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Abstract

This thesis considers aspects in signature ensemble design for oversaturated
synchronous DS-CDMA systems. CDMA is a multiple access method, where
different users are distinguished with a unique code signal, or signature,
assigned to each user because with DS-CDMA all users transmit simulta-
neously in the common frequency band. The set of all signatures is called
signature ensemble. Synchronized signatures permit orthogonality between
them but the number users is limited by the code signal space dimension,
which is determined by available bandwidth and required data rate. If more
users are to be served beyond the signal space dimension, the system be-
comes oversaturated making multiple access interference unavoidable. In
such a situation a trade-off must be decided between the increase in the
number of users, reduced performance due to inflicted interference and the
complexity of a receiver, since the performance of a conventional matched
filter receiver is poor in an oversaturated situation.

Two criteria of optimality are of essence when signature ensembles are
assessed. Channel capacity is a measure of how well available resources
are utilized. On the other hand, a crucial factor is the error probability
in the receiver. Oversaturated CDMA can reach the theoretical limit of
channel capacity, but only with Gaussian distributed signals. With a binary
data transmission, which is also considered in this thesis, the optimization
of signature ensemble for the maximization of channel capacity should be
performed the same way with low signal-to-noise ratios as with Gaussian
distributed signals. For high signal-to-noise ratios the Euclidean distance
between transmitted signals should be maximized. This optimization direc-
tion also results in optimal error performance.

In this thesis oversaturated signature ensembles are designed for a group
orthogonal system meaning that users are divided to non-interfering groups,
which are then oversaturated with additional users. Group orthogonality
permits using very simple receiver structure. The signature ensemble design
criterion is to maximize the minimum Euclidean distance between all pos-
sible superpositions of user signatures modulated by antipodal information
bits. That is, the minimum bit error probability is targeted. When one
transmitter controls all transmissions, such as a base station in a cellular
environment, data bits can be collaboratively encoded to improve the per-
formance of group orthogonal oversaturated system. This way the minimum
Euclidean distance can even surpass the minimum Euclidean distance of or-
thogonal signaling. It is concluded in this thesis that oversaturated systems
can serve more users than the conventional orthogonal scheme with tolera-
ble performance loss and with a very simple receiver. Analytical results are
confirmed with simulations.
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ṡo(t) Chip pulse shape
S Signature matrix
σ2 Variance of noise
t Time
T Duration of signal
T (h, α) Owen’s T-function
w The weight of vector
W The bandwidth of signal
x(t),x Transmitted group signal, group signal vector
y(t),y Observation, observation vector
z, z Matched filter output, matched filter output vector
ZI Zero-padding length
Zj Decision region of user j

x



Chapter 1

Introduction

During the recent decade personal wireless communication has become enor-
mously popular. For example, in Finland the number of mobile phone sub-
scribers have passed the number of using plain old telephone service (POTS)
in the beginning of the current decade [1] and the penetration of mobile sub-
scribers exceeded 90% of the population in 2004 [1]. The first generation
(1G) of mobile phones was based on analog technology, and was capable of
only transmitting speech. After the introduction of the second generation
(2G) of mobile phones, such as Global System for Mobile communication
(GSM), the wireless communication industry has experienced huge growth.
In addition to speech transmission the 2G systems also had capability for
simple data services which attracted users. World-wide, the number of GSM
subscribers surpassed 500 million in 2001 [2]. The rapid progress of the Inter-
net, which coincides with the time frame of expanding popularity of cellular
communications, has revolutionized communication between people and cre-
ated a market for wireless data services with wired-like capacity. People are
accustomed to accessing multimedia services from the Internet with speeds
of several tens of megabits per second (Mbps).

In the aftermath of the success of the 2G mobile phone systems, the
wireless communication community envisioned wireless access available any-
where, anytime as a guideline for the designing third generation (3G) mobile
phone standards [2,3]. The standardization within the third generation part-
nership project (3GPP) [2,4] is a significant step towards a wireless system,
which would give the same services users receive with a personal computer
(PC) connected to the wired network regardless of user location. However,
as the first commercial 3G networks opened in 2005, ten years after the de-
ployment of GSM, it was evident that many steps are still required before
this goal is achieved. The first 3G networks achieve data rates that are only
in the region of the Integrated Services Digital Network (ISDN) [5], which
is well below one Mbps (even 384 kilobits per second (kbps) is rare).
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Also, the deployment of 3G systems has experienced difficulties due to high
licensing costs in some countries and unrealistically high expectations of
consumers [5]. The third generation is not nearly as revolutionary from
the consumer point-of-view as the second generation was, since the devel-
opment between standard generations is an evolutionary process. Although
the 3G systems do not offer unparalleled services, they offer flexibility and
configurability, which the 2G systems lacked. Thus, on the road towards the
future high data rate cellular standards, the third generation will serve as a
basis for evolution and development.

The evolution of 3G systems has been continuous, and several enhanced
releases of the standard have been published since the original version was
released. It has been reported [6] that High Speed Downlink Packet Ac-
cess (HSDPA) -capable 3G networks are able to deliver data rates of ap-
proximately 10 Mbps, or even 20 Mbps if multiple input - multiple output
(MIMO) technique is utilized [7].

It is easy to predict that the fourth generation (4G) of mobile phones
will evolve from 3G systems [6]. Mobile phone standards will probably also
experience convergence with other wireless communication networks such as
wireless local/metropolitan area networks (WLAN/WMAN), broadcasting
systems, and wireless personal area networks [5,6,8]. Each network type will
be utilized in user terminals to provide required quality of service (QoS) to
the users while network resources are exploited efficiently [9, 10].

The most critical resource which limits achieving high data rates in
wireless communication, is bandwidth, or frequency resource. Bandwidth
is a very scarce resource, and therefore it is strictly regulated by authori-
ties. Thus, the greatest challenge of future wireless systems is the efficient
utilization of existing frequency resources [11]. Especially challenging are
multiuser systems, which experience fading and are power limited.

The fundamentals on digital communication systems and factors affect-
ing transmission fidelity and bandwidth requirements can be found, for ex-
ample, from [12–16]. Within fixed modulation mode and code rate the higher
data rate needs a wider bandwidth. In digital communications information
symbols are transmitted with signals modulated by data symbols. A com-
munication system containing M distinct signals is able to deliver log2 M
bits with one signal. Each signal has finite duration T . The definition for
bandwidth is ambiguous [15]. The definition adopted here is following: the
bandwidth required by the signal, W , is W ≈ 1/T , which corresponds to a
frequency band from zero to the first null in spectrum for rectangular signals
having sinc1-shaped spectrum [16]. To be precise, the bandwidth of a finite
duration signal is infinite, but the single-sided main lobe of its frequency
response is adequate to characterize the baseband signal in the frequency

1sinc (x) = sin (πx)/πx
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domain. The data rate, R, available through the channel is R = log2 M/T .
The data rate entering the modulator (gross rate) can, in practical systems,
be higher than the original data rate (source rate). It is meant to compen-
sate the added redundancy used for error encoding on source data to protect
it from channel disturbances.

In practice, it is not enough that a single high data rate stream can be
transmitted through the air from the transmitter to the receiver. Wireless
communication systems must be able to serve tens or even hundreds of
users simultaneously with multimedia applications requiring very high data
rates. The method allowing several users to communicate simultaneously is
called multiple access. Different strategies to implement multiple access are
presented next, along with essential information of the cellular environment
where mobile receivers typically operate.

1.1 Multiple access techniques and the cellular
communication environment

In a cellular system, the coverage area is divided into parts called cells. Each
cell has a base station, which is connected with all user terminals inside the
cell. In cellular telecommunication systems, the transmission from base sta-
tion to user terminal (downlink, forward link) and the transmission from
terminal to base station (uplink, reverse link) must be separated. Tradi-
tionally downlink and uplink transmissions use different frequencies or they
occur consecutively. These two options are referred to as frequency division
multiplexing (FDM) and time division multiplexing (TDM). The method al-
lowing several users to communicate simultaneously inside a cell is called a
multiple access technique. The capacity of multiple access techniques refers
to the maximum number of users (Kmax) served inside one cell [17]. In
this thesis, the term capacity refers specifically to multiple access capacity
Kmax. The information theoretic maximal data rate through the channel
established by Claude Shannon [18] is referred to as channel capacity to
make a distinction with the latter. Classical multiple access methods are
orthogonal, thus they do not inflict multiple access interference (MAI) to
systems. To provide orthogonality signals can be non-overlapping in the
time domain or in the frequency domain, but the non-overlapping condition
is only sufficient, not necessary. In code-division systems signals overlap in
both domains, being orthogonal due to proper code structure. The capacity
of orthogonal multiple access methods is Kmax = WT [19,20]. Adding users
to systems beyond this limit inflicts MAI. The number of allowed extra users
depends on the tolerable amount of interference.

The analog first generation systems used frequency division multiple ac-
cess (FDMA), where different users communicate on different frequencies.
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The FDMA is not very convenient from the implementation point-of-view,
since K parallel passband filters are required in the receiver and orthogo-
nality is difficult to preserve in practice [19]. In the cellular communication
environment the cells must be clustered to ensure that the same frequencies
are not used in adjacent cells, which would cause inter-cell interference.

Most of the 2G systems used a combination of time division multiple
access (TDMA) with FDMA. In TDMA, the time axis is divided into slots
allocated to different users. Pure TDMA allows all users to have the whole
bandwidth at their disposal. The practically achievable capacity of pure
TDMA is limited by peak power2 requirements, since small duration of time
slots entails big power emission, which is impractical in battery powered
mobile devices. Also, in cellular environment the frequency re-use restricts
the maximum emitted power. In GSM the number of time slots is eight.
Thus, in order to function in real systems, TDMA must be combined with
FDMA [19].

The 3G systems and one 2G system have adopted code division multiple
access (CDMA) as their multiple access technique. In CDMA users com-
municate simultaneously in the same frequency band. Different users are
separated in the receiver with the help of an individual code signal called
signature. The set of all signatures is called a signature ensemble. In the
time of deployment of the 2G systems, CDMA seemed to be too complex
from the implementation point-of-view. Thus, only one 2G standard, called
IS-95 or cdmaOne [19,21,22], uses CDMA. The rapid development in digital
technology has enabled large scale implementations of CDMA in consumer
electronics nowadays.

Three discussed multiple access methods are illustrated in Fig. 1.1. Or-
thogonal multiple access can also provided by spatial space division [13] or
by polarization of carrier waves [15].

CDMA capacity is not equal in the downlink and in the uplink, since or-
thogonal, and therefore MAI free transmission in the uplink, is not possible
unless some complex procedures are used in the mobile transmitter control-
ling transmission epoch to provide synchronous arrival of all signals from
mobile transceivers at the base station receiver. An example of a such a pro-
cedure is implemented in 3G TDM (Time Division Multiplexing) [5,23,24].
There, uplink transmissions are arranged by a control procedure, which de-
lays the transmissions of mobile terminals according to their distance from
the base station.

The capacity of CDMA has traditionally been limited by uplink capac-
ity [16,21] due to asynchronous signaling, which inflicts MAI to the system.
However, modern wireless data communication sets more stringent require-

2High peak power, which is the maximal amount of power emitted by transmitter,
should not be dramatically higher than the average power which is emitted energy per
time unit.

4



One TDMA 

user

t

f

CDMA users

One FDMA user

Figure 1.1: Illustration of different multiple access techniques

ments for the downlink due to the asymmetric nature of data. Much more
data is downloaded to the user terminal than is sent to the network [6].
Video telephony might have different aspects, however [6, 9].

1.2 Objectives of thesis

The aim of this thesis is to analyze and propose bandwidth efficient methods
for multiple access in the downlink of CDMA systems. Current state-of-the-
art wireless communication systems use solutions such as multicarrier mod-
ulation [25] and MIMO [26] to achieve very high data rates. CDMA will cer-
tainly also be an integral part of future wireless communication standards,
such as 4G mobile phones, but it will probably be combined with other
aforementioned techniques [6]. Due to the importance of CDMA downlink,
this thesis concentrates on methods of increasing user-capacity by examin-
ing signature ensembles and receiver structures that accomplish that goal.
In the CDMA downlink, it is possible to use synchronous signaling. This
special multiple access technique is called synchronous CDMA (S-CDMA).
The method of increasing the capacity of S-CDMA in this thesis is called
oversaturation, or overloading. The aim is to find adequate trade-offs be-
tween oversaturation efficiency (capacity growth), performance loss due to
inflicted MAI and additional receiver complexity due to efforts to mitigate
extra MAI.

5



It should be noted that regardless of current trends of limiting the S-CDMA
to downlink only, it is also possible to utilize it in the uplink. As the cell size
is shrinking in so called hot-spot areas, where extremely high data rates are
required, pico cells are utilized. They have coverage areas in the scale of me-
ters or few tens of meters. There, the synchronism can be maintained within
a fraction of chip interval also in the uplink due to very small distance be-
tween transmitter and receiver. Other such quasi-synchronous systems are
also proposed for satellite [27] systems, which use a special spreading code
to transmit timing information, and microcellular [28] environments, where
receiver processing transforms an asynchronous channel to the synchronous
equivalent. The S-CDMA system developed by Cylink relied on network syn-
chronization for both downlink and uplink [29]. Special orthogonal signals
can be constructed to such a quasi-synchronous channel to combat possible
small synchronization errors [30, 31].

Increasing the capacity of S-CDMA with the design of signature ensem-
bles and corresponding receiver structures is the topic of this thesis. In
CDMA system design the signature or receiver optimization cannot be per-
formed independently [32–35]. The selection of employed receiver structures
depend on restrictions on complexity and requirements on the performance,
which are highly dependent on the signature ensemble selection. For the
oversaturated situation, there are no signature ensembles which could pro-
vide multiple access interference free transmission. Therefore, when capac-
ity increase is desired with existing time-frequency resources, the trade-off
between complexity of receiver and performance defines the selection of re-
ceiver type and signature ensemble. A complex receiving algorithm intro-
duces large delays to transmission and dissipates a lot of power [11]. On
the other hand, high signal energy can also be problematic in cellular net-
works [19]. The analysis of oversaturated S-CDMA starts with a brief review
of previous achievements reported in the literature.

1.3 Previous work on oversaturated CDMA

Next, a brief review of previous work on oversaturated CDMA techniques is
presented. A more detailed study of discussed receivers is given in chapter
4. Oversaturated signature ensembles are discussed in chapters 5, 6 and 7.
The work by Ross and Taylor has been the basis for many other authors.
In [36, 37] they propose a signature ensemble which is optimal in the mini-
mum Euclidean distance [32]. That is, the asymptotic bit error probability
is minimized if an optimal receiver is employed. The scheme is investigated
in detail in chapter 5 along with an extension of the scheme to arbitrary
numbers of users and a method to produce a binary signature ensemble
that follows the minimum distance requirement. The utilization of Ross
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and Taylor signature ensembles requires the optimal receiver algorithm [38]
to be used while the obtained oversaturation efficiency is modest. This has
led to active research for ways to reduce exponential complexity by exploit-
ing cross-correlation properties of signatures, or to utilize sub-optimal algo-
rithms at the receiver. Signature ensembles providing high oversaturation
efficiency have been discovered also.

In [33] Learned et.al. proposed a polynomial complexity optimal receiver
algorithm for a signature cross-correlation matrix that has tree-structure
which is obtained, for example, with the Ross and Taylor signature ensemble.
Another proposed option for signatures in [33] is to utilize wavelet basis to
create real valued signatures. More information about oversaturation using
wavelets can be found in [34, 39, 40]. Polynomial complexity of multiuser
receivers is also possible if all values in a signature ensemble cross-correlation
matrix are identical [35, 41] or negative [42].

Shi and Schlegel [43] propose a trellis decoder [12] based receiver for
signature ensembles having a band-diagonal cross-correlation matrix, which
can be obtained by interpolating and linearly combining Walsh-Hadamard
codes. The complexity of the trellis decoder is linear in the number of users
and exponential in the number of trellis states.

Suboptimal multiuser receivers aim to cause minimal decrease in the
performance of the receiver while providing simple implementation. Sub-
optimal receivers can be divided into linear [44, 45] and non-linear [46–49]
categories, where the latter is also referred to as decision-driven multiuser
receiver. Developments in the field of multiuser detection have been studied
profoundly in [50], which also contains extensive reference list on the subject.
Out of the linear receivers a decorrelating detector [44] cannot be used in the
oversaturated case due to impossibility of decorrelation of linearly depen-
dent signals, but a minimum mean square error (MMSE) receiver [45] suits
well to this purpose. The theory of decorrelating receiver and the MMSE re-
ceiver are generalized to group pseudo-correlator and group MMSE detector
algorithms in [51]. Both of them specialize in receiving a group of linearly
dependent users while the interfering subspace is linearly independent from
the desired subspace.

When using linear receivers the signature ensemble that reaches the min-
imum MAI power level is obtained by minimizing the total squared corre-
lation (TSC) among all users. Such a signature set is called a Welch bound
equality (WBE) ensemble. Rupf and Massey found [52] that a WBE ensem-
ble maximizes the channel capacity for equal energy users, and the issue has
been under extensive study since. The result was later extended to case of
different amplitudes in [53] and the term generalized WBE signatures was
adopted to differentiate them from the equal energy case. The connection
of WBE signatures to user capacity is analyzed in [54,55]. WBE ensembles
will be analyzed in more detail in section 5.2.

7



In [56] a group orthogonal system was proposed, where signatures are di-
vided to non-interfering groups making an optimal multiuser receiver feasible
in each group due to the small number of users inside the group. MAI occurs
only between users inside a group. No specific signature ensembles provid-
ing group orthogonality were given in [56]. Group orthogonal signal design
to maximize minimum Euclidean distance inside the group is analyzed in
detail in chapters 6 and 7. Group orthogonality based on spatial division of
signatures is investigated in [57]. In [58] the trade-off between inter-group
and intra-group interference is analyzed for the system where each group
utilizes the same signatures but different chip waveforms.

Vanhaverbeke et. al. [59–61] have investigated oversaturation based on
different kind of combinations of two different initial sets to produce over-
saturation. Both initial sets can be orthogonal or the other set can be
pseudo-random. The receiver is based on successive interference cancella-
tion. Several variations and improvements of the original idea are investi-
gated in [62–66]. The approach can be considered opposite in group orthog-
onal strategy, where MAI occurs inside the group instead of between groups.
Proposed methods are collected and thoroughly analyzed in PhD thesis by
Vanhaverbeke published in 2005 [20].

In addition to multiple access capacity of oversaturated communications,
information theoretic channel capacity has received a lot of attention dur-
ing the recent decade. It is proved in [52] that Shannon capacity can be
obtained in oversaturated S-CDMA transmission with a WBE signature en-
semble. The channel capacity of oversaturated S-CDMA is further discussed
in chapter 3.

Some of the contributions of this thesis have been published in [67–
72]. Here, results published in aforementioned references are significantly
extended and presented more accurately in systematic manner.

1.4 Overview of thesis

Thesis is organized as follows: First, the fundamentals of spread spectrum
and S-CDMA are investigated in chapter 2, and a method to increase S-
CDMA capacity called oversaturation is presented. Chapter 3 serves as a
motivation for the topic selection and for the work performed for this thesis.
Two criteria of optimality of communication systems are discussed there.
The conclusion is that it is possible for oversaturated S-CDMA to obtain
Shannon’s channel capacity and also to have optimal asymptotic error per-
formance in terms of minimum Euclidean distance. Next, a problem with
receiving CDMA transmission is illustrated and several receiver algorithms
for oversaturated situations are presented. It is seen that the performance
of conventional receiver is not adequate, and the optimal receiver is difficult
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to implement in practice due to its high complexity. Therefore, a number
of suboptimal algorithms are investigated from which the group orthogo-
nal receiver is treated in the most detail. After describing CDMA receivers
the focus shifts to designing oversaturated signature ensembles. Optimal
signature ensemble is presented in chapter 5 along with ensembles, which
obtain higher efficiency but exhibit energy loss when compared to the opti-
mal ensemble. The main contribution of this thesis is the signature ensemble
design provided for group orthogonal receiver, which is presented in chapter
6 for unique signature per user strategy, and in chapter 7 for collaboratively
encoded data bits of users. Collaborative encoding entails that each user
does not posses a unique signature. For both schemes, the performance is
analyzed theoretically in an additive white Gaussian noise (AWGN) chan-
nel. In chapter 8, theoretical performance analysis of chapters 6 and 7 is
verified with simulations. Also, the performance in multipath channel is
analyzed, which is a more realistic channel model for mobile terminals in
cellular communications. Finally, the concluding remarks are given.
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Chapter 2

The fundamental concepts of
synchronous CDMA systems

2.1 Spread spectrum concept

The emphasis of this thesis is on CDMA technology, which is completely
based on the spread spectrum concept. Therefore, some very well known
aspects of spread spectrum are discussed briefly to establish notations used
throughout this thesis and to provide necessary information to thoroughly
understand oversaturation of S-CDMA. The literature is crowded with ex-
cellent material on spread spectrum methods. An interested reader can find
detailed material from for example references [17,21,22,32,73]. Spread spec-
trum has been utilized in military communications for several decades. His-
torical milestones of spread spectrum systems and its military applications
are presented in [17]. The commercial communication benefits from exactly
the same properties as military systems. Books devoted to commercial im-
plementations of CDMA in general are [19,21]. After the selection of CDMA
as an air interface technique for 3G mobile systems several books describ-
ing UMTS (Universal Mobile Telecommunication System) and cdma2000
systems have emerged [3, 5, 23,24,74–76].

Spread spectrum system is defined in many sources [15, 16, 21, 22] as a
system, which employs much wider bandwidth than required by the data rate
to be transmitted. This definition, however, is ambiguous. For example, in
the GSM cellular standard users reserve the bandwidth of approximately 200
kHz to transmit data at rate between 9.6-13 kbps, but GSM does not involve
any spread spectrum methods in the transmission of user data1. Here, we
use older and more universal definition which can be found for example
in [32]. There a spread spectrum signal is defined as a signal, whose time-

1To enhance frequency re-use between adjacent cells slow frequency-hopping spread
spectrum method is employed between base stations [22].
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frequency product that is the product of signal duration, T , and its required
bandwidth, W , is much greater than one:

WT >> 1. (2.1)

For plain signals that are not employing spread spectrum methods, the
relation in question is

WT ≈ 1. (2.2)

System employing spread spectrum signals is referred to as spread spectrum
system.

In principle, spread spectrum systems have numerous merits when com-
pared to systems utilizing plain signals. These merits include good perfor-
mance in a multipath environment, resistance to narrow-band interference,
privacy, possibility for exact time and location measurement, and good elec-
tromagnetic compatibility. The most important merit regarding this thesis
is the possibility of employing CDMA as multiple access method, which will
be inspected in detail in the next section. In addition, in a cellular environ-
ment CDMA makes universal frequency re-use possible, which increases the
capacity and enables the use of soft handover, which enhances the perfor-
mance [21].

The basic principles of spread spectrum are illustrated in Fig. 2.1. Orig-
inally narrow-band signal in Fig. 2.1(a) is spread at the transmitter without
adding extra energy, thus making the transmitted signal spectrum wide and
power spectrum density low as shown in Fig. 2.1(b). At the receiver an
opposite operation, called despreading illustrated in 2.1(c), is performed to
return to the original spectrum. Some of the merits of spread spectrum are
easily explained with Fig. 2.1. Low probability of interception and good
electromagnetic compatibility are due to the fact that power spectrum den-
sity of a spread spectrum signal can be close or even below the noise level.
Resistance to narrow-band jamming is achieved due to the fact that after
the despreading in the receiver the jammer spectrum is spread to wider
spectrum having low power level.

Good time resolution is due to the time compression effect in the time
domain. It enables measuring time accurately, and also separating signals
arriving at receiver with different delays from a multipath channel. This is
illustrated in Fig. 2.2, where the matched filter output is presented for two
copies of the original signal. It is seen that even though the delayed copy of
the transmitted signal is overlapping in time with the original signal, they
are easily separated after the matched filter processing. Privacy is protected
against non-authorized receivers when only intended receiver is aware of the
code signal used in transmission.

In practice, the spreading of the signal is accomplished by modulating
information bits with a spread spectrum signal. At the receiver a reverse
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Figure 2.1: The basic principle of spread spectrum.
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Figure 2.2: The time compression effect of spread spectrum signals.

operation called despreading is performed to restore the original transmit-
ted signal. Despreading is in fact exactly the same operation as spreading,
where the received signal is modulated with synchronized replica of the orig-
inal spread spectrum signal. Here, we discuss only discrete spread spectrum
signals. Continuous spread spectrum signals are not that typical in con-
temporary commercial communication systems but remain in wide use for
example in radar and sonar systems [77,78].

13



2.2 Discrete spread spectrum signals

In the baseband, a discrete spread spectrum signal is a chip, or code, se-
quence. The term chip is introduced to separate elementary pulses from in-
formation bearing symbols. Formally, the complex envelope of the spreading
signal, ṡ(t), can be given as

ṡ(t) =

∞∑

i=−∞
aiṡ0(t − i∆c)exp(j2πfit), (2.3)

where ai, fi are complex amplitude and frequency of chip number i, and
ṡ0(t) is the pulse waveform with the duration ∆c. The real signal, s(t), is
obtained from the complex envelope as s(t) = ℜ{ṡ(t) exp(j2πfct)}, where
fc is the frequency of the carrier wave.

The spread spectrum systems can be divided into two main categories,
which are direct sequence spread spectrum (DSSS) and frequency hopping
spread spectrum (FHSS). It is also possible to use time hopping or the
three alternatives can be utilized simultaneously in a hybrid mode [17]. The
entire available bandwidth is utilized in DSSS systems continuously by the
all spread signals. In FHSS transmission the bandwidth reserved by the
signal hops according to the spreading signal inside the boundaries of the
whole bandwidth allocated for the system. The hopping is realized with the
modulation of fi in (2.3). The FHSS can be further divided into fast and
slow hopping, but since the emphasis of the thesis is on DSSS, the interested
reader is directed to [17] for more information on frequency hopping. In
DSSS, only the complex amplitude of spread spectrum signal is modulated.
Thus, fi = 0 and the (2.3) reduces to

ṡ(t) =
∞∑

i=−∞
aiṡ0(t − i∆c). (2.4)

In this thesis only phase shift keying (PSK) modulation of chips is consid-
ered, which means that |ai| = 1. The spreading and despreading operations
of binary PSK (BPSK) modulated DSSS are illustrated in Fig. 2.3, where
the transmission of four bits of single user b = {1,−1, 1 − 1} (Fig. 2.3(a))
is spread with chip sequence a = {1, 1, 1, 1,−1,−1, 1,−1} using rectangular
pulse shape (Fig. 2.3(c)). The result of spreading is illustrated in (Fig.
2.3(e)). The spread baseband signal is BPSK modulated and sent through
the channel (here the noisy waveforms are not illustrated for sake of clar-
ity). At the receiver, the observed signal (Fig. 2.3(b)) is despread with the
synchronized copy of original spreading code (Fig. 2.3(d)) and demodulated
to obtain transmitted bits (Fig. 2.3(f)).

The quality of transmission in spread spectrum systems is determined by
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Figure 2.3: The principle of DSSS.

the correlation properties of signals2. The performance of a CDMA system
is dependent on the cross-correlation property. Other applications of spread
spectrum require good autocorrelation properties.

2.3 Code division multiple access

CDMA is a multiple access method, where each user k is assigned unique
discrete spread spectrum signal, sk(t), which enables distinguishing users
from each other even though all transmissions occur simultaneously in the
same frequency band. This signal is referred to as signature in this thesis.
The set of all users’ signatures is referred as signature ensemble. Correlation
properties of signature ensemble are critically dependent on the available
signal space dimension, or the length of signature per one data symbol, N ,
which is also called spreading factor or processing gain. The spreading factor
is determined by signal bandwidth, W , and data symbol duration, T [17]

N = WT. (2.5)

2which is furthermore fully determined by the correlation properties of code sequences
for fixed pulse shape of ṡ(t).
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In the case of binary data transmission, the bit rate, Rb, is the inverse of
symbol duration, and

N =
W

Rb
, (2.6)

where N now directly indicates how many times the bandwidth is greater
than the actual data rate. There are exactly N orthogonal signatures having
the length of N chips. The number of users served, Kmax, in CDMA equals
the number of orthogonal signatures available. For the case of M -PSK data
modulation

Kmax =

{
N, for M -PSK, M > 2
2N, for BPSK

. (2.7)

2.3.1 Synchronous CDMA

In the time domain the CDMA can be characterized as synchronous or asyn-
chronous CDMA. The CDMA system is synchronized if there are no mutual
delays between signatures of different users at the receiver input. If all signa-
tures are synchronized the orthogonal signature ensemble is optimal due to
zero cross-correlations, which completely eliminates MAI. Synchronism be-
tween signatures can be maintained on the downlink of cellular system, since
the base station is controlling all transmissions. However, the uplink trans-
mission is usually asynchronous and the orthogonal multiple access cannot
be guaranteed. As a result, MAI appears and its intensity is determined by
cross-correlations of signatures under their arbitrary time-shifts. Because
of this, the definition of CDMA uplink capacity is not as straightforward
as for synchronous case. The capacity is considered to be interference lim-
ited, meaning that the maximum number of users depends on the tolerable
amount of MAI.

In the downlink, the signal transmitted by base station is a group signal,
which is the superposition of all data modulated user signatures. Let us
limit the consideration to one data symbol interval and denote the data
symbol of k-th user as bk. The data symbol modulates the signature of user
k, denoted as sk(t) and consisting of chips ak,i (having pulse shape defined
by s0(t) and duration ∆c) , of the user k, which results in modulated signal
sk(t; bk). For binary data symbols the modulated DSSS CDMA signature is
given as

sk(t; bk) = bksk(t) = bk

N−1∑

i=0

ak,is0(t − i∆c). (2.8)

The transmitted group signal, x(t;b) is obtained by summation of modu-
lated user signatures, which are also multiplied by amplitudes Ak to provide

16



desired signal energy:

x(t;b) =
K∑

k=1

Aksk(t; bk), (2.9)

where b = (b1, b2, . . . , bK) is the vector containing data symbols for all users.
The signal received by terminal can be expressed as

y(t) = x(t;b) + n(t) =
K∑

k=1

Aksk(t; bk) + n(t) (2.10)

where n(t) is an AWGN component, having two-sided spectral density N0/2.
The immaterial common delay is omitted from the equation.

Receiver strategies to retrieve user data from the received group signal is
the topic of chapter 4. For further analyses it is convenient to replace (2.10)
by its discrete time vector equivalent:

y = x + n = STAb + n, (2.11)

where y is the noisy group signal column vector of length N , x is the trans-
mitted group signal column vector of length N , S = [s1, s2, . . . , sK ] is the
signature ensemble matrix of size K ×N with rows as signatures sk = (ak,0,
ak,1, . . . , ak,N−1), A is the K × K diagonal matrix with diagonal elements
Ak, b is the column data bit vector of length K and n is the column noise
vector of length N .

2.3.2 Orthogonal signature ensembles

As discussed earlier, orthogonal signature ensembles remove the MAI com-
pletely. Mathematically, orthogonality condition means that normalized cor-
relation coefficient between user signatures i and j, ρij , is

ρij =
1

E

∫ T

0
si(t)s

∗
j (t) dt =

{
1, i = j
0, i 6= j

, (2.12)

where T is the duration of signature coinciding with data symbol duration,
and E =

∫
|s(t)|2 is the the energy of signatures. For DSSS signals correla-

tion coefficient may be expressed in terms of code sequences as

ρij =
1

E

N−1∑

m=0

ai,ma∗j,m

{
1, i = j
0, i 6= j

, (2.13)

where E is code sequence energy E =
∑N

i=0 |ak,i|2. The correlation co-
efficients for all combinations of i and j form a cross-correlation matrix,
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R (Rij = ρij), and in the orthogonal signature ensemble R = I, where I
is identity matrix. The binary orthogonal ensemble can be obtained with
Hadamard matrix if rows of the matrix are employed as chip complex am-
plitudes of signatures [19, 32]. Hadamard matrix is a square matrix, whose
components take only values ±1, and whose all rows (and, as a conse-
quence, columns) are orthogonal to each other. The necessary condition
for Hadamard matrices to exist is that N = 2 or N = 4i, i integer. However
the suffiency of that condition has not been proved. A very popular method
to obtain Hadamard matrices of size 2i is to build them recursively

H2M =

(
HM HM

HM −HM

)

(2.14)

starting with the matrix

H2 =

(
+ +
+ −

)

, (2.15)

which is obviously a Hadamard matrix. Denotation ± refers to signs of
antipodal bits. Hadamard matrices for other lengths can be obtained from
binary signature having optimal periodic autocorrelation function values
R(m) = −1, m 6= 0. The orthogonal ensemble can be formed by creat-
ing matrix, where rows are all cyclic shifts of the binary sequence that
have the minimax autocorrelation function. To have a matrix of Hadamard
type, one row and one column of ones are appended to the matrix [79–81].
Suitable binary sequences for creating Hadamard matrices in this manner
(m-sequences, Legendre sequences, etc.) are described in [32,82].

