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Chapter 1

Introduction

We consider a connected graph G = (V,E) with a vertex set V and an edge set E.
A code is a nonempty subset of the vertex set V, and a vertex belonging to a code
is called a codeword. A code is called an identifying code, if all the vertices of V
have different nonempty codeword neighbourhoods. A code is called a locating-
dominating code if all the vertices of V not belonging to the code have different
nonempty codeword neighbourhoods. Usually, the neighbourhood is the ball of
radius r. This means that the codeword neighbourhood of a vertex x in the vertex
set V consists of codewords at distance at most r from x. In this case we also speak
about r-identifying and r-locating-dominating codes. The problem is to determine
the smallest number of codewords in identifying and locating-dominating codes
in different graphs. A code attaining the smallest possible cardinality is called
optimal.

The research on identifying codes started in 1998 from the paper of Kar-
povsky, Chakrabarty and Levitin [40]. Since then the theory of identifying codes
has been investigated in various graphs such as infinite grids [1, 8, 10, 14, 27, 28],
general graphs [12, 19, 51], trees [4, 7] and paths and cycles [3, 22]. Locating-
dominating codes were introduced by Slater [60], see also [16, 58]. Other results
on locating-dominating codes can be found in [12, 16, 25, 29, 54, 59, 61, 62].
Finding an identifying or locating-dominating code of an optimal cardinality and
determining whether or not a given code is identifying or locating-dominating are
computationally difficult problems. For these and other complexity results, see
[9, 11, 15, 38, 39]. There are many other papers written about identifying and
locating-dominating codes than the ones mentioned here. The reader can consult
the up-to-date internet bibliography [50] on identifying and locating-dominating
codes maintained by Antoine Lobstein.

In this thesis, we consider identifying and locating-dominating codes in bi-
nary Hamming spaces or hypercubes. In the binary hypercube, the vertices are
labelled by the 2n binary words of length n, and two vertices are adjacent if
and only if their labels differ in exactly one position. Identifying codes in bi-
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nary Hamming spaces have been considered in [5, 6, 24, 26, 31, 32, 37, 40, 44–
46, 52]. In [40] there are lower bounds for the cardinalities of r-identifying codes
and some constructions which use covering codes. In [5] r-identifying codes are
constructed for r ≥ 2. In [37] it is shown that for a constant ρ ∈ [0,1) we have
limn→∞ n−1 log2 Mbρnc(n) = 1 − H(ρ), where Mr(n) is the smallest cardinality
of an r-identifying code of length n and H(x) = x log2 x− (1− x) log2(1− x) is
the binary entropy function. In [52] it is shown that the optimal cardinality of
1-identifying codes is a monotonically increasing function with respect to code
length. References [44, 45] are about codes which identify sets of vertices of size
at most `, when ` ≥ 3. In [45] an infinite sequence of optimal (1,≤ `)-identifying
codes is constructed by showing that the problem of finding an optimal (1,≤ `)-
identifying code is equivalent to the problem of finding an optimal (2`− 1)-fold
1-covering. In [44] an infinite optimal sequence of strongly (1,≤ `)-identifying
codes is constructed. Robust identifying codes are considered in binary Hamming
spaces in [26, 31, 32, 46].

Identifying codes can be applied in fault diagnosis of multiprocessor systems.
The purpose of fault diagnosis is to locate malfunctioning processors by testing
the system. Processors are the vertices of the graph and the links between the
processors are represented as the edges of the graph. A set of processors is chosen
for checking themselves and their neighbours and report to an outside controller.
Each chosen processor sends a message 1 if there is something wrong in the pro-
cessor itself or some of its neighbours and 0 otherwise. The processors are chosen
so that they form an identifying code. Depending on the code the controller can
identify one or more malfunctioning processors in each test run. This is the initial
application of identifying codes from [40]. A recent application area of identifying
codes is sensor networks, like environmental monitoring. For more information
about current applications, see [2, 26, 42, 43, 57].

The initial application of locating-dominating codes in [60] is the safeguard
analysis of a facility using a fire and intruder alarm system. Now the vertices of
a graph represent rooms, corridors, courtyards etc. Each edge connects two areas
that are physically adjacent or they are within a sight or sound connection with
each other. Sensors are placed in some of the vertices. These sensors each send
a message to a controller. In this case there are three possible messages: 0 if no
problem is detected, 1 if there is a problem in some neighbouring vertex and 2 if
a problem is at the vertex itself.

The structure of the thesis is the following. In Chapter 2, we define identifying
codes precisely and introduce some notations that are needed later.

In Chapter 3 we consider r-identifying codes which can identify one fault. The
chapter begins with a lower bound for r-identifying codes. This bound improves
on the previously known lower bounds for r-identifying codes [40]. We give a
construction of 1-identifying codes which gives the smallest known cardinalities
for many lengths. We construct r-identifying codes, for r ≥ 2, by taking a direct
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sum of r 1-identifying codes. This construction partly solves an open problem in
[6]. The results of this chapter are from [18, 49].

In Chapter 4 we consider identifying codes which can identify any at most `
faulty vertices when ` ≥ 2 is fixed. The chapter begins with lower bounds and
general notions and continues with short optimal codes. The main results of this
chapter are the constructions in Section 4.3. For example, we have a construction
which gives us two infinite families of optimal (1,≤ 2)-identifying codes. We also
prove that the direct sum of r (1,≤ `)-identifying codes is an (r,≤ `)-identifying
code. This chapter is based on the papers [34, 47, 49, 56]. We also give results
which are not included in these papers.

We consider strongly identifying codes in Chapter 5. In this variant of iden-
tifying codes a malfunctioning processor in a fault diagnosis system may or may
not send the correct message. Because we cannot trust the received information
we have to assume somewhat more than in the basic identifying case. The results
of this chapter are from [33, 35, 47, 48].

In Chapter 6 we consider linear identifying codes. An identifying code is
linear if it is a subspace of a Hamming space. For linear 1-identifying codes the
optimal cardinalities are solved in all cases: for all lengths and for any number
` of faulty vertices. The optimal cardinalities are also solved for linear strongly
1-identifying codes. Results of this chapter are from [55].

In Chapter 7 we consider locating-dominating codes in Hamming spaces. We
first consider locating-dominating codes which can locate one faulty vertex among
non-codewords. We also give two different definitions for locating-dominating
codes locating more than one faulty vertex. In both cases, we prove lower bounds
and give some constructions. This chapter is based on [36].

In the Appendix, we list some identifying and locating-dominating codes
found using a computer.





Chapter 2

Preliminaries

Let F = {0,1} denote the binary field. The binary Hamming space Fn or binary
hypercube is the n-fold Cartesian product of F. A code is a subset of Fn. The
elements of Fn are called words or vectors, and the elements of a code are called
codewords. The cardinality of a set X is denoted by |X |.

The Hamming distance between words x = (x1, . . . ,xn), y = (y1, . . . ,yn) ∈ Fn

is the number of places in which they differ, that is,

d(x,y) := |{i | xi 6= yi}|.

The set of non-zero coordinates of a word x ∈ Fn is called the support of x and is
denoted by supp(x). The cardinality of the support of x is called the weight of x
and is denoted by w(x). For x ∈ Fn we denote

Br(x) = {y ∈ Fn | d(x,y) ≤ r},
Sr(x) = {y ∈ Fn | d(x,y) = r}.

The set Br(x) is called the Hamming sphere or ball of radius r centred at x. The
size of the Hamming sphere of radius r in Fn does not depend on the choice of the
centre and it is denoted by V (n,r). We have

V (n,r) =
r

∑
i=0

(
n
i

)

.
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The next lemma will often be used.

Lemma 2.1. Let x,y ∈ Fn. Then

|B1(x)∩B1(y)| =







n+1 if x = y,
2 if 1 ≤ d(x,y) ≤ 2,
0 otherwise.

The intersection of three different Hamming spheres of radius one contains at most
one element.

Proof. Denote by ei the word which support is {i} and moreover e0 = 0. For
0 ≤ i ≤ n we have x + ei ∈ B1(x)∩B1(y) if and only if x + ei = y + ek for some
0 ≤ k ≤ n. This is equivalent to x = y+ ei + ek. This implies the first claim.

Suppose that 1 ≤ d(x,y) ≤ 2, then for ei 6= ek we have x+ei,x+ek ∈ B1(x)∩
B1(y). If for some z ∈ Fn we have |B1(x)∩B1(y)∩B1(z)| = 2, then B1(z) has to
include those two words which belong to B1(x)∩B1(y). That means, for some
e j and eh we have x + ei = y + ek = z + e j and x + ek = y + ei = z + eh. This is
equivalent to x = z+ei +e j = z+ek +eh. Thus, {ei,ek}= {eh,e j}. If ei = eh, then
y = z. If ei = e j, then x = z. It is clear that in the intersection of three different
words there is one word if the words are suitably chosen.

Let C ⊆ Fn be a code. For any X ⊆ Fn we denote

Ir(X) = Ir(C;X) =
⋃

x∈X

(Br(x)∩C).

The set Ir(X) is called the I-set of X . If r = 1, we denote I(X) = I(C;X) for short.
We also denote Ir({x1,x2, . . . ,x`}) = Ir(x1,x2, . . . ,x`) = Ir(C;x1, . . .x`). The set X
that we try to identify is called the fault pattern.

Definition 2.2. Let r and ` be non-negative integers. We say that C ⊆ Fn is an
(r,≤ `)-identifying code if for all X ,Y ⊆ Fn, X 6= Y, such that |X | ≤ ` and |Y | ≤ `
we have Ir(X) 6= Ir(Y ). If ` = 1, we say C is an r-identifying code.

The symmetric difference of sets A and B is

A 4 B = (A\B)∪ (B\A).

In other words, we can say that C ⊆ Fn is (r,≤ `)-identifying if and only if for
all X ,Y ⊆ Fn, |X | ≤ ` and |Y | ≤ ` we have

Ir(C;X) 4 Ir(C;Y ) 6= /0.

The smallest cardinality of an (r,≤ `)-identifying code of length n is denoted
by M(≤`)

r (n). If ` = 1, we denote the smallest cardinality by Mr(n). A code attain-
ing the smallest cardinality is called optimal.
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If ` = 0, the requirement for an identifying code is empty and the code is
trivial. If r = 0, then obviously M(≤`)

0 (n) = 2n. From now on we assume that
r ≥ 1 and ` ≥ 1.

In the constructions of identifying codes we often encounter covering codes.
For further information of covering codes, see [13]. Let us recall some definitions
from therein. We say that x ∈ Fn r-covers y ∈ Fn if d(x,y) ≤ r.

Definition 2.3. A code C ⊆ Fn has covering radius r if r is the smallest integer
such that for all x ∈ Fn there is a codeword c ∈C that r-covers x.

The smallest cardinality of a binary code with length n and covering radius r
is denoted by K(n,r). There is a well-known conjecture concerning the covering
radius, see [13, p. 352]. According to the conjecture the best r-covering codes are
asymptotically perfect.

Conjecture 2.4. For a fixed r

lim
n→∞

K(n,r)V (n,r)
2n = 1.

Next we define multiple covering codes.

Definition 2.5. A code C ⊆ Fn is a µ-fold r-covering if every word in Fn is r-
covered by at least µ distinct codewords of C.

The smallest cardinality of a µ-fold r-covering of length n is denoted by
K(n,µ,r).

The sum of vectors x = (x1, . . . ,xn) and y = (y1, . . . ,yn) is

x+y = (x1 + y1, . . . ,xn + yn).

The sum of sets X ,Y ⊆ Fn is

X +Y = {x+y | x ∈ X ,y ∈ Y}.

The direct sum of codes C1 ⊆ Fn1 and C2 ⊆ Fn2 is

C1 ⊕C2 = {(c1,c2) ∈ Fn1+n2 | c1 ∈C1, c2 ∈C2}.

We denote by π(u) the parity check bit of u, i.e.,

π(u) =

{
0 if w(u) even
1 if w(u) odd

.





Chapter 3

On identifying codes

In this chapter, we consider r-identifying codes when r = 1 and r ≥ 2. In the
case r = 1, our main purpose is to construct longer 1-identifying codes from 1-
identifying codes that are 2-fold 1-coverings. For r ≥ 2, we prove Mr(∑r

i=1 ni) ≤
∏r

i=1 M(ni). We begin by introducing a lower bound for r-identifying codes which
improves on the previously known lower bounds for r ≥ 2 and n large enough.

This chapter is based on [18] except Theorem 3.3 with corollaries is from [49].

3.1 Lower bounds

The following lower bound for r-identifying codes is from [40, Theorem 1 (iii)].
We mention the result here without the proof.

Theorem 3.1 (Karpovsky et al. [40]). Let K be the smallest integer such that for
a certain integer t (1 ≤ t ≤ min{K,V (n,r)}) the following conditions are true:

t−2

∑
j=0

(
K −1

j

)

< V (n,r) ≤
t−1

∑
j=0

(
K −1

j

)

2n ≤
t−1

∑
j=1

(
K
j

)

+

⌊

K
t

(

V (n,r)−
t−2

∑
j=0

(
K −1

j

))⌋

.

Then Mr(n) ≥ K.

The previous lower bound coincides with the next lower bound from [40, The-
orem 3] for all r and n large enough. There are at most |C| words r-covered at
most by one codeword in an r-identifying code C. All the other words are covered
at least by two codewords. Thus, by counting the number of pairs {x,c} where
x ∈ Fn, c ∈C and d(c,x) ≤ r in two ways we get the next lower bound from [40].
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Theorem 3.2 (Karpovsky et al. [40]).

Mr(n) ≥ 2n+1

V (n,r)+1
.

The next theorem improves on the lower bounds of the previous theorems for
r ≥ 2. As a corollary, we also get the best known lower bound for 1-identifying
codes from [40] (see also [6]).

Theorem 3.3. Let C ⊆ Fn be r-identifying and m = max{|Ir(x)| : x ∈ Fn}. Denote

fr(x) =
(x−2)(

(2r
r

)
−1)

(2r
r

)
+
(x

2

)
−1

.

We have

|C| ≥ 2n(2+ fr(v))
V (n,r)+ fr(v)+1

.

where v = m, if m ≥ 2+2
(2r

r

)
, and v = 3 otherwise.

Proof. Let C ⊆ Fn be an r-identifying code. Denote by Vi the words r-covered by
exactly i codewords. There are at most K = |C| words which are r-covered by one
codeword. All the other words are r-covered at least by 2 codewords. Let x ∈ Fn

be r-covered by exactly two codewords, Ir(x) = {c1,c2}. Now 1 ≤ d(c1,c2) ≤ 2r.
When d(c1,c2) = 2r there are

(2r
r

)
words covering both of these codewords. If

d(c1,c2) < 2r, then by [13, Theorem 2.4.8] we know that there are at least
(2r

r

)

words covering both of these words. Hence, by the definition of identifying codes,
for each word which is r-covered by two codewords there are at least

(2r
r

)
− 1

words which are r-covered by three or more codewords. On the other hand, if
y ∈ Fn is r-covered by i ≥ 3 codewords, then there can be at most

( i
2

)
words z such

that Ir(z) ⊆ Ir(y) and |Ir(z)| = 2. Hence, by counting in two ways the number of
pairs {x,y} such that x ∈V2 and y ∈Vi (i ≥ 3) and Ir(x) ⊆ Ir(y), we have

(

(
2r
r

)

−1)|V2| ≤
m

∑
i=3

(
i
2

)

|Vi|. (3.1)

For any positive real number a we get by counting in two ways the number of
pairs {x,c}, where x ∈ Fn and c ∈C such that d(x,c) ≤ r

K ·V (n,r) =
m

∑
i=1

i|Vi|

= (2+a)
m

∑
i=1

|Vi|+
m

∑
i=1

(i−2−a)|Vi|

≥ K +(2+a)(2n −K)−a|V2|+
m

∑
i=3

(i−2−a)|Vi|

≥ K +(2+a)(2n −K)+
m

∑
i=3

(i−2−a− a
(2r

r

)
−1

(
i
2

)

)|Vi|.
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We require that a satisfies i− 2− a− a
(2r

r )−1

( i
2

)
≥ 0 for all 3 ≤ i ≤ m. Hence, we

get

a ≤ (i−2)(
(2r

r

)
−1)

(2r
r

)
+
( i

2

)
−1

=: fr(i) (3.2)

The function fr is decreasing when i ≥ 2 +
√

2
(2r

r

)
, fr is increasing for 3 ≤ i ≤

2 +
√

2
(2r

r

)
and fr(3) = fr(2 + 2

(2r
r

)
). Thus, when m ≥ 2 + 2

(2r
r

)
we can choose

a = fr(m) and otherwise a = fr(3). This implies (in both cases)

K ·V (n,r) ≥ K +(2+ fr(v))(2n −K),

from which the claim follows.

Remark 3.4. Let A be a set of codewords in Br(0) such that every word in B2r(0)
is r-identified by using only the words of A. Suppose C ⊆ Fn is an r-identifying
code. If there is y ∈ Fn such that |Ir(y)| > |A|, then the code C′ := (C \ Ir(y))∪D,
where D := {a + y | a ∈ A}, is still r-identifying and |C′| < |C|. If the code C′ r-
covers again some word more than |A| times we continue with the same process.
In each step the cardinality of the code is getting smaller and every code is r-
identifying. Hence, the process will stop at some point and the result will be an r-
identifying code which r-covers each word in Fn at most |A| times. Consequently,
we can use m ≤ |A| in the previous theorem. Moreover, if C is r-identifying and
attains Mr(n), then we immediately know that |Ir(x)| ≤ |A| for all x ∈ Fn.

By [40, Theorem 4] we know that S1(0) 1-identifies B2(0). By substituting
r = 1 and m = |S1(0)| = n to the Theorem 3.3 we get the following best known
lower bound for 1-identifying codes due to Karpovsky, Chakrabarty and Levitin
[40] (see also [6]).

Corollary 3.5 (Karpovsky et al. [40]).

M1(n) ≥ n2n+1

2+n+n2 =
n2n

V (n,2)
.

In [5, Construction 3] it is proven that all the words of weight two except those
which supports are {i, i+1} for i = 1, . . . ,n−1 and {1,n} (when n ≥ 7) 2-identify
all the words in the set B4(0). Hence,

(n
2

)
− n words in S2(0) 2-identify words in

B4(0) when n ≥ 7. (When we say the set A ⊆ Fn r-identifies the set B ⊆ Fn, we
mean that for all x ∈ B and y ∈ Fn we have Ir(A;x) 6= Ir(A;y).) Taking m =

(n
2

)
−n

in Theorem 3.3 one obtains the following.

Corollary 3.6. For n ≥ 7 we have

M2(n) ≥ 2n+2(n3 −6n2 +17n−24)

n5 −5n4 +5n3 −11n2 +114n−56
.



18 On identifying codes

In [40, Theorem 5] it is proven that the set Sr(0) r-identifies all the words in
B2r(0) provided that r < n/2. Choosing m =

(n
r

)
implies the next result.

Corollary 3.7. When
(n

r

)
≥ 2+2

(2r
r

)
and r < n/2, we have

Mr(n) ≥ 2n(2+ fr(
(n

r

)
))

V (n,r)+ fr(
(n

r

)
)+1

.

We can apply also other constructions of [5] as the set A in the remark above.
Using these results we get the following corollaries.

Corollary 3.8. Let

R = 2
(dn/2e

r−1

)

dn/2e+2
(dn/2e

r

)

.

When V (n,r−1)+R ≥ 2+2
(2r

r

)
we have

Mr(n) ≥ 2n(2+ fr(V (n,r−1)+R))

V (n,r)+ fr(V (n,r−1)+R)+1
.

Corollary 3.9. When 2r−1 divides n and

R =

(
n
r

)

−
(

2r−1
r

)(
n

2r−1

)r

we have

Mr(n) ≥ 2n(2+ fr(V (n,r−1)+R))

V (n,r)+ fr(V (n,r−1)+R)+1
The lower bounds of Theorem 3.1 and Theorem 3.2 coincide (see [40]) for

every r when n is large enough. It is easy to see that

2n(2+ fr(x))
V (n,r)+ fr(x)+1

>
2n+1

V (n,r)+1

for all x > 2 and n,r ≥ 1. Hence, the lower bound of Theorem 3.3 is always
stronger than the lower bound of Theorem 3.2. Thus, for every fixed r there is
n0 such that for all n ≥ n0 we improve on the lower bound of Theorem 3.1. For
example, Theorem 3.3 and the corollaries improve Theorem 3.1 for r = 2 when
n ≥ 10, r = 3 when n ≥ 20, r = 4 when n ≥ 29, and r = 5 when n ≥ 37.

In the next section we use 2-fold 1-covering codes that are 1-identifying to
construct new 1-identifying codes. The proof for the lower bound of 1-identifying
codes that are 2-fold 1-covered goes similarly to the proof of the previous theorem.
For the proof see [18]. In 2-fold 1-covering code that is 1-identifying there can be
(n+1)-fold 1-covered codewords.

Theorem 3.10. If C ⊆ Fn (n ≥ 2) is a 2-fold 1-covering and a 1-identifying code,
then

|C| ≥
⌈

2n+1(n+1)

n2 +n+2

⌉

. (3.3)
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3.2 Constructions for 1-identifying codes

In Theorem 3.11 we apply the classical (π(u),u,u + v)-construction to 2-fold
1-coverings of length n that are 1-identifying and get 2-fold 1-covering and 1-
identifying codes of length 2n+1.

Theorem 3.11. Suppose C ⊆ Fn is a 2-fold 1-covering and a 1-identifying code.
Then

D = {(π(u),u,u+v) | u ∈ Fn,v ∈C} ⊆ F2n+1

is a 2-fold 1-covering which is 1-identifying.

Proof. By [13, Theorem 14.4.3] we know that D is a 2-fold 1-covering in F2n+1.

Let x = (a,u,u + v) ∈ F2n+1. We divide the words of F2n+1 into two classes
depending on the first bit.

I If a = π(u), then I(x) = {(a,u,u+ c) | c ∈C, d(c,v) ≤ 1}.

II If a 6= π(u), then I(x) = A∪{(a,u′,u′ + c) | c ∈ C, d(u′,u) = 1, u′ + c =
u+v}, where A = {(π(u),u,u+v)} if v ∈C and otherwise A is empty.

If |I(x)| ≥ 3, then it is clear by Lemma 2.1 that x is identified. Thus, suppose
|I(x)| = 2 this implies that also |I(v)| = 2. We shall show that there does not exist
a word y (y 6= x) such that I(y) = I(x).

Assume first that a = π(u). Now I(x) = {(a,u,u + c1),(a,u,u + c2)} where
c1,c2 ∈C, d(v,c1)≤ 1 and d(v,c2) = 1. Because the first (n+1)-bits of the words
in the I-set of x are the same this implies that if I(y) = I(x), then also y belongs
to the class I. Thus, y = (a,u,u + w) where d(w,c1) ≤ 1 and d(w,c2) ≤ 1. If
I(y) = I(x), then also I(v) = I(w). This is impossible, because C is 1-identifying
and, clearly, v 6= w.

If a 6= π(u) and v 6∈ C, then I(x) = {(a,u1,u1 + c1),(a,u2,u2 + c2)} where
d(ui,u) = 1 and u + v = ui + ci for i = 1,2. Thus, d(v,c1) = d(v,c2) = 1. If
I(y) = I(x), then also y belongs to the class II because the n bits following the
first bit are changing in the words of I(y). Now y = (a,u′,u′ +w) where u′ is the
unique word in (B1(u1)∩B1(u2))\{u} and u′ +w = u1 +c1 = u2 +c2, thus w is
the unique word in (B1(c1)∩B1(c2))\{v}. If I(y) = I(x), then also I(w) = I(v).
That is impossible.

Suppose finally a 6= π(u) and v ∈C. Then I(x) = {(π(u),u,u+v),(a,u′,u′+
c′)} where d(u,u′) = 1, d(c′,v) = 1 and u′ + c′ = u + v. If I(x) = I(y), then
y = (π(u),u′,u′ + c′) because the first bit is changing in the words of I(x). But if
I(x) = I(y), then also I(v) = I(c′) and this cannot happen.

The next remark is from [56].
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Remark 3.12. In general, the (π(u),u,u + v)-construction does not directly ap-
ply to 1-identifying codes. Let C = {000,110,101,011} ⊆ F3. The code C is
1-identifying. Applying the (π(u),u,u + v) -construction to the code C we get a
code C′ of length 7. In C′ we have I(0000011) = I(1000011) = {0000011} and
therefore C′ is not 1-identifying.

Example 3.13. Theorem 3.10 shows that for the lengths 2,3 and 4 the codes that
are presented next are optimal 2-fold 1-coverings which are 1-identifying.

1. Words 01,10,11 form a 2-fold 1-covering and a 1-identifying code of length
2 and cardinality 3.

2. Words 100, 010, 011, 101, 111 form a 2-fold 1-covering and a 1-identifying
code of length 3 and cardinality 5.

3. Words 0010, 0001, 1100, 1010, 0110, 0101, 1101, 1011 form a 2-fold 1-
covering and a 1-identifying code of length 4 and cardinality 8.

4. The following words form a 2-fold 1-covering and a 1-identifying code of
length 6 and cardinality 22 (lower bound by Theorem 3.10 is 21).

