined to implement the behavior of the complex capsule. This
approach enforces that the communication between the simple capsules and the
external environment is done through the ports of the complex capsule. In our
approach, objects may not be nested, instead we allow for an object to be split into

13



several simpler objects, and for their state machine to be refactored. Last, but not
least, UML-RT provides an event-driven perspective of the system, whereas we
would like to focus on a data-driven perspective that is typically more useful for
the data-driven application domains that we address.

The HASoC design methodology [43] is an extension of the UML-RT profile.
HASoC starts with the use case diagram of the system and gradually identifies the
objects (i.e., capsules) in the specification. The resulting specification is then par-
titioned into hardware and software. In turn, the architecture (i.e., the platform)
is modeled in terms of hardware components and hw/sw interfaces that are grad-
ually integrated. Two extensions to the UML-RT are added. The communication
between capsules is done using data-streams and the target architecture may be
configured based on the application requirements. To address the latter extension,
additional notations have been defined to depict if a capsule is to be implemented
in software or in hardware. HASoC employs the capsule concept to also model
the hardware architecture. Two abstraction levels are used: software-hardware
interface model and a hardware architecture model. However, no prescription is
given on how the mapping process is performed. This methodology is closer to our
approach presented in Chapter 4, since it models a data-flow view of the specifica-
tion. In addition, it resembles the abstraction layers we employ in both TACO and
MICAS architecture specifications.

The OMG’s Real-time UML profile or, by its official name, the UML Profile for
Schedulability, Performance and Time [98], defines notations for building models
of real-time systems based on Quality of Service (QoS) parameters. External tools
can be used to perform analysis of the models and the results may be reintegrated
in these models. However, the profile definition is not accompanied by a suggested
methodology, and it is generally considered verbose and difficult to use.

In the HUT profile [76], a number of stereotypes are proposed for classifying
the concepts of both the application and the architecture. The elements of the pro-
file are intended to be applied onto an existing high-level specification to “mark”
its elements before the mapping process. Similarly, the components of the archi-
tecture are marked with predefined stereotypes. The mapping process is performed
manually by pointing out the dependency between the components of the appli-
cation and architecture. The profile defines specific tagged values for specifying
non-functional properties like priority, memory requirements, of both the applica-
tion and the architecture. The profile is used only for the mapping stage, and it
seems that there is only one level of hierarchy during the mapping.

Recently, OMG has issued a draft of the UML profile for SoC [97]. The profile
identifies a number of generic architectural concepts that are needed in defining
SoCs, like module, controller, port, connector. Additionally, the notion of protocol
(to describe behavior) is specified. The profile is intended for system-level archi-
tectural specification, at an relatively abstract level for being applied to various
kinds of systems. In addition, the elements it defines are mappable one-to-one to
the elements of the SystemC language, to ensure a smooth generation of the cor-
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responding SystemC code. Yet, no indication is given on how the architecture is
obtained from the application.

Targeting the hardware architecture, a UML profile for SystemC was proposed
in [106]. The profile customizes structural and behavioral diagrams of UML to
model the functionality expressed by processes and channels in a SystemC speci-
fication, from which SystemC code is generated.

Last but not least, although the OCTOPUS methodology [14] has not been de-
fined in the context of UML and MDA, it is, to the best of our knowledge, among
the first object-oriented methodologies for embedded software systems capable to
evolve the specification from initial requirements to implementation. The method-
ology has as its main goal the development of the application, whereas a hardware-
wrapper subsystem is used to identify the communication and the interface between
the application and the hardware. Yet, the approach specifies the architecture only
at the level of hardware-software interfaces, while the selection of its components
is rather ad hoc.

To the best of our knowledge, there are no reports on building custom DSLs
for concrete programmable architectures (although several metamodeling tools are
available [1]), in either industry or academia, using metamodeling techniques. One
possible reason could be the large effort (e.g., time, people, research) required to
build such a DSL and also poor support for metamodeling provided by the UML
tools. Another reason may also be the fact that usually, when the research is per-
formed in large companies, the publication of the results is restricted by confi-
dentiality rules. Finally, the adoption of modeling techniques, a software-based
approach, may not be in agreement with the preferences of hardware designers.

All the presented approaches define a number of general stereotypes that should
be applied to model a wide range of embedded systems. Although these stereotypes
could be used for modeling a specific programmable architecture (e.g., TACO),
the mapping of the profile stereotypes to the architecture components would not
necessarily capture the essence of the architecture. For instance, the UML Plat-
form profile [30] and the HUT profile [76] do not make a clear distinction between
controllers and dedicated processing elements, which is useful in designing pro-
grammable architectures. The UML profile for SoC [97] and the UML SystemC
profile [106] are biased towards SystemC code generation, and for this reason they
do not provide a sufficient level of abstraction of the architecture.

1.4.2 Combination of UML and DFD

Many authors have already studied the combination of DFDs with object-oriented
methods and many approaches have been presented in the literature. In the follow-
ing, we discuss some of them, which we consider relevant to our work.

The adoption of reverse generated DFDs (i.e., DFDs obtained after interpret-
ing the source code) is proposed for reverse engineering purposes, as the basis for
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obtaining the objects of a system [50]. The approach is partially automated, re-
quiring, in specific situations, the assistance of a human expert with knowledge of
the domain. Again in a reverse engineering context, it is suggested the combined
usage of DFDs and Entity-Relationship Diagrams (ERDs) to describe the system
being modernized [66]. Both these approaches target reverse engineering and are
customized for their specific application domain.

Alabiso also proposes the transformation of DFDs into objects [6]. To accom-
plish the transformation, he proposes the following activities: (1) interpret data,
data processes, data stores and external entities in terms of object-oriented con-
cepts; (2) interpret the DFD hierarchy in terms of object decomposition; (3) inter-
pret the meaning of control processes for the object-oriented model; (4) use data
decomposition to guide the definition of the object decomposition. This work fol-
lows a structural approach in the object-oriented domain, whereas we focus on the
functionality of the system.

Another interesting framework is the Functional and Object-Oriented Method-
ology (FOOM) [119], which is specifically tailored for information systems. The
main idea behind FOOM is to use the functional approach, at the analysis phase, for
defining user requirements, and the object-oriented approach, at the design phase,
for specifying the structure and behavior of the system. In FOOM, the specifi-
cation of user requirements is accomplished in functional terms by OO-DFDs (a
DFD with data stores replaced by classes). In data terms, the same specification is
modeled by an initial object-oriented schema, or an Entity-Relationship Diagram
(ERD), which is transformed into an initial object-oriented schema. In the design
phase, the artifacts of the analysis are used, and detailed object-oriented and behav-
ior schemas are created. These schemas are the input to the implementation phase,
where an object-oriented programming language is adopted to create a solution for
the system. The approach addresses information systems and, in addition, places
data and behavior on the same level, whereas we put behavior first.

In [18], the functionality associated with each use case is described by an E-
DFD (an extended version of the traditional DFD) or an activity diagram, with
the objective of automatically identifying the objects/classes of a distributed real-
time system. E-DFDs are mapped onto a graph and, then a tool automatically
partitions the graph, which allows the identification of an object set that constitute
the “best” architecture from the design and test points of view. This approach could
be considered closer to ours, as it refines the system functionality using DFDs and
it proposes a systematic (and automated) approach to transform DFDs into objects.

A collection of transformations between the DFD and UML diagrams has been
proposed in [126]. The framework aims at translating legacy systems, modeled
with structured methods, into an object-oriented representation. Three levels of ab-
stractions are proposed to transform the specification: 1) a DFD is partially trans-
formed into a use case diagram; 2) the same DFD is transformed into sequence
diagrams and state diagrams, in which the data flows become parameters of mes-
sages and signals; 3) the ERD is transformed into a class diagram. One weak point
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of the approach is that a sequence diagram is built for each use case separately
and it is not clear how the state diagrams are integrated in the approach. Although
the approach is not automated, it provides a set of guidelines for transforming the
DFDs into UML diagrams in a systematic manner.

1.4.3 Programming Models for ASIPs

Programmable architectures are customized for serving a specific application do-
main in an optimal manner. Similarly, their programming models are designed to
exploit at maximum the characteristics of a given programmable architecture and
thus, they are heavily customized for each architecture in particular. As such, a
general classification is difficult to achieve. To the best of our knowledge, there is
currently no UML-based programming language for programmable architectures.
However, we discuss in the following several programming languages just to give
an overview of their general characteristics.

NP-Click [118] is one of the most popular programming models in the aca-
demic environment. NP-Click targets network processors, and is currently imple-
mented on the Intel IXP1200 network processor. The programming model pro-
vides a graphical interface and uses components communicating through ports,
while packets are transferred between components using function calls. In addi-
tion, threading and resource sharing are also modeled in NP-Click.

VERA [69] is another academic programming model for routers customized
for the Intel IXP1200 network processor. Two main features are worth the atten-
tion. The first is the fact that VERA uses three levels of abstraction: one specifying
the functions of the application, one for specifying the architecture, and one for
specifying mappings between the two, in terms of programming primitives. The
second feature is the extensibility of the model, that is, additional functionality can
be included.

On a more general level, CAIRN [87] is a programming model that addresses
generic programmable architectures (ASIPs), rather than being customized for a
specific architecture, like the previous two models already discussed. CAIRN also
supports three levels of abstraction (i.e., application, architecture and mapping)
and has the main goal of capturing the concurrency of both the application and the
architecture. At architecture level, TIPI [85], an architecture description language
(ADL), is used to model the concurrency of different data paths in the architecture.
At application level, the application is specified using a model of computation.
The mapping process is performed manually, but once the marking is done, model
transformations are used to generate the code. The approach relies on the TIPI
framework to generate simulation, estimation and synthesis models of the system.

Focusing on the industrial side, we discuss two programming models: Intel
MicroACE and Teja C. MicroACE [60] is fully customized for the IXP1200 and
integrated in its development environment. The application running on the con-
troller is expressed as a flow of data processed by different active computing el-
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ements (ACEs). An ACE is a piece of functionality of the application, which is
implemented by the microengines of the processor using microcode (i.e., blocks
of code). Based on this approach libraries of ACEs may be defined to support the
application.

The Teja C [124] is again developed especially for the Intel IXP family proces-
sors, yet it also runs on the IBM Power NP family, due to their similar structure.
The programming model is defined as an extension of ANSI C, and specifies a set
of data types and primitives for the three levels of the Y-chart [74] approach. For
instance, at application level, threads, memory spaces and signaling primitives are
described. At architecture level, physical components like processor, bus, memory,
and their associated properties are specified.

From the enumerated approaches, we consider that conceptually, Teja C is
closer to the programming model of TACO, while the MicroACE is similar, to
some extent, to the programming model of MICAS.

1.5 Outline

The remainder of this thesis is organized as follows. In Chapter 2 we propose
a design methodology for programmable architectures and place it in the context
of the model driven paradigm. For this purpose we introduce the main tools of
the model driven paradigm and we discuss how they can be employed to support
the methodology. The proposed methodology consists of several phases which are
detailed in the following chapters of this thesis.

As such, Chapters 3 and 4 propose two alternative solutions for the applica-
tion specification phase. Chapter 3 introduces an approach for the specification
of embedded applications intended for programmable architectures. The approach
enables the systematic discovery of the functionality of the application, starting
from requirements. We use collaboration and activity diagrams as the main tools of
the analysis process. Well-defined models are specified for each step, and system-
atic transformations between steps are proposed to automate the process. Excerpts
from an IPv6 routing case study are used to exemplify the approach.

In Chapter 4, we propose to complement UML with data-flow diagrams for
the analysis of embedded systems. We adopt existing suggestions of theoretical
combinations of data-flow and UML diagrams, and propose a systematic approach
in which the transition between the models of the two paradigms may be realized.
In addition, we group the identified solutions into an analysis process in which
the conceptual model used to represent the system is changed several times. The
process is supported by model driven tools and automation is provided using model
transformations. The same IPv6 routing application is used as a case study.

Chapters 5 and 6 look at the architecture specification phase from a model
driven perspective. DSLs for two specific programmable architectures, TACO and
MICAS, are defined using the UML extension mechanisms. We show how dif-
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ferent abstraction levels of the two architectures are modeled, including the way a
programming model is defined and integrated in each DSL. We show how the two
DSLs are intergraded in MDA tools, and what tool support could be provided to as-
sist the system-level design process. Furthermore, we discuss how libraries could
be defined at different levels of realization, and used to automate the generation
of different system-level deliverables. In general terms, the proposed approaches
may be seen as a solution to provide design frameworks for other programmable
architectures.

In Chapter 5, we also discuss the process of mapping the application specifica-
tion on the architecture specification, in the context of the TACO architecture. We
show how the mapping between the application specification and the architecture
specification is performed by taking advantage of the TACO programming model,
and we define a systematic approach to support the process. Next, a library for
encoding mappings (i.e., design decisions) is defined, in order to speed up future
mapping processes.

Having the application implemented on a given architecture, Chapter 7 looks
at the simulation and design space exploration of programmable architectures. The
chapter is composed of two parts. In the first part, we discuss the system-level sim-
ulation of the MICAS programmable architecture from the perspective of different
design decisions that allow us to automatically generate the simulation model. In
addition, we discuss an approach to combine the MICAS programming model with
the simulation framework at simulation time, and how the application “code” and
the simulation model of the architecture are co-simulated. In the second part of the
chapter, we present a case study in exploring the design space of the TACO pro-
grammable architecture. The case study lets us show that by employing system-
level design tools for estimating different configurations, we can rapidly and re-
liably identify suitable configurations with respect to the non-functional require-
ments of the application.

Conclusions and directions for future work are discussed in Chapter 8.

1.6 List of Publications

The list of publications related to the work discussed in this thesis is given below.
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Chapter 2

Model Driven Development of
Programmable Architectures

In this chapter1, we propose a customized version of the Y-chart approach for the
development of the programmable architectures discussed in this thesis. In addi-
tion, we present the principles of the model driven paradigm and we propose their
adoption in support of the suggested methodology.

2.1 A Development Methodology for Programmable Ar-
chitectures

Using the basic principles behind the Y-chart methodology [74], we propose an
approach that addresses the characteristics of both the application domains that
we look at, protocol and multimedia processing, and also of the programmable
architectures, TACO and MICAS, that we use here.

Figure 2.1 presents the process of the generic methodology that we propose.
The process differs from the one of Y-chart in the fact that only the Application
Functional Requirements are taken into consideration during the application spec-
ification process. The impact of such an approach is that the mapping process is
performed only with respect to the functionality of the application. Consequently,
a qualitative configuration of the architecture is obtained. The Non-functional Re-
quirements (e.g., performance and physical characteristics) of the application are
taken into account only in the architecture exploration phase of the process, where
a quantitative configuration of the architecture is obtained. We briefly describe the
main phases of the process here, to provide a general overview of the approach,
deferring the details of each phase to the following chapters.

In the Application Specification phase, the application is analyzed with respect
to the functional requirements in a top-down manner. Several subphases are used,

1Ideas discussed in this chapter have been published in [P.6]
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Figure 2.1: Development process for programmable architectures

for instance requirements analysis, application analysis, etc. At each subphase,
more details are gathered into the specification. The main goal of this phase is to
identify the pieces of functionality of the application, which have to be supported
by the architecture.

The Architecture Specification phase starts from the Architecture Requirements,
which capture the functionality that the architecture has to provide. This phase may
be seen as a combination of a top-down and a bottom-up approach, respectively.
In the former, hardware resources are identified from requirements of the architec-
ture; in the latter, the functionality supported by the architecture is extracted from
its hardware resources. Several subphases may be defined aiming at specifying the
system at several levels of abstraction.

The models resulting from the application and architecture specification pro-
cesses provide a functional view of the application and of the architecture, respec-
tively, which in turn form the input to the Mapping process. During this phase,
the functionality required by the application is mapped to the functionality pro-
vided by the architecture. Two artifacts are obtained: a qualitative configuration of
the architecture to support the functional requirements of the application, and the
application code to run on this configuration. If some functionality of the applica-
tion is not supported by the architecture, new resources of the architecture may be
suggested.
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In the Simulation phase, the functionality of the resulting system is validated,
with respect to the requirements of the application. The validation is performed
based on the input/output behavior of the system. In the situation that errors in
the specification (of both the application and architecture) occur, corrections are
suggested, and once they are attended, the mapping process is performed again.

The Exploration phase deals with tailoring the architecture towards an opti-
mal implementation of the application, in terms of performance requirements and
physical constraints. This phase implies performing estimations of the architecture
from several perspectives. For instance, the system may be simulated again, and as
a result, the designer collects performance estimates, with respect to the throughput
of the application. Additionally, an estimation of the physical characteristics (e.g.,
occupied area, power use) of the configuration is performed. Based on this data,
mainly optimizations of the architecture, but also of the application specification,
are suggested. The exploration process is performed iteratively until a satisfactory
configuration (i.e., the quantitative configuration) is obtained. For each quantita-
tive configuration, the application code is optimized such that it takes into account
the parallelism of the configuration.

Out of the exploration process, the designer selects one or many configurations
suited to implement the application and targets them to be synthesized in hardware.
However, we will not address the synthesis phase of the process in this thesis.

2.2 The Basic Principles and Tools of the Model Driven
Paradigm

As mentioned in the introduction, software systems can be more easily and ef-
ficiently developed, if some abstraction principles are followed. Based on this
paradigm, the visual models of the system have replaced the source code that was
traditionally used for specifying software systems. Moreover, according to this
paradigm, these models should be specified independently of the concepts of any
implementation platform, thus moving the focus from implementation issues to
problem-domain ones.

To support such a viewpoint, several modeling approaches have been devel-
oped in recent years. The Model Driven Architecture (MDA) [93], as promoted
by the Object Management Group (OMG), has been, from the very beginning,
the driving force behind the new paradigm. MDA proposes the use of models
to specify the system, starting from requirements and advancing towards specific
implementations. Several models are proposed within this scope. A Computa-
tional Independent Model (CIM) abstracts the concepts (and their relationships) of
a given application domain; a platform independent model (PIM) is used to specify
the software system independently of the characteristics of the implementation ar-
chitecture, and last but not least, the implementation architecture is specified by a
platform model (PM). By implementing the PIM on a given PM, a platform specific
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model (PSM) is obtained. One of the key ideas behind MDA is the use of model
transformations as the main mechanism to move the system specification from one
abstraction level to another. Four types of possible model transformations are pro-
posed:

• the PIM→PIM transformation promotes refinements (e.g., adding more details)
of a specification, in a platform independent manner;

• the PIM→PSM transformation projects a platform independent specification on
a given “implementation” infrastructure;

• the PSM→PSM transformation covers refinements of the specification, in a
platform-dependent manner;

• the PSM→PIM transformation changes existing specification models into more
abstract ones by removing platform dependent details.

Beside being a promoter of the model driven paradigm, OMG [90] also proposes a
number of technology standards to sustain the MDA approach:

• Object Constraint Model (OCL) [92] to enforce the consistency of models;
• the Meta-Object Facility (MOF) [95] to define new modeling languages;
• XML Metadata Interchange (XMI) [91] to support model interchange, etc.
Among the proposed standards, the Unified Modeling Language (UML) is sug-
gested as the de facto language for “visualizing, specifying, and documenting soft-
ware systems” [96].

Although MDA suggests the usage of models and model transformations to
evolve the specification, there is no indication on how, when and under what con-
ditions models are created and transformed during the entire development process.
Initially proposed by Kent [70], the Model Driven Engineering (MDE) extends
MDA by combining “process and analysis with architecture”.

Other researchers realized that the MDA paradigm can be applied not only
to software, but to other domains, too. The Model Based Development (MBD)
[110, 111] is similar in spirit to MDE, with the difference that, now, the system
seen as a combination of software and hardware is to be modeled. Beside pointing
out that a number of activities need to be defined and performed at each step of
the development cycle, MBD argues that the designer also needs a collection of
domain specific languages to model the system at different levels of abstraction.
The approach targets, in particular, embedded software, but also the embedded
system as a whole. In addition, applying the same idea of abstraction to handle
complexity, MBD suggests that the hardware platform should also be abstracted at
several levels, following the principles of the platform-based design [131].

In our opinion, all these paradigms have the following aspect in common: they
define an infrastructure and a set of concepts, which may be used for defining
domain-specific methodologies (i.e., processes, methods and corresponding tool
support). We see the above mentioned modeling paradigms as complementary,
each of them adding new principles and ideas on top of the existing ones. There-
fore, throughout this thesis, we try to adopt the best of each. In the rest of this
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work, we use the term model driven paradigm to cover the principles of all these
extensions in a generic manner.

In the following, we briefly discuss the tools of the model driven paradigm
that one may use to define and support a custom methodology for domain specific
applications.

2.2.1 The Unified Modeling Language

The use of object-orientation provides an important abstraction mechanism if com-
pared to traditional methods. Features like data encapsulation, inheritance and
polymorphism greatly improved the efficiency of programming and gradually raised
the popularity of the object-oriented programming languages.

Along with the large scale adoption of object-orientation, different methods for
the analysis and design of software systems have been conceived. Due to the lack
of consensus among these methodologies and as well as to their deficiencies, very
few were actually adopted, whereas others were either combined or simply filtered
out. Those few ones that survived started to present similarities and to slowly
evolve towards common grounds. Following this trend and, at the same time, due
to the need for a commonly used modeling language, the promoters of various
methodologies decided to join forces in creating a unified notation. Consequently,
the notations of the three of the major methods of that time, Booch methodology
[22], the Object Modeling Technique (OMT) [108] and Object-Oriented Software
Engineering [65], were conjoined into the Unified Modeling Language (UML).

UML was adopted by the Object Management Group (OMG) [90] in 1997
(three years before MDA). Several versions of UML have been issued, each one
with additions and improvements as compared to the previous ones. Here we use
UML version 1.4 [94], since it was the most recent version at the starting time
of this research. Nevertheless, the approaches discussed in this thesis may also
be applied to the latest UML version, namely version 2.0, possibly with some
changes. Henceforward, the UML term is equated to UML version 1.4, unless
otherwise specified.

UML provides nine diagrams to be used during the entire development process
of software systems. The diagrams cover the four main perspectives of software
modeling. The functional perspective is modeled using Use Case diagrams, which
enable one to capture the requirements of a system by modeling the relationships
among actors (external users of the system) and use cases (functionality of the sys-
tem). The Class diagram provides a static perspective by modeling the structure of
the system in terms of data types (i.e., classes), their properties (i.e., attributes and
operations) and relationships (e.g., containment, inheritance, associations, etc.).
In addition, Object diagrams may be used to show the structural relationships be-
tween class instances (i.e., objects). From a dynamic perspective, four diagram
types are provided, and they are divided into two categories: interaction diagrams
and state diagrams. Interaction diagrams are used to show the interaction between
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objects, either as a sequence in time (i.e., Sequence diagrams) or as communication
(i.e., Collaboration diagrams). In the second category, the State diagrams provide
a view over the behavior of objects, by modeling their states and the transitions
between these states. The Activity diagram models the order in which the activities
of a system are followed. Two diagrams are used to model the physical perspective
of a system. The Component diagram provides a high-level view of the structure
of the application code, like source code, binary, or executable components. A De-
ployment diagram is used to show a run-time perspective of the physical processing
elements and of the software components using them.

UML has been proposed as a general-purpose language for software specifica-
tion and, implicitly, as the default modeling language of MDA. Its nine diagrams
are not intended to be used all at once, but the designer has to select the ones
needed for a given problem. In case the basic diagrams are not sufficient, the UML
language provides extensibility mechanisms which allow the customization of its
elements by defining profiles.

There are many critiques regarding the use of UML (e.g., [8, 44]), nevertheless
it seems that UML is being adopted by the industry at a steady pace. Statistics from
2002 show that the UML market has been growing 20 percent per year [121].

2.2.2 Models, Metamodels, and Profiles

The model is the main tool of the model driven paradigm that specifies the system
at different levels of realization. A model is composed of a set of language ele-
ments that conform to a language definition that specifies the elements and their
relationships.

A four-layered architecture (Table 2.1) is used to define new languages. At the
bottom level (i.e., level 0), concrete instances of the domain concepts are present.
Level 1 defines the language or the model used to represent the concepts of the
domain. Level 2 provides a definition of the language used on level 1, or in a
model driven terminology, a metamodel. Finally, on level 3, a language for defining
languages is used to create new language definitions. Such a language is referred
to as a meta-metamodel.

To define new modeling languages (i.e., metamodels), a new standard, the
Meta Object Facility (MOF) [95], has been proposed. MOF may be seen as a
language for language definitions, or in other words as a meta-metamodel. MOF
is an object-oriented framework that uses only four elements to define new lan-
guages: classes, associations, data types and packages. Classes are used to model
the meta-objects in the new language, while Associations model binary relation-
ships between meta-objects. Datatypes define the data used in the new language,
while packages provide model management facilities, enabling the split of the def-
inition of the new language into several parts, in order to cut down on complexity.
Basically, a metamodel is defined using the UML class diagram notation. As such,
associated object-oriented features are supported: classes may have attributes, they
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Level Description MDA term Example
level 3 language for defining languages meta-metamodel a MOF Class (MetaClass)
level 2 language definition metamodel a UML Class
level 1 domain concepts/ model class “Car”

language elements
level 0 domain/language instances instance object car = “BMW”

Table 2.1: The four-layer metamodeling architecture

may be associated using inheritance, aggregation, composition, etc. In addition to
the abstract syntax provided by the metamodel definition, other domain specific
constraints can be enforced using well-formedness rules expressed in the Object
Constraint Language (OCL) [92].

A light-weight approach in defining new modeling languages is the profile
mechanism provided by UML [94, pp. 2-191]. Using this mechanism the UML
language elements can be adapted to represent concepts of specific application do-
mains. There are three elements provided for building profiles:

• Stereotypes provide “a way of branding” a UML model element, such that the
latter represents a given concept of the application domain;

• Tagged definitions are used to define additional properties for the stereotyped
elements;

• Constraints enable for the specification of additional restrictions, beside the ones
provided by the UML metamodel.

A coherent collection of stereotypes, tagged values and constraints forms a UML
profile. In fact, since profiles customize the UML metamodel, they are metamodels
themselves.

Using these extension mechanisms, any new or existing modeling language
may be expressed in a model driven context. The UML metamodel itself has been
developed following the four-layer architecture.

2.2.3 Model Transformations

The model transformation is the main tool of the model driven paradigm that
evolves abstract specifications into more concrete ones. A model transformation
translates a collection of source models that conform to a given set of language
(i.e., metamodels) into a collection of target models that conform to the same or to
a different set of language (i.e., metamodel).

One of the strong points of the model driven approaches, in general, is the
ability to refine a platform-independent specification of the system into a platform-
dependent specification in a continuous manner. This means that the same model
that has been the target of a PIM→PSM transformation may become, in turn, the
source model for a different PIM→PSM transformation (see Figure 2.2). In MDA
terminology this means: any PSM may be considered as a PIM in the next level

27



 

M1 

M2 

M3/code 

PM1

PM2

PM3

M0 PIM 

PSM PIM 

PSM PIM 

PSM 

≈

≈

Figure 2.2: Applying model transformations. The same model can be platform-
independent from one perspective and platform-specific from another perspective

of realization. This lets us regard as PM any new abstraction level used to project
the specification during the development process. A special kind of model trans-
formation is the code generation, which takes a source model (that conforms to a
metamodel) into the code of a programming language.

Ideally, model transformations should encapsulate activities that are commonly
repeated. In industrial settings, automating the model transformations is the pri-
mary focus, since it leads to a substantial increase in productivity and thus, in the
company profits [125].

2.2.4 Processes

The available collection of artifacts (i.e., models and transformations) has to be or-
ganized in a consistent manner in order to obtain the expected deliverables from the
process. MDA does not specify the way in which different artifacts of the system
are obtained and transformed, neither does it indicate what the intermediate deliv-
erables are and how they can be achieved [70]. Therefore, we adopt the concept of
process [70] to depict the evolution of a system at different levels of abstraction.

A process may be hierarchically decomposed into (smaller) sub-processes (also
called phases or steps). Additionally, the process must suggest the order in which
the sub-processes are supposed to be performed. During each phase, a specific set
of concepts, models, and metamodels are used to support the specification. The
steps are mainly intended to provide a systematic approach on how a given phase
is accomplished. In addition, tool support is assumed at each phase, tailored to the
specific needs of that particular phase. This implies that a tool chain could be used
to support the entire design process.
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2.2.5 Tool Support

Tool support is one of the prerequisites of the model driven paradigm, although
the MDA specification does not describe how this is to be achieved in practice.
The importance of tools stands in the fact that the successful realization of model
driven methodologies is given by the quality of the tools supporting them. In fact,
the CASE (Computer Added Software Engineering) tool support has proved [26] to
significantly increase the productivity of software projects. Tool support has to be
provided in terms of editors for the modeling languages, transformation engines,
constraint checking engines, and guidelines to assist the development process.

In recent years, a multitude of academic and industrial tools have been devel-
oped to support the model driven paradigm. Comprehensive lists of such tools
and an overview of their capabilities may be found on several web sites like:
http://www.modelbased.net/mda_tools.html, http://www.omg.org/mda/, or
http://planetmde.org/, whereas a comparison of several MDA tools in terms of
the features that they provide may be found in [123].

Benefiting from the concepts and tools provided by the model driven paradigm,
we propose to use them as a framework for supporting the development of pro-
grammable architectures. More specifically, we regard the process proposed in
Figure 2.1 as being supported by several solutions. A concrete solution in model-
ing the specification of the system is proposed in each phase, as it will be discussed
in the next chapters. Moreover, several solutions for each phase may be available,
and in this case, we leave to the designer the choice of selecting the ones that suit
better a particular problem domain.

During each phase of the process, models (based on corresponding metamod-
els) are used to describe the specification of the system, at different levels of ab-
straction. In order to relate one model to another, transformations are defined; they
provide not only a systematic approach in refining the specification, but also tool
support and automation. Figure 2.3 presents the previously proposed process for
programmable architectures, in terms of models and model transformations. As
one may notice, the entire process can be seen as a sequence of PIM→PSM trans-
formations performed at different levels of abstraction.

The input of this process is represented by the Functional Requirements and
Non-functional Requirements of the application, and by the Architecture Require-
ments of the target programmable architecture. During the Application Specifica-
tion phase (Figure 2.1) the Functional Application Model is obtained. Similarly, in
the Architecture Specification phase the Architecture Programming Model is con-
structed. Using these two models, the application specification is “implemented”
on the architectural specification during the Mapping phase. The preliminary result
of the Mapping process is the Platform-Specific Application Model, representing
the application specification expressed in terms of the programming model of the
architecture. In a subsequent transformation, the Platform-Specific Application

29

http://www.modelbased.net/mda_tools.html
http://www.omg.org/mda/
http://planetmde.org/


Functional
Application

 Model

Architecture
Programming

Model

Architecture
Model

Architecture
Simulation

Model

Qualitative
Configuration

Model

Architecture
Synthesis

Model

Architecture
Estimation

Model

Platform-specific
Application

 Model

Application
Code

Optimized
Application

Code

Simulation
results

Estimation
results

Qualitative
Simulation

Model

Quantitative
Configuration

Model

Simulation
results

Quantitative
Simulation

Model

Quantitative
Synthesis

Model

Functional
Requirements

Non-functional
Requirements

Architecture
Requirements

Figure 2.3: Artifact-based view of the development process for programmable ar-
chitectures

Model is mapped onto the Architecture Model in order to identify the hardware
components of the architecture (i.e., Qualitative Configuration Model). Based on
the selected hardware components and on their capabilities, the Platform-Specific
Application Model is refined (transformed) into the Application Code that will be
used to drive the qualitative configuration of the architecture.

Once the Mapping phase is completed the Simulation of the identified system
is performed with respect to its functionality. The Qualitative Simulation Model
is obtained via a PIM→PSM transformation from the Qualitative Configuration
Model and from the Architecture Simulation Model. Preliminary performance data
(Simulation results) are gathered from the simulation to serve in the Exploration
phase, along with Estimation results and the Non-functional Requirements, for
building the Quantitative Configuration Model. Based on the latter model, the
Application Code is optimized to provide the required application performance.

Two main deliverables are produced as output of this process: the Quantitative
Synthesis Model to implement the architectural configuration in hardware and the
Optimized Application Code to run on the resulting quantitative configuration.

As mentioned in the introduction, we adopt the use of UML as the main mod-
eling language throughout the entire process. The process of our methodology
stretches across several platforms, both in the hardware and in the software do-
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mains. When the set of diagrams provided by UML is not sufficient or not expres-
sive enough, we use its extension mechanisms to create domain specific languages.

2.3 Summary

In this chapter, we have introduced a methodology for programmable processors.
The methodology can be seen as a derivation of the Y-chart approach. We have
placed this methodology in the context of the model driven paradigm to show that
it may benefit from the model driven principles and tools.

In the following, we will discuss in more detail the solutions that we propose
or use for each phase of the methodology. As a precursory remark, we consider
that several solutions could be suggested for each phase, and that they should be
combined by the designer in a consistent process, based on the particularities of
the problem to be addressed.

Thus, our methodology is intended to be a general framework (i.e., collection
of concepts, methods and tools) that the designer can customize for a specific appli-
cation domain, based on his/her needs. We are not advocating a “one-size-fits-all”
solution, instead we consider that each application domain should use a customized
solution that optimally exploits the particularities of its concepts and features.
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Chapter 3

UML for Application
Specification

In this chapter1 we discuss a UML-based methodology for specifying embed-
ded applications targeting programmable architectures. The approach discussed
in this chapter corresponds to the Application Specification phase in Figure 2.1.
In contrast to most of the current methodologies for programmable architectures,
in which ad hoc approaches are used for creating the application specification, we
propose a solution in which the specification is systematically constructed from
the initial application requirements, until it becomes “mappable” onto the imple-
mentation architecture. UML plays a central-role in this methodology, which is
based on the observation that UML provides a set of diagrams for modeling vari-
ous aspects of a system, without explicitly defining a process for combining these
diagrams consistently. Therefore, we propose a methodology in which we select
several UML diagrams and combine them for specifying applications in the appli-
cation domains that we address, without aiming at providing a general approach
valid for all domains. Furthermore, we do not aim for a completely new method-
ology, but rather to combine existing methods and tools that help us achieve our
goals. Simplified examples of an IPv6 router are used to document the approach.

Figure 3.1 presents the main steps of the methodology. We start by capturing
the application requirements using the use cases technique, then we identify objects
in the system following a functional decomposition. Afterwards, we perform be-
havioral analysis to identify relationships among objects and the functionality that
each object provides. Next, we suggest the use of collaboration diagrams in com-
bination with activity diagrams as the main tool of the behavioral analysis process.
Finally, the class diagram of the system is obtained from the identified objects.

1This chapter is based on and extends the [P.1] publication.
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Figure 3.1: Main steps of the analysis process

3.1 Requirements Specification

The application requirements are usually provided to the system designer, during
the negotiation with the customer, in a written form and using natural language. It
is the designer’s job to process these requirements and extract those aspects rele-
vant to the specification of the system. For the IPv6 router case study that we use,
the main sources of information are based on the Internet Protocol version 6 (IPv6)
[34] and the Routing Information Protocol next generation (RIPng) [82] specifica-
tions, as well as on related standards and books. A more detailed description of the
two protocols and the motivation behind choosing RIPng as the routing protocol
are given in [134]. In the following, we discuss only those aspects relevant to the
current thesis.

Briefly, the goal of our case study is the design of a 10 Gbps IPv6 router that
routes datagrams over Ethernet networks, using the RIPng protocol. A router is a
network device that deals with switching data from one network to another in order
to reach its final destination. Two main functionalities have to be supported by the
device: forwarding and routing. Forwarding is the process of determining on what
interface of the router a datagram has to be send on its way to destination. Rout-
ing is the process of building and maintaining a table (i.e., the routing table) that
contains information about the topology of the network. The router builds up the
routing table by listening to specific datagrams broadcasted by the adjacent routers,
in order to find out information regarding its networking environment. At regular
intervals, the routing table information is broadcasted to the adjacent routers to in-
form about changes in the “known” topology. In brief, an IPv6 router should be
able to receive IPv6 datagrams from the connected networks, to check their va-
lidity for the right addressing and fields, to interrogate the routing table for the
interface(s) that they should be forwarded on, and to send the datagrams to the
appropriate interface(s).
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Capturing the Requirements into Use Cases. The Use Case diagram is among
the main artefacts used for capturing requirements in UML. In many research com-
munities it is seen as an important tool for initiating object-oriented projects [23].
Even if our target application is not necessarily object-oriented in its nature, we
consider use cases as a useful technique for requirements elicitation between the
analyst and the domain expert. In fact, use cases are quite independent of object-
oriented modeling and they may be applied to any system specification [64].

There are basically three types of elements in a use case diagram. An actor is
an external user of the system, while an Use Case is a piece of functionality (e.g.,
a service) provided by the system. Relationships indicate not only which actor and
use case instances communicate (i.e., associations), but also how use cases relate
to each other (i.e., include, extend and generalization).

In our case study, two external actors that interact with the router have been
identified from the IPv6 router requirements. The Node is a common network node
that requests the router to forward datagrams and eventually receives an ICMPv6
error message in case of failure. The Router depicts neighboring routers that ex-
change topological information with our router. In the current example, we assume
that the datagrams exchanged between the router and the environment are of three
types, namely Forwarding, Routing and Error type, respectively and that their clas-
sification is done outside the system (i.e., the datagram is already correctly clas-
sified when entering the IPv6 router). Next, we have extracted six use cases, as
shown in Figure 3.2, from the written specification of the IPv6 router. Several pos-
sibilities of describing use cases are proposed by the UML standard itself: textual,
state machines and even methods and operations associated to use cases. There
seems to be no definite guidelines for identifying and specifying use cases, differ-
ent researchers proposing different solutions [14, 24]. For the moment, we follow
a textual-based description, yet a more elaborated technique, like a template-based
one [14], may be applied. In the following, we briefly describe the identified use
cases:

1. Forward Datagram - The router receives a datagram from a node on one of
its interfaces and decides on what interface(s) the datagram should be sent, in
order to reach its final destination. Upon receiving, the datagram is checked for
validity and correct addressing, and if not correct, the ICMPv6 sub-protocol is
invoked to send an Error Message back to the originator of the datagram. Then,
the Routing Table is interrogated, to decide the next interface. If no route is
found, the ICMPv6 sub-protocol is invoked to send an Error Message back to
the originator of the datagram.

2. Send Error - If, during the processing of a datagram, an error is encountered in
its fields, or a forwarding route for the datagram is not found, an ICMPv6 Error
Message is sent back to the originator.

3. Treat Request - The router receives Request datagrams (from the adjacent routers
on the network) that ask for topological information from the Routing Table.
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Figure 3.2: Use Case diagram for the IPv6 router

Upon receiving, the datagrams are checked for validity and correctness of the
fields. If a datagram is not correct, the ICMPv6 sub-protocol is required to send
an Error message back to the originator.

4. Inform Topology - The information stored in the Routing Table is sent to adjacent
routers to inform about changes in the topological information. This information
is sent either periodically, as multicast datagrams to all adjacent routers, or as a
result of a special request from a single router.