2.3.3 Orthogonal signature ensembles in real applications

Orthogonal signatures are utilized, for example, in IS-95, nowadays known
as cdmaOne, and in 3G standards UMTS and cdma2000.

The separation of users in the downlink of cdmaOne is achieved by or-
thogonal 64-length Walsh sequences [21]. In fact only 61 of them are utilized
for user separation. The remaining three signatures are used for pilot, paging
and synchronization channels. In the uplink, orthogonal codes are not used
as signatures but to improve transmission fidelity instead [21]. Blocks of six
bits are encoded with the rows of size 64 Hadamard matrix. Thus, each row
represents one combination of a length six bit pattern. The 3G standard
cdma2000 has evolved from cdmaOne. The system has also inherited the
basic principles utilization of orthogonal codes [83].

In European 3G standard UMTS orthogonal signatures are called chan-
nelization codes. They are used for user separation in the downlink. They
are also employed both in downlink and uplink in order to separate dedi-
cated channels of the same user when multicode transmission takes place [5].
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Figure 2.4: Code tree for OVSF codes

In UMTS physical channels antipodal symbols are spread using orthogonal
codes. Before transmission the chip stream is scrambled with a long pseudo
noise (PN) code that has good autocorrelation properties. In the uplink the
scrambling codes are user-specific and they distinguish different users while
in the downlink the scrambling code is cell-specific.

Orthogonal spreading codes in the UMTS standard are called orthogonal
variable spreading factor codes (OVSF), which are generated with a code tree
illustrated in Fig. 2.4. In practice, the OVSF codes are exactly the same as
Walsh-Hadamard signatures presented in section 2.3.2. Variable spreading
ensures the possibility to support variable bit rates for different physical
channels of one user. The idea is to keep chip rate constant by adjusting
spreading factor according to data bit rate. The higher the date rate the
lower the spreading factor. Typical chip rate in the UMTS standard is 3.84
Megachips per second (Mcps). Processing gain is usually between 4 and 512
in the downlink for dedicated channels and 256 for common channels. In the
uplink spreading factors are between 4 and 256 for data channels and 256
for control channels. Possible bit rates in physical channels are then from
7.5 kbps to 950 kbps corresponding to spreading factors of 512 and 4.
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Each level of the code tree has N codes that have spreading factor N . Codes
in each level are created from the codes of the previous level with multipli-
cation. The code in the previous level is called mother code. Two double-
length codes are created from the mother code by chaining two copies of the
mother code or mother code and the same code multiplied with −1. Codes
created this way maintain orthogonality if they are on the same level in the
tree, or the shorter code is not found in the longer code. This means that
two codes from a different level are orthogonal if the shorter code is not
the mother code of the longer code. This limitation reduces the number of
available codes according to bit rate requirements.

The capacity restriction imposed by OVSF codes are alleviated by dif-
ferent methods in the uplink and the downlink. In the uplink processing
physical channels are divided into two sets, which are scrambled with two
different scrambling codes. This makes it possible to use the same chan-
nelization codes to spread the two sets, which means that the capacity is
doubled, i.e. the amount of physical channels is two times larger than it
would be without division to two sets. In the downlink, even and odd bits
of the same physical channel are processed in quadrature, which means that
the bit rate of signal to be spread is halved. This implies that the spreading
factor can be doubled while a constant chip rate is maintained.

2.4 Oversaturated synchronous CDMA

Orthogonal signaling is problematic in the high data rate transmission. The
bandwidth for a system to operate on is defined by the authorities regulat-
ing the spectrum. Thus, it cannot be exceeded. From (2.6) and (2.7) it is
seen that adding more orthogonal signatures (increasing the length) reduces
available data rate, and vice versa when W is fixed. This property is totally
contradictory to goals of wireless cellular system design. Thus, the prob-
lem of increasing the number of signatures without increasing bandwidth is
topical. Obviously, K > N signatures are not orthogonal any more. Here,
the trivial doubling of K (see eq. (2.7)) is not considered as oversaturation.
Thus, the goal in the thesis is to analyze methods for K to exceed N while
losing as little as possible in performance versus the orthogonal signatures,
and to cause minimal additional complexity to the receiver structure. The
receivers for oversaturated CDMA are discussed in chapter 4.

Oversaturation efficiency, eov, is a measure of extra capacity, and it is
defined as eov = K/N = (N + Ω)/N , where Ω is the number of extra, or
supplementary, users served beyond N . The capacity increase can be used
to increase K for a given N , or to decrease N if there is no need to add
more users to the system, which implies that higher data rates can be used.
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2.5 Chapter summary

The fundamental issues of spread spectrum were briefly analyzed to provide
necessary background knowledge on oversaturated S-CDMA. The following
chapters will focus on receiver algorithms and signature ensembles for over-
saturated S-CDMA, but first two criteria to label certain signature ensembles
optimal are discussed in the next chapter.
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Chapter 3

Criteria of optimality for
oversaturated signature
ensembles

In this chapter, two different criteria to label certain signature ensembles
optimal are discussed. Channel capacity is a measure of efficiency for the
utilization of existing energy and frequency resources. On the other hand
the minimum Euclidean distance of the signature ensemble determines the
performance of the receiver. The analysis starts by reproducing some crucial
results on channel capacity of oversaturated S-CDMA from literature. It is
seen that potential channel capacity is obtainable in an oversaturated S-
CDMA transmission. After the analysis of channel capacity, the minimum
distance criterion is discussed to minimize asymptotic error probability in
the receiver.

3.1 Information theoretic channel capacity of syn-
chronous CDMA

As stated before, the efficient utilization of resources is a strict demand
for the contemporary wireless communication systems. In 1948, Claude
Shannon [18] established the theoretical foundations of information theory.
One of the most well known results is the upper bound on what error free
data rates can be obtained with certain bandwidths and signal powers in an
AWGN channel. The whole extent of Shannon’s results and their further
developments during the 50 years after initial publication are thoroughly sur-
veyed in [84]. Next, the channel capacity of S-CDMA in an AWGN channel
is analyzed based on Shannon’s formulations to motivate the selection of
oversaturated S-CDMA for the topic of this thesis. The results presented in
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this section were published in [52] and later complemented in [53] to include
results for users with unequal amplitudes. The channel capacity consider-
ation here is valid for sum and symmetric capacity of equal energy users.
Sum capacity is the total capacity of all users without any restrictions on the
capacity distribution between users while symmetric capacity means that all
users have an equal share of the overall capacity at their disposal.

The channel capacity, C, is obtained by maximizing the mutual informa-
tion I(X; Y ) between the channel input and output ensembles [12,13,18,84]

C = max
P (x)

I(X; Y ), (3.1)

where P (x) is the probability distribution on the ensemble X of all possible
input vectors x and Y is the ensemble of all possible output vectors. Further,
mutual information can be given by

I(X; Y ) = H(Y ) − H(Y |X), (3.2)

where H(Y ) is the unconditional entropy of output ensemble, while H(Y |X)
is conditional entropy for fixed input vector x. When the transmitted data
bit vector is fixed the only uncertainty in the observation is caused by noise.
Therefore, assuming that the channel is Gaussian, the conditional output
entropy is the entropy of an N -dimensional Gaussian vector with a cross-
correlation matrix Rn having probability density function (pdf)

P (y|x) =
1

√

(2π)N detRn

exp

(

−1

2
(y − x)T R−1

n (y − x)

)

, (3.3)

which, for memoryless channel, results in [13,18]

H (Y |X) =
1

2
log
(
(2πe σ2)N

)
(3.4)

for Rn = σ2IN when noise samples are uncorrelated. The denotation IN

is used for identity matrix of size N . The result of (3.4) means that to
maximize (3.2) it is enough to maximize H(Y ), since P (x) is not present in
(3.4). The observation vector was defined in (2.11), which is rewritten here
for convenience:

y = STAb + n. (3.5)

Given amplitude and fixed signature ensemble matrix (signatures in rows),
the cross-correlation matrix of y is fixed

Ry = (y − y)(y − y)T = yyT = nnT + STAbbTATS

= σ2IN + STA2S, (3.6)
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since y = 0, nnT = Rn = σ2IN and bbT = IK . According to maximal en-
tropy theorem [13], the maximum of H(Y ) is achieved with Gaussian output
statistics having correlation matrix of (3.6). Basically, that is possible only
with the Gaussian input vector x. In this case the capacity is according to
(3.1)–(3.6)

C =
1

2
log
(
(2πe)N det(σ2IN + STA2S)

)
− 1

2
log
(
(2πe)N (σ2)N

)

=
1

2
log

(

det

(

IN +
STA2S

σ2

))

(3.7)

In [52] the relation between CDMA capacity (3.7) and the capacity of Gaus-
sian channel not restrained to CDMA is established. To derive this the
determinant of matrix STA2S is expressed with its eigenvalues, λi as

detSTA2S =
n∏

i=1

λi (3.8)

Moreover, the eigenvalues of matrix I + Ry are 1 + λi. Then, (3.7) becomes

C =
1

2
log

N∏

i=1

(

1 +
λi

σ2

)

=
N

2
· 1

N

N∑

i=1

log

(

1 +
λi

σ2

)

(3.9)

Function log(x) is concave function for which Jensen’s inequality [85] applies

1

n

n∑

i=1

f (xi) ≤ f

(

1

n

n∑

i=1

xi

)

. (3.10)

Thus,

C ≤ N

2
log

(

1 +
1

Nσ2

N∑

i=1

λi

)

. (3.11)

Furthermore, the sum of eigenvalues is the trace of a matrix. Thus,

N∑

i=1

λi = tr
(
STA2S

)

=
N∑

i=1

K∑

l=1

K∑

m=1

ai,l(A
2
l δl,m)ai,m

=
N∑

i=1

K∑

l=1

ai,lai,lA
2
l = NPtot, (3.12)
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where ai,l,ai,m denote i-th chip for users l and m, Al is the amplitude of l-th

user, δl,m is Kronecker delta, and Ptot =
∑K

l=1 A2
l is the total power of all

users when average chip energy is normalized to one. Now, (3.11) becomes

C ≤ N

2
log

(

1 +
Ptot

σ2

)

. (3.13)

To compare the result obtained with classical Shannon theorem for a single
user, the capacity must be divided by N , since (3.13) is calculated for N
dimensions instead of a single dimension of classical result. Therefore, the
final upper bound on the capacity of S-CDMA becomes

C ≤ 1

2
log

(

1 +
Ptot

σ2

)

. (3.14)

To arrive at the most familiar form of Shannon capacity (3.14) should be
divided by the time unit t = 1/2W [13]:

C ≤ W log

(

1 +
Ptot

σ2

)

, (3.15)

which shows that the capacity of CDMA is never higher than the limit
imposed by total power of all users and available bandwidth resource. The
required conditions to achieve equality in (3.14) are discussed in the next
section.

3.2 Signature ensemble that maximizes the chan-
nel capacity of S-CDMA

It can be now shown [52] that the capacity of CDMA may achieve Shannon’s
limit in (3.14) in only saturated or oversaturated CDMA. Indeed, equality
in (3.11) is attainable if and only if all λi are equal. That is if and only if

STA2S = (AS)TAS = PtotIN , (3.16)

where STA is a N × K matrix. To fulfill (3.16) STA should be a matrix
with orthogonal rows. Its rows have dimension K so to make the matrix
orthogonal the number of rows, N , should be equal or smaller than the
dimension K:

K ≥ N. (3.17)

Hence, the capacity of S-CDMA can equal the capacity of a Gaussian channel
only in a saturated or an oversaturated situation. If all powers for different
users are equal (3.16) becomes

STS = KIN , (3.18)
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which means that the columns of the signature matrix are orthogonal.
Equivalent condition to (3.18) is that the signature ensemble attains Welch
bound [86], i.e. has the TSC equal to its minimum, established by the
abovementioned bound:

TSC =
K∑

k,l=1

|sks
∗
l |2 ≥ K2

N
(3.19)

Signatures that reach the equality in (3.19) are called WBE signatures. They
are inspected more closely in the section 5.2.

3.3 Channel capacity of oversaturated S-CDMA
with binary input symbols

In the derivation of channel capacity of oversaturated S-CDMA (3.14) it was
assumed that transmitted symbols are Gaussian to provide Gaussian statis-
tics of channel output. However, the emphasis of this thesis is to investigate
binary data transmission. In the binary case the derived results are still
valid in the asymptotic case signal-to-noise ratio (SNR) << 1, since in this
case the channel output statistics are controlled by the Gaussian noise only.
However, as binary signal energy grows the binary input channel capacity
only yields to the capacity of channel with no limits on input alphabet. The
channel capacity for binary input symbols is investigated in two asymptotic
cases, first for weak signals (SNR << 1).

3.3.1 Channel capacity for the asymptotic case of weak sig-
nals

The transmitted (fixed) group signal is denoted with x = (x1, x2, . . . , xN )
where xi, i = 1, 2, . . . , N denote components of the group signal vector. The
conditional observation pdf is

P (y|x) =
1

√

(2π)N
exp

(

−1

2

N∑

i=1

(yi − xi)
2

)

, (3.20)

where σ2 = 1 is assumed for simplified notation without the loss of general-
ity. With very weak signal the Taylor series around x = 0 is

f(x) ≈ f(0) +
∑

i

[
df(x)

dxi

]

xi=0

xi +
1

2

∑

i

∑

j

[
d2f(x)

dxidxj

]

xi,xj=0

xixj + · · · ,

(3.21)
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which for

f(x) = exp

(

1

2

∑

i

2xiyi −
1

2

∑

i

x2
i

)

(3.22)

results in

P (y|x) ≈ P (y|x = 0)



1 +
1

2

N∑

i=1

2yixi −
1

2

N∑

i=1

|xi|2 +
1

2

N∑

i=1

N∑

j=1

yiyjxixj



 ,

(3.23)
where terms containing O(||x||2) are dropped. To obtain unconditional pdf,
P (y), the conditional pdf, P (y|x), must be averaged over all group signals.

P (y) =

∫

. . .

∫

P (y|x)P (x) dx, (3.24)

where P (x) is the pdf of group signal. The result of averaging is

P (y) ≈ P (y|x = 0)



1 − 1

2

N∑

i=1

|xi|2 +
1

2

N∑

i=1

N∑

j=1

yiyjxixj



 , (3.25)

where the fact that xi = 0 is utilized, since any polarity of any transmitted
bit of any user has the probability of 1/2. With designation Rx for correla-
tion matrix of group signal x that has components [xixj ], (3.25) becomes

P (y) ≈ P (y|x = 0)

(

1 − 1

2
tr Rx +

1

2
yTRxy

)

. (3.26)

To see how (3.26) is related to the pdf of Gaussian random process, consider
the pdf of Gaussian vector xg with very weak correlation

P (xg) =
1

√

(2π)N detK
exp

(

−1

2
xT

g K−1xg

)

, (3.27)

where K = I + δ0K0 and δ0 is approaching zero (δ0 << 1). Then, detK =
∏n

i=1(1 + δ0λi), where n is the dimension of xg and λi, i = 1, 2, . . . , n are
eigenvalues of matrix K0. Then,

detK ≈ 1 + δ0

n∑

i=1

λi = 1 + δ0 tr K0, (3.28)

whereby

(detK)−1/2 ≈ 1 − 1

2
δ0 tr K0. (3.29)

In addition

K−1 = (I + δ0K0)
−1 = I − δ0K0 + δ2

0K
2
0 − δ3

0K
3
0 + . . . ≈ I − δ0K0 (3.30)
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due to assumption δ0 << 1. Then, after substituting (3.29) and (3.30) the
Gaussian pdf (3.27) can be expressed as

P (xg) ≈
1

√

(2π)N
exp

(

−1

2
xT

g xg

)

·
(

1 − 1

2
δ0 trK0

)

· exp

(
1

2
xT

g δ0K0xg

)

≈ 1
√

(2π)N
exp

(

−1

2
xT

g xg

)

·
(

1 − 1

2
δ0 trK0 +

1

2
xT

g δ0K0xg

)

, (3.31)

where approximation ex ≈ x, x << 0 is utilized. When (3.31) and (3.26) are
compared, it can be seen that (3.26) is just the approximation of Gaussian
pdf with zero mean and cross-correlation matrix I+Rx when all elements of
correlation matrix Rx are small enough. The latter entails that when group
signal is weak, the output is Gaussian regardless of input symbols.

The correlation matrix of the observation is

Ry = σ2I + Rx, (3.32)

where elements of Rx are

xixj =
K∑

k=1

bkai,kAk

K∑

l=1

blal,jAl =
K∑

k=1

ai,kak,jA
2
k, (3.33)

since bkbl = δk,l (Kronecker delta). It is seen that Rx = STA2S, which
means all results remain the same as with Gaussian input symbols, which
was calculated in (3.6). It can be concluded that to maximize the channel
capacity in the case of weak group signals the signature design should be
done the same way as with Gaussian input symbols. The resulting optimal
ensemble is again constructed with WBE sequences as was the case with
Gaussian input symbols.

3.3.2 Channel capacity for the asymptotic case of weak noise

On the other hand, for strong signals (SNR >> 1) the situation changes.
It is intuitively clear that when the noise is very weak the channel capacity
approaches the limit, which is simply entropy at the channel output H(y):

C −→
SNR→∞

−
∑

y

P (y) log P (y), (3.34)

which reaches its maximum only if all 2K realizations of group signals are
distinct and equiprobable. Then

C −→
SNR→∞

−
2K
∑

i=1

1

2K
log2

1

2K
= K. (3.35)
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The requirement of distinct group signals is crucial for reaching optimal
capacity. Therefore, in the presence of noise, though weak, the minimum
distance between group signals should be maximized to ensure that group
signals remain distinct even after the effect of noise.

To support (3.35) quantitatively let us represent observation pdf as

P (Y ) =
∑

x∈X

P (x)Pg(x,Rn), (3.36)

where Pg is the Gaussian pdf of the form (3.3) having cross-correlation
matrix Rn = σ2IN . The observation ensemble entropy is

H(y) = −
∫

. . .

∫

y

P (y) log2 P (y) dy

= −
∫

. . .

∫

y

∑

x0

1

2K
Pg(x0,Rn) log2

[
∑

x

1

2K
Pg(x,Rn)

]

dy, (3.37)

where x and x0 refer to the same set of possible group signal. The denotation
is chosen to enable clear illustration of obtained results. Since

log2

[
∑

x

1

2K
Pg(x,Rn)

]

= −K + log2

[
∑

x

Pg(x,Rn)

]

;

H(Y ) = K − 1

2K

∫

. . .

∫

y

∑

x0

Pg(x0,Rn) log2

[
∑

x

Pg(x,Rn)

]

dy. (3.38)

Now, inside the log2 take group signal x0 outside from the summation:

H(Y ) = K − 1

2K

∫

. . .

∫

y

(
∑

x0

Pg(x0,Rn)

)

×

× log2



Pg(x0,Rn)



1 +
∑

x,x 6=x0

Pg(x,Rn)

Pg(x0,Rn)







 dy (3.39)

Again, the output entropy conditioned in the group signal can be calculated
as

H(Y |X) = − 1
2K

∑

x0

∫

. . .

∫

y

Pg(x0,Rn) log2 Pg(x0,Rn) =
1

2
log2

(
(2πe)Nσ2N

)

(3.40)
and the entropy H(Y ) becomes
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H(Y ) = K + H(Y |X) −

− 1

2K

∑

x0

∫

. . .

∫

y

Pg(x0,Rn) log2



1 +
∑

x,x 6=x0

Pg(x,Rn)

Pg(x0,Rn)



 dy.

(3.41)

Finally the capacity, C, becomes

C = max
P (x0)






K − 1

2K

∑

x0

∫

. . .

∫

y

Pg(x0,Rn) log2



1 +
∑

x,x6=x0

Pg(x,Rn)

Pg(x0,Rn)



 dy






.

(3.42)
The capacity in (3.42) will be maximized when the value of integral is min-
imized, since it is always positive. The minimization is accomplished with
proper selection of group signal point locations, which determines P (x0).
Geometrically, Pg(x,Rn) is a bell shaped surface centered at x. In the
calculation of capacity Pg(x,Rn) is divided by the similar surface shape
centered at x0. To minimize the contribution of Pg(x,Rn) inside the inte-
gral for any x the latter should be as far from x0 as possible, which can be
explained as follows. After substituting an explicit form of Pg(x,Rn)

C = max






K − 1

2K

∑

x0

1
√

(2π)N

∫

. . .

∫

y

exp

(

−1

2
||y − x0||2

)

×

log2



1 +
∑

x,x 6=x0

exp

(
1

2
||y − x0||2 −

1

2
||y − x||2

)


 dy






. (3.43)

For any fixed x0 the maximal contribution in the integral is of points y close
to x0, since exp(−1

2 ||y−x0||2) is a sharp peak centered at y = x0 whenever
SNR is big. Hence, the maximization of capacity corresponds to minimizing
the sum

∑

x,x 6=x0

exp

(
1

2
||x0 − x||2

)

, (3.44)

which means that all the group signal points should be moved as far from
each other as possible. For large enough SNR values the main contribution
from x0 in the sum of (3.44) are due to the closest x0 signatures, that is,
the minimum distance should be maximized. Hence, in signature design
the maximal distinction of group signals should be provided. Also, the
convergence of C towards maximum is faster when group signals are more
distant. Therefore, we can conclude that to maximize channel capacity when
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SNR >> 1 we should make group signals as distant as possible in Euclidean
space.

To conclude this section the main findings are collected. To maximize the
channel capacity of S-CDMA for binary input symbols a signature ensemble
should

• obey Welch bound if signal energy is weak (SNR << 1);

• provide maximally distant points in group signal constellation if noise
is weak (SNR >> 1).

3.4 Minimum distance criterion for oversaturated
signature ensembles

It was seen in the previous section that the maximization of the minimum
distance is necessary to maximize the capacity for binary input symbols in
the presence of weak noise. In addition to the channel capacity, another
very important criterion is the probability of error in the receiver.

The probability of error in transmission for receiver using the mini-
mum distance rule depends on Euclidean distances between transmitted
signals [12, 13, 15, 16]. The signal space is divided to M decision regions
Zi, i = 1, . . .M representing all possible transmitted signals xi. When the
observation vector y falls to region Zj the receiver declares that signal xj

was transmitted. If some other signal was transmitted originally, receiver
outputs erroneous symbol. The minimum Euclidean distance is the most im-
portant factor in determining the error performance of transmission, since
asymptotically when SNR >> 1, the error probability is dominated by the
decision region, which has d = dmin distance to adjacent signal point [12,13].

Therefore, it is instructive to analyze pair-wise error probabilities be-
tween the closest constellation points. This probability in an AWGN channel
is given as

Pe = Q

( ||x1 − x2||√
2N0

)

, (3.45)

where Q(·) is the complementary error function, which gives the probability
that Gaussian distributed observation crosses the closest decision region
boundary. Q-function is defined as

Q(x) =
1√
2π

∫ ∞

x
exp

(−u2

2

)

du =
1

2
erfc

(
x√
2

)

. (3.46)

The properties of Q-function are collected extensively for example in [12,50].

The overall probability of error for signal point xi would be obtained
by integrating the likelihood function of xi over the regions Zj , j 6= i, or
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alternatively by calculating one minus the integration of likelihood function
f(y|xi) over region Zi. The average error probability Pe is obtained by

Pe = 1 − 1

M

M∑

i=1

∫

Zi

f(y|xi) dy, (3.47)

where f(y|xi) is for an AWGN channel pdf given in (3.3). But, as stated
earlier, in asymptotic case it is sufficient to inspect only pair-wise error
probabilities.

When considering bit error probability, or bit error rate (BER), it is also
necessary to inspect the bit patterns carried with signals. In the optimal
case signals in adjacent regions would carry bit patterns with only one bit
difference, that is their Hamming distance is dH = 1, when it can be assumed
that an erroneous decision on signal produces only one bit error [12, 13].

Basing on the discussion above, it is clear that for the fixed signal en-
ergy (E) there is an optimal organization of the signature ensemble where
the minimum distance between points in the constellation is maximal. In
[32] it is proved that the maximal squared minimum Euclidean distance is
d2

min,max = 4E, E being symbol energy. Optimal minimum distance between
neighboring realizations of the group signal in a constellation is obtained
with orthogonal signature ensemble in the saturated case K = N . The opti-
mal ensemble in the minimum distance in the oversaturated case is inspected
in chapter 5.

Suboptimal constellations have smaller minimum distance, which results
as loss in the SNR. The SNR loss is interpreted so that the larger amount of
SNR is required to reach some target error probability. In the oversaturated
transmission the exhibited energy loss is obtained from comparison to a
orthogonal ensemble. The loss γ is calculated as

γ =
d2

min

d2
min,max

=
d2

min

4E
(3.48)

3.5 Chapter summary

In this chapter two distinct criteria for labeling a communication system op-
timal were discussed. First, the channel capacity of S-CDMA in an AWGN
channel was analyzed according to existing literature on information the-
ory. The essential result was that S-CDMA may reach Shannon’s channel
capacity in the oversaturated (or saturated) case, but only with Gaussian
distributed input symbols. The signature ensemble providing the optimal
channel capacity must obey the Welch bound on the total squared correla-
tion.
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The original contribution of this chapter is the analysis of S-CDMA ca-
pacity in the case of binary data transmission. For binary input symbols
the channel capacity was analyzed in two asymptotic cases. For weak sig-
nals (small SNR) the signature ensemble selection should be performed in
a similar way to the optimal case with Gaussian input symbols. That is, a
WBE ensemble maximizes the channel capacity. However, for strong signals
(big SNR) the signature ensemble should be selected to provide maximal
minimal distance in the group signal constellation.

The main focus of this thesis is to increase the capacity (the number of
users) of S-CDMA by adding users to system with existing time-frequency
resources while guaranteeing maximal separation of group signals to mini-
mize error probability in the receiver. The aim of this thesis is finding sig-
natures that have maximal minimum Euclidean distance in N -dimensional
signal space. In this chapter, the channel capacity was investigated in two
asymptotic cases. For weak signals it was seen that channel capacity is
maximized when TSC criterion is fulfilled. However, for the case of weak
noise the channel capacity is maximized simultaneously when the Euclidean
distance between group signals is maximized. Thus, the approach taken in
this thesis is viable considering also channel capacity, and results obtained
in this chapter offer good motivation for the research direction chosen in
this thesis.
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Chapter 4

Receivers for synchronous
CDMA

When K > N , the system becomes oversaturated and signatures can no
longer remain orthogonal making MAI unavoidable [36, 37]. Under these
circumstances, the performance of a conventional single-user receiver is not
acceptable in the most cases (investigated more closely in section 4.1.1).
In the oversaturated situation multiuser receiver should be used instead of
single-user receiver [50]. However, special measures must be taken in signa-
ture ensemble design to avoid prohibitively high complexity in the receiver.
Multiuser receiver is the topic of section 4.2.

With a conventional single-user receiver, transmitted bits are acquired
by correlation of received signal by user’s spreading code followed by in-
tegration and thresholding (see (4.2) and (4.4)). However, a conventional
receiver suffers from disadvantages such as the near-far effect and unavoid-
able error floor in the case of non-orthogonal signals. A multiuser receiver,
or multiuser detector (MUD), can be used to overcome these shortcomings.
With multiuser receiver, the reception procedure is treated as multihypoth-
esis problem where the signals from unintended users are not treated as
interference, but bits from all users are processed simultaneously. MUD is
based either on joint detection or interference cancellation. Optimal joint
detection obviously delivers the best performance but being exponentially
complex in the number of users, its usage is limited if no special care is taken
in signature ensemble design. Next, the receiver processing of noisy group
signal is investigated formally.

The receiver’s intention is to retrieve the data from the noisy group
signal, which was defined in chapter 2 to be

y(t) =
K∑

k=1

Aksk(t; bk) + n(t) =
K∑

k=1

Akbksk(t) + n(t), (4.1)
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where the last equality is true for any real valued modulation, including
BPSK.

4.1 Single-user receiver

The most simple CDMA receiver is a conventional or single-user receiver,
which regards interference from other users as noise and simply correlates the
received group signal of (4.1) with a time synchronized replica of signature
of intended user to obtain decision variable, dk:

dk =

∫ T

0
y(t)sk(t) dt = Akbk +

∑

l 6=k

Albl

∫ T

0
sl(t)sk(t) dt +

∫ T

0
n(t)sk(t) dt.

(4.2)
In the case of orthogonal signatures the single-user receiver is optimal, since
the term including MAI caused by correlation between different signatures
vanishes and the decision variable becomes

dk =

∫ T

0
y(t)sk(t) dt = Akbk +

∫ T

0
n(t)sk(t) dt. (4.3)

Decision about transmitted bit is made by simply comparing the decision
variable dk to threshold, which is zero in the case of antipodal bits.

b̂k = sign(dk). (4.4)

However, in the oversaturated case orthogonal signaling is impossible and
the performance of conventional receiver may prove to be poor, depending
on the selection of N and K, as will be seen next.

4.1.1 Oversaturation with a single-user receiver

To illustrate how poor the performance of CDMA with intense oversatura-
tion can be, consider a simple example of two-dimensional space covering
three signatures (oversaturation efficiency eov = 1.5). The signatures are
shown in Fig. 4.1. The average bit error probability, Pe, for a fixed user k
is

Pe,k =
1

4

∑

bi,bj=±1

Q (q(1 + biρi,k + bjρj,k)) , (4.5)

where i, j, k ∈ {1, 2, 3} are all different and ρ is correlation coefficient defined
in section 2.3.2. Summation above is asymptotically dominated by terms,
which have bkρi,j = −|ρi,j |. Thus, the error probability can be bounded as

Pe,k >
1

4
Q (q(1 − |ρi,k| − |ρj,k|)) . (4.6)
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Figure 4.1: Three signatures in two-dimensional signal space.

Three users have different error probabilities. The least favorable user has

Pe,max >
1

4
Q (q(1 − Σmax)) , (4.7)

where Σmax = max{|ρ1,2| + |ρ1,3|, |ρ1,3| + |ρ2,3|, |ρ1,2| + |ρ2,3|}. From the
geometrical representation of Fig. 4.1, the correlation coefficients are ρ1,2 =
cos(α + β), ρ1,3 = cos β and ρ2,3 = cosα. Thus, Σmax = max{| cos α| +
| cos β|, | cos α|+ | cos(α + β)|, | cos β|+ | cos(α + β)|}. Angles are restricted
to be 0 ≤ α, β ≤ π/2, since the signatures have also antipodal images, which
must be taken into consideration. It is proved in appendix B that

Σmax ≥ 1, (4.8)

so that the worst error probability Pe,max (i.e. of the least favorable user) is

Pe,max >
1

8
, (4.9)

since Q(x) > 1/2 when x < 0. The result means that the multiple access in-
terference is such a dominating factor that the bit error probability is always
greater than 1/8 regardless of SNR. It will be seen in chapter 6 that for a
multiuser receiver, three users in two-dimensional signal space result in BER
which approaches zero as SNR grows. It is evident that a multiuser receiver
must be employed for oversaturated transmission. Oversaturated signature
ensemble facilitating the usage of a conventional receiver is analyzed in sec-
tion 5.2. The attention of receivers for oversaturated transmission is shifted
to multiuser receivers in the next section.
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4.2 Optimal multiuser receiver

The optimal strategy for the receiver is to find the minimum among (squared)
Euclidean distances from the received observation y(t) to all possible group
signals x(t;b). The squared Euclidean distance, denoted with d2, is calcu-
lated as

d2 (y(t), x(t;b)) =

∫ T

0
[y(t) − x(t;b)]2 dt. (4.10)

After inserting (2.9) and opening brackets (4.10) becomes

d2 (y(t), x(t;b)) =
∫ T

0
y2(t) dt − 2

K∑

k=1

Akzk +

K∑

k=1

K∑

l=1

AkAl

∫ T

0

s(t; bk)s(t; bl) dt,

(4.11)
where zk is the correlation between received signal and k-th user’s signal

zk =

∫ T

0
y(t)sk(t; bk) dt (4.12)

The correlations zk are obtained with a bank of matched filters. Amplitudes
Ak can be assumed to be known precisely, thus the optimal receiving method
would be the substitution of all possible combinations of b = (b1, b2, . . . ,
bK) to (4.11) and declaring the combination producing the minimum d2 as
received one. This kind of receiving strategy is called optimal multiuser
detection.

It is convenient to express signals in vector form physically corresponding
to processing samples at the chip matched filter output (bold symbols denote
vector or matrix variables), where (4.1) becomes

y = x + n = STAb + n. (4.13)

The correlation between received signal and user signatures is

z = Sy = SSTAb + Sn = RAb + n′, (4.14)

where R is the correlation coefficient matrix of signatures and n′ is the
correlated noise vector. Then (4.11) becomes

d2(y,x) = ||y − STAb||2 = ||y||2 − 2zTAb + bTARAb. (4.15)

The receiver makes a decision on transmitted bit vector on the following
criteria

b̂ = arg min
b

(bTARAb − 2zTAb), b ǫ(1,−1)K , (4.16)

since ||y||2 does not affect the decision.
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In practice, (4.16) can be implemented with exhaustive search for all
possible bit patterns. Bit vectors are compared to the received signal and
the vector providing the smallest Euclidean distance is selected. Optimal
MUD can be implemented, for example, with a Viterbi algorithm [50].

