Marcus Alanen

A Metamodeling Framework for Software
Engineering

TurRkuU CENTRE for COMPUTER SCIENCE

TUCS Dissertations
No 89, May 14, 2007

A Metamodeling Framework for
Software Engineering

Marcus Alanen

To be presented, with the permission of the Faculty of Tdoggat
Abo Akademi University, for public criticism in Auditoriuipha at the
ICT building, Turku, Finland, on June 1st, 2007, at 12 noon.

Abo Akademi University
Department of Information Technologies
Joukahaisenkatu 3-5
20520 Turku
Finland

2007

Supervisors

Academy Professor Ralph-Johan Back
Department of Information Technologies
Abo Akademi University
Joukahaisenkatu 3-5

20520 Turku

Finland

Docent Ivan Porres

Department of Information Technologies
Abo Akademi University
Joukahaisenkatu 3-5

20520 Turku

Finland

Reviewers

Professor Jean Bézivin
Department of Computer Science
University of Nantes

2, rue de la Houssiniére, BP 92208
44322 Nantes Cedex 3

France

Professor Bernhard Rumpe

Software Systems Engineering Institute
Braunschweig University of Technology
Muhlenpfordtstralie 23, 3. OG
D-38106 Braunschweig

Germany

Opponent

Professor Jean Bézivin
Department of Computer Science
University of Nantes

2, rue de la Houssiniére, BP 92208
44322 Nantes Cedex 3

France

ISBN 978-952-12-1901-6
ISSN 1239-1883

Abstract

The software engineering discipline strives for techngjaed tools for develop-
ing software faster, cheaper and more reliably. In its mosvgdent form today,
software is developed using text-based programming layegiaescribed using
Backus-Naur Form (BNF) grammars. The current solutiondéosoftware engi-
neering goals consist of several different tools that perfdifferent operations on
the BNF syntax tree of a program text. The tools analyzefywedgast, compile and
transform it. Unfortunately, many project artifacts arédsen linked to the pro-
grams, such as requirements documents, error reports andat. We postulate
that this is partially due to the limitations in represegtpprograms as syntax trees,
and that this hinders the development of better tools.

Another way of describing these artifacts is the use of ggapthere graph
grammars constrain which kinds of graphs can be built. Bpaigiraphs, we are
not as restricted to describe information when comparet wiBNF syntax tree.
Software modeling is a research area which purports to addhe aforementioned
goals by using different graphs, called models in the digepfor all relevant ar-
tifacts in a software project. The standards body for defjsioftware modeling is
the Object Management Group (OMG), a consortium consigifrigpth industrial
and academic participants.

If software modeling is to become as mainstream as programla@nent in
the textual domain, it must provide a development infracitme based on a sound
theory that solves common software engineering issues,edlsas provide im-
proved solutions to some relevant issues when comparedlhégttextual domain.
In this thesis, we aim to lift the foundations of software reling to the same level
as software engineering using textual programming langsiand integrated de-
velopment environments. We accomplish this by analyzingesocurrent OMG
standards for software modeling, finding omissions andremod suggesting im-
provements. Therefore this thesis covers a broad ranggumstometametamodel
constructs, serialization technology, version controt] abstract and concrete syn-
tax of models.

A contribution of this thesis is a set-theoretical metantiogeframework sup-
porting subset and union properties with static constsaover the metamodels
and models, as well as pre- and postconditions and impleiens of model op-
erations respecting these constraints. Furthermore, sgsaghe suitability of the

XML Metadata Interchange (XMI) serialization technologittwespect to various
usage scenarios for model interchange. The core of softe@réguration man-
agement is version control, and we show algorithms for dating the difference
between two arbitrary models, applying a difference anctiitiwg a difference.
We also discuss conflict resolution when merging severémdifices together. Fi-
nally, we present a domain-specific weaving metamodel tgb@ts reconciling
the concrete syntax of models based on changes in the alsstraax.

We have deliberately laid an emphasis on the engineeringcagp the solu-
tions described in the thesis. The research has been \ibdgtimplementing and
testing the contributions and suggestions as a working sparce prototype tool
called Coral.

Acknowledgements

| would like to thank my supervisors Docent Ivan Porres anddemy Professor
Ralph-Johan Back for their steadfast confidence in, andastpar, me. | have

been privileged to work closely with Ivan, whose conceiraind goal-oriented
approach | very much admire. Ivan has also taught me a morkoaieal way

to work, and Ralph has patiently taught me how software exaging can benefit
from computer science.

I highly appreciate that Professor Bernhard Rumpe and Bsofelean Bézivin
took time off from their busy schedules and did a fantastit ijo reviewing this
thesis. | would like to thank Jean for accepting the task afidpeny opponent at
the public defense.

| am grateful that Professor Johan Lilius offered me a jobhatdepartment
early during my undergraduate studies. At the time, | didexgtect to undertake a
PhD degree, but | am happy that Johan took the initiative fplacademic career
so early.

| would especially like to thank Torbjorn, who has diliggnitorked on imple-
menting our ideas and whose cheerfulness was always weldartimes of math-
ematical trouble, Patrick has been astoundingly patiedtregipful in explaining
set theory and related branches of mathematics to me. MkshanJohannes for
our collaboration on Gaudi projects and for many intergstiiscussions; | sin-
cerely hope they will not be our last ones. During my wholalis, | have had
many a fun pizza evening with Kim.

The practical contributions of this thesis have receivetherwus help from
undergraduate students working on the SMW and Coral pmojéegtould also like
to thank Bahareh for the modeling tool comparisons in Chieftédlso, we have
had the luxury of people using the Coral tool. This feedbaa Ihoth steered our
research of modeling and development of Coral, as well asaweal their quality.
Thanks for this go to Dragos, the SOCOS and MICAS teams, @ahaht Oliver at
Nokia Research Center.

| would like to thank the department and TUCS for providing with a salary
and the financial aid to travel to several conferences. ltdegs truly fantastic to
meet smart people in nice places around the world; espgasllithanks to Laurie.
| am grateful for the friendship of my colleagues and friemd® have made work-
ing at the department much more fun: Luka and Riia, Maria,ja/egRetri, Linda,

Robert L., Robert G., Mats, Andreas, Stefan, Fredrik, Ulfr#l, Cristina, Orieta
and Herman. Thanks to Christel for keeping the departmemting, and to Nina
for taking care of the publications.

I am honored to have received two scholarships from the Niekisdation.

In moments of work frustration, the Nethack DevTeam hasidex/the great-
est of games—and timesinks. Other recreational actiiize® included volleyball
with the wonderful people at the Abo Akademi personnel’dexdall practices and
the JaLPa team.

I would also like to express my deep and sincere apprecittisaveral friends:
Sanna, Mathias, Anna, Torulf, CaGe, Henry, Camilla, thepfeeat #58, and many
others, for just being there and for having the courtesy dfasking too many
questions about the thesis during the whole ordeal. | ankibhkfor the love and
support of my family.

Turku, April 30th, 2007

Marcus Alanen

Contents

1

Introduction 1
1.1 Textual Programming 1
1.2 Graphs. e 3
1.3 Modeling 4
1.4 Contributions ofthisThesis 6
1.5 Listof PublishedPapers 8
1.6 \Validation 9
161 Coral e 9
1.6.2 Applications 0. 10
Software Modeling Frameworks 13
2.1 Introduction 13
2.2 Comparing Modeling Frameworks 14
221 Structure 15
2.2.2 Practical Aspects 15
2.3 Graph Exchange Language 16
231 Structure 17
2.3.2 Practical Aspects o 20
2.4 MetaObjectFacility 21
241 Structure 22
242 Practical Aspects o 24
25 ECORE e 25
251 Structure 25
252 PracticalAspects oo 27
2.6 KernelMetaMetaModel 29
2.6.1 Structure 29
2.6.2 Practical Aspects 30
2.7 Common Features and Differences 31
2.8 Related and Future Work on Modeling Frameworks 35
29 Conclusions 36

3 A Structure of Metamodels and Models: the Simple MetamodeDe-

scription Language 39
3.1 Introduction 39
3.2 Extension Mechanisms in MOF 2.0 and the UML 2.0 Infradtme 40
3.2.1 Class and Property Specialization 41
3.2.2 Criteria for Language Extensions 41
3.2.3 PackageMerge 42
3.3 Metamodelsand Models 42
3.3.1 Metamodel Formalization 43
3.3.2 Model Formalization 44
3.3.3 Model Conformance to a Modeling Language 45
3.3.4 Model Constraints 47
3.3.5 Metamodel Constraints 48
3.3.6 PrimitiveValues 48
3.3.7 Universal ldentifiers 49
338 Naming 50
3.4 Property Characteristics 50
3.4.1 Multiplicity e 51
342 Ordering 51
3.4.3 Opposite Property and Bidirectionality 15
3.4.4 Composition 54
3.45 Attributes 57
3.5 Class Specialization 57
3.6 Property Subsetting o oo oL 59
3.6.1 SubsetsandOrdering 62
3.6.2 UnionProperties 62
3.6.3 StrictUnions 62
3.6.4 Subsets and Substitutability 63
3.6.5 Subsets and Multiplicity 0oL 64
3.6.6 Subsets and Class Specialization 64
3.6.7 Subsets and Opposite Properties 65
3.6.8 Subsets and Composition 66
3.7 Alternative Language Extension Mechanisms 68
3.7.1 Covariant Specialization 68
3.7.2 Property Redefinition 69
3.8 RelatedWork 69
3.9 Conclusions 71
4 Model Operations 73
4.1 Introduction 73
4.2 Element Creationand Deletion 74
4.3 Unidirectional Edit OperationsonModels 75
4.3.1 Element Insertion into an Unordered Slot 76

Vi

4.3.2 Element Insertion into an Ordered Slot 77
4.3.3 Element Removal fromasSlot 81
4.4 Bidirectional Edit OperationsonModels 83
4.4.1 Element Insertion into Unordered/Unordered Slots 84
4.4.2 Element Insertion into Unordered/Ordered Slots84
4.4.3 Element Insertion into Ordered/Unordered Slots85
4.4.4 Element Insertion into Ordered/Ordered Slots85
445 ElementRemovalfromSlots 85
45 Relatedand Future Work 86
46 Conclusions e 87
Implementation of the Simple Metamodel Description Langage 89
5.1 Introduction 89
52 TheSMDLanguage. i, 89
5.3 Implementation 92
5.3.1 The Metamodel and Model Layers 93
5.3.2 Registering New Metamodels 96
5.3.3 Enforcing Bidirectionality 98
5.3.4 Optimizations 99
5.3.5 Known Limitations 99
54 RelatedWork 102
55 Conclusions 103
Model Serialization and Interchange Using XMl 105
6.1 Introduction 105
6.2 Scenarios for Model Interchange oL 6 10
6.2.1 Basic Functionality 106
6.2.2 Scenarios e 107
6.3 XMl . . . e 108
6.3.1 UsingXMI 108
6.3.2 Assessing XMI Suitability 111
6.3.3 Conclusions 118
6.4 \ValidationofResearch 120
6.5 RelatedWork 121
6.6 Conclusions 121
Version Control of Models 123
7.1 Introduction 123
7.2 Problem Exposition 124
7.3 Difference BetweenModels 127
7.3.1 Requirements on Metamodels 127
7.3.2 Description of a Difference 128
7.3.3 Serialization L0 129

7.3.4 Calculating the Difference 130
7.3.5 Applying a Difference 132
7.3.6 Inverse of a Difference 133
7.4 MergingofModels 134
741 Conflicts 135
742 ConflctResolution 136
7.4.3 A Complete Merging System 138
7.5 AModelRepository 139
751 ModelStorage 139
752 AccessControl o 143
7.5.3 Client-Server Communication 144
7.6 Validationof Research 146
7.7 RelatedWork 146
7.8 Conclusions e 148
Diagram Handling 151
8.1 Introduction 151
8.2 ModelsandDiagrams e 152
8.2.1 The Diagram Interchange Metamodel 154
8.2.2 The Diagram Reconciliation Component 156
8.3 From ModelstoDiagrams 157
8.3.1 DIML Metamodel and Semantics 161
832 DIMLTree i 161
8.3.3 SupportforDIElements 162
8.3.4 Connecting Edges to GraphConnectors 163
8.3.5 Known Limitations, 164
8.4 Generation of NewDiagrams 165
8.5 Reconciliation of an Existing Diagram 167
8.5.1 Principle Behind Diagram Reconciliation 681
8.5.2 Reconciliation Example 169
8.6 \Validationof Research 169
8.6.1 Optimization of Query Expressions 169
8.6.2 Implementation in the Coral Tool 172
8.6.3 \Validation 173
8.7 RelatedWork 176
8.8 Conclusions 178
Conclusions 179
Appendix A: Mathematical Preliminaries 183
Appendix B: The Simple Metamodel Description Language 186
References 190

viii

List of Figures

11
1.2
13

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1

3.2
3.3
3.4
3.5

3.6
3.7

3.8

3.9

3.10

Example ofaMICAS Model 11
Example ofaSOCOSModel 12
Example of a Transformation with MICAS Models 21
The GXLGraphModel 17
Overview of GXL and its Artifacts 18
Part of the GXL Metaschema 19
Part of the MOF Metametamodel 22
Overview of MOF andits Artifacts 23
Part of the ECORE Metametamodel 26
Overview of ECORE and its Artifacts 27
The KM3Metamodel 29
Overview of KM3 and its Artifacts 30
The Generic Metametamodel 36

(Top) Base Language for Electronic Circuits (Bottom)aEle
Extension of the Digital Circuit Metamodel by Specialipatiof
Component and its Properties into Transistor 41

A UML Class Diagram Representing a Partial MetamodeStat-

echarts 43
Metamodel from Figure 3.2 as a Graph of Classes and Rieper 44
Example Statechart Represented in the UML Notation 45
Example Statechart Model Represented Using the Gelleue!
Notation 46
Conformance of a Model to its Modeling Language 48
(Top) A Metamodel Using the Ordered Characteristic {&a) A

Model Conforming to this Metamodel 52
(Left) Metamodel for a Statechart Containing Navigd®égations

(Right) The Same Metamodel as a Graph of Classes and Pexperth3

(Top) Example Statechart (Bottom) Statechart Reptedeas Ele-
ments and Slots, Conforming to the Metamodel from Figure 3.8 53

A Statemachine Model without Bidirectional Slots 54

iX

3.11 (Left) Metamodel for a Statechart with UnidirectiorRélations
(Right) The Same Metamodel as a Graph of Classes and Pexperth4

3.12 Example of Composition 55
3.13 A Metamodel Using Class Specialization 58
3.14 Example Model Using Specialization 95
3.15 Example Metamodel for UML Class Diagrams Using Subsm-P

erties 60

3.16 Example Model Based on the Metamodel Shown in Figure 3.1 61
3.17 (Top) Example of a Model as Interpreted According to Baese
Language (Bottom) Same Model Interpreted According to the E

tendedLanguage e 63
3.18 Subsetting Only One EndofaRelation. 4 6
3.19 Example of the Interaction of Subsets and OppositedPtiep . . 66
3.20 Subsetting with Composite and Noncomposite Progertie . . . 67
3.21 Notation for Covariant Specialization 68
4.1 Implementation of Creating a New Model Element 15
4.2 Implementation of Deleting a Model Element 76
4.3 Example of Inserting an Element into Unordered Slots 77
4.4 Implementation of Element Insertion into an Unordered S . . 77
4.5 Thelower_index Function 78
4.6 Thelift_interval Function 78
4.7 Theindices_ ok Function 79
4.8 Example of Inserting an Element into Ordered Slots 81
4.9 Implementation of the Insert Operation for Ordered Sé$ing the

Lastindex Strategy 81
4.10 Removin@froman UnorderedSlat 82
4.11 Different Scenarios for Removirggfrom an Unordered Slot . . 83
4.12 Implementation of Element Removal fromaSlot83
4.13 Implementation of Element Insertion into Unorderetdtd:lered

Slots 84

4.14 Implementation of Element Insertion into Unordered&ded Slots 85
4.15 Implementation of Element Insertion into Ordered/tdieoed Slots 85
4.16 Implementation of Element Insertion into Orderedéed Slots . 85

4.17 Implementation of Bidirectional Element Removal 86

51 TheSMDLanguage. v i 90

5.2 The Primitives of the SMD Language 92

5.3 The Metamodel Layer in Coral as a C++ Class Diagram 94

5.4 The Model Layer in Coral as a C++ Class Diagram 95
5.5 Primitive ElementTypes 96

5.6 Lifting an SMD Model to the Metamodel Layer 97

5.7 Lowering a Language to the Model Layer 97

X

6.1 Example Finite State Machine Model 109

6.2 Example Finite State Machine Metamodel Q91
6.3 Example Finite State Machine Model as an XMI 1.2 File 111
6.4 Example Finite State Machine Model as an XMI 2.0 File 112
6.5 Example Serializations of name and isActive Slot for asSlin

XMIELX oo 113
7.1 Example of the Union of Two Versions of a Model 512
7.2 Example of the Difference of Models 612
7.3 Example of the Union Based on Differences 261
7.4 Difference Between Two SimpleModels 912
7.5 The Principle of Calculating the Final Model of Two Mosl@nd

Their Original Model 135
7.6 Example of a Merge of an Ordered Sequence 138
7.7 A Merging System with Three Distinct Resolution Steps 139
7.8 Example Repository ClientAccess 514
8.1 Diagram Reconciliation in a Model Transformation Téalm . . 153
8.2 A Simplified Fragment of the UML Metamodel for State Mags 154
8.3 A Subset of the Diagram Interchange Metamodel 155
8.4 Rendering ofaDI Modeltoanimage 156

8.5 (Top) UML Model in Gray with Two SimpleStates and a Transi
tion and its Diagram Representation in DI (Bottom) DI Diagra

Rendered Using the UML Concrete Syntax 157
8.6 Overview of the Mapping Between Models and Diagrams . . 159
8.7 The DI Mapping Rule of StateMachines 159
8.8 The DI Mapping Rule of SimpleStates 160
8.9 The DI Mapping Rule of Transitions 160
8.10 DI Fragments Created by the DIML Mappings are Combinéal i

the FinalDIDiagram 160
8.11 The DIML Metamodel 162
8.12 Outline of an algorithm for Generating a DI Diagram framAb-

stractModel 166

8.13 (Top) UML Model in Gray After Adding a Third SimpleStaad
its Diagram Representation in DI (Bottom) DI Diagram Rerreder
Usingthe UML Concrete Syntax 170
8.14 (Top) UML Model in Gray After Relinking the Transitiomd its
Diagram Representation in DI (Bottom) DI Diagram Rendersd U

ing the UML Concrete Syntax 171
8.15 Screenshot of a Statemachine in Poseidon 174
8.16 Screenshot of the Model from Figure 8.15 Loaded intaarith

aNewState Added, 175

8.17 Screenshot of the Model from Figure 8.16 Loaded intellos . 176

Xi

Xii

List of Tables

11

2.1

6.1

7.1
7.2
7.3

Traditional Text-Based Metalevels and Their OMG MaulglEquiv-

alents 5
Framework Differences 34
Tool Compatibility 118
The Map Between Operations and Dual Operations 134

An Extract from an Elements_UML14 Class Table 142

An Extract from a Connections Table 143

Xiii

XV

Chapter 1

Introduction

1.1 Textual Programming

Despite years of experience, successful software engirgeisr still considered to
be a very difficult problem [156]. The execution of any softevalevelopment
project includes the creation and maintenance of many tgpefcuments: re-
quirements, specifications, tasks and project plans, kesbuace code, test reports,
et cetera. It is important to understand that an executaimepater program is
not our greatest concern. Many of the documents—artifactentioned are not
computer programs, yet all of them are highly relevant tompiag, building and
maintaining one. Furthermore, all of these artifacts estateach other, but are usu-
ally described and manipulated using different languadata formats and tools.
Interoperability between tools would improve the pace amectness of program
development. Overcoming problems between tools or datadts can require a
significant amount of effort.

Therefore we postulate that it should be possible to des@ilof the relevant
artifacts using several interoperable languages. Thidiéspwo things. One, that
an artifact can be described using the constructs of songeidéeye. That is, there
are constructs at our disposal which are sufficient to mdueiriformation of the
artifact. Two, that these languages can be combined and together, where
such usage makes sense in the domain of the languages. tmatftks, that the
constructs for creating languages are common buildingdslacross all languages.

Informally we can understand that these common buildingkdalso form a
language, the language of creating languages. Thus, wentsatds called aneta-
languageto describe languages, and since the metalanguage itsdliiguage, it
can be used to describe itself. This feature is catfedacircularity[7, 10]. The
benefit of a metalanguage is that all artifacts can be maatigdiluniformly, since
they all conform to some language, which all conform to theéatamguage.

The mathematical definition of a language in word theory &<ght of words
that is accepted. A compact way of expressing these wordieisge of a (word)

1

grammar. Noam Chomsky and Marcel-Paul Schiitzenbergegaréted formal
grammars in the Chomsky-Schiitzenberger hierarchy in 138 fo which context-
free grammars belong. A programming language is usuallynddfias such a
context-free grammar, and described using Backus-NaumKBINF) or the se-
mantically equivalent various Extended Backus-Naur Fo(BEBNF). BNF was
developed by John Backus and Peter Naur in the end of the 4880the AL-
GOL 60 programming language [4].

There are many benefits to using BNF, but its use often regjadslitional
information to be constructed together with the parsinghefinput into a syntax
tree. In layman’s terms, consider for example the sentetfities hen panicked.
The red fox attacked it"We cannot infer what the fox attacked without reading
and understanding the first sentence. This is informatiahdt{hypothetical) BNF
grammar for English does not convey. This complicates thaerstanding of the
information, since the meaning of the pronouns are cordependent. At worst,
we have to read the whole text from the beginning, rememyesirbjects, objects
and actions taken up to and including the last sentence exfeisit to understand to
what the relative pronouns refer. Thus we also have a serdieection in how we
must read the text for the information to make sense.

We see similar issues in the textual programming languagegeogramming
environments of today, although a lot of effort has been ptat mitigating these
problems. On one hand, we have the extreme case of the C+} IHfuage,
the designers of which had to keep compatibility with C [9Hilst adding object-
oriented concepts, the end result being a very complicatetds. This in turn led
to a proposal for a different syntax for the same languagé][2Ghich has not been
adopted. A more modern example is the Java [64] programnainguage, where
for example JavaDoc documentation is written inside conimbafore methods,
and then extracted by a separate tool, and JML [36], whiadwallthe developer
to write pre- and postconditions to methods inside commensiead of changing
the BNF grammar of Java, we have circumvented it and oveglddkde meaning
of comment strings: are they comments, JavaDoc documentatiJML expres-
sions? On the other hand, an example of a tool which sucdlysisitorporates the
compiler into the integrated development environment igEe with its on-the-fly
Java compiler [76].

There is also a problem of representation. Although a BNgnar describes
a syntax tree, the source code is written as a stream of dkesaén other words,
there is a difference between the concrete syntax and theeabsyntax of a lan-
guage, and a grammar cannot only support describing a syir@ex It must also
be augmented to support parsing from a stream of data. Thereerists popular
languages which do not have a pure BNF grammar. For exampéedatally the
grammar of Perl [201] cannot be reduced to BNF, and a parsarRyithon [180]
program needs special support because the language hastedependent white-
space. Yet another problem is that of abstraction. Becalge oelatively simple
data structures used, almost the only artifact used to itbesprograms is source

2

code. Our anecdotal experience is that relatively few @ogning languages are
concerned about supporting refinement [15] or Design by @oh{DbC) [116],
and any such support is added later, or not standardizeéel EifL7] is a notori-
ous exception. Its designer Bertrand Meyer introduced tmeept of DbC in the
1980’'s and created a new language to support it.

1.2 Graphs

However, if we consider the sentences about the hen and xhi foe analyzed
prior to any other interpretation, so that the meaning ofiptms were substituted
by links to their actual meaning and successive words wee latked, we sud-
denly obtain a different mathematical structuregraph consisting of words and
links, or nodesand edges Graphs also have the equivalent of word grammars,
called graph grammars, which define which graphs are allowed

These might not seem to be big changes, but the consequeaecedher pro-
found. First, this encodes the meaning of words in a senteraze explicitly, since
we can follow a link from a pronoun to its meaning. In fact weghtinot use pro-
nouns at all, but instead link directly to the meaning frora tkerb. Second, we
lose our sense of direction, in that there is no obviousietagoint. We can check
what happened to the hen by examining the links that poirtf tut we could just
as well start from the fox. Third, we can add more detail byiagldhew links to
nodes, thus refining our data to be more precise. In this wayam use graphs on
multiple levels of abstraction and examine our artifactthatlevel of detail we are
interested in.

For this thesis, we claim as our underlying premise thafeats relevant to a
software development project can be represented as graptishat graphs are in
fact better primitives for describing information than tgxtrees. The benefit is
that graph theory has a very strong and well-understood enadlical foundation.
However, the claim is an important assumption and the ctstdrihis thesis—and
current research on software modeling as well—rely heawilyt.

In general, a graph consists of two kinds of elemeetigesandnodes which
can betyped attributed and hierarchical The type of an element determines its
classification. All elements of the same type can be seenvéisghsome structural
or semantic commonality. Attributes are key-value pairprhitive type such as
strings which describe the element further. Allowing ameat to include other
elements into itself supports hierarchical graphs. Thiscept is usually seen on
two different levels, as an ownership relation between el@sand between types;
the latter concept is used for collecting types iptckages

We consider that each edge connettslements together. Ifi > 2 the edge
is said to be d@yperedge An edge can also bdirectedwhich splits then con-
nections into two nonempty sets, one consideredthececollection of elements,
and the other théarget collection. Very often edges may only connect to nodes,

3

not to other edges. Edges in more specialized or complexhgrapve additional
properties which describe thmvnershipbetween the source node(s) and the tar-
get node(s). Edges are often grouped into specific categdepending on which
kinds of nodes they interconnect and what the semanticseoktiye is. These
groups can then be consideredieredor unorderedand themultiplicity (number)
of the edges in a group is of importancenitiltiple edge®etween the same source
and target node are allowed, the group can be considebed ar multisetinstead
of aset

The graphs that represent an artifact should conform to mmpa, i.e., a for-
mal definition of all graphs or models allowed in a given laage. We say that a
graph is aninstanceof a grammar, which provides tgpe systenthat the graphs
must follow. The grammars can also be represented as graphs.

1.3 Modeling

We will not delve here on which ways the differences in th@lram syntax trees
to graphs are advantages and in which ways they are disad)emtNevertheless,
software modelings, to us, the use of interlinked graphs and graph grammars fo
purposes of creating, analyzing, transforming and maiirigi software engineer-
ing artifacts over multiple levels of abstraction.

In the long run, standardization of computer technology digsn many ben-
efits. For example, BNF made it easier to describe the syrtdanguages and
compiler-compilers like yacc [101] made it easier to crqzesers. We also have
standards such as Simple Mail Transfer Protocol (SMTP) lieeteonic mail and
Hypertext Markup Language (HTML) for World Wide Web (WWW) ges, the
use of which has become ubiquitous. It can be assumed thabdeling were
to become widespread in software engineering, it must bedatdized to some
extent.

The industry consortium setting the modeling standardsa<abject Manage-
ment Group (OMG) [123]. Their modeling effort is coined unte umbrella term
Model Driven Architecture (MDA) [143]. Their suggestiontisat instead of us-
ing BNF to build grammars, we should use the Meta Object Fa¢MOF) [139].
Instead of BNF grammars, we should build metamodels, andftagship meta-
model is the Unified Modeling Language (UML) [135]. Thus thgfacts that are
produced are not text and syntax trees but models. The paitisawe mentioned
are at different metalevels and are listed in Table 1.1. Aditemhal metalevel is
the lowest metalevel common to both text-based and modgdicignologies: the
runtime metalevel which actually contains a program thaeisng executed.

MDA is an initiative of a more general technology called MbBeiven Engi-
neering (MDE) [89]. MDE advocates the use of models to repreall the relevant
information in a software development project. Softwareali@ment is then car-
ried out as a sequence of model development and transfamstigps. MDE is

4

Metalevel Text-Based OMG

Metalanguage BNF MOF
Languages Java, C++, Python, etc. UML
Artifact Syntax tree Models

Table 1.1: Traditional Text-Based Metalevels and Their OMGdeling Equiva-
lents

the result of the recent development of modeling languameareness of the need
for software development methodologies and the constat teetackle larger and
more complex development projects.

We believe that MDE opens a window for new development methaadi tools
that are not available or are too expensive to implementheroapproaches such
as text-based driven development. However, MDE also ptesew challenges
that should be addressed before the approach can be usedttircer We are faced
with many issues if we were to use modeling technologies. yWafnthese are
already known from textual programming languages. Thesesmust be solved
or reverified to work properly in the modeling domain so theg benefits we have
acquired in the textual domain are transferred to the mogelomain.

Information about the various issues have been acquired fhe following
sources. The standards themselves, made by OMG, lay thadyfoua modeling
framework around which much of the research activity alsistex Publications
about OMG standards and suggested alternatives provida i@as and discover
problems, either in OMG standards or in the field of softwargieeering. Finally,
our own experience in software engineering and programraidg us informally
in which problems to tackle and what kinds of solutions aefgrable.

In practice, the core of a modeling environment is a modelagan It consists
of two parts: a metamodeling language and a tool infragirectThe metamodel-
ing language is a definition that lets us create metamodelsrandels, and a tool
interface lets us create, query, modify and serialize metieis and models. The
research on model managers, implementing them and asgdbsin usability is
relevant because not only are we interested in the theatdignefits that graphs
might provide, we are also interested in improvements amgkisas bringing a
real-world benefit to the practitioners of software engiirege

Thus, the research approach followed in this thesis can ilensuized as fol-
lows. In parallel, we have strived to read relevant OMG staidsl and scientific
publications, discover issues and develop solutions irear#tical context as well
as in a working tool. These results have been published ansfic conferences
and journals.

We have deliberately laid an emphasis on the engineeringcaispthese solu-
tions, and quite little is formally proved in the thesis. teed we strive to validate
the research by a solution that actually runs on a computéican be tried out in

5

practice to assess how well it works and whether or not it &les We consider
this an important aspect of the work presented in the thesis.

However, many issues are left unaddressed by modeling démdyn Creat-
ing a software system is still a fundamentally hard probledodeling aims to
remove some of the complexity of creating software, but théeulying inherent
complexity of designing a system meeting a set of custonmgrirements is still
left. Frederick P. Brooks stated this problem in 1986 [25]:

| believe the hard part of building software to be the spegiion, de-
sign and testing of this conceptual construct [of a softvemtity], not
the labor of representing it and testing the fidelity of thpresenta-
tion.

He continues with:

If this is true, building software will always be hard. Thaseinher-
ently no silver bullet.

However, it is the belief of the author of this thesis that mloty, most likely
in combination with textual programming languages, canelotiie threshold for
solving theessential complexitin software by making it easier to build and main-
tain tools that reduce the amountafcidental complexityCharles Connell sum-
marized this in 2001 as follows [45]:

If the study of software engineering helps us improve, bynevemall
amount, our ability to create software, the entire fieldifiest its exis-
tence.

A succinct summary of this thesis is that we wish to give safenmodeling the
same benefits as traditional textual programming langualjesrefore we analyze
some modeling standards from OMG from this perspectiveudising their weak
and strong points. We suggest improvements where possitiichave strived to
validate the work by implementing the suggested solutionsimprovements.

1.4 Contributions of this Thesis

The contributions of this thesis range over several OMGdsads and problems
mentioned. We find several cases where the standards arespadiéed. This
must be addressed for software modeling to become as nesnstas program-
ming in the textual domain.

In each of the chapters, we begin by introducing the topicearithy discussing
related work and summarizing the topic. Additionally, eadtapter begins by
listing to which papers it refers. More concretely, we pde/ihe following.

We are interested in the expressivity of the metalanguage, what build-
ing blocks are available to language designers. We giveed bvierview of the

6

current state-of-the-art software modeling framework€apter 2 by analyzing
the Graph eXchange Language [208], the Meta Object Fadil#y[128], Eclipse
ECORE [28] and the Kernel Meta Meta Model [84].

Based on this experience, we describe our own modeling fremkecalled the
Simple Metamodel Description Language (SMD) using a setstttic formaliza-
tion in Chapter 3. We accomplish this task with successivsiors of a modeling
framework and note the constraints over the static stractirmetamodels and
models of each version. We especially support subset amh ynoperties, a novel
way to specify relationships.

In Chapter 4, we extend this theoretical framework by addipgrations. We
describe pre- and postconditions and implementationshioibasic operations on
models: creating and deleting elements, and insertingeanesit into or removing
an element from a slot. We note that these operations peseivsetting and
bidirectionality, but multiplicity constraints do not ftbl

Although the theoretical framework from Chapters 3 and ieresting, we
are also concerned about practicality. We have strived lidate our work by
implementing our ideas and solutions in the context of a ngrkool called Coral.
It is open source and licensed under GNU GPL version 2 [59]. dé&cribe the
core part of it in Chapter 5 by introducing an implementat@nthe theoretical
framework from Chapter 3.

One of the most important operations on a model is persistemgich is easiest
to accomplish by being able to serialize the model to fileshimftlesystem. We
assess the suitability of the XMl file format standard [1282,1137] with respect
to several model interchange scenarios in Chapter 6.

As stated previously, if we want modeling to be used in a msifmal software
engineering context, we must add similar capabilities taetiog frameworks as
currently exist in textual programming languages and irgtesgl development envi-
ronments. An important part of that is software configuratoanagement (SCM).
There are several issues with SCM, of which version congralrie. In Chapter 7,
we show algorithms for calculating the difference betwesn models, how to
apply such a difference to a model producing the other, tatiog the inverse of
a difference, and detecting conflicts between two devetogienultaneously mod-
ifying two models. We also show a proof of concept implemgataof how a
relational SQL database can be used to store models for ealieed version con-
trol server.

Finally, we show a solution to the problem of maintaininghbaih abstract and
a concrete syntax in Chapter 8. We describe a domain-speafizing metamodel
between abstract models and Diagram Interchange [136] Isidtlean be used to
create new diagrams from existing abstract models, andrtohsgnize changes
which have occurred in the abstract model to the obsoletgalias, bringing them
up-to-date. The work is interesting because OMG has recésglied a Model
View to Request for Proposals [140] that addresses this eaace issue. We have
used our idea for managing the diagrams in our graphicalinssface.

7

Chapter 9 summarizes the thesis. Appendix A describes thieematical no-

tation used in this thesis, whereas Appendix B is a summar@hapter 3 and
describes the metamodeling language used in Coral.

me

The main thesis is that the current modeling standards b@thect Manage-
nt Group are lacking if we wish to provide the same leveludlidy from the

software development infrastructure as we have becomestmoed to in the tex-
tual programming language domain.

1.5 List of Published Papers

Bel

ow is a list of papers published relevant to this thesise Mgte that in the

European communities of Mathematics and Computer Scierxelistinction is
usually made between the first author and the other autharthofs are thus listed
alphabetically.

I. Marcus Alanen, Torbjérn Lundkvist, and Ivan Porres. Camnigon of Mod-
eling Frameworks for Software Engineeringordic Journal of Computing
12(4):321-342, 2005.

II. Marcus Alanen, Torbjorn Lundkvist, and Ivan Porres. Apfing Language

from Models to DI Diagrams. In Oscar Nierstrasz, Jon Whitflavid Harel,
and Gianna Reggio, editoBroceedings of the 9th International Conference
on Model Driven Engineering Languages and Systems (MoDBO6&)2/0l-
ume 4199 ol ecture Notes in Computer Sciengages 454-468. Springer
Berlin / Heidelberg, October 2006.

Marcus Alanen, Torbjorn Lundkvist, and Ivan Porres.c@eciling Diagrams
After Executing Model Transformations. In Hisham M. Hada#ddl., edi-
tors,Proceedings of the 2006 ACM Symposium on Applied Comp piaggs
1267-1272, April 2006. ACM ISBN 1-59593-108-2.

IV. Marcus Alanen and lvan Porres. Difference and Union ofdéls. In Perdita

Stevens, Jon Whittle, and Grady Booch, editds#]L 2003 - The Unified
Modeling Languagevolume 2863 ofLecture Notes in Computer Science
pages 2—-17. Spinger-Verlag, October 2003.

V. Marcus Alanen and Ivan Porres. Coral: A Metamodel KeropelTransfor-

mation Engines. In D. H. Akehurst, editd?roceedings of the Second Eu-
ropean Workshop on Model Driven Architecture (MDAYmber 17, pages
165-170. University of Kent, September 2004.

VI. Marcus Alanen and Ivan Porres. Model Interchange UsiiGOStandards.

In Bob Werner, editorProceedings of the 31st Euromicro Conference on
Software Engineering and Advanced Applicatiopages 450-458. IEEE
Computer Society, August 2005. ISBN 0-7695-2431-1.

8

VII. Marcus Alanen and lvan Porres. Version Control of Safter Models. In
Hongji Yang, editorAdvances in UML and XML-Based Software Evolution
chapter lll. Idea Group Publishing, April 2005.

VIIl. Marcus Alanen and Ivan Porres. Basic Operations Oved®ls Containing
Subset and Union Properties. In Oscar Nierstrasz, Jon W,Hiawvid Harel,
and Gianna Reggio, editoBroceedings of the 9th International Conference
on Model Driven Engineering Languages and Systems (MoDBD6)2/0l-
ume 4199 ol ecture Notes in Computer Sciengages 469-483. Springer
Berlin / Heidelberg, October 2006.

IX. Marcus Alanen and lvan Porres. A Metamodeling Languagpp®rting
Subset and Union PropertieSpringer International Journal on Software
and Systems Modeling\ccepted for publication.

1.6 Validation

We conclude this introduction by giving a brief account @ thoral tool itself, and
how Coral has been used in various other projects by othasl@éo our research
group and elsewhere.

1.6.1 Coral

The Coral model manager is a library for managing metamoalets models. It
is written in C++ and consists of around 23 000 lines, in addito some Python
scripts that help in building the library. It also exposes\WIS [173] interface
for the Python language. The Python interface is used tdeegraphical mod-
eling toolkit and several scripts. The development has lesndriven, in that
new unittests have been created before or after the codesleasnritten to ensure
that some particular functionality exists and works asndesl. In our opinion,
when errors have been found, we have made a solid effort nodeping them by
creating new test cases and then correcting the program code

The Coral model manager contains many features that areasotided in de-
tail but that we consider relevant in a modeling tool: ogders, transaction mech-
anism with undo/redo, copying, deleting, pasting, tramafog, and comparing,
to name a few. Several of these features can either be impteché the model
manager or transparently by other third-party scripts.

Coral is not a replacement for any existing modeling tooldodemonstrator of
different research ideas. This has ensured that we areaubtdithe idiosyncrasies
of any particular metamodeling implementation, althouggating it has required
a significant effort.

1.6.2 Applications

We will describe some applications of Coral in this sectidde wish to make it
clear that these applications are not an accomplishmehedauthor of this thesis.
They are described here to validate that the Coral model gaar@an in fact be
used as a library for manipulating and maintaining models.

UML Support

The Coral model manager has been used to define several npteiguages. So
far, UML is the primary and largest modeling language suggabby Coral and
will probably always be, since other domain-specific lamgpsatend to be smaller
and simpler than UML. There are metamodels for UML versioris 1.3, 1.4, 1.5
and 2.0. Version 1.4 is the most complete one, as it inclugggaimmatic support
and we have extensive experience in using it. Version 2.@hsesed using the
UML 2.0 metamodel from the EMF project. However, the redéfinis are lacking
since Coral does not support them. Future plans includeastipg the concrete
syntax of UML 2.0.

It is interesting to note that although Coral does not usevlid= metameta-
model, it is compatible with the UML metamodel with respexthe serialization
of models in XMI. Coral can import and edit models createchwibmmercial and
open source UML tools, such as Poseidon, Rational Rose,U\goand Um-
brello. Unfortunately, at the moment only some old versiohBoseidon are com-
patible with the DI [136] diagram interchange language, smtheir diagrams are
the only ones compatible with Coral. DI will be discussed ina@ter 8. Cur-
rently, Coral supports class, use case, state, collabaraind (Poseidon-specific)
deployment diagrams. The conclusion is that as long as ti@metamodel is suf-
ficiently expressive compared with another metametamaedelstructs from it can
be emulated at the model layer.

There is also some basic code generation scripts that catedfre class struc-
ture as Java or Python files and an initialization routing thiaates objects and
calls their methods according to one collaboration diagram

Toni Jussila et al. have created a round-trip transformatol from UML state
machines to Promela code [85].

MICAS

MICAS [103, 102] is an architecture for describing compadressed embedded
systems. Each component consists of a microcontrollerwbdmtrols traffic be-
tween smaller computational units. In Figure 1.1, we canasescrocontroller
which can send commands to a sound recorder and video endduse are con-
nected by one high-speed data bus together, and to otherooemis via a special
socket construct.

10

Microcontroller

SoundRecorder
SoundRecorder | audio_out

SoundRecorder

Socket3
Socket

Bust data_in

Socket
Slave

Encoder

VideoEncoder

Encoder

Figure 1.1: Example of a MICAS Model

This kind of a conceptual design is transformed using a dephbkhout graph
transformation [160] to a detailed design (not shown), frehich SystemC [145]
code can be generated.

SOCOS

SOCOS [12, 13] is a tool for describing software using irmatibased diagrams.
An example SOCOS model can be seen in Figure 1.2. A set of gmmogtates is
represented as a colored region, and guarded statemeriie executed to change
state. Due to the use of invariants and guarded commandgadskible to generate
proof obligations that can be proved by tools such as Simpi®] or PVS [144].

Miscellaneous

There are also several smaller tools built into the Coral eterd

There is a metamodel for describing additional constraimtsnodels. These
can then be evaluated on some specific model and a list oftisioais shown.
An interesting and useful feature is constraint checkinthabackground. After
a change has been done to a model, a heuristic is used to makiieated guess
of which constraints to reevaluate on which model elemeftsese are then run
while the user is allowed to perform additional modificasdo the model.

A metamodel and an algorithm for subgraph isomorphism niragclvith neg-
ative acknowledgment conditions has been implemented ma$d.illqvist [104].
Effectively it can be used as a query language that asks whathertain pattern

11

Sum

const n: Int
result sum: Int
k: Int
[PRE
0<n k,sum := 0,0 LOOP h
\ J sum = k:(k+1) div 2 n-k
0<k A k=n
(/=
[k=#n] [n=K] POST
ki=k+1; sum::sum+k. sum = n-(n+1) div 2
=//
& J

Figure 1.2: Example of a SOCOS Model

exists in a model. Transitive closures were later added byadd.indqgvist, Tor-
bjérn Lundkvist and Ivan Porres [107].

Using the model query language described above, it is gdessiimplement
a transformation engine using the double-pushout appraackxample of which
can be seen in Figure 1.3. The figure specifies that any pattatching the left-
hand side from a source model will be transformed into thiktsftand side.

SoC - Microcontroller
SoC Microcontroller SoC Microcontroller
Microcontroller Microcontroller
—
tmp link SoC - MC
oC - MCU :
MCU - SFR Bridge tmp link
MCU SFR Bridge MCU - SFR Bridge
MGU SFR Bridge
Interrupt controller - MCU \Interrupt controller - MCU
Interrupt controller Interrupt controller
SoC - Interrupt controller

Figure 1.3: Example of a Transformation with MICAS Models

12

Chapter 2

Software Modeling Frameworks

2.1 Introduction

In this chapter we compare four modeling frameworks whichehbeen created
to model and interchange data about software and softwaragenent artifacts.
Our main focus is in discussing the rationale and expragsafimodeling frame-
works, although various practical considerations are alsationed. This chapter
can be considered as a study of the state of the art in the fi@bdeling frame-
works.

We consider a modeling framework to be a software comporattimple-
ments a metamodeling language, with which several metalsadd models based
on those metamodels can be created. In other words, usdne &faimework are
not tied to produce abstract models conforming to some Bpeoetamodel such
as UML, but can create and use multiple metamodels. Thisngay to many
tools which only support one specific metamodel, usuallyesspecific version of
UML. We do not consider these tools to be modeling frameworks

The frameworks which we will compare are the Graph eXchangeguage
(GXL) [208, 206], the Meta Object Facility 1.4 (MOF) [128]dORE from the
Eclipse Modeling Framework (EMF) [28] and finally the Keriviéta Meta Model
(KM3) [84] from INRIA. All these frameworks enable us to ctealifferent kinds
of metamodels or graph grammars. We will primarily analylze graph structures
that can be created with them and how they are suitable fowaoé engineering.

GXL is a standard exchange format for graphs by Richard Ct,Hahdy
Schirr, Susan Elliott Sim, Andreas Winter et al. [207] witle backing of several
research communities. GXL is used to describe arbitrarglggabut additionally it
can be used to define GXL schemas which constrain the graghatsanly specific
kinds of graphs can be built.

MOF from the Object Management Group (OMG) [123] is a framewfor
describing metamodels. The metamodels can be used to onedtds. Metamod-
els can also be seen as models, with MOF as their metamodeahliZxdion is

13

done using the XML [188] Metadata Interchange (XMI) [12921L&brmat, which

is an XML application. In this chapter, we concentrate ondlder and signif-

icantly simpler MOF version 1.4 instead of the relativelywsnand complex ver-
sion 2.0 [139], although we are aware that version 2.0 iresusbme interesting
enhancements; they will be discussed in Chapter 3.

ECORE can be seen as a practical implementation of MOF: ENtieisnod-
eling framework used by the Eclipse platform, and uses EC@RIEs underlying
metametamodel. As the platform originally started as a davalopment platform,
it is natural that ECORE has concentrated on making progmaraldpment and es-
pecially Java program development easier with modelingrtelogy. ECORE is
also serialized using XMI. It must be noted that ECORE is rettadard endorsed
by any group or organization, contrary to GXL and MOF.

KM3 by Jean Bézivin et al. at INRIA can be seen as a lightwelfDORE. It is
in fact implemented in the Eclipse framework, so there aversg similarities. Itis
also serialized using XMI, but there is an additional humeadable and -editable
textual syntax for defining new languages. KM3 is not a stethda

We have obtained the results presented here using two atiff@pproaches.
First, we have studied the documents that describe the GXLMOF standards
and any documents available on ECORE and KM3. Second, weinaiemented
different modeling tools (SMW [11, 152], and Coral, whichlvide discussed in
Chapter 5) that include, in one way or another, support forl XMIOF, GXL and
ECORE. Unfortunately time constraints have meant that waatdave practical
experience with KM3.

The four frameworks studied can be considered as four difteapproaches to
define graph grammars. The main differences between eacbamgbpinvestigated
is the structure and constraints of the graphs representimgrtifacts. Another
difference will be the mechanisms to serialize these gragbsn XML document.
The terminology used in each approach also varies consilgera

This chapter is based on Publication I. We proceed as folldls next section
explains more closely in what aspects of modeling framewaevk are interested.
Sections 2.3, 2.4, 2.5 and 2.6 describe GXL, MOF, EMF and Kid8pectively.
We summarize our findings in Section 2.7. We finally discusated work in
Section 2.8 and conclude in Section 2.9.

2.2 Comparing Modeling Frameworks

In this section we explain what aspects of modeling fram&ware interesting for
our comparison. From a theoretical point of view we mightsidar which struc-
tures and behaviors it is possible to create with a modeliagnéwork. From a
practical point of view we might consider which facilitieseaavailable and stan-
dardized for using the modeling framework. Since the modebf information

in the context of software engineering is the primary scofpthis thesis, we hes-

14

itate to include any discussion and comparison of behavdthough behavior,

such as defining complex operations or execution semamniecsaalels, is crucial

for the success of modeling, the comparing of which str@sturan be built from
the modeling frameworks is even more important since thett fae foundation on
which we can model behavior. We need to find the basic buildlogks necessary
to describe various information artifacts and make surettiey can be integrated
together as seamlessly as possible. Therefore our pringsig lbof comparison is
structure, whereas practical aspects are our secondais; bavavior is not rele-
vant in the scope of our study.

2.2.1 Structure

Modeling frameworks proposmodelsconsisting of interconnecteglementss our
primary means to model information. Elements are typed, fangractical pur-
poses carry globally unigue identifiebut contain no more information than that.
Thus, almost all expressive power of models is inrdlationsbetween elements.
An n-ary relation consists af association endsvhere each association end links
to an element, and the association ends together link timeeelis together. The
association ends are, depending on their type, given nesteiracteristics such as
ownership and ordering.

The fundamental question is which characteristics aregssarg or useful for
creating new languages. Also, one quickly realizes thatatiatombinations of
characteristics in a modeling framework are valid. For egmownership be-
tween elements is usually required to be acyclic, but oftmoeiation ends have a
boolean flag denoting ownership; this scheme makes it gdessiut not valid—to
create a relation where both association ends denote dwpei® overcome this
problem, wellformedness rules (WFR) are often used to §pelgarly which lan-
guages and models are valid and which are not. However, ther f8/FRs there
are while still retaining sound languages and models, theed is to check meta-
models for validity. We call two characteristiosthogonalif using either one does
not affect the use of the other one, i.e., they are indepégndemodeling frame-
work can be considered better the more orthogonal its ctersiics are, while
still providing the necessary expressive power.

Although we could thus measure the orthogonality of the atiaristics of a
framework, we cannot easily measure the utility or necgssitthem. This can
only be acquired by analyzing in what contexts the charesties can be used.

2.2.2 Practical Aspects

We will also informally cover some practical aspects of thedeling frameworks
in question. It is not immediately clear what kinds of featishould be present in
the context of software engineering, and the features we blagsen is based on
the experience we have drawn from using and implementingetimapframeworks.

15

Our current data retainment and exchange infrastructureavily based on
files and streams of data. A de facto file is one stream of o@béghit bits), al-
though there are filesystems which operate on files with plalstreams and with
a different bytesize than eight bits. If models are to beestonside files, and we
may potentially have several files constituting all the doents, there must be
some way tadentify elementiside files for interdocument linking of elements.
Furthermore it must be possible identify the typeshat various elements corre-
spond to.

Visualization of modelis an important issue. The Unified Modeling Language
was a hallmark in software engineering for the simple faet thtried to unify
the different visualizations of common diagrams such assctiiagrams or state
machines. Now that we want to create several interlinkedetsodsing multiple
languages, visualization is perhaps even more importanat,aastandardized vi-
able solution for describing which diagrams are legal and twoconstruct them is
necessary.

