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Abstract

The software engineering discipline strives for techniques and tools for develop-
ing software faster, cheaper and more reliably. In its most prevalent form today,
software is developed using text-based programming languages described using
Backus-Naur Form (BNF) grammars. The current solutions to the software engi-
neering goals consist of several different tools that perform different operations on
the BNF syntax tree of a program text. The tools analyze, verify, test, compile and
transform it. Unfortunately, many project artifacts are seldom linked to the pro-
grams, such as requirements documents, error reports and test data. We postulate
that this is partially due to the limitations in representing programs as syntax trees,
and that this hinders the development of better tools.

Another way of describing these artifacts is the use of graphs, where graph
grammars constrain which kinds of graphs can be built. By using graphs, we are
not as restricted to describe information when compared with a BNF syntax tree.
Software modeling is a research area which purports to address the aforementioned
goals by using different graphs, called models in the discipline, for all relevant ar-
tifacts in a software project. The standards body for defining software modeling is
the Object Management Group (OMG), a consortium consistingof both industrial
and academic participants.

If software modeling is to become as mainstream as program development in
the textual domain, it must provide a development infrastructure based on a sound
theory that solves common software engineering issues, as well as provide im-
proved solutions to some relevant issues when compared withthe textual domain.
In this thesis, we aim to lift the foundations of software modeling to the same level
as software engineering using textual programming languages and integrated de-
velopment environments. We accomplish this by analyzing some current OMG
standards for software modeling, finding omissions and errors and suggesting im-
provements. Therefore this thesis covers a broad range of topics: metametamodel
constructs, serialization technology, version control, and abstract and concrete syn-
tax of models.

A contribution of this thesis is a set-theoretical metamodeling framework sup-
porting subset and union properties with static constraints over the metamodels
and models, as well as pre- and postconditions and implementations of model op-
erations respecting these constraints. Furthermore, we assess the suitability of the
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XML Metadata Interchange (XMI) serialization technology with respect to various
usage scenarios for model interchange. The core of softwareconfiguration man-
agement is version control, and we show algorithms for calculating the difference
between two arbitrary models, applying a difference and inverting a difference.
We also discuss conflict resolution when merging several differences together. Fi-
nally, we present a domain-specific weaving metamodel that supports reconciling
the concrete syntax of models based on changes in the abstract syntax.

We have deliberately laid an emphasis on the engineering aspect of the solu-
tions described in the thesis. The research has been validated by implementing and
testing the contributions and suggestions as a working opensource prototype tool
called Coral.
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Chapter 1

Introduction

1.1 Textual Programming

Despite years of experience, successful software engineering is still considered to
be a very difficult problem [156]. The execution of any software development
project includes the creation and maintenance of many typesof documents: re-
quirements, specifications, tasks and project plans, actual source code, test reports,
et cetera. It is important to understand that an executable computer program is
not our greatest concern. Many of the documents—artifacts—mentioned are not
computer programs, yet all of them are highly relevant to planning, building and
maintaining one. Furthermore, all of these artifacts relate to each other, but are usu-
ally described and manipulated using different languages,data formats and tools.
Interoperability between tools would improve the pace and correctness of program
development. Overcoming problems between tools or data formats can require a
significant amount of effort.

Therefore we postulate that it should be possible to describe all of the relevant
artifacts using several interoperable languages. This implies two things. One, that
an artifact can be described using the constructs of some language. That is, there
are constructs at our disposal which are sufficient to model the information of the
artifact. Two, that these languages can be combined and usedtogether, where
such usage makes sense in the domain of the languages. In other words, that the
constructs for creating languages are common building blocks across all languages.

Informally we can understand that these common building blocks also form a
language, the language of creating languages. Thus, we havewhat is called ameta-
languageto describe languages, and since the metalanguage itself isa language, it
can be used to describe itself. This feature is calledmetacircularity[7, 10]. The
benefit of a metalanguage is that all artifacts can be manipulated uniformly, since
they all conform to some language, which all conform to the metalanguage.

The mathematical definition of a language in word theory is the set of words
that is accepted. A compact way of expressing these words is the use of a (word)
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grammar. Noam Chomsky and Marcel-Paul Schützenberger categorized formal
grammars in the Chomsky-Schützenberger hierarchy in 1956 [38], to which context-
free grammars belong. A programming language is usually defined as such a
context-free grammar, and described using Backus-Naur Form (BNF) or the se-
mantically equivalent various Extended Backus-Naur Forms(EBNF). BNF was
developed by John Backus and Peter Naur in the end of the 1950’s for the AL-
GOL 60 programming language [4].

There are many benefits to using BNF, but its use often requires additional
information to be constructed together with the parsing of the input into a syntax
tree. In layman’s terms, consider for example the sentences“The hen panicked.
The red fox attacked it.”We cannot infer what the fox attacked without reading
and understanding the first sentence. This is information that a (hypothetical) BNF
grammar for English does not convey. This complicates the understanding of the
information, since the meaning of the pronouns are context-dependent. At worst,
we have to read the whole text from the beginning, remembering subjects, objects
and actions taken up to and including the last sentence of interest to understand to
what the relative pronouns refer. Thus we also have a sense ofdirection in how we
must read the text for the information to make sense.

We see similar issues in the textual programming languages and programming
environments of today, although a lot of effort has been put into mitigating these
problems. On one hand, we have the extreme case of the C++ [170] language,
the designers of which had to keep compatibility with C [91] whilst adding object-
oriented concepts, the end result being a very complicated syntax. This in turn led
to a proposal for a different syntax for the same language [204], which has not been
adopted. A more modern example is the Java [64] programming language, where
for example JavaDoc documentation is written inside comments before methods,
and then extracted by a separate tool, and JML [36], which allows the developer
to write pre- and postconditions to methods inside comments. Instead of changing
the BNF grammar of Java, we have circumvented it and overloaded the meaning
of comment strings: are they comments, JavaDoc documentation or JML expres-
sions? On the other hand, an example of a tool which successfully incorporates the
compiler into the integrated development environment is Eclipse with its on-the-fly
Java compiler [76].

There is also a problem of representation. Although a BNF grammar describes
a syntax tree, the source code is written as a stream of characters. In other words,
there is a difference between the concrete syntax and the abstract syntax of a lan-
guage, and a grammar cannot only support describing a syntaxtree. It must also
be augmented to support parsing from a stream of data. There also exists popular
languages which do not have a pure BNF grammar. For example, anecdotally the
grammar of Perl [201] cannot be reduced to BNF, and a parser ofa Python [180]
program needs special support because the language has context-dependent white-
space. Yet another problem is that of abstraction. Because of the relatively simple
data structures used, almost the only artifact used to describe programs is source
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code. Our anecdotal experience is that relatively few programming languages are
concerned about supporting refinement [15] or Design by Contract (DbC) [116],
and any such support is added later, or not standardized. Eiffel [117] is a notori-
ous exception. Its designer Bertrand Meyer introduced the concept of DbC in the
1980’s and created a new language to support it.

1.2 Graphs

However, if we consider the sentences about the hen and the fox to be analyzed
prior to any other interpretation, so that the meaning of pronouns were substituted
by links to their actual meaning and successive words were also linked, we sud-
denly obtain a different mathematical structure: agraph consisting of words and
links, or nodesand edges. Graphs also have the equivalent of word grammars,
called graph grammars, which define which graphs are allowed.

These might not seem to be big changes, but the consequences are rather pro-
found. First, this encodes the meaning of words in a sentencemore explicitly, since
we can follow a link from a pronoun to its meaning. In fact we might not use pro-
nouns at all, but instead link directly to the meaning from the verb. Second, we
lose our sense of direction, in that there is no obvious starting point. We can check
what happened to the hen by examining the links that point to it, but we could just
as well start from the fox. Third, we can add more detail by adding new links to
nodes, thus refining our data to be more precise. In this way, we can use graphs on
multiple levels of abstraction and examine our artifacts atthe level of detail we are
interested in.

For this thesis, we claim as our underlying premise that artifacts relevant to a
software development project can be represented as graphs,and that graphs are in
fact better primitives for describing information than syntax trees. The benefit is
that graph theory has a very strong and well-understood mathematical foundation.
However, the claim is an important assumption and the contents of this thesis—and
current research on software modeling as well—rely heavilyon it.

In general, a graph consists of two kinds of elements,edgesandnodes, which
can betyped, attributed andhierarchical. The type of an element determines its
classification. All elements of the same type can be seen as having some structural
or semantic commonality. Attributes are key-value pairs ofprimitive type such as
strings which describe the element further. Allowing an element to include other
elements into itself supports hierarchical graphs. This concept is usually seen on
two different levels, as an ownership relation between elements and between types;
the latter concept is used for collecting types intopackages.

We consider that each edge connectsn elements together. Ifn > 2 the edge
is said to be ahyperedge. An edge can also bedirectedwhich splits then con-
nections into two nonempty sets, one considered thesourcecollection of elements,
and the other thetarget collection. Very often edges may only connect to nodes,
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not to other edges. Edges in more specialized or complex graphs have additional
properties which describe theownershipbetween the source node(s) and the tar-
get node(s). Edges are often grouped into specific categories depending on which
kinds of nodes they interconnect and what the semantics of the edge is. These
groups can then be consideredorderedor unorderedand themultiplicity (number)
of the edges in a group is of importance. Ifmultiple edgesbetween the same source
and target node are allowed, the group can be considered abagor multisetinstead
of aset.

The graphs that represent an artifact should conform to a grammar, i.e., a for-
mal definition of all graphs or models allowed in a given language. We say that a
graph is aninstanceof a grammar, which provides atype systemthat the graphs
must follow. The grammars can also be represented as graphs.

1.3 Modeling

We will not delve here on which ways the differences in the leap from syntax trees
to graphs are advantages and in which ways they are disadvantages. Nevertheless,
software modelingis, to us, the use of interlinked graphs and graph grammars for
purposes of creating, analyzing, transforming and maintaining software engineer-
ing artifacts over multiple levels of abstraction.

In the long run, standardization of computer technology hasgiven many ben-
efits. For example, BNF made it easier to describe the syntax of languages and
compiler-compilers like yacc [101] made it easier to createparsers. We also have
standards such as Simple Mail Transfer Protocol (SMTP) for electronic mail and
Hypertext Markup Language (HTML) for World Wide Web (WWW) pages, the
use of which has become ubiquitous. It can be assumed that if modeling were
to become widespread in software engineering, it must be standardized to some
extent.

The industry consortium setting the modeling standards is the Object Manage-
ment Group (OMG) [123]. Their modeling effort is coined under the umbrella term
Model Driven Architecture (MDA) [143]. Their suggestion isthat instead of us-
ing BNF to build grammars, we should use the Meta Object Facility (MOF) [139].
Instead of BNF grammars, we should build metamodels, and their flagship meta-
model is the Unified Modeling Language (UML) [135]. Thus the artifacts that are
produced are not text and syntax trees but models. The pairs we have mentioned
are at different metalevels and are listed in Table 1.1. An additional metalevel is
the lowest metalevel common to both text-based and modelingtechnologies: the
runtime metalevel which actually contains a program that isbeing executed.

MDA is an initiative of a more general technology called Model Driven Engi-
neering (MDE) [89]. MDE advocates the use of models to represent all the relevant
information in a software development project. Software development is then car-
ried out as a sequence of model development and transformation steps. MDE is
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Metalevel Text-Based OMG
Metalanguage BNF MOF
Languages Java, C++, Python, etc. UML
Artifact Syntax tree Models

Table 1.1: Traditional Text-Based Metalevels and Their OMGModeling Equiva-
lents

the result of the recent development of modeling languages,awareness of the need
for software development methodologies and the constant need to tackle larger and
more complex development projects.

We believe that MDE opens a window for new development methods and tools
that are not available or are too expensive to implement in other approaches such
as text-based driven development. However, MDE also presents new challenges
that should be addressed before the approach can be used in practice. We are faced
with many issues if we were to use modeling technologies. Many of these are
already known from textual programming languages. These issues must be solved
or reverified to work properly in the modeling domain so that the benefits we have
acquired in the textual domain are transferred to the modeling domain.

Information about the various issues have been acquired from the following
sources. The standards themselves, made by OMG, lay the ground for a modeling
framework around which much of the research activity also exists. Publications
about OMG standards and suggested alternatives provide novel ideas and discover
problems, either in OMG standards or in the field of software engineering. Finally,
our own experience in software engineering and programmingaids us informally
in which problems to tackle and what kinds of solutions are preferable.

In practice, the core of a modeling environment is a model manager. It consists
of two parts: a metamodeling language and a tool infrastructure. The metamodel-
ing language is a definition that lets us create metamodels and models, and a tool
interface lets us create, query, modify and serialize metamodels and models. The
research on model managers, implementing them and assessing their usability is
relevant because not only are we interested in the theoretical benefits that graphs
might provide, we are also interested in improvements and solutions bringing a
real-world benefit to the practitioners of software engineering.

Thus, the research approach followed in this thesis can be summarized as fol-
lows. In parallel, we have strived to read relevant OMG standards and scientific
publications, discover issues and develop solutions in a theoretical context as well
as in a working tool. These results have been published in scientific conferences
and journals.

We have deliberately laid an emphasis on the engineering aspect of these solu-
tions, and quite little is formally proved in the thesis. Instead we strive to validate
the research by a solution that actually runs on a computer and can be tried out in
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practice to assess how well it works and whether or not it is usable. We consider
this an important aspect of the work presented in the thesis.

However, many issues are left unaddressed by modeling technology. Creat-
ing a software system is still a fundamentally hard problem.Modeling aims to
remove some of the complexity of creating software, but the underlying inherent
complexity of designing a system meeting a set of customer requirements is still
left. Frederick P. Brooks stated this problem in 1986 [25]:

I believe the hard part of building software to be the specification, de-
sign and testing of this conceptual construct [of a softwareentity], not
the labor of representing it and testing the fidelity of the representa-
tion.

He continues with:

If this is true, building software will always be hard. Thereis inher-
ently no silver bullet.

However, it is the belief of the author of this thesis that modeling, most likely
in combination with textual programming languages, can lower the threshold for
solving theessential complexityin software by making it easier to build and main-
tain tools that reduce the amount ofaccidental complexity. Charles Connell sum-
marized this in 2001 as follows [45]:

If the study of software engineering helps us improve, by even a small
amount, our ability to create software, the entire field justifies its exis-
tence.

A succinct summary of this thesis is that we wish to give software modeling the
same benefits as traditional textual programming languages. Therefore we analyze
some modeling standards from OMG from this perspective, discussing their weak
and strong points. We suggest improvements where possible.We have strived to
validate the work by implementing the suggested solutions and improvements.

1.4 Contributions of this Thesis

The contributions of this thesis range over several OMG standards and problems
mentioned. We find several cases where the standards are underspecified. This
must be addressed for software modeling to become as mainstream as program-
ming in the textual domain.

In each of the chapters, we begin by introducing the topic andend by discussing
related work and summarizing the topic. Additionally, eachchapter begins by
listing to which papers it refers. More concretely, we provide the following.

We are interested in the expressivity of the metalanguage, i.e., what build-
ing blocks are available to language designers. We give a brief overview of the
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current state-of-the-art software modeling frameworks inChapter 2 by analyzing
the Graph eXchange Language [208], the Meta Object Facility1.4 [128], Eclipse
ECORE [28] and the Kernel Meta Meta Model [84].

Based on this experience, we describe our own modeling framework called the
Simple Metamodel Description Language (SMD) using a set-theoretic formaliza-
tion in Chapter 3. We accomplish this task with successive versions of a modeling
framework and note the constraints over the static structure of metamodels and
models of each version. We especially support subset and union properties, a novel
way to specify relationships.

In Chapter 4, we extend this theoretical framework by addingoperations. We
describe pre- and postconditions and implementations for the basic operations on
models: creating and deleting elements, and inserting an element into or removing
an element from a slot. We note that these operations preserve subsetting and
bidirectionality, but multiplicity constraints do not hold.

Although the theoretical framework from Chapters 3 and 4 is interesting, we
are also concerned about practicality. We have strived to validate our work by
implementing our ideas and solutions in the context of a working tool called Coral.
It is open source and licensed under GNU GPL version 2 [59]. Wedescribe the
core part of it in Chapter 5 by introducing an implementationof the theoretical
framework from Chapter 3.

One of the most important operations on a model is persistence, which is easiest
to accomplish by being able to serialize the model to files in the filesystem. We
assess the suitability of the XMI file format standard [129, 132, 137] with respect
to several model interchange scenarios in Chapter 6.

As stated previously, if we want modeling to be used in a professional software
engineering context, we must add similar capabilities to modeling frameworks as
currently exist in textual programming languages and integrated development envi-
ronments. An important part of that is software configuration management (SCM).
There are several issues with SCM, of which version control is one. In Chapter 7,
we show algorithms for calculating the difference between two models, how to
apply such a difference to a model producing the other, calculating the inverse of
a difference, and detecting conflicts between two developers simultaneously mod-
ifying two models. We also show a proof of concept implementation of how a
relational SQL database can be used to store models for a centralized version con-
trol server.

Finally, we show a solution to the problem of maintaining both an abstract and
a concrete syntax in Chapter 8. We describe a domain-specificweaving metamodel
between abstract models and Diagram Interchange [136] models. It can be used to
create new diagrams from existing abstract models, and to synchronize changes
which have occurred in the abstract model to the obsolete diagrams, bringing them
up-to-date. The work is interesting because OMG has recently issued a Model
View to Request for Proposals [140] that addresses this exact same issue. We have
used our idea for managing the diagrams in our graphical userinterface.
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Chapter 9 summarizes the thesis. Appendix A describes the mathematical no-
tation used in this thesis, whereas Appendix B is a summary ofChapter 3 and
describes the metamodeling language used in Coral.

The main thesis is that the current modeling standards by theObject Manage-
ment Group are lacking if we wish to provide the same level of quality from the
software development infrastructure as we have become accustomed to in the tex-
tual programming language domain.

1.5 List of Published Papers

Below is a list of papers published relevant to this thesis. We note that in the
European communities of Mathematics and Computer Science,no distinction is
usually made between the first author and the other authors. Authors are thus listed
alphabetically.

I. Marcus Alanen, Torbjörn Lundkvist, and Ivan Porres. Comparison of Mod-
eling Frameworks for Software Engineering.Nordic Journal of Computing,
12(4):321–342, 2005.

II. Marcus Alanen, Torbjörn Lundkvist, and Ivan Porres. A Mapping Language
from Models to DI Diagrams. In Oscar Nierstrasz, Jon Whittle, David Harel,
and Gianna Reggio, editors,Proceedings of the 9th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2006), vol-
ume 4199 ofLecture Notes in Computer Science, pages 454–468. Springer
Berlin / Heidelberg, October 2006.

III. Marcus Alanen, Torbjörn Lundkvist, and Ivan Porres. Reconciling Diagrams
After Executing Model Transformations. In Hisham M. Haddadet al., edi-
tors,Proceedings of the 2006 ACM Symposium on Applied Computing, pages
1267–1272, April 2006. ACM ISBN 1-59593-108-2.

IV. Marcus Alanen and Ivan Porres. Difference and Union of Models. In Perdita
Stevens, Jon Whittle, and Grady Booch, editors,UML 2003 - The Unified
Modeling Language, volume 2863 ofLecture Notes in Computer Science,
pages 2–17. Spinger-Verlag, October 2003.

V. Marcus Alanen and Ivan Porres. Coral: A Metamodel Kernel for Transfor-
mation Engines. In D. H. Akehurst, editor,Proceedings of the Second Eu-
ropean Workshop on Model Driven Architecture (MDA), number 17, pages
165–170. University of Kent, September 2004.

VI. Marcus Alanen and Ivan Porres. Model Interchange Using OMG Standards.
In Bob Werner, editor,Proceedings of the 31st Euromicro Conference on
Software Engineering and Advanced Applications, pages 450–458. IEEE
Computer Society, August 2005. ISBN 0-7695-2431-1.
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VII. Marcus Alanen and Ivan Porres. Version Control of Software Models. In
Hongji Yang, editor,Advances in UML and XML-Based Software Evolution,
chapter III. Idea Group Publishing, April 2005.

VIII. Marcus Alanen and Ivan Porres. Basic Operations Over Models Containing
Subset and Union Properties. In Oscar Nierstrasz, Jon Whittle, David Harel,
and Gianna Reggio, editors,Proceedings of the 9th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2006), vol-
ume 4199 ofLecture Notes in Computer Science, pages 469–483. Springer
Berlin / Heidelberg, October 2006.

IX. Marcus Alanen and Ivan Porres. A Metamodeling Language Supporting
Subset and Union Properties.Springer International Journal on Software
and Systems Modeling. Accepted for publication.

1.6 Validation

We conclude this introduction by giving a brief account of the Coral tool itself, and
how Coral has been used in various other projects by other people in our research
group and elsewhere.

1.6.1 Coral

The Coral model manager is a library for managing metamodelsand models. It
is written in C++ and consists of around 23 000 lines, in addition to some Python
scripts that help in building the library. It also exposes a SWIG [173] interface
for the Python language. The Python interface is used to create a graphical mod-
eling toolkit and several scripts. The development has beentest-driven, in that
new unittests have been created before or after the code has been written to ensure
that some particular functionality exists and works as intended. In our opinion,
when errors have been found, we have made a solid effort in reproducing them by
creating new test cases and then correcting the program code.

The Coral model manager contains many features that are not described in de-
tail but that we consider relevant in a modeling tool: operations, transaction mech-
anism with undo/redo, copying, deleting, pasting, transforming, and comparing,
to name a few. Several of these features can either be implemented in the model
manager or transparently by other third-party scripts.

Coral is not a replacement for any existing modeling tool buta demonstrator of
different research ideas. This has ensured that we are not tied to the idiosyncrasies
of any particular metamodeling implementation, although creating it has required
a significant effort.
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1.6.2 Applications

We will describe some applications of Coral in this section.We wish to make it
clear that these applications are not an accomplishment of the author of this thesis.
They are described here to validate that the Coral model manager can in fact be
used as a library for manipulating and maintaining models.

UML Support

The Coral model manager has been used to define several modeling languages. So
far, UML is the primary and largest modeling language supported by Coral and
will probably always be, since other domain-specific languages tend to be smaller
and simpler than UML. There are metamodels for UML versions 1.1, 1.3, 1.4, 1.5
and 2.0. Version 1.4 is the most complete one, as it includes diagrammatic support
and we have extensive experience in using it. Version 2.0 is achieved using the
UML 2.0 metamodel from the EMF project. However, the redefinitions are lacking
since Coral does not support them. Future plans include supporting the concrete
syntax of UML 2.0.

It is interesting to note that although Coral does not use theMOF metameta-
model, it is compatible with the UML metamodel with respect to the serialization
of models in XMI. Coral can import and edit models created with commercial and
open source UML tools, such as Poseidon, Rational Rose, ArgoUML and Um-
brello. Unfortunately, at the moment only some old versionsof Poseidon are com-
patible with the DI [136] diagram interchange language, andso their diagrams are
the only ones compatible with Coral. DI will be discussed in Chapter 8. Cur-
rently, Coral supports class, use case, state, collaboration and (Poseidon-specific)
deployment diagrams. The conclusion is that as long as the metametamodel is suf-
ficiently expressive compared with another metametamodel,constructs from it can
be emulated at the model layer.

There is also some basic code generation scripts that can create the class struc-
ture as Java or Python files and an initialization routine that creates objects and
calls their methods according to one collaboration diagram.

Toni Jussila et al. have created a round-trip transformation tool from UML state
machines to Promela code [85].

MICAS

MICAS [103, 102] is an architecture for describing component-based embedded
systems. Each component consists of a microcontroller which controls traffic be-
tween smaller computational units. In Figure 1.1, we can seea microcontroller
which can send commands to a sound recorder and video encoder. These are con-
nected by one high-speed data bus together, and to other components via a special
socket construct.
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Figure 1.1: Example of a MICAS Model

This kind of a conceptual design is transformed using a double-pushout graph
transformation [160] to a detailed design (not shown), fromwhich SystemC [145]
code can be generated.

SOCOS

SOCOS [12, 13] is a tool for describing software using invariant-based diagrams.
An example SOCOS model can be seen in Figure 1.2. A set of program states is
represented as a colored region, and guarded statements canbe executed to change
state. Due to the use of invariants and guarded commands, it is possible to generate
proof obligations that can be proved by tools such as Simplify [49] or PVS [144].

Miscellaneous

There are also several smaller tools built into the Coral modeler.
There is a metamodel for describing additional constraintson models. These

can then be evaluated on some specific model and a list of violations is shown.
An interesting and useful feature is constraint checking inthe background. After
a change has been done to a model, a heuristic is used to make aneducated guess
of which constraints to reevaluate on which model elements.These are then run
while the user is allowed to perform additional modifications to the model.

A metamodel and an algorithm for subgraph isomorphism matching with neg-
ative acknowledgment conditions has been implemented by Tomas Lillqvist [104].
Effectively it can be used as a query language that asks whether a certain pattern
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Sum

k: Int

const n: Int

result sum: Int

k,sum := 0,0

PRE

LOOP

k:=k+1; sum:=sum+k

[k
≠

n] [n=k]

0 ≤ n
sum = k⋅(k+1) div 2

0≤k ∧ k≤n n-k

POST

sum = n⋅(n+1) div 2

Figure 1.2: Example of a SOCOS Model

exists in a model. Transitive closures were later added by Johan Lindqvist, Tor-
björn Lundkvist and Ivan Porres [107].

Using the model query language described above, it is possible to implement
a transformation engine using the double-pushout approach, an example of which
can be seen in Figure 1.3. The figure specifies that any patternmatching the left-
hand side from a source model will be transformed into the right-hand side.

Interrupt controller

SFR BridgeMCU

MicrocontrollerSoC

Microcontroller

Interrupt controller - MCU

tmp link

MCU - SFR Bridge

SoC - Microcontroller

SFR Bridge

Interrupt controller

MicrocontrollerSoC

MCU

Microcontroller

Interrupt controller - MCU

tmp link

MCU - SFR Bridge

SoC - MCU

SoC - Interrupt controller

Figure 1.3: Example of a Transformation with MICAS Models
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Chapter 2

Software Modeling Frameworks

2.1 Introduction

In this chapter we compare four modeling frameworks which have been created
to model and interchange data about software and software development artifacts.
Our main focus is in discussing the rationale and expressivity of modeling frame-
works, although various practical considerations are alsomentioned. This chapter
can be considered as a study of the state of the art in the field of modeling frame-
works.

We consider a modeling framework to be a software component that imple-
ments a metamodeling language, with which several metamodels and models based
on those metamodels can be created. In other words, users of the framework are
not tied to produce abstract models conforming to some specific metamodel such
as UML, but can create and use multiple metamodels. This is contrary to many
tools which only support one specific metamodel, usually some specific version of
UML. We do not consider these tools to be modeling frameworks.

The frameworks which we will compare are the Graph eXchange Language
(GXL) [208, 206], the Meta Object Facility 1.4 (MOF) [128], ECORE from the
Eclipse Modeling Framework (EMF) [28] and finally the KernelMeta Meta Model
(KM3) [84] from INRIA. All these frameworks enable us to create different kinds
of metamodels or graph grammars. We will primarily analyze the graph structures
that can be created with them and how they are suitable for software engineering.

GXL is a standard exchange format for graphs by Richard C. Holt, Andy
Schürr, Susan Elliott Sim, Andreas Winter et al. [207] with the backing of several
research communities. GXL is used to describe arbitrary graphs, but additionally it
can be used to define GXL schemas which constrain the graphs sothat only specific
kinds of graphs can be built.

MOF from the Object Management Group (OMG) [123] is a framework for
describing metamodels. The metamodels can be used to createmodels. Metamod-
els can also be seen as models, with MOF as their metamodel. Serialization is
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done using the XML [188] Metadata Interchange (XMI) [129, 132] format, which
is an XML application. In this chapter, we concentrate on theolder and signif-
icantly simpler MOF version 1.4 instead of the relatively new and complex ver-
sion 2.0 [139], although we are aware that version 2.0 includes some interesting
enhancements; they will be discussed in Chapter 3.

ECORE can be seen as a practical implementation of MOF: EMF isthe mod-
eling framework used by the Eclipse platform, and uses ECOREas its underlying
metametamodel. As the platform originally started as a Javadevelopment platform,
it is natural that ECORE has concentrated on making program development and es-
pecially Java program development easier with modeling technology. ECORE is
also serialized using XMI. It must be noted that ECORE is not astandard endorsed
by any group or organization, contrary to GXL and MOF.

KM3 by Jean Bézivin et al. at INRIA can be seen as a lightweightECORE. It is
in fact implemented in the Eclipse framework, so there are several similarities. It is
also serialized using XMI, but there is an additional human-readable and -editable
textual syntax for defining new languages. KM3 is not a standard.

We have obtained the results presented here using two different approaches.
First, we have studied the documents that describe the GXL and MOF standards
and any documents available on ECORE and KM3. Second, we haveimplemented
different modeling tools (SMW [11, 152], and Coral, which will be discussed in
Chapter 5) that include, in one way or another, support for XMI, MOF, GXL and
ECORE. Unfortunately time constraints have meant that we donot have practical
experience with KM3.

The four frameworks studied can be considered as four different approaches to
define graph grammars. The main differences between each approach investigated
is the structure and constraints of the graphs representingour artifacts. Another
difference will be the mechanisms to serialize these graphsinto an XML document.
The terminology used in each approach also varies considerably.

This chapter is based on Publication I. We proceed as follows. The next section
explains more closely in what aspects of modeling frameworks we are interested.
Sections 2.3, 2.4, 2.5 and 2.6 describe GXL, MOF, EMF and KM3,respectively.
We summarize our findings in Section 2.7. We finally discuss related work in
Section 2.8 and conclude in Section 2.9.

2.2 Comparing Modeling Frameworks

In this section we explain what aspects of modeling frameworks are interesting for
our comparison. From a theoretical point of view we might consider which struc-
tures and behaviors it is possible to create with a modeling framework. From a
practical point of view we might consider which facilities are available and stan-
dardized for using the modeling framework. Since the modeling of information
in the context of software engineering is the primary scope of this thesis, we hes-
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itate to include any discussion and comparison of behavior.Although behavior,
such as defining complex operations or execution semantics on models, is crucial
for the success of modeling, the comparing of which structures can be built from
the modeling frameworks is even more important since that lays the foundation on
which we can model behavior. We need to find the basic buildingblocks necessary
to describe various information artifacts and make sure that they can be integrated
together as seamlessly as possible. Therefore our primary basis of comparison is
structure, whereas practical aspects are our secondary basis; behavior is not rele-
vant in the scope of our study.

2.2.1 Structure

Modeling frameworks proposemodelsconsisting of interconnectedelementsas our
primary means to model information. Elements are typed, andfor practical pur-
poses carry aglobally unique identifierbut contain no more information than that.
Thus, almost all expressive power of models is in therelationsbetween elements.
An n-ary relation consists ofn association ends, where each association end links
to an element, and the association ends together link the elements together. The
association ends are, depending on their type, given certain characteristics such as
ownership and ordering.

The fundamental question is which characteristics are necessary or useful for
creating new languages. Also, one quickly realizes that notall combinations of
characteristics in a modeling framework are valid. For example, ownership be-
tween elements is usually required to be acyclic, but often association ends have a
boolean flag denoting ownership; this scheme makes it possible—but not valid—to
create a relation where both association ends denote ownership. To overcome this
problem, wellformedness rules (WFR) are often used to specify clearly which lan-
guages and models are valid and which are not. However, the fewer WFRs there
are while still retaining sound languages and models, the easier it is to check meta-
models for validity. We call two characteristicsorthogonalif using either one does
not affect the use of the other one, i.e., they are independent. A modeling frame-
work can be considered better the more orthogonal its characteristics are, while
still providing the necessary expressive power.

Although we could thus measure the orthogonality of the characteristics of a
framework, we cannot easily measure the utility or necessity of them. This can
only be acquired by analyzing in what contexts the characteristics can be used.

2.2.2 Practical Aspects

We will also informally cover some practical aspects of the modeling frameworks
in question. It is not immediately clear what kinds of features should be present in
the context of software engineering, and the features we have chosen is based on
the experience we have drawn from using and implementing modeling frameworks.
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Our current data retainment and exchange infrastructure isheavily based on
files and streams of data. A de facto file is one stream of octets(eight bits), al-
though there are filesystems which operate on files with multiple streams and with
a different bytesize than eight bits. If models are to be stored inside files, and we
may potentially have several files constituting all the documents, there must be
some way toidentify elementsinside files for interdocument linking of elements.
Furthermore it must be possible toidentify the typesthat various elements corre-
spond to.

Visualization of modelsis an important issue. The Unified Modeling Language
was a hallmark in software engineering for the simple fact that it tried to unify
the different visualizations of common diagrams such as class diagrams or state
machines. Now that we want to create several interlinked models using multiple
languages, visualization is perhaps even more important, and a standardized vi-
able solution for describing which diagrams are legal and how to construct them is
necessary.

Model transformationsare one of the core ideas in MDA, and can be accom-
plished in several ways. Naturally, we can have an Application Programming Inter-
face (API) as some kind of library that can be interfaced by various programming
languages. But if modeling really is a better approach to software engineering than
textual programming languages, we might expect transformations to be specified
as models as well. Research has shown that there are several kinds of model trans-
formation languages describing the transformation specifications as models. These
can be interpreted by using the standard transformation language of the model-
ing framework, if one exists. We assess the maturity of each framework-specific
standard transformation language.

Realizing that not all artifacts are yet described as models, we might, from
a pragmatic point of view, wish to extend the modeling framework somehow to
take other nonmodel artifacts into account.Extensibilitycan mean several things,
such as tagging of extra information to elements in the modeling framework and
in the serialization format. We explore what facilities forextensibility the different
modeling frameworks provide.

Finally, an idea of how the modeling framework or associatedtools are licensed
and supported is of interest if we wish to consider their use in modeling.

2.3 Graph Exchange Language

GXL 1.0 [75] was created by merging properties from several graph formats such
as the GRAph eXchange format (GraX) [51] and the graph formatof the PRO-
GRES graph rewriting system [164]. The goal of GXL is to be a universal descrip-
tion format for graphs. It is partitioned into two separate documents, the graph
model which can describe any graph, and the metaschema whichis used to de-
scribe the type system used in a graph.
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2.3.1 Structure

The GXL graph model arrangement can be seen in Figure 2.1. A GXL Node sup-
ports directly the properties defined previously for nodes in a graph. GXL supports
ownership hierarchies by inclusion of other subgraphs via GraphElement.contains,
which contain other nodes and edges. GXL supports binary edges as a special Edge
element, and hyperedges with a Relation element. All elements can be attributed
via Attribute elements, and all elements support an optional type via the hasType
connection to the Type element. The type is defined in a GXLschema.
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Typed graphs
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Figure 2.1: The GXL Graph Model

The GXL graph model establishes few restrictions on what graphs can be cre-
ated. An example of this can be seen in its support for edges linking edges or
nodes, not only nodes. It is therefore a very general solution. This can also be
seen in its history. A small drawback of such a general solution is that in order to
establish more constrained graphs it must be possible to define these constraints in
some language. These languages are called schemas in GXL. Ifwe also want tools
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to support generic manipulation of information all of theselanguages must adhere
to some common metalanguage, which is called the GXLmetaschema. The beauty
of GXL is that it describes the schemas and the metaschema as GXL documents.
This means that one serialization format is sufficient. A GXLinformation process-
ing tool only needs the GXL DTD to load and save GXL graphs, schemas and the
metaschema. This arrangement can be seen in Figure 2.2. Elements in the schemas
can be used as types. However, this also means that there is anextra layer of in-
direction and understanding that tools must perceive, not just the XML document
itself. Even though the tool can load arbitrary GXL documents, it must understand
the relationship between metaschemas, schemas and vanillaGXL graphs. Failure
to accomplish this renders graph modifications infeasible.

Figure 2.2: Overview of GXL and its Artifacts

The graph part of the metaschema is depicted in Figure 2.3. Instances of it are
the GXL schemas, which serve as the structural constraints on actual GXL graphs.
Conceptually, the metaschema should be compared with MOF and ECORE as they
all define the restrictions on which languages can be built.

The primary artifacts in GXL are the various subclasses of the GraphElement-
Class and their interconnections. An inheritance hierarchy of the GraphElement-
Class metaelement withmultiple inheritancecan be created with the GraphEle-
mentClass.isA relation. Here, we can note an interesting detail: according to the
GXL FAQ, “in a valid GXL schema, an EgdeClass cannot inherit from a NodeClass
(and vice versa, the same applies to RelationClass)”, i.e.,the isA relation is really
covariantly specialized in RelationClass, NodeClass and EdgeClass, even though
the figure does not convey this information. We do not mean to indicate that this
is a relevant flaw in GXL, but rather that it is very difficult toformalize metameta-
models/metaschemas without relying on implicit assumptions from readers or de-
scriptions in natural language. Even though we could add covariant specialization
of relations to the metaschema, there would still be other cases where arbitrary
constraints are necessary. This emphasizes the need for a formal language for ar-
bitrary constraints and is worth remembering regardless ofthe framework used.
Covariance is explained more thoroughly in Chapter 3.
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Figure 2.3: Part of the GXL Metaschema

A GraphElementClass can also be declaredabstractwith the isabstract prop-
erty. Subgraphs can be created with the hasAsComponentGraph property. These
are identified by a name, and have a lower and uppermultiplicity constraintwhich
tell how many subgraphs of the given name must exist. The order of the subgraphs
can also be specified as important with the isordered property.

Edges can be of three types: compositions, aggregations (shared compositions)
and “plain associations”. Edges also have lower and upper multiplicity constraints
and can be directed or undirected; both the source and targetcollection can be
ordered or unordered, meaning that order is considered important and must be
preserved by any input/output routines and must be taken into account by query
or transformation algorithms. The edges represent an ownership hierarchy at the
graph level, but a hierarchy of graphs can also be created instantiating GraphClass
in the schema level and Graph on the graph level.

However, the metaschema cannot describe more complicated constraints. This
has the benefit that representing and validating graphs remains fairly simple, al-
though practical considerations might dictate a need for arbitrary constraints. For
example, in the definition of UML, additional constraints have been used.

It is unclear why GXL has a separate concept for hierarchicalgraphs. The
relation between a graph and the subgraphs it contains couldbe a Relation or Edge
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element with a special type. We noticed that there are some small discrepancies
between the pictures presented on the website and the DTD itself, e.g., Attribute in
Figure 2.1 is called attr in the DTD. This is, again, a minor flaw, but it emphasizes
the need for clear documentation of the language.

2.3.2 Practical Aspects

Element Identification

For practical purposes of serialization, elements in a graph may possess anidentity.
In GXL this identity is described with the AttributedElement.id property and is a
string unique to the XML document. This is correctly marked as an XML identi-
fier in the GXL DTD, although in the long run the xml:id recommendation [198]
standardized by the World Wide Web Consortium might be adopted instead. The
filename (or URI) of the document and the identifier serve as a globally unique
identifier. However, this limits the mobility of GXL elements to their document,
as there might be a need to change the identifier of an element to avoid identifier
collision if the element is moved to another document. A moreopaque globally
unique identifier is necessary.

Schema Identification

In order for tools to understand a GXL graph more thoroughly,it is important
to be able to identify what schema is being used, i.e., what types are available
to GXL elements. The schemas are usually defined in a separateGXL file and
shared among all the GXL graphs of that type. Linking to a schema is done using
the native facilities of XML, i.e., XLinks [189] and XPaths [197]. They make it
possible to uniquely identify a document, for example on theWWW. This allows
a GXL graph to explicitly reference a specific schema, and additionally it allows
tools to download the schema from the location specified by the URI. This means
that generic tools can be extended on-the-fly with new schemas, as long as they use
the semantics of the same metaschema.

Visual Representation

GXL itself does not define a mechanism for presenting a graph visually on-screen,
although this can be remedied in two ways. The simple solution is to define at-
tributes that describe the position, size, form et cetera ofa GXL GraphElement.
The more complicated solution is to define a whole new schema for describing the
visual representation, thereby decoupling the abstract syntax (the graph) from the
concrete syntax (the presentation). This idea is similar towhat is already being
done by the OMG in the form of the Diagram Interchange (DI) [136] standard and
has the benefit that the representation can be split into several possibly different di-

20



agrams, each showing a subset of the abstract graph. The drawback is the necessity
of synchronization of changes in either the abstract or concrete syntax to the other.

Transformation

GXL graphs can be transformed with the Graph TransformationeXchange Lan-
guage (GTXL) [174], although at this moment a revision of GTXL seems to be
under way by Leen Lambers [98]. Unfortunately, we do not haveexperience with
GTXL and cannot comment on its viability. On the other hand, graph transfor-
mations have been extensively researched and we believe it should be possible to
adapt any transformation technology using graphs from one underlying schema to
another with few problems.

Extensibility

GXL allows arbitrary embedding of extra XML information into any GXL element
via user-defined extensions to the normative DTD at predefined entry points, e.g., a
Node can have children XML elements as defined by thenode-extensionXML el-
ement. This has the disadvantage that tools must be ready to process the non-GXL
information somehow, either by simply ignoring (and retaining) it or removing it.

Additionally GXL allows adding URIs as values to Attributes(not shown in
Figure 2.1), which should be considered a viable way to link to some external
resource, e.g., a Microsoft Word document.

Current Support and Licensing

Current support of GXL seems to be very good. There are several researchers and
companies listed as supporters or contributors on the GXL website [207]. Sev-
eral tools include export or import capabilities of GXL, such as the round-trip
UML software engineering tool Fujaba [121] or the graph transformation toolset
GROOVE [155].