5. Update Routing Table - The router receives Response datagrams from adjacent
routers in order to update its Routing Table information. Upon receiving, the
datagrams are checked for validity and correctness of the fields. If a datagram is
not correct, the ICMPv6 sub-protocol is invoked to send an Error message back
to the originator.

6. Create Request - Whenever the Routing Table of the router is empty, a Re-
quest message is sent (as a multicast datagram) on each interface, to all adjacent
routers, to request topological information.

3.2 Object Analysis

The object analysis process is performed in order to get a better understanding of
the application functional requirements. During this step, the emphasis is put on
identifying the objects in the system and how they collaborate to achieve the overall
functionality of the application.

The traditional UML approach, based on its object-oriented fundament, sug-
gests that first classes of a system are identified, and then instances (i.e., objects)
are created to provide a run-time view of the system. Here, the problem that we
face is similar to the question “Who was the first on Earth, the egg or the hen?”.
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Some researchers consider that the classes in the system should be discovered first
and that, later on, objects are obtained as instances of these classes [14, 39]. This
is also in agreement with the idea of object-orientation. In contrast, other authors
[48, 107] consider that, for certain application domains, the objects in the system
should be firstly identified and then classified.

At the time we have started this work, with the exception of the methods based
on the noun identification technique [4], most of the existing methods for object
identification seemed to be applied in a quite ad-hoc manner. That is, the pro-
cess is very much based on the experience, intuition and inspiration of the ana-
lyst. Moreover, applying different methods to the same specification often results
in a different set of objects. Many researchers admit the existence of a concep-
tual gap between use cases and class/object identification [59, 101]. A couple
of techniques meant to alleviate this problem have been proposed in literature
[15, 39, 63, 107, 138]. Other approaches consider that the objects should be ex-
tracted from use case diagrams [48, 107], or even following an automated object
discovery process [18].

It is also our opinion that, in particular for the embedded system domain, iden-
tifying the objects first and then classifying them is preferable. It is the objects in
their whole that constitute a system, and not the classes that only categorize them
[47]. Furthermore, we need to analyze what are and how different instances of
the application domain interact together [77], rather than to focus on a structural
perspective of the system. In fact, the object diagram seems to be considered a
second-class citizen, many object-oriented design methodologies focusing on the
class diagram and very few on the object one [120].

The 4-Step Rule Set Method. After having surveyed several methods, we de-
cide to follow the 4-Step Rule Set (4SRS) method [47, 48, 81], because of its sys-
tematic approach in identifying objects. The 4SRS method has been intentionally
developed to provide a systematic approach for bridging the gap between the re-
quirements analysis and object identification phases. 4SRS is an extension of the
Jacobson’s approach [63], and proposes to split use cases into three objects: inter-
face, data, and control, respectively. Interface objects are used at the border of a
system in order to intermediate the communication with the external environment
(i.e., actors), control objects implement the algorithmic and the control behavior of
the system, while data objects take care of storing data and providing access to it.

The method is composed of four steps. In step 1, each use case is transformed
into the three types of objects mentioned above. Step 2 decides which of the three
objects are necessary to implement the functionality of the use case. For instance,
an interface or a data object obtained from a use case describing primarily an
algorithmic computation might not be providing any information, so it may be
removed. In step 3, objects are aggregated and combined into packages based on
their common characteristics. Finally, step 4 is used to identify the associations
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Figure 3.3: Initial Object diagram for the IPv6 router

between objects. At each step, numeric tags are used to trace the objects belonging
to the original use cases.

As a result of applying step 1 to the use case diagram in Figure 3.2, we obtain
three new objects for each use case. The objects have the same tag number as the
original use case, and an additional tag name is used to indicate the object type. For
instance, the {1.i}, {1.c} and {1.d} objects (see Figure 3.3) represent respectively
the interface, control and data-objects obtained from splitting the {1.} Forward
Datagram use case. In addition, an actor is created in the object diagram for each
actor in the use case diagram.

By applying step 2, we take the decision upon which objects are kept or dis-
posed, based on the original specification of the use case. Just for convenience,
some of the objects may also be renamed. Following this approach, only the fol-
lowing data-objects have survived: {1.d} (i.e., forward datagram) and {5.d} (i.e.,
routing table). Although we could also have data-objects for use cases {2}, {3},
{4}, {6}, we have decided that only the major functionalities of the system (i.e.,
{1.} forwarding and {5.} routing) require a data object. This does not mean that
information is not produced in objects {2.c}, {3.c}, {4.c} and {6.c}, but that the
major role of those objects is to perform behavior.

In step 3, the remaining objects should be organized into packages or aggre-
gations, based on their common characteristics, while in step 4 the associations
between the identified packages/objects should be identified. These two steps are
based on a rather high-level view of the system and on the intuition of the designer.
We consider that in order to be able to identify “related” objects, as well as the
associations between them, a deeper look into their functionality and into their col-
laborations is required. Keeping this goal in mind, we propose an approach that
allows us to perform a more thorough analysis of object interactions and of their
internal behavior.
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3.3 Analyzing Object Behavior

Behavioral analysis is performed by applying use case scenarios on the set of ob-
jects identified in the previous steps. The process is focused not only on the identi-
fication of how objects interact at run-time, but also on how their internal behavior
supports this interaction. Two UML diagrams are used to support the approach:
collaboration diagrams for representing object interaction, and activity diagrams
for specifying the internal behavior of the objects. At high-level, the approach may
be seen as composed of three basic steps: a) the interaction between objects is de-
picted in terms of collaboration diagrams; b) the internal behavior of each object is
specified; c) the resulting set of objects is refactored by grouping/splitting objects
and their behavior. These steps are applied iteratively until no more refactorings
are necessary.

a. Identifying Object Collaborations

In order to identify the interaction between the initial set of objects, use case sce-
narios are applied. We model this interaction by collaboration diagrams. A collab-
oration diagram specifies the object communication by showing the information
passed among objects. This helps in determining what functionality should be pro-
vided by each object to its neighbors. UML allows the description of the messages
sent among objects and their ordering in time. Messages have a name and may
carry a list of parameters.

The identification of object collaborations is composed of three substeps:

a.1. apply scenarios on the initial set of objects;
a.2. create a collaboration diagram for each scenario;
a.3. identify services (i.e., operations) provided by each object;

After the first two substeps have been executed, a collaboration diagram is ob-
tained for each scenario of the system. It is important to note that a scenario may
involve more than one use case and therefore, a use case may take part in several
scenarios. At object level, this translates into the fact that an object may also take
part in several scenarios. Figure 3.4 shows an example of applying the “{1}. For-
ward destination unreachable” scenario on the previously identified set of objects.
The interaction between the objects participating in the scenario is expressed in
terms of service requests, which are tagged based on the tag of the scenario (i.e.,
1.). Six objects collaborate to achieve the scenario. Object {1.c} is in charge of
interrogating (1.1 getNext()) the input interfaces of the router (object {1.i}) for in-
coming datagrams, and of storing (1.2 store()) them into the {1.d} object. Based on
the information extracted from the datagram, the routing table is interrogated (1.3
RTLookUp()) in order to determine the next interface of the router on which the
datagram has to be forwarded. In case such an interface is not found, an ICMPv6
datagram is created (1.4 error()) from the original datagram (1.5 retr()) and sent
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(1.5 send()) to the interface from which it originated. In UML terminology, ser-
vices provided by classes (and therefore by objects) are referred to as operations.
Based on the service requests between objects, the operations of each object are
identified in substep a.3. Applying all the scenarios of the specification, the opera-
tions provided by objects are gradually identified.
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Figure 3.4: Collaboration diagram for the {1.} Forward destination unreachable
scenario

b. Specifying Object Behavior by Activity Diagrams

A UML Activity Graph [25, 39, 94] is a kind of a state machine that focuses on the
sequence and the conditions under which certain actions are executed. An activity
graph is composed of a set of nodes, called states, which represent atomic compu-
tations and directed vertices depicting transitions from one state to another. Each
state is triggered by a transition and executes until completion. A state may be
either a SubActivityState (a composite state that contains another activity graph) or
an ActionState (an atomic state that cannot be further decomposed). Pseudostates
(like initial, join, fork or junction) are also defined to model complex transitions. In
addition, a FinalState is used to model states that cannot have any outgoing tran-
sitions, while Decision states are provided to specify branching in the execution
flow. Conditional execution may be obtained through guarded transitions (transi-
tions that are executed when an associated guard condition is met). In addition,
transitions may trigger events. Two graphical notations are used to explicitly rep-
resent the send signal and receive signal events, which model the communication
with the external environment (an example will be shown in Figure 3.7).

Although the UML standard suggests the use of activity graphs mainly for
workflow specification, our motivation for choosing them to model the internal
behavior of the objects is three-fold:
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1. subActivity states may be refined (decomposed) into other activity graphs, en-
abling the designer to work on several levels of abstraction and also to refine the
initial activity graphs into more detailed specification;

2. activity graphs enable the natural modeling of the sequencing of processing
steps that are applied on data, in data-driven systems (such as protocol pro-
cessing applications);

3. UML does not prescribe a specific language for specifying the activities, allow-
ing by this flexibility in describing the states, at the expense of a loose specifica-
tion. Thus, one may use natural language or programming languages constructs
to describe the action states at different levels of abstraction.

Examples of using activity diagrams for behavioral specification are limited. In
[11], the application analysis is performed and the design constraints captured in
a use case representation. Then, by using activity diagrams and OCL, the design
is transformed into a formal model that can be partitioned into hardware and soft-
ware, according to a fixed set of hardware resources and following object-oriented
techniques, respectively. Björklund [20] proposes the translation of UML state-
charts and activity graphs into Rialto, a language for representing multiple models
of computation. Ali and Tanaka [7] propose the use of activity diagrams to model
control objects; Java code is generated from the specification. The use of activity
diagram, as a versatile and easy to use tool for behavioral specifications, is also
suggested by Barros and Gomes [17]: the authors propose the transformation of
activity diagrams into class diagrams with executable code. Also, Chen et al. [28]
use the activity diagrams as discussed in Section 1.4.

In our approach, we use activity diagrams to specify object behavior and also
to refine it by taking advantage of the hierarchical decomposition of the activity
graphs. This hierarchical decomposition gives us the opportunity to navigate at
different levels of abstraction of the specification and to identify common behavior
that has not been obvious during the object identification process. This step is also
composed of several substeps:

b.1. create an initial activity graph for each object/operation;
b.2. decompose the initial activity graph into subactivity states, based on the

specification of the applied scenario; use numeric tags to trace the relation-
ship between collaborations and operations;

b.3. identify the states that are operations of the neighboring objects and those
that are activities of the local object; update the message ordering in the
collaboration diagram, if necessary;

b.4. decompose the activities hierarchically, based on the application require-
ments; propagate tags hierarchically;

The example in Figure 3.5-(a) shows the internal behavior of object {1.c} For-
ward. After applying substeps ’b.1’ and ’b.2’, five subactivity states have been
identified. Applying substep ’b.3’ we observe that, excepting the Analyze state,
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Figure 3.5: (a) Specifying internal behavior based on the applied scenario;
(b) Hierarchical decomposition of Activity Graphs. The dashed arrow represents
states that have not been included in the figure due to space reasons

which is an internal computation of the Forward object, the rest of the states may
be implemented as operations of the neighboring objects. The tags added to each
state are derived from the tag of the object (e.g., {1.c}) and from the sequence
number of the external operation that implements the state (for instance, {1.2} for
Store), which also encodes the number of the scenario in question. As one may no-
tice, the tag of the Analyze state has an additional level of hierarchy. This approach
was used to mark that the {1.c.1.1.1} Analyze state precedes the {1.c.1.2} Store
state, but it is executed after the {1.c.1.1} Get next datagram state. Finally, sub-
step ’b.4’ deals only with refining the activity graph of each operation based on the
application specification. Figure 3.5-(b) presents an example where the {1.c.1.4}
Send error destination unreachable state is decomposed hierarchically into more
detailed activity graphs.

We point out that, during the behavioral analysis step, two kinds of objects may
be identified: objects that provide services to other objects, and objects that execute
their own state machine (i.e., activity graph) continuously (e.g., {1.c} forward) to
coordinate the control flow of the entire scenario. The objects in the latter category
have been investigated by many researchers and different names have been sug-
gested: permanent [7], continuous [40], or active [113]. It is important to note that
active objects may themselves provide operations to other objects.
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c. Object Refactoring

The functional decomposition of the system into three categories produces rather
complex control objects, which is a known problem of such approaches. However,
analyzing their behavior one may further decompose the objects into less complex
ones by identifying overlapping functionality. Based on this functionality, one can
further split or group the objects. During this process, the activity graph of each
object/operation may also be refactored. The step is based on several substeps:

c.1. refine the communication of each collaboration diagram into an asynchronous
message passing communication;

c.2. refine activity graphs that use operations of other objects to support asyn-
chronous communication;

c.3. remove duplicate operations (i.e., same functionality, different naming) re-
sulting from applying different scenarios to the same object; update the col-
laboration diagrams of each scenario based on the new naming;

c.4. identify complex control behavior in objects and extract it into separate ob-
jects; (a). extract complex control behavior from data and interface objects;
(b). identify common behavior in different objects and group/split objects
accordingly.

At previous steps, object interaction has been specified using service requests.
This interaction may be classified into two categories. The first category includes
requests that invoke an operation of another object, after which the control is passed
to that object and, when the operation completes its execution, the control is re-
turned to the initial object. The second category includes requests that pass the
control to another object, while the activity graph of the emitting object continues
the execution without waiting for a reply. We refine these types of interactions
using an asynchronous message passing mechanism. An asynchronous message
passes the control to the target object, while the source object continues the execu-
tion of its activity graph. Following this approach, the interaction between objects
is transformed from synchronous to asynchronous during substep ’c.1’. In practice,
this means that the messages in the first category are transformed into a forward
message to invoke an operation and a backward message to announce its comple-
tion, respectively. For the second case, the initial message only translates into a
forward message that passes the control to the target object. In substep ’c.2’, the
activity graphs of the objects involved are modified to support asynchronous com-
munication. Send signal and receive signal events are used to represent the sending
and the receiving of a message, respectively. An example where an object (i.e., For-
ward) passes the flow of control to another object via a message (i.e., DestUnr) and
continues its execution is given in Figure 3.6. In comparison, Figure 3.7 shows an
example where the same object sends a message (i.e., addr) to another object and
waits for the message (i.e., int) announcing the completion of the second object’s
operation.
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Figure 3.6: Example of Asynchronous Communication refinement

     {2.c.1}
  Send error (Unr)

{1.c.1.1}
Get next datagram

{1.c.1.2}
Store

{1.c.2.1}
send on interface

{1.c.1.3.1}
addr

{1.c.1.3.3}
int

[found]

{1.c.1.3.2}
RTLookUp

{1.c.1.3.2.6}
RTEntry.Int

{1.c.1.3.2.1}
addr

{1.c.1.3.2.2}
get #Entries

{1.c.1.3.2.4}
get RTEntry(i)

[#Entries < i]

[! (#Entries < i)]

{1.c.1.3.2.3}
i = 0

{1.c.1.3.2.5}
i++

[RTEntry.Prefix = addr]

[!(RTEntry.Prefix = addr)]

{1.c.1.3.2.7}
int=notFnd

1.3. addr

1.3.1 int

{2.c.1.2}
Create New Datagram

{2.c.1.5.1} {32b}
sum = 0

{2.c.1.5.2} {32b}
sum=sum+SA[0 ..15]

{2.c.1.5.3} {32b}
sum=sum+SA[16 ..31]

{2.c.1.5.4} {32b}
sum=sum+NextHeader

{2.c.1.5.5} {32b}
sum=sum+NextHeader

{2.c.1.5.10} {32b}
1sum=sum[0..15]+sum[1 6..31]

{2.c.1.5.11} {16b}
chk = not (1sum)

{2.c.1.5.6} {32b}
sum=sum+NextHeader

{2.c.1.5.7} {32b}
index = 0

{2.c.1.5.8}
sum=sum+dtg[in dex]

{2.c.1.5.9} {32b}
index = index+16

index <
ICMPLength*8

[yes]

[no]

{1.c.1.1}
Get next datagram

{1.c.1.4}
LookUp Next interface

{1.c.1.3}
Store

[!dtg]

[!found][found]

{1.c.2.1}
send on interface

[dtg]

{2.c.1.5}
Compute

Checksum

{1.c.1}
Forward

{1.c.1.5}
send error

destination unreach

[!found]

{1.c.2.1}
send on interface

{1.c.1}
Forward

{1.c.1.5}
Unr

{2.c.1.1}
Unr

1.c.1.5 Unr

{1.c.1.2}
Analyse

{1.c.1.4.1}
Create New Datagram

{1.c.1.4.4}
Add payload

{1.c.1.4.3}
Create ICMPv6Header

{1.c.1.4.2}
Create IPv6Header

{1.c.1.4}
error(dstUnr)

(a). (b).

     {5.d.1}
  RTLookUp

{5.d.1.3.2}
LookUp Next interface

{1.c.1}
Forward

{5.d.1.3.1}
addr

1.3.1 addr

{1.c.1.2}
Store

{1.c.1.3.1}
addr

{1.c.1.3.3}
int

1.3.3 int

{5.d.1.3.3}
int

Figure 3.7: Example of Synchronous Communication refinement

In substep ’c.3’, all the scenarios applied are overlapped such that each ob-
ject contains the operations identified by each scenario in part. We analyze the
operations of each object from the point of view of their functionality and, if oper-
ations with similar functionality are present, we keep one and eliminate the others.
Consequently, the collaboration diagrams, in which the eliminated operations have
been used, are updated to use the preserved operation. An example is the one of
the send error object that, being part of several scenarios, contains two operations
for checksum computation, each originated by a different scenario. We mention
here, that the identification of overlapping functionalities of the objects should also
be performed in early stages of the behavioral analysis, namely after applying sub-
steps ’a.3’ and ’b.3’, when the effort of refactoring the collaboration diagrams is
smaller. We have inserted it here to be used as a final guideline before proceeding
to the next steps of the process.

Finally, substep ’c.4’ is the most complex step of the refactoring process. The
purpose of this step is to identify and isolate common functionality in objects.
Based on this, one may suggest the splitting of complex objects into more man-
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ageable parts, or grouping the objects providing similar functionality into a single
object. The approach targets mainly control objects, since they are the ones im-
plementing the behavior of the system. One has to notice, though, that during this
refactoring step, the activity diagram of the objects involved is also refactored. One
example may be the checksum computation provided by two different objects. In
such case, the analyst may decide to move this functionality from the initial objects
into a new object that provides such functionality.

Another situation where substep ’c.4’ may be useful is in the identification
of pieces of functionality that have not been detected in the previous steps. This
substep applies mainly to interface and data objects. For instance, in Figure 3.4,
a message RTLookUp(addr) is used to query the data stored in the {5.d} rout-
ingTable object. By decomposing the activity graph of RTLookUP() operation, we
have identified a complex algorithmic computation needed for querying the data
of the routing table. Such computation should not be situated inside data objects,
since they are considered bared of control. Therefore, one may decide to move the
routing table interrogation to a new object and to refine the communication between
the new object and the RT object. This also implies that the RTLookUp operation
provided by the {5.d} routingTable object is transformed into a getRTEntry() op-
eration. Figure 3.8 presents the activity graph of the identified functionality that
is “pulled out” of the {5.d} routingTable object. The decision of whether the new
object will be integrated, in next steps, with other control objects (e.g., forward) or
it will remain as a stand-alone control object is left to the designer.

Creating the Class Diagram. The identification of the objects in the system,
along with their operations and behavior, puts the basis for focusing, in the fol-
lowing step of the analysis phase, on classifying the identified objects into classes
and creating a class diagram of the system. The class diagram provides a system
template from which one may instantiate configurations of the system at design-
time. Nevertheless, a class diagram may not always be necessary. In the embedded
systems field, many components of the system often have only one instance (i.e.,
a controller of an elevator), thus classifying them will not bring any additional
information.

In case a class diagram of the system is needed to give a better understanding
of the specification, it may be easily obtained from the updated collaboration dia-
grams created for each scenario. By overlapping all the scenarios and taking into
account the refactoring process, corresponding classes are derived from the objects.
Associations between classes are simply obtained by analyzing the collaborations
between different pairs of objects. For instance, if two objects communicate to
each other, an association is created between their corresponding classes. More
advanced object-oriented features like inheritance, composition, etc. may be used
if they are deemed necessary. For the moment, the identification of such features
is not taken into account.
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Figure 3.8: Object decomposition based on internal behavior

It is also worth mentioning that, after the completion of the behavioral analysis
process, steps 3 and 4 of the 4SRS method may be applied before obtaining the
class diagram of the system. For the moment, we consider this approach as subject
for future work.

3.4 Summary

We have presented a UML-based methodology for specifying embedded applica-
tions. The proposed approach is focused on identifying the functionality of the
application starting from its requirements. An existing method for object iden-
tification, 4SRS, has been employed to follow a functional decomposition of the
system. The method has been complemented with a behavioral analysis process
that enabled us to analyze in detail the functionality provided by each identified
object. The deliverables of this methodology, that is the objects of the system and
the specification of their internal behavior, correspond to the Functional Applica-
tion Model discussed in Figure 2.3.

UML has been used as a means to support the analysis process. The require-
ments of the application have been captured using use case diagrams, while the
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components of the system have been represented by object diagrams. In addition,
we have proposed the use of activity diagrams as a tool for analyzing and spec-
ifying the behavior of the objects. Several benefits from using activity diagrams
could be observed. On the one hand, they have been an easy to use and understand
notation, allowing us to focus on the computational steps of the application, rather
than on its state at a given moment in time. Based on the case study, we have
observed that activity graphs are well-suited for specifying data-driven systems,
where the interaction with the external environment is limited. Moreover, the use
of activity diagrams has provided benefits in terms of hierarchical decomposition
and relatively easy refactoring, thus allowing one to suggest refactorings of ob-
jects/operations. Due to the hierarchical representation of activities, we have been
able to expand or collapse the activities on different levels of detail, and to reuse
the same activity graph to implement several activity states.

There are some obvious drawbacks regarding the use of activity graphs. The
most noticeable one is that, for large specifications, the diagrams scale up badly
and it becomes difficult to edit and manage. The refactoring process has helped us
in reducing duplicate sequences of operations to some extent, yet the gain was not
enough. Moreover, if the UML tool facilitates the navigation from one abstraction
level to another, inside activity graphs, such complexity will be diminished even
more.

Only basic features of the UML tools employed have been exploited for sup-
porting the current approach. Further explorations of a good tool support are con-
sidered, nevertheless. Future work will be also concerned with investigating an ap-
proach in which the attributes of the objects are identified. Currently, the attributes
of each object are derived from the parameters of the operations in a rather ad-hoc
manner, and we consider that a more systematic approach has to be investigated.
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Chapter 4

Combining UML and DFD for
Application Specification

In the previous chapter, we have discussed a UML-based methodology for the spec-
ification of embedded applications. The main analysis tool of the approach has
been represented by the collaboration diagram, which has been used to structurally
decompose the system into less complex parts (i.e., objects). The approach was bi-
ased towards the identification of the functionality provided by each object via be-
havioral analysis. During the specification process, we have noticed that there has
been a functional perspective of the system that was not adequately represented by
the UML diagrams used. It follows that one needs to focus more on the data-flows
in the system and on how different system components affect these data-flows.
This necessity is largely due to the data-driven characteristic of the application do-
main that we have been addressing (i.e., protocol processing). Therefore, in this
chapter 1, we propose an approach that complements UML with a functional view,
to enable the inclusion of a data-flow perspective in the application specification
process.

Since its apparition, object-orientation has been constantly gaining popularity
over other specification techniques, becoming one of the main tools used for soft-
ware development. Beside object-oriented methods, other languages have been
proposed and used for similar purposes. One such language is provided by the
structured analysis and design methods [56, 136]. Although quite popular in indus-
trial environments in the 1970s, and even today in certain application areas [55], the
structured methods have been largely overshadowed by the object-oriented meth-
ods, especially after the introduction of UML. Currently, designers prefer the use
of either one or the other in an exclusive manner.

Nevertheless, we consider that both object-oriented and structured analysis
methods represent important tools in embedded systems design, each of them (with
its own strengths and weaknesses) providing important techniques for specifying

1This chapter is based on publications [P.3] and [P.7]
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the system under consideration. However, one conceptual model is limited to rep-
resent only a specific view of a system, filtering out important details of the specifi-
cation [37, 81]. Sometimes, several views of the system under development are re-
quired to capture all, or at least most of its features and details. Ideally, the designer
should benefit from an approach in which several design methods and conceptual
models are combined to specify the system at different abstraction levels [9].

The main goal of this chapter is to propose an approach in which the functional
and the object-oriented views are inter-played to represent the various modeling
perspectives of embedded systems. More specifically, we investigate a way of
combining the main modeling tool of the traditional structured methods (i.e., the
data-flow diagram) with UML-based models. The rationale behind the approach is
that both views are important for modeling purposes, in embedded systems envi-
ronments, and thus, the designer can benefit from their combined use for develop-
ing complex systems.

The chapter is organized as follows. We start with a brief presentation of the
structured methods and of the data-flow diagrams. Next, we provide an argumen-
tation in favor of integrating the structured and object-oriented methods for the
specification of embedded systems. For this purpose, we adopt three combinations
proposed by Fernandes [45], and we briefly present them. After that, we propose
a methodology for specifying embedded applications that combine the three sug-
gestions in a consistent manner. We focus our attention on defining a systematic
approach in which the transition between the UML and DFD models is performed.
Then, we present the tool support provided for the methodology, where the trans-
formations between steps are implemented using model scripts.

4.1 Structured Analysis

Structured Analysis (SA) is a method for the analysis of system specifications,
introduced by Tom DeMarco in late 1970s [36]. Three perspectives of the system
are taken into consideration: functional (i.e., data-flow diagrams), data (i.e., entity-
relationship diagrams), and dynamic (i.e., state transitions diagrams).

The main tool of SA is the data-flow diagram (DFD). DFDs use four symbols
to represent a system at different levels of detail: data-flows (movement of data
in the system), data-stores (repositories for data that is not moving), processes
(transformation of incoming data-flows into outgoing data-flows), and external en-
tities (sources or destinations outside the boundary of the system). DFDs provide
an activity-based behavioral view of the system, also designated as dynamic or
functional, useful for describing transformational systems, such as digital signal-
processing systems, multimedia systems, or telecommunication devices. All the
elements of a DFD come in two flavors: data and control, respectively. Control
processes process (and produce) events, while data-processes (also referred to as
data transformations) process and produce data. Consequently, we can have data-
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flows and data-stores to handle and store data, and control flows and control stores
to handle and store events, respectively.

A DFD specifies the system in a hierarchical manner. At the highest level, a
context diagram (containing exactly one data-process) is used to specify the inter-
faces between the system and its external environment, as well as external entities
interacting with the system. The interaction is depicted in terms of flows to and
from the system. In the lower layers, the top-level data-process is refined into more
complex DFDs. The processes on the lowest level (i.e., the leaves) are specified
using state machines for control processes, while for data-processes no strict lan-
guage is specified, typically pseudocode being used.

4.2 Combining DFD and UML

Reading through the UML specification, we have found the following statement:

“A frequently asked question has been: Why doesn’t UML support
data-flow diagrams? Simply put, data-flow and other diagram types
that were not included in the UML do not fit as cleanly into a con-
sistent object-oriented paradigm. Activity diagrams and collaboration
diagrams accomplish much of what people want from DFDs [...]” [94,
p. 1-3]

In our opinion, this statement could be interpreted in two ways: firstly, from
a conceptual point of view, object-oriented approaches do not require the use of
a data-flow model; secondly, if such data-flow model is really necessary, activity
and collaboration diagrams may be used to provide graphical notations for it. In-
deed, for traditional object-oriented methodologies, DFDs may seem inadequate.
However, although UML is regarded as a general-purpose modeling language (nev-
ertheless, not perfect [44]) a data-flow paradigm may be necessary for certain ap-
plication types. In fact, several authors pointed out the need of complementing the
object-oriented view with a functional perspective [8, 9, 67, 137]. Of course, for
applications whose characteristics require either a pure object-oriented or a pure
functional approach, such a combination is pointless. Authors have shown that,
when the right method is applied to the right application domain, substantial ben-
efits are obtained [52, 75, 130]. In this work, we intend to provide a solution for
those application domains that would benefit from the dual view provided by the
two methods.

There are both similarities and differences between the two paradigms. For
instance, both paradigms use a functional, a control and a data perspective of a
system. In turn, they put the focus differently on which one of them represent the
main artefact of the specification; furthermore, differences are also met in the order
in which these models are created and used. Typically, object-oriented methods
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have the class diagram as their main modeling tool, whereas structured methods
use the DFD as its main diagram.

For a data-flow approach to be really beneficial, it is not enough to select a
UML diagram as a graphical notation, but one has to integrate it into a design
methodology that specifies under what circumstances DFDs may be used, and what
can they be used for. In addition, tool support for such an approach is vital, not only
in providing editors for creating data-flow models, but also in assisting different
transformational steps of the process.

Fernandes has proposed three possible combinations of integrating DFDs with
UML [45]. In all three situations, both an object-oriented model and a functional
model are used in combination, allowing one to capture the details promoted by
each of the paradigms. We have decided to adopt these three suggestions as the
basis of our methodology and therefore, we briefly discuss them, in the following,
with the permission of their author.

DFDs to refine use case models. This combination is based on the observation
that both the use case model and the DFD model provide a similar functional per-
spective of the system, useful to capture the requirements of the application. In
addition, the DFD also models the interaction between different pieces of func-
tionality from a dynamic perspective, whereas the relationships between use cases
may only be modeled from a static perspective via �include�, �generalize�,
and �extend� relationships. Therefore, the transformation of a use case model
into a DFD model is proposed, in order to allow the designer to model the inter-
action (i.e., the data-flows) between use cases. To provide a systematic approach,
Fernandes proposes the use of an intermediary step, in which the objects of the
system are identified from use cases first, followed by a transformation of these
objects into DFD artifacts. As a practical solution, the use of the 4SRS method
[48] (that has already been discussed in Chapter 3) is suggested. The approach
is favored by the fact that the 4SRS method uses a functional decomposition, of
the system where control, interface and data objects are identified. With this cat-
egorization of objects, the control and interface objects may be transformed into
data-processes, the data objects into data-stores, the actors into external entities,
and the relationships between actors and use cases into data-flows.

DFDs to refine the behavior of a system component. The objects obtained as
a result of applying the 4SRS method should be regarded as complex components
or subsystems of a given system. Therefore, one has to be able to decompose them
further, in order to tackle their complexity. Consequently of transforming objects
into DFD elements, one may take advantage of the hierarchical decomposition of
DFDs to analyze their internal behavior in more detail. The approach may be
seen somewhat similar to the activity diagram-based behavioral analysis process
discussed in the previous chapter, yet the emphasis is put on data-flows in the
system and on the processing affecting the data, rather than on the control flow
sequencing provided by the activity diagrams.
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DFDs to be transformed into object/class diagrams. As a third option in com-
bining DFDs and UML diagrams, DFDs can be transformed into an object-oriented
model of the system [45]. The author argues that this approach might be beneficial
in two situations: a) in re-engineering activities, when the program code written in
some structured programming language is initially transformed into a DFD model,
from which an object-oriented model is obtained; b) in situations where the speci-
fication of the system is expressed using a DFD model, and the designer wants to
transform it into an object-oriented model that may be implemented following an
object-oriented programming language.

4.3 A DFD-UML Methodology for Application Specifica-
tion

In this section, we propose a methodology for specifying embedded applications,
which combines the previously identified possibilities to integrate DFD and UML.
The methodology that we present here, should be regarded as an alternative to
the methodology proposed in Chapter 3. The main goal of the methodology is to
provide a practical approach of merging DFDs with other UML models, with the
main emphasis put on defining a systematic approach to transform the models of
the system. We will show in the next section how we have automated the defined
transformations in a UML tool.

The methodology (Figure 4.1) defines a set of models of the system, a process
for integrating these models, and a number of model transformations for going
from one model to another. The IPv6 router specification introduced in Section 3.1
is used to illustrate the approach. The main phases of the methodology are:

a. extract application requirements
b. create the use case diagram (UCD)
c. specify each use case in a textual manner
d. transform the UCD into an Initial Object diagram (IOD)
e. refactor IOD (group, split and discard objects based on their functionality)
f. transform the IOD into a DFD
g. identify data-flows and build a data dictionary
h. specify process behavior using activity diagrams
i. (1) transform the DFD into an Object diagram (OD) or (2) transform the DFD

view into a Class diagram (CD)

As one may notice, the perspective from which the system is modeled is changed
several times during the process. This approach enables the designer to focus on
the specific details provided by each perspective. The presented process may be
seen as being composed of two parts. Initially, a UML model (i.e., the use case
diagram) is transformed into a DFD model, to provide a data-driven perspective of
the system. The resulting DFD model is then transformed back into a UML model
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Figure 4.1: Integration of UML and DFD models into a model driven methodology

(i.e., object or class diagram) to obtain a structural view of the system. The fol-
lowing discussion focuses on how the system specification is transformed through
the steps of the methodology, in a systematic manner, such that the transformations
between the steps are easy to automate.

4.3.1 From UML to DFD

The first part of this methodology resembles the starting point of the methodology
proposed in Chapter 3. Similarly, equipped with the application requirements (i.e.,
IPv6 router) we create a use case diagram. For simplicity, we use the diagram
of Figure 3.2, and since the steps ’a’ to ’e’ of the approach have already been
discussed in the previous chapter, we omit them here. Still, we mention that step
’d’ corresponds to step 1 of 4SRS, while step ’e’ corresponds to step 2 of 4SRS.
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f. Create the Data-flow Diagram

Data-flow diagrams are used, to identify, classify and refine data-flows involved
in the system. In our approach, the data-flow model of the system is obtained by
transforming the identified set of objects (see Figure 3.3) into DFD elements. The
process is performed in several substeps:

f.1. transform each actor in the IOD into an external entity;
f.2. transform interface and control objects into data-processes;
f.3. transform data objects into data-stores;
f.4. transform associations between actors and objects into data-flows;
f.5. transform associations between objects into data-flows;
f.6. identify data-flow types by applying scenarios;
f.7. refactor the data-flow diagram;
f.8. identify and mark active processes in the DFD.

Steps ’f.1’ to ’f.5’ are straight forward, due to the one-to-one mapping between
the elements of IOD and DFD. In the IOD, we have control and interface objects
that support and process the communication with the external environment (i.e.,
router and node). This is close to the behavior of the data-processes provided by
the DFD concepts, allowing us to transform all control and interface-objects into
data-processes. Similarly, data objects in the IOD are transformed into data-store
elements in DFDs. Actors in the IOD are transformed into external entities in
DFD. Finally, the associations between objects, and between objects and actors,
respectively, are simply transformed into data-flows. During the transformation,
we also propagate the tag numbers of the initial objects to the DFD model.

Step ’f.6’ focuses on identifying the data-flows in the system by applying use
case scenario. The type of data that each flow carries is directly identified from the
application requirements and associated documents (e.g., protocol specifications).
Additionally, the direction of each data-flow is identified.

The resulting DFD may be refactored, in step ’f.7’, by decomposing or group-
ing together DFD elements of the same category. For instance, processes that ex-
change the same information (i.e., they input or output identical data-flows) with
the same external entity or data-process, and also in the same direction, are grouped
together. In our example, both the data-processes originating from objects {5.i}
and {3.i} (Figure 3.3) receive routing datagrams, either as request datagram or
response datagram, from the router. Therefore, these data-processes may be con-
joined into a single process {3.i+5.i} (Figure 4.2). A data-process originating from
an interface object that communicates bidirectionally with an actor may be split
into two separate data-processes (e.g., {1a.i} and {1b.i}), one dealing with the in-
coming and the other with the outgoing traffic. A similar approach could have been
applied for obtaining the {2.d}, {3.d}, {4.d} and {6.d} data-stores, if their elimi-
nation had not been performed during step 2 of the 4SRS method. In fact, it seems
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Figure 4.2: Data-Flow diagram for the IPv6 router. Active processes are drawn in
thicker lines

that step 1 of the 4SRS method should be the only one used to intermediate the
transformation of the use case diagram into a DFD, while it is more natural that all
the object eliminations and refactorings are performed in the DFD. The refactoring
process is currently performed manually. Nevertheless, tool support is envisioned
in the form of a set of design guidelines and metrics that are automatically pre-
sented to the designer to suggest possible refactorings.

Most of the DFD approaches known in literature do not make a clear distinc-
tion among processes, with respect to their behavior. We may observe two types
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of behavior: processes that start their execution when one of their input data-flows
becomes active, and processes that execute continuously, regardless of the status
of their inputs. We call them reactive processes and active processes, respectively.
A process is considered to be active if it has no input flows from other processes
or its behavior is self-triggered (output flows are fired without an input flow trig-
gering the process). One example of an active process would be a process that is
periodically reading a data-store (e.g., processes {1b.c} and {6.c} in Figure 4.2).
The input data-flows of active processes are triggered by the processes themselves
and not by the data-stores, despite the fact that there is a data-flow from the data-
stores to the mentioned processes. In contrast, the reactive processes are those
whose behavior is triggered by an input data-flow, and which, in turn, trigger the
behavior of other processes. Following this rationale, substep ’f.8’ of the approach
classifies processes into active and reactive to help the designer in specifying, at
the following steps, the internal behavior of each process. The diagram resulting
after applying step ’f’ is shown in Figure 4.2.

g. Building the Data Dictionary

We classify the data-flows involved in the system by building a data dictionary.
This is done by gathering the types of data transported by the flows. Additionally,
a decomposition of the initial data types into more detailed ones may be obtained
from the application requirements. Based on this decomposition, refinements of
the data-processes may be suggested. At the moment, the identification of the
data-flows is performed manually and it is based on the designer’s skills. Our
future work may examine an approach towards building tool support for creating
the data dictionary.

A complete data dictionary specification of the IPv6 router under study may be
found in [46]. Below, we only present a small example, in which the datagrams
transported through the system (the IPv6 router) are classified and decomposed.

Datagram = ForwardDatagram|RoutingDatagram|ErrorDatagram
ForwardDatagram = IPv6Header+Payload
RoutingDatagram = IPv6Header+UDPHeader+RIPMessage
ErrorDatagram = IPv6Header+ICMPv6Message

h. Refining the Data-flow Diagram

The data-flow diagram obtained at step ’f’ may be further refined by decomposing
the data transformations into other DFDs. Traditionally, the terminal nodes (the
leaves) have their behavior specified using pseudocode. To provide a graphical
modeling language instead, we propose the use of activity diagrams as the main
tool for specifying the behavior of these processes. The use of activity diagrams
for specifying the internal behavior of the objects has been discussed in Chapter
3, and since the process is similar, we skip it here. The only difference is that the
signal activities are used to send or receive the tokens carried by the data-flows.
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4.3.2 From DFD to UML

In the second part of the methodology, two alternative solutions are proposed. The
first alternative transforms a DFD model into an object diagram focusing on the
behavior of the system, whereas a more object-oriented approach is suggested as a
second alternative, to focus on the data classification in the system.

i. From DFD to Object Diagram

Several rules support the transformation of a DFD into an object diagram (OD).
Each data process in the DFD is transformed into an object in OD, and the data-
flows among these data-processes are transformed into links between objects. In
addition, the data-flows become internal attributes and are encapsulated into the
objects. Corresponding methods are added to access these attributes. For instance,
the initial ForwardDatagram data-flow, between the ReceiveFwd and the Validate
processes (Figure 4.2), may be transformed into an attribute of the {1a.c} Vali-
date object (Figure 4.3); the object is only accessed by the sendFwdDatagram()
method, while its value is dispatched to the adjacent objects through the writeFwd-
Datagram() and sendFwdError() methods, respectively.

