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Introduction

The class number is a basic object in algebraic number theory, extensively
studied since the 19th century. Yet, little is known of its values in general.
In this thesis we study the computation of the class numbers of real abelian
fields.

To define the class number hF of an algebraic number field F , we first re-
call that the integral elements of F form a ring. The prime ideals of this ring
generate a free abelian group. The index of the subgroup generated by the
principal ideals is finite and it is called the class number. One may consider
it to measure the failure of unique factorization in the ring of integers.

There does not exist a practical method to compute hF in general, but
an efficient algorithm exists, for instance, for quadratic fields and for some
other fields of very small degree. However, such a method is not known even
for the family of abelian fields, i.e., the Galois extensions of the rationals
with abelian Galois group.

The class number of an abelian field K splits in the form hK = h+
Kh−

K ,
where h−

K is in theory easy to compute and h+
K is the class number of the

maximal real subfield of K. The latter is difficult to compute or even es-
timate due to its close relation to the unit group of K. The known upper
bounds are exponential in the degree of K.

In his recent work [32] concerning real abelian fields of prime power
conductor, R. Schoof predicted, using a heuristic assumption, that the class
numbers of such fields are most likely small, compared to the known upper
bounds. Schoof also presented and applied an efficient procedure to compute
class number divisors. There are also other methods to check whether a
prime divides the class number. Indeed, this is in principle a feasible task,
while the actual difficulty lies in finding a practical upper bound.

Our aim in the present work is to find methods which can be applied
to fields of any conductor. This is not straightforward, mainly since the
structure of the unit group may be quite complicated. The approach is to
apply some results of Leopoldt [17] on the decomposition of the unit group
and the class number in order to design criterions for the class number
divisibility. We computed a table of odd primes p < 10000 dividing the
class numbers of real abelian fields of conductor at most 2000. The prime
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2 and the primes dividing the degree of the field are excluded since they
would require different techniques. We also present heuristic assumptions
similar to Schoof’s and predict that there are no primes p > 10000 dividing
the class numbers of these fields.

Another objective of this work is the computation of the p-adic regulator
Rp(K) of a real abelian field K for an odd prime p. A direct computation
is difficult since the p-adic regulator contains information of the unit group.
However, the p-adic class number formula gives an explicit expression for
the product hKRp(K), which allows a computation of the values of Rp(K)
without knowing the generators of the unit group explicitly. We present
a table of values of p-adic regulators and compare them with probabilities
given by heuristic assumptions.

In Chapter 1 we give some background on representation theory. We also
fix the notation for later use. In Chapter 2 we discuss the group theoretic
decomposition of the class number, mostly following Leopoldt [17]. These
chapters provide the foundation for the rest of the thesis.

In another work by Leopoldt [18], Kummer’s classical results on the
divisibility of the class numbers are generalized to all real abelian fields.
The main result is that if an odd prime p divides the class number, then a
certain rational product is divisible by p. Chapter 3 arises from the results
of W. Schwarz [34], who applied the p-adic class number formula and found
a simple computational criterion for the class number divisibility, which
is equivalent to Leopoldt’s criterion. First we present this computational
criterion in a more general setting and discuss the computation of the p-
adic regulator in this connection. We also show how the results of Leopoldt,
described in Chapter 2, clarify Schwarz’s criterion in the case of a composite
conductor; from this we obtain the first part of our algorithm to compute
the class number divisors.

Chapter 4 contains the most essential results of the work. We complete
the algorithm for verifying the divisibility of the class number by a prime p.
We also show how to determine whether some higher power of p divides hK .

Chapter 5 is comprised of a heuristic study of both the class number and
the p-adic regulator. The numerical results, obtained by using the method
of the preceding chapters, are compared with the probabilities given by the
heuristics.

In Chapter 6 we show that there exists a close connection between our
method and a recent method of Yoshino [39]. Moreover, we give a short
overview of recent p-adic methods. Chapter 7 is devoted to some open
problems and Chapter 8 contains the computed tables and their explana-
tions.

The article [13], which has been submitted for publication, partly con-
tains the results of this thesis.



Chapter 1

Elementary notions

We begin by recalling some basics on abelian fields and rational group alge-
bras. The reader should consult an algebra textbook for the most elementary
definitions that will be left out.

1.1 The representations of an abelian group

We review some elementary facts and definitions from representation theory.
Assume that L is a field of characteristic 0 and that G is a finite abelian
group of order g. Recall that a representation of G is a homomorphism
ρ : G → GL(V ), where V is an L-vector space of finite dimension and
GL(V ) is the general linear group on V . The dimension of V is called the
degree of the representation ρ. We use the notation ρ(s) = ρs for simplicity.
To give a representation of G on V is the same as to give an L[G]-module
V ; the correspondence is provided by the formula ρs(x) = xs (s ∈ G, x ∈ V )
with ρ : s 7→ ρs a representation on V . We will here and hereafter use the
exponent notation for the module operation. Two representations are called
isomorphic if the corresponding L[G]-modules are isomorphic.

If V has nontrivial L[G]-submodules V1, V2 such that V = V1 ⊕ V2, one
calls V reducible. Otherwise, V is called irreducible or simple. Every L[G]-
module has (up to isomorphism) a unique decomposition into simple L[G]-
modules. Similarly a representation breaks up uniquely into irreducible
representations.

For any representation ρ, the map χρ : G → L, χρ(s) = Tr(ρs) = Tr(A),
where A is a matrix representing ρs, is called the character of ρ. We define
the degree of χρ to be equal to the degree of ρ. We may shortly call χρ

a character of G. Two representations are isomorphic if and only if their
characters coincide.

For clarity, when the field L varies, we speak of L-representations, L-
irreducibility, etc.
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If L = C, the irreducible characters of G (i.e., the characters corre-
sponding to the irreducible representations) are all of degree 1. They form
an abelian group Ĝ of all the homomorphisms χ : G → C×. We have
(non-canonically) G ≃ Ĝ.

1.2 Dirichlet characters

We recall here some character theory shortly in order to specify the notation
used.

When G = (Z/nZ)×, the characters in Ĝ have a simple description. Let
χ ∈ Ĝ. If n |m, then χ induces a character of (Z/mZ)× by composition
with the projection (Z/mZ)× → (Z/nZ)×. In the same manner, χ may
be induced from a character of (Z/n1Z)× with n1 |n. Since the maps are
essentially the same, we choose n minimal in this sense; it is called the
conductor of χ and denoted fχ. For ν ∈ N, let ζν = e2πi/ν be a primitive
νth root of unity. The values of χ are ϕ(fχ)th roots of unity, ζk

ϕ(fχ), where
ϕ is Euler’s phi function.

By defining χ(a) = χ(ā) for ā = a + nZ ∈ (Z/nZ)× and χ(a) = 0 for
(a, n) > 1, we may consider characters of (Z/nZ)× as Dirichlet characters
modulo n. We first recall the Dirichlet characters modulo an odd prime
power ps. Choose a primitive root r modulo p2. This is a primitive root
modulo ps for any s ∈ N. Define a homomorphism (Z/psZ)× → C× by
χps(r) = ζϕ(ps). All the Dirichlet characters modulo ps are of the form χc

ps

with 0 ≤ c ≤ ϕ(ps) − 1. Those with (c, p) = 1 are of conductor ps.

Denote by 〈α〉 the cyclic group generated by α. For p = 2, we have
(Z/2sZ)× = 〈−1〉 × 〈5̄〉. Let ω4 modulo 4 be defined by ω4(−1) = −1. For
s ≥ 3, define χ2s modulo 2s by χ2s(5) = ζ2s−2 and χ2s(−1) = 1.

Let n ∈ N. Since (Z/nZ)× ≃ (Z/n
2Z)× for n ≡ 2 (mod 4), we may

assume n 6≡ 2 (mod 4). Let n = ps1
1 · · · pst

t be the prime decomposition of n.
All the Dirichlet characters modulo n are of the form ωc0

4 χc1
p

s1
1

· · ·χct

p
st
t

with

0 ≤ ci ≤ di − 1, where di is the order of the corresponding character, i.e.,
di = ϕ(psi

i ) for odd pi and di = 2si−2 for pi = 2, si ≥ 3. We have d0 = 2
and, for odd n, c0 = 0. The characters of conductor n are those satisfying
for i = 1, . . . , t the condition pi ∤ ci in the cases si ≥ 2, pi 6= 2 and si ≥ 3,
pi = 2, and the condition (pi − 1) ∤ ci in the case si = 1; for 4 |n, 8 ∤ n, we
must also have c0 = 1.

1.3 Abelian fields

Let m be a natural number. The field Q(ζm) is called the mth cyclotomic

field. Its Galois group Gal(Q(ζm)/Q) = Gm ≃ (Z/mZ)× consists of the
automorphisms σk : ζm 7→ ζk

m with k ∈ Z, (k, m) = 1.
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Suppose that K is an abelian field, i.e., a finite extension of Q with
abelian Galois group. By the Kronecker–Weber theorem [36], K ⊆ Q(ζm)
for some m ∈ N. The smallest number f such that K ⊆ Q(ζf ) is called the
conductor of K. The Galois group Gal(K/Q) = G of K is isomorphic to
the factor group Gf/H, where H = Gal(Q(ζf )/K). Thus an automorphism
of K may be viewed as a restriction to K of an automorphism of Gf .

The character group Ĝ of G is called the character group of K. There
is an inclusion preserving bijection between the subgroups of Ĝ and the
subfields of K. A character of K may be regarded as a Dirichlet character

modulo f since Ĝf/H ≃ {χ ∈ Ĝf | χ(h) = 1∀h ∈ H}.
Denote by gχ the order of χ ∈ Ĝ. We say that ψ ∈ Ĝ is Q-conjugate to

χ if ψ = χk with (k, gχ) = 1, i.e., 〈ψ〉 = 〈χ〉. This is an equivalence relation;

denote by χ̃ the Q-conjugacy class of the character χ and by G̃ the set of
all Q-conjugacy classes of Ĝ. We have χ̃ = {χk | (k, gχ) = 1}. The sums∑

ψ∈χ̃ ψ are characters with values in Q; in fact, we will see that they are
exactly the Q-irreducible characters of G.

Let fχ, gχ and Ker(χ) be respectively the common conductor, order and
kernel of the Q-conjugates of χ. Denote by Kχ the subfield of K with
character group 〈χ〉. There is a one-to-one correspondence between the Q-
conjugacy classes of Ĝ and the cyclic subfields of K, given by χ̃ ←→ 〈χ〉; the
cyclic field corresponding to χ̃ is Kχ. Its degree is gχ, its conductor fχ, and
since Ker(χ) = Gal(K/Kχ), we have G/ Ker(χ) ≃ Gal(Kχ/Q) ≃ 〈χ〉. From
this it also follows that if Ker(ψ) = Ker(χ), then ψ and χ are Q-conjugate.
We will write Gχ = Gal(Kχ/Q).

1.4 The group algebra Q[G]

Let G be a finite abelian group. Here and hereafter we denote by g the
order of G. Consider the group algebra C[G]. For χ ∈ Ĝ, an orthogonal

idempotent of C[G] corresponding to χ is given by eχ = 1
g

∑
σ∈G χ(σ−1)σ.

Thus the elements eχ are characterized by the following two relations:

e2
χ = eχ, eχeψ = 0 if χ 6= ψ.

It is easy to verify that eχσ = χ(σ)eχ for any σ ∈ G. The set {eχ | χ ∈ Ĝ}
is full, i.e., it satisfies

∑
χ∈Ĝ

eχ = 1.

Now we turn to the group algebra Q[G]. The following proposition
describes its structure; we follow [17, p. 9].

Proposition 1.1. Let eχ̃ =
∑

ψ∈χ̃ eψ. The set of eχ̃ with χ̃ running through

G̃ is a full set of orthogonal idempotents of the algebra Q[G]. There is a
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decomposition

Q[G] =
⊕

χ̃∈G̃

Q[G]eχ̃ (1.1)

into a direct sum of minimal ideals Q[G]eχ̃, where Q[G]eχ̃ is a ring with

unity element eχ̃ and Q[G]eχ̃ ≃ Q(ζgχ).

Proof. For any σ ∈ G and χ ∈ Ĝ,
∑

ψ∈χ̃ ψ(σ) = TrQ(ζgχ )/Q(χ(σ)) ∈ Q. The

elements eχ̃ ∈ Q[G] obviously form a full set of orthogonal idempotents.
The algebra Q[G] thus admits the decomposition (1.1) into a direct sum of
ideals generated by eχ̃.

Extend χ by Q-linearity to a ring homomorphism

χ : Q[G] → Q(ζgχ), χ(
∑

σ∈G

aσσ) =
∑

σ∈G

aσχ(σ).

This is surjective since there exists σ ∈ G with χ(σ) = ζgχ .
Let σ0 Ker(χ) be a generator of the cyclic group G/ Ker(χ). We have

χ(eχ̃) =
1

g

∑

σ∈G

∑

(k,gχ)=1

χk(σ−1)χ(σ) =
# Ker(χ)

g

gχ∑

u=1

∑

(k,gχ)=1

χk(σ−u
0 )χ(σu

0 ).

Changing the order of summation yields the inner sum
∑gχ

u=1 χ(σ0)
u(1−k)

which is equal to gχ if k = 1 and 0 otherwise. It follows that χ(eχ̃) = 1, and
hence that the restriction of χ to the ideal Q[G]eχ̃ is still surjective.

Since the Q-conjugacy classes form a partition of Ĝ, we have

dimQ

⊕

χ̃∈G̃

Q(ζgχ) =
∑

χ̃∈G̃

ϕ(gχ) = g = dimQ Q[G].

It follows that dimQ Q[G]eχ̃ = ϕ(gχ) and that the restriction of χ is an
isomorphism

Q[G]eχ̃ ≃ Q(ζgχ).

In particular, the ideals Q[G]eχ̃ are fields, which proves their minimality.

By the proposition, Q[G]eχ̃ is a simple Q[G]-module. Its character is∑
ψ∈χ̃ ψ = TrQ(ζgχ)/Q(χ).

In the following we briefly state some results of orders. See [17, p. 11].
Recall that an order in Q[G] is a subring R that is finitely generated over
Z and satisfies Q ⊗Z R = Q[G]. It follows from the proposition above
that the maximal order of Q[G] is OG = ⊕

χ̃∈G̃
Z[G]eχ̃. Indeed, we have

Z[G]eχ̃ ≃ Z[ζgχ ]. Their isomorphism is described as follows (recall that
eχσ = χ(σ)eχ): If σ is a generator of Gχ and τ ∈ G, we may uniquely write
τ = σkτ

′

for some 0 ≤ k < gχ and τ
′ ∈ Ker(χ). Associate τ with ζk

gχ
.
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Another important order of Q[G] is the ring Z[G] whose index (as an
additive subgroup) in OG is given by gg = [OG : Z[G]]2d(OG), where
d(OG) =

∏
χ̃∈G̃

dχ̃ and dχ̃ is the absolute value of the discriminant of

Q(ζgχ). An order whose index we will later need is L = Z[G] + e1̃Z[G],
where e1̃ = 1

g

∑
σ∈G σ. We have

QG = [OG : L] = [OG : Z[G]]/g =

√
gg−2

d(OG)
. (1.2)





Chapter 2

The unit group and the class

number

In this chapter we split the unit group and the regulator of a real abelian
field in terms of the rational idempotents and show how these decomposi-
tions allow to split the class number. This chapter contains a large part of
the results of Leopoldt’s thesis [17]. The reader may also find its French
exposition [29] useful.

2.1 The decomposition of the unit group

From now on we assume K real; then K ⊆ Q(ζf + ζ−1
f ) for some f . Let

G = Gal(K/Q). Denote by EK the unit group of K and let W be the
torsion group of EK . Since W consists of the roots of unity in K, we
have W = {±1}. Denote the class {α,−α} by ±α. For M ⊂ R a Z[G]-
module containing −1, let us define a G-operation on |M | = M/{±1} by
(±α)σ = ±ασ. Then |EK | is a Z[G]-module and (as an abelian group) of
type Zg−1 by Dirichlet’s Unit Theorem. On extension by Q we obtain a
Q[G]-module |EK |Q = Q ⊗Z |EK |. The following proposition describes its
structure. The proof follows that of Oriat [28]. For brevity, we will here

and hereafter denote by
∑′

χ̃∈G̃
a sum over χ̃ ∈ G̃, χ̃ 6= 1. We also adopt the

same notation for other similar operators.

Proposition 2.1. There is a Q[G]-module isomorphism

|EK |Q ≃
⊕′

χ̃∈G̃

Q[G]eχ̃. (2.1)

Proof. We will show that the characters of these Q[G]-modules coincide.
Let λ : EK → Rg, λ(ε) = (ln |εσ|)σ∈G be the logarithmic embedding of EK .
By Dirichlet’s Unit Theorem, the kernel of λ is W and its image is a discrete
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subgroup of Rg of rank g−1 consisting of the elements (xσ)σ∈G that satisfy∑
σ∈G xσ = 0.
Let U be the subgroup of Rg consisting of the elements (a, a, . . . , a),

a ∈ Z. The group Im(λ) ⊕ U is a discrete subgroup of Rg of rank g.
By defining a Z[G]-module structure for Rg by τ(xσ)σ∈G = (xτσ)σ∈G, λ
becomes a Z[G]-homomorphism and U a trivial Z[G]-submodule of Rg. Let
{e1, e2, . . . , eg} be a Z-basis of Im(λ) ⊕ U .

For σ ∈ G, let Aσ be the matrix defined by the action of σ on Im(λ)⊕U ,
(eσ

1 , . . . , eσ
g ) = (e1, . . . , eg)Aσ. We may as well consider this σ-action in Rg

since {e1, e2, . . . , eg} is also a basis of Rg. The trace of Aσ is independent of
the choice of the basis of Rg. By choosing the canonical basis, we see that
Tr(Aσ) = g if σ = 1 and 0 otherwise.

The map σ 7→ Tr(Aσ) is the character of the Q[G]-module

Q ⊗Z (Im(λ) ⊕ U) = (Q ⊗Z Im(λ)) ⊕ (Q ⊗Z U).

Since the character of Q⊗ZU is 1, we see that the character α of Q⊗Z Im(λ)
is determined by

α(σ) = g − 1 if σ = 1, α(σ) = −1 if σ 6= 1.

It follows, by known character relations, that α =
∑′

χ̃∈G̃
χ̂ with χ̂ =

∑
ψ∈χ̃ ψ

is the character of Q[G]eχ̃. The claim follows.

2.2 χ-units

We now construct simple submodules of units that correspond to the factor-
ization (2.1). Denote by NK/k the norm map. We will call a Z[G]-module
M simple if Q ⊗Z M is simple. Recall that Kχ is the subfield of K whose

character group is generated by χ ∈ Ĝ.

Definition 2.1. Let ε be a real unit of Q(ζ2fχ
) satisfying ε2 ∈ Kχ. We call

ε a χ-unit if (±ε2)eχ̃ = ±ε2.

In fact, we could replace Q(ζ2fχ
) in the above definition by any abelian

field containing ε and having χ as a character. Indeed, if L1 is an abelian
field containing Kχ(ε) and G1 and G denote their Galois groups, respectively,
then the restriction homomorphism φ : Q[G1] → Q[G] gives φ(e1

χ̃) = eχ̃ for

e1
χ̃ the idempotent of Q[G1] corresponding to χ̃. Hence (±ε2)eχ̃ = (±ε2)e1

χ̃ .
There exists another characterization of χ-units given in the next propo-

sition. The proof can be found in [17, p. 21]; it is based on a manipulation
of the formulas of the idempotents eχ̃.

Proposition 2.2. A real unit ε is a χ-unit if and only if ε2 ∈ Kχ and

NKχ/L(ε2) = 1 for all proper subfields L of Kχ.



2.3 Complete submodules of units 15

A χ-unit is called proper if it belongs to Kχ. Denote respectively by E0
χ

and Eχ the groups of χ-units and proper χ-units (the notation differs from
that used by Leopoldt). Both groups only depend on χ̃. Leopoldt [17, p. 29]
shows that [E0

χ : Eχ] equals 1 or 2 and that |E0
χ| and |Eχ| are isomorphic as

Z[Gχ]-modules.
Let |Eχ|Q = Q⊗Z |Eχ|. Applying Proposition 2.1 with Gχ in place of G,

we conclude (by the orthogonality) that |Eχ|Q ≃ Q[Gχ]eχ̃. It follows that
|Eχ| is a simple Z[ζgχ ]-module of Z-rank ϕ(gχ). Since Z[G]eχ̃ ≃ Z[ζgχ ], |Eχ|
may also be regarded as a Z[G]-module.