Model transformationsre one of the core ideas in MDA, and can be accom-
plished in several ways. Naturally, we can have an AppliceRrogramming Inter-
face (API) as some kind of library that can be interfaced hyous programming
languages. But if modeling really is a better approach ttwsok engineering than
textual programming languages, we might expect transftioms to be specified
as models as well. Research has shown that there are seivelsbk model trans-
formation languages describing the transformation spedifins as models. These
can be interpreted by using the standard transformatiogulage of the model-
ing framework, if one exists. We assess the maturity of esmméwork-specific
standard transformation language.

Realizing that not all artifacts are yet described as modeés might, from
a pragmatic point of view, wish to extend the modeling framdwsomehow to
take other nonmodel artifacts into accouBtxtensibilitycan mean several things,
such as tagging of extra information to elements in the mogdtamework and
in the serialization format. We explore what facilities &xtensibility the different
modeling frameworks provide.

Finally, an idea of how the modeling framework or associabeds are licensed
and supported is of interest if we wish to consider their nseodeling.

2.3 Graph Exchange Language

GXL 1.0 [75] was created by merging properties from severapf formats such
as the GRAph eXchange format (GraX) [51] and the graph forofidhe PRO-

GRES graph rewriting system [164]. The goal of GXL is to be aersal descrip-

tion format for graphs. It is partitioned into two separatecaments, the graph
model which can describe any graph, and the metaschema vshigded to de-
scribe the type system used in a graph.

16

2.3.1 Structure

The GXL graph model arrangement can be seen in Figure 2.1. A &ode sup-
ports directly the properties defined previously for nodea graph. GXL supports
ownership hierarchies by inclusion of other subgraphs vapBElement.contains,
which contain other nodes and edges. GXL supports binargsedsg a special Edge
element, and hyperedges with a Relation element. All elésneam be attributed
via Attribute elements, and all elements support an oplitype via the hasType
connection to the Type element. The type is defined in a Getiema

D AttributedElement = Attribute N\
. * hasAttribute * _ Attributed graphs
N id name
Typed graphs <l kind
1
Type * refersType 1 TypedElement
0..1 *
hasType
AN
Hierarchical graphs
refersDocument | | ir -
0.1 | | 1
Graph - L 01 G
rapt
GXL 0.1 « | role contains 1
edgeids
contains
hypergraph % <
1 contains *
d d 1
edgemode A from
Node . |
LocalConnection to
. from| o I
isdirected — —— |
relatesTo
Relation A
Directed graphs
Hypergraphs _——
Edge I
relatesTo
- " |~ 7| ordered
Relend
role

direction

l

h:
startorder Ordered graphs

endorder

Figure 2.1: The GXL Graph Model

The GXL graph model establishes few restrictions on whaplygacan be cre-
ated. An example of this can be seen in its support for edgéng edges or
nodes, not only nodes. It is therefore a very general saiutibhis can also be
seen in its history. A small drawback of such a general smiui that in order to
establish more constrained graphs it must be possible toedfese constraints in
some language. These languages are called schemas in G also want tools

17

to support generic manipulation of information all of thémeguages must adhere
to some common metalanguage, which is called the G¥taschemarlhe beauty
of GXL is that it describes the schemas and the metaschem&bslGuments.
This means that one serialization format is sufficient. A GXflormation process-
ing tool only needs the GXL DTD to load and save GXL graphsestds and the
metaschema. This arrangement can be seen in Figure 2.2efiem the schemas
can be used as types. However, this also means that theresigrariayer of in-
direction and understanding that tools must perceive, usitthe XML document
itself. Even though the tool can load arbitrary GXL docunseittmust understand
the relationship between metaschemas, schemas and vaKillagraphs. Failure
to accomplish this renders graph modifications infeasible.

[ox]
\

is-serialized-as is-serialized-as | is-serialized-as

Metaschema Ié-l Schema |€| Graph |

conforms-to conforms-to

conforms-to

Figure 2.2: Overview of GXL and its Artifacts

The graph part of the metaschema is depicted in Figure 2sBarnes of it are
the GXL schemas, which serve as the structural constram&ctual GXL graphs.
Conceptually, the metaschema should be compared with MOEGORE as they
all define the restrictions on which languages can be built.

The primary artifacts in GXL are the various subclasses efGnaphElement-
Class and their interconnections. An inheritance hierahthe GraphElement-
Class metaelement wittmultiple inheritancecan be created with the GraphEle-
mentClass.isA relation. Here, we can note an interestingildewccording to the
GXL FAQ, “in avalid GXL schema, an EgdeClass cannot inheairf a NodeClass
(and vice versa, the same applies to RelationClass)” the.isA relation is really
covariantly specialized in RelationClass, NodeClass ageElass, even though
the figure does not convey this information. We do not meamdaate that this
is a relevant flaw in GXL, but rather that it is very difficult tormalize metameta-
models/metaschemas without relying on implicit assunmgtiivom readers or de-
scriptions in natural language. Even though we could addriant specialization
of relations to the metaschema, there would still be otheesavhere arbitrary
constraints are necessary. This emphasizes the need fonalflanguage for ar-
bitrary constraints and is worth remembering regardlesthefframework used.
Covariance is explained more thoroughly in Chapter 3.

18

V

L siisE e AttributedElementClass _hasAttribute | AfiributeClass
Version 1b A nesting name : string «GraphClass »
] GXL

(GraphPart)

[isA |
| . GraphElementClass
1 contains
GraphClass ‘—.H 1 relatesTo G
| name: string raphClass GXL
name:sting |, ~\isabstract: bool 1 lo p all
< 0.1 1 from concepts
) from
// L limits @ int x int
isordered : bool
hasAsComponentGraph
role : string RelationClass NodeClass EdgeClass to
limits : int x int - T
isdirected : bool imits - i i
isordered : bool - limits : int x int
1 ZF isordered : bool
hasrelationEnd)
AggregationClass
aggregate : (from, to) Element ownership
RelationEndClass
| -
directedto : (relation, target, undirected) ZF - -
role : string - relatesTo
CompositionClass I .
limits : int x int
isordered : bool

Figure 2.3: Part of the GXL Metaschema

A GraphElementClass can also be declaaibdtractwith the isabstract prop-
erty. Subgraphs can be created with the hasAsComponertGraperty. These
are identified by a name, and have a lower and uppdtiplicity constraintwhich
tell how many subgraphs of the given name must exist. The afdbe subgraphs
can also be specified as important with the isordered prapert

Edges can be of three types: compositions, aggregatioasge@lompositions)
and “plain associations”. Edges also have lower and uppédipiicity constraints
and can be directed or undirected; both the source and taddlection can be
ordered or unordered, meaning that order is considered rig@poand must be
preserved by any input/output routines and must be takenadotount by query
or transformation algorithms. The edges represent an ahighierarchy at the
graph level, but a hierarchy of graphs can also be createahnitisting GraphClass
in the schema level and Graph on the graph level.

However, the metaschema cannot describe more complicatestraints. This
has the benefit that representing and validating graphsinsniairly simple, al-
though practical considerations might dictate a need foitrary constraints. For
example, in the definition of UML, additional constraintssédeen used.

It is unclear why GXL has a separate concept for hierarchggaphs. The
relation between a graph and the subgraphs it contains bewdRelation or Edge

19

element with a special type. We noticed that there are sonadl siiscrepancies
between the pictures presented on the website and the D@If) ég., Attribute in
Figure 2.1 is called attr in the DTD. This is, again, a minowflaut it emphasizes
the need for clear documentation of the language.

2.3.2 Practical Aspects
Element Identification

For practical purposes of serialization, elements in alyrapy possess adentity.
In GXL this identity is described with the AttributedElented property and is a
string unique to the XML document. This is correctly markedaa XML identi-
fier in the GXL DTD, although in the long run the xml:id recomnaation [198]
standardized by the World Wide Web Consortium might be astbpistead. The
filename (or URI) of the document and the identifier serve atobadly unique
identifier. However, this limits the mobility of GXL elemento their document,
as there might be a need to change the identifier of an elemavoid identifier
collision if the element is moved to another document. A mapaque globally
unique identifier is necessary.

Schema Identification

In order for tools to understand a GXL graph more thorougitlys important
to be able to identify what schema is being used, i.e., whagsyare available
to GXL elements. The schemas are usually defined in a sep@bétefile and
shared among all the GXL graphs of that type. Linking to a s&és done using
the native facilities of XML, i.e., XLinks [189] and XPath497]. They make it
possible to uniquely identify a document, for example on\W&W. This allows
a GXL graph to explicitly reference a specific schema, andtiadally it allows
tools to download the schema from the location specified byURI. This means
that generic tools can be extended on-the-fly with new scheasadong as they use
the semantics of the same metaschema.

Visual Representation

GXL itself does not define a mechanism for presenting a graglally on-screen,
although this can be remedied in two ways. The simple salutao define at-
tributes that describe the position, size, form et cetera GXL GraphElement.
The more complicated solution is to define a whole new schemaescribing the
visual representation, thereby decoupling the abstratagy(the graph) from the
concrete syntax (the presentation). This idea is similavhat is already being
done by the OMG in the form of the Diagram Interchange (DIgll&tandard and
has the benefit that the representation can be split intoaguessibly different di-

20

agrams, each showing a subset of the abstract graph. Thealtkws the necessity
of synchronization of changes in either the abstract or @asyntax to the other.

Transformation

GXL graphs can be transformed with the Graph Transformagi¥ohange Lan-
guage (GTXL) [174], although at this moment a revision of GT3eems to be
under way by Leen Lambers [98]. Unfortunately, we do not hexgerience with
GTXL and cannot comment on its viability. On the other handpt transfor-
mations have been extensively researched and we belieleltdsbe possible to
adapt any transformation technology using graphs from ewetying schema to
another with few problems.

Extensibility

GXL allows arbitrary embedding of extra XML information smany GXL element
via user-defined extensions to the normative DTD at predéfaméry points, e.g., a
Node can have children XML elements as defined bynibee-extensiolXXML el-
ement. This has the disadvantage that tools must be readgdegs the non-GXL
information somehow, either by simply ignoring (and reiag) it or removing it.
Additionally GXL allows adding URIs as values to Attributésot shown in

Figure 2.1), which should be considered a viable way to limkséme external
resource, e.g., a Microsoft Word document.

Current Support and Licensing

Current support of GXL seems to be very good. There are skenes@archers and
companies listed as supporters or contributors on the GXhsite [207]. Sev-
eral tools include export or import capabilities of GXL, suas the round-trip
UML software engineering tool Fujaba [121] or the graph $fammation toolset
GROOVE [155].

Overall, there is activity in the GXL community, and a newsien 1.1 is being
planned. GXL is licensed without any fees or restrictions.

2.4 Meta Object Facility

MOF is one of the current flagships of the OMG industry corigort It is used

to define UML, which is one of the most well-known ways to désersoftware

artifacts at the moment. MOF takes a slightly different apgh to modeling than
GXL. In MOF, the developer must first define a language (a metkat) that can
be used in creating the actual model (i.e., the actual irdétion). One of the
possible metamodels that can be defined in MOF is MOF itdedireby closing

the metacircularity.

21

2.4.1 Structure

The relevant part of the MOF metametamodel can be seen imd=&jd4. We have
restricted ourselves to the parts that mainly describe tiluetsire of metamodels.
As a simple starting point for comparing MOF models to a grapfimay say that
the nodes in a graph are mainly Class metaelements, andldied are represented
by Association metaelements.

ModelElement .

name : String

supertype

{ordered} containedElement . N\
—_ Metamodel nesting
container 0.1

subtype GeneralizableElement

isAbstract : Boolean ~__ Namespace Feature

TypedElement T
Typed graphs R A
StructuralFeature

Pack Classif |
ackage assitier lype L multiplicity : Multiplicity Type
1 typedElement
Note: shared ZF |
Reference
aggregation is Class Datatype Association
discouraged isDerived : Boolean
cent ion» Multiplicity Type ? 1 \; referencedEnd 1 exposedEnd
AggregationKind upper : Integer EnumerationType AssociationEnd
none : lower: Integer labels : String[* ordered] isNavigable : Boolean
shared : isUnique : Boolean multiplicity : Multiplicity Type
Lo isOrdered : Boolean . .
composite : aggregation : AggregationKind
Ordered graphs
Directed graphs

Attribute

Attributed graphs —. .
isDerived : Boolean

Element ownership

Figure 2.4: Part of the MOF Metametamodel

It can be understood that a metaelement can establish dvimésstwo means.
One, a metaelement can have Attribute metaelements viacthaicedElement
property. These parts have an obligatory type via TypedEtdnype and a Multi-
plicity Type that states the minimum and maximum number sfyell as possible
ordering and uniqueness of, elements. Two, a metamodel @& Association
metaelements which each contain exactly two AssociatideEnThese, almost
similar to the Attribute, establish a link between two métaeents, but each Asso-
ciationEnd can be explicitly set navigable (which suppditscted graphs) and can
support three different kinds of ownership, along with tlseial support of Multi-
plicityType. However, an Association can be and usuallyidéréctional, meaning
that if a source element is connected to some target elen@nheir slots, that
target element is also connected to the source element.

22

The three different kinds of ownership are the same as in GXimposite,
aggregate and plain. However, using aggregation (shamegasition) is discour-
aged and it has been removed in MOF 2.0. The reason might bi¢ dime ignores
the plain associations, the resulting ownership strudiutée form of composite
connections forms a tree, which has been found to be a vefulugtaicture and
which directly maps to XMI. Aggregation, resulting in an osvehip structure of
directed acyclic graphs, is not as common, although it isag@y useful.

To summarize, an ownership hierarchy of metaelements abkstied via the
Namespace.containedElement property, and as in GXL, ibearsed to split meta-
models into packages. An ownership hierarchy of elemengstsblished by As-
sociations with one AssociationEnd marked as composite.

Reference metaelements are owned by Classes and are usadktavhich
AssociationEnds are connected to them. This seems a bindadt; as the Classes
could reference some of the AssociationEnds directly, anfhéit MOF 2.0 has
done exactly this.

Since MOF employs a two-step process whereby the user feates a meta-
model, which then allows them to create models, the regsulisage and serializa-
tion of those models in XMl is different from GXL. This is depéd in Figure 2.5
and shows that tools require metamodel-specific XMI impeféxporters. One se-
rialization format is XMI(MOF) for MOF metamodels, and eyesuch metamodel
defines its own serialization format. In other words, to bkeab load a UML 1.4
model from an XMI document, the tools must know how to acqthieUML 1.4
metamodel definition first, otherwise they are unable to lisedmodel correctly.
This is a big contrast with GXL-compliant tools, which may &lele to load the
graph with an unknown schema by ignoring the type system.

—> xMI (MOF) | [xMI (Metamode) |

is-serialized-as /
defines is-serialized-as

is-serialized-as

MOFlH Metamodel -%

conforms-to

conforms-to

conforms-to

Figure 2.5: Overview of MOF and its Artifacts

Constraint support in MOF can be assessed as excellent due @bject Con-
straint Language (OCL) [127, 131], an addition to MOF. OChlgies a metamodel
developer to add arbitrary constraints to the users’ models enforcing very so-
phisticated constraints between elements. A tool can thenkcthese constraints
and report nonwellformedness. OCL is used extensively fimithg constraints for
metamodels.

23

Curiously, MOF is the only framework where the collectionsoperclasses is
ordered. This aids in determining a monotonic linearizatid superclasses [50],
which is useful at least in method resolution in object+otgéel programming lan-
guages.

2.4.2 Practical Aspects
Element Identification

Element identification in MOF is handled by XMI with its xmd.iand xmi.uuid
XML attributes. They have been properly defined in XMI and thdID spec-
ification [31] and we will discuss this extensively in Chapée To summarize,
elements can be identified in an XML document with both xmaidl xmi.uuid,
enabling rigid interfile element identification. On the athand, current support
for XMl import and export in tools is sometimes lacking [109)Ve will revisit
XMI more thoroughly in Chapter 6.

Language ldentification

Similarly to GXL, it is important to detect which metamodsl being used in a
model. XMl allows using several metamodels in the same dectwith XML
namespace [185] declaration strings describing whichuaggs are being used
where. This usage is nicely aligned with advances in XML by Y&orld Wide
Web Consortium. A major issue is that “there is no requirehuerexpectation by
the XML Namespace specification that the logical URI be ressbbr dereferenced
during processing of XML documents” (page 1-16 of [132]).isTimplies that a
tool cannot in general be able to even load a model withoutvkmp the meta-
model in advance, because it cannot rely on acquiring thammadel from the URI.
For example, the UML 1.4 namespacéitp://schema.omg.org/spec/UML/1ut
there is no document at that address.

Visual Representation

MOF does not define a visual representation for models. Tlse& memise is
that there is a strong separation of abstract models cangathe semantic data
and the diagram which merely display the artifacts on-strdénus, the Diagram
Interchange (DI) standard [136] has been developed. DI é&as successfully used
in the Poseidon tool [61] and our Coral tool. This will be dissed in Chapter 8
and the conclusion is that Dl is a viable if somewhat com@idastandard that can
be used to represent diagram models.

The standard thus far missing is a way to describe the mapmhgeen ab-
stract and concrete models. We will revisit this issue injitéa8.

24

Transformation

It is conceivable that several different transformationhi@logies are used for
model transformations, although the Query-View-TransfdQVT) [133] is the
primary standard pushed by the OMG to enable the transfasmat MOF-based
models. As the standard itself is relatively new, we feed tioio early to discuss its
benefits or drawbacks.

Other transformation technologies have been describe@\®ral authors, for
example UMLX [205], YATL [146], MT [177], MOLA [86] and VIATRA [184].

Extensibility

MOF metamodels and models cannot as such be extended, hunktielements
and elements can be tagged with arbitrary information ugiegXMI.Extension
XML node. A whole XMl file can be tagged with the XMI.Extens®XML node.

Current Support and Licensing

Current support for MOF 1.4 is low. The metametamodel itke some nonintu-
itive quirks and is quite big and complex, which presumaladg kead the Eclipse
team to create EMF and ECORE. Additionally, MOF 2.0 has bexexen more
complex than its predecessor. The benefits are not cleag Mi@F lacks experi-
ence reports detailing which parts of the standard worksvamdh do not.

Ironically, the low support for MOF will perhaps not mattes the XMl seri-
alization is not dependent on MOF per se, but on the metarmadeated in MOF.
Thatis, itis possible to create a tool that is not based on M@Fs still compatible
with the UML 1.4 XMI serialization format.

MOF is released under a royalty-free license.

2.5 ECORE

EMF is the modeling component of the Eclipse project. Thetha&feaEMF is the
ECORE metametamodel, which is in many ways similar to MO he same
ideas about metamodels and models. It uses XMl as its gatialn format as well,
so several comments regarding MOF are also valid for ECORE.

2.5.1 Structure

A part of the ECORE metametamodel can be seen in Figure 2.8p&ang with

the general graph concept, we can say that nodes are refg@dgnthe EClass
and EAttribute classes, and edges by the EReference clasgai@ment is indi-
cated by the EReference.containment boolean value, so EQIDBs not support
shared composition, only composition and associationsttribAte elements are
implicitly contained by an EClass element.

25

ECORE uses a lot of directed associations, probably beadutseroots as the
underlying information framework in the context of a Javagramming environ-
ment. There is also a lot of derived and thus redundant irdition available, e.g.,
eAllSupertypes is a collection of the flattened superclassatchy. There is also a
lot of similarities with MOF, such as EPackages being usedietamodel nesting.

EModelElement
Typed graphs
—_—— AN
Ordered graphs 1 [r Metamodel nesting

|
ETypedElement

ENamedElement <

ordered : Boolean =true name : String

EPackage

|
|
T
|
|
Zr nsURI: String :
|
|
I

unique : Boolean =true
lowerBound : Integer

upperBound : Integer =1

nsPrefix : String eSubP:

many : Boolean
required : Boolean

EEnumLiteral

value : Integer

eType |
Zr Zr 01 ePackage s Pack
o eSuperPackage .
: EClassifier eClassifiers eliterals
EOperation EP:

eEnum
A EDataType EEnum
eAllOperations eOperation serializable : Boolean =true
: eParameters
eAttributeType 1
* | eAllSuperTypes *| eSuperTypes
* eOperations eContainingClass
’ EClass
abstract : Boolean
eContainingClass interface : Boolean
eAllStructuralFeatures| 1
eReferenceType
« eStructuralFeatures
EStructuralFeature
EReference
changeable : Boolean =true Bool
<l — | container : Boolean

volatile : Boolean) ' - Bool « eReferences

containment : Boolean
defaultValueLiteral : String veP Bool « oAllReferences

T T 7 7| resolveProxies : Boolean =true

defaultValue : EJavaObject r

eAllContainments

unsettable : Boolean | *
derived : Boolean | 0..1"|" eOpposite
I |
u‘— EAttribute

|
| iD: Boolean
|

|
* eAttributes |
I=| |
Element ownership — 0.1 elDAtribute i
AN
Directed graphs

Figure 2.6: Part of the ECORE Metametamodel

* eAllAttributes

ECORE also has two different ways to present relationshgigvéen types.
Relationships between EClass elements must be describay EReference ele-

26

ments, whereas relationships between EDatatype elemestdomdescribed using
EAttribute elements. The benefits are not clear, as EReferelements (without
an eOpposite) to EDatatypes could be used instead. To udtaibite should be
equivalent to a unidirectional composite EReference toi@ipve type. Neither
is there a concept for describing the relation, akin to theRVE3sociation class;
instead, two EReference elements simply link to each other.

Similar to the two previous frameworks, multiplicities,dering, directedness
and bagness are supported. A concise summary of ECORE i# thatoosely
speaking, a practical implementation of MOF. The metametighis more clear
and developed by demand rather than the admittedly more lczatgad MOF stan-
dard. Due to the similarities, technologies developed f@Mshould be very easy
to transform into ECORE technologies. This is also evidemifthe choice of us-
ing XMI as the serialization format of ECORE. The artifacesded and produced
by ECORE are identical with MOF, as can be seen by Figure 4i& [as the ben-
efit that UML models from ECORE are indistinguishable from Ukbodels from
MOF, but the drawback that the UML language definition isadeaéd differently.

——>>{ XM (ECORE) | | XMI (Metamodel) |

is-serialized-as

defines is-serialized-as
is-serialized-as

ECORE |€—{ Metamodel %

conforms-to conforms-to

conforms-to

Figure 2.7: Overview of ECORE and its Artifacts

2.5.2 Practical Aspects
Element Identification

Element identification is handled by XMI in exactly the sanmegyvas in MOF. At
the moment, the Eclipse implementation does not use UUIRdl,aand instead
uses several concepts from the XLink and XPath standardatir and intrafile
referencing of elements. Our understanding of future agpmkent is that UUIDs
will be supported by EMF.

Additionally, ECORE specifies that if an EClass owns an HBite which
has its ID attribute set to true, an EClass instance of thae ttan be uniquely
identified by the value of that attribute. In our experiertbese kinds of identifiers
are not required for modeling purposes, since serialinadjgproaches such as XMl
reference elements directly via their UUID, xmi.id or xrdl:iHowever, they can

27

provide a bridge from other textual references to model eleisiand could be
considered useful as a migration path from text to models.

Language ldentification

Due to the XMl serialization, language identification is dkma exactly the same
way as by MOF.

Visual Representation

There is no formal visual representation of ECORE metansodet models. As
we understand it, the EMF development team strive towar@atting the DI stan-
dard as endorsed by OMG.

Transformation

Due to the rising popularity of the Eclipse platform, there aeveral transforma-
tion technologies for ECORE models. Among them are the Aflasisformation
Language (ATL) [21] and the Model Transformation Framew®id F) [161]. The
latter is a QVT prototype.

Extensibility

In addition to the extensibility supported by XMI, every ERB element can have
additional annotations. An EAnnotation element (not shawfrigure 2.6) can
contain arbitrary ECORE elements.

Current Support and Licensing

EMF itself is released under a royalty-free license. Siteegrimary implemen-
tation of ECORE is EMF, and ECORE is maintained and updatetheyEMF
developers we assume ECORE is also released under the samseli

We have implemented the ECORE metametamodel in our Corcdsamsepa-
rate metamodel. This has enabled us to successfully loadREI@etamodels and
convert them to our internal metamodel format.

Although there are few ECORE implementations, the Eclipséfgrm has
such a big momentum and corporate backup by IBM that it idylite be one
of if not the most successful metametamodel in the forededature. It has also
lead to better XMI compatibility between tools [109], as yaf them are based
on the EMF platform.

A possible issue with ECORE is that it is still evolving alowgh the EMF
effort. This has its benefits and drawbacks, as new ideaseamcbrporated into
ECORE, butitis atthe same time a moving target and theras& atincompatible
implementations.

28

2.6 Kernel Meta Meta Model

The Kernel Meta Meta Model (KM3) is developed by Jean Bézatil. [84] at
INRIA, a French national institution researching compigeience, among other
fields. The primary implementation of KM3 is implemented op bf EMF on the
Eclipse platform. KM3 also has a Prolog definition.

We note that there is a repository, called the Atlantic Zdopver 240 KM3
metamodels available [175].

2.6.1 Structure

Figure 2.8 shows the whole KM3 metamodeling language. Tiseaa immediate

resemblance between KM3 and ECORE. Comparing with ECOREsegethat

KM3 does not support operations. However, it has supporsdibsets and derived
unions. EStructuralFeature from ECORE is more expressiga the equivalent
construct, StructuralFeature, from KM3. Primarily, KM3esdonot support default
values, default value literals, and the “derived” properijhe other differences
here are due to the fact that KM3 does not support operatiéiso, there is no

definition for a URI namespace in Metamodel, which is sunpgis

Package

‘ package {ordered} * ModelElement
1

contents | name : String l}— Enumditeral

contents | * {ordered}
literals| «
{ordered}

1 metamodel

Classifier
Metamodel 1 | enum
? Enumeration
type

TypedElement Class

lower : Integer isAbstract : Boolean DataType

owner —|
upper : Integer
isOrdered : Boolean 1 supertypes | *

isUnique : Boolean

{ordered} . structuralFeatures

Attribute StructuralFeature

4> 47

isContainer : Boolean
derivedFrom subsetOf opposite | 0..1

Figure 2.8: The KM3 Metamodel

Reference

Also KM3 supports the same aggregations as ECORE, and hadiffeent
constructs for relationships, Attribute and Referencee fédundant derived slots
of ECORE do not exist in KM3. It is interesting to note that tose-to-many-
to-one relationships are marked as ordered, even thougsirigethe order of, for

29

example, ModelElements in a Package is not important. A fiteisethat it is
possible to retain the order for aesthetic purposes, as gs@rexpect elements to
retain their relative order across a load-save cycles. Tderimg criteria might be
related to the additional textual syntax definition.

The overview of KM3 and its artifacts as shown in Figure 2.&dentical to
its corresponding figures in ECORE and MOF, because of thiasity between
them and KMS3.

—>IXMI (KM3)| [XMI (Metamodel)|

is-serialized-as \ /
defines is-serialized-as

is-serialized-as

KMBH Metamodel@

conforms-to conforms-to

conforms-to

Figure 2.9: Overview of KM3 and its Artifacts

2.6.2 Practical Aspects
Element Identification

Technically KM3 supports the same mechanisms to identéynents as MOF and
ECORE, since it uses XMI. However, the syntax of the humaadtable KM3 lan-
guage examples in the Atlantic Zoo do not use UUIDs. Withawivking further,
we assume that names should be used for identification anhdJthiD is not as
much used as it could.

Language ldentification

Due to the XMI serialization, language identification is dkma exactly the same
way as by MOF and ECORE. We note that KM3 does not have supmosafing
the URI namespace of a language. This bases language icktidifi on only the
name of the language.

Visual Representation

There is no formal visual representation of KM3 metamodals$ models. It can
be noted that there is a textual representation of KM3 metaiso

30

Transformation

The primary KM3 implementation is implemented on top of EMigaan thus
use whatever transformation languages are available .vigspecially, the Atlas
Transformation Language (ATL) [21] has been created by dupfe behind KM3.

Extensibility

There is no extensibility support in KM3, except for the edien support provided
by XMI.

Current Support and Licensing

The research group at INRIA is participating very activetythe modeling com-
munity. However, there is to our knowledge only one impletagon of KM3. The

implementation is freely available under Eclipse, and Kik428lf is documented in
academic publications [84].

2.7 Common Features and Differences

In this section, we summarize the finding of the four previeastions on GXL,
MOF, ECORE and KM3. We discuss the common features and is§ties frame-
works.

Comparing Sections 2.3, 2.4, 2.5 and 2.6, we can discerrraes@mmon
issues and differences between GXL, MOF, ECORE and KM3. Htrhe empha-
sized that MOF has the backing of an industry consortium whas enabled MOF
and related technologies to evolve at a fast pace. Examplkbagse technologies
are OCL, DI and QVT, not to mention the flagship metamodel UMlthough
there is perhaps an ever-increasing fear of “design-byroitiee”, where a stan-
dard reflects few actual needs of its users. In contrast & GXL is more of a
community-driven effort. ECORE, being part of the IBM-sopied Eclipse envi-
ronment, is taking the middle road between these two exseik®I3 is the newest
contender, and has already spurred the Kermeta [90] framkewo

There are several similar features in the frameworks. Wesstthat it is not
evident if a lack of a feature is unfavorable in itself, ortietpresence of a feature
is beneficial, although in most cases our features are baiefithat they simplify
the usage or increase the expressiveness of the framewloeksimilar or identical
features are: abstract types, metamodel / schema packagé#gle inheritance,
transformation language and typed elements.

On the metamodel/schema level, all frameworks have theitipe and nega-
tive points. MOF has quite a complicated way to describe eletaent intercon-
nections using References and AssociationEnds. It evea $&sond way to estab-
lish them, in the form of Attributes. Similarly, ECORE alsashEReferences and

31

EAttributes, and KM3 has Reference and Attribute. The iDpprty in EAttribute
seems superfluous from a modeling point of view, but couldgsdul for referenc-
ing elements from the textual domain. GXL contains a crudgitey mechanism
in the form of (GXL) Attributes with key-value string pairsVe assume that this
concept is included due to the roots of GXL being in descglgnaphs, which of-
ten use attributes for tagging nodes with arbitrary dagbénefits are not clear for
information modeling, especially since a composite edge $tring value would
mostly serve the same purpose. This is somewhat similaretévib similar con-
cepts in both MOF and ECORE.

Extensibility is accomplished in slightly different ways all the frameworks
and they work a bit differently: the XMI.Extension of MOF war only on the
serialization level, EAnnotations from ECORE work only dretmodeling level,
and GXL suggests creating a modified DTD. This is a bit stragyen that XML
itself employs a standard way to tag elements with extra, dataply by adding
new XML elements from a different XML namespace. However, Xievents
this. Extensibility on the model level and in the serialigatformat is a two-
edged sword. While they certainly have benefits in that tHieyvaa mechanism
for arbitrary “tagging” of information, the drawback is theverybody must agree
that similar tags are treated similarly, and nonsimilasstalgould not be mixed up.

The choice of having a separate (GXL) Graph metaelementdstimg is un-
usual for modeling information, and the benefit is not vegacl A GraphElement
could transitively own other GraphElements, without appafoss of expressivity.
This would simplify the GXL graph model and metaschema sihceduces the
number of concepts that must be defined. In fact, since thastie¢ma already
defines ownership via composition edges, GXL has a redurssanaind construct
to express ownership of a subgraph.

Support for aggregation in MOF has been removed in neweroresswhich
means that there are some information systems that are adkwalescribe in
MOF. Indeed we have ourselves developed metamodels whegregagion would
have been beneficial. To our knowledge, neither ECORE nor Kik3ever had
any support for aggregation. Support for aggregation in @Gxiong multiple files
is not without problems, though. For example, it is not cleaich file contains
the shared subtree of nodes. On the other hand, severalaprogng language
runtimes have discarded the absolute notion of ownerstdpnaade the program
data into effectively ownership-free object graphs by tse of garbage collec-
tors. Enforcing ownership via associations, aggregator®mposition might not
be beneficial in the long run. A reason for this is that elenm@mmhership using
the three alternatives is not complete, with [73] statingt tthere exists at least
as many as 4096 different kinds of ownership when takinglapping lifetimes,
transitivity, shareability, separability et cetera intccaunt. This implies that the
frameworks under comparison omit the modeling of the exastamtics, and rely
on the users of the individual metamodels or graph schemagree on which
kinds of ownerships are meant.

32

GXL has support for hypergraphs whereas the others araatestrto binary
edges. We have not found this to be much of an issue whenrgeagtamodels,
but it is worth researching further. For example, SteveryKiebm the MetaCase
company has stated several times that “the lack of supporn-toy relationships
is an astonishing oversight [in MOF/EMF]" [88].

GXL does not have any support for attaching operations tesela at all. This
stems naturally from the fact that GXL aims to describe gsaphd not objects.
MOF and ECORE both support operations well, but KM3 does hothe con-
text of modeling information, we do not consider this shomiing to be of much
importance. On the other hand, a clear benefit for GXL is thétalo link to
external resources using URIs. This can be used to bridggapdetween GXL
documents and documents not yet maintained as GXL documents

From a practical point of view, GXL does have an interestidgal with un-
typed elements, whereas the others are more stringent iagaequire that the
metamodel is already developed. Nodes and edges withoes fyovide the user
the most flexible environment, but with the caveat that typecking might be nec-
essary at a later stage. Similar advantages for dynamiogyipave been found in
scripting languages such as Python [180] and Perl [201].

GXL has only one serialization format, the GXL DTD, whichiséizes graphs,
schemas and metaschemas. This has its advantages, buegioies yet one GXL-
specific validator, for example the GXL Validator [68] frothet GUPRO project
website [67], for validating the schema-graph relatiopshXMI defines a serial-
ization format for each metamodel. On one hand there is na éel of indirec-
tion involved, but on the other hand there are multiple $eaton formats. So, we
do agree with Winter et al. that the “XMI/MOF approach regsidifferent types
of documents for representing schema and instance graph® ¢f [208]) and
that this indeed is a drawback, but only because finding tfiaeitien of a previ-
ously unknown metamodel is impossible, as has been deddni®ection 2.4. If
the metamodel is known, generic XMI reader and writer ragican be created:
for example Coral supports reading XMl 1.x and 2.0 as well a@ting XMI 1.2
and 2.0 for any known metamodel in a bit over 6 000 lines of Cedec

Furthermore, Winter et al. claim that “XMI/MOF offers a geak but very ver-
bose format for exchanging UML class diagrams as XML stregm8 of [208]).”
Our opinion is that the format is verbose due to the named,sidtich GXL allows
but does not require. We find the concept itself to be an adgantFor example, a
class can own a set of attributes and a set of operations iwliffevent slots. The
serialization of these elements are cleanly separatedtteio own XML nodes.
Also, navigation via named slots simplifies the maniputaéod query of models.

GXL is itself very verbose when using typed nodes, as theditemof a schema
must be repeated every time a type is used, assuming the adkema different
file. Our anecdotal experiences suggest that due to this, fdééd.can be several
times larger than their XMI 2.0 equivalents. The choice oflGat XMI as the
underlying serialization format is not necessarily an egile one. There are pro-

33

Structural Features GXL MOF ECORE KM3

Edges between edges X - - -
Extensibility in Models / Graphs X - X -
Extensibility in Serialization Format - X X X
Globally Unique Identifiers - X X X
Hyperedges X - - -
Operations - X X -
Ordered Superclasses - X - -
Shared Composition X - - -
Subsets - - - X
Untyped Elements X - - -
Practical Features GXL MOF ECORE KM3
Constraint Language - X X) X)
Diagram Support - X X) X)
Language ldentification and Acquisition X - - -
URIs for External Resources X - - -

Table 2.1: Framework Differences

grams that can transform, at least partially, data from onmat to the other. For
example GUPRO hosts the XIG [209] tool, and Coral can outgXit des suitable
for visualization using Graphviz [65].

Where MOF (or, perhaps, OMG technologies) outperforms GXiniits han-
dling of constraints using OCL. OCL has become well-essigld in the modeling
community and allows additional arbitrary wellformednessgstraints to be added
to metamodels and models. Naturally, this does not prevennhatraint language
to be added to GXL, but the point here is pragmatic: OCL exastsently and is
in wide use, whereas we do not know of a similar effort base®Xi.

We present the main conceptual differences in the framesvorkrable 2.1,
split into a structural and a practical part. In the tableXameans that the feature
is supported, and a hyphen means that the feature is notgsegp&ince ECORE
and KM3 are so close to MOF, they could easily adopt techiesoguch as OCL
or DI, even though these are technically part of the OMG steds] these are
marked with (X). All frameworks lack a single concept for aéfig the relationship
between metaelements, for some reason always opting foséwarate concepts
(usually designatedeferencesand attributeg. Only KM3 provides some of the
new concepts from MOF 2.0, namely subsets and derived ynatimeough their
semantics is not explained further. None of the frameworkside redefinitions
and package merges.

The largest differences between the frameworks are fourséfialization, di-
agram support, constraint handling and support for hyggrednd edges between

34

edges. A concise summary is that GXL has the least restitod the four frame-

works and is perhaps most suitable for rapidly changingirements or (research)
experimentations. However, users must be ready to descoibstraints in some
query language or natural language to obtain the same Btgiicas can be accom-
plished with MOF and OCL constraints.

2.8 Related and Future Work on Modeling Frameworks

Modeling and metamodeling platforms are becoming more obramodity all
the time. A highlevel view of the current situation is presehby Harald Kiihn
and Marion Murzek in [97]. Interoperability between metataling platforms is
becoming more important. We would thus want to find all theaissary concepts
for modeling information. Failure to support a concept dilg in a framework
or by means of a lossless transformation to supported cémeapans that the
transformation of data to that framework is not possible.

Similar views and ideas on general-purpose metametamaaelde found
in [7] and [182]. In contrast with the metacircular definitidhe work of Thomas
Baar avoids the metacircularity with a set-theoreticaifesvork [10] to describe
the abstract syntax of object-oriented / graph languages.

Advances in metametamodels are few and occur seldom, bsitciear that
they do occur. In particular, the new concepts of subsetsdanded unions from
MOF 2.0 are interesting and novel ideas and will be exploredenthoroughly in
Chapter 3.

Even though it is not necessary to create a metametametgnoogeemerges
as a side-effect from a generic modeling platform, as careke & Figure 2.10.
A sufficiently expressive metametamodel can be used toeraatamodels from
the other metametamodels, and transformation technologyids that all of this
ought to be transparent to the end user. In the figure, therdift UML meta-
models are equivalent in expressivity, although the metiisomight be used and
manipulated with different programming interfaces sinceytare defined by dif-
ferent metametamodels. The generic metametamodel migiht le® one of the
existing metametamodels.

This opinion is not shared by all. Jean Bézivin, Guillaumdaitet, Frédéric
Jouault, Ivan Kurtev and William Piers state that the idea obmmon metameta-
model for all artifacts is naive and that one technical spé@teever prevail on the
other ones [22]. This is true insofar as modeling framewaddinue to evolve. In
other words, until modeling is a relatively mature techiggionew improvements
and ideas will be presented and evaluated, and there is ao lodst metameta-
model. Bézivin et al. further propose a solution of bridgingtamodels and models
from different technical spaces by means of several magpiihis noteworthy that
they use KM3 as a pivot for transforming between Microsoft O08ols, Ecore and
MOF 1.4. This is understandable, since creating sepamtsformations from/to

35

conforms-to

|The Generic Metametamodel

/ conforms-to

UML [mor| [ecore| [axi] [km3|
equivalen’t”\,\

[umML|< - > uML[C - D>{uML[< - > umL|

equivalent equivalent equivalent

conforms-to

Figure 2.10: The Generic Metametamodel

each metametamodel requirdd — 1)N different transformations, whend is the
number of metamodels, whereas using a pivot reduces thiadarlcomplexity,
2N. Due to differences between the metametamodels, somenafimn is lost in
the transformation processes. Nevertheless, in our apikid3 tries to play the
role of a common metametamodel.

There are, naturally, more modeling frameworks than thes gmesented. Ex-
amples of such are the MOF 2.0 framework, the XMF/XCore sysi®m Xac-
tium [43], Kermeta [90], the Open Modeling Framework (OMRBYR] and the
SMILE/MATER project [122]. We think that a long-term goal mfetamodeling is
to extract the fundamentals in modeling information.

2.9 Conclusions

In this chapter, we have investigated some common modelargdworks: their
intent, differences in expressing structure and some igeEaspects of their re-
spective supportive technologies.

There are some fundamental questions that are unansweiesd a@mapter. The
first is which concepts are the most useful ones in a metanmgdeinguage, and
how these concepts interact with each other. Experiencefiware engineering
and other practices aids tremendously in evaluating a @inemwever, modeling
brings us new ideas hitherto unused or badly emulated in straeim program-
ming languages. An example of such a concept is bidireditgnaf properties
and slots. This does not exist as a primitive in programmanggliages, but is
often emulated by a sequence of operations. Furthermordelng to us means
information modeling, whereas programs have executioraséns.

The second is whether or not we want all data to be manipulatgdrmly
by the common constructs provided by the metamodeling laggu The current
APIs of modeling frameworks are fairly lowlevel, with pritivies such as creation
of new elements and linking elements via specific slots. Hewenost large-scale

36

modeling languages come with several rules for wellformeatiats, and using
primitive operations undermines the validity of these niedé\ better approach
could be to create specific operations for each metamodedbttifprmodels. In this

way, models could be built from a series of operations wHikegis being valid, or

at least satisfying most wellformed rules. An example of Hpproach to designing
models is being done by Dubravka llic, Elena Troubitsynajaksi Laibinis and

Sari Leppéanen in [77], which describes a UML 2.0 profile aallgra. To ensure

model consistency, all operations on models are done bydiwmimg them in the

B Method [1], which can formally prove that operations presehe invariants of
a structure.

The drawback from this approach is its rigidity. It is impités to create partial
models that only describe some of the information. In sonmtepds, only a partial
model is necessary instead of a complete model. It is alstriviah to figure out
which sequence of operations must be applied to create soeedis model.

In conclusion, the research community is still in the stagieslentifying the
necessary concepts in the metametamodel, and when to enfetformedness.
From a formal point of view, more wellformedness checking.ein the form
of static strong typing and proven transformations, shde&tl to better results.
However, in practice the trend in programming languagegiteseems to be toward
a more loose approach with dynamic typing.

37

38

Chapter 3

A Structure of Metamodels and
Models: the Simple Metamodel
Description Language

3.1 Introduction

In this chapter, we present a set-theoretic formalizatiba snetamodeling lan-
guage that supports what we consider to be the core struétatares of MOF 2.0
and the UML 2.0 Infrastructure, the two relatively new OM@rsdards. Our for-
malization supports multiple class specialization andnie subset properties.

The OMG software and system modeling standards are basée concept of
metamodeling. Most of the concepts found in the modelingnéaorks described
in Chapter 2 are strikingly similar since they are all baseddame extent on the
object-oriented (OO) software paradigm. In these appres,ca metamodel is de-
fined as a collection of classes and properties while a medsl instance of such
classes and properties.

However, two new metamodeling languages have recently gadewith the
advent of the UML 2.0 Superstructure [135]: MOF 2.0 [139] déimel UML 2.0 In-
frastructure [142]. These two metamodeling languagesesmast of the features
of previous languages such as MOF 1.4, but they also inteodageral new con-
cepts not found in traditional modeling and OO programmaugguages, mainly:
subsetproperties,strict union properties and propertgedefinitions These new
concepts can be used to define a new modeling language asasiertof an ex-
isting one. This is exploited in the definition of UML 2.0 itevhere the language
is defined as a relatively small core that is extended andajza into different
metamodeling structures.

Unfortunately, very little is told in the standards [139,2]4bout the actual
meaning of these new features. This is a critical omissinoesthese concepts are
heavily used in the definition of UML 2.0. A precise definitiohthe UML 2.0

39

metamodel is necessary in order to ensure interoperalafisoftware modeling
tools, such as model editors, model transformation and gederation tools.

The work presented in this chapter can also be applied todfieition of new
domain-specific modeling languages (DSML) [58]. Althoubts thapter presents
a theoretical framework, we believe it represents an ingmdrcontribution that
can influence the practical implementation of model repogis and transforma-
tion tools for UML 2.0 and other languages. We call this meidsling language
the Simple Metamodel Description Language (SMD). The imgetation of it in
Coral will be explained in Chapter 5.

This chapter is based on Publication IX. The research ptedén this chap-
ter is based on the study of the relevant OMG documents am@nes papers on
related topics and also on the experiences obtained byajeuglan experimental
modeling tool. Also, the experimental modeling tool Coraklbeen extended to
implement and validate the ideas presented in this chaptdiitas available as
open source.

We proceed as follows: Section 3.2 describes informally e language
extension mechanism and presents the main motivationsifawvork. Section 3.3
presents the most basic formalism that will be developedextehded during this
chapter. Section 3.4 introduces property characteristich as multiplicity and
composition, while Sections 3.5 and 3.6 deal with class aopasty specialization,
respectively. Alternative approaches to property speetbn are described in
Section 3.7. Finally, Section 3.8 contains related worklevBiection 3.9 contains
some concluding remarks.

3.2 Extension Mechanisms in MOF 2.0 and the UML 2.0
Infrastructure

MOF 2.0 and the UML 2.0 Infrastructure propose mainly fouteesion mech-
anisms: class specializations, property subsets and singvoperty redefinitions
and package merges. Class specialization is identicalass ¢chheritance in OO
languages. A specialized class inherits all the propedfets base classes, and
it can define new properties. Subset and union propertiesrarenechanisms to
specialize a property defined in a base class. Property niitafi allows us to
arbitrarily replace a property with another one. Finallgrious package merges al-
low us to combine different documents describing differgarts of) metamodels
into one. These mechanisms allow a metamodel to be devetopmkdxtended by
different parties. They can also be useful to define largeametlels, such as the
UML 2.0 Superstructure, even when the definition is provitdgane party.

We will describe class specialization, property subsgtéind package merges
in the remainder of this section. We also explain the Liskabsitutability prin-
ciple. We will leave property redefinitions to Section 3.7.

40

3.2.1 Class and Property Specialization

Figure 3.1 contains an example of the use of subset propénte domain-specific

modeling language. We abstract electronic componentstaidihterconnecting

wires in a digital electronic circuit into three classesy&YyPin and Component. An
example specialization of Component is Transistor, whapresents a transistor
connecting to three pins: base, collector and emitter. 8/higeneric component
may have an arbitrary number of pins, a transistor may onleltaree specific

pins.

Wire < wire Pin 0.7 pins +| Component
{strict union}
0.% pins | Component
{strict union}
Tbase e
pi {subsets pins}
. in A :
Wire IS wie 1 collector #| Transistor
{subsets pins}
®
T emitter e
{subsets pins}

Figure 3.1: (Top) Base Language for Electronic Circuitst{Bim) Example Ex-
tension of the Digital Circuit Metamodel by SpecializatiohComponent and its
Properties into Transistor

This example also shows that subsetting does not parttiesubsetted prop-
erty with respect to classes; several subset relations edmuilt between the same
two classes. We should also note that subset propertiesecasdful even when
they are not used in combination with class specializatimat is, we can define
a property and its subsets in the same class. We should raitthéhpins property
needs to be a strict union. Otherwise we could connect aistango other pins
that are not the base, collector or emitter.

3.2.2 Criteria for Language Extensions

Most of the artifacts that compose a model-driven develagmesthod such as
model transformations, model queries and code generagpsnd on a specific
modeling language, such as the UML 2 Superstructure. Strisenbw possible
to extend and modify metamodels we should consider whateigtipact of these
extensions in model transformations, model queries and gederators.

41

Our main criteria for language extensions is that artifaiened for the origi-
nal language should still be usable in any of its extensi®hss concept is similar
to the Liskov Substitutability [108] used in program typet®ms. This is not a sur-
prise since a modeling language can be seen as a type for d treotdormation
program. As a consequence, a language extension shoule matdnto arbitrarily
redefine or remove classes or properties from a language sixisting artifacts
may depend on them.

As an example of Liskov Substitutability, consider Figuré &nd a transforma-
tion that takes a Component as its input parameter, progwasroutput the various
pins that the Component has. If we were to pass in a subclaSsrmaponent, for
example Transistor, as a parameter to this transformatvenyould still expect it
to work as intended. But if the Transistor class could sometemove the pins
property between itself and Pin, our transformation woaltl n that hypothetical
case, a Transistor would not be Liskov-substitutable fooenSonent.

Specialization is a very strict and limiting concept as iplias a tight coupling
between classes. Therefore Liskov Substitutability is @gually limiting. How-
ever, it does provide a clear mathematical foundation whiekes reasoning about
programs and models easier.

3.2.3 Package Merge

We consider that package merges, albeit important, onlyentte the division of
a metamodel into different documents. They do not influeheer¢lationship be-
tween model elements. A metamodel using package mergedwaysabe trans-
formed into a metamodel without package merges. Therelseitsantics are de-
fined by this transformation operation and as such do notigeos new relation-
ship construct to metamodel developers. This has alreagly beted by Jim Steel
and Jean-Marc Jézéquel in [166]. This does not mean thatpaakerging is not
useful, just that it is not necessary to discuss it withingbepe of this chapter.

Therefore, we do not study in this chapter the concept of pgelkmerges and
we focus on the semantics of subset properties since wedmrikiat these are the
main novelties in MOF 2.0 and the core mechanism for langeatgnsion.

3.3 Metamodels and Models

In this section, we discuss a basic metamodeling languagedban classes and
properties. This basic language does not include any ertemsechanism, but
it will serve to explain the most basic concepts that apped©OF and UML in
detail. We will denote our basic language with a subs@ipt the names of various
structures and functions. In the following sections we aild generalizations
(class specializations) and property subsets as sucedssitures in languagés
andsS, respectively. We proceed in this fashion in order to sifgglie exposition

42

outgoing 0..*

State Transition|
incoming 0..*

Figure 3.2: A UML Class Diagram Representing a Partial Metdeh for State-
charts

of these concepts in this chapter. Also, we want to show hakh eaw concept
in a metamodeling language interacts with the existing os@sietimes in rather
unexpected ways.