Moreover, objects originating from processes placed at the border of the system
receive set() methods to communicate with the environment, whereas all the other
processes have send() methods that use the original input data-flows as parameters.
A run() method is added to the objects obtained from active processes, in order
to specify their state machine, whereas write() and/or read() methods are added
to objects originated from data-stores, to provide access to object data. Once the
transformation is completed, the names of different elements may be changed to
be more meaningful to the designer.

The final object model (Figure 4.3) is very similar to the DFD one, but now
we have objects that have an internal behavior and provide services (implemented
by methods) to the adjacent objects. The newly created objects are also classified
as being active or reactive, based on the processes from which they have been
generated. We recall the difference between these objects: the execution of the
reactive objects is triggered only when one of their methods is invoked, while the
active objects have a state machine (implemented by a run() method) that executes
continuously.

To summarize, the following steps are performed:

i.1. external entities in DFD are transformed into actors in OD;
i.2. data-processes in DFD are transformed into objects in OD;
i.3. data-flows between processes are transformed into links between objects;
i.4. data-processes originating from active objects receive a run() method;
i.5. objects originating from border processes that deal with input communication

receive an attribute corresponding to the input flow and a set() method to
access that attribute;
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Figure 4.3: The Object diagram of the IPv6 router3. Objects drawn in thicker lines
depict active objects

i.6. objects originating from non-border processes receive a send() method of the
incoming data-flow and the corresponding attribute;

i.7. data-stores are transformed into objects that contain read() and write() meth-
ods to provide access to their data.

The object diagram in Figure 4.3 provides a low level of abstraction and data encap-
sulation. However, it is suited for prototyping purposes and for functional testing
of the specification, as it may be easily implemented in an object-oriented pro-
gramming language. As a proof of concept, a Java prototype of this model has
been manually implemented and it may be downloaded from http://www.abo.

fi/˜dtruscan/ipv6index.html.

3Due to space reasons, some details (i.e. attributes, actors, etc.) have been intentionally omitted.

59

http://www.abo.fi/~dtruscan/ipv6index.html
http://www.abo.fi/~dtruscan/ipv6index.html


j. From DFD to Class Diagram

The second alternative that we propose for obtaining an object-oriented model of
the system, adopts a view in which the data involved in the system plays a central
role. This approach is not far from the paradigm underlying structured methods,
where data classification is the main task. Hence the transformation between the
models is based on the classification and encapsulation of data into classes, along
with the corresponding methods that operate on this data.

Briefly, the algorithm classifies all the data-flows and the data-stores inside
a DFD, based on their type. For each identified type, a corresponding class is
created in the class diagram. To identify class methods, three kinds of patterns
are used: data-flows communicating with the external environment of the system
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Figure 4.5: Interprocess Communication pattern
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Figure 4.6: Data Store Communication pattern
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Figure 4.7: The class diagram of the IPv6 router

(Figure 4.4), data-flows between two processes (Figure 4.5), and data-flows that
communicate with data-stores (Figure 4.6).

A number of processes, that is data transformations, operate over each data-
flow type in a DFD. We transform these processes into logical methods of the class
that responds to the data-flow that the processes operate on. For instance, Forward-
Datagram data-flow (Figure 4.2) is processed by several data transformations (e.g.,
ReceiveFwd, Validate, Forward, SendForward, ICMP). Thus, a forwardDatagram
class is added to the class diagram (Figure 4.7) and the DFD processes that affect
this data are added as logical methods of this class. We consider that a process
becomes a method of a class only if it has as output the data-flow type modeled by
that class. For instance, the ICMP process in Figure 4.2 is not transformed into a
method of forwardDatagram because it outputs an ErrorDatagram.

Data-stores receive a special treatment. Each data-store element is transformed
into a separate class, unless such a class already exists. The newly created class
provides read() and write() methods to access its data, based on the input and
output flows of the initial data-store (see dataStore in Figure 4.6). In addition,
the attributes of the classes originating from data-stores are identified, based on the
data-flows that are input or output to the data-store.

To summarize, the transformation is based on the following steps:
j.1. transform data-flow and data-store types into classes;
j.2. apply the Inter-process Communication pattern;
j.3. apply the Border Process pattern;
j.4. apply the Data Store Communication pattern.
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The model in Figure 4.7 has been manually constructed in Java. Due to the object-
oriented principles implied by this model, the process was straightforward. The
obtained code provides a simulation model of our specification that can be used as
executable specification for checking the functionality of the router. The code is
not the contribution of the author of this study, but it may be found in [2].

4.4 Tool Support

Appropriate tool support is required for benefiting from a model driven approach,
fully. On the one hand, tools should provide means to (graphically) create, edit and
manipulate model elements. On the other hand, scripting facilities for implement-
ing automated manipulation and consistency verification of such models have to
also be provided, in order to speed up the design process and cut down develop-
ment times. We discuss, in this section, how several steps of the previously defined
methodology are automated using model scripts.

4.4.1 The SMW Toolkit

To support our approach, we have used the Software Modelling Workbench (SMW)
tool, available for download at [3]. The tool is built according to the OMG’s MOF
and UML standards, allowing to edit, store and manipulate elements of several
metamodels. SMW uses the Python language [129] (an interpreted object-oriented
programming language) to describe the elements of a metamodel, each element be-
ing represented as a Python class. Python scripts are used to query and manipulate
models. Moreover, making use of the lambda-functions of the Python language,
OCL-like idioms are supported.

SMW may be customized to support new user-defined metamodels. The con-
sistency of the models is enforced via well-formedness rules coded in the meta-
models using OCL-like constructs. Tool profiles may be created by defining cus-
tom editors for each new metamodel. The UML14 profile [102] is currently the
default tool profile of SMW and it supports the UML 1.4 metamodel. In addi-
tion, an SA/RT profile provides support for a MOF-based metamodel for structured
analysis [61], allowing one to graphically create, edit and manipulate data-flow
models.

The SMW tool, along with its UML14 and SA/RT profiles, has been used to
provide support for the methodology discussed in the previous section. We show
in the following how the specified model transformations are implemented using
the scripting facilities of SMW.

4.4.2 Implementing Model Transformations

The model transformation is seen by many authors as the fundamental tool of the
model driven paradigm, which enables the evolution of the initial specifications
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into final ones [116]. A model transformation takes a source model expressed in a
given language and transforms it into a target model expressed either in the same
language or in a different one. During a transformation, two elementary opera-
tions are performed: queries and elementary transformations. Queries are used
to gather information, (e.g., collection of elements that meet a given condition or
certain metrics that provide design quality information) from a model. Elementary
transformations operate over model elements by creating, modifying and deleting
them. The main difference between queries and element transformations is that
queries are free of side-effects; they only provide information on a given model,
but do not modify the model. Usually, when performing model transformations,
both operations are involved. That is, one has to select the source elements us-
ing queries and then to transform them into target elements by applying several
elementary transformations.

In the following, we present two such transformations that support the design
flow in Figure 4.1, namely steps ’d.’ (transforming a use case diagram into an initial
object diagram) and ’i.’ (transforming a data-flow diagram into an object diagram).
The rationale behind these transformations and the corresponding algorithms have
been presented in the previous sections; here, we only intend to describe the practi-
cal aspects involved in implementing such transformations. The scripting facilities
of SMW have been used, to implement the transformations in the tool, certainly
benefiting from the Python language and the OCL-like idioms.

As a precursory note, we mention that in our approach, due to tool restrictions,
one is not allowed to create an object diagram before having a corresponding class
diagram in place. Therefore, for these transformations, a class diagram is first
created and then an object diagram is obtained by instantiating its elements. How-
ever, the approach can be changed in case a less restrictive tooling environment is
employed.

From Use Case Diagram To Initial Object Diagram

We discuss in here the implementation of the script supporting the first part of step
’d.’ of the methodology, namely the transformation of a use case diagram into
an initial object diagram. The script provides an example of a model transforma-
tion between models of the same metamodel (UML). As an initial step, the source
model (use case diagram – UseCases) is loaded and a corresponding target model
(i.e., InitialObjectDiagram) is created.

1 ucModel=io.loadModel("UseCases.smw")
2 oModel=Model(name="InitialObjectDiagram")
3 elementMap={}

The last line of the above code initializes a Python dictionary to keep track of how
elements of the source model map to elements of the target model. Basically, a
Python dictionary is a collection of elements indexed by a unique ”key“ element.
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Once the source model is loaded, all model elements of type Actor are collected
using an OCL-like query (lines 4-5). For each identified element, a new Actor is
created (line 7) and added to the target model (line 8). The pair of actors is saved
in the elementMap dictionary (line 9).

4 ucActors=ucModel.ownedElement.select(lambda x:
5 x.oclIsKindOf(Actor))
6 for act in ucActors:
7 p=Actor(name=act.name)
8 targetModel.ownedElement.append(p)
9 elementMap[act]=p

Similarly, we collect all the use case elements of the source model (lines 10-11)
and, for each element found, three corresponding classes are created (lines 13, 19,
24) and added to the target model (lines 29-31). Each class bears the name of the
use case that generated it, a stereotype specifying its category (lines 14, 20, 25),
and a tag (lines 15-17, 21-23, 26-28) based on the tag name of the original use
case. For instance, the use case {1.} Forward Datagram (Figure 3.2) will generate
a �control� class labeled {1.c} Forward Datagram (Figure 3.3).

10 useCases=ucModel.ownedElement.select(lambda x:
11 x.oclIsKindOf(UseCase))
12 for el in useCases:
13 p1=Class(name=el.name)
14 p1.stereotype.append(Stereotype(name = "interface"))
15 p1.taggedValue.append(UML14.TaggedValue(
16 name=el.taggedValue[0].name+".i",
17 dataValue=None,modelElement=p1,type=td))
18 elementMap[el]=p1
19 p2=Class(name=el.name)
20 p2.stereotype.append(Stereotype(name = "control"))
21 p2.taggedValue.append(UML14.TaggedValue(
22 name=el.taggedValue[0].name+".c",
23 dataValue=None,modelElement=p1,type=td))
24 p3=Class(name=el.name)
25 p3.stereotype.append(Stereotype(name = "data"))
26 p3.taggedValue.append(UML14.TaggedValue(
27 name=el.taggedValue[0].name+".d",
28 dataValue=None,modelElement=p1,type=td))
29 targetModel.ownedElement.append(p1)
30 targetModel.ownedElement.append(p2)
31 targetModel.ownedElement.append(p3)

Optionally, in specific situations, the links (i.e., associations) between the objects
(classes) of the initial object set have to be identified from the use case diagram.
To provide an automated discovery process, we use the following rules: a) the
communication between interface and data objects is only allowed through control
objects; b) the communication between actors and the system is only performed
through interface objects. This approach provides a preliminary step in identifying
the communication between the objects in the initial set, and serves as a basis for
future refinement of this communication.

Applying rule a), associations are added between�interface� and�control�,
and between �control� and �data� objects, respectively (lines 32-33).
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32 a1=addAssoc(p1,p2,"")
33 a2=assAssoc(p2,p3,"")

The mechanism for adding an association between two classes is presented in func-
tion addAssoc() below. The function receives as arguments two class identifiers
from the target model and the corresponding association in the source model, and
returns a new association element between the two classes in the target model. Ini-
tially, a new UML Association element is created and added to the target model
(lines 35-36). In the UML1.4 metamodel, the element that links an Association to
a model element is AssociationEnd. The relationship between Association, Associ-
ationEnd and Class elements is as follows: an Association has two AssociationEnd
elements corresponding to its endings, and each AssociationEnd element is con-
tained in the .association property of a given Class.

Thus, to add an association (i.e., as1) between two existing classes (i.e., c1 and
c2), two new AssociationEnd elements, ase1 and ase2, are created (lines 37-40).
Additionally, they are linked to the p1 and p2 classes through the participant prop-
erty of the Association element and they are set to belong to as1. Consequently, the
ase1 and ase2 elements are added (lines 41-42) to the association property of the
connected classes c1 and c2, respectively. Finally, the newly created association is
stored in the elementMap dictionary (line 43).

34 def addAssoc(c1, c2, as):
35 as1=Association(name=as.aname)
36 targetModel.ownedElement.append(as1)
37 ase1=AssociationEnd(participant=c1,
38 association=as1,multiplicity=None,isNavigable=1)
39 ase2=AssociationEnd(participant=c2,
40 association=as1,multiplicity=None,isNavigable=1)
41 c1.association.append(ase1)
42 c2.association.append(ase2)
43 elementMap[as]=as1
44 return as1

For the second rule, the transformation script adds associations between actors and
�interface� classes. These associations correspond to the associations between
actors and use-cases in the source model. Thus, all these associations in the use
case diagram are selected (lines 45-46) and, for each association, the elements that
it connects (i.e., Actor-UseCase pairs) are identified (lines 47-53). To add associa-
tions between the corresponding pairs of elements in the target model, the addAs-
soc function is invoked, using the mapping information stored in the elementMap
dictionary (line 54).

45 ucAssoc=ucModel.ownedElement.select(lambda x:
46 x.oclIsKindOf(Association))
47 ucAssoc.select(lambda as:
48 ucModel.ownedElement.select(lambda x:
49 x.oclIsKindOf(Actor) and
50 as.connection[0] in x.association and
51 ucModel.ownedElement.select(lambda y:
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52 y.oclIsKindOf(UseCase) and
53 as.connection[1] in y.association and
54 addAssoc(elementMap[x], elementMap[y],as))))

The reader may notice our use of OCL-like constructs in an imperative manner.
This is allowed by the way the OCL constructs are implemented in Python, using
lambda-functions, which improves the flexibility and the level of abstraction of
the scripts considerably. Alternatively, nested loops could have been used, at the
expense of a larger code size and lower execution speed.

From Data-flow Diagram to Object Diagram

In the second example, we present parts of the model transformation script sup-
porting the step ’i.’ in Figure 4.1 (i.e., transforming a DFD into a object diagram).
The script provides an example of a model transformation between a source model,
expressed in a given language/metamodel (i.e., DFD), and a target model expressed
in a different language/metamodel (i.e., UML). The algorithm and rationale behind
this transformation have been presented in Section 4.3.2. Similarly to the previous
example, the script loads a source model and creates a new target UML model
(lines 1-2).

1 dfdModel=io.loadModel("dfdInput.smw")
2 targetModel=UML14.Model(name=dfdModel.name)

Then, the top-level data transformation of the DFD model (i.e., topDfd) is identified
(lines 3-4), and model (element) information from its lower-level DFD is collected
by applying a number of OCL-like queries (lines 5-13). The low-level DFD, which
is a refinement of the top-level one (i.e., topDFD), contains the data-flow diagram
on which we focus our example (Figure 4.2).

3 topDfd=dfdModel.ownedElement.select(lambda x:
4 x.oclIsKindOf(DataTransformation))[0]
5 ee=dfdModel.ownedElement.select(lambda x:
6 x.oclIsKindOf(ExternalEntity))
7 dt=topDfd.ownedElement.select(lambda x:
8 x.oclIsKindOf(DataTransformation))
9 df=topDfd.ownedElement.select(lambda x:
10 x.oclIsKindOf(DataFlow) and
11 not x.oclIsKindOf(DataStore))
12 ds=topDfd.ownedElement.select(lambda x:
13 x.oclIsKindOf(DataStore))

Next, the script transforms each External Entity in the DFD into a UML Actor in
the UML model, ensuring that an actor is not added to the class diagram more than
once (lines 14-18). As in the previous example, the elementMap dictionary is used
to store (line 19) pairs of source-target elements of the two models.

14 elementMap={}
15 for e in ee:
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16 if e not in elementMap:
17 act=Actor(name=e.name)
18 targetModel.ownedElement.append(act)
19 elementMap[e]=act

To obtain the class diagram of the system, the following steps are performed.
Firstly, for each DataTransformation and DataStore element in the dfdModel, a
new object (i.e., Class) element is added to the targetModel (lines 26-29). Adding
a new class to the UML model is provided by function addClass(). We use again
the elementMap dictionary to store the correspondence between the source and the
target elements (line 24). Also, the use of OCL-like constructions in an imperative
manner may be observed in line 29.

20 def addClass(initialElement, className):
21 if initialElement not in elementMap:
22 newClass=Class(name=className)
23 targetModel.ownedElement.append(newClass)
24 elementMap[initialElement]=newClass
25 return newClass
26 topDfd.ownedElement.select(lambda ts:
27 (ts.oclIsKindOf(DataTransformation) or
28 ts.oclIsKindOf(DataStore)) and
29 addClass(ts, ts.name))

In the following step, the script creates the associations between the newly added
classes. As presented in Section 4.3.2, we have three different cases of associa-
tions between elements based on the source and target elements of the data-flows
in the DFD model. The first case is that of an initial data-flow linking two data
transformations. For each pair of source-target data transformations, their corre-
sponding classes are identified in the targetModel and a send() association is added
(lines 30-39), using the function addAssoc() presented above.

30 topDfd.ownedElement.select(lambda f:
31 f.oclIsKindOf(DataFlow) and
32 topDfd.ownedElement.select(lambda src:
33 src.oclIsKindOf(DataTransformation) and
34 f.connection[0] in src.association and
35 topDfd.ownedElement.select(lambda dst:
36 dst.oclIsKindOf(DataTransformation) and
37 f.connection[1] in dst.association and
38 addAssoc(elementMap[src],elementMap[dst],
39 "send"+string.split(f.name,’+’)[0]))))

The second case addresses data-flows that either originate from or have as target
a data-store element in the dfdModel. This type of data-flows will be transformed
into read() or write() associations, depending on the direction of the initial data-
flow. The third case of creating associations is based on the data-flows that com-
municate with external entities of the DFD model. This type of data-flows will
generate set() associations. Since the code of both scripts is similar to the one
presented in lines 30-39, we omit it here.
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Finally, for those classes linked by associations, one of the classes receives
methods and encapsulated attributes corresponding to the name of the associa-
tions. The addAssocMeth function below is used to add a new operation (method)
and a corresponding attribute to a given class (lines 40-47). Following this ap-
proach, classes originating from data-stores receive, as attributes, the parameters
of the data-flows, and corresponding methods to read and/or write those parameters
(lines 48-51).

40 def addAssocMeth(clas, methName, prefix):
41 o=Operation(name=methName)
42 if methName not in clas.feature.name:
43 clas.feature.insert(o)
44 attr=Attribute()
45 attr.name="someName"
46 clas.feature.insert(attr)
47 return 1
48 ds.select(lambda t: df.select(lambda f:
49 f.connection[1] in t.association and
50 addAssocMeth(elementMap[t],
51 string.split(f.name,’+’)[0],"write")))

In both examples, we have intentionally omitted the initialization part and other
code that is not relevant to the presented examples. More detailed versions of the
presented, as well as of other transformations of the methodology may be found
in [127].

4.5 Summary

In this chapter, we have discussed a methodology that combines the tools of the
structured and object-oriented paradigms, for the specification of embedded appli-
cations. The approach combines the main modeling languages of the two paradigms,
namely the DFD and UML diagrams, to allow the designer to focus during the
modeling process on different perspectives of the system. The main goal of this
integration is to allow the analyst to focus on views not provided by UML, and to
give one the possibility to follow an object-oriented approach, if desired. Thus, the
DFDs should be regarded as a complement of UML, rather than a replacement.

Three conceptual combinations between UML diagrams and DFDs have been
adopted from [45], as a starting point in defining a custom application specification
methodology. The methodology starts with a functional decomposition of the sys-
tem, followed by a data-flow perspective. When enough level of detail is reached,
the system specification is transformed into either an object diagram or into a class
diagram. The first approach seems to be more natural for component-based hard-
ware systems, while the second one fits well in object-oriented software-intensive
designs. We consider that the designer should follow the one that fits best with his
affinities, experience and working culture. Both object-oriented models obtained
from the DFD have also been used for developing prototypes in Java, in order to
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demonstrate their adequateness to describe the system. The prototypes have been
built with the central idea of showing that the models do constitute a valid solution
for the implementation of the system under consideration.

The methodology is specified in a model driven perspective, in which a num-
ber of models and model transformations are combined in a systematic process of
system specification. The proposed transformations between UML and DFDs may
look somewhat forced. This is due to the fact that one of the main goals in spec-
ifying these transformations has been to provide an approach easily automatable.
The SMW tool has been used to provide support for the methodology, through
graphical editors for both the UML and DFD models. Additionally, the scripting
facilities of the tool have been used to automate several model transformations.
These scripts have been implemented in Python, using high-level constructs sim-
ilar to OCL. Taking advantage of the availability of both UML and also of the
SA/RT metamodel implemented in the same tool (i.e., SMW), model transforma-
tions could be implemented not only between the models of the same metamodel,
but also between models of different metamodels.

Future work may be directed towards the following topics. Firstly, applying
the techniques proposed here to more complex examples would allow one to obtain
more solid assessments on the usefulness of these techniques. Secondly, the trans-
formation scripts between DFD and UML diagrams have been discussed mainly
from the perspective of mapping elements of the DFDs onto elements of UML,
but no focus has been put on how the behavior of the data-processes is refined into
the behavior of the identified class methods. This aspect has to be investigated
further. Thirdly, using DFDs for functional decomposition of data-driven applica-
tions seems to be more natural than using the complete 4SRS method. Analyzing
in more detail if and how the 4SRS method can be enhanced with a data-flow per-
spective should be taken into account. Fourthly, the transformations from DFD to
UML have been designed to be applied to flattened DFDs. An approach that takes
into consideration the hierarchy of the DFD, during the transformation, has to be
investigated. Finally, it is important to devise a more rigorous method for data
classification inside DFDs, to bring out the benefits from object-oriented mech-
anisms like inheritance and polymorphism. For instance, we can easily see that
the routingDatagram class in Figure 4.7 looks similar to a parent class of the re-
sponseDatagram and requestDatagram. For the moment, since we are addressing
data-driven applications that target programmable architectures, we have intention-
ally avoided referring to specific object-oriented mechanisms such as inheritance
and polymorphism. This is justified by the fact that they are in contrast with the
static nature of the hardware components of the architecture.
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Chapter 5

A UML Profile for the TACO
Architecture

In this chapter1, we discuss the use of the UML extensibility mechanisms for defin-
ing a DSL (i.e., a UML profile) for the TACO programmable architecture. The DSL
is intended not only to benefit from the graphical UML notations, but also to sup-
port the design flow of the architecture by providing tool support and automation
in existing UML tools. Beside modeling the hardware infrastructure of TACO, the
DSL also provides a programming model of the architecture.

The chapter proceeds with an overview of the TACO protocol processing frame-
work. Then, we present the TACO design flow from a model driven perspective,
in which the models and model transformations supporting the flow are identified.
After that we define a UML profile for the TACO architecture and we discuss how
the latter is modeled in a UML tool by taking advantage of the profile. Next, we
examine the mapping of application specifications onto the TACO architecture and
we propose a systematic approach, in which the mapping process is performed.

5.1 The TACO Protocol Processing Framework

The protocol processing domain started to gain increasing attention in the last
decade, stimulated by the technological advances in the telecommunication field.
As a result, a new category of processing devices has been developed for sup-
porting network communication. Network (aka protocol) processors are a special
kind of programmable architectures tailored to deal efficiently with protocol pro-
cessing tasks. Several solutions for protocol processing have been developed in
recent years, among the most popular being Vitesse PRISM IQ2000, IBM Pow-
erNP, Motorola C-Port DCP C-5, Xelerated Packet Devices, and Intel IXP 1200.
Comprehensive overviews of both industrial and academic protocol processing ar-

1This chapter is based on publications [P.4] and [P.5].
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chitectures have been given by several authors [57, 117], thus we omit discussing
them here.

In this section, the TACO programmable architecture is discussed. TACO
(Tools for Application-specific hardware/software CO-design) [132] is an inte-
grated design framework for fast prototyping, simulation, estimation and synthesis
of programmable protocol processors based on the Transport Triggered Architec-
ture (TTA) concept [32]. A detailed description of the TACO framework may be
found in Virtanen’s Ph.D thesis [132], where the hardware-related aspects of the
architecture are discussed in detail.

5.1.1 Hardware Considerations

A TACO processor (Figure 5.1) consists of a set of functional units (FUs) con-
nected by an interconnection network (IN). The FUs may be of different types,
each implementing its function(s) independently. There may be more than one FU
of the same type in a TACO processor. In turn, the interconnection network is com-
posed of one or many buses, which are controlled by an interconnection network
controller.

An FU is basically composed of an interface to the interconnection network
and an internal logic. The interface consists of several registers that are used for
storing input and output values. Input registers are of two types: operand and
trigger, respectively. Operand registers are used to store input values received
from the buses. Trigger registers are a special kind of operand registers that, once
written with data, trigger the computation of the FU. There may be zero or many
operand registers, and exactly one trigger register in an FU. In addition, output
registers are used for providing the result of the computation to the buses. Some
FUs may also have a result signal that provides a boolean result of the computation
to the interconnection network controller.

The FUs of TACO are connected to the buses via sockets. There are three
types of sockets: operand, trigger and result sockets. Operand sockets connect
one bus to an input register of an FU. Trigger sockets are a special kind of input
sockets, which connect a given bus to the trigger register of an FU. There may
be several trigger sockets connected to the same trigger register of an FU, each
socket corresponding to a different FU operation. Result sockets connect FU result
registers to the buses.

TACO processors may have several memory spaces, which may share the same
physical memory block. A memory space is interfaced to the buses similar to any
FU, and its data is accessed through the corresponding input/output registers.

Being a TTA-based architecture, TACO provides features like modularity, flex-
ibility, scalability of performance and control of the processor cycle time, which
are important concepts in the area of embedded systems design. The modularity
of the architecture enables a good support in automating the design, each FU be-
ing designed separately from the other FUs and from the interconnection network.

72



Interconnection
Network Controller

FU1 FU3

FU2 FU4

TR

OP

R

TR

OP

R1

TR

OP1

R

TR

OP

R

ProgramMemory

GuardID SourceID DestinationID GuardID SourceID DestinationIDGuardID SourceID DestinationID IC

subinstruction 0 subinstruction 1 subinstruction N-1

TACO instruction for N buses

Qualitative
Configuration

Quantitative
Configuration

Simulation Estimation

Synthesis

OP2

R2
Interconnection

Network

Figure 5.1: Generic architecture of the TACO processor

Each FU implements one or more pieces of functionality, and the final configu-
ration is assembled by connecting different combinations of the functional units.
The FUs are completely independent of each other and, at the same time, of the
interconnection network, all of them being interfaced in a similar manner. The
performance of the architecture can be scaled up by adding extra FUs, buses, or by
increasing the capacity of the data transports and storage. The functionality of the
architecture may be enhanced by adding new FU types to provide computational
support for the application.

5.1.2 Software Considerations

In TACO, data transports are programmed and they trigger operations, in contrast
to the traditional processors, where the operations of the processor trigger data
transports. The architecture is programmed using only one type of instruction, the
move, which specifies data transports over the buses. An operation of the processor
occurs as a side-effect of the transports between functional units. Each transport
has a source, a destination and data to carry from one FU register to another. The
parallelism level in TACO can be exploited not only by increasing the number of
FUs of the same type, but also by adding more buses. This allows the execution of
several bus transports in the same processor cycle.

TACO has a variable-length instruction format based on the number of buses
present in a given configuration. An instruction (Figure 5.2) is composed of several
subinstructions (i.e., moves), which specify data transports on individual buses. In
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addition, an IC field is used to specify immediate integers on the buses. In turn, a
subinstruction consists of three fields: GuardID, SourceID and DestinationID.

The GuardID field enables the conditional execution of the subinstruction.
Upon evaluation of this field by the interconnection network controller, the subin-
struction is either dispatched on its corresponding bus or ignored. GuardID values
are configurable, based on combinations of result signal values received from FUs.
For instance, 64 guard combinations can be defined, provided that a GuardID on
6 bits is used. The process of defining the GuardIDs for a given processor con-
figuration is done at configuration-time based on the user experience and also on
the application requirements. Combinations of the FU result signals may be ob-
tained using the negation (not) and the conjunction (and) boolean operations. For
instance, to implement the following hypothetical example:

if (x>2 or y<3 or z<>0) then
do_something1();

else
do_something_else();

on a TACO processor configuration with three comparator FUs, one could define a
GuardID based on the result signals of each comparator FU. Let these result signals
be a (true for x > 2), b (true for y < 3), and c (true for z = 0), respectively. A
guard that replaces the conditional statement can be written as myGuardID=!a.!b.c,
where ’!’ stands for negation and ’.’ for conjunction. As such, a TACO-like
implementation of the previous code would be as below:

compare(x>2);compare(y<3);compare(z=0);
!myGuardID:do_something1;
myGuardID:do_something_else;

For brevity, the TACO subinstructions in the previous example have been replaced
with a textual description of the operation performed (e.g., compare). We will
discuss in the following sections, how the TACO operations are implemented, in
practice, in terms of bus transports.

Finally, the SourceID and DestinationID fields are used to specify the source
and target logical addresses (i.e., sockets) between which a transport takes place.

The interconnection network controller is the “brain” of the processor, being in
charge of implementing data transports on the buses. The controller uses a program
memory from which it fetches instructions, splits them into subinstructions and
dispatches each subinstruction on the corresponding bus. It is important to mention
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that one does not have to change the instruction format when adding FUs, as long as
the existing FUs are addressable by the length of source and destination addresses.

A program counter (PC) is maintained by the interconnection network con-
troller. A built-in trigger socket is used to load the PC with a desired value (either
absolute or relative), making possible to implement program jumps. More details
on the actual implementation of the controller may be found elsewhere [132, p.
64–67].

Visibility of data transports at the architectural level is an important feature of
TACO, allowing compilers to optimize and schedule these transports. Since all the
operations of the processor are side-effects of the data transports on the buses, the
processor cycle-time depends on the availability of the FU results.

5.1.3 Programming for TACO

From the programmer’s point of view, programming TACO processors is a matter
of moving data from output to input registers, identified using the address spaces
of the corresponding sockets. An example of two instructions, each composed of
three subinstructions, is given below:

g1:src1 > dst1; src2 > dst2; +02 > dst3;
src4 > dst4; src5 > dst5; src6 > dst6;

In this example, the first subinstruction is executed only if the guard ’g1’ is evalu-
ated to true, while the others are executed unconditionally. Operands src1 through
src6 and dst1 through dst6 depict input and respectively output sockets of different
FUs. The operand ’+02’ represents an immediate value (integer) that is written to
the dst3 socket.

Using registers for interfacing FUs allows one to apply TTA-specific optimiza-
tion techniques [32], like moving operands from an output register to an input
register without additional temporary storage (bypassing), using the same output
register or general purpose register for multiple data transports (operand sharing),
or removing of registers that are no longer in use, etc. All these techniques help
in reducing code size and consequently, in reducing the number of bus transports.
Some general compiler optimizations may also be performed on the TACO assem-
bler code, like sinking, loop unrolling, etc. A compiler performs the necessary
allocation and scheduling, along with transforming the assembler code into hex-
adecimal code, which is uploaded in the program memory of the processor.

5.1.4 The TACO Component Library

To provide prerequisites for automation and reuse, the TACO processor resources
are organized in a library of components, namely the TACO Component Library.
Each resource included in this library is specified from three perspectives. A simu-
lation model provides SystemC executable specifications, enabling the simulation
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of the processor configurations, in order not only to check their functional correct-
ness, but also to evaluate their performance. A synthesis model provides imple-
mentations of each processor resource in VHDL. The synthesis model of TACO
targets synthesizable off-the-shelf ASIC components, thus enabling the designer to
generate synthesizable processor configurations, at system-level. The simulation
model is developed in concordance with the performance characteristics provided
by the synthesis model, such that the simulation of the system provides cycle ac-
curate results, with respect to the synthesis model. An estimation model allows
one to obtain high-level estimations of different physical characteristics like area,
power consumption and gate delay of the components. The estimates are based on
a mathematical model built in Matlab. The estimation model for TACO has been
designed and developed by M.Sc Tero Nurmi [89, 133].

Building the TACO Component library is an iterative process that relies both on
the analysis of the processing needs of different protocols and also on the TACO
resources identified in previous applications. The SystemC and VHDL modules
corresponding to each TACO resource are designed independently. Each new FU
is simulated, synthesized and validated before being added to the library. TACO
configurations are created using top-level files, which specify the required mod-
ules and their interconnection, as we will discuss in the following sections. Based
on the results obtained from the simulation and estimation models, optimizations
may be suggested for improving the provided performance, with respect to a given
application family.

Several libraries may be defined, to serve for different application domains. In
[10], a TACO library for SDR (Software Defined Radio) wireless communications
is defined. In this thesis, we use a library for IPv6 routing.

5.2 The TACO Design Flow

This section introduces a model driven approach for the TACO design flow (see
Figure 5.3). Several models represent different perspectives of the system, at var-
ious abstraction levels. Transitions between models are specified and supported
through model transformations.

Being a programmable architecture, the TACO processor is configured at design-
time to support the application specification with respect to both the performance
requirements and the physical constraints. Concretely, starting from a given appli-
cation specification, one has not only to identify the components of the processor
needed to support the application, but also to multiply these components in an opti-
mal manner to provide the required throughput. Several steps are applied iteratively
(Figure 5.3- (a)) in order to obtain the “final” processor configuration.

From the application mapping onto the TACO architecture, we identify the
functionality that the TACO architecture has to provide for supporting the appli-
cation. At the Qualitative Configuration step, the TACO processor is configured
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model driven view

to support the application functional requirements. Only one FU of each type and
one bus are included in the qualitative configuration of TACO. Consequently, the
application program code is constructed, starting from the identified resources.

The qualitative configuration is then simulated and estimated. From the Sim-
ulation process, beside verifying the correct functionality of the application, one
can gather application performance information, like number of cycles required to
execute the application, bus utilization, and register pressure. Out of the Estimation
process, we get estimates of the physical characteristics.

Various architectural configurations are explored, at the Quantitative configu-
ration step, to tune the architecture towards maximum throughput, with respect to
the physical constraints (i.e., area and power consumption). This is done by varying
the number of FUs of each type, and the number of buses. The resulting configu-
rations are again simulated, this time with respect to the application performance.
Moreover, the estimates of their physical characteristics are collected. In the end,
one or more quantitative configurations, which are able to provide the required
application performance within given power and area constraints, are selected as
input for the Synthesis process.

Figure 5.3-(b) presents the design flow discussed above, form a model driven
perspective, where several models and model transformations are defined. The
transformations are supported by the three libraries of the TACO framework. As
we have already mentioned, each library models the same TACO component, from
three different perspectives: simulation, estimation, and synthesis.

Beside these three libraries, we propose a new library to support the design pro-
cess, namely the Functional Library. This library encodes the correspondence be-
tween the functionality and the hardware implementation of each TACO resource.
We will discuss this approach in more detail, in the following sections.

Furthermore, in order to provide a “unified” component library, in which all
the library information is available in a single model, we suggest the adoption of a
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UML Library model. This library will not only conjoin, but will also abstract the
information of the four different libraries, in order to facilitate the generation of the
various TACO models.

5.3 A UML Profile for TACO

In this section, we propose a UML-based DSL for the TACO protocol processing
framework. The purpose of the TACO DSL is two-fold: to define a graphical
modeling language of the TACO architecture, and to experiment the advantage of
using UML in providing rapid tool support in existing UML tools. The TACO DSL
is specified by extending the UML language via its profile mechanism, which has
been introduced in Chapter 2.

5.3.1 Mapping TACO Resources to UML elements

Several researchers have focused their efforts on classifying UML stereotypes [19,
41, 112], while others pointed out guidelines for creating and using stereotypes
[12, 13, 19, 54, 78, 122]. In our opinion, this shows that there is not yet a common
(universal) approach to follow, when defining new UML profiles.

Nevertheless, we consider that two aspects have to be taken into consideration
when defining a profile. On the one hand, one has to select the appropriate UML
elements to represent the concepts of the application domain, without altering the
semantic definition of those elements. On the other hand, the set of elements and
their abstract syntax must provide enough expressiveness for the user of the new
model, such that one may easily apply the profile for modeling domain-specific
problems.

As a starting point in defining a UML profile for TACO, we focus on its phys-
ical (hardware) structure. For this purpose, the UML class diagram, reflecting a
structural perspective of a system, is a good candidate. This also allows one to
create instances (i.e., configurations) of the TACO architecture, using object dia-
grams. In addition, we need to decide which elements of the class diagram can
be extended to naturally represent the TACO concepts. We consider that a similar
approach is not necessary in case of the object diagram, since object instances may
be interpreted, with respect to the TACO architecture, based on their classifier.

From an ideological point of view, all the concepts of the TACO architecture
(including buses and sockets) may be modeled as UML classes. However, the ap-
proach may seem unnatural, especially for a hardware designer, and the resulting
models could become cluttered with too many graphical elements. Instead, we
decided to classify the TACO artifacts based on their role in the architecture: com-
ponents, connections, and component properties. This classification facilitates the
mapping of the TACO concepts onto the elements of the class diagram, as follows:
components are mapped onto classes, connections onto associations, and proper-
ties of the components onto class properties (i.e., attributes).
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Components. Three stereotypes, extending the UML Class element, have been
defined to model the TACO components: functional unit (�FU�), network con-
troller (�NetCtrl�) and interconnection network (�Network�).

Connections. Three stereotypes, �Socket�, �ResultBit�, and �NetLink�,
have been defined to model the connections of the TACO architecture. All these
elements extend the UML Association element.

A�Socket�models the connection between an�FU� and a (�Network�)
element, respectively. In practice, several sockets are used to connect a given FU
to the TACO buses. However, we have taken two design decisions to simplify our
design: to model all the sockets connecting the TACO FUs to buses as one sin-
gle �Socket� element, and furthermore, to enable for the �Socket� to connect
an FU to the interconnection network, rather than to each bus. These two deci-
sions have been taken based on the following rationale: a) the number of sockets
connecting the registers of an FU to the buses can be rather large, and thus, it may
clutter the design; b) in our work, we use fully connected buses, that is, each socket
is connected to all the buses in a configuration.

Finally, a�ResultBit� stereotype models the result signal between an FU and
the interconnection network controller, while a�NetLink� stereotype is used for
explicitly connecting the �Network� and the �NetCtrl� elements.

Component properties. We remind the reader that each FU has one trigger
register and zero or many operand and result registers. Since FU registers may be
seen as a structural property of each FU, we decide to model the TACO FU registers
as attributes of the �FU� class. Consequently, three stereotypes extending the
UML Attribute element have been defined to model each register type: �TR�,
�OR�, and �RR�.