2.3 Complete submodules of units

Recall that OG = ⊕
χ̃∈G̃

Z[G]eχ̃. We see that
∏

χ̃∈G̃
|Eχ| is an OG-module.

But since |EK | is only a Z[G]-module, its relationship to
∏

χ̃ |Eχ| is not
clear. This question will be answered in this section. We assume that M is
a Z[G]-module which as a group is free and finitely generated.

We begin with a definition. Let OM = {x ∈ OG | Mx ⊆ M}; this is an
order of Q[G] that satisfies Z[G] ⊆ OM ⊆ OG.

Definition 2.2. We call M complete if OM = OG.

Remark 2.1. We use here the notion of completeness following Oriat [28],
while Leopoldt [17] defined completeness for lattices; the notions are essen-
tially equal.

The following lemma describes some basic notions related to complete
Z[G]-modules.

Lemma 2.1. The Z[G]-module M∗ = MOG is complete and contained in

every complete Z[G]-module containing M . There exists a complete sub-

module M∗ of M that contains every complete submodule of M . The indices

[M∗ : M ] and [M : M∗] are finite.

Proof. The product of complete modules is still complete. Define M∗ as
the product of all complete submodules of M . The modules M∗ and M∗
obviously satisfy the inclusion conditions.

We have (M∗)g = MgOG ⊆ MZ[G] ⊆ M . This proves [M∗ : M ] finite.
Since (M∗)g is a complete submodule, (M∗)g ⊆ M∗. Hence also Mg ⊆ M∗,
thus [M : M∗] < ∞.

Oriat calls M∗ and M∗ the envelope and the kernel of M , respectively.
We will shortly call a character of Q⊗Z M a character of M . Let M be

a simple Z[G]-module with character
∑

ψ∈χ̃ ψ; indeed, by Proposition 1.1,

all Q-irreducible characters of G are of this form. For any ψ̃ 6= χ̃, we have
M

e
ψ̃ = 1 (since (Q ⊗ M)

e
ψ̃ ≃ Q[G]eχ̃e

ψ̃
= 0). It follows that M = M eχ̃ ,

thus M = M∗. We have shown the following fact.
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Lemma 2.2. Every simple Z[G]-module is complete.

It would also be easy to prove that any complete Z[G]-module is a direct
sum of simple Z[G]-modules (see [28]).

In the following we provide a complete submodule of units constructed
from χ-units. This will clarify the relationship between Eχ and EK .

Definition 2.3. Let χ̃ ∈ G̃. Define EK
χ = EK ∩ E0

χ and EK =
∏′

χ̃∈G̃
EK

χ .

Let QK = [EK : EK ].

Proposition 2.3. The product |EK | =
∏′

χ̃∈G̃
|EK

χ | is direct. The Z[G]-

module |EK | is the kernel of |EK |. The index QK is finite and divides gg−1.

Proof. If ε ∈ EK
χ , then (by definition) we have (±ε)eχ̃ = ±ε and (±ε)

e
ψ̃ = 1

for ψ̃ 6= χ̃. This proves the first claim.
Let H be a complete submodule of |EK |. Define an eχ̃-action on η ∈ H

by the action on the ε ∈ EK satisfying η = ±ε. We have Heχ̃ ⊆ H ⊆ |EK |
and, by the definition of E0

χ, Heχ̃ ⊆ |E0
χ|. This shows that Heχ̃ ⊆ |EK

χ |
for any χ̃, hence that H ⊆ |EK |. By the proof of Lemma 2.1, we conclude
that |EK |∗ ⊆ |EK |. To show that |EK |∗ = |EK |, we prove |EK | complete.
Since [E0

χ : Eχ] ≤ 2, |EK
χ | is equal to |E0

χ| or |Eχ|. These are simple

Z[Gχ]-modules, thus |EK
χ | is a complete module; the same also holds when

regarding |EK
χ | as a Z[G]-module. We conclude that |EK | is complete.

Since |E0
χ| is of Z-rank ϕ(gχ), |EK | is of rank g − 1. In the proof of

Lemma 2.1 we showed |EK |g ⊆ |EK |∗ = |EK |, thus QK | gg−1.

Remark 2.2. Leopoldt [17, p. 24] shows that QK divides the index QG

defined in (1.2). In general, very little is known about the value of QK , but
for instance for cyclic K of prime degree, QK = QG = 1.

Definition 2.4. Define EK
+ =

∏′

χ̃∈G̃
Eχ and Q+

K = [EK : EK
+ ].

A similar argument as in Proposition 2.3 shows that |EK
+ | is the direct

product of the |Eχ| and that it is complete and contained in |EK |. We have
Q+

K = 2qK QK with qK ∈ Z+.

2.4 Regulators

As before, let K be a real abelian field. Recall the notion of regulator

RK(H) of a subgroup H ≤ EK/{±1} of finite index; intuitively it is the
volume of the body generated by a Z-basis of H in the “logarithmic space”.
Let {σ1, σ2, . . . , σg} be the elements of G and let {ε1, ε2, . . . , εg−1} be a set
of generators of H. Then

RK(H) = |det(ln |εσj

i |)|1≤i,j≤g−1.
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This is independent of the choice of the basis and the ordering of the σj .
The regulator of EK/{±1} is called the regulator of K and denoted RK .
We have (see [36, Lemma 4.15])

[|EK | : H] = RK(H)/RK . (2.2)

It is well known (cf. [36, Lemma 5.26]) that if f : G → R is any function,
we may write det(f(στ−1))σ,τ∈G =

∏
χ∈Ĝ

∑
σ∈G χ(σ)f(σ). This gives a

clue on how to decompose the regulator through characters. We state the
following definition.

Definition 2.5. Let α ∈ |EK |Q and let χ be a nontrivial character of K.
Define the χ-regulator of α in K as

RK
χ (α) =

∏

ψ∈χ̃

∑

σ∈G

ψ(σ−1) ln |ασ|.

For ε ∈ |Eχ|Q and u ∈ Z[Gχ], we see that
∑

σ∈Gχ

χ(σ−1) ln |εuσ| = χ(u)
∑

σ∈Gχ

χ(σ−1) ln |εσ|;

thus
R

Kχ
χ (εu) = NQ(ζgχ)/Q(χ(u))R

Kχ
χ (ε). (2.3)

The notion of χ-regulator generalizes to any Z[G]-module H that is
finitely generated as a Z-module and contained in |EK |Q. If Heχ̃ = 1,
define RK

χ (H) = 0. Otherwise, let ε ∈ H such that εeχ̃ 6= 1 and define an
integral ideal h ⊆ Q[G]eχ̃ by its inverse h−1 = {u ∈ Q[G]eχ̃ | εu ∈ Heχ̃}.
Then the χ-regulator of H is defined as

RK
χ (H) = RK

χ (ε)/NQ(ζgχ )/Q(χ(h)). (2.4)

It is independent of the choice of ε (see [29, p. 19] for the proofs). If H is
generated by the conjugates of ε, we see that h = 1, thus RK

χ (H) = RK
χ (ε).

The above definitions allow to derive some properties of χ-regulators
analogous to regulators. We state here only the results we need. They are
proved in [17, pp. 31–35].

Proposition 2.4. Let H ⊆ |Eχ|Q be a Z[Gχ]-module, finitely generated as

a Z-module. If H1 is a submodule of H, we have

[H : H1] = RK
χ (H1)/RK

χ (H).

Proposition 2.5. Let H ⊆ |EK |Q be a Z[G]-module, finitely generated as

a Z-module. The χ-regulator of H relates to the χ-regulator of Heχ̃ by the

formula

RK
χ (H) = [K : Kχ]ϕ(gχ)R

Kχ
χ (Heχ̃).
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The following proposition describes the decomposition of the regulator
into χ-parts.

Proposition 2.6. Let H be a complete Z[G]-submodule of |EK |. The regu-

lator of H admits the following decomposition:

gQGRK(H) =
∏′

χ̃∈G̃

RK
χ (H).

2.5 Cyclotomic χ-units

In the following we explicitly give a subgroup of Eχ of finite index.

Let χ be an even nontrivial character of conductor fχ. Let A be the
subgroup of (Z/fχZ)× that corresponds to Gal(Q(ζfχ

)/Kχ) = Ker(χ) and
let A+ ⊂ Z be a system of representatives of A/{±1}. The cardinality of
A+ is aχ = ϕ(fχ)/2gχ. Define

Θχ =
∏

a∈A+

(ζa
2fχ

− ζ−a
2fχ

) ∈ Q(ζ2fχ
), Λχ =

∏

ℓ |gχ

(1 − σgχ/ℓ) ∈ Z[Gχ], (2.5)

where ℓ runs through all prime divisors of gχ and σ is a fixed generator of
Gχ. Denote by Λχ the element obtained from Λχ by changing σ to σ, an
extension of σ in Kχ(Θχ).

Let Φn(x) =
∏

(j,n)=1(x − ζj
n) be the nth cyclotomic polynomial.

Lemma 2.3. We have Θ2
χ ∈ Kχ. Moreover, Θ1−σ

χ is a unit of Kχ.

Proof. We see that −(1 − ζa
fχ

)(1 − ζ−a
fχ

) = (ζa
2fχ

− ζ−a
2fχ

)2; hence we have

Θ2
χ = (−1)aχNQ(ζfχ)/Kχ

(1 − ζfχ
) ∈ Kχ.

For fχ = pk, a prime power, Φfχ
(1) = p; otherwise, Φfχ

(1) = 1. It
follows that 1 − ζfχ

is either a generator of the unique ramified prime ideal
or a unit of Q(ζfχ

), respectively. The norm of 1−ζfχ
has the same properties

in Kχ. Thus Θ1−σ
χ is in both cases a unit of Q(ζ2fχ

). Moreover, it belongs
to Kχ. Indeed, if Θχ 6∈ Kχ, then Kχ(Θχ) ⊆ Q(ζ2fχ

) is a quadratic and
abelian (hence normal) extension of Kχ and we have Kχ(Θχ) = Kχ(Θσ

χ).
By writing Θσ

χ = a + bΘχ with a, b,Θ2σ
χ ∈ Kχ, we conclude that a = 0.

Proposition 2.7. The number η = Θ
Λχ
χ is a proper χ-unit.

Proof. By Lemma 2.3, η is a unit in Kχ and Θ2
χ ∈ Kχ, hence we have

η2 = Θ
2Λχ
χ = Θ

2Λχ
χ . In order to prove that η ∈ Eχ, it thus suffices to show
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that Λχeχ̃ = Λχ. Since
∑

χ̃∈G̃
eχ̃ = 1, it suffices to verify that Λχe

ψ̃
= 0 for

all characters ψ of Gχ such that ψ̃ 6= χ̃.

When regarding χ and ψ as characters of Kχ, we find Ker(χ) = 1 and
Ker(ψ) 6= Ker(χ). Thus there exists a prime number ℓ dividing # Ker(ψ).
We conclude σgχ/ℓ ∈ Ker(ψ). It follows that σgχ/ℓe

ψ̃
= e

ψ̃
and Λχe

ψ̃
= 0.

Definition 2.6. Denote by Fχ the subgroup of Eχ generated by −1 and
the conjugates of η. This is called the group of cyclotomic χ-units.

We may define the element η
′

= Θ
Λχ
χ up to sign since its square is in Kχ.

It follows that we may assume |Fχ| = 〈(±η)σ | σ ∈ Gχ〉 with η = η
′

.

The group |Fχ| is a Z[Gχ]-module. Like |Eχ|, it also admits a Z[ζgχ ]-
structure. Later we will show that [|Eχ| : |Fχ|] = [Eχ : Fχ] is finite.

We prove that, unlike η, the module |Fχ| is independent of the choice of
the generator σ of Gχ. Any factor of Λχ is of the form 1− τ with τ = σgχ/ℓ

and ℓ | gχ a prime. When we change the generator to any σj with (j, gχ) = 1,
this becomes 1−τ j = (1−τ)(1+τ +· · ·+τ j−1). Since the element

∑
0<i<j xi

is invertible in Z[x]/〈Φgχ(x)〉 ≃ Z[ζgχ ], we conclude that the change of the
generator of Gχ has no effect on the Z[ζgχ ]-module |Fχ|, but only on the
choice of its generator ±η. Consequently, |Fχ| only depends on χ̃.

2.6 Cyclotomic units of K

Define FK =
∏′

χ̃∈G̃
Fχ. This is called the group of cyclotomic units of

K. We have |FK | =
∏′

χ̃∈G̃
|Fχ| and this product is direct. Since |Eχ| is

simple, the submodule |Fχ| is also simple or equal to 1 (it will be seen that
it is 1 only for χ = 1). Hence |FK | is a complete Z[G]-module (cf. the proof
of Proposition 2.3). We have Fχ = F

eχ̃

K .

Denote by ClK the class group of K, i.e., the finite abelian group of
(nonzero) fractional ideals modulo principal fractional ideals of K. Let hK

be the order of the class group, the class number of K. We are ready to
state a fundamental result due to Leopoldt.

Proposition 2.8. The index of the group of cyclotomic units in the group

of units is [EK : FK ] = hKQG.

Proof. Write the class number formula in the form (cf. [14])

hKRK =
∏′

χ∈Ĝ

∑

σ mod Ker(χ)

χ(σ−1) ln |Θσ
χ|,
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where σ runs through a system of representatives of G/ Ker(χ) and Θσ
χ is

defined up to sign. Since Gχ ≃ G/ Ker(χ), we may write

hKRK =
∏′

χ̃∈G̃

R
Kχ
χ (Θχ).

By Propositions 2.6 and 2.5,

RK(FK) = g−1Q−1
G

∏′

χ̃∈G̃

RK
χ (FK), RK

χ (FK) = (g/gχ)ϕ(gχ)R
Kχ
χ (η).

From (2.3) it follows that R
Kχ
χ (η) = NQ(ζgχ)/Q(χ(Λχ))R

Kχ
χ (Θχ). Write

shortly N for NQ(ζgχ)/Q. In order to calculate N(χ(Λχ)), we first note

N(χ(Λχ)) =
∏

ψ∈χ̃

∏
ℓ|gχ

(ψ(1)−ψ(σgχ/ℓ)). Since ψ(σgχ/ℓ) is a primitive ℓth
root of unity, we obtain

N(χ(Λχ)) =
∏

ℓ |gχ

N(1 − ζℓ) =
∏

ℓ |gχ

ℓϕ(gχ)/(ℓ−1) = g
ϕ(gχ)
χ /dχ̃,

where dχ̃ is the absolute value of the discriminant of Q(ζgχ).

Recall
∑′

χ̃∈G̃
ϕ(gχ) = g − 1. Now by (2.2) and by the definition (1.2) of

QG, we conclude

[EK : FK ] = RK(FK)/RK = g−1Q−1
G hK

∏′

χ̃∈G̃

(g/gχ)ϕ(gχ)N(χ(Λχ))

= Q−1
G hKgg−2

/∏′

χ̃∈G̃

dχ̃ = QGhK .

2.7 χ-class numbers

Let χ be a nontrivial character of K. One defines the χ-class number as
hχ = [Eχ : Fχ]. It only depends on χ̃. For χ = 1, we set h1 = 1.

Proposition 2.8 implies [EK : FK ] < ∞. By Definition 2.4, we find

[EK : FK ] = [EK : EK
+ ][EK

+ : FK ] = Q+
K

∏

χ̃∈G̃

hχ.

It follows that hχ is always finite. Thus |Fχ| is a nontrivial simple Z[Gχ]-
module with character χ̃ for any χ 6= 1. From Proposition 2.4 and Eq. (2.4),
we conclude that hχ is a norm of an integral ideal in Q(ζgχ). We state the
results.
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Proposition 2.9. The class number hK of a real abelian field K admits the

decomposition

hK =
Q+

K

QG

∏

χ̃∈G̃

hχ. (2.6)

The numbers hχ = [Eχ : Fχ] are norms of some integral ideals of Q(ζgχ).

If p is a prime not dividing g, we have g−1 ≡ ak (mod pk) for some
ak ∈ Z with k = 1, 2, . . .. By defining α1/g = αak for α ∈ Clp of order
pk, we may split the p-primary part of ClK , i.e., the p-class group Clp of
K, as a Z[G]-module through the rational idempotents eχ̃. We obtain the
decomposition (see [17, p. 44])

Clp = dir
∏

χ̃

Clχ,p, (2.7)

where Clχ,p = Cl
eχ̃
p and #Clχ,p = hχ,p, the p-part of hχ. The technique used

to prove the independence of (±ε2)eχ̃ of the choice of the field containing ε
shows that the Z[ζgχ ]-module Clχ,p depends only on Kχ.

The set Clχ,p can also be characterized as the group of ideal classes
of order a power of p in Kχ satisfying the following condition: any ideal
in the ideal class becomes principal under the relative norm map to any
subfield L Ã Kχ (see [18, p. 40]). Thus the values hχ also provide structural
information on the class group.

This brings us to the actual theme of the present study. The rest of
our work will concentrate on the computation of the class number. We will
construct an effective method to compute, for p ∤ 2g, the p-parts of the
class numbers of real abelian fields of degree g. This will be based on the
decomposition (2.6).

Remark 2.3. One may also decompose the p-class group through rational
p-adic characters TrQp(ζgχ )/Qp

(χ); this could allow computations as well.
Some techniques stemming from this decomposition are briefly surveyed in
Chapter 6.





Chapter 3

A condition for the class

number divisibility

We give a p-adic condition for the class number divisibility. In this connec-
tion we also investigate the p-adic regulator.

3.1 Leopoldt’s condition

Leopoldt [18] showed the following fact when proving his theorem about the
class number divisibility referred to in the introduction. The proof is based
on the decomposition (2.7) of the p-class group, the reflection theorem and
Stickelberger theorem.

Lemma 3.1. Let p be an odd prime dividing neither the conductor nor the

degree of a real abelian field K and let χ be a character of K. If Clχ,p 6= 1,
then ∏

ψ∈χ̃

Bp−1,ψ ≡ 0 (mod p),

where Bk,ψ is the kth generalized Bernoulli number associated to ψ.

Note that the above product over χ̃ is rational.

Later we will give an equivalent condition that allows practical computa-
tion, proved by W. Schwarz in his thesis [34, p. 54]. Leopoldt also obtained
a result in the ramified case p | f , p2 ∤ f , but we leave it out from this study
for the sake of simplicity; in the computations we dealt with the case p | f
using another method.

Before stating Schwarz’s condition, we derive a result in a more general
setting. If we assume that the p-part of the class number is known, this will
result in a method to treat the p-divisibility of the p-adic regulator without
explicitly knowing the fundamental units, but only the class number.
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3.2 Divisibility of the p-adic regulator

In order to investigate the p-adic regulator, one has to work in the p-adic
numbers. We thus fix an embedding of K in the algebraic closure Ωp of the
p-adic field Qp. The function vp will denote the normalized (i.e., vp(p) = 1)
exponential valuation on Ωp. For α, β ∈ Ωp, we may also denote the relation
vp(α − β) ≥ k(≥ 1) by α ≡ β (mod pk).

First recall that for x ∈ Ωp, vp(x) > 0, logp(1 + x) =
∑∞

n=1
(−1)n−1xn

n
defines the p-adic logarithm (extended as usual to all nonzero x ∈ Ωp).
Note that vp(logp(1+x)) = vp(x) when vp(x) > 1/(p−1). Define the p-adic
regulator by replacing all the entries ln |ε| in the definition of the ordinary
regulator with logp(ε). As this is a p-adic number, it makes sense to speak
about its p-divisibility. We will assume p ∤ 2f ; for p | f , the method is not
sufficient, and the prime 2 is excluded since it was already excluded from
the study of the class numbers.

