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Abstract. The behavior of a net of interconnected,
communicating processes is described in terms of
the joint actions in which the processes can partici-
pate. A distinction is made between centralized and
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decentralized action systems. In the former, a cen-
tral agent with complete information about the
state of the system controls the execution of the
actions; in the latter no such agent is needed. Prop-
erties of joint action systems are expressed in tem-
poral logic. Centralized action systems allow for
simple description of system behavior. Decentra-
lized (two-process) action systems again can be me-
chanically compiled into a collection of CSP pro-
cesses. A method for transforming centralized ac-
tion systems into decentralized ones is described.
The correctness of this method is proved, and its
use is illustrated by deriving a process net that
distributedly sorts successive lists of integers.

Key words: Decentralized action systems — Process
nets — Centralized control

1 Introduction

Distributed systems differ from centralized ones in
that there is no agent which always has complete
and up-to-date information about the state of the
whole system. This makes it usually much harder
to construct a distributed solution to a program-
ming problem than to construct a centralized one.
In this paper we shall show that the problem of
incomplete information in distributed systems can,
to a certain extent, be separated from the main
task of constructing a (centralized) solution to the
programming problem. We achieve this separation
of concerns by first constructing a centralized solu-
tion and then transforming this, in a sequence of
correctness preserving steps, into a distributed so-
lution. The method by which this decentralization
is achieved is the main topic of this paper.

A distributed system is here understood to be
a process net, ie.,, a collection of processes that
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Fig.1. Example process net

are connected into a network by bidirectional com-
munication channels. The problem we consider is
then simply the following: how should one con-
struct the individual processes in this network so
that the process net as a whole has the desired
behavior?

To make things more concrete, let us consider
the process net in Fig. 1. This net consists of the
processes E[1], ..., E[n],and P[1], ..., P[n], with
communication channels as shown by the connect-
ing lines. The purpose of the system is to repeatedly
sort lists of integers. Each list to be sorted is deliv-
ered by the environment processes E[i] to the cor-
responding sorting processes P[i]. The latter will
sort the list in parallel, by the neighboring pro-
cesses P[i] and P[i+ 1] exchanging their numbers
when these are in the wrong order. When process
P[i] finally has the ith integer in the sorted list,
it returns this to the environment process E[i].
As soon as the environment has received all the
integers, it generates a new list to be sorted, and
O on.

Although this informal specification is simple,
programming the individual processes to behave
as described is not trivial. The problems are mainly
connected with the limited information available
to the individual processes. Each of them can only
be sure about the values of its own local variables.
They may have gathered information about the
values in other processes, but this information may
be outdated. For instance, how does an individual
process know when it has the ith integer of the
sorted list? How do the processes know when all
integers of the sorted list have been received by
the environment? How can two neighbors decide
when to exchange their integers, as they do not
know each other’s integers beforehand? All these
problems have to be handled if the process net
is to function correctly.

The problems disappear if there is some central
agent with immediate information about the local
variables of all processes. This agent could use this
information to control the computation in the pro-
cess net. Postulating a central agent of this kind
turns out to be a convenient device for specifying
the intended behavior of the system. (Actually

building such an agent into the system is not, how-
ever, such a good idea, as it would constitute a
definite bottleneck in the system.) This idea will
be elaborated in the following.

The behavior of the process net is described
in tems of the joint actions in which the processes
can participate. Each action involves some pro-
cesses directly linked to each other by a communi-
cation channel. The effect of a joint action is to
update the local variables of the processes involved.
With each action we associate an action guard or
enabling condition. The action may take place only
when this enabling condition holds. This condition
may depend on any variables in the system, not
only on the local variables of the processes directly
involved. The central agent is assumed to evaluate
all enabling conditions and to decide whether an
action should be executed or not.

To make things even simpler, we will assume
that testing whether an action is enabled and its
subsequent execution constitute an atomic action
in the system. This means that the behavior of the
system is the same as if it were executed in a strictly
sequential manner: at each stage one of the enabled
actions is nondeterministically chosen and execut-
ed to completion, before the next action is chosen.

In the example above we need three kinds of
actions:

— Action INT[i] in which process E[i] delivers
an integer to process P[i]. This action should be
executed when the previous list has been sorted
and all its elements delivered to the environment.
— Action EX[i] in which P[{] and P[i+1] ex-
change their integers. This action should be execut-
ed when the integers in question are in the wrong
order.

— Action OUT[i] in which process P[i] delivers
an integer to E[i]. This action should be executed
when P[i] has the ith integer of the sorted list.

In all these actions, the processes involved cannot
decide by themselves, by looking at their own local
variables only, whether to participate in an action
or not. This is true also of action EX[i], since
neither P[i] nor P[i+ 1] has direct access to both
integers. In addition to these actions, the processes
need to make some private initializations by which
the systems is put into an appropriate initial state.

An important advantage of this approach is
that it fits nicely in the temporal logic framework
for reasoning about concurrent systems, as devel-
oped by Manna and Pnueli (1983). We thus have
a ready-made formalism in which to express prop-
erties of the system, as well as for proving that
the system does indeed have these properties. In
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fact, our method of describing concurrent systems
by actions is essentially their shared variable mod-
el. It should be pointed out, however, that while
they usually assume that each action is carried out
by a single process, we always have co-operation
of two or more processes. This affects the fairness
assumptions that are reasonable to make.