3.3.1 Metamodel Formalization

Metamodels are composed of classes and properties. A €psssents a kind of
abstraction that can appear in a model such as a state orsititrarin a State-
chart [69], while a property represents a basic relatignsi@tween these abstrac-
tions such as the fact that each transition has a sourcesstaig target state. Mod-
els, on the other hand, are described using elements as¢sloére each element
conforms to one single class and each slot conforms to ogéegimoperty.

UML and MOF use the UML class diagram notation to describe eting
languages visually. Figure 3.2 shows a part of a metamodel ftatechart that
we will use as our running example. This metamodel contaumsdlasses: State
and Transition, and two properties, outgoing and incomifigese two properties
belong to State and have Transition as their type. A propexdy also contain
several annotations that we call property characteristitcghe figure, we can see
the multiplicity characteristic of the properties as thiedb‘0..*”.

Formally, we define all modeling languages in our basic met#eting frame-
work as a tupleMLg & (C, P, owner, type, characteristics whereC is a finite
set of classesP is a finite set of properties andNP = 0. In our example,
the set of classes 8 = { State Transition}, while the set of properties iB =
{incoming outgoing}.

Each property has a class as an owner, and this fact is ieditgtthe function
owner :P — C. The function propertiesC — ?(P) gives the properties that belong
to a specific class such th@atc € C - propertiegc) £'{ p - ¢ = owner(p) }). In our
running example, we have owrjercoming) = State and ownéoutgoing = State,
while the properties of the classes are propeffi¢ste = {incoming outgoing}
and propertie€Transition = 0. Finally, the function type P — C denotes the
type of elements in the property. In our example, both priogehave the class
Transition as their type, therefore tyji@coming) = type(outgoing = Transition.
We define the characteristics of a property in detail in $ec8.4.

We can now define a specific metamodels any nonempty finite subset of the
set of classe€, i.e.,L C C. From a theoretical point of view, the concept of “one

43

properties type
/ g 0.*

State Transition

~— »| incoming
properties 0.” type

Figure 3.3: Metamodel from Figure 3.2 as a Graph of Classds$aoperties

metamodel” is not too interesting. We consider the concépalbmetamodels”,
i.e.,C, to be more important and interesting.

We can representiLg as a labeled directed gragh= (V,A,l). The set of
verticesV is the union of the set of classes and properties,CUP. The set of arcs
A contains two arcs for each property, one from the owner obpéty to it and one
from the property to its typeA = { (owner(p),p) - p€ P}U{(p,type(p)) - p<
P}. The property characteristics are represented as lalmler the nodes of the
graph.

An example of this representation of Figure 3.2 is shown guké 3.3. To
facilitate the comprehension of the graph, we represesselas rectangles and
properties as octagons. Although this notation is less emtrihan UML class dia-
grams, it maps better to the structures defined/thy. Additionally, we explicitly
refrain from using UML in order to make it clear that UML is natprerequisite
for the metamodeling language described in this chapter.

Understanding modeling languages and models as graphgshmiany bene-
fits to our approach since graph theory [160] provides a dolicthdation to many
modeling approaches and model transformation languagdssasibed for exam-
plein[17, 184, 8].

3.3.2 Model Formalization

We define the infinite set of all models a6 = {M - M & (E, class S, property,
slotowner element$}. M comprises all the models in a system at some specific
time. E is a finite set of elementS§is a finite set of slots anENS= 0. Each
slot has one element as its owner as represented by thednrsbtitowner S— E.
For convenience, we can also define the slots of a given eleasetine function
slots :E — P(S), where(Ye € E - slotge) & {s - e= slotownefs) }).

A slot may refer to a number of elements as its contents. Bhispresented
by the function elements. The value of this function is eitheet of elements if

44

e B
Tz\/a s3

Figure 3.4: Example Statechart Represented in the UML Motat

the order of elements does not matter, and thus elem&is P(E); otherwise,
the function returns a sequence of elements and we say denter (E,<). We
discuss the ordered characteristic in more detail in Se@id.2. We define the
size of a slot to be the number of elements referenced bylthtatssc S - #s &
#elementss)).

Figure 3.4 shows an example model based on a Statechartalgegun the
example, the set of elementsbEs= {S1 S2 S3 T1, T2} andS= {inl, outl
in2, out2 in3, out3}. Also, slotowner= {in1 — S1in2 — S2in3 — S3 outl —

Sl out2 — S2out3— S3}. Since the two properties are not ordered, we have
elementgoutl) = {T1, T2}, elementéout2) = elementsout3d) = elementéinl) =
0, elementsin2) = {T1} and elemeni{sn3) = { T2}.

Models are usually depicted using their own concrete syrftax example, in
a UML Statechart, states are represented as rounded résgaangd transitions as
arcs. In this chapter, we use a generic syntax where all m@ielrepresent in an
uniform way, independent of their modeling language.

We can now define a modBlsimply as any nhonempty finite subset of the set
of element<, i.e.,B C E. Analogously to metamodels, the concept of one model
is not interesting from a theoretical perspective, and sovwaeld rather work with
all element<.

Formally, we can represent models as a labeled directechd@sap (V,Al).
The set of vertice¥ is the union of the set of elements and sldtss EUS The
set of arcsA contains an arc for each slot and for each element referenassiot,
A= {(slotownefs),s) - se S}U{(s,e) - s€ SAec elementss) }}.

We depict each model element as rounded rectangle and edcss circle.
Figure 3.5 shows the example model as such a graph.

3.3.3 Model Conformance to a Modeling Language

Each element in a model conforms to a class in a language ahdskd conforms

to a property. This conformance is represented by the fansticlass E — C
and property S— P in a model. Together these functions link a model to its
metamodel, thereby establishing what types the elemedtslats have. They also

45

S2:State

elements
T1:Transition

elements

S1:State

elements T2:Transition slots

elements

Figure 3.5: Example Statechart Model Represented UsinG#reric Model No-
tation

imply that a certain set of constraints must be satisfied fgr\alid model, e.g.,
what slots can be owned by an element, the type of the elerireatslot and the
number of elements in a slot.

A model conformsto its metamodel if it satisfies all these constraints. There
is no reason to separate a model from its metamodel by disliagathe class and
property functions. Such a model would merely be a graph aescconnected
by directed edges and, in most cases, would not contain ériaf@ymation to be
understood. Conformance is important because algorittangren be sure that a
certain structure holds.

We can now also define if a given mod8lis an instance of the modeling
language defined by a metamodel This question can be asked in two slightly
different ways: isB a direct instance of or of an extension oL? B is a direct
instance ol and not of an extension of it B is a valid model and the type of each
elementinBis in L. Thus,Bis a direct instance df if (Ve B - type(e) € L) and
all model constraints for elements Bhold.

On the other handB is an instance of eithdr or an extension of it iB is a
valid model and the type of each elemenBirs a subclass of a classlin Thus,B
conforms toL if (Vee B - (3ce L - type(e) Cc c)) and all model constraints for
elements irB hold.

The generalization of classes and the opposite of a proparmybe defined
across different metamodels. Also, for an eleneand a propertyp, e.p denotes
the slot that is owned bgand that conforms tq:

e.p¥s, such that propertis) = p A slotowners) = e

46

3.3.4 Model Constraints

We note that constraints over a structure can be expressegl et theory. This
has the benefits that set theory is formal and we do not havediarg a separate
constraint language such as OCL, but the drawback is thatahstraint language
is not a metamodel within the framework.

The effective properties of a class is the set of all properthat can be used
in an element conforming to that class. The constraints wiewse the generic
function name effectivePropertie€:— P(P). Depending on the metamodeling
language usedLg, ML or MLsg, for basic, with generalizations and with subsets,
respectively), we can substitute different definitionstingtead. We do similarly
for other functions as well, but will henceforth omit thispdanation.

In a basic modeling language that does not support classatipation, the
effective properties are simply the properties definedatliyeby the class. In Sec-
tion 3.5, we will review this definition to take into accoumnperties defined in
superclasses.

effectivePropertieg(c) = propertiegc), VceC

The function effectivePropertigsis specific to the metamodeling language
MLg. The effective properties of a class introduce two constsabver the ele-
ments conforming to that class. First, an element cannog séots that do not
conform to the effective properties of its class.

Model Constraint 1 Valid slots in element (1)(Vvec E - (Vs< slotge) -
(property(s)) € effectivePropertieglasge))))

Second, an element must have exactly one slot for eachieffgubperty in its
class:

Model Constraint 2 Valid slots in element (2)(ve€ E -
(Vp € effectivePropertieglasge)) - (3!se slotge) - property(s) = p)))

The function effectiveTypeP — 2 (C) denotes the effective types of a prop-
erty, i.e., the set of all allowed types for that property.the basic language, the
effective types of a property is defined explicitly by thedygharacteristic.

effectiveTypg(p) = {type(p)}, VpeP

The set of effective types of a property constrains the aéfise elements that
can be in a slot conforming to the property:

Model Constraint 3 Class of elements in a slo(vse S - (Ve € elementss) -
clasge) € effectiveTypéproperty(s))))

Figure 3.6 shows the example metamodel for Statechartshtageith a part
of the example model. We have represented the class andriyréections with
dashed lines. Since models and metamodels are finite, weaséy eheck that the
previous constraints hold for the example.

a7

State \ Transition \

slots

S1:Stat
ale S2:State

Figure 3.6: Conformance of a Model to its Modeling Language

3.3.5 Metamodel Constraints

Since a metamodel defines a set of constraints over a modal ibe possible to
define a metamodel in such a way that there is no nontrivialehibéit conforms
to it. Similarly, it may be possible to define a class so thatetis no element that
conforms to it, or a property so that there is no nontriviat $hat conforms to it.
In these cases, we say that the metamodel, class or propedigli

Void metamodels or metamodels with void classes or proggedre not useful
in software development. For this reason, we will define meidel constraints in
our metamodeling approach. A metamodel constraint is aigadover a meta-
model that should hold in order to exclude void definitions.

3.3.6 Primitive Values

Hitherto, the models that can be described can only consetements intercon-
nected via slots. It is often the case that we need to usetprintiata values such
as strings, integers, floating-point values and enumeratiues. However, we
consider the expressiveness of a framework to be in thewspooperty character-
istics; primitive values are fairly uninteresting. Nevertess, we will give a brief

48

description of how they can be added to the framework, but wlenat consider
them any further in this chapter.

We can add various classes that represent primitive da&s tigeC. For exam-
ple, we can say thdt € C andS € C denote the class of integers and the class of
strings, respectively. Then, we add a partial function frelements to data values,
primitivevalue :E -~ Z US. It maps an element to its primitive value if said ele-
ment is of the correct class. For example, an eleneenich that clagg) = S can
be mapped to a string value, and thus primitivevadjieeturns a string. Modifying
primitive values is done by modifying the function primivalue.

Thus, our primitive values are also elements and can tealyicontain slots
as well, referencing other elements. While this is not comnmofor example
programming languages, we feel this arrangement to be ptunaléy easier as it
avoids further constraints.

3.3.7 Universal Identifiers

Some algorithms are made easier by assuming that elementseadentified by
some kind of a unique identifier. Such an identifier for eacldei@lement allows
us to differentiate between two instances of the same ele(ean, two different
versions of it) and two elements that are similar. This ditton is fundamental
to implement model management operations like comparirgmwdels, merging
two models into one or duplicating (parts of) a model. Uniglentifiers can also
be used to create traceability links between the artifactsvo different models,
that may be expressed in two different languages. A soluticthis has already
been invented: Universally Unique Identifiers (UUIDs) [31]

UUID strings are assumed to be globally unique. They are Emdjtoo com-
plex to be generated by hand but this is not an issue for thesisee modeling
tools should take care of this aspect. They are based on &ilp8eudorandom
number generated from the physical address of the netwadekfaiwe in the host
running the tool and the tenths of microseconds elapsea@ $he Gregorian re-
form (October 15th, 1582). The uniqueness of the UUID stiisgnot questioned.
We note that an element retains its UUID across its evolutlddID strings ful-
fill all the requirements to uniquely identify elements foodel management and
transformation traceability. An example of an identifietiie DCE namespace [31]
is “DCE:2fac1234-31f8-11b4-a222-08002b34c003".

We can formalize the concept of UUIDs by denoting the infisiéé of UUIDs
with 1. We can declare a function uuide: — U that maps an element to its
unique identifier. The implementation of this function dege on the modeling
environment in question. We will not try to define it furthéile assume that any
model element created in our framework will also belong ®adbmain of the uuid
function and can be mapped to a UUID string.

From a practical point of view, it is worth noticing that threrid in other areas
needing similar strings (e.g., Microsoft DCOM technologiere they are called

49

GUID) has been that generation is completely pseudoranddmne relation to
the host, for security reasons.

3.3.8 Naming

Practical considerations dictate we be able to refer toselasnd properties by
a string which identifies them. Therefore we introduce a nencfion name :
CuP—S.

We will not discuss naming conventions and restrictionsemuirements of
unigueness of names in this chapter as they are dependdrg sartalization tech-
nology and possibly even the programming interface thatsee As such, naming
is not a part of the theoretical framework, although it is dex when we wish
to implement a modeling framework in practice. Since ouptk#cal framework
does not have the concept of one specific metamodel, thelsisa possibility to
give a name to it.

3.4 Property Characteristics

In the previous section we have studied how properties carsée to relate model
elements together. In this section, we discuss how diftgperperty characteris-
tics such as multiplicity or composition can be used to aamsteven further how
elements can be related via slots. We define the charaatsradta property as a
tuple:

characteristics & (lower, upper orderedcomposite

opposite

This tuple describes additional features of propertiesgiseveral functions:

o lower :P — Z% \ represents the lower multiplicity constraint of a property
(0,1, 2, ..., excluding infinity).

e upper :P — Z™ represents the upper multiplicity constraint (1, 2,).,
e composite P — B is true if a property denotes composition.

e ordered :P — B is true if a property denotes an ordered collection of ele-
ments.

e opposite P — PU{Q} denotes the optional opposite of a property in a
relation between two classes.

The rest of this section explains the semantics of thesditumscand how they
affect several constraints on models.

50

3.4.1 Multiplicity

One of the simpler but more important concepts is the miditylconstraint. The
lower and upper characteristics constrain the number ofiefgs that can be refer-
enced by a slot:

Model Constraint 4 Valid number of elements in a slat/se€ S -
lower(property(s)) < #s < upperpropertys)))

Since the number of elements in a slot is bounded by the rcitypcharacter-
istics of its property, the lower value should be less thaughper value. Otherwise,
the multiplicity constraint cannot be satisfied by any slot:

Metamodel Constraint 1 Property Multiplicity: (Vp € P - lower(p) < uppefp))

Multiplicities are used extensively in the UML and MOF laage. These
languages support the concepts of multiplicity ranges, taedvalid number of
elements in a slot is a subset@t. In practice, UML and MOF describe a multi-
plicity constraint as a sétof intervals(l,u) such that the valid multiplicity subset
isequalto{x - (3(l,u)el -1 <x<u)}.

3.4.2 Ordering

The ordering characteristic is used to model ordered didies of elements. An
example of the usage of an ordered property is the paramietersnethod of a
class. Another more interesting example is shown in Figure 3he top of the
figure shows a metamodel for a modeling language for the pbea active event-
based component. A port accepts a number of events and thisdsled using an
ordered property. The bottom of the figure shows an examplageinehere ports
Pl1andP2accept eventE1l andE2 However, portP1considers that eveidl has

priority with respect to everiE2, while P2 gives priority to evenE2.

This example remarks the fact that the ordering charatitedees not define
an ordering of elements but an ordering of the elementseréed by one partic-
ular slot. We should also note that the ordering as such doesmoduce new
constraints in a model, although ordering should be takendansideration in all
the model constraints.

3.4.3 Opposite Property and Bidirectionality

We have seen that a property can be used to define a UML or MOEtrethat is
navigable by only one of its participants. However, we cao define bidirectional
relations, by defining the opposite of a property.

Formally, the characteristic opposit®:— PU{Q} is a function that yields
the opposite of a property, or the special consfanivhich means that no opposite
is defined. At the metamodel layer, we require that a propesay itself as the
opposite property of its opposite (iff it exists):

51

properties “accepts
Port | ordered Event

1.* type

Figure 3.7: (Top) A Metamodel Using the Ordered Charadieridottom) A
Model Conforming to this Metamodel

Metamodel Constraint 2 Opposite properties{Vp € P - oppositép) # Q = p=
oppositéopposité p)) A oppositep) # p)

Figure 3.8 depicts a reviewed metamodel for a statechathellexample, each
property has another property as its opposite: source atgbimg are opposites
and form a relation, as well as target and incoming. In a madbil relation means
that when a Statehas a Transition in its outgoing slot, the Transitionwill have
Statesin its source slot. In Figure 3.9, stad refers to transition§1andT2in
its outgoing slot, where the transitions refer3ain their source slot.

At the model layer, we need to reflect that the contents of tpmosite slots
always refer to each other. This is captured in the followgongstraint for opposite
slots:

Model Constraint 5 Bidirectionality of slots:(Vs< S - oppositéproperty(s)) #
Q = (V€ € elementss) - (3! € S- slotowne(s') = € A oppositéproperty(s)) =
property(s) A slotowners) € elementss)))))

Our interpretation of relations is also shared by other atsthsuch as Génova,
Ruiz del Castillo and Lloréns in [60]. However, accordingstame researchers,
bidirectionality of two properties does not imply a biditenality requirement at
the model layer. That is, model constraint 5 does not needlth h

To see why this belief does not lead to a useful concept in afimagdlanguage,
consider Figure 3.10. Itis a valid model according to théestechine metamodel
presented earlier in Figure 3.8, except for the fact thatehodnstraint 5 does not
hold. There are two cases where the constraint does not kaft, the outgoing
connection betwee82andT1 does not have a source connection frofto S2
Second, the target connection fror to S1similarly does not have an incoming
connection fronS1to T1

52

properties

outgoing
0.”

opposite opposite

type properties

source 1 outgoing 0..*
State Transition| State Transition
target 1 incoming 0..*
,\ > incoming
. 0.*
properties type
opposite opposite
properties

Figure 3.8: (Left) Metamodel for a Statechart Containingviyable Relations
(Right) The Same Metamodel as a Graph of Classes and Pexperti

_

S2
T2
\/ﬂ S3
elements @ slots

elements

T1:Transition S2:State

elements

‘outgoing
elements
slots

elements

T2:Transition S3:State

elements

elements

Figure 3.9: (Top) Example Statechart (Bottom) StatechaprBsented as Elements
and Slots, Conforming to the Metamodel from Figure 3.8

53

:outgoing

S1:State elements @

elements
elements slots

T1:Transition

elements

slots

Figure 3.10: A Statemachine Model without BidirectionabtSl

We firmly believe that this example is nonsensical. If for saeason this is the
intended interpretation of a modeling language, the metinghould reflect it, as
shown in Figure 3.11. In this new metamodel, the properiesce and outgoing
are not opposites, and therefore, there is no constraintdest their slots.

outgoing
0."
@ properties

Transition

properties type

ﬁ
outgoing 0..*

State source 1 Transition State
mcoml ng
propertles type

properties

incoming 0..*

target 1

Figure 3.11: (Left) Metamodel for a Statechart with Unidifenal Relations
(Right) The Same Metamodel as a Graph of Classes and Pexperti

3.4.4 Composition

Another important property characteristic is compositi@omposition is used to
denote hierarchy and ownership in a model. It is a very ingmdrtoncept that aids
us in organizing models as a collection of smaller parts. mgosition property
imposes a rather restrictive constraint over its slots: lament can only be ref-
erenced by one composition slot at a time and it should notolssiple to create
cyclic compositions.

54

Figure 3.12 shows an example of the use of composition in ammzdel. The
top of the figure contains a simplified metamodel, in both UNAd @ur notation,
for a class modeling language containing a package and & clapackage may
contain classes and each class may contain inner classe®VvEip a class should
not be directly owned by both a package and by a class sinadtesty, and neither
can an inner class directly or transitively be an inner clafsgself. The bottom
of the figure contains a model that presents these two calsssGd is owned by
packageP1land classC3 simultaneously and there is a composition cycle between
classesC1, C2andC3. Therefore the model at the bottom of the figure does not
conform to the metamodel at the top of the figure.

Package Package

(] - *
contents properties

0.*

conntents
composite
0.*

type properties

Class inner
Classes
Class p
composite
0.+
innerClasses

0.* type

elements

sinner

Classes

elements

Figure 3.12: Example of Composition

Formally, we say that an elemexis the owner oparentof an elemeneif e
is referenced by a composite skf x. We define the function parenE:— P (E)
to return either the empty set if no parent for an elementiex® a set consisting
of all the parent elements. Thus, the size of this set shaeilak Imost one.

def

parente) = {x - x€ EA(3s€ S slotowne(s) = xA composit¢property(s))

Nee€ element$s)) }

55

We will also make use of the function parentchakh+ (E, <), which returns
a sequence of parent elements:

parentchaire) & if #parente) =0 then|]
else[p € parente) | <parentchaifp € parente))

Thus, an element cannot be owned by the same element viaffedt com-
posite slots:

Model Constraint 6 Only in one composite slotveec E - —(3s1,S -
compositéproperty(s;)) A composit¢property(s;)) A e € elementés;) Aee
elementssy))

As stated previously, an element cannot be the owner of,idie¢ctly or tran-
sitively:

Model Constraint 7 Composition is acyclic(ve € E - e ¢ parentchaife))

This also implies that a relation at the metamodel level oaibe made from
two composite properties, since such slots would be void.

Metamodel Constraint 3 Both properties in a relation cannot be compositeép
€ P - compositép) A oppositép) # Q = —compositéoppositép)))

Defining metamodels using both composition and multiglicinge character-
istics has an interesting consequence. It is possible tlamea chain of several
classes such that it is mandatory for an instance of a clasaoat least one in-
stance of the next class, et cetera, until a cycle is credteereby all classes would
be void, since only an infinite chain of elements could camféo them. We can
prohibit this with the following constraint:

Metamodel Constraint 4 No infinite chain of compositions(vcy,...,Cy,Chr1 €
C - (Vi - 1<i<n= (3pe effectivePropertie;) - composit¢p) A ownerp) =
Ci A\ Ci+1 = type(p) Alower(p) > 1)) = C1 # Cny1), Vn2>1

Composition is used extensively in the definition of UML an®M and it
also appears in the GXL. Its semantics in the context of UM& been studied
by Barbier et al. in [16, 73]. Composition brings many adegets when building
tools that need to traverse or transform models. If we oritg tots of a composite
property and elements into account, the resulting grapmgaa tree (or a forest).
This allows us to use efficient traversal algorithms. Al$us arrangement maps
well to XMI, since an XML document has a tree structure.

In this chapter, we use the conceptstifict compositioror “black diamonds”
as described in [73]. Another alternative interpretatidrc@amposition isshared
composition In this case, the composition links should be acyclic, Iouele@ment
can have more than one parent. To achieve this interpretafi@ modeling lan-
guage, model constraint 6 should be removed. The resultagghgorms a directed
acyclic graph.

56

3.4.5 Attributes

We should note that our metamodeling language does not mgvepecial provi-

sion to model attributes such as in MOF or EMF. This is due édf#lat that we can
model an attribute by using a combination of the propertyratiaristics that we
have already defined. In our approach, we consider an atribefinition equiva-

lent to a property that is a composition and does not have posiie. This reduces
the number of defined concepts at the metamodeling layerharsdsimplifies the
structure of metamodels and models. We have validateddaain our modeling
tool and found no problems.

3.5 Class Specialization

In this section we introduce the concept of class speci#izaas a mechanism to
organize and simplify large metamodels. Class speciaizas the same concept
as class inheritance in OO programming languages. A clasbea specialization
of one or more base classes and as a consequence it inhetiite ptoperties of
its base classes. Without class specialization, the definif UML would require
many additional properties and model transformations dd¢ more complex
and cumbersome to create and maintain. Therefore, clastabpation is used
extensively in the definition of UML and MOF.

As an example, the UML 1.x metamodels use class specializ&ti model
state hierarchy. Figure 3.13 shows a simplified Statechadainvhere we special-
ize the State class into CompositeState. In UML, class afpegiion is represented
diagrammatically as an edge between the base class andettialsed class with
a triangular arrow head pointing to the base class. In oumgka a Composite-
State inherits all the properties of a normal state but addsdaitional property to
model substates. A substate can be a State or a CompositeStat

We should also note that a metamodeling language shouladuppltiple in-
heritance since it is used extensively in MOF. This has dirdaeen noticed by
for example Anneke Kleppe [92]. In order to formalize claps@alizations we
will need to extend our definition of metamodels by addingabecept of gener-
alizations of a class. A modeling language supporting ctpssialization is then
defined by the tuple:

ML = (C,generalizationg®, owner, type, characteristics

We define the generalizations of a class with the functioregaizations C —
P(C). We denote by the extended generalization between classes that is defined
as the reflexive transitive closure of the generalizatidatien: C. «'{(c,d) - d €
generalization&) }*. Intuitively, given two different classesandd, we say that
is a subclass df iff ¢ C. d. We also note that characteristics- characteristics,

since no new property characteristics need to be added.

57

subStates 0..*] outgoing 0..*

State Transition

]

Composite|
State

incoming 0..*

outgoing
0.*
properties

State Transition

A
subStates properties incoming
0.* 0.*
generalizations

N Composite

properties State

type

Figure 3.13: A Metamodel Using Class Specialization

We should now review the concept of effective properties dbas for a meta-
modeling language supporting class specialization. Tfext®fe properties of a
class shall include all the properties owned directly by thass and all the effec-
tive properties of its superclasses:

effectivePropertieg(c)= |J{ propertiegd) - cC.d}

We should also review what the effective types of a propeanty ilanguage
supporting class specialization are. In this languagés sle covariant: a slot may
contain elements whose class is the basic type of its properany subclass of
that type.

effectiveTypey(p) = {ce C - cCtype(p) }

We can see an example of these definitions in the metamodeinsimoFig-
ure 3.13. We can see that effectivePropegi€ompositeState= { outgoing
incoming subStates, i.e., the effective properties of CompositeState are wee t
properties owned by State and the property directly ownedbynpositeState.
Similarly, effectiveType (subStates= { State CompositeStatg. An example of a
model using this metamodel can be seen in Figure 3.14.

58

S2:State

elements

:outgoing T2:Transition S3:State
elements

Figure 3.14: Example Model Using Specialization

Because the effective properties of a class are definedddf/asd its transitive
superclasses, we require the generalization relation tacelic. Otherwise all
classes in a generalization hierarchy would have the sahoé stfective properties
and they would for all practical purposes be indistinguidédrom each other. This
leads to the following metamodel constraint:

Metamodel Constraint 5 Generalization is acyclic-(Jec C - (ee) € {(c,d) -
d € generalization&) })

3.6 Property Subsetting

In this section we introduce the concept of property sultggto our metamod-
eling language, one of the most intriguing concepts intceduin MOF 2.0 and
the UML 2.0 infrastructure. Property subsetting allowsaspiecialize an existing
property into a new property with a different basic type aiftecent characteris-
tics, while still retaining the old, existing property. Thduition is that the special-
ized property is a subset of the original property, meaniag ¢lements in a slot of
a subset property should also be included in the slot of tiygnad property.
As an example, we present yet another version of a simplifiethmodel for

UML class diagrams in Figure 3.15. We first provide a geneoalcept of a con-

59

v generalizations

) owned
properties Element

Namespace ——————| composite
strict union

type

Element
generalizations

A

generalizations subsets -
generalizations

. owned
properties Attribute
Class ——»| composite Attribute Operation

0.*

properties

owned

publicAttribute

composite
0.*

properties

owned

privateAttribute

composite
0.*

owned

Operation

composite
0..*

properties

Figure 3.15: Example Metamodel for UML Class Diagrams Ustudpset Proper-
ties

tainer and its children elements using the Namespace amdeBleclasses. Each
Namespace element has a slot named ownedElement repngsiéntiontents.
Then we specialize Namespace into a Class and addstwset properties
called ownedAttribute and ownedOperation to keep atteéduand operations. We
can say that these properties atsettinghe ownedElement property. We also
add two subset properties of ownedAttribute to Class, dalienedPublicAttribute
and ownedPrivateAttribute. This example also shows howbsetuand a union

property may be in the same class.
We introduce a new property characteristic to our metaniogdanguage in

order to support subset properties:

e supersetsP — P(P) represents the properties of which a property is a sub-
set.

We will also introduce the characteristic strictUnion tat& hereby, we can
define a modeling language supporting property subsettnbeatuple:

MLs &' (C,generalizations?, owner type, characteristics)
characteristics % (lower, upper orderedcompositeoppositesupersets
strictUnion)

60

We denote subsetting between properties bytpeelation, i.e.C €L (p,q) -

g € supersets) }*.

In a model, we say that a slotis a subset of another sleif property(r) C,
property(s) and they have the same owner. The slot subsetting relatitiugs
defined by:

Cs £ {(r,) - slotownefr) = slotowners) A property(r)
Cp property(s) }*

The contents of a slotsubsetting another sleimust be a subset of the contents
of s. Also, MOF [139] tells us on page 56 thidthe slot’'s values are a subset of
those for each slot it subsetsIh the case of unordered slots, this is formalized
using the following constraint:

Model Constraint 8 Unordered slots(vr,se S - r CssA —orderedproperty(s))
= elementér) C elementss))

We can see an example model based on subset properties e Bidé. The
model represents a UML class with one public attribute, anefe attribute and
one operation. The element representing the class has &vatiiff slots and the
elements referenced in each slot is constrained by the spbseerties. In the
example we haves Cs5p A Cs A3 Cs A S Cs St

Person
+age
-name

work: :

elements

s1:.owned

age:Attribute

name:Attribute

Person:Class

Attribute

work:Operation
s5:.owned

Operation

Figure 3.16: Example Model Based on the Metamodel ShownguarEi3.15

In the rest of this section, we review how the concept of supsmperties in-
teracts with the other concepts in our metamodeling languag

61

3.6.1 Subsets and Ordering

For ordered slots we also wish to preserve order. That isnvetements occur in
a specific order irr, they should occur in the same ordergnalthoughs might
contain more elements in between.

Model Constraint 9 Ordered slots: (Vx,y € E,r,s€ S - x € element$§r) Ay €
element$r) Ax <; yAr CssAorderedproperty(s)) = x € elementés) Ay €
elementgs) A X <sY)

3.6.2 Union Properties

A property is called a union property if it has one or more ies that subset
it. In our framework, it is not necessary to declare a propeag a union, since a
designer of a metamodel cannot know in advance if a new splbspérty will be
defined in the future, possibly in some other metamodel. Agrotvay to express
this is to state that all properties are automatically urporperties, and some can
be declared as strict unions.

3.6.3 Strict Unions

The UML 2.0 Infrastructure also introduced the concept n€stinion. The stan-
dard states on page 126 th@his means that the collection of values denoted by
the property in some context is derived by being the strimruof all of the values
denoted, in the same context, by properties defined to sitbEdhe property has
a multiplicity upper bound of 1, then this means that the @alaf all the subsets
must be null or the same.In other words, a derived union property can be seen
as the strict union of its subsets. A slot with a property that strict union cannot
contain elements that do not appear in any of its subsets.

We introduce a new property characteristic to our metamogdanguage in
order to support strict unions:

e strictUnion :P — B is true if a property is a strict union.

The UML uses the qualifier “{ union }" to denote a property astiécs union.
Since all our properties are unions, we use the qualifier ficsunion }” instead.
In the example, the contents of ownedElement and ownedAt&islots are strict
unions of the contents of the subsetting slots.

The concept of strict unions implies that a new model congtrzeeds to be
defined:

Model Constraint 10 Strict union: (¥se S - strictUnion(property(s)) =
elementsés) = (J{elementér) - r <ss}

We call model constraint 8, 9 and 10 timnerent subsetting rulesr ISR.

62

3.6.4 Subsets and Substitutability

The rationale for the proposed model constraints is to atigye substitutability
in model transformations, queries and code generatorsegialzed class has the
same properties with the same characteristics as its basges, while containing
new definitions to specialize these properties. Thus, stibggreserves Liskov
substitutability.

As an example, Figure 3.17 shows a model based on the exangpdenodel
for circuits shown in Fig. 3.1. Here, a given transistor canskeen as a generic
component with a number of pins or as an element of type Tstordhat has three
specific pins. The benefit is that it is possible to define algms and transfor-
mations which work on the base abstract circuit; that isy @mansidering wires,
pins and components, without caring for the details, whesdgorithms that are
targeted to specific components can rely on a more refinedagbsintax.

) :collectork\—+
. < !

N Y pin1:Pin

Tlasa

Component pin2:Pin

pin3:Pin

N pin1:Pin

K /A—
K pin2:Pin

[

Transistor

pin3:Pin

Figure 3.17: (Top) Example of a Model as Interpreted Acaugdb the Base Lan-
guage (Bottom) Same Model Interpreted According to the ikdee Language

63

3.6.5 Subsets and Multiplicity

It can easily be seen that a property subsetting anotheepyoghould have a lower
(or the same) upper limit than the other property. This cafobmalized with the
following metamodel constraints:

Metamodel Constraint 6 Upper multiplicity in subset propertiegvVpe P - (Vg e
superset§p) - uppexp) < uppexa)))

The justification for this constraint can be shown with slotnds such that
r CssS, propertyr) = p, property(s) = g and uppefp) > uppexq), and by filling the
slotr with elements so thatr#= uppefp). Then # > #r = uppe(p) > upperq)
= #s > upperq), which violates the upper limit af.

Property subsetting does not raise any new restrictioneelotver limits of the
properties. This is because more elements can always héeidseto a slot until
its size is at least that of the greatest lowest limit in aaysitive sub- or superset.
Thus model constraint 4 is sufficient for the lower multigifcconstraints.

3.6.6 Subsets and Class Specialization

A property should only subset another property if the effectypes of it are a
subset of the effective types of the other. The same remaaksis stated in the
UML 2.0 Infrastructure [142] on page 12% property may be marked as a sub-
set of another, as long as every element in the context ofulbseting property
conforms to the corresponding element in the context ofuhsetted property.

Figure 3.18 shows a (nonsensical) metamodel, in which pippleof classC
subsets propertl of classA. The type ofb is classB and the type ofl is classD;
howeverD is not a subclass d.

d
{subsets b}

Figure 3.18: Subsetting Only One End of a Relation

We should explore how the existing constraints affect tieeneints in the slots
of a model based on the this metamodel. We can easily find anggavhich
shows that this particular way of using subsets is not usedihce the elements
in a slotsy conforming to propertyd should be of typé, the elements in slak,
conforming to propertyo should be of typd3, and the elements is; should also

64

be ins,, the slotsy cannot have any elements. This can be proven in the following
derivation, based on the structured derivation approa¢h4h

S, Sh € SA property(sq) = d A property(s,) = bA
1 Cs o A\ effectiveTypéd) = { D }, effective Typéb) = { B}
= { introduce class of elements in slot, unordered slot comsgrasimplify }
(Vee elementésy) - clasge) € {D })A
(V€ € elementés,) - clasg€e) € {B})A
(elementssy) C elementss,))
= { definition of subset, membership in a singleton jset
(Ve e element$sy) - clasge) = D)A
(Ve € elementss,) - clasge) = B)A
(Ve € elementssy) - €' € elementss,))
= { elements ird should also satisfy the constraint for}
(Ve elementésy) - clasge) = D A clasge) = B)
= {D#B}
elementssy) =0
Based on this discussion, we consider an additional canstaer a meta-
model: the fact that a property can subset another propefyyfom the reflexive
transitive superclass closure of its owner:

Metamodel Constraint 7 Subset only from owner or its superclas$eép,q € P -
p Cp g = ownerp) Cc ownerd)).

However, this restriction is not strong enough. It wouldl $t& possible to
cyclically subset a property within the same class. Thisosanuseful construct
since any slots of the properties in the cycle would condish® exact same ele-
ments. Thus property subsetting must be acyclic:

Metamodel Constraint 8 The property superset relation is acycliei(Je€ P -
(e.e) € {(p.q) - g€ superset&p)}™)

Given these constraints, we can conclude the property girgsés a partial
order. In other words(P, Cy) is a poset. Thus, on the model level we have several
partial orders, one for each slot and its transitive sub- sungersets, owned by
some specific element.

It can be noted that multiple inheritance forms very congikd inheritance
hierarchies, among them tlidamond inheritancestructure. This leads to a pos-
sibility where property subsetting also has a diamond (enewore complicated)
structure.

3.6.7 Subsets and Opposite Properties

We should also study the possible interactions betweeresalnsl opposite prop-
erties. Let us consider the metamodel in Figure 3.19. Inmi@sgamodel, the subset
propertyd has an opposite propertpwhich is not a subset.

65

c d
{subsets b}

Figure 3.19: Example of the Interaction of Subsets and GppBsoperties

Let us assume that there is a model with two elemegntndey conforming
to classe<C and D, respectively. According to the metamodel, elemenhas
two slots that we namsgy ands, conforming to propertiesl andb, respectively.
Similarly, elementey has two slotss; ands,. We wish to add elemergy to the
slot 4. Since the propertg has an opposite, we also need to addo the slot
s Of g4 in order to satisfy model constraint 5 regarding bidirectibslots. Since
d Csh, we also need to includey in the slots, to satisfy model constraint 8 about
unordered subset slots. Finally, since propérhas an opposite property namad
we should includey in the elements of,. Thus,eq is In s, and ins;, and the net
effect is as ifc were a subset ai anyway, even though that was not stated in the
metamodel.

The conclusion is that we claim thatneeds to subset, if for nothing else
than documentation purposes. There are several faults i IO and UML 2.0
where this rule is violated. Fortunately, the correctiosimaple by saying that (in
our examplex needs to subset In any case, this example emphasizes the need
for the following constraint:

Metamodel Constraint 9 The opposite of a subset property must be a subset:
(Vp,q€ P - pCpgAoppositép) # Q = oppositép) Cp opposited))

3.6.8 Subsets and Composition

We need to redefine the composition constraints to take iotoumt the subset
properties. Due to the subset constraints, an element mayy imore than one
composition slot at a given time, as long as these slots drendependent. This
replaces model constraint 6:

Model Constraint 11 (Subset) Only in one composite sldt'ec E - —(3s1,S, -

property(s;) ||p property(sy) A compositéproperty(s;)) A composit¢property(s;))
Nee€ elementés;) Aec elementsés,))

In Figure 3.20, we see different cases with composite andgroposite prop-
erties. Cases (1) and (2) are legal and quite self-explanaito the first case, all

66

A andC elements own theiB andD elements via the-b relation. In the second
case the—d relation can be used to own some of ihelements and the rest can be
referenced via only tha-b relation, and can thus be owned by some other element.

Case (3) can be considered legal by discounting the connposit thec—d
relation without any loss in information, since any elenseatvned via thec—d
relation must also be owned via theb relation. This is what model constraint 11
allows. Case (4) is void since any elements of tygesnd D that are connected
at thec—d relation are also connected at theb relation, thereby creating a cyclic
composition and therefore violating a model constraint.eréby the following
metamodel constraint should be defined:

Metamodel Constraint 10 No circular transitive composition with subsetsip €
P - compositép) = —(3q € P - oppositéq) # QA pCpgA

compositéoppositéq))))
A > B A B
a b a b
(o] (o] >
c d c d
{subsets a} {subsets b} {subsets a} {subsets b}
1) (2)

C [®
c

{subsets a}

d
{subsets b}

®3)

C

{subsets a}

i 3

{subsets b;

-

(4)

Figure 3.20: Subsetting with Composite and Noncomposibpétties

We can find examples of the three first cases in UML 2.0, allgufg 11.5 on
page 109 of [142]. Case (1) can be found in the associatiombaeznd relation,
case (2) is found in the owningAssociation—ownedEnd @htedind case (3) in the
class—ownedAttribute relation.

67

3.7 Alternative Language Extension Mechanisms

In this section, we briefly go through various additionalgaage extension mech-
anisms. We also provide a motivation on why we do not inclutamt in our
framework.

3.7.1 Covariant Specialization

Covariant specialization is similar to subsetting in thatiates two relations at the
metamodel layer. However the semantics are different. ovargant environment,
the specialized relation cannot be modified for elementgvare instances of the
subclasses.

As an example of covariant specialization, let us assuntectha an element
of typeC shown in Fig. 3.21. Itis not possible to insert elements pé® into the
b slot of ¢, only elements of typ® into thed slot. Thec—d relation is acovariant
specializationof the a—b relation. Thea—b relation has been rendered obsolete (or
at least read-only) in the context of element

A B
a b

C D
c d

{ covariantly { covariantly
specializes a} specializes b}

Figure 3.21: Notation for Covariant Specialization

Covariance is a subject that often comes up in the semaritingthods of OO
programming. Function parameter type contravariance and type covariance
are rather inconvenient in practical situations and thugoe-uinsafe function pa-
rameter type covariance is used for specialization. A simargument also holds
for element slots in modeling technology. Property subsgthims to provide
a new way to represent relationships between elements. dt navertheless be
noted that as Giuseppe Castagna has asserted, there aferuseovariant en-
vironment when compared with a contravariant or invariamtimnment. Thus
subsetting and covariance are not opposing but complengentinstructs in OO
programming and thus in modeling [32].

The major difference between covariance and subsettirgaisit a covariant
environment, substituting an element of a specific type waitlelement which is
a covariant specialization of that type can result in proggano longer working.
Thereby covariant specialization breaks Liskov substtiility and that is the rea-

68

son we do not include it in our framework, although we realtze an important
concept. On the other hand, subsetting allows the slotsatkbig the properties in
a superclass to be used in an instance of a subclass.

We note that contrary to subsetting, it might be necessaryhf® metamodel
developer to explicitly declare the possibility of covauiisgpecialization, instead
of leaving the decision open for the future. This is becaustamodel users need
to realize that slots conforming to covariantly specializgoperties may not be
available in the future when their algorithm or function e&@s instances of the
subclasses. That is, in the example it might be necessatgt® & priori that the
a-b relation can be covariantly specialized, as a warning mashafor users and
tools. Subsetting can be declared when required, whereasiant specialization
must be planned beforehand.

3.7.2 Property Redefinition

MOF 2.0 introduces the concept of property redefinition.slour understanding
that a property redefinition is an arbitrary replacementhef tharacteristics of a
property in a subclass that overrides the subsetted psoped renders it unusable
in the subclass.

We can formalize this concept in our framework by introdgcannew property
characteristic redefine$— P(P), and by defining the set of effective properties
of a class as follows:

effectivePropertieg) = J{ propertiegs) - c C. s}
\ U{redefinegp) - p € propertiegs) Ac C s}

Usually, the redefining property has the same name as thémederoperty,
and exists in a subclass of the class of the redefined propkrtgiata modeling
terms, this means that programs will obtain the redefinirperty when they use
an element of the subclass type.

However, we should note that there are no constraints batageoperty and
its redefinition. A redefinition could be covariant or contdant in some char-
acteristics, and otherwise compatible or incompatibletires with respect to its
redefined property. Using property redefinitions in a lamgguaxtension breaks
Liskov substitutability and therefore transformationsl dools based on the origi-
nal language. Therefore, we consider that property redigfinis not a safe con-
struct and it should not be included in a metamodeling laggua

3.8 Related Work

Several other researchers have formalized metamodelngitages and model lay-
ers. For example, Thomas Baar has defined the CINV langu@jeifing a set-
theoretic approach, but our approach is more general intbadlso support gen-

69

eralizations. The benefits of a set-theoretic approachaisitiavoids a metacircu-
larity whereby one (partially) needs to understand thelagg to be able to learn
the language. José Alvarez, Andy Evans and Paul Sammuiilskeserch a static
OO metacircular modeling language [7], and the Metamoddlianguage Calcu-
lus [42] by Tony Clark, Andy Evans and Stuart Kent is anothey\sophisticated

one. Jan Nytun, Andreas Prinz and Andreas Kunert preserd2i?] [a modeling

framework in which all model layers are represented unifgrm

Akehurst, Kent and Patrascoiu present in [46] the structfieemetamodel and
its semantics using OCL. Our rationale for not using OCL threethe model and
metamodel constraints is that the definition of the navigain OCL expressions
actually depends on the metamodeling framework.

More recently, Frédéric Jouault and Jean Bézivin have ptedeKM3 [84],
a metamodeling language targeted towards domain-spectfieling languages.
This is one of the most influential works for this chapter sitite notion of model
conformance presented here is based on it.

However, the main contribution of this chapter comes from diefinitions of
property subsets in a language with multiple inheritandaeictv neither metamod-
eling nor traditional OO language descriptions explainve®al authors use re-
lation inheritance without defining exact semantics, andesgay that it denotes
covariance. An example of this covariant specializatioimésmultilevel metamod-
eling technique called VPM by Varro and Pataricza [183],ckihélso limits itself
to single inheritance. We argue that property subsettingptsthe same concept
as covariant specialization, and requires different sdicenHowever, both sub-
setting and covariance specialization have their usesasnthus complementing
rather than competing constructs.

Carsten Amelunxen, Tobias Rotschke and Andy Schurr aretitiees of the
MOFLON tool [8] inside the Fujaba framework [121]. MOFLONMNagins to support
subsetting, but no description of the formal semanticsdased is included. It is
not clear if their tool works in the context of subsets betwerdered slots, or with
diamond inheritance with subsetting. Markus Scheidgesgns an interesting
discussion of the semantics of subsets in the context ofiegean implementation
of MOF 2.0 in [162]. To our knowledge, this has so far been tlwsinthorough
attempt to formalize subsetting.

The OO and database research communities are also resepactgimilar
topic, although it is called relationship or associatiohdritance, or first-class re-
lationships. In [23], Bierman and Wren present a simplifiadallanguage with
first-class relationships. In contrast with our work, they bt support multiple
inheritance, bidirectionality or ordered properties;@lthese constructs are com-
mon in modeling and in the UML 2.0 specification. Howevertienship links are
explicitly represented as instances, and they can havei@uali data fields (just
like the AssociationClass of UML). As the authors have reaticthe semantics
of link insertion and deletion is not without problems. Atlza Ghelli and Orsini
present a relationship mechanism for a strongly-typed O@bdse programming

70

language [6]. It also handles links as relationship inganbut without additional
data fields. Multiple inheritance is supported, but ordesietl contents are not.

Finally, we should note there is an important ongoing dismrson the concep-
tual role of metamodeling and metamodeling languages iclestsuch as [63, 9].
These works describe the conceptual relationship betwidfenetht metamodeling
levels or layers. Our work focuses on the concrete consgraietween two specific
levels and it clearly exhibits the two metadimensions dbsdrin [9], where every
model elemeniogically conformdo a given metamodel class while itpgysically
represented@s an element.

3.9 Conclusions

In this chapter we have explored the main concepts used intanmoeleling ap-
proach that supports class specialization and propertsestibg. We have achieved
this by building the metamodeling framework from the growpdusing successive
set-theoretic definitions of the structural semantics.hEdefinition adds a concept
to our modeling framework: multiplicities, bidirectioritg4 ordering, composition,
class specialization, subsetting, unions and strict mion

We have also briefly discussed other language extensionanischs. We have
argued that covariant specializations make classes nstituéable, that arbitrary
property redefinitions are not a safe extension mechanishther package merges
do not provide anything fundamentally new as they can beribestin terms of
previous mechanisms. Therefore we have not included thaseepts in our ap-
proach.

The contribution of this chapter is important because itleasjzes the need for
all new metamodel language concepts to form an integraterdendand because it
defines the new property characteristics of subsets andsifiom MOF 2.0. We
realize that all new metamodeling constructs interact withihe old metamodel-
ing constructs. We have to ensure that the semantics of mbr@tions of these
constructs make sense by declaring suitable metamodel addlrmonstraints.

The OMG modeling standards do not describe subset and uni@emies in
detail, not even informally, and therefore they cannot baiagd in practice. In this
chapter, we have formalized a simple modeling framework so@ports subsets
and derived unions. It discusses the relevant model contstrthat must be upheld
by any valid model. We will explore this area further in thexnehapter, where we
define operations that modify models while keeping the modestraints.

There is a limitation in the work presented in this chaptdre Tramework and
especially subsetting as proposed is restricted to sldtsumique elements. Slots
where the same element can occur several times (bags, etsiltere not consid-
ered. Although bags can be defined in MOF 2.0, they are notingbé definition
of the UML 2.0 Superstructure. Supporting ordered and uei@d bags is not a
fundamental problem when considering the static condsabut is rather an is-

71

sue of more work. However, supporting model operations alem@d bags with
subsetting is problematic, as will be shown in Chapter 4. ustralso be stressed
that we do not cover several important aspects of MOF 2.(h siscassociation
end ownership or navigability. These aspects create nortapdimitations from
a formal point of view.

We have implemented the metamodeling language definedsiotipter in our
modeling tool Coral, which will be discussed further in Cteab. Unfortunately,
we know of no modeling tools that support subsets as extelysas discussed in
this chapter. At the time of writing, the Eclipse EMF modegbesitory does not
implement subset properties, although the feature is pldnit is not clear what
the semantics will be, though.

In conclusion, we consider that there is a need in the mogl@ommunity
to standardize on one intuitive explanation and a rigorausélization of subset
properties and derived unions, so tools based on MOF 2.0 avid 210 can be
implemented and be interoperable. This chapter presemtgpagal in the direction
that we hope can help other researchers and tool develapelefine a common
understanding for MOF 2.0 and UML 2.0.

72

Chapter 4

Model Operations

4.1 Introduction

In the previous chapter we described the static structunesthmodels and models,
and how models conform to their metamodel. From a conceptrspective, this
might be sufficient, in that we can give different model stowes as input to a
conformance testing function to see whether or not they alid.vHowever, from
a tool development perspective, we are interested in miogifgaid conformant
model structures in some particular manner while retairogformance. In this
chapter we will provide these operations.

These modifications are of different complexity: an intékeecmodel editor
requires small, incremental changes, whereas a transfiomangine can create a
whole model. Any larger change can in any case be split inemaence of smaller
changes, which we will cabbasic edit operations

We have identified the following basic edit operations onttuglel structurév
described in Chapter 3:

e Element creation.

e Element deletion.

e Inserting an element into a slot.

e Removing an element from a slot.