Recall the p-adic class number formula [36, Thm. 5.24]:

2g−1hKRp(K)√
dK

=
∏

χ6=1

(
1 − χ(p)

p

)−1

Lp(1, χ),

where Rp(K) is the p-adic regulator of K, dK is the discriminant of K and
Lp(s, χ) is the p-adic L-function associated to a Dirichlet character χ of K.
The product extends over all nontrivial characters of K.

The following known lemma focuses on the part of the p-adic class num-
ber formula that deserves closer inspection in our work.

Lemma 3.2. For any odd prime p not dividing the conductor f of K,

vp(hKR
′

p(K)) = vp

( ∏

χ6=1

Lp(1, χ)
)
, (3.1)

where R
′

p(K) = Rp(K)/pg−1 is nonzero and p-integral.

Proof. Let f(K) be the residue class degree and g(K) the number of primes
above p in K. As p is unramified in K, we have g = f(K)g(K). The values
χ(p) of the characters of K run through all f(K)th roots of unity, each with
multiplicity g(K) (see [36, p. 34]). Thus we may equate

∏

χ6=1

(
1 − χ(p)

p

)
=

1

pg−1(p − 1)

∏

χ∈Ĝ

(p − χ(p)) =
p1−g(pf(K) − 1)g(K)

p − 1
.

Since p ∤ dK , the p-adic class number formula implies (3.1).
The nonvanishing of the p-adic regulator is well known. It remains to

prove the p-integrality. This follows from the fact that vp(logp(ε)) ≥ 1 when
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ε is a unit of Q(ζf ); indeed, for any integer α ∈ Qp(ζf ), we have αpfp ≡ α
(mod p), where fp is the residue class degree of Qp(ζf ), i.e., the order of p
modulo f , whence

logp(ε) =
1

pfp − 1
logp(1 + (εpfp−1 − 1)).

We will study the right hand side of (3.1). Recall [36, Thm. 5.18] that
the p-adic L-function at s = 1 has the value

Lp(1, χ) = −
(

1 − χ(p)

p

)
τ(χ)

fχ

fχ−1∑

a=1

χ(a) logp(1 − ζa), (3.2)

where χ is a nontrivial character of conductor fχ, χ = χ−1, ζ = ζfχ
and

τ(χ) =
∑fχ

a=1 χ(a)ζa is the Gauss sum. For brevity, we will denote fχ = f .
In order to compute the p-adic value of the product of the class number

and the p-adic regulator, we have to compute p-adic approximations modulo
pk, k ≥ 1, of Lp(1, χ). We first approximate the p-adic logarithm; we will
see later that it suffices to compute an approximation of logp(1 − ζp). We

will compute this modulo pk+1 since there is a p in the denominator in (3.2).
For any n ∈ N, vp(

xn

n ) = nvp(x) − vp(n) and min(vp(n), vp(n + 1)) = 0.
Hence in order to compute logp(1 + x) (mod pr), we must compute at least
the first r − 1 terms of the series defining logp. If vp(r + s) > s is satisfied
for some s ≥ 0, we also compute the (r + s)th term. In the range of our
calculations we confronted this situation only in the form vp(r) > 0. We will
subsequently assume that it suffices to compute r− 1 terms; one may easily
manipulate the formulas to cover the other cases.

Let d ∈ Z be a multiple of fp such that d > k. Then we may write

logp(1 − ζp) =
1

pd − 1
logp(1 + ((1 − ζp)pd−1 − 1))

≡
k∑

j=1

(−1)j

j

(
(1 − ζp)pd−1 − 1

)j
(mod pk+1).

Any fth root of unity, say η, satisfies

1

ηp − 1
=

1

f

f−1∑

ν=1

νηpν . (3.3)

The computation of (ζp − 1)pd
may be performed by exponentiation by p

of polynomials via the isomorphism Z[ζ] ≃ Z[x]/〈Φf (x)〉, where Φf is the
fth cyclotomic polynomial. In practice, it is more efficient to compute
modulo (xf −1, pk+1) and reduce the result modulo Φf (x). For large d, this
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becomes tedious, therefore we also present an alternative approach (which
only depends on fp and not on the choice of d).

By (3.3) and the binomial formula, we may write

(1 − ζp)pd−1 =
(ζp − 1)pd

ζp − 1
=

1

f

f−1∑

ν=1

νζpν
pd∑

i=0

(
pd

i

)
(−1)pd−iζpi. (3.4)

We investigate residues of binomial coefficients. For 1 ≤ j ≤ pd, we have
j
pd

(
pd

j

)
=

∏j−1
i=1

pd−i
i (define an empty product to be equal to 1), which is a

p-adic unit. We conclude that there are exactly ϕ(ps) binomial coefficients

satisfying ps‖
(
pd

l

)
if s < d; they are

( pd

mpd−s

)
for 1 ≤ m < ps, p ∤ m. Note

that the number ϕ(pk) = pk−1(p − 1) grows exponentially in k.

Example 3.1. Let k = 2. Then (1− ζp)pd−1 − 1 (mod p3) equals, by (3.4),

1

f

f−1∑

ν=1

νζpν

( p−1∑

i=1

(
pd

ipd−1

)
(−1)i−1ζi +

p2−1∑

i=1
(i,p)=1

(
pd

ipd−2

)
(−1)i−1ζi/p

)
(mod p3).

We used here the facts that pd ≡ 1 (mod f), ζpd+1−1
ζp−1 = 1 and that p is

odd. The residues for the binomial coefficients may be computed as follows
(assume p ∤ i and d > 2):

(
pd

ipd−1

)
=

p

i

ipd−1−1∏

j=1

pd − j

j
≡ p

i
(−1)r

∏

vp(j)≥d−1

pd − j

j
≡ p

i

i−1∏

j=1

p − j

j
(mod p3),

where r = (ipd−1 − 1) − (i − 1) is even. Thus
( pd

ipd−1

)
≡

(
p
i

)
(mod p3).

Moreover,

(
pd

ipd−2

)
=

p2

i

ipd−2−1∏

j=1

pd − j

j
≡ p2

i
(−1)s

∏

vp(j)≥d

pd − j

j
≡ p2

i
(−1)s (mod p3),

where s = ipd−2 − 1. Thus
( pd

ipd−2

)
≡ p2

i (−1)i−1 (mod p3).

The computation of the binomial coefficients modulo pk+1 for any k may
be performed using the same ideas. Naturally, the residues are independent
of the choice of d.

Assume that we have computed the coefficients a
′

j , 0 ≤ a
′

j ≤ pk+1 − 1,

in the congruence (1 − ζp)pd−1 ≡ ∑ϕ(f)−1
j=0 a

′

jζ
j (mod pk+1) for some k ≥ 1

using either of the methods presented above. By the relation Φf (ζ) = 0,
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we may as well write
∑ϕ(f)−1

j=0 a
′

jζ
j ≡ ∑ϕ(f)/2

j=1−ϕ(f)/2 ajζ
j (mod pk+1) for some

aj , 0 ≤ aj ≤ pk+1 − 1.

We note that (1 − ζp)pd−1 is real; indeed, its complex conjugate equals

(−ζ−p(1 − ζp))pd−1 and we have pd ≡ 1 (mod f) since d is a multiple of

fp. Since {1, ζj + ζ−j | 0 < j < ϕ(f)
2 } is an integral basis of Q(ζ + ζ−1)/Q,

it follows that the coefficients aj satisfy aϕ(f)/2 = 0 and aj = a−j for any

j = 1, . . . , ϕ(f)
2 − 1. Hence also the coefficients dj , 0 ≤ dj ≤ pk − 1, in

1
p logp(1−ζp) ≡ ∑ϕ(f)/2

j=1−ϕ(f)/2 djζ
j (mod pk) satisfy dϕ(f)/2 = 0 and dj = d−j

for any j = 1, . . . , ϕ(f)
2 − 1.

We now obtain a formula for Lp(1, χ) as follows. Since
∑f

a=1 χ(a)ζaj =
χ(j)τ(χ), we may write, following [23],

1

p

f∑

a=1

χ(a)logp(1 − ζa) =
χ(p)

p

f∑

a=1
(a,f)=1

χ(a)logp(1 − ζap)

≡ χ(p)

ϕ(f)
2

−1∑

j=1−ϕ(f)
2

dj

f∑

a=1

χ(a)ζaj = χ(p)τ(χ)

ϕ(f)
2

−1∑

j=1−ϕ(f)
2

djχ(j),

where the congruence is modulo pk.

By the relation dj = d−j and by noting that χ(0) = 0 and χ(−1) = 1,
we have

ϕ(f)
2

−1∑

j=1−ϕ(f)
2

djχ(j) = 2

ϕ(f)
2

−1∑

j=1

djχ(j).

Since τ(χ)τ(χ) = f , we conclude

Lp(1, χ) = −
(

1 − χ(p)

p

)
τ(χ)

f

f∑

a=1

χ(a)logp(1 − ζa)

≡ −2
(
p − χ(p)

)
χ(p)

ϕ(f)/2−1∑

j=1

djχ(j) (mod pk).

By Lemma 3.2, the following now holds:

pk |hKR
′

p(K) ⇐⇒ pk |
∏

χ6=1

ϕ(fχ)/2−1∑

j=1

djχ(j). (3.5)

Note that the numbers dj are invariants of the Q-conjugacy class χ̃.
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Hence the above product over the characters may be split into parts

∏

ψ∈χ̃

ϕ(fχ)/2−1∑

j=1

djψ(j) ∈ Z (3.6)

that may be computed individually. Once we have solved the p-divisibility
of hKRp(K), we thus know the p-divisibility of hLRp(L) for any subfield L
of K. The phenomenon is similar to that observed for the class numbers (cf.
Eq. (2.6)). For the computation of the product, we suggest the following
method from [5], in which the product is regarded as a norm of an element
in the field Q(ζgχ). Indeed, the values of χ are gχth roots of unity and the
product runs through the Q-conjugates χk, (k, gχ) = 1, of χ. We denote by
(ki)n the least positive residue of ki modulo n.

Proposition 3.1 (Fee–Granville). Let N be the norm of the element∑n−1
i=0 biζ

i
n ∈ Q(ζn) to Q. If t ∈ Z is positive and satisfies |N | < Φn(t)/2,

then N is the least residue, in absolute value, of

n∏

k=1
(k,n)=1

n−1∑

i=0

bit
(ki)n (mod Φn(t)).

To get an upper bound for the norm, we simply use the triangle inequality
and the fact that |dj | < pk/2.

To determine the p-exponent of hKR
′

p(K), we use the condition in (3.5)
for increasing k until for some k the product over the characters is not
divisible by pk. Hence we will always first check the case k = 1. For larger
k, the efficiency of the method is not so important; indeed, the computations
show that in most cases p ∤ hKR

′

p(K).

In this connection we note that the product in (3.5) is a product of norms
and that the p-divisibility of an absolute norm of an element in Z[ζgχ ] implies
the divisibility by pfp , where fp is the residue class degree, i.e., the order
of p modulo gχ. It follows that p |∏ψ∈χ̃ Lp(1, ψ) implies pfp |hKR

′

p(K). In

the case k = 1 the divisibility of the product
∏

ψ∈χ̃

∑
djψ(j) in (3.6) by pfp

is, in fact, equivalent to
∑

djψ(j) ≡ 0 (mod P) with P | p some prime ideal
of Q(ζgχ). Indeed, all the prime ideals are Galois conjugate. By computing
the generators of all the ideals P above p by a known method, we may check
the latter condition as well and thus avoid the computation of the norm.

For the computation of the numbers dj and the product in the case k = 1,
there is an efficient method, presented by Schwarz in his thesis [34], which
we review in the following. We also refer to an article of Metsänkylä [23].

We found out for 2 < p < 100 the p-adic values of the product of the
class number and the p-adic regulator for any field K of prime conductor
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f < 2000. We also computed these values for the fields of prime conductor
f < 10000 for all the odd prime divisors of the class number divisors found
in the tables in [16] and [32]. Using these class number tables (also included
in our tables for p 6= 2; see Chapter 8), we may read from our tables the
values for the p-adic regulators.

Remark 3.1. One could as well split the set of characters χ 6= 1 into p-adic
conjugacy classes. The product over such a class would then correspond to
a norm in Qp(ζgχ). By using the above ideas and by approximating suitably
the p-adic integers involved, we might also compute the p-adic values of such
a product.

3.3 The method of Schwarz

We explain here the method for the case k = 1, mostly following Schwarz
[34]. The proofs are merely sketched, but they can be read independently
of Schwarz’s thesis. Denote by [a] the integer part of a > 0. We begin with
a lemma [34, pp. 45–46].

Lemma 3.3. If χ is a character of conductor fχ = f and order gχ = n and

p ∤ 2f is a prime, then

Bp−1,χ ≡ −χ(p)

f−1∑

i=1

χ(i)

[ pi
f

]∑

ν=1

ν−1f−1 (mod Pχ) (3.7)

for a prime ideal Pχ | p in Z[ζn].

Proof. By using properties of p-adic L-functions Lp(s, χ) (cf. [36, pp. 57–
61]), we have

Bp−1,χ ≡ Lp(2 − p, χ) ≡ Lp(1, χ) (mod p).

Metsänkylä (see [23], Thm. 2 and its proof) shows that

Lp(1, χ) ≡ −
f−1∑

i=1

biχ(i) (mod p) (3.8)

whenever bi modulo p are rational integers satisfying

λ(ζ) =
(ζ − 1)p − (ζp − 1)

p(ζp − 1)
≡

f−1∑

i=1

biζ
i (mod p). (3.9)

This follows by using ideas presented in Section 3.2 and by noting that the
congruence logp(1 − ζp) ≡ 1 − (ζ−1)p

ζp−1 (mod p2) holds. The numbers bi are



30 A condition for the class number divisibility

not uniquely defined if f is not prime, but (3.8) holds for any such numbers.
(By [34, p. 43], the number λ(ζ) modulo p equals the Fermat quotient of
ζp − 1.)

Let a ∈ Z, a ≡ p−1 (mod f). Since 1
p

(
p
k

)
≡ (−1)k−1

k (mod p), we may
write

(1 − ζ)λ(ζa) = −1

p

(
(ζa − 1)p − (ζ − 1)

)
≡

f−1∑

µ=0

cµζµ (mod p)

with

cµ ≡ −
p−1∑

k=1
ak≡µ (mod f)

k−1 ≡
[ pµ

f
]∑

ν=[
p(µ−1)

f
]+1

ν−1f−1 (mod p).

Define the numbers bi for all i ∈ Z \ fZ by periodicity modulo f . We have

(1 − ζ)λ(ζa) ≡ (1 − ζ)

f−1∑

i=1

bpiζ
i ≡

f−1∑

i=1

(bpi − bp(i−1))ζ
i (mod p).

Consequently, by choosing

bpi ≡
[ pi

f
]∑

ν=1

ν−1f−1 (mod p),

we see that (3.9) is satisfied.
By the formula (3.8),

Lp(1, χ) ≡ −
f−1∑

i=1

bpiχ(pi) (mod p).

We conclude that the congruence (3.7) holds modulo p (in Ωp). The claim
follows since the numbers in (3.7) are p-integers in the field Q(ζn).

Proposition 3.2. Let f be the conductor and n the order of χ. Let

λ : (Z/fZ)× → {0, . . . , n − 1}

be defined by χ(i) = ζ
λ(i)
n . If the prime p ∤ 2fn divides the χ-class number

hχ, then

GCDFp[x]

( f−1∑

i=1
(i,f)=1

aix
λ(i), Φn(x)

)
6= 1, (3.10)

where ai ≡
∑[ pi

f
]

ν=1 ν−1f−1 (mod p).
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Proof. Assume p |hχ. By Lemma 3.1,
∏

χ∈χ̃ Bp−1,χ ≡ 0 (mod p). Hence it
follows from (3.7) that

∏

χ∈χ̃

f−1∑

i=1

aiχ(i) ≡ 0 (mod p).

Since the conjugates χσ of χ satisfy χσ(i) = ζ
kλ(i)
n and the zeros of Φn(x)

are ζk
n for (k, n) = 1, we have

∏

χ∈χ̃

f−1∑

i=1
(i,f)=1

aiχ(i) =

n−1∏

k=1
(k,n)=1

f−1∑

i=1
(i,f)=1

aiζ
kλ(i)
n = Res

(
Φn(x),

f−1∑

i=1
(i,f)=1

aix
λ(i)

)
,

where Res(·, ·) denotes the resultant. Finally, p divides Res(f(x), g(x)) if
and only if GCDFp[x](f(x), g(x)) 6= 1. The claim follows.

Remark 3.2. To check whether pk divides Res(f(x), g(x)) for k > 1 is not
easy. Hence we have to use a slower method (such as that in Proposition
3.1) to check the condition (3.5) in the case k > 1.

The proof of the proposition is essentially found in Schwarz’s thesis. But
while he showed that such a result holds for a single Q-conjugacy class, he
did not relate it to Leopoldt’s decomposition of the class number. After
observing this relation, we arrive at the result we stated in the proposition;
this is more transparent especially in the case of a composite conductor. In
particular, Proposition 2.9 gives us the factor group Eχ/Fχ of units that is of
order hχ. This will be applied in Chapter 4 that deals with the computation
of the χ-class numbers.

Schwarz also shows that the computational complexity of the method
is O(p + fχ + g2

χ). He used the method to produce, among others, a table
of possible class number divisors p < 100000 for any real abelian field of
conductor f ≤ 500. This table also gives information on the p-adic regu-
lators; indeed, if p is included in the table for some field K, it means that
vp(hKR

′

p(K)) ≥ 1.

Remark 3.3. In many cases one could also use the method and the p-adic
class number formula to check whether the class number is not divisible by
a prime dividing the degree of the field. Indeed, if the condition (3.10) is
not satisfied for any character of K, then (since Bp−1,χ ≡ Lp(1, χ) (mod p))
Lemma 3.2 implies p ∤ hK .

3.4 Examples

There exist families of fields for which it is possible to compute the p-adic
regulator in practice. We discuss some easy examples of such computations.
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In these fields the fundamental units may be explicitly given by means
of Gaussian periods. Hence we may compute the p-adic regulator directly
from its definition. We also compute the vp-value of the product hKRp(K)
using some previously presented method and in this way obtain the p-part of
the class number. Note that the latter is not a new result; the computations
of the class numbers of the fields in these families have previously been
extended to very large conductors.

The easiest instances of these families of fields are the quadratic fields of
the form Q(

√
n2 + 1) or Q(

√
n2 + 4) for any n ∈ Z. Other known instances

are the “simplest cubic fields” found by Shanks [35] and the families of
certain fields of degrees 4, 5, 6 and 8 investigated, among others, by M.-N.
Gras [8], [9] and Emma Lehmer [19]. In the table of class numbers of Schoof
[32], all these fields are marked with an asterisk.

Recall that if vp(x) ≥ 1, then vp(logp(1 + x)) = vp(x) and also that

logp(ε) = 1
pfp−1

logp(1 + (εpfp−1 − 1)).

Example 3.2. Let f = 3137 = 562 + 1 and p = 3. The fundamental unit ε
of Q(

√
f) is found using a known method; it is ε = 56 +

√
3137. We have

ε8 − 1 = 12387712745834496 + 221173895291328
√

3137 = a + b
√

3137.

Then

|R3(Q(
√

3137))|3 = | ε8 − 1|3 =
√
|N(ε8 − 1)|3 =

√
|a2 − fb2|3 =

1

9
.

Using the method we introduced in Section 3.2, we find out that 33 divides
the product hR3/3, but 34 does not. Hence 32 ‖hQ(

√
3137). This agrees with

Schoof’s tables.
The method of Schwarz shows that the product hR5/5 is not divisible

by 5. Indeed, similar calculations as above show that the 5-adic regulator
admits no nontrivial divisor 5. Hence it follows (independently of any class
number tables) that 3250 ‖h

Q(
√

3137).

Example 3.3. It is known that every cyclic cubic field K can be constructed
by adjoining to Q a zero of an irreducible polynomial

fa(x) = x3 − ax2 − (a + 3)x − 1,

where a ∈ Q. The discriminant of fa is (a2+3a+9)2. If we restrict ourselves
to the case a ∈ Z, a2+3a+9 a prime, we obtain a family called the “simplest
cubic fields”. These were investigated by Shanks [35], who also computed
the fundamental units for these fields. Denoting by θ a zero of fa, it is easy
to verify that the other zeros are θ

′

= − 1
1+θ and θ

′′

= − 1
1+θ

′ . The Galois

group of K is therefore cyclic and generated by σ : θ 7→ − 1
1+θ . In [35] it is
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shown that θ and θ + 1 form a system of fundamental units of K. It follows
that the p-adic regulator equals
∣∣∣∣

logp(θ) logp(− 1
1+θ )

logp(θ + 1) logp(− 1
1+θ + 1)

∣∣∣∣ = log2
p(θ) − logp(θ) logp(1 + θ) + log2

p(1 + θ).