000000 011111 110010 101101 000001 011110
101000 110111 110110 101001 110100 101011
011100 000011 001110 010001 100110 111001
011010 000101 001001 111110

Combining Theorem 3.11 with the small codes of the previous example we
get the next corollary.

Corollary 3.14. For any k ≥ 0 we have:

M1(3 ·2k −1) ≤ 3 ·23·(2k−1)−k

M1(2k+2 −1) ≤ 5 ·22k+2−k−4

M1(5 ·2k −1) ≤ 25·2k−2−k

M1(7 ·2k −1) ≤ 11 ·27·2k−k−6

Let a be the ratio between the sphere bound and the cardinality of a code
C ⊆ Fn, i.e.,

a =
|C|

2n/(n+1)
.

Applying the (π(u),u,u + v)-construction to the code (and then to the resulting
code and so on) we get an infinite family of codes, whose corresponding ratio is
always a. For example, starting with the first code in Example 3.13 we get for all
k ≥ 0 and n = 3 ·2k −1 :

M1(n)

2n/(n+1)
≤ 2.25.
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By Corollary 3.5 we know that 2 . a when n tends to infinity.
For higher lengths, good (meaning a ≈ 2) initial codes can be obtained using

the codes
C = {c+b | c ∈ A, b ∈ B1(0)}

where A is a 1-fold 2-covering given in [64]. Clearly, C is a 2-fold 1-covering in
Fn and it is also 1-identifying by [40]. The asymptotic results from [37, 40] for
the size of usual 1-identifying codes are obtained (using C) in the same way also
for 2-fold 1-coverings which are 1-identifying.

3.3 Constructions for r-identifying codes

In Theorem 3.18 we answer, when r1 = r2 = 1, the question posed in [6] whether
or not Mr1+r2(n1 + n2) ≤ Mr1(n1)Mr2(n2). The direct sum of two 1-identifying
codes does not always give a 2-identifying code, as it is considered in [40, The-
orem 9] and [41, Theorem 5]. For example, the direct sum of the 1-identifying
code C = {000, 001, 101, 100} with itself is not 2-identifying, since for exam-
ple I2(000010) = {000000, 000001, 000100, 001000, 100000}= I2(010000). We
show that the result for the cardinalities of 2-identifying codes can still be retrieved
by showing that it is always possible to arrange initial codes such that no problem
occurs. The result generalizes for all radii r in such a way that the direct sum of r
1-identifying codes can be used to construct an r-identifying code.

In Theorem 3.20 we generalize [6, Theorem 1 and Theorem 2] for all radii r.
Previously, in [6] only radius 1 is considered. This theorem also shows that [40,
Corollary 7] and [41, Corollary 6] cannot be proved by using the direct sum of an
r-identifying code and Fk unless k ≥ r +1.

As we already noticed, the direct sum of two 1-identifying codes does not
always lead to a 2-identifying code. In the next lemma a 1-identifying code is
arranged in such a way that it can be used in the direct sum of r 1-identifying
codes to produce an r-identifying code.

Lemma 3.15. Suppose n ≥ 3 and C ⊆ Fn is a 1-identifying code such that

∃x ∈ Fn \C, ∃y ∈C : I(x) = {y}
∀u1, . . . ,un−1 ∈ S1(x)\{y} : ui 6∈C
∀v1, . . . ,vn−1 ∈ S1(y)\{x} : vi ∈C, I(ui) = {vi}, I(y) = {y,v1, . . . ,vn−1}.

Then also the code C′ = C 4 {x,y} is 1-identifying. Notice that |C′| = |C|.
Proof. Denote by C′ the code we get from C by changing x ∈C and y 6∈C. Now

I(C′;x) = {x}
I(C′;y) = {x,v1, . . . ,vn−1}
I(C′;ui) = {x,vi} ∀ i = 1, . . . ,n−1
{vi} ⊆ I(C′;vi).
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Because the I-sets of the words in B1(y) are the only ones losing a codeword
(adding is not a problem), it is enough to make sure that these I-sets are distin-
guishable, when proving that C′ is 1-identifying.

We see that I(x) and I(y) are unambiguous. The I-sets of v′
is are unambiguous

since every word z ∈ S3(x) that is a neighbour of vi is also a neighbour of vk for
some k (i 6= k).

The next definition and lemma are needed in the proof of the following theo-
rem. Denote N = ∑r

i=1 ni and N∗ = N −nr.

Definition 3.16. Assume ci, xi ∈Fni for 1≤ i≤ r. We say that a word (c1, . . . ,cr)∈
FN is in balance with a word (x1, . . . ,xr) ∈ FN if for all 1 ≤ i ≤ r we have
d(ci,xi) ≤ 2.

Lemma 3.17. Let Ci ⊆ Fni be 1-identifying codes for i = 1, . . . ,r − 1 and x =
(x1, . . . ,xr−1) ∈ FN∗

. There is a codeword c ∈C1 ⊕ . . .⊕Cr−1 such that d(x,c) =
r−1 or there are codewords c1 and c2 in C1⊕ . . .⊕Cr−1 such that d(x,c1) = r−2
and d(x,c2) = r. Moreover, the codewords c, c1 and c2 are in balance with x.

Proof. If there are codewords ci ∈ Ci for every xi ∈ Fni such that d(xi,ci) = 1,
then d(x,(c1, . . . ,cr−1)) = r− 1 and (c1, . . . ,cr−1) is in balance with x. Suppose
then there are j words xi such that I1(xi) = {xi}. Without loss of generality let
x1, . . . ,x j be such words. When 1 ≤ i ≤ j there is c(2)

i ∈Ci such that d(xi,c
(2)
i ) = 2

because Ci is 1-identifying and the words in S1(xi) must be identified. If j is even,
then

c(r−1) = (x1, . . .x j/2,c
(2)
j/2+1, . . . ,c

(2)
j ,c j+1, . . . ,cr−1)

is a codeword at distance r−1 from x. The codeword c(r−1) is in balance with x.
If j is odd, then

c(r) = (x1, . . .x( j−1)/2,c
(2)
( j−1)/2+1, . . . ,c

(2)
j−1,c

(2)
j ,c j+1, . . . ,cr−1)

is a codeword at distance r from x and

c(r−2) = (x1, . . .x( j−1)/2,c
(2)
( j−1)/2+1, . . . ,c

(2)
j−1,x j,c j+1, . . . ,cr−1)

is a codeword at distance r−2 from x. The codewords c(r) and c(r−2) are in balance
with x.

Theorem 3.18.

Mr
( r

∑
i=1

ni
)
≤

r

∏
i=1

M1(ni).
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Proof. Suppose Ci ⊆ Fni for i = 1, . . . ,r are 1-identifying codes and suppose also
that the situation of Lemma 3.15 does not exist in any Ci (if there are multiple bad
cases, we fix them one by one — it is easy to check that fixing a bad case does
not create another). If ni = 3 for some i, then an optimal 1-identifying code Ci =
{000,110,101,011} is used. We prove that C = C1 ⊕ . . .⊕Cr is an r-identifying
code. In fact we prove a bit stronger result that for all x = (x1, . . . ,xr), y =
(y1, . . . ,yr) ∈ FN , x 6= y, there is a codeword c = (c1, . . . ,cr) in Ir(C;x) 4 Ir(C;y)
such that c is in balance with the word in which I-set it is. We prove the claims by
induction on r. The first step, r = 1 of induction is trivial.

An induction hypothesis is that C∗ = C1 ⊕ . . .⊕Cr−1 is an (r−1)-identifying
code and for every couple of words x∗, y∗ ∈ FN∗

, x∗ 6= y∗, there is a codeword
c∗ ∈ Ir−1(C∗;x∗) 4 Ir−1(C∗;y∗) such that c∗ is in balance with a word in which
I-set it is. Denote x = (x∗,xr) and y = (y∗,yr) where x∗ = (x1, . . . ,xr−1), y∗ =
(y1, . . . ,yr−1) ∈ FN∗

and xr,yr ∈ Fnr .
Suppose first that xr 6= yr and x∗ 6= y∗. By the induction hypothesis, we know

that there is a codeword c∗ = (c1, . . . ,cr−1)∈ Ir−1(C∗;x∗) 4 Ir−1(C∗;y∗). Without
loss of generality we may assume that c∗ ∈ Ir−1(C∗;x∗) and by assumption it
is in balance with x∗. By adding to the end of c∗ a codeword cr ∈ Cr such that
d(xr,cr) ≤ 2 we get a codeword that is in balance with x. If at the same time
any component of c∗ is changed in such a way that it still is at distance at most
two from the corresponding component of x, then again the result codeword is in
balance with x.

Since Cr is 1-identifying, we know that there is a codeword cr ∈Cr such that
cr ∈ I1(Cr;xr) 4 I1(Cr;yr). If cr ∈ I1(Cr;xr), then (c∗,cr) ∈ Ir(C;x)\ Ir(C;y). As-
sume then cr ∈ I1(Cr;yr). There is vr ∈ I1(Cr;xr). If d(yr,vr) ≥ 1, then (c∗,vr) ∈
Ir(C;x) \ Ir(C;y). Suppose d(vr,yr) = 0. Suppose also there is cx ∈ Cr such that
d(cx,xr) = 2 and d(cx,yr) = 3. If such a codeword does not exist, then we are in
the situation of Lemma 3.15, and we assumed that it cannot happen.

If c∗ ∈ Ir−2(C∗;x∗), then (c∗,cr) ∈ Ir(C;x) \ Ir(C;y). On the other hand, a
word (c∗,yr)∈ Ir(C;x), and we have (c∗,yr)∈ Ir(C;y) if and only if d(c∗,y∗) = r.
Hence, assume now d(x∗,c∗) = r−1 and d(y∗,c∗) = r.

If for some j there is a codeword c′j such that d(c′j,x j) < d(c j,x j), then a code-
word (c1, . . . ,c j−1,c′j,c j+1, . . . ,cr−1,cx) ∈ Ir(C;x)\ Ir(C;y). Namely, the distance
between y j and c′j decreases by at most two compared to the distance between
y j and c j. Suppose then that for any x j such a codeword c′j does not exist, then
d(x j,c j) = 1 and x j 6∈C j for all 1≤ j ≤ r−1. If c∗ is in balance with y∗, then there
is k such that d(yk,ck) = 2 (because d(y∗,c∗) = r). Now there is c′k ∈ I1(Ck;yk)
and

c = (c1, . . . ,ck−1,c′k,ck+1, . . . ,cr−1,cr) ∈ Ir(C;y)\ Ir(C;x),

because x j 6∈ C j ∀ j. The codeword c is in balance with y. If c∗ is not in balance
with y∗, denote by j1, . . . , jk (k ≥ 1) indices for which d(y jh ,c jh)≥ 3 (1 ≤ h ≤ k).
For all these components there are c′jh ∈ I1(C jh ;y jh). Because x jh 6∈ C jh we have
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d(x jh ,c′jh) ≥ 1. Thus,

c = (c1, . . . ,c′j1 , . . . ,c
′
jk , . . . ,cr−1,cr) ∈ Ir(C;y)\ Ir(C;x).

The codeword c is in balance with y.
Suppose next that xr = yr and x∗ 6= y∗. If x∗ and y∗ differ at least in two

components xi 6= yi and x j 6= y j (i 6= j, 1 ≤ i, j ≤ r − 1), then we return to the
previous case. Namely, we can operate now in an equivalent code

C1 ⊕ . . .⊕Ci−1 ⊕Ci+1 ⊕ . . .⊕Cr ⊕Ci.

By the previous case we find a codeword c = (c1, . . . ,ci−1,ci+1, . . . ,cr,ci) which
is in the symmetric difference of the I-sets of x = (x1, . . . ,xi−1,xi+1, . . . ,xr,xi)
and y = (y1, . . . ,yi−1,yi+1, . . . ,yr,yi), and it is in balance. By changing the last
component back to the ith position we get a solution to the current case.

Thus, we still need to prove that the claims hold when xr 6= yr and x∗ = y∗.
There is a codeword cr ∈ I1(Cr;xr) 4 I1(Cr;yr). We may assume without loss of
generality that cr ∈ I1(Cr;xr). If there is a codeword c∗ ∈C∗ such that d(c∗,x∗) =
r−1 and c∗ is in balance with x∗, then (c∗,cr) ∈ Ir(C;x)\ Ir(C;y).

If there does not exist a codeword at distance r−1 from x∗, which is in balance
with x∗, then by Lemma 3.17 we know that there are codewords c(r−2) and c(r) at
distances r−2 and r from x∗, respectively. These codewords are in balance with
x∗.

If xr ∈ Cr, then (c(r),xr) ∈ Ir(Cr;x) \ Ir(Cr;y). Similar argumentation holds
if yr ∈ Cr. Suppose now xr,yr 6∈ Cr. Now (c(r−2),cr) ∈ Ir(Cr;x)∩ Ir(Cr;y) if and
only if d(yr,cr) = 2. Thus, suppose d(yr,cr) = 2, this implies d(xr,yr) = 1 or 3.

a) Suppose d(xr,yr) = 3. Assume first that the code length nr ≥ 4, then there
is zr ∈ S1(xr)\S2(yr). Because I1(zr) is nonempty there is a codeword c′r ∈
Cr such that d(c′r,zr) ≤ 1 and d(c′r,yr) ≥ 3. Thus, (c(r−2),c′r) ∈ Ir(C;x) \
Ir(C;y). If nr = 3, we use the code as assumed to be used in the beginning,
and in this code there are no two non-codewords at distance three from
each other. If nr = 2, then there are no two non-codewords and this is not a
problem.

b) Suppose d(xr,yr) = 1. If there is c′r ∈ (Cr∩S2(x))\S1(y), then (c(r−2),c′r)∈
Ir(C;x) \ Ir(C;y). Thus, suppose that if c′r ∈ S2(x)∩Cr, then d(c′r,yr) = 1.
Denote by zr a unique word in (S1(cr)∩ S1(yr)) \ {xr}. Now I1(Cr;zr) =
I1(Cr;cr) unless there is a codeword cz (cz 6= cr) such that d(cz,zr) = 1 and
so d(cz,yr) = 2 and d(cz,xr) = 3. We get (c(r−2),cz) ∈ Ir(C;y)\ Ir(C;x).

So we can always distinguish between the I-sets of x and y for all x,y ∈
FN , x 6= y. Moreover, there is a codeword in Ir(C;x)4 Ir(C;y) which is in balance
with the word in which I-set it is.
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Corollary 3.19.
M2(n+m) ≤ M1(n)M1(m).

The next theorem generalizes [6, Theorem 1 and Theorem 2] for all radii r.
Previously, in [6] only radius 1 is considered.

Theorem 3.20. Let C ⊆ Fn be an r-identifying code and k ≥ 1. A direct sum
D = C⊕Fk is r-identifying if and only if

∀ x ∈ Fn, ∃ c ∈C : r− k +1 ≤ d(x,c) ≤ r. (3.4)

Moreover, the direct sum preserves the property (3.4) in Fn+k.

Proof. Suppose first that there is x ∈ Fn such that Ir(C;x) = Ir−k(C;x). For a,b ∈
Fk, a 6= b, we have Ir(D;(x,a)) = {(c,y) | c ∈ Ir−k(C;x), y ∈ Fk} = Ir(D;(x,b)).
This is not possible.

Suppose the condition (3.4) holds. Let x,x′ ∈ Fn and a,b ∈ Fk. Because C
is an r-identifying code it is clear that Ir(D;(x,a)) 6= Ir(D;(x′,b)) when x 6= x′.
Suppose x = x′ and a 6= b. By assumption there is c ∈C such that r−k+1 ≤ d :=
d(x,c) ≤ r. Now (c,y) ∈ Ir(D;(x,a)) \ Ir(D;(x,b)) where y is chosen in such a
way that d(y,a) ≤ r− d and d(y,b) ≥ r− d + 1. This choice is always possible
since d(a,b) ≥ 1.

In the previous theorem if k ≥ r + 1 the condition (3.4) is always true so we
have the following corollary:

Corollary 3.21. If C is an r-identifying code and k ≥ 0, then C ⊕Fr+1+k is r-
identifying. Thus, Mr(n+ r +1+ k) ≤ 2r+1+kMr(n).

In Table 3.1 we have collected the upper and lower bounds on the smallest
cardinalities of 1- and 2-identifying codes.
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Table 3.1: Bounds on the cardinalities of 1- and 2-identifying codes.

n M1(n) M2(n)

2 3 d –
3 4 a a 7 e
4 7 b a 6 e
5 10 a b 6 e
6 18 – 19 b b 8 e
7 32 b c 14 f
8 56 – 62 c b 17 – 21 f
9 101 – 115 c b,d 26 – 36 f
10 183– 236 c d 41 – 63 f
11 337 – 352 c d 67 – 148 g
12 623 – 696 c d 112 – 280 g
13 1158 – 1344 c d 190 – 504 h
14 2164 – 2784 f d 326 – 1008 h
15 4063 – 5120 g d 567 – 1984 i (7,8)
16 7654 – 10240 h d 995 – 3520 i (5,11)
17 14469 – 20480 g,h d 1761 – 6688 i (6,11)
18 27434 – 40960 h d 3141 – 11264 i (7,11)
19 52155 – 65536 g d 5638 – 21824 i (8,11)
20 99392 – 131072 h d 10179 – 40480 i (9,11)
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Key to the table of M1(n) :

The lower bounds for lengths 4 and 7 are from [6]. The other lower bounds
come from [40, Theorem 3] see also [6] and Corollary 3.5.

a Karpovsky et al. [40]
b Blass et al. [6]
c Codes in Appendix
d Mr(r +1) = 2r+1 −1 Blass et al. [5, Theorem 5]
f M1(n) ≤ 4M1(n−2) Blass et al. [6, Theorem 2] (see also Corollary 3.21)
g Corollary 3.14
h M1(n)≤ 2M1(n−1)⇔∀ c∈C d(c,C\{c}) = 1 Blass et al. [6, Theorem 1]

(see also Corollary 3.21)

Key to the table of M2(n) :

a Blass et al. [5]
b Karpovsky et al. [40, Theorem 1(iii)]
c Computer search [17]
d Corollary 3.6
e Blass et al. [5, Theorem 5, Theorem 6], see also the note therein on [17].
f See Appendix.
g Theorem 3.20, see also Appendix.
h Corollary 3.21
i Corollary 3.19, in parentheses there are n and m that are used.





Chapter 4

On codes identifying sets of
vertices

In this chapter we consider the situation where the size of the fault pattern can be
more than one. In the first section we present lower bounds for (r,≤ `)-identifying
codes. The lower bound for (1,≤ 2)-identifying codes turns out to be strict for
infinitely many lengths. We also show which size of the fault pattern the code can
handle with respect to a code length n and radius r.

In the second section we construct optimal (1,≤ 2)-identifying codes for short
lengths 4,5 and 7.

In the third section we present constructions for (r,≤ `)-identifying codes.
First we present two constructions for (1,≤ 2)-identifying codes. The first one of
these, (π(u),u,u+v)-construction, leads to two infinite families of optimal (1,≤
2)-identifying codes. The second construction gives an asymptotically optimal
result. At the end of the third section we prove that the direct sum of Fr and an
(r,≤ `)-identifying code for 1 ≤ r ≤ 2 and ` ≥ 2 is an (r,≤ `)-identifying code.
In Theorems 4.26 and 4.28 we prove that the direct sum of r (1,≤ `)-identifying
codes is an (r,≤ `)-identifying code for all ` ≥ 2.

Section 4.1 is based on [34] except Theorem 4.7 and Theorem 4.10 are from
[49]. The results in Section 4.2 are from [34] except the result concerning n = 7
is from [56]. Section 4.3.1 is based on [34] unless otherwise stated. The results
of Section 4.3.2 except Theorem 4.29 are from [49]. Theorem 4.19 and Theo-
rem 4.22 for r = 2 are only published in this thesis.

4.1 Lower bounds

Suppose C is an (r,≤ `)-identifying code. There are 2|C| subsets and ∑`
i=0
(2n

i

)

fault patterns to be identified. Thus, we have proved the next lower bound from
[40].
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Theorem 4.1. If C is an (r,≤ `)-identifying code, then

|C| ≥
⌈

log2

`

∑
i=0

(
2n

i

)⌉

.

First we prove some general properties of certain identifying codes.

Lemma 4.2. Let C ⊆ Fn be an (r,≤ `)-identifying code where ` ≥ 2. For any two
different fault patterns X = {x1, . . . ,xk} and Y = {y1, . . . ,yv} such that X 6⊆ Y ,
Y 6⊆ X and |X ∪Y | ≤ `, we have Ir(X) 6⊆ Ir(Y ) and Ir(Y ) 6⊆ Ir(X). In particular, if
Ir(x) ⊆ Ir(y), for some x,y ∈ Fn, then x = y.

Proof. If for some X and Y , Ir(X) ⊆ Ir(Y ), then Ir(X ∪Y ) = Ir(Y ), which leads to
a contradiction, since |X ∪Y | ≤ `.

The next theorem generalizes [45, Theorem 1] for all radii r ≥ 1.

Theorem 4.3. Assume r ≥ 1 and ` ≥ 1. If C ⊆ Fn is an (r,≤ `)-identifying code,
then

∀x ∈ Fn : |Ir(x)| = |Br(x)∩C| ≥ 2`−1.

Proof. If ` = 1, the claim holds trivially. Suppose `≥ 2 and assume to the contrary
that there is x ∈ Fn such that |Ir(x)| ≤ 2`− 2. We denote Ir(x) = {c1, . . . ,ck},
where k ≤ 2`−2. We know that 1 ≤ d(ci,c j)≤ 2r for every ci,c j, where i 6= j and
1≤ i, j ≤ 2`−2. Thus, for any couple of codewords {ci,c j} there is a word y∈Fn,
y 6= x, such that {ci,c j} ⊆ Ir(y). Hence, we find a collection of words Y such that
|Y | ≤ `−1 and Ir(x) ⊆ Ir(Y ), which is a contradiction by Lemma 4.2.

The next lemma is from [6].

Lemma 4.4. Let C ⊆ Fn be a 3-fold 1-covering. Then for all x,y,z ∈ Fn, x 6= y
we have I(x) 6= I(y) and I(x) 6= I(y,z).

Proof. The claims follow from Lemma 2.1.

Lemma 4.5. Let C ⊆ Fn be a (1,≤ 2)-identifying code. There does not exist
a square of codewords such that x,y ∈ C, d(x,y) = 2, |I(x)| = |I(y)| = 3 and
|I(x)∩ I(y)| = 2.

Proof. Suppose to the contrary that for x,y ∈ C we have d(x,y) = 2, |I(x)| =
|I(y)| = 3 and |I(x)∩ I(y)| = 2. For c ∈ I(x)∩ I(y) we have I(x,c) = I(y,c),
which is a contradiction.

The next theorem improves on Theorem 4.1. When r = 1 and ` = 2 the derived
lower bound is shown to be optimal for infinitely many lengths.
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Theorem 4.6. Assume r ≥ 1 and ` ≥ 2. We have

M(≤`)
r (n) ≥ K(n,2`−1,r) ≥ (2`−1)

2n

V (n,r)
.

In particular,

M(≤2)
1 (n) ≥

⌈

3
2n

n+1

⌉

.

Moreover, if n ≥ 4 is even, then

M(≤2)
1 (n) ≥

⌈
(3n−8)2n

n2 −2n−2

⌉

.

Proof. Let C be an (r,≤ `)-identifying code. By Theorem 4.3 we know that all
the words of the ambient space are r-covered at least by (2`− 1) codewords of
C. Hence M(≤`)

r (n) ≥ K(n,2`− 1,r). Obviously, (2`− 1) · 2n/V (n,r) is a lower
bound on K(n,2`−1,r). The last assertion follows from [23, Corollary 2]:

K(n,3,1) ≥ (3(n−3)+1)2n

(n−3)(n+1)+1

for even n where n ≥ 4.

The interested reader is referred to [45] for further results on (1,≤ `)-identifying
codes when ` ≥ 3.

For r ≥ 2 and ` ≥ 2 we can improve on the previous bound.

Theorem 4.7. For r ≥ 2 and ` ≥ 2 we have

M(≤`)
r (n) ≥

⌈

(2`−1)2n
(n

r

)
+
( n

r−1

)

⌉

.

Proof. Suppose C ⊆ Fn is an (r,≤ `)-identifying code. We shall show that for ev-
ery x ∈ Fn we have |Ir(x)∩ (Sr(x)∪Sr−1(x))| ≥ 2`−1. Without loss of generality
we can prove that the claim holds for x = 0 and clearly, it then holds for every
x ∈ Fn. For any two words c1,c2 of weight 1 ≤ w(c1),w(c2) ≤ r there is a word
y1 of weight two which r-covers both of these words. Clearly, Ir−2(0) ⊆ Ir(y1). If
|Ir(0)∩ (Sr(0)∪ Sr−1(0))| ≤ 2`− 2, then there is a collection of words of weight
two, y1,y2, . . . ,y`−1, which r-cover the whole set Ir(0). This is not possible by
Lemma 4.2. The claim follows from a direct calculation

|C|
((

n
r

)

+

(
n

r−1

))

≥ (2`−1)2n.
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Next we provide some nonexistence results.

Theorem 4.8. Let r(n,K) denote the smallest covering radius among all binary
codes of length n and cardinality K. Let ` < 2n. If r ≥ r(n, `), then there does not
exist an (r,≤ `)-identifying code of length n.