The main advantage of having the connection between FUs and buses modeled
as a single �Socket� element provides the advantage of less cluttered models.
However, the information abstracted away (e.g., number of sockets, their type and
direction) has to be modeled somewhere else, in order to provide a sufficient level
of detail. Although used as external connections to FUs, the sockets and their types
(i.e., trigger, operand, and result) are tightly dependent on the implementation of a
given FU. Hence, sockets may also be considered as internal properties of the FUs.
Three new extensions of the Attribute element could have been created to model
the logical sockets: �TS�,�OS�, and �RS�, respectively.

We have noticed that having too many attributes for a class complicates the
model excessively. In the average case, the functional units of the TACO processor
can have around four to five registers, and six to eight sockets connected to them.
Having a total of ten-to-thirteen attributes (taking into account both registers and
sockets) in a class would not provide an efficient abstraction of the FU’s character-
istics. However, we have observed that three rules can be postulated regarding the
TACO architecture:
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• there is one trigger register in a given FU;

• there is at least one trigger socket assigned to a trigger register;

• each operand/result register, if present, is connected to exactly one socket.

Applying these rules, we conclude that one can “subtype” the sockets based on the
register type that they are connected to. For instance, an FU with the configuration
as given below, would feature two trigger sockets (i.e., socket1 and socket2), con-
nected to exactly one trigger register, and two operand sockets (i.e., socket2 and
socket3) connected to two different operand registers:

<<TR>>:socket1
<<TR>>:socket2
<<OR>>:socket3
<<OR>>:socket4

The approach not only enables us to reduce the number of the �FU� class at-
tributes, but also encode the functional2 and the physical characteristics of an FU,
in an integrated manner.

An �RB� stereotype has been created by extending the Attribute element, to
encode, in the FU definition, the fact that an FU may have a result signal connected
to the network controller. The only meaning of an �RB� element is to specify
whether a given FU has such an interface to the external environment.

We intentionally left for the final discussion the modeling of the TACO bus. Al-
though the bus element may be conceptually seen as a feature (e.g., an attribute) of
the interconnection network, in our opinion it is more natural to model it as a com-
ponent of the �Network�. Such an approach allows for several instances of the
�Bus� element to be contained in the same instance of the interconnection net-
work, at instantiation time. Following the principles of object-orientation, this ap-
proach would be modeled using the composition relationship. Unfortunately, such
a relationship between UML stereotypes is not allowed by the UML metamodel. In
UML 1.4., only generalization relationships may be used between stereotype def-
initions. However, such relationships between stereotypes may be defined using
OCL constructs as we will discuss later on in this chapter. As such, the �Bus�
stereotype is defined to extend the Class element, while for specifying its con-
tainment in the �Network� element, we will rely on the well-formedness rules
associated to the profile, as it will be discussed in the next section.

An example of a TACO processor configuration modeled using the TACO
Profile is presented in Figure 5.4. The presented configuration is composed of
a network controller (Controller), an interconnection network (Interconnection-
Network), and an FU (Foo).

2sockets can be seen as functional features, as their combination provides the FU’s functionality
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Figure 5.4: Generic TACO processor configuration using the UML notation

5.3.2 A Programming Model for the TACO Architecture

As we have discussed in the introduction of this thesis, researchers have pointed out
the necessity of defining and employing a programming model for programmable
architectures. Such a programming model abstracts the hardware details of the
architecture, while providing enough detail to allow one to tune and program the
architecture for specific tasks.

Therefore, we have defined a programming model for TACO for the following
purposes: a) to provide an abstraction of the hardware architecture enabling the de-
signer to focus on the functionality of the architecture, rather than on its physical
details; b) to bridge the gap between the hardware architecture and the application
specification during the mapping process. The TACO programming model is com-
posed of several programming elements (i.e., programming primitives), split into
two categories: functional primitives and control primitives.

Functional primitives. The functional primitives (FPs) are those programming
constructs providing computational support for a given application. Their main
characteristic is that their presence in a TACO configuration varies with the types
of TACO resources (FUs) included in a configuration. We recall that the function-
ality of the TACO processors resides in their FUs. Each FU provides one or more
processing functions, whereas buses are only used to support data transports be-
tween FUs. Each processing function is associated with a specific trigger socket.
When data is written through this socket into the trigger register of an FU, the func-
tion is executed. In TACO terms, such a function is called operation or functional
primitive. For executing an FP, several bus transports may be required. In the first
stage, the operand registers of the FU are set up, whereas in the second stage, the
trigger register is written and, consequently, the operation is executed. This im-
plies that an operation is equivalent with a number of TACO bus transports and,
even more, every time the operation is invoked, the exact same sequence of trans-
ports is used. Therefore, we can abstract the operations of the processor as macros
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containing TACO bus transports. The benefit from this approach is that every time
an FP is used, it can be automatically translated into bus transports.

Control primitives are used to support the sequencing of functional primitives in a
given application, and they are typically present in all TACO configurations. Three
types of control primitives are defined in TACO:

• unconditional jumps are used to specify jumps at a specific address of the pro-
gram code, being implemented by the interconnection network controller;

• conditional jumps implement jumps to a specified address of the program code,
in case the GuardID of a given subinstruction is satisfied;

• labels provide references to a given address (line) of the program code.

Using these types of operations more complex programming structures like loops,
cases, subroutines, etc., can be defined.

The set of functional and control primitives provided by a given processor con-
figuration form the application programming interface (API) of that configuration.
Adding or removing FUs modifies accordingly the API of the configuration. Fur-
thermore, by reflecting the functionality of a given configuration in terms of pro-
cessing capabilities, the programming interface allows one to deduce the right con-
figuration to support the application. This correspondence is encoded and stored
in the Functional Library (introduced in Figure 5.3). By using such a library, the
API provided by different FUs can be reused not only for programming a given
configuration, but also for facilitating the mapping process, as it will be discussed
in Section 5.5.

It is worth mentioning that the TACO FPs could be defined at several levels of
granularity. At the lowest level, each FP is provided by a single FU. At a higher
level, the FPs can be more complex, each of them being implemented by a combi-
nation of FUs. The former approach provides a better mapping of the application
specification onto the architecture, whereas the latter is preferred when, for appli-
cations in the same family, complex pieces of functionality of the architecture can
be identified, optimized, and reused.

In order to integrate the functional primitives within the TACO Profile, we
decided to use the Operation behavioral property of a UML class. “An operation
is a service that can be requested from an object to affect behavior” [94, p. 2-45].
This definition recommends the Class Operation as a good candidate for modeling
the TACO FPs. A UML operation is basically characterized by a name, a number
of parameters and a specification. After mapping these elements on the TACO
FPs, we obtain the following:

• the name property will depict the processor functionality (i.e., the FP) modeled
by the UML Operation;

• the parameters will provide the list of input/output values that an FU receives
as input and provides as output when the FP is invoked; these parameters map
one-to-one on the sockets used by each FP;
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• the specification will describe the FP in a textual language. Based on these
facts, a new stereotype, namely �FUop� has been defined to extend the UML
Operation element.

The UML standard defines the Operation as an abstract element that specifies a
service provided by a given class, only. The corresponding implementation of
that service is modeled in UML using the Method behavioral feature. The UML
specification enforces that, a given method has the same signature as the operation
it implements, and furthermore, that both are placed in the same class. Several
implementations (i.e., methods) of the same class operations may be specified.
The approach enables one to define more then one implementation for each TACO
FP. For instance, we may have an FP implemented in terms of bus transports, but
we could also define a “platform independent” implementation of the same FP
(e.g., using the C programming language) to provide an executable specification of
that FP.

In our approach, we use a corresponding suffix added to the method name, to
denote the implementation language that it targets. This lets us differentiate be-
tween different implementations of the same operation. An example is presented
below, where addition taco and addition c methods provide a TACO and, respec-
tively, a C implementation of the �FUop� addition operation.

<<FUop>> addition(a:int, b:int, c:int);

addition_taco(a:int, b:int, c:int){
a > TSC; //setup COUNTER with the value of ’a’
b > TIC; //increment COUNTER with the value of ’b’
RC > c; //read the result into ’c’
}

addition_c(a:int, b:int, c:int){
c = a+b;
}

FP specifications like the ones above will be defined and integrated with the UML
models of the TACO architecture. Their purpose is to provide a functional per-
spective of a given TACO configuration and to facilitate the application mapping
process, as it will be discussed later on in this chapter.
Finally, all the elements of the TACO Profile are grouped under the TACOProfile
package, bearing the �profile� stereotype, as defined by the UML metamodel.
Branding a package with the�TACOProfile� stereotype will depict a model con-
taining elements specified by the TACO Profile definition.

Table 5.1 presents the list of the stereotypes defined by the TACO Profile and
the corresponding UML elements that have been extended by each stereotype.

5.3.3 Encoding Additional Information in the Profile

Stereotypes provide a classification of the UML elements, based on their intended
meaning with respect to an application domain. Sometimes, additional properties
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Name Base Class Description
TACOProfile Package Model containing elements of the TACO Profile
Network Class The IN of a TACO processor
NetCtrl Class The interconnection network controller of TACO
FU Class Functional unit
Bus Class Component of the IN
Socket Association Generic socket connection between an FU and the controller
Result Bit Association Result signal of an FU connected to the controller
NetLink Association Element modeling the connection between the controller and the network
TR Attribute Trigger register of an FU
OR Attribute Operand register of an FU
RR Attribute Result register of an FU
RB Attribute Feature of the FU depicting the presence of a result bit signal
FUop Operation Piece of functionality provided by a FU (i.e., functional primitive)

Table 5.1: The stereotypes of the TACO Profile

are required to be added to these “classifications”, such that each element belonging
to a given “class” inherits the properties automatically.

TaggedValues are suggested by the UML specification to define additional
properties of the stereotyped elements. A tagged value is “an arbitrary property
attached to the model element based on an associated tag definition” [94, p. 2-78].
Therefore, each tagged value has a type given by a TagDefinition, which is declared
as a property of a given stereotype.

We recall that the TACO framework contains a Matlab estimation model pro-
viding estimates of area, power consumption and gate delay for the TACO compo-
nents. Having such estimates available at design-time, enables the TACO designer
to make educated choices in configuring TACO, in order to comply with the perfor-
mance requirements and physical constraints of the application. We have included
these estimates in the TACO Profile definition as additional properties of its ele-
ments. We will briefly discuss each estimate type in the following.

In TACO, the estimation model provides worst-case estimates for the delay in-
troduced by the gate levels of different components like FUs, sockets and buses. Of
these, only the delay for FUs can be statically estimated, before configuration-time,
based on the implementation characteristics of each FU. The gate delay estimates
for the other TACO resources are calculated mathematically, at configuration-time,
based on the distance between FUs, bus lengths, and internal execution delay for
each FU (see [132, p.126]). Consequently, we have defined a tagged value, namely
gd, to store the gate delay of each FU. A corresponding gd estimation tag definition
has been added to the �FU� stereotype.

The Matlab model also provides estimates of the power consumption for each
FU and the interconnection network controller, which are the main energy con-
sumers in a TACO processor. In addition, estimates for the area occupied by the
FUs and the interconnection network controller are provided. Following an ap-
proach similar to the case of gate delay, corresponding area es and pc es tag def-
initions have been declared for the stereotypes that model the above mentioned
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elements, and two new tagged values area, and pc, are used as properties of the
�FU� and �NetCtrl� classes, respectively. Due to the numerical nature of
all three estimates, their tag definitions have been declared of type UML14::Data-
Types::Integer.

Next, we have defined pointers to the simulation and synthesis models of each
TACO component (including buses), in order to integrate the information stored in
the SystemC and VHDL libraries, within the TACO Profile. This lets one select,
at code-generation stage, the corresponding implementation files for each com-
ponent of a given configuration. Consequently, two new tagged values are used:
sysc and vdhl, respectively. A corresponding implementation tag definition of type
UML14::DataTypes::String has been added to their stereotype definitions.

Figure 5.5 presents an example where tagged values are used to add estimation
and implementation properties to the MyFU functional unit.

MyFU

 « » 

 { area = 1 , pc = 1 , gd = 1 , sysC = "myfu.h" , vhdl = "myfu.vhd"} 

FU

Figure 5.5: Tagged values for specifying additional properties of TACO FUs

5.3.4 Enforcing Architectural Consistency through Well-formedness
Rules

UML stereotype definitions provide a list of customized UML elements intended
for representing the components of the TACO architecture. These definitions do
not enforce the architectural restrictions of the architecture, except for the ones
provided by the abstract syntax (i.e., relationships between elements) of UML.
By selecting certain UML elements to extend their abstract syntax, the associated
constraints behind these elements are automatically inherited. For instance, since
the UML metamodel prevents two Association elements from being connected to-
gether, it means that connecting a�Socket� and a�Result Bit� elements is not
allowed either.

To enforce additional architectural restrictions of the TACO architecture, a
number of well-formedness rules have to be defined as constraints associated to
the TACO Profile. Constraints are used in UML to introduce new semantics to
UML models, beyond the graphical capabilities of UML. They are attached to the
UML elements and expressed either in a textual language or using a semi-formal
language like OCL, the default constraint language of UML. The well-formedness
rules of the UML metamodel can be found in [94]. These rules are attached to
different elements of the metamodel.
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Element Well-formedness rule
Socket A single Socket connects an FU to a Network element
Result Bit Result Bit connects an FU to NetCtrl
FU If a RB attribute is present in a FU then a ResultSignal is connected to the FU class

An FU is connected exactly by one Socket to a Network
There is exactly one RB in a FU
There is at least a trigger socket in an FU
There is the same number of TR sockets and operations in an FU

Network There is only one NetCtrl in a TACO model
An instance of Network class contains at least one instance of type Bus

NetCtrl There is only one NetCtrl in a TACO model
A Network has at least one Bus

NetLink A NetLink connects a NetCtrl to a Network

Table 5.2: Architectural well-formedness rules of the TACO Profile

When creating UML profiles, the stereotypes are the ones that define new
“types” of elements. Therefore, it is to the newly created stereotypes that archi-
tectural constraints of TACO have to be attached, such that their instances inherit
these constraints. In case of TACO Profile, the well-formedness rules may be
cosidered as falling into two categories: a) enforcing the architectural constraints
of the TACO hardware architecture (Table 5.2); b) enforcing the consistency of
additional properties (Table 5.3). While rules specified in the first category are
mandatory, the ones of the second category may be regarded as optional.

Element Well-formedness rule
FU All tagged values have assigned values

An FU contains the five tagged values associated to them by the profile definition
Only TACO defined tagged values are allowed in a TACO Profile

FUop An operation has at least an implementation method

Table 5.3: Additional well-formedness rules of the TACO Profile

Other well-formedness rules can be envisioned to assist the designer in his
work. For instance, verifying the conformance of a tagged value to its tag defi-
nition type, or that the numerical tagged values are in a predefined range, can be
considered as such rules. In addition, since the TACO Profile restricts the UML el-
ements to a given set of elements, constraints to forbid the usage of other elements
of the class diagram may also be introduced. For instance, in the current TACO
Profile definition, class relationships like inheritance or composition should not be
allowed.

Although UML uses and suggests the use of OCL as an executable language
for specifying and enforcing well-formedness rules, the implementation and ver-
ification of such rules depends on capabilities of the UML tool used. Normally,
constraints associated with profiles should be automatically enforced by the UML
tools. Unfortunately, most of the UML tools at the time of performing this research
provide poor support for implementing UML profiles and for verifying their prop-
erties [27]. Our approach of integrating and verifying the TACO well-formedness
rules within a tooling environment will be discussed in the following section.
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5.4 Modeling the TACO Architecture in UML

This section discusses the modeling process of the TACO architecture using the
TACO Profile. Tool support and automation, assumed by the profile implementa-
tion in a UML tool, is presented for various steps of the TACO design flow.

For convenience, we selected the SMW tool introduced in the previous chapter,
and soon after, its newer version, the Coral modeling framework [102], for imple-
menting the TACO Profile. The choice is motivated by the discontinued support
for SMW, as well as by the improved capabilities of Coral. As similar to SMW,
Coral provides a scripting environment using the Python programming language.
This allows one not only to query and transform models using scripts, but also to
enforce their consistency using OCL-like constructs. Coral supports the definition
of new stereotypes, tagged values and constraints for the UML 1.4 profiles. In
addition, editors are provided for most of the UML diagrams.

5.4.1 Creating Processor Configurations

Following the traditional object-oriented design flow, and the TACO Profile defini-
tion discussed in the previous section, two UML diagrams are used for modeling
TACO. The TACO class diagram (Figure 5.6) provides a template of the TACO
architecture for modeling its components and their interconnections.

Configurations of the TACO architecture may be obtained using object dia-
grams. The object diagram has only two types of elements: objects and links.
Objects represent instantiations of classes, whereas links are instances of class as-
sociations. The TACO object diagram is used to model both the qualitative and the
quantitative configurations of the processor. Figure 5.7 presents a configuration
of TACO derived from the class diagram in Figure 5.6. One may notice that two
instances of the Shifter FU (i.e., S1 and S2) are present in this configuration.

Each TACO object diagram also depicts the buses included in the intercon-
nection network of the specified configuration. We recall that an instance of a
�Network� class may contain one or more instances of a �Bus� class, as de-
fined by the TACO Profile. Currently, the Coral editor does not display the contents
of the ownedInstances slot of an Instance element, yet an interconnection network
(i.e., net) consisting of three buses would look as in the example of Figure 5.8.

Several configurations of the TACO architecture may be created, using object
diagrams. It is important to notice that the level of detail provided by the object di-
agram is low, focusing on the static relationship between different class instances.
Nevertheless, the properties of each instance can be easily obtained by interrogat-
ing the properties of its classifier. The approach allows one to rapidly create TACO
configurations in UML tools.

Architectural constraints are enforced at object diagram-level, only based on
the underlying metamodel of the UML object diagram, although additional well-
formedness rules may also be specified. For instance, a constraint could be added

87



Controller

NewClass_3

IntNet

MATCHER

COUNTER

SHIFTER

 « » 

 « » 

 « » 

 « » 

 « » 

NetCtrl

+ RJMP : 

+ AJMP : 

+ relJump ( ) : 

+ absJump ( ) : 

Network

FU

+ TM : 

+ OD : 

+ OP : 

+ R : 

+ rb : 

+ match ( , , , , ) : 

FU

+ TSC : 

+ TIC : 

+ TDC : 

+ RC : 

+ rb : 

+ inc ( , , ) : 

+ dec ( , , ) : 

+ add ( , , , ) : 

+ sub ( , , , ) : 

FU

+ TLR : 

+ TLL : 

+ TML : 

+ TMR : 

+ OP : 

+ R : 

+ rb : 

+ shll ( , , , ) : 

+ shlr ( , , , ) : 

+ shar ( , , , ) : 

+ shal ( , , , ) : 

addr : 

addr : 

val : msk : sel : res : b : 

val : res : b : 

val : res : b : 

val1 : val2 : res : b : 

val1 : val2 : res : b : 

val : pos : res : b : 

val : pos : res : b : 

val : pos : res : b : 

val : pos : res : b : 

32b

32b

32b

32b 32b

32b

32b

32b

1b

32b 32b 32b 32b 1b

32b

32b

32b

32b

1b

32b 32b 1b

32b 32b 1b

32b 32b 32b 1b

32b 32b 32b 1b

32b

32b

32b

32b

32b

32b

1b

32b 32b 32b 1b

32b 32b 32b 1b

32b 32b 32b 1b

32b 32b 32b 1b

<<ResultBit>>m

<<socket>>s1

<<socket>>s2

<<socket>>s3

<<ResultBit>>c<<ResultBit>>s

<<NetLink>>n

Figure 5.6: Processor configuration (class diagram) using the TACO Profile

nc : 

S2 : 

S1 : 

bus : 

net : 

CN1 : 

M : 

Controller

SHIFTER

SHIFTER

Bus

IntNet

COUNTER

MATCHER

Figure 5.7: Object diagram representing a quantitative configuration of TACO

Interconnection
Network Controller

FU1 FU3

FU2 FU4

TR

OP

R

TR

OP

R1

TR

OP1

R

TR

OP

R

ProgramMemory

GuardID SourceID DestinationID GuardID SourceID DestinationIDGuardID SourceID DestinationID IC

subinstruction 0 subinstruction 1 subinstruction N-1

TACO instruction for N buses

Qualitative
Configuration

Quantitative
Configuration

Simulation Estimation

Synthesis

OP2

R2
Interconnection

Network

Quantitative
Model

Simulation
Model

Estimation
(Model)

Synthesis
Model

Appplication
Specification Perf. Reqs

SystemC
Library

Matlab
Library

VHDL
Library

Qualitiative
Model

Application
Code

Functional
Library

Qualitative
Configuration

Quantitative
Configuration(s)

Simulation Estimation

Synthesis

Create
application

code

Compilation

Mapping

(a). (b).

UML Library

net:IntNet

bus1: Bus32
bus2: Bus32
bus3: Bus32

<<Bus>>

Bus32

Figure 5.8: Adding buses to a TACO configuration

to the some of the stereotype definitions to impose that only one instance of a given
class (e.g.,�NetCtrl�) is allowed in a configuration.

5.4.2 A UML-based Approach for the TACO Library

The TACO Profile definition and its implementation in Coral allows the designer
to manually create configurations of the TACO processor from scratch. However,
the approach can be time consuming and error prone. Following a library-based
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approach alleviates such problems by enabling support not only for reuse, but also
for rapid creation of new processor configurations.

As already mentioned in Section 5.2, we have defined a TACO UML Library
that encompasses information provided by the functional, simulation, estimation
and synthesis libraries of the TACO framework, unified in a single model. There-
fore, four types of information are included in the library:

• structural - internal structure of components (e.g., registers, result signals, etc.);
• physical characteristics - estimates of area, power use and gate delay;
• simulation and synthesis specifications - pointers to the SystemC and VHDL

implementations;
• functional - functional primitives (i.e., the API) provided by each component,

and their implementations in terms of TACO bus transports, as well as additional
implementations (e.g., using the C language);

The TACO UML Library is modeled using the TACO Profile definition, in order to
benefit from support in UML tools. The approach allows one to graphically create
and maintain such a library, and moreover, to store it as a UML model. Conse-
quently, a new stereotype �TACOUMLLibrary� has been added to the TACO
Profile definition by extending the UML Package element. The purpose of this
stereotype is to provide capability for differentiating a TACO design from a TACO
library model. The TACO library encompasses all the components of the TACO
architecture like FUs, network controllers, interconnection networks and buses,
along with their related properties. In fact, the library model is similar to a TACO
class model, except that no association-related stereotypes (e.g., Socket, Result Bit)
are included.

New TACO class diagrams can be created either from scratch, or by using
the TACO UML library. In the latter case, the designer has to select the desired
components from the library model and add them to the new model. The addition
of new elements from the library can be done either manually or automatically.
To support the former, Coral provides copy/paste operations of model elements
from one model to another, assuming that they conform to the same underlying
metamodel [103]. This feature assists the designer in creating new TACO models
(i.e., class diagrams) by simply copying existing elements from the TACO library.
To support an automated design, a dedicated script (similar to the Python scripts
discussed in Chapter 4) may be implemented, for copying library elements from
one model to another.

Beside graphically creating and editing TACO models, other tool support could
be provided for assisting the design activity. As mentioned previously, only TACO
components (i.e., stereotyped classes) are stored and reused from the library. Once
new components are added to a new model, they also have to be manually inter-
connected by the designer. Nevertheless, we have observed that only three types of
elements (i.e., Socket, Result Bit and NetLink) have to be added to make the model
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complete, and furthermore, their addition can be automated. We have implemented
a Python script to assist the process, based on the following steps:

• for each�FU� element, a�Socket� element is created and connected to the
�NetCtrl� element;

• all�FU� elements, containing an�RB� attribute (depicting the necessity of
a result signal), are connected to the network controller through a�Result Bit�
signal;

• a�NetLink� element is added between the interconnection network controller
and the interconnection network.

Figure 5.9 provides a snapshot of the TACO UML Library for IPv6 routing. At the
bottom of the screen, a property editor allows one to edit the properties of TACO
elements. In this particular example, a property editor for editing the methods of
the MATCHER FU is shown at the bottom of the screen. The left hand side pane,
provides a list of library elements, while the main editor lets one to graphically
create and edit the library components.

The TACO Library is currently built manually by the TACO hardware designer
and complemented with estimation information extracted from the libraries of the
TACO framework. The process of building the library might seem tedious, but the
number of library elements is relatively small (e.g., fifteen for IPv6 routing) and
new additions may occur rather seldom. Nevertheless, once we have the TACO
library built, we are able to quickly create processor configurations from which
can further generate different artifacts of the development process.

5.4.3 Tool Support for the Verification of Well-formedness Rules

We have used OCL-like constructs specified in Python, in order to specify the well-
formedness rules associated to the TACO Profile. An example of such a constraint
and its Python implementation are shown below:

def wfrFUTrigger(self):
"There is at least one trigger socket in a FU""
return (self.feature.select(lambda att:
att.oclIsKindOf(UML14.Attribute)).stereotype.exists(lambda st:

st.name=="TR") > 0)

One of the missing features of Coral, at the time when the TACO Profile was im-
plemented, was the automatic verification of the constraints associated to a profile.
To tackle this problem, we have specified the constraints of the TACO Profile in a
separate file, which is executed in the scripting environment of the tool each time
one wants to check the consistency of the models created. An excerpt of the code
that is used to verify the constraints is given below:

for el in self.ownedElement:
if hasStereotype(el,"FU"):

print " verifying element " + el.name
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Figure 5.9: Caption of the TACO library for IPv6 in Coral3

if not wfrFUTrigger(el):
print " FAILED!!! "

if hasStereotype(el,"Result_Bit"):
.......

The output of the script displays in the scripting editor of Coral the list of elements
verified, the constraints verified for each element, and those constraints that failed.

5.4.4 System-level Estimation of TACO Configurations

Having all the estimation-related information gathered in the TACO UML models
has enabled us to use the scripting facilities of Coral, for estimating the physical
characteristics of the created TACO configurations. Physical estimates, like occu-
pied area and power consumption, are obtained by querying the object model of a
given configuration, from where the corresponding tagged values of each object’s
classifier are read and summed up. For instance, the following script computes the
area of all FUs in a TACO configuration:

1 area = 0;
2 for ob in self.ownedElement:
3 if ob.oclIsKindOf(UML14.Object):
4 if ob.classifier.stereotype.exists(lambda st: st.name=="FU"):
5 area=area + int(str(ob.classifier.taggedValue.select(lambda tv:

3The author wishes to thank PhD student Tero Nurmi for providing the physical estimates in-
cluded in the TACO UML library

91



6 tv.name=="area")[0].dataValue))
7 print "Total area", area

The script selects (line 4) all instances of the�FU� elements, and adds the value
of their area tagged value to the total area of the configuration. If the area occupied
by the interconnection network controller or by other components is to be included
in the calculation, only line 4 needs to be modified to include the corresponding
stereotypes. A similar script is used to compute the power consumption of TACO
configurations. As one may notice, the complexity and size of the script is quite
low, being pretty simple to implement it.

Finally, based on the gate delays included in the profile, we are able to automat-
ically estimate the clock cycle of the processor. This estimation is only preformed
with respect to the gate delays introduced by the FUs, as follows: the FU with the
largest gate delay will provide (a rough estimate of) the processor clock cycle for
a given configuration. Due to space reasons, we do not include the script here.

5.4.5 Code Generation

In our approach, the SystemC and VHDL models of the processor are obtained
from the UML models of TACO (see Figure 5.3). Although the SystemC and
VHDL models are co-developed in a cycle-accurate manner, the simulation and
synthesis code of a given configuration is generated independently.

Two code generation transformations have been defined to support the auto-
mated generation of the SystemC and VHDL models. Since all the processor com-
ponents have corresponding implementations files in SystemC and VHDL, only the
top level configuration files of the two models have to be generated. The generated
files will contain information, like module instances, included in a configuration
and their interconnection at port level. The transformation scripts are rather large
in size, therefore we will not include them here. We briefly present the algorithm
of the transformation using pseudocode:
for each object in the object diagram

if object.classifier is <<NetCtrl>> or <<FU>>
add module instance from the SysC tag

if object.classifier is <<Network>>
instantiate a bus for each <<Bus>> instance

for each <<Result_Bit>> link
declare a sc_signal<bool> signal
connect signal to <<FU>>
connect signal to <<NetCtrl>>

for each <<Socket>> link
compute register types
for each FU register

for each bus
connect register to bus

for each <<FU>>
assign triggers

The partial result of applying this algorithm to the TACO processor configuration
(i.e., object diagram) of Figure 5.6, is presented below:
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#include "matcher.cpp"
#include "counter.cpp"
#include "shifter.cpp"

....
#include "netctrl.hpp"
#include "bus.hpp"

int sc_main(int argc, char* argv[]){
sc_clock clk("clock",20);

//instantiate SystemC modules
NetControl nc("NetCtrl1");
nc.clk(clk);
Matcher m1("M", clk);
Shifter s1("S1", clk);
Shifter s2("S2", clk);
Counter cn1("CN1", clk);

//instantiate buses
Bus* bus0 = new Bus("Bus0");
Bus* bus1 = new Bus("Bus1");

....

//declare and connect result signals
sc_signal<bool> sigM1Guard;
m.resultBit(sigM1Guard);
NetControl::insertGuard(sigM1Guard);

....
//connect M:MATCHER to bus0
bus0->insertOperand(m1);
bus0->insertData(m1);
bus0->insertTrigger(m1);
m1.assignTriggerIds();
bus0->insertResult(m1);

....
nc.initialize();
sc_start(clk, n);

....
}

....
nc.initialize();
sc_start(clk, n);

....
}//main

Following a similar approach, a script has been implemented to generate the VHDL
model of the processor, in order to serve as input for hardware synthesis tools.

One remark can be made at this point. In the TACO SystemC model, the trigger
sockets are dynamically created at run-time by the network controller. This is the
reason why only one line of code (i.e., m1.assignTriggerIds()) is used, in the previ-
ous example, for connecting and generating the trigger sockets of the Matcher unit,
whereas the rest of the sockets are automatically created when an FU is connected
to the bus (see [132] for more details).

5.5 Mapping Applications onto the TACO Architecture

In this section, we discuss the process of mapping application specifications onto
the TACO architectural specification. The process relies on the UML-based ap-
proach for application specification, which we have presented in Chapter 3, and
on the use of the TACO UML profile. From the mapping process, a configura-
tion of the architecture to support the application and the corresponding program
code to drive the configuration are obtained. We exemplify the approach with the
implementation of the IPv6 router application specification on TACO.

We recall that in our application specification process, only the functional re-
quirements of the application are taken into account. Therefore, a functional imple-
mentation of the application, against the TACO architecture, is obtained from the
mapping process. Later on, the functional implementation is tuned, during the de-
sign space exploration phase, to satisfy the performance requirements and physical
constraints of the application.

In the mapping process, the artifacts of the application specification have to
be expressed using concepts of the selected architecture. This approach poses a

93



problem: the difference between their level of abstraction creates what researches
refer to as the implementation gap [74, 118]. This gap is even wider when the
target architecture is hardware-based. To narrow this gap, one solution proposed
by the same researchers is the use of the programming model of the architecture.
This approach enables, on the one hand, to raise the level of abstraction at which
the architecture is specified and, on the other hand, to express the architecture in
similar concepts with the ones used in the application specification. To benefit
from such a programming model, it is important that a natural resemblance exists
between the computation model of the application and the programming model of
the architecture, in order to facilitate the mapping of their concepts. Kienhuis et
al. [74] suggest three levels of natural fitness between the two models: granularity
of operations, operational semantics and data types used. In the approach that we
present in the following, only the first two levels of fitness are addressed, while the
data type level is left for future investigations.

Throughout this chapter, the various models of the TACO architecture, includ-
ing its programming model, have been discussed. In addition, a methodology for
specifying protocol processing applications has been proposed in Chapter 3. The
application model resulting from this methodology follows a control-oriented com-
putation model, whose concepts fit naturally on the control-oriented programming
model of TACO.

Seen from a model driven perspective, the TACO mapping process is similar
to a PIM→PSM transformation, as specified by the MDA standard. In our case,
the platform independent model (PIM) is represented by the application specifi-
cation (e.g., IPv6 router), while the platform specific model (PSM) represents the
implementation model of the application on a given architecture (i.e., TACO con-
figuration and application program code). A platform model (PM) (i.e., the TACO
architecture specification) is used to support the transformation.

In order to tackle the conceptual gap between the application and the architec-
ture, and by benefiting from the abstraction layers of the TACO architecture, we
have decomposed the mapping process into several smaller PIM→PSM transfor-
mations (Figure 5.10). At the highest level of abstraction, the mapping process
is performed between the application specification model (i.e., PIM) and the pro-
gramming model of the architecture, namely the TACO functional primitives (i.e.,
PM1.1). The application specification model is obtained from the specification
process discussed in Chapter 3. Hence, the specification is represented in terms
of activity graphs communicating via messages. The result of the transformation
(i.e., PSM1.1) provides an “implementation” of the PIM, in which the subactiv-
ity states of the application model are expressed in terms of functional primitives
of the architecture. From the model obtained (i.e., PSM1.1) the set of TACO re-
sources needed to support the computation (i.e., PSM2) is identified by mapping
the functional primitives onto the TACO hardware model (i.e., PM2).

In a different transformation, the control primitives of the activity graphs in
the PIM1.1 model are transformed in control primitives of the TACO architecture

94



PM
PM1

(programming model)

Checksum

Send_Error

chksm

dtg_adr

index = 0

sum=sum+ dtg(index)

no

len = dtg.lenght /4

index ++

index < len

1sum =sum[0..15] +
sum[16..32]

chksum = not (1sum)

yes

dtg_adr

chk

dtg_adr

chksm

A

B

C

D

E

G

D: write(addr_index, 0);
   read(dtg_addr, 8; len);
   shlr(len, 2; len);

E: read(addr1, index);
   cmp(index, len, 0; d);

F: read(addr_sum, sum);
   read(dtg_addr, index, dtg);
   add(sum, dtg, sum);
   inc(index, index);
   write(addr_index, index);
   write(addr_sum, sum);

G: write(addr_1sum, 0)
   read(addr_sum, suma);
   shll(suma, 16; sum1);
   read(addr_sum, sumb);
   mask(sumb, 00FF; sumb);
   add(suma, sumb; sum1;);
   subs(FF, sum1, chksm)
   write(addr_chksum, chksum)

F

H

 read(dtg_addr, index, dtg);

read(addr_sum, sum);
F

write(addr_index, index);

 inc(index, index);

 add(sum, cnt, sum);

PIM
(behavioral

model)

PSM1.1/PIM1.1
(behavioral model with
functional primitives)

PSM2/PIM2
(arch. config.)

PSM1.2/PIM1.2
    (block code)

Performance
Requirements

PM2
(hardware

model)

PM3
(simulation

model)

PSM3/PIM3
(simulation

model)

PM1.1
functional
primitives

PM1.2
control

primitives

PSM2.2/PIM2.2
(application code)

Figure 5.10: The PIM-PSM transformations supporting the mapping process

(i.e., PM1.2). The resulting artifact (i.e., PSM1.2) represents a model of the IPv6
router application, implemented on TACO. In this model, the entire application is
expressed in terms of TACO programming primitives.

In a subsequent transformation (PIM1.2→PSM2.2), the programming primi-
tives are expressed in terms of TACO bus transports, according to the resources in
the TACO configuration under study.

Two observations can be made at this point: a) the transformation process can
be further continued using other models of the architecture (e.g., to create a simu-
lation model); b) the application code (PIM1.2) may suffer subsequent transforma-
tions (e.g., optimizations), before being executed on the TACO configuration.

In the following, we will discuss each transformation in more detail.

Expressing the Application Specification with TACO Programming Primitives

In the first transformation (i.e., PIM→PSM1.1) of the mapping process, the activ-
ity states are expressed in terms of functional primitives of the TACO architecture.
The process is composed of two steps. In the first one, the subactivity states are
hierarchically decomposed into less complex subactivity states until they match
the granularity of the TACO FPs. This step is heavily based on the experience of
the TACO domain expert and thus, performed manually. A certain level of tool
support could be assumed in decomposing the subactivity states, though. In the
second step, each “leaf” subactivity state is transformed into an action state, and
implemented with one of the functional primitives provided by the programming
model of TACO. We remind the reader that TACO FPs are available in the TACO
UML Library (see Section 5.4.2 for details). We also remark that this step is similar
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D: write(addr_index, 0);
   read(dtg_addr, 8; len);
   shlr(len, 2; len);

E: read(addr1, index);
   cmp(index, len, 0; d);

F: read(addr_sum, sum);
   read(dtg_addr, index, dtg);
   add(sum, dtg, sum);
   inc(index, index);
   write(addr_index, index);
   write(addr_sum, sum);

G: write(addr_1sum, 0)
   read(addr_sum, suma);
   shll(suma, 16; sum1);
   read(addr_sum, sumb);
   mask(sumb, 00FF; sumb);
   add(suma, sumb; sum1;);
   subs(FF, sum1, chksm)
   write(addr_chksum, chksum)

F

K

 read(dtg_addr, index; dtg);

read(addr_sum; sum);
G.1

 add(sum, dtg; sum);

G

H

J

 cmp(index, len, 0; d);

read_par(addr_dtg; dtg_adr)

G.2

G.3

C.1

write_par(addr_chk; chksm)
K.1

F.1

Figure 5.11: Decomposing activity states to match the complexity of TACO oper-
ations

to the “marking” process as suggested by MDA, and hence, it is not trivial to au-
tomate. Figure 5.11 presents an example where an activity graph representing the
checksum computation, is refined using TACO operations. For instance, the sub-
activity state denoted ‘G’ is split into three action states: ‘G.1’, ‘G.2’ and ‘G.3’,
which match the granularity of and will be implemented using the TACO FPs.

Identifying the TACO Qualitative Configuration

The PSM1.1 model resulting from the previous transformation becomes the input
(i.e., the PIM1.1) of the second transformation. In this transformation, the TACO
components (i.e., the FUs) required to implement the selected TACO FPs are iden-
tified. The process is facilitated by having the correspondence between the TACO
functional primitives and the TACO FUs stored in the TACO UML library. We
have automated this transformation using a script that searches the TACO Library
for those functional units that provide each FP of the PIM1.1 model. Based on
the identified resources, a class model and subsequently, an object model of TACO
are created. The TACO object model provides a qualitative configuration of the
processor, in which only one FU of each identified type is present.

One exceptional case has to be attended in the transformation. In certain sit-
uations, the same FP may be provided by more than one FUs. For instance, the
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Figure 5.12: Qualitative configuration of TACO for the IPv6 router

selection of the 16 LSB of a 32-bit field, may be achieved using either a MASKER
FU or a SHIFTER FU. In such cases, two approaches could be followed: either
the user intervention is required and the she/he manually selects the desired FU,
or a “preferred” component may be used for a given FP. In our implementation,
we have decided to follow the former approach, in which the user intervention is
required.