By calculating the first terms of the series expansion of this sum, we obtain
Rp(K) modulo a power of p.

Let a = 11. Then K ⊂ Q(ζ163). We have

− logp(α) ≡ αp3−1 − 1 (mod p2).

Let p = 7. Using the relation fa(θ) = 0, we obtain

θ73−1 − 1

7
≡ 2θ2 + 3θ + 4 (mod 7),

(θ + 1)7
3−1 − 1

7
≡ 3θ2 + θ − 1 (mod 7).

Putting all together, we conclude that R7(K)/72 is divisible by 7. The
method in Section 3.2 shows that hKR7(K)/72 is divisible by 7 but not by
72. The above calculation thus indicates that 7 ∤ hK .

Let a = 2, so K ⊂ Q(ζ19) and it is known that hK = 1. Let p = 7321.
Then

θ73213−1 − 1

7321
≡ 3536 + 6326θ + 2522θ2 (mod 7321),

(θ + 1)7321
3−1 − 1

7321
≡ 1795 + 27θ + 3272θ2 (mod 7321).

Thus
R7321(K)

73212
≡ 7321 + 7321θ ≡ 0 (mod 7321).

This shows that 7321 | R7321(K)
73212 , but we do not know the exact value of the

7321-adic regulator; we would have to compute better approximations of the
p-adic logarithms (cf. Example 3.1). This was not done since the calculations
would have been too long to be practical, due to the large value of p.

Then let p = 7309. We have

θ73093−1 − 1

7309
≡ 2230 + 3118θ + 1165θ2 (mod 7309),

(θ + 1)7309
3−1 − 1

7309
≡ 4006 + 2891θ + 1861θ2 (mod 7309).

Consequently,

R7309(K)

73092
≡ 1368 + 3381θ + 818θ2 (mod 7309).
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The norm of this residue over Q7309 is −24918847123. This is not divisible
by 7309, thus 7309 ∤ R7309(K)

73092 .

We found out that R7321(K)
73212 ≡ 0 (mod 7321). As a curiosity, could the

residue have been of the form
∑

aiθ
i 6= 0 with absolute norm divisible by

p? The answer is negative in this case; we have the well-known fact that if p
does not divide the discriminant (722 for f = 19) of the power basis {1, θ, θ2}
of K, then any integer α ∈ K has a basis representation a1 + a2θ + a3θ

2

with ai ∈ Q p-integral. Now choose β = R7321(K)
73212 and note that vp(β) ≥ 1

implies that α = β/p is also an integer in K.
For the family of quintic fields of E. Lehmer, there exist results allowing

an easy computation of the p-adic regulator modulo a power of p with a
procedure similar to the one with cubic fields; see the article of Schoof and
Washington [33] for such results. For the other families of fields, one may
possibly obtain such results from the works cited.

Remark 3.4. The p-adic class number formula may be regarded as an
interpretation of the “index formula” (cf. Proposition 2.4 and [36, p. 153])
for the p-adic regulators of the cyclotomic units and fundamental units.
Thus by computing the p-adic regulator of the cyclotomic units via the
methods presented in the examples, we obtain vp(hKRp(K)). However, this
is only a reformulation of the method in Section 3.2.



Chapter 4

Computation of the class

number

4.1 Outline of the algorithm

To begin with, we give a framework of the algorithm for the computation
of the p-part of the class number. As before, we omit the prime 2 and the
primes dividing the degree g of the field K in question. For the prime 2,
see, e.g., the article [16].

To check if a prime p ∤ 2g divides the class number of K, it suffices to
run the test for all hχ,p separately, i.e., it is sufficient to study only cyclic
fields Kχ and cyclic modules |Fχ| of cyclotomic units. When computing hχ,
we always choose K = Kχ and g = gχ. To find out the p-divisibility of the
class number for all real abelian fields of conductor f , we compute hχ,p for
all the nontrivial Q-conjugacy classes of the characters of Q(ζf + ζ−1

f ).

The method consists of three parts. First we put an upper bound for the
primes to be tested. For each prime below this bound, we use the method
of Schwarz, i.e., check the condition (3.10), and we are left with a small
number of primes that must be tested further; for all the other primes p,
the χ-class number is not divisible by p. We have to assume here that p ∤ f ;
the primes dividing f will be checked in the second step of the algorithm.

The second step consists of a search for cyclotomic units that are pth
powers in the unit group, extending an idea of van der Linden [20]. In this
way we can eliminate most of the remaining primes; they do not divide hχ.

Passing these tests is a necessary condition for the p-divisibility, and
after them we have a strong belief that p could divide the χ-class number
hχ, but this is still not a proof. To verify the divisibility, we finally check
whether the pth root of a unit found in the second step is in Kχ. We use a
method presented in an article of G. and M.-N. Gras [10].

Moreover, we provide a method to check whether hχ is divisible by a
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higher power of p. This is also based on ideas in [10].

We limited the search to the fields of conductor f ≤ 2000 and to the
primes p < 10000. In theory there could be larger primes dividing these
class numbers, but we will see that the heuristics of Cohen and Lenstra [3]
and the results of the computations (the largest prime factor found was 379)
show this to be very unlikely.

4.2 Search for units of order p

In [20] van der Linden investigated the group EK/CK of units modulo
(Hasse’s) cyclotomic units in connection with class numbers. He introduced
a computational method to show in some cases the indivisibility of the class
number by a given prime. However, in the general case a similar use of the
group EK/CK would be problematic since one may have to combine cyclo-
tomic unit groups of subfields in order to obtain a subgroup of units of full
rank (cf. [36, p. 150]), and this leads to a complicated module structure. We
avoid this problem by applying a similar procedure to the groups Eχ/Fχ.

To check if the p-part of hχ = [Eχ : Fχ] is nontrivial, we must analyze the
group Eχ/Fχ. As noted before, Eχ/{±1} and Fχ/{±1} are Z[ζgχ ]-modules.
Recalling that (±ε)eχ̃ = ±ε for any ε ∈ Eχ and that Z[Gχ]eχ̃ ≃ Z[ζgχ ], we
may also regard |Eχ| and |Fχ| as Z[Gχ]-modules. Hence Fχ/F p

χ admits an
Fp[Gχ]-module structure, where F p

χ = {xp | x ∈ Fχ}.
The map xFχ 7→ xpF p

χ defines an isomorphism

(Eχ/Fχ)p ≃ (Ep
χ ∩ Fχ)/F p

χ ,

where (Eχ/Fχ)p is the p-elementary subgroup (the group of elements of
order 1 or p). For the injectivity of the map, note that for any real numbers
x, y and for odd p, xp = yp only if x = y.

If hχ,p 6= 1, then the group (Ep
χ∩Fχ)/F p

χ is a nontrivial Fp[Gχ]-submodule
of Fχ/F p

χ . Hence it must contain a minimal submodule of Fχ/F p
χ . Let this

be Fi/F p
χ ; then we have Fi ⊆ Ep

χ. On the other hand, if Fj/F p
χ is any mini-

mal submodule of Fχ/F p
χ such that Fj ⊆ Ep

χ, then Fj/F p
χ is a submodule of

(Ep
χ ∩ Fχ)/F p

χ . Since the intersection of two different minimal submodules
is zero, the p-exponent of hχ is at least the number of minimal submodules
Fi/F p

χ satisfying Fi ⊆ Ep
χ.

In order to prove that hχ,p = 1, it suffices to compute all the minimal
submodules of Fχ/F p

χ and to check that all of them contain elements that are
not pth powers of units. This is not difficult since the minimal submodules
are cyclic and easily determined by the following proposition and remark.
Recall that the Z[Gχ]-module |Fχ| is generated by ±η = (±Θχ)Λχ , where
Θχ and Λχ are defined by (2.5). Note that, as for |Fχ| (see Section 2.5),
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we may assume that Fχ/F p
χ is generated by η = η

′

= Θ
Λχ
χ ; this will also be

assumed in general whenever the sign is inessential and p is odd.

Proposition 4.1. Assume that p ≡ 1 (mod gχ). The minimal Fp[Gχ]-
submodules of Fχ/F p

χ are 〈ηΦgχ (σ)/(σ−i)〉, where i runs through all the zeros

of Φgχ(x) (mod p) and σ is a generator of Gχ.

Proof. Consider the Fp[Gχ]-homomorphism

τ : Fp[Gχ] → Fχ/F p
χ , δ 7→ ηδF p

χ .

It is obviously well-defined and surjective. Its kernel is an Fp[Gχ]-module,
i.e., an ideal in the principal ideal ring Fp[Gχ] ≃ Fp[x]/〈xgχ − 1〉. Since
Fχ is of finite index in Eχ, the Z-rank of |Fχ| is equal to ϕ(gχ). Thus the
Fp-rank of Fχ/F p

χ is ϕ(gχ); indeed, a Z-basis {x1, . . . , xk} of |Fχ| induces an
Fp-basis {x1F

p
χ , . . . , xkF

p
χ} of Fχ/F p

χ .

Since Θ2
χ is an element of Kχ, we conclude Θσgχ−1

χ = ±1. The known
relation xm −1 =

∏
d|m Φd(x) implies that σgχ −1 =

∏
d|gχ

Φd(σ). It follows

that Λχ is divisible by all the Φd(σ) with d 6= gχ, whence ηΦgχ (σ) = ±1. Con-
sequently, the kernel Ker(τ) ⊇ 〈Φgχ(σ)〉. The rank argument then implies
that, in fact, these sets are equal.

We have proved the isomorphism

Fχ/F p
χ ≃ Fp[Gχ]/〈Φgχ(σ)〉. (4.1)

By the assumption on p, the cyclotomic polynomial Φgχ(x) factors com-
pletely modulo p and we have the evident Fp[Gχ]-isomorphisms

Fp[Gχ]/〈Φgχ(σ)〉 ≃ Fp[x]/〈xgχ − 1, Φgχ(x)〉 ≃ Fp[x]/〈Φgχ(x)〉 ≃ F
ϕ(gχ)
p .

The minimal submodules of F
ϕ(gχ)
p are 〈(1, 0, . . . , 0)〉, . . . , 〈(0, . . . , 0, 1)〉. By

the above isomorphism, they correspond to the modules 〈Φgχ(σ)/(σ− i)〉 in
Fp[Gχ]/〈Φgχ(σ)〉, where σ − i runs through the factors of Φgχ(σ) (mod p).
The claim follows.

Remark 4.1. The proposition generalizes to all odd primes p not dividing
gχ. Indeed, choose the smallest fp ≥ 1 such that pfp ≡ 1 (mod gχ). The
gχth cyclotomic polynomial factors over Fp into ϕ(gχ)/fp distinct polyno-
mials fi(x) of degree fp; hence Fp[Gχ]/〈Φgχ(σ)〉 ≃ (GF(pfp))ϕ(gχ)/fp . Then

the minimal submodules of Fχ/F p
χ are 〈ηΦgχ (σ)/fi(σ)〉.

It is also important to note that if a prime p of order fp modulo gχ

divides hχ, then also pfp divides hχ. This follows from the fact, stated in
Proposition 2.9, that hχ is a norm of an integral ideal.
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Remark 4.2. In particular, let gχ = pν be an odd prime power. The
unique minimal ideal of Fp[x]/〈(x − 1)ϕ(pν)〉 ≃ Fp[ζpν ] is 〈(x − 1)ϕ(pν)−1〉.
More generally, if gχ = npν with (n, p) = 1, we have Φgχ = Φ

ϕ(pν)
n in Fp[x],

where Φn factors into ϕ(n)/fp distinct polynomials of degree fp, where fp is
the order of p modulo n. Hence we might also compute the prime divisors
of hχ that divide gχ. This was not done since the difficulty of computing
such factors of the class number hK lies in computing the index Q+

K (see
Chapter 7).

By the above considerations, to examine if Fi ⊆ Ep
χ, it suffices to check

whether ηΦgχ (σ)/fi(σ) is the pth power of some ε ∈ Eχ. We explain how this
will be done, following [20]. Later we will also need the fact that ε 6∈ Fχ;
this follows from the nontriviality of Fi/F p

χ .

Choose a prime q ≡ 1 (mod 2pfχ) and some b ∈ Z satisfying the condi-
tions b2fχ ≡ 1 (mod q), b 6≡ 1 (mod q). Then ζ2fχ

≡ b (mod Q) for some

prime ideal Q above q in Q(ζ2fχ
). By writing ηΦgχ (σ)/fi(σ) as a rational

function r(ζ2fχ
), we examine whether

r(b)
q−1

p ≡ 1 (mod q). (4.2)

Indeed, this must hold if r(ζ2fχ
) = εp. If the congruence holds, we choose

another pair (q, b) and repeat the test; if the congruence condition is not
satisfied for some pair, we conclude that Fi 6⊆ Ep

χ. If for every submodule
Fi there exists a pair (q, b) not satisfying the congruence, we have the result
p ∤ hχ. Otherwise, if there is a prime p and a submodule Fi which pass
the congruence test for many pairs, this gives strong evidence that p would
divide the class number. But since this process involves uncertainty, we still
have to apply another method.

Remark 4.3. Instead of ζ2fχ
, we may actually use fχth roots of unity in

the above computations. Indeed, by Lemma 2.3, Θσ−1
χ (defined up to sign)

belongs to Kχ, hence it may always be written as a rational function of ζfχ
.

4.3 Verification of the p-divisibility

For some α = ηΦgχ (σ)/fi(σ) satisfying (4.2) for many pairs (q, b), we want to
verify that α is a pth power in Eχ. This is equivalent to showing that p

√
α is

an element of Kχ. As a unit of Kχ, the element α has gχ conjugates in Kχ.
We calculate an approximation of α and its conjugates ασ as real numbers
by noting that

ζa
2f − ζ−a

2f

ζ2f − ζ−1
2f

=
sin(aπ/f)

sin(π/f)
.
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If the polynomial mp(x) =
∏

σ(x− p
√

ασ) has integral coefficients, then α is a
pth power; this is the minimum polynomial of p

√
α. Then also p

√
ασ = p

√
α σ

and p
√

α ∈ Kχ. But since we have used only approximations, this is still not
a proof.

Denote by m̃p the polynomial that we have computed in this way to
approximate mp. If some coefficient of m̃p is not close to an integer, this
shows that α is not a pth power, given that the precision in the computations
is adequate. Otherwise, if all the coefficients of m̃p are very close to integers,
we round off the coefficients to obtain the supposed minimum polynomial
mp(x) ∈ Z[x]. We then check whether mp(x) |m(xp), where m(x) is the
minimum polynomial of α. If this holds, it finally proves that mp is the
minimum polynomial of p

√
α and that p

√
α is an element of Kχ.

Since we actually compute α in Fχ/F p
χ , note that we may minimize

modulo p the absolute values of the coefficients of Φgχ(x)/fi(x) ∈ Z[x] in
order to prevent coefficient explosion.

Remark 4.4. We were able to use this method in all the cases confronted
in the computations, despite the fact that the coefficients of the minimum
polynomials were sometimes huge. We note here that G. Gras and S. Jeannin
[11] refined this method and showed that to prove an element to be a pth
power, it essentially suffices to compute the approximations of the pth roots
of the conjugates and to check that their sum is sufficiently close to an
integer.

Remark 4.5. One may avoid computations involving minimum polynomials
also using the following method (cf. [1]). First compute an integral basis
{vi | 1 ≤ i ≤ gχ} of Kχ and the representation of α =

∑
i xivi in this basis.

If we claim that α is a pth power of a unit, we should be able to calculate
the basis representation of the pth root p

√
α =

∑
i yivi with some yi ∈ Z.

To solve the yi, compute for any σ ∈ Gχ an approximate value of p
√

ασ

and write p
√

ασ =
∑

i yiv
σ
i . We have gχ equations and gχ coefficients yi to

solve, hence we may compute all the yi. They should be very close to integers
if the precision is adequate; round them off to the nearest integers. Finally
check whether (

∑
i yivi)

p =
∑

i xivi. If we cannot find yi ∈ Z satisfying this
relation, the claim seems to be false, which in turn should be verified using
the method in Section 4.2.

4.4 Higher powers of p

Suppose that using the preceding method we have found a prime p with
p |hχ. We want to check whether hχ is divisible by a higher power of p.
G. and M.-N. Gras [10] introduced a method with which this verification is
in principle possible. Our approach earlier in this chapter was reminiscent
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of their procedure (see Remark 4.7), so it would be natural to assume that
similar ideas could be applied in our case as well.

The following lemma describes the correspondence we found between our
and Gras’s approach. By combining this result with our method as shown
later in this section, we are able to check all the cases with p ≡ 1 (mod gχ)
encountered in the computations.

Lemma 4.1. Let n ≥ 2 and assume p ≡ 1 (mod n). Let k ∈ Z be a zero of

Φn(x) modulo p. We have

Φn(ζn)

ζn − k
≡ ±N(ζn − k)

ζn − k
(mod pZ[ζn]),

where N(γ) denotes the absolute norm of γ ∈ Z[ζn].

Proof. By the assumption on p, all the zeros of Φn(x) (mod p) are of the
form kj , where (j, n) = 1. Thus the prime ideals of Z[ζn] above p are
Pj = 〈p, ζn − kj〉, (j, n) = 1 (see [36, p. 15]). Write the claim in the form

n∏

j=2
(j,n)=1

(ζn − kj) ≡ ±
n∏

j=2
(j,n)=1

(ζj
n − k) (mod pZ[ζn]).

Since ζn ≡ k (mod P1), this congruence holds modulo P1. Moreover, since
the automorphisms ζn 7→ ζj

n, (j, n) = 1, permute the prime ideals, we see
that both products contain a factor divisible by Pi for any i 6= 1.

Assume p |hχ and p ≡ 1 (mod gχ) and let σ be a fixed generator of
Gχ. Let N(σ − k) =

∏gχ

j=1,(j,gχ)=1(σ
j − k) ∈ Z[Gχ]. By the isomorphism

Z[ζgχ ] ≃ Z[Gχ]/〈Φgχ(σ)〉 and the lemma, we write in Z[Gχ]

Φgχ(σ)

σ − k
≡ ±N(σ − k)

σ − k
(mod p, Φgχ(σ)). (4.3)

Hence the isomorphism (4.1) implies that ηΦgχ(σ)/(σ−k) is a pth power in
Eχ only if ηN(σ−k)/(σ−k) is a pth power in Eχ. We know by elementary
algebraic number theory that NQ(ζgχ)/Q(ζgχ − k) = pm ∈ pZ with p ∤ m

(if p |m, change k to some k + tp until p ∤ m; in principle there could be
some rare special cases where this might not be possible, but we did not
meet any such cases in the practical computations). Hence N(σ − k) ≡ pm
(mod Φgχ(σ)) and we have ηpm/(σ−k) = εp for some ε ∈ Eχ \ Fχ (see the
paragraph after Remark 4.2). From this it follows that εσ−k = ηm.

Let F
′

χ = 〈−1, ετ | τ ∈ Gχ〉. Then |F ′

χ| is a Z[Gχ]-module. Since ε 6∈ Fχ,

but εp ∈ Fχ and εσ = εkηm, we have [FχF
′

χ : Fχ] = p. On the other hand,

p ∤ [FχF
′

χ : F
′

χ] since ηm ∈ F
′

χ and F
′

χ is closed under σ-conjugation. From
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p | [FχF
′

χ : Fm
χ ], we thus deduce [F

′

χ : Fm
χ ] = pu with some u ∈ Z, p ∤ u.

Finally, since [Eχ : Fm
χ ] = [Eχ : Fχ][Fχ : Fm

χ ] < ∞, we conclude that

[Eχ : F
′

χ] < ∞ and that the p-exponent of [Eχ : F
′

χ] is equal to the p-
exponent of hχ/p. Look at the diagram below.