Proof. Let C(`) be a code realizing the value r(n, `). Thus, the Hamming spheres
of radius at least r(n, `) centered at the codewords cover the entire space. Take
x ∈ Fn such that C(`) 6= x+C(`) (this is always possible when C(`) 6= Fn). Con-
sequently, the sets C(`) and x +C(`) of cardinality ` cannot be identified by any
code C ⊆ Fn.

Values of r(n,K) can be found for instance from [13, p. 192–200].

Corollary 4.9. There is no (1,≤ 2)-identifying code of length less than four and
no (2,≤ 2)-identifying code of length less than six.

If we fix a radius r and a length n, then the following theorem tells what values
the cardinality of a fault pattern ` cannot get.

Theorem 4.10. Suppose C ⊆ Fn is an (r,≤ `)-identifying code. Then

` ≤
⌊n

2

⌋

− r +2.

Proof. The first step of the proof is to cover the whole set Br(0) by a small number
of words. We take one word of weight 2r, namely,

x =

2r
︷ ︸︸ ︷

1 . . .10 . . .0.

Suppose first 2 - n. We take

y1 =

2r
︷ ︸︸ ︷

0 . . .011000 . . .0

y2 =0 . . .000110 . . .0
...

y(n−2r−1)/2 =0 . . .000 . . .0110.

We also take a word z = 0 . . .01. Now

Ir(0,x,y1, . . . ,y(n−2r−1)/2,z) = Ir(x,y1, . . . ,y(n−2r−1)/2,z)

which is impossible if ` ≥ (n−2r−1)/2+3.
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Assume then 2 | n. We take

y1 =

2r
︷ ︸︸ ︷

0 . . .011000 . . .0

y2 =0 . . .000110 . . .0
...

y(n−2r)/2 =0 . . .0000 . . .011.

These words cover all the words of weight r. To cover Br−1(0) we take any word
z of weight one. We have

Ir(0,x,y1, . . . ,y(n−2r)/2,z) = Ir(x,y1, . . . ,y(n−2r)/2,z),

which is impossible if ` ≥ (n−2r)/2+3.

In [26] it is proved that (1,≤ 2)-identifying codes are also 1-edge-robust 1-
identifying codes.

If µ ≥ 3, a perfect µ-fold 1-covering of length n can find one faulty proces-
sor [6] and detect a larger number of malfunctioning processors, because then
|I(X)| ≥ 2µ − 2 > µ = |I(z)| for any z ∈ Fn and X ⊆ Fn where |X | ≥ 2. This
property is clearly not shared by all codes, for example, the 1-identifying code
C = {x ∈ F4|w(x) ∈ {0,2,3}} gives I(1000) = I(0000,1000). From this point of
view the research is done in [30].

4.2 Short codes

In the next theorems we shall obtain the optimal (1,≤ 2)-identifying codes of
lengths four, five and seven.

Theorem 4.11. M(≤2)
1 (4) = 11.

Proof. The code

C = {0000,0010,0001,1100,1010,1001,0101,0011,1110,1101,0111}

gives the upper bound M(≤2)
1 (4) ≤ 11. Every word of F4 is 3-fold 1-covered by

C, thus by Lemma 4.4 single words are distinguishable from each other and from
couples of words.

One way of verifying that I(x,y) 6= I(x,w) for all x,y,z,w ∈ F4, {x,y} 6=
{z,w} is by looking at the following matrix A where the first row corresponds to
the codeword 0000 and the second to 0010 etc., and the columns correspond to all
words x = (x1,x2,x3,x4) of the space F4 in the order of integers J (0 ≤ J ≤ 15)
when they are expressed as J = ∑4

i=1 xi2(i−1). The entry of the matrix is one if
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the codeword corresponding to that row 1-covers the word of the corresponding
column, otherwise the entry is zero. Thus,

A =






















1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0
0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0
0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1






















.

By comparing the logical OR of all pairs of columns we get the claim.

By Theorem 4.6, we get M(≤2)
1 (4) ≥ 11.

In the following proof x := 1+x.

Theorem 4.12. i) If C is a perfect 3-fold 1-covering of length five, then for every
x ∈ F5, either x ∈C or x ∈C but not both.

ii) There are exactly two nonequivalent perfect 3-fold 1-coverings of length
five.

iii) One of these perfect 3-fold 1-coverings is (1,≤ 2)-identifying and the other
one is not.

Proof. Without loss of generality, assume that 0 /∈ C, 00100, 00010, 00001 ∈ C,
01000, 10000 /∈ C. Because all the vectors of weight one are covered by exactly
three codewords, the number of codewords of weight two must be six.

To prove i), it suffices to notice that if 1 /∈ C, then the same argument shows
that there are three codewords of weight four and six of weight three, and alto-
gether the number of codewords would be more than sixteen, which is the cardi-
nality of the perfect 3-fold 1-covering of length five.

Having proved i), it suffices to consider which vectors of weight two are in
C. Because 10000 is covered by three codewords, three of the six codewords
of weight two have 1 in the first coordinate, and the same is true for the second
coordinate.

If 11000 /∈C, there is a unique choice for C:
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00100
00010
00001
10100
10010
10001
01100
01010
01001

.

The seven other codewords are the complements of the non-codewords of weight
at most two. A routine verification shows that it is indeed a perfect 3-fold 1-
covering. We notice that C1 = {00100,10100,01100,11100} ⊆ C. Clearly, C is
not (1,≤ 2)-identifying, because I(00100,10100) = C1 = I(01100,11100).

The other possibility is that 11000 ∈ C. Apart from the order of the coordi-
nates, there is again a unique way of choosing the codewords of weight two in
such a way that every vector of weight one is covered by exactly three codewords:

00100
00010
00001
11000
10100
10010
01100
01001
00011

.

A routine verification shows that the resulting code C = {00100,00010, 00001,
11000, 10100, 10010, 01100, 01001, 00011, 11010, 11001, 10101, 01110, 10111,
01111, 11111} is a perfect 3-fold 1-covering and (1,≤ 2)-identifying, and hence,
in particular, inequivalent to the code constructed earlier.

Corollary 4.13. There is a unique (1,≤ 2)-identifying code (up to equivalence)
attaining the bound M(≤2)

1 (5) = 16.

Denote by H3 the Hamming code of length seven with the parity check matrix

H =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



 .
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Let C1 = H3 + 1011001 and C2 = H3 + 0000100 be two cosets of H3. Let fur-
ther P1 and P3 be the codes obtained by permuting C1 using (7,3)(4,2) (the no-
tation (i, j) means that ith and jth columns are interchanged) and (6,3)(4,1), re-
spectively. By P2 we denote the code obtained from C2 using the permutation
(1,2)(3,5). It is easy to check (with computer) that U = P1 ∪P2 ∪P3 is (1,≤ 2)-
identifying. The following result now follows from Theorem 4.6.

Theorem 4.14. The code U is a (1,≤ 2)-identifying code of length seven and
hence

M(≤2)
1 (7) = 48.

4.3 Constructions

In this section, we present different ways to construct (1,≤ 2)-identifying codes
and (r,≤ `)-identifying codes for r ≥ 2 and ` ≥ 2. In the first construction, we
use shorter (1,≤ 2)-identifying codes to create longer ones. In the second con-
struction, we get asymptotically good (under Conjecture 2.4) (1,≤ 2)-identifying
codes using 3-covering codes. In subsection 4.3.2 we prove direct sum construc-
tions for (r,≤ `)-identifying codes for r ≥ 1 and ` ≥ 2.

4.3.1 Constructions for (1,≤ 2)-identifying codes

The construction of the next theorem yields two infinite families of optimal (1,≤
2)-identifying codes.

Theorem 4.15. If C ⊆ Fn is a (1,≤ 2)-identifying code, then

C′ = {(π(u),u,u+v) | u ∈ Fn,v ∈C},

where π(u) denotes a parity check bit on u, is a (1,≤ 2)-identifying code of length
2n+1.

Proof. By Theorem 4.3 the code C covers each word at least three times, and by
[13, Theorems 3.4.3 and 14.4.3] so does the code C′. By Lemma 4.4 the code C′

is 1-identifying and all single words and pairs of words are distinguishable. Thus,
we only need to check that all pairs are identified from one another.

Let us divide the words of F2n+1 into two classes by their first bit and consider
the codewords which cover a word in each class. Let x = (a,u,u + v) ∈ F2n+1,
where u,v ∈ Fn and a ∈ F.

I If a = π(u), then I(x) = {(π(u),u,u+ c) | c ∈C,d(c,v) ≤ 1}.

II If a 6= π(u), then I(x) = A∪{(a,u′,u + v) | d(u′,u) = 1,∃c ∈ C : u + v =
u′ + c}. Here A = {(π(u),u,u+v)} if v ∈C, and A = /0 if v /∈C.
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So in both classes we are interested in codewords c ∈ C such that d(c,v) ≤ 1.
Namely, in the class II the properties d(u′,u) = 1 and u + v = u′ + c imply that
also d(v,c) = 1. If I(x) = {(bi,si, ti) | i = 1,2, . . . ,k}, then in both cases I(C;v) =
{si + ti | i = 1,2, . . . ,k}.

Suppose there were words x, y, z, and w in F2n+1 such that

I(x,y) = I(z,w) and {x,y} 6= {z,w},x 6= y,z 6= w. (4.1)

If v1, v2, v3, and v4 are v′s of x, y, z, and w, respectively, then by the previous
discussion I(C;v1,v2) = I(C;v3,v4). Since C is a (1,≤ 2)-identifying code we
must have {v1,v2} = {v3,v4}. We will show that (4.1) cannot hold. Assume
contrary that (4.1) holds.

Because |I(x)| ≥ 3, we know by (4.1) that at most one of the sets I(x)∩ I(z)
and I(x)∩ I(w) has cardinality one or less. A similar remark applies to I(y), I(z)
and I(w). Hence we can without the loss of generality assume that |I(x)∩I(z)| ≥ 2
and |I(y)∩ I(w)| ≥ 2. Depending on which class x belongs to, also z belongs to
the same class. Indeed, if x is in the class I, then only last n bits are changing in
the codewords of I(x), and, thus, those are the only bits which can change in the
codewords of I(z). This means that z belongs to the class I. Also, if x belongs to
the class II, then the last n bits do not change at all in I(x) and so it is true also
for I(z), and hence z belongs to the class II. Similarly, y and w belong to the same
class.

1) If x = (π(u1),u1,u1 + v1) and y = (π(u2),u2,u2 + v2) are words in the
class I, then also z = (π(u3),u3,u3 +v3) and w = (π(u4),u4,u4 +v4) are. Since
in I(x) and I(z) the codewords begin with the same n + 1 bits, we get u1 = u3.
Similarly u2 = u4. We can assume that |I(z)∩ I(y)| ≥ 1 (or that |I(x)∩ I(w)| ≥ 1,
which is a symmetric case): otherwise I(z) = I(x) and I(w) = I(y) and hence
z = x and w = y. Since z and y are both words in the class I, we get u2 = u3. The
fact that {v1,v2} = {v3,v4} now implies that {x,y} = {z,w}.

2) Assume x = (π(u1)+ 1,u1,u1 + v1) and y = (π(u2)+ 1,u2,u2 + v2) and
so also z = (π(u3)+1,u3,u3 +v3) and w = (π(u4)+1,u4,u4 +v4) are words in
the class II. Since in I(x) and I(z) the codewords end with the same n bits as x and
z we get u1 + v1 = u3 + v3, and similarly u2 + v2 = u4 + v4. If now v1 = v3 and
v2 = v4 we are done, since then x = z and y = w. Suppose therefore that v2 = v3
and v1 = v4. As in the previous case, we can assume that |I(z)∩ I(y)| ≥ 1. Now
the last n bits must be the same in I(z) and I(y), and thus u3 + v3 = u2 + v2 and
we get u3 = u2, i.e., y = z. By Lemma 2.1 the word z cannot cover the whole I(x),
otherwise z = x. This would imply that x = z = y, a contradiction with x 6= y. So
w must cover at least one word from I(x) which implies u1 + v1 = u4 + v4 and
now u1 = u4, i.e., x = w. Therefore {x,y} = {z,w}.

3) Suppose finally that x = (π(u1),u1,u1 + v1) is a word in the class I and
y = (π(u2)+1,u2,u2 +v2) is a word in the class II. Now z = (π(u3),u3,u3 +v3)
is a word in the class I and w = (π(u4) + 1,u4,u4 + v4) is a word in the class
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II. Since the first n + 1 bits are the same in the codewords of I(x) and I(z) we
must have u1 = u3. In the codewords of I(y) and I(w) the last n bits are the
same, so u2 + v2 = u4 + v4. If now v1 = v3 and v2 = v4, we are done since then
x = z and y = w. Suppose therefore that v1 = v4 and v2 = v3. As in the previous
case, |I(z)∩ I(x)| = 2: otherwise z = x, v1 = v3 and thus v1 = v2 = v3 = v4
which together with the equality u2 +v2 = u4 +v4 implies that u2 = u4 and hence
{x,y}= {z,w}. Also y 6= w, since otherwise v2 = v4 = v1 = v3 and again {x,y}=
{z,w}; consequently d(y,w) = 2 and |I(y)∩ I(w)|= 2. Now |I(x)∩ I(w)|= 1 and
|I(z)∩ I(y)| = 1 (these cannot be greater than one, since x and w, y and z belong
to different classes).

Let c1 be the unique codeword in I(x)∩ I(w), and c2 be the unique codeword
in I(y)∩I(z). Since all the codewords in I(x) begin with (π(u1),u1, . . .) and all the
codewords in I(w) end in (. . . ,u4 + v4), we know that c1 = (π(u1),u1,u4 + v4).
Similarly, c2 = (π(u3),u3,u2 + v2). Hence c1 = c2, and I(y) = I(w) and I(x) =
I(z). Therefore x = z and y = w, completing the proof.

Corollary 4.16. M(≤2)
1 (2n+1) ≤ 2nM(≤2)

1 (n).

Corollary 4.17.

For k ≥ 1 : M(≤2)
1 (3 ·2k −1) = 23·2k−k−1.

For k ≥ 3 : M(≤2)
1 (2k −1) = 3 ·22k−k−1.

Proof. By Corollary 4.13, we know that M(≤2)
1 (5) = 16. Using Corollary 4.16

recursively and the lower bound from Theorem 4.6 we get the first equality. Sim-
ilarly, by Theorem 4.14 we get the second claim.

By Corollary 4.17 we have an optimal (1,≤ 2)-identifying code for all lengths
greater than or equal to five for which there also exists a perfect 3-fold 1-covering
[13, Theorem 14.2.4].

Example 4.18. The code C = {00,01,10,11} of length two is a perfect 3-fold
1-covering, but not (1,≤ 2)-identifying, since I(00,11) = I(00,10) = C. By the
construction of Theorem 4.15 we get a perfect 3-fold 1-covering C′ of length
5. This code is not (1,≤ 2)-identifying, because c1 = 00000, c2 = 00010, c3 =
00011, c4 = 00001 are codewords in C′ and I(c1,c2) = I(c3,c4) = {c1,c2,c3,c4}.

The next theorem shows that asymptotically (1,≤ 2)-identifying codes reach
the lower bound of Theorem 4.6 under the assumption that the Conjecture 2.4
([13, p. 352]) holds.1

1Research is done with Tero Laihonen.
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Theorem 4.19. Let n≥ 5 and C′ ⊆Fn be a 3-covering which attains K(n,3). Then
the code

C = {c ∈ Fn | 1 ≤ d(c,C′) ≤ 2}

is (1,≤ 2)-identifying.

Proof. For all x∈Fn there is a word c∈C′ such that d(c,x)≤ 3. Let x,y,z,w∈Fn.
If for some c′ ∈C′ we have {x,y}∩B3(c′) = /0 and {z,w}∩B3(c′) 6= /0, then it is
clear that I(x,y) 6= I(z,w). Hence, it is enough to show that I-sets of different sets
{x,y},{z,w} of size at most two are different when x,y,z,w ∈ B3(c) for some
c ∈C′. We have

|I(C;x)| ≥
{

n if x ∈ S0(c)∪S1(c)
3 if x ∈ S2(c)∪S3(c)

.

Lemma 4.4 implies that all single words are distinguishable from each other and
pairs of words.

Without loss of generality we may assume c = 0, and we denote Si(0) = Si.
Let us denote J(x) = I(x)∩ (S1 ∪ S2) for x ∈ B3(0). Now J(x) is called the J-set
of x. We will show that J(x,y) 6= J(z,w) for all {x,y} 6= {z,w}, where x,y,z,w ∈
B3(0), x 6= y and z 6= w, this implies I(x,y) 6= I(z,w). Assume to the contrary
J(x,y) = J(z,w).

Using Lemma 2.1 we see that, if |J(x)| ≥ n, then there is no set of size two in
which x does not belong to such that this set would cover the whole J-set of x.

i) Assume first x∈ S0∪S1, then without loss of generality x = z. By Lemma 2.1
we have 1 ≤ d(x,y)≤ 2 : otherwise w has to cover the whole J-set of y which im-
plies y = w. Similarly, 1 ≤ d(x,w) ≤ 2. If y ∈ S0 ∪ S1, then y = w and we are
done.

Assume that x = z ∈ S0 and y,w ∈ S2 ⊆C, now y 6∈ J(z,w) unless y = w.

Suppose that x = z ∈ S1 ⊆C and y ∈ S2 ⊆C. Now d(x,y) = 1 and in (J(y)\
{x})∩ S1 there is a codeword that should be covered by w ∈ S2. Any possible
choice for w has J(w) which is impossible to cover by {x,y}.

Suppose then x = z ∈ S1 ⊆C and y ∈ S3, then by the symmetry of the previous
case also w∈ S3. Since d(x,y) = d(x,w) = 2 we have either d(y,w) = 2 or 4. Now
|J(y)∩ S2| = |J(w)∩ S2| = 3 and x = z covers exactly two codewords from both
sets J(y) and J(w). If d(y,w) = 4, then (J(w)\J(x))∩S2 6⊆ J(x,y). If d(y,w) = 2,
then J(w)∩ J(y)∩ S2 = {c′}. This c′ ∈ J(x) since the support of x is the one
of the coordinate positions which is in both y′s and w′s supports. Thus, again
J(w) 6⊆ J(x,y).

ii) Suppose now that x ∈ S2. By symmetry also y,z,w ∈ S2∪S3. Since |J(x)∩
S1| = 2 we need two words of S2 different from x to cover these words and still
x ∈ C is not covered. Thus, without loss of generality z = x. If y ∈ S2 ⊆ C, then
similarly w = y. If y∈ S3, then |(J(y)∩S2)\J(x)|= 2, but these two words cannot
be covered by any w 6= y.
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iii) Finally, let x ∈ S3. By symmetry also y,z,w ∈ S3. Since |J(x,y)| ≥ 5 any
set {z,w} ⊆ S3,{z,w} 6= {x,y}, cannot cover the set J(x,y).

Corollary 4.20. M(≤2)
1 (n) ≤ K(n,3) 1

2(n+n2)

Combining Theorem 4.6, Corollary 4.20 and Conjecture 2.4 we get an asymp-
totic result for (1,≤ 2)-identifying codes: When n → ∞

M(≤2)
1 (n) ∼ 3 ·2n

n
.

4.3.2 Direct sum constructions for radii r ≥ 1

It is proved in [34] that if C ⊆ Fn is a (1,≤ 2)-identifying code, then C⊕F is also
(1,≤ 2)-identifying. In [45] it is proved for ` ≥ 3 that a code C ⊆ Fn is (1,≤ `)-
identifying is and only if it is a (2`− 1)-fold 1-covering. The direct sum C⊕F
preserves this property and thus, C⊕F ⊆ Fn+1 is also a (1,≤ `)-identifying code.
In Theorem 4.22 we prove that for all ` ≥ 2 we get a (2,≤ `)-identifying code
C ⊆ Fn+2 by taking a direct sum of a (2,≤ `)-identifying code of length n and F2.
At the same time we also prove the corresponding result for the radius r = 1.

Theorems 4.26 and 4.28 generalize the result of Theorem 3.20. We prove that
a direct sum of r (1,≤ `)-identifying codes is (r,≤ `)-identifying for all ` ≥ 2.

Lemma 4.21. Suppose r ≥ 1 and `≥ 2. Let C ⊆Fn be an (r,≤ `)-identifying code.
Then for all x ∈ Fn and for every e ∈ S1(x) there is no set of size at most `−2, not
containing x, that r-covers the set (C∩Sr(x))\Br(e).

Proof. If for some x ∈ Fn and e ∈ S1(x) there is a set Y ⊆ Fn such that |Y | ≤ `−2
and Y r-covers a set (C∩Sr(x))\Br(e). Then Ir(Y ∪{x,e}) = Ir(Y ∪{e}), which
is impossible.

Theorem 4.22. Let 1 ≤ r ≤ 2 and ` ≥ 2. If C ⊆ Fn is an (r,≤ `)-identifying code,
then D := C⊕Fr ⊆ Fn+r is (r,≤ `)-identifying.

Proof. Let X ,Y ⊆ Fn+r, X 6= Y, X = {x1, . . . ,x`1}, Y = {y1, . . . ,y`2} and 1 ≤
`1, `2 ≤ `. Let us denote xi = (x∗i ,x′i) and y j = (y∗j ,y′j), where x∗i ,y∗j ∈ Fn and
x′i,y′j ∈ Fr for 1 ≤ i ≤ `1 and 1 ≤ j ≤ `2. Denote X∗ = {x∗1, . . . ,x∗`1

} and Y ∗ =
{y∗1, . . . ,y∗`2

}.
If X∗ 6= Y ∗, then there is c∗ ∈ Ir(C;X∗) 4 Ir(C;Y ∗). Without loss of generality

we can assume c∗ ∈ Ir(C;x∗1)\ Ir(C;Y ∗). Now (c∗,x′1) ∈ Ir(D;X)\ Ir(D;Y ).
Suppose X∗ = Y ∗. Assume to the contrary that Ir(D;X) = Ir(D;Y ). Because

X 6= Y, for some i there is x′i 6= y′h for all h for which y∗h = x∗i . Without loss of
generality we can assume i = 1. Now x1 6∈Y and the words (x∗1,y′h1

), . . . ,(x∗1,y′h j
)∈

Y do not r-cover codewords at distance r from x1 ending with x′1. By Lemma 4.21
we know that such a codeword exists and in Y there must be `− 1 words which
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r-cover these codewords. This implies that every word in Y ∗ appear only once.
This also holds for X∗ since X∗ = Y ∗ and `1 = `2 = `.

By Lemma 4.2 we know that there is a codeword c∗ ∈ Ir(C;x∗1) \ Ir(C;X∗ \
{x∗1}). If d(c∗,x∗1) ≥ 1, then because d(x′1,y′h) ≥ 1, there is a word f ∈ Fr, such
that d(f,x′1) ≤ r−d(c∗,x∗1) and d(f,y′h) > r−d(c∗,x∗1). Thus, (c∗, f) ∈ Ir(D;X)\
Ir(D;Y ), which is a contradiction.

Suppose therefore that d(c∗,x∗1) = 0 and c∗ is the only word in Ir(C;x∗1) \
Ir(C;X∗ \{x∗1}). In particular,

d(x∗1,X
∗ \{x∗1}) ≥ r +1. (4.2)

Assume there is a word xk ∈ X \ {x1} such that xk 6∈ Y \ {yh}, that is x′k 6= y′s,
when x∗k = y∗s . As above we get a contradiction unless x∗

k is the only codeword
in Ir(C;x∗k) \ Ir(C;X∗ \ {x∗k}), in which case there is c∗k ∈ Ir(C;x∗1)∩ Ir(C;x∗k) (cf.
the third paragraph). Now Ir(C;(X∗ \ {x∗1})∪{c∗k}) = Ir(C;(X∗ \ {x∗k})∪{c∗k}),
which is impossible. This means that X \{x1} = Y \{yh}.

Without loss of generality h = 1, and we have X = {x1,x2, . . . ,x`} and Y =
{y1,x2, . . . ,x`} where x1 6= y1, x∗1 = y∗1 and x′1 6= y′1. Moreover, the set {x∗2, . . . ,x∗`}
r-covers Ir(C;x∗1) \ {x∗1}. The assumption Ir(D;X) = Ir(D;Y ) implies that the set
{x2, . . . ,x`} r-covers Ir(D;x1) 4 Ir(D;y1). Suppose x∗t ∈ X∗ \ {x∗1} r-covers a
codeword c∗1 ∈ (Ir(C;x∗1) \ Ir−d(x′1,y

′
1)
(C;x∗1)) \ Ir(C;X∗ \ {x∗1,x∗t }) (such words x∗t

and c∗1 always exist). Hence, the word xt = (x∗t ,x′t) ∈ X ∩Y r-covers the code-
words (c∗1,x′1) ∈ Ir(D;x1) and (c∗1,y′1) ∈ Ir(D;y1) (since d((x∗1,x′1),(c∗1,y′1)) ≥
r−d(x′1,y′1)+1+d(x′1,y′1) ≥ r +1). We have

2r ≥ d(xt ,(c∗1,x
′
1))+d(xt ,(c∗1,y

′
1))

= d(x∗t ,c
∗
1)+d(x′t ,x

′
1)+d(x∗t ,c

∗
1)+d(x′t ,y

′
1)

≥ 2d(x∗t ,c
∗
1)+d(x′1,y

′
1)

Hence, d(x∗t ,c∗1) ≤ r− 1
2 d(x′1,y′1), which implies

∀ c∗1 ∈ (Ir(C;x∗t )∩(Br(x∗1)\Br−d(x′1,y
′
1)
(x∗1)))\ Ir(X∗ \{x∗1,x

∗
t }) : d(x∗t ,c

∗
1)≤ r−1.