We need to consider whether these operations preserve tisgra@iots defined
in the previous chapter. We should note that a valid modelsttamation usu-
ally involves a sequence of many operations, of which somicp&ar one cannot
preserve for example the multiplicity constraint. Therefove always consider a
model transformation as a sequence of basic edit operatiksan example, let us
assume that we want to create a GeneralizaBdretween two classés1 andC2
in a model based on UML. This requires three basic operaticiesiteG, insertC1

73

in the parent slot 0G and insertC2 in the child slot ofG, assuming that the slots
CLlspecialization an@€2.generalization are implicitly modified due to bidirection
ality. The elemenG is invalid just after the create operation since a Geneatidin
should always be connected to exactly one super- and on&asab¢lowever, the
model should be wellformed after executing all the basicatiens.

This chapter is based on Publication VIII. We proceed a®¥fdt in the next
section we give pre- and postconditions and implementstionelement creation
and deletion. In Section 4.3 we will define unidirectionatsiperations using a
pre- and postcondition specification, as well as providergriémentation for each
operation. For ease of understandability, we split the cdseserting an element
into a slot into two separate operations, one for insertittg an unordered slot,
and the other for inserting into an ordered slot. In Secticghwe extend these
operations with bidirectional ones. We discuss validatibthe research, related
work and future work in Section 4.5. We finally conclude in Gat4.6.

4.2 Element Creation and Deletion

The operation createM x C — M x E such that(M’,e) = creatéM, c) creates
a new element of type € C and has no preconditions. The new element will
also be a root element, i.e., it will not have any parent. Téterned value is
a tuple of the new models and the new element. In any pre- dcqudition,
the old models are denotdd = (E, type slots S property,element$. In postcon-
ditions, the new values of variables are denoted with tickksiaotherwise the
old values before the execution is assumed. Thus, the nevelmade denoted
M’ = (E’,typ€,slots, S, property, element§. The primary postcondition is that
there must be exactly one new element in the set of elemehts.vdrious model
constraints mean that the sets and functionslimust be updated iM’ to reflect
this change; this leads to more postconditions.

1. (F'lecE' - E'\{e} =EAtyp€(e) =c)

2. typéntype= type

3. B =#S+#{p- pecPA(Ilec E'\EAtype(e) Ccownerp))}
4. SNS=S

5. slot§=slotsu{e—~s-ecE'\EAse S\ S}

6. property = propertyJ{s— p-se€ S\SApePA{3lec E’'\E - type(e) C.
owner(p)}}

7. #Rangéproperty \ property) = #{p - pe PA(Jlee E'\ E Atype(e) Cc
owner(p))}

74

8. elements=elements) {s— {} - s€ S\ SA ~orderedproperty(s))}
U{s—[] - se S\ SAorderedproperty(s))}

The only relevant postcondition is the first one, the restimu@icit or infor-
mally understandable from the various model constraintsavbid too much rep-
etition, we assume that the new values of any variables notiomed are kept
identical to their previous values and that only the neagssaanges to fulfill the
postconditions are made. We will refrain from listing ohwsopostconditions and
concentrate on the important ones.

Element creation can be defined by inserting a new elementhietseit and
correctly updating the various functions that compriserttaels. The operation
is shown in Figure 4.1. We assume there is a programming &geydependent
way to create a new element and new slots.

creatéM,c) ;=
M = E, type, slots S, property, elements
Create an elemermt
typ€ := typele — ¢
E':=EU{e}
property := property
U { create a slosand returnrs — p - p€ PAownerp) Cc c}
S := SU (Dom(property) \ Dom(property))
slots :=slotsu{e—s - s€ S\ S}
elements:= elements) {s— [] - s€ S\ SA orderedproperty(s))}
U{s—{} - s€ S\ SA—orderedproperty(s))}
return((E’, typé€, slots, S, property, element§, e)

Figure 4.1: Implementation of Creating a New Model Element

The operation deleteM x E — M deletes an element. We require the element
being deleted to have no connections to other elementssviaits. Therefore the
precondition for deleting an elemeats:

1. (Vseslotge) - #s =0)

The postcondition is that the element must no longer be is¢hef elements:
1. E'=E\{e}

The implementation for element deletion is given in Figu2 4

4.3 Unidirectional Edit Operations on Models

We begin by describing in detail how to unidirectionally enisto or remove an
element from a slot. These operations are the basic ediabpes for models that
are necessary to implement a model repository and a modesftrienation system.

75

deletéM,d) :=
M = E,type, slots S property, elements
type :=type\{e—c - e=dAe— cetype}
E':=E\{d}
property := property\ {s— p - slotownefs) = dAs— p € property}
S := S\ (Dom(property) \ Dom(property))
slots :=slots\ {e—~s-e=dAe—se S}
elements:= S < elements
return(E’, typ€, slots, S, property, element§)

Figure 4.2: Implementation of Deleting a Model Element

First, we describe the case of insertion into ordered or dead slots and
then the case of removing elements from slots. The pre- astt@uoditions are
described as separate enumerated clauses. All of the slausiee precondition
must hold for the operation to succeed, and all the clausdéseopostcondition
must be guaranteed by an implementation.

Unfortunately, the semantics provided by this chapter hawe caveat. We
assume that the ordering characteristic of a property maiid same in its subset
and/or superset properties. That is, the following add#@lanetamodel constraint
must hold:

Metamodel Constraint 11 Ordering characteristics are same in property poset:
(Vpe P - (Vq e superset&) - orderedq) = orderedp))

We note that a slot and its transitive subset and supersistfelrm a poset with
respect to th&_g relation, as has been explained in Chapter 3. Then thesecslot
be drawn as a Hasse diagram.

4.3.1 Element Insertion into an Unordered Slot

Consider an operation insBrt# x Sx E — M such that insef{M, s e) inserts
elemente into slots. The intuition behind the insertion operation is that all su
persets o must contain the new elemeeftor the ISR constraints to hold. The
clauses for the precondition for element insertion into mordered slot are thus:

1. —strictUnion(property(s))

2. —orderedproperty(s))

3. e¢ elementss).

4. typege) C owneroppositéproperty(s)))

5. (3t € S- sCtAcompositépropertyt)) = parente) \ {slotowneft)} = 0)

76

6. compositéproperty(s)) = e ¢ parentchaifslotowners))

The clauses state that (1) we are not modifying a derived-oaadslot, (2) the
slot is unordered, (3) the element must not yet exist in tbe &) that we obey the
rules of strong typing, (5) we do not create a connection tec@isd parent foe
and (6) we do not create a circular composition.

The postcondition for element insertion is simple. We wimente to be
found in the slos and all its transitive supersets. All the model constraitsept
for the multiplicity constraints must also hold as a postitan.

1. (t €S- sCt= element§t) = elementét) U{e}) (NotesC s)

An example of element insertion into an unordered slot casdan in Fig-
ure 4.3. In case (1) of the figure, we have a poset of unordéoésl Suppose we
insert an element into slotg. This requires an insertion afinto slotsp andr
as well, to preserve the ISR, with the end result shown in &seAfter this, in-
sertingc into slott also inserts it into slog, again to preserve the ISR, resulting in
case (3). Slotp, g andr are not modified becausaalready existed in those slots.

p={b,a} r={ab} p={b,ac} r={a b} p={b,ac} r={a b}

s={a} s={a} s={a,c}
a={ a={ a={
t={a} t={a} t={ca}

) (2) 3)

Figure 4.3: Example of Inserting an Element into UnorderkxdsS

It can be noted that in our semantics, an insertion into angeér modifies any
subset of that slot.

The implementation of element insertion into an unordefed is given in
Figure 4.4.

insert'(M, s,e) :=
M = (E,type slots S property, element$
elements:= element§{x — elementéx) U {e} - x € SASC x}]
return(E, type, slots S property, element§)

Figure 4.4: Implementation of Element Insertion into an tdieved Slot

4.3.2 Element Insertion into an Ordered Slot

Subsetting with ordered slots is more complicated than witbrdered slots, due
to the need to preserve an order between the elements inediffelots. We define

1

the operation insett M x Sx E x Z% — M such that inseP(M, s, i) inserts an
elementinto a slots at indexi.

We assume there is a function indéxx S— Z°* which returns the zero-based
index of an element in the contents of an ordered slot. A fandbwer_index :
7% x Sx S— Z% is such that lower_indék x,y) returns the index inx where
y[i] should be inserted to preserve the subséty. It is shown in Figure 4.5
and is used to calculate which restrictions from supersgpdyeto subsets when
inserting an element. As an example, consider what theigtstr given by ele-
mentc (at index position 2) in the supersgt, b, c,d] is to its subsefa,d]. Then
lower_index2,[a,d],[a,b,c,d]) returns 1 since should be inserted between
andd.

lower_indexi,s,t) :=
if t[i] € sthen return indeft]i],s)
do
if t[i] € sthen return indeft]i],s) +1
else ifi =0 thenreturn O
elsei:=i—1
od

Figure 4.5: The lower_index Function

A function lift_interval :Sx Sx R — R, whereR denotes integer intervals, is
such that lift_intervals, t, [v..w]) “lifts” the interval [v..w] from sas superimposed
ont (whensCt). Itis shown in Figure 4.6 and is used to calculate whichriest
tions from subsets apply to supersets and works as the duaef_index. As
an example, consider the ordered sets [c| andt = [b,c]|. If we were to insert
elementa at index 0 ins, the corresponding interval farwould be[0..0]. This
interval is superimposed ontoas the interva(0..1], meaning that the same ele-
ment can be inserted either before or afteén t without violating the ISR. Thus,
lift_interval(s,t,[0..0]) = [0..1].

lift_interval(s,t,[v..w]) :=
if v>0thenv :=index(slv—1],t) +1
elsev :=0
if w= #s thenw := #
elsew :=index(sjw],t)
return[V..w']

Figure 4.6: The lift_interval Function

The function indices_ok?(S) x (S— R) — B returns true if when executing
indices_oKT,F) there is a possible way to insert an element into every slat in

78

such that the constraints kare satisfied. Herd; : S— Ris a map from slots to
integer intervalg v..w| such thatv < w wheree can be inserted. The function is
shown in Figure 4.7. Using the lift_interval and lower_irdanctions we restrict
the possible intervals wheeecan be inserted into the slots.

indices_oK0,F) := (vt € Dom(F) - F(t) # 0)

indices_oKT,F) :=
(FteT - (MueT - -tpu)
ARE N lift_interval(c,t,[v..w]) - (Ve - sC c<tAF(c) = [v..w])}
= indices_oKT \ {t},F[t = RNF(t)]))

Figure 4.7: The indices_ok Function

The precondition is otherwise identical to the case wheartirgy into an un-
ordered slot, except for the check for an ordered slot. aatithere exists an extra
clause which calculates if the insertion into the slot asdransitive supersets is at
all possible without violating the ISR.

1. —strictUnion(property(s))
. orderedproperty(s))

. e¢ elementss)

. (3te S- sCtAcompositéproperty(t)) = parente) \ {slotowneft)} = 0)

2

3

4. typge) C owneroppositéproperty(s)))

5

6. compositéproperty(s)) = e ¢ parentchaigslotowness))
7

. indices_ok{t - sCt},
{s—[i..i]}
U {t — [lower_indexindex(e,u),t,u)..lower_indeXindex(e,u),t,u)] - sC
t At CuAee elementsu)}
U{t—[0,#] -sCtA—(3u-tCuAecelementéu))}

)

The intuition behind the last clause in the precondition #reldefinition of
the indices_ok function is that we calculate the rangeiatigtns of e which exist
in any super- or subsets onto the other slots. Fhieinction is initially created
by describing constraints from supersdfsis created from three different clauses.
The first,s— [i..i], constraine to be inserted at exactly indéxThe second does
similarly for supersets which have a superset that alreadg hwvhereas the third
initially allows all indices to be candidates for insertiorhis initialization makes
sure thatF is restricted by the the elementghat already exist in any supersets

79

of s. Note that any slob such thab Ct AsC tAo0]|s is outside of the transitive
superset closure of and any restrictions from it will already be visible irand
thus it is not necessary to includen F.

Then, indices_ok calculates the constraints from subsetslaes set intersec-
tion to calculate whether an insertion is possible. The adtwnction takes all
supersetd and picks oné € T which is a bottom element, which must exist since
the slots in T are part of a poset. It then imposes all intsrfl@m subset slots
(such thas C c<t) ontot, also including the initial constraint dnlt then recurses
with a modifiedF until T is empty.

We claim, without proof, that if the final mappirfg contains only nonempty
intervals, it is possible to successfully inseiinto s at indexi. The postcondition
is:

1. elementgs)[i] = e

2. (teS- sCtaedelementft) = element§t) \ {e} = elementét)
Ae € element§t))

The current definitions do not tell us the exact index wheri@gerte into any
superslot of, only that a combination of indices exists; an indiefor a superslot
of smust exist somewhere in the range givenHiy).

An example of element insertion can be seen in Figure 4.8 Clgds the ini-
tial configuration of the slote/, X, y andz Let us assume an insertion of element
into slotw at index position 0 occurs. The returned slot ranges wheskould
be inserted raises the possibilities in cases (2) to (5)endipg on whethec is
inserted onto the left or right side of eithaiin sloty or b in slotz. Cases (2), (3)
and (4) are correct solutions and our postcondition doegpreder any particular
one over the another. Case (5) is not legal, becaus« siatnot preserve the su-
perset relationship as enforced by both sjaasidz, as element should occur both
beforea and afterb in the ordered set. Itis up to the implementation to choose on
of the correct solutions, perhaps with guidance from the. use

As we have shown, insertion into an ordered slot is rathergimated. The
precondition could only tell us whether or not there is asteane solution, not
what the exact combination of indices in different slotswgtidoe for a particular
solution. Naturally, we must avoid the combinations thahdbpreserve the ISR.

Hence, we believe that the notion of arsertion strategyis important. De-
pending on the effect the developer wishes to obtain, suttagegy will mechan-
ically calculate a particular solution and execute the @dnsertion operation. At
the moment we use only one strategy, that of always usingaftaridex position
possible.

The context in which the insertion strategy has to work isfihal functionF
whenT has been exhausted, as can be seen in Figure 4.7.

80

x=1[ab,d] x=[ab,cd] x=[acb,d]

y=I[ad] z=[b,d] y=1lacd] z=[b,cd] y=1lacd] z=[c¢b,d]

w=I[d] w=[cd] w=[cd]
1) 2 3
x=[ca b,d] x=[?ab,?2,d]

y=[cad] z=[c b,d] y=I[c¢ad] z=[b,cd]

w=[cd] w=[cd]
(4) ©)

Figure 4.8: Example of Inserting an Element into OrderedsSlo

Insertion Strategies

Our implementation assumes that a correct combination di€@s occurs if we
always choose the last index (i.e.pf F(t) = [v..w] for a slott). This has worked
perfectly in our experiments. Given our assumption, thelamgntation in Fig-
ure 4.9 is simple.

inserf(M, s e i)
Calculate the finaF as in Figure 4.7.
M = (E,type,slots S, property, element$
elements:= element§{t — elementt)[0 : w] <[e] <elementgt) w : #t]
-teSAsCtaedelementét) A[v.w]| =F(t)}]
return(E, type, slots S property, element§)

Figure 4.9: Implementation of the Insert Operation for QedeSets, Using the
Last Index Strategy

4.3.3 Element Removal from a Slot

The operation removeM x Sx E — M is defined such that remoid,s,e) re-
moves the elemera from s and all its subsets, as well as from those supersets
which would not acquiree via some other subset which is not comparable.to
Element removal from an ordered slot is identical to elenmemtoval from an un-
ordered slot since removing a specific element from an oddslet does not alter
the relative position of the other elements in the slot.

The precondition requires that a derived slot is not beingliffed and that the
element must exist in the slot:

81

1. —strictUnion(property(s))
2. ec elementss)
The postcondition:
1. (Vr €S- r Cs= elementér) = element§r)U{e} Aed elementqr))

2. (MteS-sCtA=(ImeS- mCtAml|ls Aee elementsm))
= element$t) = element§t) U {e} A e & element§t))

Both clauses in the postcondition are interesting. The dlesise states that a
removal from a slot triggers a removal from any subset, sotti@ISR can hold.
This can be contrasted with the insertion operation, whigbsdnot modify any
subsets. The second clause states that a removal from agi@rs a conditional
removal from any superset. An interesting feature of theszais shown in Fig-
ure 4.10. If we have an initial setting as in case (1) and rer@ofrom z, the
clause requires thatis removed fronx as shown in case (2), although this is not
necessary to preserve model consistency. However, wevbdlmat this feature
is the intended usage by the modeling standards. Inseriogai subset triggers
insertion in all supersets, and so dually a removal from asubught to trigger
a removal from all supersets. A similar chain of reasoning b@en reported by
Markus Scheidgen [162].

x={a,b,c} x={b,c}

y={b} z={a,c} y={b} z={c}

w={} w={}

1) ()

Figure 4.10: Removing from an Unordered Slat

As an example where the second clause is necessary, coRgldes 4.11 with
the initial setting as in case (1).

Assume we wish to remowefrom y. An incorrect approach is the removal of
afrom supersets and subsets would leavégthout a, but z with a intact, violating
the ISR, as shown in case (2). A correct option would be to xemacalso from
z, as shown in case (3), but our opinion is that this “snowlbféo’ of removing
a reduces the usefulness of subsets; glsthould affect slot as little as possible,
since they are not comparable in the Hasse diagram. Ourgmubton ensures
thata must be removed frorw andy, but not fromx, because still containsa;
this is seen in case (4).

Another interesting case is the ISR rule for derived slotgamd only if) z is
marked as derived, we must remember that its elements mistibe in the union
of its subsets. In case (5,is removed fromy which leads to it being removed

82

x={a,b,c} x={b,c} x={b,c}

y={ab} z={a,c} y={b} z={a,c} y={b} z={c}

(1) (2) 3)

x={a,b,c} x={b,c}

{ derived }
y={b} z={a,c} y={b} z={c}

Figure 4.11: Different Scenarios for Removiagrom an Unordered Slot

from w as well. Aszis marked as derive@ must also be removed from it, sinze
does not have any other subset contairdang his in turn leads t@ being removed
from x.

The implementation for the removal of an element for an erder unordered
slot is shown in Figure 4.12.

removéM,s e) ;=
M = (E,type, slots S property, element$
elements:=
element§{t — elementgt) \ {e} - t C s}
U{t — elementst)\ {e} - sct
A=(Im- mCtAm|| sAec elementém))}]
return (E, type, slots S, property, element§)

Figure 4.12: Implementation of Element Removal from a Slot

4.4 Bidirectional Edit Operations on Models

In the previous two sections, we showed how to create andedelements, and

how to unidirectionally modify one slot and its transitivebset and superset slots.
We emphasize the importance of unidirectionality; a consage of this is that the

operations did not modify any opposite slots. While the waational operations

are useful for low-level manipulation of models, they canipe used directly in a

high-level context, such as a model transformation, if we tar preserve model

constraint 5, the bidirectionality constraint on slotsnfr the previous chapter.
However, we can define another set of bidirectional slot aijg@ns based on the
unidirectional ones.

83

We note that given a slatsuch thate € elementss), the opposite slot that is
owned by element is the unique slot:

def

slotoppositée, s) = r, such that slotownér) = e A oppositéproperty(s)) =
property(r)

Due to the evident use of an index parameter for insertiamondered slots and
no parameter for insertion into unordered slots, we canlcolecthat a bidirectional
operation on a slat and elemene such thake € elementss) can be split into four
cases, depending on whether they are ordered or not:

e —ordereds) A —~orderedslotoppositée, s))
e —ordereds) A orderedslotoppositée, s))
e ordereds) A —orderedslotoppositée, s))
e ordereds) A orderedslotoppositée, s))

We create four functions that implement the above casesfariing an ele-
ment, and a single function that implements element remoMaé preconditions
of the following functions are the conjunction of the preditions of the individual
operations of which they consist. Similarly, the postctinds are the conjunction
of the postconditions of the individual operations of whilkhhy consist. Thus there
is no need to repeat them here.

4.4.1 Element Insertion into Unordered/Unordered Slots

The first function inselt': M x Sx E — M describes insertion into an unordered
slot with an unordered opposite slot. The implementatiornt @an be seen in
Figure 4.13.

insert(M;s,e) :=
return insett(insert'(M, s, e), slotoppositée, s), slotownexs))

Figure 4.13: Implementation of Element Insertion into Wered/Unordered Slots

4.4.2 Element Insertion into Unordered/Ordered Slots

The function inset’ : M x Sx E x Z% — M describes insertion into an un-
ordered slot with an ordered opposite slot. The impleméentiatif it can be seen in
Figure 4.14.

84

insert°(M;s ei) :=
return inser(insert'(M, s, e), slotoppositée, s), slotownexs), i)

Figure 4.14: Implementation of Element Insertion into Utened/Ordered Slots

4.4.3 Element Insertion into Ordered/Unordered Slots

The function insef" : M x Sx E x Z% — o describes insertion into an ordered
slot with an unordered opposite slot. The implementatiorit @gn be seen in
Figure 4.15.

inserf(M;s,ei) :=
return insett(inserf(M, s, e,i), slotoppositée, s), slotowne(s))

Figure 4.15: Implementation of Element Insertion into QedtUnordered Slots

4.4.4 Element Insertion into Ordered/Ordered Slots

The last insertion function inséft: M x Sx E x Z°% x %" — o describes in-
sertion into an ordered slot with an ordered opposite slbie implementation of
it can be seen in Figure 4.16.

inserf°(M, s, eiy,iz) :=
return insei}(inserf(M, s, e i1), slotoppositée, s), slotowne(s), i)

Figure 4.16: Implementation of Element Insertion into Qedi¥Ordered Slots

4.45 Element Removal from Slots

Bidirectional element removal can be described by the fanatemove : M x
Sx E — M as given by the implementation in Figure 4.17. It works reigss of
whether the slot or its opposite is ordered or unordered.

We note that the unidirectional operations do not presergdeahconstraint 5,
i.e., bidirectionality, whereas the bidirectional opeyas preserve it. We claim that
the other model constraints, except the multiplicity coaist, are preserved.

Then, only model constraint 4, that of restricting the numbieelements in
slots to the multiplicity limits of the property, can be vébéd by these operations.
We do not preserve this constraint because of the atomitttyecmoperations. Con-
sider a slot with a lower multiplicity greater than zero. Wihereating an element
with such a slot, we should immediately populate the slohwitough elements

85

remove (M, s.e) :=
return removéremoveM, s, e), slotoppositée, s), slotownexs))

Figure 4.17: Implementation of Bidirectional Element Realo

for the multiplicity constraint to hold. But this is not pdske with the operations
that we have described.

Although we could extend our operations further, there igffar@nt solution.
We can use a sequence of basic operations Our anecdotaiezxqeeis that a suffi-
cient solution is to add &ansaction mechanisimnto our modeling tool of choice.

Indeed, the implementations of the bidirectional operaiare merely a se-
quence consisting of two unidirectional operations, andg twe could claim that
a transaction mechanism is already necessary at this le\mliever, we feel that
bidirectionality is such a fundamental part of manipulgtand navigating models
that the bidirectional operations that have been desciib#ds section are the ba-
sic operations in a modeling framework, and more complataigerations should
employ the aid of the transaction mechanism.

4.5 Related and Future Work

Apart from the related work as mentioned in Chapter 3, we aig aware of the
work of Markus Scheidgen [162] on operations for subset @ridgs. In his ap-
proach to formalizing model edit operations on subsetsptansbdification creates
anupdate graplof slots, so that a later modification at some other slot inufaate
graph actually updates all the associated slots. The ampagaational semantics are
unfortunately not described in detail. In comparison, wendbhave to create or
maintain any update graphs. Furthermore, our contributimnonly discusses but
also defines pre- and postconditions and implementationthé operations for
ordered and unordered sets. It is also not clear if the worlSblgeidgen sup-
ports diamond subsets or ordered sets, both of which areinged. the UML 2.0
Infrastructure. However, our semantics are different dnsl mot clear which for-
malization is better suited for modeling purposes.

As already mentioned in Chapter 3, the basic edit operatiomdving subsets
have been implemented in the Coral tool. We have found nesaminconsisten-
cies in our implementation.

There are several different theoretical tasks for futurekwiche first and fore-
most task is to prove the correctness of the pre- and postamlas well as the
implementations. Second, throughout this chapter, we bege clear that the ele-
ments in a slot are an unordered or ordered set. It might beterfast to formalize
the framework forbagnesswhereby a slot may contain the same element several
times. It is fairly straightforward to extend this framewdior unordered bags,

86

even with subsetting, but our initial experiments with getebags and subsetting
have not been as successful.

Third, we might wish to incorporate covariant specialiaatinto the frame-
work, as so many authors are implicitly using covariance, experience from the
object-oriented community is that covariance is a usefakcept.

Fourth, the MOF characteristic of redefinition is still fgiarbitrary, badly de-
fined concept, and could certainly take advantage of a mgoeaus definition.

Furthermore, we have not discussed metamodel evolutioeravproperties
and classes are redefined, and how models must be updatediaghyo especially
with respect to subsetting. We have followed a basic assampitat metamodels
are static, but we should note that there are object-owkinéeneworks where class
updates or redefinitions are possible, for example Commsp [48].

4.6 Conclusions

There are several new property characteristics describ®&OF 2.0: subsets, (de-
rived) unions and redefinitions. However, these standacdaad describe these
concepts in detail, not even informally, and therefore carbe applied in prac-
tice. In this chapter, we have presented basic operatianslédment creation and
deletion and slot modification, taking into account subaatsderived unions. We
have given usage examples where subsetting provides auredgrhental approach
to language extension. Several authors have used propdrsetsing informally,
almost always referring to covariant specialization. Falimation of covariance
leads to a different result than the one presented in thiptehaBoth subsetting
and covariance specialization have their uses, howevdraenthus complement-
ing rather than competing constructs.

There are limitations in the work presented in this chapecept for the ones
already discussed in the previous chapter. It would be u#efiue precondition
on checking indices related to ordered insertion into asbold be removed. We
also assume that a subset property should have the saméngrdbaracteristic
as its union property. However, we notice that it is also fmssto mix these
characteristics such that an ordered slot may be a subsatwfadered slot. The
extension is trivial since it weakens the precondition beseawe do not need to
preserve any indices in the unordered slot. The UML 2.0 tftecture uses this in
the association—memberEnd relation in Figure 11.5 of [142]

However, the opposite case where an unordered propertyetsubs ordered
property is problematic. Insertion into an ordered slotuisgs an index, but the
initial insertion into the unordered slot does not tell whindex or indices to use in
any supersets which are ordered. We do not see any benefiissinipg semantics
for this construct. However, it must be noted that Figurer Idf.[142] does show
an example where an ordered property is subset by an undrdeee We believe
this example, to be erroneous. We have not found such a usdgerpin UML 2.0.

87

Furthermore, ordered bags are not considered in our forat#in. The reason
for this can be shown with an example. Consider a Sdtsubsetting another
slot[a,b,a]. Inserting an element into the subset slot is problematcabse we
have to match elemeatto one of thea in the superset slot, but it is not possible to
deduce which one.

As we have shown, the formalization presented in this chagate be imple-
mented in a straightforward manner in a model repository. plém to use our
new definitions in implementing the UML 2.0 metamodel withgliam editors in
Coral. In doing so, we strive to acquire experience in usigssts and derived
unions in large models.

In conclusion, we consider that this work is important besgathere is an im-
minent need in the modeling community to standardize on onmadlization of
subsets and derived unions, so that tools implementing MO&rd UML 2.0 can
be interoperable. The semantics described in this chaptemé proposal and we
hope it spurs further interest and discussion. Furtherptbeeidea of subsetting is
intriguing, since it is a new construct for modeling relatihips between classes
and objects, and thereby brings a novel idea to the modetidgoaject-oriented
community.

88

Chapter 5

Implementation of the Simple
Metamodel Description Language

5.1 Introduction

In this chapter we present the definition and implementatfom modeling frame-
work called Coral. Coral is based on a simple metamodelinguage that supports
the concepts defined in Chapter 3 and some primitive datatype

We call the metamodeling language the Simple Metamodel iptien Lan-
guage (SMD). We explain it and show how metamodels and madeldescribed
internally in Coral. We also show how metamodel files desctibsing the SMD
language are transformed into metamodels inside the framkew

The work in this chapter is important because it allows usal@ate our ideas
in practice. Even though itis crucial to have a wellfoundeebtretical basis for the
metamodeling language, as discussed in the above-medtbagters, it is far too
easy to overlook details without a working prototype. Faamyple, we notice that
supporting serialization of models affects SMD and its iempéntation.

This chapter is based on experiences from all our publinatidhe Coral tool
has been presented in Publication V. We proceed as follovesdéslcribe the SMD
language in Section 5.2 In Section 5.3 we discuss the impi&atien of models
and metamodels in the framework, along with relevant knoimmtations. We
discuss related work in Section 5.4 and conclude in Sectidn 5

5.2 The SMD Language

The Simple Metamodel Description language (SMD) is our ninddanguage to
define models that define modeling languages. In other witidss metamodeling
language or a metametamodel. SMD is analogous to MOF, bre Hre several
reasons why we have chosen to use our own language instea®bf Rtimarily

we have wanted to explore which concepts are really reqlicea a metamodeling

89

language, and as a result SMD is based on fewer concepts t@d&navid therefore
it is easier to implement and understand. Additionally we iaterested in exper-
imenting with new metamodeling constructs or new semaifticeld constructs.

Our experiences in implementing and using a working tootdetthe formalization

of SMD as described in Chapter 3. It can be seen in Figure 5.1.

classes Definition
. | name: String
0..1 package
Package
URInamespace : String
* subclasses
* { unserializable }
superclasses
ElementDefinition DatatypeDefinition
Language
guag isAbstract : Booolean
. 1 root
version : Integer
revision : Integer 0.1 wype | 1 owner
EnumerationDefinition
values : String[*ordered]
* * | properties
« enumeration » Property
OwnershipKind defaultValue : String
association isBag : Boolean
composition isOrdered : Boolean
isUnserializable : Boolean

multiplicity_lower : Integer
multiplicity_upper : Integer
« | name: String

ownership : OwnershipKind

J * subsets

{ unserializable } opposite 0..1

supersets

0..1 opposite

Figure 5.1: The SMD Language

It must be noted that although SMD has been developed indep#y from
ECORE, it still is very similar to it, and some features of ERBwere added to
SMD to support ECORE models. SMD consists of a Language mastawhich
describes a modeling language. It has a name, URInamespas&n and revi-

90

sion. The latter three are intended for humans, e.g., tHe WML, 1,4) describes
the UML 1.4 language. However, URInamespace is the XML naa@s decla-
ration for serializing any models written in a specific madgllanguage. This
concept will be explained more extensively in Chapter 6. Tdw property de-
scribes which class should be instantiated to create a ertamy model of the
modeling language. For example, the UML 1.4 language halltuel class as its
root.

Package instances are otherwise like Language instantasgtassumed to be
a owned by a Language instance, since they lack the versibreaision informa-
tion. A hierarchy of Package and other Definition elementshmcreated with the
Package.classes property. It can be noted that neitheruagegnor Package are
part of the formalization from Chapter 3. They are merelyvaient containers
of the other definitions.

Various DatatypeDefinition elements are defined but canaatrbated by the
metamodel designer. They are hardcoded primitive typebhenIMD language.
New EnumerationDefinition classes can be created to defineenemerations.
For example, a UML 1.4 Attribute has a VisibilityKind enuragon which defines
the values public, protected, private and package. Thevlitse is assumed to be
the default value, unless Property.defaultValue ovesritie A limitation of SMD
when compared with the formalization in Chapter 3 is thatnjtive types cannot
have properties. This is a very common limitation in metaading) frameworks.

ElementDefinition is used to define new classes in a modetinguage. Its
most important concepts are properties and superclass&operty defines one
endpoint of a relation. It can be connected to some otherdPpelement or to
itself; this later part is not allowed in the formalizatiami Chapter 3, but it is for
convenience. It defines the various property charactesists given in Section 3.4
and Section 3.6. It also adds the Property.isUnseriakzabhbracteristic; slots of a
property with the isUnserializable characteristic settetare not serialized. This
is very useful for some transient modeling data which is revsistent. For exam-
ple, references to subclasses and subset properties feosafierclass and superset
property, respectively, should not be saved since we wistiatimy languages to
be independent of their extensions.

We note that akin to MOF 2.0 and EMF, SMD also supports only kinols
of ownerships: association and composition. Multiplicigstrictions can only
be given by a single range, with an upper multiplicity -efL denoting infinity.
An interesting detail is that during the implementation loé tCoral core, Pack-
age.URInamespace was renamed from Package.xminameshecé an XML
restriction which is explained in Section 6.3.2.

As our experience in metamodeling grew, we added more fesitileemed nec-
essary to SMD. The default values for primitive obligatorpgerties, i.e., those
with a multiplicity of 1..1, are an example where a feature was copied for com-
patibility reasons from EMF. Property subsetting is a feathat has hitherto been
unavailable in most (if all) other modeling frameworks.

91

The SMD metametamodel can be described using itself. Aspted, there
is an interesting problem with it. It uses primitive typéeeeliintegers and strings.
These can be seen in Figure 5.2. The most important elemére iknyElement
class, which is the superclass of any other class. Its rdteserve as the toplevel
definition in any language hierarchy, similar to java.l@igject in the Java pro-
gramming language [64].

AnyElement : ElementDefinition| |Boolean: EnumerationDefinition| |Integer: DatatypeDefinition

PythonObject : DatatypeDefinition String : DatatypeDefinition Double : DatatypeDefinition

Figure 5.2: The Primitives of the SMD Language

This presents an interesting conundrum, as AnyElement hgmeaf Element-
Definition, and the superclass of ElementDefinition is (iiciy) AnyElement.
In addition, this definition crosses metalevel boundartldewever, this is merely
an artefact of the metacircularity and does not effectiyalysent any problems.
An implementation must bootstrap the SMD language in sonmementation-
specific way.

There is also a set of predefined primitive types: integangtdouble floating-
point, the boolean enumeration type and PythonObject. Thaybe used when
an entity cannot be broken into smaller constituent partsyleen such primitive
values are a natural way to express their contents. The RYfl&D] object type
enables us to attach any arbitrary Python object such asigedpwvidgets to a
model element and it is usually used in unserializable Sldtke enumeration
named Boolean has the valuesseandtrue, and is predefined for the sole reason
that it is so frequently necessary.

5.3 Implementation

As stated previously, our implementation of SMD is a modgfiamework called
Coral. It has been developed by our research group and caedmeas an im-
plementation and validation of the ideas presented in tigsis. Its current ver-
sion consists of over 23 000 lines of C++ [170] source codé Wwihdings for the
Python [180] language.

The SMD language defined in Figure 5.1 requires the concépiasses, enu-
merations and primitive types itself. This is the bootstiag problem that all
implementations of metamodeling tools need to cope withnie way or another.
Therefore, although the SMD language can and is defined aM@nrsetamodel,
it cannot be loaded into a metamodeling tool based on SMD deroto define

92

SMD. Rather, it must be bootstrapped in-place. The detéilsi®is not important
as it is dependent on too many internal implementationaatfin a metamodeling
tool.

Even though SMD cannot be loaded from a file in order to defswdfitother
languages can be defined as SMD models. Thus, the Coral careiisplemen-
tation of SMD itself, which allows us to load additional m@tadels defined as
SMD models. Additionally, there is an interface for cregtimodels based on
these metamodels.

5.3.1 The Metamodel and Model Layers

There are different ways to realize a metamodeling tool,thnod there are several
ways to represent metamodels and models internally in a lmgdol. Some
tools present each ElementDefinition in a modeling langw@age class in the pro-
gramming language used by the tool and each element in a ragdel instance of
such a class. For example, such an implementation of the Uktiammodel in Java
would have a Java class named State that will represent finitida of a UML 1.4
State. New elements in a model are created by instantidtmdava classes.

There are several problems with this approach. The mostabvis that it
is not possible to define new modeling languages dynamigatlyout compiling
or loading new source code, i.e., the compilation enviromnneust be accessible.
Also, the definition of a modeling language may inherit sorhthe limitations of
the programming language. For example, in Java, a clasoothane a space in
its name and neither can it use multiple implementationritdrece conveniently,
so some kind of cumbersome or complicated tricks must beegppthich might
make the final system less clean resulting in more maintenaack.

The lesson to take from this is that one should not use thedggenheritance
mechanism of the host language to define a metamodelingltoeffect, a meta-
modeling tool provides a lightweight virtual machine witls own type system.
Models and modeling languages should be seen as dynamistdattures that
are created and updated regardless of the host languags.wakiimplicitly es-
tablished in Chapter 3, in which a dynamic environment oesaManguages and
language extension mechanisms was described.

The metamodel layer as implemented in Coral can be seen inme-lg3. It
bears a strong resemblance to the definition of the SMD lag®yira Figure 5.1,
although some small differences due to the C++ conceptafigtownership can be
seen. The gray classes Atom and Slot represent how the nageei$ connected to
the metamodel layer. The Property.isAnonymous charati@nvill be explained
later.

The internal representation of models in Coral can be seé&igure 5.4. We
can create a model by instantiating suitable Element abgatl connecting them
via their Slot objects. Every Element is linked to its typejieh is an Element-
Definition object. The Slot objects of an Element are giverthgyProperty objects

93

. Déefinition
classes 1 type
0.1 name : String *
package Atom
Package

URInamespace : String

* subclasses

Zﬁ * { unserializable }
superclasses ElementDefinition DatatypeDefinition
Language
guag isAbstract : Booolean
. 1 root
version : Integer
revision : Integer 0..1] owner
type
yp EnumerationDefinition
values : String[*ordered]
* *| properties
Property
«enumeration »
defaultValue : String
OwnershipKind)
isBag : Boolean
association isOrdered : Boolean read_only_slot Slot
composition isUnserializable : Boolean
multiplicity_lower : Integer 0.1 1
multiplicity_upper : Integer
name : String
ownership : OwnershipKind i
supersets * p p 0..1 opposite
isAnonymous : Boolean
A * subsets
{ unserializable } opposite 0.1

Figure 5.3: The Metamodel Layer in Coral as a C++ Class Dragra

of the type of the Element. Thus, each definition in a modelamyuage is im-
plemented as an object instance of the ElementDefinition €lass, while each
element in a model is implemented as an object instance &ldment C++ class.
That is, the definition of a UML State is an object in the Coraitrme while an

instance of a UML State is also an object. This allows us touilg flynamic,

as new languages can be created at runtime. Also, Coral maplete control

over the inheritance and property mechanism of the modédinguages. That is,
the inheritance mechanism in modeling languages defined\iy IS completely

independent of the inheritance mechanism in C++,

94

Project

Property
0..1
property ‘| 1 rootsy 1
collection Collection .
1 Definition
Slot i name : String
slots
4& elements 1 type
0..1‘ | .
element
SlotManyElements SlotOneElement Atom
0.1 .
owner | 1
Element ElementPrimitive
DCE_UUID: String

Figure 5.4: The Model Layer in Coral as a C++ Class Diagram

The model layer in a model manager is responsible for magagodels. Mod-
ification of the data is performed via a program interfacejcliprovides suitable
interfaces for valid modification of models. A discussionddferent features of
such interfaces can be found in [152]. A detailed descniptibone of these inter-
faces is the Java Metadata Interface (JMI) Specificatioh [79

Slots are implemented using two different classes: one ¢tasslots with only
one (possibly optional) element and another for slots witladbitrary number of
elements. The latter case requires different containerar i@plementation of
containers supports the cross produchérdered ordered x {set bag}. These
are the well-known four different OCL collection types [13hd are implemented
as four different classes with a common Collection supsscl&urrently, bags are
not supported in slots, so the only possible subclassesdindbe used are Set and
OrderedSet. However, bags can otherwise be used in otHectwoh objects.

However, while collections are simple element containeigpt is also respon-
sible for maintaining bidirectionality. Coral automatigetakes care of bidirection-
ality, i.e., modifying a Slot modifies also the opposite Sibhe interface does not
allow the user to modify the underlying Collection of the Slaectly.

95

The primitive element types are implemented as separatediasses, where
each class wraps the corresponding primitive C++ type. Taisbe seen in Fig-
ure 5.5. The reason for using classes instead of the prin@iv+ types directly
is that this makes some data processing internally easidipth the Element and
ElementPrimitive classes have a common superclass calted. Al he strings used
by Coral are internally encoded as UTF-8 [178], meaning #mgtstring data can
be represented, and for example Scandinavian or Asianakeasaare supported.

ElementPrimitive

1

ElementPyObj Elementinteger ElementDouble

value : Object value : Integer value : Double

ElementEnumeration ElementString

value : Integer value : String

Figure 5.5: Primitive Element Types

5.3.2 Registering New Metamodels

After bootstrapping Coral, it only knows of two languageMSitself and a helper
language called XMI 1.2 which handles XMI.Extension eletador serializing
models into the XMl format. Serialization using XMI will bestussed extensively
in Chapter 6.

An important property of a metamodeling tool is the abilildad new meta-
models on demand. In Coral, this requires a facility for griming which meta-
models exist and where they can be found, and a routine fdiigeSMD models
and interpreting them as metamodels.

The first task is done by searching through the filesystemedgfined direc-
tories for short description files which map the XML namespdeclaration or the
tuple (name, version, revision) to the corresponding SMDlehdile. When Coral
is told to load a model from an XMl file, that file must have an XMamespace
declaration which describes which metamodel has been Udsalloading of the
model is temporarily suspended and the metamodel is lodde&coral, this meta-
model is further converted into a language.

96

The second task is a special routine calleetamodel2languagdat interprets
a SMD model consisting of Elements and Slots as a modelirgukge consisting
of ElementDefinitions and Properties. Once the new langhagdeen configured
in the kernel it is possible to continue loading the origimeddel, or create models
based on this language. This arrangement can be seen ireEidur

SMD UML 1.4
f f
! metamodel2langua |
Instance of ! ! Instance of
I I
! !
Model of UML 1.4 User Model

Figure 5.6: Lifting an SMD Model to the Metamodel Layer

Similarly, there also exists an opposite operatianguage2metamodelvhich
transforms a language back to an SMD model. This is portraydegure 5.7.
Using this technique, we can manage our languages usingthe miterfaces as
we use to manage models.

UML 1.4 SMD
A A
l language2metamodel,
Instance of ! ! Instance of
I I
! !
User Model Model of UML 1.4

Figure 5.7: Lowering a Language to the Model Layer

A model manager only needs to provide built-in support tovesnmodels
from one specific metamodeling language. In the case of Ceeabnly provide a
mechanism to convert an SMD model into the internal reptasiem of a model-
ing language. This decision is arbitrary but sufficientgcsiit is possible to define
model transformations from other languages into SMD. EXampf these trans-
formations, which are available in Coral, are:

e From UML class models to SMD.
e From ECORE models to SMD.

e From a human-readable textual notation to SMD (similar ® kM3 [84]
notation), made by Ivan Porres.

97

We consider that it is more cost-effective to define such emigns as a nor-
mal model transformation by a separate script than to peosigport in the model
manager for all these languages. Other users can define gsafntese transfor-
mations as required using a high level transformation lagguvithout increasing
the complexity of the model manager.

Metamodels are relatively small. Even languages as lardéhils 2.0 only
have a few hundred definitions. This allows us to perform theversion from
metamodels to languages on the fly, i.e., when a model basemh@mf these
languages is loaded by the kernel.

5.3.3 Enforcing Bidirectionality

Coral enforces bidirectionality according to the modelstamints defined in Chap-
ter 3, with the behavior as defined in Chapter 4. There is @nésting addition for
aiding navigability, whereby unidirectional relationgeaiways and automatically
made bidirectional in case both classes are nonprimitigegy This automatically
created property is called @monymougroperty in our terminology, meaning that
its isAnonymous characteristic is set. It requires a cdrefplanation. Anony-
mous properties are useful when we want to extend a modedimguiage while
maintaining compatibility with other tools. Imagine thaewant want to create
a new modeling language that combines UML classes and Regi in our new
language we want to be able to navigate from a class to a Pettamd vice versa.
The problem is that if we extend the definition of a UML classhwa property
definition that points to the Petri net, the resulting moaelsnot conform to stan-
dard UML. Other tools may have problems loading our extend&tl. models,
since the models will contain references to Petri nets. B¥eib tools based on
our model manager may panic if they can reach a Petri net frohivh class, for
example, using reflection.

The solution is to hide this property by specifying that tmegerty that links
a UML class with a Petri net is anonymous. The property is thalg accessible
by its opposite property. In this way, only tools that exglycknow about the Petri
nets can reach these models.

An anonymous property is different than a unidirectiondatien. A unidi-
rectional relation is only navigable from one property whd relation with an
anonymous property is navigable from both properties, ipgexv we are aware of
its existence. In Coral, the only unidirectional relatiare the ones with a prim-
itive type. From an ElementPrimitive object, Coral cannotess the Slot objects
which point to it.

An anonymous slot is one which conforms to an anonymous piyople can-
not therefore be accessed directly. However, an anonymnlotisan be accessed
via its opposite slot. Since anonymous properties do noe pawper names, slots
conforming to them cannot conflict with existing slots in adabelement or any
future extension. On the other hand, such slots cannot lised into an XMl

98

document and are thus automatically unserializable. Ong/tbe properties of a
binary relation can be anonymous. It is possible to simuftateconcept program-
matically, using a separate data structure. This is proeertos, since a developer
might forget to update it correctly. Using anonymous préipsrand slots is more
convenient, with usually a marginal increase in memory aiodgssing time con-
sumption due to the anonymous slots.
It can be noted that OCL [131] explicitly permits tools to pop the concept

of anonymous slots.

5.3.4 Optimizations

Performance is an issue in a model manager since indusizelmodels may con-
tain millions of model elements across several files or detab. Unfortunately,
there are no standard benchmarks tests to compare Coradimitlar tools such as
EMF or NMR. Thus we only have anecdotal experience in usiegrterface for
various tasks and can conclude that the Coral model maragefficiently fast for
interactive uses for tens of thousands of elements.

An interesting optimization is the delayed creation ofsldtor example, given
that a UML 1.4 Class element has over 40 slots but usually amgtatively small
subsets of them are used in some specific instance, it makes &&create slots
lazily, i.e., the first time they are accessed. In the comname ©f using only some
slots of an element, this makes significant heap space sauimgs even giving a
net speed increase as less work has to be done.

Another optimization can be seen in Figure 5.3, where easpd?ty object has
a corresponding empty Slot object in Property.read_omby. $Ve have observed
that many routines only query the slots of elements withoodlifiying them. For
example, saving a model queries all slots. Thus delayedieneaf slots would
not be very useful, since a save operation would requestadl sf all elements
that were saved, thereby creating all the slots. But, it issfiide to recognize
read-only purposes in C++ with tliwnstkeyword, meaning a logical and shallow
constant view on an object [171]. Thus, when querying a cBienhent object for
Slot objects, we can return the corresponding read-only@lject of the Property
object in question. This has considerable heap space sawingthe benefit is lost
by language bindings without the same concept of logicattmss as the one in
C++, such as Python. However, algorithms written in C++ alhdfit from this
optimization almost without effort from the developer.

5.3.5 Known Limitations

This section explains the known limitations of SMD or its ilementation, Coral.
They are based on our experience of using the implemenjati@hemphasizes the
relevance of trying out an idea in practice.

99

No Explicit Relations

The binary relations provided by the SMD language are forhnetivo cooperating
Property objects. These constitute the underlying bitimeality that is prevalent
in Coral and other modeling frameworks. However, there iexuicit concept for
the relation itself. This is unlike MOF 1.3 or GXL, where thesire Association
and RelationClass elements to keep explicit track of ieati

There are certain small drawbacks in not using an expliggalfor the rela-
tion. For example, the data in a Property object must confioria very specific
way to the opposite Property object in a relation. For examnilone Property
object is set as a composite, the opposite cannot be corapasiexplained in Sec-
tion 3.4.4 by metamodel constraint 3. This information coloé encoded in the
relation, and thus no extra metamodel constraint would lcessary.

However, the biggest drawback is that sometimes we woukdtbkrefer to a
relation although we do not have an explicit object for it.other words, we have
a need in our modeling technologies to refer to either elésnensome particular
connection between two elements (or classes, or metasjaséée could reify a
connection into an explicit object, but we can always take poblem one step
further: is there a need to refer to the concept between amegieand a relation?
And when do we stop? Andreas Prinz, Jan P. Nytun, Leiming GinehSun Wei
also mention this complication in [154]:

It is possible to reify (i.e., view as objects) links and asations so
that they can be modeled as objects and clabjects [sic] ctheplg...
The difficulty in reifying links is not in working out how to ew them
as objects, but in knowing when to stop viewing them as objetb
break this potentially infinite regression it is necessaridentify cer-
tain kinds of links as implicit or primitive links which wilhot be
stored as objects.

In hindsight, we would have benefited from an explicit relatbbject for de-
scribing the connection between two SMD Property objects. crrent graphical
modeling layer built on top of the Coral model manager carshoiv a link as an
edge on screen because the relation is implicit. This mighhbrely an issue with
the graphical tool itself, but it might also indicate a mosedamental issue. Un-
fortunately we have relatively little experience in undangling this concept, but
we feel that this might be much more important than what weettily realize.

SMD is Hardcoded in the Tool

We have a lot of experience in actually using the Coral modaiager, and we feel
that we can draw some conclusions on SMD itself, and on usifi.SMD is im-
plemented as C++ code and therefore any change in SMD reqaisghange its
underlying implementation. A language such as SMD contaifesv but very im-
portant concepts that cannot be changed easily. Also, elsdngMD may require

100

changes in any other tool component based on SMD, for exaolgraphical

modeler. For example, adding shared composition to thepratation of owner-

ship will require a major revision of the model manager. Alsmst tools must be
reviewed and updated accordingly.

Having a fixed language to describe modeling languages leagnjblication
that users cannot develop new metametamodeling technimueknguages with-
out developing a new tool or extending the tool they are usingontrast to this,
an interesting idea is being developed by the Open Systewsl@mnent Group at
Agder University College in Grimstad, Norway. The Semaiietamodel-Based
Integrated Language Environment project (SMILE) [153] l®d Andreas Prinz
strives to create a modeling framework in which the metarisodied models have
a uniform representation and different semantics can leledd [122].

At the metamodel layer, the distinction between a Packageaabhanguage
is not very well motivated, and we could have removed the &rone without
any significant loss. At the model layer, the Project classutside the meta-
model/model abstraction as a separate C++ class. We feethibashould have
been a class in a (perhaps special) metamodel, and thenduaivProject ele-
ments could be instantiated from it. Now, there are diffemeterfaces for handling
Project and Element objects, which is confusing. Also, weebe that having both
SlotOneElement and SlotManyElements is an optimizatioderao early. Sev-
eral internal routines have to take both subclasses intmuetcwhich leads to more
cumbersome programming.