The optimal multiuser detection may be impractical due to the expo-
nential complexity of the algorithm. The number of comparisons in (4.16)
is 2K and the number of users can be several tens or hundreds in practi-
cal systems. Therefore, a lot of effort is put to find simple algorithms to
implement optimal multiuser receiver and to find suboptimal multiuser re-
ceivers, which offer trade-off between complexity and performance. Next,
two optimal algorithms for special oversaturated signature ensembles are
presented.

4.2.1 Learned’s algorithm

Learned et al [33] proposed a polynomial complexity multiuser receiver algo-
rithm for detection of oversaturated signals. This is possible when signatures
have a tree-like cross-correlation structure. For example, Ross-Taylor (see
chapter 5) signatures form such an ensemble, despite that a completely dif-
ferent property was their design criterion. Another possibility is to utilize
wavelet packet based signatures [34, 39,40].

Required relationships for signatures are that all vectors at a given depth
of the tree are orthogonal to each other and the signature has correlation
only with its ancestor or descendant signatures in the tree. The algorithm
utilizes the orthogonality of different branches of the tree to reduce the
number of comparisons required. For example, a 16-dimension Ross-Taylor
signature ensemble can be created with the tree illustrated in Fig. 4.2.
The cross-correlation matrix for this signal set can be obtained with (5.10).
Because of the tree-structure, signature at given a node of the tree has
some correlation with all signatures of its ancestor and descendant nodes.
Therefore, the estimate b̂ at a given node will not affect other estimates at
the same depth in different branches of the tree. Detection algorithm sweeps
through the tree from bottom to top and creates a conditional estimate table
at each node. At the top, these conditional estimate tables can be used to
produce optimal estimate. Finally, the optimal estimate from top node is
propagated back to bottom to determine the rest of optimal estimations.

Mathematically, the conditional decision rule can be expressed from the
optimal estimate (4.16), which is transformed to the tree-structure form,
where for each node n of the tree, the estimate is calculated conditioned on
the values of bits in ancestor nodes, ban.

b̂n(y|ban) = arg min||y − snbn − Sanban − Sdnb̂dn(y|bn,ban)||2, (4.17)

where San,Sdn are used to denote all signatures in ancestor and descendant
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Figure 4.2: Tree-structured signature ensemble.

nodes and b̂dn(y|bn,ban) is the set of estimates for all descendants of the
node n.

As an example, the detector algorithm is used to obtain optimal es-
timates for the tree in Fig. 4.2. In [33] a more detailed example for a
three-level tree structure of four initial signals is given. There, at each level,
two initial signals are combined to one signal at the upper level.

1. Conditional estimates at node s1 using (4.17) are calculated and stored
for all values of its ancestors s17 and s21. At this point, the sets
Sdn and b̂dn do not exist since the bottom level has no descendants.
In binary case ban = {[1, 1], [1,−1], [−1, 1], [−1,−1]}. Similarly, the
conditional estimate table for all other nodes s2 . . . s16 at the bottom
level is calculated.

2. A conditional estimate table for node s17 is again calculated with (4.17)
using node s21 as single ancestor, which can take values ±1, and condi-
tional b̂dn estimates of nodes from s1 to s4. The conditional estimate
table for all other nodes s18–s20 at the middle level is calculated the
same way as for s17.

3. Optimal estimation for s21 is calculated with conditional estimate ta-
bles b̂dn of nodes from s17 to s20, since ancestors do not exist in the
top level.

4. Optimal estimates for nodes s17–s20 are now obtained, since the opti-
mal estimate b̂ for node s21 is available. A simple table look-up from
conditional estimates performed in the previous steps can be applied.
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5. At the bottom level, conditional estimate tables and obtained values
from upper layers are used to find optimal estimations.

The number of comparisons required for Learned’s algorithm to reach all
estimations is ((8N3/2−1)/7). For the Ross-Taylor signatures K = 4

3N − 1
3 .

Thus, the complexity of receiving algorithm is O(K3/2), which is polyno-
mial in the number of users instead of exponential complexity of multiuser
receiver in general case.

4.2.2 Trellis decoder

Shi and Schlegel [43] proposed a signature ensemble (see section 5.3) that
has band-diagonal cross-correlation matrix. Then, the optimal multiuser
receiver can be implemented with a trellis decoder [12] with 2Z states, where
Z > |i − j| for indexes i and j of cross-correlation matrix with ρi,j = 0.

R =















1 ρ1,2 · · · ρ1,j 0 · · · 0
ρ2,1 1 ρ2,3 · · · ρ2,j+1 · · · 0
...

. . .
. . .

...
ρi,1 1 ρi,N

0 ρi+1,2 1
...

. . .
. . . ρN−1,N

0 · · · 0 ρN,j · · · ρN,N−1 1















(4.18)

For this matrix the optimal detector of equation (4.16) can be calculated
recursively after expressing it in a form where equal and normalized user
powers are assumed, which makes A identity matrix

b̂ = arg min(bT (R − I)b − 2zTb) (4.19)

with partial metric, J(n) defined as

J(n) =
n∑

i=1

∑

j 6=i

bibjρi,j − 2
n∑

i=1

bizi, (4.20)

and updating this metric is performed for a band-diagonal cross-correlation
matrix according to

J(n + 1) = J(n) + 2

Z∑

i=1

bn+1−ibn+1ρi,n+1 − 2bn+1zn+1, (4.21)

which can be obtained with trellis decoder with 2Z states. The complexity
of receiver is in the order of O(2Z+1K), which is linear in the number of
users.
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4.2.3 The probability of detection error for an optimal mul-
tiuser receiver

Determining the performance when optimal MUD is employed is a difficult
task. Since there are 2K group signal constellation points, the exact bit error
probability calculation becomes a very tedious task for large K. Therefore,
upper and lower bounds must be established to estimate the performance.
As in all communication systems the minimum Euclidean distance is a very
important factor in determining transmission fidelity. In the case of mul-
tiuser receiver the distance is calculated between all group signals instead
of distance between individual signatures. A simple algorithm to calculate
minimum distance in multiuser system based on Cholesky factorization of
correlation matrix was proposed in [87].

However, because the reception of many users simultaneously is a mul-
tihypothesis problem, the BER performance is not solely determined by the
minimum Euclidean distance. Correlation structure of signal ensemble and
Hamming distances between user bit patterns, i.e. error vectors, also affect
it. Exact BER in closed form is practically impossible to obtain due to
very complex decision regions. An effort to facilitate decision region calcu-
lation is presented in [88]. Thus, asymptotic lower and upper bounds must
be obtained in order to investigate the BER performance of communica-
tion system using optimal MUD. The BER properties of linear multiuser
receivers are analyzed, for example, in [89,90].

Verdu [50] has derived tight lower and upper bounds for BER when
SNR is high. These expressions of BER utilize error vector, ε ∈ {−2, 0, 2}K ,
which is defined to be a difference between any pair of distinct transmitted
bit vector. The values of error vector are determined by transmitted and
received bit vectors as εk = 0 if bk = b̂k and εk = 2bk if bk 6= b̂k. The weight
of error vector is defined as w(ε =

∑ |εk|/2).
The derivation of upper bound is based on decomposable error vectors.

If error vector ε is decomposable, it fulfills following conditions

1. ε = ε
′ + ε

′′

2. if εk = 0, then ε′k = ε′′k = 0

3. ε
′TARAε

′′ ≥ 0

Geometrically the conditions above ensure that the union bounding of error
probability is successful. The item 2 guarantees that decomposable compo-
nents ε

′ and ε
′′ have the same origin and the item 3 restricts the angle be-

tween them so that the ε is definitively on the erroneous side of the bounded
area.

The set of indecomposable vectors affecting user k is denoted with Fk.
As an example, the case where all users have the same amplitude (Ak = A)
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and all cross-correlations are equal and positive (ρkl = ρ > 0) is considered.
Then, only indecomposable error vectors have the weight of one or two. For
user one, the decomposable error vectors are

F1(b1 = +1) =







(+2, 0, 0, · · · 0, 0),
(+2, −2, 0, · · · 0, 0),
(+2, 0, −2, · · · 0, 0),

· · ·
(+2, 0, 0, · · · −2, 0),
(+2, 0, 0, · · · 0, −2)







plus antipodal images corresponding to b1 = −1. Exhaustive search is re-
quired to find indecomposable error vectors in general. More simple ways
are presented in [91,92].

Using the concept of indecomposable error vectors the BER for user k
can be upper bounded as

Pe,k ≤
∑

ε∈Fk

2−w(ε)Q

(
ε

TARAε√
2N0

)

. (4.22)

Detailed proof of (4.22) can be found from [50]. It should be noted, that
for low SNR values error estimation using values for conventional receiver is
tighter than (4.22). Also, lower bound for BER was derived in [50] that uses
the assumption of genie aided receiver. Trivial lower bound is orthogonal
signaling using a single-user receiver, which gives optimal result. Tighter
lower bound is

Pe,k ≥ 21−wk,minQ

(
dk,min√

2N0

)

, (4.23)

where dk,min is one half of the minimum distance between two group signals
that differ in the k-th bit, and wk,min is the corresponding error vector
weight between these group signals. The minimum weight is chosen if there
are more than one signal having dk,min.

4.3 Suboptimal multiuser receivers

Due to the complexity of optimal MUD, several suboptimal MUDs have
been investigated [50, 56]. The best known linear suboptimal MUDs are
the MMSE receiver and the decorrelating receiver. The latter removes the
MAI completely (while increasing noise intensity) but it is not available
for receiving oversaturated signature ensembles. MMSE receiver tries to
minimize the effects of MAI and noise simultaneously, and is applicable
also for oversaturated situation. It will be presented due to its remarkable
properties when utilized with a WBE signature ensemble. The other receiver
structure presented here is a group orthogonal system, which divides users
to non-interfering groups and utilizes the optimal receiver for each group.
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4.3.1 MMSE receiver

The description of MMSE receiver can be found, for example, in [32, 45,
50]. MMSE, or alternatively a maximal signal-to-interference-and-noise ra-
tio (SINR) receiver, is obtained by choosing reference (row) vector uk for
each user to minimize mean square error (MSE)

min
uk

E[(bk − uky)], (4.24)

where E[·] denotes expectation. The decision on transmitted bits is

b̂k = sign(uky), (4.25)

where it is assumed that signatures are real-valued. Thus, the difference to
single-user receiver is that MMSE receiver uses mismatched reference vector
to obtain decision statistics instead of a matched reference (signature) vector
sk. Other possible direction is to maximize SINR denoted with q2

I

q2
I =

Ps

Pi + Pn
=

A2
k|uks

T
k |2

∑

l 6=k A2
l |uks

T
l |2 + σ2||uk||2

, (4.26)

where Ps, Pi, Pn denote signal, interference and noise power, respectively.
Both optimizations lead to the same reference vector

uk =
(
STA2S + σ2IN

)−1
sT
k = ek

(
SST + σ2A−2

)−1
S, (4.27)

where ek is the vector having K − 1 zero components and 1 at the k-th
position. The first equality in (4.27) is more suitable for the oversaturated
situation, since the dimension of matrix in brackets is smaller (N) than in
the second variant (K).

For WBE sequences columns of S (rows of ST ) are orthogonal, thus with
equal signal intensities STA2S = A2IN and

uk = csk, (4.28)

which means that the reference is just a scaled version of the matched filter
[32, 54]. Thus, for the WBE signatures to be discussed in section 5.2 the
MMSE receiver degenerates to conventional single-user matched filter. Thus,
its complexity in this case remains the same as for a conventional receiver.
The gain in performance depends on user amplitude distribution. For equal
amplitudes there is no gain available, since the MMSE receiver is just a
conventional receiver. But when amplitudes are different the MMSE receiver
performs better than a conventional receiver. In general, the performance
analysis of MMSE receiver is not a straightforward task, since the decision
statistics are not Gaussian. The general error performance of the MMSE
receiver is analyzed for example in [50,93,94].
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4.3.2 Group orthogonal CDMA

Djonin and Bhargava proposed in [56] a group orthogonal signature alloca-
tion strategy to alleviate complexity of optimal multiuser detector. Formally,
it means that N -dimensional signal space is divided into N/L orthogonal
L-dimensional groups or subspaces. The complexity achieved this way is ex-
ponential in the subspace dimension but only linear in the number of users.
This method is referred as group orthogonal CDMA (GO-CDMA) in this
thesis. The GO-CDMA signature ensemble consists of r orthogonal groups
of signatures, and thereby possesses a block-diagonal cross correlation ma-
trix

R =







R1 0 · · · 0
0 R2 · · · 0
· · · · · · · · · · · ·
0 0 · · · Rr







. (4.29)

It was concluded in [56] that signatures in each group should be designed
to have favorable properties of Ri in (4.29), but no specific examples were
given. Chapters 5, 6 and 7 will be devoted to finding GO-CDMA signature
ensembles. Oversaturation is achieved by assigning each of the subspaces
L + s signatures so that oversaturation efficiency becomes eov = 1 + s/L.
Obtained subspace signature ensembles are denoted with (L+s, L) meaning
that L + s users occupy L-dimensional subspace, or group.

The GO-CDMA receiver is very simple. The multiuser detector in this
case is decomposed into N/L subdetectors, each being quite simple due to
subspace orthogonality and low subspace dimension L. The receiver pro-
cessing consists of L correlations and optimal multiuser algorithm for L + s
users. Observed group signal (see (4.13)) is

y =

N/L
∑

l=1

ST
l Albl + n =

N/L
∑

l=1

L+s∑

i=1

Aliblisli + n, (4.30)

where Ali, bli = ±1 and sli are amplitude, data bit and signature vector
of i-th user entering l-th subspace (i = 1, . . . , L + s; l = 1, 2, . . . , N/L,
N and L assumed even for simplicity), n is an AWGN component, and
immaterial details like common time delay are omitted. The y is correlated
with orthonormal vectors, hi, constituting a basis of l-th subspace (l =
1, 2, . . . , N/L). As a result from correlations, sufficient statistics dl,i are
obtained for decisions on bits of L + s users occupying l-th subspace. For
the decision on transmitted bits in every subspace the optimal multiuser
algorithm is used. Receiver block diagram is illustrated in Fig. 4.3.

For (4.30), optimal multiuser rule of (4.16) for GO-CDMA above be-
comes

b̂i = arg min
biǫ{−1,1}K

i

||y − ST
i Aibi||2 (4.31)
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Figure 4.3: GO-CDMA receiver block diagram.

where i = 1, 2, . . . , r, and all the vector-matrix entities have the same mean-
ing as in (4.16), but marked by index i to stress that they are defined for
isolated i-th group, as though only its users are present.

Thus, to reiterate, the receiver end consists of N/L parallel independent
(due to orthogonality of subspaces) multiuser receivers, each recovering the
data transmitted by L + s users. The receiver strategy described requires
only L correlations and 2L+s comparisons, which makes the receiver very
simple considering that L and s are small.

4.4 Chapter summary

In this chapter, different receiver structures and their suitability to oversat-
urated S-CDMA were analyzed. It was shown that the most simple solution,
a single-user matched filter receiver, performs poorly in the presence of MAI.
The best performance would be obtained with an optimal multiuser receiver,
but its complexity can become prohibitive. Therefore, lower complexity opti-
mal algorithms for special signature ensembles were also presented. Another
option is to use a simple but suboptimal multiuser receiver. There are a lot
of different solutions for them. In this chapter, MMSE receiver and group
orthogonal system were presented. In the following chapters the focus shifts
to signature ensemble design for optimal and group orthogonal receivers.
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Chapter 5

Oversaturated signature
ensembles

5.1 Maximal minimum Euclidean distance signa-
ture ensemble

Optimal multiuser receiver benefits from the large distance between all pos-
sible group signals. It is proved in [32] that the maximal minimum distance
for group signals is bounded as

d2
min ≤ 4 (5.1)

for unit energy signals. This bound is achieved by an orthonormal signature
ensemble. It was proved in [36] that it is also possible to obtain the upper
limit of (5.1) in an oversaturated case for N ≥ 4. The optimal signature
ensemble is a special case of structure depicted in section 4.2.1.

Work by Ross and Taylor [36, 37] has received much attention during
recent years. In [36] an oversaturated system, which does not compromise
the minimum Euclidean distance of N -dimensional orthogonal signal space
in synchronous AWGN channel, was proposed based on a hierarchical signa-
ture set structure of the form of Fig. 4.2. The first layer of supplementary
signals is formed by incorporating an additional vector into each of the
four-dimensional subspaces of an N -dimensional signal space. The initial
N orthogonal signals are supplemented by N/4 extra signals, then, the four
supplemented subspaces are concatenated, and supplemented by one extra
signal to have 21 signals in 16 dimensions. This procedure can be continued
to have 85 users in 64 dimensions and so on. In the tree-structure depicted in
Fig. 4.2 the Ross-Taylor scheme has always four branches connected at the
upper layer. Oversaturation efficiency obtained in this manner approaches
1.33 when the number of users is large. In [36] it was assumed that N is
a natural power of four. However, this condition is not necessary and as
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shown below, the generalization of the construction from [36] for arbitrary
N is rather straightforward.

Let h0,h1, . . . ,hN−1 be orthonormal vectors in N -dimensional vector
space1, which serve as basis signatures

si = hi, i = 0, 1, . . . , N − 1. (5.2)

Supplementary signatures are special linear combinations of basis vectors.
The mechanism of generating supplementary signatures is as follows: sup-
plementary signature number k of the first layer is

s1
k =

1

2

3∑

t=0

h4k+t , k = 0, 1, . . . ,Ω1 − 1, (5.3)

where Ω1 denotes a quotient after division of N by four. Denote a remainder
of division N by four with Ψ1. Ω1 and Ψ1 refer to the number of supplemen-
tary signatures produced and the number of basis signatures not utilized in
the forming of supplementary signatures at the first layer, respectively:

Ω1 =

⌊
N

4

⌋

, Ψ1 = N − 4Ω1. (5.4)

Ω1 first layer supplementary signatures are produced at this stage. When
forming second layer supplementary signatures there are Ω1 + Ψ1 basis sig-
natures available, which gives

Ω2 =

⌊
Ω1 + Ψ1

4

⌋

, Ψ2 = Ω1 + Ψ1 − 4Ω2. (5.5)

The supplementary signature number k of the second layer is

s2
k =

1

4

15∑

t=0

h16k+t , k = 0, 1, . . . ,Ω2 − 1. (5.6)

The procedure can be generalized and continued until Ωs + Ψs < 4:

Ωs =

⌊
Ωs−1 + Ψs−1

4

⌋

, Ψs = Ωs−1 + Ψs−1 − Ωs (5.7)

with initialization
Ω0 = N, Ψ0 = 0. (5.8)

For the scheme presented in [36] Ψs = 0. The supplementary signature
number k of the s-th layer is

ss
k =

1

2s

4s−1∑

t=0

h4sk+t , k = 0, 1, . . . ,Ωs − 1. (5.9)

1It is convenient to start signature indexing from zero in section 5.1.
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Figure 5.1: Optimal signature ensemble for N = 101.

In [32] it was proved that signatures obtained the illustrated way have
Euclidean distance d2 ≥ 4 between different group signals. Thus, the upper
bound in (5.1) is achieved. The correlation coefficient between arbitrary
supplementary and basis signature is

(ss
k, si) =

1

2s

4s−1∑

t=0

(h4sk+t,hi) =

=

{
1
2s , i ∈ {4sk, 4sk + 1, , . . . , 4sk + 4s − 1}
0, otherwise

(5.10)

Take for example N = 101. Then Ω1 = 25, Ω2 = 6, Ω3 = 2, Ψ3 = 0, thus
the number of supplementary signatures is 33. The procedure is illustrated
in Fig. 5.1.

The oversaturation efficiency of the optimal signature ensemble is not a
monotonic function of N , which is illustrated in Fig. 5.2. The oversatura-
tion efficiency approaches 4/3 asymptotically, which was also the case for
Ross-Taylor signature ensemble in [36]. The oversaturation efficiency can be
approximated as follows. The number of supplementary signatures at s-th
layer is

Ωs ≥
⌊

N

4s

⌋

≥ N

4s
− 1. (5.11)

Then, the total number of supplementary signatures is

l∑

s=1

Ωs ≥
l∑

s=1

N

4s
− l =

1 − 4−l

3
N − l, (5.12)
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Figure 5.2: The oversaturation efficiency of the optimal signature ensemble.

where l = ⌈log4 N⌉. When N → ∞, also l → ∞ but much slower. Therefore,
for N big enough

∑l
s=1 Ωs may be estimated as N/3 and the total number

of signatures approaches K = N + N/3, which results in oversaturation
efficiency eov = 4/3.

Since supplementary signatures are formed by addition of already ob-
tained ones, alphabet size of supplementary signatures grows from layer to
layer and with binary basis signatures supplementary signatures are non-
binary. Certainly, it would be much more convenient from the implemen-
tation point-of-view to have binary supplementary signatures along with
the basis ones. It is demonstrated in the next section that this problem is
feasible.

5.1.1 Binary optimal signatures

Next, the conditions guaranteeing that binary supplementary signatures re-
sult from binary basis signatures are derived and a practical method of
constructing binary oversaturated signature set is proposed [67].

To come to binary both supplementary and basis signatures, we start
with the same specification of basis signatures as in the previous section.
Take N = 4l and define H4 as Hadamard matrix of the order four meeting
only one restriction. Every column of Hadamard matrix should contain
either 1 or 3 positive (or negative) ones. Denote this Hadamard matrix of
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size four fulfilling the restriction set above with H4:

H4 =







+ + + +
− − + +
+ − + −
+ − − +







. (5.13)

Now, the basis signatures are chosen to be rows of the l-th Kronecker power
of H4:

E =








e0

e1
...

eN−1








= [eij ] =
1√
N

(H4 ⊗ H4 ⊗ · · · ⊗ H4
︸ ︷︷ ︸

l

). (5.14)

Thus, E is a Hadamard matrix itself of size N = 4l, and the rows of E are
orthogonal and appropriate to be basis signatures. Now, the supplementary
signatures can be calculated with (5.9).

Proposition 1

The elements of supplementary signatures obtained according to (5.9) from
the basis binary signatures (5.13) belong to binary {±1} alphabet.

Proof of Proposition 1

Transform row (i) and column (j) indexes of E calculated with (5.14) to
quaternary number system

i =

l−1∑

m=0

im4m

j =
l−1∑

m=0

jm4m

where im and jm are m-th digits in a quaternary representation of i and j.
Then, it can be seen from (5.14) that arbitrary binary element of any basis
signature can be represented as

eij =
1√
N

l−1∏

m=0

himjm , (5.15)

where himjm are elements of H4. Arbitrary element of k-th supplementary
signature in s-th layer

ss
k,j =

1

2s

4s−1∑

t=0

e4sk+t,j (5.16)
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can be then calculated by substituting (5.15) into (5.9)

ss
k,j =

1

2s

4s−1∑

t=0

1√
N

l−1∏

m=0

himjm . (5.17)

After changing also t to quaternary number system the signature number
becomes 4sk + t = 4sk + ts−14

s−1 + . . . + t0 in equation (5.17). Now it can
be seen that t affects only s minor digits in those numbers, hence

ss
k,j =

1

2s

1√
N

l−1∏

m=s

himjm

4s−1∑

t=0

s−1∏

m=0

himjm

=
1

2s

1√
N

l−1∏

m=s

himjm

︸ ︷︷ ︸

=±1

3∑

i0=0

3∑

i1=0

· · ·
3∑

is−1=0

s−1∏

m=0

himjm

=
±1√
N

1

2s

3∑

i0=0

hi0j0

3∑

i1=0

hi1j1 · · ·
3∑

is−1=0

his−1js−1
.

Each sum is ±2 according to restriction on H4. Therefore,

ss
k,j =

±2s

√
N2s

= ± 1√
N

(5.18)

and all elements of supplementary signatures are also binary.

Example

The binary optimal signatures are illustrated with example for N = 42 = 16.
Starting with Hadamard matrix of (5.13) basis signatures are calculated with
(5.14)

E =








e0

e1
...

e15








=
1√
16

(H4 ⊗ H4) =








s0

s1
...

s15








=
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=
1

4
































+ + + + + + + + + + + + + + + +
− − + + − − + + − − + + − − + +
+ − + − + − + − + − + − + − + −
+ − − + + − − + + − − + + − − +
− − − − − − − − + + + + + + + +
+ + − − + + − − − − + + − − + +
− + − + − + − + + − + − + − + −
− + + − − + + − + − − + + − − +
+ + + + − − − − + + + + − − − −
− − + + + + − − − − + + + + − −
+ − + − − + − + + − + − − + − +
+ − − + − + + − + − − + − + + −
+ + + + − − − − − − − − + + + +
− − + + + + − − + + − − − − + +
+ − + − − + − + − + − + + − + −
+ − − + − + + − − + + − + − − +
































(5.19)
Supplementary signatures for layer one are

s1
k =

1

2

3∑

t=0

e4k+t, k = 0, 1, 2, 3

and the supplementary signature for layer 2 is

s2
0 =

1

4

15∑

t=0

et

which result in supplementary signatures









s1
0

s1
1

s1
2

s1
3

s2
0









=
1

4









+ − + + + − + + + − + + + − + +
− + − − − + − − + − + + + − + +
+ − + + − + − − + − + + − + − −
+ − + + − + − − − + − − + − + +
+ − + + − + − − + − + + + − + +









The minimum distance between group signals created with signature en-
semble S = (s0, . . . , s15, s

1
0, . . . , s

1
3, s

2
0) is d2

min = 4. Thus, it is seen that
using (5.9) and (5.13) the oversaturated signature ensemble having optimal
minimum distance can be obtained.

5.2 Welch bound equality signature ensemble

WBE signatures have already been mentioned several times in this thesis.
In section 3.2 it was concluded that in order to maximize channel capacity
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S-CDMA, the system should utilize a signature ensemble that has opti-
mal total squared correlation. As a consequence, the MAI power is also
minimized. The ensemble achieving optimal TSC is called a Welch bound
equality signature ensemble. In addition, it was observed in section 4.3.1
that MMSE receiver degenerates to a conventional matched filter receiver if
the optimal TSC condition

TSC =
K∑

k=1

K∑

l=1

|sks
∗
l |2 =

K2

N
(5.20)

is valid.
General methods to produce WBE ensembles are given, for example,

in [95–97]. Binary saturated or non-saturated WBE ensembles may exist
for only for N divisible by four. In this case K ≤ N signatures are just K
rows of a N×N Hadamard matrix (if the latter exists). Binary oversaturated
ensembles may exist only for K divisible by four. In this case they are just K
rows of K ×K Hadamard matrix where K −N columns are deleted [98,99].

It should be stressed that for binary signatures Welch bound is tight only
for N divisible by four [100]. More tight bounds for TSC, and algorithms
for producing ensembles obtaining them, for other values of N are derived
in [98,99,101]. As an example of the WBE ensemble a case is shown, where
four rightmost columns of S in (5.19) are deleted and signature energies
normalized to unity [32]. Hence, the WBE signature ensemble for K = 16,
N = 12 (eov = 1.33) is obtained

S =
1√
12
































+ − + + − + − − + − + +
+ − − − − + + + + − − −
+ + + − − − − + + + + −
+ + − + − − + − + + − +
+ − + + − + − − − + − −
+ − − − − + + + − + + +
+ + + − − − − + − − − +
+ + − + − − + − − − + −
+ − + + + − + + + − + +
+ − − − + − − − + − − −
+ + + − + + + − + + + −
+ + − + + + − + + + − +
+ − + + + − + + − + − −
+ − − − + − − − − + + +
+ + + − + + + − − − − +
+ + − + + + − + − − + −
































, (5.21)

which has TSC = 162/12 ≈ 21.3333 as expected. The error probability for
WBE ensembles experiences error floor due to MAI. This loss is significant
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Figure 5.3: The probability of error for the WBE ensemble using matched
filter receiver.

and implies that either joint non-linear processing is necessary [55] or that
small oversaturation efficiency should be selected. The SINR, q2

I , of equal
energy users with a WBE signature ensemble is [32, 102]

q2
I =

(
K − N

N
+ q−2

)−1

, (5.22)

where q2 is signal-to-noise ratio. The noise-free signal-to-interference ratio
(SIR) of a WBE signature ensemble is then

q2
I =

N

K − N
=

1

eov − 1
. (5.23)

The effect of MAI to error performance is illustrated in Fig. 5.3(a) for sig-
nature ensemble from (5.21) and Fig. 5.3(b), where smaller oversaturation
efficiency eov = 16/15 ≈ 1.07 is chosen, that is, only one row is deleted from
(5.19) to obtain the WBE ensemble. Curves are obtained by plotting Q(q)
for saturated situation and Q(qI) for oversaturated situation (see section
3.4). The error floor is clearly visible in the figures which means that the
error probability of a WBE ensemble cannot be driven to zero in any condi-
tions when matched filter receiver is used [103]. Although WBE signatures
are optimal when considering channel capacity, MAI and optimal linear re-
ceiver complexity, there are some practical problems in the utilization of
WBE signatures [102]. If the number of active users varies dynamically, all
user signatures must be modified and re-assigned each time a user enters or
leaves the system to preserve optimality. Signatures providing optimality
(or quasi-optimality) while being scalable are investigated in [20,66,102].
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5.3 The signature ensemble of linearly combined
interpolated Walsh-Hadamard functions

Shi and Schlegel [43] constructed a signature ensemble using linearly com-
bined Walsh-Hadamard codes to have band-diagonal cross-correlation ma-
trix. Oversaturation efficiency obtained with this method is approximately
2 with 3 dB loss. Optimal detection of signatures is accomplished with trellis
structure described in section 4.2.2.

Additional signatures are formed by interpolation and linear combina-
tions of Walsh-Hadamard codes

w2i−1 = hi

w2i =
1

2

i+3∑

k=i

hk, i = 1, . . . , N − 3

w2N−6+1 = hN−3+i, i = 1, 2, 3 (5.24)

The number of additional signatures is N − 3, and the minimum Euclidean
distance in signature set d2

min =
√

2N resulting in 3 dB loss against purely
orthogonal signatures. Also, larger signal sets are possible with this method.
The signature set of size K = 3N − 5 results in the minimum Euclidean
distance d2

min = 2
√

0.2679N , which implies 5.7 dB loss.

Example

A case with a Hadamard matrix of size N = 16 produces the result shown
next page in (5.25), which has a cross-correlation matrix where the number
of trellis states is six. Thus, the decoding complexity is of the order O(27K).
When compared to the optimal case it has eleven signatures more, but
the minimum distance is reduced to d2

min = 2 at the same time. Also,
oversaturated signatures are not binary.

5.4 Chapter summary

In this chapter, different oversaturated signature ensembles were presented.
The Ross-Taylor ensemble provides optimal minimum distance properties.
The original proposal given in [36] was generalized for arbitrary N and
a binary version was also given. As shown in chapter 3, such ensembles
minimize asymptotic pair-wise error probability and maximize the channel
capacity of a binary-input CDMA channel under the strong signal condition.
Other ensembles presented in this chapter are a WBE ensemble and linearly
combined interpolated Walsh-Hadamard sequences. The former maximizes
oversaturated CDMA channel capacity up to a potential limit (see section
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3.2), minimizes MAI power, and reduces MMSE receiver to conventional
matched filter while the latter gives greater oversaturation efficiency than
the optimal minimum distance ensemble at the expense of smaller minimum
distance.

S =
























































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
2 0 0 0 1 −1 −1 −1 2 0 0 0 1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
2 0 0 0 0 0 −2 0 2 0 0 0 0 0 −2 0
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
2 0 0 0 −1 −1 −1 1 2 0 0 0 −1 −1 −1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
2 0 0 0 −2 0 0 0 2 0 0 0 −2 0 0 0
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
2 0 0 0 −1 1 1 1 1 −1 −1 −1 −2 0 0 0
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
2 0 0 0 0 0 2 0 0 0 −2 0 −2 0 0 0
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
2 0 0 0 1 1 1 −1 −1 −1 −1 1 −2 0 0 0
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
2 0 0 0 2 0 0 0 −2 0 0 0 −2 0 0 0
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
2 0 0 0 1 −1 −1 −1 −2 0 0 0 −1 1 1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
2 0 0 0 0 0 −2 0 −2 0 0 0 0 0 2 0
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
2 0 0 0 −1 −1 −1 1 −2 0 0 0 1 1 1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
2 0 0 0 −2 0 0 0 −2 0 0 0 2 0 0 0
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
























































,

(5.25)
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Chapter 6

Signature ensembles for
group orthogonal CDMA

In section 4.3.2 a group orthogonal receiver was presented. In this chapter,
group orthogonal signature ensembles referred to as GO-CDMA ensembles
are derived for different oversaturation efficiencies. The results first pub-
lished in [68,69] are extended and presented in more detail. The goal of the
signature ensemble design is to provide a trade-off between oversaturation
efficiency and the minimum distance. Obtained ensembles differ from the
Ross-Taylor strategy in a sense that initial orthogonal signatures are not in-
cluded in the signature ensemble. Instead, the degree of linear dependence
of all signatures in the ensemble is optimized.