(4.3)
This and (4.2) imply r +1 ≤ d(x∗1,x∗t ) ≤ 2r−1. If r = 1, this is impossible. From
now on r = 2 and d(x∗1,x∗t ) = 3.

• If d(x′1,y′1) = 2, then by (4.3) we have (I2(C;x∗t )∩ I2(C;x∗1)) \ I2(C;X∗ \
{x∗1,x∗t }) ⊆ I1(C;x∗t )∩ I2(C;x∗1). Hence, for every y∗ ∈ S2(x∗1) such that
d(y∗,x∗t ) = 1 we have

I2(C;(X∗ \{x∗1,x
∗
t })∪{y∗}) = I2(C;(X∗ \{x∗t })∪{y∗}),

which is a contradiction.
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• Suppose then d(x′1,y′1) = 1. If (S1(x∗1)∩ I2(C;x∗t )) \ I2(X∗ \ {x∗1,x∗t }) = /0,
then we are done as in the previous case. If there is c∗2 ∈ (S1(x∗1)∩I2(C;x∗t ))\
I2(X∗\{x∗1,x∗t }), then (c∗2,y′1 +11)∈ I2(D;x1)\I2(D;Y ). Namely, y′1 +11 6=
x′t , otherwise xt could not cover any codeword at S2(y1) ending with y′1.

Corollary 4.23. For ` ≥ 2 we have:

M(≤`)
1 (n+1) ≤ 2M(≤`)

1 (n).

M(≤`)
2 (n+2) ≤ 4M(≤`)

2 (n).

Theorem 4.24. Let r ≥ 1 and `≥ 2. If C ⊆ Fn is an (r,≤ `)-identifying code, then
D := C⊕Fr+1 ⊆ Fn+r+1 is (r,≤ `)-identifying.

Proof. The first three paragraphs of the proof of Theorem 4.22 goes similarly.
Using the same notations we can continue slightly differently. Now we only
have the case d(x∗1,c∗) ≥ 0. Because d(x′1,y′h) ≥ 1 there is a word f ∈ Fr+1 such
that d(f,x′1) ≤ r−d(c∗,x∗1) and d(f,y′h) > r−d(c∗,x∗1). Thus, (c∗, f) ∈ Ir(D;X)\
Ir(D;Y ).

The next example shows that Theorem 4.22 cannot be generalized for (3,≤ 2)-
identifying codes.

Example 4.25. By a computer it can be shown that the code

C = {0}∪ (S3(0)∩S2(11111000))∪ (F8 \B4(0)) ⊆ F8

is (3,≤ 2)-identifying code of length 8. The code C⊕F3 is not (3,≤ 2)-identifying
since

I3(00000000000,11111000000) = I3(00000000001,11111000000).

Denote N = ∑r
i=1 ni and N∗ = N −nr.

Theorem 4.26. Suppose r ≥ 1. Let Ci ⊆ Fni for 1 ≤ i ≤ r be (1,≤ 2)-identifying
codes. Then C = C1 ⊕ . . .⊕Cr is an (r,≤ 2)-identifying code.

Proof. Let X = {x,y}, Y = {z,w} ⊆ FN , X 6= Y and |X |, |Y | ≤ 2. Denote x =
(x1, . . . ,xr), y = (y1, . . . ,yr), z = (z1, . . . ,zr) and w = (w1, . . . ,wr). If for some
k there is {xk,yk} 6= {zk,wk}, then because Ck is (1,≤ 2)-identifying there is
ck ∈ I1(Ck;xk,yk) 4 I1(Ck;zk,wk). Without loss of generality we may assume
ck ∈ I1(Ck;xk) \ I1(Ck;zk,wk). For all 1 ≤ h ≤ r, h 6= k, we have |I1(Ch;xh)| ≥
3 > |{zh,wh}|. Thus, there is ch ∈ I1(Ch;xh) such that d(ch,{zh,wh}) ≥ 1. Hence
(c1, . . . ,ck−1,ck,ck+1, . . . ,cr) ∈ Ir(C;x)\ Ir(C;Y ).
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Suppose that for all 1 ≤ k ≤ r we have {xk,yk} = {zk,wk}. This is possible
only if |X | = |Y | = 2. Because X 6= Y we may assume

x = (x1,x2,x3, . . . ,xr) z = (x1,y2,z3, . . . ,zr)

y = (y1,y2,y3, . . . ,yr) w = (y1,x2,w3, . . . ,wr)

where x1 6= y1, x2 6= y2 and {xk,yk} = {zk,wk} for k ≥ 3. Because xh ∈ {zh,wh}
for all 3 ≤ h ≤ r, then |I1(Ch;xh) \ {xh}| ≥ 2 > |{zh,wh} \ {xh}|. Thus, for all
3 ≤ h ≤ r there are ch ∈ I1(Ch;xh) such that d(ch,{zh,wh})≥ 1. Similarly, we find
corresponding codewords for y3, . . . ,yr.

There is ci ∈ I1(Ci;xi)\ I1(Ci;yi) for i = 1,2. There are two possible cases

A) d(xi,ci) = 1 and

B) d(xi,ci) = 0, if there is no codeword ci such that the case A would hold.

In the latter case we must have d(xi,yi) = 2 and |I1(Ci;xi)∩ I1(Ci;yi)| = 2. Now
Lemma 4.5 implies that there is cyi ∈ I1(Ci;yi) \ I1(Ci;xi) such that d(xi,cyi) = 3
and d(yi,cyi) = 1. If both x1 and x2 belong to the case A, then (c1,c2,c3, . . . ,cr) ∈
Ir(C;X) \ Ir(C;Y ). If x1 belong to the case A and x2 belong to the case B, then
(c1,cy2 ,c3, . . . ,cr) ∈ Ir(C;Y ) \ Ir(C;X). The case x1 in B and x2 in A goes simi-
larly. If both x1 and x2 belong to the case B, then (x1,cy2 ,c3, . . . ,cr) ∈ Ir(C;Y ) \
Ir(C;X).

When proving the corresponding result for ` ≥ 3 the next lemma is used.

Lemma 4.27. Let `≥ 3 and C ⊆ Fn is an (1,≤ `)-identifying code. For all x ∈ Fn

and Y ⊆ Fn, |Y | ≤ `, we have c ∈ I1(x)\{x} such that d(c,Y ) ≥ 1.

Proof. By [45] or Theorem 4.3 we know that for all x ∈ Fn we have |I1(x)| ≥
2`−1. Thus, |I1(x)\{x}| ≥ 2`−2 > ` ≥ |Y |, which implies the claim.

Theorem 4.28. Suppose ` ≥ 3. Let Ci ⊆ Fni for 1 ≤ i ≤ r be (1,≤ `)-identifying
codes. Then

C = C1 ⊕ . . .⊕Cr ⊆ FN

is an (r,≤ `)-identifying code.

Proof. By [45] or Theorem 4.3 we know that for all x ∈ Fni we have |I1(Ci;x)| ≥
2`−1.

We prove by induction on r that C = C1 ⊕ . . .⊕Cr is an (r,≤ `)-identifying
code and, moreover, for every X ,Y ⊆ FN , 1 ≤ |X |, |Y | ≤ ` and X 6= Y, there is
c ∈ Ir(C;x)\ Ir(C;Y ) such that r−1 ≤ d(c,x) ≤ r for some x ∈ X or c ∈ Ir(C;y)\
Ir(C;X) such that r−1 ≤ d(c,y) ≤ r for some y ∈Y. The first step of induction is
trivial, r = 1. The induction hypothesis is that the claim holds for C∗ = C1 ⊕ . . .⊕
Cr−1.
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Let X ,Y ⊆FN , 1≤ |X |, |Y | ≤ `, X 6=Y, X = {x1, . . . ,x`1} and Y = {y1, . . . ,y`2}
and denote

xi = (xi,1, . . . ,xi,r−1,xi,r) = (x∗i ,xi,r), y j = (y j,1, . . . ,y j,r−1,y j,r) = (y∗j ,y j,r)

for 1 ≤ i ≤ `1 and 1 ≤ j ≤ `2. Denote X∗ = {x∗1, . . . ,x∗`1
} and Y ∗ = {y∗1, . . . ,y∗`2

},
Xi = {x1,i, . . .x`1,i} and Yi = {y1,i, . . . ,y`2,i}, for 1 ≤ i ≤ r.

If X∗ 6= Y ∗, then the induction hypothesis implies that there is a codeword
c∗ ∈ Ir−1(C∗;X∗) 4 Ir−1(C∗;Y ∗). Without loss of generality we may assume

c∗ ∈ Ir−1(C∗;x∗1)\ Ir−1(C∗;Y ∗).

The induction hypothesis implies, that r−2 ≤ d(c∗,x∗1) ≤ r−1. By Lemma 4.27
we know that there is cr ∈ I1(Cr;x1,r) \ {x1,r} such that d(cr,Yr) ≥ 1. Hence,
(c∗,cr) ∈ Ir(C;X)\ Ir(C;Y ). Moreover, r−1 ≤ d((c∗,cr),x1) ≤ r.

Suppose next X∗ = Y ∗ and Xr 6= Yr. Because Cr is (1,≤ `)-identifying there
is cr ∈ I1(Cr;Xr) 4 I1(Cr;Yr). Without loss of generality we may assume cr ∈
I1(Cr;x1,r) \ I1(Cr;Yr). By Lemma 4.27, for every 1 ≤ k ≤ r − 1 there is ck ∈
I1(Ck;x1,k) \ {x1,k} such that d(ck,Yk) ≥ 1. Hence, (c1, . . . ,cr−1,cr) ∈ Ir(C;X) \
Ir(C;Y ). Moreover, (c1, . . . ,cr−1,cr) ∈ Sr−1(x1)∪Sr(x1).

Suppose then X∗ = Y ∗ and Xr = Yr. There is for some k, xk,r 6= yh,r for all h
for which x∗k = y∗h, otherwise X = Y.

• Suppose |Y ∗ \ {x∗k}| ≤ `− 2, then by Lemma 4.21 there is a codeword
c∗ ∈ (C∗∩Sr−1(x∗k))\ Ir−1(Y ∗ \{x∗k}). There is cr ∈ I1(Cr;xk,r)\ I1(Cr;Yr \
{xk,r}). If d(cr,xk,r) = 1, then (c∗,cr) ∈ Ir(C;X)\ Ir(C;Y ).

Suppose cr = xk,r is the only codeword in I1(Cr;xk,r) \ I1(Cr;Yr \ {xk,r}).
This implies |I1(Cr;xk,r)\{xk,r}|= 2`−2, |Yr \{xk,r}|= `−1, for all yh,r ∈
Yr \{xk,r} we have d(xk,r,yh,r) = 2 and |I1(Cr;xk,r)∩I1(Cr;yh,r)|= 2. More-
over, we have d(yh1,r,yh2,r) = 4, for h1 6= h2. There is x∗t ∈ X∗ = Y ∗ such
that x∗k 6= x∗t . Otherwise, X∗ = {x∗k} = Y ∗ and Xr = Yr imply that X = Y.
Suppose there is yt,r such that (x∗t ,yt,r) ∈Y and (x∗k ,yt,r) 6∈Y. Let us choose
c′r ∈ I1(Cr;xk,r)∩ I1(Cr;yt,r). As mentioned above d(c′r,xk,r) = d(c′r,yt,r) =
1 and d(c′r,yh,r) = 3 for all yh,r 6= xk,r and yh,r 6= yt,r. We get (c∗,c′r) ∈
Ir(C;X)\ Ir(C;Y ), moreover d((c∗,c′r),(x∗k ,xk,r)) = r.

If such an yt,r does not exist, then X∗ = Y ∗ = {x∗k ,x
∗
t } and x∗k appears

`− 1 times in Y ∗. Now (x∗t ,xk,r) ∈ Y \X and (x∗t ,xt,r) ∈ X \Y. Moreover,
|Y ∗\{x∗t }|= 1≤ `−2, as above we have c∗t ∈ (C∗∩Sr−1(x∗t ))\Ir−1(C∗;Y ∗\
{x∗t }). Because |I1(Cr;xt,r)| ≥ 2`− 1 > 3 ≥ |(I1(xt,r)∩ I1(xk,r))∪ {xt,r}|
there is ct,r ∈ I1(Cr;xt,r) \ ({xt,r}∪ I1(Cr;xk,r)). As above it is proved, we
know that d(ct,r,yh,r) ≥ 3 for all yh,r ∈ Yr, yh,r 6= xt,r. Hence, (c∗t ,ct,r) ∈
Ir(C;(x∗t ,xt,r))\ Ir(C;Y ). Moreover, d((x∗t ,xt,r),(c∗t ,ct,r)) = r.
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• Suppose then that |Y ∗ \{x∗k}| = `−1. This implies |Y ∗| = ` and every word
in Y ∗ appears there only once. Because X ∗ = Y ∗ the same holds for X∗, as
well. Hence, there is (x∗k ,xk,r) ∈ X \Y and (x∗k ,yh,r) ∈ Y \X for some h. By
the induction hypothesis there is c∗ ∈ Ir−1(C∗;X∗) 4 Ir−1(C∗;X∗ \ {x∗k}).
This implies c∗ ∈ Ir−1(C∗;x∗k) and r−2 ≤ d(c∗,x∗k) ≤ r−1.

– Suppose d(c∗,x∗k) = r−1. Because

|(I1(Cr;xk,r)\{xk,r})\ I1(Cr;yh,r)| ≥ 2`−4 > `−2 = |Yr \{xk,r,yh,r}|

we know that there is cr ∈ I1(Cr;xk,r)\{xk,r} such that d(cr,yh,r) ≥ 2
and d(cr,y j,r) ≥ 1 for j 6= h. Thus, (c∗,cr) ∈ Ir(C;X) \ Ir(C;Y ) and
d((c∗,cr),(x∗k ,xk,r)) = r.

– Suppose d(c∗,x∗k) = r − 2. We separate cases depending on the dis-
tance between xk,r and yh,r. In every case, we will find a codeword cr

such that 1 ≤ d(xk,r,cr)≤ 2, d(yh,r,cr)≥ 3 and d(cr,y j,r)≥ 1, for j 6=
h. Then (c∗,cr)∈ Ir(C;X)\Ir(C;Y ) and it satisfies the wanted distance
properties. If d(xk,r,yh,r) ≥ 4, then clearly there is cr ∈ I1(Cr;xk,r \
{xk,r}) which satisfies the conditions.
If d(xk,r,yh,r) = 3, then |S1(xk,r)∩B2(yh,r)|= 3. Because always ni ≥
4 (otherwise no (1,≤ `)-identifying code exists), there is z ∈ S1(xk,r)\
B2(yh,r). Now |I1(Cr;z)\{xk,r,z}| ≥ 2`−3 > `−2 ≥ |Yr \{xk,r,yh,r}|
implies that there is cr ∈ I1(Cr;z) which satisfies the conditions.
If d(xk,r,yh,r) = 2, then |(I1(Cr;xk,r) \ {xk,r}) \B2(yh,r)| ≥ 2`− 4 >
`−2 = |Yr \{xk,r,yh,r}|. Thus, we find cr ∈ I1(Cr;xk,r) which satisfies
the conditions.
If d(xk,r,yh,r) = 1, then there is z ∈ S1(xk,r), z 6= yh,r and

|I1(Cr;z)\ ({xk,r,z}∪ (I1(yh,r)∩ I1(z)))| ≥ 2`−4 > `−2

≥ |Yr \{xk,r,yh,r}|.

Thus, there is cr ∈ I1(Cr;z)∩S2(xk,r), which satisfies the conditions.

Combining the results of Theorems 3.18, 4.26 and 4.28 we get the next corol-
lary.

Corollary 4.29. For r ≥ 1 and ` ≥ 1 we have

M(≤`)
r (

r

∑
i=1

ni) ≤
r

∏
i=1

M(≤`)
1 (ni).

In Table 4.1 we have collected lower and upper bounds on the cardinalities of
(1,≤ 2)- and (2,≤ 2)-identifying codes.
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Table 4.1: Bounds on the cardinalities of (1,≤ 2)- and (2,≤ 2)-identifying codes.

n (1,≤ 2) (2,≤ 2)

4 11 a –
5 16 a –
6 30 – 32 b 12 – 25 d
7 48 a 14 – 35 d
8 90 – 96 b 22 – 70 d
9 154 – 176 c 35 – 140 b
10 289 – 352 b 56 – 256 (5,5)
11 512 c 94 – 512 (5,6)
12 972 – 1024 b 158 – 768 (5,7)
13 1756 – 2048 b,c 271 – 1536 (6,7)
14 3356 – 4096 b 469 – 2304 (7,7)
15 6144 c 820 – 4608 (7,8)
16 11809 – 12288 b 1446 – 8448 (7,9)
17 21846 – 24576 b,c 2571 – 16384 (6,11)
18 42164 – 49152 b 4600 – 24576 (7,11)
19 78644 – 90112 c 8279 – 49152 (7,12)
20 152304 – 180224 b 14980 – 90112 (9,11)
21 285976 – 360448 b,c 27236 – 180224 (10,11)
22 555411 – 720896 b 49735 – 262144 (11,11)
23 1048576 c 91181 – 524288 (11,12)

The lower bounds for (1,≤ 2)-identifying codes come from Theorem 4.6. The
lower bounds for (2,≤ 2)-identifying codes for n ≥ 7 come from Theorem 4.7.
The lower bound for (2,≤ 2)-identifying code for n = 6 come from Theorem 4.1.
The upper bounds for (2,≤ 2)-identifying for n ≥ 9 come from Corollary 4.29.
The used lengths are mentioned in parenthesis.

Key to upper bounds

a Short code constructions in Section 4.2
b For 1 ≤ r ≤ 2 and ` ≥ 2 : M(≤`)

r (n+1) ≤ 2rM(≤`)
1 (n), Theorem 4.22.

c (π(u),u,u+v)-construction, Theorem 4.15.
d See Appendix



Chapter 5

Strongly identifying codes

In this chapter, we consider a modification of identifying codes, strongly identi-
fying codes. Now we want to identify a set of vertices under the assumption that
codewords which belong to a fault pattern might be missing from the I-set.

The function of a strongly identifying code is easier to understand by an ex-
ample. If a processor that belongs to a fault diagnosis system of a multiproces-
sor mechanism is malfunctioning then it can fail on sending information. If a
controller cannot trust on received information some extra conditions are needed
before it is possible to identify malfunctioning processors. In this case we need
strongly identifying codes. In this model malfunctioning processors send report
which may be correct or wrong.

In order to identify fault patterns we require that a code C ⊆ Fn satisfies the
following. Let for any different subsets X and Y of Fn (|X |, |Y | ≤ `) the sets
Ir(X)\S and Ir(Y )\T , where S ⊆ X ∩C and T ⊆Y ∩C, be nonempty and distinct.
Then obviously, we can always distinguish between X and Y . The sets Ir(X) \ S
and Ir(X) \ S′ where S,S′ ⊆ X ∩C (S 6= S′) are automatically different from each
other. This leads to the following definition.

Definition 5.1. Let C ⊆ Fn be a code and `≥ 1 an integer. Let further X ⊆ Fn and
|X | ≤ `. Define

Ir(X) = {U | Ir(X)\ (X ∩C) ⊆U ⊆ Ir(X)}. (5.1)

If for all X1,X2 ⊆Fn, where X1 6= X2 and |X1|, |X2| ≤ `, we have Ir(X1)∩Ir(X2) =
/0, then we say that C is a strongly (r,≤ `)-identifying code.

If we replace (5.1) by Ir(X) = {Ir(X)}, we get the definition of a (regular)
(r,≤ `)-identifying code. Therefore, a strongly identifying code is always a (reg-
ular) identifying code.

We call a strongly (r,≤ 1)-identifying code a strongly r-identifying code and
we denote I′r(y) = Ir(y) \ {y}. The smallest cardinality of a strongly (r,≤ `)-
identifying code of length n is denoted by M(≤`)SID

r (n). When ` = 1, we denote
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M(≤1)SID
r (n) = MSID

r (n). Usually, we omit r from these notations if r = 1. A code
attaining the smallest cardinality is called optimal.

In this chapter we consider strongly 1-identifying codes and strongly (1,≤ 2)-
identifying codes. In both cases we present constructions and lower bounds. The
chapter is based on [35, 48].

5.1 Strongly 1-identifying codes

In this section we construct strongly 1-identifying codes and prove lower bounds
for them. Strongly 1-identifying codes lie between 1-identifying codes and (1,≤
2)-identifying codes, as we will see.

5.1.1 Constructions

The next construction is optimal for length 4.

Theorem 5.2. For n ≥ 4 we have MSID(n) ≤ 2n−1.

Proof. The set Fn−1 ⊕{0} is a strongly 1-identifying code. Here each codeword
x is covered by exactly n codewords and every non-codeword y = y′1, where
y′ ∈Fn−1 is covered by the unique codeword y′0. Thus, clearly, I(y) 6= I(x) 6= I ′(y)
and I′(x) 6= I′(y) for any distinct words x and y.

Theorem 5.3. Let C ⊆ Fn be a 1-identifying code with the property that d(c,C \
{c}) = 1 for all c ∈C. Then D = C⊕F is strongly 1-identifying.

Proof. Let x = (x1,x2),y = (y1,y2) ∈ Fn+1, where x1,y1 ∈ Fn and x2,y2 ∈ F. If
x1 6= y1, then there is c∈ I(C;x1)4 I(C;y1). Without loss of generality we can as-
sume that c ∈ I(C;x1)\ I(C;y1). If d(c,x1) = 1, then (c,x2) ∈ I′(D;x)\ I(D;y). If
d(c,x1) = 0, then (c,x2 +1) ∈ I′(D;x)\ I(D;y). If x1 = y1, then x2 6= y2. Because
d(C \{c},c) = 1 for all c ∈C we know that there is c ∈C such that d(c,x1) = 1.
Now (c,x2) ∈ I′(D;x)\ I(D;y). This proves the claim.

Corollary 5.4. If C is a strongly 1-identifying code, then its direct sum with F is
as well.

In Chapter 7, Theorem 7.8, it will be proved that a direct sum of a 1-locating-
dominating code and F2 is a 1-identifying code, which satisfies the property of
the previous theorem. Thus, we have the next theorem, where L(n) denotes the
smallest cardinality of a 1-locating-dominating code of length n.

Theorem 5.5.
MSID(n+3) ≤ 8L(n).
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In the next theorem we show that a (1,≤ 2)-identifying code is strongly 1-
identifying.

Theorem 5.6. MSID(n) ≤ M(≤2)
1 (n).

Proof. Let C ⊆ Fn be a (1,≤ 2)-identifying code with M(≤2)
1 (n) codewords. By

Theorem 4.3 every word in Fn is covered by at least three codewords. Thus, for
all x ∈ Fn the set I(x) is unique. Moreover, I ′(c) 6= I′(c′) for all c,c′ ∈C (c 6= c′).
In particular, if I′(c) = {c1,c2} = I′(c′), then I(c1,c) = I(c1,c′) and this is not
possible.

Theorem 5.7. MSID(n) ≤ 2n ·K(n−1,2).

Proof. Suppose n ≥ 4. Let C′ ⊆ Fn−1 be a code attaining the bound K(n− 1,2).
Denote e1 = 10 . . .0 ∈ Fn−1. A code

C := {c+a | c ∈C′,a ∈ B1(0)\ e1}

is 1-identifying with the property that for all c ∈ C we have d(c,C \ {c}) = 1.
Namely, (compare the proof of [40, Theorem 8]) for all x ∈ Fn−1 there is c ∈ C′

such that d(c,x) ≤ 2. Without loss of generality assume c = 0. If |I(x)| ≥ n, then
x = 0. If |I(x)∩B1(0)|= 2, then the support of x is the union of the supports of the
codewords in the I-set. If |I(x)∩B1(0)|= 1, then either x = e1 and I(x)∩B1(0) =
{0} or x ∈ B2(0) and the support of x is {1}∪{supp(c0) | c0 ∈ I(x)∩B1(0)}. The
claim follows from Theorem 5.3. The result holds also for n = 3.

Definition 5.8. Denote by Wr(n,k,h) the minimum number of codewords in any
code C of length n whose codewords all have weight h and which has the property
that all the sets Ir(C;x), x ∈ Sk(0), are nonempty and different.

Trivially, W1(n,2,1) = n−1. Let us look at the values of W1(n,3,2).
If we denote by D(C) the smallest number of different codewords of C whose

sum is the all-zero word, we get the following theorem.

Theorem 5.9. Let C̄ = S2(0) \C, C ⊆ S2(0). The sets I(C̄;x) are nonempty and
distinct for all words x of weight three if and only if D(C) ≥ 5.