Our model has some similarity with their mo-
deling of the communication events in CSP (Hoare
1978). A joint action is not, however, only intended
to capture the synchronization and message pass-
ing between two processes, but should rather be
understood as an event of greater extension in
time: the two processes are locked into a transac-
tion during which quite a lot of computation can
take place. In this sense, joint actions are more
like a symmetric version of the rendezvous concept
in Ada (US Department of Defense 1980).

The main problem in the approach is that an
action system cannot be implemented as such in
a distributed fashion. What we would like to have
is essentially a compiler that mechanically trans-
forms a joint action system (with two-process ac-
tions) into a collection of CSP processes, one pro-
cess for each node in the process net, such that
the behavior is the same as that of the original
action system. This compiler should, of course, pro-
duce a truly distributed system; introducing the
central agent in one form or another in the CSP
program would create a bottleneck, as already re-
marked.

We do not know how to make such a compiler
for arbitrary action systems, but we do know how
to make one for a restricted class of action systems
that we will refer to as decentralized action systems.
In these systems action guards are restricted in a
way that allows each process to determine by itself,
whether to participate in an action or not. An ac-
tion can be executed when both processes are will-
ing to participate, so the central agent is not needed
in this case. Joint action systems where action
guards do not satisfy these requirements are re-
ferred to as centralized action systems.

Hence, what we need is a method by which
a centralized action system can be transformed into
a decentralized one in a way that preserves the
temporal properties of the original system. The de-
scription of such a decentralization method is the
main topic of this paper. The basic idea is to use
additional control variables in the processes to keep
information about the global system state. We also
add new actions, called control actions, by which
this control information is kept up-to-date.

The method for constructing process nets that
we propose is thus the following:

1. The intended behavior of the process net is first
described as a centralized action system with
two-process actions. The correctness of this sys-
tem is expressed and proved in temporal logic.

2. The centralized action system is transformed
into a decentralized one by adding control vari-
ables and control actions and modifying the
original actions to make use of this additional
information and to keep it up-to-date.

3. The resulting decentralized action system is
compiled into an equivalent collection of CSP
processes, each process controlling one node in
the process net.

The last step can be automated, but decentrali-
zation requires some invention. The right kind of
control information must be found, and the right
kind of control actions must be designed. Also,
the fact that the resulting system is equivalent to
the original one must be proved (in temporal logic).

The advantages of this approach, besides the
separation of concerns it induces, is the uniform
approach it provides for the construction of distrib-
uted programs. There are essentially only two tools
used: action systems and temporal logic. Only in
the last stage, when the final CSP program is gener-
ated, is there any involvement with concurrently
operating, communicating processes, and this stage
can be automated.

The method of using a control computation to
collect information about the global state of the
system is not new in itself, see e.g., Chandy and
Misra (1982) and Francez (1980). The formalization
of this method as a transition from a centralized
to a decentralized action system is, however, new,
and provides a systematization of this approach,
while at the same time a stringent criterion for the
correctness of the decentralization is given within
temporal logic. The use of decentralized action sys-
tems to describe the communication behavior of
a collection of processes, as well as the method
for translating such systems into CSP, is believed
to be new. A method for doing the opposite trans-
lation, CSP to a kind of Petri nets, is described
in Gergely and Ury (1982), while de Cindio et al.
(1982) describes a variant of Petri nets that is quite
close to our decentralized action systems, although
their nets are not directly translatable into CSP.
The connection with Manna and Pnueli (1983) was
already mentioned above.

The rest of the paper is organized as follows.
Joint action systems are described more precisely
in the next section. Section 3 describes decentra-
lized action systems as well as the way they can
be transformed into CSP programs. The decentrali-
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zation method is given and proved correct in
Sect. 4. In Sect. 5 the method is illustrated by distri-
buting a centralized action system for the sorting
network outlined above. In the concluding re-
marks, we will give a more detailed account on
related work.

2 Joint action systems

Let I be an index set, interpreted as the set of pro-
cess names. A joint action system over I is a triple
S=(y, &/, ¥), where « is a set of actions, F is
a family of subsets of .7, called the fairness family,
and y is a set of variables indexed by I, ie., y
={y;liel}, which we refer to as the system state.
Variable y; is interpreted as the local state of pro-
cess i, consisting of its local variables and the loca-
tion counter. In an initialized system the state y
has a given initial value y, called the initial state.
In non-initialized systems the initial state is arbi-
trary.
Each action Ae.¢/ is of the form

A ga(x ) — Y= a(ya)

Here x, and y, are two non-empty subsets of y.
The action guard g , is a condition that the enabling
variables x , must satisfy for 4 to be enabled. The
effect of the action is to assign new values f,(y,)
to the update variables y,. (In the following we
sometimes use the whole state y as an argument
for g, and f,, even if only a subset of it is involved.)
The topology of the process net determines which
processes can be engaged in a joint action. More
precisely, if the update variables y, of action A
are y; and y;, then processes i and j must be linked
by a communication channel in the net.

We have above assumed that each action in-
volves only two processes. This restriction is, how-
ever, only needed when implementing a decentra-
lized action system in CSP. The definitions and
results will therefore be given for the general case
where any non-empty collection of processes may
be involved in a joint action.

A computation in an action system S, starting
from an initial state y,, consists of applying in suc-
cession one enabled action after the other, as long
as some action is enabled. More precisely, a com-
putation is a (finite or infinite) sequence t of the
form

OAl 1A2 2A3
t: y—yl—y— ..

where each A; is an action in ./, and each y; is
a possible state of the system, and which satisfies
the following three conditions.

Firstly, the sequence must be admissible, i.e.,

g4, " =true,
=10
for each 4; in the sequence.