After the signature ensemble design, they are compared to the optimal
Ross-Taylor ensemble in the minimum Euclidean distance and the over-
saturation efficiency. Since the minimum distance does not exhaustively
determine the performance of the receiver, the bit error probability is also
calculated for obtained GO-CDMA ensembles. Oversaturated signature en-
sembles are denoted as (L + s, L), where L is the signal subspace dimension
and L + s is the number of users or signatures contained in the subspace.

The group orthogonal signature ensembles can be created with methods
presented in the previous chapter. However, the attainable oversaturation
efficiency is only 25% when the first stage of Ross-Taylor scheme is used.
If a simple receiver or a greater oversaturation efficiency is required than
with the Ross-Taylor ensemble, some loss in the minimum distance must
be accepted. The gain in the oversaturation efficiency can be obtained by
using smaller subspace dimensions than L = 4, or adding more than one
supplementary signature into each subspace.

The complexity of the GO-CDMA receiver is well below all optimal mul-
tiuser receiver structures presented in the previous section. The complexity
is of the order O(2L+1N), and since the considered values of L are restricted
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to very small numbers the overall complexity is also very modest.
The optimization criteria in designing signatures is to maximize the min-

imum Euclidean distance between all possible group signals to reach optimal
performance when a multiuser receiver is employed for each subspace. The
Euclidean distance between two transmitted group signals can be calculated
with

d2(ε) = ε
TRiε (6.1)

where ε is ternary error vector ε = (ε1, . . . , εL+1)
T , εi = 0,±2 discussed

in section 4.2.3. The goal is to maximize min d2(ε) over all vectors ε by
adjusting correlation coefficients of Ri.

6.1 Signature optimization with symmetry restric-
tion

During the optimization it is assumed that signatures form a symmetric
group signal constellation, Ri being of the general form

Ri =










1 ρ · · · ρ γ
ρ 1 ρ · · · γ
...

. . .
...

ρ 1 γ
γ · · · γ 1










, (6.2)

which gives more room to analytical study. In more loose case of asymmetry
the attainable gain appears to be immaterial. This matter is discussed in
section 6.3.

Let HN denote an orthonormal matrix of size N (e.g. a Hadamard ma-
trix after normalizing rows to have unit energy) with rows hi, i = 1, . . . , N ,
which constitute the basis vectors for subspaces.

HN =






h1
...

hN




 . (6.3)

Next, the optimal signatures of i-th orthogonal group having cross-
correlation matrix of the form (6.2) are calculated as the linear combinations
of hi. The signature matrix resulting in that kind of a cross-correlation ma-
trix is obtained for L + s signatures with linear combinations of L initial
orthogonal signatures. The first of the oversaturated signatures is fixed by
just summing all initial orthogonal signatures and by normalizing the result
to unit energy. The cross-correlation coefficients of (6.2) can be adjusted
with single weighting factor, which multiplies L−1 initial orthogonal signa-
tures before all L of them are summed together. The result of summation
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is normalized to make the energy of all signatures equal to unity. At this
point L + 1 signatures are available in each subspace. More signatures are
obtained by multiplying L−2 (L ≥ 3) initial orthogonal signatures with the
same weighting factor before summation. The procedure can in principle be
continued even further, but as will be seen in section 6.1.4 good ensembles
are obtained only for s = 1.

The Euclidean distance between group signals is calculated using the
concept of error vector. Minimum distance as a function of cross-correlation
coefficients is calculated for all combinations of error vectors. As a result,
a small set of functions are obtained for candidates to provide the value for
the minimum distance as a function of cross-correlation coefficients. Mini-
mum distance appears to be a piece-wise polynomial curve. Using graphical
illustration, where candidate functions are plotted (see Fig. 6.2 and Fig.
6.4), the approximate value for maximal minimum distance is identified.
The exact value is then calculated by equating two candidate functions that
intersect at the approximated optimal cross-correlation value. As a result
the cross-correlation coefficient value producing the minimum Euclidean dis-
tance is achieved. The analysis starts with a (3, 2) ensemble.

6.1.1 Three users in a two-dimensional subspace

Let {h2i−1,h2i} be an orthonormal basis of a plane. Three normalized sig-
nature vectors of i-th group si

1, s
i
2, s

i
3 are formed as a linear combination

from the basis vectors:

si
1 =

h2i−1 + ch2i√
1 + c2

, si
2 =

ch2i−1 + h2i√
1 + c2

, si
3 =

h2i−1 + h2i√
2

, (6.4)

with c being a real scalar. In the symmetric set of vectors resulting in (6.2),
the angle between adjacent signals is acute since all signals can be rotated
180◦ by multiplication of the signal with an antipodal information bit to
have angles smaller than 90◦ among the nearest vectors.

The correlation coefficients of (6.2) for signatures in (6.4) are

γ =
1 + c

√

2(1 + c2)
, ρ =

2c

1 + c2
= 2γ2 − 1. (6.5)

The cross-correlation coefficient between adjacent signatures is restricted
as 0 ≤ γ ≤ 1 due to acute angles between them. The Euclidean distance
between the two transmitted group signals, corresponding to different pat-
terns of users’ bits, is calculated in quadratic form from (6.1), where ε is
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Figure 6.1: Two-dimensional subspace signatures.

ε = (ε1, ε2, ε3)
T , εi = 0,±2. The result of the matrix multiplication is

d2(ε) = ε
TRε = (ε1, ε2, ε3)





1 ρ γ
ρ 1 γ
γ γ 1









ε1

ε2

ε3



 =

= ε2
1 + ε2

2 + ε2
3 + 2γ(ε1ε3 + ε2ε3) + 2ρε1ε2. (6.6)

The goal is to maximize the minimum (over all ε) value of d2(ε) by adjusting
the correlation coefficient γ (ρ depends on γ). Next, candidate functions to
provide maximal minimum distances are sought by testing different error
vector values.

1. Starting with case, where two of ε1, ε2, ε3 are zero

d2(ε) = 4. (6.7)

2. Then, assuming that ε1, ε2 6= 0 and ε3 = 0

d2(ε) ≥ 8 − 8|ρ| = 8(1 − |2γ2 − 1|), (6.8)

since the ρ may be also negative.

3. If either ε1 or ε2 is zero and ε3 6= 0

d2(ε) ≥ 8 − 8γ. (6.9)
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4. When ε1, ε2, ε3 6= 0 and ε1 = ε2 = −ε3

d2(ε) = 12 − 16γ + 8ρ = 4(2γ − 1)2 ≤ 4, (6.10)

since γ < 1. Thus, (6.7) can be rejected from the candidate list.

5. The last non-trivial combination is ε1, ε2, ε3 6= 0 and ε1 = −ε2 = ε3

for which
d2(ε) ≥ 12 − 8ρ = 20 − 16γ2 ≥ 4, (6.11)

which is rejected from the candidate list, since according to (6.10) d2
min

is either 4 or smaller.

After testing all non-trivially distinct error vectors it is seen from (6.8), (6.9)
and (6.10) that the minimum Euclidean distance as a function of γ appears
to be

d2
min(γ) = min

γ
{8(1 − γ), 8(1 − |2γ2 − 1|), 4(2γ − 1)2} (6.12)

The middle term in (6.12) can be expressed as

8(1 − |2γ2 − 1|) =

{
16γ2, 0 ≤ γ ≤ 1/

√
2

16(1 − γ2), 1/
√

2 < γ ≤ 1
. (6.13)

The γ is restricted as 0 ≤ γ ≤ 1 due to acute angles between the adjacent
signal vectors. It can be seen from Fig. 6.2 that the maximum of the
minimum squared distance is found where curves 8(1 − γ) and 4(2γ − 1)2

intersect. Straightforward calculation shows that the optimal value of γ,
maximizing the minimum distance, is

γ0 =
1 +

√
5

4
≈ 0.809 ⇒ ρ0 =

√
5 − 1

4
≈ 0.310 (6.14)

which corresponds to π/5-angle between the nearest signal vectors (si
1 and

si
3, or si

2 and si
3). The corresponding value of scalar c is

c0 =
4 −

√

10 + 2
√

5√
5 − 1

≈ 0.1584 (6.15)

and the value of the maximal squared minimum distance is

d2
min,max = 2(3 −

√
5) ≈ 1.528. (6.16)

The constellation of all possible group signals and their distances to adjacent
signals are illustrated in Fig. 6.3. The signs in parentheses denote antipodal
bits for users 1, 2, 3 in their corresponding order.

Formally, the signatures for i-th group are given with

Si =





si
1

si
2

si
3



 =
1

√

1 + c2
0






1 c0

c0 1
√

(1+c2
0
)

2

√
(1+c2

0
)

2






(
h2i−1

h2i

)

. (6.17)

63



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

γ

d2

γ
0
=0.809

4(2γ−1)2

8(1−γ)

8(1−|2ρ2−1|)

Minimum

Figure 6.2: Minimum squared distance as a function of correlation coefficient
γ.

Figure 6.3: Resulting two-dimensional group signal constellation.

6.1.2 Four users in three-dimensional subspace

Next, a (4, 3) constellation is optimized. An oversaturated normalized signa-
ture set for three-dimensional subspace fulfilling (6.2) is defined analogously
to the two-dimensional case as the following linear combinations

si
1 =

h3i−2 + ch3i−1 + ch3i√
1 + 2c2

, si
2 =

ch3i−2 + h3i−1 + ch3i√
1 + 2c2

,
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si
3 =

ch3i−2 + ch3i−1 + h3i√
1 + 2c2

, si
4 =

h3i−2 + h3i−1 + h3i√
3

(6.18)

of the orthonormal basis vectors h3i−2,h3i−1,h3i. The correlation coeffi-
cients in the matrix of (6.2) are

γ =
1 + 2c

√

3(1 + 2c2)
, ρ =

c(2 + c)

1 + 2c2
=

3γ2 − 1

2
. (6.19)

The optimal value for the scalar c, corresponding to the maximal minimum
Euclidean distance between different group signals, is calculated the same
way as in the two-dimensional case. The squared distance as a function of
ternary error vector is

d2(ε) = ε
TRε = (ε1, ε2, ε3, ε4)







1 ρ ρ γ
ρ 1 ρ γ
ρ ρ 1 γ
γ γ γ 1













ε1

ε2

ε3

ε4







=

= ε2
1 + ε2

2 + ε2
3 + ε2

4 + 2γ(ε1ε4 + ε2ε4 + ε3ε4)

+2ρ(ε1ε2 + ε1ε3 + ε2ε3) (6.20)

1. Starting with the assumption that three of the ε1, ε2, ε3, ε4 are zero.
Then,

d2(ε) = 4. (6.21)

2. Next, ε4 = 0 and

(a) one of the ε1, ε2, ε3 is zero. Then, again

d2(ε) ≥ 8 − 8|ρ|, (6.22)

which covers cases where the two non-zero values are equal and
when they have opposite sign, since ρ can be positive or negative.

(b) For ε1 = ε2 = ε3 6= 0

d2(ε) = 12 + 24ρ = 36γ2. (6.23)

(c) When ε1, ε2, ε3 6= 0 and one of them has an opposite sign to two
others

d2(ε) = 12 − 8ρ ≥ 4. (6.24)

Since it is no smaller than 4, it can be removed from the candidate
list.

3. When ε4 6= 0 and
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(a) Two of the ε1, ε2, ε3 are zeros

d2(ε) ≥ 8 − 8γ. (6.25)

(b) If only one of the ε1, ε2, ε3 is zero and those non-zero are opposite
to each other

d2(ε) = 12 − 8ρ ≥ 4. (6.26)

Being no smaller than four this function is removed from the
candidate list.

(c) If only one of the ε1, ε2, ε3 is zero and non-zero values are equal

d2(ε) ≥ 12 − 16γ + 8ρ = 8 − 16γ + 12γ2. (6.27)

4. If all components are non-zero and

(a) ε1 = ε2 = ε3 = −ε4

d2(ε) = 16 − 24γ + 24ρ = 4 − 24γ + 36γ2. (6.28)

(b) Taking two of ε1, ε2, ε3 equal to each other but not equal to ε4:

d2(ε) ≥ 16 − 8γ − 8ρ. (6.29)

Noting that (6.29) can be re-written as 8− 8γ + 8− 8ρ ≥ 8− 8γ,
and therefore removed from the candidate list, since it cannot be
smaller than the right-hand side of (6.25).

(c) If only two of ε1, ε2, ε3 are equal to each other and also ε4

d2(ε) = 16 + 8γ − 8ρ = 20 + 8γ − 12γ2. (6.30)

This function is always greater than the previous one and there-
fore it is dropped from the final analysis.

(d) Finally, consider ε1 = ε2 = ε3 = ε4

d2(ε) = 16 + 24γ + 24ρ = 4 + 24γ + 36γ2 > 36γ2, (6.31)

which is dropped from the candidate list according to (6.23).

One more candidate function can be excluded. If (6.22) is expressed as

d2(ε) = 8 − 4|3γ2 − 1| =

{

4 + 12γ2 ≥ 4, γ ≤ 1√
3

12 − 12γ2 ≥ 12(1 − γ) ≥ 8(1 − γ), γ > 1√
3

(6.32)
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Figure 6.4: Minimum squared distance as a function of the correlation co-
efficient γ.

it can be covered by (6.21) and (6.25). Thus, after testing all non-trivially
distinct error vectors ε and combining results from (6.21), (6.23), (6.25),
(6.27) and (6.28) the squared minimum distance appears to be

d2
min = min{4, 36γ2, 8(1 − γ), 8 − 16γ + 12γ2, 4 − 24γ + 36γ2}. (6.33)

The γ is restricted as 0 ≤ γ ≤ 1 since the nearest signal vectors have acute
angles among them. The optimal value for γ is found from the intersection
of 4 − 24γ + 36γ2 and 8 − 16γ + 12γ2 as shown in Fig. 6.4. The optimal
value for γ is

γ0 =
1 +

√
7

6
≈ 0.608 ⇒ ρ0 =

−2 +
√

7

12
≈ 0.0538 (6.34)

(angle between the nearest vectors is 52,6◦), and the optimal value for the
scalar c is

c0 =
−12 + (1 +

√
7)
√

14 −
√

7

16 − 2
√

7
≈ 0.0266. (6.35)

Corresponding value for the maximal minimum squared distance is

d2
min, max = 2(4 −

√
7) ≈ 2.709. (6.36)
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Formally, the obtained signatures are given with

Si =







si
1

si
2

si
3

si
4







=
1

√

1 + 2c2
0








1 c0 c0

c0 1 c0

c0 c0 1
√

1+2c2
0

3

√
1+2c2

0

3

√
1+2c2

0

3












h3i−2

h3i−1

h3i



 .

(6.37)

6.1.3 Five users in four-dimensional subspace

The same kind of optimization as in previous examples for the signal set

si
1 =

h4i−3 + ch4i−2 + ch4i−1 + ch4i√
1 + 32

, si
2 =

ch4i−3 + h4i−2 + ch4i−1 + ch4i√
1 + 3c2

,

si
3 =

ch4i−3 + ch4i−2 + h4i−1 + ch4i√
1 + 3c2

, si
4 =

ch4i−3 + ch4i−2 + ch4i−1 + h4i√
1 + 3c2

,

si
5 =

h4i−3 + h4i−2 + h4i−1 + h4i√
4

(6.38)

gives c0 = 0, which is exactly the same result as in [36]. The obtained
minimum distance and cross-correlation values are

d2
min = 4, γ0 = 0, ρ0 = 0.5. (6.39)

Formally, the obtained GO-CDMA signature ensemble is given with

Si =









si
1

si
2

si
3

si
4

si
5









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.5 0.5 0.5 0.5















h4i−3

h4i−2

h4i−1

h4i







. (6.40)

6.1.4 Other user configurations

Subspace dimensions greater than four cannot have d2
min,max > 4 because

d2 = ε
TRε = 4 for all error vectors having only one nonzero component,

e.g. ε = (±2, 0, . . . , 0). Thus, there is no point to increase dimension beyond
L = 4 if s = 1 when Euclidean distance is concerned.

Using larger subspace dimensions (L ≥ 4) and more additional signals
(s ≥ 2) would offer more flexibility in choosing the oversaturation efficiency,
but unfortunately the minimum Euclidean distance seems to be worse than
in the case with only one extra signal in subspace. The situation is illustrated
in Fig. 6.5, where the obtained minimum distance is given as a function of
oversaturation efficiency for fixed value of s (eov = K/N = (L+ s)/L). Cor-
relation coefficient matrix design is not a trivial task when s > 1. Exhaustive
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Figure 6.5: Energy loss as a function of oversaturation efficiency eov.

search was performed for L = 4, s = 2. For values of L = 5, 6, 7, 8, s = 2 ex-
tensive trials were performed, and tests show that results in the best case are
worse when compared to the same oversaturation efficiencies having s = 1.

Greater oversaturation efficiencies than 50% were not considered since
the minimum Euclidean distance of d2 = 1.527 produces already a great loss
in performance, which is shown in the next section. The higher oversatu-
ration efficiencies would lead to intolerable losses as will be seen in section
6.3.

6.1.5 Examples of optimal GO-CDMA signature ensembles

Next, GO-CDMA signature ensemble examples are illustrated for (3, 2),
(4, 3) and (5, 4) cases. The considered signal space dimension is N = 12
because it is conveniently divisible by two, three, and four. The initial
orthogonal matrix is given by (6.41). It is created from the sequence of length
N = 11 that has minimax autocorrelation function by adding a column and
a row of +1 symbols to the matrix. Obtained signatures are denoted as si

j ,
where i stands for the group number and j for the signature number in the
i-th group.

For L = 2 six subspaces are created each containing three users, thus
K = 18. Those six two-dimensional subspaces S1, . . . ,S6 containing user sig-
natures s1

1, s
1
2, s

1
3, . . . , s

6
1, s

6
2, s

6
3 are formed with bases {h1,h2}, . . . , {h11,h12}.
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The signature ensemble obtained using (6.4) and (6.41) are given in in (6.42).

H =
























h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12
























=
1√
12
























+ + + + + + + + + + + +
+ − + − + + + − − − + −
+ − − + − + + + − − − +
+ + − − + − + + + − − −
+ − + − − + − + + + − −
+ − − + − − + − + + + −
+ − − − + − − + − + + +
+ + − − − + − − + − + +
+ + + − − − + − − + − +
+ + + + − − − + − − + −
+ − + + + − − − + − − +
+ + − + + + − − − + − −
























(6.41)

S =






S1
...

S6




 = (s1

1, s
1
2, s

1
3, . . . , s

6
1, s

6
2, s

6
3)

T =

= 1√
6χ



































ξ η ξ η ξ ξ ξ η η η ξ η
ξ −η ξ −η ξ ξ ξ −η −η −η ξ −η
χ 0 χ 0 χ χ χ 0 0 0 χ 0
ξ −η −ξ η −η η ξ ξ −η −ξ −ξ η
ξ η −ξ −η η −η ξ ξ η −ξ −ξ −η
χ 0 −χ 0 0 0 χ χ 0 −χ −χ 0
ξ −ξ η −η −ξ η −η η ξ ξ −η −ξ
ξ −ξ −η η −ξ −η η −η ξ ξ η −ξ
χ −χ 0 0 −χ 0 0 0 χ χ 0 −χ
ξ −η −ξ −ξ η −η −ξ η −η η ξ ξ
ξ η −ξ −ξ −η η −ξ −η η −η ξ ξ
χ 0 −χ −χ 0 0 −χ 0 0 0 χ χ
ξ ξ ξ −η −ξ −ξ η −η −ξ η −η η
ξ ξ ξ η −ξ −ξ −η η −ξ −η η −η
χ χ χ 0 −χ −χ 0 0 −χ 0 0 0
ξ −η η ξ ξ −η −ξ −ξ η −η −ξ η
ξ η −η ξ ξ η −ξ −ξ −η η −ξ −η
χ 0 0 χ χ 0 −χ −χ 0 0 −χ 0



































,

(6.42)

where ξ = 1 + c0, η = 1 − c0, χ =
√

2(1 + co)2 and c0 is given by (6.15).
For L = 3 four subspaces (S1, . . . ,S4) are created all containing four

users, thus the number of users is K = 16. The signature ensemble that
contains user signatures s1

1, s
1
2, s

1
3, s

1
4, . . . , s

4
1, s

4
2, s

4
3, s

4
4 is formed with bases

{h1,h2,h3}, . . . , {h10,h11,h12}. Using (6.18) and (6.41) signature ensemble
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is

S =






S1
...

S4




 = (s1

1, s
1
2, s

1
3, s

1
4, . . . , s

4
1, s

4
2, s

4
3, s

4
4)

T =

= 1√
12
√

1+2c2
0






























ζ ν 1 1 1 ζ ζ 1 ν ν 1 1
ζ −1 1 −ν 1 ζ ζ −ν −1 −1 1 −ν
ζ −1 −ν 1 −ν ζ ζ 1 −1 −1 −ν 1
3ς −ς ς ς ς 3ς 3ς ς −ς −ς ς ς
ζ ν −1 −1 ν −1 1 1 ζ −ν −1 −ζ
ζ −1 ν −1 −1 ν −ν 1 ζ 1 −1 −ζ
ζ −1 −1 ν −1 −1 1 −ν ζ 1 ν −ζ
3ς −ς −ς −ς −ς −ς ς ς 3ς ς −ς −3ς
ζ −ν −1 −ζ ν −1 −1 ν −1 1 1 ζ
ζ 1 −1 −ζ −1 ν −1 −1 ν −ν 1 ζ
ζ 1 ν −ζ −1 −1 ν −1 −1 1 ν ζ
3ς ς −ς −3ς −ς −ς −ς −ς −ς ς ς 3ς
ζ 1 1 ζ −ν −1 −ζ ν −1 −1 ν −1
ζ −ν 1 ζ 1 −1 −ζ −1 ν −1 −1 ν
ζ 1 −ν ζ 1 ν −ζ −1 −1 ν −1 −1
3ς ς ς 3ς ς −ς −3ς −ς −ς −ς −ς −ς






























,

(6.43)

where ζ = 1 + 2c0, ν = 1 − 2c0, ς =
√

(1 + 2c0)/3 and c0 is given by (6.35).
For L = 4 three subspaces (S1, . . . ,S3) are created all containing five

users, thus the number of users K = 15. The signature ensemble that
contains user signatures is formed with bases {h1, . . . ,h4}, {h5, . . . ,h8},
{h9, . . . ,h12}. Using (6.38) and (6.41) signatures are

S =






S1
...

S3




 = (s1

1, s
1
2, s

1
3, s

1
4, s

1
5, . . . , s

3
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3
2, s

3
3, s

3
4, s

3
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T =

= 1√
12






























1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 1 1 −1 −1 −1 1 −1
1 −1 −1 1 −1 1 1 1 −1 −1 −1 1
1 1 −1 −1 1 −1 1 1 1 −1 −1 −1
2 0 0 0 1 1 2 1 0 −1 0 0
1 −1 1 −1 −1 1 −1 1 1 1 −1 −1
1 −1 −1 1 −1 −1 1 −1 1 1 1 −1
1 −1 −1 −1 1 −1 −1 1 −1 1 1 1
1 1 −1 −1 −1 1 −1 −1 1 −1 1 1
2 −1 −1 −1 −1 0 −1 0 1 1 1 0
1 1 1 −1 −1 −1 1 −1 −1 1 −1 1
1 1 1 1 −1 −1 −1 1 −1 −1 1 −1
1 −1 1 1 1 −1 −1 −1 1 −1 −1 1
1 1 −1 1 1 1 −1 −1 −1 1 −1 −1
2 1 1 1 0 −1 −1 −1 −1 0 −1 0






























.

(6.44)
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In the light of section 5.1.1 it is rather disappointing that with even smaller
oversaturation efficiency we obtained non-binary extra signatures in every
subspace. The prescription of section 5.1.1 is working only with a signature
length of the form 4l. In the presented examples, like in any case of N non-
divisible by 8, extra signatures cannot be binary in principle. The following
proposition will be proved:

Proposition: Let a,b be two rows of Hadamard matrix of size N > 4. Let
c be a binary sequence of length N orthogonal to a but having correlation
coefficient with b equal to ±1/2. Then, N is divisible by 8.

Proof : First of all, the case of negative correlation between c and b can
be discarded, since changing the polarity of c leads to the transforming of
correlation into positive values without losing orthogonality of c to a. To
prove the proposition it is necessary to obtain Hamming distances between
a, b and c. The correlation coefficient of two binary sequences is related to
their Hamming distance, dH , as [79]

ρ =
N − 2dH

N
. (6.45)

Thus, it is obvious that Hamming distances between a and b, and a and c
are both N/2, while Hamming distance between b and c is N/4.

Now, let wa, wb and wc be weights (the number of minus ones) of a,b, c,
while λab, λac, λbc denote the number of coincidences of minus ones in pairs
(a,b), (a, c) and (b, c), respectively. Then, the Hamming distances of these
three pairs are

dH(a,b) = wa + wb − 2λab =
N

2

dH(a, c) = wa + wc − 2λac =
N

2

dH(b, c) = wb + wc − 2λbc =
N

4
,

which gives three necessary conditions on N :

N = 2(wa + wb) − 4λab

N = 2(wa + wc) − 4λac

N = 4(wb + wc) − 8λbc.

Since N > 4 is the size of the Hadamard matrix, it is divisible by 4, meaning
that all three weights wa, wb, wc are of the same parity (otherwise the first
term in right-hand side of at least one of the first two equations is not
divisible by 4). This means that wb + wc is even, hence, from the third
equation it is seen that N is divisible by 8. With this, it is proved that in
order to obtain binary ensemble N should be divisible by 8.
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6.1.6 Scalability of the GO-CDMA signature ensemble

In [20] Vanhaverbeke has addressed the importance of scalability in over-
saturated systems. In perfectly scalable system no modifications to existing
signatures are required if users enter or exit the system. A totally unscalable
system requires the allocation of signatures of all users to be performed ev-
ery time a new user arrives or an existing user terminates the transmission.
An example of a scalable system would be the utilization of PN codes, and
an example of an unscalable signature set are WBE signatures discussed
in section 5.2. In [20] the term quasi-scalability is introduced for systems
where only few user’s signatures are affected by the decreasing or increasing
number of users.

Using terminology of [20], the GO-CDMA concept is quasi-scalable. As-
sume that initially K ′ users are active (N ≤ K ′ ≤ Kmax = ⌊N/L⌋ (L +
s) + N mod L, where ⌊·⌋ is used to denote rounding towards zero). The
change in the number of users inside one group is denoted with τ . It is
sufficient to investigate changes inside groups individually, since all groups
are independent.

• First, consider the case K ′ = N and new users start entering the
system. For each new user (assuming s = 1) L orthogonal signatures
are required to form a group to support new user. Thus, for each new
user, L existing users are affected making the system quasi-scalable.

• Next, consider the case where for K ′ > N and τ users become inactive
inside some group. Then, there are L + s − τ users that are affected
from the change, thus the system is still quasi-scalable. Signatures
for those remaining users must be re-designed to retain the maximal
minimum distance available, since there are still L dimensions, where
L + s − τ user signatures can be placed. Thus, their transmission
fidelity improves. In the case of τ = L+s, the whole group is removed
and other users are not affected by the change.

6.2 Comparison of GO-CDMA signatures to the
optimal ensemble

In section 6.1 (L, L + 1) GO-CDMA signature ensembles were designed for
L = 2, 3, 4 (eov = 1 + 1/L). The conventional orthogonal signaling with
single-user receiver has d2

min,o = 4 squared minimum distance between dif-
ferent unit energy group signals, which is not compromised by Ross-Taylor
signatures [32, 36]. For GO-CDMA signature ensembles the minimum Eu-
clidean distance is sacrificed for the simple receiver and greater oversatura-
tion efficiency (L = 2, 3), or oversaturation efficiency for receiver simplicity.
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Thus, the GO-CDMA signature ensemble offers trade-off between perfor-
mance, capacity and receiver complexity.

For the (3, 2) ensemble the oversaturation efficiency eov = 1.5. When its
minimum distance is compared to the Ross-Taylor signatures the loss is

d2
min,o

d2
min,max

=
4

1.528
≈ 2.618 ≈ 4.18 dB. (6.46)

This distance (energy) loss is the penalty for the greater oversaturation
efficiency. For the (4, 3) ensemble the oversaturation efficiency eov = 1.33.
When compared to the Ross-Taylor signatures, the loss due to the simple
receiver

d2
min,o

d2
min,max

=
4

2.709
≈ 1.477 ≈ 1.69 dB. (6.47)

The oversaturation efficiency obtained in this manner is the same as in [36].
Thus, 1.69 dB energy loss may be accepted as the cost for receiver simplicity.
For the (5, 4) constellation the squared minimum distance between different
group signals is d2

min,max = 4 so there is no distance (energy) loss when
compared to the Ross-Taylor signatures while the number of users served is
increased by 25%. This is not as great as in [36] which means sacrificing the
oversaturation efficiency in exchange for receiver simplification.

6.3 Signature optimization without symmetry re-
striction

In [104] similar analysis as in section 6.1 was performed with a software
optimization tool without any assumptions about the resulting signatures.
Optimal constellations were obtained for L = 2, s = 1, 2, 3, 4 and L = 3, s =
1, 2, 3. The results show that assumption of symmetric signature constella-
tions in section 6.1 is well justified. The result for the (3, 2) constellation
is equal, and the result for the (4, 3) constellation is only 0.02 dB better.
Author of [104] also analyzed greater oversaturation efficiencies than 50%.
The results indicate that by abandoning the symmetry requirement for sig-
natures, it is possible to obtain better minimum Euclidean distances for
certain oversaturation efficiency by increasing L and s. Yet real prospects
of this oversaturation mode are rather doubtful because of intolerably big
energy losses. Take for example eov = 2.0, where for L = 2 (s = 2) the
minimum distance is 1.0718, but for L = 3 (s = 3) the minimum distance is
1.3333. Thus, it is seen that the loss in minimum distance diminishes from
5.7 dB to 4.8 dB when a larger signal space dimension is used. But, the
scale of loss makes oversaturation efficiencies beyond 1.50 seem impractical.

Results of optimization of section 6.1 (symmetric) are summarized in
Table 6.1 with the results from [104] (asymmetric). From the table it can
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Symmetric Asymmetric [104]
L eov d2

min Loss [dB] d2
min Loss [dB]

2 1.50 1.5279 4.19 1.5279 4.19

2 2.00 1.0718 5.72

2 2.50 0.5196 8.86

2 3.00 0.3946 10.06

3 1.33 2.7085 1.69 2.7251 1.67

3 1.66 1.6991 3.72

3 2.00 1.3333 4.77

4 1.25 4 0

Table 6.1: Summary of results

be seen that symmetric signature ensemble design is a sensible approach,
since the results are equal, except for 0.02 dB loss for the (4, 3) case, to the
approach without any restrictions to final outcome. It is also evident that the
loss increases quickly as the oversaturation efficiency grows. Therefore, in
the next chapter an alternative approach to designing GO-CDMA signature
ensembles is considered.

6.4 BER analysis

Minimum Euclidean distances alone calculated in the previous section are
not sufficient enough to characterize the BER behaviour of the oversatura-
tion method presented in this chapter. Next, the exact BER is calculated for
signals obtained in section 6.1.1. For the higher signal subspace dimension
only upper bounds for BER are derived due to complex decision regions.

6.4.1 BER calculation for non-rectangular decision regions

Generally, exact BER calculation can be performed as summations of com-
plementary error functions familiar from numerous sources [12, 13,50]

Q(x) =
1√
2π

∫ ∞

x
exp

(

−x2

2

)

dx, (6.48)

and Owen’s T -functions [105]. The usage of Owen’s T -function is briefly
introduced next.

In the Fig. 6.6 the signal point is in the origin. Owen’s T -function gives
the probability that the point falls to the shaded area due to disturbances
in the AWGN channel. The variance of noise = σ2 = var{x} = var{y} = 1.
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Figure 6.6: The usage of Owen’s T -function.

If the angle between y = ax and x-axis is α, then a = tanα. Probability
that the received point falls to the shaded region:

T (h, a) =
1

2π

∫ ∞

x=h

∫ ax

y=0
exp

(

−x2 + y2

2

)

dydx. (6.49)

To express (6.49) in the form tabulated in the literature variables x and y
are transformed to polar coordinates: x = ρ cos γ, y = ρ sin γ and dxdy =
ρ dρ dγ. Then,

T (h, α) =
1

2π

∫ α

0
dγ

∫ ∞

h
cos γ

ρ exp

(

−ρ2

2

)

dρ =
1

2π

∫ α

0
exp

(

− h2

2 cos2 γ

)

dγ.

(6.50)
With the exchange of variable

tan γ = x ⇒ 1

cos2 γ
= 1 + x2 and dγ =

1

1 + x2
dx

we have same form as in tables [105]

T (h, α) =
1

2π

∫ α

0

1

1 + x2
exp

(

−h2

2
(1 + x2)

)

dx. (6.51)

Thus, the probability can be calculated by numerical integration with (6.50)
or by table lookup according to (6.51) [105].
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(a) User 1
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Figure 6.7: Decision regions of users 1 and 2 in the (3, 2) constellation.