Proof. Clearly, there is a word x of weight three for which I(C̄;x) = /0 if and only
if C contains three words whose sum is the all-zero word. Any word x ∈ S3(0)
for which |I(C̄;x)| ≥ 2 is obviously uniquely identified. We only need to check
whether there are two words of weight three, say x1 and x2 with supports {i, j,k}
and {i, j,m}, such that I(C̄,x1) = {c} = I(C̄,x2) where the support of c equals
{i, j}. This happens if and only if the words with the supports {i,k}, { j,k}, {i,m}
and { j,m} are all in C, i.e., if and only if some four codewords of C add up to the
all-zero word.
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According to the theorem above, determining the values of W1(n,3,2) is equiv-
alent to finding the largest code C ⊆ Fn whose codewords are all of weight two
and D(C) ≥ 5. Consider an undirected graph whose vertex set is the set of the
coordinates {1, . . .n} and an edge is a pair of such coordinates (that is, the support
of a word of weight two). Hence, calculating W1(n,3,2) is equivalent to finding a
graph with the maximal number of edges and with the length of the shortest cycle
(girth) at least five.

The problem of finding such graphs is well-known and several exact values
of W1(n,3,2) are known (see, e.g., [20, 21, 63] and the references therein). For
example, the values of W1(n,3,2) are 1, 3, 5, 9, 13, 18, 24, 30, 39, 48, 57, 68, 79,
92, 105, 119, 130, 146, 163, 181, 199 for the lengths n = 3, . . .23, respectively. It
also follows that

lim
n→∞

W1(n,3,2)

n2 =
1
2
.

Example 5.10. The constant weight code S2(0)\ {1100000, 0110000, 0011000,
0001100, 0000110, 1000010, 1000001, 0001001} attains the value W1(7,3,2) =
13.

Theorem 5.11. Suppose n ≥ 7. If A is a code attaining the value W1(n,3,2), then
every word of weight one is covered by at least three codewords of A.

Proof. It is easy to see that the code consisting of all the words of length n ≥ 8
and weight two except the ones with supports {1,2}, {2,3}, . . . ,{n−1,n}, {n,1}
and {1,5} identifies all the words of weight three. From this and Example 5.10
we can deduce that for n ≥ 7 there are at least n + 1 words of weight two that do
not belong to A.

Suppose to the contrary that there is a word x of weight one, which is covered
by less than three codewords. Let {s} be the support of x. Without loss of gener-
ality we can assume that s = 1. Denote by i the number of codewords of weight
two that cover x.

If i = 0, then none of the words with supports {1, j}, for j = 2, . . . ,n, is a
codeword. There are n−1 such words. Hence there is also a word whose support
is {k,h}, (k,h ≥ 2, k 6= h) and which is not in A. Now the word of weight three
with support {1,k,h} is not covered at all, a contradiction.

If i = 1, then for exactly one j the word with support {1, j} is a codeword.
Now there must be n+1− (n−2) = 3 non-codewords of weight two which begin
with zero. If any of them does not contain j in its support, then we are done
as in the previous case. Without loss of generality, words with supports { j,k1}
and { j,k2} are non-codewords, for some k1 and k2, k1 6= k2. But now the words
of weight three with supports {1, j,k1} and {1, j,k2} cannot be distinguished,
because both of them are only covered by the word with support {1, j}.

If i = 2, then for some j1 and j2 words with supports {1, j1} and {1, j2} are
codewords. Now there are at least four non-codewords of weight two that begin
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with zero. As in the previous case either j1 or j2 must occur in the support of each
of them. This means, without loss of generality, that there are non-codewords with
supports { j1,k1} and { j1,k2}, k1 6= j2, k2 6= j2, k1 6= k2. We get a contradiction as
in the previous case.

Theorem 5.12. For n ≥ 7,

MSID(n) ≤ (W1(n,3,2)+n−1)K(n,3).

Proof. Let A be a set which attains the value W1(n,3,2), B realizing the value
W1(n,2,1) = n−1, and D a code of length n and covering radius three. We show
that (A∪B)+D is strongly identifying code.

Let x ∈ Fn and denote H(c) = {c+y | y ∈ A∪B} for c ∈ D. Then d(x,c) ≤ 3
if and only if H(c)∩ I(x) 6= /0 (and if and only if H(c)∩ I ′(x) 6= /0). Therefore,
using I(x) (or I′(x)) we can find a codeword c ∈ D such that d(x,c) ≤ 3. Without
loss of generality, assume that c = 0.

If x = 0, then we immediately know it, because I(x) and I ′(x) both contain
at least n− 1 ≥ 3 words of weight one, which uniquely identify x. Assume that
x 6= 0. If I(x) (or I′(x)) contains 0, then we know that w(x) = 1, and by Theorem
5.11, at least three of the words in A cover x, and therefore uniquely identify it.
We can now assume that we know w(x)≥ 2. Then w(x) = 2 if and only if I(x) (or
I′(x)) contains at least one word of weight one. When it is known that w(x) = 2,
the words in B uniquely identify x. When we know that w(x) = 3, then words of
A uniquely identify x.

5.1.2 Nonexistence results

Denote by Ni the number of codewords of weight i in a code C.

Lemma 5.13. Let C be a strongly 1-identifying code of length n ≥ 3. If 0 6∈ C,
then at least d2n/3e codewords of weight two are needed to identify all the words
of weight one. If 0 ∈C, then we need at least d2(n−1)/3e codewords of weight
two.

Proof. Assume first that 0 /∈C. If s denotes the number of words x ∈ S1(0) such
that |I′(x)| = 1, then

s+2(n− s) ≤ ∑
x∈S1(0)

|I′(x)| = 2N2.

Since s ≤ N2, we get N2 ≥ d2n/3e.
Assume then that 0 ∈C. Then I ′(x) = {0} for at most one x ∈ S1(0). Consid-

ering the sets I′(x)\{0}, we similarly get

N2 +2(n−N2 −1) ≤ ∑
x∈S1(0)

|I′(x)\{0}| = 2N2,

and the second claim follows.
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Theorem 5.14.

MSID(n) ≥
⌈

2n · d2n/3e
(n

2

)
+ d2n/3e−d2(n−1)/3e

⌉

.

Proof. Assume that C is a code with MSID(n) codewords. Applying Lemma 5.13
to all the words of Fn we get

(2n −MSID(n))d2n/3e+MSID(n)d2(n−1)/3e ≤ MSID(n)

(
n
2

)

,

from which the theorem follows.

Lemma 5.15. Let n ≥ 4. If C ⊆ Fn is an optimal strongly 1-identifying code, then
for all x ∈ Fn we have |I′(x)| ≤ n−1.

Proof. Suppose to the contrary that for some x we have |I ′(C;x)| = n. Without
loss of generality we can assume x = 0. We will show that C \ {y} is a strongly
identifying code, we choose y in the following way: we take y ∈ S1(0) such that
|I(C;y)∩ S2(0)| = 1, if such a word exists; otherwise we take any y ∈ S1(0). It
suffices to show that

I′(v) 6= I(u) 6= I(v) and I ′(v) 6= I′(u) 6= I(v) (5.2)

for all u ∈ B1(y) and v ∈ Fn. Here and from now on the notations I and I ′ all refer
to the code C \ {y}. Since |I ′(0)| = n− 1 ≥ 3 we may always exclude the cases
u = 0 or v = 0.

If also v ∈ B1(y)\{0} and v 6= u, then either u 6= y or v 6= y; say u 6= y. Now
u+y ∈ I′(u)∩S1(0) but u+y 6∈ I(v). This implies (5.2) in this case.

Suppose then that v 6∈B1(y). Let first w(v)≥ 3. Since C is strongly identifying
code, we get (5.2) for u = y. If u 6= y, I ′(u)∩S1(0) 6= /0 and I(v)∩S1(0) = /0. This
gives (5.2) for these v. Let then w(v) = 2. Now there clearly is a codeword
a ∈ I′(v)∩ S1(0) such that a 6∈ I(u) (because u 6= 0). Let finally w(v) = 1. Since
I′(C;v) 6= I′(C;y) we may assume that w(u) = 2. If 0 ∈ C, then 0 ∈ I ′(v) but
0 /∈ I(u). If 0 6∈ C, then the choice of y guarantees that there is a word of weight
two in I′(v) which does not belong to I(u). Therefore, we have (5.2) for all words
u and v.

In the proof of the next lower bound (cf. [40, Theorem 3] and [6, Theorem
9]) we use the concept of excess, see for example [13]: Assume that C ⊆ Fn has
covering radius one. If a vector x ∈ Fn is 1-covered by exactly i + 1 codewords
of C, then we say that the excess E(x) on x is i. In general, the excess E(V ) on a
subset V ⊆ Fn is defined by E(V ) = ∑x∈V E(x).
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Theorem 5.16.

MSID(6) ≥ 18, MSID(7) ≥ 32, MSID(8) ≥ 57.

For n ≥ 9,

MSID(n) ≥
⌈

2n+1(n2 −2n+4)

n3 −n2 +2n+8

⌉

.

Proof. Let C be a code realizing MSID(n) with n ≥ 6. The number of points for
which |I(x)| = 1 is at most MSID(n). The points x with |I(x)| = 2 are called sons
and the ones with |I(x)|> 2 are called fathers. If |I(x)|= 2, then there is a unique
point y such that I(x) ⊂ I(y) and it is called the father of x. A family consists of
a father and its sons. The space is partitioned by the families and the points with
|I(x)| = 1.

Assume that f is a father and denote by S = S(f) the set of sons of f. Let
|I(f)| = i ≥ 3. We shall examine the average excess of a family, i.e., the function

|S|+ i−1
|S|+1

=: g(i, |S|).

Let us bound above the number of sons of a father and thus bound below the
average excess of a family. Without loss of generality we can assume that the
father f is the all-zero word. Clearly, a father may have at most

( i
2

)
sons, but as

we shall see, we can often say more.
Assume first that f 6∈ C. By the previous lemma we know that i ≤ n − 1.

Suppose first that i = n−1.
Denote by x the unique word in S1(f) \C. We show that for all c ∈ I(f) all

the n−2 words in B1(c)\{f,c,x + c} cannot be sons of f. Indeed, there must be
a codeword c′ 6= c in I(c), otherwise I ′(c) = /0, and if c′ 6= x + c we are done, so
assume c′ = x+ c is the unique codeword in I ′(c). There has to be a codeword c′′
of weight three in I(c′): otherwise I(c′) = I(c). We have c′′ = c+x+ z for some
z∈ I(f). But then c+z cannot be a son, since |I(c+x)| ≥ 3. Consequently, c∈ I(f)
can have at most n− 3 sons of f at distance one from it. Counting in two ways
the pairs (c,s) where c ∈ I(f), s ∈ S and d(c,s) = 1 we obtain 2|S| ≤ (n−3)|I(f)|
which implies |S| ≤ b(n−3)(n−1)/2c =: U1.

Consider the case f 6∈ C and i = n− 2. Denote by x1 and x2 the two words
in S1(f) \C. Let c ∈ I(f). Because C is strongly identifying code, I ′(x1 + c) 6=
I′(x2 + c), and therefore one of these contains a codeword of weight three, which
is not contained in the other. Without loss of generality, x1 + c + z ∈ C for some
z ∈ I(f), z 6= c. Then c,z,x1 + c+ z ∈ I(c+ z) and hence c+ z is not a son. Thus,
there cannot be n−3 sons in S1(c). Counting as above, we get |S| ≤ b(n−2)(n−
4)/2c =: U2.

Notice that for values i = 4, . . .n the function g(i,
( i

2

)
) is decreasing, and

g(3,
(3

2

)
) = g(6,

(6
2

)
). Hence for i = 3, . . . ,n− 3 we may bound g(i,

( i
2

)
) below

by g1(n) := g(n−3,
(n−3

2

)
), when n ≥ 9.
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Assume now that f ∈ C and |I(f)| = i. In this case S consists of the sons at
distance one and two from f. Since a son is covered by exactly two codewords,
there can be only one son at distance one from f. Indeed, if s1,s2 ∈ S and d(f,s1) =
d(f,s2) = 1, then I′(s1) = I′(s2) = {f}. Consequently, |S| ≤

(i−1
2

)
+ 1, because

there are at most
(i−1

2

)
sons of weight two.

Notice that g(i,
(i−1

2

)
+1) is decreasing on i (i = 4, . . . ,n) and we may bound

it below by g2(n) := g(n,
(n−1

2

)
+1) for n ≥ 6.

The minimum of g(3,
(3

2

)
),g(4,

(4
2

)
),g(5,

(5
2

)
) and g2(3) is g(3,

(3
2

)
) = 5/4. So

to find the minimum of the above mentioned lower estimates on g(i, |S|) we need
to compare the functions g1(n),g(n− 1,U1),g(n− 2,U2),g2(n), and 5/4. When
6 ≤ n ≤ 8 the minimum is 5/4 and for n ≥ 9 the minimum is g2(n). Denote by
M(n) the minimum.

Consequently, the average excess of a family is at least M(n) and hence for
every family F the excess of it E(F ) ≥ M(n)|F |. Since the excess on Fn by C
is (n+1)MSID(n)−2n we get

(n+1)MSID(n)−2n ≥ (2n −MSID(n))M(n).

Routine calculations give the claim.

There is (see, [64, Construction 4.24]) infinite sequences of codes (Ci)
∞
i=1 of

length ni → ∞ and covering radius two such that

lim
i→∞

K(ni,2)V (n,2)

2ni
= 1.

Such families are known to exist for the lengths ni = 2i + 5 · 2i/2−2 − 2 where
i ≥ 4 is even and ni = 23 ·2i/2−4 −3, where i ≥ 10 is even. Combining this result
with Theorem 5.7 and Theorem 5.16, we have two infinite sequences of strongly
identifying codes such that

2n+1

n
(1+ f (n)) ≤ MSID(n) ≤ 2n+1

n
(1+g(n)),

where f (n) and g(n) tend to 0, when n tends to infinity.
Using the results of [40] we also see that we have an infinite sequence of

lengths such that asymptotically the ratio between the smallest cardinalities of
identifying codes and strongly identifying codes tends to one.

5.1.3 Short codes

In this section we prove sharp results for the cardinalities of strongly 1-identifying
codes for short lengths.

Theorem 5.17. MSID(3) = 6, MSID(4) = 8.
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Proof. The lower bound on MSID(3) follows from Theorem 5.14 and the upper
bound from Theorem 5.3.

The upper bound in the case n = 4 comes from Theorem 5.2. Theorem 5.14
gives that MSID(4) ≥ 7. Assume MSID(4) = 7 and let C be a code attaining the
value MSID(4). We can assume that neither 0000 nor 1111 is a codeword. Namely,
if every word-complement pair contains at least one codeword, there would be at
least eight codewords.

By Lemma 5.13 we need at least d2 · 4/3e = 3 codewords of weight two to
identify all words of weight one. Assume that N2 = 3. These codewords can be
chosen in two ways. Either there are two words of weight one that are covered by
two codewords, or there is a word which is covered by three codewords; in both
cases all the other words of weight one are covered by one codeword each. In the
first case, if x is a word of weight one such that |I ′(x)| = 2, then there is a word
y of weight three such that I ′(y) = I′(x), so we need at least four codewords of
weight two. In the second case if x is the word for which |I ′(x)| = 3 then for the
complement x of x we have I ′(x) = /0, so again N2 ≥ 4.

Because I′(0000) 6= /0 and I ′(1111) 6= /0, we have N1 ≥ 1 and N3 ≥ 1. Because
I′(x) 6= /0 for all x of weight two, there is a codeword c of weight one such that
its complement is also a codeword, or N1 +N3 ≥ 4. Without loss of generality we
can assume that 1000 and 0111 are codewords. Because I ′(1100), I′(1010) and
I′(1001) must all be different, we need at least two more codewords of weight one
or three. Again N1 +N3 ≥ 4.

Theorem 5.18. MSID(5) = 14.

Proof. A strongly 1-identifying code of length 5 and cardinality 14 is {10000,
01000, 00100, 11000, 01100, 01010, 00011, 11010, 10101, 01101, 01011, 11101,
11011, 10111}.

Let C be a strongly 1-identifying code of length five. To prove the lower bound
we can assume that neither 00000 nor 11111 is a codeword. Namely, if every
word-complement pair contained at least one codeword, then there would be at
least 16 codewords. We will prove that N1 + N3 ≥ 7. By symmetry (considering
the code {1 + c | c ∈ C}) we then know that also N2 + N4 ≥ 7, and the claim
follows. Because I ′(00000) is not empty, N1 ≥ 1.

Case 1: N1 = 1. We can assume that 10000 ∈C. Denote A = {11000, 10100,
10010, 10001}. The sets I ′(x), x ∈ A are different and, because I ′(00000) =
{10000}, each of the sets I ′(x) contains at least one codeword of weight three.
Hence, C contains at least three codewords of weight three that begin with 1, say
c1, c2 and c3. Each of these three codewords covers one word of weight two that
is not in A. But still we have three words of weight two that are not covered by
them. If c1, c2 and c3 are at distance one from one word in A, then the remain-
ing three words of weight two that are not covered, say x1, x2, and x3, are all at
distance one from one word of weight three. Because I ′(x1), I′(x2), and I′(x3)
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must be nonempty and different, there must be at least three more codewords of
weight three, and hence N1 + N3 ≥ 7. Suppose therefore that two words from the
set A are covered by two of the codewords c1, c2, and c3 and two by one. Without
loss of generality we can assume that c1, c2, and c3 are 11100,10110, and 10011.
Now the words 01010,01001, and 00101 are not covered. The only possibility to
make I′(01010), I′(01001), and I′(00101) all nonempty and different using only
two more codewords of weight three is to choose 01101 and 01011 as codewords.
But then I′(01111) = I′(01001), so we need all in all at least six codewords of
weight three, and hence N1 +N3 ≥ 7.

Case 2: N1 = 2. Without loss of generality assume 10000,01000∈C. Because
I′(00000) 6= I′(11000) we can assume 11100∈C. Because I ′(10010) 6= I′(10001),
at least one of the words 11010, 11001, 10110, or 10101 must be in C. The first
two and the last two cases are symmetric. In the first case N1 + N3 ≥ 7, because
I′(00110), I′(00101), and I′(00011) are nonempty and different, and we need
three more codewords of weight three. In the last case suppose that 10110 is
a codeword. Again I ′(00110), I′(00101), and I′(00011) must be nonempty and
different, which requires three codewords of weight three, but of course 10110
can be used as one of them. Let us assume that N3 = 4. Then of the remaining two
codewords of weight three (at least) one has to cover either 01010 or 01001 but
not both. There are now three possibilities to choose them: 1) 00111, 01101, now
I′(01111) = I′(00101), 2) 01101, 01011, now I ′(11011) = I′(00011), 3) 01101,
10011, now I′(01111) = I′(00101). So in each case we need at least one more
codeword of weight three, and so N1 +N3 ≥ 7.

Case 3: N1 ≥ 3. By Lemma 5.13 we know that N3 ≥ 4, so N1 +N3 ≥ 7.

5.2 Strongly (1,≤ 2)-identifying codes

In this section we consider strongly (1,≤ 2)-identifying codes. We begin with a
lower bound which turns out to be optimal for infinitely many cases. We con-
tinue with constructions. In the first construction we prove that the direct sum
of a (1,≤ 2)-identifying code and F is a strongly (1,≤ 2)-identifying code. This
result combined with the infinite optimal families of (1,≤ 2)-identifying codes
(Corollary 4.17) gives optimal results for strongly (1,≤ 2)-identifying codes. In
the second construction we prove that (π(u),u,u+v)-construction can be applied
to strongly (1,≤ 2)-identifying codes.

Theorem 5.19. Let ` ≥ 2. Then

M(≤`)SID(n) ≥
⌈

(2`−1)
2n

n

⌉

.

Proof. Let C ⊆ Fn be a strongly (1,≤ `)-identifying code. If x 6∈C, then |I(x)| ≥
2`− 1. Indeed, otherwise if I(x) = {c1, . . . ,c2`−2} and xi (i = 1, . . . , `− 1) is the
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unique word different from x at distance one from both c2i−1 and c2i, we have
I(x1, . . . ,x`−1) = I(x1, . . . ,x`−1,x), which is impossible. Obviously, fewer than
2`−2 codewords in I(x) is also impossible.

Assume then that x∈C. Suppose that I(x) = {c1, . . . ,c2`−2,x} and define xi as
above for all i = 1, . . . , `−1. Now I(x1, . . . ,x`−1) = I(x1, . . . ,x`−1,x)\{x} which
is not allowed and hence |I(x)| ≥ 2`.

Thus, we obtain

|C|(n+1) ≥ 2`|C|+(2`−1)(2n −|C|)

which gives the claim.

As we shall see, this lower bound can often be attained when ` = 2.
The proof of the theorem implies the next corollary.

Corollary 5.20. Let C ⊆ Fn be a strongly (1,≤ `)-identifying code, then for all
x ∈ Fn we have |I′(x)| ≥ 2`−1.

The interested reader is referred to [44] for further results on strongly (1,≤ `)-
identifying codes when ` ≥ 3.

The following theorem turns out to be very useful when we construct (optimal)
strongly (1,≤ 2)-identifying codes.

Theorem 5.21. If C ⊆ Fn is a (1,≤ 2)-identifying code, then D = C⊕F ⊆ Fn+1

is strongly (1,≤ 2)-identifying.

Proof. The code C is 3-fold 1-covering by Theorem 4.3. The direct sum of C and
F preserves this property. Moreover, every codeword is covered by at least four
codewords of D, namely, for all c ∈ C and a ∈ F we have I(D;(c,a)) = {(c′,a) |
d(c,c′) ≤ 1,c′ ∈C}∪{(c,a+1)}. Thus, for all x ∈ Fn+1 we have |I′(x)| ≥ 3 and
applying Lemma 4.4 we know that in Fn+1 single words are distinguishable from
each other and pairs of words also in the strong sense.

We still need to prove that for all {x1,x2} 6= {y1,y2}, xi,yi ∈ Fn+1, x1 6= x2
and y1 6= y2, we have

J(x1,x2) 6= J(y1,y2),

where I(D;Z)\{Z}⊆ J(Z)⊆ I(D;Z). Denote xi = (x∗i ,x′i) and yi = (y∗i ,y′i), where
x∗i ,y∗i ∈ Fn and x′i,y

′
i ∈ F. From now on in this proof the I-set notation relates to

the code C.
i) Assume first {x∗1,x∗2} 6= {y∗1,y∗2}. Then there is c∗ ∈ I(x∗1,x∗2) 4 I(y∗1,y∗2).

Without loss of generality we may assume that c∗ ∈ I(x∗1)\ I(y∗1,y∗2).

• If c∗ 6∈ {x∗1,x∗2}, then (c∗,x′1) ∈ J(x1,x2)\ J(y1,y2).

• If c∗ = x∗1 and c∗ 6= x∗2, then (c∗,x′1 + 1) ∈ J(x1,x2) \ J(y1,y2). (Similarly,
the case c∗ = x∗2 and c∗ 6= x∗1.)
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• Suppose c∗ = x∗1 = x∗2, hence {x1,x2} = {(c∗,0),(c∗,1)}. Suppose also
there is no other codeword than c∗ in I(c∗) \ I(y∗1,y∗2) (if there is, we get
a solution from it). This implies d(c∗,{y∗1,y∗2}) = 2. Without loss of gener-
ality we may assume |I(c∗)∩ I(y∗1)| ≥ |I(c∗)∩ I(y∗2)|.
If y∗1 6= y∗2, then there is a codeword c∗1 such that d(c∗1,c∗) = d(c∗1,y∗1) = 1
and d(c∗1,y∗2) > 1. Hence, (c∗1,y′1 +1) ∈ J(x1,x2)\ J(y1,y2).

If y∗1 = y∗2, then there is c∗2 ∈ (I(y∗1) \ {y∗1}) \ I(c∗) (otherwise we have a
square of codewords: for c∗1 ∈ I(c∗)∩ I(y∗1) we have I(c∗,c∗1) = I(y∗1,c∗1)
which is impossible). Thus, (c∗2,y′1) ∈ J(y1,y2)\ J(x1,x2).

ii) Suppose now that {x∗1,x∗2} = {y∗1,y∗2}. We must have x∗1 6= x∗2 and y∗1 6=
y∗2 otherwise we cannot have {x1,x2} 6= {y1,y2}. We may assume x∗1 = y∗1 and
x∗2 = y∗2. Without loss of generality we can assume x′1 6= y′1, that is x′1 = y′1 + 1.
There is a codeword c∗ ∈ I(x∗1)\ I(x∗2). If d(c∗,x∗1) = 1, then (c∗,x′1) ∈ J(x1,x2)\
J(y1,y2). If d(x∗1,c∗) = 0 (and I(x∗1) \ I(x∗2) = {x∗1}), then there is c∗2 ∈ (I(x∗2) \
{x∗2})\ I(x∗1) : otherwise there is a square of codewords as above. Now (c∗2,x′2) ∈
J(x1,x2) and (c∗2,x′2)∈ J(y1,y2) if and only if y2 = x2 (y′2 = x′2). Suppose y2 = x2.
The assumption d(x∗1,c∗) = 0 implies that there is a codeword c∗3 ∈ C such that
d(c∗3,x∗1) = d(c∗3,x∗2) = 1. Now (c∗3,x′2 + 1) ∈ J(x1,x2) 4 J(y1,y2), since either
x′2 +1 = x′1 or x′2 +1 = y′1, but not both.

Corollary 5.22. M(≤2)SID(n) ≤ 2M(≤2)(n−1).

We are now in a position to give two infinite families of optimal codes.

Corollary 5.23.

For k ≥ 1 : M(≤2)SID
1 (3 ·2k) = 23·2k−k.