The current implementation of the model layer assumes girout that ele-
ments are kept in memory. There is no support for on-demaaming and unload-
ing of models. In our research, we have not had problems Wighlimitation.

Primitive Datatypes

Another consequence of SMD being hardcoded in the tool istitieae is no sim-
ple way to add new user-defined datatypes to SMD. This wowddire explicit
support from the Coral model manager to function properlysp&cial case are
EnumerationDefinition objects, which the developer isvedid to use to define
new enumerations.

Another known limitation with the current numeric primigis is that no mag-
nitude or range limits are defined; there is no metamodedpeddent way to know
if a numeric value models small or big values, and the modelagar cannot be
allowed to round numbers to, for example, produce prettigpat. A generic tool
has to display and store a floating-point value with the jgieniprovided by hard-
ware or use a numeric library that supports arbitrary-ieai (floating-point and
integer) numbers, both resulting in long awkward numbersraCcurrently uses
the precision of the underlying hardware for both floatirayap as well as integer
numbers, as this question has not been interesting to us.

101

Languages and Metamodels are Distinct

Languages and metamodels-as-models are distinct conéama though there is
a one-to-one correspondence between a metamodel and admgtuwould be
more convenient in practice, albeit slightly less efficiahthese were the same
objects in C++.

This is a part where we believe that Coral should have beeglaesd as most
virtual machines like common C#, Java and Python implentiemnis, where EI-
ementDefinition (or its equivalent) is a subclass of Elemardtead of being a
completely separate concept. Reusing or modifying aniagistrtual machine to
accommodate the additions that modeling technology brirsgsould have been a
faster path to a good implementation.

5.4 Related Work

Related work in this field can be split into two partially olegaping areas. One
area contains articles about metamodeling languages arfactie standards for
metamodeling languages, published articles on suitabligims and structures.
The other area includes practical implementations of thestamodels as software
tools.

Among the more popular languages to define modeling languagethe MOF
and EMF metametamodels. Coral has several common and isiraita with both
MOF and EMF. Eclipse itself is a full-fledged pluggable depehent environ-
ment and utilizes EMF to provide a good middle ground betw@enextremes,
programming and modeling. EMF provides a subset of UML inftiren of class
diagrams. It generates Java classes with get/set methadslifiadual slots as well
as providing a generic API for accessing all the slots.

Varro and Pataricza presented in [183] a multilevel metagtiod technique
called VPM. VPM uses covariant specialization of elemeefinitions and single
element inheritance.

The KM3 metamodeling language [84] and Kermeta [90] are @mantations
built on top of the Eclipse platform. Microsoft has relativeecently begun their
DSL Tools effort in the context of Software Factories [66]ssEntially there are
very few differences between any of them, or with Coral. THelLOools have
more integrated support for describing the concrete syofake constructs of a
new metamodel.

Coral does not generate code for elements in a similar velacipse EMF.
Instead, Coral keeps everything as models, thus primaakitipning itself as a
metamodel-based modeling tool rather than an integratedi@@ment environ-
ment for source code with round-trip capabilities.

Most modeling tools only support one modeling languageviBuosly this was
UML 1.3 or UML 1.4, nowadays it is usually UML 2.0. Due to thise do not

102

consider them as metamodeling tools. Although they araicgytuseful, they are
limited in scope as they cannot be used for creating new dosycific languages.

Comparing SMD with the modeling frameworks from Chapter 2,aan note
that SMD is slightly smaller than ECORE—mostly because EEJRs more
functionality in the form of operations—and provides th@aymous and superset
property characteristics.

5.5 Conclusions

The discussion about Model Driven Engineering is quiteroftentered on mod-
eling languages and model transformation languages. Hawewe consider that
it is equally important to discuss the features and devetyrof model managers
model transformation engines and model transformatiofsttdwt support such
modeling languages and transformations. The Coral toohiateempt to seek
practical and theoretical issues in these topics and peosidseful working solu-
tion.

All existing model managers are based on a specific metaimngdeinguage
and all the existing metamodel kernels implement at leasbaet of MOF. How-
ever, MOF as such is not a model manager as such since it issubtveare tool.
In our approach we use SMD as the metamodeling language. SMibilar to
MOF but it is based on fewer concepts.

In this chapter we have described how the metamodel and nteydlare im-
plemented in the Coral model manager, based on the fornializen Chapter 3.
We note that even though a formalization is extremely imgattit is still difficult
to ask all the right questions when operating within a thecakframework. Ex-
amples of such questions are what a good serialization tosnand how usable
the framework is.

Coral has been used as a library by several other projecksnour research
group, such as a UML editor, MICAS, SOCOS, and several otim&ller tools.
We again stress that these projects are accomplished by mgbele and do not
constitute a part of this thesis, except as to serve as talidaf the viability of
Coral as a library for metamodeling.

Coral is distributed as open source under the terms of the GIRU version 2
license [59] athttp://mde.abo.fi/tools/Coral/ . The current version avail-
able is 0.9.3.

103

104

Chapter 6

Model Serialization and
Interchange Using XMl

6.1 Introduction

In this chapter we discuss issues surrounding model satein and using XMl
in particular as the solution to model serialization. Onelwse challenges of
modeling is how to represent models in a machine-indepdnidemat to allow
model interchange between tools and systems. This excHangat should be
well-documented, stable and supported by different taolsfdifferent vendors.

It is important to realize why a serialization format is nesay in the first
place. The reason is rather simple. Our current global caimglenvironment
and infrastructure consists of several weakly connectaapeers. What we mean
by this is that a computers is not inherently dependent oeratbmputers, and
that we do not have a global namespace for reliably addgssid acquiring all
data that the computers contain. To be able to communicé¥eeba computers,
we cannot in general keep our data in databases or in the rgesharcomputer;
instead the data must be transported to the other comput@s tfensportation
must ultimately be accomplished as a serial stream of bienicl, there is a clear
need for a serialization format.

OMG proposes the use of XMI [129, 132, 137] to enable modekattange.
One of the strong points of XMl is that it is an XML [188] apmiton, as XML
has been successfully used to support many document and nepdesentation
standards. XML is well-documented, machine-independadtthere exist plenty
of tools supporting it. Thus, we could assume XMI files shdwddportable and
easy to parse. According to Perdita Stevens, XMI could reiahize the use of
models in software engineering [168] by making it easy tategrograms that
analyze and modify models. We fully agree with this idea. ide&r, we must make
sure that XMl is a suitable technology for model seriali@aatand interchange. The
contents of this chapter are devoted to solving this matter.

105

There is at least one tempting alternative to defining a lsgataon format ex-
plicitly for models. Automatic object serializatiorefers to the technology of au-
tomatically serializing objects according to a welldefifednat. However, our
anecdotal experience is that such serialization is tiedh¢artternal implementa-
tion of the application in question. Modifying the applicat too easily modifies
the serialization format. Our current computing envirominglso verifies this un-
derstanding. We have almost no automatic serializatiohn@ogy widely used
in a environment with multiple platforms and programmingdaages. Instead we
are basing our intercomputer communication formats irgiregy on well-defined,
publically available documents, such as the TCP/IP, SMTPHIRTP protocols,
and the OpenDocument, PNG and HTML content formats.

The question we raise is how suitable the XMI standards arenfalel inter-
change in practice. We will review different scenarios fardal interchange, how
suitable the current standards are to implement these isogerzand how different
tools implement the standards. We will also propose diffemmprovements for
the standards. The results presented in this chapter havedidained using three
different approaches. First, we have studied the OMG doatsniat describe
the XMI and related standards, as well as several W3C stdadaf/e have also
performed practical experiments to test model interchdede/een different tools,
including commercial UML tools such as Rational Rose anchogmurce model
repositories such as Eclipse EMF. Although the OMG starglard supposed to
be the authoritative definition of the model interchangerfais, we have observed
some discrepancies on how different tools implement madeftchange features.

Finally, we have implemented different research tools thelude XMI sup-
port. We have also developed a prototype multiuser modedsiegry based on
XMI. This work has allowed us to obtain first hand experienceadl the issues
that appear when implementing XMl in real applications.

This chapter is based on Publication VI. We proceed as falldvext, we enu-
merate some requirements for a suitable serializationdigrand give some usage
scenarios for model interchange. In Section 6.3, we exaihi@eXMI standards
in sufficient detail in both a theoretical and practical exttfor us to discover the
problems with them. In Section 6.4 we provide some valigetibour research. We
finally go through some related work in Section 6.5 and caelim Section 6.6.

6.2 Scenarios for Model Interchange

This section lists some basic functionality required by seralization technology,
and four highlevel usage scenarios for model interchange.

6.2.1 Basic Functionality

We have already discussed some of the basic functionalggritteed in this sec-
tion in Chapter 2. First of all, any model serialization shlibbe able to serialize

106

the actual contents of a model. This includes the variouseis defined by the
metamodel, such as ordered slot contents and the assosi&@iween elements,
and it must also be especially noted that primitive valuesatantain arbitrary data
as strings, numbers, et cetera.

Second, we must be able to realize which metamodel has bednarsd what
the type and identity of each element serialized is. As welavlke to transfer
parts of our (potentially huge) model, it should be possiblese multiple files and
connect elements from different files together.

According to the OMG standards, diagrams are expressedagddn Inter-
change models. Thus, a serialization technology needsablbéo deliver a model
described using several modeling languages (e.g., UMLHerabstract data and
DI for the diagram data). Various extensibility mechanigorsarbitrary nonmodel
data could be of interest as well. For a viable collaboragawironment, various
model difference and related algorithms are certainly irtgo.

Although these criteria might not exhaustively list all essary features, they
serve as a set of base cases against which a serializatiomotegy can be com-
pared.

6.2.2 Scenarios

We draw the scenarios from our experience in software eegimg We have
tried to list them in an increasing order of difficulty fromettpoint of view of
the serialization technology. Although this list is not aubtive, we believe it
addresses several important issues that any serializattbnology should address.

Migration from One CASE Tool to Another

Ouir first scenario describes the need to move all our modets &ne CASE tool
to another, probably from a different vendor. To avoid vernidok-in, we use our
serialization technology to provide seamless, robust andistent ways to migrate
from one CASE tool to another. We plan to migrate the modetse@and not use
the current CASE tool any more.

This is the simplest scenario. In this case, the size of tks fir the speed
of the serialization export and import process is not tooartgmt. Also we may
tolerate small defects in the migration, if they can be gdsiind and corrected in
the new CASE tool.

Model Interchange within a Desktop

Another scenario for model interchange is to use interiagpbn communication
mechanisms such as cut-and-paste and drag-and-drop éorsbeels or fragments
of a model from one application to another. This feature espnt in many com-
mercial UML tools. For example, it is possible to select at pdira UML class

107

diagram, copy it to the clipboard and paste it into a MicrogwwerPoint presen-
tation. We should note that in this case, the modeling tooebtgplacing a model to
the clipboard but a picture of a model in a graphical formahsas PNG, since pre-
sumable Powerpoint does not understand models. Howeuinggrevents the
use of a standard model interchange format between applisatunning within
the same desktop.

We should note that in this scenario we will interchange gustnall part of a
model. Therefore, our small file will probably contain lintasother files.

A Model Driven Engineering Tool Set

In this scenario, different tools are used to create and taiaithe models. Each
tool may be specialized in a certain task, such as requiresr@gineering, anal-
ysis modeling, or model implementation. The tools are naessarily used in
sequence; they could be used for forward, backward and roiméngineering.
Since we use many different tools, the files representingpooject may in-

clude elements that are not supported by every tool. Howalldhe tools should
respect and leave intact those unsupported elementsthieg..should be able to
load and save the elements even though they do not underastaicing about
them.

A Multiuser Model Repository

In this scenario, we plan to store all the models in a centrdistributed repository,
easily accessible by different developers using heteregemntools. The serializa-
tion technology is used as the exchange format between fiesitery and the
developers’ tools; in this chapter, we ignore the transpmtocol used. This is the
most demanding scenario for serialization. The files malpde version informa-
tion or represent differences between models. Also, asmiltie desktop scenario,
we might only interchange parts of a model.

6.3 XMl

In this section, we examine the XMI 1.x standards as well asrdatively new
XMI 2.x standards. We will not go into the details, but ratlggre an example
description of how example models serialized in these cast®rmats look like,
and how well XMI tackles the scenarios and issues describ&kction 6.2. We
conclude with some ideas on how XMI could be improved.

6.3.1 Using XMl

To understand how models can be interchanged using the Xavilatd we need
to understand how models are organized according to a nmgdklnguage. We

108

reuse our knowledge from Chapters 2 and 3. We can concludehgaomposi-
tion hierarchy in a model forms a tree. Shared compositiomotsused in OMG
standards.

As an example, we demonstrate a finite state machine (FSMglheododed
using the two different versions of XMI. Figure 6.1 represea particular model
in the FSM language, rendered in its own concrete syntax.sfdies are drawn as
circles with their names inside, and transitions betweatestare drawn as arrows.
Each transition also has a token which is the input requioedhie transition to be
taken.

A

&) @

B

Figure 6.1: Example Finite State Machine Model

In Figure 6.2 we show a simple modeling language to desctibe ESMs.

Token

1.* | name: String

alphabet
1 | trigger
1 *

StateMachine Transition
name : String 1 transition

* | outgoing * | incoming
0..1 owner

1 | source 1 | target

1.* state State
name : String
isFinal : Boolean

1

initial

Figure 6.2: Example Finite State Machine Metamodel

109

Since the XMI standard defines a series of rules to serialgeMOF-based
modeling language, we can also represent the example etsivdel in XMI using
these rules. The resulting XML file using XMl 1.2 is shown irgtiie 6.3, and
using XMI 2.0 in Figure 6.4. We note especially that the cqad composition
in modeling maps to the concept of hierarchy in XML.

We can see in the XMl files that a model element can refer tor @leenents
using thexmi:id of those elements. This is necessary since the underlyingtsie
of a model is a graph while an XML file is a tree. It is also pokesib link across
XMl files (not shown in the figures), i.e., a model element mefer to elements
that reside in a different file. This feature enables us toXIdéin larger projects.

In the context of a modeling tool, an XMl filter is a tool compmon that can
create and retrieve XMI files based on one or more given medeafao Since a
metamodel is based on a model, it can also be represented XMdllafile. We
should note that although it is possible to create a DTD or X$tthema [193,
194] to define the structure of an XMl file this is not strictlgaessary, since an
XMl filter can obtain all the necessary information about slreicture of an XMl
file from a metamodel. Actually, a metamodel contains add#l information
that cannot be expressed in a DTD. An example of this areioaktwhich are
unordered such as a UML Package owning a set of UML ClassesMin, the
order is always important.

Furthermore, XMI has facilities for describing model difaces using the
XMl.difference XML element. Also arbitrary XML fragmentsn be added to any
model element using XMI.Extension, or to the whole modehg3{MI.Extensions.

It is also import to remark what XMl is not. XMI cannot be useddefine
the structure of a modeling language. This is the role of tli@R\ktandard. Actu-
ally, XMI can be used to serialize any MOF-based modelingleage including,
but not restricting to, UML and MOF itself. The fact that XMi independent of
a modeling language is at the same time one of its stronggpami major weak-
nesses. Two tools that use two different versions of the UMhdard, for example
UML 1.3 and UML 1.4 will not be able to exchange models evehéiytuse XMI.

Surprisingly, the UML and MOF metamodels do not containiinfation about
the diagrammatic representation of models. A UML model ntajesthat there is
a class named "Person" in a model, but it cannot state ttsathss is represented
in a diagram by a rectangle in a certain position, size andrcdlo remedy this
situation the DI [136] standard has been proposed. DI is mbdel interchange
format but a metamodel to describe diagram information.

We should also remember XMI is neither an application progréng inter-
face to retrieve information from models, such as the Javaatieda Interface
(IMI) [79], or the Eclipse EMF [28], nor a communications fool to transport
models between systems such as HTTP [56] or WebDAV [62]. Tth@ies that
there are no standard software components to create avetkiMI files from a
filesystem or multiuser repository since the APl and commation mechanism
for such components has not been standardized.

110

<?xml version="1.0" encoding="UTF-8'?>
<XMI xmIns:XMI="http://schema.omg.org/spec/XMI/1.2"
xmins:FSM="http://www.example.com/FSM/1.0"
xmi.version="1.2" timestamp="Sun, 01 Jan 2006 11:08:426M>
<XMl.header>
<XMI.documentation>...</XMI.documentation>
</XMl.header>
<XMl.content>
<FSM:StateMachine xmi.id="el" name="Example" initicd&">
<FSM:StateMachine.alphabet>
<FSM:Token xmi.id="e2" name="A" transition="e3">
</FSM:Token>
<FSM:Token xmi.id="e4" name="B" transition="e5">
</FSM:Token>
</FSM:StateMachine.alphabet>
<FSM:StateMachine.state>
<FSM:State xmi.id="e6" name="S1" incoming="e5" outgaitig3"
isFinal="false">
</FSM:State>
<FSM:State xmi.id="e7" name="S2" incoming="e3" outgciigs"
isFinal="true">
</FSM:State>
</FSM:StateMachine.state>
<FSM:StateMachine.transition>
<FSM:Transition xmi.id="e3" source="e6" target="e7'gger="e2">
</FSM:Transition>
<FSM:Transition xmi.id="e5" source="e7" target="e6'ggier="e4">
</FSM:Transition>
</FSM:StateMachine.transition>
</FSM:StateMachine>
</XMl.content>
</XMI>

Figure 6.3: Example Finite State Machine Model as an XMI il@ F

6.3.2 Assessing XMI Suitability

In this section we study some of the inherent problems thiat @xthe XMl stan-
dard. Many of these problems are a consequence of the raistedtdvelopment of
the standard, with multiple versions appearing in a reddyishort time. Also, the

initial versions of XMI (and UML) were probably created tagiinto account only

some of the scenarios from Section 6.2

111

<?xml version="1.0’ encoding="UTF-8'?>
<xmi:XMI xmins:xmi="http://schema.omg.org/spec/XMI®
xmins:xlink="http://www.w3.0rg/1999/XIink"
version="2.0" timestamp="Sun, 01 Jan 2006 11:08:44 +0200’
<documentation>. .. </documentation>
<FSM:StateMachine xmIns:FSM="http://www.example.cB8i/1.0"
xmi:id="el" name="Example" initial="e6">
<alphabet xmi:id="e2" name="A">
<transition xmi:idref="e3" />
</alphabet>
<alphabet xmi:id="e4" name="B">
<transition xmi:idref="e5" />
</alphabet>
<state xmi:id="e6" name="S1" isFinal="false">
<incoming xmi:idref="e5" />
<outgoing xmi:idref="e3" />
</state>
<state xmi:id="e7" name="S2" isFinal="true">
<incoming xmi:idref="e3" />
<outgoing xmi:idref="e5" />
</state>
<transition xmi:id="e3" source="e6" target="e7" triggée2" />
<transition xmi:id="e5" source="e7" target="e6" triggée4" />
</FSM:StateMachine>
</xmi:XMI>

Figure 6.4: Example Finite State Machine Model as an XMI 216 F

Arbitrary Data

An important and most likely unintended consequence ofrigaXiMI on XML
is how arbitrary (binary) data is handled. Surprisingly, KMannot easily ex-
press any binary string of data, e.g., the null byte. Theesaareast two viable
workarounds for this. The first one is to Base64-encode tharpidata [83], al-
though this increases the size. The second one is to supgmrelatively new
XML-Binary Optimized Package (XOP) [196] standard. Unfovately, both of
the workarounds require the cooperation of all tools. Qtlige, XML supports
data using any encoding. Especially, Unicode [178] engxlare supported.

There are other limitations given by XML as well. For exampbeoperties
from the modeling technical space are sometimes encodetaswde attributes;
however, XML attribute names that start with the lettensl are reserved by the
XML specification.

112

Too Many Versions, Options and Optimizations

One of the main impediments to use XMl in practice is the largeber of differ-
ent versions of the XMI standard and UML metamodels, and liteady-existing
different implementation variations. At the moment of \wig this text, there are
five versions of XMl (1.0, 1.1, 1.2, 2.0 and 2.1) and sevenigassof UML (1.0
to 1.5 and 2.0). This means that a file containing a UML modal azually be
serialized in 35 different combinations of XMI| and UML vesas. The diversity
of different XMl implementations has already been studrefBR], in which Jiang
and Systa devised a method to explore differences betweehféilwhats using
DTDs.

As an example, the name and isActive slots of a UML 1.4 Classhith 1.x
has been serialization in several different ways by variooss, as can be seen in
Figure 6.5. Special code is required to support all the dffe constructs.

<UML.:Class name="MyName”>...</UML:Class>

<UML:Class ...>
<UML:ModelElement.name>MyName</UML:ModelElement.newn
</UML:Class>

<UML:Class ...>
<Foundation.Core.ModelElement.name>MyName
</Foundation.Core.ModelElement.name>
</UML:Class>

<UML:Class ...>
<UML:Class.isActive xmi.value="false"/>
</UML:Class>

<UML:Class ...>
<Foundation.Core.Class.isActive xmi.value="false"/>
</UML:Class>

Figure 6.5: Example Serializations of name and isActivet $%o a Class in
XMI 1.x

The fast evolution of XMI and UML gives little room for implesmters to try
it out in practice. We consider that the solution to this peab is to include in
each new version of XMI or UML, a mechanism to transform olddiinto the new
version. In the case of XMI, this could be achieved at the Xel by including
an XSLT [187] transformation file with the new version of tharglard. In the case
of a new version of UML, the transformation could be defined@®QVT.

113

Some of the new features introduced in the latest version\df &te question-
able. A new concept related to XMI appears in the mapping offvitbdels to
XMI [134], where XMI files can be made smaller in size by renmayisome re-
dundant information and instead serializing the derivéddrmation “because the
derived form is more compact”. However, the problem is thatytseem of little
use. They make it more difficult to implement working a XMl dea since the vari-
ation in input that the reader must accept is greater. We paxfermed anecdotal
experiments that suggest that these optimizations pravigenimal benefit with
respect to file size, whereas standard compression toall, agigzip, can obtain
compression ratios of up to 95% on XMl files. A “binary XML’ fiorat has even
been discussed [186, 191, 195] by the W3C, which would ob\la need for any
application-specific (i.e. XMI) compression solutions.

Additionally, very loose directions are given by the stamddigself: “to allow
import, derived properties should only be made serialgdhl.it is possible to
reverse-derive the base information from the derived forithe rationale of the
gain these optimizations bring is thus questionable, asddd more variability to
the XMI format.

There might be arguments for a loose model interchangefsg®n. Jon Pos-
tel, a well-known Internet persona, used to say “an impldatem must be conser-
vative in its sending behavior, and liberal in its receivivghavior”, i.e., maximum
interoperability is obtained by being as strict as possiblg@ublished standards
in the output, but accepting also slightly malformed inputen the meaning is
still clear. This Robustness Principle [78] is often quo#sd'Postel’'s Law”. But
that does not mean that the standard itself should be loepalgified. Further-
more, Postel discussed network protocols, not contentdtsnand even then the
principle has been questioned [158]. As an example of whetdéafiowing stan-
dards leads to, the infamous abuse of HTML has forced webs®msmo support
rendering in “quirks mode”, where the browser makes an egdcguess on the
document’s real structure, making different browsers posddifferent output. We
believe this is not a path software modeling should follow.

Metamodel ldentification

To be able to process a model, a tool must know its metamodealveler, XMl
lacks of a reliable mechanism to identify which metamodedsused in a file. The
problem is complicated since XMI 1.x and XMI 2.0 use two coetely different
approaches.

The XMIl.metamodel element can be used in XMI 1.x to identHg meta-
model used in a file (Pages 3-12 and 3-20 of [129]). An examipili® approach
is as follows:

<XMl.header>
<XMIl.metamodel name="UML" version="1.3" href="UML.xm

114

In XMI 2.0, the XMIl.metamodel element has been removed. ebst each
metamodel is assigned one or more XML namespaces. A nangspacification
may be any arbitrary string, that according to the standprdvides a permanent
global name for the resource. An exampléitp://schema.omg.org/spec/UML/1.4
There is no requirement or expectation by the XML Namesppeeification that
the logical URI be resolved or dereferenced during proogssif XML docu-
ments”. In page 1-16 of [132] we can see the following example

<xmi:XMI version="2.0"
xmins:UML="http://schema.omg.org/spec/UML/1.4"
xmins:xmi="http://schema.omg.org/spec/XMl/2.0">

The new mechanism is more correct from an XML point of viewd aer-
tainly enables one to mix models of different metamodel$ wise. However, it
is inconvenient as there is no published mapping betweerspaces and existing
versions of UML and other modeling languages. Even if thappiragy exists, it is
merely an opaque string to a tool. No information can be deddiom it, and thus
a generic modeling tool cannot work with unknown metamadelaust know, in
advance, about the namespace mapping and the metamodetol0tion in the
Coral modeling tool is a user-editable table with mappingsMeen namespaces
URIs and actual metamodels. However, this solution regquitanual work by the
user and is not viable in the long term.

Another problem in creating a robust XMI import componenthiat old XMl
files may combine namespaces with header information. Onemawcial tool
produces the following header when exporting a model to XMI:

<XMI xmi.version="1.1" xmIns:UML="//org.omg/UML/1.3">
<XMl.header>
<XMIl.metamodel xmi.name="UML’ xmi.version='1.4"/>

The namespace declaration may suggest that the file coathind. 1.3 model,
while the header states that it is a UML 1.4 model.

The problem of metamodel identification is an important éssind its final
consequence is that it is not possible to load new metamddesisd on their de-
scription from the namespace URI. Therefore the currenndigfin of namespace
declarations in XMI cannot be used as such in a metamodeldba®deling tool
that should support any user-defined modeling language.

Element Identification

Element identification is the process of obtaining a unigeference to a model
element that distinguishes it from the rest of model elesémit compose all the
artifacts required in a project.

The need for unique element identification was already &ackh XMI 1.x.
Those standards provide two attributes to uniquely idertif element: themi.id

115

andxmi.uuidattributes. Thexmi.id attribute is used to reference elements inside an
XMl file. They are unique arbitrary strings in the context afigen file. Although
they must be retained by tootsmi.id might need to be changed if the element is
moved to another file, since some other element in the new fijatrhave the same
identifier. Thereforexmi.id can be a bit awkward in practice.

Onthe other hand a UUID is assumed to be a globally uniquegstais has been
discussed in Chapter 3. UUIDs may be assigned immediatelgedirst time that
an element is exported to an XMl file. Later, any standardfl@nt open tool that
imports the XMl file should not change or remove the assignediDg, as per the
XMl specification for open tools.

Unfortunately, many of the existing UML tools do not generat preserve
UUID strings and cannot be used rigorously to create linka/ben different files.
This is further examined in a small survey in Section 6.3.2.

It is possible to use other attributes instead of UUID tokrde elements in a
project, for example the name of a model element. Howevis hiéis some draw-
backs. First, the name of a model element is a property of aetimmdlanguage,
such as UML, not of XMI. It is possible to define a modeling laage where the
elements do not have a name. Also, even if we restrict XMI toll)Nbt all UML
model elements have proper names. For example, a Gen@alizalationship
is usually not named. The same applies to transitions intacdtart, links in a
sequence diagram and many other minor but equally impogienients. Further-
more, names can easily be changed by the designer, wherd@s @t supposed
to be persistent information.

The xmi.labelattribute is of special mention. It can be used to give eldmen
an arbitrary name by the designer. But the standards do pddiexwhy it should
be used instead ofwauid or id attribute—so why use it?

A relatively recent addition to the XML family of standardsthe xml:id Ver-
sion 1.0 [198] by the W3C which is very similar koni.id. Indeed when XML pro-
vides similar or superior alternatives for element ideaéifion and element linking,
we believe they should be used in lieu of the XMI standardss @lows the usage
of general-purpose XML tools for navigation in models, butuld also mean that
XMI must be constantly updated to match the new standards B¢ \Whis also
means that the XMl 2.x standards should not invent any owtagyand instead
only incorporate the usage of XLink [189], XPath [197] andoiRer [192].

Tool Compatibility

Besides developing our own XMI tool component, we have atstopmed a sim-
ple study of the XMl files generated by two open source andaixraercial CASE
tools. There are many tools in the market that support UMLne way or another.
The tools studied were chosen because they are populagadhégnport and export
XMl files and the vendor offers a trial or free version avaiéabn the Internet. We
have created a simple model with each of the tools and expdrte an XMl file.

116

Then we have examined the generated file in a text editor terebshe header of
the file to determine the XMI and UML version of the file. The etijve of this

study is to determine the effort of creating a new componiegit ¢an import exist-
ing XMl files. If we would like to develop a new tool that can tband transform

models generated by the studied tools, the XMI import filtethat tool should

support all the XMl and UML versions used by the CASE tools.

A second experiment was performed to determine if a CASE poeserves
UUID strings. First, we have created a simple model and s#vasl XMI. Then
we have edited the XMI file with a text editor and added a UUIBnigfier to the
Model element, the main element in a UML model. For examplgn XMl 1.x
file we will add the following string shown in bold face:

<UML:Model xmi.id="1" name="Example Model’
xmi.uuid ='123’ isRoot="false’ isLeaf="false’
isAbstract="false’ isSpecification="false’>

Then we have loaded the modified XMl file in the CASE tool. Thedified
XMl file should be imported without problems. Afterward, weperted the model
again to an XMl file and opened it with a text editor. The Modelngent should
contain the same UUID as introduced by us. If the CASE toolifremtithe UUID
string or removed it completely then it does not preserve Dslrings.

The results from a small sample of tools are not too encongagas can be
seen in Table 6.1. UUIDs are discarded by 6 tools out of 8 todliso, each
tool seems to use a different combination of XMI and UML vensi Of special
mention is Together 6.0, that can generate 7 different kafdsMI files from the
same model, using different XMl versions (1 or 1.1), UML nmetaels (1.1, 1.3
or 1.4) or extensions introduced by different XMI comporseitnisys, IBM, or
plain OMG). XMI compatibility between several modeling doth commercial
and open source, have also been researched by Anna PerssAg&;, 149, 109].
Their results tell that compatibility is not achieved in alsh all cases for XMI 1.x,
but XMI 2.x fares better.

Advanced Concepts

Shared composition is a concept that existed in MOF 1.x bstead kept for the
MOF 2.0 specification. It means that a model with shared caitipa forms a
directed acyclic graph; with composition, a model formseetr XMI does not
support shared composition in a meaningful way, especvetign considering el-
ements shared between multiple files. However, this migta u;mdamental lim-
itation in the design of our filesystems, and not a fault of XMk se. We infer
from the lack of composition in MOF 2.0 that the concept ftbels been deemed
to troublesome to support.

Subsets and unions are such a relatively new idea that tiveyreéeeived almost
no adequate examination. As far as we know, our Coral todhésanly one to

117

Tool Exporter XMl UML Supports DI
Version Version UuiD

Coral Coral 1.2,2.0 1.x yes yes
EMF UML2 (no header) 2.0 2.0 no no
Magic Draw 7.1 Unisys.JCR.2 1 1.3 yes no
Poseidon 3.0 Netbeans 1.2 1.4 no yes
Rational Rose Unisys.JCR.1 1.1 1.3 no no
Together 6.0 TogetherSoft 1,11 11,1314 no no
Visual Paradigm 3 (no header) 1.1 1.4 no no
Visual UML 3.24 Visual UML 1 1.3 no no

Table 6.1: Tool Compatibility

support subsets and XMI serialization. There are some sssaeomposite slot
subsetting another composite one, and unserializablg. slot

The first issue is relatively straightforward. Instead ofideing the same
element twice (once for each composite slot) we only segalli once, with any
remaining composite slots serialized as associationslé/ttis is not technically
according to the XMI standard, we feel this to be a rather gawlviable solution.

The second issue of unserializable slots is not as clearsltitas not serializ-
able, we could assume that its contents can be derived frgro@osite slots that
are serialized. However, if both slots in a bidirectiond&tien are unserialized, we
could also try to derive the contents (partially) from otBabset slots; needless to
say, this quickly becomes very complicated. Exactly how glicated deductions
a tool should support is not clear. Upon loading a model, Qoekes an extra pass
through the structure of the model to make sure that it isastlaternally consis-
tent with respect to bidirectionality, subsetting and nplittity. This solution is
not able to reconstruct all possible cases, but it must bemddeyood enough until
the XMI standard itself is improved.

6.3.3 Conclusions

After exploring the details of XMI, we should be ready to assim what way XMl
supports the different scenarios given in Section 6.2.

Our experience as users of different case tools suggesevieatthe simplest
scenario, migration from one tool to another, can be probtenin most cases, it
is better to concentrate on one tool and its file format, ttenstandard XMl file
format.

Model interchange within a desktop is a rather complicatdgjext, and there-
fore demands a lot of cooperation between different tooteddg to common us-
age practices and protocols. In the X Window System [16&])niter-Client Com-
munication Conventions Manual (ICCCM) [159] defines how tlesktop clip-

118

board functions. Especially it is required that data is gieeMIME type [119].
However, XMI does not define a specific MIME type. In differéodls, we have
seen uses of the nonstandaplication/x-umlandtext/x-xmi+xmIMIME types.
Without this small deficiency, XMl could be used for modekirthange within a
desktop.

We consider a model driven engineering tool set to be a sebts by different
vendors, cooperating using several models of differenametels. It is clear that
XMI could be used for all this, but software modeling has netdme mature
enough so the industry has not established which metamtmlake. The lack of
metamodels of good quality is quite similar to the problemenfsable components
and libraries in text-based programming languages.

A multiuser model repository will be discussed extensinelZhapter 7. How-
ever, an important conclusion is that model difference Wdatton algorithms are
important and that XMl.difference is not a suitable struettor them.

When analyzing the various versions of the XMlI, one noticas KMl 2.0 has
taken a very different road from previous versions by airmfimgbetter XML and
XML namespace [185] compliance. Indeed, the change is soatra that there
seems to be little reason to support XMI 1.x in new tools. Utiwately, there are
many older tools in the market than only support XMI 1.x so iany cases it is
necessary to support backwards compatibility reasons.

In light of the arguments given in this chapter, we primasilyggest a compli-
ance test suite for checking XMI compatibility. It shouldnsist of a set of files
with successively more advanced XMI features. The curremigdiance points
in appendix A of [132] are quite coarse-grained, and it isadoays possible for
vendors to know whether or not their tool provides the suptimy claim. Detect-
ing successful loading could be done by evaluating OCL cam$ on the loaded
models as suggested by Stefan Haustein [72], althoughehisires an OCL or
similar interpreter for automation. The constraints woudify that all the model
elements, their interconnections, and the informatiomestan them are correct.
This alone would mean that customers can check the official Edinpliance
test scores and tremendously benefit from the interchangeato “Full compli-
ance” as so often touted by vendors would in fact be split sgeeral compli-
ance levels of XMl features, such as support for interfil&ihig, XMI.extensions,
XMl.difference and multiple models using multiple metaratsdin one file. We
expect that a compliance suite will improve the implemeaiabf the XMI stan-
dards in modeling tools. However, we consider that XMI sHalso be improved
in these directions:

e A standard mechanism for element identification. This idekia depreca-
tion of xmi.labeland enforcement of themi.uuididentification mechanisms.
This means that if a tool imports an element that contains &3 Jthe same
UUID should appear in any future serialization of that elem&Ve consider
that a tool should support bomi.id andxml:id according to user request.

119

e A standard MIME type.

e Astandard mechanism to retrieve the metamodel used byaircerbdel, in-
cluding future metamodels. This enables the creation oégemetamodel-
based modeling tools.

e A thorough clarification on how subset slots should be seadland inter-
preted, according to the problems discussed in Sectiof.6.3.

e Each new version of XMI should include the definition of a XSikdnsfor-
mation to convert files created using the previous versiamcedhese trans-
formations has been defined for all versions of XMlI, the X étandards
should be deprecated due to their lack of XML compliance.

The OMG should require that each new proposal to the XMI stedgishould
include a compliance test suite and a transformation digimitom old versions
to the new one. The result would be that end users have a geadand standard
transition path for their models.

In January 2006, OMG partnered with Unisys Corporation gating an XMl
compliance testing effort [126]. Its success cannot yetMaduated due to its nov-
elty.

6.4 Validation of Research

We have built tools that include XMI 1.2 support (SMW [11, 1B8r XMI 1.x
and XMl 2.0 support (Coral). Since several vendors rele@se versions of their
software, it is not possible to give an accurate figure on hompatible our tools
are with respect to XMI. However, a lot of effort has gone inmtaking Coral quite
resilient for errors in XMI, understanding several “diatgcof it. Coral has at
some point been able to read MagicDraw, Poseidon, ArgoUMIL Eclipse EMF
files, for some versions of these tools, and sometimes ontiapia due to major
inconsistencies (e.g. using composition where an assmtiahould have been
used). Most of the tools have not supported the diagramcinéglge standard,
instead opting for their own proprietary diagram infornoati Coral is not able to
read these diagrams.

It can be noted that implementation in Coral uses a bit ovél®lidies of C++
to support the following for any metamodel:

e Reading XMI 1.x and writing XMI 1.2.

e Reading and writing XMI 2.0, also including some EMF comipidity code.
e Reading and writing ZUML (packed XMI 1.x) files.

e Writing GXL 1.0.

120

Due to an unfortunate misinterpretation of the standardenmwriting the in-
put/output routines of Coral, it currently does not retaimi.id after loading a
model. There is however no particular technical or scientifiallenge in mak-
ing it work.

Coral also supports the X Window System clipboard, makingogsible to
paste DI diagrams into graphics programs, or the correspgndMI into text ed-
itors. Also drag-and-drop between multiple instances ofaCis possible. XMl
is used as an exchange format for these functionalitied) @iMIME type of
text/xml;charset=UTF-8

We have built a prototype model repository [5] that aimed $e XMI as far
as possible. However, a repository becomes much more effibieusing model
differences calculation algorithms, and we found the Xliffiedence element and
documentation to be inadequate. Difference calculati@hthe repository will be
discussed extensively in Chapter 7.

6.5 Related Work

There are several model interchange formats availablehapsrthe most well-
known proprietary one is the undocumented Petal format st Rational Rose
modeling tool, and lately the XML format used by Microsoft D¥ools. Another
interesting format, discussed in Chapter 2 is GXL [208].0lcl certainly be used
for serializing models, although it provides only a modegbiovement over XMI.

Anna Persson, Henrik Gustavsson, Brian Lings, Bjorn Lundelders Matts-
son and UIf Arlig have examined the usage of XMI 1.x in the eahtof open
source development tools [148, 149], and later Bjorn Lundiian Lings, Anna
Persson and Anders Mattson analyzed XMI 2.x [109]. Theihesmstrongly sug-
gests that while XMl 1.x is not well-established as an irttargge format between
different modeling tools, XMI 2.x has fared better. This eipably because sev-
eral vendors base their tools on Eclipse EMF and thereforéherserialization
technology and compatibility provided by it.

It is interesting to note that there are nowadays other t@olgies than XMl
for model persistence. The Teneo library [54] supportstangan object-relational
mapping from EMF models to a relational database. It alsviges persistence
using Hibernate [74]. Adaptive provides a MOF-based rdposicalled the Adap-
tive Repository [2] and has versioning capabilities acowdo their own informa-
tion. The problem with using a database for persistence Wweady stated in the
introduction; databases cannot easily be transporteddaetiwo different users.

6.6 Conclusions

We consider that in order to apply MDE in practice, model liciange between
tools should be as frequent and simple as, for example, smade exchange be-

121

tween text editors, compilers and build tools. In this ckapte have first discussed
several common usage scenarios for models that a seriatizachnology should
address. Then we have analyzed the XMI standards and howthesgllsupport
these scenarios. We have also discussed important dragvbathese standards.
We do not present these drawbacks as a criticism to the wafkrpged by the
OMG and its contributors but as an opportunity to improve stege of the prac-
tice. Finally we provide solutions to some of the problems.

The current abysmal state of interchange in practice usikig ¢annot be ex-
plained alone by complications in the standards themselVéss know from our
own experience that the standards are usable as such antishabssible to im-
plement working XMl input and output routines with a relaliy small effort. Still,
basic interoperability is lacking between tools from diffiet vendors.

122

Chapter 7

Version Control of Models

7.1 Introduction

In this chapter we study how to store and manage large modelsgdthe lifetime
of a software project. The first generation of UML editorsuased a single devel-
oper working on a single model. This approach assumes tleat@mmodel is ready
there will be no major changes and it can be distributed toptlogrammers as
documentation. Programmers use the model as a referenigm dedblueprint for
the code to be developed, but the model is not updated angiolmgthis scenario,
software evolution and maintenance reverts over to theramgsource code, not
to the UML model.

However, this approach is not satisfactory if we plan to usslets instead
of source code as the main and most important descriptiomuo$aftware. This
requires that any model should always be up to date. In thigegg there will be
different developers working simultaneously on the samelefso There will be
different versions of the same model, targeted to diffematforms or customer
requirements, and evolution and maintenance will be chwigt over the models.
This implies that we need to use a proper configuration manage system to
keep track of the models.

Software configuration management (SCM) is a well-studagctand there
are many tools available on the market. It involves seveffdrént subtopics such
as version control as well as change, build and release reareg. Configuration
management is a key element in the management of any softleasopment
project. However, most of the existing tools are designeth&mage either pro-
gram code or informal documents in natural language. Yudlineet al. have
argued that we need new tools and methods customized toitsyndrasies of
the modeling standards for model transformations and meoalelparisons [105].
Model comparisons are especially important for SCM.

We center our study to what we consider to be the central elenfe config-
uration management system for models: a model repositaity warsion control

123

capabilities. The objective of this chapter is to raiseetéht issues that appear
when we try to create an efficient and practical version @bstlystem for models.
We also provide solutions to some of the problems, and rézeguvhich problems
still exist. Here, we use the term efficient loosely; the mumesttormant solution
(for some particular metric) is not our goal, but we want toidvthe pathological
cases, such as transferring the whole model over the netwiogk only a part of
it will suffice.

Thus, we discuss only a subset of the problems of softwarkgeoation man-
agement of models, namely that of the technicalities ofigaisg: calculating the
difference between models, applying a difference to an adehto create the new
one, and of merging differences created in parallel. We etswider the storage
of models in a SQL server.

This chapter is based on Publications IV and VII. We are itelglbo the work
of Sudarshan S. Chawathe, Anand Rajaraman, Hector Gaml@d/and Jennifer
Widom, who described a generic routine for detecting chaingkierarchically
structured information [37]. This chapter applies that moelt in the context of
modeling, with edit distance calculation (e.g., by Eugend/yers [120]) for han-
dling ordered sets.

We proceed as follows: in Section 7.2, we explain the probdémersioning
models. In Section 7.3, we explain the algorithm for calttotathe difference
between two models and for applying said difference to oneehagoroducing
the other. These algorithms alone can be used for savingnhiasion time or
storage space. Section 7.4 explains how these algorithenssad to create a union
algorithm between two models and their base model. Confligatsons in such
cases are a fact, and a closer look of what kinds of confliatsbeaavoided are
studied. We give an outline of a model repository with vangig capabilities with
a SQL backend in Section 7.5. We describe how the work of thepter has been
validated in the context of working tools in Section 7.6,cdiss related work in
Section 7.7 and conclude in Section 7.8.

7.2 Problem Exposition

Asset, version and configuration management are importdivitees in any large
software development project. This is still true if we usedels as the main
description for our software. These models may represdfareint designs of
the same subsystem, different subsystems created ingddmalseveral designers,
nonexecutable project data, or combinations of these cH¢bs models are large,
we need special tools to compare and merge several diffemedels into a new
one that contains all the changes proposed by all the dexslop

We may illustrate these problems as follows. Let us assumiethie original
model shown at the top of Figure 7.1 is edited simultaneohgliwo developers.
One developer has focused his work on the classes A and B adkdehat the

124

subclass B is no longer necessary in the model. Simultahgties other developer
has decided that class C should have a subclass D. The pribternombine the
work of both developers into a single model. This is the mstielvn at the bottom
of Fig. 7.1.

Original Model
A C
B
Designer 1 Designer 2
A C A C
B D
Final Model
A C
D

Figure 7.1: Example of the Union of Two Versions of a Model

In this chapter we study how to perform this operation in aegierway. The
problem is not trivial. In the example, if we would just pariva straightforward
union of the models, i.e., take all elements that appeardnwo versions of the
model, we would obtain a model that does not contain the asmpgoposed by
the first developer. Our solution is based on calculatingfihal model based
on the differences from the original model. Figure 7.2 shawsexample of the
difference of two models, in this case the difference betwtbe models edited by
the developers and the original model. The result of thegiffice is not a model
conforming to the metamodel used by the original model. Aangple of this is
shown in the bottom part of Fig. 7.2. In this case, the diffieee of the models
containsnegativemodel elements, i.e., elements that should be removed from a
model.

125

o E -7 - 4
- @ - - b

Figure 7.2: Example of the Difference of Models

We first show two algorithms to calculate the difference et two mod-
els and to merge a model with a difference. Once we know howp&rate with
differences between two models, we would like to solve oigioal problem by
computing the union of two versions of a model as follows:

Méinal = IVloriginal + (Ml - IVloriginal) + (MZ - IVloriginal)

Figure 7.3 shows this operation intuitively. In practidee implementation of
this operation is complicated by the fact that the two dgyels may have changed
the same subset of the model. This situation can leammdlictsand it may not
be possible to apply all changes into the final model. We vigitdss conflicts in
more detail in Section 7.4.

L oh - s T

Figure 7.3: Example of the Union Based on Differences

The presented algorithms are implemented in a generic veaythe algorithms
are not defined in terms of a specific metamodel. Howevergth&gorithms cru-
cially rely on the existence of a universally unique ideatifior each model ele-
ment.

126

These algorithms are useful in many problems that appearothehmanage-
ment, especially in a distributed setting. An obvious aggilon is a version control
system with optimistic locking that allows many develop@rsvork on a model si-
multaneously. Also, a model repository that stores diffierevisions of a model
may store the difference between revisions instead of cetmphodels, saving stor-
age space. Similarly, two computers connected by a slowrtial interchange a
difference between models, saving bandwidth and commtimicime.

In the next sections, we reuse the formalization of modetsraatamodels as
given in Chapter 3.

7.3 Difference Between Models

This section describes how to calculate the difference detwwo modelsiMgg
andMpew. We represent the result of this operatiomdasdVhen we apphA in some
specific way tdVlglg, we will acquireMpep.

We denote all differences to be the infinite &t Thus we would like to de-
fine the operation mdiff M x M — D for calculating the difference between two
models, and mpatcht x D — M for merging a difference to a model, such that

mpatch{Mojq, mdiff (Moid, Mnew)) = Mnew

holds for two arbitrary model$/yq and Mpew. For clarity of presentation, we
use plus and minus signs for these functions, although theyotishare the usual
properties of plus and minus on integers, as follows:

Mnew — Moig & mdiff (Moid, Mnew)
Moid + A £ mpatct{Moiq,)

In practical terms, one might consider the functions as tleeting equiva-
lents of the Unix tools diff and patch on text files [111]. Ciolesing our previous
experience in using line-based version control systembk asadCVS [34] or Sub-
version [150], an important operation is to be able to merd#ferencein reverse
i.e., to apply a difference previously calculated/&s= Mpew — Moig t0 Mpew in
some way in order to acquire the old moddy. Obviously Mpew+ A will not
produce the desired result, since a prerequisite isahatly be applied tdVgg.
However, by suitably transforming into its inverseA, the straightforward equa-
tion Mnew+5 = Myjq holds. The function diffinverse® — D accomplishes this,
and it can be noted that diffinvergiffinversgA)) = A holds.

To support all this, we thus need to define the mdiff, mpatah @iffinverse
functions.

7.3.1 Requirements on Metamodels

This section describes the requirements of the algorithimgparticular, we note
that these requirements are supported by MOF and by our fmatian from

127

Chapter 3, where we have covered the model and metamodel dagensively.
An important property characteristic concerning the athons in this chapter is
ordering An example of an ordered property is the sequence of paeamit a
method.

We assume that each primitive datatype used in a metamodeh lufault
value, called the “zero” of the datatype. The default valfi@m integer is the
value 0, the default value of a string is the empty string, #red default value
of an enumeration is its first value (assuming a sequenceuwheration literals)
or the empty (invalid) string, whichever is applicable im®m specific modeling
environment. The default value for the contents of an unmediend ordered set of
elements are the empty set and empty sequence, respectively

7.3.2 Description of a Difference

We have shown informally in the introduction that the resiithe difference be-
tween two models may contain negative elements, i.e.,nmtion that should be
removed from a model. We consider that it is intuitive to es@ntA in opera-
tional terms; not as a set of elements and negative elemahtsska sequence of
transformations that add, remove or modify elements in aghod

We have identified seven elementary transformations iretldiferent cate-
gories that will be used as the basis for defininf.aThese transformations are
almost the same as have been discussed in Chapter 4, wheedl@detbembasic
edit operations The most important change here is that we need some addition
information in them to be able to calculate the inverse, &adwe do not maintain
bidirectionality or subsetting at this level. They are ntained at a higher level in
the actual difference algorithm. We also assume that it tgongsible to change
the type of a model element, e.g., a UML Class cannot beconaeleaBe, and an
element cannot change its UUID. The different operatioas ¢hn exist in & are:

e Element creation and deletion.
— creatéu,t) : Create a new element of tygewith the UUID u. By
default, a new element has all its slots set to their defallies.

— deletéu,t) : Delete an element of typgewith the UUID u. An element
may only be deleted if all its slots are set to their defaulteg, and its
primitive value—if any—is a zero.

e Primitive value modification.
— sefe,0,n) : Set the primitive value of elemeetfrom o to n. For ease

of presentation, we assume all primitive values can be sepited as
strings.

128

e Modification of a slot.
Modification of a slot of typep of an element, either by inserting or re-
moving another elemerg. Depending omp, this might mean one of the
following modifications:

— inserte, p,&) : Add a link frome.p to &, for an unordered slot.
— removée, p,&) : Remove a link frone.p to &, for an unordered slot.

— insertAt(e, p,&,i) : Add a link frome.p to &, at indexi, for an ordered
slot.