6.4.2 Closed-form expression of BER

Optimal group signal constellation for the (3, 2) GO-CDMA signature en-
semble was presented in Fig. 6.3. Optimal decision regions for received bits
of each of three users are illustrated in Fig. 6.7 for users 1 and 2, and Fig.
6.8 for user 3, white area corresponding to decision that transmitted bit is
+1.

Let Pe,j(b1, b2, b3) designate bit error probability for the user j condi-
tioned in bits bi = ±1, i = 1, 2, 3 transmitted by all three users. Then the
total bit error probability Pe,j for user j (j = 1, 2, 3) is

Pe,j =
1

8

∑

b1,b2,b3=±1

Pe,j(b1, b2, b3) =
1

4

∑

b2,b3=±1

Pe,j(+1, b2, b3), (6.52)

where the obvious invariance with respect to simultaneous change of all
transmitted bits is used.

Every term in (6.52) can be found by integration of pdf of the noise-
corrupted group signal over the decision region producing error (see section
3.4):

Pej =

∫ ∫

Zj

Pg (q(s1 + b2s2 + b3s3), 1) dxdy, (6.53)

where Pg(µ, σ2) stands for two-dimensional Gaussian pdf with mean vector
µ and variance σ2, q is SNR per user’s bit after matched filtering, and Zj

is integration area. When the transmitted bit for the user j is +1, Zj is a
shaded region in Fig. 6.7 and 6.8.

Due to the complexity of exact calculation, only one case is presented
here as an example. Other cases can be found from appendix A.
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Figure 6.8: Exact BER calculation for user 3 when bit pattern (+,+,+) is
transmitted.

The calculation of Pe,3(+,+,+)

The group signal corresponding to bit pattern (+,+,+) is transmitted and
probability of user 3 receiving ’−’ is calculated. Decision regions are il-
lustrated in Fig. 6.8. The shaded part is the area resulting in bit error.
The group signal constellation is divided into different zones and final error
probability is calculated with the combination of Q- and T -functions. The
calculation in this case can be divided into three phases: the probability of
error is the area left of the line y = −x (Fig. 6.9) plus the shaded area to
the right of the line y = −x (Fig. 6.10) minus the white area left of the
line y = −x (Fig. 6.11).

In the following derivations Q(h) means actually Q(h/
√

2N0) and T (h, α)
is used to denote T (h/

√
2N0, α). The shorter denotations are chosen for

convenience. First, the probability that the received point appears to the
left of curve y = −x can be calculated with Q(h2). The probability that the
received signal point enters the remaining shaded area can be incorporated
with subtraction of two T -functions 2(T (h1, β1) − T (h2, β1)), since without
the subtraction the area continues infinitely. The result is multiplied by
two to include both halves of the shaded area (see Fig. 6.8). In this part,
the result includes also the white area left to the line y = −x, which must
be subtracted to obtain the exact solution. It can be accomplished with
the subtraction of 2T (h2, β1). However, this operation also removes a part
of the shaded area. This is compensated with the addition of 2[T (h4, β3) −
T (h4, β2)] and further subtraction of 2T (h3, β4). Combining aforementioned

78



( )+++ ,,

2h

Figure 6.9: The first phase of calculation of Pe(+, +, +).
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Figure 6.10: The second phase of calculation of Pe(+, +, +).
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Figure 6.11: The third phase of calculation of Pe(+, +, +).
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Table 6.2: Parameters for BER calculation for user 3 when (+++) is trans-
mitted.

h1 h2 h3 h4√
Eb 2.618

√
Eb 4.236

√
Eb 1.6206

√
Eb

β1 β2 β3 β4

0.3141 0.9425 1.1884 0.0682

Table 6.3: Group signal point coordinates
Point x-coordinate y-coordinate

(+, +, +) 1.8512
√

Eb 1.8512
√

Eb

(+, +,−) −0.1241
√

Eb 1.5383
√

Eb

(+,−, +) 1.5383
√

Eb −0.1241
√

Eb

(+,−,−) −0.4370
√

Eb −0.4370
√

Eb

(−, +, +) 0.4370
√

Eb 0.4370
√

Eb

(−, +,−) −1.5383
√

Eb 0.1241
√

Eb

(−,−, +) 0.1241
√

Eb −1.5383
√

Eb

(−,−,−) −1.8512
√

Eb −1.8512
√

Eb

results the error probability is

Pe3(+, +, +) = Q(h2) + [2 (T (h1, β1) − T (h2, β1)) − 2T (h2, β1)]

+ [2 (T (h4, β3) − T (h4, β2)) − 2T (h3, β4)] . (6.54)

Values of parameters hi, βi, i = 1, . . . , 4 in (6.54) are listed in the Table
6.2. They are obtained by elementary geometry. Group signal coordinates
used to calculate parameters are tabulated in Table 6.3. The distances are
obtained as h1 = d(+++,++−)/2, h2 = d(+++,++−) + d(++−,−−+)/2,
h3 = d(+++,++−) + d(++−,−−+) + d(−−+,−−−)/2. The h4 can be
only calculated after obtaining β2. To find out angles βi it is necessary to
calculate coordinates of some intersecting decision region boundaries. From
the obtained coordinates it is possible to derive equations of lines used to
calculate values for T -functions. All these lines originate from the signal
point (+,+,+). The other point in the plane used to determine the equation
of line is some other group signal in most of the cases. However, it can also
be an intersection of two lines representing boundaries between decision
regions. Using these equations of lines it is easy to determine the tangent of
angle between them, which between two lines having slopes m1 and m2 is

tanβ = (m2 − m1)/(1 + m1m2). (6.55)

Take for example Fig. 6.11(a). The equation of the line passing the origin
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and signal point (+,+,+) is simply

y = x. (6.56)

The equation of the line passing through signal points (+,+,+) and (−,+,−) is

y = 0.5095x + 0.908
√

Eb. (6.57)

Thus, the tangent of angle between them is

tan β1 = (1 − 0.5095)/(1 + 0.5096) ≈ 0.3249, (6.58)

from which the angle can also be calculated as

β = arctan 0.3249 = 0.3141.

Other βi are calculated as follows: To obtain tanβ2 only one equation of the
line must be calculated, since the other is obtained in (6.57). The required
line is perpendicular to the line connecting signal points (−,+,+) and (−,−,−)
and passes through the point (+,+,+). The equation of that line is

y = 1.9626x + 1.782
√

Eb, (6.59)

thus the slope perpendicular to it is −1/m = −0.5095, and using (6.55)

tan β2 = 1.3764 (6.60)

and
β2 = 0.9425. (6.61)

When calculating tanβ3 it is necessary to first calculate the slope of line
connecting point (+,+,+) and the intersection of line from (6.59) and the one
perpendicular to y = x going through the point having coordinates

(

− 1√
2
(h3 − h2),−

1√
2
(h3 − h2)

)

= (−1.2077
√

Eb,−1.2077
√

Eb),

where h3 − h2 is the distance of that point from the origin. Using the
information available, the wanted equation of the line is

y = −x −
√

2(h3 − h2) = −x − 2.4155
√

Eb. (6.62)

The x-coordinate of the intersection point used to calculate β3 is found by
solving x from

1.9626x + 1.782
√

Eb = −x − 2.4155
√

Eb,

which produces
x = −1.4168

√

Eb
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and
y = −0.9987

√

Eb.

Now, it is possible to calculate the slope of the required line, which is

(−0.9987
√

Eb − 1.8512
√

Eb)/(−1.4168
√

Eb − 1.8512
√

Eb) = 0.8721.

Thus, using again (6.55)
tan β3 = 2.4864 (6.63)

and
β3 = 1.1884 (6.64)

The value of tanβ4 can be calculated with previously obtained slopes from
(6.56) and (6.63) as

tan β4 = (1 − 0.8721)/(1 + 0.8721) ≈ 0.0683. (6.65)

Thus,
β4 = 0.0682 (6.66)

Other group signal points

The probability of error Pe,3(+,+,+) was calculated above. To obtain the to-
tal BER of the (3, 2) GO-CDMA system, six more similar operations must
be performed consisting of the division of the plane to parts that can be
covered with either Q-functions or T -functions, and the calculation of pa-
rameters for those functions. The calculations are presented in appendix A
to avoid tedious explanations here. To obtain the final result for user 3 the
probabilities Pe,3(−,−,+) and Pe,3(−,+,+) should also be calculated, which is
done in A.1.1 and A.1.2, respectively. The fourth required error probability
is Pe,3(+,−,+) = Pe,3(−,+,+) (see Fig. 6.8).

Users 1 and 2 have identical BER performance, which is seen from Fig.
6.7, where it is evident that decision regions are rotated copies of each
other. The rotation does not affect to relative distances between points.
In appendix A the probabilities are calculated for Pe,1(+,+,−), Pe,1(+,−,−),
Pe,1(+,−,+) and Pe,1(+,+,+) in A.2.1, A.2.2, A.2.3 and A.2.4, respectively.
The results from appendix A can be summarized to

Pe,1 = Pe,2 =
1

4
(P (−xx| + +−) + P (−xx| + −−) + P (−xx| + −+) +

P (−xx| + ++)) (6.67)

and

Pe,3 =
1

4
(P (xx − | − −+) + P (xx − | + ++) + 2P (xx − | − ++)), (6.68)

where x is used to denote bit value that does not affect to the result of
calculation. The curves illustrating (6.67) and (6.68) are presented in section
6.4.4 along with the approximated BER curves to be calculated next.
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6.4.3 Upper bounds

As can be seen from appendix A, exact BER formulas are very complex and
impractical. In addition, they are very difficult to obtain for higher sub-
space dimensions due to complicated decision regions. Thus, upper bounds
for BER are necessary. A general idea of above-bordering BER is quite
straightforward and consists of covering the area of erroneous decision by
an appropriate union of half-spaces [12, 13].

Bounding in two-dimensional signal space

The principle of upper bounding becomes clear from detailed consideration
of the simplest case L = 2, s = 1. Since Pe,1 = Pe,2, it is sufficient to analyze
BER only for users 1 and 3. Starting with user 1, take signal point (+,+,+)
in Fig. 6.7 and try to separate it from erroneous (shaded) area with as small
a number of straight lines as possible, each being maximally distant from
the signal point (+,+,+). Fig. 6.12(a) shows that it is possible with only
one line, which is perpendicular to the line connecting points (+,+,+) and
(−,+,+). Thus, upper bound on Pe,1(+,+,+) is derived:

Pe,1(+, +, +) ≤ Q

(
h1√
2N0

)

, (6.69)

where h1 is distance from the point (+,+,+) to the line mentioned above
(h1 =

√
Eb, see Fig. 6.3).

Next, the point (+,−,+) is taken into consideration. Fig. 6.12(b) shows
that two straight lines are required – one being perpendicular to the line
connecting points (+,−,+) and (+,−,−), and the other perpendicular to the line
connecting points (+,−,+) and (−,+,+). Thus, union bound gives P (+,−,+) ≤
Q(h2)+Q(h3), with h2, h3 once more denote distances from the point (+,−,+)
to the lines mentioned above. The distance h2 is simply h2 = h1, but h3

must be calculated as a distance from the (+,−,+) to the line connecting
points (+,+,+) and (−,+,−). If the equation of the line is given in general
form Ax + By + C = 0 the distance d of point (x1, y1) from it is given with

d =
Ax1 + By1 + C

±
√

A2 + B2
, (6.70)

where the sign is chosen so that the distance is non-negative. The equation
of the line was calculated to be y = 0.5095x + 0.908

√
Eb. When substituted

to (6.70) along with point coordinates (x1, y1) = (1.5383
√

Eb,−0.1241
√

Eb)
h3 = 1.7169

√
Eb and

Pe,1(+,−, +) ≤ Q

(
h2√
2N0

)

+ Q

(
h3√
2N0

)

(6.71)
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Figure 6.12: Bounding of BER for user 1.

For the point (+,−,+) the covering of erroneous areas requires also two
straight lines. From Fig. 6.12(c) it is seen that the closest area resulting in
error is the decision region of the point (−,−,+), thus the first line is drawn
half way between points (+,−,+) and (−,−,+). The distance of the line to
those points is denoted with h4. To also include the part not covered by
the first line from the decision region of point (−,+,+) the same line is drawn
as in the case for the point (+,−,+). It is at the distance h1 from the point
(+,−,+).

Finally, the bounding for point (+,−,−) is also covered by two straight
lines as shown in Fig. 6.12(d). The two lines are located at the distance
h1 from (+,−,−), since they are obtained by lengthening the decision region
boundaries. After combining all the results and expressing hi as a function
of bit energy Eb the error probability for the first and the second user is
estimated as

Pe,1 = Pe,2 <
3

4
Q (0.618q) +

3

4
Q (q) +

1

4
Q (1.203q) (6.72)

Similar procedure applied to user 3 gives

Pe3 <
5

4
Q (0.618q) + Q (q) , (6.73)
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(a) (b)

Figure 6.13: Example of upper bounding in 3D-case.

after which average BER can be given

Pav <
11

12
Q(q) +

11

12
Q(0.618q) +

1

4
Q(1.203q) (6.74)

Bounding in three-dimensional signal space

The procedure in three-dimensional space is illustrated with an example
for user 1 when (+,−,−,−) is sent. Spheres in Fig. 6.13 represent erroneous
signal points, and they have radius of dmin/2. First, a plane is drawn between
(+,−,−,−) and (−,−,−,+), because the (−,−,−,+) is the closest point. Now, all
signal points except of (−,−,−,−) are ’behind’ the plane, and have distance
greater than dmin/2 from it. After drawing another plane between (+,−,−,−)
and (−,−,−,−) all erroneous points are covered and we have Pe1(+,−,−,−) <
P (−−−+ |+−−−)+P (−−−−|+−−−). All the remaining operations
for obtaining error probabilities for different users follow the same procedure
and bear no new relevant information to the discussion here. Therefore, only
results are shown.

Users 1,2,3 have equal error probability, so only users 1 and 4 are neces-
sary to consider.

Pe1 = Pe2 = Pe3 <
5

8
Q (0.823q)+

1

4
Q (0.886q)+Q (q)+

1

8
Q (1.701q) (6.75)

Pe4 <
7

8
Q (0.823q) +

3

2
Q (0.886q) + Q (q) (6.76)

Pav < Q(q) +
11

16
Q(0.823q) +

9

16
Q(0.886q) +

3

32
Q(1.701q) (6.77)

Bounding in four-dimensional signal space

Bounding for four-dimensional space cannot be illustrated with figures. Nev-
ertheless, the bounding procedure is identical to the three-dimensional case.
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Figure 6.14: Comparison of exact BER to upper bound in two-dimensional
case.

For each point the closest adjacent point producing an erroneous decision
is isolated by inserting space between them. After that, it is checked if all
erroneous decision regions are covered by this space. If not, more spaces are
inserted until all erroneous decision regions are isolated. Thus, For the (5, 4)
constellation analogous bounding as with the three-dimensional case gives

Pe1 = Pe2 = Pe3 = Pe4 <
43

16
Q (q) (6.78)

Pe5 <
81

16
Q (q) . (6.79)

The average BER is calculated from (6.78) and (6.79)

Pav <
4Pe1 + Pe5

5
=

253

80
Q(q) (6.80)

6.4.4 Comparison of BER results

It is interesting to see how tight the obtained bound for L = 2 is, since
also exact calculations exist. In Fig. 6.14 exact BER and upper bound for
the (3, 2) constellation are given. It is seen that the bound is quite tight
and converges with the exact curve after q2 ≈ 7.5 dB. BER estimates for
(4, 3) and (5, 4) constellations from equations (6.77) and (6.80) are given in
Fig. 6.15 along with an estimate for the (3, 2) constellation from (6.74) and
curve for the orthogonal single-user case. Exact reference curves do not exist
for (4, 3) and (5, 4) constellations, but in chapter 8 they are compared to
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Figure 6.15: Estimated BER curves.

simulation results in the AWGN channel. Results indicate that these bounds
are also tight. It can be seen that the loss in BER is larger for the (5, 4)
constellation at Pe = 10−6 than indicated by loss in minimum Euclidean
distance, which gives the loss in asymptotic case. Losses from Fig. 6.15 at
Pe = 10−6 are approximately 0.5 dB, 1.7 dB, and 4.1 dB for (5, 4), (4, 3), and
(3, 2) constellations, respectively. Losses for (4, 3) and (3, 2) constellations
correspond accurately to values given in Table 6.1.

6.5 Chapter summary

In this chapter, extensive study on GO-CDMA signature ensemble design
was given. The signature ensemble design was performed with unique sig-
nature per user strategy, where signatures are special linear combinations
of initial orthogonal signatures. The design aimed to optimize the linear
dependence of signatures to have maximal separation of all possible group
signals. The chapter started with symmetric group signal constellations.
Signature ensembles were analytically derived for subspace dimensions 2, 3
and 4 populated with one supplementary user. After comparison to results
from literature it was concluded that the chosen approach to concentrate on
symmetric constellation was valid. Detailed examples of signature ensem-
bles for N = 12 were given, and the necessary conditions to obtain binary
ensembles was discussed. After the design, BER performances of obtained
ensembles were also calculated in the presence of AWGN. It was possible
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to calculate closed form expression of BER for subspace dimension 2. For
higher dimensions union bounding was performed due to very complex de-
cision regions. Also, the scalability issue of GO-CDMA signature ensembles
was discussed. It was concluded that they are quasi-scalable, meaning that
only subset of all users is affected by the changes of the number of active
users.
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Chapter 7

Collaboratively coded group
orthogonal
CDMA

In previous chapters it has been assumed that each user is distinguished from
other users by his signature. However, rigid one-to-one correspondence be-
tween signatures and users may be considered as needlessly binding in some
cases. For instance, in the cellular radio downlink, the data of all users is
under the control of the base station and may be in principle encoded jointly
on the basis of so-called collaborative coding or collaborative coding multiple
access (CCMA) [106]. Term collaborative coding was first used in [107].
Before that, the problem has been investigated under the name coding for
multiple access channels (see [108, 109] and references therein). The basic
idea of collaborative coding is quite similar to spread spectrum multiple ac-
cess, or CDMA. It aims towards isolation of different users in channel based
on code structure and without the division in time of frequency domain. For
CDMA, the isolation is obtained with appropriate correlation properties of
signatures.

As discussed in previous chapters, synchronous CDMA is mostly utilized
in the downlink of a cellular system, or alternatively to separate different
channels of one user. In both cases the transmitter controls all transmis-
sions. Therefore, the combination of collaborative coding with S-CDMA
is reasonable to investigate. In general, the idea of oversaturation CDMA
combined with CCMA scheme was formulated by Fan and Darnell in [110].
Their aim was to show that hybrid system would gain better performance
by exploiting merits from both systems and by compensating drawbacks in
each system. CCMA permits high capacity and a large number of users
(oversaturation) while CDMA is a very reliable communication method.
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The oversaturation scheme combining group orthogonal CDMA and col-
laborative coding has been considered in [70, 71]. Here, the oversaturated
synchronous CDMA using group orthogonal ensembles combined with col-
laborative coding is referred to as collaborative coded GO-CDMA (CCGO-
CDMA). For GO-CDMA collaborative coding entails that N -dimensional
space is divided into N/L orthogonal subspaces each of dimension L, and
data bits of group of L + s users within one subspace are jointly one-to-one
mapped onto 2L+s L-dimensional signal vectors. Every subspace is used to
transmit data of L + s users as described in chapter 6, but with no assign-
ment of specific signatures to users. Instead of having unique signatures for
each user, L-dimensional signature subspace is used to transmit bits of L+s
users (s > 0). Transmitter structure for CCGO-CDMA system is illustrated
in Fig. 7.1. Notations bi, hi and y are used for bit, orthogonal signature
and observation, respectively.

Now, the signature ensemble design is not bound by the restraint of
the previous chapter which states that group signals are only linear com-
binations of L + s bit-manipulated fixed L-dimensional vectors. It enables
finding the best possible (L + s, L) constellation of subspace signal vectors
with globally maximal distinguishability between them, which utilizes avail-
able time-frequency resource in the most effective way. It will be shown
in the following sections that CCGO-CDMA possesses significantly higher
performance than pure GO-CDMA.

CCGO-CDMA receiver, illustrated in Fig. 7.2 with notations di for
decision statistic and p for constellation point vector, intended to retrieve
i-th data stream is actually tuned to the signature subset covering i-th user.
It is not subject to MAI from the other received signature subsets because
all of these subsets are orthogonal. Receiver first restores bit pattern of all
L + s users knowing the rule of correspondence between transmitted signals
and users’ bit patterns, and afterwards abandons needles data of all users
but the i-th one. If the proposed scheme is applied to channelization, all
received bits belong to user in question, and bits are not dropped.

Now, the key issue is discussed: How to design an appropriate CCGO-
CDMA signature ensemble, or in other words, (L + s, L) constellation for
each subspace?

7.1 CCGO-CDMA signature ensemble design

In the following formulation, average energy ES over all 2L+s different signal
vectors is set equal to the total energy of signatures employed in the scheme
of chapter 6:

ES =
1

2L+s

2L+s
∑

k=1

Eck = (L + s)Eb, (7.1)
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Figure 7.1: Block diagram for CCGO-CDMA transmitter.

where Eck is the energy of k-th signal vector in the collaborative coding
scheme and Eb is energy per bit per signature in the signature per user
scheme. Such a normalization puts both schemes into equivalent conditions
considering energy consumption.

From the geometrical point of view, finding a constellation of maximally
distant 2L+s L-dimensional vectors of fixed average energy (i.e. squared
length) may be treated in terms of a densest packing of 2L+s spheres in the L-
dimensional space. Classical sphere packing theory [13,111] aims to find such
a packing of equal non-overlapping spheres that the ratio between the sum
of volumes of all the packed spheres and the volume of the obtained packing
is maximal. Globally optimal results are not known for space dimension
L ≥ 3. However, among lattice structures optimal packing is known for
space dimension L ≤ 8. Lattice packing is defined by the following property:
origin is one of sphere centers, and if there are sphere centers u and v, then
there are also spheres with centers u + v and u − v, i.e. possible center
points form an additive group [111].

It should be noted, that in this case, density criterion according to (7.1),
differs from a classical approach, since spheres should be packed to guarantee
minimal average squared distance of sphere centers from the origin. How-
ever, as it will be shown, the solutions taken from classical sphere packing
theory may assist (at least for small dimensions L) in finding good collabo-
rative codes.

Two approaches from sphere packing theory are interesting when spheres
represent signals: lattice volume packing (LVP) and packing of points on
sphere surface (SSP). Volume packing results in optimal constellations from
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Figure 7.2: Block diagrams for CCGO-CDMA receivers.

the viewpoint of sphere packing theory. However, as we will see later, this
in not necessarily the case for signal design, where the optimization criteria
is actually to maximize the radius of sphere while keeping average energy
of signal constellation fixed. The restriction of lattice structure is imposed
to utilize results from sphere packing efficiently. The regular structure of
lattice also alleviates the task of receiver. The packing points on a sphere
surface correspond to the case where all signals have equal energy.

Optimal LVP constellation includes the origin, or zero-vector, as one
of the symbol points. Therefore, symmetrical version of LVP, denoted with
SLVP, is also considered. The zero-vector is excluded because it can be prob-
lematic in some applications. Additionally, constellation points are placed
to achieve symmetry between all coordinate axes. Asymmetry of LVP en-
ables of shifting to constellation so that the centroid falls into origin. This
lowers the average energy requirement. The obtained constellation is de-
noted as balanced LVP (BLVP). To complete the signal design a version of
SSP, denoted with ZSSP that includes the zero-vector is also considered.

SLVP is constructed by first assigning signal points to 2L apex points
of square (or cubic in three-dimensional space), whose center resides in the
origin. Next 2L signal points are assigned along the coordinate-axes outside
this square (cubic). For the (3, 2) constellation all points can be assigned
this way (see Fig. 7.3(c)), while for the (4, 2) constellation familiar 16-QAM
(quadrature amplitude modulation) constellation is chosen. For constella-
tions having L > 2 remaining points that do not fit to apex points or cannot
be put on the axis are assigned so that sphere surface touches the middle

92



point of edge of cubic (see for example (7.22)). For (5, 3), (6, 5) and (7, 5)
the SLVP is formed from LVP by just moving zero-vector to position that
makes the constellation symmetric (compare (C.17) with (C.18)). The rea-
son is that the required condition to have completely symmetric constellation
leads to unnecessarily complex geometrical considerations, i.e. determining
coefficients α and β as was done in (7.22), while the achievable gain is neg-
ligible. To generalize a signal design task with high space dimensions it is
reasonable to choose a method, which is as easy as possible to express as a
systematic procedure.

Optimal SSP and ZSSP constellations may be found from [112], where
packing points on sphere surface that have maximal separation between
them is considered. Putatively optimal designs are given for L = 3, 4, 5
with up to 130 points packed on the sphere surface. From that selection,
packings having 2L+s points are chosen for SSP and packings having 2L+s−1
for ZSSP, where the zero-vector is one of the signals.

In principle, there is no upper limit on the subspace dimension, or in the
number signal points inserted to chosen subspace dimension. The structure
for optimal lattice structure is different for dimension L > 5 than for smaller
dimensions [111], but they are still easily obtained. The problem with pack-
ing on sphere surface is that packings must be optimized numerically. For
this thesis this procedure was not attempted and the largest investigated
dimension is five, since packings are not tabulated in [112] for L > 5, or
2L+s > 128.

Specific examples are given for L = 2, 3, 4, 5 and s = 1, 2. It is impractical
to give exhaustive list of performances of different constellation types, signal
space dimensions, and the number or signal points due to very large number
of parameter combinations. However, it is possible to draw some conclusions
and general considerations based on given examples, which indicate that

• Increasing L > 4 is reasonable. The maximum minimum Euclidean
distance can be improved beyond the limit discussed in section 6.1.4.

• Also, increasing s > 1 is reasonable. With fixed oversaturation effi-
ciency, the constellation with higher dimension having more supple-
mentary users performs better. It is also possible to increase oversatu-
ration efficiency over 50%, which was considered to be the upper limit
of GO-CDMA with reasonable loss.

• Restriction of lattice form of LVP becomes prohibitive, when the signal
space dimension grows.

The choice of signal space dimension, the number of signal points in the
constellation and constellation type requires trade-off between oversatura-
tion efficiency, energy efficiency, and receiver complexity. Specific examples
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starting with oversaturation of L-dimensional space by only one extra user
(s = 1) are presented next.

7.2 Oversaturation of one subspace with one user

7.2.1 Two-dimensional subspace

In the case of a (3, 2) constellation spheres reduce to circles. Thus, the aim
is to place 23 = 8 circles on the plane with equal diameter that is as great
as possible at average squared distance from the origin fixed by (7.1).

Lattice Volume Packing

First, consider the densest two-dimensional LVP [111] of Fig. 7.3(a). Signal
vectors, pi, forming constellation point matrix P (with pi as columns) can be
directly given from the Fig. 7.3(a) with elementary geometry remembering
that the distance between adjacent sphere centers is equal to the minimum
Euclidean distance dmin:

P2D
LV P = dmin

(
0 cos π

6 cos 3π
6 cos 5π

6 cos 7π
6 cos 9π

6 cos 11π
6

√
3 cos π

3

0 sin π
6 sin 3π

6 sin 5π
6 sin 7π

6 sin 9π
6 sin 11π

6

√
3 sin π

3

)

,

(7.2)

which results in average energy and minimum distance

ES =
1

8

(
1 · 0 + 6 · d2

min + 1 · 3d2
min

)
=

9

8
d2

min

⇒ d2
min =

8ES

9
=

8Eb

3
≈ 2.67Eb.

Comparison of this figure with minimum distance of orthogonal signaling
mentioned earlier (d2

min = 4Eb) shows energy loss due to oversaturation
γ = 4/(8/3) = 3/2 ≈ 1.76 dB, which is significantly (2.4 dB) lower than with
the optimal signature per user (3, 2) constellation (see Table 6.1). Although,
this packing is the densest according to sphere packing theory, the minimum
distance can still be increased with the constellation illustrated in 7.3(b).
The asymmetry of the constellation allows to shift it so that its centroid falls
into the origin, which minimizes the average energy of the constellation. Let
u denote vector to be subtracted from each constellation point vectors to
enable this shift:

u =
1

M

M−1∑

i=0

pi =
1

8
dmin

( √
3 cos π

3√
3 sin π

3

)

. (7.3)

When the u is subtracted from each signal, the average energy of constel-
lation is reduced without changing relative distances between constellation
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Figure 7.3: Two-dimensional subspace constellations.
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points. The new average energy is

E′ =
1

M

M−1∑

i=0

||pi − u||2 = ES − ||u||2 =
9

8
d2

min − 3

64
d2

min =
69

64
d2

min. (7.4)

Now, the minimum distance in balanced constellation can be increased so
that the average energy E′ = ES = 3Eb. From (7.4)

d2
min,b =

64

69
E′ =

64

23
Eb ≈ 2.78Eb, (7.5)

which lowers loss to γ ≈ 1.58 dB. Such a displacement results in constellation

P2D
BLV P =

d2
min,b

d2
min

P2D
LV P − 1

8
d2

min,b

( √
3 cos π

3√
3 sin π

3

)

. (7.6)

This constellation type is referred to as balanced LVP (BLVP). Here, it can
be seen that classical sphere packing does not necessarily give the optimal
constellation directly when the average energy of constellation is considered.

If the zero vector, for some reason, cannot be the one of signals in the
constellation, the best constellation when distance property is considered is
SLVP, which is illustrated in Fig. 7.3(c) resulting in

P2D
SLV P = dmin

(
1+

√
3

2
1
2 0 −1

2 −1+
√

3
2 −1

2 0 1
2

0 1
2

1+
√

3
2

1
2 0 −1

2 −1+
√

3
2 −1

2

)

,

(7.7)
Average energy of SLVP constellation is calculated as

ES =
1

8

(

4 · 1

2
d2

min + 4 · (1 +
√

3)2

4
d2

min

)

=
3 +

√
3

4
d2

min, (7.8)

which provides

d2
min =

12Eb

3 +
√

3
≈ 2.54Eb, (7.9)

which results in γ ≈ 1.98 dB.

Sphere Surface Packing

Another approach in sphere packing theory is packing points on sphere sur-
face aiming for maximal separation of points guaranteeing maximal mini-
mum Euclidean distance between them. For signal constellations it corre-
sponds to equal energy signals, i.e. SSP constellation. For two-dimensional
case the signal constellation becomes the familiar 8-PSK pattern as shown
in Fig. 7.3(d)

P2D
SSP =

√

Es

(
1 cos π

4 0 − cos π
4 −1 − cos π

4 0 cos π
4

0 sin π
4 1 sin π

4 0 − sin π
4 −1 − sin π

4

)

.

(7.10)
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The squared distance between adjacent points is

d2
min = 2Es − 2Es cos

π

4
≈ 1.76Eb, (7.11)

which results in γ ≈ 3.57 dB. This loss is rather big, but it is still 0.62 dB
better than the value obtained with the optimal GO-CDMA 2D-signal set
in Table 6.1.

The energy efficiency of SSP can be increased if the zero-vector is in-
cluded into the constellation. This constellation is denoted with ZSSP. The
resulting constellation is shown in Fig. 7.3(e). The constellation points are

P2D
ZSSP =

dmin

2 sin π
7

(
0 cos π

7 cos 3π
7 cos 5π

7 −1 cos 9π
7 cos 11π

7 cos 13π
7

0 sin π
7 sin 3π

7 sin 5π
7 0 sin 9π

7 sin 11π
7 sin 13π

7

)

.

(7.12)

Average energy is

ES =
1

8

(

1 · 0 + 7 · d2
min

4 sin2 π
7

)

, (7.13)

and the minimum squared distance in this case

d2
min =

32 sin2 π
7

7
ES ≈ 2.58Eb, (7.14)

which in comparison to orthogonal signaling results in loss of γ ≈ 1.90 dB.
When compared to best possible packing this suboptimal constellation is
only 0.32 dB worse.

7.2.2 Three-dimensional subspace

Lattice Volume Packing

The densest LVP in 3D-space is a well-known face-centered cubic (fcc) lattice
[111]. Centers for spheres are obtained by taking points of cubic lattice,
whose coordinates add up to even integers. Thus, the signal matrix can be,
for example,

P
3D
LV P =

dmin
√

2





0 1 1 0 −1 −1 0 1 1 0 −1 −1 0 2 0 −2
0 1 0 1 −1 0 −1 −1 0 1 1 0 −1 0 2 0
0 0 1 1 0 −1 −1 0 −1 −1 0 1 1 0 0 0



 .