The TACO qualitative configuration resulting by applying this transformation
to the IPv6 router specification is shown in Figure 5.12. We mention again that
the presented model depicts a qualitative configuration of the processor where only
one FU of each type is used. If a quantitative configuration is to be obtained from
this transformation, performance requirements have to be taken into consideration
in the application specification phase. Such an approach is subject to future work.

Creating the Application Code

The PSM1.1/PIM1.1 model of Figure 5.10 models the application specification in
terms of activity graphs, in which the action states are implemented with TACO
functional primitives. To obtain the TACO assembler code for driving the configu-
ration obtained in the previous step, the PIM1.1 model has to be transformed into
TACO programming primitives. The transformation is composed of two steps:

a) map the computation model of the application specification into the control
structures of the TACO programming model;

b) express the TACO functional primitives in terms of TACO bus transports specific
to each FU.

Step a) corresponds to the PIM1.1→PSM1.2 transformation, and it is based on the
“natural fitness” between the activity graphs and the TACO programming model,
as depicted in Table 5.4. Basically, we regard each action state as a subroutine
that is invoked from other parts of the code. The starting point of a subroutine is
identified by a label, while its end is indicated by a jump to the next subroutine.
The approach enables us to regard the activity graph as a sequence of subroutines.
Consequently, transitions between activity states are modeled using unconditional

97



Activity Graph Model TACO Prog. Model
action state moves
branch conditional jump
transition unconditional jump
send signal subroutine call
receive signal label

Table 5.4: The correspondence between the control structures of the Activity Graph
and of the TACO programming model

jumps, while guarded transitions are implemented as conditional jumps. Beside
control primitives, each subroutine also consists of a TACO functional primitive,
supporting the functionality of the subroutine. The transformation process is based
on the following steps:
a.1 each activity state, branch state, send signal, receive signal state is transformed

into a TACO subroutine respectively, where the first instruction is a label;
a.2 a transition between two blocks is transformed into an unconditional jump

instruction, where the address of the jump corresponds to the label of the target
activity;

a.3 guarded transitions, only allowed in combination with branch states, are trans-
formed into conditional jumps pointing at the label of the target subroutine.

The result of applying the transformation to the example in Figure 5.11 is shown
below. In this example, the TACO FP implementing each action state has been
replaced with the tag (e.g., A.1) of the corresponding activity states, in order to
provide a better view of the structure of the presented code.

label A.1;
A.1;
JUMP C;
JUMP B;

label B;
B.1
JUMP ...;
........

label C.1;
C.1;
JUMP D.1;

label D.1;

D.1;
JUMP E.1;

label E.1;
E;
e: JUMP F.1;

label F.1;
F.1;
d: JUMP G.1;
!d: JUMP I.1;

label G.1;
G1;
JUMP G.2;

label G.2;
G.2;
JUMP G.3;

label G.3;
G.3;
JUMP H.1;

label H.1;
H.1;
JUMP F.1;

label I.1;
I.1;

JUMP J.1;

label J.1;
J.1;
JUMP K.1;

label K.1;
K.1.
JUMP B.1;

label B.1;
B.1;
JUMP B.1;

.....

In step b), corresponding to the PIM1.2→PSM2.2 transformation, the TACO FPs,
used to describe the action states, are expanded into TACO moves (i.e., bus trans-
ports), based on the specification of each FP stored in the TACO UML Library. We
recall that one or more transports are used to set up the input registers of the FU,
to trigger and read the result of the computation. Thus, the transformation queries
the library for each primitive in the PIM1.2, reads the bus transports of each op-
eration, and replaces the parameters of the operation in the parameters of the bus
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transports. The following example presents a fragment of the code resulting from
this transformation. Note that the “#” symbol is used to specify commented code.

00 LABEL G.1;
01 #read(addr_sum; sum); MMU FU
02 +00 > OPMM; #base address for variables
03 addr_sum > TRMM; #offset address
04 RMM > sum; #read the result into sum
05 JUMP G.2;

06 LABEL G.2;
07 #read(dtg_addr, index; dtg); MMU FU
08 dtg_addr > OPMM; #base address of the datagram
09 index > TRMM; #offset of the next 32-bit word to be read
10 RMM > dtg; #read the result into ’sum’
11 JUMP G.3;

12 LABEL G.3;
13 #add(sum, dtg; sum); COUNTER FU
14 sum > TSC; #initialize counter with the ’sum’ value
15 dtg > TIC; #increment counter value with ’dtg’
16 RC > sum; # read result of the addition
17 JUMP H.1;

18 LABEL H.1;
19 #inc(index); COUNTER FU
20 index > TSC; #initialize counter with the ’index’ value
21 +01 > TIC; #increment counter value by 1
22 RC > index; #read result of the addition into ’index’
23 JUMP H.2;

24 LABEL H.2;
25 #write(addr_index); MMU FU
26 +00 > OPMM; #base address for variables
27 addr_index > TRMM; #offset address of the ’index’
28 JUMP F.1;

29 LABEL F.1;
30 #cmp(index, len, 0; d); COMPARATOR FU
31 len > OPC; #
32 index > TLTC; # index < len, d is guard signal
33 d: JUMP G.1; # conditional JUMP
34 !d: JUMP I1;
....
35 LABEL K.1;
36 #write_par(addr_chk, chksum); MMU FU
37 +00 > OPMM; #base address for variables
38 addr_chk > TWMM; #offset address
39 RMM > sum; #write the result into memory
40 JUMP B.1;

41 LABEL B.1;
42 #read_par(addr_chk, chksum; chk); MMU FU
43 +00 > OPMM; #base address for variables
44 addr_chk > TRMM; #offset address
45 RMM > sum; #read the result into sum
46 JUMP ...;
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We remark that the send signal and receive signal activities constitute a special
case. A shared memory location is used for passing the message from the sender to
the receiver. Basically, the send signal activity writes the value of the message into
a given memory location (lines 35-40) and the receive signal activity reads (lines
41-46) the value of the message from the same memory location.

Several remarks can be made regarding the code above. Firstly, each TACO in-
struction has been expanded into a number of bus transports based on its definition
in the TACO UML Library. Secondly, an FU (e.g., COUNTER FU) may provide
more than one operation, and each operation has its own implementation in terms
of bus transports. Thirdly, the obtained TACO assembly code should not be seen
as final code of the application. Before being compiled into executable code, op-
timizations are performed. For instance, the most obvious situation is the one of
an unconditional jump to the next line of code. Such an instruction is completely
unnecessary and implies additional clock cycles to the execution of the code. Other
optimizations of the code may be performed with respect to the TACO architecture
([68, 32]), but we leave them as a task for the TACO compiler. At the moment, the
TACO compiler is under development, and currently all the optimizations have to
be applied manually by the designer.

A Library of IPv6 Processing Tasks. During the specification of the IPv6 router
application, we have identified several functionalities of the application that have
to be supported by any architecture used to implement the application. During this
phase, the functional requirements of such processing task have been analyzed in
detail and their implementation in terms of TACO operations has been specified. In
our case study, several processing tasks required by the router have been identified:

• IPv6 header validation,
• IPv6 classification,
• Checksum computation,
• Routing table lookup,
• ICMPv6 signaling, and
• Routing table update.

These processing tasks may be seen as programming primitives of a platform-
independent DSL for IPv6 routing. They can be used to specify other applications
in the same family. In addition, these tasks may have custom implementations
targeted to specific platforms. From a platform-independent perspective, in our
approach these tasks are specified in terms of activity graphs. Each activity graph
may spawn over several levels of detail (i.e., granularity), in which complex sub-
activity states are decomposed into simpler subactivity and/or action states. When
a platform-dependent specification of each task is created, its action states are ex-
pressed in terms of functional primitives of the target platform. We have shown in
the previous section how these tasks are refined and implemented with TACO FPs.
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Taking advantage of the fact that the resulting specifications (activity diagrams)
are graphically represented and stored as models provides us with the opportunity
to reuse them when specifying applications in the same family (IPv6 routing). Con-
sequently, we grouped these specifications into a UML-based TACO IPv6 process-
ing library, where the specification of each processing task is stored as an activity
diagram similar to the one in Figure 5.11. When the specification of a new appli-
cation is created, and the need for a given processing tasks is detected, its activity
graph is simply reused without having to perform the PIM→PSM1.1 transforma-
tion, which is a non-automatable step of the mapping process. We have used this
approach to implement an IPv6 client application on TACO, in order to serve as a
network interface for a networked multimedia processing SoC design [5, 135].

Another important benefit from the approach is that, by having already imple-
mented the processing tasks in terms of TACO operations, we may easily determine
the list of resources each of them requires, before creating the TACO configuration.
Based on this approach, a rough estimation of the minimum physical characteris-
tics of the underlying hardware needed to support a given task may be obtained,
before performing the mapping process. We also mention that several specifica-
tions of the same processing task are allowed in the library, each of them using a
different algorithm for supporting the task, or being tuned to use specific sets of
resources of the existing TACO components.

5.6 Summary

In this chapter, we have proposed a DSL for the TACO architecture. The DSL has
been defined as a UML profile and implemented into an existing UML tool (i.e.,
Coral), to provide rapid tool support for the TACO design process.

The profile models several abstraction layers of the TACO architecture. At
the highest level, a programming model for TACO has been defined, to allow the
designer to focus on the functionality of the architecture, rather than on its physical
characteristics. On a different abstraction level, the class diagram of the TACO
Profile provides a structural view of the TACO components and of their properties.
In turn, object diagrams have been employed to create configurations of TACO,
due to their low level of detail and easiness of instantiating TACO components.

The TACO Profile integrates several perspectives of the TACO framework
like physical architecture, programming model, estimation models and simula-
tion/synthesis models. These models complement each other, but there is no strict
requirement that all of them are to be implemented or used at once. For instance,
one may create a TACO model from scratch without including the programming
model, simulation or synthesis information. In this case, the resulting model can
only be used for evaluating the physical characteristics of different configurations.

The profile enables tool support for the TACO design flow (Figure 5.3) by
reusing a number of UML-based editors of Coral, to create and edit TACO con-
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figurations. In addition, means have been implemented to enforce the consistency
of the created models, with respect to the TACO architecture. Several reusable
model transformations have been proposed for supporting the transitions between
the steps of the TACO design flow. Some of these transformations have been au-
tomated by using model scripts implemented in Python, the scripting language of
the Coral tool.

One of the main ideas behind the TACO framework is the use of libraries (at
different levels of abstraction) to provide support for automation of the process and
reuse of the components defined in previous applications. Using the TACO Profile,
a UML-based library has been defined (i.e., the TACO UML Library), in order to
encompass programming information, estimation details and simulation/synthesis
information of the TACO components. This library may be seen as a high-level ab-
straction model of the TACO design framework presented in Virtanen’s Ph.D thesis
[132]. Following the TACO Profile definition and the associated well-formedness
rules, lets one not only to store the library components as UML models, but also
to verify their consistency every time a new element is added to the library. The
approach also allows for several domain-specific libraries to be implemented, fol-
lowing a similar approach.

The mapping process discussed in Section 5.5 provides a bridge between our
research on building the application specification (Chapters 3 and 4) and the mod-
eling of the TACO architecture discussed in this chapter. The process has been
regarded from a model driven perspective, in which well-defined models of both
application and architecture have been used. Using these models, the main empha-
sis of the mapping process has been put on defining a PIM-to-PSM transformation
that provides a systematic approach in identifying the architecture configuration
and the corresponding application code. The transformation takes advantage of the
abstraction layers of the TACO architecture. Among these, the TACO program-
ming model plays an essential role, since it provides a software-based perspective
of the architecture, closer (in terms of concepts and abstraction level) to the ones
of the application specification.

By its nature, the mapping process, and thus, the corresponding transforma-
tions, are difficult to automate. In consequence, one of the goals behind this work
has been to split the transformation into smaller parts and try to automate as many
of them as possible. Taking advantage of the abstraction layers of the architecture,
we have decomposed the PIM-to-PSM transformation into four atomic transforma-
tions, each performed at a different level of abstraction.

Although the presented mapping process has been customized for the TACO
architecture, we consider that by applying the same principles we can define map-
ping processes for different other programmable architectures. As it resulted in
our example, one key issue in mastering the complexity of the mapping process is
using a well-defined programming model of the architecture that maps well on the
computational model of the application specification.
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Finally, a UML-based library for storing the mappings (i.e., design decisions)
between the application specifications and architectural specification is proposed.
The purpose of this library is to encode the implementation of the most common
processing task of a given application domain (e.g., IPv6 routing), on a given ar-
chitecture. On the one hand, the approach spares the designer the effort of going
through the tedious mapping process by reusing already specified mappings. On
the other hand, the set of physical resources needed by a given processing task may
be identified a priori to the implementation of the entire application.

Based on the work in Section 5.5, several conclusions may be drawn:

• Taking advantage of the TACO UML Library, which encodes several abstraction
layers of the architecture, enables fast access to the information of the TACO
framework and provides the prerequisites for automating the mapping process.

• The use of the TACO programming model clearly helps in narrowing the imple-
mentation gap between the application and the architecture. In addition, hav-
ing a natural fitness between the concepts of the two specifications facilitates
the mapping of their operational semantics, and the selection of the functional
primitives of the architecture that implement the application.

The secondary goal of the research presented in this chapter has been the evalua-
tion of UML’s suitability for defining and providing tool support for domain spe-
cific languages, that are target to programmable architectures. Several conclusions
could be drawn:

• A graphical DSL for TACO could be defined by taking advantage of the UML
extensibility mechanisms. The approach enabled us to use an existing UML tool
(Coral) for providing tool support for the DSL, without requiring additional tool
customizations. Furthermore, model transformations have been implemented in
Coral to assist the design process by taking advantage of the scripting facilities
of the tool.

• To create a UML profile, a good level of understanding of the UML standard
is required, as well as of the OCL language. Furthermore, familiarity with the
features of the UML tool used to implement the profile is necessary. This also
implies knowledge of the programming language used by the tool.

• The quality of a profile, with respect to the benefits it provides to the designer,
seems to depend very much on the capabilities of the tool. This also influences
the UML elements that the designer chooses to express the application domain.
Even if the mapping to UML concepts could look unnatural, if the graphics of
the tool provide enough expressiveness, they will have priority in taking the
implementation decisions.

• Using a “general-purpose” modeling language, like UML, for defining DSLs
should allow for porting the profile definition between different UML tools and
still maintain the profile usability. At the moment such an approach is not possi-
ble, not only because of the difference in how the UML metamodel is interpreted
by tools, but also because of the difference in the capabilities of different tools.
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• Clearly, the UML tools can be used for editing platform-specific designs, where
other diagrammatic tool support is not present, as long as the representation of
architecture concepts in UML is not too forced or unnatural.

• The usage of models to specify different parts of a system facilitated the reuse
process by allowing us not only to easily create and edit graphical specifications
of the system, but also to store and later on query and reuse already created spec-
ifications. Such an approach has an important impact on the level of automation
of the design process and thus, reduces the development time of new products.

• Last but not least, having the artifacts of both the application and the architecture
modeled in UML enabled us to perform the mapping process in the same UML
tool and in addition, to benefit from the scripting facilities of the tool to for
providing support for automation.

Future work includes several directions, as follows:

• We would like to improve the estimation perspective of the TACO Profile by
taking into account the physical properties of all TACO resources. The current
approach is mainly biased towards estimation of the FUs.

• The use of a UML profile for SystemC to describe the TACO components will
also be considered. Such a profile could provide a graphical modeling tool for
the TACO SystemC model. Moreover, it will introduce an intermediate abstrac-
tion layer between the TACO Profile and SystemC code, which will support the
TACO-to-SystemC transformation in a UML-based environment.

• The TACO programming interface can be further improved by combining it with
performance information. For instance, although each FU operation performs
its operation in one clock cycle, several bus transports are required to setup and
trigger the operation. Integrating this information in the TACO library would
allow one to address the performance requirements of the application during the
mapping process.

• Tool support for the TACO design flow should also be improved. In this section,
several scripts supporting both queries and transformations have been imple-
mented to assist the process. We plan that, in future versions of the profile, we
will integrate them with the graphical Coral environment, such that they can be
invoked by using buttons and context menus. Currently, they are executed in the
scripting shell of Coral.

• We also intend to improve the mapping process, especially the part that is per-
formed manually. Some help could be obtained by addressing the mappings be-
tween the data types involved in the application and architecture specifications,
which have not been taken into account.

• At the moment the TACO IPv6 processing library does not take into account
any performance characteristics of the application, but the idea is considered
as a topic for future work. Future work may also look into integrating these
processing tasks within the TACO UML library, in order to provide a single
library model from which the TACO artifacts are used.
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Chapter 6

A Metamodel for the MICAS
Architecture

In this chapter1, we discuss the use of metamodeling techniques for enabling the
design of a programmable architecture, called MICAS, targeted to mobile multime-
dia applications. We mention from the very beginning that the work presented here
is part of a larger project, in which eight persons participated at different stages.
The work included in this chapter is intended to present only the contribution of
the author of this dissertation, although a clear separation of the contributions of
each project member is difficult to achieve. Some of the ideas included here, even
if they have been suggested by the author of this study, are the result of numerous
project meetings or have been subject to improvements based on the suggestions
made by other project members. Therefore, we acknowledge the role of managing
this project to professors Johan Lilius and Ivan Porres. Ph.D student Marcus Ala-
nen also made an important contribution to the definition of the metamodel, and
in particular, to the definition of the MICAS Functional Library. In addition, the
excellent contribution of the master students Torbjörn Lundkvist and Tomas Lil-
lqvist in providing the implementations and tool support for the solutions devised
is greatly acknowledged. Last but not least, Kim Sandström, the architect of MI-
CAS platform, suggested from the initial stages of the project valuable solutions
for various design issues, which contributed significantly to the accomplishment of
the project.

The chapter proceeds as follows. We start by briefly introducing the basic con-
cepts of the MICAS architecture. Then, we propose a design process for MICAS,
pointing out what deliverables are obtained at different steps of the process. A
metamodel for the MICAS architecture is defined afterwards. The metamodel en-
codes the steps of the design process and provides several levels of abstractions
at which the MICAS hardware is modeled. In addition, a programming model
for the MICAS architecture is defined and integrated within the metamodel. The

1Some material included in this chapter was published in [P.8].
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MICAS design process is accompanied by several libraries, defined at several ab-
straction levels and also integrated within the MICAS metamodel. Such libraries
are intended to provide prerequisites for automation and reuse of MICAS com-
ponents. After introducing the MICAS metamodel, we show how the design of
MICAS architecture is supported by the metamodel implementation in the Coral
tool. We also discuss the design decisions that we have taken in customizing the
Coral editors, in order to support the design process. Throughout this chapter, the
specification of a Digital Audio/Video Recording (DAVR) device is used as a case
study.

6.1 The MICAS Architecture

Microcode Architecture For a System On a Chip (Soc) (MICAS) [109] is a novel
concept developed at Nokia Research Center, Helsinki, Finland, which proposes
both a SoC architecture for sequential data streaming processing systems (e.g.,
multimedia applications, personal video recorders, media streaming applications,
etc.) and a method for controlling the hardware accelerators of such architectures.
Several goals are pursued in MICAS:

• to separate the data-flow from the control-flow of the architecture, by using ded-
icated hardware units (HW processes) to assist data processing tasks, and con-
trollers to drive the activity of these units;

• to decentralize the control communication from the “main processor” of the
system, typically running a real-time operating system (RTOS), and distribute it
to dedicated controllers which only control “local” resources;

• the use of microcode (i.e., software running on controllers) to control the func-
tionality of the HW processes and the data streaming between them. The mi-
crocode provides a hardware abstraction layer (HAL) of the architecture, which
enables to create data streams between HW processes and to invoke the func-
tionality of a given HW process without having access to its hardware imple-
mentation.

MICAS may be seen as a programmable architecture not only in the sense that
different combinations of processing tasks and data streams are used concurrently,
but also in the sense that each HW process may be reprogrammed to perform dif-
ferent tasks. This enables that the same hardware configuration of the MICAS
architecture to be used at implementing several applications in the same family.

6.1.1 Static Considerations

An overview of the MICAS architecture is given in Figure 6.1. A MICAS config-
uration comprises several domains. A domain represents a collection of hardware
processing elements situated on the same physical silicon chip and controlled by
the same controller. Domains provide fast processing speed for dedicated tasks.
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Figure 6.1: Generic view of the MICAS architecture

They are interconnected by off-chip external networks using for instance, serial,
Bluetooth or WLAN technology.

Each domain may contain several HW processes, which implement dedicated
tasks in hardware. HW processes are universally interconnected via buses and
may be grouped into clusters. There are three types of HW processes inside a
domain: bridges, sockets and modules. Buses belonging to different clusters may
be connected to each other through bridges. Sockets intermediate and transform the
on-chip communication into off-chip communication, whereas modules implement
dedicated processing tasks over data streams.

The organization of domains is hierarchical, following a master-slave relation-
ship. Typically, one domain of a given MICAS configuration may be attached to
a GPP running an RTOS (e.g., Symbian – http://www.symbian.com/). Such a
domain is called master domain. Domains connected to a master domain are con-
sidered to be slave domains.

A given domain may have both a master and a slave role with respect to other
domains. For instance, in Figure 6.1, Domain3 has a slave role with respect to
Domain1, and a master role with respect to Domain4. Consequently, Domain1 is
considered to be ’the master’ of Domain4. Since a domain has a single controller
to manage its resources, we can also classify the controllers into master controllers
and slave controllers based on the relative role of their domains. In MICAS, a
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Figure 6.2: Communication between the controller and HW processes in MICAS

master domain requests processing tasks from its slave domain. In practice, the
master controller issues commands to its slave controllers which, in turn, program
the local HW processes to perform the requested tasks.

The communication between the controller and HW processes is implemented
using an interrupt-based mechanism in one direction, and a control bus in the op-
posite direction (see Figure 6.2). Each HW process has assigned an IRQ (Interrupt
ReQuest) number which is used to interrupt the controller, and a unique address
space to which the controller writes commands to program that HW process.

The communication between HW processes is supported by so-called data
buses, which are compliant with the Open Core Protocol (OCP) standard speci-
fication [99]. Throughout this chapter we use the terms MICAS data bus and OCP
bus interchangeably, they both referring to a bus connecting two HW processes.
HW processes have master-slave relationships over the data buses. As such, each
HW process has assigned an address space to uniquely identify itself on a given
bus. Moreover, a HW process may be connected to several buses and it may play
a different role (i.e., master or slave) on each bus. Figure 6.3 provides an example
of four HW processes connected to two different OCP buses. In this example, pro-
cess 2 has a master role relative to the OCPBus1 bus, and a slave role relative to
OCPBus2 bus.
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Figure 6.3: Communication between HW processes over OCP buses

6.1.2 Dynamic Considerations

The dynamic aspect of the MICAS architecture relates to how the data streams be-
tween HW processes are implemented on top of the hardware architecture. Two
aspects are involved. On the one hand, the communication between modules has
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to be dynamically controlled in order to change the source and sink HW processes
of each data stream at run-time. On the other hand, the HW processes have to be
programmed in order to provide the corresponding processing function for each
particular type of stream. The entire dynamic behavior of a given domain is con-
trolled by the software (i.e., microcode) running on the controller.

Controllers serve as a control interface to any external entity (i.e., domain or
RTOS). Any requests for processing tasks received from the external environment
of a given domain are handled by the controller, which dispatches the correspond-
ing commands to the appropriate HW processes. Three communication primitives
(i.e., microcommands) are used to support this communication:

• inquiry – used in the inter-controller communication to interrogate the resources
of a given domain for their status, availability, functionality provided, etc.;

• setup – configures local HW processes to perform a specific task;
• tunnel – transports one of the previous microcommands over the external net-

works, in order to be executed by the slave controller.

These three microcommands provide a HAL for each domain, which may also
be seen as a low-level programming model of MICAS. Using the MICAS HAL,
the architecture may be programmed to provide support for several applications,
without modifying the hardware configuration of domains. A conceptual example
of the MICAS HAL is presented in Figure 6.4.
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6.1.3 Control- and Data-flow Separation in MICAS

The MICAS architecture focuses on the separation of control and data-flows by
moving away from the controller the data processing part to specialized hardware
units and by implementing data streaming between these units. Thus, two dis-
tinct flows of information are present in a MICAS configuration: a) a sequence
of commands (i.e., control-flow) issued by the controller to program master HW
processes, which in turn program their slave HW processes; b) a sequence of data
streams (i.e., data-flows) between HW processes.
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An example is shown in Figure 6.5. To set up a data transfer between two HW
processes, the controller first issues a command (1. transfer request) to the master
HW process (i.e., process 1) in order to request data from a specified slave HW
process (i.e., process 2). The master HW process initiates the transfer over the bus
by requesting (2. req data) the slave to provide data and, consequently, the bus
transfer is performed. When the data transfer is completed, the slave notifies the
master (3. data sent), which, in turn, notifies the controller (4. transfer done) that
the transfer is completed, by raising the interrupt signal. For the opposite direction
of the data-flow, the exact same sequence of commands can be used, only that the
slave HW process is programmed to receive data.
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flows in MICAS. Solid lines represent physical transfer connections like buses and
signals

6.2 The MICAS Design Process

In this section, we define a design methodology (Figure 6.6) for the MICAS pro-
grammable architecture. The methodology relies on both the static (i.e., hardware
configuration) and the dynamic (i.e., programming interface) perspectives of the
MICAS architecture. The flow is composed of three phases (i.e., Configuration,
Design and Implementation), each of them modeling the system at different levels
of abstraction. Component libraries are defined, at each abstraction level, in order
to provide reuse and support for automation.

A list of complex processing tasks (services) necessary to implement the ap-
plication are identified from mapping the application specification to the MICAS
architecture. The MICAS architecture is then configured, in the Configuration
phase to provide the requested services. During this phase, the designer selects the
static (hardware) resources necessary to implement services and distributes these
resources to different domains. If already defined domain configurations, which
provide some of the required services, are present in the Domain Library, they are
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Figure 6.6: The design process of the MICAS architecture

added to the system configuration (i.e., the Overview Model). Alternatively, new
domains are created and their functional configuration is defined by the designer.
It is worth noting that predefined domains may provide additional services than the
ones required by the application specification and thus, the service list may be up-
dated or refined, when predefined domains are added. In addition, a redistribution
of services onto domains may be necessary. The approach is currently performed
manually, based on the experience of the designer.

During the configuration process, one identifies not only the internal configu-
ration of each domain, but also how domains are interconnected to each other and
to the RTOS. As such, three artifacts result from this phase: a) a top-level configu-
ration of the systems in terms of domains – Overview Model (OM); b) an internal
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configuration of each domain, seen from a functional perspective – Conceptual
Model (CM); c) a list of processing scenarios (i.e., services) for each domain –
Service Model (SM) – in which each service is assigned to a domain and expressed
in terms of data-streams between HW processes.

In the Design phase several design decisions are taken regarding the imple-
mentation of the functional components in hardware. The process is based on two
steps. In the Create Detailed Domain step, the control communication is refined us-
ing specific mechanisms and a detailed model (DM) of each domain is obtained. In
the Select Domain Implementation step, IP-based components are selected for im-
plementing each detailed component, and consequently, an implementation model
(IM) is obtained. Some of the IP components are accompanied by a list of com-
mands (their programming interface), which is used by the controller to program
them for processing different stream types.

The Implementation phase deals with transforming the artifacts resulting in the
previous phase into an executable specification, which is later on used for simulat-
ing the system. There are basically two deliverables resulting from this phase: the
architectural description of the devised MICAS configuration, and the application
code to run on this configuration.

Several libraries are used to support the design process at different abstraction
levels. At the lowest level, the Simulation library provides executable specifica-
tions of the MICAS hardware components. The Implementation library represents
an abstraction of the SystemC component specifications by depicting their struc-
ture in terms of ports, interfaces and behavior. On a higher abstraction level, the
Realization library encodes communication mechanisms which refine the control
communication between functional components and controllers. Finally, a Domain
library is used to store and provide already configured domains, which can be used
to create top-level configurations of MICAS. The devised MICAS libraries are built
incrementally in a layered fashion. This means that library components on lower
levels are used to refine the library components on higher levels.

6.3 The MICAS Metamodel

In this section, we present a metamodel for the MICAS architecture and we discuss
the main design decisions taken during its definition. The metamodel has been
devised to support the steps of the MICAS design process by defining what MICAS
concepts may be used at each abstraction level, and in addition, by imposing a
certain order in which different MICAS models are created and used. Furthermore,
the metamodel includes definitions not only for the static and dynamic perspectives
of MICAS, but also for the libraries used to support the design process.

The MICAS metamodel is intended to provide a graphical DSL, which may be
used by the MICAS designer without prior knowledge of UML. Nevertheless, the
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design decisions taken during the metamodel specification have also been biased
towards facilitating the metamodel implementation in the Coral tool.

The metamodel is split into three parts:
• the Static perspective is concerned with modeling those hardware resources of

the MICAS architecture that are found inside a given domain (e.g., controllers,
modules, buses, etc). There are two levels of abstraction at which the MICAS
hardware may be specified. The Conceptual level depicts the basic hardware
resources based on their functionality without taking into account their concrete
hardware implementation. The Detailed level takes into account communica-
tion related issues, like communication mechanisms and IP-components used to
support this communication;

• the Dynamic perspective of the metamodel, defines a programming model of the
MICAS architecture, in terms of services and their implementation (data-flows
between MICAS resources);

• the Domain Overview perspective presents the existing domains in a MICAS
configuration, and their static interconnection. In addition, the dynamic prop-
erties (i.e., services) of each domain, are provided as a programming interface
(API) of the configuration.

6.3.1 General Considerations

The topmost element of the metamodel is the MicasSystem, specifying any kind
of MICAS architectural configuration. A configuration consists of one or more
“groups” of components. Such a group is modeled by an abstract Container ele-
ment. A specialization of this element, namely a DesignContainer, encompasses
all the elements in a given domain. A ModelElement generically describes any
kind of MICAS element present in a domain. As such, the Domain is defined
as a specialization of the DesignContainer, and consequently, it may contain any
kind of ModelElements. The relationships between these elements are shown in
Figure 6.7.

6.3.2 The Static Metamodel Definition

Figure 6.7 also presents a part of the MICAS metamodel definition, which models
the static perspective of the MICAS architecture. The elements conform to the
description of the MICAS architecture, as presented in Section 6.1. Based on this
description, we can divide the hardware resources of MICAS into two categories:
Components and Links. Basically, they provide the basic framework for creating
and interconnecting any kind of MICAS static resources.

Conceptual-level Elements

At the conceptual-level, the components of the MICAS architecture are classified
into three types: Microcontroller, HWProcess and Bus. Any domain has exactly

113



Container

DataLink

Link

ControlLink

Component

Bridge Socket Module

HWProcess

DetailedComponent

MicasSystem

DesignContainer

ModelElement

Domain

BusMicrocontroller RTOS

 « » 

+ isMaster : 

root

+ capacity : 

CORE01::Integer

CORE01::Integer

0..1
contained*

process

0..1process

0..1

0..1

priorityQueue

*

2
*

1 owner

modelElement

*

0..1

controller
1

bus0..1mcu0..1

 { ordered } 

 { ordered } 

Figure 6.7: MICAS Static metamodel definition

one Microcontroller element and therefore a directed association has been used to
point at it. A process can be classified either as a Bridge, a Socket or a Module.
Some HW processes may be connected to the controller through an interrupt sig-
nal. Each such HW process must have a unique IRQ number assigned to it. The list
of the IRQ numbers in a domain provides the priorityQueue of the interrupt mech-
anism of a given controller. Although theoretically, this queue should be regarded
as a property of the controller, we have decided to model it as a property of the
domain element. Such an approach enables the IRQ numbers to be dynamically
assigned, when the configuration of a domain is created, even if a controller is not
yet present in that model.

There are two types of buses in a domain: control and data buses, respectively.
In our approach, we have defined data buses, modeled by the Bus element, as a
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specialization of a Component. The motivation for this decision is to enable the
connection of several MICAS components to the same bus. A DataLink element
has been defined, in order to model the interconnection between HW processes
and data buses. In addition, a property capacity has been added to the Bus element,
to allow the specification of the physical transfer rate of the bus either based, for
instance, on estimation models or as a function of the bus width and bus clock. In
turn, control buses are used to depict the connection between the controller and
master HW processes, in a point to point manner. We have decided to model them
as a kind of Link, namely as ControlLink. Finally, an RTOS element has been
defined to model the operating system communicating with the master controller.
For convenience reasons, we have decided to define the RTOS as a component of
the domain.

Detailed-level Elements

The focus of the MICAS detailed level is to refine the communication between
conceptual components by using dedicated communication mechanisms. Follow-
ing a “by the book” approach, a new set of metamodel elements would have been
needed for classifying the exact types of components found at this level. Never-
theless, we have decided that one single element, namely the DetailedComponent
(see Figure 6.7), suffices in abstracting all possible MICAS detailed components.
This approach is based on the following observations: a) due to the large variety
of element types that can be used at this level, the MICAS metamodel definition
may become quite complex; b) this level of abstraction is only supposed to be an
intermediate step before the code generation process, and therefore, the editing of
these models by the designer should be limited.

Since the DetailedComponent is a specialization of the ModelElement, it is
possible to interconnect any DetailedComponent using already specified Link el-
ements. Therefore, we can conclude that, at the detailed level, only two static
metamodel elements are needed to cover the modeling of MICAS systems: De-
tailedCompoment and Link.

The MICAS Realization Library

A Realization library has been devised for supporting the transition between the
conceptual and detailed models of MICAS. The library encodes the correspon-
dence between conceptual element types and detailed element types. This corre-
spondence comprises two kinds of information: a) types of implementation com-
ponents used to refine the conceptual model, and b) their communication mecha-
nisms (e.g., memory mapped, interrupt based, etc). The two kinds of information
are strongly dependent on each other, in the sense that certain component types
necessitate the use of a specific communication mechanism.
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Figure 6.8: Realization Library definition

The definition of the Realization library is shown in Figure 6.8. The Realiza-
tionLibrary element itself is a specialization of the Container element. The library
contains several Realization elements, each modeling a design decision for a “pos-
sible choice” to architect the system. A Realization is based on one or more atomic
operations, called Transformations. It is the Transformation element that encodes
the correspondence between sets of conceptual and detailed elements. This cor-
respondence is graphically represented in terms of left-hand-side (LHS) and right-
hand-side (RHS) patterns. The Pattern element has been defined as a specialization
of the DesignContainer element; thus, it may contain any of the MICAS static el-
ements previously defined. An example is given in Figure 6.9. Each element in
Figure 6.9-a may be seen as the LHS pattern of a given transformation, whereas
the elements in Figure 6.9-b that are drawn with a similar line pattern, may be re-
garded as the corresponding right-hand side (RHS) pattern of each transformation.

In this example, the three interconnected elements at conceptual level (i.e.,
RTOS, microcontroller, Module) are refined into their corresponding detailed ele-
ments, depicted in a thicker line pattern. Thereafter, the communication between
conceptual elements, is refined into groups of detailed components supporting this
communication (see elements drawn in dashed and dotted line patterns).
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Specifying realizations as collections of LHS/RHS patterns, enables us to cre-
ate and store these realizations in a graphical manner, such that they can be doc-
umented and reused, whenever necessary. We mention that we have designed the
Realization library to allow the specification of the Transformations in a generic
manner, independently of the algorithm used to implement the transformations.

We also emphasize that all the MICAS components included in the library are
regarded from the point of view of their type with respect to the MICAS architec-
ture, and not from the point of view of their specific functionality. In other words,
at this point, it is more relevant for the designer to know that a Module communi-
cates with an MCU via an SFR Register, rather than knowing that the same Module
is an “encoder” or an “FFT” module.

The MICAS Implementation Library

If the Realization library focuses on the types of detailed MICAS components and
their interconnections, the Implementation library provides implementation solu-
tions (i.e., IP components) for each detailed component type. The main purpose
of the library is to specify the general structure of such components, in order to
facilitate, later on, the generation of the simulation models of a given MICAS
configuration. The specification of the implementation components depicts their
structure in terms of interfaces and ports. In addition, it provides pointers to the
specification files used for simulating the components.

Figure 6.10 presents the metamodel definition behind the ImplementationLi-
brary. The library contains LibraryElements of two types: the Specification ele-
ment “models” and points to the corresponding hardware specification (SystemC
in our case) of each component, while RealizationInterface specifies reusable col-
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Figure 6.10: Implementation Library definition

lections of Ports. One may notice that the library specification allows for the same
set of interfaces of a given implementation component to be used in combination
with different SystemC specifications of that component, or even with different
specification languages (e.g., VHDL).

Having an exact description of the interfaces and ports of each component
available, enables us to automate the generation of the simulation code, where
ports belonging to interfaces of different modules are interconnected. In special
situations, rules can be defined to help in connecting “atypical” interfaces. For
instance, ports with the same type and belonging to the same interface type can
be directly connected, but in certain cases this approach cannot be employed. In
this scope, a preferredOpposite property of the Port element has been specified, in
order to explicitly point to the opposite port.

6.3.3 A Programming Model for the MICAS Architecture

The MICAS specification [109] suggests the use of microcode for programming
the MICAS architecture. We recall that three microcommands (i.e., setup, tunnel
and inquiry) are defined to exploit the functionality of the MICAS hardware. Of
the enumerated microcommands, only setup is used to program the functionality
of the HW processes. To implement an application on the MICAS architecture, a
sequence of setup commands is required for programming the resources of each
domain and the data streams between them. The approach is similar to the one
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in TACO, with the difference that several domains, and consequently, several con-
trollers are used.

The set of commands of a given MICAS configuration provides the program-
ming interface of that configuration and is used by the RTOS to implement a given
application on MICAS. Although such an approach can work perfectly well, sev-
eral issues may be seen as problematic. On the one hand, the level of abstraction
of the MICAS API is relatively low and thus the programming of the architec-
ture becomes difficult at RTOS level. In addition, the communication between the
RTOS and the master controller becomes too complex, due to the large number of
requests for small pieces of functionality. On the other hand, the microcommands
provide a control-oriented view of the system that does not model appropriately
the data streaming perspective of MICAS. Therefore, in this section, we suggest a
graphical programming model for MICAS. This programming model can be seen
as having two levels of abstraction:

• At application level, the programming model consists (similarly to the TACO
programming model) of two categories of primitives: functional primitives and
control primitives. Functional primitives are represented by the services pro-
vided by each domain, whereas control primitives are operations of a domain
used to support the invocation of these services (i.e., inquiry, allocate, deallo-
cate, activate, deactivate).

• At domain level, services are implemented in terms of data streams between
HW processes. As such, a DFD-like diagram is proposed as a graphical model-
ing language for the MICAS programming model. We have presented the main
concepts behind DFDs in Section 4.1. DFDs map fairy well on the concepts
of the MICAS architecture: HW processes are transforming input streams into
output streams, similar to the DFD processes transforming input data-flows into
output data-flows. The use of a data-flow based programming model in MICAS
allows the designer to program the functionality of a domain (i.e., its services)
in terms of streams of data transferred and processed by HW processes. Conse-
quently, the three concepts used by the MICAS programming model at domain
level are the services, streams and HWProcesses. Following a similar approach
would not have provided additional benefits in the case of the TACO architec-
ture (see Chapter 5), since in TACO there is not a clear separation of the control
and data paths. In fact, all the control and data communication in TACO, are
basically done over the same interconnection network.