¡
¡

¡

@
@

@

FχF
′

χ

F
′

χ

Eχ

Fχ

p

pu

Fm
χ

@
@

@

¡
¡

¡

Now we run the verification procedure (see Sections 4.2 and 4.3) using
F

′

χ in place of Fχ. To see that Proposition 4.1 holds with ε in place of η,

observe that |F ′

χ| is cyclic of Z-rank ϕ(gχ) and that εΦgχ(σ) = ±1; the latter

holds since εp ∈ Fχ. We thus check whether εΦgχ (σ)/(σ−j) is a pth power for
any j satisfying Φgχ(j) ≡ 0 (mod p). By (4.3), this is equivalent to checking

whether εN(σ−j)/(σ−j) is a pth power. We may compute ε = p
√

ηN(σ−j)/(σ−j)

and its conjugates εσk
with a sufficient precision. It follows that we may

compute an approximation of any conjugate of εΦgχ(σ)/(σ−j).

In fact, one knows a priori that it suffices to check only those minimal

submodules of F
′

χ/F
′p
χ that correspond to the minimal submodules of Fχ/F p

χ

found to contain pth powers. Indeed, assume

ε ∈ Eχ \ Fχ, εp = ηN(σ−i)/(σ−i); ρ ∈ Eχ \ F
′

χ, ρp = εN(σ−j)/(σ−j),

where i 6= j. Let ε1 be the real number defined by εp
1 = ηN(σ−j)/(σ−j). If

N(σ − i) = pm1 with p ∤ m1, we have ηm1 = εσ−i, so εm1
1 = ρσ−i ∈ Eχ.

Since trivially εp
1 ∈ Eχ and (p, m1) = 1, we conclude ε1 ∈ Eχ.

This method seems to fail for p 6≡ 1 (mod gχ). Indeed, our algorithm
in Section 4.2 only gives us pth powers explicitly, although we know by the
theory that there also exist pfpth powers, where fp is the residue class de-
gree. Nevertheless, if we find that p |hχ, we may check whether the number

ε ∈ R satisfying εpfp
= ηN(fi(σ))/fi(σ) belongs to Eχ \ Fχ for some i. In

this way we may still find a pfpth power in Eχ, but whether this happens
remains theoretically unproven since there is no result similar to (4.3). In
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the computations this was possible in all the cases we confronted; indeed,
the results in [10] give evidence that this should always be the case. Choose
again 〈−1, ετ | τ ∈ Gχ〉 = F

′

χ. A similar reasoning as above shows that the

p-exponent of [Eχ : F
′

χ] is equal to the p-exponent of hχ/pfp . Finally, using

our algorithm (with F
′

χ in place of Fχ), we can check whether p | (hχ/pfp).
In this way we were able to verify that among the fields of conductor at

most 2000 there are only the following two cases in which hχ contains pfp

more than once (both with fp = 1). The 17-class number of a 16-degree
field of conductor 1921 is 173 and the 3-class number of the quadratic field
of prime conductor 1129 is 32. The latter is also found in Schoof’s table
[32]. Additionally, we verified that all the other higher powers of p found in
his table could also be determined with our method.

Remark 4.6. If a practical upper bound for hK was known and QK = QG

(for instance, if K is cyclic of prime degree), then also the fundamental units
of K might be computed with this method. Indeed, by successively applying
the procedure for any χ̃ and for any p below the bound for hK , it would be
possible to find an element ε for which [Eχ : 〈−1, ετ | τ ∈ Gχ〉] = 1.

Remark 4.7. G. and M.-N. Gras [10] computed class numbers of abelian
fields of small degree using a method quite similar to our method of find-
ing pth powers. They also used Leopoldt’s condition similar to Schwarz’s
method to limit the number of possible divisors. The tables [7] and [8]
were computed using this method. The aim in [10] was to compute class
numbers of real abelian fields using explicit upper bounds that are practical
only in small degree fields; hence the efficiency of the algorithm was not as
crucial as in our computations. On the other hand, the efficiency might be
improved using first the congruence method as in Section 4.2 (see (4.2)).
Gras’s method essentially consists of a search of units of EP

χ belonging to
Fχ, where P is a prime ideal of Z[ζgχ ] above p; this amounts to searching for

units of the form (ηN(fi(σ))/fi(σ))1/pfp
with P = 〈p, fi(ζgχ)〉. This suggests

that our method could similarly be generalized to search (by the isomor-
phism Z[ζgχ ] ≃ Z[Gχ]/〈Φgχ(σ)〉) for Pth powers in Eχ. This would settle
more naturally the case of a larger residue class degree. One possibility
would be to investigate the group (Eχ/Fχ)P (the P-part will be defined in
Chapter 5).

4.5 An example of the calculation

The following example shows how the calculations were done. We choose
K = Q(ζf + ζ−1

f ) with f = 1261 = 13 · 97. There are 47 real cyclic fields of
conductor f corresponding to the nontrivial Q-conjugacy classes of charac-
ters of K.
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We run for any χ-class number the first step of the method by checking
whether the condition (3.10) holds. All the necessary information for the
computation may be gathered from the knowledge of the corresponding Q-
conjugacy class χ̃. This is the lengthy part of the calculation since we check
all the primes 2 < p < 10000, p ∤ f , for all the 47 different hχ. We find
out that there are in total 68 primes (counted with multiplicity) that satisfy
(3.10) for some hχ, of which 10 primes divide gχ. We continue to the second
step only with the primes not dividing gχ (the 10 discarded primes of course
would also contain some information of the class number divisibility, but
they would require another method; cf. Remark 4.2). Usually the number
of primes satisfying (3.10) was found to be proportional to the number of
different hχ.

In the second step we check all the remaining 58 cases. We also check
for all different hχ the primes 13 and 97 dividing f . There are a total of
152 pairs (hχ, p) to check. For instance, we have the prime candidate 2689
in the field of degree 96 corresponding to the character χ = χ1

13χ
9
97. Since

2689 ≡ 1 (mod 96), there are 96 minimal submodules corresponding to the
various αi = ηΦ96(σ)/(σ−i). We choose a pair (q, b) and check the congruence
(4.2). For instance, the pair (74598239, 46979) is appropriate. For this pair,
the congruence (4.2) is not satisfied for any αi, thus 2689 ∤ hχ. All the
primes are checked similarly; we can handle all the primes not dividing the
class number in this way. An example of a prime dividing the class number
is given in the following.

Let p = 97 and χ = χ2
13χ

10
97. We compute 10 pairs (q, b) and notice

that (4.2) is always satisfied for the minimal submodule corresponding to
fi(σ) = σ + 48 (the specific minimal submodule depends on the choice
of the generator σ of Gχ; we had σ defined by ζf 7→ ζ19

f ). We move on

to the third step and compute a real approximation of ηΦ96(σ)/(σ+48) and
its conjugates. Its minimum polynomial has huge coefficients, thus it is
first important to reduce the coefficients of Φ96(σ)/(σ + 48) ∈ F97[Gχ].
Choosing the coefficients with the smallest absolute value modulo p seems
to be adequate; denote by α the element thus obtained. The precision we
needed in this case was over 5000 digits in order to be able to compute
the minimum polynomial m(x) of α. The choice of the coefficients of α
was probably not ideal. Nevertheless, this was still possible to handle with
computer. The minimum polynomial mp(x) of p

√
α was computed in the

same manner; it had much smaller coefficients, the largest with 54 digits.
Finally we checked that mp(x) divides m(xp). Moreover, we used the method
of higher powers of p to verify that p2 ∤ hχ.

There were altogether three pairs (hχ, p) with p not dividing f (indeed,
with p = 5 or 7; see Table 1) for which we could not find any pairs (q, b)
failing to satisfy (4.2). They were all verified to be actual class number
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divisors using the method in Section 4.3.

The computing time of all the above was approximately one hour using
Mathematica 4.1 [38] on an AMD Athlon 2000+.

4.6 Discriminant bounds

As explained before, our class number tables do not give rigorous results:
in theory there could exist huge prime factors not found in the tables. This
question will be discussed in Chapter 5, but first we review a method that
allows rigorous computation in the case of a small conductor.

In this kind of computation one needs for the class number an upper
bound that is both rigorous and practical, i.e., not too large. Such bounds
are provided for fields of small conductor by Odlyzko’s discriminant bounds.
Using them, van der Linden [20] (extending previous similar computations
by Masley [21]) was able to compute (assuming GRH, the generalized Rie-
mann hypothesis, in some cases) the class numbers of a large collection of
real abelian fields of conductor at most 200. For prime conductors, the cal-
culations were extended to all the fields of conductor at most 163. The table
we computed (supplemented by the table of Schwarz [34]) allows to extend
these calculations somewhat; indeed, we may verify all the class numbers
whose upper bounds lie below 100000.

The argument is as follows (see [21]): A. Odlyzko [26] computed a table
of pairs (A, E) such that for any totally real field K of degree n and dis-

criminant dK and for any x ≥ n, d
1/n
K ≥ Ae−E/x. Using this fact, Masley

proved that d
1/n
K < Ae−E/x implies hK < x/n. By designing conditions for

the p-divisibility, one was then able to rule out all the primes not dividing
the class number. Typical for these conditions was that each of them would
only apply to some of the primes p below the bound, but by combining
the results from different conditions one could in some cases exclude all the
primes below the bound and arrive at the conclusion that hK = 1. The
prime 2 was always handled separately. All the odd class number divisors
confronted could be verified using genus theory; this is practical only in
some special cases for primes dividing the degree, hence it was left out of
our study. For the remaining primes that could not be handled using any of
these conditions, van der Linden used the condition we modified in Section
4.2 and, with the aid of a computer, arrived to his conclusions.

We add here some results that follow from our computations. Under
GRH, Odlyzko obtained pairs (A, E) that lead to better bounds; this is why
some of the results of van der Linden only hold under GRH. Assuming GRH
and comparing the pairs to the class number bound 100000 of the tables of
Schwarz, we find that the upper bounds seem to be practical for A up to a
bound close to 185. Indeed, for A = 185.592 we have E = 70185 in the table
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[26], and this usually leads to upper bounds below 100000; but E = 158820
for A = 188.628, and this is too large for us. In general, the values for E in
the table increase with A.

The condition d
1/n
K < 185 is satisfied for all the fields of prime conductor

f ≤ 193. For composite conductors f < 300 excluding 287, 289 and 299
and for most of the even conductors f < 400, this condition is satisfied
for the field K = Q(ζf + ζ−1

f ). It would be easy to prove (see [21]) that

d
1/nL

L ≤ d
1/nK

K for any subfield L ⊆ K; hence the upper bounds for K hold
also for the class numbers of its subfields. By (2.6), we see that the class
number of any subfield of K may be divisible only by primes dividing either
the degree of K or hK .

We conclude that, under GRH, for any real abelian field of the above
mentioned conductors, the class number factors in our table certainly give
the exact class number part coprime to 2 and the degree of the field. In
particular, there are six fields Q(ζf + ζ−1

f ) of prime conductor f > 163,
namely with f = 167, 173, 179, 181, 191, 193. The field of conductor 191 has
class number part (coprime to 2 and the degree of the field) equal to 11, and
this is the only nontrivial class number factor found among these fields.





Chapter 5

Heuristics

In this chapter we will compare the computed tables of class numbers and
p-adic regulators with heuristic predictions.

5.1 Heuristics for the class number

Schoof [32] showed, based on a speculative extension of the Cohen–Lenstra
heuristics [3], that the class numbers of real abelian fields of prime conductor
are most likely relatively small. The same holds for prime power conductors;
see Buhler et al. [2]. We see from Chapter 2 how to treat class groups of
fields of any conductor. It would be natural to assume that the predictions
given by Schoof on the size of the class groups hold in our case as well. We
will show that this is indeed the case.

Cohen and Lenstra give conjectural heuristic assumptions on the proper-
ties of finite modules over direct products of Dedekind domains. In particu-
lar, the assumptions apply to the modules over the (unique) maximal order
of the group ring Q[G]/〈∑σ∈G σ〉 with G abelian. Their examples include
probabilities for properties of the class groups of quadratic fields and real
abelian fields. The p-parts of the class groups with p dividing the degree
had to be excluded; recently Wittmann [37] presented heuristics for such
primes in some special cases.

To apply the heuristics, one should originally have a large collection of
fields of varying conductor and fixed degree. Since our computations are
limited to the fields of conductor at most 2000 and of varying degree, the
situation is different. But as is mentioned in [2] and [32], the heuristics and
the computed results together support the conjecture that the class groups
of real abelian fields are usually very small.

We assume for the rest of the section that p ∤ #G. The decomposition
(2.7) allows us to define the p-class groups as modules over

⊕
χ̃6=1̃ Z[ζgχ ];

since Cl1,p = 1 for the trivial character 1 = χ0, we may drop the corre-
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sponding part from the direct sum. Since the above sum is isomorphic to
the maximal order of the group ring Q[G]/〈∑σ∈G σ〉 = Q[G]/e1Q[G], the
heuristics may be applied in our case.

For a finite module A over a Dedekind domain R, there is a decompo-
sition A =

⊕
P AP , where the sum is taken over the prime ideals P of R

and AP = {a ∈ A | AnnRa is a power of P} (see [6]). Only finitely many
AP 6= 0. Now by [3, Example 5.10], assuming the heuristics, the probability
that AP = 0 is equal to

∏∞
k=2(1−NP−k), where the norm NP = #(A/P).

The probabilities for the different P will be assumed independent.

Let us show how to apply the above probability in our case. Note first
that the prime ideals of

⊕
χ̃6=1̃ Z[ζgχ ] are of the form

⊕
χ̃ 6=1̃,ψ̃

Z[ζgχ ] ⊕ P,

where ψ̃ is any nontrivial Q-conjugacy class of characters and P runs through
the prime ideals of Z[ζgψ

]. Their norms are equal to the norms of P.
There are ϕ(gχ)/fp prime ideals of Z[ζgχ ] above any unramified prime p.
Their common norm is pfp , where fp is the order of p modulo gχ. The
number of different Z[ζgχ ] in the decomposition of the rational group ring
of a real cyclotomic field is equal to the number of Q-conjugacy classes.
Their number might be calculated, for instance, by the following result by
Perlis and Walker [31]: If G is a finite abelian group of order g, we have
Q[G] ≃ ⊕

d|g
nd

ϕ(d)Q(ζd), where nd is the number of elements of order d in
G.

The probability that the class group is trivial (excluding the primes
dividing 2gχ) is therefore

P (Cl = 1) =
∏

χ̃

∏

p∈P
′

∏

P|p
P (Clχ,P = 1) =

∏

χ̃

∏

p∈P
′

( ∏

k≥2

(1 − p−fpk)
)ϕ(gχ)/fp ,

where P
′

denotes the set of all prime numbers p ∤ 2gχ. Having computed
all the p-parts of the class groups for 2 < p < 10000, we assume p > 10000.
Then by taking the logarithm and using the estimates

−ln

(
1− 1

pfpk

)
<

1 + 10−8

pfpk
(k ≥ 2),

∑

k≥2

p−fpk =
1

pfp(pfp − 1)
≤ 1 + 10−4

p2fp
,

we obtain

−ln
(
P (Clχ,p = 1∀ p > 104)

)
< 1.00011ϕ(gχ)

∑

p>104

1

fpp2fp
.

The series is dominated by the terms with fp = 1, i.e., p ≡ 1 (mod gχ); the
remainder is smaller than

∑
p>104 p−4 < 10−13 (the estimate is computed via

the “prime zeta function” (5.1)). By the prime number theorem for arith-
metic progressions, the number of primes p < n satisfying p ≡ 1 (mod gχ)
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equals approximately #{p ∈ P | p < n}/ϕ(gχ) for large n. Thus with many
different gχ we have, at least on average,

∑

p>104

1

fpp2fp
< 10−13 +

∑

p>104

p≡1 (mod gχ)

p−2 ≈ 1

ϕ(gχ)

∑

p>104

p−2.

We assumed that 10−13 is insignificant; this holds, when the numbers gχ

are of the magnitude we confronted in the computations. The series over
primes may be approximated from its expression in terms of values ζ(m) of
the Riemann zeta function, m ≥ 2. Indeed, we have

∑

p∈P

1

pm
=

∞∑

k=1

µ(k)

k
ln ζ(km) (5.1)

as the Möbius inversion of the logarithm of the Euler product for ζ(m)
(see, e.g., [4]). This gives

∑
p∈P p−2 ≈ 0.452247. Consequently, we obtain∑

p<104 p−2 ≈ 0.452238. It follows that

P (Clχ,p = 1∀ p > 104) ≈ 0.999990.

It is interesting to note that this estimate does not depend on gχ.
We computed all the (χ, p)-parts of the class groups for 2 < p < 10000,

p ∤ gχ, fχ ≤ 2000. For fχ ≤ 500, we even went up to the bound p < 100000
utilizing Schwarz’s tables [34]. For any fixed p, there are a total of 9339
different Z[ζgχ ]-modules Clχ,p for 500 < fχ ≤ 2000 (1679 for fχ ≤ 500).
When substituting this information in the above formulas, one obtains from
the heuristics that the predicted number of occurrences of nontrivial class
group parts Clχ,p (dropping out from the study all the primes dividing 2gχ)
for the fields of conductor fχ ≤ 2000 would be approximately 443, and that
the class number would not contain larger primes for 500 < fχ ≤ 2000 with
probability ≈ 91% (for fχ ≤ 500 with ≈ 99%). We might exclude from
the calculation all the class group parts corresponding to the fields of small
degree since there exist extensive tables for them; then the above probability
for 500 < fχ ≤ 2000 rises to at least 93%. Given that all the computations
have produced only relatively small prime divisors compared to the degree
of the field, we find it reasonable to believe that the found class number
divisors are, in fact, all the primes dividing hχ for any fχ ≤ 2000, excluding
the primes dividing 2gχ.

We found 231 nontrivial χ-parts of class groups, which is less than the
expected number 443, but which is still of the same order of magnitude when
compared to the number of all the χ-parts. This supports the belief, stated
by Schoof [32], that the heuristics would slightly overestimate the chance of
a nontrivial class group when the conductor is relatively small.
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5.2 Heuristics for the p-adic regulator

We recall that to check whether vp(hKRp(K)/pg−1) > 0, Schwarz introduced
the condition (3.10), where one checks if a given cyclotomic polynomial is
relatively prime modulo p to the polynomial

∑
i aix

λ(i). By assuming the
coefficients of this polynomial random and calculating the probability for
(3.10) to hold, Schwarz presented heuristics that correspond quite well to
his computed results.

When generalizing this condition to higher p-powers (see Section 3.2),
we saw that one is led to a condition involving a norm of a character sum
corresponding to Lp(1, χ) modulo pk. Indeed, we restricted the study to a
single Q-conjugacy class of characters at a time and checked if

pk |
∏

ψ∈χ̃

ϕ(fχ)/2−1∑

j=1

djψ(j) (5.2)

holds for some k ≥ 1. This product equals the norm of a sum of gχth roots
of unity.

Let us assume that this sum
∑

i≤gχ
ciζ

i
gχ

∈ Z[ζgχ ] is random. If P
is any prime ideal of Z[ζgχ ] above p and we suppose the residue of the
sum modulo Pk to be random, the probability that this residue is zero is
1/N(Pk) = p−fpk, where fp is the residue class degree. If we also assume
that the probabilities for different P above p are independent, then the
probability that the residue is nonzero for all prime ideals above p is equal
to (1−p−fpk)ϕ(gχ)/fp . Since the residue may be zero for many different prime
ideals above p, we continue as follows.

Let Pi, i = 1, . . . , n with n = ϕ(gχ)/fp, be the prime ideals above p and
denote by vPi

the function that counts the multiplicity of the occurrence
of Pi in the prime decomposition of the sum

∑
i≤gχ

ciζ
i
gχ

. For a random

α ∈ Z[ζgχ ] and for any i and k ≥ 0, we have

P (vPi
(α)=k)=P (vPi

(α)≥k)P (vPi
(α)<k+1 | vPi

(α)≥k)=p−fpk(1−p−fp).