(7.15)

The average energy is calculated as

ES =
1

16

(
1 · 0 + 12 · d2

min + 3 · 2d2
min

)
=

9

8
d2

min = 4Eb. (7.16)

Squared minimum distance for this (4, 3) constellation is

d2
min =

32Eb

9
≈ 3.56Eb, (7.17)
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which implies that the loss against orthogonal signals is γ ≈ 0.51 dB. Again,
this constellation is asymmetric. If the centroid of constellation is balanced
to the origin by subtracting u:

u =
1

M

M−1∑

i=0

pi =
1

16

dmin√
2





0
2
0



 (7.18)

from each point vector the average energy of constellation is reduced without
changing relative distances between constellation points. The new average
energy is

E′ =
1

M

M−1∑

i=0

||pi−u||2 = ES−||u||2 =
9

8
d2

min−
1

128
d2

min =
143

128
d2

min. (7.19)

Now, the minimum distance in the balanced constellation can be increased
so that the average energy E′ = ES = 4Eb. From (7.4)

d2
min,b =

128

143
E′ =

512

143
Eb ≈ 3.58Eb, (7.20)

which lowers loss to 0.48 dB, and the obtained constellation is

P3D
BLV P =

d2
min,b

d2
min

P3D
LV P − dmin,b

16
√

2





0
2
0



 . (7.21)

The symmetric lattice packing is formed similarly as in two-dimensional
case.

P3D
SLV P =

dmin

2

×




1 1 1 −1 1 −1 −1 −1 α 0 0 −α 0 0 β β
1 1 −1 1 −1 1 −1 −1 0 α 0 0 −α 0 β β
1 −1 1 1 −1 −1 1 −1 0 0 α 0 0 −α 0 0



.

(7.22)

with α = 1 +
√

2 and β = 1 +
√

6/2. The average energy is

ES =
1

16

(

8 · 3

4
d2

min + 6 · 3 + 2
√

2

4
d2

min + 2 · 5 + 2
√

6

4
d2

min

)

=

=
(52 + 12

√
2 + 4

√
6)

64
d2

min = 4Eb, (7.23)

from where minimum squared distance is calculated as

d2
min =

128Eb

26 + 6
√

2 + 2
√

6
≈ 3.25Eb. (7.24)

The resulting loss γ ≈ 0.90 dB.
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Packing on sphere surface

If equal energy constellation is of interest, SSP constellation center coor-
dinates can be taken from [112], where points on a sphere surface having
maximal separation are found. This choice leads to loss γ ≈ 1.10 dB. Con-
stellation is

P3D
SSP =

√

ES · 10−1
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. (7.25)

If zero vector is allowed to be a signal point and other signal points have
equal distance from the origin, the packing from [112] provides γ ≈ 0.61 dB.

P3D
ZSSP =

16

15

√

ES · 10−1
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Figure 7.4: Three-dimensional subspace constellations.

Table 7.1: Results for 2D and 3D constellations (s = 1)
2D (eov = 1.50) 3D (eov = 1.33)

Constellation
d2

min γ [dB] d2
min γ [dB]

SSP 1.76 3.57 3.10 1.10

SLVP 2.54 1.98 3.20 0.90

ZSSP 2.58 1.90 3.45 0.61

LVP 2.67 1.76 3.56 0.51

BLVP 2.78 1.58 3.63 0.48

Signal optimization results for both two- and three-dimensional cases are
summarized in Table 7.1. Obtained constellations are illustrated in Fig.
7.4.

7.2.3 Four- and five-dimensional subspaces

The densest lattice in 4- and 5-dimensional cases is a so-called checkerboard
lattice where the coordinates of sphere centers add up to an even integers
[111]. However, it is interesting to see that the densest packing is no more
optimal from the minimum energy point-of-view under small oversaturation
efficiencies, as was the case with 2D- and 3D-constellations. In fact, in 4D-
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Table 7.2: Results for 4D and 5D constellations (s = 1)
4D (eov = 1.25) 5D (eov = 1.20)

Constellation
d2

min γ [dB] d2
min γ [dB]

SLVP 4 0 4.36 −0.38

SSP 4.04 −0.05 4.73 −0.73

LVP 4.21 −0.22 4.46 −0.48

BLVP 4.22 −0.23 4.47 −0.48

ZSSP 4.22 −0.24 4.83 −0.82

and 5D-cases the ZSSP constellation is better if maximal minimum distance
between signal points is a criterion. In 5D-case, even the equal energy
constellation is better than the constellation from optimal lattice packing.
Another interesting aspect is that according to the previous chapter, there
is no point in increasing subspace dimension to five in the signature per user
strategy, since maximal minimum squared distance cannot be greater than
d2

min = 4 for L ≥ 4. However, using collaborative coding in signal design,
the minimum distance is improved further when L ≥ 4. Results for different
(5, 4) and (6, 5) constellations are shown in Table 7.2. Constellation matrices
are listed in appendix C. LVP constellation is obtained as a checkerboard
lattice structure. BLVP is created the same way as for smaller subspace
dimension, but the method for SLVP differs from 2- and 3-dimensional cases.
This means that constellation point from the origin is just moved so that
the constellation becomes symmetric.

Equal energy constellations (SSP and ZSSP) are again taken from [112].
It is seen from the Table 7.2 that the minimum distance is in fact better
than with conventional orthogonal signaling (negative loss implies gain). It
can be also seen that the effect of balancing is negligible when the number
of signal points in constellation is large.

7.3 Oversaturation of one subspace with two users

For GO-CDMA is was seen that oversaturating subspaces with more than
one (s = 1) user was not profitable. However, the situation changes for
CCGO-CDMA. Results become interesting when subspaces are oversatu-
rated by two users (s = 2). In the case of signature per user approach
similar attempt leads to approximately 1 dB higher energy loss than over-
saturation of subspaces with only one extra user. With collaborative coding,
the performance can be further enhanced by adding more users to subspaces
(increasing s), since the energy of one extra user is available to increase
minimum distance. Constellation design follows the same principles as for
s = 1. Results for (4, 2), (5, 3), (6, 4) and (7, 5) constellations are illustrated
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Table 7.3: Results for 2D and 3D constellations (s = 2)
2D (eov = 2.00) 3D (eov = 1.67)

Constellation
d2

min γ [dB] d2
min γ [dB]

SSP 0.60 8.17 2.06 2.87

ZSSP 0.74 7.34 2.16 2.68

SLVP 1.60 3.98 2.42 2.17

LVP 1.78 3.52 2.53 1.97

BLVP 1.79 3.49 2.54 1.97

Table 7.4: Results for 4D and 5D constellations (s = 2)
4D (eov = 1.50) 5D (eov = 1.40)

Constellation
d2

min γ [dB] d2
min γ [dB]

SSP 3.13 1.07 3.92 0.08

ZSSP 3.19 0.99 3.97 0.03

SLVP 3.20 0.97 4.15 −0.16

LVP 3.28 0.86 4.19 −0.20

BLVP 3.28 0.86 4.19 −0.20

in Tables 7.3 and 7.4, where, again, negative loss means gain. Constellation
matrices are given in appendix C.

7.4 Modulation mapping

The goal of modulation mapping is to assign bit patterns to constellation
points in a way that symbol error results in minimum amount of bit er-
rors, i.e. the Hamming distance, dH , should be as small as possible between
the bit patterns in the neighboring symbol points. In the optimal situation
neighboring symbols differ only in one bit position. Then, a symbol error
results only in one bit error assuming that errors happen only between adja-
cent decision regions. Preferable encoding, for example, for PSK and QAM
signal constellations is Gray coding [13]. For the constellations designed in
previous sections it is impossible to map bit patterns to symbols to guarantee
the dH = 1 between two constellation points at minimal Euclidean distance
apart from the (3, 2) SSP constellation and the (4, 2) SLVP constellation,
which are the familiar 8-PSK and 16-QAM constellations.

Since Hamming distance of unity between all neighboring symbol points
is impossible to obtain with most constellation types in this chapter, some
metric assessing of the efficiency of modulation mapping is required. Gray
code penalty, Gp, is proposed in [113] for odd-bit QAM constellations. It is
defined as “the average number of bit differences per adjacent decision re-
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gion”. In [113] peak Gray penalty (Gpk) is also defined to be “the maximum
number of bit-errors per single symbol threshold error”. Good modulation
mappings have Gp near unity and Gpk equal to two. Penalty criteria can be
formally given as

Gp =
1

M

M∑

l=1

∑Il

i=1 dH(i, l)

Il
(7.27)

Gpk = max
l

max
i∈Il

dH(i, l), (7.28)

where M = 2L+s is the number of constellation points, Il is the number of
neighbors (adjacent decision regions) of constellation point l at the minimum
distance and dH(i, l) is the Hamming distance between constellation points
i and l.

Using (7.27) bit error probability, Pb, can be estimated from symbol error
probability Pe as [113]

Pb =
Gp

log2 M
Pe, (7.29)

and Pe can be given with (3.45) in asymptotic case, or more accurately
with [113]

Pe = ĪlQ(∆), (7.30)

where Īl is the average number adjacent decision regions (Gilbert number)
and ∆ is the minimum distance (given with SNR) from signal point to
decision region boundary (Gilbert distance). Thus, ∆ = dmin/(2

√
2N0).

Fig. 7.5 shows potential effect of Gray code penalty. The experienced loss
was calculated as

loss [dB] = 20 log10

(
∆Gp=1

∆

)

, (7.31)

where

∆ = Q−1

(
log2 M · Pb

ĪlGp

)

. (7.32)

In Fig. 7.5 the loss is illustrated as a function of Gp for M = 8, 32. Parameter
Īl = log2 M − 1. It is seen that the energy loss due to bad modulation
mapping may be significant. Hence, special attention is given on how to
obtain mapping achieving low values of Gp.

In the following, three different strategies are considered for modulation
mapping of constellations presented in this chapter. These procedures were
presented in [71]. Here, the Gray code penalty is used to assess modulation
mappings.
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Figure 7.5: Potential effect of Gp (Īl = log2 M − 1).
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Figure 7.6: Estimated BER performance for (3, 2) constellations.

7.4.1 Exhaustive search

The optimal solution could be found by exhaustive search, but its complex-
ity becomes prohibitive when the number of constellation points is large.
In this case, exhaustive search is feasible only for the two-dimensional con-
stellations. Three-dimensional case with one supplemental user has up to
15! > 1.3 · 1012 different permutations of four bit patterns to sixteen con-
stellation points.

Mappings obtained with exhaustive search are presented in Table 7.5,
where also corresponding Gray penalties and Īl are calculated. When inter-
preting the result, it should be noted that in the calculation of Gp for ZSSP
constellation the zero vector is excluded in (7.27) and (7.28), since the dis-
tance from constellation point in the origin to any other point is greater than
dmin. Resulting BER from inserting dmin from Table 7.1 and Gp, Īl from 7.5
to (7.29) and (7.30) are illustrated in Fig. 7.6. Losses against orthogonal
system depicted from Fig. 7.6(b) at Pb = 10−7 are approximately 1.72 dB,
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Table 7.5: Optimal modulation mapping for two-dimensional subspace.
LVP SLVP SSP ZSSP

p1 000 101 000 000

p2 100 000 100 101

p3 101 100 101 100

p4 001 110 111 110

p5 011 111 110 111

p6 010 011 010 011

p7 110 010 011 010

p8 111 001 001 001

Gp 1.27 1.31 1.00 1.14

Gpk 2 2 1 2

Īl 3.5 3 2 2

1.83 dB, 1.88 dB, 2.05 dB, and 3.43 dB, for BLVP, ZSSP, LVP, SLVP, and
SSP constellations. When compared to results presented in Table 7.1 it is
observed that smaller Gp of ZSSP constellation than for LVP constellation
results in smaller BER even though the minimum distance is larger. The
topic will be further investigated with simulations in chapter 8.

7.4.2 Mapping by division of constellation to two subcon-
stellations

Due to the huge amount of computation resources required by the exhaustive
search, a suboptimal mapping algorithm must be employed for constellations
with L ≥ 3. The chosen mapping method follows the approach from [114],
where the algorithm that has small running time for mapping bits to con-
stellation points is considered. The idea is to partition the original signal
constellation into two subconstellations in such a way that the minimum
Euclidean distance in a subconstellation is maximum, or alternatively the
occurrence of the minimum distance of the original constellation between
points in subconstellation is as rare as possible.

In the initialization phase of mapping algorithm subconstellation points
are labeled from 1, . . . , M/2 in one set and from M/2+1, . . . , M in the other
set in such a way that any given point l in the first set and the point l+M/2
in the other set have the smallest Euclidean distance. The initialization can
be described as follows:

1. Take a random pair of adjacent points, i.e. that have minimum dis-
tance, dmin, and use them as initial points of two sets.

2. Take the closest point to the initial point of the second set, which is
yet to be assigned, and assign it to the first set.
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Table 7.6: Sub-optimal modulation mapping for two-dimensional subspace.
LVP SLVP SSP ZSSP

p1 101 000 000 110

p2 100 100 100 010

p3 001 111 101 000

p4 110 101 001 100

p5 011 011 011 101

p6 010 001 111 001

p7 111 110 110 011

p8 000 010 010 111

Gp 1.30 1.37 1 1.14

Gpk 3 3 1 2

3. Continue the procedure by always assigning the closest unassigned
neighbor of previously assigned point to the set other than that con-
tains this point.

After dividing signal points to two subconstellations, the mapping algo-
rithm assigns bit patterns to constellation points pairwise such that dH = 1
between constellation points l and l+M/2 in different sets. The bit pattern
pair consists always of patterns 0x . . . x and 1x . . . x. The algorithm tries to
find the best bit pattern pair to match already assigned patterns. The best
possible match would correspond to the case where all adjacent constellation
points at the distance dmin have dH = 1 between them. The algorithm can
be described as follows

1. Assign 0 . . . 0 to the first point in the first set and 10 . . . 0 to the point
1 + M/2, which is the the first point in the second set.

2. Take next pair of constellation points (2 and 2 + M/2 in the first iter-
ation) and go through all unassigned pairs of bit patterns. For every
bit pattern pair calculate Gp from (7.27), where M now covers current
pair and already assigned constellation points. The pair providing the
minimum value of Gp is chosen.

3. Step two is repeated until all bit patterns are mapped.

It should be noted that the algorithm does not always produce the best
possible solution. In the case of a PSK constellation the algorithm results
in the Gray code, but e.g. for a rectangular QAM constellation the result
will contain adjacent points having the Gpk = log2 M . The results of sub-
optimal algorithm for the 2D-case are given in Table 7.6 for comparison to
the exhaustive search in Table 7.5.
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Table 7.7: Modulation mappings for three, four and five-dimensional sub-
spaces (Gp / Gpk / Īl).

LVP SLVP SSP ZSSP

(4, 2) 1.37/2/4.13 1.00/1/3.00 1.00/1/2.00 1.07/2/2.00

(4, 3) 1.53/3/6.00 1.37/3/5.00 1.31/2/4.00 1.41/3/4.00

(5, 3) 1.71/4/6.63 1.67/5/6.13 1.69/3/4.13 1.53/3/3.87

(5, 4) 1.99/5/10.13 2.03/4/9.00 1.91/4/6.43 2.06/4/6.26

(6, 4) 2.25/5/11.03 2.24/6/10.00 2.25/5/7.63 2.20/5/6.61

(6, 5) 2.27/5/14.44 2.38/6/13.38 2.35/6/9.13 2.33/6/8.60

(7, 5) 2.77/6/17.50 2.71/7/17.06 2.70/7/9.38 2.80/7/9.37

7.4.3 Combination of sub-optimal algorithm with subset ex-
haustive search

As can be seen from the Table 7.6 of previous section there exists room for
improvement in the mapping design for suboptimal algorithm. Therefore
a method was implemented, where bit patterns are first assigned into m′

constellation points by a suboptimal algorithm and for the rest M − m′

points bit patterns are then assigned by exhaustive search to provide the
best possible match to the assigned patterns. In this case M −m′ = 10 was
considered feasible, thus the number of bit patterns to assign with subop-
timal algorithm is 2L+s − 10. Gray code penalties for subspace dimensions
L > 2 are illustrated in Table 7.7, where each cell contains information on
obtained Gp / Gpk / Īl. The result for Gp using only sub-optimal algorithm
without utilizing exhaustive search is approximately 0.7 larger on average.

7.5 Chapter summary

In this chapter CCGO-CDMA signature ensemble design was considered.
The collaborative coding methodology abandons unique signatures for each
user. Instead, in the context of group orthogonality, each subspace acts
as a common signature for users inside the subspace. In this case, there
is much more freedom in subspace constellation design when compared to
GO-CDMA.

Five constellation types were considered for L = 2, 3, 4, 5 and s = 1, 2.
The choice of constellation type allows a trade-off in minimum distance and
receiver implementation complexity. In addition to constellation design,
modulation mapping has to be considered, since optimal Gray coding for bit
patterns is not possible. Exhaustive search would be the optimal algorithm
for mapping, but its running duration is prohibitive. Thus, a sub-optimal
fast mapping algorithm was employed.
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Constellation design reveals interesting results. First of all, the minimum
Euclidean distance of orthogonal signaling can be surpassed with CCGO-
CDMA when the average energy of signatures is set as equal in both systems.
When compared to GO-CDMA it was seen that using a subspace dimension
beyond four is profitable in increasing the minimum distance. Also, over-
saturating subspaces with more than one user provides gain in minimum
distance when the oversaturation is fixed.
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Chapter 8

Simulated performance of
group orthogonal CDMA in
the AWGN and multipath
channels

8.1 Simulation setup

The goals of the simulations are

• To verify theoretical considerations for BER of GO-CDMA and CCGO-
CDMA in the AWGN channel from chapters 6 and 7.

• To observe the effect of multipath propagation on group orthogonal
systems and make comparisons to the performance of conventional
orthogonal system in similar conditions.

• To show that GO-CDMA and CCGO-CDMA are feasible in practice
in the presence of a multipath channel.

The aim of the simulations was to keep the setup as simple as possible and
to concentrate only on goals mentioned above. Therefore, many idealiza-
tions were utilized and communication system components not relevant to
these analyzes were excluded, such as the channel coding. Simulations were
performed with MATLABr software, which enables clear illustration of re-
sults. The drawbacks are operation speed and memory consumption, which
at times do not allow optimal accuracy of simulation results. All results are
presented with error curves as the function of q2 (SNR). Transmitted signals
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for single bit interval are

x =







∑K
i=1 bihi, for orthogonal CDMA

∑K
i=1 bisi, for GO-CDMA

∑N/L
i=1

∑L
j=1 pi(j)h(i−1)L+j , for CCGO-CDMA

, (8.1)

where pi(j) denotes the location of symbol point on j-th coordinate axis in
i-th subspace. The observation is

y = x ∗ g + n, (8.2)

where ∗ denotes convolution operation and g is the channel impulse re-
sponse vector. For the AWGN channel g = 1. Receiver processing for or-
thogonal CDMA using single-user receiver was described in section 4.1 and
for GO-CDMA in section 4.3.2. CCGO-CDMA block diagrams for trans-
mitter and receiver were given by Fig. 7.1 and Fig. 7.2. For multipath
channels aforementioned receivers must include processing to mitigate the
effects of multipath propagation or resolve and combine different paths be-
fore despreading and detection. Otherwise, the inflicted MAI destroys the
transmission altogether.

In the simulations of this chapter, the received bit stream is first equal-
ized at the receiver, and despread by multiplying it with a time-synchronized
replica of the signature followed by an integrator that aggregates N chips, i.e.
all chips from one bit interval. The resulting decision statistics are utilized
in detecting transmitted bits. For the orthogonal case the decision for the re-
ceived bit for user i is simply b̂i = sign(di) (see section 4.1). For GO-CDMA
the receiver must compare observation y to 2L+s possible transmitted group
signal vectors. The decision b̂ = (b̂1, . . . , b̂L+s) is the bit vector minimizing
||y −∑i bisi||2. For CCGO-CDMA the same maximum-likelihood detec-
tion is used to find out transmitted symbols. After that, detected bits are
obtained by table look-up according to utilized modulation mapping.

8.2 Results in the AWGN channel

8.2.1 GO-CDMA

In the AWGN channel the results do not depend on N , since subspaces do
not interfere with each other. Results are illustrated in Fig. 8.1, where
a curve of BER for non-oversaturated orthogonal system is also placed for
comparison. Curves demonstrate the consistence of simulation results with
the results for exact average BER given in 6.4.2 and appendix A for the
(3, 2) constellation. In Fig. 8.2 average estimated BER from (6.74), (6.77)
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Figure 8.1: Exact and simulated BER for the (3, 2) GO-CDMA constella-
tion.

and (6.80) is compared to simulation results for (3, 2), (4, 3) and (5, 4) con-
stellations. It is seen that BER bounds are tight approximately after q2 = 8
dB for all constellations. Simulation result correspond well to the losses
indicated by minimum Euclidean distance from Table 6.1. Only for the
(5, 4) ensemble asymptotic loss is smaller (approximately 0.5 dB) than the
experienced BER.

8.2.2 CCGO-CDMA

For the BER analysis of CCGO-CDMA all constellation types were analyzed
for the (3, 2) case. Results are shown in Fig. 8.3 (and Fig. 8.4 for LVP). For
other constellation sizes the LVP constellation was chosen combined with
the best possible modulation mapping available. Results are illustrated for
L = 2, 3, 4, 5 and s = 1 in Fig. 8.4 and for L = 2, 3, 4, 5 and s = 2 in
Fig. 8.5. Each figure includes estimated symbol error rate (SER) from
(7.30), simulated SER, simulated BER and estimated BER from (7.29). It
is seen that estimated curves correspond well to simulation results for two-
dimensional constellations. For higher dimensions tighter bounds would be
preferable. In the case ZSSP the bound is not adequate to take into account
the effect from the symbol point in the origin, which clearly has an impact
at small SNR values. It is interesting to notice that none of the CCGO-
CDMA BER curves crosses the one for non-oversaturated orthogonal case
before Pe = 10−6 even though obtained minimum distances for (5, 4), (6, 5)
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Figure 8.2: Estimated and simulated BER for GO-CDMA (all dimensions).

and (7, 5) constellations indicate better performance. Smaller BER values
should be investigated to observe curves reaching the asymptotic gain over
orthogonal signaling. When losses in SNR are compared to those indicated
by minimum Euclidean distance in chapter 7 it is evident that they are a
bit larger due to Gray coding penalty. The difference is small for L = 2,
but it grows for larger subspace dimensions. For example, when comparing
losses from Fig. 8.3 and 7.1 they are only 0.1-0.2 dB larger at Pe = 10−6

in simulations. However, the difference can be up to 0.6-0.7 dB for LVP
constellations with L = 4 or L = 5 (see Fig. 8.4, Fig. 8.5, Table 7.2
and Table 7.4). Nevertheless, the estimated performance from chapter 7
offers sufficiently detailed information to allow relative comparisons between
constellations.

8.3 Simulations in the presence of multipath prop-
agation

The multipath interference is inflicted when the transmitted group signal
propagates through tapped delay line before the noise component is added.
For these simulations taps were taken from [115] as TU6 (six-tap typical
urban) channel model.

The channel is very severe for the transmitted signal and special mea-
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Figure 8.3: CCGO-CDMA with the BLVP, SLVP, SSP and ZSSP (3, 2)
constellations and the best obtained modulation mapping.

sures are required to mitigate its effect. The inspected methods are zero-
forcing equalizer (ZFE), which tries to reverse the effect of the channel, and
the combination of chip interleaving (including zero padding) with ZFE. The
merit of chip interleaving is that all reflected signals in a multipath channel
will be bit-synchronous at the receiver input.

Chosen simulation parameters are bandwidth of W = 5 MHz, which
results in chip duration ∆c = 0.2 µs. Spreading factor N = 256. The
resulting channel impulse response length lg equals then to 26 samples, since
the delay spread is 5.2 µs.

8.3.1 Zero-forcing equalizer

When the observation (8.2) is inspected in the frequency domain (noise
excluded) it can be given as multiplication of signal and channel frequency
responses as

Y (f) = X(f)G(f), (8.3)
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(a) (3, 2)
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(b) (4, 3)
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Figure 8.4: CCGO-CDMA with the LVP constellation (s = 1) and the best
obtained modulation mapping.

since the system is linear. At the output of ZFE (having frequency response
C(f)) the total frequency response is

Y (f) = X(f)G(f)C(f), (8.4)

where the specification for ZFE is readily seen to be

G(f)C(f) = 1 ⇒ C(f) =
1

G(f)
. (8.5)

Unfortunately, to realize equality in (8.5) an infinite impulse response (IIR)
filter should be used. It is problematic in practice, since they are very
difficult to design to be causal and stable. Therefore, (8.5) cannot be im-
plemented perfectly, and some residual multipath interference remains. The
finite impulse response (FIR) equalizer is used to approximate (8.5). In the
time domain FIR ZFE provides Z zeros to the both sides of the main lobe
of the output signal. The impulse response for the filter can be found from
equation

Gc = (0, . . . , 0
︸ ︷︷ ︸

Z

, 1, 0, . . . , 0
︸ ︷︷ ︸

Z

)T = J, (8.6)
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(b) (5, 3)
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(c) (6, 4)
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Figure 8.5: CCGO-CDMA with the LVP constellation (s = 2) and the best
obtained modulation mapping.

where c = (c0, . . . , cn−1)
T is FIR-filter vector and G is matrix where 2Z +1

rows are just cyclic shifts of channel vector g of length lg padded with 2Z
zeros. With the FIR memory n > 2Z + 1 the equation (8.6) has many
solutions so that the one minimizing SNR loss is naturally preferred. This
solution is expressed in terms of the pseudoinverse matrix of G giving the
minimum norm least squares solution to (8.6) [116]:

c = GT (GGT )−1J. (8.7)

The ZFE procedure is illustrated in Fig. 8.6 and Fig. 8.7, where impulse
and frequency responses for the multipath channel (TU6 profile), ZFE and
convolution of the multipath channel profile with ZFE impulse response
are given for filter lengths n = 74 and n = 266. The frequency axis is
normalized so that Nyquist sampling frequency equals to one. It is seen
that increasing the length of filter the distorting effect of channel can be
almost completely removed. The drawback is noise enhancement, which
lowers SNR, and increases processing delay in receivers.
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Figure 8.6: Channel impulse and frequency responses for ZFE operations in
the multipath channel (n = 74).
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Figure 8.7: Channel impulse and frequency responses for ZFE operations in
the multipath channel (n = 266).

8.3.2 Chip interleaving

One option of making GO-CDMA operational in the presence of multipath
propagation is presented next. The method is called chip interleaving [117],
which is combined with ZFE here. The required trade-off is reduced through-
put due to zero padding and increased latency due to interleaving.
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Figure 8.8: The illustration of chip interleaving and zero padding.

Let nI denote an interleaver depth in bits. The chip interleaved pattern
for the k-th user consists of the first chip of the user signature, ak,0, mod-
ulated by the information bits bk,0, bk,1, . . . , bk,nI−1, followed by ZI zeros,
then second chip of the user signature, ak,1, again modulated by the same
information bits and followed by zero padding with ZI zeros, and up to N -th
chip of the user signature, ak,N−1, modulated by the same information bits
and followed by ZI zeros (see Fig. 8.8, where chip interleaving is compared
to conventional DSSS scheme).

In [117] it is shown that after such a procedure at the receiving end for
every bit of the user signatures will remain synchronous independently of
the multipath propagation profile. In other words, during the time interval
of any user signature and for any transmitted bit, signatures of all other
users from all reflected paths will be bit-synchronous.

8.3.3 Simulation results for GO-CDMA

The goal of the simulation pursued is to examine the performance degrada-
tion due to oversaturation of GO-CDMA operating on a multipath channel
destroying the orthogonality between signatures. This is accomplished by
comparing simulated BER between orthogonal CDMA (K = N) and GO-
CDMA. Some of the results have been published in [72].

Simulation results are illustrated in Fig. 8.9 and Fig. 8.10 for ZFE
with equalizer length n = 74. It can be seen from the Fig. 8.9 that equal-
izer chosen for simulations could not completely remove the effects of the
multipath channel. For all curves there exists error floor after which the
performance cannot be improved by increasing SNR. Error floor saturates
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Table 8.1: SNR comparison to achieve Pe = 10−2.
L eov AWGN [dB] Fading [dB]

1 1.00 7.3 10.5

2 1.50 11.5 -

3 1.33 9.3 14.3

4 1.25 8.7 12.4

Table 8.2: SNR losses due to oversaturation with Pe = 10−2.
L AWGN [dB] Fading [dB]

2 4.2 -

3 2.0 3.8

4 1.4 1.9

to Pe ≈ 2 · 10−2 for the (3, 2) constellation, Pe ≈ 2.5 · 10−3 for the (4, 3)
constellation, Pe ≈ 10−3 for the (5, 4) constellation, and to Pe ≈ 3 · 10−4 for
the orthogonal system.

The most informative comparison is between two energy losses due to
oversaturation: for the non-fading AWGN and multipath channels. As Fig.
8.10 shows, they are of the same order. SNR values to achieve BER value of
Pe = 10−2 in AWGN channel and in simulated fading channel, and resulting
SNR losses when compared to orthogonal case are given in Tables 8.1 and
8.2. The (3, 2) constellation does not reach Pe = 10−2 at all. The energy
loss due to multipath propagation is 3.2 dB for the orthogonal system, 5.0
dB for the (4, 3) constellation, and 3.7 dB for the (5, 4) constellation. Thus,
the higher the initial correlation between signatures the higher the SNR
loss. However, the loss for oversaturated case is not dramatically higher
than for orthogonal system. When comparing energy loss due to oversatu-
ration in AWGN and multipath channels, the loss grows 0.5 dB for the (5, 4)
constellation and 1.8 dB for the (4, 3) constellation.

When chip interleaving is applied to the (3, 2) constellation with the
same ZFE length the error floor will be significantly lower. The simulation
result is illustrated in Fig. 8.11. It can be seen that the error probability
decreases well below 10−5. The curves for n = 266 are shown for reference
to see how low an error probability is achievable with ZFE if practical issues
as complexity and delay are ignored.

8.3.4 Simulation results for CCGO-CDMA

Simulation results are illustrated in Fig. 8.12 and Fig. 8.13. The behavior
is very similar to results for GO-CDMA in the previous section. It can be
seen that the level of error floor follows the oversaturation efficiency. The
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Figure 8.9: GO-CDMA BER in the multipath channel.
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Figure 8.10: GO-CDMA BER in the AWGN and the multipath channel for
small SNR values.

higher the oversaturation efficiency the worse the error performance. Only
inconsistency is observed with subspace dimension L = 5. Its performance
seems to be more affected by multipath interference than other subspace
dimensions. In Fig. 8.12 the (6, 5) constellation has similar performance
as the (4, 3) constellation, and in Fig. 8.13 the (7, 5) constellation over-
laps with the curve for the (6, 4) constellation. Explanation might be that
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Figure 8.11: GO-CDMA BER comparison for ZFE and chip interleaving.

the gain in minimum Euclidean distances obtained from smaller oversatu-
ration efficiency has been reduced by increased MAI due to larger number
of interferers inside subspace.

In Fig. 8.12 error floors for s = 1 are at Pe ≈ 3.5 · 10−3, 2.5 · 10−3, 2 ·
10−3, 2.5·10−3 for constellations (3, 2),(4, 3),(5, 4),(6, 5), respectively. In Fig.
8.13 error floors for s = 2 are at Pe ≈ 2 · 10−2, 10−2, 4 · 10−3, 4 · 10−3 for
constellations (4, 2), (5, 3),(6, 4),(7, 5), respectively.

The reception using chip interleaving is illustrated in Fig. 8.14 and Fig.
8.15. The performance of the (3, 2) LVP constellation with and without chip
interleaving (ZFE with n = 74) is shown in Fig. 8.14. By comparing the
performance to GO-CDMA curves from Fig. 8.11 it is seen that chip inter-
leaving requires smaller filter length to provide good results. Curves in Fig.
8.15 demonstrate that the relative performance of different oversaturation
efficiencies is comparable to results in the AWGN channel from Fig. 8.4 and
Fig. 8.5.

8.4 Chapter summary

In this chapter simulations were used to verify results from previous chap-
ters in the AWGN channel, and to demonstrate the feasibility of group
orthogonality in a multipath channel, which inflicts MAI. First of all, sim-
ulation results show that theoretical BER analyses from previous chapters
are well supported by simulation results. Secondly, it was demonstrated
that GO-CDMA and CCGO-CDMA behave in a similar manner as the non-
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Figure 8.12: CCGO-CDMA BER in the multipath channel (s = 1).
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Figure 8.13: CCGO-CDMA BER in the multipath channel (s = 2).

oversaturated orthogonal system in both the AWGN and multipath chan-
nels. Therefore, it can be concluded that if GO-CDMA or CCGO-CDMA is
regarded as feasible in the AWGN channel, it will also be applicable in real-
istic channel conditions whenever orthogonal signatures perform adequately.
Finally, one example of making GO-CDMA operative in multipath channel
was shown to be chip interleaving with zero padding.
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Chapter 9

Conclusions

This thesis investigated the capacity (the number of users served) of down-
link of cellular S-CDMA systems and signature ensembles providing im-
provements to this capacity. Downlink capacity is crucial in wireless com-
munication systems, since a great amount of all data is transmitted a base
station to a user terminal. CDMA was chosen to be the technology an-
alyzed due to its importance in concurrent and forthcoming cellular sys-
tems. The downlink in a CDMA system allows synchronous transmission,
where different user signals do not posses mutual time shifts between them.
The multiple access free capacity of S-CDMA depends linearly on allocated
bandwidth and inversely to the required user data rate. When the num-
ber of users exceeds the limit of signal space dimension, a trade-off between
capacity, performance and receiver complexity must be decided on. The
method considered in this thesis for increasing the number of users is called
oversaturation.