Secondly, if a computation ¢ is finite, it must
be properly ending in the final state y":

VAesd/: —1g,(0)-

Thirdly, a computation t must be fair with respect
to each set .«7,€ 4. By this we mean, in accordance
with [8], that one of the following conditions
holds:

(i) ¢ is finite, or

(ii) ¢ is infinite and, from a certain point on, no
action in .<7; is enabled, or

(i) an infinite number of actions in .2Z; occur in
I

Notice that each computation is necessarily fair
with respect of the set of all acions .«7. By default,
we assume that o7 always belongs to #.

Since each action is assumed to be determinis-
tic, a sequence of actions A, ..., A; and the initial
state determine the state y* uniquely. The meaning
of a initialized action system S can therefore be
taken as the set of all finite or infinite sequences
that correspond to computations. Such action se-
quences will be referred as a execution fraces. The
set of all possible trace ¢t in S will be denoted by
T(S).

We shall illustrate the concept of joint action
systems by the example outlined in the previous
section. It turns out to be convenient to use labeled
locations in the processes. Semantically this adds
nothing to the model, as a location counter can
be understood as another component in the local
variable of the process, as is done in [MaPn82].
Both E[i] and P[i] will have two locations:

* at give, E[i] is ready to give an integer to P[i],

- at take, E[{] is ready to receive an integer from
P[],

e at in, P[i] is ready to receive an integer from
E[i],

 at comp, P[i] is ready to exchange integers with
its neighbors, or to give its integer to E[i].

Read as a statement, at [ states that the location
counter is set to l. In a condition, the same expres-
sion says that the location counter has the value
L

A natural form for expressing such sequencing
constraints is offered by Petri nets as shown in
Fig. 2. This shows, in fact, two subnets of the com-
plete net. Joint actions are modeled here as events,
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complfi]
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i

Fig. 2. Sequencing constraints of the sorting net

comp[|+1]

and the processes are represented by tokens {con-
sidered to contain the local variables). Each place
node is associated with a location in some process,
and the process token may only occupy places as-
sociated with this process.

The local variables of the processes and their
initialization (including process labels) can be given
as follows:

process E[i: 1..n]; var x, z: integer;
label give, take;
begin
x:=i" integer of the first list; at give
end E;

process P[i: 1..n];
var y: integer; s, t: boolean; label in,comp;
begin
s, t:=true, true; at in
end P;

The three kinds of joint actions in which the pro-
cesses may be engaged, are as follows:

action IN[i: 1..n] by E[{] at give, P[i] at in;
when Vj: s{j]1=s[1]

begin
y:=x; t:="t; attake, comp
end IN;
action EX[i: 1..n—1]

by P[i] at comp, P[i+ 1] at comp;
when y[i]>y[i+1]

begin

yLd, yLi+1]:=ypli+ 1], y[i];
at comp, comp
end EX;

action QUTTi: 1..n] by E[i] at take, P[{] at comp;
when Vj: t[j]=t[1]A
Vi, k:(j<i<k)=(y[1<ylid<y[k]D

begin
z:=y; x:=i" integer of the next list;
s:="1s; at give, in

end OUT.

Action OUT([i] e.g., requires the participation of
processes P[i] and E[i], where P[i] must be at
label “take” and E[i] at label “comp”. The action
is enabled when the “when”-condition is satisfied.
The effect of the action is to perform the assign-
ments given in the statement block. After these as-
signments, process E[i] will be at label “give” and
process P[i] will be at label “in”. Variables s and
t are here used to achieve the necessary synchroni-
zation to prevent two successive lists from becom-
ing mixed with each other.

To property that this system should have is
the following: Whenever the environment pro-
cesses generate a new list to be sorted in variables
x, they will eventually receive the sorted list in vari-
ables z and generate the next list in x. The formula-
tion of this property in temporal logic, as well as
proving that the above system has it, is left to
Sect. 5.

3 Decentralized action systems

Consider an action A in an action system S=(y,
A, F),

A: ga(x)—ya=f4(Va)

The guard of A (and A itself) is said to be local,
if x , is a subset of y,. In other words, the enabling
of a local action depends only on the local variables
of the processes involved in the action.

The guard of 4 (and A itself) is said to be sepa-
rable, if it is a boolean expression with unary predi-
cates only. That is, g, is built with boolean connec-
tives out of atomic formulas of the form p(y,),
where y; is the local state of process i, y,ex,. This
forbids atomic formulas relating local states of sev-
eral processes with each other. (The local state y,
may, of course, have an internal structure, e.g., that
of a record, and p(y,) may relate components of
y; with each other.)

The guard of 4 (and A itself) is said to be dis-
tributed, if it is both local and separable. A joint
action system is said to be decentralized, if all its
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actions are distributed. If this is not the case, the
system is centralized.

Let A be a distributed action involving two pro-
cesses P and Q with local states y, and y,, respec-
tively. Because of separability, the guard g, has
the form

g84=P1(yp) A Q1 (Yo Vv ... VP (¥p) A qul(yo),

when written in disjunctive form. This allows us
to implement action 4 in CSP as follows.

Assume first that there is only one disjunct in
24, 1e,n=1.Action 4 then has the form

A: p(yp) A q(yo)— Y, Yo:=fr(Vp> Vo) fo(Vp> Vo)

The two conjuncts can now be evaluated separately
in the two processes, and the following commands
are equivalent to action A:

P: [p(yp); Qla(yp)—0?yq; yp=fp(yr. yo)l,

Q: [q(yg); P2alyp)— P yo; yo:=fo(ye, yo)l-

We have here added the local variables y, and
yp to P and Q respectively, to stand for the corre-
sponding variables in the other process. According
to the rules of CSP (Hoare 1978), the communica-
tion will take place only if p(yp) A q(y,) holds. The
constructor a is dedicated to this communication
event, and the pattern matching capability of CSP
then prevents interference with other similar com-
munication events. This constructor is only needed
in the first communication associated with an ac-
tion.