For k ≥ 3 : M(≤2)SID
1 (2k) = 3 ·22k−k.

Proof. By Corollary 4.17 we know that M(≤2)
1 (n) = 23·2k−k−1, if n = 3 · 2k − 1

(k ≥ 1), and M(≤2)
1 (n) = 3 · 22k−k−1, if n = 2k − 1 (k ≥ 3). Combining this with

Corollary 5.22 and the lower bound from Theorem 5.19 we obtain the equations.

No infinite family of optimal strongly 1-identifying codes is known.

Corollary 5.24. If C is strongly (1,≤ 2)-identifying, then the direct sum with F is
as well.

Before presenting one more optimality result, we show a construction which
yields a strongly (1,≤ 2)-identifying code of length 2n + 1 from a strongly (1,≤
2)-identifying code of length n.
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Theorem 5.25. Let C be a strongly (1,≤ 2)-identifying code of length n. The code

C′ = {(π(u),u,u+ c) | u ∈ Fn,c ∈C},

where π(u) denotes the parity check bit of u, is a strongly (1,≤ 2)-identifying
code of length 2n+1.

Proof. By Corollary 5.20, we know that for all x ∈ Fn, |I′(x)| ≥ 3. The construc-
tion maintains this property by [13, Theorem 3.4.3 and 14.4.3]. Lemma 4.4 now
implies that all single words are distinguishable from each other and pairs of words
also in the strong sense. Thus, to prove the claim it suffices to show that for all
{x,y},{z,w} ⊆ F2n+1, {x,y} 6= {z,w}, x 6= y and z 6= w we have

J(x,y) 6= J(z,w) (5.3)

for all the sets J, where I(D;Z)\{Z} ⊆ J(Z) ⊆ I(D;Z), for Z ⊆ F2n+1.

Let us divide the words of F2n+1 into two classes according to their first bit and
consider the codewords which cover a word in each class. Let x = (a,u,u+v) ∈
F2n+1.

I If a = π(u), then I(x) = {(π(u),u,u+ c) | c ∈C,d(c,v) ≤ 1}.

II If a 6= π(u), then I(x) = A∪{(a,u′,u + v) | d(u′,u) = 1,∃ c ∈C : u + v =
u′ + c}. Here A = {(π(u),u,u+v)} if v ∈C, and A = /0 if v /∈C.

Hence, in both classes we are interested in codewords c ∈C such that d(c,v) ≤ 1.
Namely, in the class II the properties d(u′,u) ≤ 1 and u + v = u′ + c imply that
also d(v,c) ≤ 1. If I(x) = {(bi,si, ti) | i = 1,2, . . . ,k}, then in both cases I(C;v) =
{si + ti | i = 1,2, . . . ,k}. If x ∈C′ and it is removed from I(x), then v is removed
from I(C;v). Notice that if I(x,y) \ {x,y} = {(bi,si, ti)} | i = 1,2, . . . ,k}, where
x = (a1,u1,u1 +v1) and y = (a2,u2,u2 +v2), then I(C;{v1,v2})\{v1,v2}⊆ {si +
ti | i = 1,2, . . . ,k} ⊆ I(C;{v1,v2}). Similarly, if I(x,y) \ {x} = {(bi,si, ti) | i =
1,2, . . .k}, then I(C;{v1,v2})\{v1} ⊆ {si + ti | i = 1,2, . . . ,k} ⊆ I(C;{v1,v2}).

Suppose one of the inequalities (5.3) does not hold. Denote x = (a1,u1,u1 +
v1), y = (a2,u2,u2 +v2), z = (a3,u3,u3 +v3) and w = (a4,u4,u4 +v4). Since C
is a strongly (1,≤ 2)-identifying code we must have {v1,v2} = {v3,v4} by the
previous discussion.

By Theorem 4.15 we know that the code C′ is (1,≤ 2)-identifying. Thus, it
is enough to consider pairs where there is at least one codeword. Without loss
of generality we may assume x ∈ C′. Thus, x belongs to a class I. We must have
either |I′(x)∩ I(z)| ≥ 2 or |I′(x)∩ I(w)| ≥ 2. Without loss of generality suppose
|I′(x)∩ I(z)| ≥ 2. Because the last n bits are changing in the words of I ′(x), this
must be true also in I(z), thus, also z belongs to the class I. This also implies that
u1 = u3.
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If y belongs to the class II, then we must have |I(y)∩ I(w)| ≥ 2, since z from
the class I can cover at most one codeword from I(y). Hence, now also w belongs
to the class II. Thus, y and w belong to the same class.

Let first all x,y,z and w lie in the first class. If I ′(x)∩ I(w) 6= /0, then we have
u1 = u4. Similarly, if I(y)∩ I(z) 6= /0, then u2 = u3. Now u1 = u2 = u3 = u4 and
together with {v1,v2} = {v3,v4}, we get {x,y} = {z,w}, what is a contradiction.
If I′(x)∩ I(w) = /0, then |I ′(x)∩ I(z)| ≥ 3, which implies by Lemma 2.1 that x = z.
Thus, |I′(y)∩ I′(w)| ≥ 3 and y = w.

Assume next that x and z belong to the first class and y and w lie in the second.
Because y and w cannot be codewords, it suffices to verify only the following
inequalities of (5.3) I(x,y)\{x} 6= I(z,w)\{z} and I(x,y)\{x} 6= I(z,w).

Suppose I(x,y)\{x}= I(z,w)\{z}. We have x 6= z, since otherwise I(x,y) =
I(z,w), which is impossible due to the fact that C′ is (1,≤ 2)-identifying. We must
have I′(x)∩ I′(z) 6= /0 and hence u1 = u3. Because |I′(e)| ≥ 3 for all e ∈ F2n+1,
we obtain |I′(x)∩ I(w)| = 1 and |I ′(z)∩ I(y)| = 1 (the number of elements in the
intersections cannot be greater than one, since x and w and also y and z belong
to different classes). The words in these two intersections must be different, since
x 6= z. Since words y and w belong to the class II and we must have I(y)∩I(w) 6= /0,
the last n bits of the words in I(y) and I(w) are the same. On the other hand, the
words in the intersections I ′(x)∩ I(w) and I′(z)∩ I(y) must also end with those n
bits, but now |I′(x)∩ I′(z)| ≥ 3, since u1 = u3, and thus x = z, a contradiction.

Assume finally I(x,y) \ {x} = I(z,w). Evidently, x ∈ C′ and x 6= z. If z is a
codeword, then in I(z) there are at least two codewords which are not in I ′(x),
these two words cannot be both in I(y) either (y and z are in different classes), so
z /∈C′. Now I(x,y)\{x} = I(z,w)\{z}, where z /∈C′ but belongs to the class I.
This is impossible by the previous case.

There does not exist a strongly (1,≤ 2)-identifying code of length less than
five. Indeed, for length four we notice that there cannot be a strongly (1,≤ 2)-
identifying code, since always I(0000,1111) \ {0000,1111} = I(0011,1100) \
{0011,1100} regardless of the code.

In the next proof, we denote by Sn
i (x) the words at distance i from a word x

in Fn.

Theorem 5.26. M(≤2)SID(5) = 22.

Proof. By Theorem 4.11 we have M(≤2)(4) = 11, and thus we obtain the upper
bound using Corollary 5.22.

We prove the lower bound by using Corollary 5.20, |I ′(x)| ≥ 3 for all x ∈ F5.
Suppose M(≤2)SID(5) ≤ 21. By [13, p. 383] we need at least 22 codewords to
cover each word in F5 at least four times. Hence we know that there is a non-
codeword which is covered by exactly three codewords. Let C be a code attain-
ing the bound M(≤2)SID(5). Without loss of generality, assume 00000 6∈ C, and
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I(00000) = {10000,01000,00100}. Each word of weight one must be covered by
at least three codewords of weight two. Each codeword of weight two covers two
words of weight one. Thus, we need at least d3 · 5/2e = 8 codewords of weight
two. If 11111 6∈C this is a symmetric situation, so all in all there are now at least
22 codewords.

Suppose 11111 ∈ C. Now again there are at least three codewords of weight
four. The word 00011 must be covered by three codewords of weight three, those
can only be {10011,01011,00111} =: T . The words of the set A := S3

1(000)⊕
S2

1(00) must be covered by at least two codewords of weight three. Denote by
Ga = a⊕ S2

1(00), where a ∈ S3
1(000). The words of weight three always cover

exactly two words of A, except that 11100 covers none. Moreover, a word in
S5

3(00000) \ ({11100}∪ T ) covers a word both in Ga and Gb for some a and b
(a 6= b). Let c1 ∈ S5

3(00000) cover a word in Ga and Gb and, moreover, c2 ∈
S5

3(00000) cover the other word in Ga and a word in Gd, where b 6= a 6= d and
b 6= d. The distance between the yet uncovered (by others than the words in T )
words of Gb and Gd is four. Thus, we need at least seven codewords of weight
three in C. Again there are at least 22 codewords.

In Table 5.1 we have collected lower and upper bounds on the cardinalities of
strongly 1-identifying and strongly (1,≤ 2)-identifying codes.
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Table 5.1: Bounds on the cardinalities of strongly 1-identifying codes and strongly
(1,≤ 2)-identifying codes.

n MSID(n) M(≤2)SID(n)

3 a 6 A -
4 b 8 B -
5 c 14 C 22 G
6 a, d 18 – 20 D 32 H
7 d 32 – 38 E 55 – 64 I
8 d 57 – 64 A 96 H
9 d 102 – 128 A 171 – 192 I
10 d 186 – 256 A 308 – 352 I
11 d 341 – 488 F 559 – 704 I, J
12 d 629 – 768 A 1024 H
13 d 1169 – 1536 A 1891 – 2048 I, J
14 d 2182 – 2816 A 3511 – 4096 I
15 d 4091 – 5632 A 6554 – 8192 I, J
16 d 7703 – 10240 A 12288 H
17 d 14552 – 20480 A 23131 – 24576 I, J
18 d 27575 – 40960 A 43691 – 49152 I
19 d 52397 – 81920 A 82783 – 98304 I, J
20 d 99813 – 163840 A, D 157287 – 180224 I
21 d 190565 – 327680 A 299594 – 360448 I, J
22 d 364580 – 630784 D 571951 – 720896 I
23 d 698812 – 905216 E 1094167 – 1441792 I, J
24 d 1341774 – 1572864 D 2097152 I

Lower bounds on M(≤2)SID(n) for n ≥ 6 come from Theorem 5.19 and for n = 5
the lower bound comes from Theorem 5.26.

MSID(n) M(≤2)SID(n)

a Theorem 5.14 G Theorem 5.26
b Theorem 5.17 H Corollary 5.23
c Theorem 5.18 I Theorem 5.21
d Theorem 5.16 J Theorem 5.25
A Theorem 5.3
B Theorem 5.2
C Theorem 5.18
D Theorem 5.7
E Theorem 5.12
F Theorem 5.5



Chapter 6

Linear identifying codes

A binary code C ⊆ Fn is called linear if all the pairwise sums of codewords belong
to the code. This means that C is a subspace of Fn. There is a linearly independent
set of words of Fn that generates the code C. The number of these codewords, k,
is called the dimension of the code. Thus, the cardinality of the code is 2k.

In this chapter we consider linear identifying codes. We solve the smallest di-
mensions for all possible lengths and for all `≥ 1 of linear (1,≤ `)-identifying and
linear strongly (1,≤ `)-identifying codes. The requirement of linearity increases
the number of codewords in most cases compared with the case where linearity is
not required. However, we will see that for infinitely many lengths linear (1,≤ `)-
identifying codes and linear strongly (1,≤ `)-identifying codes for ` ≥ 3, are as
good as the corresponding codes in the case where linearity is not required. This
chapter is based on [55].

The smallest dimension of a binary linear (r,≤ `)-identifying code of length n
is denoted by k(≤`)

r [n]. A code attaining the smallest dimension is called optimal.
The next lemma will often be used.

Lemma 6.1. If C ⊆ Fn is a linear code and c ∈C, then for all x ∈ Fn

I(x+ c) = I(x)+ c.

Proof. Clearly, y ∈ I(x+c) if and only if y ∈C and d(x+c,y)≤ 1. This is equiv-
alent to the fact that y + c ∈ C (because C is linear) and d(x,y + c) ≤ 1; that is,
y+ c ∈ I(x). This is equivalent to y ∈ I(x)+ c.

Lemma 6.1 implies that each codeword is covered by the same number of
codewords in a linear code. Namely, suppose C is a linear code. Then for all c ∈C
we have I(0+c) = I(0)+c. Thus, each codeword is covered by the same number
of codewords as 0, which is always a codeword. By the lemma, we also know that
if x,y 6∈C,ei ∈ S1(0) and both x + ei and y + ei ∈C, then |I(x)| = |I(y)|. Indeed,
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I(x)+x+ei = I(x+x+ei) = I(ei) = I(y+y+ei) = I(y)+y+ei. In fact, we get
more; namely, |I(x)| = |I(ei)| = |I(y)|.

Let us recall the definitions from [13]. A code C is a µ-fold 1-covering if the
codewords of C cover each word of Fn at least µ times. The smallest dimension
of a linear µ-fold 1-covering is denoted by k[n,1,µ]. A code attaining the smallest
dimension is called optimal.

We denote by k[n,1,µ,ν ] the smallest dimension of a binary linear code of
length n such that each non-codeword in Fn is covered by at least µ codewords
and each codeword is covered by at least ν codewords. These covering codes
are a generalization of µ-fold 1-coverings, and k[n,1,µ] = k[n,1,µ,µ]. The next
theorem is the sphere-covering bound for such codes.

Theorem 6.2. Suppose µ and ν are positive integers. Then

k[n,1,µ,ν ] ≥ dn+ log2 µ − log2(n+1+ µ −ν)e.

Proof. Denote K = 2k[n,1,µ,ν ]. The claim follows from the direct calculation

ν ·K + µ(2n −K) ≤ K(n+1).

A linear k-dimensional code C ⊆ Fn can always be defined by choosing an
(n− k)×n matrix H — called its parity check matrix — such that

x ∈C if and only if HxT = 0.

Let x ∈ Fn be arbitrary, and consider its syndrome HxT . If HxT appears in H
as the i-th column, then clearly the word obtained by changing the i-th bit in x
belongs to C. Consequently, if x is a codeword, the number of codewords within
distance one from it equals one plus the number of zero columns in H; if x is a
non-codeword, the number of codewords within distance one from it equals the
number of times the syndrome of x appears as a column in H.

The proof of the next theorem gives optimal constructions for all possible
lengths of linear codes such that all non-codewords are covered at least µ times
and all codewords are covered at least ν times.

Theorem 6.3. Let µ and ν be positive integers. When n = (2r −1)µ +ν −1+ s,
where r ≥ 0 and 0 ≤ s ≤ 2rµ −1, then

k[n,1,µ,ν ] = n− r.

Proof. The lower bound comes from Theorem 6.2.
If r = 0, then by Theorem 6.2, k[n,1,µ,ν ] ≥ n. In Fn codewords are covered

at least ν times and, thus, it is the optimal code.
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Suppose then that r ≥ 1. Let H be any (r× n)-matrix which contains the all-
zero column at least ν −1 times and every non-zero column at least µ times. Now
n = (2r −1)µ +ν −1+s, where 0 ≤ s ≤ 2rµ −1. The matrix H has clearly rank r,
and the code which has H as its parity check matrix is as required, by the previous
discussion.

6.1 On linear 1-identifying codes

In this section, we first prove a lower bound for linear 1-identifying codes. We
also prove a construction which increases the length and dimension of a linear
1-identifying code by one and the result is a linear 1-identifying code. The corre-
sponding result is not known for 1-identifying codes, in general. In Theorem 6.6
we combine these results and get the optimal dimensions for all possible lengths
of linear 1-identifying codes.

Theorem 6.4. For n ≥ 2 we have

k(≤1)
1 [n] ≥ dn+ log2 3− log2(n+3)e.

Proof. Suppose C ⊆ Fn is a linear 1-identifying code of length n and cardinality
K. We will show that each word in Fn is covered either by one codeword or by
at least three codewords. Because C is 1-identifying we have |I(x)| ≥ 1 for all
x ∈ Fn, and |I(x)| = 1 for at most K words.

Suppose that for some y ∈ Fn we have |I(y)| ≥ 2. Then {y+e1,y+e2} ⊆ I(y)
where e1,e2 ∈ B1(0). Now {y+e1,y+e2} ⊆ I(y+e1 +e2) and by Lemma 6.1 we
know that |I(y)| = |I(y + e1 + e2)|. This implies a contradiction with identifying
property unless |I(y)| ≥ 3. Since y was chosen arbitrarily we know that for all
y ∈ Fn such that |I(y)| > 1 we have |I(y)| ≥ 3. Now we can calculate

K +3(2n −K) ≤ K(n+1)

from which the claim follows.

For linear 1-identifying codes we get the next nice result which is not known
for 1-identifying codes in general.

Theorem 6.5.
k(≤1)

1 [n] ≤ k(≤1)
1 [n−1]+1.

Proof. Let D be a linear 1-identifying code of length n−1 and dimension k(≤1)
1 [n−

1]. If each codeword is covered by more than one codeword then by [6, Theorem
1] (or Theorem 3.20) the direct sum D⊕F is a 1-identifying code of length n.
Clearly, the code D⊕F is linear.
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Suppose that in D each codeword is covered only by itself, this is equivalent
with the condition that the minimum distance of D is at least two. Then as noticed
in the proof of Theorem 6.4 each non-codeword is covered by at least three code-
words. Denote by C(0) = {00,11} ⊆ F2 and C(1) = {01,10} ⊆ F2. We will show
that the code

C =
⋃

(x1,x2,...,xn−1)∈D

(x1,x2, . . . ,xn−2)⊕C(xn−1)

is a linear 1-identifying code of length n. If GD is a generator matrix for D, then
the matrix

GC =








0

GD
...
0

0 . . . 0 1 1








is a generator matrix for C and, hence, C is linear. Since the minimum distance of
D is at least two, we see from the generator matrix GC that the minimum distance
of C is two. Namely, 0 . . .011 ∈ C and, thus, the minimum distance is at most
two. If x ∈ D and x 6= 0, then (x,0) ∈C and the weight of (x,0) is the same as the
weight of x. If the last bit of x is one, then the codeword (x,0)+0 . . .011 has the
same weight as x, otherwise, the weight is one greater. Thus, each codeword of C
is covered only by itself.

Suppose x = (x′,a)∈ Fn, where x′ ∈ Fn−2 and a ∈ F2, is a non-codeword. As-
sume that a∈C(z), where z∈F. Now (x′,z) 6∈D and we know that |I(D;(x′,z))| ≥
3. In particular,

I(D;(x′,z)) = {(c,z) ∈ D | d(x′,c) ≤ 1}∪A,

where A = {(x′,z+1)} if (x′,z+1) ∈ D and otherwise A is empty. Now

I(C;x) = {(c,a) ∈ Fn | d(x′,c) ≤ 1,(c,z) ∈ D}∪B,

where B = {(x′,b)∈ Fn | b∈C(z+1)} if (x′,z+1)∈D and otherwise B is empty.
This means that also in C each non-codeword is covered by at least three code-
words. Since in the intersection of three Hamming balls of radius one there is at
most one word, we know that each non-codeword is distinguishable. Hence, each
word in Fn has a unique I-set. Thus, C is a linear 1-identifying code of length n
and dimension k(≤1)

1 [n− 1]+1.

Theorem 6.6. Let n = 3(2r −1)+ s for r ≥ 1 and 0 ≤ s ≤ 3 ·2r −1. Then

k(≤1)
1 [n] = n− r.

Proof. Let n = 3(2r − 1). By Theorem 6.3 there is a linear code such that each
non-codeword is covered by exactly three codewords and each codeword is cov-
ered only by itself. Thus, this code is 1-identifying. The dimension of the code is
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n−r. The upper bounds for 1 ≤ s ≤ 3 ·2r −1 follow from Theorem 6.5. The lower
bounds follow from Theorem 6.4.

At least for some lengths there are also other optimal linear 1-identifying
codes than what we constructed in the proofs of Theorem 6.6 and Theorem 6.5.
Let n = 2r −1 = 3(2r−2 −1)+2r−2 +2 for r ≥ 3 and denote by H the Hamming
code of length n. Then the code

C = H ∪ (H +10n−1)∪ (H +010n−2)∪ (H +110n−2)

is a linear code and each word in Fn is covered by four codewords, and, thus, it
is 1-identifying. The code C is optimal and by repeatedly taking the direct sum
with F we get optimal codes up to the length 3(2r−1 − 1)− 1. These codes and
the codes of Theorem 6.6 are not equivalent, since in the codes of Theorem 6.6 all
codewords are covered only by themselves.

6.2 On linear (1,≤ `)-identifying codes

Theorem 6.7 solves the dimensions of (1,≤ 2)-identifying codes for all possible
lengths. The optimal results for linear (1,≤ `)-identifying codes, when ` ≥ 3,
follow from the results in [45].

Theorem 6.7. A linear code C ⊆ Fn is (1,≤ 2)-identifying if and only if it is a
5-fold 1-covering. In particular, if n = 5 · 2r − 1 + s, where r ≥ 0 and 0 ≤ s ≤
5 ·2r −1, we have

k(≤2)
1 [n] = k[n,1,5] = n− r.

Proof. Suppose first that |I(C;x)| ≥ 5 for all x ∈ Fn. By Lemma 2.1 no set of size
at most two where x does not belong to can cover the whole I-set of x. Thus, C is
(1,≤ 2)-identifying.

Let C be a linear (1,≤ 2)-identifying code. By Theorem 4.3 we know that
|I(x)| ≥ 3 for all x ∈ Fn. Let us first consider codewords. Suppose c ∈ C. Since
C is linear, 0 ∈ C. Suppose first that |I(c)| = 3. Then by Lemma 6.1, I(0) =
{0,c1,c2} for some codewords c1,c2 ∈ S1(0). By linearity, c1 + c2 ∈ C. Again
by Lemma 6.1, I(c1) = {0,c1,c1 +c2} and I(c1 +c2) = {c1,c2,c1 +c2}, and thus
I(0,c1) = I(0,c1 +c2) = {0,c1,c2,c1 +c2}, which is impossible. Hence |I(c)| ≥ 4
for all c ∈C.

If |I(c)| = 4, then I(0) = {x,y,z,0} where the supports of x,y, and z are {i},
{ j}, and {k}, respectively. By linearity, there are codewords c1,c2,c3 and c4
with supports {i, j}, {i,k}, { j,k} and {i, j,k}, respectively. But now I(0,c4) =
I(y,c2) = {0,x,y,z,c1,c2,c3,c4}. Thus, each codeword is covered by at least five
codewords.

We claim that also each non-codeword is covered at least by five codewords.
First, we show that |I(x)| ≥ 4 for all x 6∈ C. Assume on the contrary that x 6∈ C
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and |I(x)| = 3. Without loss of generality (by Lemma 6.1) we can assume that
x ∈ S1(0). There are two non-codewords y and z in S1(0) such that x + y and
x+z belong to the code, and by linearity also y+z ∈C. By Lemma 6.1, I(x,y) =
{0,x+y,x+z,y+z}= I(x,z), which is a contradiction. Hence, |I(x)| ≥ 4 for all
x 6∈C.

Assume now that x 6∈ C and I(x) = {x + e1,x + e2,x + e3,x + e4} where ei ∈
S1(0), for i = 1, . . . ,4 are different non-codewords. Denote

y = x+ e1 + e2
z = x+ e3 + e4
v = y+ e3 + e4.

Using Lemma 6.1 we get

I(y) = {y+ e1 = x+ e2,y+ e2 = x+ e1,y+ e3,y+ e4}
I(z) = {z+ e1,z+ e2,z+ e3 = x+ e4,z+ e4 = x+ e3}

I(v) = {v+ e1,v+ e2,v+ e3 = y+ e4,v+ e4 = y+ e3}.

Now z+e1 = x+e3 +e4 +e1 = y+e3 +e4 +e2 = v+e2 and similarly z+e2 =
v+e1. Thus, we have I(x,v) = I(y,z) which is impossible, and, hence, |I(x)| ≥ 5
for all x ∈ Fn.

The optimal dimensions follow from Theorem 6.3.

Let ` ≥ 3. It is proved in [45, Theorem 2] that C ⊆ Fn is (1,≤ `)-identifying
if and only if it is a (2`−1)-fold 1-covering. Thus, we have the next theorem, the
optimal dimensions follow again from Theorem 6.3.

Theorem 6.8. If ` ≥ 3 and n = (2`− 1)2r − 1 + s, where r ≥ 0 and 0 ≤ s ≤
(2`−1)2r −1, then

k(≤`)
1 [n] = k[n,1,2`−1] = n− r.

For ` ≥ 3, we know by [45, Corollary 1] that

M(≤`)
1 (n) =

(2`−1)2n

n+1

if and only if there are integers i ≥ 0, µ0 > 0 such that µ0 | (2`−1) and 2`−1 ≤
2iµ0 and n = µ02i −1. When n = 2r(2`−1)−1 for r ≥ 0 the above requirements
are true and (2`− 1)2n/(n + 1) = 2n−r, and, thus, the linear codes constructed
above for lengths n = 2r(2`− 1)− 1 where r ≥ 0 are optimal also in the case
where linearity is not required.