Overall, there is activity in the GXL community, and a new version 1.1 is being
planned. GXL is licensed without any fees or restrictions.

2.4 Meta Object Facility

MOF is one of the current flagships of the OMG industry consortium. It is used
to define UML, which is one of the most well-known ways to describe software
artifacts at the moment. MOF takes a slightly different approach to modeling than
GXL. In MOF, the developer must first define a language (a metamodel) that can
be used in creating the actual model (i.e., the actual information). One of the
possible metamodels that can be defined in MOF is MOF itself, thereby closing
the metacircularity.
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2.4.1 Structure

The relevant part of the MOF metametamodel can be seen in Figure 2.4. We have
restricted ourselves to the parts that mainly describe the structure of metamodels.
As a simple starting point for comparing MOF models to a graph, we may say that
the nodes in a graph are mainly Class metaelements, and that edges are represented
by Association metaelements.
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Figure 2.4: Part of the MOF Metametamodel

It can be understood that a metaelement can establish ownership by two means.
One, a metaelement can have Attribute metaelements via the containedElement
property. These parts have an obligatory type via TypedElement.type and a Multi-
plicityType that states the minimum and maximum number of, as well as possible
ordering and uniqueness of, elements. Two, a metamodel can have Association
metaelements which each contain exactly two AssociationEnds. These, almost
similar to the Attribute, establish a link between two metaelements, but each Asso-
ciationEnd can be explicitly set navigable (which supportsdirected graphs) and can
support three different kinds of ownership, along with the usual support of Multi-
plicityType. However, an Association can be and usually is bidirectional, meaning
that if a source element is connected to some target element via their slots, that
target element is also connected to the source element.
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The three different kinds of ownership are the same as in GXL:composite,
aggregate and plain. However, using aggregation (shared composition) is discour-
aged and it has been removed in MOF 2.0. The reason might be that if one ignores
the plain associations, the resulting ownership structurein the form of composite
connections forms a tree, which has been found to be a very useful structure and
which directly maps to XMI. Aggregation, resulting in an ownership structure of
directed acyclic graphs, is not as common, although it is certainly useful.

To summarize, an ownership hierarchy of metaelements is established via the
Namespace.containedElement property, and as in GXL, it canbe used to split meta-
models into packages. An ownership hierarchy of elements isestablished by As-
sociations with one AssociationEnd marked as composite.

Reference metaelements are owned by Classes and are used to track which
AssociationEnds are connected to them. This seems a bit redundant, as the Classes
could reference some of the AssociationEnds directly, and in fact MOF 2.0 has
done exactly this.

Since MOF employs a two-step process whereby the user first creates a meta-
model, which then allows them to create models, the resulting usage and serializa-
tion of those models in XMI is different from GXL. This is depicted in Figure 2.5
and shows that tools require metamodel-specific XMI importers/exporters. One se-
rialization format is XMI(MOF) for MOF metamodels, and every such metamodel
defines its own serialization format. In other words, to be able to load a UML 1.4
model from an XMI document, the tools must know how to acquirethe UML 1.4
metamodel definition first, otherwise they are unable to loadthe model correctly.
This is a big contrast with GXL-compliant tools, which may beable to load the
graph with an unknown schema by ignoring the type system.

Figure 2.5: Overview of MOF and its Artifacts

Constraint support in MOF can be assessed as excellent due tothe Object Con-
straint Language (OCL) [127, 131], an addition to MOF. OCL enables a metamodel
developer to add arbitrary constraints to the users’ models, thus enforcing very so-
phisticated constraints between elements. A tool can then check these constraints
and report nonwellformedness. OCL is used extensively in defining constraints for
metamodels.
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Curiously, MOF is the only framework where the collection ofsuperclasses is
ordered. This aids in determining a monotonic linearization of superclasses [50],
which is useful at least in method resolution in object-oriented programming lan-
guages.

2.4.2 Practical Aspects

Element Identification

Element identification in MOF is handled by XMI with its xmi.id and xmi.uuid
XML attributes. They have been properly defined in XMI and theUUID spec-
ification [31] and we will discuss this extensively in Chapter 6. To summarize,
elements can be identified in an XML document with both xmi.idand xmi.uuid,
enabling rigid interfile element identification. On the other hand, current support
for XMI import and export in tools is sometimes lacking [109]. We will revisit
XMI more thoroughly in Chapter 6.

Language Identification

Similarly to GXL, it is important to detect which metamodel is being used in a
model. XMI allows using several metamodels in the same document with XML
namespace [185] declaration strings describing which languages are being used
where. This usage is nicely aligned with advances in XML by the World Wide
Web Consortium. A major issue is that “there is no requirement or expectation by
the XML Namespace specification that the logical URI be resolved or dereferenced
during processing of XML documents” (page 1-16 of [132]). This implies that a
tool cannot in general be able to even load a model without knowing the meta-
model in advance, because it cannot rely on acquiring the metamodel from the URI.
For example, the UML 1.4 namespace ishttp://schema.omg.org/spec/UML/1.4, but
there is no document at that address.

Visual Representation

MOF does not define a visual representation for models. The basic premise is
that there is a strong separation of abstract models containing the semantic data
and the diagram which merely display the artifacts on-screen. Thus, the Diagram
Interchange (DI) standard [136] has been developed. DI has been successfully used
in the Poseidon tool [61] and our Coral tool. This will be discussed in Chapter 8
and the conclusion is that DI is a viable if somewhat complicated standard that can
be used to represent diagram models.

The standard thus far missing is a way to describe the mappingbetween ab-
stract and concrete models. We will revisit this issue in Chapter 8.
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Transformation

It is conceivable that several different transformation technologies are used for
model transformations, although the Query-View-Transform (QVT) [133] is the
primary standard pushed by the OMG to enable the transformation of MOF-based
models. As the standard itself is relatively new, we feel it is too early to discuss its
benefits or drawbacks.

Other transformation technologies have been described by several authors, for
example UMLX [205], YATL [146], MT [177], MOLA [86] and VIATRA [184].

Extensibility

MOF metamodels and models cannot as such be extended, but both metaelements
and elements can be tagged with arbitrary information usingthe XMI.Extension
XML node. A whole XMI file can be tagged with the XMI.Extensions XML node.

Current Support and Licensing

Current support for MOF 1.4 is low. The metametamodel itselfhas some nonintu-
itive quirks and is quite big and complex, which presumably has lead the Eclipse
team to create EMF and ECORE. Additionally, MOF 2.0 has become even more
complex than its predecessor. The benefits are not clear since MOF lacks experi-
ence reports detailing which parts of the standard works andwhich do not.

Ironically, the low support for MOF will perhaps not matter,as the XMI seri-
alization is not dependent on MOF per se, but on the metamodels created in MOF.
That is, it is possible to create a tool that is not based on MOFbut is still compatible
with the UML 1.4 XMI serialization format.

MOF is released under a royalty-free license.

2.5 ECORE

EMF is the modeling component of the Eclipse project. The heart of EMF is the
ECORE metametamodel, which is in many ways similar to MOF, with the same
ideas about metamodels and models. It uses XMI as its serialization format as well,
so several comments regarding MOF are also valid for ECORE.

2.5.1 Structure

A part of the ECORE metametamodel can be seen in Figure 2.6. Comparing with
the general graph concept, we can say that nodes are represented by the EClass
and EAttribute classes, and edges by the EReference class. Containment is indi-
cated by the EReference.containment boolean value, so ECORE does not support
shared composition, only composition and associations. EAttribute elements are
implicitly contained by an EClass element.
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ECORE uses a lot of directed associations, probably becauseof its roots as the
underlying information framework in the context of a Java programming environ-
ment. There is also a lot of derived and thus redundant information available, e.g.,
eAllSupertypes is a collection of the flattened superclass hierarchy. There is also a
lot of similarities with MOF, such as EPackages being used for metamodel nesting.
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Figure 2.6: Part of the ECORE Metametamodel

ECORE also has two different ways to present relationships between types.
Relationships between EClass elements must be described using EReference ele-
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ments, whereas relationships between EDatatype elements must be described using
EAttribute elements. The benefits are not clear, as EReference elements (without
an eOpposite) to EDatatypes could be used instead. To us, an EAttribute should be
equivalent to a unidirectional composite EReference to a primitive type. Neither
is there a concept for describing the relation, akin to the MOF Association class;
instead, two EReference elements simply link to each other.

Similar to the two previous frameworks, multiplicities, ordering, directedness
and bagness are supported. A concise summary of ECORE is thatit is, loosely
speaking, a practical implementation of MOF. The metametamodel is more clear
and developed by demand rather than the admittedly more complicated MOF stan-
dard. Due to the similarities, technologies developed for MOF should be very easy
to transform into ECORE technologies. This is also evident from the choice of us-
ing XMI as the serialization format of ECORE. The artifacts needed and produced
by ECORE are identical with MOF, as can be seen by Figure 2.7. This has the ben-
efit that UML models from ECORE are indistinguishable from UML models from
MOF, but the drawback that the UML language definition is serialized differently.

Figure 2.7: Overview of ECORE and its Artifacts

2.5.2 Practical Aspects

Element Identification

Element identification is handled by XMI in exactly the same way as in MOF. At
the moment, the Eclipse implementation does not use UUIDs atall, and instead
uses several concepts from the XLink and XPath standards forinter- and intrafile
referencing of elements. Our understanding of future development is that UUIDs
will be supported by EMF.

Additionally, ECORE specifies that if an EClass owns an EAttribute which
has its iD attribute set to true, an EClass instance of that type can be uniquely
identified by the value of that attribute. In our experience,these kinds of identifiers
are not required for modeling purposes, since serialization approaches such as XMI
reference elements directly via their UUID, xmi.id or xml:id. However, they can
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provide a bridge from other textual references to model elements and could be
considered useful as a migration path from text to models.

Language Identification

Due to the XMI serialization, language identification is handled exactly the same
way as by MOF.

Visual Representation

There is no formal visual representation of ECORE metamodels and models. As
we understand it, the EMF development team strive toward supporting the DI stan-
dard as endorsed by OMG.

Transformation

Due to the rising popularity of the Eclipse platform, there are several transforma-
tion technologies for ECORE models. Among them are the AtlasTransformation
Language (ATL) [21] and the Model Transformation Framework(MTF) [161]. The
latter is a QVT prototype.

Extensibility

In addition to the extensibility supported by XMI, every ECORE element can have
additional annotations. An EAnnotation element (not shownin Figure 2.6) can
contain arbitrary ECORE elements.

Current Support and Licensing

EMF itself is released under a royalty-free license. Since the primary implemen-
tation of ECORE is EMF, and ECORE is maintained and updated bythe EMF
developers we assume ECORE is also released under the same license.

We have implemented the ECORE metametamodel in our Coral tool as a sepa-
rate metamodel. This has enabled us to successfully load ECORE metamodels and
convert them to our internal metamodel format.

Although there are few ECORE implementations, the Eclipse platform has
such a big momentum and corporate backup by IBM that it is likely to be one
of if not the most successful metametamodel in the foreseeable future. It has also
lead to better XMI compatibility between tools [109], as many of them are based
on the EMF platform.

A possible issue with ECORE is that it is still evolving alongwith the EMF
effort. This has its benefits and drawbacks, as new ideas can be incorporated into
ECORE, but it is at the same time a moving target and there is a risk of incompatible
implementations.
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2.6 Kernel Meta Meta Model

The Kernel Meta Meta Model (KM3) is developed by Jean Bézivinet al. [84] at
INRIA, a French national institution researching computerscience, among other
fields. The primary implementation of KM3 is implemented on top of EMF on the
Eclipse platform. KM3 also has a Prolog definition.

We note that there is a repository, called the Atlantic Zoo, of over 240 KM3
metamodels available [175].

2.6.1 Structure

Figure 2.8 shows the whole KM3 metamodeling language. Thereis an immediate
resemblance between KM3 and ECORE. Comparing with ECORE, wesee that
KM3 does not support operations. However, it has support forsubsets and derived
unions. EStructuralFeature from ECORE is more expressive than the equivalent
construct, StructuralFeature, from KM3. Primarily, KM3 does not support default
values, default value literals, and the “derived” property. The other differences
here are due to the fact that KM3 does not support operations.Also, there is no
definition for a URI namespace in Metamodel, which is surprising.
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Figure 2.8: The KM3 Metamodel

Also KM3 supports the same aggregations as ECORE, and has twodifferent
constructs for relationships, Attribute and Reference. The redundant derived slots
of ECORE do not exist in KM3. It is interesting to note that most one-to-many-
to-one relationships are marked as ordered, even though keeping the order of, for
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example, ModelElements in a Package is not important. A benefit is that it is
possible to retain the order for aesthetic purposes, as users can expect elements to
retain their relative order across a load-save cycles. The ordering criteria might be
related to the additional textual syntax definition.

The overview of KM3 and its artifacts as shown in Figure 2.9 isidentical to
its corresponding figures in ECORE and MOF, because of the similarity between
them and KM3.

Figure 2.9: Overview of KM3 and its Artifacts

2.6.2 Practical Aspects

Element Identification

Technically KM3 supports the same mechanisms to identify elements as MOF and
ECORE, since it uses XMI. However, the syntax of the human-readable KM3 lan-
guage examples in the Atlantic Zoo do not use UUIDs. Without knowing further,
we assume that names should be used for identification and that UUID is not as
much used as it could.

Language Identification

Due to the XMI serialization, language identification is handled exactly the same
way as by MOF and ECORE. We note that KM3 does not have support for saving
the URI namespace of a language. This bases language identification on only the
name of the language.

Visual Representation

There is no formal visual representation of KM3 metamodels and models. It can
be noted that there is a textual representation of KM3 metamodels.
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Transformation

The primary KM3 implementation is implemented on top of EMF and can thus
use whatever transformation languages are available via it. Especially, the Atlas
Transformation Language (ATL) [21] has been created by the people behind KM3.

Extensibility

There is no extensibility support in KM3, except for the extension support provided
by XMI.

Current Support and Licensing

The research group at INRIA is participating very actively in the modeling com-
munity. However, there is to our knowledge only one implementation of KM3. The
implementation is freely available under Eclipse, and KM3 itself is documented in
academic publications [84].

2.7 Common Features and Differences

In this section, we summarize the finding of the four previoussections on GXL,
MOF, ECORE and KM3. We discuss the common features and issuesof the frame-
works.

Comparing Sections 2.3, 2.4, 2.5 and 2.6, we can discern several common
issues and differences between GXL, MOF, ECORE and KM3. It must be empha-
sized that MOF has the backing of an industry consortium which has enabled MOF
and related technologies to evolve at a fast pace. Examples of these technologies
are OCL, DI and QVT, not to mention the flagship metamodel UML,although
there is perhaps an ever-increasing fear of “design-by-committee”, where a stan-
dard reflects few actual needs of its users. In contrast to this, GXL is more of a
community-driven effort. ECORE, being part of the IBM-supported Eclipse envi-
ronment, is taking the middle road between these two extremes. KM3 is the newest
contender, and has already spurred the Kermeta [90] framework.

There are several similar features in the frameworks. We stress that it is not
evident if a lack of a feature is unfavorable in itself, or if the presence of a feature
is beneficial, although in most cases our features are beneficial in that they simplify
the usage or increase the expressiveness of the framework. The similar or identical
features are: abstract types, metamodel / schema packages,multiple inheritance,
transformation language and typed elements.

On the metamodel/schema level, all frameworks have their positive and nega-
tive points. MOF has quite a complicated way to describe metaelement intercon-
nections using References and AssociationEnds. It even hasa second way to estab-
lish them, in the form of Attributes. Similarly, ECORE also has EReferences and
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EAttributes, and KM3 has Reference and Attribute. The iD property in EAttribute
seems superfluous from a modeling point of view, but could be useful for referenc-
ing elements from the textual domain. GXL contains a crude tagging mechanism
in the form of (GXL) Attributes with key-value string pairs.We assume that this
concept is included due to the roots of GXL being in describing graphs, which of-
ten use attributes for tagging nodes with arbitrary data. Its benefits are not clear for
information modeling, especially since a composite edge toa string value would
mostly serve the same purpose. This is somewhat similar to the two similar con-
cepts in both MOF and ECORE.

Extensibility is accomplished in slightly different ways in all the frameworks
and they work a bit differently: the XMI.Extension of MOF works only on the
serialization level, EAnnotations from ECORE work only on the modeling level,
and GXL suggests creating a modified DTD. This is a bit strange, given that XML
itself employs a standard way to tag elements with extra data, simply by adding
new XML elements from a different XML namespace. However, XMI prevents
this. Extensibility on the model level and in the serialization format is a two-
edged sword. While they certainly have benefits in that they allow a mechanism
for arbitrary “tagging” of information, the drawback is that everybody must agree
that similar tags are treated similarly, and nonsimilar tags should not be mixed up.

The choice of having a separate (GXL) Graph metaelement for nesting is un-
usual for modeling information, and the benefit is not very clear. A GraphElement
could transitively own other GraphElements, without apparent loss of expressivity.
This would simplify the GXL graph model and metaschema sinceit reduces the
number of concepts that must be defined. In fact, since the metaschema already
defines ownership via composition edges, GXL has a redundantsecond construct
to express ownership of a subgraph.

Support for aggregation in MOF has been removed in newer versions, which
means that there are some information systems that are awkward to describe in
MOF. Indeed we have ourselves developed metamodels where aggregation would
have been beneficial. To our knowledge, neither ECORE nor KM3has ever had
any support for aggregation. Support for aggregation in GXLamong multiple files
is not without problems, though. For example, it is not clearwhich file contains
the shared subtree of nodes. On the other hand, several programming language
runtimes have discarded the absolute notion of ownership and made the program
data into effectively ownership-free object graphs by the use of garbage collec-
tors. Enforcing ownership via associations, aggregationsor composition might not
be beneficial in the long run. A reason for this is that elementownership using
the three alternatives is not complete, with [73] stating that there exists at least
as many as 4096 different kinds of ownership when taking overlapping lifetimes,
transitivity, shareability, separability et cetera into account. This implies that the
frameworks under comparison omit the modeling of the exact semantics, and rely
on the users of the individual metamodels or graph schemas toagree on which
kinds of ownerships are meant.
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GXL has support for hypergraphs whereas the others are restricted to binary
edges. We have not found this to be much of an issue when creating metamodels,
but it is worth researching further. For example, Steven Kelly from the MetaCase
company has stated several times that “the lack of support for n-ary relationships
is an astonishing oversight [in MOF/EMF]” [88].

GXL does not have any support for attaching operations to classes at all. This
stems naturally from the fact that GXL aims to describe graphs and not objects.
MOF and ECORE both support operations well, but KM3 does not.In the con-
text of modeling information, we do not consider this shortcoming to be of much
importance. On the other hand, a clear benefit for GXL is the ability to link to
external resources using URIs. This can be used to bridge thegap between GXL
documents and documents not yet maintained as GXL documents.

From a practical point of view, GXL does have an interesting idea with un-
typed elements, whereas the others are more stringent sincethey require that the
metamodel is already developed. Nodes and edges without types provide the user
the most flexible environment, but with the caveat that type checking might be nec-
essary at a later stage. Similar advantages for dynamic typing have been found in
scripting languages such as Python [180] and Perl [201].

GXL has only one serialization format, the GXL DTD, which serializes graphs,
schemas and metaschemas. This has its advantages, but does require yet one GXL-
specific validator, for example the GXL Validator [68] from the GUPRO project
website [67], for validating the schema-graph relationship. XMI defines a serial-
ization format for each metamodel. On one hand there is no extra level of indirec-
tion involved, but on the other hand there are multiple serialization formats. So, we
do agree with Winter et al. that the “XMI/MOF approach requires different types
of documents for representing schema and instance graphs” (p. 8 of [208]) and
that this indeed is a drawback, but only because finding the definition of a previ-
ously unknown metamodel is impossible, as has been described in Section 2.4. If
the metamodel is known, generic XMI reader and writer routines can be created:
for example Coral supports reading XMI 1.x and 2.0 as well as writing XMI 1.2
and 2.0 for any known metamodel in a bit over 6 000 lines of C++ code.

Furthermore, Winter et al. claim that “XMI/MOF offers a general, but very ver-
bose format for exchanging UML class diagrams as XML streams(p. 8 of [208]).”
Our opinion is that the format is verbose due to the named slots, which GXL allows
but does not require. We find the concept itself to be an advantage. For example, a
class can own a set of attributes and a set of operations in twodifferent slots. The
serialization of these elements are cleanly separated intotheir own XML nodes.
Also, navigation via named slots simplifies the manipulation and query of models.

GXL is itself very verbose when using typed nodes, as the filename of a schema
must be repeated every time a type is used, assuming the schema is in a different
file. Our anecdotal experiences suggest that due to this, GXLfiles can be several
times larger than their XMI 2.0 equivalents. The choice of GXL or XMI as the
underlying serialization format is not necessarily an exclusive one. There are pro-
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Structural Features GXL MOF ECORE KM3
Edges between edges X - - -
Extensibility in Models / Graphs X - X -
Extensibility in Serialization Format - X X X
Globally Unique Identifiers - X X X
Hyperedges X - - -
Operations - X X -
Ordered Superclasses - X - -
Shared Composition X - - -
Subsets - - - X
Untyped Elements X - - -
Practical Features GXL MOF ECORE KM3
Constraint Language - X (X) (X)
Diagram Support - X (X) (X)
Language Identification and Acquisition X - - -
URIs for External Resources X - - -

Table 2.1: Framework Differences

grams that can transform, at least partially, data from one format to the other. For
example GUPRO hosts the XIG [209] tool, and Coral can output GXL files suitable
for visualization using Graphviz [65].

Where MOF (or, perhaps, OMG technologies) outperforms GXL is in its han-
dling of constraints using OCL. OCL has become well-established in the modeling
community and allows additional arbitrary wellformednessconstraints to be added
to metamodels and models. Naturally, this does not prevent aconstraint language
to be added to GXL, but the point here is pragmatic: OCL existscurrently and is
in wide use, whereas we do not know of a similar effort based onGXL.

We present the main conceptual differences in the frameworks in Table 2.1,
split into a structural and a practical part. In the table, anX means that the feature
is supported, and a hyphen means that the feature is not supported. Since ECORE
and KM3 are so close to MOF, they could easily adopt technologies such as OCL
or DI, even though these are technically part of the OMG standards; these are
marked with (X). All frameworks lack a single concept for defining the relationship
between metaelements, for some reason always opting for twoseparate concepts
(usually designatedreferencesandattributes). Only KM3 provides some of the
new concepts from MOF 2.0, namely subsets and derived unions, although their
semantics is not explained further. None of the frameworks provide redefinitions
and package merges.

The largest differences between the frameworks are found inserialization, di-
agram support, constraint handling and support for hyperedges and edges between
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edges. A concise summary is that GXL has the least restrictions of the four frame-
works and is perhaps most suitable for rapidly changing requirements or (research)
experimentations. However, users must be ready to describeconstraints in some
query language or natural language to obtain the same staticrigor as can be accom-
plished with MOF and OCL constraints.

2.8 Related and Future Work on Modeling Frameworks

Modeling and metamodeling platforms are becoming more of a commodity all
the time. A highlevel view of the current situation is presented by Harald Kühn
and Marion Murzek in [97]. Interoperability between metamodeling platforms is
becoming more important. We would thus want to find all the necessary concepts
for modeling information. Failure to support a concept directly in a framework
or by means of a lossless transformation to supported concepts means that the
transformation of data to that framework is not possible.

Similar views and ideas on general-purpose metametamodelscan be found
in [7] and [182]. In contrast with the metacircular definition, the work of Thomas
Baar avoids the metacircularity with a set-theoretical framework [10] to describe
the abstract syntax of object-oriented / graph languages.

Advances in metametamodels are few and occur seldom, but it is clear that
they do occur. In particular, the new concepts of subsets andderived unions from
MOF 2.0 are interesting and novel ideas and will be explored more thoroughly in
Chapter 3.

Even though it is not necessary to create a metametametamodel, one emerges
as a side-effect from a generic modeling platform, as can be seen in Figure 2.10.
A sufficiently expressive metametamodel can be used to create metamodels from
the other metametamodels, and transformation technology implies that all of this
ought to be transparent to the end user. In the figure, the different UML meta-
models are equivalent in expressivity, although the metamodels might be used and
manipulated with different programming interfaces since they are defined by dif-
ferent metametamodels. The generic metametamodel might even be one of the
existing metametamodels.

This opinion is not shared by all. Jean Bézivin, Guillaume Hillairet, Frédéric
Jouault, Ivan Kurtev and William Piers state that the idea ofa common metameta-
model for all artifacts is naïve and that one technical spacewill never prevail on the
other ones [22]. This is true insofar as modeling frameworkscontinue to evolve. In
other words, until modeling is a relatively mature technology, new improvements
and ideas will be presented and evaluated, and there is no clear best metameta-
model. Bézivin et al. further propose a solution of bridgingmetamodels and models
from different technical spaces by means of several mappings. It is noteworthy that
they use KM3 as a pivot for transforming between Microsoft DSL Tools, Ecore and
MOF 1.4. This is understandable, since creating separate transformations from/to
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Figure 2.10: The Generic Metametamodel

each metametamodel requires(N−1)N different transformations, whereN is the
number of metamodels, whereas using a pivot reduces this to linear complexity,
2N. Due to differences between the metametamodels, some information is lost in
the transformation processes. Nevertheless, in our opinion KM3 tries to play the
role of a common metametamodel.

There are, naturally, more modeling frameworks than the ones presented. Ex-
amples of such are the MOF 2.0 framework, the XMF/XCore system from Xac-
tium [43], Kermeta [90], the Open Modeling Framework (OMF) [172] and the
SMILE/MATER project [122]. We think that a long-term goal ofmetamodeling is
to extract the fundamentals in modeling information.

2.9 Conclusions

In this chapter, we have investigated some common modeling frameworks: their
intent, differences in expressing structure and some practical aspects of their re-
spective supportive technologies.

There are some fundamental questions that are unanswered inthis chapter. The
first is which concepts are the most useful ones in a metamodeling language, and
how these concepts interact with each other. Experience in software engineering
and other practices aids tremendously in evaluating a concept. However, modeling
brings us new ideas hitherto unused or badly emulated in mainstream program-
ming languages. An example of such a concept is bidirectionality of properties
and slots. This does not exist as a primitive in programming languages, but is
often emulated by a sequence of operations. Furthermore, modeling to us means
information modeling, whereas programs have execution semantics.

The second is whether or not we want all data to be manipulateduniformly
by the common constructs provided by the metamodeling language. The current
APIs of modeling frameworks are fairly lowlevel, with primitives such as creation
of new elements and linking elements via specific slots. However, most large-scale
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modeling languages come with several rules for wellformed models, and using
primitive operations undermines the validity of these models. A better approach
could be to create specific operations for each metamodel to modify models. In this
way, models could be built from a series of operations while always being valid, or
at least satisfying most wellformed rules. An example of this approach to designing
models is being done by Dubravka Ilic, Elena Troubitsyna, Linas Laibinis and
Sari Leppänen in [77], which describes a UML 2.0 profile called Lyra. To ensure
model consistency, all operations on models are done by formalizing them in the
B Method [1], which can formally prove that operations preserve the invariants of
a structure.

The drawback from this approach is its rigidity. It is impossible to create partial
models that only describe some of the information. In some contexts, only a partial
model is necessary instead of a complete model. It is also nontrivial to figure out
which sequence of operations must be applied to create some specific model.

In conclusion, the research community is still in the stagesof identifying the
necessary concepts in the metametamodel, and when to enforce wellformedness.
From a formal point of view, more wellformedness checking, e.g., in the form
of static strong typing and proven transformations, shouldlead to better results.
However, in practice the trend in programming language design seems to be toward
a more loose approach with dynamic typing.
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Chapter 3

A Structure of Metamodels and
Models: the Simple Metamodel
Description Language

3.1 Introduction

In this chapter, we present a set-theoretic formalization of a metamodeling lan-
guage that supports what we consider to be the core structural features of MOF 2.0
and the UML 2.0 Infrastructure, the two relatively new OMG standards. Our for-
malization supports multiple class specialization and thenew subset properties.

The OMG software and system modeling standards are based on the concept of
metamodeling. Most of the concepts found in the modeling frameworks described
in Chapter 2 are strikingly similar since they are all based to some extent on the
object-oriented (OO) software paradigm. In these approaches, a metamodel is de-
fined as a collection of classes and properties while a model is an instance of such
classes and properties.

However, two new metamodeling languages have recently emerged with the
advent of the UML 2.0 Superstructure [135]: MOF 2.0 [139] andthe UML 2.0 In-
frastructure [142]. These two metamodeling languages share most of the features
of previous languages such as MOF 1.4, but they also introduce several new con-
cepts not found in traditional modeling and OO programming languages, mainly:
subsetproperties,strict union properties and propertyredefinitions. These new
concepts can be used to define a new modeling language as an extension of an ex-
isting one. This is exploited in the definition of UML 2.0 itself, where the language
is defined as a relatively small core that is extended and specialized into different
metamodeling structures.

Unfortunately, very little is told in the standards [139, 142] about the actual
meaning of these new features. This is a critical omission since these concepts are
heavily used in the definition of UML 2.0. A precise definitionof the UML 2.0
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metamodel is necessary in order to ensure interoperabilityof software modeling
tools, such as model editors, model transformation and codegeneration tools.

The work presented in this chapter can also be applied to the definition of new
domain-specific modeling languages (DSML) [58]. Although this chapter presents
a theoretical framework, we believe it represents an important contribution that
can influence the practical implementation of model repositories and transforma-
tion tools for UML 2.0 and other languages. We call this metamodeling language
the Simple Metamodel Description Language (SMD). The implementation of it in
Coral will be explained in Chapter 5.

This chapter is based on Publication IX. The research presented in this chap-
ter is based on the study of the relevant OMG documents and research papers on
related topics and also on the experiences obtained by developing an experimental
modeling tool. Also, the experimental modeling tool Coral has been extended to
implement and validate the ideas presented in this chapter and it is available as
open source.

We proceed as follows: Section 3.2 describes informally thenew language
extension mechanism and presents the main motivations for our work. Section 3.3
presents the most basic formalism that will be developed andextended during this
chapter. Section 3.4 introduces property characteristicssuch as multiplicity and
composition, while Sections 3.5 and 3.6 deal with class and property specialization,
respectively. Alternative approaches to property specialization are described in
Section 3.7. Finally, Section 3.8 contains related work while Section 3.9 contains
some concluding remarks.

3.2 Extension Mechanisms in MOF 2.0 and the UML 2.0
Infrastructure

MOF 2.0 and the UML 2.0 Infrastructure propose mainly four extension mech-
anisms: class specializations, property subsets and unions, property redefinitions
and package merges. Class specialization is identical to class inheritance in OO
languages. A specialized class inherits all the propertiesof its base classes, and
it can define new properties. Subset and union properties aretwo mechanisms to
specialize a property defined in a base class. Property redefinition allows us to
arbitrarily replace a property with another one. Finally, various package merges al-
low us to combine different documents describing different(parts of) metamodels
into one. These mechanisms allow a metamodel to be developedand extended by
different parties. They can also be useful to define large metamodels, such as the
UML 2.0 Superstructure, even when the definition is providedby one party.

We will describe class specialization, property subsetting and package merges
in the remainder of this section. We also explain the Liskov Substitutability prin-
ciple. We will leave property redefinitions to Section 3.7.
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3.2.1 Class and Property Specialization

Figure 3.1 contains an example of the use of subset properties in a domain-specific
modeling language. We abstract electronic components and their interconnecting
wires in a digital electronic circuit into three classes, Wire, Pin and Component. An
example specialization of Component is Transistor, which represents a transistor
connecting to three pins: base, collector and emitter. While a generic component
may have an arbitrary number of pins, a transistor may only have three specific
pins.

T r a n s i s t o r1 b a s e{ s u b s e t s p i n s }1 c o l l e c t o r{ s u b s e t s p i n s }P i n 1 e m i t t e r{ s u b s e t s p i n s }
C o m p o n e n tW i r e P i n C o m p o n e n t0 . . * p i n s{ s t r i c t u n i o n }1 . . * w i r e 0 . . * p i n s{ s t r i c t u n i o n }

W i r e 1 . . * w i r e
Figure 3.1: (Top) Base Language for Electronic Circuits (Bottom) Example Ex-
tension of the Digital Circuit Metamodel by Specializationof Component and its
Properties into Transistor

This example also shows that subsetting does not partition the subsetted prop-
erty with respect to classes; several subset relations can be built between the same
two classes. We should also note that subset properties can be useful even when
they are not used in combination with class specialization.That is, we can define
a property and its subsets in the same class. We should note that the pins property
needs to be a strict union. Otherwise we could connect a transistor to other pins
that are not the base, collector or emitter.

3.2.2 Criteria for Language Extensions

Most of the artifacts that compose a model-driven development method such as
model transformations, model queries and code generators depend on a specific
modeling language, such as the UML 2 Superstructure. Since it is now possible
to extend and modify metamodels we should consider what is the impact of these
extensions in model transformations, model queries and code generators.
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Our main criteria for language extensions is that artifactsdefined for the origi-
nal language should still be usable in any of its extensions.This concept is similar
to the Liskov Substitutability [108] used in program type systems. This is not a sur-
prise since a modeling language can be seen as a type for a model transformation
program. As a consequence, a language extension should not be able to arbitrarily
redefine or remove classes or properties from a language since existing artifacts
may depend on them.

As an example of Liskov Substitutability, consider Figure 3.1 and a transforma-
tion that takes a Component as its input parameter, producing as output the various
pins that the Component has. If we were to pass in a subclass ofComponent, for
example Transistor, as a parameter to this transformation,we would still expect it
to work as intended. But if the Transistor class could somehow remove the pins
property between itself and Pin, our transformation would fail. In that hypothetical
case, a Transistor would not be Liskov-substitutable for a Component.

Specialization is a very strict and limiting concept as it implies a tight coupling
between classes. Therefore Liskov Substitutability is also equally limiting. How-
ever, it does provide a clear mathematical foundation whichmakes reasoning about
programs and models easier.

3.2.3 Package Merge

We consider that package merges, albeit important, only influence the division of
a metamodel into different documents. They do not influence the relationship be-
tween model elements. A metamodel using package merges can always be trans-
formed into a metamodel without package merges. Thereby itssemantics are de-
fined by this transformation operation and as such do not provide a new relation-
ship construct to metamodel developers. This has already been noted by Jim Steel
and Jean-Marc Jézéquel in [166]. This does not mean that package merging is not
useful, just that it is not necessary to discuss it within thescope of this chapter.

Therefore, we do not study in this chapter the concept of package merges and
we focus on the semantics of subset properties since we consider that these are the
main novelties in MOF 2.0 and the core mechanism for languageextension.

3.3 Metamodels and Models

In this section, we discuss a basic metamodeling language based on classes and
properties. This basic language does not include any extension mechanism, but
it will serve to explain the most basic concepts that appear in MOF and UML in
detail. We will denote our basic language with a subscriptB in the names of various
structures and functions. In the following sections we willadd generalizations
(class specializations) and property subsets as successive features in languagesG
andS, respectively. We proceed in this fashion in order to simplify the exposition
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Figure 3.2: A UML Class Diagram Representing a Partial Metamodel for State-
charts

of these concepts in this chapter. Also, we want to show how each new concept
in a metamodeling language interacts with the existing ones, sometimes in rather
unexpected ways.

3.3.1 Metamodel Formalization

Metamodels are composed of classes and properties. A class represents a kind of
abstraction that can appear in a model such as a state or a transition in a State-
chart [69], while a property represents a basic relationship between these abstrac-
tions such as the fact that each transition has a source stateand a target state. Mod-
els, on the other hand, are described using elements and slots, where each element
conforms to one single class and each slot conforms to one single property.

UML and MOF use the UML class diagram notation to describe modeling
languages visually. Figure 3.2 shows a part of a metamodel for a Statechart that
we will use as our running example. This metamodel contains two classes: State
and Transition, and two properties, outgoing and incoming.These two properties
belong to State and have Transition as their type. A propertymay also contain
several annotations that we call property characteristics. In the figure, we can see
the multiplicity characteristic of the properties as the label “0..*”.

Formally, we define all modeling languages in our basic metamodeling frame-
work as a tupleMLB

def= (C, P, owner, type, characteristics) whereC is a finite
set of classes,P is a finite set of properties andC∩ P = /0. In our example,
the set of classes isC = {State,Transition}, while the set of properties isP =
{ incoming,outgoing}.

Each property has a class as an owner, and this fact is indicated by the function
owner :P→C. The function properties :C→P (P) gives the properties that belong
to a specific class such that(∀c∈C · properties(c) def= { p · c= owner(p)}). In our
running example, we have owner(incoming) = State and owner(outgoing) = State,
while the properties of the classes are properties(State) = { incoming, outgoing}
and properties(Transition) = /0. Finally, the function type :P → C denotes the
type of elements in the property. In our example, both properties have the class
Transition as their type, therefore type(incoming) = type(outgoing) = Transition.
We define the characteristics of a property in detail in Section 3.4.

We can now define a specific metamodelL as any nonempty finite subset of the
set of classesC, i.e.,L ⊆C. From a theoretical point of view, the concept of “one
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Figure 3.3: Metamodel from Figure 3.2 as a Graph of Classes and Properties

metamodel” is not too interesting. We consider the concept of “all metamodels”,
i.e.,C, to be more important and interesting.

We can representMLB as a labeled directed graphG = (V,A, l). The set of
verticesV is the union of the set of classes and properties,V =C∪P. The set of arcs
Acontains two arcs for each property, one from the owner of a property to it and one
from the property to its type:A = {(owner(p), p) · p∈ P}∪{(p, type(p)) · p∈
P}. The property characteristics are represented as labelsl over the nodes of the
graph.

An example of this representation of Figure 3.2 is shown in Figure 3.3. To
facilitate the comprehension of the graph, we represent classes as rectangles and
properties as octagons. Although this notation is less compact than UML class dia-
grams, it maps better to the structures defined byMLB. Additionally, we explicitly
refrain from using UML in order to make it clear that UML is nota prerequisite
for the metamodeling language described in this chapter.

Understanding modeling languages and models as graphs brings many bene-
fits to our approach since graph theory [160] provides a solidfoundation to many
modeling approaches and model transformation languages asdescribed for exam-
ple in [17, 184, 8].

3.3.2 Model Formalization

We define the infinite set of all models asM = {M · M def= (E, class, S, property,
slotowner, elements)}. M comprises all the models in a system at some specific
time. E is a finite set of elements,S is a finite set of slots andE∩S= /0. Each
slot has one element as its owner as represented by the function slotowner :S→ E.
For convenience, we can also define the slots of a given element as the function
slots :E → P (S), where(∀e∈ E · slots(e) def= {s · e= slotowner(s)}).

A slot may refer to a number of elements as its contents. This is represented
by the function elements. The value of this function is either a set of elements if
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Figure 3.4: Example Statechart Represented in the UML Notation

the order of elements does not matter, and thus elements :S→ P (E); otherwise,
the function returns a sequence of elements and we say elements :S→ (E,≺). We
discuss the ordered characteristic in more detail in Section 3.4.2. We define the
size of a slot to be the number of elements referenced by that slot: (∀s∈ S · #s def=
#elements(s) ).

Figure 3.4 shows an example model based on a Statechart language. In the
example, the set of elements isE = {S1, S2, S3, T1, T2} and S= { in1, out1,
in2, out2, in3, out3}. Also, slotowner= { in1 → S1, in2 → S2, in3 → S3,out1→
S1,out2→ S2,out3→ S3}. Since the two properties are not ordered, we have
elements(out1) = {T1,T2}, elements(out2) = elements(out3) = elements(in1) =
/0, elements(in2) = {T1} and elements(in3) = {T2}.

Models are usually depicted using their own concrete syntax. For example, in
a UML Statechart, states are represented as rounded rectangles and transitions as
arcs. In this chapter, we use a generic syntax where all models are represent in an
uniform way, independent of their modeling language.

We can now define a modelB simply as any nonempty finite subset of the set
of elementsE, i.e.,B⊆ E. Analogously to metamodels, the concept of one model
is not interesting from a theoretical perspective, and so wewould rather work with
all elementsE.

Formally, we can represent models as a labeled directed graph G = (V,A, l).
The set of verticesV is the union of the set of elements and slots,V = E∪S. The
set of arcsA contains an arc for each slot and for each element reference in a slot,
A = {(slotowner(s),s) · s∈ S}∪{(s,e) · s∈ S∧e∈ elements(s)}}.

We depict each model element as rounded rectangle and each slot as a circle.
Figure 3.5 shows the example model as such a graph.

3.3.3 Model Conformance to a Modeling Language

Each element in a model conforms to a class in a language and each slot conforms
to a property. This conformance is represented by the functions class :E → C
and property :S→ P in a model. Together these functions link a model to its
metamodel, thereby establishing what types the elements and slots have. They also
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Figure 3.5: Example Statechart Model Represented Using theGeneric Model No-
tation

imply that a certain set of constraints must be satisfied for any valid model, e.g.,
what slots can be owned by an element, the type of the elementsin a slot and the
number of elements in a slot.

A model conformsto its metamodel if it satisfies all these constraints. There
is no reason to separate a model from its metamodel by disregarding the class and
property functions. Such a model would merely be a graph of nodes connected
by directed edges and, in most cases, would not contain enough information to be
understood. Conformance is important because algorithms can then be sure that a
certain structure holds.