The most essential existing literature on oversaturation can be covered
with the following: oversaturated signature ensembles have been previously
designed based on maximal minimum Euclidean distance [36], minimal mu-
tual correlation between signatures (WBE signature ensembles) [95–97], and
feasible receiver complexity [20, 33, 43, 56]. The group orthogonal structure
presented in [56] allows utilizing a receiver that has linear complexity as the
function of the number of users.

The novel contribution of this thesis is the signature ensemble design for a
GO-CDMA system. Obtained signature ensembles are analyzed in detail. It
was shown that GO-CDMA enjoys significant oversaturation efficiency while
the performance can be maintained at the reasonable level even in multipath
channels. Also, previously reported work in literature is continued and im-
proved upon. Channel capacity considerations from [52] are extended to the
case, where the transmitter outputs binary symbols instead of symbols hav-
ing Gaussian distributed amplitude. In addition, oversaturated signature

123



ensembles having optimal distance property [36] were generalized to cover
any signal space dimension. Also, conditions when binary distance-optimal
ensembles are feasible were given along with a procedure to produce those
binary ensembles. Some of the material from this thesis has been published
in [67–72]. Here, results published in aforementioned references are signifi-
cantly extended and presented more accurately in systematic manner. As a
re-cap for the whole thesis, the following should considered:

CDMA technology exhibits some remarkable merits, which were de-
scribed in chapter 2. These include good performance in multipath environ-
ment, resistance to narrow-band interference, privacy, possibility for exact
time and location measurement, and good electromagnetic compatibility.

Further motivation to employ CDMA in future wireless systems was in-
vestigated in chapter 3. In previous work it was proved that CDMA reaches
Shannon capacity in an oversaturated situation if the data symbols are Gaus-
sian. In this thesis, the result is extended by showing that the same is true
for binary data whenever the signal is weak. In the case of strong signals, it
was proved that the maximization of capacity in CDMA systems is achieved
by maximizing the minimum distance in group signal constellation, which
also minimizes the symbol error probability. Chapter 3 provides solid foun-
dation for choosing S-CDMA for the thesis topic, and also for signature
ensemble design accomplished in this thesis.

Error performance of the receiver is another critical factor for commu-
nication system design. Signal and receiver design cannot be separated in
CDMA systems. To clarify presented ideas, some different receiver struc-
tures available for oversaturated S-CDMA are presented in chapter 4. Then,
the main topic of this thesis, signature ensemble design utilizing receiver
structures from chapter 4 is presented in chapters 5, 6 and 7.

Each signature ensemble is analyzed considering Euclidean distance be-
tween group signals, oversaturation efficiency and the receiver complexity
point-of-view. Euclidean distance determines the asymptotic error prob-
ability while the oversaturation efficiency describes the obtained capacity
increase. Receiver complexity may limit utilizing certain signature ensem-
bles in practical applications.

Conclusions reached from theoretical analysis are tested in chapter 8 by
simulations first in the AWGN channel and then in the presence of multi-
path propagation. Results from the AWGN channel simulations verify the
results from chapters 6 and 7. A more realistic channel model is used to
find out whether multipath propagation changes the conclusion reached. It
was found that performance degradation is similar for the orthogonal trans-
mission, which is free from MAI in the AWGN channel, and oversaturated
system, where MAI was present also in the AWGN case.

The aim of this thesis was to answer the question: ”How to increase
capacity of S-CDMA without inflicting intolerable amounts of MAI while
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simple receiver structure is utilized?”. GO-CDMA and CCGO-CDMA en-
sembles are proposed as possible solutions. It was shown that their receiver
complexity is very low while the loss compared to orthogonal signaling is
tolerable. Also, the signal ensemble design approach is valid from the point-
of-view of Shannon’s information theory.

Even though this thesis aims to be an exhaustive study on GO-CDMA
signature design aspects, this field yields many promising future research di-
rections. The possible future research could include generalized methods for
CCGO-CDMA ensemble design and more extensive studies to performance
in a fading channel and, consequently, advanced methods to mitigate the
effects of fading.
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Appendix A

BER calculations for the (3, 2)
GO-CDMA constellation

In this chapter, exact BER calculations are given for the (3, 2) GO-CDMA
system. They are used to complete calculations in section 6.4.2, where only
Pe(xx − | + ++) was given. Results are illustrated in Fig. 6.14.

A.1 User 3

Pe,3 =
1

4
(P (xx − | − −+) + P (xx − | + ++) + 2P (xx − | − ++)), (A.1)

since P (xx− |+−+) = P (xx− | −++). The P (xx− |+ ++) is calculated
in the main text in section 6.4.

A.1.1 P (xx − | − −+)

P (xx − | − −+) = 2(T (h1, β3) + T (h1, β1) + (T (h1, β1)

−0.5Q(h1) − T (h1, β1)) + T (h1, β1) − (T (h2, β2)

−T (h2, β3)) − T (h3, β4)) (A.2)

h1 h2 h3 β1 β2 β3 β4

0.618
√

Eb

√
Eb 2.2361

√
Eb 0.9425 1.1124 0.3141 0.1443

Table A.1: Parameters for BER calculation for user 3 when (− − +) is
transmitted.

A-1



1β

1h
4h

3h

2h

2β

3β

4β

5β

6β

7β

5h

Figure A.1: Calculation of P (xx − | − −+).

A.1.2 P (xx − | + −+) = P (xx − | − ++)

P (xx − | − ++) = (Q(h5) − T (h5, β8)) + T (h5, β9)

+(T (h6, β11) − T (h6, β9)) + T (h2, β4) + T (h1, β1)

−T (h1, β2) − T (h2, β3) + T (h3, β4) − (T (h3, β5)

−T (h3, β4)) − (T (h4, β6) − T (h4, β7)) + T (h3, β4)

−(T (h5, β8) − T (h5, β9)) − (T (h4, β10) − T (h4, β6)) (A.3)

h1 h2 h3 h4 h5 h6

2.2361
√

Eb 2.5043
√

Eb 0.618
√

Eb 1.618
√

Eb

√
Eb 2.618

√
Eb

Table A.2: Distance parameters for BER calculation for user 3 when (−++)
is transmitted.
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5β 6β
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9β

Figure A.2: Calculation of P (xx − | + −+).

β1 β2 β3 β4 β5 β6 β7 β8 β9

0.7362 0.1443 0.5919 0.9425 1.1801 0.6283 0.0766 1.1123 0.3141

β10 β11

0.7738 0.5204

Table A.3: Angle parameters for BER calculation for user 3 when (− + +)
is transmitted.

A.2 Users 1 and 2

Pe,1 = Pe,2 =
1

4
(P (−xx|++−)+P (−xx|+−−)+P (−xx|+−+)+P (−xx|+++))

(A.4)

A.2.1 P (−xx| + +−)

P (−xx| + +−) = Q(h1) + (T (h1, β1) − 0.5Q(h1)

−T (h1, β1) + (T (h1, β1) − 0.5Q(h1) − T (h1, β1))
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1h 2h

3h

4h

5h

1β
2β 3β

4β
5β

6β
7β

Figure A.3: Calculation of P (−xx| + +−).

−(0.5Q(h1) − T (h1, β1) + T (h2, β2) − T (h2, β3)

−(0.5Q(h3)) − T (h3, β4))) (A.5)

h1 h2 h3 β1 β2 β3 β4

0.618
√

Eb

√
Eb 1.618

√
Eb 0.9425 1.1124 0.3141 0.7726

Table A.4: Parameters for BER calculation for user 1 when (+ + −) is
transmitted.

A.2.2 P (−xx| + −−)

P (−xx| + −−) = Q(h2) + T (h4, β6) + T (h2, β7)

+(T (h4, β4) − 0.5Q(h1)) − T (h1, β1) − T (h2, β2)

−T (h2, β3) − (T (h3, β4) − T (h3, β5))) (A.6)
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Figure A.4: Calculation of P (−xx| + −−).

h1 h2 h3 h4

1.236
√

Eb

√
Eb 2.236

√
Eb 0.618

√
Eb

Table A.5: Distance parameters for BER calculation for user 1 when (+−−)
is transmitted.

β1 β2 β3 β4 β5 β6 β7

1.1488 1.1124 0.5215 0.7362 0.1443 0.9425 0.3141

Table A.6: Angle parameters for BER calculation for user 1 when (+ −−)
is transmitted.

A.2.3 P (−xx| + −+)

P (−xx| + −+) = (T (h3, β3) − T (h3, β2)) + T (h4, β4)

+T (h4, β5) + 0.5Q(h1)) − T (h1, β1)

+0.5Q(h2) − T (h2, β2) (A.7)

A-5



1h2h

3h

4h

4β

2β

6β
5β

3β

1β

Figure A.5: Calculation of P (−xx| + −+).

h1 h2 h3 h4

0.3821
√

Eb 2.6179
√

Eb

√
Eb 1.618

√
Eb

Table A.7: Distance parameters for BER calculation for user 1 when (+−+)
is transmitted.

β1 β2 β3 β4 β5

1.3331 0.3141 1.1123 0.7726 0.0766

Table A.8: Angle parameters for BER calculation for user 1 when (+ − +)
is transmitted.

A.2.4 P (−xx| + ++)

P (−xx| + ++) = 0.5 − (T (h1, β1) − T (h2, β1)

+0.5(1 − 2Q(h3)(1 − Q(h1)) + T (h3, β2) − T (h1, β1)

−T (h1, β3) + 0.5Q(h3) − (0.5Q(h1)) − T (h1, β3)))

+T (h2, β1) − (T (h4, β4) − T (h4, β3) − (T (h5, β4)
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Figure A.6: Calculation of P (−xx| + ++).

−T (h5, β5)) + 0.5Q(h5) − T (h5, β3)) (A.8)

h1 h2 h3 h4 h5√
Eb 2.6179

√
Eb 0.3249

√
Eb 1.618

√
Eb 3.2344

√
Eb

Table A.9: Distance parameters for BER calculation for user 1 when (+++)
is transmitted.

β1 β2 β3 β4 β5

0.3141 1.2567 0.9425 1.1801 0.7048

Table A.10: Angle parameters for BER calculation for user 1 when (+ + +)
is transmitted.
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Appendix B

The proof of equation (4.8)

In this appendix, the proof of inequality Σmax ≥ 1 (see section 4.1.1) is
given. User signatures are illustrated in Fig. 4.1. The aim is to calculate
error probability (4.7):

Pe,max >
1

4
Q (q(1 − Σmax)) , (B.1)

Due to the symmetry of problem it is enough to consider only on the range
of angles between signatures α, β (see Fig. 4.1)

0 ≤ α ≤ β ≤ π

2
,

so that
cos α ≥ cos β

and

Σmax = Σmax(α, β) = max{cos α + cosβ, cos α + | cos(α + β)|} (B.2)

To estimate Σmax(α, β) from below, let us split the area α, β (0 ≤ α ≤ β ≤
π/2) into three regions as shown in Fig. B.1. For the first region

0 ≤ α ≤ π

3
, α ≤ β ≤ π

2
− α

2
,

which gives

Σmax(α, β) ≥ cos α + cos
(π

2
− α

2

)

= cos α + sin
α

2
(B.3)

The right-hand side here is concave, since 0 ≤ α ≤ π/3 and at the borders
of this range takes on the value of one. Thus, within the region 1:

Σmax(α, β) ≥ 1. (B.4)
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π
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2 3
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π
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Figure B.1: The division of inspected region to three regions.

The region 2 is defined as

0 ≤ α ≤ π

3
,
π

2
− α

2
≤ β ≤ π

2
,

so that
| cos(α + β)| ≥ | cos(

π

2
+

α

2
)| = sin

α

2

and
cos α + | cos(α + β)| ≥ cos α + sin

α

2
,

and because the range in α remains the same

Σmax(α, β) ≥ 1 (B.5)

also in region 2. In the region 3:

π

3
≤ α ≤ π

2
, α ≤ β ≤ π

2

and hence

| cos(α + β)| ≥ | cos 2α|, | cos α + | cos(α + β)| ≥ cos α + | cos 2α|.

B-2



The right-hand side here is concave in the range π/3 ≤ α ≤ π/2 and since
at the extreme points α = π/3 and α = π/2 it equals to one

Σmax(α, β) ≥ 1 (B.6)

in the region 3, too. Thus, it has been proved that

Σmax ≥ 1. (B.7)
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Appendix C

CCGO-CDMA constellations

In this chapter, signal constellations are given for (4, 2), (5, 3), (5, 4), (6, 4),
(6, 5), and (7, 5) for LVP, SLVP, SSP and ZSSP types. BLVP constellation
can be obtained from LVP constellations with the similar procedure as for
the (3, 2) constellation in section 7.2.1. All (3, 2) and (4, 3) constellations
were given in chapter 7.

C.1 (4, 2) constellations

P2D,s=2
LV P =

√

4 · 4Eb

9
































0 0
cos π

6 sin π
6

cos 3π
6 sin 3π

6
cos 5π

6 sin 5π
6

cos 7π
6 sin 7π

6
cos 9π

6 sin 9π
6

cos 11π
6 sin 11π

6

cos π
3

√
3 sin π

3

√
3

− cos π
3

√
3 sin π

3

√
3

− cos π
3

√
3 − sin π

3

√
3

cos π
3

√
3 − sin π

3

√
3

0 2
0 −2

2 cos π
6 0

−2 cos π
6 0

2 cos π
6 2 sin π

6
































(C.1)
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P2D,s=2
SLV P =

√

2Eb

5
































1 1
−1 1
1 −1
−1 −1
3 1
−3 1
3 −1
−3 −1
1 3
−1 3
1 −3
−1 −3
3 3
−3 3
3 −3
−3 −3
































(C.2)

P2D,s=2
ZSSP =

16

15

√

4Eb
































0 0
cos π

15 sin π
15

cos 3π
15 sin 3π

15
cos 5π

15 sin 5π
15

cos 7π
15 sin 7π

15
cos 9π

15 sin 9π
15

cos 11π
15 sin 11π

15
cos 13π

15 sin 13π
15

cos 15π
15 sin 15π

15
cos 17π

15 sin 17π
15

cos 19π
15 sin 19π

15
cos 21π

15 sin 21π
15

cos 23π
15 sin 23π

15
cos 25π

15 sin 25π
15

cos 27π
15 sin 27π

15
cos 29π

15 sin 29π
15
































(C.3)
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P2D,s=2
SSP =

√

4Eb
































cos 31π
16 sin 31π

16
cos π

16 sin π
16

cos 3π
16 sin 3π

16
cos 5π

16 sin 5π
16

cos 7π
16 sin 7π

16
cos 9π

16 sin 9π
16

cos 11π
16 sin 11π

16
cos 13π

16 sin 13π
16

cos 15π
16 sin 15π

16
cos 17π

16 sin 17π
16

cos 19π
16 sin 19π

16
cos 21π

16 sin 21π
16

cos 23π
16 sin 23π

16
cos 25π

16 sin 25π
16

cos 27π
16 sin 27π

16
cos 29π

16 sin 29π
16
































(C.4)
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C.2 (5, 3) constellations

P3D,s=2
SSP = 10−1

√

5Eb

































































7.6236 3.0833 −5.6899
8.7752 −2.9531 −3.7783
1.4220 3.6554 −9.1987
−0.0794 9.9997 0.0000
2.7718 −7.4160 −6.1090
4.7123 −1.8332 −8.6275
1.0796 3.0313 9.4681
−5.1375 1.8298 8.3820
3.9930 −7.4063 5.4039
−7.2116 −3.7014 5.8559
−6.5877 −7.4903 0.7051
2.4063 7.9555 5.5606
6.1130 −7.8879 −0.6418
8.7204 −3.5749 3.3427
9.8053 1.9484 0.2455
−3.5178 −7.9643 −4.9188
−7.6236 −3.0833 −5.6899
−8.7752 2.9531 −3.7783
−1.4220 −3.6554 −9.1987
0.0794 −9.9997 0.0000
−2.7718 7.4160 −6.1090
−4.7123 1.8332 −8.6275
−1.0796 −3.0313 9.4681
5.1375 −1.8298 8.3820
−3.9930 7.4063 5.4039
7.2116 3.7014 5.8559
6.5877 7.4903 0.7051
−2.4063 −7.9555 5.5606
−6.1130 7.8879 −0.6418
−8.7204 3.5749 3.3427
−9.8053 −1.9484 0.2455
3.5178 7.9643 −4.9188

































































(C.5)
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P3D,s=2
ZSSP =

32

31
10−1

√

5Eb

































































0 0 0
7.5847 4.1650 −5.0124
1.9323 −9.3788 2.8817
−7.4157 2.2298 6.3274
−3.1801 −1.7071 −9.3259
8.2111 −0.3364 5.6977
6.9006 −1.9575 −6.9678
8.9028 4.3609 1.3122
1.7376 −5.6972 −8.0326
−2.4078 9.4586 −2.1765
−6.2329 7.3754 2.5991
3.0994 0.8570 9.4689
−1.7841 4.9761 8.4885
−3.3088 4.6575 −8.2073
−9.9386 0.9827 0.5088
9.8092 −1.5196 −1.2124
−7.5900 5.5257 −3.4435
2.1785 7.4745 −6.2758
−5.4668 −6.3518 −5.4562
−0.1708 9.2139 3.8826
4.6119 8.8616 −0.4508
2.3821 1.8915 −9.5262
−5.3575 −8.4174 0.6674
−0.2803 −9.4732 −3.1905
7.4697 −6.0473 2.7630
5.9662 −7.2678 −3.4036
−2.9937 −1.2995 9.4525
−8.2980 −0.5422 −5.5542
4.9990 6.0795 6.1684
−8.1212 −3.8844 4.3539
3.3914 −5.3613 7.7301
−2.8980 −7.0401 6.4837

































































(C.6)
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P3D,s=2
LV P =

√

16 · 5Eb

63

































































0 0 0
1 1 0
1 0 1
0 1 1
−1 −1 0
−1 0 −1
0 −1 −1
1 −1 0
1 0 −1
0 1 −1
−1 1 0
−1 0 1
0 −1 1
2 0 0
0 2 0
−2 0 0
0 −2 0
0 0 2
0 0 −2
2 1 1
−2 −1 −1
1 2 1
−1 −2 −1
1 1 2
−1 −1 −2
−2 1 1
2 −1 −1
1 −2 1
−1 2 −1
1 1 −2
−1 −12
2 −1 1

































































(C.7)
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P3D,s=2
SLV P =

√

8 · 5Eb

33

































































−2 1 −1
1 1 0
1 0 1
0 1 1
−1 −1 0
−1 0 −1
0 −1 −1
1 −1 0
1 0 −1
0 1 −1
−1 1 0
−1 0 1
0 −1 1
2 0 0
0 2 0
−2 0 0
0 −2 0
0 0 2
0 0 −2
2 1 1
−2 −1 −1
1 2 1
−1 −2 −1
1 1 2
−1 −1 −2
−2 1 1
2 −1 −1
1 −2 1
−1 2 −1
1 1 −2
−1 −1 2
2 −1 1

































































(C.8)
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C.3 (5, 4) constellations

P4D,s=1
LV P =

√

8 · 5Eb

19

































































0 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1
−1 −1 0 0
−1 0 −1 0
−1 0 0 −1
0 −1 −1 0
0 −1 0 −1
0 0 −1 −1
2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2
−2 0 0 0
0 −2 0 0
0 0 −2 0

































































(C.9)
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P4D,s=1
SLV P =

√

Eb

































































−1 −1 −1 −1
1 1 1 1
1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1
−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1
1 −1 −1 −1
1 1 −1 −1
−1 1 1 −1
−1 −1 1 1
−1 1 −1 1
1 −1 1 −1
1 −1 −1 1
2 0 0 0
−2 0 0 0
0 2 0 0
0 −2 0 0
0 0 2 0
0 0 −2 0
0 0 0 2
0 0 0 −2
2 2 0 0
−2 −2 0 0
2 0 2 0
−2 0 −2 0
2 0 0 2
−2 0 0 −2
0 0 2 2
0 0 −2 −2

































































(C.10)
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P4D,s=1
SSP = 10−1

√

5Eb

































































−3.3413 5.4758 5.2536 −5.5902
4.8443 4.3882 7.1217 −2.5607
−3.3214 1.8234 0.6444 9.2319
2.6076 −4.1890 3.4687 7.9762
3.0487 −2.3937 −5.3198 7.5283
1.0124 −2.1089 6.3186 −7.3893
7.3347 6.4145 −1.2491 −1.8696
−6.3266 −6.4272 −3.0558 −3.0541
−3.5847 0.0266 −0.8596 −9.2957
4.8321 −4.0875 7.7330 0.3793
8.7870 0.8833 2.4847 3.9793
1.2016 −6.0777 −7.8265 −0.6027
−6.5100 4.8207 5.1524 2.7989
−8.8413 −2.6678 0.8559 3.7391
−2.4192 −8.1444 −2.0332 4.8664
−3.5472 −3.1106 8.1057 3.4697
8.3895 −1.5644 1.8731 −4.8642
4.0919 1.4564 −5.4421 −7.1777
2.4171 5.0204 −8.2948 0.3861
−8.9628 3.2417 −1.5661 −2.5897
−5.1370 −1.3060 −7.1879 4.4989
−4.4678 7.0553 −4.0397 3.7339
8.2915 −1.1676 −5.4571 0.3279
−7.2344 −2.4843 4.9793 −4.0864
1.6757 3.7331 7.0205 5.8283
2.1536 −6.4855 −1.6979 −7.1006
5.7729 −8.0349 −0.2945 1.4238
3.7286 5.9662 −2.1692 6.7673
0.3648 9.6278 2.5151 9.2001
−1.7900 7.6270 −3.3315 −5.2466
−3.8451 0.4450 −8.2268 −4.1637
−1.4732 −8.8832 4.0111 −1.6820

































































(C.11)

C-10



P4D,s=1
ZSSP =

32

31
10−1

√

5Eb

































































0 0 0 0
−3.5184 −4.9073 5.0383 −6.1769
−1.7702 7.6950 6.1337 0.1769
5.8662 −6.2654 −4.2121 2.9310
8.0456 1.2670 0.9345 5.7262
−5.6661 −0.1913 8.2212 0.5210
1.4342 1.6213 7.8437 5.8130
0.3505 3.1279 6.0202 −7.3383
−1.4009 0.3483 −2.0790 −9.6744
2.4987 −9.2643 1.6437 −2.2865
4.8424 8.5469 −1.4742 1.1522
−3.8094 −6.8296 −3.7187 −5.0016
−0.6875 −3.5816 −9.2970 0.5150
−8.1003 4.5451 1.4940 3.3905
3.1106 −6.3234 3.8566 5.9552
−1.3785 8.2533 −0.9650 −5.3900
−2.6874 −8.4839 −2.4108 3.8716
9.1038 −3.0864 1.7812 −2.1028
5.2790 2.1620 −7.3777 3.6095
−3.0758 7.2791 −5.7896 2.0087
1.3694 −1.7840 −3.0177 9.2648
3.1426 −3.6258 8.6689 −1.3520
−6.4932 −0.9332 −5.2123 5.4588
6.571 4.3581 6.0860 −0.8861

−6.9432 1.0658 −6.3145 −3.2838
−9.0280 −4.2110 0.8544 0.1793
4.7157 −4.2627 −5.1308 −5.7677
1.4933 3.5509 −8.0797 −4.4586
−7.6554 2.6228 2.3131 −5.4006
−4.9004 −2.5341 3.2631 7.6757
6.3527 3.7187 −0.7939 −6.7219
−0.4429 6.2030 0.5407 7.8125

































































(C.12)
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C.4 (6, 4) constellations

P4D,s=2
LV P =

√

32 · 6Eb

117



























































































































0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

1 −1 0 0

1 0 −1 0

1 0 0 −1

0 1 −1 0

0 1 0 −1

0 0 1 −1

−1 1 0 0

−1 0 1 0

−1 0 0 1

0 −1 1 0

0 −1 0 1

0 0 −1 1

−1 −1 0 0

−1 0 −1 0

−1 0 0 −1

0 −1 −1 0

0 −1 0 −1

0 0 −1 −1

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

−2 0 0 0

0 −2 0 0

0 0 −2 0

0 0 0 −2

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

−1 1 1 −1

−1 1 −1 1

−1 −1 1 1

−1 −1 −1 −1

1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1

−1 −1 −1 1

−1 −1 1 −1

−1 1 −1 −1

1 −1 −1 −1

2 1 1 0

2 −1 1 0

2 1 −1 0

2 −1 −1 0

2 1 0 1

2 −1 0 1

2 1 0 −1

2 −1 0 −1

−2 1 1 0

−2 −1 1 0

−2 1 −1 0

−2 −1 −1 0

−2 1 0 1

−2 −1 0 1

−2 1 0 −1



























































































































(C.13)

C-12



P4D,s=2
SLV P

√

2 · 6Eb

15



























































































































−1 −1 −1 −1

1 1 1 1

1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1

−1 −1 −1 1

−1 −1 1 −1

−1 1 −1 −1

1 −1 −1 −1

1 1 −1 −1

−1 1 1 −1

−1 −1 1 1

−1 1 −1 1

1 −1 1 −1

1 −1 −1 1

2 0 0 0

−2 0 0 0

0 2 0 0

0 −2 0 0

0 0 2 0

0 0 −2 0

0 0 0 2

0 0 0 −2

2 2 0 0

−2 −2 0 0

2 0 2 0

−2 0 −2 0

2 0 0 2

−2 0 0 −2

0 0 2 2

0 0 −2 −2

0 2 2 0

0 −2 −2 0

0 2 0 2

0 −2 0 −2

2 −2 0 0

−2 2 0 0

2 0 −2 0

−2 0 2 0

2 0 0 −2

−2 0 0 2

0 0 2 −2

0 0 −2 2

0 2 −2 0

0 −2 2 0

0 2 0 −2

0 −2 0 2

2 2 2 0

−2 −2 −2 0

2 2 0 2

−2 −2 0 −2

2 0 2 2

−2 0 −2 −2

0 2 2 2

0 −2 −2 −2

2 2 −2 0

−2 −2 2 0

2 2 0 −2

−2 −2 0 2

2 0 2 −2

−2 0 −2 2

0 2 2 −2

0 −2 −2 2



























































































































(C.14)

C-13



P4D,s=2
SSP =

√

Eb



























































































































2.4296 −0.1245 0.2625 0.1129

1.6028 −1.0041 1.5539 0.0906

1.8015 0.9944 0.0268 −1.3286

−0.8361 −0.7286 −0.3068 −2.1624

0.7868 −0.4962 −0.8852 2.0860

−1.6378 −1.3336 1.2323 0.1445

1.7849 −0.6659 0.6652 −1.3886

0.5041 0.2366 0.6861 2.2845

0.4711 1.6820 1.0707 1.3426

0.6232 2.0388 −0.6257 1.0313

−1.6687 −0.6389 0.5028 1.5983

1.6486 0.4124 1.3558 1.1287

1.6573 −1.0400 0.3912 1.4208

0.1523 2.3733 0.5618 −0.1696

0.4853 −0.2575 1.7721 −1.5993

−2.3255 −0.5935 −0.4244 0.2447

0.6712 0.0990 0.0569 −2.3530

−2.1903 0.7649 0.6915 0.3729

0.4437 −0.7779 1.8149 1.3799

−1.0912 0.9340 −0.7447 −1.8392

1.8318 0.6612 −0.3563 1.4424

−1.6645 −0.4102 −1.3809 −1.0743

−1.1720 −1.9635 −0.2421 0.8440

1.7426 −1.7142 −0.0406 −0.1531

0.0998 1.3800 1.7222 −1.0582

−1.1126 −0.0526 1.9488 0.9806

0.7227 −1.4927 −0.4214 −1.7527

−1.3266 −0.1238 −1.9869 0.5263

0.2401 −0.8668 −2.0699 0.9521

−0.7751 0.5274 0.9317 −2.0623

0.7691 0.8850 −1.3647 −1.6622

0.8465 0.7516 −1.8031 1.2114

−0.9793 −1.1071 1.2735 −1.4811

0.9317 0.0774 −2.2348 −0.3625

1.9630 −0.3768 −1.0211 −0.9808

1.6478 0.6173 1.5905 −0.6115

1.8645 −0.7202 −1.2068 0.7406

−0.1015 −2.0903 1.1338 0.5788

−0.0287 −0.6390 −1.7632 −1.5755

1.7163 1.6685 0.4585 0.2453

−0.8204 −1.6341 −1.6231 −0.1489

−1.5354 −1.6933 −0.1725 −0.8634

−0.1124 −1.3641 0.3690 1.9976

−1.7966 0.6346 −0.7118 1.3649

−0.6993 1.4754 −1.6527 0.7764

−2.1037 0.0798 0.2528 −1.2264

−0.9072 1.5723 1.6009 0.3770

0.5742 −1.8104 1.1537 −1.0305

−1.2272 2.0097 −0.0557 0.6723

−1.4219 1.6702 0.5477 −0.9427

1.6378 1.3336 −1.2323 −0.1445

0.1015 2.0903 −1.1338 −0.5788

0.7155 −1.9396 −0.7535 1.0763

0.0181 −2.3966 −0.2923 −0.4128

−1.0518 0.9781 0.7862 1.8218

0.2376 1.6991 0.1301 −1.7435

−0.2288 0.9440 −0.7493 2.1201

−0.9277 −0.7855 −1.0796 1.8321

−0.2203 −0.9602 2.2325 −0.2131

0.9231 −1.5745 −1.5758 −0.4313

−0.6141 0.8012 −2.0845 −0.7975

−1.9780 1.0840 −0.8983 −0.3250

−1.4693 0.3092 1.8019 −0.7063

0.3780 0.5911 2.3156 0.3818



























































































































(C.15)

C-14



P4D,s=2
ZSSP =

√

Eb



























































































































0 0 0 0

1.1950 −1.2353 −1.1232 1.3710

1.9163 −0.8893 −1.2588 −0.2186

1.8720 0.3801 −1.1751 1.0323

1.0054 −0.1438 −1.6861 −1.4902

1.8020 1.0753 −1.1489 −0.6096

0.7307 1.6265 −1.5862 0.6323

0.0151 1.1855 −1.9724 −0.8940

0.5929 1.7690 −0.5214 −1.5305

1.0916 −1.4452 −0.4182 −1.6248

1.1589 0.2593 −0.0902 −2.1626

−0.6940 0.7224 −0.9002 −2.0691

−1.0661 1.9045 0.0009 −1.1540

−0.3760 −0.5522 0.2720 −2.3611

−0.0979 1.0735 0.8806 −2.0390

1.4782 1.3556 0.9126 −1.1134

1.1035 −0.2087 1.5293 −1.5795

1.8445 0.1664 1.6326 −0.0033

2.0949 1.2054 0.2692 0.4255

0.9329 1.4813 1.5387 0.8143

0.3158 0.5620 2.3430 −0.4357

0.7949 2.3356 −0.0454 0.0809

−0.0429 1.9886 1.3428 −0.5792

−1.4703 0.9691 1.6595 −0.4903

−0.7354 0.4308 2.0997 0.9798

−0.7222 1.8564 1.0275 1.0353

−0.6946 −0.2477 1.7898 −1.5323

−1.7075 0.3948 0.4758 −1.6726

−2.0130 1.3929 0.1922 0.2567

−2.3693 −0.2501 0.6289 −0.1535

−1.3033 −0.9293 1.8796 −0.0020

−1.7827 0.0173 0.8165 1.5001

0.8566 −0.1702 1.8104 1.4335

−0.2506 0.5956 0.9061 2.2038

2.2213 −0.7125 0.1706 0.7902

2.3131 −0.0167 0.1447 −0.8505

−0.5798 −1.1504 1.4264 1.5495

0.4510 −1.1449 2.1402 0.0249

0.1641 −1.6657 1.1398 −1.4123

−0.4239 −2.2044 1.0119 0.1791

−1.7297 −1.5332 0.2374 0.8346

1.6825 −1.4120 1.0000 −0.5203

−0.3976 −2.2191 −0.3866 −0.9292

0.3667 −1.5626 −1.8350 −0.3898

1.0916 −2.1801 −0.3843 0.0535

−0.5189 −0.9671 −1.3477 −1.7534

−2.0080 −0.5631 −0.8715 −0.9933

−1.5090 −1.3319 0.6323 −1.2824

1.0106 −1.7025 0.9672 1.1135

−0.2385 −2.0700 −0.4792 1.2345

−0.2870 −0.7926 −1.9942 1.1865

−1.1978 −0.6272 −0.6746 1.9525

0.4372 0.3074 −1.1990 2.0910

0.3494 −0.8847 0.1133 2.2754

−2.1933 0.0663 −0.9147 0.6659

−1.6389 1.0692 −1.3698 −0.6243

−0.8265 0.8821 −1.9604 0.8894

0.8527 0.0651 −2.3104 0.1616

−0.8148 −0.2907 −2.2741 −0.4186

−1.2752 −1.6274 −1.3416 0.1445

−1.2813 1.1284 −0.4683 1.7207

0.3756 1.7371 −0.2063 1.7012

1.4649 0.4431 0.3232 1.9101

−0.7720 2.1615 −0.8273 0.3779



























































































































(C.16)