In case g, consists of two or more disjuncts,
i.e., n> 1, the situation can be handled by associat-
ing n different constructors with the action. In this
case A can be implemented by the following com-
mands in P:

!:P1(YP)§ Qlai(yp)—0?yg; yp:=1p(yp, yo)

Hpa(ye); @l a,(ye)— Q72 yo; yp=1p(vp, ¥o)l.
together with the following commands in Q:

[‘h(J’Q); P?a,(yp)— P! Yos J’Q‘ZfQ(J’Pa J’Q)

an(yQ);P? an(}’P)—’P!YQ;YQ‘:fQ(YPsYQ)]-

Assume now that all actions in a centralized system
have been split into communication commands for
the processes involved. We can then collect all
communication commands b,—S;, i=1, ..., m, In
P into one big iteration statement, which together
with the initialization S, gives the process for node
P:

P:: [So;x[b;—S:[]...[]bm—S,]].

The above discussion shows how a decentralized
action system is implemented in CSP. This imple-
mentation is completely mechanical. Hence, to
construct a distributed system in the form of a pro-
cess net, it is sufficient to construct a decentralized
action system for the processes involved.

There is, however, still another matter to deal
with in connection with this implementation. That
is the question of fairness (and justice). The prob-
lem is that what one may consider as natural fair-
ness assumptions for a centrally controlled action
system, may not be actually realizable in the CSP
implementation of an otherwise equivalent decen-
tralized action system. This question is treated in
detail in other papers (Back and Kurki-Suonio
1984a, 1985, 1987). It sufficies to say here that if
no fairness assumptions are required of the decen-
tralized system, then the above CSP implementa-
tion is always correct.

4 Decentralization method

The decentralization of a centralized action system
proceeds stepwise, taking one action (or some col-
lection of closely related actions) at a time, and
replacing it with a distributed action (or actions)
with the same effect on the original system vari-
ables. As described briefly in the introduction, this
requires adding control variables to the processes
for keeping relevant information about the global
system state, and control actions to keep this infor-
mation up-to-date. The computation done by these
new actions is loosely referred to as the control
computation.

The method to be described does not give an
exact prescription of how the control actions
should be designed in order to distribute an action.
Control computation may be triggered by some
of the main actions in the system, or we may have
a continually running control computation that
periodically updates certain control variables. The
distinction is similar to that between ordinary gar-
bage collection and on-the-fly garbage collection.
We may also have a combination of both kinds
of computations simultancously going on in the
system,

What we will do is to define a general form
for the control computation used to distribute ac-
tions, together with conditions that guarantee that
the resulting new action system is a correct imple-
mentation of the original system. The method we
describe is actually more general than what we
need for the derivation of CSP implementations,
as it can be applied to replace any actions by local
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actions with the same effect. Thus, the replacing
actions need not be separable, and the method
works for actions with more than two processes.

Let S=(y, ./, %) be an initialized action sys-
tem. Each action B in S has the form

B: gu(xp)— yg:=f5(yp).

where xz and y, are subsets of y. Let A be used
to denote an action that we want to distribute in
a distribution step.

The distribution of actions will yield another
initialized action system S'=((y, z), &', '), where
z is a collection of control variables. The compo-
nents of z are local to the processes, which should
be modified to give them suitable initialization. The
actions in the modified system S’ are as follows:

{i) For each action Ae.«/ to be distributed there
is a corresponding action A'e.</";

A LiVasz)—Vas Za=fa(Va) ha(Ya, 24)-

Thus, an action A’ differs from A in that its
enabling condition is local and may depend
on local control variables z,, and that its exe-
cution may also update these control variables.
The effect on the original state variables y,
is, however, unchanged, and the new values
of y, do not depend on the values of z,.

(i) For the other actions Be.o/ there are corre-
sponding actions B'e.s/":

B': gg(xp)—yp, 2p:=fp(Vp), hp(Vs Zp)-

An action B’ thus differs from B only in that
it may, as a side effect, update some control
variables that are local to the processes in-
volved. The enabling condition and the effect
on the original state variables remain un-
changed.

(iii) The new control actions Ce.o/’ have the form

C: gcyesze)—zc=hc(yc, 2¢).

A control action does not affect the old state
variables, although its enabling condition and
the new values of the control variables may
depend on (local) old state variables.

The actions introduced by (i) and (ii) will be
called main actions in order to distinguish them
from the control actions of (iii). If the fairness family
of S is # ={</;}, then the fairness family %’ of
S’ is defined to contain the sets &/} obtained from
o/; by replacing each 4 and B in «/; by the corre-
sponding A’ or B'. According to our conventions,
the set of all actions .7’ also belongs to #'. Notice
that, as &/c.#, then the set of all main actions

also belongs to %', i.e., S’ mut be fair with respect
to main actions.

In addition, we make the following assumptions
for actions A4:

O@sa=<1) in 8, (1)
Oy =gs) S, 2
g nI=3C1, in CS), (3)

where [ 1s some invariant in S’, 1.e,, (}{ in ', and
CS' is the non-initialized action system formed by
the control actions in S'.