We can now also define if a given modelB is an instance of the modeling
language defined by a metamodelL. This question can be asked in two slightly
different ways: isB a direct instance ofL or of an extension ofL? B is a direct
instance ofL and not of an extension of it ifB is a valid model and the type of each
element inB is in L. Thus,B is a direct instance ofL if (∀e∈ B · type(e) ∈ L) and
all model constraints for elements inB hold.

On the other hand,B is an instance of eitherL or an extension of it ifB is a
valid model and the type of each element inB is a subclass of a class inL. Thus,B
conforms toL if (∀e∈ B · (∃c∈ L · type(e) ⊆c c)) and all model constraints for
elements inB hold.

The generalization of classes and the opposite of a propertycan be defined
across different metamodels. Also, for an elemente and a propertyp, e.p denotes
the slot that is owned byeand that conforms top:

e.p def= s, such that property(s) = p∧slotowner(s) = e
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3.3.4 Model Constraints

We note that constraints over a structure can be expressed using set theory. This
has the benefits that set theory is formal and we do not have to declare a separate
constraint language such as OCL, but the drawback is that theconstraint language
is not a metamodel within the framework.

The effective properties of a class is the set of all properties that can be used
in an element conforming to that class. The constraints we write use the generic
function name effectiveProperties :C → P (P). Depending on the metamodeling
language used (MLB, MLG orMLS, for basic, with generalizations and with subsets,
respectively), we can substitute different definitions in its stead. We do similarly
for other functions as well, but will henceforth omit this explanation.

In a basic modeling language that does not support class specialization, the
effective properties are simply the properties defined directly by the class. In Sec-
tion 3.5, we will review this definition to take into account properties defined in
superclasses.

effectivePropertiesB(c) = properties(c), ∀c∈C

The function effectivePropertiesB is specific to the metamodeling language
MLB. The effective properties of a class introduce two constraints over the ele-
ments conforming to that class. First, an element cannot have slots that do not
conform to the effective properties of its class.

Model Constraint 1 Valid slots in element (1):(∀e∈ E · (∀s∈ slots(e) ·
(property(s)) ∈ effectiveProperties(class(e))))

Second, an element must have exactly one slot for each effective property in its
class:

Model Constraint 2 Valid slots in element (2):(∀e∈ E ·
(∀p∈ effectiveProperties(class(e)) · (∃!s∈ slots(e) · property(s) = p)))

The function effectiveType :P → P (C) denotes the effective types of a prop-
erty, i.e., the set of all allowed types for that property. Inthe basic language, the
effective types of a property is defined explicitly by the type characteristic.

effectiveTypeB(p) = { type(p)}, ∀p∈ P

The set of effective types of a property constrains the classof the elements that
can be in a slot conforming to the property:

Model Constraint 3 Class of elements in a slot:(∀s∈ S · (∀e∈ elements(s) ·
class(e) ∈ effectiveType(property(s))))

Figure 3.6 shows the example metamodel for Statecharts together with a part
of the example model. We have represented the class and property functions with
dashed lines. Since models and metamodels are finite, we can easily check that the
previous constraints hold for the example.
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Figure 3.6: Conformance of a Model to its Modeling Language

3.3.5 Metamodel Constraints

Since a metamodel defines a set of constraints over a model, itcan be possible to
define a metamodel in such a way that there is no nontrivial model that conforms
to it. Similarly, it may be possible to define a class so that there is no element that
conforms to it, or a property so that there is no nontrivial slot that conforms to it.
In these cases, we say that the metamodel, class or property is void.

Void metamodels or metamodels with void classes or properties are not useful
in software development. For this reason, we will define metamodel constraints in
our metamodeling approach. A metamodel constraint is a predicate over a meta-
model that should hold in order to exclude void definitions.

3.3.6 Primitive Values

Hitherto, the models that can be described can only consist of elements intercon-
nected via slots. It is often the case that we need to use primitive data values such
as strings, integers, floating-point values and enumeration values. However, we
consider the expressiveness of a framework to be in the various property character-
istics; primitive values are fairly uninteresting. Nevertheless, we will give a brief
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description of how they can be added to the framework, but we will not consider
them any further in this chapter.

We can add various classes that represent primitive data types toC. For exam-
ple, we can say thatZ ∈C andS ∈C denote the class of integers and the class of
strings, respectively. Then, we add a partial function fromelements to data values,
primitivevalue :E 9 Z∪ S. It maps an element to its primitive value if said ele-
ment is of the correct class. For example, an elemente such that class(e) = S can
be mapped to a string value, and thus primitivevalue(e) returns a string. Modifying
primitive values is done by modifying the function primitivevalue.

Thus, our primitive values are also elements and can technically contain slots
as well, referencing other elements. While this is not common in for example
programming languages, we feel this arrangement to be conceptually easier as it
avoids further constraints.

3.3.7 Universal Identifiers

Some algorithms are made easier by assuming that elements can be identified by
some kind of a unique identifier. Such an identifier for each model element allows
us to differentiate between two instances of the same element (e.g., two different
versions of it) and two elements that are similar. This distinction is fundamental
to implement model management operations like comparing two models, merging
two models into one or duplicating (parts of) a model. Uniqueidentifiers can also
be used to create traceability links between the artifacts in two different models,
that may be expressed in two different languages. A solutionto this has already
been invented: Universally Unique Identifiers (UUIDs) [31].

UUID strings are assumed to be globally unique. They are longand too com-
plex to be generated by hand but this is not an issue for the user since modeling
tools should take care of this aspect. They are based on a 128-bit pseudorandom
number generated from the physical address of the network interface in the host
running the tool and the tenths of microseconds elapsed since the Gregorian re-
form (October 15th, 1582). The uniqueness of the UUID strings is not questioned.
We note that an element retains its UUID across its evolution. UUID strings ful-
fill all the requirements to uniquely identify elements for model management and
transformation traceability. An example of an identifier inthe DCE namespace [31]
is “DCE:2fac1234-31f8-11b4-a222-08002b34c003”.

We can formalize the concept of UUIDs by denoting the infiniteset of UUIDs
with U. We can declare a function uuid :E → U that maps an element to its
unique identifier. The implementation of this function depends on the modeling
environment in question. We will not try to define it further.We assume that any
model element created in our framework will also belong to the domain of the uuid
function and can be mapped to a UUID string.

From a practical point of view, it is worth noticing that the trend in other areas
needing similar strings (e.g., Microsoft DCOM technology,where they are called
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GUID) has been that generation is completely pseudorandom with no relation to
the host, for security reasons.

3.3.8 Naming

Practical considerations dictate we be able to refer to classes and properties by
a string which identifies them. Therefore we introduce a new function name :
C∪P→ S.

We will not discuss naming conventions and restrictions or requirements of
uniqueness of names in this chapter as they are dependent on the serialization tech-
nology and possibly even the programming interface that we use. As such, naming
is not a part of the theoretical framework, although it is needed when we wish
to implement a modeling framework in practice. Since our theoretical framework
does not have the concept of one specific metamodel, there is also no possibility to
give a name to it.

3.4 Property Characteristics

In the previous section we have studied how properties can beused to relate model
elements together. In this section, we discuss how different property characteris-
tics such as multiplicity or composition can be used to constrain even further how
elements can be related via slots. We define the characteristics of a property as a
tuple:

characteristicsB
def= (lower,upper,ordered,composite,

opposite)

This tuple describes additional features of properties using several functions:

• lower :P→Z
0+\∞ represents the lower multiplicity constraint of a property

(0, 1, 2, . . . , excluding infinity).

• upper :P→ Z
+ represents the upper multiplicity constraint (1, 2, . . . ,∞).

• composite :P→ B is true if a property denotes composition.

• ordered :P → B is true if a property denotes an ordered collection of ele-
ments.

• opposite :P → P∪ {Ω} denotes the optional opposite of a property in a
relation between two classes.

The rest of this section explains the semantics of these functions and how they
affect several constraints on models.
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3.4.1 Multiplicity

One of the simpler but more important concepts is the multiplicity constraint. The
lower and upper characteristics constrain the number of elements that can be refer-
enced by a slot:

Model Constraint 4 Valid number of elements in a slot:(∀s∈ S ·
lower(property(s)) ≤ #s ≤ upper(property(s)))

Since the number of elements in a slot is bounded by the multiplicity character-
istics of its property, the lower value should be less than the upper value. Otherwise,
the multiplicity constraint cannot be satisfied by any slot:

Metamodel Constraint 1 Property Multiplicity: (∀p∈P · lower(p)≤ upper(p))

Multiplicities are used extensively in the UML and MOF language. These
languages support the concepts of multiplicity ranges, andthe valid number of
elements in a slot is a subset ofZ

0+. In practice, UML and MOF describe a multi-
plicity constraint as a setI of intervals(l ,u) such that the valid multiplicity subset
is equal to{x · (∃(l ,u) ∈ I · l ≤ x≤ u)}.

3.4.2 Ordering

The ordering characteristic is used to model ordered collections of elements. An
example of the usage of an ordered property is the parametersin a method of a
class. Another more interesting example is shown in Figure 3.7. The top of the
figure shows a metamodel for a modeling language for the portsof an active event-
based component. A port accepts a number of events and this ismodeled using an
ordered property. The bottom of the figure shows an example model where ports
P1andP2accept eventsE1andE2. However, portP1considers that eventE1has
priority with respect to eventE2, while P2gives priority to eventE2.

This example remarks the fact that the ordering characteristic does not define
an ordering of elements but an ordering of the elements referenced by one partic-
ular slot. We should also note that the ordering as such does not introduce new
constraints in a model, although ordering should be taken into consideration in all
the model constraints.

3.4.3 Opposite Property and Bidirectionality

We have seen that a property can be used to define a UML or MOF 2 relation that is
navigable by only one of its participants. However, we can also define bidirectional
relations, by defining the opposite of a property.

Formally, the characteristic opposite :P → P∪{Ω} is a function that yields
the opposite of a property, or the special constantΩ, which means that no opposite
is defined. At the metamodel layer, we require that a propertyhas itself as the
opposite property of its opposite (iff it exists):
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Figure 3.7: (Top) A Metamodel Using the Ordered Characteristic (Bottom) A
Model Conforming to this Metamodel

Metamodel Constraint 2 Opposite properties:(∀p∈P · opposite(p) 6= Ω⇒ p=
opposite(opposite(p))∧opposite(p) 6= p)

Figure 3.8 depicts a reviewed metamodel for a statechart. Inthe example, each
property has another property as its opposite: source and outgoing are opposites
and form a relation, as well as target and incoming. In a model, this relation means
that when a Stateshas a Transitiont in its outgoing slot, the Transitiont will have
States in its source slot. In Figure 3.9, stateS1refers to transitionsT1 andT2 in
its outgoing slot, where the transitions refer toS1in their source slot.

At the model layer, we need to reflect that the contents of two opposite slots
always refer to each other. This is captured in the followingconstraint for opposite
slots:

Model Constraint 5 Bidirectionality of slots:(∀s∈ S · opposite(property(s)) 6=
Ω ⇒ (∀e′ ∈ elements(s) · (∃!s′ ∈ S · slotowner(s′) = e′∧opposite(property(s′)) =
property(s)∧slotowner(s) ∈ elements(s′))))

Our interpretation of relations is also shared by other authors, such as Génova,
Ruiz del Castillo and Lloréns in [60]. However, according tosome researchers,
bidirectionality of two properties does not imply a bidirectionality requirement at
the model layer. That is, model constraint 5 does not need to hold.

To see why this belief does not lead to a useful concept in a modeling language,
consider Figure 3.10. It is a valid model according to the statemachine metamodel
presented earlier in Figure 3.8, except for the fact that model constraint 5 does not
hold. There are two cases where the constraint does not hold.First, the outgoing
connection betweenS2andT1 does not have a source connection fromT1 to S2.
Second, the target connection fromT1 to S1similarly does not have an incoming
connection fromS1to T1.

52



S t a t e T r a n s i t i o nt a r g e t 1 i n c o m i n g 0 . . *o u t g o i n g 0 . . *s o u r c e 1 S t a t e
o u t g o i n g0 . . *s o u r c e1 T r a n s i t i o ni n c o m i n g0 . . *t a r g e t1

t y p et y p e
t y p et y p e p r o p e r t i e s

p r o p e r t i e s p r o p e r t i e s
p r o p e r t i e s

o p p o s i t e o p p o s i t e
o p p o s i t eo p p o s i t e

Figure 3.8: (Left) Metamodel for a Statechart Containing Navigable Relations
(Right) The Same Metamodel as a Graph of Classes and Properties
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and Slots, Conforming to the Metamodel from Figure 3.8
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Figure 3.10: A Statemachine Model without Bidirectional Slots

We firmly believe that this example is nonsensical. If for some reason this is the
intended interpretation of a modeling language, the metamodel should reflect it, as
shown in Figure 3.11. In this new metamodel, the properties source and outgoing
are not opposites, and therefore, there is no constraint between their slots.
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Figure 3.11: (Left) Metamodel for a Statechart with Unidirectional Relations
(Right) The Same Metamodel as a Graph of Classes and Properties

3.4.4 Composition

Another important property characteristic is composition. Composition is used to
denote hierarchy and ownership in a model. It is a very important concept that aids
us in organizing models as a collection of smaller parts. A composition property
imposes a rather restrictive constraint over its slots: an element can only be ref-
erenced by one composition slot at a time and it should not be possible to create
cyclic compositions.
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Figure 3.12 shows an example of the use of composition in a metamodel. The
top of the figure contains a simplified metamodel, in both UML and our notation,
for a class modeling language containing a package and a class. A package may
contain classes and each class may contain inner classes. However, a class should
not be directly owned by both a package and by a class simultaneously, and neither
can an inner class directly or transitively be an inner classof itself. The bottom
of the figure contains a model that presents these two cases: classC1 is owned by
packageP1and classC3simultaneously and there is a composition cycle between
classesC1, C2 andC3. Therefore the model at the bottom of the figure does not
conform to the metamodel at the top of the figure.P a c k a g ec o n t e n t s0 . . *

C l a s s i n n e rC l a s s e sc o m p o s i t e0 . . *p r o p e r t i e st y p eC 3 :C l a s s : i n n e rC l a s s e s C 1 :C l a s ss l o t s s l o t se l e m e n t s
C 2 :C l a s s: i n n e rC l a s s e ss l o t se l e m e n t s : i n n e rC l a s s e se l e m e n t s

P 1 :P a c k a g e: c o n e n t s s l o t se l e m e n t s
C l a s si n n e r C l a s s e s0 . . *

P a c k a g ec o n n t e n t sc o m p o s i t e0 . . *p r o p e r t i e st y p e

Figure 3.12: Example of Composition

Formally, we say that an elementx is the owner orparentof an elemente if e
is referenced by a composite slotsof x. We define the function parent :E → P (E)
to return either the empty set if no parent for an element exists, or a set consisting
of all the parent elements. Thus, the size of this set should be at most one.

parent(e) def= {x · x∈ E∧ (∃s∈ S · slotowner(s) = x∧composite(property(s))
∧e∈ elements(s))}
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We will also make use of the function parentchain :E → (E,≺), which returns
a sequence of parent elements:

parentchain(e) def= if #parent(e) = 0 then[ ]
else[ p∈ parent(e) ]⊳parentchain(p∈ parent(e))

Thus, an element cannot be owned by the same element via two different com-
posite slots:

Model Constraint 6 Only in one composite slot:(∀e∈ E · ¬(∃s1,s2 ·
composite(property(s1))∧composite(property(s2))∧e∈ elements(s1)∧e∈
elements(s2))

As stated previously, an element cannot be the owner of itself, directly or tran-
sitively:

Model Constraint 7 Composition is acyclic:(∀e∈ E · e 6∈ parentchain(e))

This also implies that a relation at the metamodel level cannot be made from
two composite properties, since such slots would be void.

Metamodel Constraint 3 Both properties in a relation cannot be composite:(∀p
∈ P · composite(p)∧opposite(p) 6= Ω ⇒¬composite(opposite(p)))

Defining metamodels using both composition and multiplicity range character-
istics has an interesting consequence. It is possible to declare a chain of several
classes such that it is mandatory for an instance of a class toown at least one in-
stance of the next class, et cetera, until a cycle is created.Thereby all classes would
be void, since only an infinite chain of elements could conform to them. We can
prohibit this with the following constraint:

Metamodel Constraint 4 No infinite chain of compositions:(∀c1, . . . ,cn,cn+1 ∈
C · (∀i · 1≤ i ≤ n⇒ (∃p∈ effectiveProperties(ci) · composite(p)∧owner(p) =
ci ∧ci+1 = type(p)∧ lower(p) ≥ 1)) ⇒ c1 6= cn+1), ∀n≥ 1

Composition is used extensively in the definition of UML and MOF and it
also appears in the GXL. Its semantics in the context of UML has been studied
by Barbier et al. in [16, 73]. Composition brings many advantages when building
tools that need to traverse or transform models. If we only take slots of a composite
property and elements into account, the resulting graph forms a tree (or a forest).
This allows us to use efficient traversal algorithms. Also, this arrangement maps
well to XMI, since an XML document has a tree structure.

In this chapter, we use the concept ofstrict compositionor “black diamonds”
as described in [73]. Another alternative interpretation of composition isshared
composition. In this case, the composition links should be acyclic, but an element
can have more than one parent. To achieve this interpretation of a modeling lan-
guage, model constraint 6 should be removed. The resulting graph forms a directed
acyclic graph.

56



3.4.5 Attributes

We should note that our metamodeling language does not have any special provi-
sion to model attributes such as in MOF or EMF. This is due to the fact that we can
model an attribute by using a combination of the property characteristics that we
have already defined. In our approach, we consider an attribute definition equiva-
lent to a property that is a composition and does not have an opposite. This reduces
the number of defined concepts at the metamodeling layer and thus simplifies the
structure of metamodels and models. We have validated this idea in our modeling
tool and found no problems.

3.5 Class Specialization

In this section we introduce the concept of class specialization as a mechanism to
organize and simplify large metamodels. Class specialization is the same concept
as class inheritance in OO programming languages. A class can be a specialization
of one or more base classes and as a consequence it inherits all the properties of
its base classes. Without class specialization, the definition of UML would require
many additional properties and model transformations would be more complex
and cumbersome to create and maintain. Therefore, class specialization is used
extensively in the definition of UML and MOF.

As an example, the UML 1.x metamodels use class specialization to model
state hierarchy. Figure 3.13 shows a simplified Statechart model where we special-
ize the State class into CompositeState. In UML, class specialization is represented
diagrammatically as an edge between the base class and the specialized class with
a triangular arrow head pointing to the base class. In our example, a Composite-
State inherits all the properties of a normal state but adds an additional property to
model substates. A substate can be a State or a CompositeState.

We should also note that a metamodeling language should support multiple in-
heritance since it is used extensively in MOF. This has already been noticed by
for example Anneke Kleppe [92]. In order to formalize class specializations we
will need to extend our definition of metamodels by adding theconcept of gener-
alizations of a class. A modeling language supporting classspecialization is then
defined by the tuple:

MLG = (C,generalizations,P,owner, type,characteristics)

We define the generalizations of a class with the function generalizations :C→
P (C). We denote by⊆c the extended generalization between classes that is defined
as the reflexive transitive closure of the generalization relation: ⊆c

def= {(c,d) · d ∈
generalizations(c)}∗. Intuitively, given two different classesc andd, we say thatc
is a subclass ofd iff c⊆c d. We also note that characteristicsG = characteristicsB,
since no new property characteristics need to be added.
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S t a t e T r a n s i t i o ni n c o m i n g 0 . . *o u t g o i n g 0 . . *
C o m p o s i t eS t a t e

s u b S t a t e s 0 . . *

S t a t e o u t g o i n g0 . . * T r a n s i t i o ni n c o m i n g0 . . *
t y p e
t y p e

p r o p e r t i e s
g e n e r a l i z a t i o n sC o m p o s i t eS t a t e

p r o p e r t i e ss u b S t a t e s0 . . *p r o p e r t i e s
t y p e

Figure 3.13: A Metamodel Using Class Specialization

We should now review the concept of effective properties of aclass for a meta-
modeling language supporting class specialization. The effective properties of a
class shall include all the properties owned directly by that class and all the effec-
tive properties of its superclasses:

effectivePropertiesG(c)=
S

{properties(d) · c⊆c d}

We should also review what the effective types of a property in a language
supporting class specialization are. In this language, slots are covariant: a slot may
contain elements whose class is the basic type of its property or any subclass of
that type.

effectiveTypeG(p) = {c∈C · c⊆c type(p)}

We can see an example of these definitions in the metamodel shown in Fig-
ure 3.13. We can see that effectivePropertiesG(CompositeState) = {outgoing,
incoming, subStates}, i.e., the effective properties of CompositeState are the two
properties owned by State and the property directly owned byCompositeState.
Similarly, effectiveTypeG(subStates) = {State,CompositeState}. An example of a
model using this metamodel can be seen in Figure 3.14.
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S 0S 1 S 2S 3T 1T 2
S 1 : S t a t e : o u t g o i n g T 1 : T r a n s i t i o n S 2 : S t a t e

T 2 : T r a n s i t i o n
: i n c o m i n g

S 3 : S t a t e: i n c o m i n g
s l o t s s l o t s

s l o t s
e l e m e n t s

e l e m e n t s
e l e m e n t s

e l e m e n t sS 0 :C o m p o s i t eS t a t e : o u t g o i n gs l o t s: s u b S t a t e se l e m e n t ss l o t s
Figure 3.14: Example Model Using Specialization

Because the effective properties of a class are defined by itself and its transitive
superclasses, we require the generalization relation to beacyclic. Otherwise all
classes in a generalization hierarchy would have the same set of effective properties
and they would for all practical purposes be indistinguishable from each other. This
leads to the following metamodel constraint:

Metamodel Constraint 5 Generalization is acyclic:¬(∃e∈C · (e,e) ∈ {(c,d) ·
d ∈ generalizations(c)}+)

3.6 Property Subsetting

In this section we introduce the concept of property subsetting to our metamod-
eling language, one of the most intriguing concepts introduced in MOF 2.0 and
the UML 2.0 infrastructure. Property subsetting allows us to specialize an existing
property into a new property with a different basic type and different characteris-
tics, while still retaining the old, existing property. Theintuition is that the special-
ized property is a subset of the original property, meaning that elements in a slot of
a subset property should also be included in the slot of the original property.

As an example, we present yet another version of a simplified metamodel for
UML class diagrams in Figure 3.15. We first provide a general concept of a con-
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s u b s e t s

p r o p e r t i e s
t y p e

s u b s e t s

Figure 3.15: Example Metamodel for UML Class Diagrams UsingSubset Proper-
ties

tainer and its children elements using the Namespace and Element classes. Each
Namespace element has a slot named ownedElement representing its contents.

Then we specialize Namespace into a Class and add twosubset properties
called ownedAttribute and ownedOperation to keep attributes and operations. We
can say that these properties aresubsettingthe ownedElement property. We also
add two subset properties of ownedAttribute to Class, called ownedPublicAttribute
and ownedPrivateAttribute. This example also shows how a subset and a union
property may be in the same class.

We introduce a new property characteristic to our metamodeling language in
order to support subset properties:

• supersets :P→ P (P) represents the properties of which a property is a sub-
set.

We will also introduce the characteristic strictUnion later. Thereby, we can
define a modeling language supporting property subsetting as the tuple:

MLS
def= (C,generalizations,P,owner, type,characteristicsS)

characteristicsS
def= (lower,upper,ordered,composite,opposite,supersets,

strictUnion)
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We denote subsetting between properties by the⊆p relation, i.e.,⊆p
def= {(p,q) ·

q∈ supersets(p)}∗.
In a model, we say that a slotr is a subset of another slots if property(r) ⊆p

property(s) and they have the same owner. The slot subsetting relation isthus
defined by:

⊆s
def= {(r,s) · slotowner(r) = slotowner(s)∧property(r)

⊆p property(s)}∗

The contents of a slotr subsetting another slotsmust be a subset of the contents
of s. Also, MOF [139] tells us on page 56 that“The slot’s values are a subset of
those for each slot it subsets.”In the case of unordered slots, this is formalized
using the following constraint:

Model Constraint 8 Unordered slots:(∀r,s∈ S · r ⊆s s∧¬ordered(property(s))
⇒ elements(r) ⊆ elements(s))

We can see an example model based on subset properties in Figure 3.16. The
model represents a UML class with one public attribute, one private attribute and
one operation. The element representing the class has 5 different slots and the
elements referenced in each slot is constrained by the subset properties. In the
example we haves5 ⊆s s1∧s4 ⊆s s2∧s3 ⊆s s2∧s2 ⊆s s1.

P e r s o n : C l a s s
s 1 : o w n e dE l e m e n t a g e : A t t r i b u t e

n a m e : A t t r i b u t e
e l e m e n t s

w o r k : O p e r a t i o n
s 2 : o w n e dA t t r i b u t es 3 : o w n e dP r i v a t eA t t r i b u t es 4 : o w n e dP u b l i cA t t r i b u t es 5 : o w n e dO p e r a t i o n

s l o t sw o r k ( )+ a g e! n a m eP e r s o n

Figure 3.16: Example Model Based on the Metamodel Shown in Figure 3.15

In the rest of this section, we review how the concept of subset properties in-
teracts with the other concepts in our metamodeling language.
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3.6.1 Subsets and Ordering

For ordered slots we also wish to preserve order. That is, when elements occur in
a specific order inr, they should occur in the same order ins, althoughs might
contain more elements in between.

Model Constraint 9 Ordered slots: (∀x,y ∈ E, r,s∈ S · x ∈ elements(r)∧ y ∈
elements(r)∧x�r y∧ r ⊆s s∧ordered(property(s)) ⇒ x∈ elements(s)∧y∈
elements(s)∧x�s y)

3.6.2 Union Properties

A property is called a union property if it has one or more properties that subset
it. In our framework, it is not necessary to declare a property as a union, since a
designer of a metamodel cannot know in advance if a new subsetproperty will be
defined in the future, possibly in some other metamodel. Another way to express
this is to state that all properties are automatically unionproperties, and some can
be declared as strict unions.

3.6.3 Strict Unions

The UML 2.0 Infrastructure also introduced the concept of strict union. The stan-
dard states on page 126 that“This means that the collection of values denoted by
the property in some context is derived by being the strict union of all of the values
denoted, in the same context, by properties defined to subsetit. If the property has
a multiplicity upper bound of 1, then this means that the values of all the subsets
must be null or the same.”. In other words, a derived union property can be seen
as the strict union of its subsets. A slot with a property thatis a strict union cannot
contain elements that do not appear in any of its subsets.

We introduce a new property characteristic to our metamodeling language in
order to support strict unions:

• strictUnion :P→ B is true if a property is a strict union.

The UML uses the qualifier “{ union }” to denote a property as a strict union.
Since all our properties are unions, we use the qualifier “{ strict union }” instead.
In the example, the contents of ownedElement and ownedAttribute slots are strict
unions of the contents of the subsetting slots.

The concept of strict unions implies that a new model constraint needs to be
defined:

Model Constraint 10 Strict union:(∀s∈ S · strictUnion(property(s)) ⇒
elements(s) =

S

{elements(r) · r �ss}

We call model constraint 8, 9 and 10 theinherent subsetting rules, or ISR.
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3.6.4 Subsets and Substitutability

The rationale for the proposed model constraints is to allowtype substitutability
in model transformations, queries and code generators. A specialized class has the
same properties with the same characteristics as its base classes, while containing
new definitions to specialize these properties. Thus, subsetting preserves Liskov
substitutability.

As an example, Figure 3.17 shows a model based on the example metamodel
for circuits shown in Fig. 3.1. Here, a given transistor can be seen as a generic
component with a number of pins or as an element of type Transistor that has three
specific pins. The benefit is that it is possible to define algorithms and transfor-
mations which work on the base abstract circuit; that is, only considering wires,
pins and components, without caring for the details, whereas algorithms that are
targeted to specific components can rely on a more refined abstract syntax.

T 1 a s aT r a n s i s t o r : c o l l e c t o r: e m i t e r p i n 1 : P i n
: b a s e

: p i n s
p i n 3 : P i np i n 2 : P i n

T 1 a s aC o m p o n e n t : c o l l e c t o r: e m i t t e r p i n 1 : P i n
: b a s e

: p i n s
p i n 3 : P i np i n 2 : P i n

s l o t s

s l o t ss l o t ss l o t s
Figure 3.17: (Top) Example of a Model as Interpreted According to the Base Lan-
guage (Bottom) Same Model Interpreted According to the Extended Language

63



3.6.5 Subsets and Multiplicity

It can easily be seen that a property subsetting another property should have a lower
(or the same) upper limit than the other property. This can beformalized with the
following metamodel constraints:

Metamodel Constraint 6 Upper multiplicity in subset properties:(∀p∈P · (∀q∈
supersets(p) · upper(p) ≤ upper(q)))

The justification for this constraint can be shown with slotsr ands such that
r ⊂s s, property(r) = p, property(s) = q and upper(p) > upper(q), and by filling the
slot r with elements so that #r = upper(p). Then #s ≥ #r = upper(p) > upper(q)
⇒ #s > upper(q), which violates the upper limit ofq.

Property subsetting does not raise any new restrictions on the lower limits of the
properties. This is because more elements can always be inserted into a slot until
its size is at least that of the greatest lowest limit in any transitive sub- or superset.
Thus model constraint 4 is sufficient for the lower multiplicity constraints.

3.6.6 Subsets and Class Specialization

A property should only subset another property if the effective types of it are a
subset of the effective types of the other. The same remark isalso stated in the
UML 2.0 Infrastructure [142] on page 125:A property may be marked as a sub-
set of another, as long as every element in the context of the subsetting property
conforms to the corresponding element in the context of the subsetted property.

Figure 3.18 shows a (nonsensical) metamodel, in which property d of classC
subsets propertyb of classA. The type ofb is classB and the type ofd is classD;
however,D is not a subclass ofB.

Figure 3.18: Subsetting Only One End of a Relation

We should explore how the existing constraints affect the elements in the slots
of a model based on the this metamodel. We can easily find an example which
shows that this particular way of using subsets is not useful. Since the elements
in a slotsd conforming to propertyd should be of typeD, the elements in slotsb

conforming to propertyb should be of typeB, and the elements insd should also
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be insb, the slotsd cannot have any elements. This can be proven in the following
derivation, based on the structured derivation approach in[14]:

sd,sb ∈ S∧property(sd) = d∧property(sb) = b∧
sd ⊆s sb∧effectiveType(d) = {D},effectiveType(b) = {B}

⇒ { introduce class of elements in slot, unordered slot constraints, simplify}
(∀e∈ elements(sd) · class(e) ∈ {D})∧
(∀e′ ∈ elements(sb) · class(e′) ∈ {B})∧
(elements(sd) ⊆ elements(sb))

⇒ { definition of subset, membership in a singleton set}
(∀e∈ elements(sd) · class(e) = D)∧
(∀e′ ∈ elements(sb) · class(e′) = B)∧
(∀e′′ ∈ elements(sd) · e′′ ∈ elements(sb))

⇒ { elements ind should also satisfy the constraint forb }
(∀e∈ elements(sd) · class(e) = D∧class(e) = B)

⇒ {D 6= B}
elements(sd) = /0

Based on this discussion, we consider an additional constraint over a meta-
model: the fact that a property can subset another property only from the reflexive
transitive superclass closure of its owner:

Metamodel Constraint 7 Subset only from owner or its superclasses(∀p,q∈ P ·
p⊆p q⇒ owner(p) ⊆c owner(q)).

However, this restriction is not strong enough. It would still be possible to
cyclically subset a property within the same class. This is not a useful construct
since any slots of the properties in the cycle would consist of the exact same ele-
ments. Thus property subsetting must be acyclic:

Metamodel Constraint 8 The property superset relation is acyclic:¬(∃e∈ P ·
(e,e) ∈ {(p,q) · q∈ supersets(p)}+)

Given these constraints, we can conclude the property subsetting is a partial
order. In other words,(P,⊆p) is a poset. Thus, on the model level we have several
partial orders, one for each slot and its transitive sub- andsupersets, owned by
some specific element.

It can be noted that multiple inheritance forms very complicated inheritance
hierarchies, among them thediamond inheritancestructure. This leads to a pos-
sibility where property subsetting also has a diamond (or even more complicated)
structure.

3.6.7 Subsets and Opposite Properties

We should also study the possible interactions between subset and opposite prop-
erties. Let us consider the metamodel in Figure 3.19. In thismetamodel, the subset
propertyd has an opposite propertyc which is not a subset.
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A b BC d{ s u b s e t s b } Da c
Figure 3.19: Example of the Interaction of Subsets and Opposite Properties

Let us assume that there is a model with two elementsec anded conforming
to classesC and D, respectively. According to the metamodel, elementec has
two slots that we namesd andsb conforming to propertiesd andb, respectively.
Similarly, elemented has two slotssc andsa. We wish to add elemented to the
slot sd. Since the propertyd has an opposite, we also need to addec to the slot
sc of ed in order to satisfy model constraint 5 regarding bidirectional slots. Since
d ⊂s b, we also need to includeed in the slotsb to satisfy model constraint 8 about
unordered subset slots. Finally, since propertyb has an opposite property nameda,
we should includeed in the elements ofsa. Thus,ed is in sa and insc, and the net
effect is as ifc were a subset ofa anyway, even though that was not stated in the
metamodel.

The conclusion is that we claim thatc needs to subseta, if for nothing else
than documentation purposes. There are several faults in MOF 2.0 and UML 2.0
where this rule is violated. Fortunately, the correction issimple by saying that (in
our example)c needs to subseta. In any case, this example emphasizes the need
for the following constraint:

Metamodel Constraint 9 The opposite of a subset property must be a subset:
(∀p,q∈ P · p⊆p q∧opposite(p) 6= Ω ⇒ opposite(p) ⊆p opposite(q))

3.6.8 Subsets and Composition

We need to redefine the composition constraints to take into account the subset
properties. Due to the subset constraints, an element may bein more than one
composition slot at a given time, as long as these slots are not independent. This
replaces model constraint 6:

Model Constraint 11 (Subset) Only in one composite slot:(∀e∈ E · ¬(∃s1,s2 ·
property(s1) ||p property(s2)∧composite(property(s1))∧composite(property(s2))
∧e∈ elements(s1)∧e∈ elements(s2))

In Figure 3.20, we see different cases with composite and noncomposite prop-
erties. Cases (1) and (2) are legal and quite self-explanatory: in the first case, all
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A andC elements own theirB andD elements via thea–b relation. In the second
case thec–d relation can be used to own some of theD elements and the rest can be
referenced via only thea–b relation, and can thus be owned by some other element.

Case (3) can be considered legal by discounting the composition at thec–d
relation without any loss in information, since any elements owned via thec–d
relation must also be owned via thea–b relation. This is what model constraint 11
allows. Case (4) is void since any elements of typesC andD that are connected
at thec–d relation are also connected at thea–b relation, thereby creating a cyclic
composition and therefore violating a model constraint. Thereby the following
metamodel constraint should be defined:

Metamodel Constraint 10 No circular transitive composition with subsets:(∀p∈
P · composite(p) ⇒¬(∃q∈ P · opposite(q) 6= Ω∧ p⊂p q∧
composite(opposite(q))))

A b BC d{ s u b s e t s b } Dac{ s u b s e t s a }
A b BC d{ s u b s e t s b } Dac{ s u b s e t s a }

(1) (2)A b BC d{ s u b s e t s b } Dac{ s u b s e t s a }
A b BC d{ s u b s e t s b } Dac{ s u b s e t s a }

(3) (4)

Figure 3.20: Subsetting with Composite and Noncomposite Properties

We can find examples of the three first cases in UML 2.0, all in Figure 11.5 on
page 109 of [142]. Case (1) can be found in the association–memberEnd relation,
case (2) is found in the owningAssociation–ownedEnd relation and case (3) in the
class–ownedAttribute relation.
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3.7 Alternative Language Extension Mechanisms

In this section, we briefly go through various additional language extension mech-
anisms. We also provide a motivation on why we do not include them in our
framework.

3.7.1 Covariant Specialization

Covariant specialization is similar to subsetting in that it relates two relations at the
metamodel layer. However the semantics are different. In a covariant environment,
the specialized relation cannot be modified for elements which are instances of the
subclasses.

As an example of covariant specialization, let us assume that ec is an element
of typeC shown in Fig. 3.21. It is not possible to insert elements of typeB into the
b slot ofec, only elements of typeD into thed slot. Thec–d relation is acovariant
specializationof thea–b relation. Thea–b relation has been rendered obsolete (or
at least read-only) in the context of elementec.A b BC d{ c o v a r i a n t l ys p e c i a l i z e s b } Da c{ c o v a r i a n t l ys p e c i a l i z e s a }

Figure 3.21: Notation for Covariant Specialization

Covariance is a subject that often comes up in the semantics of methods of OO
programming. Function parameter type contravariance and return type covariance
are rather inconvenient in practical situations and thus a type-unsafe function pa-
rameter type covariance is used for specialization. A similar argument also holds
for element slots in modeling technology. Property subsetting aims to provide
a new way to represent relationships between elements. It must nevertheless be
noted that as Giuseppe Castagna has asserted, there are usesfor a covariant en-
vironment when compared with a contravariant or invariant environment. Thus
subsetting and covariance are not opposing but complementing constructs in OO
programming and thus in modeling [32].

The major difference between covariance and subsetting is that in a covariant
environment, substituting an element of a specific type withan element which is
a covariant specialization of that type can result in programs no longer working.
Thereby covariant specialization breaks Liskov substitutability and that is the rea-
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son we do not include it in our framework, although we realizeit is an important
concept. On the other hand, subsetting allows the slots defined by the properties in
a superclass to be used in an instance of a subclass.

We note that contrary to subsetting, it might be necessary for the metamodel
developer to explicitly declare the possibility of covariant specialization, instead
of leaving the decision open for the future. This is because metamodel users need
to realize that slots conforming to covariantly specialized properties may not be
available in the future when their algorithm or function receives instances of the
subclasses. That is, in the example it might be necessary to state a priori that the
a–b relation can be covariantly specialized, as a warning mechanism for users and
tools. Subsetting can be declared when required, whereas covariant specialization
must be planned beforehand.

3.7.2 Property Redefinition

MOF 2.0 introduces the concept of property redefinition. It is our understanding
that a property redefinition is an arbitrary replacement of the characteristics of a
property in a subclass that overrides the subsetted property and renders it unusable
in the subclass.

We can formalize this concept in our framework by introducing a new property
characteristic redefines :P→ P (P), and by defining the set of effective properties
of a class as follows:

effectiveProperties(c) =
S

{properties(s) · c⊆c s}
\

S

{ redefines(p) · p∈ properties(s)∧c⊆c s}

Usually, the redefining property has the same name as the redefined property,
and exists in a subclass of the class of the redefined property. In data modeling
terms, this means that programs will obtain the redefining property when they use
an element of the subclass type.

However, we should note that there are no constraints between a property and
its redefinition. A redefinition could be covariant or contravariant in some char-
acteristics, and otherwise compatible or incompatible in others with respect to its
redefined property. Using property redefinitions in a language extension breaks
Liskov substitutability and therefore transformations and tools based on the origi-
nal language. Therefore, we consider that property redefinition is not a safe con-
struct and it should not be included in a metamodeling language.

3.8 Related Work

Several other researchers have formalized metamodeling languages and model lay-
ers. For example, Thomas Baar has defined the CINV language [10] using a set-
theoretic approach, but our approach is more general in thatwe also support gen-
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eralizations. The benefits of a set-theoretic approach is that it avoids a metacircu-
larity whereby one (partially) needs to understand the language to be able to learn
the language. José Álvarez, Andy Evans and Paul Sammut describe such a static
OO metacircular modeling language [7], and the Metamodeling Language Calcu-
lus [42] by Tony Clark, Andy Evans and Stuart Kent is another very sophisticated
one. Jan Nytun, Andreas Prinz and Andreas Kunert present in [122] a modeling
framework in which all model layers are represented uniformly.

Akehurst, Kent and Patrascoiu present in [46] the structureof a metamodel and
its semantics using OCL. Our rationale for not using OCL to define the model and
metamodel constraints is that the definition of the navigation in OCL expressions
actually depends on the metamodeling framework.

More recently, Frédéric Jouault and Jean Bézivin have presented KM3 [84],
a metamodeling language targeted towards domain-specific modeling languages.
This is one of the most influential works for this chapter since the notion of model
conformance presented here is based on it.

However, the main contribution of this chapter comes from the definitions of
property subsets in a language with multiple inheritance, which neither metamod-
eling nor traditional OO language descriptions explain. Several authors use re-
lation inheritance without defining exact semantics, and some say that it denotes
covariance. An example of this covariant specialization isthe multilevel metamod-
eling technique called VPM by Varro and Pataricza [183], which also limits itself
to single inheritance. We argue that property subsetting isnot the same concept
as covariant specialization, and requires different semantics. However, both sub-
setting and covariance specialization have their uses, andare thus complementing
rather than competing constructs.

Carsten Amelunxen, Tobias Rötschke and Andy Schürr are the authors of the
MOFLON tool [8] inside the Fujaba framework [121]. MOFLON claims to support
subsetting, but no description of the formal semantics being used is included. It is
not clear if their tool works in the context of subsets between ordered slots, or with
diamond inheritance with subsetting. Markus Scheidgen presents an interesting
discussion of the semantics of subsets in the context of creating an implementation
of MOF 2.0 in [162]. To our knowledge, this has so far been the most thorough
attempt to formalize subsetting.