C-15



C.5 (6, 5) constellations

P5D,s=1
LV P =

√

16 · 6Eb

43



























































































































0 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 1 0

0 0 1 0 1

0 0 0 1 1

1 −1 0 0 0

1 0 −1 0 0

1 0 0 −1 0

1 0 0 0 −1

0 1 −1 0 0

0 1 0 −1 0

0 1 0 0 −1

0 0 1 −1 0

0 0 1 0 −1

0 0 0 1 −1

−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1

0 −1 1 0 0

0 −1 0 1 0

0 −1 0 0 1

0 0 −1 1 0

0 0 −1 0 1

0 0 0 −1 1

−1 −1 0 0 0

−1 0 −1 0 0

−1 0 0 −1 0

−1 0 0 0 −1

0 −1 −1 0 0

0 −1 0 −1 0

0 −1 0 0 −1

0 0 −1 −1 0

0 0 −1 0 −1

0 0 0 −1 −1

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

−2 0 0 0 0

0 −2 0 0 0

0 0 −2 0 0

0 0 0 −2 0

0 0 0 0 −2

1 1 1 1 0

1 1 1 0 1

1 1 0 1 1

1 0 1 1 1

0 1 1 1 1

−1 −1 −1 −1 0

−1 −1 −1 0 −1

−1 −1 0 −1 −1

−1 0 −1 −1 −1

0 −1 −1 −1 −1

1 −1 −1 −1 0

−1 1 1 1 0

0 1 1 1 −1



























































































































(C.17)

C-16



P5D,s=1
SLV P =

√

4 · 6Eb

11



























































































































1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 1 0

0 0 1 0 1

0 0 0 1 1

1 −1 0 0 0

1 0 −1 0 0

1 0 0 −1 0

1 0 0 0 −1

0 1 −1 0 0

0 1 0 −1 0

0 1 0 0 −1

0 0 1 −1 0

0 0 1 0 −1

0 0 0 1 −1

−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1

0 −1 1 0 0

0 −1 0 1 0

0 −1 0 0 1

0 0 −1 1 0

0 0 −1 0 1

0 0 0 −1 1

−1 −1 0 0 0

−1 0 −1 0 0

−1 0 0 −1 0

−1 0 0 0 −1

0 −1 −1 0 0

0 −1 0 −1 0

0 −1 0 0 −1

0 0 −1 −1 0

0 0 −1 0 −1

0 0 0 −1 −1

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

−2 0 0 0 0

0 −2 0 0 0

0 0 −2 0 0

0 0 0 −2 0

0 0 0 0 −2

1 1 1 1 0

1 1 1 0 1

1 1 0 1 1

1 0 1 1 1

0 1 1 1 1

−1 −1 −1 −1 0

−1 −1 −1 0 −1

−1 −1 0 −1 −1

−1 0 −1 −1 −1

0 −1 −1 −1 −1

1 −1 −1 −1 0

−1 1 1 1 0

0 1 1 1 −1

0 −1 −1 1 1



























































































































(C.18)

C-17



P5D,s=1
SSP =

√

Eb



























































































































0.3977 0.1899 −2.1969 −0.9873 −0.0667

1.1518 1.3004 −1.6123 0.6178 0.0324

−0.1405 1.2235 −1.4648 −0.3306 1.4928

0.3334 0.5292 −0.8721 1.9280 −1.0635

−1.1787 1.2751 0.4748 −1.2130 −1.1349

1.1939 −0.7129 −1.7520 0.6269 −0.7771

0.5618 2.2208 0.0746 0.3143 0.8050

1.6841 0.7632 −0.7712 −1.0792 −0.9066

−0.6009 0.8264 −0.2274 −2.1458 0.5478

−0.6694 1.0726 1.0491 0.9652 1.5393

1.3912 1.0473 −0.2736 −1.2395 1.1647

0.8756 1.8293 0.1211 0.3984 −1.3090

0.9920 0.9334 1.6238 −0.2615 1.1998

−0.0363 −1.3275 −0.4873 0.7089 1.8699

1.0984 −1.1333 0.5445 −0.7977 1.6050

0.9101 −0.6849 −0.5484 −2.0746 0.3132

−1.3701 −0.7789 1.3166 0.1314 1.3287

1.9646 −0.2828 0.9494 −1.0682 −0.1343

−2.1972 −0.0578 0.0787 −1.0627 0.1829

−0.6967 −0.5024 0.3389 2.0988 0.8616

−0.3907 1.2143 −0.8923 1.6822 0.8642

−1.1979 −0.3292 1.7111 −0.4213 −1.1626

−0.4437 0.2759 0.3731 −0.9505 2.1643

−0.8893 −1.7766 0.1972 −0.9135 −1.0860

−0.0117 −1.0258 −0.4674 0.8544 −1.9998

−0.1118 −1.7637 −0.8752 1.4502 −0.0882

1.0231 −1.2145 −0.5744 −0.9745 −1.4828

−0.1801 −0.3549 −2.1170 0.8330 0.8161

0.2273 0.2971 0.4075 −0.5802 −2.3146

−1.5574 0.7214 −1.7078 −0.3663 −0.0597

0.3397 −2.0844 −1.0071 −0.5839 0.4296

−0.0325 1.9630 −1.0569 −0.9238 −0.4185

1.8048 −0.1137 0.0961 0.5922 −1.5394

−0.0594 −2.1983 0.8903 0.3940 0.4648

−0.5615 1.8120 1.4575 0.3722 −0.3720

−1.4401 1.7894 0.0030 −0.4119 0.7447

0.6240 −1.3284 1.3230 0.0035 −1.4477

−1.6173 0.1569 −0.6232 0.4929 1.6518

0.9634 0.5520 −0.1164 0.6081 2.0938

−1.7610 −0.1668 −0.3376 −0.0399 −1.6600

1.8155 −1.5889 0.0720 0.4145 0.0486

−1.5405 −0.1621 −1.1025 1.5039 −0.3511

−0.0337 0.6454 −1.5646 0.0298 −1.7701

−2.0740 0.5739 0.7481 0.8995 −0.0142

0.7969 1.5273 0.9758 −1.3743 −0.4376

−0.5505 0.4980 0.8917 1.2959 −1.7247

0.6351 1.1530 0.8440 1.8839 0.0778

−0.4996 −0.0662 2.0685 1.2112 0.0123

1.2958 −0.3450 −0.6870 1.8127 0.6662

0.3458 −0.8459 2.1341 −0.6920 0.3629

−0.6394 −0.1698 −0.9439 −1.7897 −1.2117

0.1556 −0.4017 1.0395 −1.9666 −0.9308

1.1255 0.6038 1.8841 0.2894 −0.8574

0.6651 −0.8638 0.7621 1.9228 −0.7305

1.6066 −0.5372 −1.3430 −0.2256 1.1294

2.1843 0.8707 0.2267 0.5403 0.3573

−1.0000 0.7125 1.6700 −1.1678 0.5829

−0.8117 −0.6195 −1.3380 −1.2369 1.2795

−0.7097 −1.2433 0.6366 −1.6986 0.8124

−1.3368 −1.2918 0.6918 1.1950 −0.7984

−1.1029 1.7170 −0.5464 0.8426 −0.9093

−0.8079 −1.1409 −1.8225 −0.1009 −0.8449

1.0481 −0.6965 1.3120 1.1428 1.1785

−1.6198 −1.6759 −0.4931 0.0802 0.5638



























































































































(C.19)

C-18



P5D,s=1
ZSSP =

√

Eb



























































































































0 0 0 0 0

−0.8148 2.0600 −0.0931 −0.6704 −0.8541

−0.8938 −0.3330 −1.5829 0.7552 1.4524

−0.2240 −0.3307 0.8733 −2.1431 0.7616

−0.8820 −0.8124 −0.6588 −1.1661 1.6921

0.0521 0.6136 −1.8995 −0.9269 1.1175

−1.2540 0.4197 0.4499 −0.1493 −2.0302

0.5036 −0.8518 0.4544 0.1584 −2.2101

0.2640 −1.4121 −1.1567 1.6379 0.1042

1.2663 0.0427 −1.6119 0.8195 1.1046

1.9069 −0.3833 0.4612 0.4989 1.3604

−0.4144 −1.3148 1.4716 −0.9935 −1.0209

−1.8414 1.0327 0.2505 1.1552 −0.4906

0.3491 −1.4538 −1.7991 −0.4167 0.6704

−0.4026 0.4887 0.4362 −2.0050 −1.2181

2.3338 0.2199 0.3807 0.0587 −0.6722

1.5451 0.5228 1.2264 −1.2280 0.6500

−0.1584 0.6914 1.0495 2.1179 0.0740

−0.3977 −0.5381 0.0302 1.9170 −1.4042

1.5284 1.2005 −0.0799 1.4882 0.3112

−0.0291 0.0135 −2.3628 0.5312 −0.4787

−0.4208 1.2277 −0.9880 0.9563 −1.5876

0.8954 0.4422 1.6631 −0.7300 −1.3414

0.2292 0.3703 −0.0189 1.4623 1.9409

0.1820 −1.6125 −0.1718 0.5419 1.7716

−0.1452 −1.5141 −1.2779 −0.4131 −1.4065

1.3976 −1.2092 1.6240 −0.1810 −0.0963

−0.9320 1.1265 −0.3495 −0.2120 1.9469

−2.3212 −0.1029 −0.2866 −0.0287 0.7834

−0.0129 −0.6463 −1.0911 −2.1130 −0.1488

−1.8286 0.5124 1.2534 −0.9300 −0.2305

−1.8606 −0.9703 0.9242 0.5876 −0.7018

1.3858 −0.7288 0.6980 1.7445 −0.3365

−1.3753 0.8437 −0.6032 −1.7109 0.4484

0.8835 0.9217 0.7390 1.1913 −1.5811

1.7600 −1.6505 −0.4674 0.1790 −0.1515

0.2812 −2.1086 0.1858 −1.1536 0.4524

−1.2349 −0.7904 0.1691 1.7894 0.8456

−0.5093 1.5171 1.7284 0.3696 −0.6407

0.0847 −2.1744 0.6214 0.7640 −0.6247

−1.3871 1.3232 −1.5273 0.2105 0.2087

1.3573 −0.9008 0.1955 −1.4990 −1.0753

0.2416 −0.1330 0.9511 −0.5546 2.1925

1.3414 −0.2559 −1.0476 1.0858 −1.3978

−0.1417 0.0138 2.3554 −0.5974 0.4127

0.7122 1.2426 1.5426 0.5800 1.1523

1.6384 −0.0367 −1.6167 −0.8060 −0.3825

0.8254 1.2713 −0.5204 −1.8744 0.1160

1.2800 −0.5138 −0.5393 −1.4106 1.3828

−1.7047 −0.4499 −1.1696 0.6613 −1.0870

−0.3217 1.6537 1.0380 −1.2194 0.8322

−0.2497 0.7135 −1.1393 2.0417 0.2395

1.1784 2.0291 0.6021 −0.2593 −0.3994

0.8130 1.7770 −1.4950 0.1519 −0.1368

−0.0506 −0.5044 1.9796 0.9521 −1.0064

1.2222 1.3639 −0.3512 −0.3035 1.5893

−0.7588 0.4968 −1.4862 −1.0208 −1.4220

0.2079 −0.8154 1.6740 1.1500 1.1235

−1.3147 −1.9491 −0.6554 0.2020 0.3122

−0.3350 2.1904 0.0037 0.9313 0.5639

−1.6929 −0.9293 −0.2455 −1.2600 −0.8473

−1.3806 0.5941 1.3924 0.6635 1.2072

−1.2216 −1.3290 1.2072 −0.3691 1.1149

1.0309 0.8916 −0.4479 −0.6234 −1.9100



























































































































(C.20)

C-19



C.6 (7, 5) constellations

P5D,s=2
LV P =

√

32 · 7Eb

107

























































































































































0 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 1 0

0 0 1 0 1

0 0 0 1 1

1 −1 0 0 0

1 0 −1 0 0

1 0 0 −1 0

1 0 0 0 −1

0 1 −1 0 0

0 1 0 −1 0

0 1 0 0 −1

0 0 1 −1 0

0 0 1 0 −1

0 0 0 1 −1

−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1

0 −1 1 0 0

0 −1 0 1 0

0 −1 0 0 1

0 0 −1 1 0

0 0 −1 0 1

0 0 0 −1 1

−1 −1 0 0 0

−1 0 −1 0 0

−1 0 0 −1 0

−1 0 0 0 −1

0 −1 −1 0 0

0 −1 0 −1 0

0 −1 0 0 −1

0 0 −1 −1 0

0 0 −1 0 −1

0 0 0 −1 −1

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

−2 0 0 0 0

0 −2 0 0 0

0 0 −2 0 0

0 0 0 −2 0

0 0 0 0 −2

1 1 1 1 0

1 1 1 0 1

1 1 0 1 1

1 0 1 1 1

0 1 1 1 1

−1 −1 −1 −1 0

−1 −1 −1 0 −1

−1 −1 0 −1 −1

−1 0 −1 −1 −1

0 −1 −1 −1 −1

0 1 1 1 −1

0 1 1 −1 1

0 1 −1 1 1

0 −1 1 1 1

1 0 1 1 −1

1 0 1 −1 1

1 0 −1 1 1

−1 0 1 1 1

1 1 0 1 −1

1 1 0 −1 1

1 −1 0 1 1

−1 1 0 1 1

1 1 1 0 −1

1 1 −1 0 1

1 −1 1 0 1

−1 1 1 0 1

.

.

.






























































































































































































































































.

.

.

1 1 1 −1 0

1 1 −1 1 0

1 −1 1 1 0

−1 1 1 1 0

0 −1 −1 −1 1

0 −1 −1 1 −1

0 −1 1 −1 −1

0 1 −1 −1 −1

−1 0 −1 −1 1

−1 0 −1 1 −1

−1 0 1 −1 −1

1 0 −1 −1 −1

−1 −1 0 −1 1

−1 −1 0 1 −1

−1 1 0 −1 −1

1 −1 0 −1 −1

−1 −1 −1 0 1

−1 −1 1 0 −1

−1 1 −1 0 −1

1 −1 −1 0 −1

−1 −1 −1 1 0

−1 −1 1 −1 0

−1 1 −1 −1 0

1 −1 −1 −1 0

1 1 −1 −1 0

1 −1 1 −1 0

1 −1 −1 1 0

−1 1 1 −1 0

−1 1 −1 1 0

−1 −1 1 1 0

1 1 −1 0 −1

1 −1 1 0 −1

1 −1 −1 0 1

−1 1 1 0 −1

−1 1 −1 0 1

−1 −1 1 0 1

1 1 0 −1 −1

1 −1 0 1 −1

1 −1 0 −1 1

−1 1 0 1 −1

−1 1 0 −1 1

−1 −1 0 1 1

1 0 1 −1 −1

1 0 −1 1 −1

1 0 −1 −1 1

−1 0 1 1 −1

−1 0 1 −1 1

−1 0 −1 1 1

0 1 1 −1 −1

0 1 −1 1 −1

0 1 −1 −1 1






































































































(C.21)

C-20



P5D,s=2
SLV P =

√

8 · 7Eb

27























































































































































1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 1 0

0 0 1 0 1

0 0 0 1 1

1 −1 0 0 0

1 0 −1 0 0

1 0 0 −1 0

1 0 0 0 −1

0 1 −1 0 0

0 1 0 −1 0

0 1 0 0 −1

0 0 1 −1 0

0 0 1 0 −1

0 0 0 1 −1

−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1

0 −1 1 0 0

0 −1 0 1 0

0 −1 0 0 1

0 0 −1 1 0

0 0 −1 0 1

0 0 0 −1 1

−1 −1 0 0 0

−1 0 −1 0 0

−1 0 0 −1 0

−1 0 0 0 −1

0 −1 −1 0 0

0 −1 0 −1 0

0 −1 0 0 −1

0 0 −1 −1 0

0 0 −1 0 −1

0 0 0 −1 −1

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

−2 0 0 0 0

0 −2 0 0 0

0 0 −2 0 0

0 0 0 −2 0

0 0 0 0 −2

1 1 1 1 0

1 1 1 0 1

1 1 0 1 1

1 0 1 1 1

0 1 1 1 1

−1 −1 −1 −1 0

−1 −1 −1 0 −1

−1 −1 0 −1 −1

−1 0 −1 −1 −1

0 −1 −1 −1 −1

0 1 1 1 −1

0 1 1 −1 1

0 1 −1 1 1

0 −1 1 1 1

1 0 1 1 −1

1 0 1 −1 1

1 0 −1 1 1

−1 0 1 1 1

1 1 0 1 −1

1 1 0 −1 1

1 −1 0 1 1

−1 1 0 1 1

1 1 1 0 −1

1 1 −1 0 1

1 −1 1 0 1

−1 1 1 0 1

.

.

.






























































































































































































































































.

.

.

1 1 1 −1 0

1 1 −1 1 0

1 −1 1 1 0

−1 1 1 1 0

0 −1 −1 −1 1

0 −1 −1 1 −1

0 −1 1 −1 −1

0 1 −1 −1 −1

−1 0 −1 −1 1

−1 0 −1 1 −1

−1 0 1 −1 −1

1 0 −1 −1 −1

−1 −1 0 −1 1

−1 −1 0 1 −1

−1 1 0 −1 −1

1 −1 0 −1 −1

−1 −1 −1 0 1

−1 −1 1 0 −1

−1 1 −1 0 −1

1 −1 −1 0 −1

−1 −1 −1 1 0

−1 −1 1 −1 0

−1 1 −1 −1 0

1 −1 −1 −1 0

1 1 −1 −1 0

1 −1 1 −1 0

1 −1 −1 1 0

−1 1 1 −1 0

−1 1 −1 1 0

−1 −1 1 1 0

1 1 −1 0 −1

1 −1 1 0 −1

1 −1 −1 0 1

−1 1 1 0 −1

−1 1 −1 0 1

−1 −1 1 0 1

1 1 0 −1 −1

1 −1 0 1 −1

1 −1 0 −1 1

−1 1 0 1 −1

−1 1 0 −1 1

−1 −1 0 1 1

1 0 1 −1 −1

1 0 −1 1 −1

1 0 −1 −1 1

−1 0 1 1 −1

−1 0 1 −1 1

−1 0 −1 1 1

0 1 1 −1 −1

0 1 −1 1 −1

0 1 −1 −1 1

0 −1 1 1 −1








































































































(C.22)

C-21



P5D,s=2
SSP =

√

Eb × (C.23)

×























































































































































0.1282 0.5478 −1.1080 0.2362 −2.3238

1.7764 −1.7637 −0.1312 0.0934 0.8412

−0.5711 −1.4422 1.5546 −0.8092 1.2338

−2.3243 1.1794 0.0641 −0.1381 −0.4281

0.2323 −1.5861 0.6318 0.7286 1.8709

−1.5042 −0.3790 −0.1914 1.1797 1.7791

0.3591 −1.3703 −0.3983 −1.5044 −1.6035

−0.4413 0.2951 1.9275 0.4672 −1.6687

−1.0062 −0.1590 −2.2415 −0.2991 −0.9212

1.2323 0.0406 2.2355 0.0427 −0.6931

−0.2549 0.0235 0.5414 −0.6311 −2.4986

−1.3912 −0.8756 0.3669 −1.4484 −1.4371

−0.1804 −1.9151 1.0316 −1.4194 −0.4699

−1.0015 −1.0059 −0.8703 −0.0902 −2.0542

−1.7867 0.3612 1.8427 0.4837 −0.2186

1.2030 0.4040 0.0221 −2.0721 1.0467

−0.6577 2.2292 −0.0665 −1.1076 −0.6059

0.4622 0.8385 −2.2801 0.5635 −0.7530

0.1163 0.1935 −1.0898 1.0446 2.1611

−1.9518 0.2070 −1.5369 0.4290 0.7755

1.5538 1.6726 −0.7293 1.1162 0.1020

1.9152 1.3646 −0.3999 −0.5506 1.0034

−0.8510 −0.9528 −0.1469 −0.5367 2.2491

1.4843 0.1295 0.9083 −1.8727 −0.6695

−1.4680 1.5366 0.8551 −0.9862 0.8830

0.1280 1.1430 −1.6676 −1.2112 −1.1956

0.9183 −1.2155 −0.8531 1.5916 1.1909

−0.0278 −0.5472 −0.0748 2.4708 −0.7678

−0.3696 −2.3007 1.1720 0.4421 0.0357

0.6301 1.7621 −0.1481 0.6804 1.7359

0.0191 −2.3516 −0.0818 −0.6905 0.9931

−0.0784 1.4053 −1.5909 1.4128 0.7014

−0.4486 −0.8769 2.4445 −0.0051 −0.2331

−0.7518 0.1392 0.6944 2.3164 0.7534

−0.5108 1.0564 −1.8174 −0.3012 1.4931

0.9708 0.5281 −0.0558 2.0876 1.1905

−0.8179 1.0078 −0.0185 −0.2882 2.2873

−0.0931 1.2550 1.1294 −2.0349 −0.0002

−0.9631 −2.1575 −0.6502 −0.7841 −0.6164

−1.0508 2.0667 1.1667 0.3994 −0.3223

2.2143 −0.1678 0.9104 −0.7553 0.8183

−0.0411 0.2897 0.8806 1.1229 2.2086

−1.2397 −1.0443 1.2546 1.5190 −0.7009

−0.5473 0.2373 0.6735 −1.8616 1.6508

−2.4110 −0.3478 0.1379 1.0216 0.0563

−1.5402 1.1532 0.9239 0.9166 1.2665

1.8093 0.2657 −0.8379 0.9327 −1.4435

1.3839 0.2331 −0.3409 −1.0079 −1.9744

−1.2793 1.0758 1.1947 −0.9433 −1.3743

0.7803 0.3420 −0.8335 −0.7972 2.2235

−1.3549 −0.0901 1.6914 −1.4962 0.2380

−1.6916 0.6035 0.0000 −1.9193 −0.3011

1.3934 1.4084 1.5369 −0.8178 0.2098

1.3472 −1.4970 −0.4901 1.4947 −0.6854

−1.4815 0.4238 −1.0437 1.0754 −1.5427

0.8057 −2.4015 −0.0809 −0.1547 −0.7436

−0.3011 1.0274 2.3563 −0.5204 −0.1754

−1.1636 −1.1971 −1.7903 −0.7455 0.6724

0.3758 −1.2674 −1.5137 −0.1257 1.7162

−0.4367 1.5646 0.4397 0.4831 −1.9836

2.4361 −0.0188 −0.6693 0.6763 0.3993

−1.6396 1.2854 −0.5439 1.5342 0.0996

0.0560 0.0877 2.0915 1.6100 −0.1516

−0.0589 −0.2581 1.8360 −1.4201 −1.2419

−1.5010 −1.2981 0.1305 −1.6225 0.6423

0.5800 −1.7251 −1.5402 −1.1456 0.0532

0.7133 1.5659 1.5371 0.9380 −0.8924

0.2678 1.1003 −0.6108 1.8268 −1.4167

−0.8600 −0.6115 −1.2847 −1.9476 −0.6652

−0.2869 −0.3156 −2.4403 0.6532 0.6605

1.8563 0.7841 −1.5198 −0.5973 −0.5225

−1.9480 −0.1666 0.6067 0.2862 −1.6516

1.9676 0.9808 0.9370 0.8388 0.7649

0.9736 0.0715 −1.4522 1.9800 −0.1341

−1.6505 −1.8435 −0.2733 0.2189 0.8688

0.6710 1.3608 1.1414 −0.9345 −1.5880

.

.

.






























































































































































































































































.

.

.

−0.6526 2.0202 −1.1611 0.5255 −0.9319

0.4257 0.0638 −2.3426 −1.1149 0.2898

−0.7013 0.4070 1.9157 −0.3362 1.5999

1.1443 1.8362 −0.4694 −0.0056 −1.4486

0.0317 1.8675 0.2886 1.8450 0.1553

−0.8466 −0.2354 −1.2251 2.1069 0.5367

0.8768 −1.1411 −0.4158 0.3110 −2.1586

1.2493 0.2661 0.9092 0.5200 −2.0667

0.9920 −1.0254 1.0156 1.8824 0.6241

0.9651 −0.1893 2.0573 0.5485 1.2245

1.3801 −1.4692 0.1613 −1.6935 0.2070

−1.9231 −1.3395 1.1699 −0.2640 −0.2628

−1.6394 0.2361 −0.8553 −1.3157 1.3394

1.3162 −1.1930 1.1043 −0.6656 −1.4771

2.1917 −0.8586 0.9337 0.6720 −0.3689

−0.6327 −1.6779 0.0894 1.8488 0.5985

−1.3987 0.7659 −0.7054 −0.8259 −1.8103

1.1153 −0.1519 −1.0206 −2.0973 −0.5408

0.6555 −1.1776 1.2464 1.4331 −1.2556

−1.0706 0.8617 0.9353 1.8124 −0.9756

−1.1655 −0.8774 1.5854 0.9930 1.1713

−0.0741 −2.1934 −1.3008 0.6613 0.2329

0.2492 1.5906 1.6647 0.7697 1.0218

−0.9506 2.2522 −0.5119 0.1433 0.8611

−0.0071 −0.8190 −0.8885 −1.9091 1.3766

−1.6107 −1.1983 −1.3706 0.9328 −0.4704

2.1380 −1.0652 −0.6325 −0.4406 −0.8368

0.9025 −1.0280 0.5362 −1.0606 1.9278

1.2850 0.6454 −1.9079 0.3027 1.0958

1.1214 1.6351 −0.2857 −1.6765 −0.4201

0.5949 2.0777 −1.4494 −0.3993 0.2627

−0.4551 −1.9311 −0.2017 1.2061 −1.2524

1.3804 −1.0375 −1.9445 0.4815 0.0701

−0.5979 −1.4927 1.2316 −0.0004 −1.7022

2.3704 0.7735 0.4045 −0.2225 −0.7548

−0.2552 0.8785 −1.0738 −2.1935 0.4456

0.8081 −0.5873 −1.9053 −0.6080 −1.4151

1.8692 −0.5194 −1.2047 −1.0084 0.8764

0.0266 −0.7786 −1.7320 1.1940 −1.4027

−2.3452 −0.5825 −0.7418 −0.6807 −0.3835

1.6010 −0.2664 0.1057 0.5988 1.9991

1.1549 −1.6064 1.6633 −0.4378 0.3569

0.6395 2.5309 0.4099 0.0850 0.1025

0.5863 −0.1140 1.9505 −1.4903 0.7861

−0.1053 0.6069 −0.0249 −2.1102 −1.4721

0.9698 0.8263 1.0526 −0.5992 1.9773

1.4840 0.3984 0.6116 1.9623 −0.6435

−2.1394 −0.2211 0.7451 −0.3656 1.2981

−0.0923 −0.5129 0.4078 −2.5614 0.0377

−1.4686 1.3230 −1.5261 −0.8686 −0.0974

−0.3845 −0.2149 0.2871 1.2982 −2.2446

0.2087 1.9307 0.0000 −1.2945 1.2462








































































































C-22



P5D,s=2
ZSSP =

√

Eb × (C.24)

×























































































































































0 0 0 0 0

0.3443 −2.1063 −1.4317 0.3244 −0.5876

2.2527 0.5751 −1.1833 0.2918 −0.4058

−0.5564 0.7351 0.2253 −1.9274 −1.5618

−0.4514 0.0094 −0.6250 2.5354 0.1794

0.0160 1.8038 0.1471 1.9315 −0.2210

−0.5078 0.1029 −1.5820 −1.7964 −1.0282

0.8131 0.1408 2.3917 −0.3427 −0.7325

1.0400 −0.8766 −0.7022 −0.0491 2.1701

0.7761 −0.3873 −2.0457 −0.9232 1.1250

−2.0252 1.3395 0.7620 −0.2433 0.7206

0.1067 0.6298 1.1373 1.9713 1.2115

−2.2489 −0.5022 0.1824 0.2481 1.2848

1.5878 −0.3556 1.8022 1.0651 0.1588

0.9573 −1.1774 −1.5233 −1.4659 −0.5323

0.0664 −1.3572 −1.8063 0.8192 1.1291

−0.0280 −0.9873 −1.4069 −0.5104 −1.9595

−0.3267 −0.5067 2.2539 1.2042 0.4017

−2.0107 −0.6157 −0.3922 1.5587 −0.2228

−1.1378 0.2035 1.6020 0.4125 1.7270

1.4130 1.8010 −0.8060 0.7406 0.7853

0.7291 1.7613 1.6953 −0.7322 0.1045

0.6435 −1.0853 1.3361 0.8386 1.7247

1.7924 1.4866 0.6013 1.0057 −0.5096

0.5520 0.1443 −1.4893 1.0186 −1.8639

0.8937 −0.8228 0.1760 −1.2769 −1.9794

−0.5317 −1.7401 −0.1212 0.5174 1.8606

−0.5615 −0.7709 −0.1669 1.9675 −1.4989

−0.5858 0.8875 −2.1539 −0.0608 −1.1319

−0.0924 −1.9523 0.8610 −0.2385 −1.5611

−1.1365 −0.8555 0.7102 1.7914 1.1480

1.4659 0.0334 −1.6120 1.0200 1.1252

0.5848 −1.8672 1.7776 0.2579 −0.0061

1.0385 0.5910 −1.2150 −2.0342 0.1148

−0.5362 0.3567 −2.4271 0.5508 0.6681

1.9994 −1.2285 −1.1152 −0.1950 0.5165

−1.4224 −1.5514 0.0320 −1.2085 1.0788

−1.3046 −0.2666 −1.1184 1.3901 1.4487

1.0597 −2.1586 0.1506 −1.0563 −0.3665

−0.0904 1.2297 −0.7161 1.6990 1.4613

0.9561 −0.8355 −1.3192 1.8775 −0.4214

−1.7620 1.1966 −0.7431 −1.2992 −0.5278

0.5064 1.7292 1.1199 0.1050 −1.5948

0.4175 0.4772 0.3685 0.6703 2.4633

2.1800 −0.2005 −0.2359 −1.3337 −0.6543

−1.1656 −1.6055 1.4823 0.1264 0.9516

−0.9007 2.0265 0.8360 −1.0840 −0.5130

1.0914 −2.0623 −0.0954 0.9484 0.8381

1.7621 −1.0549 1.1336 0.0380 −1.2453

2.2299 0.5601 1.2394 −0.4806 0.0422

0.8858 1.3054 −2.0962 −0.4033 0.0971

2.0381 −1.2694 0.8685 −0.2727 0.6792

1.3683 −0.9355 −0.3105 −1.8274 0.9337

−1.6900 1.0388 0.1800 1.6165 0.6887

0.8685 −1.8605 0.1415 1.2777 −1.0895

1.0315 −0.4828 −2.3450 0.2083 −0.4644

−0.5488 −0.6497 −1.2122 −2.0707 0.7580

2.0743 0.2509 0.4812 0.7305 1.3872

−0.4951 −1.8315 −0.5702 1.7649 0.1252

−2.1339 −1.2922 0.6754 −0.3991 −0.4652

0.4604 −0.6455 0.1879 0.6004 −2.4558

0.0249 0.9347 −0.4074 −0.3633 −2.4255

−0.8385 0.8661 2.3540 −0.2061 0.1336

−0.8523 −0.9266 2.1862 −0.2372 −0.7965

−1.6241 −1.6449 −1.1413 0.3013 0.5641

0.2322 −2.0346 −1.0825 −0.8915 0.9461

−1.6178 −0.4644 0.0595 −2.0209 −0.3669

−0.4390 −2.6104 0.1635 0.0850 0.1200

−0.3939 1.0892 1.4231 −1.1856 1.5109

−0.1347 −0.4935 0.8481 −2.1642 1.1791

0.3249 2.6235 0.1942 0.1476 −0.0851

−0.2977 0.4272 1.7411 −1.9113 −0.3158

−0.5306 −1.6710 1.1362 −1.6207 −0.2523

−1.7765 0.3487 −0.3543 −1.4057 1.2946

1.7283 −1.1178 −0.8850 0.0477 −1.4258

−0.5079 0.9805 −0.0958 −2.3907 0.3329

.

.

.






























































































































































































































































.

.

.

0.0413 −0.6415 2.2825 −0.8402 0.8520

−1.2346 1.7392 1.1834 0.8374 −0.6359

0.5176 −0.9485 0.8067 2.2828 0.1606

−0.7999 0.3320 1.1402 2.1743 −0.5264

0.4270 1.1863 1.9899 1.1945 −0.2811

1.8004 0.5633 0.0854 0.0024 −1.8679

1.2482 0.8120 0.6839 −1.9919 0.6343

1.1116 1.6573 0.4771 −0.4959 1.6123

−1.2533 −0.7996 0.0869 −0.9598 −1.9790

0.3502 1.0531 −1.4942 −0.0191 1.8948

−0.6528 −0.3999 0.3612 −0.7619 2.3996

−2.0424 −0.0122 1.5003 0.7953 −0.0003

1.1882 −0.1979 0.9283 −0.9366 1.9660
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