In this chapter, we mainly focus on specifying the MICAS programming model at
domain level, since this is the part relevant for designing the MICAS architecture.
In change, the application-level programming model is presented in Chapter 7,
where the simulation of the MICAS architecture is discussed.
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The Dynamic Metamodel Definition

The programming model of the MICAS architecture is also designated as the MI-
CAS Dynamic perspective. As previously mentioned, three concepts are modeled
by the dynamic perspective: services, streams and HWprocesses. A service mod-
els a complex processing task provided by a domain. As such, the set of services
provided by a given domain may be regarded as the programming interface of that
domain. Streams model data-flows between the HW processes of a domain. Two
kinds of streams are used. BasicStreams model data-flows between adjacent HW
processes (i.e., HW processes connected by the same physical bus). A consistent
combination of basic streams forms a CompositeStream, which is seen as a possi-
ble implementation of a Service (as we will discuss in more detail in Section 6.4.7).
Consistency refers to the fact that this combination allows the transformation of all
input streams into output data streams. In our approach, we regard the streams as
internal entities of a domain, not visible beyond its border. A given BasicStream
may exist as a stand alone element, and may be used by several CompositeStreams.

Figure 6.11 presents the dynamic part of the MICAS metamodel. The building
brick of the dynamic perspective is provided by the BasicStream. A basic stream
has a source and a sink HW process, respectively, modeled as an ordered set, in
which the first element is always the source and the second is always the sink. The
data-flow perspective of MICAS abstracts away the physical connection between
HW processes (i.e., the buses). In practice, each basic stream is transported over
a physical bus. Since during the stream design process the designer should have
access to the properties of the underlying hardware, a bus property has been added
to the basic stream, in order to indicate the physical bus, over which the stream is
transported. In addition, the basic stream is characterized by a transport capacity
(i.e., requiredCapacity) depicting the number of Mbps required for that stream
during transfer. We mention that the requiredCapacity is a design requirement and
is different from the physical capacity of the bus.

Defining services per domain basis enables the designer to try out several
overview configurations in order to create different combinations of services (sce-
narios). The metamodel has been designed such that it allows the combination of
services either at configuration-time (i.e., scenarios created by the designer) or at
run-time (i.e., the user/application combines services provided by a given config-
uration into scenarios). In the former case, scenarios can be created by specifying
how services of master domains use the services of their slaves, in order to provide
the requested scenario. Hence, the concept of subservice has been defined to depict
a “slave” service used by a “master” one. Both approaches need to use a service
discovery mechanism to identify, at application-level, existing services provided
by the configuration. The difference between the two is that the former performs
the service discovery process only for the master domain (the rest of the services
being used as subservices), while the latter discovers the services provided by all
domains in a given configuration.
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Figure 6.11: MICAS Dynamic metamodel definition

For ensuring a connection between the static and dynamic aspects of the MI-
CAS architecture, the concept of Category has been introduced (Figure 6.12).
From a data-flow point of view, the category depicts the type of data transported
by a basic stream (e.g., audio, video, etc.). From a hardware perspective, it facil-
itates to characterize the functionality of a given HW process, in terms of input
(i.e., acceptedCategory) and output (i.e., providedCategory) stream types, that it
can process. Each HW process may process more than one type of input stream, or
it may apply several computations to the same type of input stream. For the sake of
simplification, and based on the observation that MICAS sockets and bridges are
HW processes that simply transform input flows into output flows without affect-
ing their type, we have defined the acceptedCategory and the providedCategory,
only as properties of the Module elements.

The Category is used also as a bridge between the conceptual and detailed level
representation of a HW process. If at conceptual level, a given HW module is char-
acterized by the acceptedCategory and by the providedCategory, at detailed level,
the implementation (that is the Specification) of the HW process may be charac-
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of the MICAS metamodel elements

terized in a similar manner. Thus, we have defined input (i.e., in) and output (i.e.,
out) categories as properties of the Specification element. The approach facilitates
the selection from the library of implementation modules for a given HW process
based on their functionality.

Furthermore, in order to provide reuse of already defined categories in a MI-
CAS configuration, we store the Category as a component of the Implementation
library, that is the Category is defined as a specialization of the LibraryElement.

MICAS Functional library

There can be several modules providing identical functionalities in a MICAS sys-
tem, but using different implementations. One such example can be the one of a
“Camera” module that, as generic functionality, captures video from the environ-
ment. However several implementations of the “Camera” module may be available
from different vendors. To allow the designer to focus on the functional details of
the HW processes, and in addition, to create a correspondence between the func-
tionality provided by a conceptual element and the implementation of this func-
tionality in terms of commands, a Functional library is defined.

The library (Figure 6.13) defines a FunctionalType to characterize the function-
ality a given HW process (e.g., “Camera”). A functional type provides a generic
description of several pieces of functionality that a given HW process may pro-
vide. Each such piece of functionality is implemented by a specific command
(i.e., CommandInterface) of that HW process. For instance, a “Camera” module
may use a “CaptureLRV” command to record low-resolution video and a “Cap-
tureHRV” command to record high-resolution video. We mention that these com-
mands should be seen as generic commands of the “Camera” module, and not as
commands specific to a particular implementation of it. In turn, at implementa-
tion level, each module uses specific commands (i.e., commandImplementation) to
implement the functionality of a given generic command. For instance, the “Cap-
tureHRV” generic command may be implemented by writing command ’a’ to the
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Figure 6.13: The MICAS Functional Library metamodel definition

control register of a given module implementation, whereas a different command
’b’ may be required to trigger the same functionality on a different implementation
of the same module.

The FunctionalType and the CommandInterface elements create a link between
the control and data-flows of MICAS in the following sense: a BasicStream is real-
ized in practice by one or more commands defined as sourceCommands and target-
Commands respectively, issued to its HW processes by the controller. Therefore,
one can create a dependency between the category of a stream and the functional-
ity provided by the HW processes supporting the stream. This dependency will be
used at design time, to select which of the commandInterface elements provided
by the source or sink HW process, is selected to implement the stream. To support
the approach, two new properties (i.e., inputCategory and outputCategory, respec-
tively) of the CommandInterface element have been defined (see Figure 6.13).

6.3.4 The Overview Metamodel Definition

The definition of the overview metamodel (Figure 6.14) describes the way the do-
mains are interconnected, providing a high-level perspective of the system. We

123



Domain

ExternalSocketSocketNetwork

OverviewElement

DomainOverviewModel

Socket

Service

NetworkLink

Container

MicasSystem

 « » 

+ isMaster : 

+ parameter : [ * ordered ]

root

CORE01::Integer

Parameter

0..1

contained

element
owner

0..1

network

connection

networkconnection

socket

*

0..1

+ 0..1

*

0..1

*

external

internal

0..1
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intentionally left this part of the metamodel to be presented last, since it encom-
passes the concepts and elements of both the static and dynamic perspectives.

The top level element of the overview metamodel is a container element, namely
the DomainOverviewModel, composed of OverviewElements. The interface of a
domain to the external environment is represented by an ExternalSocket, which
has as a corresponding pair element a Socket inside that domain. We have cho-
sen to have two different elements implementing the MICAS socket, in order to
allow one to select separate implementation technologies for the internal and ex-
ternal communication. For instance, the implementation of the internal socket has
to support the OCP bus communication inside the domain, while the implemen-
tation of the external socket deals with protocols of the external communication.
domains are interconnected via SocketNetwork elements, which in real-life realiza-
tions may be technologies like Bluetooth, WLAN, USB, etc. SocketNetworks and
ExternalSockets are connected through NetworkLinks.

Keeping the Domain element separate from the Overview metamodel, allows
for the domain (with both its static and dynamic information) to exist in a stand
alone manner. This approach enables us to organize the domains in a Domain
library (see Figure 6.6), in order to use them thereafter for rapid creation of new
architectural configurations.
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6.3.5 Additional Metamodel Constraints

The MICAS metamodel enforces to a large extent the architectural constraints of
the MICAS architecture. We could have enforced all the architectural constraints
using abstract syntax with only a few additions to the graphical metamodel defini-
tion, but this approach would have imposed unwanted restrictions for the designer
during the creation of MICAS models. Therefore, we decided to specify addi-
tional constraints separately. Several examples are given below. Some of these
rules enforce architectural consistency of the platform, whereas others encode de-
sign guidelines to be used during the modeling process. In the fist category we
mention:

Bridge connects to two DataLinks
Each ExternalSocket has a corresponding internal Socket
A SocketNetwork is connected to at least two NetworkLinks
Each Domain requires a Microcontroller
Only one RTOS per design
External to internal socket pair ‘‘belongs’’ to the same Domain
A Domain can only have one Microcontroller
BasicStreams have source and sink HW processes from the same Domain
Each HWProcess is connected by a ControlLink to the Microcontroller

while in the second one:

Each BasicStream has a Category
Each BasicStream has a bus from the same Domain
Each conceptual element has a realization

The presented list is not exhaustive, and is only given here in order to exemplify the
approach. We also mention that the well-formedness rules are only defined at Con-
ceptual level, from where we assume that the model transformations supporting
the MICAS design process preserve the consistency of the architecture. However,
nothing prevents us from adding more constraints for other abstraction levels of the
metamodel and to its libraries, in case they are needed.

6.4 Modeling the MICAS Architecture

The MICAS metamodel discussed in the previous section defines a DSL for spec-
ifying the MICAS architecture. In this section, we discuss the models used by
the MICAS design process at different levels of abstraction and how they are tool-
supported by the MICAS Coral profile. In addition, we motivate different tool
customizations intended to facilitate the design activity. We take our examples
from a Digital Audio/Video Recording device case study.

6.4.1 The MICAS Tool Support

To provide tool support for the MICAS metamodel, the Coral modeling frame-
work [102] has been used. Coral is a customizable open-source modeling tool
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based on the OMG standards. The main feature of Coral is that it is metamodel-
independent.

Coral is built at the meta-metamodel layer (i.e., OMG’s layer M3), allowing the
user not only to use already defined metamodels like MOF, UML and XMI[DI], but
also create new models and metamodels that can be plugged into the tool at runtime
without modifying the tool itself. Metamodels are represented in Coral using the
Simple Metamodel Description (SMD) language, which similarly to MOF may be
seen as a metamodel for describing metamodels.

The MICAS metamodel has been defined using UML class diagrams, as we
discussed in the previous section. The resulting model has been transformed into
an SMD representation that allows the metamodel definition to be interpreted by
Coral. Beside the metamodel implementation, a number of editors have been de-
vised for assisting the MICAS designer. A diagram editor contains the set of tools,
toolbars, buttons, context menus and property editors to manipulate the elements
of a given metamodel (e.g., MICAS). Property editors (PE) play an important role,
since they enable the editing of those element properties which are relevant at a
given stage of the design process. The metamodel implementation and the associ-
ated editors are regarded as the MICAS Coral profile.

Implementing the MICAS metamodel in the Coral tool is not a contribution
of the author of this thesis, therefore we omit it here. Instead, we discuss in the
following, the rationale behind the design of different editors of the MICAS Coral
profile, and the impact of these decisions on the design process, from the point of
view of design guidelines and automation.

6.4.2 The Requirements of the Digital Video/Audio Recording Device

The Digital Audio/Video Recording (DAVR) system is a gadget-like personal de-
vice, used to record and play multimedia content. The device has a number of basic
features (display, local memory, etc), while additional functionality can be added
through plugable external devices connected over a standardized technology like
Bluetooth, USB, etc.

The video is previewed on the incorporated LCD screen, which is able to dis-
play streams encoded in a specific encoding format (e.g., MPEG). Several external
devices may be plugged in: an audio recoding device to record audio from the
environment, a video recording device to record images, or an external storage de-
vice to increase the storage capacity of the main device. Local storage facilities are
provided for the received media, and additional processing features (e.g., image
processing) for the video media are supported.

Using DAVR, the user should be able to preview, record and store video cap-
tured with the incorporated camera (if an external video device is connected to the
system). Additionally, video can be displayed and transferred from an external
storage. If audio capabilities are available, the user can record audio files and store
them in the local memory of the device. Furthermore, when both the audio and
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video recording facilities are available, the video is recorded and combined with
sound.

6.4.3 The Overview Model

The overview models of the MICAS system provide a general view of what do-
mains exist in given configuration and what functionality they provide. According
to its metamodel definition, each Domain element encompasses both static and
dynamic information. This means not only that the designer can access this in-
formation from the overview model, but also that one should be able to select the
perspective to focus on, at a given stage of the design process.

Combining Services into Scenarios

Services are the most important element of the MICAS architecture in rapport with
the application residing at the RTOS level, because they provide the programming
interface of the architecture. Therefore, it is important how these services are
specified, on what level of granularity and how easily they can be used by the
designer to implement the application.

From the perspective of the application, it is important that the programming
interface is specified in as simple terms as possible, in order to facilitate an easy
selection of the required services. For instance, a service like CaptureVideo should
encompass all the functionality of the platform regarding video recording by the
Video domain, while a PreviewVideo service of a different domain should encom-
pass the functionality of that domain for displaying video streams. To create an
application level scenario, like PreviewVideo, which uses the former service to
capture and the latter to display video, the CaptureVideo and DisplayVideo ser-
vices have to be combined in an orderly fashion.

Several aspects arise from this approach. Firstly, a given MICAS configuration
will present to the application all the services existent in the system and the appli-
cation will have to combine them in a consistent manner. For instance, starting the
CaptureAudio and the DisplayVideo services would not provide a valid scenario, as
the two services are incompatible. Secondly, one service (e.g., DisplayVideo) may
have multiple variations, based both on the source and on the type of the video
stream to be displayed. This means that a number of parameters are needed to
specify the variations of the service, when it is invoked. One example could be to
request the DisplayVideo service from a given domain, which provides a stream
encoded in MPEG format according to a number of encoding parameters like res-
olution and frames per second. Having a number of generic parameters to char-
acterize a service is not trivial, since each service in part can require completely
unrelated sets of parameters. Especially for configurations with a large number of
services, this approach can prove difficult. The third aspect is that, especially in the
area of programmable architectures, it is more important to have highly customized
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Figure 6.15: Overview model of the DAVR system

solutions for different application families, which offer an optimal implementation,
rather than a generic solution.

Based on these aspects, we have decided that a fair approach is for the de-
signer to manually create different variations of the same service and to provide
them as scenarios at RTOS level, leaving to the mapping process the responsibil-
ity of choosing the right variation of the service instead. The MICAS metamodel
definition presented in Section 6.3 supports this approach by defining a subservice
property, which represents a remote service used by a local service. Following this
approach, we promote the services of the master domain as scenarios of the entire
system and the services provided by the other domains become subservices of the
master services.

There are four domains in the DAVR system (Figure 6.15), as resulted from
the case study specification. The Master domain provides services to store data, to
preview video and to process images. The Master domain is connected to two slave
domains ExternalStorage and Video, respectively. The ExternalStorage domain
provides services for retrieving and storing data. In the real world, this domain
may be any kind of external storage device like memory sticks, memory cards or
even hard disk drives. The Video domain, has capabilities to record video, possibly
in an encoded format, and to provide it to the neighboring domains. The fourth
domain, Audio, has the capability to record audio from the environment and to
provide it to its connected domains, possibly in an encoded format.

It is worth noting that the Video domain has a slave role relative to the Master
domain and a master role relative to the Audio domain. In the same time, the Video
and the ExternalStorage domains have a slave relationship to the Master, but even
if they are interconnected by the same network, they cannot invoke directly each
other’s services. The master-slave relationship between domains is not explicitly
shown in the diagram, yet it can be easily inferred.

Analyzing the functionality of each domain, the following services have been
identified. The Audio domain captures audio and provides it to the environment,
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both in the WAV and MP3 encoding. This functionality may be seen as two dis-
tinct services for capturing audio: plainAudio and encodedAudio, respectively. The
main functionality of the Video domain is to provide video to the DAVR device,
possibly combined with audio. As such, we obtain the following services: Cap-
turePlainVideo captures video and provides it to the environment in the camera
supported format (e.g., MPEG), CaptureEncodedVideo captures video initially in
the camera supported format, encodes it into a given format (i.e., AVI) and provides
it to the environment; CaptureVideowithSound captures video and combines it with
audio streams from a connected domain, encodes both streams in a compressed
format (e.g., AVI) and provides the result to the environment. The transportAudio
service is only used by the Video domain in order to transport audio from a remote
slave domain to a master domain without any processing. The ExternalStorage do-
main provides only one service, externalRetreive, for retrieving data stored in this
domain. The Master domain has the largest number of services:

• displayPlainVideo – displays MPEG video received from the Video domain;

• displayEncodedVideo – decodes AVI video received also from the Video domain
and displays it on the incorporated display;

• displayExternalVideo – displays video received from the ExternalStorage do-
main;

• storeAudio – stores audio streams received from the Audio domain in a local
memory or file system;

• manipulateVideo – retrieves a video file from the local memory, processes it and
saves it back to the same local memory or file system.

We acknowledge that our approach to define services does not scale well for appli-
cations requiring large number of services, but this is not an impediment, since we
are targeting applications that require a relative small number of services. A more
elaborated service definition in the metamodel would enable us to automatically
create variations of these services using their properties, like source, destination,
type, transfer rate, etc. Such an approach would require the definition of a more
complex framework for specifying streams and implicitly, services of the MICAS
architecture, that has to be further investigated.

As a final observation, one can argue that the transportAudio in the Video do-
main is not a real service, but rather a hidden intrinsic functionality of the Video
domain. If we chose not to specify this service, the RTOS application will have
to program this transfer anyway by individually triggering the required domain
components. Even more, a general guideline for the designer can be that for all
the domains playing both master and slave roles and therefore, being connected to
many socket networks, one has to automatically define transport services for all the
stream types provided by the slave domains.
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6.4.4 MICAS Conceptual Models

The conceptual model of a domain depicts the MICAS resources from the point
of view of their functionality, without focusing on the underlying hardware com-
munication infrastructure. The conceptual model is obtained from the service list
of each domain, in the Configure Conceptual Model step of the MICAS design
process (Figure 6.6). During this step, the designer not only has to populate the do-
mains with conceptual components for providing the required processing capabili-
ties to support the services, but also to interconnect these components using buses.
A dedicated diagram editor has been implemented in Coral, in order to support the
editing of the MICAS conceptual models. The conceptual models discussed in the
following are designed using the MICAS Static diagram editor of Coral.

Figure 6.16 presents the conceptual model of the Master domain of DAVR. To
display video streams a Display module is used. The video stream can be encoded
either in a format that is supported by the Display module, or a Decoder module
is required to convert the video stream. In addition, a socket component, namely
Socket1, intermediates the communication with the external environment. For per-
formance reasons, the Display, Decoder and Socket1 HW processes are collocated
in the same cluster (i.e., are connected by the same bus Bus1). An ImageManip-
ulator and a Storage modules are included, in order to provide image processing
and storage capabilities, respectively. Since these two HW processes handle lower
priority tasks, they are situated in a different cluster and interconnected by the Bus2
component. Finally, a bridge component, namely Bridge1, interconnects the two
clusters of the domain.

The ExternalStorage domain (Figure 6.17) contains only two HW processes: a
MemoryManager module for storing data and, a socket (Socket4) to intermediate
the communication with the environment. The two components are interconnected
by the Bus1 component.
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The Video domain (Figure 6.18-left) presents a couple of interesting aspects.
Firstly, since it is connected to two different socket networks, it requires two dif-
ferent socket components, Socket2a and Socket2b, respectively. Secondly, this do-
main has to capture image through its Camera module and to eventually encode it
into a desired format using the Encoder. The main reason for encoding the video
streams, or other stream types in the system, is that, typically, the off-chip buses in-
terconnecting the domains support lower transfer rates as compared to the on-chip
buses of a domain. In order to support the transfer rates imposed by the appli-
cation requirements, the interdomain communication has to be encoded using a
compressed format. Thirdly, this domain not only receives audio streams from the
Audio domain, but also has to forward these streams to the Master domain, or even
more, to encode audio streams along with video ones into a combined audio/video
stream.

Finally, the Audio domain (Figure 6.18-right) records sound from the envi-
ronment, through the SoundRecording component, and provides it to its master
domains. For similar reasons as in the Video domain, the audio streams may be
encoded into a compressed format using the AudioEncoder module. A bus is used
to interconnect all the HW processes of the domain to Socket3.

As one may note, some of the elements in Figure 6.16 have an additional string
(in italic font) in their graphical representation, as compared to the other concep-
tual models of DAVR. This string depicts the functional type of each element. Cur-
rently, the association of functional types to a conceptual model is strictly based on
the designer’s experience. The main purpose of this activity is the identification, in
the subsequent phases of the design, of the microcommands that each implemen-
tation of a HW process provides.

A Coral Editor for the MICAS Static Diagrams

Several customizations of the Coral editor have been performed, in order to facili-
tate the design activity. For instance, since the metamodel specifies the exact type
of link between the components of a domain, when a connection is drawn between
any of the components, it is automatically specialized into either a DataLink or a
ControlLink, based on the type of the connected components. Another example is
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the one of adding the functional types to the conceptual elements. Taking benefit
from the Coral tool features, the designer can simply select a functional type from
the Functional library and then drop it onto the diagrammatic representation of a
given conceptual element. As a result of this action, the chosen functional type is
automatically assigned to the conceptual element in question.

Other design aids may be envisioned here, but they have not been implemented
yet. For instance, another aid could be provided to the designer in case of connect-
ing a domain microcontroller to the HW processes. Since all HW processes in the
domain have to be connected to the microcontroller, the editor could automatically
create the ControlLinks for each newly added element. Moreover, in order not to
clutter the design with too many graphical elements, the designer could have the
option of hiding or showing these “default” connections.

One provided design aid is the possibility to edit the priority of different HW
processes. The priority of a HW process is encoded and stored in the metamodel
(Figure 6.7), via the priorityQueue property of the Domain. Whenever a new pro-
cess is added to a conceptual model, it is assigned a position in the priority queue.
The priority of a HW process will reflect, in the subsequent design steps, in the or-
der in which the IRQ numbers are assigned to HW processes. We have customized
the MICAS Static diagram editor with two new features:

• a back-end processing script has been implemented for monitoring the addition
of new elements to the queue, such that socket components are always assigned
the highest priority (i.e., lowest IRQ numbers). The approach relies on the fact
that sockets handle critical communication between the domains and their con-
trollers.

• in addition, a PE (Figure 6.19) has been devised for enabling the designer to
manually change the order of the elements in the property queue.
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Figure 6.19: Caption of the Priority Queue property editor

6.4.5 MICAS Detailed Models

In the following, we discuss the Create Detailed Domain step of the MICAS de-
sign process (Figure 6.6). At this step, conceptual components are transformed into
detailed components, and the communication between them is refined to use spe-
cific communication mechanism. The transformation is supported by the MICAS
Realization library, which encodes patterns to refine this communication. These
refinements may be seen as design decisions, taken for architecting the system.

The MICAS architecture has, by default, four predefined realizations (stored
in the Realization library) to transform conceptual components into detailed com-
ponents. Other alternative realizations can be defined in case other communication
mechanisms are used by the designer. Although, the realizations are part of the
MICAS architecture definition, and consequently they are not a contribution of
our work, we introduce them at this point of discussion, in order to give a better
understanding of their use.

The first realization (Figure 6.20), encodes the bi-directional communication
between controllers and HW processes, like modules and bridges. In this case,
bridges and modules communicate with the controller through interrupt requests,
whereas the controller sends commands to HW processes via a control bus. The
latter communication is supported by the sfr bridge and sfr reg components, re-
spectively.

The realization in Figure 6.21 depicts the communication mechanism between
the RTOS and the master controller. An AHB bus component is used for writing
data to a dual-port memory (DPRAM) and the controller is notified through an
interrupt mechanism. The controller sends data back by writing into the DPRAM
component, while the RTOS reads this data through the AHB bus.

The third and the most complex realization (Figure 6.22), specifies the com-
munication mechanisms between the controller and the sockets. The mechanism is
similar to the one in the controller-process communication, except that the concep-
tual socket element generates an additional component socket ctrl- sfr reg, which
intermediates the control communication between controllers. This additional ele-
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ment is also connected to the controller through an interrupt based mechanism in
one direction and a control bus in the other direction.
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Finally, the fourth realization (Figure 6.23) specifies the communication be-
tween different HW processes connected in our case by an OCP bus.

Figure 6.24 presents the detailed model of the Audio domain obtained after
applying these realizations to the conceptual model in Figure 6.18-right.

Taking advantage of the fact that detailed elements (i.e., Link and Detailed-
Component) are specializations of the ModelElement, we have been able to reuse
the already implemented MICAS Static diagram editor for displaying detailed
models, thus no additional diagram editors had to be implemented.

In the current version of MICAS, there is only one combination of realizations
used for creating detailed models, as discussed above. Therefore, having only one
possible design choice, this transformation is easy to automate. In case other real-
izations are added to the library, and consequently more than one design decision
is available, the user intervention will be required.

6.4.6 MICAS Implementation Models

The elements included in a detailed model do not represent concrete implementa-
tion components (i.e., IP-blocks), but rather abstract types of the implementation
components. At the Select Domain Implementation step of the MICAS design pro-
cess, the designer has to decide upon a specific implementation for each detailed
component by assigning it a corresponding element from the MICAS Implemen-
tation library. Figure 6.25 shows the result of the Select Domain Implementation
step, applied to the detailed model of the Audio domain.
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Figure 6.25: Detailed model of the Audio domain marked for implementation

The approach is similar to the “PIM marking” process of MDA and hence,
difficult to automate. Yet, several design aids can be provided. For instance, the
Static diagram editor has been customized to support drag-and-drop operations
over elements, based on which Specification elements from the Implementation
library can be assigned to detailed elements. Alternatively, the designer can use
the associated PE (Figure 6.26) for manually selecting the required Specifications
from the library.

Other design aids may be envisioned. For instance, we can see the elements
present in a MICAS detailed model as falling into two groups. The first group
contains generic elements that support the MICAS communication infrastructure
in general, but they do not contribute to the functionality of the system (e.g., control
buses, registers, etc.). The other group includes detailed versions of the conceptual
(functional) components (e.g, HW process). To facilitate the designer’s work, the
editor can be customized such that when an implementation is selected for a given
detailed component in the first group, all the other elements of the same type are
automatically assigned the same implementation.

6.4.7 The Dynamic Models of MICAS

This section discusses the process of modeling the dynamic perspective of a MI-
CAS configuration, perspective which is also designated as the MICAS program-
ming model. As discussed in the previous section, each domain provides a pro-
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Figure 6.26: A property editor for selecting implementations for Detailed Compo-
nents

gramming interface (i.e., services) and, in turn, each service is specified in terms
of streams between HW processes.

The modeling tool of the dynamic perspective is represented by the stream
diagram. A stream diagram provides a snapshot of the dynamic aspects of a do-
main. The diagram abstracts away physical/static details of the MICAS architec-
ture hence, allowing the designer to focus only on the streams between HW pro-
cesses. There are only two graphical element types represented in this diagram:
HW processes and basic streams interconnecting them. Ideally, and as a design
guideline, each stream diagram is used for designing the streams of only one ser-
vice, but nothing prevents the designer to include all the streams of all the services
in the same diagram. There may be several stream diagrams created for the same
domain and even sharing the same HW processes and streams. We have promoted
this approach in order to reduce the complexity of the design, allowing the designer
to work on less cluttered models. As one may notice, the stream diagram is quite
similar to a data-flow diagram as proposed by the structured methods. The main
difference is that the elements in this diagram have a richer list of properties, as
defined by the MICAS metamodel. For instance, a basic stream is not only charac-
terized by a data type (i.e., category), but also by a required capacity and a physical
bus supporting the stream.

As an example, we take the CaptureVideowithSound service of the Video do-
main, and explain the creation of its data-flow perspective. This service captures
video using the Camera module, and audio using an external audio device (in our
case the slave domain Audio). Both streams are combined and encoded together
in a given format (i.e., AVI). Four basic streams have been defined (Figure 6.27),
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Figure 6.27: Streams of the CaptureVideowithSound service

for implementing this service. The stream S12 is in charge of transporting data
from the Camera module to the Encoder, encoded in the MPEG format. The En-
coder receives a stream S31 transporting audio (encoded in WAV format) from the
Socket2b socket, which intermediates the communication with the Audio domain.
The Encoder combines the video and the audio streams into a single stream S14s,
which is output into the AVI format to Socket2a, in order to be sent further to the
Master domain.

The Stream Diagram Editor in Coral

A stream diagram editor is supporting the service design process in Coral. The
editor allows the designer to graphically create new or to add HW processes from
existing conceptual models, and furthermore, to interconnect them through either
new or already defined basic streams.

We have devised two custom PEs to assist in editing service and stream prop-
erties. The Streams PE (Figure 6.28) displays all the basic streams of a domain.
Whenever a new basic stream is graphically created, it is automatically added to

Figure 6.28: Caption of the Streams property editor
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Figure 6.29: Caption of the Services property editor

the right-hand side panel of the PE, where stream properties, like Category and
Capacity can be edited. Composite streams (e.g., encodedAudio) are obtained by
grouping together several basic streams (e.g., S31, S12, S14s). We have decided
that a graphical representation of the composite streams is not necessary, as it will
not significantly improve the understandability of the model without cluttering it.
Instead, composite streams can be created and populated with basic streams using
the left-hand side panel of the Streams PE, where basic streams can be added to
composite streams by simply dragging them from the right-hand side panel onto
the BasicStreams field of each composite stream. It is also important to remark that
due to the way the MICAS metamodel has been defined allows for the same basic
stream to be included in several composite streams.

As defined by the MICAS metamodel, a composite stream represents a possible
implementation of a MICAS service. Optionally, several composite streams can
be assigned to a service, and the one to be used at run-time is selected based on
certain heuristics. In addition, a Services PE (Figure 6.29) has been devised for
managing the services and the composite streams of a domain. There are two
panels in this PE. The right-hand side panel provides the list of composite streams
existing in a domain and their basic streams. The left-hand side panel enables one
to create new services by selecting different composite streams as alternatives for
their implementation. The selection of a remote service to be used as subservice is
also supported.

In addition, following the metamodel definition, it is possible to characterize a
service based on a Parameter, that would enable an automated selection of a cor-
responding composite stream. For the moment, this approach is not implemented.
Nevertheless, the Parameter field can be used for eventually documenting the ser-
vice (e.g., capacity, category, textual description, etc.).

Using Services to Program HW Process Functionality

A MICAS service models a complex processing task of a given domain. This
processing task is supported by several HW processes, which implement and pro-
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cess data streams between themselves. As such, a service may be regarded from
two perspectives: one that depicts the basic streams between HW processes imple-
menting the service – the data-flow perspective, and one that provides the list of
commands used to configure the HW processes for supporting these streams – the
control perspective.

Thus, one can infer the list of HW process commands required to implement
the service from the basic streams of that service. We recall that a basic stream
transports data between two HW processes, of which one is master and the other
slave, with respect to that stream. We also recall that only master HW processes
are controlled by the controller, whereas slave processes are controlled by their
master HW process. Therefore, in order to implement a basic stream between
two processes, only the master process has to be programmed by the controller.
A HW process may support several processing tasks, according to its functional
type (e.g., Camera, Display, etc.). We remind the reader that the functional type
of a HW process is abstracted by the FunctionalType metamodel element. In turn,
each processing task of a HW process has a corresponding HW process command,
generically specified by the commandInterface element.

This approach enables the service designer to manually select from the com-
mands of its master HW process the generic command that implements a given
basic stream. However, our MICAS metamodel definition does not differentiate, at
conceptual level, between master and slave HW processes, which is implementation-
dependent information. Two alternatives could have been followed: a) to provide
the designer with a list of HW process commands (i.e., CommandInterfaces) for
both the master and the slave processes and she/he decides which commands to
select; b) to allow the designer to specify, already at conceptual level, which of
the HW processes have a master or a slave role relative to a physical bus. This
would have meant a specialization, in the metamodel definition, of the DataLink
element into a masterDataLink and a slaveDataLink, respectively. We have de-
cided to follow the former approach, since the MICAS metamodel and the current
implementation of the MICAS Coral profile did not require any modifications. We
consider that the latter approach may be left for future versions of the project. But
if such an approach is followed, the specialization of the dataLink would have al-
lowed the user to select the desired HW process commands only from the ones of
the master HW process.

As an example, we present the service encodeAudio of the Audio domain. The
service is implemented by the composite stream presented in Figure 6.30. There are
two basic streams implementing the data-flow perspective of the service, S12 and
S13, respectively. The SoundRecorder has the functional type SoundRecorder, pro-
viding two commands: record sound rawa and record sound wav, which record
sound, in either RAWA or WAV sound format, respectively. The AudioEncoder
belongs to the functional class Encoder, and provides the following commands: en-
code avi 2 mpg, encode mpg 2 avi, encode rawa 2 mp3 and encode wav 2 mp3.
We mention that although the AudioEncoder module is required to process audio
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Figure 6.30: Composite stream implementing the EncodeAudio service

streams in the Audio domain, it belongs to a wider functional class (i.e., Encoder)
that can also process video streams. Finally, the Socket3 HW process provides two
commands transmit data to domain (to send data over the socket network), and
send data (to dispatch data inside the domain).

In order to create the control perspective of this service, the designer has to se-
lect the HW process commands implementing each stream, that is, record sound-
wav for stream S12 and encode wav 2 mp3 for stream S13. Based on the direction

of the stream, the sockets have to be programmed also for sending or receiving
data. In our example, this implies that transmit data to domain command has to
be used. Since in the current version of the MICAS dynamic metamodel, we do
not model streams outside the domains, we have decided that in the specific case
of the streams originating or entering sockets, to allow a second command to be
attached to the streams. For instance, stream S13, beside having attached a com-
mand for encoding data, will also have the command for sending that data through
the socket (i.e., transmit data to domain). This approach is motivated by the fact
that sockets may be seen as “masters” of the external networks, where they are
initiating transfers to remote domains (i.e., “slave” sockets).

Attaching commands of the HW processes to streams is a manual task based
on designer’s experience, but certain aids and guidelines may be provided. A HW
process, and in particular a MICAS module, basically transforms input data into
output data. Consequently, a HW process command may be characterized by the
type (i.e., category) of its input and output data. For instance, we can consider
that a command corresponding to encoding MPEG video streams into AVI video
streams can be regarded under the generic name of “MPEG2AVI”. Two new prop-
erties could have been added to the CommandInterface meta-element, namely the
acceptedCategory and providedCategory, respectively, in order to provide a more
comprehensive description of each command. Their implementation in the meta-
model could be realized by simply adding two associations between the Command-
Interface and the Category meta-elements. The approach would allow, when se-
lecting commands for a given stream, to filter out the commands that are not able
to accept as input or to provide as output the corresponding stream category.

Once having all the basic streams specified in terms of commands, the control
perspective of the service is easily obtained, by replacing each basic stream with
the corresponding setup (micro)commands. A setup microcommand uses three
parameters to implement the stream:
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• m address depicts the control register address of the master HW process that
implements the stream;

• m command represents the command which triggers the processing task that the
master HW process has to execute;

• s address points to the bus address of the slave HW process, to/from which the
processed data is sent/received.

The result of transforming the composite stream depicted in Figure 6.30 into con-
troller microcommands is shown below:

setup(m_addr_sr, record_sound_wav, s_addr_enc);
setup(m_addr_enc, encode_wav_2_mp3; s_addr_sck);
setup(m_addr_sck, transmit_data_to_domain, 0);

We mention again that, at this point, we are talking about generic commands (i.e.,
commandInterfaces) provided by different types of HW processes (i.e., Function-
alTypes) and, not about real implementation commands. When a implementation
component is selected for a given HW process, a corresponding commandImple-
mentation is assigned to the CommandInterface. For instance, at the implementa-
tion level, the encode wav 2 mp3 generic command is implemented as value “2”
written to the control register of the Encoder module.

6.4.8 Enforcing Architectural Consistency

Tool support for checking the well-formedness rules associated to the MICAS
metamodel is provided via the CQUERY plug-in of Coral [80]. The plug-in al-
lows one to verify model constraints (as the ones we have discussed in Section
6.3.5) on-the-fly, without interfering with the model creation process. An example
of constraint checking is presented in Figure 6.31. The constraint editor is placed
at the bottom of the screen and it displays the status of all constraints associated to
the model. The constrains that are met are displayed in green, whereas the ones that
are violated are displayed in red. In the above mentioned example one constraint
is violated, namely “Each conceptual component has a realization”. The constraint
editor displays the list of elements that are violating a given constraint (in our case
the Bus1 element) on the right-hand side panel. The implementation of the MICAS
constraints in the CQUERY plug-in is a contribution of the author of this study and
thus, it is not discussed here.

Several design aids are provided to the designer by using the MICAS con-
sistency rules. For instance, a basic stream transports data over a physical bus
characterized by a capacity. The basic stream also is characterized by a required
capacity, which represents the minimum transfer rate the stream requires for trans-
ferring data over the bus. Therefore, it is important that, when new basic streams
are added to a domain, the capacity provided by the underlying hardware resources
is verified. If the capacity required by the stream exceeds the capacity provided by
the bus the designer is notified. We will discuss in Chapter 7 how the controllers
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Figure 6.31: MICAS constraint checking example in Coral using CQUERY

manage the allocation of several streams, at the same time, over the same bus.
The required capacity is not a characteristic of the system, but a requirement of
the design (i.e., a goal that has to be fulfilled). The required capacity is computed
manually based on experience of the designer and on the application specification.

Another design aid that can be provided by taking advantage of the well-
formedness rules of the MICAS metamodel, is ensuring that the category of a ba-
sic stream belongs to the sets of provided and accepted categories of the stream’s
source and respectively, sink modules. Based on the MICAS metamodel defini-
tion, each module can process and provide a number of categories, specified in
the metamodel as providedCategory and acceptedCategory, respectively. Basic
streams originate and are targeted to HW processes and, their data type is described
by a Category. Therefore, it is important for the designer to be notified by the tool,
if the category of a basic stream is not supported by its processes, at the stream
design time.
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6.5 MICAS Code Generation

Once the design of a MICAS configuration is completed, the resulting specification
(i.e., containing both the static and dynamic perspectives) has to be transformed
into a SystemC executable specification to enable the simulation of the configura-
tion. The MICAS specification, which is obtained from the MICAS implementa-
tion phase, encompasses two categories of information:

• structural configuration – depicting the structure of the system in terms of hard-
ware components and their interconnections at port level;

• functional configuration – information encompassing both a static and a dy-
namic perspective of a given MICAS configuration, other than the one regard-
ing the hardware structure of the system. The static functional configuration
specifies non-hardware properties (like address spaces, IRQ numbers, etc.) of
different MICAS hardware components. The dynamic functional configuration
specifies the programming interface (i.e., services) and its implementation (i.e.,
streams) specific to each domain.