Assumption (1) states that whenever the global
guard g, for an action 4 becomes true in the modi-
fied system, the local guard [, for A’ will eventually
become true. Assumption (2) states that the local
condition [, for A’ never becomes true unless the
global condition g, for A holds. Finally, assump-
tion (3) states that the control computation alone,
without any help from main actions B’, is capable
of enabling A’, if the global condition g, for A
holds. The invariant I is introduced to make it
possible to weed out those initial states of CS’ that
cannot possibly occur in any computation in §’,
and hence need not be taken into account in (3).

Notice that the fairness family %' guarantees
that control computations cannot monopolize exe-
cution in §’, so that no main actions ever get done.
One way to impose this property on S’ is to con-
struct the control actions so that no infinite control
computation without intervening main actions is
possible. This is the case if

1= A\ ge (4)

holds in CS’ for some I such that (17 in S’. This
has the advantage that fairness requirements for
the implementation are not accumulated in the
stepwise decentralization of the original system.
(Notice that the control actions of one step become
main actions in the subsequent steps.)

Given a trace t' in ', let a(t’) denote the se-
quence which is obtained from it by removing all
control actions, and by replacing each A" by 4
and B’ by B. It is obvious from the construction
of §’ that, if repetitions due to intervening control
actions are ignored, the sequence of y values gener-
ated by ¢' in S’ is the same as that generated by
t=a(t’)in S. Since only the y component is of inter-
est in the first place, we say that ¢ simulates t.
As t can only refer to variables in y, ' satisfies
all the temporal properties that ¢ satisfies, provided
that the next state temporal operator is disallowed.

The correctness of the decentralization method
is expressed by the following theorem:
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Theorem 1. For the sets of traces T(S) and T(S),
we have T(S)=a(T(S")).

The theorem is proved by the following two lem-
mas:

Lemma 1. T(S)< a(T(S").

Proof. Let te T(S) be an arbitrary execution trace
in S. The construction of a corresponding trace
t'e T(S') with t=a(t') is done by induction.

Assume that we have constructed a simulation
u' of u, a(u')=u, where u is a prefix to t. Initially,
u is empty, and choosing ' also empty gives a
simulation of u. If the next action in r is of type
B then the corresponding B’ must be enabled after
u', so ' B’ is a simulation of uB. If the next action
after uin ¢ is of type A, then A’ need not be enabled
after «', but on account of (3), there is a control
computation v' enabling 4’, so u'v' A’ is a simula-
tion of uA.

This process allows us to construct an admissi-
ble sequence t' that has exactly the same effect on
y as t. We still have to show that ¢ either is a
trace is S’ or can be completed to one by trailing
control actions.

If ¢ is finite, we have to check that ¢’ can either
be made to end properly or be extended with an
infinite but fair control computation. Since ¢ is a
trace, no A or B is enabled in its final state. No
B’ and, because of (2), no A’ can then be enabled
in the end of ¢. There may, however, be control
actions which are enabled. Since these do not mod-
ify the state component y, they cannot enable any
B, and their enabling of some A’ would lead into
contradiction with (2). Therefore, only control ac-
tions are possible after ¢/, so any completion of
t' to a trace simulates .

If ¢ is infinite, we have to check the fairness
of ¢'. If a main action in some «/;e %’ is infinitely
often enabled in ¢, then the corresponding action
in o/;€.# is infinitely often enabled in . (Actions
B and B’ have the same guards; for actions of type
A this follows from (2).) Therefore this action oc-
curs infinitely often in ¢, and hence, the correspond-
ing main action occurs infinitely often in ¢'. This
completes he proof of Lemma 1. []

Lemma 2. a(T(S) < T(S).

Proof. Let 'e T(S') be an arbitrary trace in S’. We
have to show that t =a(t') is a trace in T'(S).

First we check that ¢ is an admissible sequence
of actions in S. This is true, since the guards of
B’ and B are the same, and (2) implies that A is
always enabled when A’ is.

For a finite ¢t we have to show that it ends
properly. In t' there can only occur control actions
after the last main action. If an action 4 would
be enabled in the end of ¢, then g, would hold
during the trailing control computation in S'. Be-
cause of (1), the guard [, of A’ would then eventual-
ly be turned on. If the trailing sequence was finite,
A’ would then be enabled in the end of ¢, as g,
would still hold, and ¢" would not itself be properly
ending; if the trailing sequence was infinite, A’
would be enabled infinitely often (but still not be
executed), and ¢ would not itself be fair with re-
spect to main actions. If an action B would be
enabled in the end of ¢, then B’ would be enabled
in the end of ¢’ and during the trailing control com-
putation, which also leads to contradiction.

Finally, the fairness of an infinite ¢ is guaranteed
by (1) which shows that, if an action of type A4
is infinitely often enabled in ¢, then the correspond-
ing main action is infinitely often enabled in r'.
For actions of type B the same thing is obvious,
since the guards are the same in both systems. This
completes the proof of Lemma 2. []

5 Examples

In this section we shall apply the decentralization
method to the sorting example given in Sect. 2.
More detailed analysis of decentralized action sys-
tems for this problem is given in [1]. We start with
analyzing the operation of the centralized solution.

As for notations, we shall use X, ¥, and Z to
denote the vectors x[il, y[i], and z[i], i=1, ..., n,
respectively. By # and 7 we denote the following
vectors: u[i]=v[i]=y[i] when process P[i] is at
label comp, but u[i]=x[i] and v[i]l=z[i] when
P[i] is at label in. The notation perm(a) will be
used for the set of permutations of a vector a, and
n(a) is the cardinality of the set {(i, j)li<jA
ali]>a[j]}, i.e., the number of exchanges of con-
secutive numbers required to sort a.