Hence, for instance (defining
(
n
i

)
= 0 for n < i),

P
( n∑

i=1

vPi
(α) = 3

)
= nP

(
vPi

(α) = 3, vPj
(α) = 0 ∀ j 6= i

)

+
(
n
2

)
P

(
vPi

(α) = 2, vPj
(α) = 1, vPk

(α) = 0 ∀ k 6= i, j
)

+
(
n
3

)
P

(
vPi

(α) = vPj
(α) = vPk

(α) = 1, vPℓ
(α) = 0 ∀ ℓ 6= i, j, k

)

= (1 − p−fp)np−3fp
((

n
1

)
+ 2

(
n
2

)
+

(
n
3

))
.

This shows that the probability for (5.2) to hold in the case k = 4 would be
equal to
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P
( n∑

i

vPi
(α) ≥ 4

)
= 1 −

3∑

j=0

P
( n∑

i

vPi
(α) = j

)

= 1 −
(
1 − p−fp

)n(
1 + np−fp +

(
n +

(
n
2

))
p−2fp +

(
n + 2

(
n
2

)
+

(
n
3

))
p−3fp

)
.

All the probabilities are deduced similarly; we only needed the cases
k ≤ 6 (for gχ > 2 only the cases k ≤ 4) in the computations. We computed
for all the primes p < 100, p ∤ 2gχ, a table of probabilities for (5.2) to hold for
any of the above k and for any Q-conjugacy class of characters (see Tables
1 and 2 in Chapter 8).

It can be seen from Tables 4 and 5 that different Q-conjugacy classes
with p | gχ seem to be dependent, hence we dropped them from this heuristic
study. In fact, Schwarz proved the following result (see [34, p. 40]) which in
many cases describes such a dependence. For any field K of degree pµ, p ∤ µ,
and of conductor f not divisible by p, denote by G(p) and H respectively the
p-primary subgroup of G and the group of elements of G of order prime to
p and by L and K(p) their fixed fields. Then vp(hKR

′

p(K)) = 0 if and only

if the following four conditions are satisfied: vp(hLR
′

p(L)) = 0, K(p) has
prime power conductor ℓν with ℓ 6= p, ℓ 6≡ 1 (mod p2) and ℓ does not split
in L. We note that with minor changes a similar result would hold when
restricted to Q-conjugacy classes, but a generalization to higher p-powers
such as in Section 3.2 is not straightforward (if at all possible).





Chapter 6

Other methods

We will briefly survey some other recent methods for checking the p-divisi-
bility of the class numbers of real abelian fields. We will leave out the
technical details involved in the methods and rather study the basic ideas.
It is interesting to compare them with the techniques introduced in this
work; in particular, it would probably be possible to generalize the methods
limited to prime power conductors.

6.1 A connection with Yoshino’s method

Let q be an odd prime. Yoshino investigates in his work [39] prime divisors of
the class numbers of Q(ζq + ζ−1

q ) and its subfields. The method is restricted
to prime conductors (generalized to prime powers in [16]), but probably one
could use Leopoldt’s results to extend them to composite conductors.

Yoshino first gives a necessary condition for an odd prime p 6= q to divide
the class number hK of K = Q(ζq + ζ−1

q ) (he also has results concerning the
prime 2). This condition is checked in practice by computing the Fp-rank
of a certain matrix. He also shows a reduction method that allows dealing
with class numbers of subfields of K and finally finds a condition that is
sufficient for the class number divisibility.

The idea is to investigate the group of units of K modulo an explicitly
given subgroup of full rank. Yoshino lets this group be Hasse’s cyclotomic
units CK . Since q is a prime, this group has a simple structure and is of
index hK in EK by a well-known theorem [36, Thm. 8.2].

We give the definition of CK (one should compare this with the definition
of FK in Section 2.6). First fix a primitive root r modulo q. The group CK

is a cyclic Z[G]-module generated by e0 = (ζ − ζ−1)σ−1, where ζq = ζ and
σ : ζ 7→ ζr is a generator of G = Gal(K/Q) ≃ (Z/qZ)×/{±1}. As a Z-
module, CK is generated by the elements −1 and ei = eσi

0 , i = 0, . . . , n − 1
with n = (q − 1)/2. One may prove (see [36]) that

∏n−1
i=0 ei = −1 is the
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only nontrivial relation between the ei, hence exactly n − 1 of the ei are
independent.

The rank computations were later in [16] replaced by more efficient poly-
nomial computations. This amounts to checking whether a certain polyno-
mial is nontrivial. The polynomial is obtained by polynomial gcd computa-
tions very similar to what was done by Schwarz, i.e., similar to the first step
in our algorithm. If the polynomial is found to be nontrivial, one computes
its factorization in Z[x] and checks by a congruence condition if any factors
are irrelevant for the class number divisibility. The calculations resemble
our second step. If the polynomial obtained in the second step is still non-
trivial, then the class number divisibility is finally verified using a technique
corresponding to our third step.

We will show that there really is a connection between these methods.
For simplicity, we do not deal with the subfields of K, but by following the
reduction method in [16], one should be able to generalize the correspon-
dence of the methods accordingly. We begin by presenting some definitions
and results given in [39]. Let

E
(p)
U = {η ∈ CK | αp ≡ η (mod p2) for some integer α ∈ K}.

This group is called the primary units; the notion originally stems from

the classical work of Kummer. Intuitively, the elements of E
(p)
U are those

cyclotomic units that have a possibility to be pth powers of units in view of
the beginning of their p-adic expansions. If p divides the class number hK ,

then p also divides #(E
(p)
U /Cp

K); indeed, then there exists a unit ε ∈ EK \CK

such that εp ∈ CK , and we see that εpCp
K generates a cyclic subgroup of

order p in E
(p)
U /Cp

K .
Define α ∈ Z[ζ] such that (ζ − ζ−1)p = ζp − ζ−p + pα and let

β = − α

(ζ − ζ−1)p
+

(ζp − ζ−p)ασ

(ζ − ζ−1)p(ζpr − ζ−pr)
∈ K.

These elements are used to prove the following equivalence; see [39] for its
simple proof. If ξ =

∏n−1
i=0 exi

i is any cyclotomic unit, then

ξ ∈ E
(p)
U ⇐⇒

n−1∑

j=0

xjβ
σj ≡ 0 (mod p). (6.1)

Note that the congruence can be understood p-adically; the elements in-
volved are p-integral.

By a result of Kummer on the rationality of a certain sum of roots
of unity, the congruence condition in (6.1) implies rational congruences∑n−1

j=0 xjci,j ≡ 0 (mod p) for every 0 ≤ i ≤ n − 1 (see [39]). This may
be written as

M(x0, . . . , xn−1)
T ≡ 0 (mod p)



6.1 A connection with Yoshino’s method 55

with M = (ci,j)0≤i,j≤n−1. The dimension of its solution space M equals n
subtracted by the Fp-rank of M . Let N = {(a, . . . , a) | a ∈ Fp}. It is now

easy to see that M/N contains a subgroup isomorphic to E
(p)
U /Cp

K . Hence
it suffices first to analyze the more explicitly given group M/N in order to
study class number divisibility.

Now we will show that when proceeding differently from (6.1), we arrive
at a condition similar to the first step of our method. We begin with a
lemma.

Lemma 6.1. Let p 6= q. The p-adic regulator of CK equals

Rp(CK) = ±det
(
logp(1 − ζ2pri+j+1

) − logp(1 − ζ2pri+j

)
)
,

where 0 ≤ i, j ≤ n− 1 and we omit one freely chosen value for both i and j.

Proof. The elements

ξi =
(ζ−1/2(1 − ζ))σi+1

(ζ−1/2(1 − ζ))σi
(i = 0, . . . , n − 2)

with −1 also generate CK as a Z-module (see [36, Lemma 8.1]). By the
definition, Rp(CK) = det(logp(ξ

τj

i ))0≤i,j≤n−2 modulo sign, where τj runs
through all but one (freely chosen) element of G. Since this is independent
of the choice of basis, we may substitute ζ by ζ2p in the definition of ξi. By
noting that logp(ζ) = 0, we write

Rp(CK) = ±det
(
logp((1 − ζ2p)σi+j+1

) − logp((1 − ζ2p)σi+j

)
)
,

where 0 ≤ i, j ≤ n − 2. Since the rows in the determinant are different per-
mutations of logp(ξi) modulo sign (recall that

∏
ξi = −1), we may express

Rp(CK) as above, omitting one freely chosen value for both i and j.

Proposition 6.1. Let K = Q(ζq + ζ−1
q ) and p 6= q. Then

p |#(E
(p)
U /Cp

K) ⇐⇒ vp(hKRp(K)/pn) > 0.

Proof. We first note that α = λ(ζ2)(ζp − ζ−p), where λ is defined in (3.9).
By using the congruence ζp − ζ−p ≡ (ζ − ζ−1)p (mod p), we obtain from
this β ≡ λ(ζ2)σ − λ(ζ2) (mod p).

The proof of (3.8) rests essentially on the fact that −1
p logp(1 − ζap) ≡

λ(ζa) (mod p) for every a prime to q (see [23]). We obtain

β ≡ −1

p

(
logp(1 − ζ2pr) − logp(1 − ζ2p)

)
(mod p). (6.2)
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Our observation is that the condition in (6.1) is invariant under σ-
operation, i.e.,

ξ ∈ E
(p)
U ⇐⇒

n−1∑

j=0

xjβ
σi+j ≡ 0 (mod p) for any 0 ≤ i ≤ n − 1.

The right hand side is equivalent to the condition M1(x0, . . . , xn−1)
T ≡ 0

(mod p), where M1 = (βσi+j
)0≤i,j≤n−1 (with σn = 1). Denote by M1 its

solution space. We have N ⊆ M1 by (6.2). The Fp-dimension of M1/N
then equals n − 1 − rankFpM1. By elementary linear algebra, the rank of
M1 equals s if all the (s+1)-minors of M1 are equal to zero, but an s-minor
is nonzero. But any (n − 1)-minor of M1 equals Rp(CK)/pn modulo p by
Lemma 6.1. Finally, by the p-adic version of (2.2) (see [36, p. 153]), Rp(CK)
equals hKRp(K).

Remark 6.1. The group M1/N is a subgroup of M/N . However, the
computations we carried out using Yoshino’s criterion and Schwarz’s method
suggest that, in fact, the condition dimFp M/N > 0 would be equivalent to

vp(hKRp(K)/pn) > 0, hence E
(p)
U /Cp

K ≃ M/N .

6.2 p-Adic methods

We noted in Chapter 2 that one may as well decompose the p-class group
by means of the rational p-adic characters. This decomposition also cor-
responds to the p-adic decomposition of the unit group modulo cyclotomic
units. Indeed, let χ be a nontrivial character of an abelian field K and let
Kχ be the fixed field of Ker(χ) as before. Let p be a prime not dividing gχ

and Clχ,p = Cl
eχ̃
p , where Clp is the p-class group of K and eχ̃ is the idem-

potent corresponding to the rational p-adic character χ̂ = TrQp(ζgχ)/Qp
(χ).

Define Eχ,p = (E ⊗Z Zp)
eχ̃ and let Fχ,p be a Zp[ζgχ ]-module generated by

NQ(ζfχ )/Kχ
(ζfχ

− 1)eχ̃ .

As a consequence of Iwasawa’s Main Conjecture (proved by Mazur and
Wiles [22]), the equality # Clχ,p = #(Eχ,p/Fχ,p) follows. This allows to
design criterions for the p-divisibility of the class number in a similar manner
as was done in our work; additional work has to be done in appropriate
truncation of the p-adic elements involved. Since the p-adic decomposition
of the class group is a refinement of the rational decomposition, one would
hope to obtain more precise results.

One such method is given by Schoof [32]. He only studied the fields of
prime conductor for simplicity. The Gras conjecture, i.e., that the Jordan–
Hölder filtrations of the class group of K = Q(ζ+ζ−1) and the group EK/CK

are isomorphic as Zp[G]-modules, is also a consequence of the Main Conjec-
ture (see [12, Proposition 9]). Schoof’s idea was to compute all the simple
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Jordan–Hölder factors of the p-part of a module isomorphic to EK/CK . The
underlying idea is similar; indeed, the Jordan–Hölder filtration of the unit
group corresponds to the decomposition into simple modules Eχ,p.

Another p-adic method is introduced in a recent article of Aoki and
Fukuda [1]. They not only give means to check the p-divisibility of the
class number, but also present a technique to compute the structure of the
p-class group. This is based on a result of Kolyvagin–Rubin–Thaine that
gives explicitly the annihilators of some specific ideals of K.





Chapter 7

Conclusion and open

problems

In this thesis we have examined the computation of the class numbers of
real abelian fields. We constructed an efficient algorithm to compute class
number divisors. The computed results predict that the size of the class
numbers shows statistical behaviour similar to the class numbers of fields of
prime conductor.

For abelian extensions over imaginary quadratic fields, there exists an
explicitly given group of units constructed using elliptic functions. These
units have properties analogous to cyclotomic units and they have been
applied in some works concerning the computation of the class numbers of
such fields. In particular, there exist class number formulae for these fields;
for instance, K. Nakamula [25] has constructed algorithms to compute the
class numbers of some sextic fields. It would be interesting to study these
fields in connection with our methods.

We mainly ignored the question of checking the class number divisibility
for the primes p dividing the degree g of the field. There exists the well-
known theorem from class field theory [36, Thm. 10.4] that if L/K is a Galois
extension of degree a power of p such that at most one prime ramifies, then
p |hL implies p |hK . The conditions hold if such a field L is real and of prime
power conductor. In Schoof’s table [32] of class number divisors this means
that p does not divide the class number of any such field unless p divides
the class number of a subfield of degree not divisible by p. But in the case
of a composite conductor this result is not applicable in general, and one
may not hope for a simple generalization to the case where more than one
prime ramify.

When approaching this question from Leopoldt’s point of view, the dif-
ficulty would be to compute the index Q+

K = [EK : EK
+ ]. In some simplest

special cases Q+
K is known, but in general its computation is hard. In prin-
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ciple this is possible since we explicitly know the g − 1 elements (i.e., the
cyclotomic units) that form a Z-basis of FK , we know how to check the
divisibility of the hχ and we also know (by the relation QK |QG) all the
possible prime divisors of Q+

K . Indeed, to check whether p divides Q+
K , we

first compute the p-exponent of
∏

χ̃ hχ = [EK
+ : FK ] using the method in

Chapter 4 and obtain explicitly a module F
′

K for which [EK
+ : F

′

K ] is prime

to p. Then it suffices to check if any element of F
′

K is a pth power in EK \F
′

K ;
we may use one of the methods given in Section 4.3. The number of tests is
(pg−1 − 1)/(p − 1) since we may reduce modulo pth powers, i.e., reduce the
coefficients modulo p in the basis representation. If some element satisfies
the condition, we add this element to the basis of F

′

K and obtain a set of
generators of a subgroup of index Q+

K/p in EK . This allows us to write any
element of this subgroup as a linear combination of the generators, hence
it suffices to do at most (pg − 1)/(p − 1) tests to check if p2 |Q+

K . These
computations were not performed since the number of tests would be very
large. Moreover, it would probably be necessary to compute the index Q+

K

separately for each field, and one cannot use any cyclicity arguments in order
to restrict the number of elements to be tested (cf. Section 4.2).
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Tables

In the first table we present all the prime divisors p < 10000 of the class
numbers of the real abelian fields of composite conductor 500 < f ≤ 2000
and the prime divisors p < 100000 for f ≤ 500, excluding the prime 2
and the primes dividing the degree of the field. The first column indicates
the conductor fχ of Kχ. A character defining the field Kχ is written in the
second column. The representatives of the Q-conjugacy classes of characters
were chosen as in [34].

The third column gives the degree gχ of Kχ and the last column shows
the prime divisor p of the χ-class number hχ. We did not encounter any
hχ having more than one prime divisor. The occasional exponent of p is
the residue class degree of p modulo gχ, except for one case. This is a field
of conductor 1921 for which we found two different submodules containing
17th powers. The search for higher p-powers showed that the class number
is exactly divisible by 173. We computed, using PARI [30], that the 17-class
group is of type Z/172Z × Z/17Z. Note that 17 divides 1921. In general,
the case where p divides the conductor seems to occur very often; indeed,
54 of the 182 entries of the table are of this form, including the two largest
class number divisors found. For the fields of prime power conductor, recall
that Vandiver’s conjecture (verified up to a very large conductor) states that
such primes never divide the class numbers.

For any real field K of conductor f , one may read the p-part of hK for
any p < 10000, p ∤ 2[K : Q], by combining the entries of the table (together
with Schoof’s table of the fields of prime conductor in [32]) for all cyclic
subfields Kχ of K of conductor fχ | f . The p-class structure is given by
(2.7).

For example, take the field K = Q(ζf + ζ−1
f ) with f = 1304 = 8 · 163.

Our table gives for hK twice the prime factor 19 coming from the fields
with conductor f and f/2 = 652 (both of degree 18). By (2.7), the 19-
class group is of type Z/19Z × Z/19Z. In addition, there is a prime factor
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3 coming from a quadratic subfield with conductor f . Since 3 divides the
degree 324 = 4 · 81 of K, the 3-class group of K remains unknown; in fact,
it could be possible that 3 ∤ hK . Since the class number of Q(ζ8 + ζ−1

8 ) is 1
and that of Q(ζ163 + ζ−1

163) is 4 (see [20]), we find that all the other possible
odd prime factors of hK must be larger than 10000.

The results in Table 1 were checked to agree with the tables of real cyclic
fields of degree at most 6 (cf. [27], [7], [8], [15], [24]). All the class number
divisors of the fields of degree at most 20 were also confirmed with PARI.
The results in the case of a prime conductor (omitted from this table since
they are found in the other tables for p 6= 2) were found to agree with the
tables of Schoof [32] and Koyama and Yoshino [16].

Tables 2 and 3 contain the results of the heuristic computation described
in Section 5.2. For comparison, we also gathered the corresponding data
from Table 4. The instances in Table 4 with vp equal to k > 1 are included
in these tables for any k, k − 1, . . . , 1. Table 2 contains all the instances
with p ≡ 1 (mod gχ) and Table 3 all the others. In Table 3 we assume
k = 1 unless otherwise stated. In the column “found” we combined all
the instances in Table 4 with gχ dividing pfp − 1. In the column “exp” we
computed a weighted probability for (5.2) to hold for fixed p and k. For
example, let p = 11, fp = 1 and k = 1. There are in total 255 different
Q-conjugacy classes of characters of conductor fχ ≤ 2000 of order gχ | p− 1,
of which 147 are with gχ = 2, 73 with gχ = 5 and 35 with gχ = 10. Table 4
shows that p divides the product of the Lp-functions in 41 instances, hence
the value in “found” is 41/255 ≈ 0.161. The value in “exp” is equal to
(147 · 0.091 + 73 · 0.317 + 35 · 0.317)/255 ≈ 0.187.

This prediction corresponds quite well to the actual results, at least on
average. Schwarz also found this in the case k = 1 by a heuristic principle
equivalent to ours. However, note that in the tables one can find many
examples of Q-conjugacy classes of common conductor for which some p
seems to occur unexpectedly often; hence it may be too simplistic to assume
the Q-conjugacy classes independent. It also seems that the nontrivial p-
divisibility of the p-adic regulator occurs slightly more often in the cases
where the class number is divisible by p; but note that the amount of such
data is very small in our tables.

The computations of the p-adic regulators were not extended to the
case of a composite conductor, but it would be natural to assume that the
statistics would show a similar behaviour.

Table 4 shows for any odd prime conductor f = fχ < 2000 all the odd
prime numbers p < 100, p ∤ f , and the representatives of the Q-conjugacy
classes of characters χ̃ of Q(ζf + ζ−1

f ) for which vp(
∏

χ∈χ̃ Lp(1, χ)) > 0.
This condition was checked using (3.10). In addition, we list the exact vp-
values in all these cases, obtained using the condition (3.5). For any real
field K of prime conductor f and degree g, the p-adic exponential value of
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hKRp(K)/pg−1 can be read from the table by summing up all the values
that correspond to the Q-conjugacy classes of characters of K. For clarity,
we also list the degree gχ of Kχ so that the summation would be simpler for
a given field K. Indeed, sum up all the vp-values for which gχ divides the
degree of K.