— removeAte, p,&,i) : Remove a link frome.p to &, which is at index,
for an ordered slot.

These operations have two properties. First, the posifieeaiiong create, set,
insert and insertAtare complete in the sense that they can be used to represent an
model. Second, each operation has a dual operation withppeste effect; this
will be discussed further in Section 7.3.6.

An example of a difference between two models is given in EEgu4, in which
the old model is on the left and the new model is on the rightth&, two new
elemental, andus are created. They are connected to the root Model element
(not shown) via their namespace association, and the Manhglexts them to its
ownedElement composition, due to bidirectionality caaistis. The new class,
is connected to the old class via the new Generalization elememy, using its
specialization and generalization slots.

A= creatéu,,Clasy,
creaté¢us, Generalization, (u1)
insertus,namespacel),
insertus, parentus),

(u1) insertus, child, u,),

insertuy, specializationus),

inser{up,ownedElementy,),
inser{up, ownedElemenus),
inser{uy, namespacel),
inser{u,,generalizationus) |

(u2)

Figure 7.4: Difference Between Two Simple Models

7.3.3 Serialization

Operations cannot as such be saved to a disk or transferexdaavetwork con-
nection. We need to serialize them somehow. The solutionnipls: instead

129

of the actual element, we transfer its UUID. Also, propertend classes are en-
coded by their name. Thus, for example the command for iingeimto a slot is
not insertAte, p,&,i) but insertAfuuid(e),name p),uuid(e),i) instead. This in-
formation must be suitably encoded depending on the actugligation format
used.

A serialization format with support for differences is XMt.has facilities for
representing arbitrary differences between two modelsyjguan XML element
called XMl.difference. The positive operations createseit and insertAt can be
described in an XMI document using the XMl.add element, viilile negative
operations delete, remove and removeAt can be specified tisen XMI.delete
element. Depending on the contents of a particular set tperd will be in either
the XMl.add or XMl.delete element. XMI also specifies thdfatences must be
applied in the order defined, which is also a requirement efalgorithms in this
chapter.

However, the semantics of XMI.difference imply unnecegsiuplication of
information in some cases, and sometimes extra, unnegegsgarmation must
be included. Also, very few actual usage reports have beéfished. A paper
by Annika Wagner notices that we do not wish to describe ceteptlements or
model fragments inside XMI.difference, and that we woulthea want to omit
some information [200]. Jernej Kovse and Theo Harder didindtany problems
in using XMI.difference, but the context of their work wasespgying templatized
model transformations [96].

A better approach, and arguably within the spirit of the nliodetechnical
space, would be to describe the difference between two medeh model itself.

7.3.4 Calculating the Difference

Once we know how to represent the difference between two mode can de-
scribe an algorithm to calculate it. The proposed diffeesatgorithm has four
steps, as discussed in [37]. The objective is first to createnambiguous bijective
mapping between the elementsNyq and in Mpe,, and then calculate an exact
sequence of operations that can transform each eleméydrio the correspond-
ing one inMpew. The phases Map, Create and Delete create the bijectiveintgpp
whereas the Change phase handles the transformations.

The bijective mapping is done with two functioBgyq : U - E andEnpey: U -
E that map UUIDs to model elements iy q andMpew, respectively.

Map

This phase creates a mapping between elememigiiandMpey. In our case, the
UUIDs of the elements serve as the map. From this, we cEatel) = e such that
uis the UUID ofe € Mg andEnen(U) = e such thau is the UUID ofe € Mpew.

130

It is possible to create such a mapping without relying onWh#éDs, but it
would be a lot more difficult and resource-intensive. Howeitecould yield a
smallerA.

Create

The A should contain an operation to create each elemeMi, that does not
exist inMgyg. Given our mapping between elementdMgy and Mnew, We define
the sequencéc of elements that need to be created as follows:

Oc = [creatdu,t) - (Yu,t - ue Dom(Enew) \ Dom(Eoig) At = typeof(Enew(U))) |

Delete

Similarly, the A should contain an operation to delete each elemeMdg that
does not exist iMpen. The sequencdy of elements that need to be deleted is easy
to define:

Op = [deletdu,t) - (Vu,t - ue Dom(Egiq) \ DOom(Enew) At = typeof(Ega(u)))]

After defining the sequencés anddp, it is necessary to update the map between
Moig andMpeyw to be bijective. This is accomplished by updatifgy andEpey to
have the same domain, by adding new elementskgtowvhich are inEpg,, but not

in Eqg, and vice versa. The created elements have default valued their slots.
Now there exists a set of tuplés,, e,) such that for each elemeef € Rang€E,q4)
there exists an element € Rang€Eey) such that uuife,) = uuid(e,), and vice
versa.

Note that the setEyq and Enew NOW In fact contain the same number of ele-
ments, and that we can pair the elements with the same UUIB.i3ta special
case, in that we have assumed the UUID of an element to beaynilis is only
true within eitherEqq or Enew.

Change

In this phase we match the slots for each pair of elem@at®,), both with the
UUID u. Since both elements have the same type, their slots mugbroorio
the same set of properties. Thus we have a set of pairs,) for each prop-
erty in effectivePropertigglasge,)), such thats, is a slot ine,, s, is a slot ine,
and propertys,) = property(s,). The task is to create operations that modify the
contents ofs, into the contents of,. We collect all changes from all slots of all
elements into a sequendg, based on the following:

e For an unordered slot, create the following operations:
[inser(e,p,&) - (V& - & € &n.p\ &.p))]<[(removee,p,a) - (V& - & €
€-P\ en-p)].

131

e Foran ordered slot, the order of the contents must be predeihe smallest
sequence of changes that transforms one sequence int@aisogguivalent
with the Longest Common Subsequemeeblem, to which there exists ef-
ficient solutions, e.g., by Myers [120]. The result is a segaeof insertAt
and removeAt operations which, when appliedggptransforms it intcs, at
minimal size cost. The sequence has lengty # #s, — 2L, wherelL is
the length of the longest common subsequencg ahds,. The operations
in the sequence should be addedto We omit a solution to the longest
common subsequence problem, as any one of several suitaédecan be
used with some performance differences; the details areet@iant since
the result is the same regardless of the algorithm used.

Additionally, we may need to modify the primitive value of alement. We
do this by visiting all pairs of element®,, e,) in the bijection. These changes are
also added to th&: sequence.

e If g, has a primitive value which is different &, we must create a command
to change the primitive value:
[sel ey, primitivevaluge,), primitivevaluge,)) - e, € Dom(primitivevalue)
A primitivevaluge,) # primitivevalugey) |.

A completeA between two models is then specified by a sequence of all oper-
ations as created by the above algorithm. This is a sequdraternent creations,
set commands and slot modifications, and element deletiotisat order, and so
A = dc <0 <dp. Such aA should guarantee two properties:

e For each delete operation, there is a sequence of operdgdoe the delete
operation that resets the slots of the elements to be ddietdubir default
value.

e The complete sequence of operations maintains the biiredtrelations
and subsetting in a consistent state. The individual ojp@mionly update
one slot, and do not try to maintain subsets. However, weldrensure that
for each operation that updates a slot, there is a correampogeration that
updates the opposite slot, and that no subset constramtgaated.

The algorithm proposed in this section satisfies these piiepe

7.3.5 Applying a Difference

To merge a difference to a model is to apply the transformaticontained in &
to a model.

We assume we are givema= d¢c <O <dp and a modeM = (E, type,slots S,
property elements. We will use slightly modified model operations from Chap-
ter 4 such that any subset/superset slot is not affected ypynaert', inserf or
remove operation; these are marked with an asterisk.

132

The merge algorithm can be described by the following thtepss

1. Vcreatéu,t) € A: Create an element of tygewith the UUID u.

M’ e :=creatéM,t)
uuid ;= uuidle — u]

2. Vf € &: Make the changef. It is crucial that subsetting and bidirec-
tionality is ignored at this level, since there will be sexiar commands
in & that handle both of these concepts. Given that our mod# is
(E,type slots S property, element$, we have:

For sete,o,n) :
primitivevalué = primitivevaluge — n|
Forinserte p,&) :
elements = elementfe. p — elementge.p) U {& }]
For insertAte, p,a,i) :
elements = elementie.p —
elementge.p)[0 : i
ala]
<elementge.p)[i : #elementée.p) |]
For removée, p, &) :
elements = elementge.p — elementge.p) \ {a}]
For removeAte, p,&,i) :
elements = elementie.p —

elementge.p)[0 :i]
gelementse.p)[i + 1 : #element&.p) |]

3. Vdeletdu,t) € A: Delete the elemerd of typet with the UUID u.

M’ :=deletdM,e) (Given uuide) =u)
uuid = {e} «uuid

The actual implementation of these transformations dependhe action lan-
guage used to transform the models. A requirement of a metahimthat we have
a reflection interface for determining and querying the préips of all classes, and
a facility for modifying the slots of model elements.

7.3.6 Inverse of a Difference

Given two modeldVy g andMpew and a differencé = 6c<16F <0p such thaM0|d +
A = My ey, We can calculate the inverse of a differedcsuch thaMyey+A = Mgjg.
Itis useful, for example if we wish to (temporarily) back @uifference for testing
purposes.

133

OperationO Dual operatiorO

creatéu,t) deletu,t)
deletdu,t) creatgu,t)
sefe 0,n) sefe n,0)
inser{e, p,&) removee,p,q)
removee, p,q) inserte, p,&)

insertAt(e, p, &) removeAte, p,&,i)
removeAfe, p,&,i) insertAte p,&,i)

Table 7.1: The Map Between Operations and Dual Operations

The map between operations and their dual operations ia giveable 7.1, and
we assume there is a function dual which maps operations therteft column to
the corresponding dual operation in the right column. Itesded to calculate the
inverse of aA. It also explains why e.g. deldigt) needs to have the typeas a
parameter, even though that is not necessary for deletirdgeament. Without it, it
would not be possible to deduce the dual operation cfedte

Calculating the inverse of a difference is a simple prockasdnly requires us
to reverse the sequence of operationA end replace each operation with its dual:

A = dc<adr<adp

3 = [duald) - d € reversédp)]
[[dualf) - f € reverséde)]
b = [dualc) - c € reversg¢dc) |

Once we have calculated the inverse d,at can be applied as described in Sec-
tion 7.3.5.

7.4 Merging of Models

An interesting problem emerges when two differend®sandA,, should be ap-
plied onto the same model. This occurs frequently in a ¢hgted development
environment.

The objective is to apphi; first, then applyA,. It should be noted that the
result ought to be the same regardless of the order in whiehdifferences are
applied:

Méinal = IVloriginal +A01+ D= Moriginal +02+ 4

However, since the differences are calculated relativigldgyina, applying oneA
first would create a model which is different from the base elpand the othef
might not be applicable as such. The base case when botls daliabe applied

134

Iv'original

S

Figure 7.5: The Principle of Calculating the Final Model @#idModels and Their
Original Model

one after the other is only possible when they do not modig/dhme slot of the
same element; otherwise we say thabaflict has occurred.

7.4.1 Conflicts

Consider an ordered slot with eleme& C| and differences insertf@, 0) and
insertAt D, 2). Applying the differences would create either the corfécB,C,D]
or the incorrec{A,B,D,C], depending on the order in which the differences were
applied. In private communication with Ralph-Johan Badble, intuition on why
the former is correct relies on our understanding that we atoanish to insert an
element into a particular index, but rather into an indeatieé to other elements.

Another example is a sétA, B} and differences ins€i€) and insertC). The
second operation is spurious, since the first differenceadly accomplishes the
task: addingC to the set. Removing the other operation short&nsn this case
the conflict is much less serious since adding an elemeradirm a set does not
change the set, i.e., we cannot modify the slot in an errachaay.

Nevertheless, we need a reliable method to modify acording to another
A, and a shorteA is naturally preferred. The modification is necessary tadvo
errors. We define thdifference minimization operatab:

Ny = ®(D2,01), Ay =®(A1,09)
Now the equation becomes:
Iv'final = IVloriginal +A1 +A/2 = Iv'original +A2+A&
This principle is also illustrated in Figure 7.5. Withouts®of generality, this
chapter discusses only the calculation/gf= ® (8¢, < 8¢, <dp,,dc, <OF, <0Op,).
We also provide aonflict detection operatox which returns true if operations

conflict with each other.

135

7.4.2 Conflict Resolution

The calculation o, <&, <8, = ®(dc, <0, <dp,,dc; <0r, <dp,) has several
different cases: element creation and deletion, changdetgrimitive values,
unordered and ordered slots. Given our method of modifyaheslot of each el-
ement with a small sequence of operations, the calculafidg, @lso happens one
slot at a time. The difference minimization methods of theotss kinds of oper-
ations, and which conflicts can occur, are presented in thenimg subsections.
A common resolution is to ignore an operatior O, instead of adding it t@/a-
This also implies that for bidirectional relations, the gieon for the opposite slot
must have the same resolutionagproperly ignored or added tﬁf;z

Element Creation and Deletion

The set of elements createdMa are unaffected by any operationsAq. Due to
the uniqueness of the UUID generator, the operatiors icannot refer to the new
elements im\,. Therefore, all createl,t) operations i, are valid.

Element deletion can be a source of conflicts. For each del¢jeoperation
in Ay, if A; also has the same operation, we can remove it #onsinceA; will
already delete the element.

6&2 = 6C2
b, = [0-0€0p,NO¢&dp,]
The worst case occurs when ofAemodifiese by adding elements to its slots,
and the othe has an operation for deleting it. One solution would be taign
the modifications and delete the element. However, it istepreable if this is the
correct behavior and has the intended effect every time,awual resolution might
be the only viable choice. Thus the conflict detection is tieWing function:
x(dp,,0p,) = (Jdeletduuid(e),t) € dp,
A((3sete,0,n) € dp, A nis not a zeryp
V (Jinseri{e, p,&) € dp,)
V (dinsertAt(e, p,&,i) € dp,)))
Vv
(Ideletduuid(e),t) € dp,
A((3sele 0,n) € dp, A nis not a zerd
V (Jinser{e p,&) € dp,)
V (JinsertAte, p,&,i) € 0p,)))

Primitive Values

An element can represent a primitive value, depending otyjits. Due to this,
a conflict situation occurs whenever baiy anddg, change the primitive value

136

of the same element. Trivially the difference minimizati@bains primitive value
changes ig, unless the primitive value of the same element is alreadngéth
in 6|:1:

®(0g,,0F,) = (sefe 0,np) - sele,0,np) € O, A =(Isete,0,m) € O,))

Conflict detection checks for two different changeg anddr, to the primitive
value of an element:

X (Or,,0r,) = (3sefe,0,n2) € OF,,sefe,0,n) € O, ANy # Ny)

Unordered Slots

It is easy to see that double insertions into or double retsdvam an unordered
set are harmless, but create an unnecessarily&pgTherefore, we can say that
each removge, f, &) operation indg, can be added t&, if it does not exist ind,.
Each inserte, f,&) operation indr, can be added td, if it does not exist indg, .
For bidirectional relations, it is important to only add $eeoperations té, if a
similar operation can be addeddp, for the opposite slot, which can be unordered
or ordered.

If there are no multiplicity constraints on the slot, no candl are possible.
In particular, many slots have a multiplicity constraint“af most one element”.
If both differences add an element to such a slot, manualutso must choose
which one of the operations should prevail, but otherwigeftiowing suffices:

®(0F,,0r,) =[0 - 0€ O, ANOZ O, A (OiS removey ois inser |

There is no particular conflict detection function, since #ibove function suf-
fices and removes all conflicts.

Ordered Slots

The idea of difference minimization for ordered slots isrterleave the insertAt
and removeAt operations iy, with the ones i\;. This is a similar operation that
the Unix tools diff3 and merge already accomplish on texsfjlEL1] and will not
be discussed further.

The most common conflict occurs when both differences indiéferent el-
ements at the same index. Of importance is also to remematthé resulting
sequence cannot contain the same element twice.

Figure 7.6 shows an example output for interleaving orddeadures. Note
how the insertion oB at index 1 pushes the insertionDffrom index 2 to index 3.

137

[AC]

Of, = [insertAt(B,1) | . O, = [insertAtD,?2)]
[A,B,C]| [A,C,D]
O, = [insertAt(D, 3) | \, /O, = [insertAtB,1) |
[A,B,C,D]

Figure 7.6: Example of a Merge of an Ordered Sequence

7.4.3 A Complete Merging System

Metamodels have, in addition to the constraints expres&ipIMOF, a set of well-
formed rules (WFR) which determine if a model is a valid insi& of the meta-
model. On a metamodel-independent level, the WFRs of a noetaintannot be
kept. Therefore, even a successful, conflict-free uniongtéinbe invalid by the

rules of the metamodel. In these cases manual resolutionse®m like the only
choice, but metamodel-specific resolution may also auticaibt resolve some of
the problems by analyzing the resulting nonwellformed nhoated modifying it to

a wellformed state.

One example of a metamodel-specific resolution mechanigsepts itself
with merging diagram information. The diagram elementsribelves do not have
any semantic meaning, so the information of the diagram etgsnis not nearly
as correctness-critical as that of the underlying abstramdel. For example, con-
flicting diagram element coordinates on the diagram caneasnaore or less be
ignored by removing or modifying the relevant operatioraiid,. Clearly, there
is a strong need for metamodel-specific resolvers, perltgpgrime candidate be-
ing a conflict resolver for Diagram Interchange diagrams.

The schema in Figure 7.7 summarizes a merging system for Isjasligh the
original modelMqriginal being modified by two difference8; andA;. The differ-
ence under modificatiod,, passes through several filters which modify it to better
fit Moriginai +A1. Obviously, all possible mechanic resolution mechanishusiksi
be tried before manual resolution is used. The algorithnssriteed in this chapter
work as the first, metamodel-independent filter.

The merging algorithm as given works with two differencesated in paral-
lel, but can be extended further. Given a base mddigkina andn differences
A1, Dy, ..., An, we notice that the number of differences can be reducedKiyga
the unionM = Moyigina + A1 + 45, and calculating a differenaky = M — Mgyiginal-
Now we have the same base mobifigliginas andn— 1 differences\y, Az, Ag, ..., An.
Iterating through this algorithm we have the final molgly. This is important
in a version control system for models, where several dpebase their work
on some common base model, and later commit it back to thesitepg merging
their changes with the work of others.

138

JAYS
!
Metamodel-independent resolver
1
By
!
Metamodel-dependent resolver
!
Y
!
Manual resolution
!
"
8
!
CalculateMoyiginai + A1+ AY

Figure 7.7: A Merging System with Three Distinct Resolut®teps

The above mechanism also emphasizes the scalability ofpjm®ach, as an
arbitrary number of parallel differences can be mergedeitains to be investi-
gated if it is feasible in a practical context for models, fa merging algorithm is
required which would consider more differences in pardlléb, 147].

7.5 A Model Repository

The task of a model repository is to store successive vessiba model and retain
old versions. A simple model repository can store each earsif a model as a
different file containing the model as an XMI document. Inlsacsystem, the file
name can be used to identify each version of a model in théwvecsntrol system.
Access control to the repository is managed by the accedsotonechanism of
the filesystem.

This simple repository is too coarse-grained for most peattuses. It also
lacks many important features. We may want to use the rapggit keep a history
of the evolution of a model through the whole developmentecyin this case, it is
important that we are able to identify, version and retrieaeh individual element
in a model.

7.5.1 Model Storage

While a filesystem still can be used for all this, it is not eéfict and we can quickly
run into problems with respect to atomicity and concurren&g alternative is to

139

store models into a database. A database can set arbittes/fan access, mod-
ification and retrieval and transactional properties suzltamicity, consistency,
isolation and durability (ACID) are guaranteed by the datgbengine. Addition-
ally, it is easy to store additional metadata of the models.

The upside in using relational databases is that they hase fesearched very
thoroughly and industry has greatly invested in creatinghlyi scalable and ef-
ficient products. The downside is that model informationnikerently object-
oriented and it does not map naturally into the relationaldeto This is also
known as the impedance mismatch between the object-adieme the relational
paradigm [113, 99].

The advent of XML has spurred research in databases patigiduited for
storing large XML documents [80]. XML repositories are vesiynilar to object-
oriented databases (OODBSs), and share their benefits anditiong the benefits
are much more flexible arrangements of data, ways to mangtiat data and
more complicated queries. However, current technologys cmé scale as well as
relational databases. Especially query optimization tsasovell-known as in the
relational database field. Using an XML database itselfdtbela great advantage,
but until technology catches up, it cannot be deployed fgelascale projects. Also
XML and object-orientation exhibit an impedance mismattiy, 100].

Next, we will have a closer look at a relational database reeheequired for
a model repository. It serves merely as an example skeldtbow to map hier-
archical information to relational space, and to show trestipite the impedance
mismatch we can still use relational databases as the ston@ghanism for ver-
sioning models.

Relational Database Schema

Formally, a relational database consists of relationsletupnd attributes. Each
relation is defined by its name and its named attributes. fetigoa record of the

database, i.e., the actual data we are storing. The dateecanoss-linked between
several relations. Retrieval consists of fetching thedsphatching a certain query,
often speeded up by matching attributes whichpaimary keysi.e., unique values

in the relation. The problem of storing models in a relatiateabase is fundamen-
tally about mapping a graph with different kinds of nodes addes to a relational
model.

The relational database schema consists of a static sdatibrs independent
of the metamodels used, and a set of relations for each clamgery metamodel
used. The static set consists of database tables that maimtaversion history of
the models and enables arbitrary elements to connect to elbiments, whereas
the rest are purely containers of primitive model data sugktangs, integers or
enumeration values.

There are two strategies to store the different versionsnobdel element. The
first one is to store each individual version as a differeatreint including all its

140

attributes. The second alternative is based on the predisaassion on differences
between models. We can store only the difference betweeréavaions of a model
instead of the complete model elements.

If we store complete model elements, the database will requiore space.
If we store only the differences between revisions of an el@imnthe size of the
database will be smaller, but the queries will be more cormpled require more
processor time. To simplify our exposition, we present oalglatabase schema
where model elements are stored completely. We also do sousk tables re-
quired for a full repository implementation requiring foxaample transaction his-
tories, branching and access control, and omit variousgs&ncoding rules.

To clarify, the database tables that we are about to discussi section have
been collected below. Where possible, the database hasegdents of which
columns can be indexed, made primary keys, or reference tdbkes. Indexes
group together a set of rows with the same column data, pyirkays define
uniqueness of rows in a table and references provide ityeggtween the various
database tables. These common database layout enhansespeet up queries
considerably, and provides some referential integrityhie tlatabase. They are
marked with the keywordmdexed, primary andreferencestablename :

e Model = (model_revisiorindexed, element_revision)

ElementType = (UUIDprimary , typereferencesClassNames)

RevisionUuid = (revisiorprimary , UUID)

Connections = (revisiomdexed, namereferencesConnectionNames , tar-
get, index)

ConnectionNames = (nanpgimary)

ClassNames = (nan@imary)

Additionally, one table for each metamodel class or enutiwaras required.

In the database schema, the table Model consists of a magdmtwodel re-
vision to element revisions. The ElementType table costairow for each model
element in a model. It has two columns, the UUID of the modeinant and the
type of the model element. We assume that an element canangehits type.
Each revision of an element receives a revision number wisicmique for the
repository. To know what UUID a revision has, we must keep aistenUuid
table which maps revisions to UUIDs.

A revision of an element consists of data of primitive typad af links to other
elements. These are collected into two different tablesylith one is specific
to the metamodel type, and the other is generic. The namesdfgécific table is
created based on the full name of the modeling language amhiie of the class.

141

revision name visibility isAbstract

5 Classl public false
9 Class2 protected true
13 Class3 private true

Table 7.2: An Extract from an Elements_ UML14_ Class Table

For example, the table Elements_UML14_SimpleState is tesstbre SimpleState
elements from the UML 1.4 language, and Elements_UML14ust g prefix to
avoid name collisions with other tables unrelated to the UMA language. Each
row in this table will represent a specific revision of a moeleiment of that given
class. The primary key of the table is the revision numbehefrnodel element.
The other attributes are the properties of primitive typehaf element. Another
example of a metamodel-specific table can be seen in Tahle 7.2

The generic table is called Connections and maps the caansdietween el-
ements. Since a slot of an element contains a set or sequémete@nces to
elements, it is important to be able to remember the positfoelements for or-
dered slots. Thus, Connections is defined as (revision, nemget, index). Here,
revision is the repository-unique version identifier of element. Name represents
the name of the property, e.g., ownedElement for a Packagagweveral classes.
Curiously, target must reference the UUID of the target &etnnot its repository
version identifier. This is inherent in the bidirectionglitf slots in most modeling
languages. If we had two interconnected elem@rdadB and repository revisions
were used exclusively, an8l were to change, its revision identifier changes, and
thus the database tuples Bfwould change, resulting in a change of its revision
identifier as well! This would cascade through the whole nhaael create new
revisions of every element in the model. This is clearly rediced, and thus links
must be from a revision to a UUID. Then RevisionUuid and Matiel be used to
retrieve the actual revision to use. The final column, inc@xply keeps track of
which element should be in which position in the slot. Thieiguired since few (if
any) relational databases keep their records in order. am@ie of a Connections
table can be seen in Table 7.3.

Naturally, there are several more ways to encode the sarnemafion, and
several optimizations that could be made, especially spage For example,
since the set of properties is known, we can also have sep@minections tables
for each, in this case for example Connections_ UML14 RzekewnedElement,
thus making some of the information implicit in the table mamAlso, a trivial
optimization is to split the Connections table in two, onedt unordered prop-
erties (thereby making the fourth attribute index unneaggsand one for all or-
dered properties. The main drawback of these optimizatisribat the number
of database commands that must be used increases, anddhrssth risk for an
effective slowdown of the repository. This, however, catydre determined by

142

revision name target index

1 parameter E2 0
1 parameter E3 2
1 parameter E4 1
2 behavioralFeature El -1
3 behavioralFeature El -1
4 behavioralFeature El -1

Table 7.3: An Extract from a Connections Table

performing empirical tests since the actual performanc&sdrom one database
to another.

In order to aid in debugging the database, several stringtaats are kept in
some tables, and rows of the other tables reference thasgsstEach enumeration
is kept in separate table, e.g., Enum_UML14 Visibilityljrand the enumeration
strings for attributes in the element tables keep referenocdhose strings. Thus,
the user debugging sees the actual enumeration stringsadhstf obscure enu-
meration numbers, while still keeping the memory requiretad¢ow. All element
names and all property names are also kept in separate,t@ldasectionNames
and ClassNames, for the same reason.

7.5.2 Access Control

Access control defines the mechanisms by which read or writess to parts of the
model are defined and modified. Access control can be implesdeat different
levels of granularity. The access control level that is estsio understand and
implement is access control at the model level. In such a aresi the repository
may grant read-only or read and write rights to a whole modeafspecific set of
developers.

However, in some projects, limiting access for developersrtly some parts
of a model may be important, or even mandatory. As an exanfpimiting read
access, security-related information is to be disclosdy tmna specific set of de-
velopers. A more common scenario is limiting write accesshghat a group of
developers may work on a part of a model, and another groumother part. In
such cases, it might feel intuitive to set the granularityaotess at the element
level, whereby read or write access is determined based emldments that a
developer wants to read or change. However, this may be isitgesdue to bidi-
rectionality. Modifying a slot implies the modification dfé opposite slot.

For example, consider a class which has write restrictibm&JML, this class
is represented as different properties, including its naatteibutes, superclasses
and subclasses. It is then impossible to create a new classsalsclass of this
write-restricted class, since that requires modificatibtthe specialization prop-

143

erty of that class—which the developer is not allowed to fyddHowever, most
developers would consider these changes harmless to thieadrclass. This is
because while some properties carry semantic meaning feleament, other prop-
erties only act as a navigational aid.

Clearly, the level of detail in access control must be basethe properties of
elements, not on the elements themselves. In some casagwvbleper ought to
be able to use a class, subclass it but not add new operatiarisgange existing
attributes. The distinction cannot be made by allowing ealiibwing write access
to the class element itself, but to the properties of thesclas

7.5.3 Client-Server Communication

Most repositories are usually centralized systems thawvatlifferent developers to
work simultaneously on the same project. In this case, thesitory resides on
(at least) one server and the client computers read andeipdats of the reposi-
tory as needed. We would like the communication betweeneapesitory and the
client to be based on open standards so we can seamlessbolsé&am different
vendors. This includes two different standards: a stanttad&fine how and when
information is transferred and a standard to define the fowh#he information
that is being transferred. XMI as such does not define a pobfoc transferring
models over a network, only the encoding of a model. Speadiafeést groups, sep-
arate from OMG, are advancing the state of the art of diditbauthoring, and are
creating official Internet standards to fill this void. Goodmples are the IETF
WebDAV and Delta-V working groups, which have defined “HT Tidfisions for
Distributed Authoring—WEBDAV” (RFC 2518) [62] and “Veraning Extensions
to WebDAV” (RFC 3253) [44] to ease communication in a disitdrl development
environment. These standards can be used for a protocoébatevmodel reposi-
tory and the client tools, such as a UML editor. It is benefimaxamine in more
detail what operations especially related to models thelsdively new protocols
should provide in order to become de facto standards of moaesportation.

Many times a client will not be interested in all the elements model but
only in a subset of them. The problem is that a client mightkmaiw the name or
the UUID of a certain model element in which it is interest&tle reason the client
should not download the whole model is due to the compaigatioey bandwidth
between the client and the server. There are two main sakitio this problem:
one is to let a client seek elements in the model and the oshier implement a
query language.

In the first solution the server should provide a simple iaiEe with two ser-
vices: one service, hameagktRoot returns the UUID of the root element in a
model, while the second servicgetElementaccepts a UUID as a parameter and
returns the model element associated to it. As an examplesaweassume our
repository contains a simple UML model with two packages@melclass as shown
in Figure 7.8. For simplicity, we use integers to denote thdDs.

144

Model UUID=1
name="Example”

ownedElement={2,3}

Package UUID="2"
- name="Sales”
ownedElement={4}

Class UUID="4"
name="Customer”

¥i’ Package UUID="3"
name="Ul"

ownedElement={ }

Figure 7.8: Example Repository Client Access

In the example repository, if a client invokes the sengegRootthe repository
will return the value “1”, i.e., the UUID of the main elementthe repository. If the
client invokesgetElement(“1”) the repository will return all the properties of the
element with UUID “1”, including the property named ownedglent. In UML,
this property describes the contents of a model or a packagie repository the
model contains the packages Sales and Ul, therefore thed&leraent property
will be the set{ 2,3 }, i.e., the UUIDs of the previous packages. The client can
use these UUIDs to continue traversing the models. Thisfade can be naturally
extended to include revision numbers, for exang@eRoot(5Swill return the root
element in the 5th revision of the model.

An alternative solution is to use a query language, somgtakin to the SQL
in the world of relational databases. In this case, the thah send a query as
a text string to the repository that will evaluate the queggiast all elements in
the model and return those which satisfy it. We can use diffealternatives as
a query language. OCL [203] is used in the UML metamodel tandedidditional
constraints over valid UML model elements, but it can alsaubed as a query
language. As an example, if a client sends the gseff;oclisKindOf(Class) and
self.name="Customer’to our example repository, the repository will return the
set{ 4 }. The result is a set since there can be more than one classheitrame
Customer.

We would have to extend the current OCL standard with quede®trieve
version information so we can perform queries against thisioe history of the
repository such as the following:

self.name = “Customer” and self.lastEdited < “24 Dec 2006"

which returns a set of all those elements with a name of “Gnetd which were
edited before the specified date.

145

An alternative to OCL is to use some other query languagedbasXML, such
as XQuery [199]. However, this approach neither solves #ezlrio know how the
model information is arranged in the UML metamodel in oraecrieate a complex
query, nor does it provide a direct solution to querying \@rsnformation.

7.6 Validation of Research

Considering only technical issues, the most basic probiensrsion control sys-
tems are in calculating differences between models, andingeone or several par-
allel differences together into a final model. As a proof aficept, the algorithms
in this paper have been used to create a simple centralizédn®@el repository
server [5] using XML Remote Procedure Calls (RPC) [179] dd@&iT P [56].

The server supported describing model updates to cliemsg tise difference
algorithm, and the clients used the merge algorithm to thelthe update into the
client code, while keeping client changes intact. The casitei the server were
done similarly.

Primitive automatic conflict resolution in the form of a mmtadel-independent
resolver was included. There was no metamodel-dependsoives part; diagrams
unfortunately were not described as models so they couldrriey stored into the
repository. The metamodel-dependent step can also bedevedias a quality-of-
implementation issue, since a manual resolution mechasiwld still catch any
remaining conflicts. In the implementation, even a crudelgical interface for the
manual resolver was never finished; usability was thus amcajacern.

Nevertheless, all the algorithms presented here were ptre &ystem Model-
ing Workbench by Ivan Porres et al. [11, 152]. Currently, difeerence algorithm
has also been implemented in the Coral modeling framewoitk, avmetamodel
specifically for describing model differences.

7.7 Related Work

As described by Yuehua Lin, Jing Zhang and Jeff Gray in [1€4%,topic of ver-
sioning models is very important. During the recent yeaesdthas been some re-
search in the area, mostly by combining algorithms from yi@ee) and word/text
theory, as we also have done. Furthermore we can split tieards into different
areas, depending whether or not order of elements are taiteraccount, and
whether the elements need persistent identifiers.

Ignoring the order criteria leads to very fast change deiedbr hierarchical
information [202], and this has also been researched by|[2¥Rile this ignorance
is convenient it is too lax, as the order of element refersnceslots is not kept.

Since XMl is an XML application, one could assume that ordin@ML merg-
ing tools could be used. However, they are too strict sinceaes in XML have

146

to be kept in the correct order. A good tool must take into aot@rdering only
when necessary, in order to minimize manual resolution.

Rather than using persistent identifiers for the mapping@les described in
Section 7.3.4, we could use some other mechanism. Otheibpities include
matching by element name or some more complicated sinyilaritction [210, 87].
However, such results are heuristics and might thus produomeous mappings,
but they might be necessary since UUIDs might not always bézdote.

Cicchetti et al. have described a model difference metaihid@¢and a way
to compose several difference models [41]. However, thaildedf how this model
weaving is accomplished are not discussed.

Prawee Sriplakich et al. [165] also describe algorithmscdculating the dif-
ference and merging of several differences. Interestjrigertions into ordered
slots do not use integer indices. Rather, an identifier tetbment after which the
insertion should be done is given. This avoids having to ffydtiie indices when
merging two modifications to the same ordered slot. They edsectly note that
for a bidirectional relation with an unordered slot, thaali€nce calculation of that
slot can be derived from the difference calculation of thpagite slot. They also
have a difference metamodel, but conflicts do not have oney b not discuss
difference inversion.

An interesting way to display differences is coloring. Heaespecial “union”
is calculated such that a difference is shown on top of a bassgton [125, 124].
Usually the common parts are shown in black, whereas addam removals of
elements are displayed in two different colors. In [125¢ thfference calculation
also has a separate operation fgoasition shiff which is emulated by our algo-
rithm with an insertAt/removeAt pair of operations. It istr@ear if either choice
has any significant impact.

An interesting use case for model differences is given by Zlmang and Gray
in [106]. They integrate model difference and differencgusdilization routines into
a model testing framework, where model differences are ts@dmpare test re-
sults with the expected output model. Dimitrios Kolovos;hirird Paige and Fiona
Polack also use model differences for model compositiomsnandel transforma-
tion testing in [94].

An important break-through in practice can be expected fEwuiipse, in the
form of the new EMF Compare project [27]. It is a work in proggecomponent
with the goal to provide model comparison and merge supmoreEMF. It also
has a better separation of concerns in its architecture t@amlgorithms in this
chapter. It especially considersatchinga separate activity from calculating a
difference. It can thus perform matching using differergaaithms, which is a
clear improvement.

The model repository with version information using a SQtkend described
in this chapter is merely a proof of concept tool. As alreaidyesl in the previous
chapter, the relatively new Teneo library [54] supportsatireg an object-relational
mapping from EMF models to a relational database.

147

It is noteworthy that most successful textual repositonesk on a line-by-line
basis. However, Coven [39] emphasizes fine-grained marageshtextual code.
Model repositories provide a similar fine-grained versimnof elements and their
interconnections.

7.8 Conclusions

This chapter has presented several metamodel-indepeattgmithms regarding
difference calculation between models. We have descrilbffiezence calculation
algorithm between two models and a merging algorithm fohapg the difference
to the original model to produce the target model. Additlpnave have shown
how to perform the operation in reverse, producing the nabmodel starting from
the target model and the original difference. These algorit describe a difference
as a sequence of operations. The set of operations is cargidteach operation
has a dual.

Although calculating the inverse of a difference is a ratbienple operation
and not really discussed by other related work, we constdertie important nev-
ertheless. At least its textbased equivalent (i.e., revpegch) is frequently used
and useful.

Our work is heavily dependent on persistence of elementiftens, but we do
not see that as an issue. For example in the context of a gemeld project within
a company it can be assumed everybody uses adequate tooleraiah control
supporting element identifiers.

Furthermore, the difference calculation is used to form @mralgorithm,
where two separate modifications are made to a base modethanghion al-
gorithm combines both differences into one model by propiaterleaving, where
possible, the operations in the latter difference with thiener difference. At all
times, distinguishing unordered slots from ordered onésj®rtant, since conflict
resolution is greatly simplified with unordered slots.

There are several cases where merge conflicts are a fact andhhrasolution
is required, as is also the case with textual programminguages. Modifying the
same ordered slot easily creates such situations. Foebtdinal relations, both
the slot and its opposite slot must be kept in synchroninatibhe extreme case
of deleting an element even though another difference meneldifies it slightly
leads to a complicated question; which difference shoulprlmitized? It remains
to be seen whether a union algorithm can work by merging omtygarallel dif-
ferences, or if more differences have to be considered samebusly.

Additionally, we have shown how to use these algorithms &ai& a version
control system. However, these basic algorithms shouldxbended to support
metamodel-specific resolution mechanisms, and usable ahaaonflict resolution
from the user’s point of view is a major hindrance to the astopof collaborative
development of models. Conflicts also heed more rigorouslliveyy perhaps in

148

the form of a separate conflict metamodel. Further work ingieieeral area of dif-
ference calculation, merging and version control is resglias automatic conflict
resolution is important to enable models to become the pyirsaftware artifact.

The technology transfer into vendor tools is also lackirsgsability is a big prob-
lem.

149

150

Chapter 8

Diagram Handling

8.1 Introduction

To fully realize the Model Driven Engineering [89] vision weed to define model-
ing languages and model transformation languages riglyraumsl we need to pro-
vide software development tools supporting them. To enisitieeoperability, long
term availability and support, these languages and toalsldhsupport accepted
standards. Software modeling languages are often base@ual notations since
this brings important benefits to software development.[78% a consequence,
model transformation languages and model transformatiofs theed to support
visual notations in one way or another.

The Object Management Group (OMG) maintains a series of tmgdstan-
dards that are used by the industry and studied by the acad€dme of the main
characteristics of the technical space [19] defined by the3Ohbdeling standards
is that the abstract syntax and concrete syntax of a modéhardifferent artifacts
that are defined and maintained independently. The absiyatax of a language
can be defined using the Meta Object Facility (MOF) [139] drel WML 2.0 In-
frastructure [142]. To represent the concrete syntax agrdias of a model, the
OMG provides a standard called Diagram Interchange (DIB]18 interchange
two-dimensional diagrams. Dl is a language that has beenatkefollowing the
same metamodeling approach as MOF and the UML. However, ridttispecific to
UML. It can be used to represent UML diagrams as well as diagreor domain-
specific modeling languages.

We must emphasize our understanding of the separation listoeat and con-
crete models. An abstract model contains the modeled dédiereas a concrete
model does not contain any information relevant to the nextidata. Thus, a con-
crete model is only necessary for displaying to a human bdtngexample, using
colors in state machines to denote any information of relegas not a proper use
of diagrams, unless that color information is based diyectl the information in
the abstract model.

151

Dl is a key standard to allow the interchange of models batwieels that
need to represent, create or transform diagrams. Exampldgese tools range
from simple diagram viewers to full-featured interactivede! editors or model
transformation tools.

Many researchers have studied the definition of new modea$foamation lan-
guages and tools that support in one way or another these Glt@Eads. The
OMG also proposes a standard for a model transformatiorukegey called Query-
View-Transform (QVT) [133], but there are many other intdieg transformation
languages and tools, such as [46, 146, 86, 21, 181]. Howeest, of the existing
transformation languages and tools are based on the absjraax of a modeling
language. Therefore, they do not deal with diagrams as such.

A transformation definition could include rules to update tliagrams associ-
ated to a model, since, in fact, diagrams are just organizezhather model. We
consider that this approach is not satisfactory due to ttigtlfat diagram transfor-
mations are rather complex but independent of the semaatisformations and,
therefore, they can be reused from one model transformadi@mother. That is,
it is possible to define rules to create and update diagraatisate independent of
the actual model transformations.

In this chapter, we describe a way to create and update diesgadter execut-
ing a model transformation. We exemplify this idea by cregt domain-specific
mapping language called DIML, and show how we have used itdeige a map-
ping from abstract models to DI diagrams. We assume a totihgets shown in
Figure 8.1: model transformations are executed by a getramsformation com-
ponent that updates the semantic information in a modebbase transformation
definition. Once the transformation is completed, a gerdiagram reconciliation
component updates the diagrammatic representation of alrhaded on a diagram
definition. A key requirement for these tool components ifttmw the existing
OMG standards and to be able to interoperate with existindeting tools.

This chapter is based on Publications Il and Ill. We procestbbows: first,
we briefly discuss how models and diagrams are organizeddingao the OMG
standards in Section 8.2. In Section 8.3, we describe a égegto define mappings
between models and DI diagrams. In the following two sestiove describe how
these mappings can be used to construct a diagram creatior@nciliation com-
ponent for new and existing diagrams. We discuss our expezgein implementing
this approach in a tool in Section 8.6. Finally, we concludthwa discussion on
related work in Section 8.7 and final remarks in Section 8.8.

8.2 Models and Diagrams
A complete discussion of modeling languages is out of th@ead this chapter
but has been discussed in Chapters 2 and 3, where relatedhasrklso been

mentioned more extensively. However, from the point of vigwthis chapter, it

152

Transfor-
mation
Definition

Model > Transformation »| Model
Component
A
Diagram
Diagram P Reconciliation » Diagram'
Component

Diagram
Definition

Figure 8.1: Diagram Reconciliation in a Model TransforroatiToolchain

is merely necessary to require a modeling language to éxhibse two important
features:

e Classes and instances: The type of a model element is defireedlass that
can inherit the properties of other classes. Each elemenbdia single type
that defines all its possible slots. Each slot always beltmgse element.

e Separation of abstract and concrete syntax: Models as sigltontain se-
mantic information but not how to represent it diagrammadlyc A different
language is used to define the visual appearance of a modelefdre, a
model and its diagram(s) are different artifacts maintdimelependently.

We consider that the work described in this chapter can bé usany mod-
eling framework that exhibits these two features. In tha céshis section we
briefly discuss the language proposed by the OMG to definedherete syntax of
a model.

An example fragment of the UML metamodel describing statehimes is
shown in Figure 8.2. It must be noted that we have simplifiednttetamodel for
the purposes of this chapter. We will use this metamodet iatéhis chapter.

153

extendedElement

> ModelElement

N i *
StateMachine ————> 12M°" String
stereotype| Stereotype
0..1
0..1
subvertex | * entry
State .0“1 0.1 Action
doActivity
* | transitions ﬁ
N source 0.. 0..
Transition outgoing 0..1 Rexit
. target 0.1 0.1
incoming 0..1 * subvertex
parent | 0..1
SimpleState CompositeState

Figure 8.2: A Simplified Fragment of the UML Metamodel for ®tdachines

8.2.1 The Diagram Interchange Metamodel

The purpose of the OMG Diagram Interchange is to allow thgrdimmatic repre-
sentation of concepts in a model. Dl is a rather small languath only 22 classes;
a relevant subset of them is shown in Figure 8.3.

There are basically four main concepts in DI: GraphNode pBEaige, Graph-
Connector and SemanticModelBridge. A GraphNode represemectangular or
elliptical shape in a diagram, such as a UML Class or an Aetbile a Graph-
Edge represents an edge between two other elements such asdes in a UML
Association or a node and another edge such as in a UML Adentidass. A
GraphConnector is used as an anchor point for an edge. Nedgss and con-
nectors have different properties to define the position dintknsions in a two-
dimensional space. It is also possible to define other festauch as colors or
fonts to be used to render these elements.

Finally, a SemanticModelBridge is used to establish a lieknkeen the seman-
tic or abstract model and the diagrammatic model. For exapgpGraphNode rep-
resenting a UML Class is connected to that class using a SerivmdelBridge.
There are two types of bridges. A UmllSemanticModelBridgesua directed

154

graphElement 0..1 ’ D

GraphElement DiagramElement
H ‘0..1 contained
graphElement 1 Z% container *
* | achorage
GraphConnector| anchor * |GraphEdge GraphNode
2 graphEdge
semanticModel s cModelBri bi
emanticModelBridge owner 0_.1‘ iagram
1) name : String
1 diagram
Z% Z% element .
SimpleSemanticModelElement| |Uml1SemanticModelBridge| * MOF::Class
typelnfo : String 1

Figure 8.3: A Subset of the Diagram Interchange Metamodel

link to an element, while a SimpleSemanticModelElementti&@ios a string prop-
erty called typelnfo. These concepts are explained in metaildn the DI stan-
dard [138].

Figure 8.4 shows an example of a fragment of a UML model. THepkert
of the figure is an object diagram showing a simple state andi#tgrammatic
representation in DI. On the right hand side of the figure Hraesmodel fragment
is shown, rendered as an image. The dashed arrows in the figpmresent how
each individual node in the DI model is rendered. This image ereated by a tool
based on the information contained in the UML model, suchhasname of the
states, the DI model, such as the layout of the states, aftdrblinowledge about
the UML notation for state machines, such as the fact thaite & represented as
a rectangle with rounded corners. In this case the image evatered by the tool
as Encapsulated Postscript [3]. However, it is also passdrender the image in
other graphical formats, such as SVG [190].

From the object diagram we can see that this DI model con&eéraents nec-
essary for displaying and layouting information retrievexn the UML model. To
simplify the figure, we have omitted some UML and DI elememé& especially
do not show the Uml1SemanticModelBridge elements but mexalirected link
between DI graph elements and the UML elements. We shoutdnale that we
show the links that correspond to composition associatigitsg a black diamond.

155

S1 : SimpleState

:_GraphNode

t

CompartmentSeparator_: GraphNode

NameCompartment : GraphNode InternalTransitionCompartment _: GraphNode

1

Name: GraphNode

Figure 8.4: Rendering of a DI Model to an Image

Although the notation of this object diagram is not definethim UML standard, it
is useful for the purposes of this chapter.

In Figure 8.5 a larger example of a fragment of a UML model gl The top
part of the figure is a simple UML statemachine model with twaies connected
with one transition, presented as a UML object diagram. Tdtéom part of the
figure shows the same DI model rendered as an image. This éxampws the
states represented as nodes and the transition representad edge containing
nodes in the same DI Diagram. From this figure we can also sgelthuses
GraphConnectors for connecting the endpoints of an edg¢hter ®1 elements.
Although the GraphConnectors are not visible in the rerdleliagram, they are
important for layouting the edges.

8.2.2 The Diagram Reconciliation Component

The diagram reconciliation component can create new dmagi@ update existing
ones. New diagrams may be created if there were no previagrains in the
model, for example the transformation component is agt@ateverse engineering
tool that has created a model from code, or when the transfiitommaps a model
from one language to another. On the other hand, a transfiemeaomponent may
sometimes perform a partial change in a model, where onlypsetwf the existing
elements are updated, added or deleted. In this case, thediaeconciliation
component should try to preserve as much information fromstiery diagrams
such as layout, colors and fonts as possible. That is, thgradia reconciliation
component should work incrementally, performing the mimimset of updates
necessary to maintain consistency of existing diagranmis thi abstract models.
In our approach we consider the transformation definitiod #re diagram
definition to be two different artifacts that can be defined amaintained inde-

156

T,

I
S1: SimpleState Transition : Transition S2: SimpleState
B | I | E—

StateDiagram : Diagram

l

: GraphNode : GraphConnector : GraphEdge GraphConnector : GraphNode

phNode

CompartmentSeparator : GraphNode TransitionDescripti Name : GraphNode

NameC tment : GraphNode InternalTransitionC H NameC« H InternalTransitionCe

! !

Name : GraphNode Name : GraphNode
S1 S2
Transition

Figure 8.5: (Top) UML Model in Gray with Two SimpleStates aadransition
and its Diagram Representation in DI (Bottom) DI Diagram &eed Using the
UML Concrete Syntax

pendently. The same applies to the transformation and #ggalin reconciliation
components: they can run in the context of an integrated hmgdenvironment or
they could be completely different tools.

We consider that there are several important benefits inagjsoach. First,
the construction of new transformation tools and the dédimibf new transforma-
tions is simplified since they do not need to deal with diagrar8econdly, it is
possible to create different diagrammatic representatfoom the same semantic
information. Also, it allows a market of independent toohgmonents to transform
and update models and diagrams. Finally, the tool companehiarge of diagram
handling can be optimized to its specific task and theretaran be more efficient
than a generic transformation engine.

8.3 From Models to Diagrams

We have seen in the previous examples that DI provides usthéthasic classes,
the instances of which can be combined to create diagramweté, neither the
UML nor the DI standard tell us which classes we should userg¢ate a spe-

157

cific diagram to represent a specific model (Appendix C of [IR&s not provide
adequate information for either UML 1.4 or UML 2.0). As we kaeen in the ex-
ample, this task is not trivial since each UML model elemenepresented using
many DI elements and the mapping between the model elemdnitsadiagram
representation cannot immediately be derived. This in tamplicates the inter-
change of DI diagrams between modeling tools, as diagrasetent by one tool
may not be compatible with the diagrams the other tool csediall compatibility
can be ensured only if the tools use the same definitions éatioig the diagrams.