The specification of the system will be given
in terms of the processes E[{], which represent its
external behavior. In order to state the desired cri-
teria, let GIVE stand for the predicate indicating
that all E[{] are ready to give a number in the
next list to P[i]:

GIVE: Vj: E[j]atgive,

and, for the ith list of numbers a;, let INIT;, MID;,
and END, describe the situation at the three mo-
ments when all E[i] are ready to give this list,
when some numbers of the list have been given,
and when the sorted version of the list has just



R.-J.R. Back and R. Kurki-Suonio: Decentralization of process nets with centralized control 81

been received, respectively:

INIT;: x=a,~ GIVE,
MID;: x =a; A 1GIVE,
END;: zeperm(a)an(z)=0AINIT,,

The system specification is now

INIT; and
CO[(INIT;=INIT,; Until MID,) A
(MID;=—1GIVE Until END,)].

The first condition simply states that the system
is initially ready to start with the first list @,. The
second condition states that, when the manipula-
tion of the ith list a; has started, then its sorting
will be completed when the system is ready for
the next list, and that this will eventually happen.

5.1 Correctness of action system

The first condition is obviously true because of the
initializations. Let us therefore concentrate on the
other condition. Notice first how s[i] and ¢[{] indi-
cate the current labels of P[i] and E[{]:

INV: (s[i]=t[i]}=(P[i] atin A E[i] at give) A
(s[i]#t[i])=(P[i] at comp A E[i] at take).

Since this is enforced by the initializations and is
preserved by all actions, it is an invariant of the
system, i.e., [JINV holds.

To reflect the way variables s and ¢ are used
in the system we strengthen INIT; and END; in
the proof to

INIT: INIT; AVj: s[j1=s[11=t[j].
END}: END, A INIT}, ,.
INIT] is obviously established by the initializa-
tions. For each @;, INIT; starts the input stage,
characterized by
INEX;: ueperm(a;)

Vi s[jl=s[1]1A3j: s(jl1=tLj]
Only actions IN and EX can be executed in this
stage:
O[INEX;=Vj: —1Enabled(QOUT[j])]

The first action IN turns on the condition MID,
for the rest of the input stage. GIVE is in then
false. With the execution of the last action IN, the
system enters a state where all P[i{] are at label
comp, and all ¢[i] have been complemented. This
starts the output stage, characterized by

EXOUT;: veperm(a;) A
Vjr tld=t[1A3j: sid#ed

which obviously implies 1 GIVE. Only actions EX
and OUT are here possible:

O[EXOUT,;=-Vj: — Enabled(IN[j])].

Only a finite number of these actions can be execut-
ed (each EX decrements n(7) by one). With the
execution of the last action OUT, condition GIVE
becomes true, and END; then holds, which means
that END,; also holds. This completes the proof.

Notice that no fairness assumptions were
needed, as each EX[i] decreases n(#) in the input
stage and n(?) in the output stage. The decentraliza-
tion of the system will be such that all control
computations satisfy (4), and no fairness assump-
tions will therefore be introduced into the decentra-
lized system either.

5.2 Decentralization of IN

It follows from the above proof that s[i] and s[J]
always have the same value when both P[i] and
P[j] are at label in. Hence, the enabling conditions
of all IN[i] are true when all P[i] are at label
in. Action IN[i] remains enabled until executed.
Therefore, decentralized control can be achieved
with control actions that communicate information
about P[i] being at label in.

In order to implement this, we provide each
P[i] with two control variables, leftok[i] and right-
ok[i], which turn true when all P[] for j<i, resp.
j=1i, have entered label in. The required invariants
for these variables are the following:

P[1] atin =leftok[ 1], P[n]atin=rightok[n],
leftok[i] =(P[i]Jatin AVj<i: s[j]=s[i]),
rightok[i]=(P[i]atin AVj>i: s[j]=s[i]).

These invariants are enforced by initializing lef-
tok[i] and rightok[i] to true, and letting IN[i]
turn them false. The only OUT actions that can
safely change them are QUT[1] and OUT[#],
which can set leftok[ 1], resp. rightok[n] to true.

However, in order to prevent IN[i] from turn-
ing leftok[i] and rightok[{] false prematurely, i.e.,
before also leftok[i+ 1] and rightok[i—1] have
been turned on, another pair of control variables,
lready[i] and rready[i], is introduced with the in-
variants

Iready[n] =leftok[n], rready[1]=rightok[1],
i<n=lready[i]=leftok[i+1],
i>1=rready[i]=rightok[i—1].

These are initialized to true, and turned false to-
gether with leftok and rightok by IN.
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The following control actions can then spread
“ready signals” to all other P[i{]:

action LEFTOK[i:1..n—1]

by P[i{]atin, P[i+ 1] atin;

when leftok [i] A —1leftok[i+ 1]

begin
Iready(i], leftok[i+ 1]:=true, true;
lready[i+ 1]:=(i=n—1)
atin, in

end LEFTOK,

action RIGHTOK [i:1..n—1]

by P[i]atin, P[i+ 1] atin;

when —rightok[i] A rightok[i+1]

begin
rready[i+ 1], rightok[i]:=true, true;
rready[i]:=(i=1);
atin, in

end RIGHTOK;

The enabling condition of IN[i] can now be
changed into the local condition

Iready[i] Arready[i]

which implies the original condition, i.e., condition
(2) for the correctness of the decentralization holds.
On the other hand, consider the situation when
s[1]=...=s[n] and P[i] is at label in. When the
system is started, the local condition holds by the
initializations. Otherwise the situation arises when
the initial state is re-entered from the output stage.
Since all P[i] are then at label in, at least leftok[1]
and rightok[n] are true. Therefore, if lready[i] or
rready[i] is not true, there is a control action LEF-
TOK resp. RIGHTOK which is enabled. As only
a finite number of executions of those control ac-
tions is possible before the IN actions, lready[i]
and rready[i] must eventually turn true, i.e. cor-
rectness condition (1) holds. Thus the decentraliza-
tion is correct (conditions (3) and (4} are straight-
forward).