The OO and database research communities are also researching a similar
topic, although it is called relationship or association inheritance, or first-class re-
lationships. In [23], Bierman and Wren present a simplified Java language with
first-class relationships. In contrast with our work, they do not support multiple
inheritance, bidirectionality or ordered properties; allof these constructs are com-
mon in modeling and in the UML 2.0 specification. However, relationship links are
explicitly represented as instances, and they can have additional data fields (just
like the AssociationClass of UML). As the authors have noticed, the semantics
of link insertion and deletion is not without problems. Albano, Ghelli and Orsini
present a relationship mechanism for a strongly-typed OO database programming
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language [6]. It also handles links as relationship instances, but without additional
data fields. Multiple inheritance is supported, but orderedslot contents are not.

Finally, we should note there is an important ongoing discussion on the concep-
tual role of metamodeling and metamodeling languages in articles such as [63, 9].
These works describe the conceptual relationship between different metamodeling
levels or layers. Our work focuses on the concrete constraints between two specific
levels and it clearly exhibits the two metadimensions described in [9], where every
model elementlogically conformsto a given metamodel class while it isphysically
representedas an element.

3.9 Conclusions

In this chapter we have explored the main concepts used in a metamodeling ap-
proach that supports class specialization and property subsetting. We have achieved
this by building the metamodeling framework from the groundup using successive
set-theoretic definitions of the structural semantics. Each definition adds a concept
to our modeling framework: multiplicities, bidirectionality, ordering, composition,
class specialization, subsetting, unions and strict unions.

We have also briefly discussed other language extension mechanisms. We have
argued that covariant specializations make classes nonsubstitutable, that arbitrary
property redefinitions are not a safe extension mechanism and that package merges
do not provide anything fundamentally new as they can be described in terms of
previous mechanisms. Therefore we have not included these concepts in our ap-
proach.

The contribution of this chapter is important because it emphasizes the need for
all new metamodel language concepts to form an integrated whole and because it
defines the new property characteristics of subsets and unions from MOF 2.0. We
realize that all new metamodeling constructs interact withall the old metamodel-
ing constructs. We have to ensure that the semantics of all combinations of these
constructs make sense by declaring suitable metamodel and model constraints.

The OMG modeling standards do not describe subset and union properties in
detail, not even informally, and therefore they cannot be applied in practice. In this
chapter, we have formalized a simple modeling framework that supports subsets
and derived unions. It discusses the relevant model constraints that must be upheld
by any valid model. We will explore this area further in the next chapter, where we
define operations that modify models while keeping the modelconstraints.

There is a limitation in the work presented in this chapter. The framework and
especially subsetting as proposed is restricted to slots with unique elements. Slots
where the same element can occur several times (bags, multisets) are not consid-
ered. Although bags can be defined in MOF 2.0, they are not usedin the definition
of the UML 2.0 Superstructure. Supporting ordered and unordered bags is not a
fundamental problem when considering the static constraints, but is rather an is-
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sue of more work. However, supporting model operations on ordered bags with
subsetting is problematic, as will be shown in Chapter 4. It must also be stressed
that we do not cover several important aspects of MOF 2.0, such as association
end ownership or navigability. These aspects create no important limitations from
a formal point of view.

We have implemented the metamodeling language defined in this chapter in our
modeling tool Coral, which will be discussed further in Chapter 5. Unfortunately,
we know of no modeling tools that support subsets as extensively as discussed in
this chapter. At the time of writing, the Eclipse EMF model repository does not
implement subset properties, although the feature is planned. It is not clear what
the semantics will be, though.

In conclusion, we consider that there is a need in the modeling community
to standardize on one intuitive explanation and a rigorous formalization of subset
properties and derived unions, so tools based on MOF 2.0 and UML 2.0 can be
implemented and be interoperable. This chapter presents a proposal in the direction
that we hope can help other researchers and tool developers to define a common
understanding for MOF 2.0 and UML 2.0.

72



Chapter 4

Model Operations

4.1 Introduction

In the previous chapter we described the static structure ofmetamodels and models,
and how models conform to their metamodel. From a conceptualperspective, this
might be sufficient, in that we can give different model structures as input to a
conformance testing function to see whether or not they are valid. However, from
a tool development perspective, we are interested in modifying said conformant
model structures in some particular manner while retainingconformance. In this
chapter we will provide these operations.

These modifications are of different complexity: an interactive model editor
requires small, incremental changes, whereas a transformation engine can create a
whole model. Any larger change can in any case be split into a sequence of smaller
changes, which we will callbasic edit operations.

We have identified the following basic edit operations on themodel structureM
described in Chapter 3:

• Element creation.

• Element deletion.

• Inserting an element into a slot.

• Removing an element from a slot.

We need to consider whether these operations preserve the constraints defined
in the previous chapter. We should note that a valid model transformation usu-
ally involves a sequence of many operations, of which some particular one cannot
preserve for example the multiplicity constraint. Therefore, we always consider a
model transformation as a sequence of basic edit operations. As an example, let us
assume that we want to create a GeneralizationG between two classesC1 andC2
in a model based on UML. This requires three basic operations: createG, insertC1
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in the parent slot ofG and insertC2 in the child slot ofG, assuming that the slots
C1.specialization andC2.generalization are implicitly modified due to bidirection-
ality. The elementG is invalid just after the create operation since a Generalization
should always be connected to exactly one super- and one subclass. However, the
model should be wellformed after executing all the basic operations.

This chapter is based on Publication VIII. We proceed as follows: in the next
section we give pre- and postconditions and implementations for element creation
and deletion. In Section 4.3 we will define unidirectional slot operations using a
pre- and postcondition specification, as well as provide an implementation for each
operation. For ease of understandability, we split the caseof inserting an element
into a slot into two separate operations, one for inserting into an unordered slot,
and the other for inserting into an ordered slot. In Section 4.4 we extend these
operations with bidirectional ones. We discuss validationof the research, related
work and future work in Section 4.5. We finally conclude in Section 4.6.

4.2 Element Creation and Deletion

The operation create :M ×C →M ×E such that(M′,e) = create(M,c) creates
a new element of typec ∈ C and has no preconditions. The new element will
also be a root element, i.e., it will not have any parent. The returned value is
a tuple of the new models and the new element. In any pre- or postcondition,
the old models are denotedM = (E, type,slots,S,property,elements). In postcon-
ditions, the new values of variables are denoted with tick marks, otherwise the
old values before the execution is assumed. Thus, the new models are denoted
M′ = (E′, type′,slots′,S′,property′,elements′). The primary postcondition is that
there must be exactly one new element in the set of elements. The various model
constraints mean that the sets and functions inM must be updated inM′ to reflect
this change; this leads to more postconditions.

1. (∃!e∈ E′ · E′ \{e} = E∧ type′(e) = c)

2. type′∩ type= type

3. #S′ = #S+#{p · p∈ P∧ (∃!e∈ E′ \E∧ type(e) ⊆c owner(p))}

4. S′∩S= S

5. slots′ = slots∪{e→ s · e∈ E′ \E∧s∈ S′ \S}

6. property′ = property∪{s→ p · s∈S′\S∧ p∈P∧{∃!e∈E′\E · type(e)⊆c

owner(p)}}

7. #Range(property′ \ property) = #{p · p ∈ P∧ (∃!e∈ E′ \E ∧ type(e) ⊆c

owner(p))}
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8. elements′ = elements∪{s→ {} · s∈ S′ \S∧¬ordered(property′(s))}
∪{s→ [ ] · s∈ S′ \S∧ordered(property′(s))}

The only relevant postcondition is the first one, the rest areimplicit or infor-
mally understandable from the various model constraints. To avoid too much rep-
etition, we assume that the new values of any variables not mentioned are kept
identical to their previous values and that only the necessary changes to fulfill the
postconditions are made. We will refrain from listing obvious postconditions and
concentrate on the important ones.

Element creation can be defined by inserting a new element into the setE and
correctly updating the various functions that comprise themodels. The operation
is shown in Figure 4.1. We assume there is a programming language-dependent
way to create a new element and new slots.

create(M,c) :=
M = E, type,slots,S,property,elements
Create an elemente.
type′ := type[e→ c]
E′ := E∪{e}
property′ := property

∪ { create a slotsand returns→ p · p∈ P∧owner(p) ⊆c c}
S′ := S∪ (Dom(property′)\Dom(property))
slots′ := slots∪{e→ s · s∈ S′ \S}
elements′ := elements∪{s→ [ ] · s∈ S′ \S∧ordered(property′(s))}

∪{s→{ } · s∈ S′ \S∧¬ordered(property′(s))}
return((E′, type′,slots′,S′,property′,elements′),e)

Figure 4.1: Implementation of Creating a New Model Element

The operation delete :M ×E→M deletes an element. We require the element
being deleted to have no connections to other elements via its slots. Therefore the
precondition for deleting an elemente is:

1. (∀s∈ slots(e) · #s = 0)

The postcondition is that the element must no longer be in theset of elements:

1. E′ = E \{e}

The implementation for element deletion is given in Figure 4.2.

4.3 Unidirectional Edit Operations on Models

We begin by describing in detail how to unidirectionally insert to or remove an
element from a slot. These operations are the basic edit operations for models that
are necessary to implement a model repository and a model transformation system.
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delete(M,d) :=
M = E, type,slots,S,property,elements
type′ := type\{e→ c · e= d∧e→ c∈ type}
E′ := E\{d}
property′ := property\{s→ p · slotowner(s) = d∧s→ p∈ property}
S′ := S\ (Dom(property)\Dom(property′))
slots′ := slots\{e→ s · e= d∧e→ s∈ S}
elements′ := S′ ⊳elements
return(E′, type′,slots′,S′,property′,elements′)

Figure 4.2: Implementation of Deleting a Model Element

First, we describe the case of insertion into ordered or unordered slots and
then the case of removing elements from slots. The pre- and postconditions are
described as separate enumerated clauses. All of the clauses in the precondition
must hold for the operation to succeed, and all the clauses ofthe postcondition
must be guaranteed by an implementation.

Unfortunately, the semantics provided by this chapter haveone caveat. We
assume that the ordering characteristic of a property must be the same in its subset
and/or superset properties. That is, the following additional metamodel constraint
must hold:

Metamodel Constraint 11 Ordering characteristics are same in property poset:
(∀p∈ P · (∀q∈ supersets(p) · ordered(q) = ordered(p))

We note that a slot and its transitive subset and superslot slots form a poset with
respect to the⊆s relation, as has been explained in Chapter 3. Then these slots can
be drawn as a Hasse diagram.

4.3.1 Element Insertion into an Unordered Slot

Consider an operation insertu :M ×S×E →M such that insertu(M,s,e) inserts
elemente into slot s. The intuition behind the insertion operation is that all su-
persets ofs must contain the new elemente for the ISR constraints to hold. The
clauses for the precondition for element insertion into an unordered slot are thus:

1. ¬strictUnion(property(s))

2. ¬ordered(property(s))

3. e 6∈ elements(s).

4. type(e) ⊆ owner(opposite(property(s)))

5. (∃t ∈ S · s⊆ t ∧composite(property(t)) ⇒ parent(e)\{slotowner(t)} = /0)
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6. composite(property(s)) ⇒ e 6∈ parentchain(slotowner(s))

The clauses state that (1) we are not modifying a derived read-only slot, (2) the
slot is unordered, (3) the element must not yet exist in the slot, (4) that we obey the
rules of strong typing, (5) we do not create a connection to a second parent fore
and (6) we do not create a circular composition.

The postcondition for element insertion is simple. We wish elemente to be
found in the slots and all its transitive supersets. All the model constraintsexcept
for the multiplicity constraints must also hold as a postcondition.

1. (∀t ∈ S · s⊆ t ⇒ elements′(t) = elements(t)∪{e}) (Notes⊆ s)

An example of element insertion into an unordered slot can beseen in Fig-
ure 4.3. In case (1) of the figure, we have a poset of unordered slots. Suppose we
insert an elementc into slot q. This requires an insertion ofc into slotsp and r
as well, to preserve the ISR, with the end result shown in case(2). After this, in-
sertingc into slott also inserts it into slots, again to preserve the ISR, resulting in
case (3). Slotsp, q andr are not modified becausec already existed in those slots.

(1) (2) (3)

Figure 4.3: Example of Inserting an Element into Unordered Slots

It can be noted that in our semantics, an insertion into a slotnever modifies any
subset of that slot.

The implementation of element insertion into an unordered slot is given in
Figure 4.4.

insertu(M,s,e) :=
M = (E, type,slots,S,property,elements)
elements′ := elements[{x→ elements(x)∪{e} · x∈ S∧s⊆ x} ]
return(E, type,slots,S,property,elements′)

Figure 4.4: Implementation of Element Insertion into an Unordered Slot

4.3.2 Element Insertion into an Ordered Slot

Subsetting with ordered slots is more complicated than withunordered slots, due
to the need to preserve an order between the elements in different slots. We define
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the operation inserto :M ×S×E×Z
0+ →M such that inserto(M,s,e, i) inserts an

elemente into a slots at indexi.
We assume there is a function index :E×S→Z

0+ which returns the zero-based
index of an element in the contents of an ordered slot. A function lower_index :
Z

0+ ×S×S→ Z
0+ is such that lower_index(i,x,y) returns the index inx where

y[i] should be inserted to preserve the subsetx ⊆ y. It is shown in Figure 4.5
and is used to calculate which restrictions from supersets apply to subsets when
inserting an element. As an example, consider what the restriction given by ele-
mentc (at index position 2) in the superset[a,b,c,d ] is to its subset[a,d ]. Then
lower_index(2, [a,d ], [a,b,c,d ]) returns 1 sincec should be inserted betweena
andd.

lower_index(i,s, t) :=
if t[i] ∈ s then return index(t[i],s)
do

if t[i] ∈ s then return index(t[i],s)+1
else ifi = 0 then return 0
elsei := i −1

od

Figure 4.5: The lower_index Function

A function lift_interval :S×S×R→ R, whereR denotes integer intervals, is
such that lift_interval(s, t, [v..w]) “lifts” the interval [v..w] from sas superimposed
on t (whens⊆ t). It is shown in Figure 4.6 and is used to calculate which restric-
tions from subsets apply to supersets and works as the dual oflower_index. As
an example, consider the ordered setss= [c] andt = [b,c]. If we were to insert
elementa at index 0 ins, the corresponding interval fors would be[0..0]. This
interval is superimposed ontot as the interval[0..1], meaning that the same ele-
ment can be inserted either before or afterb in t without violating the ISR. Thus,
lift_interval(s, t, [0..0]) = [0..1].

lift_interval(s, t, [v..w]) :=
if v > 0 thenv′ := index(s[v−1], t)+1

elsev′ := 0
if w = #s thenw′ := #t

elsew′ := index(s[w], t)
return[v′..w′ ]

Figure 4.6: The lift_interval Function

The function indices_ok :P (S)× (S→ R) → B returns true if when executing
indices_ok(T,F) there is a possible way to insert an element into every slot inT
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such that the constraints inF are satisfied. Here,F : S→ R is a map from slots to
integer intervals[v..w] such thatv ≤ w wheree can be inserted. The function is
shown in Figure 4.7. Using the lift_interval and lower_index functions we restrict
the possible intervals whereecan be inserted into the slots.

indices_ok( /0,F) := (∀t ∈ Dom(F) · F(t) 6= /0)

indices_ok(T,F) :=
(∃t ∈ T · (∀u∈ T · t 6⊃ u)

∧R def= ∩{lift_interval(c, t, [v..w]) · (∀c · s⊆ c� t ∧F(c) = [v..w])}
⇒ indices_ok(T \{t},F [t → R∩F(t)]))

Figure 4.7: The indices_ok Function

The precondition is otherwise identical to the case when inserting into an un-
ordered slot, except for the check for an ordered slot. and that there exists an extra
clause which calculates if the insertion into the slot and its transitive supersets is at
all possible without violating the ISR.

1. ¬strictUnion(property(s))

2. ordered(property(s))

3. e 6∈ elements(s)

4. type(e) ⊆ owner(opposite(property(s)))

5. (∃t ∈ S · s⊆ t ∧composite(property(t)) ⇒ parent(e)\{slotowner(t)} = /0)

6. composite(property(s)) ⇒ e 6∈ parentchain(slotowner(s))

7. indices_ok({t · s⊂ t},
{s→ [ i.. i ]}

∪{t → [ lower_index(index(e,u), t,u).. lower_index(index(e,u), t,u) ] · s⊂
t ∧ t ⊆ u∧e∈ elements(u)}
∪{t → [0, #t ] · s⊂ t ∧¬(∃u · t ⊆ u∧e∈ elements(u))}
)

The intuition behind the last clause in the precondition andthe definition of
the indices_ok function is that we calculate the range restrictions ofe which exist
in any super- or subsets onto the other slots. TheF function is initially created
by describing constraints from supersets.F is created from three different clauses.
The first,s→ [ i.. i ], constrainse to be inserted at exactly indexi. The second does
similarly for supersets which have a superset that already hase, whereas the third
initially allows all indices to be candidates for insertion. This initialization makes
sure thatF is restricted by the the elementse that already exist in any supersets
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of s. Note that any sloto such thato⊂ t ∧ s⊂ t ∧o ||s is outside of the transitive
superset closure ofs and any restrictions from it will already be visible int and
thus it is not necessary to includeo in F.

Then, indices_ok calculates the constraints from subsets and does set intersec-
tion to calculate whether an insertion is possible. The actual function takes all
supersetsT and picks onet ∈ T which is a bottom element, which must exist since
the slots in T are part of a poset. It then imposes all intervals from subset slotsc
(such thats⊆ c� t) ontot, also including the initial constraint ont. It then recurses
with a modifiedF until T is empty.

We claim, without proof, that if the final mappingF contains only nonempty
intervals, it is possible to successfully inserte into s at indexi. The postcondition
is:

1. elements′(s)[i] = e

2. (∀t ∈ S · s⊆ t ∧e 6∈ elements(t) ⇒ elements′(t)\{e} = elements(t)
∧e∈ elements′(t))

The current definitions do not tell us the exact index where toinserte into any
superslot ofs, only that a combination of indices exists; an indexit for a superslott
of smust exist somewhere in the range given byF(t).

An example of element insertion can be seen in Figure 4.8. Case (1) is the ini-
tial configuration of the slotsw, x, y andz. Let us assume an insertion of elementc
into slot w at index position 0 occurs. The returned slot ranges wherec should
be inserted raises the possibilities in cases (2) to (5), depending on whetherc is
inserted onto the left or right side of eithera in slot y or b in slot z. Cases (2), (3)
and (4) are correct solutions and our postcondition does notprefer any particular
one over the another. Case (5) is not legal, because slotx cannot preserve the su-
perset relationship as enforced by both slotsy andz, as elementc should occur both
beforea and afterb in the ordered set. It is up to the implementation to choose one
of the correct solutions, perhaps with guidance from the user.

As we have shown, insertion into an ordered slot is rather complicated. The
precondition could only tell us whether or not there is at least one solution, not
what the exact combination of indices in different slots should be for a particular
solution. Naturally, we must avoid the combinations that donot preserve the ISR.

Hence, we believe that the notion of aninsertion strategyis important. De-
pending on the effect the developer wishes to obtain, such a strategy will mechan-
ically calculate a particular solution and execute the actual insertion operation. At
the moment we use only one strategy, that of always using the last index position
possible.

The context in which the insertion strategy has to work is thefinal functionF
whenT has been exhausted, as can be seen in Figure 4.7.
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(1) (2) (3)

(4) (5)

Figure 4.8: Example of Inserting an Element into Ordered Slots

Insertion Strategies

Our implementation assumes that a correct combination of indices occurs if we
always choose the last index (i.e.,w of F(t) = [v..w] for a slott). This has worked
perfectly in our experiments. Given our assumption, the implementation in Fig-
ure 4.9 is simple.

inserto(M,s,e, i)
Calculate the finalF as in Figure 4.7.
M = (E, type,slots,S,property,elements)
elements′ := elements[{t → elements(t)[0 : w]⊳ [e]⊳elements(t)[w : #t]

· t ∈ S∧s⊆ t ∧e 6∈ elements(t)∧ [v..w] = F(t)}]
return(E, type,slots,S,property,elements′)

Figure 4.9: Implementation of the Insert Operation for Ordered Sets, Using the
Last Index Strategy

4.3.3 Element Removal from a Slot

The operation remove :M ×S×E →M is defined such that remove(M,s,e) re-
moves the elemente from s and all its subsets, as well as from those supersets
which would not acquiree via some other subset which is not comparable tos.
Element removal from an ordered slot is identical to elementremoval from an un-
ordered slot since removing a specific element from an ordered slot does not alter
the relative position of the other elements in the slot.

The precondition requires that a derived slot is not being modified and that the
element must exist in the slot:
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1. ¬strictUnion(property(s))

2. e∈ elements(s)

The postcondition:

1. (∀r ∈ S · r ⊆ s⇒ elements(r) = elements′(r)∪{e}∧e 6∈ elements′(r))

2. (∀t ∈ S · s⊂ t ∧¬(∃m∈ S · m⊂ t ∧m ||s ∧e∈ elements(m))
⇒ elements(t) = elements′(t)∪{e}∧e 6∈ elements′(t))

Both clauses in the postcondition are interesting. The firstclause states that a
removal from a slot triggers a removal from any subset, so that the ISR can hold.
This can be contrasted with the insertion operation, which does not modify any
subsets. The second clause states that a removal from a slot triggers a conditional
removal from any superset. An interesting feature of the clause is shown in Fig-
ure 4.10. If we have an initial setting as in case (1) and remove a from z, the
clause requires thata is removed fromx as shown in case (2), although this is not
necessary to preserve model consistency. However, we believe that this feature
is the intended usage by the modeling standards. Inserting into a subset triggers
insertion in all supersets, and so dually a removal from a subset ought to trigger
a removal from all supersets. A similar chain of reasoning has been reported by
Markus Scheidgen [162].

(1) (2)

Figure 4.10: Removinga from an Unordered Slotz

As an example where the second clause is necessary, considerFigure 4.11 with
the initial setting as in case (1).

Assume we wish to removea from y. An incorrect approach is the removal of
a from supersets and subsets would leavex without a, butzwith a intact, violating
the ISR, as shown in case (2). A correct option would be to remove a also from
z, as shown in case (3), but our opinion is that this “snowball effect” of removing
a reduces the usefulness of subsets; sloty should affect slotz as little as possible,
since they are not comparable in the Hasse diagram. Our postcondition ensures
that a must be removed fromw andy, but not fromx, becausez still containsa;
this is seen in case (4).

Another interesting case is the ISR rule for derived slots. If (and only if) z is
marked as derived, we must remember that its elements must befound in the union
of its subsets. In case (5),a is removed fromy which leads to it being removed
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(1) (2) (3)

(4) (5)

Figure 4.11: Different Scenarios for Removinga from an Unordered Sloty

from w as well. Asz is marked as derived,a must also be removed from it, sincez
does not have any other subset containinga. This in turn leads toa being removed
from x.

The implementation for the removal of an element for an ordered or unordered
slot is shown in Figure 4.12.

remove(M,s,e) :=
M = (E, type,slots,S,property,elements)
elements′ :=

elements[{t → elements(t)\{e} · t ⊆ s}
∪{t → elements(t)\{e} · s⊂ t

∧¬(∃m · m⊂ t ∧m || s∧e∈ elements(m))} ]
return(E, type,slots,S,property,elements′)

Figure 4.12: Implementation of Element Removal from a Slot

4.4 Bidirectional Edit Operations on Models

In the previous two sections, we showed how to create and delete elements, and
how to unidirectionally modify one slot and its transitive subset and superset slots.
We emphasize the importance of unidirectionality; a consequence of this is that the
operations did not modify any opposite slots. While the unidirectional operations
are useful for low-level manipulation of models, they cannot be used directly in a
high-level context, such as a model transformation, if we are to preserve model
constraint 5, the bidirectionality constraint on slots, from the previous chapter.
However, we can define another set of bidirectional slot operations based on the
unidirectional ones.
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We note that given a slots such thate∈ elements(s), the opposite slot that is
owned by elemente is the unique slot:

slotopposite(e,s) def= r, such that slotowner(r) = e∧opposite(property(s)) =
property(r)

Due to the evident use of an index parameter for insertion into ordered slots and
no parameter for insertion into unordered slots, we can conclude that a bidirectional
operation on a slots and elemente such thate∈ elements(s) can be split into four
cases, depending on whether they are ordered or not:

• ¬ordered(s)∧¬ordered(slotopposite(e,s))

• ¬ordered(s)∧ordered(slotopposite(e,s))

• ordered(s)∧¬ordered(slotopposite(e,s))

• ordered(s)∧ordered(slotopposite(e,s))

We create four functions that implement the above cases for inserting an ele-
ment, and a single function that implements element removal. The preconditions
of the following functions are the conjunction of the preconditions of the individual
operations of which they consist. Similarly, the postconditions are the conjunction
of the postconditions of the individual operations of whichthey consist. Thus there
is no need to repeat them here.

4.4.1 Element Insertion into Unordered/Unordered Slots

The first function insertuu :M ×S×E →M describes insertion into an unordered
slot with an unordered opposite slot. The implementation ofit can be seen in
Figure 4.13.

insertuu(M,s,e) :=
return insertu(insertu(M,s,e),slotopposite(e,s),slotowner(s))

Figure 4.13: Implementation of Element Insertion into Unordered/Unordered Slots

4.4.2 Element Insertion into Unordered/Ordered Slots

The function insertuo : M ×S× E ×Z
0+ → M describes insertion into an un-

ordered slot with an ordered opposite slot. The implementation of it can be seen in
Figure 4.14.

84



insertuo(M,s,e, i) :=
return inserto(insertu(M,s,e),slotopposite(e,s),slotowner(s), i)

Figure 4.14: Implementation of Element Insertion into Unordered/Ordered Slots

4.4.3 Element Insertion into Ordered/Unordered Slots

The function insertou :M ×S×E×Z
0+ →M describes insertion into an ordered

slot with an unordered opposite slot. The implementation ofit can be seen in
Figure 4.15.

insertou(M,s,e, i) :=
return insertu(inserto(M,s,e, i),slotopposite(e,s),slotowner(s))

Figure 4.15: Implementation of Element Insertion into Ordered/Unordered Slots

4.4.4 Element Insertion into Ordered/Ordered Slots

The last insertion function insertoo :M ×S×E×Z
0+ ×Z

0+ →M describes in-
sertion into an ordered slot with an ordered opposite slot. The implementation of
it can be seen in Figure 4.16.

insertoo(M,s,e, i1, i2) :=
return inserto(inserto(M,s,e, i1),slotopposite(e,s),slotowner(s), i2)

Figure 4.16: Implementation of Element Insertion into Ordered/Ordered Slots

4.4.5 Element Removal from Slots

Bidirectional element removal can be described by the function remove⋆ :M ×
S×E →M as given by the implementation in Figure 4.17. It works regardless of
whether the slot or its opposite is ordered or unordered.

We note that the unidirectional operations do not preserve model constraint 5,
i.e., bidirectionality, whereas the bidirectional operations preserve it. We claim that
the other model constraints, except the multiplicity constraint, are preserved.

Then, only model constraint 4, that of restricting the number of elements in
slots to the multiplicity limits of the property, can be violated by these operations.
We do not preserve this constraint because of the atomicity of the operations. Con-
sider a slot with a lower multiplicity greater than zero. When creating an element
with such a slot, we should immediately populate the slot with enough elements
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remove⋆(M,s,e) :=
return remove(remove(M,s,e),slotopposite(e,s),slotowner(s))

Figure 4.17: Implementation of Bidirectional Element Removal

for the multiplicity constraint to hold. But this is not possible with the operations
that we have described.

Although we could extend our operations further, there is a different solution.
We can use a sequence of basic operations Our anecdotal experience is that a suffi-
cient solution is to add atransaction mechanisminto our modeling tool of choice.

Indeed, the implementations of the bidirectional operations are merely a se-
quence consisting of two unidirectional operations, and thus we could claim that
a transaction mechanism is already necessary at this level.However, we feel that
bidirectionality is such a fundamental part of manipulating and navigating models
that the bidirectional operations that have been describedin this section are the ba-
sic operations in a modeling framework, and more complicated operations should
employ the aid of the transaction mechanism.

4.5 Related and Future Work

Apart from the related work as mentioned in Chapter 3, we are only aware of the
work of Markus Scheidgen [162] on operations for subset properties. In his ap-
proach to formalizing model edit operations on subsets, a slot modification creates
anupdate graphof slots, so that a later modification at some other slot in theupdate
graph actually updates all the associated slots. The actualoperational semantics are
unfortunately not described in detail. In comparison, we donot have to create or
maintain any update graphs. Furthermore, our contributionnot only discusses but
also defines pre- and postconditions and implementations for the operations for
ordered and unordered sets. It is also not clear if the work byScheidgen sup-
ports diamond subsets or ordered sets, both of which are usedin e.g. the UML 2.0
Infrastructure. However, our semantics are different and it is not clear which for-
malization is better suited for modeling purposes.

As already mentioned in Chapter 3, the basic edit operationsinvolving subsets
have been implemented in the Coral tool. We have found no errors or inconsisten-
cies in our implementation.

There are several different theoretical tasks for future work.The first and fore-
most task is to prove the correctness of the pre- and postconditions as well as the
implementations. Second, throughout this chapter, we havebeen clear that the ele-
ments in a slot are an unordered or ordered set. It might be of interest to formalize
the framework forbagness, whereby a slot may contain the same element several
times. It is fairly straightforward to extend this framework for unordered bags,
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even with subsetting, but our initial experiments with ordered bags and subsetting
have not been as successful.

Third, we might wish to incorporate covariant specialization into the frame-
work, as so many authors are implicitly using covariance, and experience from the
object-oriented community is that covariance is a useful concept.

Fourth, the MOF characteristic of redefinition is still fairly arbitrary, badly de-
fined concept, and could certainly take advantage of a more rigorous definition.

Furthermore, we have not discussed metamodel evolution, where properties
and classes are redefined, and how models must be updated accordingly, especially
with respect to subsetting. We have followed a basic assumption that metamodels
are static, but we should note that there are object-oriented frameworks where class
updates or redefinitions are possible, for example Common Lisp [48].

4.6 Conclusions

There are several new property characteristics described in MOF 2.0: subsets, (de-
rived) unions and redefinitions. However, these standards do not describe these
concepts in detail, not even informally, and therefore cannot be applied in prac-
tice. In this chapter, we have presented basic operations for element creation and
deletion and slot modification, taking into account subsetsand derived unions. We
have given usage examples where subsetting provides a new, fundamental approach
to language extension. Several authors have used property subsetting informally,
almost always referring to covariant specialization. Formalization of covariance
leads to a different result than the one presented in this chapter. Both subsetting
and covariance specialization have their uses, however, and are thus complement-
ing rather than competing constructs.

There are limitations in the work presented in this chapter,except for the ones
already discussed in the previous chapter. It would be useful if the precondition
on checking indices related to ordered insertion into a slotcould be removed. We
also assume that a subset property should have the same ordering characteristic
as its union property. However, we notice that it is also possible to mix these
characteristics such that an ordered slot may be a subset of an unordered slot. The
extension is trivial since it weakens the precondition because we do not need to
preserve any indices in the unordered slot. The UML 2.0 Infrastructure uses this in
the association–memberEnd relation in Figure 11.5 of [142].

However, the opposite case where an unordered property subsets an ordered
property is problematic. Insertion into an ordered slot requires an index, but the
initial insertion into the unordered slot does not tell which index or indices to use in
any supersets which are ordered. We do not see any benefits in pursuing semantics
for this construct. However, it must be noted that Figure 11.7 of [142] does show
an example where an ordered property is subset by an unordered one. We believe
this example, to be erroneous. We have not found such a usage pattern in UML 2.0.
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Furthermore, ordered bags are not considered in our formalization. The reason
for this can be shown with an example. Consider a slot[a] subsetting another
slot [a,b,a]. Inserting an element into the subset slot is problematic, because we
have to match elementa to one of thea in the superset slot, but it is not possible to
deduce which one.

As we have shown, the formalization presented in this chapter can be imple-
mented in a straightforward manner in a model repository. Weplan to use our
new definitions in implementing the UML 2.0 metamodel with diagram editors in
Coral. In doing so, we strive to acquire experience in using subsets and derived
unions in large models.

In conclusion, we consider that this work is important because there is an im-
minent need in the modeling community to standardize on one formalization of
subsets and derived unions, so that tools implementing MOF 2.0 and UML 2.0 can
be interoperable. The semantics described in this chapter is one proposal and we
hope it spurs further interest and discussion. Furthermore, the idea of subsetting is
intriguing, since it is a new construct for modeling relationships between classes
and objects, and thereby brings a novel idea to the modeling and object-oriented
community.
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Chapter 5

Implementation of the Simple
Metamodel Description Language

5.1 Introduction

In this chapter we present the definition and implementationof a modeling frame-
work called Coral. Coral is based on a simple metamodeling language that supports
the concepts defined in Chapter 3 and some primitive datatypes.

We call the metamodeling language the Simple Metamodel Description Lan-
guage (SMD). We explain it and show how metamodels and modelsare described
internally in Coral. We also show how metamodel files described using the SMD
language are transformed into metamodels inside the framework.

The work in this chapter is important because it allows us to validate our ideas
in practice. Even though it is crucial to have a wellfounded theoretical basis for the
metamodeling language, as discussed in the above-mentioned chapters, it is far too
easy to overlook details without a working prototype. For example, we notice that
supporting serialization of models affects SMD and its implementation.

This chapter is based on experiences from all our publications. The Coral tool
has been presented in Publication V. We proceed as follows. We describe the SMD
language in Section 5.2 In Section 5.3 we discuss the implementation of models
and metamodels in the framework, along with relevant known limitations. We
discuss related work in Section 5.4 and conclude in Section 5.5.

5.2 The SMD Language

The Simple Metamodel Description language (SMD) is our modeling language to
define models that define modeling languages. In other words,it is a metamodeling
language or a metametamodel. SMD is analogous to MOF, but there are several
reasons why we have chosen to use our own language instead of MOF. Primarily
we have wanted to explore which concepts are really requiredfrom a metamodeling
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language, and as a result SMD is based on fewer concepts than MOF and therefore
it is easier to implement and understand. Additionally we are interested in exper-
imenting with new metamodeling constructs or new semanticsfor old constructs.
Our experiences in implementing and using a working tool ledto the formalization
of SMD as described in Chapter 3. It can be seen in Figure 5.1.

ElementDefinition

Definition

EnumerationDefinition

DatatypeDefinition

Property

OwnershipKind

Language

Package

 « » 

isAbstract : 

name : 

values : [ * ordered ]

defaultValue : 

isBag : 

isOrdered : 

isUnserializable : 

multiplicity_lower : 

multiplicity_upper : 

name : 

ownership : 

enumeration

association

composition

version : 

revision : 

URInamespace : String

Booolean

String

String

String

Boolean

Boolean

Boolean

Integer

Integer

String

OwnershipKind

Integer

Integer 0..1

root1

owner

properties*

package0..1

classes

*

opposite0..1

opposite 0..1

subsets

{ unserializable }

*

supersets *

subclasses

{ unserializable }

*

superclasses

*

*

type 1

Figure 5.1: The SMD Language

It must be noted that although SMD has been developed independently from
ECORE, it still is very similar to it, and some features of ECORE were added to
SMD to support ECORE models. SMD consists of a Language metaclass which
describes a modeling language. It has a name, URInamespace,version and revi-
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sion. The latter three are intended for humans, e.g., the tuple (UML ,1,4) describes
the UML 1.4 language. However, URInamespace is the XML namespace decla-
ration for serializing any models written in a specific modeling language. This
concept will be explained more extensively in Chapter 6. Theroot property de-
scribes which class should be instantiated to create a rudimentary model of the
modeling language. For example, the UML 1.4 language has theModel class as its
root.

Package instances are otherwise like Language instances but are assumed to be
a owned by a Language instance, since they lack the version and revision informa-
tion. A hierarchy of Package and other Definition elements can be created with the
Package.classes property. It can be noted that neither Language nor Package are
part of the formalization from Chapter 3. They are merely convenient containers
of the other definitions.

Various DatatypeDefinition elements are defined but cannot be created by the
metamodel designer. They are hardcoded primitive types in the SMD language.
New EnumerationDefinition classes can be created to define new enumerations.
For example, a UML 1.4 Attribute has a VisibilityKind enumeration which defines
the values public, protected, private and package. The firstvalue is assumed to be
the default value, unless Property.defaultValue overrides it. A limitation of SMD
when compared with the formalization in Chapter 3 is that primitive types cannot
have properties. This is a very common limitation in metamodeling frameworks.

ElementDefinition is used to define new classes in a modeling language. Its
most important concepts are properties and superclasses. AProperty defines one
endpoint of a relation. It can be connected to some other Property element or to
itself; this later part is not allowed in the formalization from Chapter 3, but it is for
convenience. It defines the various property characteristics as given in Section 3.4
and Section 3.6. It also adds the Property.isUnserializable characteristic; slots of a
property with the isUnserializable characteristic set to true are not serialized. This
is very useful for some transient modeling data which is not persistent. For exam-
ple, references to subclasses and subset properties from the superclass and superset
property, respectively, should not be saved since we wish modeling languages to
be independent of their extensions.

We note that akin to MOF 2.0 and EMF, SMD also supports only twokinds
of ownerships: association and composition. Multiplicityrestrictions can only
be given by a single range, with an upper multiplicity of−1 denoting infinity.
An interesting detail is that during the implementation of the Coral core, Pack-
age.URInamespace was renamed from Package.xmlnamespace,due to an XML
restriction which is explained in Section 6.3.2.

As our experience in metamodeling grew, we added more features deemed nec-
essary to SMD. The default values for primitive obligatory properties, i.e., those
with a multiplicity of 1..1, are an example where a feature was copied for com-
patibility reasons from EMF. Property subsetting is a feature that has hitherto been
unavailable in most (if all) other modeling frameworks.
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The SMD metametamodel can be described using itself. As presented, there
is an interesting problem with it. It uses primitive types like integers and strings.
These can be seen in Figure 5.2. The most important element isthe AnyElement
class, which is the superclass of any other class. Its role isto serve as the toplevel
definition in any language hierarchy, similar to java.lang.Object in the Java pro-
gramming language [64].

PythonObject : 

AnyElement : Boolean : Integer : 

Double : String : DatatypeDefinition

ElementDefinition EnumerationDefinition DatatypeDefinition

DatatypeDefinitionDatatypeDefinition

Figure 5.2: The Primitives of the SMD Language

This presents an interesting conundrum, as AnyElement has atype of Element-
Definition, and the superclass of ElementDefinition is (implicitly) AnyElement.
In addition, this definition crosses metalevel boundaries.However, this is merely
an artefact of the metacircularity and does not effectivelypresent any problems.
An implementation must bootstrap the SMD language in some implementation-
specific way.

There is also a set of predefined primitive types: integer, string, double floating-
point, the boolean enumeration type and PythonObject. Theycan be used when
an entity cannot be broken into smaller constituent parts, or when such primitive
values are a natural way to express their contents. The Python [180] object type
enables us to attach any arbitrary Python object such as graphical widgets to a
model element and it is usually used in unserializable Slots. The enumeration
named Boolean has the valuesfalseandtrue, and is predefined for the sole reason
that it is so frequently necessary.

5.3 Implementation

As stated previously, our implementation of SMD is a modeling framework called
Coral. It has been developed by our research group and can be seen as an im-
plementation and validation of the ideas presented in this thesis. Its current ver-
sion consists of over 23 000 lines of C++ [170] source code with bindings for the
Python [180] language.

The SMD language defined in Figure 5.1 requires the concepts of classes, enu-
merations and primitive types itself. This is the bootstrapping problem that all
implementations of metamodeling tools need to cope with in one way or another.
Therefore, although the SMD language can and is defined as an SMD metamodel,
it cannot be loaded into a metamodeling tool based on SMD in order to define
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SMD. Rather, it must be bootstrapped in-place. The details of this is not important
as it is dependent on too many internal implementation artifacts in a metamodeling
tool.

Even though SMD cannot be loaded from a file in order to define itself, other
languages can be defined as SMD models. Thus, the Coral core isan implemen-
tation of SMD itself, which allows us to load additional metamodels defined as
SMD models. Additionally, there is an interface for creating models based on
these metamodels.

5.3.1 The Metamodel and Model Layers

There are different ways to realize a metamodeling tool, andthus there are several
ways to represent metamodels and models internally in a modeling tool. Some
tools present each ElementDefinition in a modeling languageas a class in the pro-
gramming language used by the tool and each element in a modelas an instance of
such a class. For example, such an implementation of the UML metamodel in Java
would have a Java class named State that will represent the definition of a UML 1.4
State. New elements in a model are created by instantiating the Java classes.

There are several problems with this approach. The most obvious is that it
is not possible to define new modeling languages dynamicallywithout compiling
or loading new source code, i.e., the compilation environment must be accessible.
Also, the definition of a modeling language may inherit some of the limitations of
the programming language. For example, in Java, a class cannot have a space in
its name and neither can it use multiple implementation inheritance conveniently,
so some kind of cumbersome or complicated tricks must be applied which might
make the final system less clean resulting in more maintenance work.

The lesson to take from this is that one should not use the typeand inheritance
mechanism of the host language to define a metamodeling tool.In effect, a meta-
modeling tool provides a lightweight virtual machine with its own type system.
Models and modeling languages should be seen as dynamic datastructures that
are created and updated regardless of the host language. This was implicitly es-
tablished in Chapter 3, in which a dynamic environment of several languages and
language extension mechanisms was described.