The structural configuration of MICAS is transformed (i.e., generated) into con-
cepts of the SystemC language by mapping the MICAS implementation compo-
nents into SystemC concepts. In change, there is no direct mapping between the
elements of the functional configuration and the concepts of SystemC. Neverthe-
less, both the structural and the functional configuration have to be taken into con-
sideration during the SystemC simulation. The functional configuration of each
domain is intended to be used, at run-time, by controllers for driving the compo-
nents of their domains. Since SystemC is an extension of C++, the easiest way to
integrate this information with the simulation model, is to represent the functional
configuration in terms of C++ language constructs. The approach also facilitates
the definition of reusable model transformation for generating the simulation model
of a given MICAS configuration.

6.5.1 A C++ “metamodel” for the MICAS Architecture

The MICAS C++ “metamodel” specifies the MICAS resources using type defini-
tions of the C++ language. A struct data type is used to define these resources,
while the fields of each struct type are used to represent their properties. The ap-
proach enables the use of different MICAS resources as properties of other MICAS
resources, similarly to a metamodel definition.

Modeling the Static Functional Configuration

A MICAS configuration is composed, at top-level, of several domains. Thus, a
Domain data type is defined as follows:
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struct Domain {
std::string name;
unsigned int domain_id;
Bus* busList[10];
int b_no;
Process* processList[10];
int m_no;
struct Process* master_domain_socket;
struct Process* master_domain_ctrl_socket;
struct Process* slave_domain_socket;
struct Process* slave_domain_ctrl_socket;
unsigned int DPRAM_int;
unsigned int int_ctrl_reg_addr;

};

A name and a numeric domain id are used to identify the domain during the sim-
ulation. The domain contains m no number of processes stored in the processList
array, each of them being characterized in turn by specific information. In addition,
b no number buses are present in each domain, and they are similarly stored using
a busList array. The external connections of the domain are modeled directly by
the sockets present in that domain, specifying whether these sockets are connected
to a master or to a slave domain. The socket description may be seen as a routing
table for the inter-domain communication. In our current MICAS implementation,
we have assumed that a domain may have at most two sockets communicating with
its master or slave domain, but since the metamodel allows it, a more general ap-
proach may be followed. We recall that domains have a hierarchical relationship to
each other, being possible that each domain has a master and, at the same time, be-
ing itself master to another (slave) domain. Two sets of pointers are modeling this
information. The master domain socket and master domain ctrl socket are used
to indicate to the controller the socket through which the data and respectively, the
control communication with the master domain has to be directed. Similarly, a pair
slave domain socket- slave domain ctrl socket, indicate to the controller the sock-
ets through which the data and the control communication, respectively, with the
slave domain has to be forwarded to. We mention that this information is generated
from the detailed model of the system, where the inter-domain communication is
modeled via data and control sockets. A null pointer in one of this fields means
that no master and respectively, no slave domain is connected to the domain in
question.

An RTOS is connected to the MICAS master domain, through a DPRAM mod-
ule (see Figure 6.21) using an interrupt-based mechanism. We decided to model
it as a separate entry not only because this is a high-priority interrupt, but also for
specifying explicitly if an RTOS is connected to a domain. A non-valid value as-
signed to this field indicates that no RTOS is connected to the domain in question.

Finally, each controller has an interrupt controller, through which it communi-
cates via a control bus (see Figure 6.21). When an interrupt is raised by any of the
domain components, the corresponding interrupt number is passed to the controller
via a control register, whose address is modeled by the int ctrl reg addr field.
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Each HW process included in the processList of a given domain is character-
ized by its own set of properties, as shown in the following type definition:

struct Process{
std::string name;
enum micas_process_type type;
unsigned int ctrl_reg_addr;
unsigned int master_reg_addr;
unsigned int slave_reg_addr;
unsigned int irq;
unsigned int slave_data_buffer;
unsigned int master_data_buffer;

};

The name is used during the simulation for debugging purposes, whereas a type
property specifies whether the HW process is a module, a bridge or a socket,
based on the definition of the micas process type enumeration, which we omit
here. Based on its placement relative to the other elements in a domain, a HW
process is characterized by other types of information, like address spaces used for
communication purposes. Address spaces typically regard the conceptual compo-
nents. We recall that HW processes are controlled by the controller via a control
bus, to which the HW process is connected by a control register. To be able to
uniquely identify each HW process on the bus, each control register has assigned a
unique identifier, namely the control register address. When the controller issues
a command to a given HW process, in fact it writes the command identifier to the
control register address.

The communication on the data bus between different HW processes is handled
in a similar fashion. Each HW process is connected to the bus through a master or
slave interface, and in addition, it has an unique identifier with respect to that bus.
Thus, two such identifiers are defined master reg addr and slave reg addr, respec-
tively. The communication between HW processes and controller is done via an
interrupt based mechanism. The controller uses an interrupt controller for receiv-
ing interrupt signals from HW processes. Each module has an unique identifier
(i.e., irq) corresponding to the interrupt signal to which it is assigned.

Similarly to HW processes, buses are stored into a busList, which contains
elements with the following structure:

struct Bus {
std::string name;
unsigned int maxCap;
unsigned int avCap;

};

Beside the name, the total capacity of the bus (maxCap) and the available capacity
at a given moment (avCap) are included as properties.

One decision that we took was to group all the generated information in a sin-
gle file, rather than create separate files for each domain description. Therefore,
at simulation-time, the controllers of different domains will share this informa-
tion from the same file. We do not consider this to be an impediment, since the
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generated information is read only, and as such, it does not pose the problem of
arbitrating the access to it. As such, all the domain descriptions included in a given
MICAS configuration are grouped in a domainList array.

Domain *DomainList[];

Modeling the Dynamic Functional Configuration

On the highest abstraction level of the dynamic perspective of MICAS stands the
Service. Each domain provides its own service list (i.e., serviceTable), in which a
number of s no services are stored. Consequently, two new properties have been
added to the Domain definition, enabling the domain description to encompass
both static and dynamic information of a configuration.

struct Domain {
Service* serviceList[10]
unsigned int s_no;

}

The Service type is characterized by a name, a list of CompositeStreams, a pointer
to a subservice from a remote domain, and an allocated flag to be used at run time
to keep track if the service is enabled at a given moment in time. The definition of
the Service is shown below.

struct Service {
std::string name;
struct Subservice *subservice;
CompositeStream* compositeStreams[10];
unsigned int allocated;

};

In turn, the Subservice is characterized by the identifier (remote domain id) of
the remote domain, from which it can be accessed and the service identifier (re-
mote service id) in that remote domain. In addition, pointers to the local sockets
are provided to indicate to the controller, where to “route” the commands for using
a given subservice (local ctrl socket), and from or to what socket (local socket) it
can access or send the data provided by the service. The Subservice definition is
given in the following.

struct Subservice {
unsigned int remote_domain_id;
unsigned int remote_service_id;
Process* local_socket;
Process* local_ctrl_socket;

};

A service is supported by one or more composite streams depicting the data-flow
perspective of that service. In turn, each composite stream is implemented by a
number (b no) of basic streams, which are included in the basicStreams array.
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struct CompositeStream {
std::string name;
struct BasicStream* basicStreams[10];
int b_no;

};

As discussed in the previous section, a basic stream (i.e., a data-flow between two
HW processes) provides an intrinsic perspective on the associated control-flow
needed to setup the adjacent HW processes. Thus, there is a need for thoroughly
characterizing the properties of each basic stream. Similarly to the MICAS meta-
model definition, a basic stream has a name, a category and a capacity. In addi-
tion, each stream transfers data over a physical bus, between a source HW process
(src process) and a destination HW process (dst process), which are represented as
pointers to the corresponding elements. From a control perspective, a basic stream
is equivalent to one or more HW process commands that trigger the data trans-
fers over the bus. These commands are gathered in the microcommands array and
executed every time the basic stream is triggered.
struct BasicStream {

std::string name;
enum category cat;
unsigned int Capacity;
struct Bus *bus;//pointer to the bus supporting the stream
struct Process *src_process;//
struct Process *dst_process;
Microcommand* microcommands[10];
unsigned int m_no;
};

The Microcommand is characterized by a name and an implementation (impl), cor-
responding to the CommandInterface and respectively, to the CommandImplemen-
tation elements of the MICAS Functional library. In turn, the implementation con-
sists of a command identifier (command), which is a numeric value to be written by
the controller to the control register (master address) of the master HW process.
The microcommand will also specify the address (slave address) of the slave HW
process to which the master has to communicate over the bus.
struct Microcommand {

std::string name;
struct impl {
unsigned int command;
Module* slave_address;
Module* master_address;
} impl;

};

We mention that these type definitions and their data structures are independent
of specific configurations that can be created in MICAS. They are intended only
to provide a common framework to specify the MICAS architecture in C++. Al-
though specified using a textual notation and a programming language, these type
definitions may be regarded as a textual “metamodel” for MICAS, that is used at
simulation level.
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6.5.2 Generating the Simulation Model

From the models describing the static and dynamic perspectives of a given MICAS
configuration, two kinds of information are extracted, in order to be used during
simulation.

Generating the Functional Configuration

Due to the strong equivalence between the MICAS model elements and the data
types defined by the “C++ metamodel”, the code generation process is straight
forward. It only implies the interrogation of the MICAS models and generating the
corresponding information at code level.

We mention once again that a single file is generated for the entire MICAS sys-
tem and that this file is shared at simulation-time by different controllers. It is also
worth noticing that the generated file has two parts, declaration and initialization,
similar to a C++ program. In the declaration part, the MICAS components of the
generated configuration are declared using the C++ data types defined previously.
An example corresponding to the Audio domain (see Figure 6.25) of the DAVR
case study is presented below.

Domain Audio;
Module Audio_Socket3;
Module Audio_socket_control_sfr_reg;
Module Audio_AudioEncoder;
BasicStream Audio_S11;
Microcommand mc_S11_Audio_record_sound_wav;
Microcommand mc_S11_Audio_transmit_data_to_domain;
BasicStream Audio_S13;
Microcommand mc_S13_Audio_encode_wav_2_mp3;
Microcommand mc_S13_Audio_transmit_data_to_domain;
CompositeStream Audio_encodedAudio;
Module Audio_SoundRecorder;
Bus Audio_Bus1;
BasicStream Audio_S12;
Microcommand mc_S12_Audio_record_sound_wav;
CompositeStream Audio_unencodedAudio;
Service Audio_encodeAudio;
Service Audio_plainAudio;

In the initialization part the properties of each declared component are initialized
with data extracted from the MICAS models. Due to the large size of the generated
code, we only show the properties of the Socket3 HW process and of the S13 basic
stream, corresponding to a static, and respectively, to a dynamic view of the system.

Audio_Socket3.name = "Socket3";
Audio_Socket3.master_ctrl_reg_addr = 10;
Audio_Socket3.slave_reg_addr = 1;
Audio_Socket3.slave_data_buffer = 32;
Audio_Socket3.master_data_buffer = 32;
Audio_Socket3.irq = 2;
Audio_Socket3.type = SOCKET;
.......
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Audio_S13.name = "S13";
Audio_S13.bus = &Audio_Bus1;
Audio_S13.src_module = &Audio_AudioEncoder;
Audio_S13.dst_module = &Audio_Socket3;
Audio_S13.Capacity = 100;
Audio_S13.cat = MP3;
Audio_S13.microcommands[0] = &mc_S13_Audio_encode_wav_2_mp3;
Audio_S13.microcommands[1] = &mc_S13_Audio_transmit_data_to_domain;
Audio_S13.m_no = 2;

We discuss in Chapter 7 how the generated code is embedded and used within the
MICAS SystemC simulation framework.

Generating the Structural Configuration

The process of generation the structural description of a MICAS system implies
several steps: initially the Detailed MICAS model (Figure 6.32-(top)) is trans-
formed into an implementation model (Figure 6.32-(bottom)), in which each de-
tailed element is represented in terms of Specifications and Interfaces of the imple-
mentation component. These elements are extracted from the MICAS Implemen-
tation library. A given interface type is composed of ports, which are automatically
interconnected based on their definition. Currently, the ports are paired based on
their name, which proved a sufficient approach in our case study. If a more elabo-
rated approach is required, other port related information like type, direction, etc.
may be considered.

We also mention that, since the implementation model is an intermediary model
that is not edited by the user, there is no tool support provided for graphically
editing its elements. The diagrams presented in Figure 6.32 are only schematic
representations of the underlying models, used for illustrating the approach.
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Figure 6.32: Examples of a Detailed model (top) and its corresponding Implemen-
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It is important to remark that using a well-defined and structured Implemen-
tation library allows us to use a completely generic port connecting engine for
automatically generating the top-level configuration file of the simulation.

Since the result of the transformation follows the SystemC syntax, we will
discuss it in more detail in Chapter 7, along with the simulation framework of the
MICAS architecture.

6.6 Summary

In this chapter we have proposed a graphical DSL for the MICAS architecture and
a collection of tools to assist the design of MICAS configurations. We have defined
a DSL using metamodeling techniques and we have employed the use of a meta-
modeling tool (i.e., Coral) to provide tool support for the DSL. The combination of
the DSL and tool support may be regarded as a design framework for the MICAS
architecture.

The MICAS metamodel encodes several abstraction layers of the MICAS ar-
chitecture. The MICAS hardware is designed at three abstraction levels: concep-
tual – modeling the functional components in the system, detailed – modeling the
communication mechanisms, and implementation – modeling the physical compo-
nents in terms of interfaces and ports.

In addition, a programming model has been proposed to abstract away the hard-
ware details. In the previous versions, the MICAS architecture featured a control-
oriented programming model, in which a set of three commands have been used
for controlling the functionality of the MICAS configurations at run-time. In this
chapter, we have proposed a data-flow oriented programming model, which not
only allows the designer to work on a higher abstraction level, as compared to
the previous model, but also provides a more natural representation for the data-
flow nature of the multimedia processing applications. The programming interface
proposed by this model is specified in terms of processing tasks (i.e., services) pro-
vided by each domain, which, in turn, are implemented in terms of data streams.

A design process has been proposed for modeling the MICAS architecture. The
process specifies how different models of MICAS are obtained and transformed at
different abstraction levels. Model transformations have been specified between
the steps of the process. The MICAS metamodel encodes the design steps by
limiting the design decisions that the designer can make during the process. We
would like to see these limitations in a broader sense, namely as guidelines for
the design process. The proposed MICAS design process follows a library-based
approach, in order to provide support for automation and reuse. It is important
to notice that the libraries used during this process are also modeled at different
abstraction levels.

Tool support for creating and editing MICAS models has been achieved by
customizing the Coral modeling framework. Taking benefit from the Coral’s con-
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figurability, we have proposed several designs aids for assisting the design process.
In addition, a number of systematic transformations have been defined to evolve
the abstract specifications into more concrete ones. Some of these transformations
have been automated, others that are strongly dependent on the designer’s inter-
vention are performed manually, although some design aids could be suggested.

From the work presented in this chapter, several conclusions may be drawn.
Metamodels provide the designer with DSLs that are completely independent of
UML and other modeling languages. In change, from the perspective of the meta-
model designer, a strong familiarity with metamodeling principles and MDA stan-
dards is necessary. Defining a metamodel for a given application domain is not
enough, but an important effort has to be put into implementing tool support for the
metamodel. Moreover, the metamodeling capabilities of the tool and the easiness
in providing customized editors for a given application domain are also important.
Another observation stands in the portability of a metamodel definition between
tools. If the class diagram of the metamodel definition and the associated OCL
constraints can be imported in other tools, it is still an open question how and if the
tool customizations can be exchanged.

The introduction of the Category as a linkage between the static and the dy-
namic aspects of the MICAS metamodel, facilitated the selection of the HW pro-
cess’ functionality and consequently, of its commands based on the combination of
the input/output data-flows that it has to process. For instance, in case of a video
encoder that receives an input data-flow of type RAW video and transforms it into
an output data-flow of type AVI, the ”RAW2AVI” functionality has to be invoked.
The approach is momentarily manual, but the effort in automating it seems to be
rather small. Another benefit of using the Category as an attribute of BasicStreams
is that it enables one to ensure the consistency of groups of basic streams (i.e.,
compositeStreams). For instance, the designer/tool can check at design time, that
the category of a given stream is supported by both the source and the target HW
processes.

We can also remark that the MICAS DSL is intended to be used by MICAS de-
signers. Therefore, several decisions taken during the metamodel implementation,
as well as the design aids and graphical notations provided, are intended to make
the DSL easy to use by the MICAS designer.

Future work may look into the addition of several features to the MICAS de-
sign framework. Nevertheless, we consider that these features may be easily added
on top of our exiting work by using similar concepts and techniques. For instance,
the MICAS Implementation library (that is, the existing specifications and their
interfaces) is obtained from the MICAS Simulation library. At the moment, the
process of building the former library is performed manually, but future work may
include an automated approach for generating/updating the elements of the Imple-
mentation library from existing SystemC specifications. This would facilitate the
plugging in of new SystemC libraries (eventually from third party vendors) into the
MICAS design framework.
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Finally, we remark that applications targeted to the MICAS architecture can
also be subjects to performance requirements and physical constraints. Similar to
the TACO project, area and power consumption of the MICAS components can
be embedded within the MICAS metamodel, more specifically within the MICAS
libraries, to provide support for the design space exploration at system-level. How-
ever, the approach has not been thoroughly explored in the current work, but it
constitutes subject of future work.
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Chapter 7

Simulation and Exploration of
Programmable Architectures

Due to the increasing complexity of the system specifications, new methods are re-
quired for detecting design errors in the early stages of the development, as well as
for insuring the physical characteristics of the final product. System-level simula-
tion and estimation of specifications have become necessary tools for the designer,
in order to enable the evaluation of the system specifications against requirements
at early stages of the development before going to hardware implementation. The
approach eliminates costs and shortens the design life cycle of new products. Ac-
cording to Moretti [88], most of the integrated circuits developed today require at
least one return to early phases of the development, due to errors.

Simulation allows one to execute the system specification at different levels of
abstraction. There are two conflicting trends in simulating embedded systems. On
the one hand, the simulation should be performed as early in the development pro-
cess as possible, in order to avoid the propagation of design errors to later phases.
On the other hand, simulating the system at later phases of development, when the
system specification is more complete, allows one to check a wider range of the
system’s properties.

Besides simulation, preliminary evaluations of the system’s physical charac-
teristics are required. Such evaluations provide an approximation of the final im-
plementation and are typically obtained via estimation techniques. System-level
estimation is of particular importance to embedded systems, since by their defini-
tion, they must comply with tight constraints, in terms of size, energy consumption
and cost. Similarly to simulation, the same conflicting trends apply. The earlier the
estimation process is performed, the less precise estimates are obtained. Neverthe-
less, the approach lets us detect and remove initial errors, before being propagated
to the later phases of development.

In this chapter, we discuss the simulation and estimation of programmable ar-
chitectures in the context of the two architectures introduced in the previous chap-
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ters, namely TACO and MICAS. The chapter is structured in two parts. In the
first part, we briefly introduce the SystemC language, and then we discuss the sim-
ulation environment of the MICAS architecture, emphasizing how the different
perspectives MICAS have been specified and integrated within the simulation en-
vironment. In the second part, we exemplify the architectural exploration process
of programmable architectures by showing how several configurations of TACO
are evaluated for supporting an IPv6 router application.

7.1 Simulating the MICAS Architecture

In this section, we discuss the relevant aspects behind the MICAS simulation pro-
cess, and we show how the static and dynamic perspectives of MICAS are com-
bined at simulation level. In addition, we present different design decisions behind
the implementation of MICAS Simulation library.

7.1.1 The SystemC Language

Several languages [51, 105] have been proposed in the last decade to serve as ex-
ecutable system specifications. One such language is SystemC [100], an object-
oriented extension of C++ for hardware specification.

SystemC provides a number of macros for hardware-oriented concepts (e.g.,
ports, signals, clocks, modules, etc.) and the notion of timing for creating cycle
accurate specifications. There are two main artifacts defined in SystemC to specify
a system: modules and processes. Modules are the building blocks of the system,
allowing one to decompose the system in a hierarchical manner. Each module con-
sists of an interface and an internal behavior. The interface, which is not explicitly
modeled in SystemC, is composed of SystemC ports. These ports may be input,
output or both, and may have either a SystemC-defined data type or any other user-
defined data type. The ports of different modules are interconnected via signals,
which provide the basic physical infrastructure for inter-module communication.
Processes are pieces of behavior of the system, which run concurrently with other
processes. Processes are located inside modules and communicate with processes
of other modules via the ports.

Therefore, from a structural perspective, SystemC models a system as a set of
modules interconnected through signals, whereas from a behavioral perspective,
the same system is modeled as a group of processes, that interact to each other in
order to provide the overall functionality of the system.

From a syntactical point of view, a module is represented as a C++ class, called
SC Module. Such a class may contain attributes, methods and has a constructor
method. The attributes may be other SystemC defined ports (sc in, sc out, sc inout)
or regular C++ attributes that are used internally by the module. Class methods are
specified using plain C++ syntax. Finally, the constructor is used to create class
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instances at run-time. A small difference can be met in the way the constructor
is specified and used. The constructor of the module registers one or more of the
class methods as concurrent processes. In addition, it declares the list of ports, to
which each process is sensitive.

The SystemC language imposes the separation of a module specification into
two files: header (e.g., module.h) and body (e.g., module.cpp). The header file
declares the structure of the module in terms of ports, internal signals and processes
(including their reactiveness to signals). The body provides implementations of the
processes declared in the header file.

The structure of a system in terms of module instances and their interconnec-
tion is specified by the main() function, which is placed in a separate file, namely
the main.cpp, also depicted as the “SystemC top-level file”. Simulation related
information, like clock resolution, simulation running time, etc., may also be in-
cluded in this file.

The SystemC simulation process relies, at run-time, on two phases: elabora-
tion and simulation. In the elaboration phase, the components of the system are
instantiated from module classes and their ports are interconnected via signals. In
the simulation phase, once all the system resources are in place, the dynamic be-
havior (i.e., processes) is started and executed.

7.1.2 The MICAS Simulation Library

The MICAS Simulation library is used for providing ready-built SystemC specifi-
cations of the MICAS resources. Following this approach, only a top-level con-
figuration file of the SystemC model has to be generated, in order to specify the
configuration of the MICAS architecture. The library is designed to meet the fol-
lowing goals:

• to maximize the reuse capabilities provided by the SystemC language by provid-
ing reusable versions of the modules, which may be used in several architectural
configurations without requiring modification;

• to promote a library organization that easily integrates with the MICAS design
methodology, such that the simulation model of a given MICAS configuration
can be automatically generated;

• to facilitate the co-simulation process by easily integrating the application code
with the simulation model.

The components of the MICAS Simulation library are implemented using the
SystemC language features discussed in the previous subsection. We will not
present the whole library in detail, but only those aspects that are specific to the
MICAS architecture and that are relevant for this work. Each hardware resource of
the MICAS architecture has a corresponding implementation as a SystemC class.
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In order to improve the reusability of module specifications, we have pursued
two main directions when redesigning the components of the MICAS Simulation
library: reusable module interfaces and reusable behavior specifications.

Providing Reusable Module Interfaces

Reusable module interfaces have been created to facilitate the automatic genera-
tion of the SystemC top-level file from MICAS implementation models. As such,
we have identified port collections (i.e., interfaces), which are shared by differ-
ent module specifications. An interface comprises several ports with well-defined
name, type and direction. The main source of information for this process is given
by the various technology standards (e.g., OCP specification) used in MICAS.

The SystemC language does not provide a mechanism for the explicit separa-
tion of module ports into interfaces. Therefore, we only make sure that the de-
scription of the ports belonging to the same interface type is consistent for differ-
ent modules of the specification. The approach should be seen more as a guideline
to be followed during the module specification process, rather than a systematic
method. However, although this approach implies an apparent extra effort in build-
ing the modules, this effort is outweighed by the benefits in terms of code consis-
tency, error elimination and automation. Furthermore, we have been able to use
the identified interface types for creating ’high-level’ descriptions of the SystemC
modules by taking advantage of the concepts defined by the MICAS Implementa-
tion library. As we have discussed in Chapter 6, the Implementation Library pro-
motes reusable interfaces and ports, where each interface type is only once declared
and specified, and then assigned to different component specifications that are us-
ing it. This approach facilitates not only the addition of new SystemC modules to
the MICAS Implementation library, but also the automated port interconnection, at
SystemC level, during the code generation process.

As example, we present the socketMaster module (Figure 7.1). A socket has
several interfaces: one to the external environment, through which the communi-
cation to the socket network (i.e., off-chip buses) is implemented, and one to the
internal environment, namely to an OCP bus. In addition, a control interface that is
used for communicating with the domain controller may be present, in which case
the module is regarded as a master module (i.e., it is controlled by the controller
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Figure 7.1: Interfaces of the socketMaster module
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and initiates transfers on the OCP bus). The corresponding SystemC header file
(socketMaster.h) of this module is presented bellow.

SC_MODULE (socketMaster) {

// OCP Master interface
sc_in <bool> M_SCmdAccept, M_SDataAccept;
sc_in <sc_uint<8>> M_SResp;
sc_in <sc_uint<b_size>> M_SData;
sc_out <bool> M_MDataValid, M_MRespAccept;
sc_out <sc_uint<8>> M_MCmd, M_MBurst, M_MAddrSpace, M_MByteEn;
sc_out <sc_uint<32>> M_MAddr;
sc_out <sc_uint<b_size>>M_MData;

// Socket Master interface
sc_in <sc_uint<32>>data_in;
sc_in <bool> data_valid;

// Interrupt interface to MCU
sc_out <bool> intr;

// Control interface to MCU
sc_in <sc_uint<8>> ctrl_reg;

// Clock interface
sc_in_clk Clk;
.....

}

Providing Reusable Module Specifications

One of the main features of SystemC is that it promotes the reuse of module spec-
ifications by allowing one to create several instances of the same module. This
approach enables one to reuse the same module specification for implementing
(simulating) several hardware components of the same configuration. However,
each module instance has to be made “aware” of its configuration settings in terms
of assigned address spaces, IRQ numbers, parameters, etc. This information has
to be passed to the instances at instantiation time, or following the SystemC termi-
nology, at elaboration time.

As we have briefly mentioned in Chapter 5, a similar approach has been fol-
lowed for assigning address spaces to sockets in the TACO simulation. In TACO,
these address spaces are dynamically assigned by the controller (i.e., the inter-
connection network controller), at elaboration time. Such an approach cannot be
applied in case of the MICAS architecture, due to several reasons. Firstly, not all
address spaces can be accessed by the MICAS controller (e.g., module addresses
on the OCP bus). Secondly, the designer manually assigns some of the address
spaces (e.g., the IRQ numbers) based on certain heuristics (i.e., HW process prior-
ity). Thirdly, the MICAS controllers are distributed over several domains and thus
a centralized approach is difficult to follow.

Therefore, in MICAS we have employed a different approach in which we
assign the address spaces based on the information extracted from the models of
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the MICAS DSL. For this purpose, we have proposed (in Chapter 6) a C++-based
description of the MICAS hardware properties, namely the functional static config-
uration. Using the information provided by the functional static configuration, we
can configure, at elaboration time, SystemC module instances with specific infor-
mation. The approach enables us to reuse the same SystemC module specification
in several architectural configurations. For instance, in case of our DAVR config-
uration, two MICAS modules VideoEncoder and AudioEncoder are used, each of
them belonging to different MICAS domains and, consequently, controlled by dif-
ferent controllers. If a generic SystemC encoder module is used to simulate both
components, it has to be instantiated once for each of the two MICAS modules, and
the functional information characterizing each MICAS module has to be passed to
its corresponding instance.

Couple customizations have been applied to the components of the MICAS
Simulation library. Firstly, we have defined a mechanism that enables us to pass
the configuration properties to module instances at elaboration time. Secondly, the
processes implementing the behavior of modules have been customized to take this
information into account.

Passing functional information to module instances. As mentioned previously,
each SystemC module specification is basically a C++ class. As such, beside the
SystemC specific constructs, one can define additional properties of that class, like
attributes and methods.

We have declared several C++ data types (e.g., Domain, Process, Bus, etc.)
in Section 6.5.1, each of them specifying the static functional properties of a spe-
cific type of MICAS hardware resource. We integrate each such data type with the
corresponding SystemC module by declaring a mymodule attribute of the module
class. For instance, classes specifying MICAS processes contain a Process my-
module attribute, whereas classes specifying bus modules have a Bus mymodule
attribute. An example is given in the following:

SC_MODULE (socketMaster){

SC_CTOR (socketMaster){
....
}

public:
Process mymodule;

};

During the elaboration phase, when modules are instantiated in the main.cpp file,
the information is passed to a given module in the following way:

socketMaster Socket1("Master_Socket1");
Socket1.mymodule = *this_domain->moduleList[Socket1_id];

We mention that both the main.cpp and the functional configuration data file are
automatically generated from MICAS implementation models. Hence, although
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the resulting main.cpp is not subject to errors, which may eventually be introduced
by a manual approach, we have wanted to retain the possibility of previewing the
main.cpp file in a user-friendly manner, by passing the name of the module (e.g.,
Master Socket1) “in clear” to its instance.

It is also worth mentioning that we have followed a similar approach in case
of the modules implementing the MICAS controllers, with the difference that the
entire functional configuration of a domain is passed as an attribute to the controller
(i.e., MCU1.mymodule = this domain;). We have employed this approach since
the domain controller manages the resources of the entire MICAS domain and
therefore, it requires access to the properties of all domain resources.

Customizing module behavior. Having configuration information passed, at
elaboration time, to SystemC modules also requires the customization of the Sys-
temC processes modeling the behavior of each module, such that they take into
account the fields of the mymodule data structures.

For instance, the previously discussed socketMaster module uses two methods
(transfer over socket() and transfer to slave()) to specify its internal processes, as
shown below:

void transfer_to_slave();
void transfer_over_socket ();

SC_CTOR (socketMaster){

SC_METHOD (transfer_over_socket);
sensitive_pos (Clk);

SC_CTHREAD (transfer_to_slave, Clk.pos ());
}

The transfer over socket() method manages the data transfer from the socket over
the external socket network, while the transfer to slave() method handles data
transfers on the local OCP bus. The constructor of the module (i.e., SC CTOR)
registers each method as a process, using one of the process types defined by Sys-
temC: SC METHOD or SC THREAD. An SC METHOD process executes to com-
pletion each time a signal from its sensitivity list (in our example Clk) changes its
value. In change, an SC THREAD process executes, whenever a change in the sen-
sitivity list occurs, until the first wait() statement in its specification. Consequently,
its execution is suspended until a new occurrence of an event resumes the process
from the point where it was suspended. An SC CTHREAD process is a special type
of SC THREAD, that is only sensitive to the clock signal.

Each module process has a corresponding implementation, which is situated in
the .cpp file of the module specification. For the sake of example, an excerpt of
the code implementing the transfer to slave() process is shown below. The pre-
sented code reads the control register address of a MICAS component (mymod-
ule.master ctrl reg addr) and writes it to the M MData port of the socketMaster
instance.
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void socketMaster::transfer_to_slave() {
....
M_MData.write(mymodule.master_ctrl_reg_addr);
....
}

Therefore, using the functional properties of the module as variables, instead of
having them hardcoded in the process specification, enables us to reuse the same
process in a generic manner.

As a final note, we mention that although the process of upgrading the library
required some additional effort, the benefit of the approach is twofold: a) it enables
for different instances of the same module specification not only to be instantiated
in different architectural settings, but also to reuse the same module for implement-
ing several MICAS components; b) it facilitates the automated generation of the
SystemC top-level file, as we discuss in the following.

7.1.3 The SystemC Top-level File

Based on the previous customizations of the MICAS Simulation library, the pro-
cess of generating the SystemC top-level file for a given configuration is fully au-
tomated. The implementation of this process is not a contribution of the author
of this thesis, and hence, we omit it here. However, for the sake of the exam-
ple, we present below the SystemC code generated from the DAVR Audio domain
presented in Figure 6.25.

//main.cpp
#include "microcontroller.h"
#include "interrupt_SFR_register.h"
#include "AHB_bus.h"
#include "bus.h"
#include "soundRecorder.h"
#include "socketSlave.h"
#include "encoder.h"
#include "inverter.h"
#include "interrupt_controller.h"
#include "sfr_bridge.h"
#include "module_SFR_register.h"
#include "socket_control_SFR_register.h"
#include "config1.h"

namespace MicasSystem {
namespace Audio {
microcontroller MCU3("Audio_MCU3");
socket_control_SFR_register socket_control_sfr_reg("Audio_socket_control_sfr_reg");
socketSlave Socket3("Audio_Socket3");
interrupt_controller Interrupt_controller("Audio_Interrupt_controller");
encoder AudioEncoder("Audio_AudioEncoder");
soundRecorder SoundRecorder("Audio_SoundRecorder");
sfr_bridge SFR_Bridge("Audio_SFR_Bridge");
module_SFR_register SFR_Register_Socket3("Audio_SFR_Register_Socket3");
module_SFR_register SFR_Register_SoundRecorder("Audio_SFR_Register_SoundRecorder");
bus Bus1("Audio_Bus1");
module_SFR_register SFR_Register_AudioEncoder("Audio_SFR_Register_AudioEncoder");
interrupt_SFR_register Interrupt_SFR_register("Audio_Interrupt_SFR_register");

} // Audio namespace end
} // MicasSystem namespace end

int sc_main(int argc, char* argv[]) {
sc_clock TestClk ("TestClock", 10, SC_NS, 0.5); // Static
initialize();

{ using namespace MicasSystem::Audio;
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MCU3.Clk(TestClk);
socket_control_sfr_reg.Clk(TestClk);
Socket3.Clk(TestClk);
Interrupt_controller.Clk(TestClk);
AudioEncoder.Clk(TestClk);
SoundRecorder.Clk(TestClk);
SFR_Bridge.Clk(TestClk);
SFR_Register_Socket3.Clk(TestClk);
SFR_Register_SoundRecorder.Clk(TestClk);
Bus1.Clk(TestClk);
SFR_Register_AudioEncoder.Clk(TestClk);
Interrupt_SFR_register.Clk(TestClk);

Domain* this_domain = domain_list[Audio_id];
MCU3.mydomain = *this_domain;

socket_control_sfr_reg.socket_ctrl_register_addr =
this_domain->moduleList[socket_control_sfr_reg_id]->master_ctrl_reg_addr;

Socket3.mymodule =

*this_domain->moduleList[Socket3_id];
SFR_Register_Socket3.module_sfr_register_addr =

this_domain->moduleList[Socket3_id]->master_ctrl_reg_addr;
AudioEncoder.mymodule =

*this_domain->moduleList[AudioEncoder_id];
SFR_Register_AudioEncoder.module_sfr_register_addr =

this_domain->moduleList[AudioEncoder_id]->master_ctrl_reg_addr;
SoundRecorder.mymodule =

*this_domain->moduleList[SoundRecorder_id];
SFR_Register_SoundRecorder.module_sfr_register_addr =

this_domain->moduleList[SoundRecorder_id]->master_ctrl_reg_addr;
Interrupt_SFR_register.int_ctrl_SFR_register_addr =

this_domain->int_ctrl_reg_addr;

//connect ports
.....

}
{//connect domains
.....
}//end ELABORATION PHASE
int n = 600000000;
if( argc > 1 ) std::stringstream(argv[1], std::stringstream::in) >> n;

sc_start (n); //START SIMULATION
return 0;

} // sc_main end

7.1.4 Integrating the MICAS Programming Model within the Simu-
lation Environment

As we have discussed in Chapter 6, the MICAS programming model is defined
at two abstraction levels. At domain level, the programming model consists of a
DFD-like view, in which the services are implemented in terms of data streams.
We recall that during the design process, the services of each domain are identified
and expressed in terms of basic streams. In the code generation stage, the services
and their implementations are transformed into a C++ representation, along with
the corresponding microcommands implementing each basic stream. The set of
microcommands supporting each service consists of pieces of code, which are run
by controllers when a given service is used.

At application level, the programming model is composed of programming
primitives (i.e., services) and control primitives for managing the services. We
have defined five control primitives in MICAS for managing services:

INQUIRY – is a request sent by a master controller to a salve controller to in-
terrogate the list of services available in the slave MICAS domain. In response, the
slave controller replies with a list of services and their current status (i.e., allocated,
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deallocated or active). Each controller propagates the inquiry command to all its
slave MICAS domains, in order to detect their services. Consequently, it collects
the responses and returns them to its master domain. Future versions of the MICAS
Simulation library can enhance these responses, in order to include additional data
characterizing the service (e.g., capacity, category, etc). The approach would allow
us to combine, at run-time, services into consistent scenarios.

ALLOCATE – when such a request is received, the controller attempts to allo-
cate a given service by reserving capacity over buses. In the current MICAS imple-
mentation, it is assumed that the communication bottleneck resides in the bus com-
munication only. In a more elaborated version, other resources (e.g., processes)
could be taken into consideration. As already mentioned, a service is composed of
a sequence of basic streams, each stream requiring a certain transport capacity over
the physical bus. In certain cases, it may happen that streams belonging to several
services are using the same bus and therefore, the controller has to ensure that, by
allocating a new stream, the basic capacity of the bus is not exceeded. If any of the
basic streams implementing the service cannot be allocated, the allocation process
is canceled and, an error message is returned to the master controller.

DEALLOCATE – requests a slave controller to deallocate a given service. Con-
sequently, the slave controller frees the bus capacities reserved for the service. In
addition, it sends a corresponding message to the master, to notify the accomplish-
ment of the request.

ACTIVATE – request sent to a controller to activate a service in a slave domain.
The service must be allocated before being activated. If the service is not allocated,
an error message is returned to the master controller. Furthermore, if the service is
already active (e.g., activated by a different request) a corresponding error message
is sent back. Upon service activation, the controller starts executing the service
specification and the service remains in an active state until it is deactivated.

DEACTIVATE – deactivates a service in a local or remote domain by resetting
the operation of the hardware components involved. A corresponding message is
sent to the master to notify over the completion of the operation.

Using these control primitives, several services can be started and, eventually, com-
bined into scenarios. Currently, there is no means to check whether different ser-
vices are compatible to each other from the point of view of their data type (e.g.,
a service providing audio cannot be combined with one displaying video), through-
put (e.g., the service receiving data is able to consume in a timely fashion all the
data provided by the sending service), or direction (e.g., one cannot use two ser-
vices only producing or only consuming data, but a “consumer” and a “producer”
are required). Such kind of rationale may currently be applied only at application
level and based on the designer’s experience. On the other hand, we consider that
the current approach suffices in providing consistent scenarios by using subser-
vices of a service. Future versions of the MICAS simulation could include a more
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advanced service description, which may also be integrated within the MICAS
metamodel.

The programming model of MICAS is supported at simulation time by MICAS
domain controllers. This support manifests in two directions: a) executing the
functional primitives (i.e., services); b) implementing the control primitives. For
handling these tasks, we have devised a dedicated piece of software to be run by
controllers, called service manager. The main functionality of the service manager
is to receive service requests from master controllers, to process them based on the
description of each service, and to provide an appropriate response.