Notice that the variables s[i] have turned into
“ghost” variables that can be deleted without af-
fecting the correctness of the system.

5.3 Decentralization of EX

The enabling condition for EX[i] is local to the
processes P[i] and P[i+ 1] involved. Its imple-
mentation is not possible, however, without nontri-
vial communication, since the relation
yLli]l> y[i+ 1] cannot be evaluated by any of the
two processes alone. We therefore introduce con-
trol actions by which the condition can be modified
into separable form.

The condition could be evaluated in either P[i]
or P[i+ 1], if they would possess up-to-date infor-
mation about each other’s numbers y. We therefore
introduce control variables [ y[i{] and ry[i] for re-
cording the latest avialable information about
yli—1] and y[i+ 1], respectively. Boolean control
variables cleft[i] and cright[i] are used to trigger
control actions by which this information is updat-
ed when required.

When an action EX [i] is executed, the values
of y[i] and y[i+ 1] are updated. Consequently, it
is possible that the enabling conditions for
EX[i—1] or EX[i+1], ie, y[i—1]>y[i] or
y[i+1]> y[i+ 2], become true. Let us consider the
case when the former condition becomes true; the
latter case is analogous. If the new y[i] is smaller
than [y[i], EX[i—1] can be enabled by a local
condition of P[i]. However, as the value of [y[i]
may be outdated, we need the control variable
cleft[i] to indicate the need for updating [ y[i] by
a control action CHECK[i—1].

More precisely, v=j will hold during the out-
put stage, and, in addition, the control variables
for EX are required to satisfy the invariants:

ylil=ly[i+1], ylLi+1]<ry[i],
ylil=1y[i+1] v cright[i],
yli+1=rylilvcleft[i+1],

for i=1,...,n—1. This situation can be achieved
by actions IN setting all cleft[i] and cright[i] to
true, and all [y[i] and ry[i] to the smallest and
largest possible integers, respectively. With the in-
variants it can be easily verified that

h>rylih vyli+11<ly[i+1]) (5)

implies y[i]>y[i+ 1], and that y[i]> y[i+ 1] im-
plies that either (5) holds or else

cright[i] Acleft[i+1]. (6)

This means that we can use (5) to guard EX[{],
and (6) to guard the control action CHECK [i]:

action EX[i:1..n—1]

by P[i] at comp, P[i+ 1] at comp;

when y[i]>ry[i]vy[i+1]<ly[i+1]

begin
vyl y[i+11=y[i+ 1], y[i;
rylil, ly[i+ 1]=y[i+ 1], y[i];
cleft[i], cright[i+ 1]:=true, true;
cright[1], cleft[i+ 1]:=false, false;
at comp, comp

end EX;
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action CHECK [i]

by P[i] at comp, P[i+ 1] at comp;

when cright [i] A cleft[i+ 1]

begin
rylil, Iy[i+1]=y[i+ 1], y[il;
cright [i], cleft[i+ 1]:=false, false;
at comp, comp

end CHECK;

5.4 Decentralization of OUT

In order to recognize the conditions (j<i)=
(E1<yli]) and (> )=(y[j1=y[i]) locally, we
introduce control variables Imax[i] and rmin[i] to
record the maximum y[j] to the “left” of i, and
the minimum y[ ] to the “right” of i, respectively.
In addition, we need control variables islmax[i]
and isrmin[i] to indicate that these values have
been recorded. Finally, the decentralized control
must prevent QU T[{] from being executed before
all those control actions have been performed that
require P[i] to stay at label comp. This leads to
introducing further variables Imaxgiven[i] and rm-
ingiven[i] with the same values as islmax[i+1]
and isrmin[i— 1], respectively.

More precisely, the new control variables are
required to satisfy the following invariants:

P[1]atcomp=-
(islmax[1] A (Imax[1] < y[1]) A rmingiven[1]),

P[n]atcomp=-
(isrmin[n] A (rmin[n] > y[n]) A Imaxgiven[n]),

Vi>1: P[i]at comp A islmax[i]=
(t[]=t[i—1] Aislmax[i— 1] A lmax[i]= maxy[]] A
rmingiven[i]=isrmin[i— 1]),

Vi<n: P[i]atcomp A isrmin[i]=
(t[i=tli+1] Aisrmin[i+ 1] A rmin[i]=min y[j] A
Imaxgiven(i]=islmax i+ 1]). izt

Actions IN can easily enforce these invariants by
proper assignments to the control variables, and
none of the previous actions will ever turn them
false. The required control computations can then
be performed by the following actions that operate
without any special triggering:

action GIVELMAX[i:1..n—1]

by P[i] atcomp, P[i+ 1] at comp;

when isimax [i] A Tislmax[i+1]

begin
Imax[i+1]:=Imax[i] max y[i];
Imaxgiven[i], islmax[i+ 1]:=true, true;
at comp, comp

end GIVELMAX;

action GIVERMINTi:1..n—1]

by P[i] at comp, P[i+ 1] at comp;

when —isrmin[i] A isrmin[i+ 1]

begin
rmin[i]:=rmin[i+ 1] min y[i+ 1];
isrmin[i], rmingiven[i+ 1]:=true, true;
at comp, comp

end GIVERMIN;