The metamodel layer as implemented in Coral can be seen in Figure 5.3. It
bears a strong resemblance to the definition of the SMD language in Figure 5.1,
although some small differences due to the C++ concept of strong ownership can be
seen. The gray classes Atom and Slot represent how the model layer is connected to
the metamodel layer. The Property.isAnonymous characteristic will be explained
later.

The internal representation of models in Coral can be seen inFigure 5.4. We
can create a model by instantiating suitable Element objects and connecting them
via their Slot objects. Every Element is linked to its type, which is an Element-
Definition object. The Slot objects of an Element are given bythe Property objects
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Figure 5.3: The Metamodel Layer in Coral as a C++ Class Diagram

of the type of the Element. Thus, each definition in a modelinglanguage is im-
plemented as an object instance of the ElementDefinition C++class, while each
element in a model is implemented as an object instance of theElement C++ class.
That is, the definition of a UML State is an object in the Coral runtime while an
instance of a UML State is also an object. This allows us to be fully dynamic,
as new languages can be created at runtime. Also, Coral has complete control
over the inheritance and property mechanism of the modelinglanguages. That is,
the inheritance mechanism in modeling languages defined by SMD is completely
independent of the inheritance mechanism in C++.
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Figure 5.4: The Model Layer in Coral as a C++ Class Diagram

The model layer in a model manager is responsible for managing models. Mod-
ification of the data is performed via a program interface, which provides suitable
interfaces for valid modification of models. A discussion ofdifferent features of
such interfaces can be found in [152]. A detailed description of one of these inter-
faces is the Java Metadata Interface (JMI) Specification [79].

Slots are implemented using two different classes: one class for slots with only
one (possibly optional) element and another for slots with an arbitrary number of
elements. The latter case requires different containers. Our implementation of
containers supports the cross product {unordered, ordered} × { set, bag}. These
are the well-known four different OCL collection types [131] and are implemented
as four different classes with a common Collection superclass. Currently, bags are
not supported in slots, so the only possible subclasses thatcan be used are Set and
OrderedSet. However, bags can otherwise be used in other collection objects.

However, while collections are simple element containers,a slot is also respon-
sible for maintaining bidirectionality. Coral automatically takes care of bidirection-
ality, i.e., modifying a Slot modifies also the opposite Slot. The interface does not
allow the user to modify the underlying Collection of the Slot directly.

95



The primitive element types are implemented as separate C++classes, where
each class wraps the corresponding primitive C++ type. Thiscan be seen in Fig-
ure 5.5. The reason for using classes instead of the primitive C++ types directly
is that this makes some data processing internally easier, as both the Element and
ElementPrimitive classes have a common superclass called Atom. The strings used
by Coral are internally encoded as UTF-8 [178], meaning thatany string data can
be represented, and for example Scandinavian or Asian characters are supported.

ElementDoubleElementPyObj ElementInteger

ElementEnumeration

ElementPrimitive

ElementString

value : value : value : 

value : value : 

DoubleObject Integer

Integer String

Figure 5.5: Primitive Element Types

5.3.2 Registering New Metamodels

After bootstrapping Coral, it only knows of two languages: SMD itself and a helper
language called XMI 1.2 which handles XMI.Extension elements for serializing
models into the XMI format. Serialization using XMI will be discussed extensively
in Chapter 6.

An important property of a metamodeling tool is the ability to load new meta-
models on demand. In Coral, this requires a facility for recognizing which meta-
models exist and where they can be found, and a routine for loading SMD models
and interpreting them as metamodels.

The first task is done by searching through the filesystem in predefined direc-
tories for short description files which map the XML namespace declaration or the
tuple (name, version, revision) to the corresponding SMD model file. When Coral
is told to load a model from an XMI file, that file must have an XMLnamespace
declaration which describes which metamodel has been used.The loading of the
model is temporarily suspended and the metamodel is loaded.In Coral, this meta-
model is further converted into a language.
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The second task is a special routine calledmetamodel2languagethat interprets
a SMD model consisting of Elements and Slots as a modeling language consisting
of ElementDefinitions and Properties. Once the new languagehas been configured
in the kernel it is possible to continue loading the originalmodel, or create models
based on this language. This arrangement can be seen in Figure 5.6.

Model of UML 1.4

UML 1.4

User Model

SMD

Instance of Instance of
metamodel2language

Figure 5.6: Lifting an SMD Model to the Metamodel Layer

Similarly, there also exists an opposite operation,language2metamodel, which
transforms a language back to an SMD model. This is portrayedin Figure 5.7.
Using this technique, we can manage our languages using the same interfaces as
we use to manage models.

Instance of Instance of

SMDUML 1.4

Model of UML 1.4User Model

language2metamodel

Figure 5.7: Lowering a Language to the Model Layer

A model manager only needs to provide built-in support to convert models
from one specific metamodeling language. In the case of Coral, we only provide a
mechanism to convert an SMD model into the internal representation of a model-
ing language. This decision is arbitrary but sufficient, since it is possible to define
model transformations from other languages into SMD. Examples of these trans-
formations, which are available in Coral, are:

• From UML class models to SMD.

• From ECORE models to SMD.

• From a human-readable textual notation to SMD (similar to the KM3 [84]
notation), made by Ivan Porres.
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We consider that it is more cost-effective to define such conversions as a nor-
mal model transformation by a separate script than to provide support in the model
manager for all these languages. Other users can define as many of these transfor-
mations as required using a high level transformation language without increasing
the complexity of the model manager.

Metamodels are relatively small. Even languages as large asUML 2.0 only
have a few hundred definitions. This allows us to perform the conversion from
metamodels to languages on the fly, i.e., when a model based onone of these
languages is loaded by the kernel.

5.3.3 Enforcing Bidirectionality

Coral enforces bidirectionality according to the model constraints defined in Chap-
ter 3, with the behavior as defined in Chapter 4. There is an interesting addition for
aiding navigability, whereby unidirectional relations are always and automatically
made bidirectional in case both classes are nonprimitive types. This automatically
created property is called ananonymousproperty in our terminology, meaning that
its isAnonymous characteristic is set. It requires a careful explanation. Anony-
mous properties are useful when we want to extend a modeling language while
maintaining compatibility with other tools. Imagine that we want want to create
a new modeling language that combines UML classes and Petri nets. In our new
language we want to be able to navigate from a class to a Petri Net and vice versa.
The problem is that if we extend the definition of a UML class with a property
definition that points to the Petri net, the resulting modelswill not conform to stan-
dard UML. Other tools may have problems loading our extendedUML models,
since the models will contain references to Petri nets. EvenUML tools based on
our model manager may panic if they can reach a Petri net from aUML class, for
example, using reflection.

The solution is to hide this property by specifying that the property that links
a UML class with a Petri net is anonymous. The property is thenonly accessible
by its opposite property. In this way, only tools that explicitly know about the Petri
nets can reach these models.

An anonymous property is different than a unidirectional relation. A unidi-
rectional relation is only navigable from one property while a relation with an
anonymous property is navigable from both properties, provided we are aware of
its existence. In Coral, the only unidirectional relationsare the ones with a prim-
itive type. From an ElementPrimitive object, Coral cannot access the Slot objects
which point to it.

An anonymous slot is one which conforms to an anonymous property. It can-
not therefore be accessed directly. However, an anonymous slot can be accessed
via its opposite slot. Since anonymous properties do not have proper names, slots
conforming to them cannot conflict with existing slots in a model element or any
future extension. On the other hand, such slots cannot be serialized into an XMI
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document and are thus automatically unserializable. Only one the properties of a
binary relation can be anonymous. It is possible to simulatethe concept program-
matically, using a separate data structure. This is prone toerrors, since a developer
might forget to update it correctly. Using anonymous properties and slots is more
convenient, with usually a marginal increase in memory and processing time con-
sumption due to the anonymous slots.

It can be noted that OCL [131] explicitly permits tools to support the concept
of anonymous slots.

5.3.4 Optimizations

Performance is an issue in a model manager since industrial-size models may con-
tain millions of model elements across several files or databases. Unfortunately,
there are no standard benchmarks tests to compare Coral withsimilar tools such as
EMF or NMR. Thus we only have anecdotal experience in using the interface for
various tasks and can conclude that the Coral model manager is sufficiently fast for
interactive uses for tens of thousands of elements.

An interesting optimization is the delayed creation of slots. For example, given
that a UML 1.4 Class element has over 40 slots but usually onlya relatively small
subsets of them are used in some specific instance, it makes sense to create slots
lazily, i.e., the first time they are accessed. In the common case of using only some
slots of an element, this makes significant heap space savings, thus even giving a
net speed increase as less work has to be done.

Another optimization can be seen in Figure 5.3, where each Property object has
a corresponding empty Slot object in Property.read_only_slot. We have observed
that many routines only query the slots of elements without modifying them. For
example, saving a model queries all slots. Thus delayed creation of slots would
not be very useful, since a save operation would request all slots of all elements
that were saved, thereby creating all the slots. But, it is possible to recognize
read-only purposes in C++ with theconstkeyword, meaning a logical and shallow
constant view on an object [171]. Thus, when querying a constElement object for
Slot objects, we can return the corresponding read-only Slot object of the Property
object in question. This has considerable heap space savings, but the benefit is lost
by language bindings without the same concept of logical constness as the one in
C++, such as Python. However, algorithms written in C++ all benefit from this
optimization almost without effort from the developer.

5.3.5 Known Limitations

This section explains the known limitations of SMD or its implementation, Coral.
They are based on our experience of using the implementation, and emphasizes the
relevance of trying out an idea in practice.
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No Explicit Relations

The binary relations provided by the SMD language are formedby two cooperating
Property objects. These constitute the underlying bidirectionality that is prevalent
in Coral and other modeling frameworks. However, there is noexplicit concept for
the relation itself. This is unlike MOF 1.3 or GXL, where there are Association
and RelationClass elements to keep explicit track of relations.

There are certain small drawbacks in not using an explicit object for the rela-
tion. For example, the data in a Property object must conformin a very specific
way to the opposite Property object in a relation. For example, if one Property
object is set as a composite, the opposite cannot be composite, as explained in Sec-
tion 3.4.4 by metamodel constraint 3. This information could be encoded in the
relation, and thus no extra metamodel constraint would be necessary.

However, the biggest drawback is that sometimes we would like to refer to a
relation although we do not have an explicit object for it. Inother words, we have
a need in our modeling technologies to refer to either elements or some particular
connection between two elements (or classes, or metaclasses). We could reify a
connection into an explicit object, but we can always take this problem one step
further: is there a need to refer to the concept between an element and a relation?
And when do we stop? Andreas Prinz, Jan P. Nytun, Leiming Chenand Sun Wei
also mention this complication in [154]:

It is possible to reify (i.e., view as objects) links and associations so
that they can be modeled as objects and clabjects [sic] respectively...
The difficulty in reifying links is not in working out how to view them
as objects, but in knowing when to stop viewing them as objects...To
break this potentially infinite regression it is necessary to identify cer-
tain kinds of links as implicit or primitive links which willnot be
stored as objects.

In hindsight, we would have benefited from an explicit relation object for de-
scribing the connection between two SMD Property objects. Our current graphical
modeling layer built on top of the Coral model manager cannotshow a link as an
edge on screen because the relation is implicit. This might be merely an issue with
the graphical tool itself, but it might also indicate a more fundamental issue. Un-
fortunately we have relatively little experience in understanding this concept, but
we feel that this might be much more important than what we currently realize.

SMD is Hardcoded in the Tool

We have a lot of experience in actually using the Coral model manager, and we feel
that we can draw some conclusions on SMD itself, and on using SMD. SMD is im-
plemented as C++ code and therefore any change in SMD requires a change its
underlying implementation. A language such as SMD containsa few but very im-
portant concepts that cannot be changed easily. Also, changes in SMD may require
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changes in any other tool component based on SMD, for exampleour graphical
modeler. For example, adding shared composition to the interpretation of owner-
ship will require a major revision of the model manager. Also, most tools must be
reviewed and updated accordingly.

Having a fixed language to describe modeling languages has the implication
that users cannot develop new metametamodeling techniquesand languages with-
out developing a new tool or extending the tool they are using. In contrast to this,
an interesting idea is being developed by the Open Systems Development Group at
Agder University College in Grimstad, Norway. The SemanticMetamodel-Based
Integrated Language Environment project (SMILE) [153] ledby Andreas Prinz
strives to create a modeling framework in which the metamodels and models have
a uniform representation and different semantics can be attached [122].

At the metamodel layer, the distinction between a Package and a Language
is not very well motivated, and we could have removed the former one without
any significant loss. At the model layer, the Project class isoutside the meta-
model/model abstraction as a separate C++ class. We feel that this should have
been a class in a (perhaps special) metamodel, and then individual Project ele-
ments could be instantiated from it. Now, there are different interfaces for handling
Project and Element objects, which is confusing. Also, we believe that having both
SlotOneElement and SlotManyElements is an optimization made too early. Sev-
eral internal routines have to take both subclasses into account, which leads to more
cumbersome programming.

The current implementation of the model layer assumes throughout that ele-
ments are kept in memory. There is no support for on-demand loading and unload-
ing of models. In our research, we have not had problems with this limitation.

Primitive Datatypes

Another consequence of SMD being hardcoded in the tool is that there is no sim-
ple way to add new user-defined datatypes to SMD. This would require explicit
support from the Coral model manager to function properly. Aspecial case are
EnumerationDefinition objects, which the developer is allowed to use to define
new enumerations.

Another known limitation with the current numeric primitives is that no mag-
nitude or range limits are defined; there is no metamodel-independent way to know
if a numeric value models small or big values, and the model manager cannot be
allowed to round numbers to, for example, produce prettier output. A generic tool
has to display and store a floating-point value with the precision provided by hard-
ware or use a numeric library that supports arbitrary-precision (floating-point and
integer) numbers, both resulting in long awkward numbers. Coral currently uses
the precision of the underlying hardware for both floating-point as well as integer
numbers, as this question has not been interesting to us.
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Languages and Metamodels are Distinct

Languages and metamodels-as-models are distinct concepts. Even though there is
a one-to-one correspondence between a metamodel and a language, it would be
more convenient in practice, albeit slightly less efficient, if these were the same
objects in C++.

This is a part where we believe that Coral should have been developed as most
virtual machines like common C#, Java and Python implementations, where El-
ementDefinition (or its equivalent) is a subclass of Element, instead of being a
completely separate concept. Reusing or modifying an existing virtual machine to
accommodate the additions that modeling technology bringsus could have been a
faster path to a good implementation.

5.4 Related Work

Related work in this field can be split into two partially overlapping areas. One
area contains articles about metamodeling languages and defacto standards for
metamodeling languages, published articles on suitable algorithms and structures.
The other area includes practical implementations of thesemetamodels as software
tools.

Among the more popular languages to define modeling languages are the MOF
and EMF metametamodels. Coral has several common and similar traits with both
MOF and EMF. Eclipse itself is a full-fledged pluggable development environ-
ment and utilizes EMF to provide a good middle ground betweentwo extremes,
programming and modeling. EMF provides a subset of UML in theform of class
diagrams. It generates Java classes with get/set methods for individual slots as well
as providing a generic API for accessing all the slots.

Varro and Pataricza presented in [183] a multilevel metamodeling technique
called VPM. VPM uses covariant specialization of elements definitions and single
element inheritance.

The KM3 metamodeling language [84] and Kermeta [90] are implementations
built on top of the Eclipse platform. Microsoft has relatively recently begun their
DSL Tools effort in the context of Software Factories [66]. Essentially there are
very few differences between any of them, or with Coral. The DSL tools have
more integrated support for describing the concrete syntaxof the constructs of a
new metamodel.

Coral does not generate code for elements in a similar vein asEclipse EMF.
Instead, Coral keeps everything as models, thus primarily positioning itself as a
metamodel-based modeling tool rather than an integrated development environ-
ment for source code with round-trip capabilities.

Most modeling tools only support one modeling language. Previously this was
UML 1.3 or UML 1.4, nowadays it is usually UML 2.0. Due to this,we do not
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consider them as metamodeling tools. Although they are certainly useful, they are
limited in scope as they cannot be used for creating new domain-specific languages.

Comparing SMD with the modeling frameworks from Chapter 2, we can note
that SMD is slightly smaller than ECORE—mostly because ECORE has more
functionality in the form of operations—and provides the anonymous and superset
property characteristics.

5.5 Conclusions

The discussion about Model Driven Engineering is quite often centered on mod-
eling languages and model transformation languages. However, we consider that
it is equally important to discuss the features and development of model managers
model transformation engines and model transformation tools that support such
modeling languages and transformations. The Coral tool is an attempt to seek
practical and theoretical issues in these topics and provide a useful working solu-
tion.

All existing model managers are based on a specific metamodeling language
and all the existing metamodel kernels implement at least a subset of MOF. How-
ever, MOF as such is not a model manager as such since it is not asoftware tool.
In our approach we use SMD as the metamodeling language. SMD is similar to
MOF but it is based on fewer concepts.

In this chapter we have described how the metamodel and modellayer are im-
plemented in the Coral model manager, based on the formalization in Chapter 3.
We note that even though a formalization is extremely important, it is still difficult
to ask all the right questions when operating within a theoretical framework. Ex-
amples of such questions are what a good serialization format is, and how usable
the framework is.

Coral has been used as a library by several other projects within our research
group, such as a UML editor, MICAS, SOCOS, and several other smaller tools.
We again stress that these projects are accomplished by other people and do not
constitute a part of this thesis, except as to serve as validation of the viability of
Coral as a library for metamodeling.

Coral is distributed as open source under the terms of the GNUGPL version 2
license [59] athttp://mde.abo.fi/tools/Coral/ . The current version avail-
able is 0.9.3.

103



104



Chapter 6

Model Serialization and
Interchange Using XMI

6.1 Introduction

In this chapter we discuss issues surrounding model serialization and using XMI
in particular as the solution to model serialization. One ofthese challenges of
modeling is how to represent models in a machine-independent format to allow
model interchange between tools and systems. This exchangeformat should be
well-documented, stable and supported by different tools from different vendors.

It is important to realize why a serialization format is necessary in the first
place. The reason is rather simple. Our current global computing environment
and infrastructure consists of several weakly connected computers. What we mean
by this is that a computers is not inherently dependent on other computers, and
that we do not have a global namespace for reliably addressing and acquiring all
data that the computers contain. To be able to communicate between computers,
we cannot in general keep our data in databases or in the memory of a computer;
instead the data must be transported to the other computer. This transportation
must ultimately be accomplished as a serial stream of bits. Hence, there is a clear
need for a serialization format.

OMG proposes the use of XMI [129, 132, 137] to enable model interchange.
One of the strong points of XMI is that it is an XML [188] application, as XML
has been successfully used to support many document and model representation
standards. XML is well-documented, machine-independent and there exist plenty
of tools supporting it. Thus, we could assume XMI files shouldbe portable and
easy to parse. According to Perdita Stevens, XMI could revolutionize the use of
models in software engineering [168] by making it easy to create programs that
analyze and modify models. We fully agree with this idea. However, we must make
sure that XMI is a suitable technology for model serialization and interchange. The
contents of this chapter are devoted to solving this matter.

105



There is at least one tempting alternative to defining a serialization format ex-
plicitly for models. Automatic object serializationrefers to the technology of au-
tomatically serializing objects according to a welldefinedformat. However, our
anecdotal experience is that such serialization is tied to the internal implementa-
tion of the application in question. Modifying the application too easily modifies
the serialization format. Our current computing environment also verifies this un-
derstanding. We have almost no automatic serialization technology widely used
in a environment with multiple platforms and programming languages. Instead we
are basing our intercomputer communication formats increasingly on well-defined,
publically available documents, such as the TCP/IP, SMTP and HTTP protocols,
and the OpenDocument, PNG and HTML content formats.

The question we raise is how suitable the XMI standards are for model inter-
change in practice. We will review different scenarios for model interchange, how
suitable the current standards are to implement these scenarios and how different
tools implement the standards. We will also propose different improvements for
the standards. The results presented in this chapter have been obtained using three
different approaches. First, we have studied the OMG documents that describe
the XMI and related standards, as well as several W3C standards. We have also
performed practical experiments to test model interchangebetween different tools,
including commercial UML tools such as Rational Rose and open source model
repositories such as Eclipse EMF. Although the OMG standards are supposed to
be the authoritative definition of the model interchange formats, we have observed
some discrepancies on how different tools implement model interchange features.

Finally, we have implemented different research tools thatinclude XMI sup-
port. We have also developed a prototype multiuser model repository based on
XMI. This work has allowed us to obtain first hand experience on all the issues
that appear when implementing XMI in real applications.

This chapter is based on Publication VI. We proceed as follows. Next, we enu-
merate some requirements for a suitable serialization format, and give some usage
scenarios for model interchange. In Section 6.3, we examinethe XMI standards
in sufficient detail in both a theoretical and practical context for us to discover the
problems with them. In Section 6.4 we provide some validation of our research. We
finally go through some related work in Section 6.5 and conclude in Section 6.6.

6.2 Scenarios for Model Interchange

This section lists some basic functionality required by anyserialization technology,
and four highlevel usage scenarios for model interchange.

6.2.1 Basic Functionality

We have already discussed some of the basic functionality described in this sec-
tion in Chapter 2. First of all, any model serialization should be able to serialize
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the actual contents of a model. This includes the various concepts defined by the
metamodel, such as ordered slot contents and the associations between elements,
and it must also be especially noted that primitive values can contain arbitrary data
as strings, numbers, et cetera.

Second, we must be able to realize which metamodel has been used, and what
the type and identity of each element serialized is. As we would like to transfer
parts of our (potentially huge) model, it should be possibleto use multiple files and
connect elements from different files together.

According to the OMG standards, diagrams are expressed as Diagram Inter-
change models. Thus, a serialization technology needs to beable to deliver a model
described using several modeling languages (e.g., UML for the abstract data and
DI for the diagram data). Various extensibility mechanismsfor arbitrary nonmodel
data could be of interest as well. For a viable collaborationenvironment, various
model difference and related algorithms are certainly important.

Although these criteria might not exhaustively list all necessary features, they
serve as a set of base cases against which a serialization technology can be com-
pared.

6.2.2 Scenarios

We draw the scenarios from our experience in software engineering. We have
tried to list them in an increasing order of difficulty from the point of view of
the serialization technology. Although this list is not exhaustive, we believe it
addresses several important issues that any serializationtechnology should address.

Migration from One CASE Tool to Another

Our first scenario describes the need to move all our models from one CASE tool
to another, probably from a different vendor. To avoid vendor lock-in, we use our
serialization technology to provide seamless, robust and consistent ways to migrate
from one CASE tool to another. We plan to migrate the models once and not use
the current CASE tool any more.

This is the simplest scenario. In this case, the size of the files or the speed
of the serialization export and import process is not too important. Also we may
tolerate small defects in the migration, if they can be easily found and corrected in
the new CASE tool.

Model Interchange within a Desktop

Another scenario for model interchange is to use inter-application communication
mechanisms such as cut-and-paste and drag-and-drop to share models or fragments
of a model from one application to another. This feature is present in many com-
mercial UML tools. For example, it is possible to select a part of a UML class
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diagram, copy it to the clipboard and paste it into a Microsoft PowerPoint presen-
tation. We should note that in this case, the modeling tool isnot placing a model to
the clipboard but a picture of a model in a graphical format such as PNG, since pre-
sumable Powerpoint does not understand models. However, nothing prevents the
use of a standard model interchange format between applications running within
the same desktop.

We should note that in this scenario we will interchange justa small part of a
model. Therefore, our small file will probably contain linksto other files.

A Model Driven Engineering Tool Set

In this scenario, different tools are used to create and maintain the models. Each
tool may be specialized in a certain task, such as requirements engineering, anal-
ysis modeling, or model implementation. The tools are not necessarily used in
sequence; they could be used for forward, backward and round-trip engineering.

Since we use many different tools, the files representing ourproject may in-
clude elements that are not supported by every tool. However, all the tools should
respect and leave intact those unsupported elements, i.e.,they should be able to
load and save the elements even though they do not understandanything about
them.

A Multiuser Model Repository

In this scenario, we plan to store all the models in a central or distributed repository,
easily accessible by different developers using heterogeneous tools. The serializa-
tion technology is used as the exchange format between the repository and the
developers’ tools; in this chapter, we ignore the transportprotocol used. This is the
most demanding scenario for serialization. The files may include version informa-
tion or represent differences between models. Also, as within the desktop scenario,
we might only interchange parts of a model.

6.3 XMI

In this section, we examine the XMI 1.x standards as well as the relatively new
XMI 2.x standards. We will not go into the details, but rathergive an example
description of how example models serialized in these contents formats look like,
and how well XMI tackles the scenarios and issues described in Section 6.2. We
conclude with some ideas on how XMI could be improved.

6.3.1 Using XMI

To understand how models can be interchanged using the XMI standard we need
to understand how models are organized according to a modeling language. We

108



reuse our knowledge from Chapters 2 and 3. We can conclude that the composi-
tion hierarchy in a model forms a tree. Shared composition isnot used in OMG
standards.

As an example, we demonstrate a finite state machine (FSM) model encoded
using the two different versions of XMI. Figure 6.1 represents a particular model
in the FSM language, rendered in its own concrete syntax. Thestates are drawn as
circles with their names inside, and transitions between states are drawn as arrows.
Each transition also has a token which is the input required for the transition to be
taken.

Figure 6.1: Example Finite State Machine Model

In Figure 6.2 we show a simple modeling language to describe such FSMs.

Token

TransitionStateMachine

State

name : 

name : 

name : 

isFinal : 

String

String

String

Boolean

0..1

initial1

1 transition

*

trigger1

*1

alphabet

1..*

owner1

state1..*

outgoing*

source1

incoming*

target1

Figure 6.2: Example Finite State Machine Metamodel
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Since the XMI standard defines a series of rules to serialize any MOF-based
modeling language, we can also represent the example abstract model in XMI using
these rules. The resulting XML file using XMI 1.2 is shown in Figure 6.3, and
using XMI 2.0 in Figure 6.4. We note especially that the concept of composition
in modeling maps to the concept of hierarchy in XML.

We can see in the XMI files that a model element can refer to other elements
using thexmi:id of those elements. This is necessary since the underlying structure
of a model is a graph while an XML file is a tree. It is also possible to link across
XMI files (not shown in the figures), i.e., a model element may refer to elements
that reside in a different file. This feature enables us to useXMI in larger projects.

In the context of a modeling tool, an XMI filter is a tool component that can
create and retrieve XMI files based on one or more given metamodels. Since a
metamodel is based on a model, it can also be represented as anXMI file. We
should note that although it is possible to create a DTD or XMLSchema [193,
194] to define the structure of an XMI file this is not strictly necessary, since an
XMI filter can obtain all the necessary information about thestructure of an XMI
file from a metamodel. Actually, a metamodel contains additional information
that cannot be expressed in a DTD. An example of this are relations which are
unordered such as a UML Package owning a set of UML Classes; inXML, the
order is always important.

Furthermore, XMI has facilities for describing model differences using the
XMI.difference XML element. Also arbitrary XML fragments can be added to any
model element using XMI.Extension, or to the whole model using XMI.Extensions.

It is also import to remark what XMI is not. XMI cannot be used to define
the structure of a modeling language. This is the role of the MOF standard. Actu-
ally, XMI can be used to serialize any MOF-based modeling language including,
but not restricting to, UML and MOF itself. The fact that XMI is independent of
a modeling language is at the same time one of its strong points and major weak-
nesses. Two tools that use two different versions of the UML standard, for example
UML 1.3 and UML 1.4 will not be able to exchange models even if they use XMI.

Surprisingly, the UML and MOF metamodels do not contain information about
the diagrammatic representation of models. A UML model may state that there is
a class named "Person" in a model, but it cannot state that this class is represented
in a diagram by a rectangle in a certain position, size and color. To remedy this
situation the DI [136] standard has been proposed. DI is not amodel interchange
format but a metamodel to describe diagram information.

We should also remember XMI is neither an application programming inter-
face to retrieve information from models, such as the Java Metadata Interface
(JMI) [79], or the Eclipse EMF [28], nor a communications protocol to transport
models between systems such as HTTP [56] or WebDAV [62]. Thisimplies that
there are no standard software components to create or retrieve XMI files from a
filesystem or multiuser repository since the API and communication mechanism
for such components has not been standardized.
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<?xml version=’1.0’ encoding=’UTF-8’?>
<XMI xmlns:XMI="http://schema.omg.org/spec/XMI/1.2"

xmlns:FSM="http://www.example.com/FSM/1.0"
xmi.version=’1.2’ timestamp=’Sun, 01 Jan 2006 11:08:44 +0200’>

<XMI.header>
<XMI.documentation>...</XMI.documentation>

</XMI.header>
<XMI.content>

<FSM:StateMachine xmi.id="e1" name="Example" initial="e6">
<FSM:StateMachine.alphabet>

<FSM:Token xmi.id="e2" name="A" transition="e3">
</FSM:Token>
<FSM:Token xmi.id="e4" name="B" transition="e5">
</FSM:Token>

</FSM:StateMachine.alphabet>
<FSM:StateMachine.state>

<FSM:State xmi.id="e6" name="S1" incoming="e5" outgoing="e3"
isFinal="false">

</FSM:State>
<FSM:State xmi.id="e7" name="S2" incoming="e3" outgoing="e5"

isFinal="true">
</FSM:State>

</FSM:StateMachine.state>
<FSM:StateMachine.transition>

<FSM:Transition xmi.id="e3" source="e6" target="e7" trigger="e2">
</FSM:Transition>
<FSM:Transition xmi.id="e5" source="e7" target="e6" trigger="e4">
</FSM:Transition>

</FSM:StateMachine.transition>
</FSM:StateMachine>

</XMI.content>
</XMI>

Figure 6.3: Example Finite State Machine Model as an XMI 1.2 File

6.3.2 Assessing XMI Suitability

In this section we study some of the inherent problems that exist in the XMI stan-
dard. Many of these problems are a consequence of the rather fast development of
the standard, with multiple versions appearing in a relatively short time. Also, the
initial versions of XMI (and UML) were probably created taking into account only
some of the scenarios from Section 6.2
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<?xml version=’1.0’ encoding=’UTF-8’?>
<xmi:XMI xmlns:xmi="http://schema.omg.org/spec/XMI/2.0"

xmlns:xlink="http://www.w3.org/1999/Xlink"
version=’2.0’ timestamp=’Sun, 01 Jan 2006 11:08:44 +0200’>

<documentation>. . . </documentation>
<FSM:StateMachine xmlns:FSM="http://www.example.com/FSM/1.0"

xmi:id="e1" name="Example" initial="e6">
<alphabet xmi:id="e2" name="A">

<transition xmi:idref="e3" />
</alphabet>
<alphabet xmi:id="e4" name="B">

<transition xmi:idref="e5" />
</alphabet>
<state xmi:id="e6" name="S1" isFinal="false">

<incoming xmi:idref="e5" />
<outgoing xmi:idref="e3" />

</state>
<state xmi:id="e7" name="S2" isFinal="true">

<incoming xmi:idref="e3" />
<outgoing xmi:idref="e5" />

</state>
<transition xmi:id="e3" source="e6" target="e7" trigger="e2" />
<transition xmi:id="e5" source="e7" target="e6" trigger="e4" />

</FSM:StateMachine>
</xmi:XMI>

Figure 6.4: Example Finite State Machine Model as an XMI 2.0 File

Arbitrary Data

An important and most likely unintended consequence of basing XMI on XML
is how arbitrary (binary) data is handled. Surprisingly, XML cannot easily ex-
press any binary string of data, e.g., the null byte. There are at least two viable
workarounds for this. The first one is to Base64-encode the binary data [83], al-
though this increases the size. The second one is to support the relatively new
XML-Binary Optimized Package (XOP) [196] standard. Unfortunately, both of
the workarounds require the cooperation of all tools. Otherwise, XML supports
data using any encoding. Especially, Unicode [178] encodings are supported.

There are other limitations given by XML as well. For example, properties
from the modeling technical space are sometimes encoded as XML node attributes;
however, XML attribute names that start with the lettersxml are reserved by the
XML specification.
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Too Many Versions, Options and Optimizations

One of the main impediments to use XMI in practice is the largenumber of differ-
ent versions of the XMI standard and UML metamodels, and the already-existing
different implementation variations. At the moment of writing this text, there are
five versions of XMI (1.0, 1.1, 1.2, 2.0 and 2.1) and seven versions of UML (1.0
to 1.5 and 2.0). This means that a file containing a UML model can actually be
serialized in 35 different combinations of XMI and UML versions. The diversity
of different XMI implementations has already been studied in [82], in which Jiang
and Systä devised a method to explore differences between XMI formats using
DTDs.

As an example, the name and isActive slots of a UML 1.4 Class inXMI 1.x
has been serialization in several different ways by varioustools, as can be seen in
Figure 6.5. Special code is required to support all the different constructs.

<UML:Class name=”MyName”>...</UML:Class>

<UML:Class ...>
<UML:ModelElement.name>MyName</UML:ModelElement.name>

</UML:Class>

<UML:Class ...>
<Foundation.Core.ModelElement.name>MyName
</Foundation.Core.ModelElement.name>

</UML:Class>

<UML:Class ...>
<UML:Class.isActive xmi.value="false"/>

</UML:Class>

<UML:Class ...>
<Foundation.Core.Class.isActive xmi.value="false"/>

</UML:Class>

Figure 6.5: Example Serializations of name and isActive Slot for a Class in
XMI 1.x

The fast evolution of XMI and UML gives little room for implementers to try
it out in practice. We consider that the solution to this problem is to include in
each new version of XMI or UML, a mechanism to transform old files into the new
version. In the case of XMI, this could be achieved at the XML level by including
an XSLT [187] transformation file with the new version of the standard. In the case
of a new version of UML, the transformation could be defined using QVT.
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Some of the new features introduced in the latest version of XMI are question-
able. A new concept related to XMI appears in the mapping of MOF models to
XMI [134], where XMI files can be made smaller in size by removing some re-
dundant information and instead serializing the derived information “because the
derived form is more compact”. However, the problem is that they seem of little
use. They make it more difficult to implement working a XMI reader since the vari-
ation in input that the reader must accept is greater. We haveperformed anecdotal
experiments that suggest that these optimizations providea minimal benefit with
respect to file size, whereas standard compression tools, such as gzip, can obtain
compression ratios of up to 95% on XMI files. A “binary XML” format has even
been discussed [186, 191, 195] by the W3C, which would obviate the need for any
application-specific (i.e. XMI) compression solutions.

Additionally, very loose directions are given by the standard itself: “to allow
import, derived properties should only be made serializable if...it is possible to
reverse-derive the base information from the derived form.” The rationale of the
gain these optimizations bring is thus questionable, as they add more variability to
the XMI format.

There might be arguments for a loose model interchange specification. Jon Pos-
tel, a well-known Internet persona, used to say “an implementation must be conser-
vative in its sending behavior, and liberal in its receivingbehavior”, i.e., maximum
interoperability is obtained by being as strict as possibleto published standards
in the output, but accepting also slightly malformed input when the meaning is
still clear. This Robustness Principle [78] is often quotedas “Postel’s Law”. But
that does not mean that the standard itself should be looselyspecified. Further-
more, Postel discussed network protocols, not content formats, and even then the
principle has been questioned [158]. As an example of where not following stan-
dards leads to, the infamous abuse of HTML has forced web browsers to support
rendering in “quirks mode”, where the browser makes an educated guess on the
document’s real structure, making different browsers produce different output. We
believe this is not a path software modeling should follow.

Metamodel Identification

To be able to process a model, a tool must know its metamodel. However, XMI
lacks of a reliable mechanism to identify which metamodels are used in a file. The
problem is complicated since XMI 1.x and XMI 2.0 use two completely different
approaches.

The XMI.metamodel element can be used in XMI 1.x to identify the meta-
model used in a file (Pages 3-12 and 3-20 of [129]). An example of this approach
is as follows:

<XMI.header>
<XMI.metamodel name="UML" version="1.3" href="UML.xml"/>
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In XMI 2.0, the XMI.metamodel element has been removed. Instead, each
metamodel is assigned one or more XML namespaces. A namespace specification
may be any arbitrary string, that according to the standard “provides a permanent
global name for the resource. An example ishttp://schema.omg.org/spec/UML/1.4.
There is no requirement or expectation by the XML Namespace specification that
the logical URI be resolved or dereferenced during processing of XML docu-
ments”. In page 1-16 of [132] we can see the following example:

<xmi:XMI version="2.0"
xmlns:UML="http://schema.omg.org/spec/UML/1.4"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.0">

The new mechanism is more correct from an XML point of view, and cer-
tainly enables one to mix models of different metamodels with ease. However, it
is inconvenient as there is no published mapping between namespaces and existing
versions of UML and other modeling languages. Even if that mapping exists, it is
merely an opaque string to a tool. No information can be deduced from it, and thus
a generic modeling tool cannot work with unknown metamodels; it must know, in
advance, about the namespace mapping and the metamodel. Oursolution in the
Coral modeling tool is a user-editable table with mappings between namespaces
URIs and actual metamodels. However, this solution requires manual work by the
user and is not viable in the long term.

Another problem in creating a robust XMI import component isthat old XMI
files may combine namespaces with header information. One commercial tool
produces the following header when exporting a model to XMI:

<XMI xmi.version=’1.1’ xmlns:UML=’//org.omg/UML/1.3’>
<XMI.header>

<XMI.metamodel xmi.name=’UML’ xmi.version=’1.4’/>

The namespace declaration may suggest that the file containsa UML 1.3 model,
while the header states that it is a UML 1.4 model.

The problem of metamodel identification is an important issue and its final
consequence is that it is not possible to load new metamodelsbased on their de-
scription from the namespace URI. Therefore the current definition of namespace
declarations in XMI cannot be used as such in a metamodel-based modeling tool
that should support any user-defined modeling language.

Element Identification

Element identification is the process of obtaining a unique reference to a model
element that distinguishes it from the rest of model elements that compose all the
artifacts required in a project.

The need for unique element identification was already tackled in XMI 1.x.
Those standards provide two attributes to uniquely identify an element: thexmi.id
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andxmi.uuidattributes. Thexmi.idattribute is used to reference elements inside an
XMI file. They are unique arbitrary strings in the context of agiven file. Although
they must be retained by tools,xmi.id might need to be changed if the element is
moved to another file, since some other element in the new file might have the same
identifier. Thereforexmi.id can be a bit awkward in practice.

On the other hand a UUID is assumed to be a globally unique string, as has been
discussed in Chapter 3. UUIDs may be assigned immediately, or the first time that
an element is exported to an XMI file. Later, any standard-compliant open tool that
imports the XMI file should not change or remove the assigned UUIDs, as per the
XMI specification for open tools.

Unfortunately, many of the existing UML tools do not generate or preserve
UUID strings and cannot be used rigorously to create links between different files.
This is further examined in a small survey in Section 6.3.2.

It is possible to use other attributes instead of UUID to track the elements in a
project, for example the name of a model element. However, this has some draw-
backs. First, the name of a model element is a property of a modeling language,
such as UML, not of XMI. It is possible to define a modeling language where the
elements do not have a name. Also, even if we restrict XMI to UML, not all UML
model elements have proper names. For example, a Generalization relationship
is usually not named. The same applies to transitions in a statechart, links in a
sequence diagram and many other minor but equally importantelements. Further-
more, names can easily be changed by the designer, whereas UUIDs are supposed
to be persistent information.

Thexmi.labelattribute is of special mention. It can be used to give elements
an arbitrary name by the designer. But the standards do not explain why it should
be used instead of auuid or id attribute—so why use it?

A relatively recent addition to the XML family of standards is the xml:id Ver-
sion 1.0 [198] by the W3C which is very similar toxmi.id. Indeed when XML pro-
vides similar or superior alternatives for element identification and element linking,
we believe they should be used in lieu of the XMI standards. This allows the usage
of general-purpose XML tools for navigation in models, but would also mean that
XMI must be constantly updated to match the new standards by W3C. This also
means that the XMI 2.x standards should not invent any own syntax and instead
only incorporate the usage of XLink [189], XPath [197] and XPointer [192].

Tool Compatibility

Besides developing our own XMI tool component, we have also performed a sim-
ple study of the XMI files generated by two open source and six commercial CASE
tools. There are many tools in the market that support UML in one way or another.
The tools studied were chosen because they are popular, theycan import and export
XMI files and the vendor offers a trial or free version available on the Internet. We
have created a simple model with each of the tools and exported it to an XMI file.
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Then we have examined the generated file in a text editor to observe the header of
the file to determine the XMI and UML version of the file. The objective of this
study is to determine the effort of creating a new component that can import exist-
ing XMI files. If we would like to develop a new tool that can load and transform
models generated by the studied tools, the XMI import filter of that tool should
support all the XMI and UML versions used by the CASE tools.

A second experiment was performed to determine if a CASE toolpreserves
UUID strings. First, we have created a simple model and savedit as XMI. Then
we have edited the XMI file with a text editor and added a UUID identifier to the
Model element, the main element in a UML model. For example, in an XMI 1.x
file we will add the following string shown in bold face:

<UML:Model xmi.id=’1’ name=’Example Model’
xmi.uuid = ’123’ isRoot=’false’ isLeaf=’false’
isAbstract=’false’ isSpecification=’false’>

Then we have loaded the modified XMI file in the CASE tool. The modified
XMI file should be imported without problems. Afterward, we exported the model
again to an XMI file and opened it with a text editor. The Model element should
contain the same UUID as introduced by us. If the CASE tool modified the UUID
string or removed it completely then it does not preserve UUID strings.