When ` = 2 and ` = 3 we want, in both cases, each word to be covered by at
least five codewords, and, thus, in these two cases the optimal codes are the same.
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6.3 Linear strongly identifying codes

We defined strongly (r,≤ `)-identifying codes in Chapter 5. In this section, we
solve all the optimal dimensions for linear strongly (1,≤ `)-identifying codes for
any ` ≥ 1 and for any possible code length.

The smallest dimension of a linear strongly (1,≤ `)-identifying code is de-
noted by k(≤`)SID

1 [n].

Theorem 6.9. For n ≥ 3 we have

k(≤1)SID
1 [n] ≥ dn+ log2 3− log2(n+2)e .

Proof. Let C be a linear strongly 1-identifying code, and denote K = |C|. There are
at most K words which are covered exactly by one codeword. Because a strongly
1-identifying code is 1-identifying, we know from the proof of Theorem 6.4 that
all the other words are at least 3-fold 1-covered. For all c ∈ C, |I(c)| > 1 since
otherwise I′(c) = /0, which is impossible. In fact, codewords are covered by at
least four codewords. Assume to the contrary that |I(c)| = 3 for c ∈ C. Then by
Lemma 6.1, |I(0)| = 3. In particular, I(0) = {0,c1,c2}, where c1,c2 ∈ S1(0) are
codewords. By linearity c1 + c2 ∈ C and using again Lemma 6.1 we get I ′(0) =
I′(c1 + c2) = {c1,c2}, which is a contradiction.

Thus, we can calculate

4K +K +3(2n −2K) ≤ K(n+1)

from which the claim follows.

Theorem 6.10. Let n = 3(2r −1)+1+s, where r ≥ 1 and 0 ≤ s ≤ 3 ·2r −1. Then

k(≤1)SID
1 [n] = n− r.

Proof. Let H be an (r× n)-matrix such that there is at most one nonzero binary
r-tuple which occurs only once as the column of H and all the other r-tuples
(including the all-zero tuple) occur at least three times. As in the proof of The-
orem 6.3, we know that the code which has H as its parity check matrix has the
following properties. Each codeword is covered at least four times. There are
2n−r or 0 non-codewords which are covered by exactly one codeword. All the
other non-codewords are covered by at least three codewords.

The I-sets I(x) for all x ∈ Fn are unique since at distance one from each code-
word there is at most one non-codeword which is covered only by this one code-
word, and all the other words of Fn are covered by at least three codewords. By
Lemma 2.1 we know that three codewords is enough to make an I-set unique.
Also the sets I′(x) for all codewords are distinguishable, since again there are at
least three words in I ′(x).

The lower bound follows from Theorem 6.9.
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There is also a linear strongly 1-identifying code of length n = 3 (Theo-
rem 6.10 does not give this). We have k(≤1)SID

1 [3] = 3 since F3 covers each code-
word four times and there are no non-codewords. Theorem 6.9 gives the lower
bound.

Theorem 6.11. Let ` ≥ 3. If n = (2`− 1)2r + s, where r ≥ 0 and 0 ≤ s ≤ (2`−
1)2r −1, then

k(≤`)SID
1 [n] = k[n,1,2`−1,2`] = n− r.

Proof. By [44] we know that C is strongly (1 ≤ `)-identifying if and only if C
covers each word at least 2`−1 times and each codeword at least 2` times. Thus,
we have the claim. The optimal dimensions follow from Theorem 6.3.

Theorem 6.12. If n = 5 ·2r + s, where r ≥ 0 and 0 ≤ s ≤ 5 ·2r −1, then

k(≤2)SID
1 [n] = k[n,1,5,6] = n− r.

Proof. First we prove the lower bound. Suppose C is a linear strongly (1,≤ 2)-
identifying code. By Theorem 6.7 we know that each word in Fn must be cov-
ered by at least five codewords, because otherwise C cannot be a linear (1,≤ 2)-
identifying code. If codewords were covered by five codewords, then I(0) = {c1,
c2, c3, c4, 0} for some c1,c2,c3,c4 ∈C of weight one. By linearity and Lemma 6.1
it would be I′(0)∪ I′(c1 +c2 +c3 +c4) = {c1, c2, c3, c4, c1 +c2 +c3, c1 +c2 +c4,
c1 +c3 +c4, c2 +c3 +c4}= I′(c1 +c2)∪ I′(c3 +c4). Thus, all codewords must be
covered by at least six codewords.

Upper bound: By the proof of Theorem 6.11, we know that a code attaining
the dimension k[n,1,5,6] is strongly (1,≤ 3)-identifying. This implies that such
a code is also a linear strongly (1,≤ 2)-identifying code. The optimal dimensions
follow from Theorem 6.3.

The optimal linear strongly (1,≤ `)-identifying codes are the same for the
values ` = 2 and ` = 3.

Let ` ≥ 3. By [44, Theorem 3] we know that M(≤`)SID
1 (n) = (2`− 1)2n/n,

when there are integers i ≥ 0, µ0 > 0 such that µ0 | (2`− 1), 2`− 1 ≤ 2iµ0 and
n = µ02i. If n = (2`− 1)2r, when r ≥ 0, the optimal linear strongly (1,≤ `)-
identifying codes of length n are optimal also in the case where the linearity is not
required.



Chapter 7

Locating-Dominating Codes

Let G be a graph with a vertex set V. A subset S ⊆ V is said to be a dominating
set if every vertex in V \ S is adjacent to at least one vertex in S. A dominating
set S is defined to be locating if for all u,v ∈ V \ S the sets of adjacent vertices
in S are different. This is the definition of locating-dominating sets in graphs.
Locating-dominating sets in graphs are considered for example in [54, 60–62].

We consider locating-dominating sets or codes in binary Hamming spaces,
and we generalize the definition to locate-dominate more than one vertex. This
chapter is based on [36]. Theorem 7.22 is not published before.

Consider the binary hypercube (or an arbitrary graph). Assume that it is used
to model a multiprocessor architecture, and that each node corresponds to a pro-
cessor and each edge corresponds to a dedicated link between two processors. We
choose some of the processors as codewords, and ask each of them to check its
r-neighbourhood. Each codeword sends us the symbol 2 if it itself is malfunc-
tioning, 1 if it itself is fine, but at least one processor in its r-neighbourhood is
malfunctioning, and 0 otherwise. When we have received the reports from all the
codewords we wish to locate the malfunctioning processors, under the assumption
that there are at most ` of them. The integers r and ` are given at the outset. This
is the classical locating-dominating set problem if ` = 1 (and then the requirement
for the code C, i.e., the set of codewords, is that the sets Br(x)∩C are different
and nonempty for all x ∈ Fn \C). This leads to the following definition.

Definition 7.1. Let r and ` be non-negative integers. A code C ⊆ Fn is an (r,≤ `)-
locating-dominating code of type A — an (r,≤ `)-LDA for short — if for all
X ⊆ Fn and Y ⊆ Fn of size at most `,

Br(X)∩C = Br(Y )∩C (7.1)

X ∩C = Y ∩C (7.2)

implies that X = Y .
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If X = /0, then Br(X)∩C = /0: so, in particular, the previous definition implies
that Br(Y )∩C 6= /0 whenever Y 6= /0.

In the second variant we only consider subsets X and Y of Fn \C. Then X ∩C
and Y ∩C are empty, (7.2) becomes void, and (7.1) takes the simple form Br(X)∩
C = Br(Y )∩C. This corresponds to a two-step testing procedure: we first fix all
the codewords that have sent 2, and then immediately perform a second round,
during which we only receive 1’s and 0’s.

Definition 7.2. Let r and ` be non-negative integers. A code C ⊆ Fn is an (r,≤ `)-
locating-dominating code of type B — an (r,≤ `)-LDB for short — if for all sets
X ⊆ Fn \C and Y ⊆ Fn \C of size at most `,

Br(X)∩C = Br(Y )∩C

implies that X = Y .

Both definitions reduce to the definition of an r-locating-dominating code
when ` = 1. Clearly, an (r,≤ `)-LDA is always an (r,≤ `)-LDB. The smallest
cardinalities of an (r,≤ `)-LDA and an (r,≤ `)-LDB of length n are denoted by
LA(≤`)

r (n) and LB(≤`)
r (n), respectively.

Example 7.3. (i) Let C be the even-weight code of length n ≥ 5, i.e., it consists
of all 2n−1 words of length n that have even weight. We shall see in Theorem 7.9
that C is a (1,≤ b(n + 1)/2c)-LDA. Clearly, C is not (1,≤ 2)-identifying (take
X = {100 . . .0}, Y = {000 . . .0,100 . . .0}).

(ii) The code C = Fn−1 ⊕{0}, n ≥ 2, is a (1,≤ 2n−1)-LDB (and hence a (1,≤
`)-LDB for all `). Clearly, C is not (1,≤ 2)-LDA (take X = {(x,0)} and Y =
{(x,0),(x,1)} for any x ∈ Fn−1).

(iii) For all k ≤ ` an (r,≤ `)-LDA is always (r,≤ k)-LDA, and an (r,≤ `)-LDB
is an (r,≤ k)-LDB.

7.1 On the case ` = 1

In this section we examine the case ` = 1. We denote

L(n) = LA(≤1)
1 (n) = LB(≤1)

1 (n).

From [40] we know that M1(n) ≤ nK(n,2). This implies trivially that L(n) ≤
nK(n,2).

Theorem 7.4. For all n ≥ 4,

L(n+1) ≤ (2n−1)K(n,2).
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Proof. Let C ⊆ Fn (n ≥ 4) be a code attaining the bound K(n,2). Denote by e1
the word of weight one whose first coordinate equals one. Let C1 = {c + e | c ∈
C,e ∈ S1(0)} and C2 = {c + e | c ∈ C,e ∈ S1(0) \ e1}. We claim that D = (C1 ⊕
{0})∪ (C2 ⊕{1}) is 1-locating-dominating.

Denote Oi = Fn ⊕{i} for i = 0,1. By the construction, I(x) 6= /0 for all x ∈
Fn+1. Assume that x,y ∈ Fn+1 \D and x 6= y. It is shown in [40] that C1 is 1-
identifying. Hence, if x,y ∈ O0, then I(x) 6= I(y).

Suppose x ∈ O0 and y ∈ O1. Because x /∈ D, the structure of C1 implies that
|I(x)∩O0| ≥ 2 whereas |I(y)∩O0| ≤ 1. Hence, I(x) 6= I(y).

Assume next that x,y ∈ O1. There is c ∈ C ⊕{1} such that d(c,x) ≤ 2. If
x = c, then |I(x)∩S1(c)| ≥ 3 and |I(y)∩ I(x)| ≤ 2 by Lemma 2.1. If x = c + e1,
then I(x)∩O0 6= /0 and thus I(x) 6= I(y). Assume then that x ∈ S2(c) and that x
covers two elements of I(c). In this case only y = c could cover both elements of
I(x)∩S1(c), and this is impossible as we have seen. Suppose finally that x ∈ S2(c)
and d(x,c+ e1) = 1. Then y should cover the unique element in I(x)∩S1(c) and
consequently y ∈ S2(c), but then y covers also another codeword of I(c), which
gives I(x) 6= I(y).

By [61, Theorem 10] we have the next theorem.

Theorem 7.5.

L(n) ≥
⌈

2n+1

n+3

⌉

.

In the proof of the next theorem we use the notation of excess, see page 52 (cf.
[6]). Theorem can also be proved using the technique of the proof of Theorem 3.3.

Theorem 7.6.

L(n) ≥
⌈

n22n+1

n3 +2n2 +3n−2

⌉

.

Proof. Suppose C is an optimal 1-locating-dominating code of length n. Denote
by K the cardinality of C.

It is not difficult to check that there can be only four kinds of words in Fn :

1. a word which is covered by exactly one codeword,

2. a codeword, say c1, which forms a couple with another codeword c2 such
that I(c1) = I(c2) = {c1,c2},

3. a word x which has E(x) ≥ 2, and

4. a word y which has E(y) = 1 and for which there exists a word x such that
E(x) ≥ 2 and I(y) ⊂ I(x).
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A word of type 3 is called a father. A word of type 4 is called a son; the
word x such that I(y) ⊂ I(x) is called its father (it is easy to see that x is uniquely
defined). A family consists of a father and its sons. The families, couples and
points with excess zero partition the whole space Fn.

Suppose that a father is covered by i codewords. Then there are at most
( i

2

)

sons in the family. The average excess on the points in a family whose father is
covered by exactly i ≥ 3 codewords is therefore at least

f (i) :=

( i
2

)
+ i−1
( i

2

)
+1

.

This is a decreasing function on i ≥ 4; and f (3) = f (6). Assume that n ≥ 6. Then
f (i) ≥ f (n) for all 3 ≤ i ≤ n. Since C is an optimal code there is no codeword
c ∈ C such that |I(c)| = n + 1. Namely, if there were such a codeword, then we
could remove it and still get a 1-locating-dominating code. This is impossible
since C is optimal.

The excess on Fn is K(n + 1)− 2n. We now estimate it in a different way.
There are at most 2K words outside the families. The uniquely covered points
contribute nothing to excess. We can estimate

K(n+1)−2n ≥ (2n −2K) f (n),

from which we get the claimed lower bound on K for n ≥ 6.
When n = 5 then the minimum of f (3), f (4) and f (5) is f (3). Now we can

estimate 6K −25 ≥ (25 −2K) f (3). From this we get K ≥ 9. And, thus, the lower
bound holds for n = 5. Similarly, when n = 4 we notice that the lower bound
holds. For 1 ≤ n ≤ 3 the lower bound is true by Theorem 7.5.

Theorem 7.7. If C ⊆ Fn is 1-locating-dominating with the property that d(c,C \
{c}) = 1 for all c ∈C, then D = C⊕F is 1-identifying.

Proof. Let x,y∈Fn+1, x = (x1,x2) and y = (y1,y2), where x1,y1 ∈Fn and x2,y2 ∈
F. If x1 6= y1 and x1,y1 6∈C, then there is c ∈ I(C;x1) 4 I(C;y1). Without loss of
generality we can assume c ∈ I(C;x1). Thus, (c,x2) ∈ I(D;x)\ I(D;y).

Assume x1 6= y1 and at least the other one of them belong to C, assume x1 ∈
C. Then d(x1,y1) ≥ 1 and, thus, (x1,y2 + 1) ∈ I(D;x) \ I(D;y). If x1 = y1, then
x2 6= y2. By the assumption d(a,C \{a}) = 1 for all a ∈ Fn, we know that there is
c ∈C such that d(c,x1) = 1 and, thus, (c,x2) ∈ I(D;x)\ I(D;y).

It is proved in [6] (see also Theorem 3.20) that if C ⊆ Fn is 1-identifying,
then C⊕F2 is also 1-identifying. The next theorem shows1 that we do not need a
1-identifying code in this construction, 1-locating-dominating code is enough.

1as was pointed out by Tero Laihonen
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Theorem 7.8. Let C ⊆ Fn be 1-locating-dominating, then C⊕F2 is 1-identifying
which satisfies that for all c ∈C⊕F2 we have d(c,(C⊕F2)\{c}) = 1.

Proof. It will be proved in Theorem 7.18 that C⊕F is 1-locating-dominating. The
direct sum construction also implies that all the codewords are 2-fold 1-covered
in Fn+1 and in Fn+2. The claim follows from the previous theorem.

7.2 Locating-dominating codes of type A

In this section we consider locating-dominating codes of type A when ` ≥ 3. We
have the following characterization of the locating-dominating codes of type A;
cf. [45].

Theorem 7.9. Assume that ` ≥ 3. A code C ⊆ Fn is a (1,≤ `)-LDA if and only if
every element of Fn \C is covered by at least 2`−1 codewords of C.

Proof. Assume first that every element of Fn \C is covered by at least 2`− 1
codewords of C. Assume that X and Y are two subsets of Fn, each of size at most
`, and that X ∩C = Y ∩C and

B1(X)∩C = B1(Y )∩C. (7.3)

Assume contrary that x ∈ X \C does not belong to Y . Without loss of gener-
ality x = 000 . . .0. As a non-codeword, x is covered by at least 2`−1 codewords,
say c1, . . . , c2`−1; and without loss of generality, they have been indexed in such a
way that c1, . . . , ci ∈ X , whereas ci+1, . . . , c2`−1 /∈ X (0 ≤ i ≤ `−1). The fact that
X ∩C = Y ∩C immediately implies that c1, . . . , ci ∈ Y and ci+1, . . . , c2`−1 /∈ Y .

By (7.3), the codewords ci+1, . . . , c2`−1 are therefore covered by the at most
`− i words of weight two of Y , each covering at most two of the codewords ci+1,
. . . , c2`−1. Because 2(`− i−1) < 2`−1− i, there are exactly `− i words of weight
two in Y (together with the remaining i words of weight one).

We first notice that the set X does not contain any word of weight four. Indeed,
because X ∩C = Y ∩C, and Y does not contain any word of weight four, there is
no codeword of weight four in X . Any non-codeword of weight four in X would
be covered by at least (2`−1)−4 (> 0) codewords of weight five, which cannot
be, because no word in Y could cover a codeword of weight five.

Assume that y ∈Y \C has weight two. We show that y ∈ X . By assumption, y
is covered by at least 2`−1 codewords, of which at least 2`−3 have weight three;
and they all must be covered by the words in X . Because there are no words of
weight four in X , all these at least 2`−3 words of weight three must be covered by
the at most `−1− i words of weight two and three in X . Because 2`−3 > `−1− i
for all ` ≥ 3, and no word of weight two or three other than y itself covers more
than one of these at least 2`−3 words, we conclude that y must belong to X .
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We have shown that Y \C ⊆ X . We already knew that Y ∩C = X ∩C ⊆ X , and
hence Y ⊆ X . But Y has size `, and therefore Y = X , contradicting the fact that
x ∈ X \Y .

We have therefore shown that C is a (1,≤ `)-LDA.
Assume conversely that C is a (1,≤ `)-LDA, and let x ∈ Fn \C be arbitrary.

Without loss of generality, x = 000 . . .0. Assume that the codewords that cover x
are c1, c2, . . . , c j. Let i = d j/2e. We can choose i words x1, x2, . . . , xi ∈ Fn \{x}
that together cover all the words c1, c2, . . . , c j. Then X = {x1,x2, . . . ,xi,x} and
Y = {x1,x2, . . .xi} satisfy (7.1) and (7.2), and both have cardinality at most i+1≤
`, unless j ≥ 2`− 1. Hence every non-codeword is covered by at least 2`− 1
codewords of C.

Let us denote by K(n,r,µ,ν) the smallest cardinality of a code C ⊆ Fn such
that every non-codeword is r-covered by at least µ codewords and every codeword
is r-covered by at least ν codewords.

From the proof of Theorem 6.2 we get the following lower bound.

Theorem 7.10. For ` ≥ 3,

LA(≤`)
1 (n) = K(n,1,2`−1,1) ≥ (2`−1)2n

n+2`−1
.

Proof. By the previous theorem it suffices to prove the inequality. Assume that
C ⊆ Fn attains the bound K(n,1,2`−1,1). We count in two ways the number of
pairs (c,x), where c ∈C, x ∈ Fn and d(c,x) ≤ 1. Given c, there are n+1 choices
for x, so the number of such pairs equals (n + 1)|C|. Given x, there are at least
2`− 1 choices for c if x is not a codeword, and at least one, if x is a codeword.
Hence (n+1)|C| ≥ (2`−1)(2n −|C|)+ |C|, which gives the claim.

From [45] we know that

M(≤`)
1 (n)

(2`−1)2n/(n+1)
→ 1

for a given ` ≥ 3 when n → ∞. Because LA(≤`)
1 (n) ≤ M(≤`)

1 (n), the previous
theorem gives the following corollary.

Corollary 7.11. For a fixed ` ≥ 3,

LA(≤`)
1 (n) ∼ (2`−1)2n

n

when n → ∞.

We also get the following infinite family of optimal codes.
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Theorem 7.12. Assume that ` ≥ 3. Then

LA(≤`)
1 ((2`−1)(2s −1)) = 2(2`−1)(2s−1)−s

for all s = 1,2, . . ..

Proof. By Theorem 6.3 we know that for n = (2`− 1)(2s − 1) the inequality of
Theorem 7.10 is attained by a linear code whose parity check matrix has as its
columns 2`−1 copies of every non-zero element in Fs.

Theorem 7.13. Let ` ≥ 3. If C is a (1,≤ `)-LDA then the direct sum C⊕F is also
a (1,≤ `)-LDA. Thus LA(≤`)

1 (n) ≤ 2LA(≤`)
1 (n−1).

Proof. The claim follows from Theorem 7.9 since the direct sum preserves the
property that each non-codeword is covered by at least 2`−1 codewords.

7.3 Locating-dominating codes of type B

In this section we consider (r,≤ `)-locating-dominating codes of type B for ` ≥
2 and r ≥ 1. Firstly, we prove lower bounds and secondly we introduce some
constructions.

7.3.1 Lower bounds

We denote

N = Fn \C,

Ci = {c ∈C | |I(c)| = i},
Ni = {x ∈ N | |I(x)| = i}

and Ci, j = ∪ j
k=iCk and further Ni, j = ∪ j

k=iNk.

Theorem 7.14. Let 2 ≤ ` ≤ n−1. Then

LB(≤`)
1 (n) ≥

⌈
`

n+ `−1
2n
⌉

.

Proof. Assume that C ⊆ Fn is a (1,≤ `)-LDB where 2 ≤ ` ≤ n−1.
Let us count in two ways the number of pairs (x,c) where x ∈ N1,`−1, c ∈Cn

and d(c,x) = 1. Every x ∈ N1,`−1 has at least one c ∈Cn in I(x), since otherwise
there would exist yi ∈ N ∩S2(x)∩B1(ci) for all ci ∈ I(x) and, thus,

I(y1, . . . ,y|I(x)|) = I(y1, . . . ,y|I(x)|,x)
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which is impossible. On the other hand, each c ∈ Cn can have at most one x ∈
N1,`−1 at distance one from it. Therefore,

|N1,`−1| ≤ |Cn|. (7.4)

Next we compute in two ways the number of pairs (x,c) where c ∈ C1, x ∈
N`+1,n and d(x,c) = 1. All the non-codewords at distance one from c ∈C1 belong
to N`+1,n. Indeed, assume that there were a word x at distance one from c such
that I(x) = {c1, . . . ,ci,c} (0 ≤ i ≤ `−1). If i = 0, let y be any word other than x
which is at distance 1 from c. Then I(y) = I(y,x). Assume that i ≥ 1. Denoting
by yi the unique word other than x such that d(c,yi) = d(yi,ci) = 1, we get the
contradiction (note that yi ∈ N)

I(y1, . . . ,yi) = I(y1, . . . ,yi,x).

On the other hand, a non-codeword x ∈ N`+1,n can have at most n elements of C1
at distance one from it. Consequently,

|C1| ≤ |N`+1,n|.

Finally, we count the number of pairs (x,c) such that x ∈ Fn, c ∈ C and
d(x,c) ≤ 1. Now using (7.4) and the previous inequality, we obtain

|C|(n+1) ≥ `|N|− (`−1)|N1,`−1|+ |N`+1,n|+2|C|− |C1|+(n−2)|Cn|
≥ `|N|+2|C|.

This yields the claim.

Lemma 7.15. Let C ⊆ Fn be a (1,≤ `)-LDB with 2 ≤ ` ≤ n− 1. If j is a non-
negative integer satisfying `− j ≥ 1 and `+ j ≤ n, then

(`− j)|N1,`+ j| ≤ (n− `+ j +1)|C`− j,n−1|+(`− j)|Cn|.

Proof. Let us count the number of pairs (c,x), where c ∈ C`− j,n, x ∈ N1,`+ j and
d(x,c) = 1, in two ways. As mentioned in the proof of Theorem 7.14, if x∈N1,`−1,
then there is at least one such pair (c,x).

Let us then concentrate on x ∈ N`,`+ j. If there is c ∈ I(x) such that c ∈ Cn,
then there is again one sought pair. Assume then that for all c ∈ I(x) we have
|I(c)| ≤ n− 1. Denote by M`,`+ j the subset of N`,`+ j which consists of all such
elements x.

Let x ∈ M`,`+ j and without loss of generality x = 00 . . .0. Denote by P a max-
imal subset of {y ∈ N ∩S2(x) | |I(y)∩ I(x)| = 2} such that its minimum distance
is four. Since C is a (1,≤ `)-LDB, we must have

` ≤ |I(x)|− |P|. (7.5)
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Indeed, suppose |I(x)|− |P| ≤ `− 1. Denote by yi a word in N ∩ S2(x) such that
d(yi,ci) = 1 for ci ∈ R = I(x)\ I(P). Notice that such words yi exist for every ci

because x ∈ M`,`+ j. Now this leads to

I(P∪{y1, . . . ,y|R|}) = I(P∪{y1, . . . ,y|R|,x})

which is impossible because

|P∪{y1, . . . ,y|R|,x}| = |I(x)|− |P|+1 ≤ `.

Clearly, by (7.5), 0 ≤ |P| ≤ |I(x)| − ` ≤ j. Hence, by virtue of (7.5), |R| =
|I(x)|−2|P| ≥ `−|P| ≥ `− j. Since P is maximal, {y∈ S2(x) | |I(y)∩R|= 2}⊆C,
and consequently, we get at least `− j pairs from every x ∈ M`,`+ j.