The interesting part of the service manager is the way it uses the functional
configuration, more specifically the dynamic functional configuration, of each do-
main. Based on this configuration, the service manager accesses to the properties
of all the components (i.e., both static and dynamic ones) of a given domain. For
instance, when an activation request is received for an already allocated service, the
service manager reads the service description from the domain.serviceList[] array.
Consequently, each basic stream (read from service.basicStreams[]) of the service
is transformed into corresponding microcommands, which, in turn, are extracted
from the BasicStream.microcommands[] array. The resulting list of commands is
dispatched to the appropriated modules in an orderly fashion. More details about
this approach have been discussed in Section 6.4.7.

The service manager has been defined and implemented in a generic manner
to contribute to the reusability of the controller specifications. This enables us to
instantiate the same controller specification, and consequently, an identical ver-
sion of the stream manager, in each MICAS domain, without concern whether the
domain has a master or a slave role, or what types of components are present.

7.1.5 The RTOS Application Interface

Taking advantage of the fact that all MICAS domains provide the same control
interface (i.e., control primitives) to the other domains, enables us to reuse this
interface for supporting also the communication between the RTOS application
and the master domain. This approach relies on the fact that MICAS RTOS may be
seen as the master of the MICAS Master domain. Consequently, the same five con-
trol primitives are provided to the RTOS, from where applications can employ the
functionality of a given MICAS configuration. Being able to use the same control
interface both in-between domains and between master and RTOS, independently
of the underlying hardware, proved once again the benefits of the MICAS HAL
concept (see Figure 6.4) in terms of abstraction, flexibility and reuse.

We have implemented an application, at RTOS level, for using it as a case study
for our approach. The application is a simple interactive user interface, integrated
within the MICAS simulation environment, through which one can use the MICAS
control primitives for enquiring and employing the services of a given MICAS
configuration. Figure 7.2 provides a caption of the application simulation, in which
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the services of the DAVR device have been detected. Two of these services, namely
3. and 5.) are reported as allocated.

Figure 7.2: Simulation of the DAVR system on MICAS. Caption of the application
user interface

When we have discussed the MICAS service design process (Chapter 6), we
pointed out that there are two possible approaches in defining services. Either the
services of each domain are presented to the RTOS, and the user (or the applica-
tion) decides how to combine them into consistent scenarios, or scenarios are cre-
ated at design-time by using the subservice property of a service. Both approaches
are currently supported by the MICAS simulation framework. However, since we
have decided to experiment with the latter approach, only the services of the mas-
ter domain are presented, as scenarios, to the RTOS. If the former approach is to
be followed, it would allow one to combine, for instance, a hypothetical service
Master CaptureAndStoreVideo with an the existing Master ManipulateVideo ser-
vice, and eventually, with a third hypothetical service Master DisplayStoredVideo,
in order to obtain a more complex scenario.

7.1.6 Further Considerations

Beside simulating the functionality of different MICAS configurations, other types
of information can be obtained from the simulation process. For instance, com-
puting values, like the average or the peak-level bus utilization, might provide a
general indication for rearchitecting the configuration or optimizing some of the
components, in order to better support the application performance. Such mea-
surements are currently not provided, since they have not been in the scope of this
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work, yet they can be easily integrated on top of the existing SystemC specification
of the MICAS controllers.

7.2 Exploring the Design Space of TACO Processors

This section1discusses the design space exploration process of the TACO archi-
tecture. The process relies on the simulation and estimation models of the TACO
framework, from where the characteristics of different TACO configurations are
obtained. The main goal of this section is not to define a rigorous exploration pro-
cess, but rather to show that, by having at our disposal estimation information at
system-level, we can quickly and reliably explore TACO configurations. Out of
these configurations, we select the “suitable” one(s) for hardware synthesis.

In Chapter 5, we have discussed the qualitative configuration process of the
TACO architecture. We recall that our approach targets the functional requirements
of the application, without considering performance-related issues. This section
discusses the process of identifying and tuning TACO quantitative configurations,
in order to address the non-functional requirements of the application.

7.2.1 Creating TACO Quantitative Configurations

Our approach to address the non-functional requirements of the application is bi-
ased towards exploiting the parallelism of the TACO architecture. The parallelism
level of a TACO configuration may be increased by following two procedures: a)
multiplying the number of FUs of the same type; b) multiplying the number of
buses.

The TACO exploration process starts from a given TACO qualitative configu-
ration and its corresponding application code (see Figure 5.3-(a)), which are ob-
tained from the mapping process. As an initial step, the qualitative configuration
is simulated and preliminary performance information is collected, like number
of cycles to execute a given application path, bus utilization, register transfers etc.
The TACO SystemC simulation framework is not included in the current thesis, yet
it has been discussed in previous work [128, 132]. Beside simulation-related in-
formation, physical estimates of the configuration are obtained from the estimation
process.

Based on the preliminary performance and physical estimation data, one can
suggest quantitative configurations of the architecture. For each new configuration,
the application code is optimized to take advantage of the parallelism of the con-
figuration. The process is followed by the simulation and estimation of the newly
created configurations.

The approach is applied iteratively until a “satisfactory” quantitative configura-
tion is obtained. It is this “satisfactory” configuration that will become a candidate

1The work presented in this section is based on publication [P.2]
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for the synthesis process. At the moment, the design space exploration process
is performed manually based on the designer’s experience. To exemplify our ap-
proach, we present a design case, in which the TACO architecture is customized to
support the IPv6 router application specification, which has been discussed in the
previous chapters of this thesis.

Suggesting Architectural Optimizations

From the simulation process one can detect bottlenecks in the performance of the
system by analyzing different processing tasks of the router. Consequently, op-
timizations of the TACO configurations are suggested, either by increasing the
parallelism level or by designing optimized FUs. By simulating the qualitative
configuration of the IPv6 router, we have observed that three processing tasks
(i.e., checksum calculation, ICMPv6 signaling and routing table lookup), required
optimization in order to improve the performance of the application under study.
Consequently, three dedicated FUs have been designed, one for each of the above
mentioned tasks.

The Checksum FU computes the Internet checksum of a datagram by reading
32-bit words of the datagram. The ICMPv6 FU builds new ICMPv6 datagrams by
prepending received datagrams with an ICMPv6 header (two 32-bit words). This
approach saves an important number of bus transports that are normally needed to
construct an IPv6 datagram. Finally, a Routing Table FU allows fast access to the
fields of the routing table entries stored in the memory. We will not get into the
technical details of these FUs, since they are not in the topic of this thesis, yet their
detailed description may be found in [132, 134].

It is important to remark though, that each newly designed FU provides its own
functional primitives, which may be used to express the application specification
during the mapping process, as discussed in Chapter 5. Therefore, the mapping
process has to be performed again for those processing tasks that benefit from
newly designed FUs.

7.2.2 A Case Study for Exploring the IPv6 Routing Table Design

The goal of our case study is to configure TACO for supporting an IPv6 router
application, which provides a 10 Gbps aggregate throughput over Ethernet [38]
networks. Due to the limitations of the Ethernet protocol, the largest datagram size
that may be transmitted by the router is equal to 1500 bytes (i.e., 12 000 bits). This
implies that our router should be able to forward 833 333 datagrams/sec. Based on
this value, we can calculate that the maximum processing time for a datagram is
1.2 µs (worst case scenario).

As already mentioned, there are two main data-flows inside the router, corre-
sponding to the routing and to the forwarding processes, respectively. The most
time-critical process is the forwarding process, being the one that “measures” the
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performance of the router. The routing process plays a secondary role, being in
charge only for maintaining the routing table. Statistics [79] show that when the
topology of the network is stable, the routing table updates appear about every two
minutes. Hence, for the sake of simplicity, we neglect the routing process through-
out this case study.

The forwarding process relies on several processing tasks of the router, like
IPv6 header validation, classification, routing table look up, etc. From simulating
the qualitative configuration of the router, we have observed that the routing table
lookup plays a dominant role in the forwarding process, accounting for more than
80% of the processor cycles required for forwarding a datagram.

Therefore, in order to optimize the routing table lookup task, we explore several
TACO configurations. During this process, we are interested in minimizing the
number of processor cycles that are necessary for the forwarding task. In this
scope, we examine three different organizations of the routing table. In the first
case, we evaluate a sequential organization, which implies a linear searching time.
In the second case, a balanced tree organization is simulated, thus resulting in a
logarithmic complexity. As a third case, we evaluate an approach where the next
destination of a datagram is obtained in a single query of the routing table. A
routing table with 100 entries is considered in our study.

In practice, the first two alternatives may be realized using regular memory,
at the expense of moving the routing table interrogation process into software.
The last approach could be implemented using a hardware-based solution, like a
Content Addressable Memory (CAM). Such circuits provide fast matching time in
the detriment of a high cost.

For each of the tree routing table organizations we evaluate three different pro-
cessor configurations obtained by varying the number of buses and the number of
functional units used. Table 7.1 presents the resources included in each of these
configurations, as well as the physical estimates of the power consumption and
physical area of each configuration, obtained from the Matlab estimation model of
TACO.

We have simulated each of the three configurations and, based on the simu-
lation results, we have calculated the number of clock cycles that the datagram
forwarding process takes to complete in each case. By using this number and the
number of datagrams that the router has to forward per second, we compute the
required frequency for each configuration. The results are given in Table 7.2.

We mention that the presented estimates are partly based on approximations,
as we are interested in quickly identifying the tendencies in which the performance
of each routing table organization vary with architectural changes. Out of the sim-
ulation process, we also identify processing bottlenecks by looking at the register
utilization data. From this data we have concluded that much of the forwarding
processing time is spent for matching, comparing, increment and decrement opera-
tions. This observation has been, in fact, the motivation for suggesting the Router3
configuration in Table 7.1.
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Component type Router1 Router2 Router3
BUS 1 3 3
Comparator FU 1 1 3
Counter FU 1 1 3
ICMPv6 FU 1 1 1
Input FU 1 1 1
Memory FU 1 1 1
Matcher FU 1 1 3
Masker FU 1 1 1
Output FU 1 1 1
Shifter FU 1 1 1
R’Table FU 1 1 1
Estimated Area [mm2] 202 731 202 731 292 695
Estimated Power [mW] 97.1 97.1 143.5

Table 7.1: Estimates of the IPv6 router configurations used in the Routing Table
case study. Only the estimates of FUs and network controller are included in the
calculation. The estimates do not include memory blocks

In addition, the initial application code corresponding to the qualitative con-
figuration is optimized, by performing data and control analysis, to take advantage
of the parallelism features of each configuration. Table 7.2 presents the simulation
results for each of the three configurations.

In the case of a sequential organization, the results indicate that the required
clock speed of the Router1 configuration should be near 6 GHz. This exceeds the
capabilities (which are estimated to be in the vicinity of 1 GHz) of the 0.18 µm
standard cell library, that has been targeted in this cases study. By configuring the
TACO processor to use three buses, we obtain a required clock frequency of 2 GHz,
which also is beyond the capabilities of the implementation technology used. The
increase in parallelism, offered by the Router3 configuration, brought the clock
frequency at about 1 GHz, meaning that this configuration could be possible to
implement in the 0.18 µm technology.

The balanced tree organization shows an evident gain in performance. Follow-
ing a similar rationale as in the previous case, the faster two configurations qualify
as possible solutions, whereas the slowest one exceeds the capabilities or the cur-
rent technology.

For the CAM-based solution, we observe a major boost in the performance
of the router. As seen in Table 7.2, the speed requirements of the three TACO
configurations drop dramatically, in case of the Router2 configuration. However,
increasing the number of FUs, as in the Router3 configuration, does not anymore
seem to offer considerable increase in the performance of the forwarding process.
Instead, if this last configuration is selected for implementation, one will have to
expect larger area and power consumption, as indicated by the estimates in Table
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Sequential access Balanced tree access CAM-based access
Config. Req. speed Bus util. Req. speed Bus util. Req. speed Bus util.

[MHz] [%] [MHz] [%] [MHz] [%]
Router1 6000 100 1200 100 118 100
Router2 2000 97 600 97 40 98
Router3 1000 98 250 99 35 76

Table 7.2: Required speed and bus utilization for each type of routing table access

7.1. It is also important to mention that the power and area required by the CAM
chip are not included in the estimates. Nevertheless, the performance obtained us-
ing CAMs recommends them as the solution for the routing table implementation.
On the downside of this approach, such chips are accompanied by high costs and a
larger area footprint, as compared to regular memories.

As a conclusion of the exploration process, any of the six validated configu-
rations (in bold text in Table 7.2) can be chosen to support the IPv6 router imple-
mentation on TACO, as long as they comply with the physical constraints (area
occupied , power used, etc.) of the application.

7.3 Summary

In this chapter, we have discussed the simulation and exploration of programmable
architectures. In the first part of the chapter, we have presented the simulation
framework of the MICAS architecture. We have showed how we have customized
the components of the MICAS Simulation library by taking advantage of the object-
oriented mechanisms of SystemC, in order to provide fully reusable component
specifications. The approach allows us to use simultaneously several instances of
the same module specification, in order to simulate different components of the
MICAS architecture. In addition, it has enabled the automated generation of the
SystemC model of a given MICAS configuration, starting from the implementa-
tion models of MICAS. We have also integrated the MICAS programming model
within the MICAS simulation environment. For this purpose, we have proposed a
set of control primitives and a service manager to be supported by MICAS con-
trollers, in order to control the invocation and execution of the MICAS functional
primitives (i.e., services).

In the second part of the chapter, the architectural exploration of the TACO
architecture has been discussed. During this process, we have estimated several
configurations of the TACO processor, with respect to their throughput and phys-
ical constraints, and some of them have been proposed as candidates for the syn-
thesis process. The entire exploration process is performed, at system-level, before
proceeding to hardware implementation. A case study has been presented in order
to show that, by having proper tools to estimate TACO configurations at system-
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level, enables the designer to take design decisions that address the non-functional
requirements of the application. We mention that both the estimates and the Sys-
temC code of the explored configurations have been obtained from the UML mod-
els of TACO, taking advantage of the transformation scripts provided in Chapter 5.
Therefore, the IPv6 router case study discussed in this chapter may also be seen
as a validator for the tool support provided by the TACO UML Profile, in order to
rapidly create and estimate TACO architectural configurations.

As a final remark, we can conclude from the simulation of the two architec-
tures discussed in this chapter that the system-level simulation of programmable
architectures does not provide a magical solution for insuring the “correctness” of
the final system, for couple of reasons. Firstly, a system-level executable specifi-
cation of a system, as complete as it may be, does not represent the “real” system,
but only an abstraction of it. This means that, in fact, we are not simulating the
system as such, but only its specification. Secondly, since embedded systems are
reactive systems (they react to stimuli from the environment and eventually pro-
vide response) their I/O behavior has to be tested. This is a non-trivial task, since
generating test data to cover all possible scenarios may prove difficult.

Future work is mainly focused towards improving the TACO development pro-
cess. One research direction is concerned with improving the estimation model
in the TACO Profile such that the power consumption and area estimates for the
entire configuration can be calculated in UML tools. Currently, only the estimates
of the FUs and of the network controller are taken into account in the exploration
process. A different research direction may look into combining the TACO UML
profile with specialized exploration tools, in order to enable an automated explo-
ration process.
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Chapter 8

Concluding Remarks

In this thesis, we have investigated the principles of the model driven paradigm for
supporting the development of programmable architectures. Programmable archi-
tectures are gaining popularity for providing optimal implementations of today’s
embedded applications. Similarly to other embedded systems, the designer of pro-
grammable architectures confronts with the increasing complexity of specifications
and with the pressure of reducing the time-to-market for new products.

The model driven paradigm has become, in recent years, one of the approaches
to address the complexity of software systems by promoting models to a pivotal
role of the development process. Throughout this thesis, we have applied the con-
cepts and mechanisms of the model driven paradigm to the development of pro-
grammable architectures.

We have started our study by proposing a methodology for developing pro-
grammable architectures, willing to address the characteristics of the specific ar-
chitectures that we address in this thesis, TACO and MICAS, respectively. The
methodology has been defined as an extension of the traditional Y-chart approach
[74]. Our work suggests a number of steps in building the system, from initial spec-
ifications towards implementation. At each step, design guidelines are proposed in
terms of specification languages, concepts, tool support, processes, etc., which are
needed to support the methodology. To accomplish this task, we have suggested
the model driven paradigm as the general infrastructure for defining and using the
previously mentioned artifacts.

This chapter summarizes the solutions that we have proposed here, in order
to address aspects related to the development of programmable architectures. The
content of this study may be regarded as covering four main topics: application
specification, architecture specification, mapping, and architectural simulation and
exploration.
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Application specification. In order to deal with the increasingly complex appli-
cation specifications, we have employed a systematic process in which the speci-
fication is built starting from the functional requirements of the application. UML
plays a central role in the approach, being used as the modeling language through-
out the specification phase. The process employs the use case model as the main
tool for capturing the requirements. From here, a functional decomposition of
the system follows, in which the system is decomposed into subsystems (i.e., ob-
jects). For this step, we have adopted an already existing method, namely the 4SRS
method [48]. The resulting subsystems are further analyzed by focusing on their
internal behavior. Two distinct approaches have been suggested.

In the first approach (Chapter 3), we have proposed the activity graphs as the
main UML technique in specifying the object’s internal behavior, while collab-
oration diagrams are used to model the communication between objects. Taking
advantage of the hierarchical decomposition of activity graphs, we have proposed a
systematic approach for refactoring (e.g. decomposing, grouping, removing, etc.)
the objects, based on their internal functionality. The approach lets us discover
common behavior that is used by several objects and, eventually, isolate this be-
havior into separate objects. In addition, the proposed approach could also be seen
as a complement of the 4SRS method. An IPv6 router specification has been em-
ployed as case study, in order to validate the proposed methodology. UML has been
used as a modeling language for the entire process, while tool support has been as-
sumed via existing UML tools. Due to the systematic way in which the analysis
is performed, some of the steps are easy to automate, providing prerequisites for
speeding up the process.

The second approach (Chapter 4) has been motivated by the observation that
an additional perspective of the system has not been adequately represented in the
previous case study. This is largely due to the nature of the IPv6 routing appli-
cation, for which a data-oriented perspective of the system is more natural than a
control-oriented one. This problem is not new, several other authors pointing out
that UML is not able to properly capture certain views of a system [8, 44]. As such,
we have proposed a specification process, in which we have complemented UML
with a data-oriented perspective. For this, we have employed data-flow diagrams,
the main tool of the structured methods [36]. We have adopted three existing sug-
gestions for combining UML and data-flow diagrams [45] and integrated them in
a specification process, which defines how the UML-based and the DFD-based
views of the system are interplayed. In addition, we have suggested an approach
for transforming some of concepts of each of the two modeling languages into a
subset of concepts of the other, respectively, at different abstraction levels. Taking
advantage of the availability of a MOF-based metamodel for structured analysis
[61], we have been able to use the UML-DFD combination in the same UML tool.
Moreover, using the scripting facilities of the SMW tool, we have implemented
scripts that support the model transformations of the process.
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Architecture specification. The second topic attended in this thesis is the use
of the model driven principles to support the specification of programmable archi-
tectures. UML has been used as a “hardware modeling language”, yet adapted to
provide domain-specific languages for the targeted programmable architectures.

In Chapter 5, we have developed a UML profile for the TACO protocol pro-
cessing architecture [132]. For this purpose, we have restricted the elements of
the UML class diagram for modeling the concepts of the TACO architecture. The
TACO Profile has been defined such that, by using UML notations, it enables the
specification not only of the hardware structure, but also of the functional (i.e.,
operations of the architecture) and physical (i.e., physical estimations) properties
of the TACO architecture. Benefiting from the TACO Profile definition, we have
proposed a UML-based component library, which encompasses in a single UML
model several views of the architecture, like simulation, estimation, and synthesis
specifications of the components. Having the library implemented and stored as a
UML model, we have been able to reuse its elements to rapidly create new pro-
cessor configurations in the used UML tool (i.e., SMW). In addition, by applying
scripting techniques similar to the ones in Chapter 4, we have been able to define
a series of transformations to assist us in creating configurations of the processor,
in estimating at system-level their physical characteristics, and in generating the
simulation and the synthesis models of selected configurations.

A domain-specific language for modeling an industrial programmable archi-
tecture, MICAS [109], has been defined in Chapter 6. This time, metamodeling
techniques have been employed for defining a MOF-like metamodel. The meta-
model definition encodes several perspectives of the system distributed over sev-
eral abstraction layers. From a hardware (static) perspective, we have modeled the
system using three abstraction layers (i.e., conceptual, detailed and implementa-
tion). From a dynamic perspective, we have defined a programming model of the
architecture, in order to abstract the hardware details of the architecture even more,
allowing the designer to focus on the functionality of the architecture. The various
perspectives of MICAS have been organized in a design process based on which
the initial specification of the system is refined towards implementation. Several
libraries have been defined (and encoded in the metamodel) to support the design
process on different levels of realization. These libraries not only provide reusable
components of the system, but also encode design decisions that can be taken dur-
ing the development process. The metamodel definition has been implemented in
the Coral modeling tool, in order to offer support for editing and transforming MI-
CAS models. We have also devised several customizations of the Coral editors,
for assisting the design process. Using the MICAS metamodel implementation
in Coral, several steps of the design flow could be automated, including the code
generation process. A multimedia processing application has been used as a case
study, in order to exemplify the use of the metamodel, for designing the MICAS
architecture.
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Mapping the application onto architecture. As a third topic of this thesis, we
have discussed how application specifications can be mapped onto a given archi-
tecture (i.e., TACO). Since our approach has only been targeting the TACO archi-
tecture, the discussion has been included in Chapter 5. As a concrete example
we have used an IPv6 router implementation on TACO. Out of the mapping pro-
cess, we have obtained both the qualitative architectural configuration to support
the application and the program code to drive this configuration.

Several conclusions follow from this work:

• the use of a programming model to abstract the hardware details of the archi-
tecture has allowed us to narrow the implementation gap, such that a systematic
transformation process between the two specifications could be proposed;

• the approach has confirmed that using a computation model for the application
specification that naturally matches the one of the programming model, facili-
tates the mapping process considerably;

• by having both the application and architecture specifications models imple-
mented via the same modeling language (i.e., UML), has let us decompose the
specification process into several atomic steps, of which some are performed au-
tomatically. In addition, the same UML tool has been used for the specifications
of both the application and the architecture.

Architectural simulation and exploration. The last topic of this thesis, which
has been presented in Chapter 7, focuses on the simulation and exploration of the
programmable architectures. In the first part of the chapter, we have discussed
the simulation of MICAS architectures. The main contribution of this first part
is the construction of a highly reusable simulation library for MICAS by taking
advantage of the object-oriented principles of SystemC. Hence, we have built the
SystemC modules such that their instances are customized based on configuration-
related properties. Moreover, we have defined a hardware abstraction layer for MI-
CAS, for allowing domain controllers of different MICAS domains (including the
RTOS) to communicate with each other in a uniform manner. Domain controllers
have been specified as reusable components, being able to interpret the service
description data independently of the architectural setting of their domain. The
customizable and reusable MICAS SystemC modules have enabled an automatic
generation of the MICAS simulation model.

The second part of Chapter 7 discussed the design space exploration of the
TACO architecture. The main focus of this work has not been on providing a sys-
tematic approach in which the process is performed, but rather on showing that the
simulation and estimation tools of the architecture, available at system-level, allow
us to perform the exploration process within a short time-frame. By simulating
and estimating different architectural configurations at the system-level, we have
obtained a fast turn-around time in finding well-suited configurations to support the
performance requirements and physical constraints of the application. In addition,
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during the case study presented, we have validated the capabilities of the TACO
UML profile to provide tool support for rapid estimation of the TACO processor.

8.1 Discussion

In the following, we discuss issues that we consider relevant to our work, as they
have resulted from the research included in this thesis.

Benefits of using model driven techniques in the context of programmable
architectures. The main goal of this thesis was to examine the advantage of
placing the development of programmable architectures in the context the model
driven paradigm. In the following, we briefly discuss the benefits that we consider
relevant with respect to this topic.

• abstraction levels. By employing model driven techniques, we have been able to
define and use several abstraction levels, both for the application specification
and for the architecture specification. This approach enabled us to tackle the
complexity of the specifications by focusing only on those aspects of the system
that are relevant at each step of the development process.

• graphical modeling languages may also be seen as an enabler for abstractions of
the specification. In addition, allowing the designer to use well-defined language
elements at each step of the development process improves the consistency and
facilitates the automated refinement of the specifications. Furthermore, by tak-
ing advantage of graphical modeling languages we have shown how new or
existing graphical DSL may be defined and used in model driven tooling envi-
ronments, thus facilitating the design process.

• reuse of tool support. One of the primary goals of this research has been in
reusing or customizing existing model driven tool support (in our case, UML-
based tools) to assist the development process. From our research, we may
conclude that reusing existing UML-based tools in providing integrated devel-
opment frameworks for programmable architectures is a viable option. How-
ever, the quality and usability of the resulting development framework heavily
depends on the capabilities of the selected tool.

• Automation is essential in shortening the development time of new products
based on programmable architectures. As we have seen throughout this thesis,
automation may be employed in all development phases (application specifica-
tion, architecture specification, mapping, simulation, exploration, etc.). Bene-
fiting from well-defined models on different realization levels enabled us first
to define and then to implement automated model transformations. Beside lib-
erating the designer’s activity of those mechanical and tedious repeating tasks,
automation also improves the quality of the generated artifacts by avoiding the
possible errors inherent to a manual approach.
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• IP-based reuse. Having a well-defined representation of different system com-
ponents has enabled us to store them as models, to interrogate these models for
seeking specific information, and further more, to generate from these models
different artifacts necessary in the later steps of the development process. As
such, we have been able to define component libraries at several abstraction lev-
els, from where already implemented and tested components can be selected for
a given configuration. Moreover, by including in the component descriptions
additional information like simulation-, estimation- or synthesis-related, has en-
abled us to generate system-level models of the system in an automated manner.
Thus, reusing IP components has allowed us to shorten the design time and to
speed up the design process considerably.

• libraries of design decisions. Having at designer’s disposal tools like DSLs,
automation, and component-based libraries facilitates considerably the develop-
ment process. However, it is still the designer that has to manually take design
decisions at different steps of the process. We have shown in this thesis, that
certain design decisions are reusable and thus, they can be encoded and stored
in a library for future use. Taking advantage of the model driven framework, we
have been able to store such decisions as models and furthermore, to query and
reuse them in an automated manner.

UML and object-orientation for hardware specification. Several authors have
argued that object-orientation and hardware do not match, because of their different
natures [21]. Based on the work presented in this thesis, we may conclude that
they are right, only if we regard object-orientation and its associated programming
languages as an implementation mechanism for hardware.

However, our opinion is that two of the main features of object-orientation
(i.e., the power of abstraction and reuse) are beneficial for abstracting and reusing
hardware specifications. These benefits are twofold: a) at system-level, we have
employed the object-oriented mechanisms of the SystemC language for creating
reusable executable specifications of the system components (in addition, SystemC
has been used for abstracting the physical details of hardware, letting the designer
focus on and simulate the functionality of the system); b) at conceptual modeling
level, UML has been employed as a hardware description language. The object-
oriented principles behind UML have been used to define DSLs for both TACO
and MICAS architectures, respectively. The defined DSLs provide several levels of
abstraction of the physical architecture, allowing the designer to focus on relevant
details at each stage of the design process.

In addition, we consider that, although initially created for software specifica-
tion, UML can be extended and applied to other application domains (as long as
the concepts of the new domains map naturally to the ones of UML). The approach
has allowed us to define DSLs for our target programmable architectures, which
provide increased abstraction levels and, at the same time, to take advantage of the
graphical notations of UML and of its corresponding tool support.
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Profiles vs. Metamodels. Two domain DSLs have been discussed in Chapters 5
and Chapter 6, which rely on the UML extension mechanisms and on the meta-
modeling techniques, respectively. Several observations can be made to serve as
guidelines for future work.

The first observation is that the defined DSLs are intended to be used by do-
main experts that are not necessarily familiar with the UML notation and modeling
techniques. Therefore, the UML notations that are employed by the DSL have to be
easy to understand and use by the domain expert. Nonetheless, one of the primary
preconditions in creating a UML-based DSL is the familiarity of the DSL designer
with the concepts of the application domain, such that she/he understands what the
domain expert expects from such a language.

A second observation is that the experience of the DSL designer in developing
DSLs plays an important factor. For instance, after developing the TACO and MI-
CAS DSLs, we have noticed that several design decisions could have been taken
differently, in order to improve the usability of the DSLs. If, in case of a profile-
based DSL like TACO, additions and modifications of the language definition can
be performed relatively easy, in case of a metamodel-based DSL like MICAS, the
re-engineering of the tool support would require substantial effort.

Profiling is considered to be a relatively easy mechanism to rapidly create new
DSLs. Although this is true to some extent, using profiles necessitates comprehen-
sive understanding of the UML metamodel and of the OCL constraint specification.
This affirmation is also valid for metamodeling where comprehensive knowledge
of UML and OCL is needed when defining MOF-based metamodels.

Tool support plays an important role in deciding whether a profile or a meta-
model is to be built. Ideally, UML profiles should be able to fully benefit from the
support provided by UML tools, without requiring additional tool customization.
However, as we discussed in Chapter 5, the capabilities of different tools in pro-
viding support for UML profiles vary from one tool to another. This fact has also
been claimed by other researchers [54]. By tool support we understand not only
graphical capabilities for displaying the properties of the customized UML ele-
ments, but also for ensuring the consistency of the models (using OCL constraints)
with respect to the application domain modeled. Having all these conditions met,
profiling may be seen as a fast and low effort alternative in designing graphical
DSLs, following the UML notation. In the case of metamodels, additional effort
is required for implementing the metamodel definition in the used tool. However,
once this task is accomplished, a completely UML-independent DSL is obtained
by using metamodeling. However, modifying the initial DSL definition is clearly
more difficult in case of a metamodel, since it might involve additional work or
even a complete re-implementation of the metamodel in the tool.

Another aspect that is worth discussing is the way in which the consistency
of the models is enforced. Using profiles, the abstract syntax of UML is (with
proper tool support) automatically inherited and thus, some of the architectural
constraints of the DSL may be enforced based on the UML metamodel definition.
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The downside of this approach is that the mapping between the domain concepts
and the UML elements might not be a natural one in all situations. Moreover,
constraints of the DSL may be specified in addition to the UML abstract syntax
and well-formedness rules. In case of a metamodel, the elements of the new DSL
can be used completely independent of the UML metamodel definition. Thus, the
resulting language is supposed to be more comfortable for the domain expert. The
metamodel definition allows one to encode most of the well-formedness rules in
the abstract syntax of the DSL. Also, the tool support can be fully customized to
address the specific needs of the domain expert.

Another remark is based on the observation that there is not a unique way in
which profiles and metamodels can be used to define DSLs. This might pose a
danger in the fact that the same application domain will be described using several
different notations and might create misunderstandings and difficulties of usage,
for those domain experts not familiar with UML and modeling.

As a final note, we consider that the following aspect needs to be taken se-
riously into consideration. The main concern is whether the UML usage should
be restricted to the software domain only, and in particular, to the object-oriented
software development or it can also be used as a modeling tool for all kinds of
application areas. In the latter case, we might face the risk of defining a very large
number of more or less natural DSLs, which are incompatible with each other. In
our opinion, this aspect requires further investigation.

8.2 Limitations and Future Work

The work presented in this thesis is subject to several limitations, which we under-
line in the following.

We have proposed a model driven development methodology for programmable
architectures. The application specification phase (discussed in Chapter 3 and
Chapter 4) may be seen as independent of the characteristics of the target pro-
grammable architecture. In contrast, the two solutions proposed for the architec-
ture specification phase (Chapter 5 and Chapter 6) have been influenced by the
characteristics of the two architectures discussed. As we have advocated in the be-
ginning of this thesis, we consider that in the area of programmable architectures
there is no “one size fits all” solution; instead, each specific architecture should
be accompanied by its own development methodology that exploits at maximum
its characteristics. However, we consider that by employing similar model driven
techniques as the ones discussed in this thesis, custom development methodologies
may be devised for other types of programmable architectures.

In the application specification phase (Chapter 3 and Chapter 4), the non-
functional requirements of the application are not considered. This leaves the in-
troduction of the performance requirements, in the specification of the system, only
for the later phases of the development cycle. We intend to address this issue in
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the future work. Another limitation is that no timing or concurrency aspects of the
application are modeled during the application specification phase. In addition, the
specification methodology discussed in Chapter 3 is limited by the lack of system
data classification. This may be avoided by determining the data (i.e., attributes)
that each object of the system encapsulates. This issue is also subject to future
work.

Regarding the methodology presented in Chapter 4, a more comprehensive
investigation has to be carried out, with respect to how the internal behavior of data
processes is transformed into specifications of the identified class/object methods.

In the architecture specification phase, the work presented in Chapter 5 is sub-
ject to several limitations, too. On the one hand, the system-level estimation sup-
port provided by the TACO Profile does not take into account the MATLAB es-
timates for all resources, therefore the estimation results for different TACO con-
figurations are currently less accurate. Beside addressing this limitation, future
work might look into an approach for enabling the integration of the performance
estimates and physical characteristics of the components, within the TACO pro-
gramming model. Such an approach would allow us to evaluate the impact of
choosing a given functional primitive on a given configuration during the mapping
process. Used in combination with an application specification process that would
incorporate non-functional requirements, the approach would enable us to include
in the mapping process both the application’s non-functional requirements and the
physical characteristics of the architecture.

The mapping process discussed in Chapter 5 is basically focused towards the
characteristics of the TACO architecture. In our opinion, the main limitation here
is that the process does not take into account the mapping of the data types between
the specifications of the application and of the architecture. This limitation could
be removed once the application analysis and the architecture specification phases
are enhanced with a classification of the data-types in the system. The approach
may enable us to narrow the implementation gap even more, and may improve the
automation support.

In the end, we emphasize again that this thesis has addressed the development
of programmable architectures, from requirements to the design space exploration
phase, and a systematic approach has been proposed for each step of the devel-
opment cycle. Some of these steps could be automated, others require additional
work, although the prerequisites for automation have been provided, while other
steps are performed manually. Consequently, further work has to be directed to-
wards perfecting and integrating the steps of the proposed methodology.
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H. Isännäinen, J. Lilius, J. Nurmi, and J. Isoaho. Interconnect-Centric De-
sign for Advanced SoC and NoC, chapter 16. A Brunch from the Coffee
Table: Case Study in NOC Platform Design. Kluwer Academic Publishers,
April 2004.

[6] B. Alabiso. Transformation of Data Flow Analysis Models to Object Ori-
ented Design. In OOPSLA ’88, pages 335–53. ACM Press, 1988.

[7] J. Ali and J. Tanaka. Implementing the dynamic behavior represented as
multiple state diagrams and activity diagrams. Journal of Computer Science
and Information Management, 2(1):24–36, 2001.

[8] S. W. Ambler. What’s Missing from the UML? SIGS Publications, Object
Magazine, Oct. 1997.

[9] S. W. Ambler. Agile Modeling: Effective Practices for Extreme Program-
ming and the Unified Process. John Wiley & Sons, 2002.

[10] M. I. Anwar and S. Virtanen. Mapping the DVB Physical Layer onto SDR-
enabled Protocol Processor Hardware. In Proceedings of the 23rd IEEE
Norchip Conference. IEEE Circuits and Systems Society, November 2005.

183

http://www.dsmforum.org/tools.html
http://www.dsmforum.org/tools.html
http://www.abo.fi/~dtruscan/ipv6index.html
http://mde.abo.fi/confluence/display/MDE/Tools
http://mde.abo.fi/confluence/display/MDE/Tools


[11] C. Arpnikanondt and V. K. Madisetti. Constraint-Based Codesign (CBC) of
Embedded Systems: The UML Approach. Technical Report YES-TR-99-
01, Georgia Tech., Atlanta, Dec. 1999.

[12] C. Atkinson and T. Kühne. Rearchitecting the UML Infrastructure. ACM
Transactions on Modeling and Computer Simulation, 12:209–321, 2002.

[13] C. Atkinson, T. Kühne, and B. Henderson-Sellers. Systematic Stereotype
Usage. Software and Systems Modeling, 2:153–163, 2003.

[14] M. Awad, J. Kuusela, and J. Ziegler. Octopus: Object-Oriented Technology
for Real-Time Systems. Prentice Hall, 1996.

[15] R. J. Back, L. Petre, and I. Porres. Analysing UML use cases as contracts.
In R. France and B. Rumpe, editors, UML’99 - The Unified Modeling Lan-
guage. Beyond the Standard. Second International Conference, Fort Collins,
CO, USA, October 28-30. 1999, Proceedings, volume 1723 of Lecture Notes
in Computer Science. Springer, 1999.

[16] F. Balarin, L. Lavagno, C. Passerone, and Y. Watanabe. Processes, In-
terfaces and Platforms. Embedded Software Modeling in Metropolis. In
A. Sangiovanni-Vincentelli and J. Sifakis, editors, Embedded Software, Sec-
ond International Conference, EMSOFT 2002, volume 2491 of Lecture
Notes in Computer Science, pages 407–21. Springer-Verlag, Oct. 2002.

[17] J. P. Barros and L. Gomes. From Activity Diagrams to Class Diagrams. In
�UML� 2000 WORKSHOP Dynamic Behaviour in UML Models: Seman-
tic Questions, Oct. 2000.

[18] L. B. Becker, C. E. Pereira, O. P. Dias, I. M. Teixeira, and J. P. Teixeira.
MOSYS: A Methodology for Automatic Object Identification from System
Specification. In 3rd IEEE Intl. Symp. on Object-Oriented Real-Time Dis-
tributed Computing, pages 198–201. IEEE CS Press, Mar. 2000.

[19] S. Berner, M. Glinz, and S. Joos. A Classification of Stereotypes for Object-
Oriented Modeling Languages. In �UML� 1999, pages 249–64, 1999.

[20] D. Björklund. A Kernel Language for Unified Code Synthesis. PhD thesis,
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ASIC Application Specific Integrated Circuits
API Application Programming Interface
AVI Audio Video Interleave
CASE Computer Added Software Engineering
CIM Computational Independent Model
DFD Data-Flow Diagram
DAVR Digital Video/Audio Recording Application
DSL Domain Specific Language
FU Functional Unit
FP Functional Primitive
GPP General Purpose Processor
HDL Hardware Description Language
IN Interconnection Network (TACO)
IP Intellectual Property
IPv6 Internet Protocol version 6
INC Interconnection Network Controller (TACO)
LHS Left-hand Side
MBD Model Based Development
MDA Model Driven Architecture
MDE Model Driven Engineering
MOF Meta-Object Facility
MPEG Moving Picture Expert Group
MICAS Microcode Architecture For A System On A Chip (SoC)
MoC Model of Computation
OMG Object Management Group
OCL Object Constraint Language
PE Property Editor
PIM Platform Independent Model
PM Platform Model
PSM Platform Specific Model
RIPng Routing Information Protocol next generation
RHS Right-hand Side
RTOS Real-time Operating System
TACO Tools for Application-specific hardware/software CO-design
TTA Transport Trigger Architecture
UML Unified Modeling Language
SA/RT Structured Analysis for Real-Time systems
SDK Software Development Kit
SoC System on Chip
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