The results from a small sample of tools are not too encouraging, as can be
seen in Table 6.1. UUIDs are discarded by 6 tools out of 8 tools. Also, each
tool seems to use a different combination of XMI and UML version. Of special
mention is Together 6.0, that can generate 7 different kindsof XMI files from the
same model, using different XMI versions (1 or 1.1), UML metamodels (1.1, 1.3
or 1.4) or extensions introduced by different XMI components (Unisys, IBM, or
plain OMG). XMI compatibility between several modeling tools, both commercial
and open source, have also been researched by Anna Persson etal [148, 149, 109].
Their results tell that compatibility is not achieved in almost all cases for XMI 1.x,
but XMI 2.x fares better.

Advanced Concepts

Shared composition is a concept that existed in MOF 1.x but was not kept for the
MOF 2.0 specification. It means that a model with shared composition forms a
directed acyclic graph; with composition, a model forms a tree. XMI does not
support shared composition in a meaningful way, especiallywhen considering el-
ements shared between multiple files. However, this might bea fundamental lim-
itation in the design of our filesystems, and not a fault of XMIper se. We infer
from the lack of composition in MOF 2.0 that the concept itself has been deemed
to troublesome to support.

Subsets and unions are such a relatively new idea that they have received almost
no adequate examination. As far as we know, our Coral tool is the only one to
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Tool Exporter XMI UML Supports DI
Version Version UUID

Coral Coral 1.2,2.0 1.x yes yes
EMF UML2 (no header) 2.0 2.0 no no
Magic Draw 7.1 Unisys.JCR.2 1 1.3 yes no
Poseidon 3.0 Netbeans 1.2 1.4 no yes
Rational Rose Unisys.JCR.1 1.1 1.3 no no
Together 6.0 TogetherSoft 1, 1.1 1.1,1.3,1.4 no no
Visual Paradigm 3 (no header) 1.1 1.4 no no
Visual UML 3.24 Visual UML 1 1.3 no no

Table 6.1: Tool Compatibility

support subsets and XMI serialization. There are some issues: a composite slot
subsetting another composite one, and unserializable slots.

The first issue is relatively straightforward. Instead of serializing the same
element twice (once for each composite slot) we only serialize it once, with any
remaining composite slots serialized as associations. While this is not technically
according to the XMI standard, we feel this to be a rather goodand viable solution.

The second issue of unserializable slots is not as clear. If aslot is not serializ-
able, we could assume that its contents can be derived from any opposite slots that
are serialized. However, if both slots in a bidirectional relation are unserialized, we
could also try to derive the contents (partially) from othersubset slots; needless to
say, this quickly becomes very complicated. Exactly how complicated deductions
a tool should support is not clear. Upon loading a model, Coral makes an extra pass
through the structure of the model to make sure that it is at least internally consis-
tent with respect to bidirectionality, subsetting and multiplicity. This solution is
not able to reconstruct all possible cases, but it must be deemed good enough until
the XMI standard itself is improved.

6.3.3 Conclusions

After exploring the details of XMI, we should be ready to assess in what way XMI
supports the different scenarios given in Section 6.2.

Our experience as users of different case tools suggest thateven the simplest
scenario, migration from one tool to another, can be problematic. In most cases, it
is better to concentrate on one tool and its file format, than the standard XMI file
format.

Model interchange within a desktop is a rather complicated subject, and there-
fore demands a lot of cooperation between different tools adhering to common us-
age practices and protocols. In the X Window System [163], the Inter-Client Com-
munication Conventions Manual (ICCCM) [159] defines how thedesktop clip-
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board functions. Especially it is required that data is given a MIME type [119].
However, XMI does not define a specific MIME type. In differenttools, we have
seen uses of the nonstandardapplication/x-umland text/x-xmi+xmlMIME types.
Without this small deficiency, XMI could be used for model interchange within a
desktop.

We consider a model driven engineering tool set to be a set of tools by different
vendors, cooperating using several models of different metamodels. It is clear that
XMI could be used for all this, but software modeling has not become mature
enough so the industry has not established which metamodelsto use. The lack of
metamodels of good quality is quite similar to the problem ofreusable components
and libraries in text-based programming languages.

A multiuser model repository will be discussed extensivelyin Chapter 7. How-
ever, an important conclusion is that model difference calculation algorithms are
important and that XMI.difference is not a suitable structure for them.

When analyzing the various versions of the XMI, one notices how XMI 2.0 has
taken a very different road from previous versions by aimingfor better XML and
XML namespace [185] compliance. Indeed, the change is so dramatic that there
seems to be little reason to support XMI 1.x in new tools. Unfortunately, there are
many older tools in the market than only support XMI 1.x so in many cases it is
necessary to support backwards compatibility reasons.

In light of the arguments given in this chapter, we primarilysuggest a compli-
ance test suite for checking XMI compatibility. It should consist of a set of files
with successively more advanced XMI features. The current compliance points
in appendix A of [132] are quite coarse-grained, and it is notalways possible for
vendors to know whether or not their tool provides the support they claim. Detect-
ing successful loading could be done by evaluating OCL constraints on the loaded
models as suggested by Stefan Haustein [72], although this requires an OCL or
similar interpreter for automation. The constraints wouldverify that all the model
elements, their interconnections, and the information stored in them are correct.
This alone would mean that customers can check the official XMI compliance
test scores and tremendously benefit from the interchange format. “Full compli-
ance” as so often touted by vendors would in fact be split intoseveral compli-
ance levels of XMI features, such as support for interfile linking, XMI.extensions,
XMI.difference and multiple models using multiple metamodels in one file. We
expect that a compliance suite will improve the implementation of the XMI stan-
dards in modeling tools. However, we consider that XMI should also be improved
in these directions:

• A standard mechanism for element identification. This includes a depreca-
tion of xmi.labeland enforcement of thexmi.uuididentification mechanisms.
This means that if a tool imports an element that contains a UUID, the same
UUID should appear in any future serialization of that element. We consider
that a tool should support bothxmi.id andxml:id according to user request.

119



• A standard MIME type.

• A standard mechanism to retrieve the metamodel used by a certain model, in-
cluding future metamodels. This enables the creation of generic metamodel-
based modeling tools.

• A thorough clarification on how subset slots should be serialized and inter-
preted, according to the problems discussed in Section 6.3.2.

• Each new version of XMI should include the definition of a XSLTtransfor-
mation to convert files created using the previous version. Once these trans-
formations has been defined for all versions of XMI, the XMI 1.x standards
should be deprecated due to their lack of XML compliance.

The OMG should require that each new proposal to the XMI standards should
include a compliance test suite and a transformation definition from old versions
to the new one. The result would be that end users have a guaranteed and standard
transition path for their models.

In January 2006, OMG partnered with Unisys Corporation in creating an XMI
compliance testing effort [126]. Its success cannot yet be evaluated due to its nov-
elty.

6.4 Validation of Research

We have built tools that include XMI 1.2 support (SMW [11, 152]) or XMI 1.x
and XMI 2.0 support (Coral). Since several vendors release new versions of their
software, it is not possible to give an accurate figure on how compatible our tools
are with respect to XMI. However, a lot of effort has gone intomaking Coral quite
resilient for errors in XMI, understanding several “dialects” of it. Coral has at
some point been able to read MagicDraw, Poseidon, ArgoUML and Eclipse EMF
files, for some versions of these tools, and sometimes only partially due to major
inconsistencies (e.g. using composition where an association should have been
used). Most of the tools have not supported the diagram interchange standard,
instead opting for their own proprietary diagram information; Coral is not able to
read these diagrams.

It can be noted that implementation in Coral uses a bit over 6 000 lines of C++
to support the following for any metamodel:

• Reading XMI 1.x and writing XMI 1.2.

• Reading and writing XMI 2.0, also including some EMF compatibility code.

• Reading and writing ZUML (packed XMI 1.x) files.

• Writing GXL 1.0.
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Due to an unfortunate misinterpretation of the standards when writing the in-
put/output routines of Coral, it currently does not retainxmi.id after loading a
model. There is however no particular technical or scientific challenge in mak-
ing it work.

Coral also supports the X Window System clipboard, making itpossible to
paste DI diagrams into graphics programs, or the corresponding XMI into text ed-
itors. Also drag-and-drop between multiple instances of Coral is possible. XMI
is used as an exchange format for these functionalities, with a MIME type of
text/xml;charset=UTF-8.

We have built a prototype model repository [5] that aimed to use XMI as far
as possible. However, a repository becomes much more efficient by using model
differences calculation algorithms, and we found the XMI.difference element and
documentation to be inadequate. Difference calculation and the repository will be
discussed extensively in Chapter 7.

6.5 Related Work

There are several model interchange formats available. Perhaps the most well-
known proprietary one is the undocumented Petal format usedin the Rational Rose
modeling tool, and lately the XML format used by Microsoft DSL Tools. Another
interesting format, discussed in Chapter 2 is GXL [208]. It could certainly be used
for serializing models, although it provides only a modest improvement over XMI.

Anna Persson, Henrik Gustavsson, Brian Lings, Björn Lundell, Anders Matts-
son and Ulf Ärlig have examined the usage of XMI 1.x in the context of open
source development tools [148, 149], and later Björn Lundell, Brian Lings, Anna
Persson and Anders Mattson analyzed XMI 2.x [109]. Their analysis strongly sug-
gests that while XMI 1.x is not well-established as an interchange format between
different modeling tools, XMI 2.x has fared better. This is probably because sev-
eral vendors base their tools on Eclipse EMF and therefore onthe serialization
technology and compatibility provided by it.

It is interesting to note that there are nowadays other technologies than XMI
for model persistence. The Teneo library [54] supports creating an object-relational
mapping from EMF models to a relational database. It also provides persistence
using Hibernate [74]. Adaptive provides a MOF-based repository called the Adap-
tive Repository [2] and has versioning capabilities according to their own informa-
tion. The problem with using a database for persistence was already stated in the
introduction; databases cannot easily be transported between two different users.

6.6 Conclusions

We consider that in order to apply MDE in practice, model interchange between
tools should be as frequent and simple as, for example, source code exchange be-
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tween text editors, compilers and build tools. In this chapter we have first discussed
several common usage scenarios for models that a serialization technology should
address. Then we have analyzed the XMI standards and how wellthey support
these scenarios. We have also discussed important drawbacks in these standards.
We do not present these drawbacks as a criticism to the work performed by the
OMG and its contributors but as an opportunity to improve thestate of the prac-
tice. Finally we provide solutions to some of the problems.

The current abysmal state of interchange in practice using XMI cannot be ex-
plained alone by complications in the standards themselves. We know from our
own experience that the standards are usable as such and thatit is possible to im-
plement working XMI input and output routines with a relatively small effort. Still,
basic interoperability is lacking between tools from different vendors.
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Chapter 7

Version Control of Models

7.1 Introduction

In this chapter we study how to store and manage large models during the lifetime
of a software project. The first generation of UML editors assumed a single devel-
oper working on a single model. This approach assumes that once a model is ready
there will be no major changes and it can be distributed to theprogrammers as
documentation. Programmers use the model as a reference design or blueprint for
the code to be developed, but the model is not updated any longer. In this scenario,
software evolution and maintenance reverts over to the program source code, not
to the UML model.

However, this approach is not satisfactory if we plan to use models instead
of source code as the main and most important description of our software. This
requires that any model should always be up to date. In this context, there will be
different developers working simultaneously on the same models. There will be
different versions of the same model, targeted to differentplatforms or customer
requirements, and evolution and maintenance will be carried out over the models.
This implies that we need to use a proper configuration management system to
keep track of the models.

Software configuration management (SCM) is a well-studied topic and there
are many tools available on the market. It involves several different subtopics such
as version control as well as change, build and release management. Configuration
management is a key element in the management of any softwaredevelopment
project. However, most of the existing tools are designed tomanage either pro-
gram code or informal documents in natural language. YuehuaLin et al. have
argued that we need new tools and methods customized to the idiosyncrasies of
the modeling standards for model transformations and modelcomparisons [105].
Model comparisons are especially important for SCM.

We center our study to what we consider to be the central element of a config-
uration management system for models: a model repository with version control
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capabilities. The objective of this chapter is to raise different issues that appear
when we try to create an efficient and practical version control system for models.
We also provide solutions to some of the problems, and recognize which problems
still exist. Here, we use the term efficient loosely; the mostperformant solution
(for some particular metric) is not our goal, but we want to avoid the pathological
cases, such as transferring the whole model over the networkwhen only a part of
it will suffice.

Thus, we discuss only a subset of the problems of software configuration man-
agement of models, namely that of the technicalities of versioning: calculating the
difference between models, applying a difference to an old model to create the new
one, and of merging differences created in parallel. We alsoconsider the storage
of models in a SQL server.

This chapter is based on Publications IV and VII. We are indebted to the work
of Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina and Jennifer
Widom, who described a generic routine for detecting changein hierarchically
structured information [37]. This chapter applies that method in the context of
modeling, with edit distance calculation (e.g., by Eugene W. Myers [120]) for han-
dling ordered sets.

We proceed as follows: in Section 7.2, we explain the problemof versioning
models. In Section 7.3, we explain the algorithm for calculating the difference
between two models and for applying said difference to one model, producing
the other. These algorithms alone can be used for saving transmission time or
storage space. Section 7.4 explains how these algorithms are used to create a union
algorithm between two models and their base model. Conflict situations in such
cases are a fact, and a closer look of what kinds of conflicts can be avoided are
studied. We give an outline of a model repository with versioning capabilities with
a SQL backend in Section 7.5. We describe how the work of this chapter has been
validated in the context of working tools in Section 7.6, discuss related work in
Section 7.7 and conclude in Section 7.8.

7.2 Problem Exposition

Asset, version and configuration management are important activities in any large
software development project. This is still true if we use models as the main
description for our software. These models may represent different designs of
the same subsystem, different subsystems created in parallel by several designers,
nonexecutable project data, or combinations of these cases. If the models are large,
we need special tools to compare and merge several differentmodels into a new
one that contains all the changes proposed by all the developers.

We may illustrate these problems as follows. Let us assume that the original
model shown at the top of Figure 7.1 is edited simultaneouslyby two developers.
One developer has focused his work on the classes A and B and decided that the
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subclass B is no longer necessary in the model. Simultaneously, the other developer
has decided that class C should have a subclass D. The problemis to combine the
work of both developers into a single model. This is the modelshown at the bottom
of Fig. 7.1.
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Figure 7.1: Example of the Union of Two Versions of a Model

In this chapter we study how to perform this operation in a generic way. The
problem is not trivial. In the example, if we would just perform a straightforward
union of the models, i.e., take all elements that appear in the two versions of the
model, we would obtain a model that does not contain the changes proposed by
the first developer. Our solution is based on calculating thefinal model based
on the differences from the original model. Figure 7.2 showsan example of the
difference of two models, in this case the difference between the models edited by
the developers and the original model. The result of the difference is not a model
conforming to the metamodel used by the original model. An example of this is
shown in the bottom part of Fig. 7.2. In this case, the difference of the models
containsnegativemodel elements, i.e., elements that should be removed from a
model.
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Figure 7.2: Example of the Difference of Models

We first show two algorithms to calculate the difference between two mod-
els and to merge a model with a difference. Once we know how to operate with
differences between two models, we would like to solve our original problem by
computing the union of two versions of a model as follows:

Mfinal = Moriginal+(M1−Moriginal)+ (M2−Moriginal)

Figure 7.3 shows this operation intuitively. In practise, the implementation of
this operation is complicated by the fact that the two developers may have changed
the same subset of the model. This situation can lead toconflictsand it may not
be possible to apply all changes into the final model. We will discuss conflicts in
more detail in Section 7.4.

A

B

C

+

D

–

B

=

A

D

C

Figure 7.3: Example of the Union Based on Differences

The presented algorithms are implemented in a generic way, i.e., the algorithms
are not defined in terms of a specific metamodel. However, these algorithms cru-
cially rely on the existence of a universally unique identifier for each model ele-
ment.
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These algorithms are useful in many problems that appear in model manage-
ment, especially in a distributed setting. An obvious application is a version control
system with optimistic locking that allows many developersto work on a model si-
multaneously. Also, a model repository that stores different revisions of a model
may store the difference between revisions instead of complete models, saving stor-
age space. Similarly, two computers connected by a slow linkmay interchange a
difference between models, saving bandwidth and communication time.

In the next sections, we reuse the formalization of models and metamodels as
given in Chapter 3.

7.3 Difference Between Models

This section describes how to calculate the difference between two models,Mold

andMnew. We represent the result of this operation as∆. When we apply∆ in some
specific way toMold, we will acquireMnew.

We denote all differences to be the infinite setD. Thus we would like to de-
fine the operation mdiff :M ×M →D for calculating the difference between two
models, and mpatch :M ×D→M for merging a difference to a model, such that

mpatch(Mold,mdiff(Mold,Mnew)) = Mnew

holds for two arbitrary modelsMold and Mnew. For clarity of presentation, we
use plus and minus signs for these functions, although they do not share the usual
properties of plus and minus on integers, as follows:

Mnew−Mold
def= mdiff(Mold,Mnew)

Mold + ∆ def= mpatch(Mold,∆)

In practical terms, one might consider the functions as the modeling equiva-
lents of the Unix tools diff and patch on text files [111]. Considering our previous
experience in using line-based version control systems such as CVS [34] or Sub-
version [150], an important operation is to be able to merge adifferencein reverse,
i.e., to apply a difference previously calculated as∆ = Mnew−Mold to Mnew in
some way in order to acquire the old modelMold. ObviouslyMnew+ ∆ will not
produce the desired result, since a prerequisite is that∆ only be applied toMold.
However, by suitably transforming∆ into its inverse∆̃, the straightforward equa-
tion Mnew+ ∆̃ = Mold holds. The function diffinverse :D →D accomplishes this,
and it can be noted that diffinverse(diffinverse(∆)) = ∆ holds.

To support all this, we thus need to define the mdiff, mpatch and diffinverse
functions.

7.3.1 Requirements on Metamodels

This section describes the requirements of the algorithms.In particular, we note
that these requirements are supported by MOF and by our formalization from
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Chapter 3, where we have covered the model and metamodel layer extensively.
An important property characteristic concerning the algorithms in this chapter is
ordering. An example of an ordered property is the sequence of parameters in a
method.

We assume that each primitive datatype used in a metamodel has a default
value, called the “zero” of the datatype. The default value of an integer is the
value 0, the default value of a string is the empty string, andthe default value
of an enumeration is its first value (assuming a sequence of enumeration literals)
or the empty (invalid) string, whichever is applicable in some specific modeling
environment. The default value for the contents of an unordered and ordered set of
elements are the empty set and empty sequence, respectively.

7.3.2 Description of a Difference

We have shown informally in the introduction that the resultof the difference be-
tween two models may contain negative elements, i.e., information that should be
removed from a model. We consider that it is intuitive to represent∆ in opera-
tional terms; not as a set of elements and negative elements but as a sequence of
transformations that add, remove or modify elements in a model.

We have identified seven elementary transformations in three different cate-
gories that will be used as the basis for defining a∆. These transformations are
almost the same as have been discussed in Chapter 4, where we called thembasic
edit operations. The most important change here is that we need some additional
information in them to be able to calculate the inverse, and that we do not maintain
bidirectionality or subsetting at this level. They are maintained at a higher level in
the actual difference algorithm. We also assume that it is not possible to change
the type of a model element, e.g., a UML Class cannot become a Package, and an
element cannot change its UUID. The different operations that can exist in a∆ are:

• Element creation and deletion.

– create(u, t) : Create a new element of typet with the UUID u. By
default, a new element has all its slots set to their default values.

– delete(u, t) : Delete an element of typet with the UUIDu. An element
may only be deleted if all its slots are set to their default values, and its
primitive value—if any—is a zero.

• Primitive value modification.

– set(e,o,n) : Set the primitive value of elemente from o to n. For ease
of presentation, we assume all primitive values can be represented as
strings.
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• Modification of a slot.
Modification of a slot of typep of an elemente, either by inserting or re-
moving another elementet . Depending onp, this might mean one of the
following modifications:

– insert(e, p,et) : Add a link frome.p to et , for an unordered slot.

– remove(e, p,et) : Remove a link frome.p to et , for an unordered slot.

– insertAt(e, p,et , i) : Add a link frome.p to et , at indexi, for an ordered
slot.

– removeAt(e, p,et , i) : Remove a link frome.p to et , which is at indexi,
for an ordered slot.

These operations have two properties. First, the positive operations(create, set,
insert and insertAt) are complete in the sense that they can be used to represent any
model. Second, each operation has a dual operation with the opposite effect; this
will be discussed further in Section 7.3.6.

An example of a difference between two models is given in Figure 7.4, in which
the old model is on the left and the new model is on the right. Inthe ∆, two new
elementsu2 andu3 are created. They are connected to the root Model elementu0

(not shown) via their namespace association, and the Model connects them to its
ownedElement composition, due to bidirectionality constraints. The new classu2

is connected to the old classu1 via the new Generalization elementu3, using its
specialization and generalization slots.

(u1)

∆ = [ create(u2,Class),
create(u3,Generalization),
insert(u3,namespace,u0),
insert(u3,parent,u1),
insert(u3,child,u2),
insert(u1,specialization,u3),
insert(u0,ownedElement,u2),
insert(u0,ownedElement,u3),
insert(u2,namespace,u0),
insert(u2,generalization,u3) ]

(u1)

(u2)

Figure 7.4: Difference Between Two Simple Models

7.3.3 Serialization

Operations cannot as such be saved to a disk or transferred over a network con-
nection. We need to serialize them somehow. The solution is simple: instead
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of the actual element, we transfer its UUID. Also, properties and classes are en-
coded by their name. Thus, for example the command for inserting into a slot is
not insertAt(e, p,et , i) but insertAt(uuid(e),name(p),uuid(et), i) instead. This in-
formation must be suitably encoded depending on the actual serialization format
used.

A serialization format with support for differences is XMI.It has facilities for
representing arbitrary differences between two models, using an XML element
called XMI.difference. The positive operations create, insert and insertAt can be
described in an XMI document using the XMI.add element, while the negative
operations delete, remove and removeAt can be specified using the XMI.delete
element. Depending on the contents of a particular set operation, it will be in either
the XMI.add or XMI.delete element. XMI also specifies that differences must be
applied in the order defined, which is also a requirement of the algorithms in this
chapter.

However, the semantics of XMI.difference imply unnecessary duplication of
information in some cases, and sometimes extra, unnecessary information must
be included. Also, very few actual usage reports have been published. A paper
by Annika Wagner notices that we do not wish to describe complete elements or
model fragments inside XMI.difference, and that we would rather want to omit
some information [200]. Jernej Kovse and Theo Härder did notfind any problems
in using XMI.difference, but the context of their work was specifying templatized
model transformations [96].

A better approach, and arguably within the spirit of the modeling technical
space, would be to describe the difference between two models as a model itself.

7.3.4 Calculating the Difference

Once we know how to represent the difference between two models, we can de-
scribe an algorithm to calculate it. The proposed difference algorithm has four
steps, as discussed in [37]. The objective is first to create an unambiguous bijective
mapping between the elements inMold and inMnew and then calculate an exact
sequence of operations that can transform each element inMold to the correspond-
ing one inMnew. The phases Map, Create and Delete create the bijective mapping,
whereas the Change phase handles the transformations.

The bijective mapping is done with two functionsEold :U9 E andEnew :U9

E that map UUIDs to model elements inMold andMnew, respectively.

Map

This phase creates a mapping between elements inMold andMnew. In our case, the
UUIDs of the elements serve as the map. From this, we createEold(u) = esuch that
u is the UUID ofe∈ Mold andEnew(u) = esuch thatu is the UUID ofe∈ Mnew.
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It is possible to create such a mapping without relying on theUUIDs, but it
would be a lot more difficult and resource-intensive. However, it could yield a
smaller∆.

Create

The ∆ should contain an operation to create each element inMnew that does not
exist inMold. Given our mapping between elements inMold andMnew, we define
the sequenceδC of elements that need to be created as follows:

δC := [ create(u, t) · (∀u, t · u∈ Dom(Enew)\Dom(Eold)∧ t = typeof(Enew(u))) ]

Delete

Similarly, the∆ should contain an operation to delete each element inMold that
does not exist inMnew. The sequenceδD of elements that need to be deleted is easy
to define:

δD := [ delete(u, t) · (∀u, t · u∈ Dom(Eold)\Dom(Enew)∧ t = typeof(Eold(u))) ]

After defining the sequencesδC andδD, it is necessary to update the map between
Mold andMnew to be bijective. This is accomplished by updatingEold andEnew to
have the same domain, by adding new elements intoEold which are inEnew but not
in Eold, and vice versa. The created elements have default values for all their slots.
Now there exists a set of tuples(eo,en) such that for each elementeo ∈Range(Eold)
there exists an elementen ∈ Range(Enew) such that uuid(eo) = uuid(en), and vice
versa.

Note that the setsEold andEnew now in fact contain the same number of ele-
ments, and that we can pair the elements with the same UUID. This is a special
case, in that we have assumed the UUID of an element to be unique; this is only
true within eitherEold or Enew.

Change

In this phase we match the slots for each pair of elements(eo,en), both with the
UUID u. Since both elements have the same type, their slots must conform to
the same set of properties. Thus we have a set of pairs(so,sn) for each prop-
erty in effectiveProperties(class(eo)), such thatso is a slot ineo, sn is a slot inen

and property(so) = property(sn). The task is to create operations that modify the
contents ofso into the contents ofsn. We collect all changes from all slots of all
elements into a sequenceδF , based on the following:

• For an unordered slot, create the following operations:
[ insert(e, p,et) · (∀et · et ∈ en.p\eo.p)) ] ⊳ [ (remove(e, p,et) · (∀et · et ∈
eo.p\en.p) ].
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• For an ordered slot, the order of the contents must be preserved. The smallest
sequence of changes that transforms one sequence into another is equivalent
with the Longest Common Subsequenceproblem, to which there exists ef-
ficient solutions, e.g., by Myers [120]. The result is a sequence of insertAt
and removeAt operations which, when applied toso, transforms it intosn at
minimal size cost. The sequence has length #so + #sn − 2L, whereL is
the length of the longest common subsequence ofso andsn. The operations
in the sequence should be added toδF . We omit a solution to the longest
common subsequence problem, as any one of several suitable ones can be
used with some performance differences; the details are notrelevant since
the result is the same regardless of the algorithm used.

Additionally, we may need to modify the primitive value of anelement. We
do this by visiting all pairs of elements(eo,en) in the bijection. These changes are
also added to theδF sequence.

• If eo has a primitive value which is different inen, we must create a command
to change the primitive value:
[set(eo,primitivevalue(eo),primitivevalue(en)) · eo ∈ Dom(primitivevalue)
∧primitivevalue(eo) 6= primitivevalue(en) ].

A complete∆ between two models is then specified by a sequence of all oper-
ations as created by the above algorithm. This is a sequence of element creations,
set commands and slot modifications, and element deletions,in that order, and so
∆ = δC ⊳δF ⊳δD. Such a∆ should guarantee two properties:

• For each delete operation, there is a sequence of operationsbefore the delete
operation that resets the slots of the elements to be deletedto their default
value.

• The complete sequence of operations maintains the bidirectional relations
and subsetting in a consistent state. The individual operations only update
one slot, and do not try to maintain subsets. However, we should ensure that
for each operation that updates a slot, there is a corresponding operation that
updates the opposite slot, and that no subset constraints are violated.

The algorithm proposed in this section satisfies these properties.

7.3.5 Applying a Difference

To merge a difference to a model is to apply the transformations contained in a∆
to a model.

We assume we are given a∆ = δC ⊳δF ⊳δD and a modelM = (E, type,slots,S,

property,elements). We will use slightly modified model operations from Chap-
ter 4 such that any subset/superset slot is not affected by any insertu, inserto or
remove operation; these are marked with an asterisk.
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The merge algorithm can be described by the following three steps:

1. ∀create(u, t) ∈ ∆: Create an element of typet with the UUIDu.

M′,e := create(M, t)
uuid′ := uuid[e→ u]

2. ∀ f ∈ δF : Make the changef . It is crucial that subsetting and bidirec-
tionality is ignored at this level, since there will be separate commands
in δF that handle both of these concepts. Given that our model isM =
(E, type,slots,S,property,elements), we have:

For set(e,o,n) :
primitivevalue′ := primitivevalue[e→ n]

For insert(e, p,et) :
elements′ := elements[e.p→ elements(e.p)∪{et}]

For insertAt(e, p,et , i) :
elements′ := elements[e.p→

elements(e.p)[0 : i]
⊳ [et ]
⊳elements(e.p)[i : #elements(e.p) ]]

For remove(e, p,et) :
elements′ := elements[e.p→ elements(e.p)\{et}]

For removeAt(e, p,et , i) :
elements′ := elements[e.p→

elements(e.p)[0 : i]
⊳elements(e.p)[i +1 : #elements(e.p) ]]

3. ∀delete(u, t) ∈ ∆: Delete the elementeof typet with the UUIDu.

M′ := delete(M,e) (Given uuid(e) = u)
uuid′ := {e}�uuid

The actual implementation of these transformations depends on the action lan-
guage used to transform the models. A requirement of a metamodel is that we have
a reflection interface for determining and querying the properties of all classes, and
a facility for modifying the slots of model elements.

7.3.6 Inverse of a Difference

Given two modelsMold andMnew and a difference∆ = δC⊳δF ⊳δD such thatMold+
∆ = Mnew, we can calculate the inverse of a difference∆̃ such thatMnew+ ∆̃ = Mold.
It is useful, for example if we wish to (temporarily) back outa difference for testing
purposes.
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OperationO Dual operationÕ
create(u, t) delete(u, t)
delete(u, t) create(u, t)
set(e,o,n) set(e,n,o)
insert(e, p,et) remove(e, p,et)
remove(e, p,et) insert(e, p,et)
insertAt(e, p,et , i) removeAt(e, p,et , i)
removeAt(e, p,et , i) insertAt(e, p,et , i)

Table 7.1: The Map Between Operations and Dual Operations

The map between operations and their dual operations is given in Table 7.1, and
we assume there is a function dual which maps operations fromthe left column to
the corresponding dual operation in the right column. It is needed to calculate the
inverse of a∆. It also explains why e.g. delete(u, t) needs to have the typet as a
parameter, even though that is not necessary for deleting anelement. Without it, it
would not be possible to deduce the dual operation create(u, t).

Calculating the inverse of a difference is a simple process that only requires us
to reverse the sequence of operations in∆ and replace each operation with its dual:

∆̃ = δ̃C ⊳ δ̃F ⊳ δ̃D

δ̃C = [ dual(d) · d ∈ reverse(δD) ]

δ̃F = [ dual( f ) · f ∈ reverse(δF) ]

δ̃D = [ dual(c) · c∈ reverse(δC) ]

Once we have calculated the inverse of a∆, it can be applied as described in Sec-
tion 7.3.5.

7.4 Merging of Models

An interesting problem emerges when two differences,∆1 and∆2, should be ap-
plied onto the same model. This occurs frequently in a distributed development
environment.

The objective is to apply∆1 first, then apply∆2. It should be noted that the
result ought to be the same regardless of the order in which the differences are
applied:

Mfinal = Moriginal+ ∆1+ ∆2 = Moriginal+ ∆2+ ∆1

However, since the differences are calculated relative toMoriginal, applying one∆
first would create a model which is different from the base model, and the other∆
might not be applicable as such. The base case when both deltas can be applied
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Figure 7.5: The Principle of Calculating the Final Model of Two Models and Their
Original Model

one after the other is only possible when they do not modify the same slot of the
same element; otherwise we say that aconflicthas occurred.

7.4.1 Conflicts

Consider an ordered slot with elements[B,C] and differences insertAt(A,0) and
insertAt(D,2). Applying the differences would create either the correct[A,B,C,D ]
or the incorrect[A,B,D,C], depending on the order in which the differences were
applied. In private communication with Ralph-Johan Back, the intuition on why
the former is correct relies on our understanding that we do not wish to insert an
element into a particular index, but rather into an index relative to other elements.

Another example is a set{A,B} and differences insert(C) and insert(C). The
second operation is spurious, since the first difference already accomplishes the
task: addingC to the set. Removing the other operation shortens∆. In this case
the conflict is much less serious since adding an element already in a set does not
change the set, i.e., we cannot modify the slot in an erroneous way.

Nevertheless, we need a reliable method to modify a∆ according to another
∆, and a shorter∆ is naturally preferred. The modification is necessary to avoid
errors. We define thedifference minimization operator⊗:

∆′
2 = ⊗(∆2,∆1), ∆′

1 = ⊗(∆1,∆2)

Now the equation becomes:

Mfinal = Moriginal+ ∆1+ ∆′
2 = Moriginal+ ∆2+ ∆′

1

This principle is also illustrated in Figure 7.5. Without loss of generality, this
chapter discusses only the calculation of∆′

2 = ⊗(δC2 ⊳ δF2 ⊳ δD2,δC1 ⊳ δF1 ⊳ δD1).
We also provide aconflict detection operator× which returns true if operations
conflict with each other.
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7.4.2 Conflict Resolution

The calculation ofδ′C2
⊳ δ′F2

⊳ δ′D2
= ⊗(δC2 ⊳ δF2 ⊳ δD2,δC1 ⊳ δF1 ⊳ δD1) has several

different cases: element creation and deletion, changes tothe primitive values,
unordered and ordered slots. Given our method of modifying each slot of each el-
ement with a small sequence of operations, the calculation of δ′F2

also happens one
slot at a time. The difference minimization methods of the various kinds of oper-
ations, and which conflicts can occur, are presented in the following subsections.
A common resolution is to ignore an operationo∈ δF2 instead of adding it toδ′F2

.
This also implies that for bidirectional relations, the operation for the opposite slot
must have the same resolution aso: properly ignored or added toδ′F2

.

Element Creation and Deletion

The set of elements created in∆2 are unaffected by any operations in∆1. Due to
the uniqueness of the UUID generator, the operations in∆1 cannot refer to the new
elements in∆2. Therefore, all create(u, t) operations in∆2 are valid.

Element deletion can be a source of conflicts. For each delete(u, t) operation
in ∆2, if ∆1 also has the same operation, we can remove it from∆2, since∆1 will
already delete the element.

δ′C2
= δC2

δ′D2
= [o · o∈ δD2 ∧o 6∈ δD1 ]

The worst case occurs when one∆ modifiese by adding elements to its slots,
and the other∆ has an operation for deleting it. One solution would be to ignore
the modifications and delete the element. However, it is questionable if this is the
correct behavior and has the intended effect every time, so manual resolution might
be the only viable choice. Thus the conflict detection is the following function:

×(δD1,δD2) = (∃delete(uuid(e), t) ∈ δD2

∧((∃set(e,o,n) ∈ δD1 ∧ n is not a zero)

∨ (∃insert(e, p,et) ∈ δD1)

∨ (∃insertAt(e, p,et , i) ∈ δD1)))

∨

(∃delete(uuid(e), t) ∈ δD1

∧((∃set(e,o,n) ∈ δD2 ∧ n is not a zero)

∨ (∃insert(e, p,et) ∈ δD2)

∨ (∃insertAt(e, p,et , i) ∈ δD2)))

Primitive Values

An element can represent a primitive value, depending on itstype. Due to this,
a conflict situation occurs whenever bothδF1 andδF2 change the primitive value
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of the same element. Trivially the difference minimizationretains primitive value
changes inδF2 unless the primitive value of the same element is already changed
in δF1:

⊗(δF1,δF2) = (set(e,o,n2) · set(e,o,n2) ∈ δF2 ∧¬(∃set(e,o,n1) ∈ δF1))

Conflict detection checks for two different changes inδF1 andδF2 to the primitive
value of an element:

×(δF1,δF2) = (∃set(e,o,n2) ∈ δF2,set(e,o,n1) ∈ δF1 ∧n1 6= n2)

Unordered Slots

It is easy to see that double insertions into or double removals from an unordered
set are harmless, but create an unnecessarily longδ′F2

. Therefore, we can say that
each remove(e, f ,et) operation inδF2 can be added toδ′F2

if it does not exist inδF1.
Each insert(e, f ,et) operation inδF2 can be added toδ′F2

if it does not exist inδF1.
For bidirectional relations, it is important to only add these operations toδ′F2

if a
similar operation can be added toδ′F2

for the opposite slot, which can be unordered
or ordered.

If there are no multiplicity constraints on the slot, no conflicts are possible.
In particular, many slots have a multiplicity constraint of“at most one element”.
If both differences add an element to such a slot, manual resolution must choose
which one of the operations should prevail, but otherwise the following suffices:

⊗(δF1,δF2) = [ o · o∈ δF2 ∧o 6∈ δF1 ∧ (o is remove∨o is insert) ]

There is no particular conflict detection function, since the above function suf-
fices and removes all conflicts.

Ordered Slots

The idea of difference minimization for ordered slots is to interleave the insertAt
and removeAt operations in∆2 with the ones in∆1. This is a similar operation that
the Unix tools diff3 and merge already accomplish on text files [111] and will not
be discussed further.

The most common conflict occurs when both differences insertdifferent el-
ements at the same index. Of importance is also to remember that the resulting
sequence cannot contain the same element twice.

Figure 7.6 shows an example output for interleaving orderedfeatures. Note
how the insertion ofB at index 1 pushes the insertion ofD from index 2 to index 3.
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[ A,C ]

δF1 = [ insertAt(B,1) ] ւ ց δF2 = [ insertAt(D,2) ]

[ A,B,C ] [ A,C,D ]

δ′F2
= [ insertAt(D,3) ] ց ւ δ′F1

= [ insertAt(B,1) ]

[ A,B,C,D ]

Figure 7.6: Example of a Merge of an Ordered Sequence

7.4.3 A Complete Merging System

Metamodels have, in addition to the constraints expressible by MOF, a set of well-
formed rules (WFR) which determine if a model is a valid instance of the meta-
model. On a metamodel-independent level, the WFRs of a metamodel cannot be
kept. Therefore, even a successful, conflict-free union canstill be invalid by the
rules of the metamodel. In these cases manual resolution mayseem like the only
choice, but metamodel-specific resolution may also automatically resolve some of
the problems by analyzing the resulting nonwellformed model, and modifying it to
a wellformed state.

One example of a metamodel-specific resolution mechanism presents itself
with merging diagram information. The diagram elements themselves do not have
any semantic meaning, so the information of the diagram elements is not nearly
as correctness-critical as that of the underlying abstractmodel. For example, con-
flicting diagram element coordinates on the diagram canvas can more or less be
ignored by removing or modifying the relevant operations from ∆2. Clearly, there
is a strong need for metamodel-specific resolvers, perhaps the prime candidate be-
ing a conflict resolver for Diagram Interchange diagrams.

The schema in Figure 7.7 summarizes a merging system for models, with the
original modelMoriginal being modified by two differences∆1 and∆2. The differ-
ence under modification,∆2, passes through several filters which modify it to better
fit Moriginal + ∆1. Obviously, all possible mechanic resolution mechanisms should
be tried before manual resolution is used. The algorithms described in this chapter
work as the first, metamodel-independent filter.

The merging algorithm as given works with two differences created in paral-
lel, but can be extended further. Given a base modelMoriginal andn differences
∆1,∆2, . . . ,∆n, we notice that the number of differences can be reduced by taking
the unionM = Moriginal+∆1+∆′

2, and calculating a difference∆1′ = M−Moriginal.
Now we have the same base modelMoriginal andn−1 differences∆1′ ,∆3,∆4, . . . ,∆n.
Iterating through this algorithm we have the final modelMfinal. This is important
in a version control system for models, where several developers base their work
on some common base model, and later commit it back to the repository, merging
their changes with the work of others.
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∆2

↓
Metamodel-independent resolver

↓
∆′

2
↓

Metamodel-dependent resolver
↓

∆′′
2
↓

Manual resolution
↓

∆′′′
2
↓

CalculateMoriginal+ ∆1+ ∆′′′
2

Figure 7.7: A Merging System with Three Distinct ResolutionSteps

The above mechanism also emphasizes the scalability of the approach, as an
arbitrary number of parallel differences can be merged. It remains to be investi-
gated if it is feasible in a practical context for models, or if a merging algorithm is
required which would consider more differences in parallel[115, 147].

7.5 A Model Repository

The task of a model repository is to store successive versions of a model and retain
old versions. A simple model repository can store each version of a model as a
different file containing the model as an XMI document. In such a system, the file
name can be used to identify each version of a model in the version control system.
Access control to the repository is managed by the access control mechanism of
the filesystem.

This simple repository is too coarse-grained for most practical uses. It also
lacks many important features. We may want to use the repository to keep a history
of the evolution of a model through the whole development cycle. In this case, it is
important that we are able to identify, version and retrieveeach individual element
in a model.

7.5.1 Model Storage

While a filesystem still can be used for all this, it is not efficient and we can quickly
run into problems with respect to atomicity and concurrency. An alternative is to
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store models into a database. A database can set arbitrary rules for access, mod-
ification and retrieval and transactional properties such as atomicity, consistency,
isolation and durability (ACID) are guaranteed by the database engine. Addition-
ally, it is easy to store additional metadata of the models.

The upside in using relational databases is that they have been researched very
thoroughly and industry has greatly invested in creating highly scalable and ef-
ficient products. The downside is that model information is inherently object-
oriented and it does not map naturally into the relational model. This is also
known as the impedance mismatch between the object-oriented and the relational
paradigm [113, 99].