All in all the number of sought pairs is at least

|N1,`−1|+ |N`,`+ j \M`,`+ j|+(`− j)|M`,`+ j|
= |N1,`−1|+ |N`,`+ j|+(`− j−1)|M`,`+ j|.

On the other hand, at distance one from c ∈ C`− j,n−1 (resp. c ∈ Cn) there are
at most n− `+ j + 1 words (resp. one word) of N and hence possibly of N1,`+ j.
Thus, the number of sought pairs is at most

(n− `+ j +1)|C`− j,n−1|+ |Cn|.

Furthermore, one immediately verifies the modification of (7.4) that |N1,`−1|+
|N`,`+ j \M`,`+ j| ≤ |Cn|. Multiplying this by `− j−1 and adding it to the inequality
which we get from the estimates of the number of pairs proves the claim.

Theorem 7.16. Let
√

n+1 ≤ ` ≤ n−1. Denote

k = min
{⌊

`2 −n−1
1+ `+n

⌋

,n− `−1
}

.

Then

LB(≤`)
1 (n) ≥

⌈
`+ k +1

n+ `+ k +1
2n
⌉

.

Proof. Let C ⊆ Fn be a (1,≤ `)-LDB with
√

n+1 ≤ ` ≤ n−1. Obviously,

|C|(n+1) ≥ (`+ k +1)|N|− (k +1)|N`,`+k|− (`+ k)|N1,`−1|
+|C|+(`− k−1)|C`−k,n−1|+(n−1)|Cn|.

Since ` ≤ n−1 we get by (7.4) that

|C|(n+1) ≥ (`+ k +1)|N|− (k +1)|N`,`+k|− (k +1)|N1,`−1|
+|C|+(`− k−1)|C`−k,n−1|+(n− `)|Cn|.
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It is easy to check that the choice of k satisfies

`− k−1 ≥ (k +1)(n− `+ k +1)

`− k

and furthermore
n− ` ≥ k +1.

Consequently, using Lemma 7.15 for j = k one gets

|C|(n+1) ≥ (`+ k +1)|N|+ |C|.

The claim follows immediately from this.

7.3.2 Constructions

In this section we give different constructions for locating-dominating codes of
type B. In the beginning we consider r = 1, in Theorem 7.22 we have r ≥ 2.

Theorem 7.17. Let n ≥ 3. If ` ≥ 1
2(
√

2n2 +2n+1−1), then

LB(≤`)
1 (n) = 2n−1.

Proof. If ` ≥ 1
2(
√

2n2 +2n+1−1), then in Theorem 7.16 we have k = n− `−1.
Combining this lower bound to Example 7.3(ii) and (iii) we get the claim.

Theorem 7.18. If C is a (1,≤ `)-LDB, then C ⊕ F is also a (1,≤ `)-LDB. In
particular,

LB(≤`)
1 (n+1) ≤ 2LB(≤`)

1 (n).

Proof. Suppose C is a (1,≤ `)-LDB of length n. Divide the words of Fn+1 into
two layers O0 and O1 depending on the last bit of the word, i.e., Oi = Fn ⊕{i}
for i ∈ F. Only a codeword can have in its I-set a codeword from the other layer
than where it itself lies. Thus, the I-set of a set of non-codewords on the layer Oi

has codewords only from the same layer. So, if |X | ≤ `, then |X ∩Oi| ≤ ` for both
i ∈ F, and because C is a (1,≤ `)-LDB, I(X ∩Oi) ⊆ Oi uniquely identifies X ∩Oi

for both i ∈ F.

We denote by A(n,d,w) the smallest cardinality of a code of length n and min-
imum distance d whose codewords all have weight w. For values of this function,
see [53].

Denote Si = Si(0).

Theorem 7.19. For ` ≤ n/2−1 we have

LB(≤`)
1 (n) ≤ K(n, `+1)(V (n, `)−A(n,6, `)).
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Proof. Let D be a code attaining the value K(n, `+1), A a code attaining the value
A(n,6, `), and B = B`(00 . . .0). We shall show that the code

C = D+(B\A) = {c+b | c ∈ D, b ∈ B\A}

is a (1,≤ `)-LDB. In the code C there are at most K(n, `+1)(V (n, `)−A(n,6, `))
codewords.

Suppose there are sets X ⊆ N and Y ⊆ N such that X 6= Y, |X |, |Y | ≤ ` and
I(X) = I(Y ). There is a word x∈X such that x 6∈Y. Since x 6∈C there is a codeword
c ∈ D such that d(x,c) = ` or `+1. Without loss of generality we can assume that
c = 00 . . .0.

If d(x,c) = `, then x is covered by ` codewords of weight `−1. None of them
can belong to I(Y ) since B`−1(00 . . .0)∩N = /0 and non-codewords in S` \{x} are
at least at distance six from x.

Suppose now that d(x,c) = `+1. Then `≤ |I(x)∩S`| ≤ `+1. If y ∈Y covers
a codeword of weight ` in I(x), then the weight of y must be ` + 1; and since
y 6= x, y can cover only one codeword of weight ` in I(x). Because |Y | ≤ `, this
implies that |I(x)∩ S`| = `, |Y | = `, Y ⊆ S`+1, and each word in Y covers one
codeword from I(x)∩ S`. For y ∈ Y we have |I(y)∩ S`| = ` + 1, because the
minimum distance of non-codewords of weight ` is six. As we have already seen
(for x whose role y now assumes), this is only possible if y ∈ X . Consequently,
X must contain all the ` elements of Y together with x /∈ Y , which is impossible,
since |X | ≤ `.

The previous theorem is interesting in the light of Conjecture 2.4. Namely, for
every fixed ` ≥ 2 Theorems 7.14 and 7.19 give the bounds

`

n
2n(1+ f (n)) ≤ LB(≤`)

1 (n) ≤ `+1
n

2n(1+g(n)),

where both f (n) and g(n) tend to zero when n → ∞.
Next we construct some (1,≤ 2)-LDBs.

Theorem 7.20. Let n ≥ 5 and C be a code attaining the bound K(n,3). Then the
code

D = C∪{c+x | c ∈C,x ∈ S2(0)}
is a (1,≤ 2)-LDB and has cardinality at most K(n,3)(1+

(n
2

)
).

Proof. Suppose there are X ,Y ⊆ Fn \D such that |X |, |Y | ≤ 2, X 6= Y and I(X) =
I(Y ). By the definition of D, every y /∈ D has distance 1 or 3 to C.

We first show that any word y ∈ Y for which there is a codeword c ∈ C such
that d(c,y) = 1 also belongs to X . Indeed, such a word y is covered by n (≥ 5)
codewords of D and thus by Lemma 2.1 no set of size at most two where y does
not belong to can cover all those words.
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Since X 6= Y there is y ∈ Y \X such that d(c,y) = 3 for some c ∈C. Without
loss of generality, c = 0000 . . . and y = 1110 . . .. Then y is covered by the code-
words 1100 . . ., 1010 . . . and 0110 . . . of D. If an element x of X ⊆ Fn \D covers
at least one of these three words, then x has weight one or three. If w(x) = 3, then
x (6= y) covers at most one of them. Consequently, there is a word x ∈ X of weight
one which covers two of them. But being of weight one, x must also belong to Y .
Without loss of generality, x = 1000 . . ..

Still we have one codeword c = 0110 . . . which is not in I(x). To cover this
word c we need one more word in the set X . This word cannot have weight one
since then it should belong to Y as well, which is impossible. So, without loss of
generality, the other word in X is 0111 . . .. But then 0101 . . . and 0011 . . . belong
to I(X) but not to I(Y ), which gives the required contradiction.

Example 7.21. The repetition code {0000000,1111111} satisfies K(7,3). By the
previous theorem we have a (1,≤ 2)-LDB of length 7 and cardinality 44. From
this we get by Theorem 7.18 a (1,≤ 2)-LDB of length 8 and cardinality 88.

Let C be the perfect binary Golay code of length 23, dimension 12 and min-
imum distance 7 (and covering radius 3). By Theorem 7.20 we can construct a
(1,≤ 2)-LDB of length 23 with cardinality 212(1+

(23
2

)
) = 1040384.

The next theorem2 considers locating-dominating codes of type B when r ≥ 2
and ` = 2.

Theorem 7.22. Let r ≥ 2. Let C′ ⊆ Fn be a code attaining K(n,2r). Then

C = C′ +Br(0)

is (r,≤ 2)-locating-dominating of type B.

Proof. Suppose we are given a set Ir(X) and we have to settle out the set X ⊆
Fn \C. We show that for c ∈ C′ we can tell what X ∩ B2r(c) is by looking at
Br(c)∩ Ir(X). Without loss of generality assume that c = 0 and X ⊆ B2r(c)\Br(c)
where |X | ≤ 2. Let k be the smallest weight of codewords in Br(0)∩ Ir(X).

If |Ir(X)∩Sk(0)| =
(k+r

k

)
, then

supp(x) =
⋃

u∈Ir(X)∩Sk(0)

supp(u)

for any word x ∈ X of weight k + r. If Ir(X)\ Ir(x) = /0, then X = {x}, otherwise
X = {x,y}. We already know that w(x) < w(y). Hence, there is i ∈ supp(y) \
supp(x). Denote A = {i ∈ supp(y) | i 6∈ supp(x)} and B = {i ∈ supp(y) | i ∈
supp(x)}. Because w(y)− r = |A|+ |B| − r ≤ |A|+ w(x)− r and |A| ≥ 1, any
word v of weight w(y)− r in Ir(X) which has

|supp(v)∩B| ≤ w(x)− r and |supp(v)∩A| ≥ 1 (7.6)
2Research is done with Tero Laihonen.
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is at least at distance r+1 from x and at distance r from y. Thus, v ∈ Ir(X)\ Ir(x).
On the other hand, the union of the supports of all the possible choices of words v
satisfying (7.6) includes all the coordinates of supp(y). Hence,

supp(y) =
⋃

v∈Ir(X)\Ir(x)
w(v)=w(y)−r

supp(v)

Suppose |Ir(X)∩Sk(0)|>
(k+r

k

)
. Now {x,y} ⊆ Sk+r(0). Suppose first that k >

1. For i ∈ supp(x) 4 supp(y) we know that

|{c ∈ Sk(0)∩ Ir(X) | i ∈ supp(c)}| =
(

k + r−1
k−1

)

. (7.7)

If i ∈ supp(x)∩ supp(y), then

|{c ∈ Sk(0)∩ Ir(X) | i ∈ supp(c)}| >
(

k + r−1
k−1

)

.

If i /∈ supp(x)∪ supp(y), then |{c ∈ Sk(0)∩ Ir(X) | i ∈ supp(c)}| = 0. Hence, for
some i such that (7.7) is satisfied, we see that

supp(x) =
⋃

c∈Ir(X)∩Sk(0)
i∈supp(c)

supp(c)

and

supp(y) =
⋃

c∈(Ir(X)\Ir(x))∩Sk(0)

supp(c).

If k = 1, then we can do the same except using k + 1 = 2 instead of k (support
i have to occur now r times). There are codewords of weight k + 1 = 2 when
r ≥ 2.

Corollary 7.23. For r ≥ 2

LB(≤2)
r (n) ≤V (n,r)K(n,2r).

In Table 7.1 we have collected lower and upper bounds on the cardinalities of
1-locating-dominating codes, (1,≤ 2)- and (1,≤ 3)-locating-dominating codes of
type B for short lengths.
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Table 7.1: Values of the cardinalities of locating-dominating codes.

The cases n = 1 are trivial. The lower bounds L(2) ≥ 2 and L(3) ≥ 4 are easy to
check by hand and Example 7.3(iii) then gives the lower bounds for lengths two
and three for ` ≥ 2.

n L(n) LB(≤2)
1 (n) LB(≤3)

1 (n)

1 1 1 1
2 2 2 2
3 4 4 4
4 a 6 A c 8 D c 8 D
5 a 10 A d 11 – 16 D c 15 – 16 D
6 b 16 – 18 B d 19 – 29 E c 26 – 32 D
7 b 28 – 32 C d 32 – 44 F c 47 – 64 D
8 b 50 – 61 A d 57 – 88 G c 86 – 128 D
9 b 91 – 115 C d 103 – 176 G d 140 – 256 D

Key to table
a Lower bound obtained by a computer search.
b Theorem 7.6
c Theorem 7.16
d Theorem 7.14
A See Appendix
B Theorem 7.4
C L(≤`)

1 (n) ≤ M(≤`)
1 (n)

D Example 7.3(iii)
E See Appendix
F Theorem 7.20
G Theorem 7.18

7.4 Optimal linear locating-dominating codes

A binary code C ⊆ Fn is said to be linear if it is a k-dimensional subspace of Fn. In
this section we consider linear (1,≤ `)-LDBs and (1,≤ `)-LDAs. We denote by
LB(≤`)

1 [n] (resp. LA(≤`)
1 [n]) the smallest dimension of a linear (1,≤ `)-LDB (resp.

(1,≤ `)-LDA) of length n.

Let us first consider the case ` = 1 and denote L[n] = LA(≤1)
1 [n] = LB(≤1)

1 [n].

Theorem 7.24.
L[n] ≥ dn+ log2 3− log2(n+5)e .

Proof. Suppose C is a linear 1-locating-dominating code of length n and |C| = K.
There can be K non-codewords which are covered by one codeword each. All
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the other non-codewords must be covered by at least three times. Namely, if
I(x) = {c1,c2} for some x 6∈ C, then for y = x + c1 + c2, I(y) = I(x) by Lemma
6.1.

Thus, we have 2K + 3(2n − 2K) ≤ K(n + 1), from which the claim follows.

Theorem 7.25. Let n = 3 ·2k−5+s, for k ≥ 1 and 0≤ s < 3 ·2k. Then L[n] = n−k.

Proof. The lower bound follows from Theorem 7.24.
Because n ≥ 3 · 2k − 5, we can choose a (k × n)-matrix H in which every

nonzero column appears at least three times except for one nonzero column which
appears exactly once. Let C be the code with parity check matrix H. We claim
that C is a 1-locating-dominating. Each non-codeword which is covered by at
least three codewords is identified by Lemma 2.1. Each non-codeword of N1 is
also identified, because for each c ∈C, there is exactly one word of N1 at distance
one from it.

Theorem 7.26. For all n ≥ 5,

LB(≤2)
1 [n] ≥ dn+ log2 5− log2(n+5)e .

Proof. Let C ⊆ Fn be a linear (1,≤ 2)-LDB of cardinality K.
If I(x) = {c} for some x 6∈C, then by the proof of (7.4) we have |I(c)|= n and,

thus, by Lemma 6.1, |I(c)| = n for all c ∈C. Hence, K ·n+(2n −K) ≤ K(n+1),
i.e., K ≥ 2n−1, and the claim follows. So assume that |I(x)| ≥ 2 for all x 6∈ C. If
|I(x)| = 2 for some x 6∈ C, then I(x) = {x + ei,x + e j}, for some ei,e j ∈ S1(0),
ei 6= e j. Now I(x) ⊆ I(x + ei + e j), which is impossible unless x + ei + e j ∈ C.
This would imply that ei,e j ∈ C and thus, also x ∈ C. This is impossible by the
assumption.

Similarly, as in Theorem 6.7 we can show that each non-codeword must be
covered by at least five codewords. Now we have K +5(2n−K)≤ K(n+1), from
which the claim follows.

Theorem 7.27. Let n = 5(2k−1)+s, for k≥ 1 and 0≤ s < 5·2k. Then LB(≤2)
1 [n] =

n− k.

Proof. The lower bound follows from Theorem 7.26. Let H be a (k× n)-matrix
where every nonzero k-tuple appears at least five times. Let C be the code which
has H as its parity check matrix. Every non-codeword is covered at least by five
codewords of C. Thus, any set of size at most 2 cannot cover the I-set of a code-
word x unless this set does not include x. This proves the claim.

Theorem 7.28. For ` ≥ 3 and n ≥ 2`−1,

LB(≤`)
1 [n] ≥ dn+ log2(2`−1)− log2(n+2`−1)e .
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Proof. Assume that C is a linear (1,≤ `)-LDB of length n and cardinality K.
If there is a word x /∈C such that |I(x)|= 1, then the beginning of the proof of

Theorem 7.26 (since C is trivially also a (1,≤ 2)-LDB) shows that K ≥ 2n−1, and
since we have assumed that n ≥ 2`−1, we are already done.

Assume now that |I(x)| ≥ 2 for all x /∈ C. We shall show that each non-
codeword must be covered by at least 2`−1 codewords. Assume to the contrary
that for some x /∈ C, |I(x)| = j where 2 ≤ j ≤ 2`− 2, and denote I(x) = {x +
e1, . . . ,x + e j}, where ei ∈ S1(0). For all 1 ≤ i ≤ j/2, let yi = x + e2i−1 + e2i

(which is the unique word other than x at distance one from both x + e2i−1 and
x + e2i). If j is odd, define y0 = x + e1 + e j. Let Y consists of all the words yi,
1 ≤ i ≤ j/2, together with y0, if j is odd. Because C is linear and x /∈ C, we
know that Y ⊆ Fn \C. Now I(Y ) = I(Y ∪ {x}) gives a contradiction, because
|Y ∪{x}| = d j/2e+1 ≤ `.

Thus, we have K +(2`−1)(2n −K) ≤ K(n+1), and the claim follows.

Theorem 7.29. Let ` ≥ 3 and n = (2`− 1)(2k − 1) + s, for k ≥ 1 and 0 ≤ s <

(2`−1)2k. Then LB(≤`)
1 [n] = n− k.

Proof. The lower bound follows from Theorem 7.28. Let H be a (k× n)-matrix
in which every nonzero k-tuple appears at least 2`−1 times. The code which has
H as a parity check matrix is (1,≤ `)-LDB by Theorem 7.9, and has the required
dimension.

The previous proof in fact gives the following theorem as an immediate corol-
lary.

Theorem 7.30. Let ` ≥ 3. For all n ≥ 2`−1 we have

LA(≤`)
1 [n] = LB(≤`)

1 [n].

Theorem 7.31. For all n ≥ 5, we have

LA(≤2)
1 [n] = LB(≤2)

1 [n].

Proof. By Theorems 7.27, 7.29 and 7.30 we know that for all n ≥ 5, LB(≤2)
1 [n] =

LB(≤3)
1 [n] = LA(≤3)

1 [n]. Trivially, LA(≤3)
1 [n]≥ LA(≤2)

1 [n]≥ LB(≤2)
1 [n], and the claim

follows.
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In this chapter we list some identifying and locating-dominating codes found us-
ing a computer. The 1- and 2-identifying codes are from [18], see also [17]. The
(2,≤ 2)-identifying codes presented here have not been published before. The
locating-dominating codes are from [36] except the one of length 8.

1-identifying codes

• The binary expressions of the numbers in the next table form a 1-identifying
code of length 8 and cardinality 62, [17].

5 10 16 17 21 26 27 29 34 35 36
40 42 54 55 64 68 75 76 79 82 89
94 103 105 109 111 112 116 119 121 124 131
134 137 150 152 153 156 162 164 165 174 175
178 181 185 191 192 193 202 205 207 211 212
214 231 232 243 250 251 252

• The binary expressions of the numbers in the next table form a 1-identifying
code C9 of length 9 and cardinality 115, [17].

4 7 9 14 15 17 19 28 33 36 38
43 52 56 61 65 66 76 79 80 87 90
91 97 105 108 116 118 119 127 133 138 143
145 149 150 159 162 164 168 171 178 184 187
190 195 200 204 208 214 218 221 224 231 237
238 240 241 258 264 269 273 276 277 279 282
288 296 299 307 317 318 319 321 322 326 346
349 357 358 359 362 371 376 378 383 384 385
390 393 410 412 423 430 432 434 435 439 445
446 451 452 455 459 460 467 470 476 477 489
490 493 501 505 508
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• The codewords covered only by themselves in the previous code C9 are

A = {000001001,000011100,010001010,011100111,

011101110,100001101,110000110,111110101}.

The set B = {100001001, 011100110, 000011000, 000001010, 111000110,
11111000} 1-covers A. Now (C9⊕F)∪ (B⊕{0}) is 1-identifying of length
10 and cardinality 236.

• The code C = {c ∈ F5 | w(c) ∈ {0,1,4,5}} ⊆ F5 is a 2-fold 1-covering and
1-identifying (see [40]) and |C| = 12. By Theorem 3.10 it is the smallest
possible such a code. Applying the (π(u),u,u + v)-construction of Theo-
rem 3.11 to C we get a 1-identifying code C11 of length 11. From C11 we can
remove words {(π(u),u,u + v) | u ∈ F5, w(u) even, v ∈ {00000,11111}}
and the result is still 1-identifying. The cardinality of the code is 352.

• A direct sum of the code C11 of length 11 and F is a 1-identifying code by
Theorem 3.20. By a computer search, we found that (C11 ⊕F)\A, where A
is of size 72, is also 1-identifying. Thus, M1(12) ≤ 696. The set A consists
of the binary expressions of the numbers in the following table.

0 2 30 31 197 198 216 217 329
330 340 341 396 398 402 403 588 589
593 594 650 651 660 662 774 775 792
794 960 961 989 990 1116 1121 1122 1178
1188 1190 1302 1320 1322 1488 1517 1518 1550
1584 1586 1736 1781 1782 1860 1913 1914 1922
1980 1982 2113 2141 2203 2327 2509 2513 2575
2761 2773 2885 2905 2947 3301 3433 3697 4093

• The code of length 13 made by (π(u),u,u+v)-construction from the code
of length 6 in Example 3.13 can be improved by removing a set B of size 64.
Thus, M1(13) ≤ 1344. The set B is the binary expressions of the numbers
in the following table.

0 14 205 234 331 364 390 392 583
584 644 651 770 781 961 974 1127 1144
1170 1188 1300 1314 1505 1534 1561 1582 1754
1773 1884 1899 1951 1960 2145 2171 2232 2535
2601 2610 2755 2801 2885 2991 3094 3285 3315
3445 3665 3679 3740 3771 3901 4055 4834 4964
5744 6134 6202 6393 6467 6528 6771 6832 6922
7113
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2-identifying codes

• The binary expressions of the numbers 4, 6, 9, 19, 26, 34, 53, 90, 93, 107,
108, 113, 118, 121 form a 2-identifying code of length 7 and cardinality 14,
[17].

• The binary expressions of the numbers 7, 9, 26, 36, 55, 63, 64, 85, 107, 114,
144, 163, 174, 185, 205, 211, 220, 222, 232, 244, 246 form a 2-identifying
code of length 8 and cardinality 21, [17].

• The binary expressions of the numbers in the next table form a 2-identifying
code of length 9 and cardinality 36, [17].

8 9 22 49 60 76 91 98 116 133 152
166 171 189 195 204 222 232 253 270 272 291
301 327 375 377 383 406 411 416 450 466 469
486 493 506

• The binary expressions of the numbers in the next table form a 2-identifying
code C10 of length 10 and cardinality 63.

10 31 36 49 69 92 114 128 159 175 179
195 206 233 244 262 272 330 343 346 355 364
375 377 397 408 430 435 465 485 521 526 531
571 614 616 629 635 657 679 684 690 724 729
733 762 766 782 786 789 813 824 828 834 860
900 923 930 967 969 993 994 1021

• By adding to C10 the binary expressions of the numbers 26, 62, 132, 205,
451, 467, 620, 624, 704, 718, 793, 1017 and removing 834 we get a 2-
identifying code D10 of cardinality 74. The code D10 has the property that
for all x ∈ Fn there is c ∈ D10 such that d(x,c) = 2. Theorem 3.20 shows
that D10 ⊕F is 2-identifying of length 11 and cardinality 148.

• By adding to C10 the binary expressions of the numbers 132, 205, 451, 620,
624, 793, 1017 we get a 2-identifying code E10 of cardinality 70. The code
E10 has the property that for all c ∈ E10 we have 1 ≤ d(c,E10 \ {c}) ≤ 2.
Theorem 3.20 shows that E10 ⊕F2 is a 2-identifying code of length 12 and
cardinality 280.

(2,≤ 2)-identifying codes

• The binary expressions of the next numbers form a (2,≤ 2)-identifying code
of length 6 and cardinality 25:

1 12 13 21 23 25 26 30 37 38 39 41 42
43 44 45 48 49 51 54 55 56 57 58 59
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• The binary expressions of the following 35 elements subset of the (1,≤ 2)-
identifying code of length 7 in Theorem 4.14 is (2,≤ 2)-identifying.

11 14 18 29 30 37 40 45 51 52 56 59 62
63 64 65 68 75 76 82 87 90 91 92 93 97
98 106 109 111 113 116 118 119 121

The direct sum of this code and F is a (2,≤ 2)-identifying code of length 8
and cardinality 70.

Locating-dominating codes

• Codes {0000, 1100, 0101, 1110, 1011, 0111} ⊆ F4 and {x ∈ F5 | w(x) =
1 or 4} are optimal 1-locating-dominating. The lower bounds are obtained
by a computer.

• The 1-identifying code of length 8 and cardinality 62 on page 87 is 1-
locating-dominating even if a word 112 is removed from it.

• The binary expressions of the numbers

0 3 6 9 10 13 17 20 23 26 28 29 30
31 35 36 37 39 40 45 46 48 50 51 55 57
58 59 61

form a (1,≤ 2)-LDB of cardinality 29 and length 6.
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