For a prime p, there may be several different conjugacy classes satisfying
the condition in (3.10); they are separated by a comma in the table. If
the line corresponding to some conductor is empty, there are no conjugacy
classes of this conductor satisfying the condition (3.10) for any 2 < p < 100.
If there is the symbol +s for some s ∈ N (or simply +, meaning +1) in
the table, it indicates that ps |hKχ by Schoof’s table (to compute the p-
part of the class number of Kχ, sum up also the p-divisors coming from the
subfields). The asterisk ∗ in turn indicates that Kχ belongs to the family
in which the fundamental units are known (see Section 3.4), thus the p-adic
regulator may be computed independently of the class number. The bounds
2000 and 100 for f and p were arbitrarily chosen.

For example, let K be the real abelian field of conductor 1483 and degree
39. We may read from the table that

vp(hKRp(K)/pg−1) =





0 for p = 3,

2 for p = 5,

1 for p = 7,

1 + 2 = 3 for p = 13,

1 for p = 79,

0 for other 2 < p < 100.

(8.1)

Since 13 divides the degree, but does not divide the class number of the
subfield of K of degree 3, it follows from [36, Thm. 10.4] that 13 ∤ hK (cf.
Chapter 7). Moreover, we know from the tables and Remark 3.3 that 3 ∤ hK .
Since there are no symbols + for these entries in the table, the other primes
in (8.1) do not divide the class number either. Hence all the above values
are vp-values of the corresponding p-adic regulators.

Table 5 gives hKRp(K)/pg−1 for those odd primes p that are class num-
ber divisors for some field of prime conductor f < 10000 by Schoof’s table
[32]. We have omitted the primes for which the information is already found
in Table 4. For example, choose fχ = 4993. The prime 5 divides the class
number of the field of degree 4 by Schoof’s table; this is indicated by +.
For the fields of degrees 2 and 24, the v5-values in the table come from the
5-adic regulator. For the latter field, recall that the value must be divisible
by 2 since it is the residue class degree of 5 modulo 24.
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Table 1. The computed prime divisors of class numbers.

fχ χ gχ p

212 ω1
4χ13

53 4 5

316 ω1
4χ39

79 2 3

321 χ1
3χ

53
107 2 3

427 χ3
7χ

15
61 4 5

469 χ3
7χ

33
67 2 3

473 χ5
11χ

21
43 2 3

481 χ2
13χ

4
37 18 19

551 χ9
19χ

7
29 4 5

556 ω1
4χ23

139 6 7

568 χ1
8χ

14
71 10 11

ω1
4χ1

8χ
35
71 2 3

629 χ8
17χ

2
37 18 19

χ4
17χ

18
37 4 5

651 χ1
3χ

3
7χ

6
31 10 11

652 ω1
4χ9

163 18 19

676 ω1
4χ3

169 52 53

692 ω1
4χ43

173 4 5

697 χ8
17χ

20
41 2 3

703 χ9
19χ

1
37 36 37

χ3
19χ

9
37 12 13

728 χ1
8χ

3
7χ

3
13 4 5

753 χ1
3χ

25
251 10 11

756 ω1
4χ2

27χ
1
7 18 19

763 χ3
7χ

9
109 12 13

779 χ9
19χ

1
41 40 41

785 χ2
5χ

78
157 2 3

793 χ1
13χ

55
61 12 37

808 ω1
4χ1

8χ
25
101 4 5

817 χ9
19χ

21
43 2 5

819 χ1
9χ

1
7χ

2
13 6 7

832 ω1
4χ1

64χ
3
13 16 7

2

869 χ5
11χ

1
79 78 79

889 χ3
7χ

21
127 6 7

892 ω1
4χ111

223 2 3

916 ω1
4χ57

229 4 5

923 χ3
13χ

7
71 20 61

928 ω1
4χ1

32χ
7
29 8 17

935 χ1
5χ

5
11χ

4
17 4 5

940 ω1
4χ2

5χ
23
47 2 3

944 ω1
4χ1

16χ
29
59 4 5

976 ω1
4χ1

16χ
15
61 4 5

980 ω1
4χ1

5χ
6
49 28 29

985 χ2
5χ

98
197 2 3

988 ω1
4χ2

13χ
3
19 6 7

993 χ1
3χ

165
331 2 3

999 χ2
27χ

16
37 9 37

fχ χ gχ p

1016 ω1
4χ1

8χ
63
127 2 3

1025 χ1
25χ

7
41 40 41

1036 ω1
4χ2

7χ
5
37 36 73

1048 χ1
8χ

26
131 10 11

1080 χ1
8χ

1
27χ

1
5 36 37

1101 χ1
3χ

183
367 2 3

1105 χ1
5χ

9
13χ

8
17 4 5

1113 χ1
3χ

2
7χ

13
53 12 13

1116 ω1
4χ2

9χ
25
31 6 7

1132 ω1
4χ47

283 6 7

1139 χ2
17χ

6
67 88 89

1141 χ2
7χ

36
163 9 19

1159 χ2
19χ

10
61 18 73

1172 ω1
4χ73

293 4 13

1197 χ2
9χ

5
7χ

15
19 6 7

1207 χ1
17χ

35
71 16 17

1211 χ2
7χ

86
173 6 7

1235 χ1
5χ

4
13χ

15
19 12 13

χ2
5χ

3
13χ

9
19 4 5

1241 χ4
17χ

18
73 4 5

1243 χ2
11χ

14
113 40 41

1257 χ1
3χ

209
419 2 3

1261 χ2
13χ

10
97 48 97

χ2
13χ

64
97 6 7

χ6
13χ

24
97 4 5

χ4
13χ

64
97 3 7

1271 χ2
31χ

24
41 15 31

χ10
31χ

20
41 6 7

χ6
31χ

24
41 5 11

1287 χ1
9χ

2
11χ

3
13 60 61

1295 χ2
5χ

2
7χ

10
37 18 19

1304 χ1
8χ

18
163 18 19

ω1
4χ1

8χ
81
163 2 3

1308 ω1
4χ1

3χ
18
109 6 7

1311 χ1
3χ

2
19χ

11
23 18 19

1313 χ6
13χ

20
101 10 31

1332 ω1
4χ1

9χ
6
37 6 7

1339 χ3
13χ

17
103 12 13

1343 χ1
17χ

39
79 16 17

1345 χ2
5χ

134
269 2 3

1353 χ1
3χ

1
11χ

12
41 10 11

1355 χ2
5χ

30
271 18 37

1359 χ1
9χ

125
151 6 7

1360 ω1
4χ1

16χ
1
5χ

12
17 4 5

1376 ω1
4χ1

32χ
7
43 24 5

2

1384 χ1
8χ

86
173 2 3
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fχ χ gχ p

1385 χ2
5χ

46
277 6 7

χ1
5χ

207
277 4 5

1387 χ2
19χ

18
73 36 17

2

χ2
19χ

22
73 36 37

χ2
19χ

8
73 9 19

1393 χ3
7χ

99
199 2 5

1404 ω1
4χ1

27χ
8
13 18 19

1407 χ1
3χ

3
7χ

6
67 22 23

1420 ω1
4χ2

5χ
7
71 10 11

1421 χ3
49χ

11
29 28 29

1424 ω1
4χ1

16χ
11
89 8 17

1435 χ1
5χ

1
7χ

10
41 12 13

1436 ω1
4χ179

359 2 3

1455 χ1
3χ

1
5χ

6
97 16 17

1460 ω1
4χ1

5χ
54
73 4 5

1461 χ1
3χ

27
487 18 19

1465 χ1
5χ

219
293 4 3

2

1477 χ3
7χ

21
211 10 11

χ1
7χ

35
211 6 7

1496 ω1
4χ1

8χ
1
11χ

8
17 10 11

1509 χ1
3χ

251
503 2 3

1513 χ1
17χ

11
89 16 17

χ8
17χ

22
89 4 13

1516 ω1
4χ1

379 378 379

1525 χ2
25χ

24
61 10 11

1547 χ1
7χ

1
13χ

12
17 12 37

1575 χ1
9χ

2
25χ

5
7 30 31

1576 ω1
4χ1

8χ
49
197 4 3

2

1591 χ18
37χ

2
43 42 43

1592 ω1
4χ1

8χ
11
199 18 19

ω1
4χ1

8χ
33
199 6 7

1620 ω1
4χ2

81χ
1
5 108 109

1623 χ1
3χ

45
541 12 13

1629 χ2
9χ

18
181 30 31

χ2
9χ

50
181 18 109

1640 ω1
4χ1

8χ
2
5χ

5
41 8 3

2

1641 χ1
3χ

273
547 2 5

1643 χ5
31χ

13
53 12 13

1651 χ1
13χ

63
127 12 5

2

1665 χ1
9χ

1
5χ

24
37 12 13

1676 ω1
4χ19

419 22 23

1687 χ2
7χ

80
241 3 13

1688 χ1
8χ

42
211 10 31

1708 ω1
4χ1

7χ
50
61 6 7

ω1
4χ3

7χ
30
61 2 3

fχ χ gχ p

1729 χ2
7χ

3
13χ

3
19 12 5

2

χ1
7χ

5
13χ

12
19 12 13

χ1
7χ

2
13χ

15
19 6 7

1735 χ1
5χ

173
347 4 5

1736 ω1
4χ1

8χ
2
7χ

15
31 6 7

1739 χ9
37χ

23
47 4 5

1749 χ1
3χ

5
11χ

2
53 26 53

1751 χ1
17χ

51
103 16 17

1755 χ2
27χ

1
5χ

3
13 36 73

1756 ω1
4χ219

439 2 5

1761 χ1
3χ

293
587 2 7

1765 χ2
5χ

176
353 2 3

1772 ω1
4χ221

443 2 3

1853 χ8
17χ

6
109 18 19

1855 χ2
5χ

3
7χ

13
53 4 5

1865 χ1
5χ

93
373 4 5

1872 χ1
16χ

2
9χ

10
13 12 13

1885 χ1
5χ

6
13χ

1
29 28 29

χ2
5χ

3
13χ

3
29 28 113

χ1
5χ

6
13χ

7
29 4 5

1887 χ1
3χ

4
17χ

27
37 4 5

1891 χ3
31χ

21
61 20 41

χ2
31χ

28
61 15 31

χ6
31χ

6
61 10 11

1897 χ3
7χ

135
271 2 5

1903 χ5
11χ

1
173 172 173

1904 χ1
16χ

3
7χ

3
17 16 97

ω1
4χ1

16χ
1
7χ

12
17 12 13

1921 χ4
17χ

8
113 28 29

χ1
17χ

35
113 16 17 · 17

2

1929 χ1
3χ

321
643 2 3

1935 χ2
9χ

1
5χ

7
43 12 13

χ2
9χ

1
5χ

21
43 12 13

1937 χ1
13χ

111
149 12 109

χ6
13χ

74
149 2 3

1957 χ9
19χ

51
103 2 3

1965 χ1
3χ

2
5χ

13
131 10 11

1971 χ2
27χ

4
73 18 19

1972 ω1
4χ2

17χ
7
29 8 3

2

1976 χ1
8χ

6
13χ

2
19 18 19

χ1
8χ

1
13χ

3
19 12 13

1988 ω1
4χ2

7χ
5
71 42 43

ω1
4χ1

7χ
14
71 30 31

1995 χ1
3χ

2
5χ

2
7χ

3
19 6 7

1996 ω1
4χ249

499 2 5
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Table 2. The probabilities for pk |∏χ̃ Lp(1, χ) with p ≡ 1 (mod gχ).

p k found exp

3 1 42/147=.286 .333
2 14/147=.0952 .111
3 2/147=.0136 .0370
4 1/147=.0068 .0123
5 .0068 .0041
6 .0068 .0014

5 1 53/215=.247 .251
2 8/215=.0372 .0602
3 0 .0141
4 0 .0032

7 1 76/365=.208 .216
2 23/365=.0630 .0413
3 6/365=.0164 .0074
4 2/365=.0055 .0013

11 1 41/255=.161 .187
2 10/255=.0392 .0338
3 2/255=.0078 .0056
4 0 .0008

13 1 69/463=.149 .134
2 9/463=.0194 .0156
3 0 .0017

17 1 35/266=.132 .114
2 5/266=.0188 .0144
3 3/266=.011 .0019

19 1 52/434=.120 .113
2 8/434=.0184 .0127
3 1/434=.0023 .0014

23 1 16/184=.0870 .107
2 2/184=.0109 .0176
3 1/184=.0054 .0028

29 1 33/290=.114 .087
2 3/290=.0103 .0087
3 1/290=.0034 .0009

p k found exp

31 1 45/522=.0862 .0827
2 0 .0066

37 1 31/542=.0572 .0657
2 2/542=.0037 .0044
3 1/542=.0018 .0003

41 1 22/380=.0579 .0668
2 3/380=.0079 .0046

43 1 37/462=.0801 .0644
2 1/462=.0022 .0048

47 1 10/171=.0585 .0712
2 2/171=.0117 .0124
3 1/171=.0058 .0020

53 1 16/255=.0627 .0561
2 0 .0054

59 1 5/164=.0305 .0546
2 1/164=.0061 .0092

61 1 28/641=.0437 .0464
2 3/641=.0047 .0021

67 1 14/419=.0334 .0435
2 0 .0030

71 1 19/334=.0569 .0514
2 0 .0034

73 1 19/334=.0234 .0395
2 0 .0018

79 1 21/419=.0501 .0413
2 5/419=.0119 .0031
3 1/419=.0024 .0003

83 1 1/154=.0065 .0290
2 0 .0041

89 1 9/295=.0305 .0371
2 0 .0024

97 1 13/551=.0236 .0296
2 0 .0013
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Table 3. The probabilities for pfpk |∏χ̃ Lp(1, χ) with fp > 1.

p fp found exp

3 2 9/105=.0882 .144
3 7/35=.200 .140
4 2/150=.0133 .0178

5 2 19/298=.0638 .0542
3 0 .0819
4 1/93=.0108 .0086

7 2, k = 1 7/172=.0407 .0445
2, k = 2 2/172=.0116 .0019

3 2/97=.0206 .0106
4 1/254=.0039 .0016

11 2 8/445=.0180 .0159
3 1/107=.0093 .0040

13 2 4/167=.0240 .0257

17 2 2/374=.0053 .0093

19 2 3/366=.0082 .0089

23 2 2/419=.0048 .0044

29 2 4/547=.0073 .0037

31 2 1/228=.0044 .0046

43 2 1/237=.0042 .0026

53 2 4/444=.0090 .0016

79 2 1/403=.0025 .0008

83 2 1/488=.0020 .0005

89 2 1/624=.0016 .0006

97 2 1/138=.0072 .0009
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Table 4. The values of the product hKRp(K)/pg−1, fχ < 2000, p < 100.

fχ p gχ vp

5
7 61 3 1
11
13
17 5 4∗ 2

61 4∗ 1
19 3 9, 3∗ 1,1

67 3∗ 1
23
29 3 2∗ 2

11 2∗ 1
43 7 1

31 11 5 2
37 3 9, 3∗ 1,1

7 18, 2∗ 3,1
89 2∗ 1

41 5 20, 4∗ 1,1
11 5 1
29 4∗, 2 1,2
53 2 1

43
47
53 5 2∗ 1
59
61 11 10 1

13 6,3 2,1
43 3 1
71 5 1

67 43 3 1
71
73 3 9,3 1,1

5 4,2 1,2
7 3,2 1,1
19 9 1
29 3 2
37 12 2
41 2 1

79 13 39, 3∗ 1,1
83
89 5 2 2

7 2 1
13 2 1
23 11 1
59 2 1

97 5 24, 4∗ 2,1
7 3∗ 1
17 2 1
29 4 1
31 3∗ 1
43 3∗ 1

101 5 25,5 2,2
7 2∗ 1
31 5 1

103 43 3 1
107
109 3 54,27,18,9, 1,1,1,1,

6∗, 3, 2 1,1,1

fχ p gχ vp

5 2 1
11 2 1
19 2 1

113 3 2 1
29 28 1
53 2 1

127 3 9,3 1,1
43 7 1

131
137 3 2 2
139 19 3∗ 1

43 3∗ 1
149 7 2 1
151 5 75,25,15, 2,1,2,

5,3 1,2
13 3 1
31 15,3 1,1
41 5 1

157 5 6∗ 2
19 6∗ 1
53 26 1
79 78 1

163 3 81, 27, 9, 3∗ 1,1,1,1
7 3∗ 1
73 3∗ 1

167
173 3 2∗ 1
179
181 3 18,9,6, 1,1,1,

3,2 1,1
11 5 1
31 15 1
37 18 1

191 11 5+∗ 1
193 7 6 1

13 12 1
19 2 2
31 6 1
37 12 1
41 4 1

197 7 49,7 2,2
29 7 1
43 14 1

199 3 9,3 2,2
19 9 1
73 9 1

211 11 5 1
29 7 1
43 21 1
71 35,5 1,1

223 43 3 1
227
229 3 6∗, 2+∗ 1,1

67 3 1
233
239 29 7 1
241 5 10,2 2,1



69

fχ p gχ vp

29 2∗ 1
7 3 1
11 12 2
13 4∗ 1
31 30,15,10 1,1,1
41 40, 4∗ 2,1
73 8 1
89 2 1

251 5 125,25,5 1,1,1
31 5 1
41 5 1

257 3 2+∗ 3
5 2∗ 1
17 16,8 1,1
41 4 1
53 4 1

263
269 11 2 1
271 3 27,9,3 2,2,2

61 5 1
277 7 6∗ 1

13 6∗ 1
47 46 1
73 6∗ 1

281 3 20,2 4,1
5 20,4 1,1
11 2 1
13 4 1
17 2 1
29 14 3
71 70,7 1,1
89 4 1

283
293
307 3 9,3 1,1

19 3 1
37 9 1

311 11 5 1
313 3 78,26 3,3

5 4 1
7 3+∗ 2
11 2 1
37 12 1
79 78,13 2,1

317 23 2 1
331 13 3 1

23 11 1
41 5 1
71 5 1

337 3 6,2 1,1
5 24,8 2,2
7 14,2 1,1
13 21 2
17 8 1
19 2 1
29 56 2
43 21 1
73 12 1
97 3 1

347

fχ p gχ vp

349 7 6 1
41 2 1
59 58 1

353 3 4,2 2,2
13 4 1
23 22,11 1,1
89 88 1

359
367 5 3 2
373 7 6,3 1,1

19 3 1
43 3 1

379 3 27,9,3 1,1,1
13 3 1

383
389 19 2 1

29 2 1
397 3 18, 9, 6∗, 1,1,1,

3,2 1,1
11 66, 6∗ 2,2
13 6∗, 3 1,1
23 66 2
37 9 1

401 3 8+2

, 2∗ 2,1
5 100,50,25,20, 1,1,2,1,

10,5,4,2+∗ 1,2,1,1
17 2∗ 1
23 2∗ 1
29 2∗ 1
41 40 1

409 7 6 2
13 6,3 1,1

419
421 11 10,5 1,1

19 6 1
37 3 1
61 15 1
71 70,35,7,5 1,1,1,1

431 11 5 3
433 3 27,9,3 1,1,1

5 4,2 2,1
7 2 1
13 3 1
17 8 1
19 9 1
37 36 1
53 72 2
73 72 1
97 12 1

439
443 3 13 3
449 3 2 1

7 112,16,14,2 2,2,1,2
13 4 1
17 16 3
29 14 1
97 32 1

457 3 6,2 1,1
5 4+∗,2 1,1
7 3 1
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fχ p gχ vp

13 4∗ 1
37 4∗, 3 1,1

461 3 2 1
31 5 1
47 46,23 1,1
61 10 1
71 10 1

463 7 21,3 1,1
29 7 1
43 7 1
67 33 1

467
479
487 3 243,81,27, 2,2,2,

9,3 2,2
491 7 49,7 1,1
499 13 3 1
503
509 5 2 1

11 2 1
29 2 1

521 3 26+3

,2 3,2
11 5,2 1,1
29 4 1
41 20 1
53 13 1

523 3 9,3 3,2
7 3 1
19 9 1

541 3 27,9,3 2,2,2
5 10,2 1,1
19 3 1
73 3 1

547 43 7 1
557
563
569 5 4 1

11 2 1
571 13 3 1
577 3 72,24,9, 2,2,1

8,3 2,1
5 3 2
7 6,3,2+∗ 3,2,1
13 12 1
17 144,72,16 2,2,3
29 4 1
31 3 1
67 3 1
73 72 1
97 32 1