To be able to create a truly reusable and independent diaggaomciliation
component, this component should support different moddiinguages and be
based on standards. The first requirement implies that tles to create or up-
date diagrams for a given modeling language should not bacbeed into the
transformation tool but defined in a tool-independent fdrthat can be loaded by
the reconciliation component at runtime. The second requent implies that the
diagrams created or updated should conform to a standagchdieinterchange for-
mat such as DI. This would allow the user to view and edit fiamnsed models in a
DI-compliant model editor. Currently, we are only aware oeaommercial tool,
Gentleware’s Poseidon [61], that supports DI. We considisrtbol as a reference
implementation of DI.

To address this issue, we have created a language calledidlgeabr Inter-
change Mapping Language (DIML). Its purpose is to define nmggpbetween
classes in MOF-based modeling languages, such as UML, aresponding el-
ements in the DI language. An overview of the DIML languagéhwespect to
other modeling languages can be seen in Figure 8.6. In thisefign dashed ar-
row indicates conformance, and a plain arrow indicates @isg assume that this
mapping language is defined using the MOF standard. Thelaotgpings are
described using a model in this mapping language. Each stthedels maps
an element in the modeling language to a set of elements iDitkenguage. This
information can then be used by an application of this maplainguage that inter-
prets the mappings and applies them to actual models andhdiag Thus, DIML
is a domain-specific weaving metamodel.

We can see example DIML models for UML StateMachines, SiSiaiees and
Transitions shown in Figures 8.7, 8.8 and 8.9 respectivEhese mappings con-
form to the simplified structure of StateMachines preseintefigure 8.2. In the
figures, an abstract element on the left is mapped to a higrast diagram el-
ements as DIML Parts. Each part, shown as rectangles, mapstaphNode,
GraphEdge or Diagram in DI. The directed arrow correspondld mapping con-
cept, whereas the edges with black diamonds corresponcetoeak ownership
based on guard and selection statements, the former insd&dis. The hierar-
chy forms a parameterized skeleton which when transformiedD| elements in a
specific context gives us the intended result.

An example of the application of these three mappings was iseeigure 8.5.
The topmost part of the figure (colored gray) shows a Statéiiaavith two Sim-

158

MOF

UML DIML DI
A A A
UML Model DIML Model DI Diagram
A

Diagram Reconciliation
Component

Figure 8.6: Overview of the Mapping Between Models and Daags

UML14::StateMachine DiagramPart

diagramType : ="StateDiagram”

self.subvenexT Tse\f.lranswtion

Delegation Delegation

Figure 8.7: The DI Mapping Rule of StateMachines

pleStates and one Transition. When the mapping for UML $tathines (Fig-
ure 8.7) is applied to the StateMachine, a DI Diagram will leated. When the
mapping for UML SimpleStates (Figure 8.8) is applied to the@eStates and
the mapping for UML Transitions (Figure 8.9) is applied te fhransition, DI el-
ements will be created for these UML elements. Finally, ¢hB$ elements will
be connected to the Diagram. As a result, the DI model showthermiddle of
Figure 8.5 is obtained. By comparing the DIML models to thisalcdiagram, we
see that not all DIML Parts are represented in the resultiagrdm. For example,
there is no StereotypeCompartment for the SimpleStates.igan example of the
parameterization; since the SimpleStates had no abstracdBype elements, the
guard “self.stereotype=notEmpty()” in the DIML model returned false and thus
no StereotypeCompartment was created.

Thereby the three mappings for StateMachine, SimpleStatd ensition from
Figures 8.7, 8.8 and 8.9 have been used to create severadXtraigments as out-
lined by triangles in Figure 8.10, yielding the final DI Diagn in Figure 8.5. The
GraphConnectors are used to connect GraphEdges togetheGraphElements.

159

UML14::SimpleState; acceptsConnector := true GraphNodePart

1 !

GraphNodePart GraphNodePart GraphNodePart
typelnfo : = NameCompartment typelnfo : = CompartmentSeparator typelnfo : = InternalTransitionCompartment
[self.stereotype->notEmpty()] self.entry->asSet() self.exit->asSet()
GraphNodePart GraphNodePart Delegation Delegation
typelnfo : = StereotypeCompartment typelnfo: =Name

self.doActivity->asSet()

Delegation

Figure 8.8: The DI Mapping Rule of SimpleStates

UML14::Transition |_ [diparent.oclisKindOf(D!::Diagram)] GraphEdgePart

connectors : =Sequence { self.source, self.target }

? !

GraphNodePart GraphNodePart
typelnfo : = TransitionDescription typelnfo: =Name
self trigger->asSet() [self.guard->notEmpty()] | [self.effect->notEmpty()] | self.effect->asSet()
Delegation GraphNodePart GraphNodePart Delegation
typelnfo : =GuardEnd typelnfo : = EffectStart
[self.guard->notEmpty() | self.guard->asSet()

GraphNodePart Delegation

typelnfo : =GuardStart

Figure 8.9: The DI Mapping Rule of Transitions

DI Diagram tree
for the StateMachine

DI tree for
SimpleState

DI tree for
Transition

DI tree for
SimpleState

Figure 8.10: DI Fragments Created by the DIML Mappings arenBioed into the
Final DI Diagram

160

8.3.1 DIML Metamodel and Semantics

This section discusses the concepts we have used in crdaitvig and the se-

mantics of the classes. It is important to notice the sejoerdtetween the DIML

language itself and the various applications of the DIMLglaage. While the main
use of DIML is to define diagrams using the OMG standards, Dtdes not de-
fine or enforce any particular method for applying these nraggpon model data.
Assuming that a DIML mapping is correct, any tool is stillealled to maintain the
abstract model and concrete models in any way it wants asdstige end result is
correct, i.e., as if it had used DIML.

This as if rule is well-known from for example C compiler technologydan
gives implementations the greatest leeway while stillinitg compatibility be-
tween implementations. This separation enables us to otmate on acquiring a
usable mapping language and its semantics, while leavim@dtual applications
of DIML as a separate concern for modeling tools. In our apirthis separation
works favorably for both standardization as well as enabtiompeting implemen-
tations.

The metamodel for DIML is shown in Figure 8.11. In the figureQt:Class
represents the type of any class. The OCL::OclExpressi@nsréo any OCL ex-
pression. OCL [141] is a language for creating arbitraryripgeon models. It can
be used to return a collection of element references fromefsoal to assert that
certain properties hold in a model. The MappingModel is at@imer to collect
the mappings of a given modeling language or profile. EveiyiDmodel must
have one MappingModel as its root element. An ElementTopipiiag elemenin
is then a mapping of one abstract element of tgpelement to its diagrammatic
representation as DI elements.

In Figures 8.7, 8.8 and 8.9, the ElementToDIMapping elemard denoted by
directed arrows and the Contained elements are the conguoksitks. There can be
two different text strings next to those links; a text in bvats is a Contained.guard
expression, and a text without brackets is a Containedisaieexpression.

The slotm.root points to eDIML tree.

8.3.2 DIML Tree

Each mapping rule is basically a tree of parts. Such a DIMé& t@nsists of an Ini-
tialPart as its root, and a hierarchy of Contained and GraghentPart elements.
Leaves in the tree are either of type Delegation or have ridrefni Contained ele-
ments. The purpose of a DIML tree is to describe a parametéskeleton which
can be used to compute a resulting DI tree. Parameterizetiaocomplished by
the Contained elements, and means here that the occurredceeeurrence of
child GraphElementParts is determined by the slot valu€santained.guard and
Contained.selection. These expressions allow us to cagatgping to DI context-
dependent on the abstract model element and all the othieaetamodel elements

161

MappingModel
0..1 0..1 | separator

. parent child
Contained ‘ GraphElementPart
0..1 1
0..1 guard : OCL::OclExpression
selection : OCL::OclExpression | Shildren
{ordered}
" | mappings 0..1 | parent

ElementToDIMapping

InitialPart <
contextGuard : OCL::OclExpression root |

acceptsConnector : OCL::OclExpression ‘ 1]
" ConcretePart Delegation
typelnfo: String
1 element % Zﬁ
MOF::Class

DiagramPart GraphEdgePart GraphNodePart

validin * | diagramType : String connector : OCL::OclExpression

Figure 8.11: The DIML Metamodel

as well as the chain of parents in the DI model. These expresstogether with
instances of ConcretePart and Delegation are the primaansi® represent a col-
lection of similar DI fragments (modulo the parameteriaajias one DIML tree.

Ina DIML tree, an instancp of GraphEdgePart or GraphNodePart corresponds
to an arbitrary number of instances of the DI elements Grdgetr GraphNodd,
respectively. A DiagramPart always corresponds to exacte/DI Diagram. There
is one DI element for each element found when executing theawed.selection
expression. A Delegate corresponds to a change of DIML nmgpipile. It does
not correspond to any DI element. It can be seen as a plachidthe next
DIML tree.

According to the DI standard, a Diagram has a SimpleSemdotielEle-
ments in its semanticModel slot such thatdiagramType =s.typelnfo, and a
UmllSemanticModelBridge in its Diagram.owner slot whidhinis to the abstract
element for which the diagram was created for. A GraphEdg&m@phNode
has either a Uml1lSemanticModelBridge or a SimpleSemarad®Element. If
p.typelnfo is emptyd must have a UmllSemanticModelBridge which points to
the abstract element. Otherwiskmust have a child elemestof type SimpleSe-
manticModelElement such thpitypelnfo =s.typelnfo.

8.3.3 Support for DI Elements

Figure 8.7 showed an example mapping for a diagram. Such aintam has a
DiagramPart element in its m.root slot, withr.diagramType denoting what di-

162

agram type is being considered (e.g., “ClassDiagram” oat&Riagram”). The
m.contextGuard is evaluated and must return true. It is an ©%Hression which
receives the abstract element atigarentas its parameter®iparentis the parent
element in the DI model. It is guaranteed to exist for any GNgde or Graph-
Edge except for Diagram, which has no DI parent. Thus, fogrdias,diparentis
always a null pointer/reference. Usidgparent we can query the chain of parents
in the DI model. The contextGuard can be used to limit wheth&iot it is allowed
to create a diagram for the given abstract element.

The slotsm.validin andm.acceptsConnector are unused and must be empty.
The elementn.root is the root element of a DIML tree.

Figures 8.8 and 8.9 show example mappings for states argltioans. Such a
mappingm is otherwise similar to a mapping for a Diagram, but with samall
differences. The element.root must either be a GraphEdgePart or a GraphNode-
Part, withm.root.typelnfo being the empty string.

The m.contextGuard must still hold, but théiparent will now be a valid DI
element in the diagram. An example of this can be seen in €ig.9, where the
mapping can only be used if the expressitiparentoclisKindOf(DI::Diagram)
holds, i.e., when the parent DI element is the root Diagraameht.

The setm.validin.diagramType denotes the set of valid diagram syfer ex-
ample { “ClassDiagram”, “SequenceDiagram” }. This is the sétypes of di-
agrams in which the mapping can be applied. Although teettigiche validin
information could be embedded in the contextGuard, it iseranvenient to have
a set of diagrams where a mapping can be applied becausddsawmnecessar-
ily long OCL expressions in the contextGuard, and the infaiion about suitable
diagrams is easier to extract from a slot made for that p@rpather than extract
it by parsing an OCL expression. Again, startingratoot, the DIML tree can be
described.

8.3.4 Connecting Edges to GraphConnectors

The interpretation of a DIML mapping so far enables us to diesa tree of DI
elements. However, a diagram in DI is not merely a tree, buaplgwhere Graph-
Elements are connected together via GraphEdges. The prableow to describe
which connections are allowed, and which are not, specratign we consider that
the same abstract element can appear several times in amiagior example, a
UML Class can be shown both as a rectangle but also as the typeattribute or
a parameter of an operation. However, only when a class resepted as an in-
dependent rectangle can it be used to connect Generatizatidssociation edges.
Connecting an Association to the type of an Attribute candresered valid from
a semantic point of view, but it is against the presentatidesrof UML class dia-
grams.

Our solution to this problem requires two properties. A GriaggeParp has a
p.connector expression. It is evaluated in the context ottreesponding abstract

163

element and receives the GraphEdpas an additional parameter. The evaluation
results in a sequence of abstract elements. For each elentethie sequence, a
GraphConnector is created (or must already exist) and aedhog. The owner
of the GraphConnector must then be found in the set of all KkEE&gments in the
same diagram whose corresponding abstract elementisis GraphElement must
correspond to a root ConcretePart in an ElementToDIMappingapping such
that m.acceptsConnector is satisfied. The acceptsConnectoessipn does not
receive any parameters, and is thus usually the expressieor false

This scheme is required since not all GraphElements may iveeobed to and
the only distinguishing information is the context. In ouonk, this context can
be exploited by having several ElementToDIMappings fordame abstract class.
One of the mappings is chosen based on the contextGuardalet v

8.3.5 Known Limitations

We have used DIML quite extensively in managing the diagrammair modeling
framework. From this experience we have found that the mediefrand semantics
of DIML imply some limitations in what kinds of Diagrams DIMtan describe.

The first limitation is that the source of a mapping can onlyabelass, not
a property or a relation between classes. Even though pgieperan appear in
the mapping rules, specially in the Contained.selectigoressions, they cannot
map to the root InitialPart of a DIML tree. This limitation pgars quite often
in OMG standards. For example, the model interchange fobhit [129] can
serialize an element and its slots, but it cannot represwtividual slots. The
consequence is that a relationship between elements sheuldpresented as a
class. For example, in UML, the Generalization relatiopghia class, instead of
two combined properties (such as superclass and subclass).

The second limitation is that the target of a mapping is alsi@ML tree
instead of multiple DIML trees. Although this multiplicitwould be easy to fix in
the metamodel, the elements in different trees must alsdlecta reference each
other (as per one of our use cases related to UML Associakiss€s). This would
require more thorough changes.

Finally, that our diagrams can be built top-down, i.e., tatgrfrom the DI Di-
agram element, child elements can be transitively condetlctdorm a complete
diagram without any changes required in their parents dudiagram construc-
tion. This means that a parent DI element does not depend ahchiid DI ele-
ments exist underneath it. This is emphasized by the deiogupfovided by the
Delegation elements in the DIML models.

At the moment, we believe the first limitation to be more intpat than the
second or third one for practical modeling. ImprovementOtML or similar
mapping languages should address at least this first lionitabut preferably also
the second. However, we would still like to keep DIML a domspecific trans-
formation language instead of creating or using a genargigse one.

164

8.4 Generation of New Diagrams

As mentioned earlier, a use of DIML is the automatic creatiba specific diagram
from the abstract model. In this section we assume that a nesehthat does not
contain any diagram has been created and we wish to creatc#icpliagram to
represent the model graphically.

This task can be described by a depth-first algorithm, of twlda outline
is seen in pseudocode in Figure 8.12. The starting point asftimction cre-
ate_diagramwhich takes the abstract model elemeahd a diagram type strirgj-
agramTypeas its formal parameters. Since a diagram is a tree of DI elesnveith
respect to element ownership and has a DI Diagram elemehea®ot, we first
need to find a valid ElementToDIMapping elementheree.element points to the
corresponding abstract class (MOF::Clags)pot points to a DiagramPart where
e.root.diagramType tells what kind of a diagram the mappiegctibes. After that,
the hierarchy of DI elements is created by recursing inctieate_difunction.

To summarize the algorithm, we can consider that a diagracreated as
follows. In create_dj the generator follows the mappings given in the DIML
model. Here,e is an abstract elementliparentis either the immediate parent
DI GraphElement or the null pointer, ampért is a DiagramPart, GraphNodePart,
GraphEdgeParts or Delegation.

If part is a Delegation, we need to find a new mapping for the absttact e
ment. The functionn_suitable_diagranreturns true when the mapping is valid
in a specific diagram: for example, a mapping for a UML Clasgaied in Class
diagrams, not in State diagrams. The actual definition ofuhetion is simple and
not described further.

Otherwise, we create a corresponding DI element on line8@4nd set the
SemanticModelBridge: either a Uml1SemanticModelBridga SimpleSemantic-
ModelElement. After that, the loop on line 37 is responsiolecreating DI ele-
ments on one level of the hierarchy, with the recursion awegron lines 41 and 45.
The guard evaluation on line 38 and the selection evaluatidine 44 give the de-
veloper of DIML models the flexibility to create a paramezed DI Diagram from
abstract model data.

On lines 38-49 we do the following for every Contained eletrwan the chil-
dren slot of thepart:

e Evaluatec.guard in the context af and withdiparentas its parameter. If it
does not hold, we must proceed to the next Contained element.

e Evaluatec.selection in the context af and withdiparentas its parameter.
The expression must return an OCL collection of abstrachetgs. If the
expression string is empty, it defaults to returning a setsiiing of the
current elemeng; this is mainly used for children GraphElementParts with
a typelnfo string. For each elemesin the collection, thec.child Graph-
ElementPart is accepted in the contexsails the abstract element, ag@s

165

1 function create_diagram(e, diagramType):

2 find an ElementToDIMapping m where e.oclisKindOf(m.elem ent)
3 and m.root.ocllsKindOf(DiagramPart)

4 and m.root.diagramType = diagramType

5 return create_di(e, null, m.root)

6 function attach_connectors(diagram):

7 for each GraphEdge g transitively contained in diagram:

8 find a GraphEdgePart part that corresponds to g

9 e := g.semanticModel.element

10 for ¢ in part.connector(e):

11 find an ElementToDIMapping n where n is a valid mapping of ¢
12 and n.acceptsConnectors() = true

13 find a GraphElement r where in_same_diagram(g, r)
14 and n.root corresponds to r

15 create GraphConnector gc

16 gc.graphElement = r

17 gc.graphEdge.add(g)

18 function create_di(e, diparent, part):

19 if part is a Delegation:

20 find an ElementToDIMapping m where e.ocllsKindOf(m.ele ment)
21 and m.contextGuard(e, diparent) = true
22 and in_suitable_diagram(m.validin, diparent)
23 return create_di(e, diparent, m.root)

24 create g, corresponding to part:

25 A GraphNode for a GraphNodePart

26 A GraphEdge for a GraphEdgePart

27 A Diagram for a DiagramPart.

28 g.container := diparent

29 if part.typelnfo is nonempty:

30 create a SimpleSemanticModelElement s

31 s.typelnfo := part.typelnfo

32 g.semanticModel := s

33 else:

34 create a UmllSemanticModelBridge s

35 s.element = e

36 g.semanticModel := s

37 for ¢ in part.children:

38 if c.guard(e, diparent) = false:

39 continue

40 if c.selection is empty:

41 x := create_di(e, g, c.child)

42 g.contained.append(x)

43 else:

44 for s in c.selection(e, diparent):

45 x = create_di(s, g, c.child)

46 g.contained.append(x)

47 if this is not the last s and c.separator exists:
48 y = create_di(s, g, c.separator)
49 g.contained.append(y)

50 return g

Figure 8.12: Outline of an algorithm for Generating a DI D&m from an Abstract
Model

166

its diparent This means that same computation must be performed on the
new child DIML element by recursing intoreate_di

e If c.separator is nonempty, it denotes a DIML subtree with epoading DI
elements that must be placed between each accepted elerhenenables
us to easily model the very common occurrence of having alsirsgpa-
rator between values, such as a comma sign between the pararmean
operation in a UML class diagram.

Delegation elements are used to decouple the representatib computation
of individual DIML trees. When searching for a new mappinglycone mapping
is allowed to be valid. No nondeterminism is allowed. Onceabdvmapping is
found, DI tree creation can begin again in the context of a nemwent abstract
element andliparent

Furthermore, the GraphEdge elements should be connectetheo Graph-
Node or GraphEdge elements using GraphConnectors. SiaceriphConnectors
are owned by the GraphNode or GraphEdge the new GraphEdgeasno, the
creation of new GraphConnectors must occur after all othements in the dia-
gram have been created. This occurs in the operatttach_connectorswhich
takes adiagramas its only parameter. lattach_connectorsfor each GraphEdge
transitively contained in the diagram, the correspondimgpgBEdgePanpart from
DIML is acquired (preferably retained from create_di). heart.connector in the
context of the abstract elememinapped to the edge, returns a sequence of abstract
elements. For each of these elements, a corresponding Ei€oid Mappingn is
located andh.acceptsConnectors is evaluated. Afies found, the GraphElement
where the GraphEdge should connect is located. The funotisame_diagram
tests that both elements are in the same diagram. Finallyaph@onnector is
created to link these DI elements together.

Once all the DI GraphNodes, GraphEdges and GraphConneatersreated
they should be arranged using a layout algorithm that is@pjfate for the partic-
ular type of diagram. Examples of a layout algorithm for slaéagrams can be
found in [53] and algorithms for statechart diagrams candomd in [33].

8.5 Reconciliation of an Existing Diagram

This section briefly discusses the principal idea of how diayg reconciliation
works and why it is useful. We also give a short example on fgodj the ab-
stract elements in a statemachine and see how diagram reioore can update
the diagram. Again, we emphasize that this outline of howdian reconciliation
could work is a technical detail, in that any solution thatimeins a correct DI
structure must be considered valid.

167

8.5.1 Principle Behind Diagram Reconciliation

As we have discussed in the introduction, there are simatiwhere we want to
preserve as much information from an existing diagram asiplesafter execut-
ing a model transformation. That is, the presence of elesniard diagram, their
layout, text fonts and color should not change except whenishmotivated by
the execution of a transformation. In this case, it is pdedib define a diagram
reconciliation mechanism that can update existing diagratmle using the same
DIML mapping language as before.

In principle, diagram reconciliation is an optimizationgeénerating a new di-
agram. Technically, we could create a hew diagram as destitbSection 8.4 to
replace the old diagram, but that would be too slow and soseaVvidetails would
be lost. Diagram reconciliation should work at an accegtablkeed and as if a new
diagram had been created with the visual details intacceSDIML mappings are
declarative constructs instead of programs, they do noatena certain algorithm
for performing diagram generation or reconciliation. el implementations are
free to use any algorithm that can provide a fast and coruatien.

Diagram reconciliation assumes that it is possible to discarhat has changed
in a model during a transformation. We assumed in the inttida that the rec-
onciliation component had access to the current abstradehand the obsolete
diagrams. We now require that it also has access to eitheslthabstract model
or to a change description. This change description can isé @ latomic changes
done to the slots of the elements, or a special model reftgthia difference be-
tween the old and the new abstract model. We have discussedial difference
algorithm in Chapter 7.

Based on this information, the reconciliation componemticapect which ab-
stract elements have changed. Using the Contained.gudr@@mtained.selection
expressions in the DIML mappings, it can then calculate tviticanges have in-
validated which DI elements [30] and then apply the mappaugsn.

Where order of elements is not important, i.e., where thecsieln expressions
are unordered OCL collections, set operations can be usealdalate which el-
ements should be removed, and which should be added. Faedrdellections,
there are several algorithms (for example [120]) for caltiny theedit distance
for transforming the old contents into the new contents.

The optimal reconciliation is one which reuses as much asilplesfrom the
obsolete diagram to bring it up to date. The level of reuse oeyend on how
sophisticated the reconciliation system is. For exampbasider a UML Gen-
eralization connecting two classes, this being repredebyea specially colored
GraphEdge with a triangular endpoint. If a transformatibmareges which super-
class the generalization points to, it can be argued thatié rexonciliation is to
delete the edge and create a new edge in its place connextimg hew superclass.
However, information such as color and the exact waypoingsi@st. A better
reconciliation approach is to reuse the existing GraphEdge

168

8.5.2 Reconciliation Example

As an example, let us assume we introduce a new state intodtielim Figure 8.5,
by inserting a new SimpleState (S3) into the StateMachiheertex slot. This
invalidates the previously valid diagram, since the newestamissing from it.

Using a change description or by calculating a model diffeeg the reconcil-
iation component determines that there has been a change salivertexslot of
the StateMachine, and finds the corresponding ElementTapfihg for it, that is
shown in Figure 8.7. Then it calculates the difference ofdldeselfsubvertex and
the newselfsubvertex. The ElementToDIMapping for StateMachinetestéhat
new SimpleStates are inserted in the diagram owned by theNsaghine. The
reconciliation component determines that the ElementMdpping shown in Fig-
ure 8.8 should be used to create a new DI representation @ithpleState. A
new representation of the SimpleState is created and @sexcordingly in the
diagram. The resulting UML and DI model along with its visugresentation is
shown in Figure 8.13.

Next, assume the StateMachine in Figure 8.13 is modified bpgihg the tar-
get of the Transition from state S2 to S3. This is achieveddsjgaingself.target
.= S3for the Transition. Again, the reconciliation componeniedmines that there
has been a change in ttarget slot of the Transition, and finds the correspond-
ing ElementToDIMapping for the Transition, shown in Fig@&®. The Element-
ToDIMapping states that Transitions are represented aph&idges in diagrams
and connect to States such that the first endpoint is regexbéyself.sourceand
the second endpoint kself.target

As a result, the reconciliation component connects the Sitian in the dia-
gram to the GraphNode representing the SimpleState S3. drhesponding UML
and DI model along with its visual representation is showRigure 8.14.

8.6 Validation of Research

In this section we discuss some aspects related to thegabictiplementation and
validation of a diagram reconciliation component. It stibioé noted that the actual
implementation of DIML has not been done by the author of tthesis.

8.6.1 Optimization of Query Expressions

A great deal of the flexibility of DIML comes from the use of O@xpressions.
Using these expressions, DIML models can navigate throbghabstract model
and select the relevant subset of model elements that wiltdsented in a diagram.
However, this flexibility also leads to complex expressjamgich further leads to a
cost with respect to reconciliation: it is not apparent vhithanges in the abstract
model will trigger changes in the diagram.

169

: GraphNode

S1 S2
Transition

Figure 8.13: (Top) UML Model in Gray After Adding a Third Sirigbtate and
its Diagram Representation in DI (Bottom) DI Diagram Remrdedsing the UML
Concrete Syntax

Thus, if we were to use the OCL expressions of DIML, we neede@ble
to quickly tell which values of OCL expressions have changbén the abstract
model is modified; this is not easy. Furthermore, OCL allowgressions of com-
putationally arbitrary complexity.

The DIML metamodel uses OCL in five different properties. c8inve wish
to create an efficient reconciliation system, expressibas ¢an take an unknown
amount of computational time are not desired. Our solutiaa been to use a
restricted subset of OCL in some of the DIML properties. TOGL subset should
be expressive enough to define the DIML mappings for moddhnguages as

170

$2: SimpleState

=

GraphNode

: GraphNode : GraphConnect H .

] ‘

CompartmentSeparator : GraphNode

NameC tment lode

: GraphConnector ?
o

4

: GraphNode

NameC ‘ Comp: ‘

Name : GraphNode

2

k

InternalTransitionC tment : ‘

InternalTransitionG . ‘

InternalTransitionCt . do

Figure 8.14: (Top) UML Model in Gray After Relinking the Trsition and its
Diagram Representation in DI (Bottom) DI Diagram Rendereging the UML
Concrete Syntax

complex as UML but it should also be possible to evaluateldyid he restricted
language in the Contained.selection property only acceppsessions based on
these patterns:

e self.x
¢ self.xselecfe | e.ocllsKindOf(z))
o self.xselecfe | e.v=w)

o self.xselecfe | e.v#£ w)

171

o self.xselecfe | eoclisKindOf(z) A e.v = w)
o self.xselecfe | e.ocllsKindOf(z) A e.v# w)

Basically, this restricted language can navigate one slaydrom the current
element, and optionally filter out elements which are nothef ¢orrect type (or a
subclass of that type). It can also be used to check primiees for equality or
inequality. This enables us to use the following expressifor arbitrary property
names, y andv, classz, and valuew.

The GraphEdgePart.connector property can handle expressither one or
two slots away. That is, expressions suchself.xand self.x.ycan be described.
For example, the DIML mapping for Transitions uses the esgimng self.source
selftarget] whereas the DIML mapping for Associations uses:

[selfconnection0].participant self connectionl].participant

At the moment, we do not restrict the Contained.guard espgrasanguage.
In our implementation, these expressions are arbitrargnars returningtrue
or false This is a drawback in the implementation and makes it imptesgo
determine when a change in the abstract model triggers ageharthe result of a
guard evaluation. A more sophisticated implementationgisiaceability technol-
ogy would do similar optimizations as we have done, but kethire scenes, and
also support more complex OCL expressions. However, im@igimg an efficient
OCL interpreter can be a daunting task since determiningkiyuivhich OCL ex-
pressions need to be revalidated is not easy. There haveadeancements in this
area by Jordi Cabot and Ernest Teniente [29, 30].

We consider that the simplified language serves the purpesdsgve outlined
in Sections 8.1 and 8.2, but we acknowledge that the langpegmosed in this
chapter is more general. Even with these restrictions, fitenized query lan-
guage has shown to be adequate in expressions for UML diagréinmakes it
easier to determine which parts of the diagram need to betegadand therefore it
has enabled us to perform reconciliation of models and diagrusing algorithms
of low computational complexity, while still being able topport large and com-
plex languages such as UML. This ensures that diagram réiedion is not an
expensive operation, and hence it is fast enough to be ategywith an interactive
model editor.

We are still in the process of extracting a clean, easy-tbetstand algorithm
for reconciling diagrams. A very interesting idea for fuewwork would be to try to
accomplish the same as DIML currently does with more commamstormation
technology, such as ATL [21] or QVT [133].

8.6.2 Implementation in the Coral Tool

We have implemented DIML in Coral, which has a GUI for metarladdependent
model management and different graph transformation nmésimes.

172

We have implemented a component for Coral that reconciledetsaand di-
agrams after executing model transformations or perfogmaditing operations.
Our implementation uses DIML mappings with the restrictgdression language
described in Section 8.6.1. Also, our implementation usesdPtython language to
define restricted OCL expressions such as Contained.gudttementToDIMap-
ping.contextGuard. This is due to the fact that Coral lacksraplete OCL inter-
preter.

The reconciler was in fact implemented twice, once so thahdlyzed the
DIML and generated code, and once as an interpreter of DIMldaiso The
first implementation is presented in Torbjorn Lundkvist'sasfier's Thesis [110],
whereas the second one was programmed by Andreas Soderldridatias Ny-
man at Abo Akademi University.

Our implementation is based on a model manager that autcaiigtcollects
model changes into a transaction as described in [152]. #s#etion is then a list
of individual atomic commands, such as “insert elemeiito slots at position
i” or “create new element of typ€. The diagram reconciliation component is
invoked by the model manager at the end of a transaction smiupdate all the
necessary diagrams.

Coral can edit and transform models using an interactivplgcal editor but
also using different model transformation engines. Adyahe diagram recon-
ciliation component does not distinguish between thesecases and it performs
the same task independently if a model has been editedctitexig by the user or
transformed by a program.

Although most of Coral is written in an interpreted languagsch does not
include a just-in-time compiler or similar feature, the mnebdditor is nevertheless
fast enough for interactive editing of models using a lowl-elesktop computer.
Most of the time is in fact spent by the various change profi@gaomponents,
and the graphical updates; the diagram reconciliation ierg 8mall part of the
computational time required.

8.6.3 Validation

We have implemented mappings for the UML 1.4 class, statedigect, use case
and deployment diagrams and we are confident that the DIMguage can be
used to define mappings for other UML diagrams. The mappiregbave used for
UML 1.4 in the Coral tool are available in [110]. From theseppiags we can see
that by using Delegation elements and DIML tree paramettoaz extensively, we
have been able to support all the UML diagrams mentionedealdawever, some
constructs have not been possible to describe due to therkhimitations from
Section 8.3.5: the links between Comments and other elanantl Association-
Classes in class diagrams. The former maps a relation fremalistract model to
the diagram, and the latter requires a complicated muliwdree of DI elements.
We plan to improve on DIML to overcome these limitations.

173

The Coral tool supports other user-defined modeling langsiagd profiles be-
sides UML. We have used DIML to define the concrete syntax c€AB [102],
a domain-specific modeling language to define peripherals@bile phones, and
the concrete syntax of SOCOS [12], a domain-specific mogldéinguage to de-
fine refinement diagrams. These examples show that DIML Bei@ define the
concrete syntax of DSM languages that are different from Ulsthd that DIML
does not require UML.

We have also assessed compatibility with Gentleware Paserdrsion 3.0
from which the DIML mappings presented in this chapter asedaln Figure 8.15
we see a model created in Poseidon.

[} testsm.xmi - Poseidon for UML Community Edition - Not for Commercial Use.

File Edit View (CreateDiagiam Align Generafion Help Furshase
N B o e <o Bl | f 2.
BOESYHY wvArDRLDEODDRE
1 Package Centric Class Dlagram_i | State diagram_1 |

A 208~ e@@EEoe ¥ LP ACOCL | @
) s 1 1 1 1 1 1 1 1 1 1
B Class Diagram_1
B clas_a
o [state diagram_1 Concurrert_State_1
e Stae | | | oo | Sy e
@@ QL vissun R
S Eropetties | Style | Dooumen tation | Souice osde | Gonsuais
Birdviawn

State d 1
e ‘ 3te diagram_

Namespace [Class_1 [=1%]
Zoamfactar

=] :O:, 100%

Figure 8.15: Screenshot of a Statemachine in Poseidon

In Figure 8.16, the exact same file has been loaded into Cbinal.composite
state is selected and the following command is executeceiCtral shell:

selfsubvertexappendcorallang UML14.SimpleStaténame= “SS1”))

174

Since the variableself refers to the current selection, this command creates
a new state in the composite state. Then, the diagram rdiadioci component
notices the new state in the abstract model, and modifiesidiyeaain accordingly.

o o R
Eile Edit Element Tool Window Help

Model Outline @[State cﬁaqram,l_ - - - - J
Elemen s WS SE [O=]E] e [e]e]= £t [e[c@]e[m].5]

%, coral/lang/CQUERY 10/def/CQUER’
=" testsm.xmi:Project
+Class Diagram_1:Diagram

+Imodel 1:Model Concurrent Stale 1
+ State diagram_l:Diagram 551
- StateMachine_l:StateMachine

% top (noname):CompasiteState .—) %@

| subvertex Concurrent_State_1: Inital State 1 ——

i 1 | “subvertex SS1:SimpleState|
: *subvertex Region_2:Composil
i subvertex Final_State_1:FinalSf
i “subvertex Initial_State_1:Pseud

i *transitions (noname): Transition
“transitions (noname): Transition

gl I T=]
-=|Property Editor ‘QSheﬂ ‘ { t¥search ‘ @cﬂmmm
=&

self= StateMachine_1::(noname):: Concurrent_State_1::Region_1: UML.1.4::CompositeState

This is Coral 0.20050604 using Python 2.3.4 (#1, Feb 2 2005, 1Z2:11:

53)
[GCC 3.4.2 20041017 (Red Hat 3.4.2-6.Fc3)] on linux2
Type "coral.copyright", "coral.credits" or "coral.license" for more

information on Coral.
>»» self.subvertex.append(coral.lang.UML14.5impleState(name="58581"])

¥

<] »

A

Figure 8.16: Screenshot of the Model from Figure 8.15 LoddemlCoral, with a
New State Added

Finally, the model is saved again into XMl and loaded back iRbseidon.
As can be seen from the result in Figure 8.17, it is possibledd the file from
Coral into Poseidon, and the diagram information is contpetivith the diagram
information that Poseidon expects. The conclusion is tHMLDmappings (for
the UML 1.4 statecharts) as used by Coral work according toDdueference
implementation in Poseidon.

We should note that newer versions of Poseidon have chahg#drternal DI
mappings. Therefore, the current version Coral is not cdiblgawith diagrams
generated by newer Poseidon versions. However, this ddeaffiest the actual
diagram reconciliation component. In order to support tbw RPoseidon diagrams
we should only update the DIML mappings. Naturally, thisnsuafortunate situa-
tion in itself. The best approach would be for OMG to stand@@dn some specific
mapping rules between the abstract syntax of UML and theretesyntax of DI.

175

[%] testsm2. xmi - Poseidon for UML Community Edition - Not for Commercial Use.

File Edit View CreateDiagram Align

Generation Help Purchas

.@HJ%i Ll r"ﬁuIII@DII

Class Dlagram_i | State diagram_1 |
A 208~ e@@EEoe ¥ LP ACOCL | @
& @ oot T T T T T T T T T T -
B Class Diagram_1
Cancurrent_State_1
ss1
eistad 1 | | | |- _ oo | ek
@ initial_Stats_1 I I 11
@O QL visen R
Propetties | Style | Dosumen tation | o
Biraview
- = e ‘sme diagram_1 ‘
Namespace [Class_1 [=1%]
Zoamfastar
b4
| | i | o | | | 1
0 25 0 75 100 125 150 175 200
3 e
50 % /| 75 % ‘ [00 % | | 125 % J| 150 % | | windew
=] :O:, 100%

Figure 8.17: Screenshot of the Model from Figure 8.16 LoddemPoseidon

8.7 Related Work

The work presented in this chapter is related to generalgag&rpnodel transforma-
tion languages, languages specific to diagram definitiondéagkam editors and
development environments that support user-defined vianguages.

There exists full-featured metamodel-based editors thawdhe user to cre-
ate and edit models in user-defined languages. Examplegesé thpproaches are
AToM?3 [47], MetaEdit+ [88] and Pounamu [211]. These tools are detepenvi-
ronments while our work describes only one component thadlshvork with any
other editing and transformation component based on the Gid@&lards.

Many researchers have studied the definition of new modea$fioamation lan-
guages and tools that support in one way or another the OM&lngdstandards.
Among the general-purpose transformation languages arelational approaches
by David Akehurst and Stuart Kent [46] and YATL [146] by Odtav Patrascoiu,
both of which use OCL for the declarative expressions. Thaiomal approach is

176

further investigated by Hausmann and Kent in [71]. Therddges a special graph
grammar system in VIATRA by Daniel Varré [181], which relies graph gram-
mars instead of OCL and has operational semantics. JeaniB§zoposes the
Atlas Transformation Language [21], which has tool suppoihe Eclipse Mod-
eling Framework [52]. The MOLA transformation language bydiis Kalnins,

Janis Barzdins and Edgars Celms [86] has a graphical impenatogramming

language with pattern-based transformation rules. Perlia@ most important
general-purpose transformation language is the QVT laggia33] from OMG.

Also, the work presented in this chapter can be seen as dfispestance of a
model composition framework, as described in [20].

We have decided to use a special language to define the diagagpings and
a special tool to apply these mappings due to the need foifigpalgorithms to
create and reconcile existing diagrams. The diagram mggppimguage and cor-
responding tool support should work preserving as muchrin&ion as possible
from existing diagrams. Also, we consider that DIML mapg@irege more succinct
than the equivalent transformation in many general transiion languages, due
to the use of OCL queries and expressions to describe mang taa single rule.

An alternative approach to implement the idea presentedisnchapter is to
use a general model composition framework [20], for exantipée Atlas Model
Weaver [55]. In this case, a composition framework woulcetake or two user
models and the DIML mappings as input models and recreatedbessary dia-
grams by implementing the algorithms presented in thispagiag transformation
rules that are specific to the compaosition framework. It widag an interesting and
worthwhile experiment to compare different model composiframeworks with
DIML. There are several properties that should be analyzech as the size of the
mapping definitions, understandability, maintainahiliany expressivity restric-
tions and the need for traceability mechanisms and sepaaaiag models. Model
composition and weaving frameworks are being researcheédeveloped at a fast
pace, for example [55, 118, 18, 93]. Similarly, there is\actiesearch in model
traceability [24, 95].

There are other approaches and tools that support the riéabao of abstract
models and their concrete models. However, none of them $eepport DI.
This makes comparison awkward, since one of our goals has theeusage of
OMG standards. The diagram definition facility [35] by Edg&elms, Audris
Kalnins and Lelde Lace specifically targets mapping to @diagy and uses its own
diagram metamodel, although one different from DI in thaeguires subclassing
for each diagram element, whereas DI is specified so thatguémye developer
should not inherit from DI classes. The work by Frédéric Femént and Thomas
Baar [57] formalizes the relationship between abstract@mtrete syntaxes with
OCL expressions using their own concrete syntax. While deas presented are
interesting, it does not yet have any tool support and athaliagram reconcilia-
tion is recognized as a problem, the authors do not offer ahytien. In fact, our
work addresses some of their concerns on DI.

177

8.8 Conclusions

We have described an approach to create new diagrams froabgtect syntax of
a model and bring existing diagrams up-to-date after thewdien of a transforma-
tion that updates the abstract syntax of a model. We contidéthese problems
are important because they are necessary to allow the atitomaasformation of

visual diagrammatic languages.

Our approach is based on a mapping language called DIML #gsadridhes the
relation between the abstract syntax and the concrete)sgfita model defined
according to the OMG standards. Our solution enables traangof model trans-
formation languages and tools to ignore diagrams and foocueesemantic infor-
mation stored in models. One of the most important chariaties of DIML is that
it is independent of the modeling and transformation lagguar his allows us to
define metamodel-independent algorithms to create and@ipliEgrams. On the
other hand, DIML is specific to DI, the OMG diagram intercharsandard. Other
alternative diagram interchange languages are discusg&@9].

There are several practical benefits to reconciliation aiaiguDIML. We real-
ize that we have made several engineering decisions inmgeaidomain-specific
weaving metamodel, and that it has limitations. At this twedo not know for
certain to what extent the decisions are a hindrance, andhiast they are benefi-
cial. For example, by only allowing OCL expressions to qui chain of parent
DI elements we establish that DIML rules are hierarchicatisTmakes the algo-
rithms relatively simple, and we do not have to, for examptdculate any graph
isomorphisms.

There are also some limitations in our work as described m 8.5, the most
important limitation being the fact that a DIML rule cannoamrelations, only a
single class.

We have validated our approach by implementing it in an opeince modeling
tool called Coral. Due to the common interchange format atiteeence to OMG
standards we can use both Poseidon and Coral to edit, tramsiod interchange
models and diagrams. We believe that this is an indicatiothefviability of DI
and the DIML language.

DIML and the diagram reconciliation component do not cantl the func-
tionality necessary for a full interactive editor sinceytHack a user interface, a
layout and a rendering engine. We assumed that these preldesnsolved by
other independent components. In some visual languagels,asuUML class di-
agrams, the layout is a question of aesthetics. Howevethier danguages, such
as UML sequence diagrams, the layout also conveys semaificnation since
the passage of time is represented in the vertical axis ohgrain. Therefore, we
would like to extend the DIML language to include diagramdlalyconstraints so
that the layouting step can be integrated with the diagraron@liation step.

178

Chapter 9

Conclusions

In this final chapter we succinctly summarize the contente@thesis and include
possible ideas for future work. We also give a short overvidvihow well our
vision of modeling is in line with the vision of OMG and its stéards, and to what
extent OMG standards fulfill the role they should and whesy thre lacking. We
finally conclude with some general remarks about the fieldtif\are engineering
itself.

When the work of this thesis started, the state of modeling waome ways
quite different from its current situation. Modeling toolsere almost always in-
compatible with each other, and there was a lot of confusbmutwhat modeling
is. Nowadays, many commercial modeling tools by large vendee based on the
Eclipse Modeling Framework, which has won a lot of groundhwie DSL Tools
by Microsoft being a considerable commercial opponentipselitself provides an
enormous number of plugins and several modeling-relatets tare being devel-
oped for it. This has the benefit that more research protstgpe be used together,
but a problem is still that Eclipse is only a de facto standard

In Chapter 2, we compared several modeling languages. Wihissstudy and
knowledge from other modeling and programming languagesitihout the other
chapters. There is no definite way to say a priori which featnra modeling lan-
guage is useful. Rather, a feature must be tried out in peeimd must be shown
to have an effect on the expressiveness and versatilityeimthdeling framework.
Also, features at the modeling language level must be veriyl defined, as any
inaccuracies spreads to the languages and then to the models

It can be said that this work defines features using two diffeconstructs:
basic building blocks from metametamodels and additiopaktraint rules. This
creates a partially unnecessary schism, where we need idedebether a newly
invented construct should be a basic building block or nyeseimething that is
tagged along using a constraint. The latter solution do¢prwvide a first-class
concept in the metametamodel in the same way the former dagmilar problem
is found in textual programming languages, where the fasliprovided by the

179

language and the extensions of the user have very diffegngas. Only LISP
and its variants have solved this by presenting everythimgsistently usings-
expression$l12], thereby also not having any syntactic sugar.

An interesting proposition is given by Guy Steele [167], vehke argues that
language and program must evolve together to solve the gmolat hand, and
that user-defined additions to the language must be indigghable from the con-
structs provided by the language. The current modeling éwonks do not support
this idea well in practice.

The metamodeling language presented in Chapters 3 and 4coasplished
using a set-theoretic representation of the class and tolajgers. The most im-
portant contribution in those chapters is the understandeined that combining
several new features into a metamodeling language musthakeew and the ex-
isting features into account as a whole, lgsiture interactionmakes the result
nonfunctioning. However, the various metamodel and modes$taints that have
been defined have not been formally proven correct with Espethe model op-
erations. Proving correctness would be an important stepsaring that the SMD
language is solid, and further proofs of other algorithmsraping on models could
then be feasible. Similar work has already been done by Ino&ni®mo to prove
a MOF-like metamodeling language without support for std§Es1]. There is
also a considerable effort in creating a formal semanticdJflL [26], and for
example [81] shows a formalization of UML statecharts usingcurrent regular
expressions.

The most novel part of the chapters is the structural defimitf subsets and
unions and operations involving subset and union slots. é¥ew the property re-
definition concept is not formalized and must be consideredraission in light
of its frequent usage in the definition of UML 2.0 and MOF 2.0hefie exists
work in type-safe covariant specialization [157] which kebbe incorporated into
a modeling framework as well. We described an implementaticour metamod-
eling language called SMD in Chapter 5 that supports sulssetslerived unions
as formalized by us.

On the surface, the topic of Chapter 6 seems mundane. Satiahi ought to
be a rather easy topic. Yet experience from using severdd ga@gests that in-
compatibilities abound as there is no viable way to certdynpatibility. One of
the greatest benefits of the success of tools built using ESMRat at least seri-
alization of models seems to follow the same peculiaritsgs;e the tools use the
same technology underneath. Although we remarked on dassues with XMl,
a subset of the standard could be used.

Some parts of XMI are not useful and not necessary. In pdatictne parts de-
scribing model differences are underspecified and evemyf Worked, they would
not be a good solution. A better solution is a separate matahtbat can describe
differences between models. Model difference calculaisonseful for version
control, which we discussed in Chapter 7. It is interesthmgf tilthough we have a
long history of version control both in theory and practindhe textual domain—

180

Walter Tichy developed RCS [176] in the beginning of the 1886version control
of models is still not as straightforward. We note that cenflesolution is still an
unsolved problem, as it also is in the textual domain. Funtioee, displaying a
model conflict is harder than displaying a textual conflicthefle are no widely
used solutions for a model collaboration environment andiehcepository. As
briefly discussed, the XMI serialization standard does detjaately support de-
scribing a difference between models.

Chapter 8 described a weaving metamodel called DIML, whids & map-
ping abstract syntax to concrete syntax. It is an intergstimd current topic con-
sidering the Model View to Diagram Request for Proposal [ff#d@m OMG. It
would be very fruitful to assess the usability of the idea dfID with the various
general-purpose weaving languages, such as the Atlas Mdetaler (AMW) [55],
or a general-purpose transformation language such as Q%3] [dr ATL [21].
This would be accomplished by using these languages to sudveame problem
as DIML does.

This thesis has strived to cover a broad range of topics apsreometimes sac-
rificing depth for breadth. The topic of any single chaptemportant and complex
enough for more research in the future. The aim of the workdess to analyze
the OMG standards from both a theoretical and practicalecdntOur long-term
research goal is furthering the prevalence of modeling apthmary way to build
software engineering artifacts, and the ubiquity of poweand usable modeling
tools. The current OMG standards are severely lacking ih batoretic viability
and practical usability, and the standards are not trueg@iion of OMG.

The author’s view is in some ways similar to the one providgd1G. The
information of a system is given by an abstract model or nouddiereas separate
views, also called diagrams or concrete models, displaylis¢ract model to the
developer. There is a single serialization technology ieapable of representing
any kind of model or models. However, a single metamodelearfoinm of UML or
profiles for UML is limiting, and the experience in our resgagroup suggests that
domain-specific languages bring benefits that UML cannot Séparation of an
MDA [130] application into a single Platform-Independenodél (PIM) which is
transformed into a Platform-Specific Model (PSM) by comibnit with a Platform
Model (PM) sounds too limiting, and anecdotal experienggests that this is also
the opinion of the research community at large.

An engineering aspect of this thesis has been to closelgvialinprovements
in the OMG standards without necessarily being limited bgnth It is unfortu-
nate that standards consortia nowadays seem overeagant@aslize technologies
which have yet to mature. This problem is seen in several@fOMG standards,
such as MOF and DI.

The evolution of the definition of MOF is highly unsatisfyinglthough prob-
lematic, the 1.x series of small, clumsy and badly-spec#taddards did not hinder
anybody with an object-oriented background, and thus maolglems with them
were not problems for research. However, version 2.0 fess Useful because it

181

contains novel constructs such as subsets, redefinitiahparkage merges with-
out a precise underlying mathematical model. We believeldzamer metamodel-
ing languages will become more popular since MOF fails tivdelalue due to
its incompleteness. Examples of such metamodeling lareguage ECORE [28],
KM3 [84] or Kermeta [90]. GXL provides even more flexibilithan any of the
metamodeling languages mentioned. Some of the novel cotstirom MOF
might be adopted once their meaning has been defined. A fimatiah of subsets
and unions was given in Chapters 3 and 4, and we hope thasitreédstandardized
formalization of the features.

Assuming a working metamodeling language, we could defieesyimtax of
abstract models by creating a metamodel. Visualizing thigikl use the DI stan-
dard for interoperability reasons. However, DI has reageetremely little support
from vendors and all problems with using DI are thus stillleac. The problem
of which DI constructs are valid for a model is clear: DI does specify a map-
ping language or similar feature with which a metamodel tgpar could define
the valid diagrams of a model. Our example solution for thizbfem is DIML.
However, any solution could be used and DIML merely serves @se study. An
interoperable diagram standard feels like the greatestezanfor practical mod-
eling to go forward. Currently, vendor lock-in hinders welbéarted adoption of
software modeling.

There is a lot to software modeling that this thesis does vext &y to address.
Especially metamodel semantics, model transformatiodsraagtamodel evolution
come to mind. Considering the MDA effort itself and how mairfjedent transfor-
mation languages are available, model transformationkldmuseen as the heart of
modeling. Also, since graph transformation approacheh ascsingle-pushout or
double-pushout [160] seem to offer more highlevel constrtwtransform models
(programs) than many transformation languages for texdrahms, model trans-
formations can be seen as one of the primary reasons why ¢y provide mod-
eling as a viable alternative to traditional textual softevangineering.