The advent of XML has spurred research in databases particularly suited for
storing large XML documents [80]. XML repositories are verysimilar to object-
oriented databases (OODBs), and share their benefits and ills. Among the benefits
are much more flexible arrangements of data, ways to manipulate that data and
more complicated queries. However, current technology does not scale as well as
relational databases. Especially query optimization is not as well-known as in the
relational database field. Using an XML database itself could be a great advantage,
but until technology catches up, it cannot be deployed for large-scale projects. Also
XML and object-orientation exhibit an impedance mismatch [114, 100].

Next, we will have a closer look at a relational database schema required for
a model repository. It serves merely as an example skeleton of how to map hier-
archical information to relational space, and to show that despite the impedance
mismatch we can still use relational databases as the storage mechanism for ver-
sioning models.

Relational Database Schema

Formally, a relational database consists of relations, tuples and attributes. Each
relation is defined by its name and its named attributes. A tuple is a record of the
database, i.e., the actual data we are storing. The data can be cross-linked between
several relations. Retrieval consists of fetching the tuples matching a certain query,
often speeded up by matching attributes which areprimary keys, i.e., unique values
in the relation. The problem of storing models in a relational database is fundamen-
tally about mapping a graph with different kinds of nodes andedges to a relational
model.

The relational database schema consists of a static set of relations independent
of the metamodels used, and a set of relations for each class in every metamodel
used. The static set consists of database tables that maintain the version history of
the models and enables arbitrary elements to connect to other elements, whereas
the rest are purely containers of primitive model data such as strings, integers or
enumeration values.

There are two strategies to store the different versions of amodel element. The
first one is to store each individual version as a different element including all its
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attributes. The second alternative is based on the previousdiscussion on differences
between models. We can store only the difference between twoversions of a model
instead of the complete model elements.

If we store complete model elements, the database will require more space.
If we store only the differences between revisions of an element, the size of the
database will be smaller, but the queries will be more complex and require more
processor time. To simplify our exposition, we present onlya database schema
where model elements are stored completely. We also do not discuss tables re-
quired for a full repository implementation requiring for example transaction his-
tories, branching and access control, and omit various string encoding rules.

To clarify, the database tables that we are about to discuss in this section have
been collected below. Where possible, the database has received hints of which
columns can be indexed, made primary keys, or reference other tables. Indexes
group together a set of rows with the same column data, primary keys define
uniqueness of rows in a table and references provide integrity between the various
database tables. These common database layout enhancements speed up queries
considerably, and provides some referential integrity in the database. They are
marked with the keywordsindexed, primary andreferencestablename :

• Model = (model_revisionindexed, element_revision )

• ElementType = (UUIDprimary , typereferencesClassNames )

• RevisionUuid = (revisionprimary , UUID)

• Connections = (revisionindexed, namereferencesConnectionNames , tar-
get, index)

• ConnectionNames = ( nameprimary )

• ClassNames = ( nameprimary )

• Additionally, one table for each metamodel class or enumeration is required.

In the database schema, the table Model consists of a map between model re-
vision to element revisions. The ElementType table contains a row for each model
element in a model. It has two columns, the UUID of the model element and the
type of the model element. We assume that an element cannot change its type.
Each revision of an element receives a revision number whichis unique for the
repository. To know what UUID a revision has, we must keep a RevisionUuid
table which maps revisions to UUIDs.

A revision of an element consists of data of primitive type, and of links to other
elements. These are collected into two different tables, ofwhich one is specific
to the metamodel type, and the other is generic. The name of the specific table is
created based on the full name of the modeling language and the name of the class.
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revision name visibility isAbstract . . .

5 Class1 public false . . .

9 Class2 protected true . . .

13 Class3 private true . . .

Table 7.2: An Extract from an Elements_UML14_Class Table

For example, the table Elements_UML14_SimpleState is usedto store SimpleState
elements from the UML 1.4 language, and Elements_UML14_ is just a prefix to
avoid name collisions with other tables unrelated to the UML1.4 language. Each
row in this table will represent a specific revision of a modelelement of that given
class. The primary key of the table is the revision number of the model element.
The other attributes are the properties of primitive type ofthe element. Another
example of a metamodel-specific table can be seen in Table 7.2.

The generic table is called Connections and maps the connections between el-
ements. Since a slot of an element contains a set or sequence of references to
elements, it is important to be able to remember the positionof elements for or-
dered slots. Thus, Connections is defined as (revision, name, target, index). Here,
revision is the repository-unique version identifier of ourelement. Name represents
the name of the property, e.g., ownedElement for a Package owning several classes.
Curiously, target must reference the UUID of the target element, not its repository
version identifier. This is inherent in the bidirectionality of slots in most modeling
languages. If we had two interconnected elementsA andB and repository revisions
were used exclusively, andA were to change, its revision identifier changes, and
thus the database tuples ofB would change, resulting in a change of its revision
identifier as well! This would cascade through the whole model and create new
revisions of every element in the model. This is clearly not desired, and thus links
must be from a revision to a UUID. Then RevisionUuid and Modelcan be used to
retrieve the actual revision to use. The final column, index,simply keeps track of
which element should be in which position in the slot. This isrequired since few (if
any) relational databases keep their records in order. An example of a Connections
table can be seen in Table 7.3.

Naturally, there are several more ways to encode the same information, and
several optimizations that could be made, especially space-wise. For example,
since the set of properties is known, we can also have separate Connections tables
for each, in this case for example Connections_UML14_Package_ownedElement,
thus making some of the information implicit in the table name. Also, a trivial
optimization is to split the Connections table in two, one for all unordered prop-
erties (thereby making the fourth attribute index unnecessary), and one for all or-
dered properties. The main drawback of these optimizationsis that the number
of database commands that must be used increases, and thus there is a risk for an
effective slowdown of the repository. This, however, can only be determined by
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revision name target index
1 parameter E2 0
1 parameter E3 2
1 parameter E4 1
2 behavioralFeature E1 -1
3 behavioralFeature E1 -1
4 behavioralFeature E1 -1

Table 7.3: An Extract from a Connections Table

performing empirical tests since the actual performance varies from one database
to another.

In order to aid in debugging the database, several string constants are kept in
some tables, and rows of the other tables reference these strings. Each enumeration
is kept in separate table, e.g., Enum_UML14_VisibilityKind, and the enumeration
strings for attributes in the element tables keep references to those strings. Thus,
the user debugging sees the actual enumeration strings instead of obscure enu-
meration numbers, while still keeping the memory requirements low. All element
names and all property names are also kept in separate tables, ConnectionNames
and ClassNames, for the same reason.

7.5.2 Access Control

Access control defines the mechanisms by which read or write access to parts of the
model are defined and modified. Access control can be implemented at different
levels of granularity. The access control level that is easiest to understand and
implement is access control at the model level. In such a mechanism the repository
may grant read-only or read and write rights to a whole model for a specific set of
developers.

However, in some projects, limiting access for developers to only some parts
of a model may be important, or even mandatory. As an example of limiting read
access, security-related information is to be disclosed only to a specific set of de-
velopers. A more common scenario is limiting write access, such that a group of
developers may work on a part of a model, and another group on another part. In
such cases, it might feel intuitive to set the granularity ofaccess at the element
level, whereby read or write access is determined based on the elements that a
developer wants to read or change. However, this may be impossible due to bidi-
rectionality. Modifying a slot implies the modification of the opposite slot.

For example, consider a class which has write restrictions.In UML, this class
is represented as different properties, including its name, attributes, superclasses
and subclasses. It is then impossible to create a new class asa subclass of this
write-restricted class, since that requires modification of the specialization prop-
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erty of that class—which the developer is not allowed to modify! However, most
developers would consider these changes harmless to the original class. This is
because while some properties carry semantic meaning for anelement, other prop-
erties only act as a navigational aid.

Clearly, the level of detail in access control must be based on the properties of
elements, not on the elements themselves. In some cases, thedeveloper ought to
be able to use a class, subclass it but not add new operations or change existing
attributes. The distinction cannot be made by allowing or disallowing write access
to the class element itself, but to the properties of the class.

7.5.3 Client-Server Communication

Most repositories are usually centralized systems that allow different developers to
work simultaneously on the same project. In this case, the repository resides on
(at least) one server and the client computers read and update parts of the reposi-
tory as needed. We would like the communication between the repository and the
client to be based on open standards so we can seamlessly use tools from different
vendors. This includes two different standards: a standardto define how and when
information is transferred and a standard to define the format of the information
that is being transferred. XMI as such does not define a protocol for transferring
models over a network, only the encoding of a model. Special interest groups, sep-
arate from OMG, are advancing the state of the art of distributed authoring, and are
creating official Internet standards to fill this void. Good examples are the IETF
WebDAV and Delta-V working groups, which have defined “HTTP Extensions for
Distributed Authoring—WEBDAV” (RFC 2518) [62] and “Versioning Extensions
to WebDAV” (RFC 3253) [44] to ease communication in a distributed development
environment. These standards can be used for a protocol between a model reposi-
tory and the client tools, such as a UML editor. It is beneficial to examine in more
detail what operations especially related to models these relatively new protocols
should provide in order to become de facto standards of modeltransportation.

Many times a client will not be interested in all the elementsin a model but
only in a subset of them. The problem is that a client might notknow the name or
the UUID of a certain model element in which it is interested.The reason the client
should not download the whole model is due to the comparatively low bandwidth
between the client and the server. There are two main solutions to this problem:
one is to let a client seek elements in the model and the other is to implement a
query language.

In the first solution the server should provide a simple interface with two ser-
vices: one service, namedgetRoot, returns the UUID of the root element in a
model, while the second service,getElement, accepts a UUID as a parameter and
returns the model element associated to it. As an example, wecan assume our
repository contains a simple UML model with two packages andone class as shown
in Figure 7.8. For simplicity, we use integers to denote the UUIDs.
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Model UUID=1
name=“Example”
ownedElement={2,3}

Package UUID=“2”
name=“Sales”
ownedElement={4}

Class UUID=“4”
name=“Customer”

Package UUID=“3”
name=“UI”
ownedElement={ }

Figure 7.8: Example Repository Client Access

In the example repository, if a client invokes the servicegetRootthe repository
will return the value “1”, i.e., the UUID of the main element in the repository. If the
client invokesgetElement(“1”), the repository will return all the properties of the
element with UUID “1”, including the property named ownedElement. In UML,
this property describes the contents of a model or a package.In the repository the
model contains the packages Sales and UI, therefore the ownedElement property
will be the set{ 2,3 }, i.e., the UUIDs of the previous packages. The client can
use these UUIDs to continue traversing the models. This interface can be naturally
extended to include revision numbers, for examplegetRoot(5)will return the root
element in the 5th revision of the model.

An alternative solution is to use a query language, something akin to the SQL
in the world of relational databases. In this case, the client will send a query as
a text string to the repository that will evaluate the query against all elements in
the model and return those which satisfy it. We can use different alternatives as
a query language. OCL [203] is used in the UML metamodel to define additional
constraints over valid UML model elements, but it can also beused as a query
language. As an example, if a client sends the queryself.oclIsKindOf(Class) and
self.name=“Customer”to our example repository, the repository will return the
set{ 4 }. The result is a set since there can be more than one class withthe name
Customer.

We would have to extend the current OCL standard with queriesto retrieve
version information so we can perform queries against the version history of the
repository such as the following:

self.name = “Customer” and self.lastEdited < “24 Dec 2006”

which returns a set of all those elements with a name of “Customer” which were
edited before the specified date.
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An alternative to OCL is to use some other query language based on XML, such
as XQuery [199]. However, this approach neither solves the need to know how the
model information is arranged in the UML metamodel in order to create a complex
query, nor does it provide a direct solution to querying version information.

7.6 Validation of Research

Considering only technical issues, the most basic problemsin version control sys-
tems are in calculating differences between models, and merging one or several par-
allel differences together into a final model. As a proof of concept, the algorithms
in this paper have been used to create a simple centralized SQL model repository
server [5] using XML Remote Procedure Calls (RPC) [179] overHTTP [56].

The server supported describing model updates to clients using the difference
algorithm, and the clients used the merge algorithm to include the update into the
client code, while keeping client changes intact. The commits to the server were
done similarly.

Primitive automatic conflict resolution in the form of a metamodel-independent
resolver was included. There was no metamodel-dependent resolver part; diagrams
unfortunately were not described as models so they could never be stored into the
repository. The metamodel-dependent step can also be considered as a quality-of-
implementation issue, since a manual resolution mechanismshould still catch any
remaining conflicts. In the implementation, even a crude graphical interface for the
manual resolver was never finished; usability was thus a major concern.

Nevertheless, all the algorithms presented here were part of the System Model-
ing Workbench by Ivan Porres et al. [11, 152]. Currently, thedifference algorithm
has also been implemented in the Coral modeling framework, with a metamodel
specifically for describing model differences.

7.7 Related Work

As described by Yuehua Lin, Jing Zhang and Jeff Gray in [105],the topic of ver-
sioning models is very important. During the recent years there has been some re-
search in the area, mostly by combining algorithms from graph (tree) and word/text
theory, as we also have done. Furthermore we can split the research into different
areas, depending whether or not order of elements are taken into account, and
whether the elements need persistent identifiers.

Ignoring the order criteria leads to very fast change detection for hierarchical
information [202], and this has also been researched by [212]. While this ignorance
is convenient it is too lax, as the order of element references in slots is not kept.

Since XMI is an XML application, one could assume that ordinary XML merg-
ing tools could be used. However, they are too strict since all nodes in XML have
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to be kept in the correct order. A good tool must take into account ordering only
when necessary, in order to minimize manual resolution.

Rather than using persistent identifiers for the mapping phase as described in
Section 7.3.4, we could use some other mechanism. Other possibilities include
matching by element name or some more complicated similarity function [210, 87].
However, such results are heuristics and might thus produceerroneous mappings,
but they might be necessary since UUIDs might not always be available.

Cicchetti et al. have described a model difference metamodel [40] and a way
to compose several difference models [41]. However, the details of how this model
weaving is accomplished are not discussed.

Prawee Sriplakich et al. [165] also describe algorithms forcalculating the dif-
ference and merging of several differences. Interestingly, insertions into ordered
slots do not use integer indices. Rather, an identifier to theelement after which the
insertion should be done is given. This avoids having to modify the indices when
merging two modifications to the same ordered slot. They alsocorrectly note that
for a bidirectional relation with an unordered slot, the difference calculation of that
slot can be derived from the difference calculation of the opposite slot. They also
have a difference metamodel, but conflicts do not have one. They do not discuss
difference inversion.

An interesting way to display differences is coloring. Here, a special “union”
is calculated such that a difference is shown on top of a base version [125, 124].
Usually the common parts are shown in black, whereas addition and removals of
elements are displayed in two different colors. In [125], the difference calculation
also has a separate operation for aposition shift, which is emulated by our algo-
rithm with an insertAt/removeAt pair of operations. It is not clear if either choice
has any significant impact.

An interesting use case for model differences is given by Lin, Zhang and Gray
in [106]. They integrate model difference and difference visualization routines into
a model testing framework, where model differences are usedto compare test re-
sults with the expected output model. Dimitrios Kolovos, Richard Paige and Fiona
Polack also use model differences for model compositions and model transforma-
tion testing in [94].

An important break-through in practice can be expected fromEclipse, in the
form of the new EMF Compare project [27]. It is a work in progress component
with the goal to provide model comparison and merge support for EMF. It also
has a better separation of concerns in its architecture thanthe algorithms in this
chapter. It especially considersmatchinga separate activity from calculating a
difference. It can thus perform matching using different algorithms, which is a
clear improvement.

The model repository with version information using a SQL backend described
in this chapter is merely a proof of concept tool. As already stated in the previous
chapter, the relatively new Teneo library [54] supports creating an object-relational
mapping from EMF models to a relational database.
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It is noteworthy that most successful textual repositorieswork on a line-by-line
basis. However, Coven [39] emphasizes fine-grained management of textual code.
Model repositories provide a similar fine-grained versioning of elements and their
interconnections.

7.8 Conclusions

This chapter has presented several metamodel-independentalgorithms regarding
difference calculation between models. We have described adifference calculation
algorithm between two models and a merging algorithm for applying the difference
to the original model to produce the target model. Additionally, we have shown
how to perform the operation in reverse, producing the original model starting from
the target model and the original difference. These algorithms describe a difference
as a sequence of operations. The set of operations is complete and each operation
has a dual.

Although calculating the inverse of a difference is a rathersimple operation
and not really discussed by other related work, we consider it to be important nev-
ertheless. At least its textbased equivalent (i.e., reverse patch) is frequently used
and useful.

Our work is heavily dependent on persistence of element identifiers, but we do
not see that as an issue. For example in the context of a development project within
a company it can be assumed everybody uses adequate tools andversion control
supporting element identifiers.

Furthermore, the difference calculation is used to form a union algorithm,
where two separate modifications are made to a base model, andthe union al-
gorithm combines both differences into one model by properly interleaving, where
possible, the operations in the latter difference with the former difference. At all
times, distinguishing unordered slots from ordered ones isimportant, since conflict
resolution is greatly simplified with unordered slots.

There are several cases where merge conflicts are a fact and manual resolution
is required, as is also the case with textual programming languages. Modifying the
same ordered slot easily creates such situations. For bidirectional relations, both
the slot and its opposite slot must be kept in synchronization. The extreme case
of deleting an element even though another difference merely modifies it slightly
leads to a complicated question; which difference should beprioritized? It remains
to be seen whether a union algorithm can work by merging only two parallel dif-
ferences, or if more differences have to be considered simultaneously.

Additionally, we have shown how to use these algorithms to create a version
control system. However, these basic algorithms should be extended to support
metamodel-specific resolution mechanisms, and usable manual conflict resolution
from the user’s point of view is a major hindrance to the adoption of collaborative
development of models. Conflicts also need more rigorous handling, perhaps in
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the form of a separate conflict metamodel. Further work in thegeneral area of dif-
ference calculation, merging and version control is required as automatic conflict
resolution is important to enable models to become the primary software artifact.
The technology transfer into vendor tools is also lacking, as usability is a big prob-
lem.

149



150



Chapter 8

Diagram Handling

8.1 Introduction

To fully realize the Model Driven Engineering [89] vision weneed to define model-
ing languages and model transformation languages rigorously and we need to pro-
vide software development tools supporting them. To ensureinteroperability, long
term availability and support, these languages and tools should support accepted
standards. Software modeling languages are often based on visual notations since
this brings important benefits to software development [70]. As a consequence,
model transformation languages and model transformation tools need to support
visual notations in one way or another.

The Object Management Group (OMG) maintains a series of modeling stan-
dards that are used by the industry and studied by the academia. One of the main
characteristics of the technical space [19] defined by the OMG modeling standards
is that the abstract syntax and concrete syntax of a model aretwo different artifacts
that are defined and maintained independently. The abstractsyntax of a language
can be defined using the Meta Object Facility (MOF) [139] and the UML 2.0 In-
frastructure [142]. To represent the concrete syntax or diagrams of a model, the
OMG provides a standard called Diagram Interchange (DI) [138] to interchange
two-dimensional diagrams. DI is a language that has been defined following the
same metamodeling approach as MOF and the UML. However, DI isnot specific to
UML. It can be used to represent UML diagrams as well as diagrams for domain-
specific modeling languages.

We must emphasize our understanding of the separation into abstract and con-
crete models. An abstract model contains the modeled data, whereas a concrete
model does not contain any information relevant to the modeled data. Thus, a con-
crete model is only necessary for displaying to a human being. For example, using
colors in state machines to denote any information of relevance is not a proper use
of diagrams, unless that color information is based directly on the information in
the abstract model.
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DI is a key standard to allow the interchange of models between tools that
need to represent, create or transform diagrams. Examples of these tools range
from simple diagram viewers to full-featured interactive model editors or model
transformation tools.

Many researchers have studied the definition of new model transformation lan-
guages and tools that support in one way or another these OMG standards. The
OMG also proposes a standard for a model transformation language called Query-
View-Transform (QVT) [133], but there are many other interesting transformation
languages and tools, such as [46, 146, 86, 21, 181]. However,most of the existing
transformation languages and tools are based on the abstract syntax of a modeling
language. Therefore, they do not deal with diagrams as such.

A transformation definition could include rules to update the diagrams associ-
ated to a model, since, in fact, diagrams are just organized as another model. We
consider that this approach is not satisfactory due to the fact that diagram transfor-
mations are rather complex but independent of the semantic transformations and,
therefore, they can be reused from one model transformationto another. That is,
it is possible to define rules to create and update diagrams that are independent of
the actual model transformations.

In this chapter, we describe a way to create and update diagrams after execut-
ing a model transformation. We exemplify this idea by creating a domain-specific
mapping language called DIML, and show how we have used it to provide a map-
ping from abstract models to DI diagrams. We assume a tool setting as shown in
Figure 8.1: model transformations are executed by a generictransformation com-
ponent that updates the semantic information in a model based on a transformation
definition. Once the transformation is completed, a genericdiagram reconciliation
component updates the diagrammatic representation of a model based on a diagram
definition. A key requirement for these tool components is tofollow the existing
OMG standards and to be able to interoperate with existing modeling tools.

This chapter is based on Publications II and III. We proceed as follows: first,
we briefly discuss how models and diagrams are organized according to the OMG
standards in Section 8.2. In Section 8.3, we describe a language to define mappings
between models and DI diagrams. In the following two sections, we describe how
these mappings can be used to construct a diagram creation and reconciliation com-
ponent for new and existing diagrams. We discuss our experiences in implementing
this approach in a tool in Section 8.6. Finally, we conclude with a discussion on
related work in Section 8.7 and final remarks in Section 8.8.

8.2 Models and Diagrams

A complete discussion of modeling languages is out of the scope of this chapter
but has been discussed in Chapters 2 and 3, where related workhas also been
mentioned more extensively. However, from the point of viewof this chapter, it
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Figure 8.1: Diagram Reconciliation in a Model Transformation Toolchain

is merely necessary to require a modeling language to exhibit these two important
features:

• Classes and instances: The type of a model element is defined as a class that
can inherit the properties of other classes. Each element has one single type
that defines all its possible slots. Each slot always belongsto one element.

• Separation of abstract and concrete syntax: Models as such only contain se-
mantic information but not how to represent it diagrammatically. A different
language is used to define the visual appearance of a model. Therefore, a
model and its diagram(s) are different artifacts maintained independently.

We consider that the work described in this chapter can be used in any mod-
eling framework that exhibits these two features. In the rest of this section we
briefly discuss the language proposed by the OMG to define the concrete syntax of
a model.

An example fragment of the UML metamodel describing state machines is
shown in Figure 8.2. It must be noted that we have simplified the metamodel for
the purposes of this chapter. We will use this metamodel later in this chapter.
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Figure 8.2: A Simplified Fragment of the UML Metamodel for State Machines

8.2.1 The Diagram Interchange Metamodel

The purpose of the OMG Diagram Interchange is to allow the diagrammatic repre-
sentation of concepts in a model. DI is a rather small language with only 22 classes;
a relevant subset of them is shown in Figure 8.3.

There are basically four main concepts in DI: GraphNode, GraphEdge, Graph-
Connector and SemanticModelBridge. A GraphNode represents a rectangular or
elliptical shape in a diagram, such as a UML Class or an Actor,while a Graph-
Edge represents an edge between two other elements such as two nodes in a UML
Association or a node and another edge such as in a UML AssociationClass. A
GraphConnector is used as an anchor point for an edge. Nodes,edges and con-
nectors have different properties to define the position anddimensions in a two-
dimensional space. It is also possible to define other features such as colors or
fonts to be used to render these elements.

Finally, a SemanticModelBridge is used to establish a link between the seman-
tic or abstract model and the diagrammatic model. For example, a GraphNode rep-
resenting a UML Class is connected to that class using a SemanticModelBridge.
There are two types of bridges. A Uml1SemanticModelBridge uses a directed
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Figure 8.3: A Subset of the Diagram Interchange Metamodel

link to an element, while a SimpleSemanticModelElement contains a string prop-
erty called typeInfo. These concepts are explained in more detail in the DI stan-
dard [138].

Figure 8.4 shows an example of a fragment of a UML model. The left part
of the figure is an object diagram showing a simple state and its diagrammatic
representation in DI. On the right hand side of the figure the same model fragment
is shown, rendered as an image. The dashed arrows in the figurerepresent how
each individual node in the DI model is rendered. This image was created by a tool
based on the information contained in the UML model, such as the name of the
states, the DI model, such as the layout of the states, and built-in knowledge about
the UML notation for state machines, such as the fact that a state is represented as
a rectangle with rounded corners. In this case the image was rendered by the tool
as Encapsulated Postscript [3]. However, it is also possible to render the image in
other graphical formats, such as SVG [190].

From the object diagram we can see that this DI model containselements nec-
essary for displaying and layouting information retrievedfrom the UML model. To
simplify the figure, we have omitted some UML and DI elements.We especially
do not show the Uml1SemanticModelBridge elements but merely a directed link
between DI graph elements and the UML elements. We should also note that we
show the links that correspond to composition associationsusing a black diamond.
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Figure 8.4: Rendering of a DI Model to an Image

Although the notation of this object diagram is not defined inthe UML standard, it
is useful for the purposes of this chapter.

In Figure 8.5 a larger example of a fragment of a UML model is shown. The top
part of the figure is a simple UML statemachine model with two states connected
with one transition, presented as a UML object diagram. The bottom part of the
figure shows the same DI model rendered as an image. This example shows the
states represented as nodes and the transition representedas an edge containing
nodes in the same DI Diagram. From this figure we can also see that DI uses
GraphConnectors for connecting the endpoints of an edge to other DI elements.
Although the GraphConnectors are not visible in the rendered diagram, they are
important for layouting the edges.

8.2.2 The Diagram Reconciliation Component

The diagram reconciliation component can create new diagrams or update existing
ones. New diagrams may be created if there were no previous diagrams in the
model, for example the transformation component is actually a reverse engineering
tool that has created a model from code, or when the transformation maps a model
from one language to another. On the other hand, a transformation component may
sometimes perform a partial change in a model, where only a subset of the existing
elements are updated, added or deleted. In this case, the diagram reconciliation
component should try to preserve as much information from existing diagrams
such as layout, colors and fonts as possible. That is, the diagram reconciliation
component should work incrementally, performing the minimum set of updates
necessary to maintain consistency of existing diagrams with the abstract models.

In our approach we consider the transformation definition and the diagram
definition to be two different artifacts that can be defined and maintained inde-
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Figure 8.5: (Top) UML Model in Gray with Two SimpleStates anda Transition
and its Diagram Representation in DI (Bottom) DI Diagram Rendered Using the
UML Concrete Syntax

pendently. The same applies to the transformation and the diagram reconciliation
components: they can run in the context of an integrated modeling environment or
they could be completely different tools.

We consider that there are several important benefits in thisapproach. First,
the construction of new transformation tools and the definition of new transforma-
tions is simplified since they do not need to deal with diagrams. Secondly, it is
possible to create different diagrammatic representations from the same semantic
information. Also, it allows a market of independent tool components to transform
and update models and diagrams. Finally, the tool componentin charge of diagram
handling can be optimized to its specific task and therefore it can be more efficient
than a generic transformation engine.

8.3 From Models to Diagrams

We have seen in the previous examples that DI provides us withthe basic classes,
the instances of which can be combined to create diagrams. However, neither the
UML nor the DI standard tell us which classes we should use to create a spe-
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cific diagram to represent a specific model (Appendix C of [138] does not provide
adequate information for either UML 1.4 or UML 2.0). As we have seen in the ex-
ample, this task is not trivial since each UML model element is represented using
many DI elements and the mapping between the model element and its diagram
representation cannot immediately be derived. This in turncomplicates the inter-
change of DI diagrams between modeling tools, as diagrams created by one tool
may not be compatible with the diagrams the other tool creates. Full compatibility
can be ensured only if the tools use the same definitions for creating the diagrams.

To be able to create a truly reusable and independent diagramreconciliation
component, this component should support different modeling languages and be
based on standards. The first requirement implies that the rules to create or up-
date diagrams for a given modeling language should not be hardcoded into the
transformation tool but defined in a tool-independent format that can be loaded by
the reconciliation component at runtime. The second requirement implies that the
diagrams created or updated should conform to a standard diagram interchange for-
mat such as DI. This would allow the user to view and edit transformed models in a
DI-compliant model editor. Currently, we are only aware of one commercial tool,
Gentleware’s Poseidon [61], that supports DI. We consider this tool as a reference
implementation of DI.

To address this issue, we have created a language called the Diagram Inter-
change Mapping Language (DIML). Its purpose is to define mappings between
classes in MOF-based modeling languages, such as UML, and corresponding el-
ements in the DI language. An overview of the DIML language with respect to
other modeling languages can be seen in Figure 8.6. In this figure, a dashed ar-
row indicates conformance, and a plain arrow indicates usage. We assume that this
mapping language is defined using the MOF standard. The actual mappings are
described using a model in this mapping language. Each of these models maps
an element in the modeling language to a set of elements in theDI language. This
information can then be used by an application of this mapping language that inter-
prets the mappings and applies them to actual models and diagrams. Thus, DIML
is a domain-specific weaving metamodel.

We can see example DIML models for UML StateMachines, SimpleStates and
Transitions shown in Figures 8.7, 8.8 and 8.9 respectively.These mappings con-
form to the simplified structure of StateMachines presentedin Figure 8.2. In the
figures, an abstract element on the left is mapped to a hierarchy of diagram el-
ements as DIML Parts. Each part, shown as rectangles, maps toa GraphNode,
GraphEdge or Diagram in DI. The directed arrow corresponds to the mapping con-
cept, whereas the edges with black diamonds correspond to element ownership
based on guard and selection statements, the former inside brackets. The hierar-
chy forms a parameterized skeleton which when transformed into DI elements in a
specific context gives us the intended result.

An example of the application of these three mappings was seen in Figure 8.5.
The topmost part of the figure (colored gray) shows a StateMachine with two Sim-
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Figure 8.6: Overview of the Mapping Between Models and Diagrams

DiagramPartUML14::StateMachine

Delegation Delegation

diagramType : = "StateDiagram"

self.subvertex self.transition

Figure 8.7: The DI Mapping Rule of StateMachines

pleStates and one Transition. When the mapping for UML StateMachines (Fig-
ure 8.7) is applied to the StateMachine, a DI Diagram will be created. When the
mapping for UML SimpleStates (Figure 8.8) is applied to the SimpleStates and
the mapping for UML Transitions (Figure 8.9) is applied to the Transition, DI el-
ements will be created for these UML elements. Finally, these DI elements will
be connected to the Diagram. As a result, the DI model shown inthe middle of
Figure 8.5 is obtained. By comparing the DIML models to the actual diagram, we
see that not all DIML Parts are represented in the resulting diagram. For example,
there is no StereotypeCompartment for the SimpleStates. This is an example of the
parameterization; since the SimpleStates had no abstract Stereotype elements, the
guard “self.stereotype–>notEmpty()” in the DIML model returned false and thus
no StereotypeCompartment was created.

Thereby the three mappings for StateMachine, SimpleState and Transition from
Figures 8.7, 8.8 and 8.9 have been used to create several DI tree fragments as out-
lined by triangles in Figure 8.10, yielding the final DI Diagram in Figure 8.5. The
GraphConnectors are used to connect GraphEdges together with GraphElements.
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Figure 8.9: The DI Mapping Rule of Transitions

Figure 8.10: DI Fragments Created by the DIML Mappings are Combined into the
Final DI Diagram
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8.3.1 DIML Metamodel and Semantics

This section discusses the concepts we have used in creatingDIML and the se-
mantics of the classes. It is important to notice the separation between the DIML
language itself and the various applications of the DIML language. While the main
use of DIML is to define diagrams using the OMG standards, DIMLdoes not de-
fine or enforce any particular method for applying these mappings on model data.
Assuming that a DIML mapping is correct, any tool is still allowed to maintain the
abstract model and concrete models in any way it wants as longas the end result is
correct, i.e., as if it had used DIML.

This as if rule is well-known from for example C compiler technology and
gives implementations the greatest leeway while still retaining compatibility be-
tween implementations. This separation enables us to concentrate on acquiring a
usable mapping language and its semantics, while leaving the actual applications
of DIML as a separate concern for modeling tools. In our opinion this separation
works favorably for both standardization as well as enabling competing implemen-
tations.

The metamodel for DIML is shown in Figure 8.11. In the figure, MOF::Class
represents the type of any class. The OCL::OclExpression refers to any OCL ex-
pression. OCL [141] is a language for creating arbitrary queries on models. It can
be used to return a collection of element references from models or to assert that
certain properties hold in a model. The MappingModel is a container to collect
the mappings of a given modeling language or profile. Every DIML model must
have one MappingModel as its root element. An ElementToDIMapping elementm
is then a mapping of one abstract element of typem.element to its diagrammatic
representation as DI elements.

In Figures 8.7, 8.8 and 8.9, the ElementToDIMapping elements are denoted by
directed arrows and the Contained elements are the composition links. There can be
two different text strings next to those links; a text in brackets is a Contained.guard
expression, and a text without brackets is a Contained.selection expression.

The slotm.root points to aDIML tree.

8.3.2 DIML Tree

Each mapping rule is basically a tree of parts. Such a DIML tree consists of an Ini-
tialPart as its root, and a hierarchy of Contained and GraphElementPart elements.
Leaves in the tree are either of type Delegation or have no children Contained ele-
ments. The purpose of a DIML tree is to describe a parameterized skeleton which
can be used to compute a resulting DI tree. Parameterizationis accomplished by
the Contained elements, and means here that the occurrence and recurrence of
child GraphElementParts is determined by the slot values inContained.guard and
Contained.selection. These expressions allow us to createa mapping to DI context-
dependent on the abstract model element and all the other abstract model elements
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Figure 8.11: The DIML Metamodel

as well as the chain of parents in the DI model. These expressions, together with
instances of ConcretePart and Delegation are the primary means to represent a col-
lection of similar DI fragments (modulo the parameterization) as one DIML tree.

In a DIML tree, an instancepof GraphEdgePart or GraphNodePart corresponds
to an arbitrary number of instances of the DI elements GraphEdge or GraphNoded,
respectively. A DiagramPart always corresponds to exactlyone DI Diagram. There
is one DI element for each element found when executing the Contained.selection
expression. A Delegate corresponds to a change of DIML mapping rule. It does
not correspond to any DI element. It can be seen as a placeholder for the next
DIML tree.

According to the DI standard, a Diagram has a SimpleSemanticModelEle-
ment s in its semanticModel slot such thatp.diagramType =s.typeInfo, and a
Uml1SemanticModelBridge in its Diagram.owner slot which points to the abstract
element for which the diagram was created for. A GraphEdge orGraphNode
has either a Uml1SemanticModelBridge or a SimpleSemanticModelElement. If
p.typeInfo is empty,d must have a Uml1SemanticModelBridge which points to
the abstract element. Otherwise,d must have a child elements of type SimpleSe-
manticModelElement such thatp.typeInfo =s.typeInfo.

8.3.3 Support for DI Elements

Figure 8.7 showed an example mapping for a diagram. Such a mapping m has a
DiagramPart elementr in its m.root slot, withr.diagramType denoting what di-
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agram type is being considered (e.g., “ClassDiagram” or “StateDiagram”). The
m.contextGuard is evaluated and must return true. It is an OCLexpression which
receives the abstract element anddiparentas its parameters.Diparent is the parent
element in the DI model. It is guaranteed to exist for any GraphNode or Graph-
Edge except for Diagram, which has no DI parent. Thus, for diagrams,diparent is
always a null pointer/reference. Usingdiparent, we can query the chain of parents
in the DI model. The contextGuard can be used to limit whetheror not it is allowed
to create a diagram for the given abstract element.

The slotsm.validIn andm.acceptsConnector are unused and must be empty.
The elementm.root is the root element of a DIML tree.

Figures 8.8 and 8.9 show example mappings for states and transitions. Such a
mappingm is otherwise similar to a mapping for a Diagram, but with somesmall
differences. The elementm.root must either be a GraphEdgePart or a GraphNode-
Part, withm.root.typeInfo being the empty string.

The m.contextGuard must still hold, but thediparent will now be a valid DI
element in the diagram. An example of this can be seen in Figure 8.9, where the
mapping can only be used if the expressiondiparent.oclIsKindOf(DI::Diagram)
holds, i.e., when the parent DI element is the root Diagram element.

The setm.validIn.diagramType denotes the set of valid diagram types, for ex-
ample { “ClassDiagram”, “SequenceDiagram” }. This is the set of types of di-
agrams in which the mapping can be applied. Although technically the validIn
information could be embedded in the contextGuard, it is more convenient to have
a set of diagrams where a mapping can be applied because it avoids unnecessar-
ily long OCL expressions in the contextGuard, and the information about suitable
diagrams is easier to extract from a slot made for that purpose rather than extract
it by parsing an OCL expression. Again, starting atm.root, the DIML tree can be
described.

8.3.4 Connecting Edges to GraphConnectors

The interpretation of a DIML mapping so far enables us to describe a tree of DI
elements. However, a diagram in DI is not merely a tree, but a graph where Graph-
Elements are connected together via GraphEdges. The problem is how to describe
which connections are allowed, and which are not, speciallywhen we consider that
the same abstract element can appear several times in a diagram. For example, a
UML Class can be shown both as a rectangle but also as the type of an attribute or
a parameter of an operation. However, only when a class is represented as an in-
dependent rectangle can it be used to connect Generalization or Association edges.
Connecting an Association to the type of an Attribute can be considered valid from
a semantic point of view, but it is against the presentation rules of UML class dia-
grams.

Our solution to this problem requires two properties. A GraphEdgePartp has a
p.connector expression. It is evaluated in the context of thecorresponding abstract
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element and receives the GraphEdgeg as an additional parameter. The evaluation
results in a sequence of abstract elements. For each elemente in the sequence, a
GraphConnector is created (or must already exist) and anchored tog. The owner
of the GraphConnector must then be found in the set of all GraphElements in the
same diagram whose corresponding abstract element ise. This GraphElement must
correspond to a root ConcretePart in an ElementToDIMappingm mapping such
that m.acceptsConnector is satisfied. The acceptsConnector expression does not
receive any parameters, and is thus usually the expressiontrue or false.

This scheme is required since not all GraphElements may be connected to and
the only distinguishing information is the context. In our work, this context can
be exploited by having several ElementToDIMappings for thesame abstract class.
One of the mappings is chosen based on the contextGuard slot value.

8.3.5 Known Limitations

We have used DIML quite extensively in managing the diagramsin our modeling
framework. From this experience we have found that the metamodel and semantics
of DIML imply some limitations in what kinds of Diagrams DIMLcan describe.

The first limitation is that the source of a mapping can only bea class, not
a property or a relation between classes. Even though properties can appear in
the mapping rules, specially in the Contained.selection expressions, they cannot
map to the root InitialPart of a DIML tree. This limitation appears quite often
in OMG standards. For example, the model interchange formatXMI [129] can
serialize an element and its slots, but it cannot represent individual slots. The
consequence is that a relationship between elements shouldbe represented as a
class. For example, in UML, the Generalization relationship is a class, instead of
two combined properties (such as superclass and subclass).

The second limitation is that the target of a mapping is a single DIML tree
instead of multiple DIML trees. Although this multiplicitywould be easy to fix in
the metamodel, the elements in different trees must also be able to reference each
other (as per one of our use cases related to UML AssociationClasses). This would
require more thorough changes.

Finally, that our diagrams can be built top-down, i.e., starting from the DI Di-
agram element, child elements can be transitively connected to form a complete
diagram without any changes required in their parents during diagram construc-
tion. This means that a parent DI element does not depend on what child DI ele-
ments exist underneath it. This is emphasized by the decoupling provided by the
Delegation elements in the DIML models.

At the moment, we believe the first limitation to be more important than the
second or third one for practical modeling. Improvements toDIML or similar
mapping languages should address at least this first limitation, but preferably also
the second. However, we would still like to keep DIML a domain-specific trans-
formation language instead of creating or using a general-purpose one.
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8.4 Generation of New Diagrams

As mentioned earlier, a use of DIML is the automatic creationof a specific diagram
from the abstract model. In this section we assume that a new model that does not
contain any diagram has been created and we wish to create a specific diagram to
represent the model graphically.

This task can be described by a depth-first algorithm, of which an outline
is seen in pseudocode in Figure 8.12. The starting point is the function cre-
ate_diagram, which takes the abstract model elementeand a diagram type stringdi-
agramTypeas its formal parameters. Since a diagram is a tree of DI elements with
respect to element ownership and has a DI Diagram element as the root, we first
need to find a valid ElementToDIMapping elementewheree.element points to the
corresponding abstract class (MOF::Class),e.root points to a DiagramPart where
e.root.diagramType tells what kind of a diagram the mapping describes. After that,
the hierarchy of DI elements is created by recursing in thecreate_difunction.

To summarize the algorithm, we can consider that a diagram iscreated as
follows. In create_di, the generator follows the mappings given in the DIML
model. Here,e is an abstract element,diparent is either the immediate parent
DI GraphElement or the null pointer, andpart is a DiagramPart, GraphNodePart,
GraphEdgeParts or Delegation.

If part is a Delegation, we need to find a new mapping for the abstract ele-
ment. The functionin_suitable_diagramreturns true when the mapping is valid
in a specific diagram: for example, a mapping for a UML Class isvalid in Class
diagrams, not in State diagrams. The actual definition of thefunction is simple and
not described further.