587
593 5 4 1

7 2 1
11 2 1
19 2 1
31 2 1

599 3 13 3
601 5 25,5 1,1

7 300,6,3 4,1,1
11 20 2

fχ p gχ vp

29 4 1
31 30,10,6 1,1,1
59 2 1
61 4 1

607
613 3 9,3 1,1

19 18,6 1,1
37 18 1

617 5 2 2
13 28,14,4,2 2,2,1,1
23 22 1
43 22,7 2,1
53 2 1

619 19 3 1
31 3 1
43 3 1

631 3 9,3 1,1
11 5+ 1
43 7 1

641 3 40, 8+2
∗ 4,4

5 20, 4+∗ 1,1
11 40,10,5+ 2,1,1
17 16,2 1,1
29 40 2
31 320 2
41 40 2

643 7 3 1
31 3 1

647
653 3 2 1

19 2 1
659
661 5 30,6 2,2

7 3 1
11 110,55,10,5 1,1,1,1
13 2 1
19 3 1
23 22 1
31 30 1
43 2 1
61 3 1
67 22 1
79 3 1

673 5 6,4,2 2,1,1
7 336,48 2,2
17 8 1
31 3 1
43 21,14 1,1
71 14 1

677 3 26 3
13 169,13 1,1
43 2∗ 1
53 26 1

683
691 11 5 1

31 5 1
71 5 1

701 5 25,5 2,2
709 31 3∗ 1

53 2 1
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fχ p gχ vp

719
727 11 121,11 1,1

23 11 1
733 3 6∗, 2+∗ 1,3

7 6∗ 1
739 3 9,3 1,1
743
751 5 125,25,5 1,1,1

13 3 1
19 3 1
31 15 1

757 3 27,9,3 1,1,1
7 21,3 1,1
29 7 1
37 18 1

761 3 2+ 1
5 10,2 1,1
11 10 2
29 4 1
61 10 2

769 5 48 4
7 3,2 1,1
13 12 1
17 16 1
73 24 1
97 64,3 2,1

773 3 2 1
11 2 1

787
797 7 2 3
809
811 3 81,27, 1,1,

9,3 1,1
13 3 1
41 5 1
79 3 2

821 11 10+,5 2,1
823 7 3 3
827 43 7 1
829 3 9,3 1,1

7 2 2
19 9,6 2,1
37 18 1
47 46+,23 3,1

839
853 11 6 2

19 3 1
857 5 4+∗,2 1,1

17 2 1
29 2 1

859 79 39 1
89 11 1

863
877 3 6∗, 2 1,2

5 6∗ 2
7 6+∗, 3+∗ 1,1
13 6∗, 3∗ 2,1
37 3∗ 1

881 5 10,2 1,1
17 8 1

fχ p gχ vp

23 22 1
41 10 1
89 55,44 2,1

883 3 9,3 1,1
7 147,49,21, 2,1,2,

7,3 1,2
13 3 1
19 9 1
37 3 1
43 7 1

887
907 5 3 2
911 53 13 1
919 3 27,9,3 2,2,2
929 3 2 1

5 4 1
7 16 2
11 2 1
17 16 1
53 2 1

937 3 9, 3∗ 1,1
7 6,2 1,1
11 2 1
17 4 1
19 9,6 3,1
37 36 1
53 468 2
79 78,39,26 1,1,1

941 61 5∗ 1
947
953 3 2 1

11 2 1
17 68,4 1,1
29 4 1
43 7 1
71 7+ 1

967 7 21,3 1,1
43 21 1

971 31 5 1
977 3 8 2

5 4+∗ 1
11 8,2 2,2
19 2 2
31 2 1
73 2 1

983
991 3 9,3 1,1

11 55,5 2,2
31 15 1
37 9 1

997 3 6,2 2,1
1009 3 18,9,6, 1,1,1,

3,2 1,2
5 4 1
7 42,14,6,2+ 1,1,1,1
13 12,8 1,2
19 72 2
29 21,4 2,1

1013 3 2 2
47 23 1
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fχ p gχ vp

1019
1021 11 10,5 1,1

13 3 1
1031 11 5 3
1033 5 12,4 2,1

13 3 2
19 6 1
29 4 1

1039
1049 11 2 1

17 4 2
19 2 1
53 4 1

1051 5 25,5 1,1
7 21,3 1,2
41 5 1
43 3 1

1061 17 2 1
61 5 1

1063 3 9, 3∗ 1,1
13 3+∗ 1
19 9 1

1069 7 6+∗ 1
13 6∗ 1
31 2 1
41 2 1

1087 19 3 1
1091 11 5 1
1093 5 2+∗ 1

43 21 1
67 3 1
79 78,13 2,1

1097 5 4 1
37 4,2 1,1

1103 59 29 1
1109 37 2 1
1117 3 18,9,6, 1,1,1,

3,2 1,2
7 3 2
13 6 1
19 9 1
43 6 1

1123 13 3 1

1129 3 6∗, 2+2

2,2
5 4 1
7 6∗, 3+∗ 1,1
13 2 1
29 4 1

1151 5 25,5 1,1
11 5 1
47 23 1
61 5 1

1153 3 18,9,6, 1,1,1,
3,2 1,1

5 4 2
7 24 2
13 6,3 1,1
19 72,9+ 2,1
37 18 1
73 24 1

fχ p gχ vp

97 96 1
1163
1171 3 9,3 1,1

31 15 1
53 13 1
79 39 1

1181 3 2 1
11 10,5 1,1
13 2 1
47 2 1
61 5,2 1,1
71 5 1

1187
1193 5 4 1

7 2 1
1201 5 25,5 2,2

7 4 4
11 10 1
13 12,4 1,2
19 60,6 2,1
31 15 1
61 60,30 1,2
71 5 1

1213 3 6,2 1,6
5 2 1
7 3 2
13 6 1
19 3 2
37 3 1

1217 3 8,2 2,1
1223 3 13 3
1229 3 2+∗ 1
1231 7 3 2

11 5 1
83 41 1

1237 3 6,2 1,1
5 6,3 2,2
7 3 2
13 2 1
31 6 1
37 3 1
43 2 1
53 2 1
97 6 1

1249 3 6,2 2,1
17 16 1
61 6 1
79 624,39,26 2,1,1
97 16 1

1259
1277 3 2 1

23 11 2
1279 3 9,3 1,2

7 3 1
19 9 2
37 9 1

1283
1289 5 2 1

29 28 1
1291 11 5 1
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fχ p gχ vp

1297 3 162,81,54, 1,3,1,
27,18,9, 3,1,3,
6,3,2∗ 1,3,1

5 8+2

,4 2,1
7 3 2
11 2+∗ 1
13 12 1
67 6,3 1,1
73 2∗ 1

1301 3 13 3
5 50,25,10, 1,1,1,

5,2 1,1
1303 5 3 2

43 21 1
1307
1319
1321 5 60,12, 2,2,

10,2 1,1
11 55,5 2,2
23 44,22,11 2,3,1
31 15 1
61 60 2
89 44 1

1327 7 3 2
67 3 1
79 13 3

1361 11 10 1
17 68,4 2,2
31 5,2 1,1
61 5 1
97 8 1

1367
1373 3 2+∗ 1

7 686,343,98,49, 1,1,1,1,
14, 7, 2∗ 1,1,2

19 2∗ 1
29 7 1
43 14 1

1381 7 6+,3 5,4
13 3,2 1,1
19 6 1
31 5 1
41 10 1
61 10,6 1,1

1399
1409 17 16,4 1,1

67 11 1
89 44,11 1,1

1423 3 9,3 1,1
11 3 2
13 3 1
19 9 2

1427
1429 3 6,2 2,2

5 2+ 1
7 42,6 4,2
13 6 1
61 6 1

1433 3 2 2
13 4 1

fχ p gχ vp

1439
1447 13 3 1
1451 5 25,5 1,1

11 5 2
1453 3 6,2 2,3

11 121,11 1,1
23 22 1
31 6 1
43 2 1
79 3 1

1459 3 729,243,81, 1,1,1,
27,9,3 1,1,1

5 3 2
13 3+ 2
19 9+ 1

1471 7 49,7 2,2
43 21 2
71 35 1

1481 5 20,4 1,1
61 5 1

1483 5 3 2
7 57,3 3,1
13 39,3 1,2
79 39 1

1487
1489 3 6,2+ 2,1

7 24 4
11 4 2
13 4, 3∗ 2,1
17 4 1
19 3+∗ 1
73 12 1

1493 5 2 1
1499
1511
1523
1531 3 9,3 3,2

19 9,3 1,1
37 9 3
73 9 1

1543 7 3 1
13 3 2

1549 3 9,3 1,1
7 6,3 1,1

1553 3 8 2
5 4 1
7 4,2 2,1
11 2 1
13 4 1
17 8,4 1,1
73 4 1

1559
1567 3 27, 9, 3∗ 1,1,1

7 3+∗ 2
37 9 1
59 29 2

1571 41 5 1
1579
1583 29 7 1

71 7 1
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fχ p gχ vp

1597 5 2 1
13 2 1
29 14,7 1,1

1601 5 100,25,20, 1,1,1,
5,4 1,1

7 2+∗ 1
17 16,8 1,3
61 4 1

1607
1609 3 6,2 1,1

13 2 2
97 6 1

1613 13 26,2 1,1
1619
1621 3 81,27, 2,2,

9,3 2,2
5 10,2 1,2
31 15 1

1627 7 3 2
1637 5 2 1
1657 3 36,12,9, 2,2,1,

4,3 2,1
17 4 1
19 9,6 2,1
29 2 1
43 6 1
97 12 1

1663 7 3 1
53 3 2

1667 7 49,7 1,1
1669 3 6,2 1,1

7 3 1
23 2 1
67 2 1

1693 3 9,3 2,2
7 6,3 1,3
13 6 1
19 6,3 1,1
37 6 1
61 6 1

1697 5 4∗ 1
17 4+∗ 1

1699
1709 7 14,2 1,1

29 14 1
47 2 1
71 7 1

1721 17 4 1
29 4 1
31 5 1
61 5 1

1723 7 21,3 1,1
13 3 1
37 3 1
83 287 2

1733
1741 5 10,2 1,1

7 3 1
31 30 1
61 5 1

fχ p gχ vp

67 6 1
79 3 1
97 3 1

1747 3 9,3 2,3
13 3 2
19 9 1

1753 3 6,2 1,1
5 4 3
13 12,4 1,1
37 2 1
41 4 1
73 146,2 1,1

1759 7 3 1
13 3 1
67 3 1

1777 5 2 1
7 3 2
41 4 1
53 4 1

1783 3 81,27,9,3 1,1,1,1
19 9 1
31 3 1
67 33 1

1787
1789 7 2 1

17 2 1
1801 3 9,3 1,1

5 300,60,25, 2,2,1,
12,5 2,1

11 5 2
19 2 1
31 30 1
53 2 1
61 60 1
79 3 1

1811 41 5 1
71 5 1

1823
1831 7 3+ 1
1847
1861 5 310,62,10,2 3,3,2,1

7 3 1
11 5 2
19 6 1
31 930,310,155, 1,1,1,

30,10,5 1,1,1
43 3 1

1867 43 3 1
1871
1873 3 9,3 1,1

5 8+2

2
17 8 1
29 4 1
37 18 1
53 936,52 2,1
73 12,9 1,1
79 78 2

1877 13 2 1
1879 7 3 1
1889 3 4 2
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fχ p gχ vp

5 4 2

7 16+2

,2 2,2
17 2 1
97 16 1

1901 3 2+ 2
5 25,5 1,1
11 95,10 3,1
31 5 1

1907
1913 3 4 2

5 4,2 1,1
1931
1933 19 3 1

29 14 2
43 3 1
47 46 3

1949
1951 3 39,13 3,3

5 25,5 1,1
11 5 1

fχ p gχ vp

19 3 1
31 15 1
41 5 2
79 39 2

1973 3 2 1
17 34,2 1,1
37 2 1

1979
1987 7 3+∗ 2
1993 3 6,2 1,1

5 4 1
7 3 1
13 12 1
23 2 1
61 12 1
73 3 1

1997
1999 3 27,9,3 2,2,2

19 9 1
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Table 5. The values of the product hKRp(K)/pg−1, fχ < 10000, p |hK .

fχ p gχ vp

1231 211 15+ 1
2029 7 2+∗ 1
2081 5 10+,2+ 1,1
2089 3 18+,9,6+, 1,1,1,

3,2+ 1,1
2113 37 12+ 2
2153 5 2+ 1
2213 3 2+∗ 1
2351 11 5+ 3
2381 11 10+ 1
2417 17 4+∗ 1

41 8+∗ 1
2437 7 21,3+ 1,1
2473 5 4+ 1
2557 3 18,9,6, 1,1,1,

3∗, 2+ 1,1
7 6+, 3+∗ 2,3

2617 13 4+∗ 1
2621 11 10+ 1
2659 19 3+∗ 1
2677 3 6,2+ 1,1
2713 3 6,2+ 2,1

2753 3 8+2

, 2 2,2
2777 3 4,2+ 2,2
2857 3 6,2+ 3,1
2917 3 1458,729,486, 2,2,2,

243,162,81, 2,2,2,
54,27,18, 2,2,2,

9, 6∗, 2,2,
3,2+ 2,3

7 6+∗,3 2,1
3001 11 10+,5+,2 2,1,1
3041 13 4+∗ 2
3121 5 20,10, 4,2,

4,2+ 2,1
61 20+ 1

3137 3 2+2
∗ 3

3181 5 10,2+ 1,1
3217 7 3+ 1
3221 3 2+ 1
3229 3 6+,2+ 1,1
3253 5 2+∗ 3
3301 151 150,75,15+ 1,1,1
3313 7 6+∗ 1

19 9, 3+∗ 1,1
3433 37 12+ 1
3469 13 6+ 1
3529 19 9,6,3+ 1,1,1
3547 19 9, 3+∗ 1,1

883 9+ 1
3571 7 21,3+ 1,1
3581 11 5+ 1
3697 5 4+,2 1,1
3877 3 6,2+ 1,1
3889 3 486,243,162, 2,1,2,

81,54,27, 1,2,1
18,9,6, 2,1,2,

fχ p gχ vp

3,2+ 1,1
4001 3 20,8,2+ 4,2,1
4049 23 506,22+ 1,1
4073 5 4+ 1
4177 19 18+,9 1,1
4201 11 5+ 1
4219 7 3+ 1
4229 7 14, 2+∗ 1,1

4241 3 4+2
∗, 2 2,4

4339 7 3+ 1
4357 5 2+∗ 2

4409 3 2+2

2
4441 5 20,15,10, 1,2,1,

4+,3,2+ 1,2,2
4457 5 4+ 2
4481 3 40,8,2+ 4,2,1

97 32+ 1
4493 3 2+∗ 2
4591 19 9+ 3
4597 3 6∗, 2+ 1,1

7 6+∗ 1
4603 79 39+ 1
4649 3 2+ 1
4657 5 4+ 1
4729 3 6,2+ 1,4

13 12+,6, 1,1,
4,2 1,1

4783 7 3+ 1
4793 5 4+ 1
4817 17 8+ 1
4861 7 6+ 1
4889 5 4,2+ 1,1
4933 3 18,9,6+, 1,3,1,

3,2+ 2,1
4937 5 4+ 1
4993 5 24,4+,2 2,1,1
5051 1451 5+∗ 1
5081 3 2+ 1
5101 11 10+ 1
5119 31 3+∗ 1
5209 29 28,14+, 1,1,

7,4 1,1
5261 3 2+ 1
5273 7 2+ 1
5281 3 6+,2+ 3,4
5297 3 2+ 1
5333 3 2+∗ 1
5413 23 11+ 1
5417 7 2+ 1
5437 31 6+∗ 1
5441 11 10+,5 1,1
5477 3 2+∗ 2
5501 11 55,5+ 3,1
5521 3 6,2+ 2,2
5557 19 3+∗ 1

73 6+ 2
5581 73 9+ 2
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fχ p gχ vp

5641 3 12, 4+2
∗ 2,2

5701 101 10+ 1
5741 3 2+ 2
5821 3 6,2+ 1,1
5827 13 3+ 1
5953 7 3+,2 1,1
6037 7 6+∗, 3 1,1
6053 3 2+ 1
6073 13 12+,4 1,1
6113 5 2+ 1
6133 3 6,2+ 2,1
6229 13 6+ 2
6257 29 4+∗ 1
6337 97 48+,16 2,1
6361 61 20+,12, 2,1,

5,3 1,1
6421 41 10+,2 1,1
6449 5 104,4+ 4,1
6481 5 120,24, 2,2,

10,2+ 1,1
6521 5 20,4+ 1,1
6529 13 12+ 1
6577 17 4+∗ 1

313 8+∗ 1
6581 11 10,5+ 2,2
6637 3 6+,2+ 2,1
6673 17 8+ 1
6709 7 6+ 1

6737 3 4+2

,2 2,1
6781 13 6+ 1
6949 5 2+ 1
6961 17 8+ 1
6991 7 3+ 1
6997 3 6∗, 2+ 1,1

7 6+∗ 1
7057 3 18,9,6, 2,1,2,

3, 2+∗ 1,1
7 588,147,98, 2,1,1,

84,49,21, 2,1,1,
14+,12,7, 1,2,1,

3, 2+∗ 1,1
7229 5 2+∗ 1
7333 13 78, 6+∗ 2,2
7351 7 147,49,21+, 1,1,1,

7,3+ 1,2
7369 13 12+ 2
7411 131 65+ 2
7417 109 12+ 1
7481 3 2+ 4
7489 7 16, 3+∗ 2,1
7529 5 4+ 1
7537 3 6,2+ 1,1
7561 37 6+ 1

7573 3 6, 2+2
∗ 2,2

7621 7 3+ 2
7673 3 2+ 1
7753 3 6,2+ 1,2

5 4+2

,3+2

4,2
7817 5 2+ 1
7841 421 5+∗ 1

fχ p gχ vp

7873 3 6+,2+2

2,2
7937 41 4+∗ 1
8017 3 6+∗,2+ 1,1

7 6+∗ 1
19 3+∗ 1
109 12+ 1

8069 3 2+ 2
8101 13 2+∗ 1
8161 5 60,20, 2,1,

12,4+ 2,1
8269 37 3+ 1
8287 7 3+ 1

8297 3 4+2
∗, 2 2,1

5 4+∗ 2
8317 113 14+ 1
8377 5 4+ 2
8389 19 6+∗ 1
8431 31 15+ 1
8501 5 250,125,50, 1,1,1,

25,10, 1,1,
5,2+ 1,1

8563 7 3+2
∗ 2

8581 3 78,66,26, 3,5,3,
22,6+,2+ 5,2,2

8597 3 2+ 1
8629 7 3+,2 2,1
8681 11 10+,5 1,2
8689 5 24,2+ 2,1
8713 3 18,9,6, 3,1,4,

3,2+ 1,3
67 33+ 3

8761 3 6+,2+2

2,4
8837 3 2+∗ 1
8893 7 6+,3,2 1,1,2
9001 31 10+ 1
9013 7 6+ 1
9029 7 2+∗ 1
9041 17 4+∗ 1
9049 7 6,2+ 1,2
9127 31 3+∗ 1
9133 3 6∗, 2+ 1,2

7 6+∗ 1
9161 5 20,10, 2,1,

4+,2 2,1
9181 5 10+,2+ 2,2
9241 13 84,3+ 2,1
9277 7 3+ 1
9281 3 8,5,2+ 2,4,2
9293 3 2+ 1
9319 7 3+∗ 2
9377 5 4+ 3

9413 3 26+3

, 2+∗ 3,1
9421 7 6+,3,2 1,1,1

11 10+,5+ 1,1
9511 73 3+ 1
9521 113 28+ 1
9551 541 5+ 1
9601 5 100,25,20, 1,1,1,

5,4+ 1,1
9613 7 6+ 1



78 Tables

fχ p gχ vp

9689 29 28+ 1
9697 3 12,4+ 2,2
9697 7 8,6,3+ 2,1,1
9749 3 2+ 2

fχ p gχ vp

9817 17 4+∗ 1
9833 3 2+ 1
9857 73 8+ 1
9907 31 3+∗ 1
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