It is the author’'s hope that this thesis would spur both ferttesearch and
solutions to software modeling and an interest from the rilegleeommunity to
provide working tools along with breakthroughs or ideashie theory of software
modeling. Our current state of not having tools of sufficierteroperability for
empirical validation is disillusioning and disheartening

Software engineering is, like any other engineering digwp subordinate to
the constraints of many masters. Constraints from comggtence and mathemat-
ics dictate what could be possible to accomplish and must the core of software
engineering. But to evolve software engineering we mustlbe @ take several
other aspects into account, such as budgetary constraidttha people who are
our developers, managers and customers. This means seféngmeering solu-
tions must be validated empirically, and in the case of mindethis validation
requires tools. Realizing improved software engineerirgciices might be our
biggest obstacle for years to come.

182

Appendix A: Mathematical
Preliminaries

This appendix summarizes the mathematical notation ustdsithesis, with some
small examples.

Set Theory

We use naive set theory throughout the thesis. Sets of prindiata values are
denoted with calligraphic letterd is the set of boolean valueg®* is the set of
integers 01,2,... andZ™" is set of the set of integers4,3,

The empty set is denoted willor { }. A setwith elementg, y andzis denoted
with {x,y,z}. The expression #is the number of elements in a finite &t

We use the notatioA C B to denote thaf is a strict subset d8. We useA C B
to denote the possibility tha& is a subset of or equal 8.

The expressionP(A) is the powerset of a s&, i.e., the set of all possible
subsets. For example, the powerset{df2,3} is {0, {1}, {2}, {3}, {1,2},
{1,3},{2,3}, {1,2,3} }.

Set comprehensions are denoted witi(x) - f(x) }, which returns a set of
valuesg(x) where f(x) is true (for all possible legal values @. The notation
U{g(x) - f(x)} denotes the set consisting of all elements in all g&x$ where
f(x) is true.

Sequences

A sequencéA, <) is an ordered set or array of elemetslt is essentially like a
set of elements, except that all elements have a uniquegositthe sequence, that
position denoted with an integee Z%. We denotea <, b if elementa precedes
elementb in a specific sequence We denotea <« b if a preceded or if a=h.
Note that two elements can be in different orders in diffesmguences.

For sequencesj denotes sequence concatenation @ad b] denotes the se-
qguence of elementsa, ..., t[b—1].

183

The function revers@) returns a new sequence with the same elementsss in
but in reverse order.

Sequence comprehensions are denoted Ygtk) - f(x)], which returns a
sequence of valueg(x) where f(x) is true (for all possible legal values &j.
Where possible, any data structuresfifx) are visited in order. For example,
[¥% - x€[1,2,3,4]] returns the sequend&, 4,9,16).

Binary Relations

A binary relationR is a set of pairga,b). A reflexive relation is such thdtva -
(a,a) € R). A transitive relation is defined bfa,b) € RA (b,c) € R= (a,c) e R

If we have a set of pair® whose values are of the same domAinwe can
create the transitive closufe" by taking the smallest transitive relation over the
domain of the values that still contaifi® The reflexive closure oR is R~ &
RU{(a,a) - a€ A}. The reflexive transitive closure &is R* £ R"".

Functions

A function f : A— B maps an element of the domain #geto an element of the
range seB. A partial functionf : A— B might not be defined for all elements Af
An unnamed function which mapgtoy is denoted with{ x — y }.

Function application is denoted witt{x), i.e., the functionf is called with the
parametex. The domain of a function is acquired with Défr). The range of a
function is acquired with Rangé).

Function Update

f[S where S is a set of pairs — y values returns a new functiofi such that
(Vz - z¢ Dom(S) = f'(z) = f(2) A (Vz - ze Dom(S) = f'(z) =y). fx—Y]
behaves likef [{x — y}].

G < F is the domain restriction operator and returns a new fundtentical
with F but restricted to the domain of a €8ti.e.,G<F £{x—y-xc GAX—yc
F }. G «F is the domain subtraction operator and returns a new fumadientical
with F but restricted to the domain which is not in &ti.e.,G«F £{x—y - x¢
GAXx—yeF}.

Graphs

A graphG = (V,E) is a set of vertice¥ and a set of edgds such thaV NE = 0.
An edge is a tuplévy, v») wherev; andv, are vertices and connects the two vertices
together. A directed graph denotes that an edge has a dinecti

184

Partial Orders

A partially ordered set oposet(A,Ca) is a setA and a binary operatoEa. The
operator determines the partial ordering of elements;rgave A andb € A, the
operationa Cp b is true if a occurs beford in the ordering, otherwise false. The
expressiora || b means thak andb are independent and cannot be compared in
the partial order; it is equivalent to(a Ca b) A =(b Ca a).

We denote bya~<a b the fact thata is a “directly below”b in a partial order,
i.e.,axab®acabA-(3c- c£aAc#bAracacCab).

The partial order should not be confused with the subsetabper. The for-
mer is an arbitrary function that determines the partiabordshereas the latter has
only one definition in set theory.

Hasse Diagrams

Hasse diagrams are graphical renderings of a p@seta). Every element ilA
is drawn as a node such that a node representing eleneAtis drawn visually
lower than another elemept Aif and only if x Ca y. Furthermore, a line is drawn
from xtoyif and only if x<ay. An example of a Hasse Diagram of the 8et { u,

v, W, X, ¥, z} and the relationCa= { (w,u), (x,u), (x,v), (y,w), (z,w), (z,X)} is
shown in the following figure:

185

186

Appendix B: The Simple
Metamodel Description Language

This appendix summarizes the set-theoretical definiticBMD from Chapter 3.

Metamodel Formalization
We define the metamodeling language by:

MLs % (C,generalizations®, owner, type, characteristics)
effectiveProperties(c) = |J{propertiegd) - cC.d}
effectiveType(p) = {c€ C - cCctype(p)}

The characteristics of the properties, including subsats @rict unions, is
defined by:

characteristics ' (lower, upper ordered compositeoppositesupersets

strictUnion)

The following metamodel constraints are defined:
Metamodel Constraint 1 Property Multiplicity: (Vp € P - lower(p) < uppefp))

Metamodel Constraint 2 Opposite properties(vp € P - oppositép) # Q= p=
opposité¢opposité p)) A oppositep) # p)

Metamodel Constraint 3 Both properties in a relation cannot be compositeép
€ P - compositép) A oppositép) # Q = —compositéoppositép)))

Metamodel Constraint 4 No infinite chain of compositiongVcy,...,Cq,Cni1 €
C - (Vi - 1<i<n= (dpe effectivePropertie;) - composit¢p) A ownerp) =
Ci ACit1 = type(p) Alower(p) > 1)) = €1 # Cpp1), YN>1

Metamodel Constraint 5 Generalization is acyclic-(Jec C - (ee) € {(c,d) -
d € generalization&) })

187

Metamodel Constraint 6 Upper multiplicity in subset propertiegVpe P - (Vge
superset§p) - upperp) < uppexa)))

Metamodel Constraint 7 Subset only from owner or its superclas$eép,q € P -
p Cp g = ownerp) Cc ownerd)).

Metamodel Constraint 8 The property superset relation is acycliei(Jee P -
(e.e) € {(p.q) - g€ superset&p)}™)

Metamodel Constraint 9 The opposite of a subset property must be a subset:
(Vp,qe P - pCpgAoppositgp) # Q = oppositép) C, oppositeq))

Metamodel Constraint 10 No circular transitive composition with subsetsip €
P - compositép) = —(3q € P - oppositéq) # QA pCpgA
compositéoppositéq))))

Metamodel Constraint 11 Ordering characteristics are same in property poset:
(Vpe P - (Vq € supersety) - orderedq) = orderedp)). This metamodel con-
straint is only necessary for the model operations.
Model Formalization
The models are defined by:

M £ (E, classS, property, slotownerelement$}

The following model constraints are defined:

Model Constraint 1 Valid slots in element (1)(Vvec E - (Vse slotge) -
(property(s)) € effectivePropertielasge))))

Model Constraint 2 Valid slots in element (2)(vec E -
(Vp € effectivePropertiexlasse)) - (3!se slotge) - propertys) = p)))

Model Constraint 3 Class of elements in a slo{ivse S - (Ve € elementss) -
clasge) € effectiveTypégproperty(s))))

Model Constraint 4 Valid number of elements in a slat/se€ S -
lower(property(s)) < #s < upperpropertys)))

Model Constraint 5 Bidirectionality of slots:(Vs< S - oppositéproperty(s)) #
Q = (V€ € elementss) - (3! € S- slotowne(s') = € A oppositéproperty(s)) =
property(s) A slotownefs) € elementss)))))

Model Constraint 6 Overridden by model constraint 11.

188

Model Constraint 7 Composition is acyclic(ve € E - e ¢ parentchaife))

Model Constraint 8 Unordered slots(vr,se S - r CssA —orderedproperty(s))
= elementér) C elementss))

Model Constraint 9 Ordered slots: (Vx,y € E,r,s€ S - x € element§r) Ay €
element$r) Ax <; yAr CssAorderedproperty(s)) = x € elementés) Ay €
elementgs) A X <sY)

Model Constraint 10 Strict union: (Yse€ S - strictUnion(property(s)) =
elementsés) = | J{elementér) - r <ss}

Model Constraint 11 (Subset) Only in one composite sldte € E - —(3s1,S, -

property(s;) ||p property(sy) A compositéproperty(s;)) A composit¢property(s;))
Nee€ elementés;) Aec elementss,))

189

190

Bibliography

[1] J.-R. Abrial. The B-book: Assigning Programs to MeaningSambridge

University Press, New York, NY, USA, 1996.

[2] Adaptive, Inc. Adaptive Repository. http://lwww.adaptive.com/

resources_papers/technology.html , visited April 24th, 2007.

[3] Adobe Systems, Inc.PostScript Language ReferenceAddison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, third editjd 999.

[4] A. V. Aho, R. Sethi, and J. D. UllmanCompilers—Principles, Techniques

[5]

and Tools Addison-Wesley, January 1986.

M. Alanen. A Meta Object Facility-Based Model Reposytdivith Version
Capabilities, Optimistic Locking and Conflict Resolutioklaster’s Thesis
in Computer Engineering, Department of Computer Scientw Akademi
University, Turku, Finland, November 2002.

[6] A. Albano, G. Ghelli, and R. Orsini. A Relationship Mectisam for a

Strongly Typed Object-Oriented Database Programming uagg. InPro-
ceedings of the 17th Conference on Very Large Datab&sesgan Kaufman
Publishers Inc., 1991.

[7] J. Alvarez, A. Evans, and P. Sammut. MML and the Metamddehitec-

[8]

[9]

ture. In J. Whittle, editorWTUML: Workshop on Transformation in UML
2001, April 2001.

C. Amelunxen, T. Rotschke, and A. Schirr. Graph Tramsfions with
MOF 2.0. In H. Giese and A. Ziindorf, editofBjaba Days 2005Septem-
ber 2005.

C. Atkinson and T. Kiihne. Rearchitecting the UML infrasture. ACM
Trans. Model. Comput. Simull2(4):290-321, 2002.

[10] T.Baar. Metamodels without MetacircularitidsObjet, 9(4):95-114, 2003.

191

[11] R.-J. Back, D. Bjorklund, J. Lilius, L. Milovanov, and Porres. A
Workbench to Experiment on New Model Engineering Applicas. In
P. Stevens, J. Whittle, and G. Booch, edit&®)L 2003 - The Unified Mod-
eling Languagevolume 2863 of_ecture Notes in Computer Scien€acto-
ber 2003.

[12] R.-J.Back, J. Eriksson, and M. Myreen. Verifying Ineaut Based Programs
in the SOCOS Environment. [Feaching Formal Methods: Practice and Ex-
perience (BCS Electronic Workshops in ComputiBf}S-FACS, December
2006.

[13] R.-J. Back, J. Eriksson, and M. Myreen. Testing and fyergy Invariant
Based Programs in the SOCOS EnvironmentPtaceedings of the Inter-
national Conference on Tests And Proofs (TAR)ringer-Verlag, February
2007.

[14] R.-J. Back, J. Grundy, and J. von Wright. Structurectalational proof.
Technical Report 65, Turku Center for Computer Science,eéxuser 1996.

[15] R.-J.Back and J. von WrighRefinement Calculus - A Systematic Introduc-
tion. Springer-Verlag, 1998. ISBN 0387984178.

[16] F.Barbier, B. Henderson-Sellers, A. Le Parc, and JBMIel. Formalization
of the Whole-Part Relationship in the Unified Modeling Laaga. IEEE
Trans. Software Eng29(5):459-470, 2003.

[17] L. Baresi and R. Heckel. Tutorial introduction to grajpansformation: A
software engineering perspective. In A. Corradini, H. BhH.-J. Kreowski,
and G. Rozenberg, editofBroc. Graph Transformation - First International
Conf., ICGT 2002, Barcelona, Spawolume 2505 of NCS Springer, 2002.

[18] G. Beneken, F. Marschall, and A. Rausch. A Model Franmwieaving
Approach - Position Paper. Proceedings of the First Workshop on Models
and Aspects - Handling Crosscutting Concerns in MDSD at @b Eu-
ropean Conference on Object-Oriented Programming (ECOQGF52 July
2005.

[19] J. Bézivin. On the Unification Power of ModelSpringer Journal on Soft-
ware and Systems Modeling(4), 2004.

[20] J. Bézivin, S. Bouzitouna, M. Didonet Del Fabro, M.-RerGais, F. Jouault,
D. Kolovos, 1. Kurtev, and R. Paige. A Canonical Scheme fod®lcCom-
position. In A. Rensink and J. Warmer, editdvpdel Driven Architecture—
Foundations and Applications: Second European ConfereBCMDA-FA
2006, LNCS 4066ages 346—360. Springer-Verlag, 2006.

192

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

J. Bézivin, E. Breton, G. Dupé, and P. Valduriez. The Allfansformation-
based Model Management Framework. Technical Report OBlIOBersity
of Nantes, France, 2003.

J. Bézivin, G. Hillairet, F. Jouault, I. Kurtev, and Wies. Bridging the
MS/DSL Tools and the Eclipse Modeling Framework. In R. Jaimnand

R. P. Gabriel, editorsProceedings of the International Workshop on Soft-
ware Factories at OOPSLA 200%an Diego, California, USA, October
2005. ACM Press.

G. Bierman and A. Wren. First-class relationships iroaject-oriented lan-
guage. InWorkshop on Foundations of Object-Oriented Languages (EOO
2005) January 2005.

L. Bondé, P. Boulet, and J.-L. Dekeyser. Traceabilitg anteroperability
at different levels of abstraction in model transformasionin Forum on
Specification and Design Languages, FDL ' @&ptember 2005.

F. P. Brooks, Jr. No Silver Bullet. In H.-J. Kugler, emitProceedings of
the IFIP Tenth World Computing Conferengeages 1069-1076. Elsevier
Science B.V., 1986.

M. Broy, M. L. Crane, J. Dingel, A. Hartman, B. Rumpe, d@dSelic. 2nd
UML 2 Semantics Symposium: Formal Semantics for UML. In ThiKg,
editor, MODELS 2006 Workshopsolume 4364 olLNCS pages 318-323.
Springer, 2006.

C. Brun et al. The EMF Compare websitéttp://www.eclipse.org/
emft/projects/compare/ , visited April 24th, 2007.

F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and)TGrose.Eclipse
Modeling Framework Addison Wesley Professional, August 2003.

J. Cabot and E. Teniente. Determining the Structurariythat May Vio-
late an Integrity Constraint. In T. Baar, A. Strohmeier, Aoidira, and S. J.
Mellor, editors,UML 2004 - The Unified Modeling Language. Model Lan-
guages and Applications. 7th International Conferencasbbn, Portugal
volume 3273 oLNCS pages 320-334. Springer, October 2004.

J. Cabot and E. Teniente. Computing the Relevant lesathat May Vi-
olate an OCL Constraint. In O. Pastor and J. Falc&o e Cunitaygdfd-
vanced Information Systems Engineering, 17th Internati@@onference,
CAISE 2005, Porto, Portugabolume 3520 oL NCS pages 48-62. Springer,
June 2005.

193

[31] CAE Specification. DCE 1.1: Remote Procedure Call, 199ailable

at http://www.opengroup.org/onlinepubs/9629399/toc.htm , Visited
April 24th, 2007.

[32] G. Castagna. Covariance and Contravariance: Conflittowt a Cause.

ACM Transactions on Programming Languages and Systém(8):431—
447, May 1995.

[33] R. Castello, R. Mili, and I. G. Tollis. Automatic layoof statechartsSoft-

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

ware: Practice and Experienc82(1):25-55, 2001.

P. Cederqvist et al. Version Management with CVS, 19%ailable at
http://www.cvshome.org/ , visited April 24th, 2007.

E. Celms, A. Kalnins, and L. Lace. Diagram Definition Hi&ies Based on
Metamodel Mappings, October 2003. Invited talk at the TI@@PSLA
Workshop on Domain-Specific Modeling.

P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beg@ssertions: Ad-
vanced specification and verification with JIML and ESC/JavaZ-ormal
Methods for Components and Objects (FMCO) 2005, Revisediesctol-
ume 4111 oL NCS pages 342-363. SV, 2006.

S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and idloi. Change
Detection in Hierarchically Structured Information. Rroceedings of the
ACM SIGMOD International Conference on Management of Datges
493-504, 1996.

N. Chomsky. Three models for the description of languatnformation
Theory, IEEE Transactions 92(3):113-124, 1956.

M. C. Chu-Carroll and S. Sprenkle. Coven: Brewing Be@ellaboration
through Software Configuration Management. Rroceedings of the 8th
ACM SIGSOFT international symposium on Foundations oivso#t engi-
neering: twenty-first century applicationslovember 2000.

A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Doméapecific Mod-
eling Language for Model Differences. Technical Report T/8/Q006, Di-
partimento di Informatica, Universita di L'Aquila, 1tal2006.

A. Cicchetti, D. Di Ruscio, and A. Pierantonio. Compasi of Model Dif-
ferences. In A. Kleppe, editoRroceedings of the First European Workshop
on Composition of Model Transformations (CMT 2Q0@ages 9-14, July
2006.

T. Clark, A. Evans, and S. Kent. The Metamodelling Laagg Calculus:
Foundation Semantics for UML. IRroceedings of the Fundamental As-
pects of Software Engineering (FASBages 17-31, 2001.

194

[43] T. Clark, A. Evans, P. Sammut, and J. Willamspplied Metamodelling: A
Foundation for Language-Driven Developme@005. Available ahttp:
Iwww.xactium.com/ , visited April 24th, 2007.

[44] G. Clemm, J. Amsden, T. Ellison, C. Kaler, and J. WhitgheVersioning
Extensions to WebDAV, RFC 3253, March 2002. Availabléattt//www.
ietf.org/rfc/rfc3253.txt

[45] C. Connell. Why Software Engineering Is Not B.®r. Dobb’s Journa)
July 2001.

[46] D. H. Akehurst and S. Kent and O. Patrascoiu. A relatiamproach to
defining and implementing transformations between metatso8oftware
and System Modelin@(4):215-239, 2003.

[47] J. de Lara Jaramillo, H. Vangheluwe, and M. A. Moreno. ingsMeta-
Modelling and Graph Grammars to Create Modelling EnvironteeElec-
tronic Notes in Theoretical Computer Sciencg(3), 2003.

[48] L. G. DeMichiel and R. P. Gabriel. The Common Lisp Obj&ststem:
an Overview. InEuropean conference on object-oriented programming on
ECOOP '87 pages 151-170, London, UK, 1987. Springer-Verlag.

[49] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A Theor@rover for
Program CheckingACM, 52(3):365-473, 2005.

[50] R. Ducournau, M. Habib, M. Huchard, and M.-L. Mugnieroposal for a
Monotonic Multiple Inheritance Linearization. Proceedings of the Ninth
Annual ACM Conference on Object-Oriented Programminge®yst Lan-
guages and Applicationpages 164-175, 1994.

[51] J. Ebert, B. Kullbach, and A. Winter. Grax: Graph exojparformat. In
Workshop on Standard Exchange Formats (WoSEF) at (ICSE200).

[52] The Eclipse Modeling Framework websitéattp://www.eclipse.org/
emf, visited April 24th, 2007.

[53] M. Eiglsperger, M. Kaufmann, and M. Siebenhaller. A dlggy-shape-
metrics approach for the automatic layout of UML class diags. In
Proceedings of the 2003 ACM symposium on Software vistializaACM
Press, 2003.

[54] Elver Project. Teneohttp://www.elver.org/ , visited April 24th, 2007.

[55] M. Didonet Del Fabro, J. Bézivin, F. Jouault, E. Bretamd G. Gueltas.
AMW: A Generic Model Weaver. IfProceedings of the 1ére Journée sur
I'Ingénierie Dirigée par les Modéles (IDM052005.

195

[56] R.Fielding, J. Gettys, H. Frystyk, L. Masinter, P. Leaand T. Berners-Lee.
Hypertext Transfer Protocol—HTTP/1.1, RFC 2616, June 19%ilable
at http:/www.ietf.org/rfc/rfc2616.txt

[57] F. Fondement and T. Baar. Making Metamodels Aware ofd@etie Syntax.
In European Conference on Model Driven Architecture (ECMDBA)ume
3748 of LNCS pages 190 — 204, 2005.

[58] R. France and B. Rumpe. Domain specific modeling, EiditorSpringer
International Journal on Software and Systems Model{d), 2005.

[59] Free Software Foundation, Inc. GNU General Public hise (version 2),
June 1991. Available dittp://www.gnu.org/licenses/gpl.html

[60] G.Génova, C. Ruiz del Castillo, and J. Lloréns. MappiidL Associations
into Java CodeJournal of Object Technolog(5):135-162, 2003.

[61] Gentleware. The Poseidon for UML produdtttp://www.gentleware.
com/, visited April 24th, 2007.

[62] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. énsHTTP Ex-
tensions for Distributed Authoring—WEBDAV, RFC 2518, Faary 1999.
Available athttp://www.ietf.org/rfc/rfc2518.txt

[63] C. Gonzalez-Perez and B. Henderson-Sellers. A Popeibased Meta-
modelling Framework. Software and Systems Modeling; 72—90, April
2006. doi:10.1007/s10270-005-0099-9.

[64] J. Gosling, B. Joy, and G. SteeleThe Java Language Specification
Addison-Wesley, 1996.

[65] The GraphViz websitehttp://www.graphviz.org/ , visited April 24th,
2007.

[66] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crufioftware Fac-
tories: Assembling Applications with Patterns, ModelsarReworks, and
Tools Wiley, August 2004.

[67] The GUPRO website. http://www.uni-koblenz.de/~gupro/ , Visited
April 24th, 2007.

[68] The GXL Validator website. http://www.uni-koblenz.de/FB4/
Contrib/GUPRO/Site/Downloads/index_html?project=gx |, visited
April 24th, 2007.

[69] D. Harel. Statecharts: A Visual Formalism for Compleyst&ms. Science
of Computer Programmin@(3):231-274, June 1987.

196

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

D. Harel. On Visual FormalismsCommunications of the ACN1(5):514—
530, May 1988.

J. H. Hausmann and S. Kent. Visualizing model mappimgs/ML. In
SoftVis '03: Proceedings of the 2003 ACM symposium on Saftwisual-
ization, pages 169-178, New York, NY, USA, 2003. ACM Press.

S. Haustein, February 2004. Discussion on the malistgpuml-
list@cs.york.ac.uk.

B. Henderson-Sellers and F. Barbier. Black and Whitanmnds. In
R. France and B. Rumpe, editoldML'99 - The Unified Modeling Lan-
guage. Beyond the Standard. Second International Corderdort Collins,

CO, USA, October 28-30. 1999, Proceedingdume 1723 of.NCS pages
550-565. Springer, 1999.

The Hibernate websitettp://www.hibernate.org/ , visited April 24th,
2007.

R. C. Holt, A. Schurr, S. E. Sim, and A Winter. GXL: A grajilased stan-
dard exchange format for reengineeringcience of Computer Program-
ming, 60(2):149-170, April 2006.

S. Holzner. Eclipse O’'Reilly Media, first edition, May 2004. ISBN
0596006411.

D. llic, E. Troubitsyna, L. Laibinis, and S. Leppé&nerarfal Verification of
Consistency in Model-Driven Development of Distributedn@ounicating
Systems and Communication Protocols. Technical RepoftTdTS, June
2006.

Information Sciences Institute, University of SoutmeCalifornia. Trans-
mission Control Protocol, Darpa Internet Program, Prot&gecification—
RFC 793, September 1981. Available tdtp://www.ietf.org/rfc/

rfc793.txt

S. lyengar et al. Java Metadata Interface (JMI) Spetifia AP1 1.0. Avail-
able athttp://java.sun.com/ , June 2002.

H. Jagadish, S. Al-Khalifa, A. Chapman, L. Lakshmanan,Nierman,
S. Paparizos, J. Patel, D.Srivastava, N. Wiwatwattana, 1Y, &id C. Yu.
TIMBER: A native XML databaseThe VLDB Journal - The International
Journal on Very Large Data Basgs1:274-291, December 2002.

S. Jansamak and A. Surarerks. Formalization of UMLestiaért models us-

ing Concurrent Regular Expressions.A@SC '04: Proceedings of the 27th
Australasian conference on Computer scienuages 83—-88, Darlinghurst,
Australia, 2004. Australian Computer Society, Inc.

197

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

J. Jiang and T. Systa. Exploring Differences in Excleafgrmats — Tool
Support and Case Studies. $®venth European Conference on Software
Manteinance and Reengineerin@EE Computer Society, March 2003.

S. Josefsson. The Basel6, Base32, and Base64 DataifgsedRFC
4648, October 2006. Available bttp://www.ietf.org/rfc/rfc4648.
txt .

F. Jouault and J. Bézivin. KM3: a DSL for Metamodel Sfieation. In
Proceedings of 8th IFIP International Conference on Forrividthods for
Open Object-Based Distributed SysteBslogna, Italy, 2006.

T. Jussila, J. Dubrovin, T. Junttila, T. Latvala, anBd&rres. Model Checking
Dynamic and Hierarchical UML State Machines. NNODEVA 2006: Per-
spectives on Integrating MDA and V&®@ctober 2006. Held in conjunction
with MoDELS 2006.

A. Kalnins, J. Barzdins, and E. Celms. Basics of Modedngformation
Language MOLA. InNorkshop on Model Transformation and Execution in
the Context of MDA (ECOOP 20Q4)une 2004.

U. Keller, J. Wehren, and J. Niere. A Generic Differerfsigorithm for
UML Models. InSoftware Engineeringpages 105-116, 2005.

S. Kelly. Comparison of Eclipse EMF/GEF and MetaEdibr DSM. In
19th Annual ACM Conference on Object-Oriented Programm8ygtems,
Languages, and Applications, Workshop on Best Practiceddalel Driven
Software DevelopmenDctober 2004.

S. Kent. Model Driven Engineering. IAroc. of IFM International Formal
Methods 2002volume 2335 oL NCS Springer-Verlag, 2002.

The Kermeta website. http://www.kermeta.org/ , Visited April 24th,
2007.

B. W. Kernighan and D. M. RitchieThe C Programming Languag®ren-
tice Hall Press, Upper Saddle River, NJ, USA, 1988.

A. Kleppe, April 2003. Discussion on the mailing-listuml-
list@cs.york.ac.uk.

D. S. Kolovos, R F. Paige, and F. Polack. Merging Modets whe Epsilon
Merging Language (EML). IIMoDELS pages 215-229, 2006.

198

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Model Cargon: A
Foundation for Model Composition and Model Transformafi@sting. In
GaMMa '06: Proceedings of the 2006 international workshap@lobal
integrated model managememiages 13-20, New York, NY, USA, 2006.
ACM Press.

D. S. Kolovos, R. F. Paige, and F. A. C. Polack. On-Demisieiging of
Traceability Links with Models. IiProceedings of the 2nd EC-MDA Work-
shop on Traceability2006.

J. Kovse and T. Harder. Generic XMI-Based UML Model Bfmmma-
tions. InOOIS '02: Proceedings of the 8th International Conference o
Object-Oriented. Information Systenmages 192-198, London, UK, 2002.
Springer-Verlag.

H. Kihn and M. Murzek. Interoperability Issues in Metaaelling Plat-
forms. In Proceedings of the First International Conference on lojer
erability of Enterprise Software and Applications (INTEHRGSA 2005)
February 2005.

L. Lambers. A New Version of GTXL: An Exchange Format fGraph
Transformation Systems. M/orkshop on Graph-Based Tools (GraBaTs)
2004 at Second International Conference on Graph Transdtion (ICGT
2004) October 2004.

R. Lammel and E. Meijer. Mappings make data processmgiaynd—An
inter-paradigmatic mapping tutorial. PPost-proceedings of GTTSE 2005,
Generative and Transformation Techniques in Software itggging, 4-8
July, 2005, Braga, Portugal ecture Notes in Computer Science. Springer-
Verlag, 2006. Summer school tutorial, GTTSE 2005.

R. Lammel and E. Meijer. Revealing the X/O impedances-mi
match, 2006. Draft, available ditp:/homepages.cwi.nl/~ralf/
xo-impedance-mismatch/ , visited October 23rd, 2006.

J. R. Levine, T. Mason, and D. Browtex & yacc O’Reilly & Associates,
Inc., Sebastopol, CA, USA, second edition, 1992.

J. Lilius, T. Lillgvist, T. Lundkvist, I. Oliver, I. Poes, K. Sandstréom,
G. Sveholm, and A. P. Zaka. An Architecture Exploration Eomment
for System on Chip DesigriNordic Journal of Computingl2(4):361-378,
2005.

199

[103] J. Lilius, T. Lillqvist, T. Lundkvist, I. Oliver, I. Paes, K. Sandstrom,
G. Sveholm, and A. P. Zaka. The MICAS Tool. In Kai Koskimiesdlvik
Kuzniarz, Jyrki Nummenmaa, and Zheying Zhang, editBreceedings of
the NWUML 2005: The 3rd Nordic Workshop on UML and Software-Mo
eling, number Report A-2005-3, pages 180-192, August 2005.

[104] T. Lillqvist. Subgraph Matching in Model Driven Engiaring. Master’s
Thesis in Computer Science, Department of Information Metdyies, Abo
Akademi University, Turku, Finland, March 2006.

[105] Y. Lin, J. Zhang, and J. Gray. Model Comparison: A Keyalldnge for
Transformation Testing and Version Control in Model Drivgoftware De-
velopment. IDOPSLA Workshop on Best Practices for Model-Driven Soft-
ware DevelopmenOctober 2004.

[106] Y. Lin, J. Zhang, and J. Gray. A Testing Framework for déb Transfor-
mations. In S. Beydeda, M. Book, and V. Gruhn, editdvigdel-Driven
Software Developmenpages 219-236. Springer, July 2005.

[107] J. Lindqvist, T. Lundkvist, and I. Porres. A Query Larsge With the Star
Operator. Technical Report 801, TUCS, January 2007.

[108] B. Liskov. Keynote address - Data Abstraction and &figlny. SIGPLAN
Not, 23(5):17-34, May 1988.

[109] B. Lundell, B. Lings, A. Persson, and A. Mattsson. UMbae! interchange
in heterogeneous tool environments: an analysis of aduptid XMI 2. In
O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, edit®hmceedings of
the 9th International Conference on Model Driven EnginegriLanguages
and Systems (MoDELS 200&plume 4199 of_ecture Notes in Computer
Science Springer Berlin / Heidelberg, October 2006.

[110] T. Lundkvist. Diagram Reconciliation and Intercharig a Modeling Tool.
Master’'s Thesis in Computer Science, Department of Conn@sitéence,
Abo Akademi University, Turku, Finland, November 2005.

[111] D. MacKenzie, P. Eggert, and R. Stallma@omparing and Merging Files
with GNU Diff and Patch Network Theory Ltd., 1997.

[112] J. McCarthy. Recursive Functions of Symbolic Expi@ss and Their Com-
putation by Machine, Part Commun. ACM3(4):184-195, 1960.

[113] E. Meijer and W. Schulte. Unifying Tables, Objects @ddcuments. In
Proceedings of Declarative Programming in the Context of @guages
(DP-COOQOL) September 2003.

200

[114] E. Meijer, W. Schulte, and G. Bierman. Programminghwatircles, Trian-
gles, and Rectangles. Rroceedings of the XML Conference and Exposition
(XML 2003) December 2003.

[115] T. Mens. A State-of-the-Art Survey on Software Me@inEEE Transac-
tions on Software Engineering8(5):449-462, May 2002.

[116] B. Meyer. Design by Contract. Technical Report TRIRICO, Interactive
Software Engineering Inc., 1986.

[117] B. Meyer. Eiffel : The LanguagePrentice Hall PTR, first edition, October
1991. ISBN 0132479257.

[118] M. Milewski and G. Roberts. The Model Weaving DesddptLanguage
(MWDL)-Towards a formal Aspect Oriented Language for MDA daeb
transformations. IrProceedings of the 1st Workshop on Models and As-
pects - Handling Crosscutting Concerns in MDSD, in conjiorctvith the
19th European Conference on Object-Oriented Programpn20§5.

[119] M. Murata, S. St. Laurent, and D. Kohn. XML Media TypeRFC 3023,
January 2001. Available attp://www.ietf.org/rfc/rfc3023.txt

[120] E. W. Myers. An O(ND) Difference Algorithm and Its Vations. Algorith-
mica 1(2):251-266, 1986.

[121] U. A. Nickel, J. Niere, and A. Zindorf. Tool demonsioat The FUJABA
environment. IrProceedings of the 22nd International Conference on Soft-
ware Engineering (ICSEpages 742—-745. ACM Press, 2000.

[122] J. P. Nytun, A. Prinz, and A. Kunert. Representatioh@fels and Instan-
tiation in a Metamodelling Environment. FProceedings of the 2nd Nordic
Workshop on the Unified Modeling Language NWUML 2(&ges 1-17,
2003.

[123] Object Management Group websitetp://www.omg.org/ , Visited April
24th, 2007.

[124] D. Ohst, M. Welle, and U. Kelter. Difference Tools fonalysis and Design
Documents. Los Alamitos, CA, USA, 2003. IEEE Computer Sycie

[125] D. Ohst, M. Welle, and U. Kelter. Differences Betweesrdions of UML
Diagrams. INESEC/FSE-11: Proceedings of the 9th European software
engineering conference held jointly with 11th ACM SIGSQO#é&rnational
symposium on Foundations of software engineerpages 227-236, New
York, NY, USA, 2003. ACM Press.

201

[126] OMG. UML 2.0 Tools Certification (XMI). Available dittp://www.omg.
org/xmitest/ . Press release attp://www.omg.org/news/releases/
pr2006/01-18-06.htm . Visited December 11th, 2006.

[127] OMG. Object Constraint Language Specification, \@rsl.1, September
1997. Document ad/97-08-08, availablehty://www.omg.org/

[128] OMG. Meta Object Facility, version 1.4, April 2002. Bument
formal/2002-04-03, available &ttp://www.omg.org/

[129] OMG. XML Metadata Interchange (XMI) Specification,rsen 1.2, Jan-
uary 2002. Available dtttp://www.omg.org/

[130] OMG. MDA Guide Version 1.0.1, June 2003. OMG Documaniyf03-06-
01, available ahttp://www.omg.org/

[131] OMG. UML 2.0 OCL Specification, October 2003. Documpid/03-10-
14, available ahttp://www.omg.org/

[132] OMG. XML Metadata Interchange (XMI) Specification,rsin 2.0, May
2003. Document formal/03-05-02, availablentyp://www.omg.org/

[133] OMG. MOF 2.0 Query / View / Transformation Final Adopté&pec-
ification, November 2005. OMG Document ptc/05-11-01, a@éd at
http://www.omg.org/

[134] OMG. MOF 2.0/XMI Mapping Specification, v2.1, Septeent2005. Doc-
ument formal/05-09-01, available latp://www.omg.org/

[135] OMG. UML 2.0 Superstructure Specification, August 200Document
formal/05-07-04, available &ttp://www.omg.org/

[136] OMG. Unified Modeling Language: Diagram Interchangesion 2.0, June
2005. OMG document ptc/05-06-04, availabldigt://www.omg.org

[137] OMG. XML Metadata Interchange (XMI) Specification, rsen 2.1,
September 2005. Document formal/05-09-01, availablbttpt/www.
omg.org/ .

[138] OMG. Diagram Interchange version 1.0, April 2006. OMGcument
formal/06-04-04, available é&ttp://www.omg.org

[139] OMG. Meta Obiject Facility (MOF) Core Specificationysi®n 2.0, January
2006. Document formal/06-01-01, availablentyp://www.omg.org/

[140] OMG. Model View to Diagram Request for Proposal, Nobem2006.
Document ad/06-11-07, availablehdtp://www.omg.org/

202

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

OMG. Object Constraint Language, version 2.0, May&0@®ocument
formal/2006-05-10, available &ttp://www.omg.org/

OMG. UML 2.0 Infrastructure Specification, March 2006Document
formal/05-07-05, available &ttp://www.omg.org/

OMG Architecture Board. Model Driven Architecture—Pechnical Per-
spective, 2001. Document ormsc/01-07-01, availabletgt/www.omg.
org/ .

S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototypefi¢ation Sys-
tem. In Deepak Kapur, editot,1th International Conference on Automated
Deduction (CADE)volume 607 ofLecture Notes in Artificial Intelligence
pages 748-752, Saratoga, NY, June 1992. Springer-Verlag.

P. R. Panda. SystemC: a modeling platform supportintiipte design ab-
stractions. INSSS '01: Proceedings of the 14th international symposionm o
Systems synthesigages 75-80, New York, NY, USA, 2001. ACM Press.

O. Patrascoiu. YATL:Yet Another Transformation Large. InProceed-
ings of the 1st European MDA Workshop, MDA+bages 83-90. University
of Twente, the Nederlands, January 2004.

D. E. Perry, H. P. Siy, and L. G. Votta. Parallel Change&arge Scale
Software Development: An Observational Case StudyProceedings of
the International Software Engineering Conferengeril 1998.

A. Persson, H. Gustavsson, B. Lings, B. Lundell, A. tdsdn, and U. Arlig.
Adopting Open Source development tools in a commercial ymtion
environment—are we locked-in? [Menth International Workshop on
Exploring Modeling Methods in Systems Analysis and DedtMMSAD
2005) June 2005.

A. Persson, H. Gustavsson, B. Lings, B. Lundell, A. tdsdn, and U. Arlig.
OSS tools in a heterogeneous environment for embeddednsysieod-
elling: an analysis of adoptions of XMI. lroceedings of the 5th Workshop
on Open Source Software Engineering , held in conjunctidhn the 27th In-
ternational Conference on Software Engineering (ICSE 200y 2005.

C. M. Pilato, B. Collins-Sussman, and B. W. Fitzpatrid/ersion Control
with SubversionO’Reilly Media, June 2004. ISBN 0596004486.

I. Poernomo. The Meta-Object Facility Typed. In Hishi. Haddad et al.,
editors,Proceedings of the 2006 ACM Symposium on Applied Computing
pages 1845-1849, April 2006.

203

[152] I. Porres. A Toolkit for Model ManipulatiorSpringer International Journal
on Software and Systems Modelig¢4), 2003.

[153] A. Prinz et al. The Semantic Metamodel-based Integratanguage Envi-
ronment (SMILE) Project. Website attp://osys.grm.hia.no/osys/
projects/smile , Visited January 2nd, 2007.

[154] A.Prinz, J. P. Nytun, L. Chen, and S. Wei. IntegratiéM@TER and EMF.
In Andreas Prinz and Merete Skjelten Tveit, editd?spceedings of the 4th
Nordic Workshop on the Unified Modeling Language NWUML 200@e
2006.

[155] A. Rensink. The GROOVE Simulator: A Tool for State Sp#&aeneration.
In J. Pfalz, M. Nagl, and B. B6hlen, editosspplications of Graph Transfor-
mations with Industrial Relevance (AGTIVEblume 3062 oL NCS pages
479-485. Springer-Verlag, 2004.

[156] V. Ribaud and P. Saliou. Roles Transformation withibadtware Engineer-
ing Master by Immersion. September 2004.

[157] R. Rinat. Type-safe covariant specialization withgelized matchinglnf.
Comput, 177(1):90-120, 2002.

[158] M. Rose. On the Design of Application Protocols—RFQB1November
2001. Available ahttp://www.ietf.org/rfc/rfc3117.txt

[159] D. Rosenthal and S. W. Marks. Inter-Client CommundaratConventions
Manual Version 2.0, December 1993. Availablentit://tronche.com/
guifxficcem/ , visited April 24th, 2007.

[160] G. Rozenberg, editorHandbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundatioorld Scientific, 1997.

[161] S. Demathieu and C. Griffin and S. Sendall. Model Tramshtion with the
IBM Model Transformation Framework. Available htp://www-128.
ibm.com/developerworks/rational/library/05/503_seba s/, visited
April 24th, 2007.

[162] M. Scheidgen. On Implementing MOF 2.0—New FeaturesModelling
Language Abstractions. July 2005. Availablétgi://www.informatik.
hu-berlin.de/~scheidge/ , Visited January 2nd, 2007.

[163] R. W. Scheifler and J. GettyX Window System: Core and Extension Pro-
tocols Digital Equipment Corp., Acton, MA, USA, 1997.

204

[164] A. Schirr, A. J. Winter, and A. Zundorf. The PROGRES Agach: Lan-
guage and Environmenidandbook of Graph Grammars and Computing by
Graph Transformation: Vol. 2: Applications, Languagesdalools pages
487-550, 1999.

[165] P. Sriplakich, X. Blanc, and M.-P. Gervais. Suppati@ollaborative De-
velopment in an Open MDA Environment. International Conference
on Software Maintenan¢c@ages 244—253, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[166] J. Steel and J.-M. Jézéquel. Typing Relationships D¥MIn D. H. Ake-
hurst, editor, Proceedings of the Second European Workshop on Model
Driven Architecture (EWMDA)number 17, Canterbury, Kent CT2 7NF,
UK, September 2004. University of Kent.

[167] G. L. Steele, Jr. Growing a Languagdgigher-Order and Symbolic Compu-
tation, 12(3):221-236, 1999.

[168] P. Stevens. Small-scale XMI programming: a revolutio UML tool use?
Automated Software Engineerint0(1):7-21, January 2003.

[169] H. Stoeckle, J. C. Grundy, and J. G. Hosking. Approacbeupporting soft-
ware visual notation exchange. hHuman Centric Computing Languages
and Environmentgpages 59-66. IEEE Computer Society, 2003.

[170] B. Stroustrup.The C++ Programming LanguageAddison Wesley Long-
man, third edition, 1997. ISBN 0-201-88954-4.

[171] H. Sutter and J. Hyslop. Logically Shallow View€/C++ Users Journal
23(5), May 2005.

[172] A. Sutton. Open Modeling Framework. Availablehgtp://www.sdml.
info/projects/omf/ , Visited January 2nd, 2007.

[173] SWIG Interface Generator from C/C++ to Scripting Laages. Available
at http:/www.swig.org/ , visited April 24th, 2007.

[174] G. Taentzer. Towards Common Exchange Formats for Igramd Graph
Transformation Systemg&lectronic Notes in Theoretical Computer Scignce

44(4), 2001.

[175] ATLAS Team. Atlantic Metamodel Zoo. Available attp://www.
eclipse.org/lgmt/am3/zoos/atlanticZoo/ , Visited April 24th, 2007.,
2006.

[176] W. F. Tichy. RCS—A System for Version Contré@oftware - Practice and
Experiencel15(7):637-654, 1985.

205

[177] L. Tratt. The MT model transformation language Proc. ACM Symposium
on Applied Computingpages 1296—-1303, April 2006.

[178] Unicode Consortium.Unicode Standard, Version 5.0Addison-Wesley,
2006. ISBN 0-321-48091-0.

[179] UserLand Software, Inc. XML-RPC Specification, Oaph999. Available
at http://www.xmlrpc.org/ , Visited April 24th, 2007.

[180] G. van Rossum et al. The Python Programming Languageilable at
http://www.python.org/ , visited April 24th, 2007.

[181] D. Varrd. Automatic Program Generation for and by Mioimnsformation
Systems. In H.-J. Kreowski and P. Knirsch, editétsmc. AGT 2002: Work-
shop on Applied Graph Transformatiopages 161-173, Grenoble, France,
April 12-13 2002.

[182] D. Varré and A. Pataricza. Metamodeling Mathematié<Precise and Vi-
sual Framework for Describing Semantics Domains of UML Msedeln
UML '02: Proceedings of the 5th International ConferenceTdre Unified
Modeling Languagepages 18-33, London, UK, 2002. Springer-Verlag.

[183] D. Varré and A. Pataricza. VPM: A visual, precise andtitavel metamod-
eling framework for describing mathematical domains andLWNournal
of Software and Systems Modeli2g3):187-210, October 2003.

[184] D. Varré, G. Varro, and A. Pataricza. Designing the dwatic Transforma-
tion of Visual LanguagesScience of Computer Programmingg(2):205—
227, August 2002.

[185] W3C. Namespaces in XML, January 1999. Availabléatgt//www.w3.
org/ .

[186] W3C. WAP Binary XML Content Format, June 1999. Aval@lt http:
Iwww.w3.0rg/TR/wbxml/

[187] W3C. XSL Transformations (XSLT) Version 2.0, Novermld®99. Avail-
able athttp://www.w3.0rg/TR/xslt20/

[188] W3C. Extensible Markup Language (XML) 1.0 (Secondtiedi, October
2000. Available ahttp:/iwww.w3.org/

[189] W3C. XML Linking Language (XLink) Version 1.0, June @D. Available
at http://www.w3.org/TR/xlink/

[190] W3C. Scalable Vector Graphics (SVG) 1.1 Specificatidanuary 2003.
Available athttp://www.w3.0rg/TR/SVG11/

206

[191] Wa3C. The W3C Workshop on Binary Interchange of XML In-
formation Item Sets, September 2003. Workshop in SantaaClar
California, USA. Report available ahttp://www.w3.0rg/2003/08/
binary-interchange-workshop/

[192] W3C. XPointer Framework, March 2003. Availablehtp://www.w3.
org/TR/xptr-framework/

[193] W3C. XML Schema Part 1. Structures Second Edition,00et 2004.
Available athttp://www.w3.org/TR/xmlIschema-1/

[194] W3C. XML Schema Part 2: Datatypes Second Edition, Batd2004.
Available athttp://www.w3.0rg/TR/xmlIschema-2/

[195] W3C. Binary Characterization—W3C Working Group Nokéarch 2005.
Available athttp://www.w3.org/TR/xbc-characterization/

[196] W3C. XML-Binary Optimized Packaging (W3C Recommetmia), Jan-
uary 2005. Available dtttp://www.w3.org/TR/xop10/

[197] W3C. XML Path Language (XPath) Version 1.0, Februad92 Available
at http:/imww.w3.org/TR/xslIt20/

[198] W3C. xml:id Version 1.0, September 2005. Availablétat://www.w3.
org/TR/xml-id/

[199] W3C. XQuery 1.0: An XML Query Language (Candidate macoenda-
tion), June 2006. Available attp://www.w3.org/TR/xquery/

[200] A. Wagner. A pragmatical approach to rule-based fansations within
UML using XMl.difference. InProceedings of the Workshop on Integration
and Transformation of UML models (WITUML 2002uly 2002.

[201] L. Wall, T. Christiansen, and J. OrwarRRrogramming Perl O'Reilly, third
edition, July 2000. ISBN 0596000278.

[202] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-Diff: An Effest Change Detec-
tion Algorithm for XML Documents. Ininternational Conference on Data
Engineering (ICDE)pages 519-530, Los Alamitos, CA, USA, 2003. IEEE
Computer Society.

[203] J. Warmer and A. Klepp€elhe Object Constraint Language: Precise Mod-
eling with UML Addison-Wesley, 1998. ISBN 0201379406.

[204] B. Werther and D. Conway. A Modest Proposal: C++ Resyed. SIG-
PLAN Notices31(11):74-82, 1996.

207

[205] E. D. Willink. UMLX: A graphical transformation langge for MDA. In
A. Rensink, editor,CTIT Technical Report TR-CTIT-03-2pages 13-24,
Enschede, The Netherlands, June 2003. University of Twente

[206] A. Winter. Exchanging Graphs with GXL. Technical Rep6-2001,
Universitat Koblenz-Landau, Institut fur Informatik, Rhau 1, D-56075
Koblenz, 2001.

[207] A. Winter et al. The Graph Exchange Language websitig://www.
gupro.de/GXL/ , visited April 24th, 2007.

[208] A. Winter, B. Kullbach, and V. Riediger. An Overview tfe GXL Graph
Exchange Language. Revised Lectures on Software Visualization, Inter-
national Semingrpages 324-336, London, UK, 2002. Springer-Verlag.

[209] XIG—An XSLT-based XMI2GXL-Translator. Available dittp://www.
gupro.de/mirror/xig/index.htm , visited April 24th, 2007.

[210] Z. Xing and E. Stroulia. UMLD:Iff: An Algorithm for Objet-Oriented De-
sign Differencing. INPASE '05: Proceedings of the 20th IEEE/ACM interna-
tional Conference on Automated software engineerpages 54—65, New
York, NY, USA, 2005. ACM Press.

[211] N. Zhu, J. Grundy, and J. Hosking. Pounamu: A Meta-TooMulti-View
Visual Language Environment Construction. \bHCC ’'04: Proceedings
of the 2004 IEEE Symposium on Visual Languages - Human CeDarin-
puting (VLHCC’04) pages 254-256, Washington, DC, USA, 2004. IEEE
Computer Society.

[212] A. Zindorf, J. P. Wadsack, and I. Rockel. Merging Grajite Object Struc-
tures. InProceedings of the Tenth International Workshop on Soé&wamn-
figuration Managemen2001.

208

TURKU
CENTRE for

COMPUTER
SCIENCE

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

NEW soiversity of rune
é é niversity of Turku .
? s e Department of Information Technology
///l‘ |\\§ e Department of Mathematics
O

Abo Akademi University
e Department of Information Technologies

Turku School of Economics
e Institute of Information Systems Sciences

ISBN 978-952-12-1901-6
ISSN 1239-1883