Otherwise, we create a corresponding DI element on lines 24–36 and set the
SemanticModelBridge: either a Uml1SemanticModelBridge or a SimpleSemantic-
ModelElement. After that, the loop on line 37 is responsiblefor creating DI ele-
ments on one level of the hierarchy, with the recursion occurring on lines 41 and 45.
The guard evaluation on line 38 and the selection evaluationon line 44 give the de-
veloper of DIML models the flexibility to create a parameterized DI Diagram from
abstract model data.

On lines 38–49 we do the following for every Contained element c in the chil-
dren slot of thepart:

• Evaluatec.guard in the context ofe and withdiparentas its parameter. If it
does not hold, we must proceed to the next Contained element.

• Evaluatec.selection in the context ofe and withdiparent as its parameter.
The expression must return an OCL collection of abstract elements. If the
expression string is empty, it defaults to returning a set consisting of the
current elemente; this is mainly used for children GraphElementParts with
a typeInfo string. For each elements in the collection, thec.child Graph-
ElementPart is accepted in the context ofs as the abstract element, andg as
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1 function create_diagram(e, diagramType):
2 find an ElementToDIMapping m where e.oclIsKindOf(m.elem ent)
3 and m.root.oclIsKindOf(DiagramPart)
4 and m.root.diagramType = diagramType
5 return create_di(e, null, m.root)

6 function attach_connectors(diagram):
7 for each GraphEdge g transitively contained in diagram:
8 find a GraphEdgePart part that corresponds to g
9 e := g.semanticModel.element

10 for c in part.connector(e):
11 find an ElementToDIMapping n where n is a valid mapping of c
12 and n.acceptsConnectors() = true
13 find a GraphElement r where in_same_diagram(g, r)
14 and n.root corresponds to r
15 create GraphConnector gc
16 gc.graphElement := r
17 gc.graphEdge.add(g)

18 function create_di(e, diparent, part):
19 if part is a Delegation:
20 find an ElementToDIMapping m where e.oclIsKindOf(m.ele ment)
21 and m.contextGuard(e, diparent) = true
22 and in_suitable_diagram(m.validIn, diparent)
23 return create_di(e, diparent, m.root)
24 create g, corresponding to part:
25 A GraphNode for a GraphNodePart
26 A GraphEdge for a GraphEdgePart
27 A Diagram for a DiagramPart.
28 g.container := diparent
29 if part.typeInfo is nonempty:
30 create a SimpleSemanticModelElement s
31 s.typeInfo := part.typeInfo
32 g.semanticModel := s
33 else:
34 create a Uml1SemanticModelBridge s
35 s.element := e
36 g.semanticModel := s
37 for c in part.children:
38 if c.guard(e, diparent) = false:
39 continue
40 if c.selection is empty:
41 x := create_di(e, g, c.child)
42 g.contained.append(x)
43 else:
44 for s in c.selection(e, diparent):
45 x := create_di(s, g, c.child)
46 g.contained.append(x)
47 if this is not the last s and c.separator exists:
48 y := create_di(s, g, c.separator)
49 g.contained.append(y)
50 return g

Figure 8.12: Outline of an algorithm for Generating a DI Diagram from an Abstract
Model
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its diparent. This means that same computation must be performed on the
new child DIML element by recursing intocreate_di.

• If c.separator is nonempty, it denotes a DIML subtree with corresponding DI
elements that must be placed between each accepted element.This enables
us to easily model the very common occurrence of having a simple sepa-
rator between values, such as a comma sign between the parameters in an
operation in a UML class diagram.

Delegation elements are used to decouple the representation and computation
of individual DIML trees. When searching for a new mapping, only one mapping
is allowed to be valid. No nondeterminism is allowed. Once a valid mapping is
found, DI tree creation can begin again in the context of a newcurrent abstract
element anddiparent.

Furthermore, the GraphEdge elements should be connected toother Graph-
Node or GraphEdge elements using GraphConnectors. Since the GraphConnectors
are owned by the GraphNode or GraphEdge the new GraphEdge connects to, the
creation of new GraphConnectors must occur after all other elements in the dia-
gram have been created. This occurs in the operationattach_connectors, which
takes adiagramas its only parameter. Inattach_connectors, for each GraphEdge
transitively contained in the diagram, the corresponding GraphEdgePartpart from
DIML is acquired (preferably retained from create_di). Then, part.connector in the
context of the abstract elementemapped to the edge, returns a sequence of abstract
elements. For each of these elements, a corresponding ElementToDIMappingn is
located andn.acceptsConnectors is evaluated. Aftern is found, the GraphElement
where the GraphEdge should connect is located. The functionin_same_diagram
tests that both elements are in the same diagram. Finally, a GraphConnector is
created to link these DI elements together.

Once all the DI GraphNodes, GraphEdges and GraphConnectorsare created
they should be arranged using a layout algorithm that is appropriate for the partic-
ular type of diagram. Examples of a layout algorithm for class diagrams can be
found in [53] and algorithms for statechart diagrams can be found in [33].

8.5 Reconciliation of an Existing Diagram

This section briefly discusses the principal idea of how diagram reconciliation
works and why it is useful. We also give a short example on modifying the ab-
stract elements in a statemachine and see how diagram reconciliation can update
the diagram. Again, we emphasize that this outline of how diagram reconciliation
could work is a technical detail, in that any solution that maintains a correct DI
structure must be considered valid.
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8.5.1 Principle Behind Diagram Reconciliation

As we have discussed in the introduction, there are situations where we want to
preserve as much information from an existing diagram as possible after execut-
ing a model transformation. That is, the presence of elements in a diagram, their
layout, text fonts and color should not change except when this is motivated by
the execution of a transformation. In this case, it is possible to define a diagram
reconciliation mechanism that can update existing diagrams while using the same
DIML mapping language as before.

In principle, diagram reconciliation is an optimization ofgenerating a new di-
agram. Technically, we could create a new diagram as described in Section 8.4 to
replace the old diagram, but that would be too slow and some visual details would
be lost. Diagram reconciliation should work at an acceptable speed and as if a new
diagram had been created with the visual details intact. Since DIML mappings are
declarative constructs instead of programs, they do not demand a certain algorithm
for performing diagram generation or reconciliation. Instead implementations are
free to use any algorithm that can provide a fast and correct solution.

Diagram reconciliation assumes that it is possible to discover what has changed
in a model during a transformation. We assumed in the introduction that the rec-
onciliation component had access to the current abstract model and the obsolete
diagrams. We now require that it also has access to either theold abstract model
or to a change description. This change description can be a list of atomic changes
done to the slots of the elements, or a special model reflecting the difference be-
tween the old and the new abstract model. We have discussed a model difference
algorithm in Chapter 7.

Based on this information, the reconciliation component can inspect which ab-
stract elements have changed. Using the Contained.guard and Contained.selection
expressions in the DIML mappings, it can then calculate which changes have in-
validated which DI elements [30] and then apply the mappingsagain.

Where order of elements is not important, i.e., where the selection expressions
are unordered OCL collections, set operations can be used tocalculate which el-
ements should be removed, and which should be added. For ordered collections,
there are several algorithms (for example [120]) for calculating theedit distance
for transforming the old contents into the new contents.

The optimal reconciliation is one which reuses as much as possible from the
obsolete diagram to bring it up to date. The level of reuse maydepend on how
sophisticated the reconciliation system is. For example, consider a UML Gen-
eralization connecting two classes, this being represented by a specially colored
GraphEdge with a triangular endpoint. If a transformation changes which super-
class the generalization points to, it can be argued that a valid reconciliation is to
delete the edge and create a new edge in its place connecting to the new superclass.
However, information such as color and the exact waypoints are lost. A better
reconciliation approach is to reuse the existing GraphEdge.

168



8.5.2 Reconciliation Example

As an example, let us assume we introduce a new state into the model in Figure 8.5,
by inserting a new SimpleState (S3) into the StateMachine.subvertex slot. This
invalidates the previously valid diagram, since the new state is missing from it.

Using a change description or by calculating a model difference, the reconcil-
iation component determines that there has been a change in thesubvertexslot of
the StateMachine, and finds the corresponding ElementToDIMapping for it, that is
shown in Figure 8.7. Then it calculates the difference of theold self.subvertex and
the newself.subvertex. The ElementToDIMapping for StateMachines states that
new SimpleStates are inserted in the diagram owned by the StateMachine. The
reconciliation component determines that the ElementToDIMapping shown in Fig-
ure 8.8 should be used to create a new DI representation of theSimpleState. A
new representation of the SimpleState is created and inserted accordingly in the
diagram. The resulting UML and DI model along with its visualrepresentation is
shown in Figure 8.13.

Next, assume the StateMachine in Figure 8.13 is modified by changing the tar-
get of the Transition from state S2 to S3. This is achieved by assigningself.target
:= S3 for the Transition. Again, the reconciliation component determines that there
has been a change in thetarget slot of the Transition, and finds the correspond-
ing ElementToDIMapping for the Transition, shown in Figure8.9. The Element-
ToDIMapping states that Transitions are represented as GraphEdges in diagrams
and connect to States such that the first endpoint is represented byself.sourceand
the second endpoint byself.target.

As a result, the reconciliation component connects the Transition in the dia-
gram to the GraphNode representing the SimpleState S3. The corresponding UML
and DI model along with its visual representation is shown inFigure 8.14.

8.6 Validation of Research

In this section we discuss some aspects related to the practical implementation and
validation of a diagram reconciliation component. It should be noted that the actual
implementation of DIML has not been done by the author of thisthesis.

8.6.1 Optimization of Query Expressions

A great deal of the flexibility of DIML comes from the use of OCLexpressions.
Using these expressions, DIML models can navigate through the abstract model
and select the relevant subset of model elements that will bepresented in a diagram.
However, this flexibility also leads to complex expressions, which further leads to a
cost with respect to reconciliation: it is not apparent which changes in the abstract
model will trigger changes in the diagram.
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Figure 8.13: (Top) UML Model in Gray After Adding a Third SimpleState and
its Diagram Representation in DI (Bottom) DI Diagram Rendered Using the UML
Concrete Syntax

Thus, if we were to use the OCL expressions of DIML, we need to be able
to quickly tell which values of OCL expressions have changedwhen the abstract
model is modified; this is not easy. Furthermore, OCL allows expressions of com-
putationally arbitrary complexity.

The DIML metamodel uses OCL in five different properties. Since we wish
to create an efficient reconciliation system, expressions that can take an unknown
amount of computational time are not desired. Our solution has been to use a
restricted subset of OCL in some of the DIML properties. ThisOCL subset should
be expressive enough to define the DIML mappings for modelinglanguages as
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Figure 8.14: (Top) UML Model in Gray After Relinking the Transition and its
Diagram Representation in DI (Bottom) DI Diagram Rendered Using the UML
Concrete Syntax

complex as UML but it should also be possible to evaluate quickly. The restricted
language in the Contained.selection property only acceptsexpressions based on
these patterns:

• self.x

• self.x.select(e | e.oclIsKindOf(z))

• self.x.select(e | e.v = w)

• self.x.select(e | e.v 6= w)
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• self.x.select(e | e.oclIsKindOf(z)∧ e.v = w)

• self.x.select(e | e.oclIsKindOf(z)∧ e.v 6= w)

Basically, this restricted language can navigate one slot away from the current
element, and optionally filter out elements which are not of the correct type (or a
subclass of that type). It can also be used to check primitivevalues for equality or
inequality. This enables us to use the following expressions, for arbitrary property
namesx, y andv, classz, and valuew.

The GraphEdgePart.connector property can handle expressions either one or
two slots away. That is, expressions such asself.xandself.x.ycan be described.
For example, the DIML mapping for Transitions uses the expressions[ self.source,
self.target] whereas the DIML mapping for Associations uses:

[self.connection[0].participant,self.connection[1].participant]

At the moment, we do not restrict the Contained.guard expression language.
In our implementation, these expressions are arbitrary programs returningtrue
or false. This is a drawback in the implementation and makes it impossible to
determine when a change in the abstract model triggers a change in the result of a
guard evaluation. A more sophisticated implementation using traceability technol-
ogy would do similar optimizations as we have done, but behind the scenes, and
also support more complex OCL expressions. However, implementing an efficient
OCL interpreter can be a daunting task since determining quickly which OCL ex-
pressions need to be revalidated is not easy. There have beenadvancements in this
area by Jordi Cabot and Ernest Teniente [29, 30].

We consider that the simplified language serves the purposeswe have outlined
in Sections 8.1 and 8.2, but we acknowledge that the languageproposed in this
chapter is more general. Even with these restrictions, the optimized query lan-
guage has shown to be adequate in expressions for UML diagrams. It makes it
easier to determine which parts of the diagram need to be updated and therefore it
has enabled us to perform reconciliation of models and diagrams using algorithms
of low computational complexity, while still being able to support large and com-
plex languages such as UML. This ensures that diagram reconciliation is not an
expensive operation, and hence it is fast enough to be integrated with an interactive
model editor.

We are still in the process of extracting a clean, easy-to-understand algorithm
for reconciling diagrams. A very interesting idea for future work would be to try to
accomplish the same as DIML currently does with more common transformation
technology, such as ATL [21] or QVT [133].

8.6.2 Implementation in the Coral Tool

We have implemented DIML in Coral, which has a GUI for metamodel-independent
model management and different graph transformation mechanisms.
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We have implemented a component for Coral that reconciles models and di-
agrams after executing model transformations or performing editing operations.
Our implementation uses DIML mappings with the restricted expression language
described in Section 8.6.1. Also, our implementation uses the Python language to
define restricted OCL expressions such as Contained.guard or ElementToDIMap-
ping.contextGuard. This is due to the fact that Coral lacks acomplete OCL inter-
preter.

The reconciler was in fact implemented twice, once so that itanalyzed the
DIML and generated code, and once as an interpreter of DIML models. The
first implementation is presented in Torbjörn Lundkvist’s Master’s Thesis [110],
whereas the second one was programmed by Andreas Söderlund and Matias Ny-
man at Åbo Akademi University.

Our implementation is based on a model manager that automatically collects
model changes into a transaction as described in [152]. A transaction is then a list
of individual atomic commands, such as “insert elemente into slot s at position
i” or “create new element of typet”. The diagram reconciliation component is
invoked by the model manager at the end of a transaction so it can update all the
necessary diagrams.

Coral can edit and transform models using an interactive graphical editor but
also using different model transformation engines. Actually, the diagram recon-
ciliation component does not distinguish between these twocases and it performs
the same task independently if a model has been edited interactively by the user or
transformed by a program.

Although most of Coral is written in an interpreted languagewhich does not
include a just-in-time compiler or similar feature, the model editor is nevertheless
fast enough for interactive editing of models using a low-end desktop computer.
Most of the time is in fact spent by the various change propagation components,
and the graphical updates; the diagram reconciliation is a very small part of the
computational time required.

8.6.3 Validation

We have implemented mappings for the UML 1.4 class, statechart, object, use case
and deployment diagrams and we are confident that the DIML language can be
used to define mappings for other UML diagrams. The mappings we have used for
UML 1.4 in the Coral tool are available in [110]. From these mappings we can see
that by using Delegation elements and DIML tree parameterization extensively, we
have been able to support all the UML diagrams mentioned above. However, some
constructs have not been possible to describe due to the known limitations from
Section 8.3.5: the links between Comments and other elements, and Association-
Classes in class diagrams. The former maps a relation from the abstract model to
the diagram, and the latter requires a complicated multirooted tree of DI elements.
We plan to improve on DIML to overcome these limitations.
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The Coral tool supports other user-defined modeling languages and profiles be-
sides UML. We have used DIML to define the concrete syntax of MICAS [102],
a domain-specific modeling language to define peripherals for mobile phones, and
the concrete syntax of SOCOS [12], a domain-specific modeling language to de-
fine refinement diagrams. These examples show that DIML is viable to define the
concrete syntax of DSM languages that are different from UML, and that DIML
does not require UML.

We have also assessed compatibility with Gentleware Poseidon version 3.0
from which the DIML mappings presented in this chapter are based. In Figure 8.15
we see a model created in Poseidon.

Figure 8.15: Screenshot of a Statemachine in Poseidon

In Figure 8.16, the exact same file has been loaded into Coral.The composite
state is selected and the following command is executed in the Coral shell:

self.subvertex.append(coral.lang.UML14.SimpleState(name= “SS1′′))
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Since the variableself refers to the current selection, this command creates
a new state in the composite state. Then, the diagram reconciliation component
notices the new state in the abstract model, and modifies the diagram accordingly.

Figure 8.16: Screenshot of the Model from Figure 8.15 Loadedinto Coral, with a
New State Added

Finally, the model is saved again into XMI and loaded back into Poseidon.
As can be seen from the result in Figure 8.17, it is possible toload the file from
Coral into Poseidon, and the diagram information is compatible with the diagram
information that Poseidon expects. The conclusion is that DIML mappings (for
the UML 1.4 statecharts) as used by Coral work according to our DI reference
implementation in Poseidon.

We should note that newer versions of Poseidon have changed their internal DI
mappings. Therefore, the current version Coral is not compatible with diagrams
generated by newer Poseidon versions. However, this does not affect the actual
diagram reconciliation component. In order to support the new Poseidon diagrams
we should only update the DIML mappings. Naturally, this is an unfortunate situa-
tion in itself. The best approach would be for OMG to standardize on some specific
mapping rules between the abstract syntax of UML and the concrete syntax of DI.
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Figure 8.17: Screenshot of the Model from Figure 8.16 Loadedinto Poseidon

8.7 Related Work

The work presented in this chapter is related to general purpose model transforma-
tion languages, languages specific to diagram definition anddiagram editors and
development environments that support user-defined visuallanguages.

There exists full-featured metamodel-based editors that allow the user to cre-
ate and edit models in user-defined languages. Examples of these approaches are
AToM3 [47], MetaEdit+ [88] and Pounamu [211]. These tools are complete envi-
ronments while our work describes only one component that should work with any
other editing and transformation component based on the OMGstandards.

Many researchers have studied the definition of new model transformation lan-
guages and tools that support in one way or another the OMG modeling standards.
Among the general-purpose transformation languages are the relational approaches
by David Akehurst and Stuart Kent [46] and YATL [146] by Octavian Patrascoiu,
both of which use OCL for the declarative expressions. The relational approach is
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further investigated by Hausmann and Kent in [71]. There is also a special graph
grammar system in VIATRA by Dániel Varró [181], which relieson graph gram-
mars instead of OCL and has operational semantics. Jean Bézivin proposes the
Atlas Transformation Language [21], which has tool supportin the Eclipse Mod-
eling Framework [52]. The MOLA transformation language by Audris Kalnins,
Janis Barzdins and Edgars Celms [86] has a graphical imperative programming
language with pattern-based transformation rules. Perhaps the most important
general-purpose transformation language is the QVT language [133] from OMG.
Also, the work presented in this chapter can be seen as a specific instance of a
model composition framework, as described in [20].

We have decided to use a special language to define the diagrammappings and
a special tool to apply these mappings due to the need for specific algorithms to
create and reconcile existing diagrams. The diagram mapping language and cor-
responding tool support should work preserving as much information as possible
from existing diagrams. Also, we consider that DIML mappings are more succinct
than the equivalent transformation in many general transformation languages, due
to the use of OCL queries and expressions to describe many cases in a single rule.

An alternative approach to implement the idea presented in this chapter is to
use a general model composition framework [20], for examplethe Atlas Model
Weaver [55]. In this case, a composition framework would take one or two user
models and the DIML mappings as input models and recreate thenecessary dia-
grams by implementing the algorithms presented in this paper using transformation
rules that are specific to the composition framework. It would be an interesting and
worthwhile experiment to compare different model composition frameworks with
DIML. There are several properties that should be analyzed,such as the size of the
mapping definitions, understandability, maintainability, any expressivity restric-
tions and the need for traceability mechanisms and separatetracing models. Model
composition and weaving frameworks are being researched and developed at a fast
pace, for example [55, 118, 18, 93]. Similarly, there is active research in model
traceability [24, 95].

There are other approaches and tools that support the reconciliation of abstract
models and their concrete models. However, none of them seemto support DI.
This makes comparison awkward, since one of our goals has been the usage of
OMG standards. The diagram definition facility [35] by Edgars Celms, Audris
Kalnins and Lelde Lace specifically targets mapping to diagrams and uses its own
diagram metamodel, although one different from DI in that itrequires subclassing
for each diagram element, whereas DI is specified so that a language developer
should not inherit from DI classes. The work by Frédéric Fondement and Thomas
Baar [57] formalizes the relationship between abstract andconcrete syntaxes with
OCL expressions using their own concrete syntax. While the ideas presented are
interesting, it does not yet have any tool support and although diagram reconcilia-
tion is recognized as a problem, the authors do not offer any solution. In fact, our
work addresses some of their concerns on DI.
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8.8 Conclusions

We have described an approach to create new diagrams from theabstract syntax of
a model and bring existing diagrams up-to-date after the execution of a transforma-
tion that updates the abstract syntax of a model. We considerthat these problems
are important because they are necessary to allow the automatic transformation of
visual diagrammatic languages.

Our approach is based on a mapping language called DIML that describes the
relation between the abstract syntax and the concrete syntax of a model defined
according to the OMG standards. Our solution enables the creators of model trans-
formation languages and tools to ignore diagrams and focus on the semantic infor-
mation stored in models. One of the most important characteristics of DIML is that
it is independent of the modeling and transformation language. This allows us to
define metamodel-independent algorithms to create and update diagrams. On the
other hand, DIML is specific to DI, the OMG diagram interchange standard. Other
alternative diagram interchange languages are discussed in [169].

There are several practical benefits to reconciliation and using DIML. We real-
ize that we have made several engineering decisions in creating a domain-specific
weaving metamodel, and that it has limitations. At this timewe do not know for
certain to what extent the decisions are a hindrance, and howmuch they are benefi-
cial. For example, by only allowing OCL expressions to querythe chain of parent
DI elements we establish that DIML rules are hierarchical. This makes the algo-
rithms relatively simple, and we do not have to, for example,calculate any graph
isomorphisms.

There are also some limitations in our work as described in Sec. 8.3.5, the most
important limitation being the fact that a DIML rule cannot map relations, only a
single class.

We have validated our approach by implementing it in an open source modeling
tool called Coral. Due to the common interchange format and adherence to OMG
standards we can use both Poseidon and Coral to edit, transform and interchange
models and diagrams. We believe that this is an indication ofthe viability of DI
and the DIML language.

DIML and the diagram reconciliation component do not contain all the func-
tionality necessary for a full interactive editor since they lack a user interface, a
layout and a rendering engine. We assumed that these problems are solved by
other independent components. In some visual languages, such as UML class di-
agrams, the layout is a question of aesthetics. However, in other languages, such
as UML sequence diagrams, the layout also conveys semantic information since
the passage of time is represented in the vertical axis of a diagram. Therefore, we
would like to extend the DIML language to include diagram layout constraints so
that the layouting step can be integrated with the diagram reconciliation step.
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Chapter 9

Conclusions

In this final chapter we succinctly summarize the contents ofthe thesis and include
possible ideas for future work. We also give a short overviewof how well our
vision of modeling is in line with the vision of OMG and its standards, and to what
extent OMG standards fulfill the role they should and where they are lacking. We
finally conclude with some general remarks about the field of software engineering
itself.

When the work of this thesis started, the state of modeling was in some ways
quite different from its current situation. Modeling toolswere almost always in-
compatible with each other, and there was a lot of confusion about what modeling
is. Nowadays, many commercial modeling tools by large vendors are based on the
Eclipse Modeling Framework, which has won a lot of ground, with the DSL Tools
by Microsoft being a considerable commercial opponent. Eclipse itself provides an
enormous number of plugins and several modeling-related tools are being devel-
oped for it. This has the benefit that more research prototypes can be used together,
but a problem is still that Eclipse is only a de facto standard.

In Chapter 2, we compared several modeling languages. We usethis study and
knowledge from other modeling and programming languages throughout the other
chapters. There is no definite way to say a priori which feature in a modeling lan-
guage is useful. Rather, a feature must be tried out in practice and must be shown
to have an effect on the expressiveness and versatility in the modeling framework.
Also, features at the modeling language level must be very clearly defined, as any
inaccuracies spreads to the languages and then to the models.

It can be said that this work defines features using two different constructs:
basic building blocks from metametamodels and additional constraint rules. This
creates a partially unnecessary schism, where we need to decide whether a newly
invented construct should be a basic building block or merely something that is
tagged along using a constraint. The latter solution does not provide a first-class
concept in the metametamodel in the same way the former does.A similar problem
is found in textual programming languages, where the facilities provided by the
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language and the extensions of the user have very differing syntax. Only LISP
and its variants have solved this by presenting everything consistently usings-
expressions[112], thereby also not having any syntactic sugar.

An interesting proposition is given by Guy Steele [167], where he argues that
language and program must evolve together to solve the problem at hand, and
that user-defined additions to the language must be indistinguishable from the con-
structs provided by the language. The current modeling frameworks do not support
this idea well in practice.

The metamodeling language presented in Chapters 3 and 4 was accomplished
using a set-theoretic representation of the class and object layers. The most im-
portant contribution in those chapters is the understanding gained that combining
several new features into a metamodeling language must takethe new and the ex-
isting features into account as a whole, lestfeature interactionmakes the result
nonfunctioning. However, the various metamodel and model constraints that have
been defined have not been formally proven correct with respect to the model op-
erations. Proving correctness would be an important step inensuring that the SMD
language is solid, and further proofs of other algorithms operating on models could
then be feasible. Similar work has already been done by Iman Poernomo to prove
a MOF-like metamodeling language without support for subsets [151]. There is
also a considerable effort in creating a formal semantics for UML [26], and for
example [81] shows a formalization of UML statecharts usingconcurrent regular
expressions.

The most novel part of the chapters is the structural definition of subsets and
unions and operations involving subset and union slots. However, the property re-
definition concept is not formalized and must be considered an omission in light
of its frequent usage in the definition of UML 2.0 and MOF 2.0. There exists
work in type-safe covariant specialization [157] which could be incorporated into
a modeling framework as well. We described an implementation of our metamod-
eling language called SMD in Chapter 5 that supports subsetsand derived unions
as formalized by us.

On the surface, the topic of Chapter 6 seems mundane. Serialization ought to
be a rather easy topic. Yet experience from using several tools suggests that in-
compatibilities abound as there is no viable way to certify compatibility. One of
the greatest benefits of the success of tools built using EMF is that at least seri-
alization of models seems to follow the same peculiarities,since the tools use the
same technology underneath. Although we remarked on several issues with XMI,
a subset of the standard could be used.

Some parts of XMI are not useful and not necessary. In particular, the parts de-
scribing model differences are underspecified and even if they worked, they would
not be a good solution. A better solution is a separate metamodel that can describe
differences between models. Model difference calculationis useful for version
control, which we discussed in Chapter 7. It is interesting that although we have a
long history of version control both in theory and practice in the textual domain—
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Walter Tichy developed RCS [176] in the beginning of the 1980’s—version control
of models is still not as straightforward. We note that conflict resolution is still an
unsolved problem, as it also is in the textual domain. Furthermore, displaying a
model conflict is harder than displaying a textual conflict. There are no widely
used solutions for a model collaboration environment and model repository. As
briefly discussed, the XMI serialization standard does not adequately support de-
scribing a difference between models.

Chapter 8 described a weaving metamodel called DIML, which aids in map-
ping abstract syntax to concrete syntax. It is an interesting and current topic con-
sidering the Model View to Diagram Request for Proposal [140] from OMG. It
would be very fruitful to assess the usability of the idea of DIML with the various
general-purpose weaving languages, such as the Atlas ModelWeaver (AMW) [55],
or a general-purpose transformation language such as QVT [133] or ATL [21].
This would be accomplished by using these languages to solvethe same problem
as DIML does.

This thesis has strived to cover a broad range of topics, perhaps sometimes sac-
rificing depth for breadth. The topic of any single chapter isimportant and complex
enough for more research in the future. The aim of the work hasbeen to analyze
the OMG standards from both a theoretical and practical context. Our long-term
research goal is furthering the prevalence of modeling as the primary way to build
software engineering artifacts, and the ubiquity of powerful and usable modeling
tools. The current OMG standards are severely lacking in both theoretic viability
and practical usability, and the standards are not true to the vision of OMG.

The author’s view is in some ways similar to the one provided by OMG. The
information of a system is given by an abstract model or models whereas separate
views, also called diagrams or concrete models, display theabstract model to the
developer. There is a single serialization technology thatis capable of representing
any kind of model or models. However, a single metamodel in the form of UML or
profiles for UML is limiting, and the experience in our research group suggests that
domain-specific languages bring benefits that UML cannot. The separation of an
MDA [130] application into a single Platform-Independent Model (PIM) which is
transformed into a Platform-Specific Model (PSM) by combining it with a Platform
Model (PM) sounds too limiting, and anecdotal experience suggests that this is also
the opinion of the research community at large.

An engineering aspect of this thesis has been to closely follow improvements
in the OMG standards without necessarily being limited by them. It is unfortu-
nate that standards consortia nowadays seem overeager to standardize technologies
which have yet to mature. This problem is seen in several of the OMG standards,
such as MOF and DI.

The evolution of the definition of MOF is highly unsatisfying. Although prob-
lematic, the 1.x series of small, clumsy and badly-specifiedstandards did not hinder
anybody with an object-oriented background, and thus many problems with them
were not problems for research. However, version 2.0 feels less useful because it
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contains novel constructs such as subsets, redefinitions and package merges with-
out a precise underlying mathematical model. We believe that leaner metamodel-
ing languages will become more popular since MOF fails to deliver value due to
its incompleteness. Examples of such metamodeling languages are ECORE [28],
KM3 [84] or Kermeta [90]. GXL provides even more flexibility than any of the
metamodeling languages mentioned. Some of the novel constructs from MOF
might be adopted once their meaning has been defined. A formalization of subsets
and unions was given in Chapters 3 and 4, and we hope that it aids in a standardized
formalization of the features.

Assuming a working metamodeling language, we could define the syntax of
abstract models by creating a metamodel. Visualizing this should use the DI stan-
dard for interoperability reasons. However, DI has received extremely little support
from vendors and all problems with using DI are thus still unclear. The problem
of which DI constructs are valid for a model is clear: DI does not specify a map-
ping language or similar feature with which a metamodel developer could define
the valid diagrams of a model. Our example solution for this problem is DIML.
However, any solution could be used and DIML merely serves asa case study. An
interoperable diagram standard feels like the greatest concern for practical mod-
eling to go forward. Currently, vendor lock-in hinders wholehearted adoption of
software modeling.

There is a lot to software modeling that this thesis does not even try to address.
Especially metamodel semantics, model transformations and metamodel evolution
come to mind. Considering the MDA effort itself and how many different transfor-
mation languages are available, model transformations could be seen as the heart of
modeling. Also, since graph transformation approaches such as single-pushout or
double-pushout [160] seem to offer more highlevel constructs to transform models
(programs) than many transformation languages for textualstreams, model trans-
formations can be seen as one of the primary reasons why they could provide mod-
eling as a viable alternative to traditional textual software engineering.

It is the author’s hope that this thesis would spur both further research and
solutions to software modeling and an interest from the modeling community to
provide working tools along with breakthroughs or ideas in the theory of software
modeling. Our current state of not having tools of sufficientinteroperability for
empirical validation is disillusioning and disheartening.

Software engineering is, like any other engineering discipline, subordinate to
the constraints of many masters. Constraints from computerscience and mathemat-
ics dictate what could be possible to accomplish and must form the core of software
engineering. But to evolve software engineering we must be able to take several
other aspects into account, such as budgetary constraints and the people who are
our developers, managers and customers. This means software engineering solu-
tions must be validated empirically, and in the case of modeling this validation
requires tools. Realizing improved software engineering practices might be our
biggest obstacle for years to come.
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Appendix A: Mathematical
Preliminaries

This appendix summarizes the mathematical notation used inthis thesis, with some
small examples.

Set Theory

We use naïve set theory throughout the thesis. Sets of primitive data values are
denoted with calligraphic letters:B is the set of boolean values,Z

0+ is the set of
integers 0,1,2, . . . andZ

+ is set of the set of integers 1,2,3, . . ..
The empty set is denoted with/0 or{ }. A set with elementsx, y andz is denoted

with {x,y,z}. The expression #S is the number of elements in a finite setS.
We use the notationA⊂ B to denote thatA is a strict subset ofB. We useA⊆ B

to denote the possibility thatA is a subset of or equal toB.
The expressionP (A) is the powerset of a setA, i.e., the set of all possible

subsets. For example, the powerset of{1,2,3} is { /0, {1}, {2}, {3}, {1,2},
{1,3}, {2,3}, {1,2,3} }.

Set comprehensions are denoted with{g(x) · f (x)}, which returns a set of
valuesg(x) where f (x) is true (for all possible legal values ofx). The notation
S

{g(x) · f (x)} denotes the set consisting of all elements in all setsg(x) where
f (x) is true.

Sequences

A sequence(A,≺) is an ordered set or array of elementsA. It is essentially like a
set of elements, except that all elements have a unique position in the sequence, that
position denoted with an integeri ∈ Z

0+. We denotea≺x b if elementa precedes
elementb in a specific sequencex. We denotea�x b if a precedesb or if a = b.
Note that two elements can be in different orders in different sequences.

For sequences,⊳ denotes sequence concatenation andt[a : b] denotes the se-
quence of elementst[a], . . . , t[b−1].
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The function reverse(s) returns a new sequence with the same elements as ins
but in reverse order.

Sequence comprehensions are denoted with[g(x) · f (x) ], which returns a
sequence of valuesg(x) where f (x) is true (for all possible legal values ofx).
Where possible, any data structures inf (x) are visited in order. For example,
[x2 · x∈ [1,2,3,4] ] returns the sequence[1,4,9,16].

Binary Relations

A binary relationR is a set of pairs(a,b). A reflexive relation is such that(∀a ·
(a,a) ∈ R). A transitive relation is defined by(a,b) ∈ R∧ (b,c) ∈ R⇒ (a,c) ∈ R.

If we have a set of pairsR whose values are of the same domainA, we can
create the transitive closureR+ by taking the smallest transitive relation over the
domain of the values that still containsR. The reflexive closure ofR is R= def=
R∪{(a,a) · a∈ A}. The reflexive transitive closure ofR is R∗ def= R+=.

Functions

A function f : A → B maps an element of the domain setA to an element of the
range setB. A partial function f : A9 B might not be defined for all elements ofA.
An unnamed function which mapsx to y is denoted with{x→ y}.

Function application is denoted withf (x), i.e., the functionf is called with the
parameterx. The domain of a function is acquired with Dom( f ). The range of a
function is acquired with Range( f ).

Function Update

f [S] where S is a set of pairsx → y values returns a new functionf ′ such that
(∀z · z 6∈ Dom(S) ⇒ f ′(z) = f (z))∧ (∀z · z∈ Dom(S) ⇒ f ′(z) = y). f [x → y]
behaves likef [{x→ y}].

G⊳ F is the domain restriction operator and returns a new function identical
with F but restricted to the domain of a setG, i.e.,G⊳F def= {x→ y · x∈G∧x→ y∈
F }. G�F is the domain subtraction operator and returns a new function identical
with F but restricted to the domain which is not in setG, i.e.,G�F def= {x→ y · x 6∈
G∧x→ y∈ F }.

Graphs

A graphG = (V,E) is a set of verticesV and a set of edgesE such thatV ∩E = /0.
An edge is a tuple(v1,v2) wherev1 andv2 are vertices and connects the two vertices
together. A directed graph denotes that an edge has a direction.
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Partial Orders

A partially ordered set orposet(A,⊆A) is a setA and a binary operator⊆A. The
operator determines the partial ordering of elements; given a ∈ A andb ∈ A, the
operationa⊆A b is true if a occurs beforeb in the ordering, otherwise false. The
expressiona ||A b means thata andb are independent and cannot be compared in
the partial order; it is equivalent to¬(a⊆A b)∧¬(b⊆A a).

We denote bya�A b the fact thata is a “directly below”b in a partial order,
i.e.,a�A b def= a⊂A b∧¬(∃c · c 6= a∧c 6= b∧a⊂A c⊂A b).

The partial order should not be confused with the subset operator⊆. The for-
mer is an arbitrary function that determines the partial order, whereas the latter has
only one definition in set theory.

Hasse Diagrams

Hasse diagrams are graphical renderings of a poset(A,⊆A). Every element inA
is drawn as a node such that a node representing elementx∈ A is drawn visually
lower than another elementy∈A if and only if x⊆A y. Furthermore, a line is drawn
from x to y if and only if x�A y. An example of a Hasse Diagram of the setA= {u,

v, w, x, y, z} and the relation⊆A= {(w,u), (x,u), (x,v), (y,w), (z,w), (z,x)} is
shown in the following figure:
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Appendix B: The Simple
Metamodel Description Language

This appendix summarizes the set-theoretical definition ofSMD from Chapter 3.

Metamodel Formalization

We define the metamodeling language by:

MLS
def= (C,generalizations,P,owner, type,characteristicsS)

effectivePropertiesS(c) =
S

{properties(d) · c⊆c d}
effectiveTypeS(p) = {c∈C · c⊆c type(p)}

The characteristics of the properties, including subsets and strict unions, is
defined by:

characteristicsS
def= (lower,upper,ordered,composite,opposite,supersets,

strictUnion)

The following metamodel constraints are defined:

Metamodel Constraint 1 Property Multiplicity: (∀p∈P · lower(p)≤ upper(p))

Metamodel Constraint 2 Opposite properties:(∀p∈P · opposite(p) 6= Ω⇒ p=
opposite(opposite(p))∧opposite(p) 6= p)

Metamodel Constraint 3 Both properties in a relation cannot be composite:(∀p
∈ P · composite(p)∧opposite(p) 6= Ω ⇒¬composite(opposite(p)))

Metamodel Constraint 4 No infinite chain of compositions:(∀c1, . . . ,cn,cn+1 ∈
C · (∀i · 1≤ i ≤ n⇒ (∃p∈ effectiveProperties(ci) · composite(p)∧owner(p) =
ci ∧ci+1 = type(p)∧ lower(p) ≥ 1)) ⇒ c1 6= cn+1), ∀n≥ 1

Metamodel Constraint 5 Generalization is acyclic:¬(∃e∈C · (e,e) ∈ {(c,d) ·
d ∈ generalizations(c)}+)
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Metamodel Constraint 6 Upper multiplicity in subset properties:(∀p∈P · (∀q∈
supersets(p) · upper(p) ≤ upper(q)))

Metamodel Constraint 7 Subset only from owner or its superclasses(∀p,q∈ P ·
p⊆p q⇒ owner(p) ⊆c owner(q)).

Metamodel Constraint 8 The property superset relation is acyclic:¬(∃e∈ P ·
(e,e) ∈ {(p,q) · q∈ supersets(p)}+)

Metamodel Constraint 9 The opposite of a subset property must be a subset:
(∀p,q∈ P · p⊆p q∧opposite(p) 6= Ω ⇒ opposite(p) ⊆p opposite(q))

Metamodel Constraint 10 No circular transitive composition with subsets:(∀p∈
P · composite(p) ⇒¬(∃q∈ P · opposite(q) 6= Ω∧ p⊂p q∧
composite(opposite(q))))

Metamodel Constraint 11 Ordering characteristics are same in property poset:
(∀p∈ P · (∀q ∈ supersets(p) · ordered(q) = ordered(p)). This metamodel con-
straint is only necessary for the model operations.

Model Formalization

The models are defined by:

M def= (E,class,S,property,slotowner,elements)}

The following model constraints are defined:

Model Constraint 1 Valid slots in element (1):(∀e∈ E · (∀s∈ slots(e) ·
(property(s)) ∈ effectiveProperties(class(e))))

Model Constraint 2 Valid slots in element (2):(∀e∈ E ·
(∀p∈ effectiveProperties(class(e)) · (∃!s∈ slots(e) · property(s) = p)))

Model Constraint 3 Class of elements in a slot:(∀s∈ S · (∀e∈ elements(s) ·
class(e) ∈ effectiveType(property(s))))

Model Constraint 4 Valid number of elements in a slot:(∀s∈ S ·
lower(property(s)) ≤ #s ≤ upper(property(s)))

Model Constraint 5 Bidirectionality of slots:(∀s∈ S · opposite(property(s)) 6=
Ω ⇒ (∀e′ ∈ elements(s) · (∃!s′ ∈ S · slotowner(s′) = e′∧opposite(property(s′)) =
property(s)∧slotowner(s) ∈ elements(s′))))

Model Constraint 6 Overridden by model constraint 11.
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Model Constraint 7 Composition is acyclic:(∀e∈ E · e 6∈ parentchain(e))

Model Constraint 8 Unordered slots:(∀r,s∈ S · r ⊆s s∧¬ordered(property(s))
⇒ elements(r) ⊆ elements(s))

Model Constraint 9 Ordered slots: (∀x,y ∈ E, r,s∈ S · x ∈ elements(r)∧ y ∈
elements(r)∧x�r y∧ r ⊆s s∧ordered(property(s)) ⇒ x∈ elements(s)∧y∈
elements(s)∧x�s y)

Model Constraint 10 Strict union:(∀s∈ S · strictUnion(property(s)) ⇒
elements(s) =

S

{elements(r) · r �ss}

Model Constraint 11 (Subset) Only in one composite slot:(∀e∈ E · ¬(∃s1,s2 ·
property(s1) ||p property(s2)∧composite(property(s1))∧composite(property(s2))
∧e∈ elements(s1)∧e∈ elements(s2))
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