Actions EX [i] also have to be modified in order
to preserve the new invariants:

action EX[i:1..n—1]...
when ...
begin

rmin[i]=rmin[i+ 1]min y[i+1];
Imax[i+ 1]:=Ilmax[i] max y[i];
at comp, comp

end EX;

When the guard for OU T'[i] becomes true, the con-
trol actions will eventually turn true all the boolean
control variables involved, so we can replace this
guard by the stronger distributed guard

(Imax[i] < y[{] <rmin[i]) A islmax[i] A
isrmin[i] A Imaxgiven[i] A rmingiven[i].

5.5 Combined actions

In the solution derived above, processes P[i] and
P[i+1] have several common actions at label
comp. It seems, however, undesirable that
CHECK 1], for instance, only updates ry[i] and
Iy[i+ 1], but does not exchange y[i] and y[i+1]
if they are in the wrong order. Actions EX[i],
CHECK[i], GIVELMAX[i], and GIVERMIN [i]
can, however, be easily combined, if each of them
is first modified so that the guard is rechecked in
the action body, and nothing is done if it does
not hold. The combined action can then be given
a guard that is a disjunction of the individual
guards. With this technique we arrive at the follow-
ing solution:

process E[i: 1..n]; var x, z: integer;
label give, take;
begin
x:=i" integer for the first list; at give
end E;

process P[i:1..n];var y,ly, ry, Imax, rmin: integer;
cleft, cright, islmax, isrmin, leftok,
Iready, rready, rightok, Imaxgiven,
rmingiven: boolean;
label in, comp;
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begin
leftok, rightok, Iready, rready =true,
true, true, true;
atin
end P;

action IN[i: 1..n] by E[i{] at give, P[i{] atin;

when lready A rready

begin
y:=x;ly, ry:=small, large;
cleft, cright :=true, true;
Imax, rmin:=small, large;
islmax, isrmin:=(i=1), (i=n);
Imaxgiven, rmingiven:=(i=n), (i=1);
lready, rready:=false, false;
leftok, rightok -=false, false;
at take, comp

end IN;

action EXX[i:1..n—1]
by P[i] at comp, P[i+ 1]at comp;
when y[{]>ry[i]lvyli+1]<Iy[i+1]vVv
cright[i]acleft[i+1] v
islmax[i] A—islmax[i+1] v
—isrmin[i] A isrmin[i+ 1]

begin
if y[i]1>y[i+ 1] then
begin
yl yLi+1]=yli+ 11, y[il;
cleft[i], cright[i+ 1]:=true, true;
end;

rylid, yli+1]=y[i+ 1], y[il;

cright[i], cleft[i+ 1]:=false, false;

Imax[i+ 1]:=Imax[i] max y[i];

islmax [i+ 1], Imaxgiven[i]:=
islmax[i], islmax[i];

rmin[1]:=rmin[i+ 1] min y[i+1];

isrmin[i], rmingiven[i+ 1]:=
isrmin[i+ 1], isrmin[i+1];

at comp, comp

end EXX;

action OUTT[i: 1..n] by E[i] at take, P[{] at comp;
when y > Imax A y <rmin A islmax A
isrmin A Imaxgiven A rmingiven
begin
z:=y; x:=i"" integer of the next list;
leftok, rightok:=(i=1), (i=n);
at give, in
end OUT;

action LEFTOKT[i:1..n—1]
by P[i]atin, P[i+ 1] atin;
when leftok [i] A —leftok[i+ 1]

begin
Iready[1], leftok[i+ 1]:=true, true;
Iready(i+ 1}:=(i=n—1);
atin, in

end LEFTOK;

action RIGHTOK [i:1..n—1]

by P[i}atin, P[i+ 1] atin;

when —rightok [i] A rightok[i+ 1]

begin
rready[i+ 1], rightok[i]:=true, true;
rready[i]:= (i=1);
atin, in

end RIGHTOK.

Variables s and t have been deleted, as they are
no longer needed. Some other minor simplifica-
tions have also been made in deriving this action
system.

5.6 Implementation in CSP

Finally we shall show how the resulting action sys-
tem looks when implemented using the communi-
cation primitives of CSP. As already mentioned,
this can be done mechanically, as all guards are
local and separable. The constructors needed for
proper matching of communication commands are
a toj. (Same constructors are used for similar com-
munication events between different pairs of pro-
cesses.) Variables yy, m, is are used in P for storing
the values received in the communication.

process E[i: 1..n]; var x, z: integer;
label give, take;
begin
x:=i" integer of the first list;
give: P[i]!a(x);
take: P[i]? b(2);
x:=i" integer of the next list;
at give
end E;

process P[i:1..n};
var y, [y, ry, Imax, rmin, yy, m: integer;
cleft, cright, islmax, isrmin, leftok,
Iready,rready, rightok, Imaxgiven,
rmingiven, is: boolean;
label in, comp;

procedure leftpart;
begin
Pli+ 177 (yy, m,is);
ify>yy—y,yy=yy,y; cleft:==true
orif y<yy—sskip
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fi;

ry:=yy; cright:=false;

rmin:=m min yy;

isrmin:=is; Imaxgiven:=islmax
end leftpart;

procedure rightpart;

begin
P[i—1]!(y, rmin, isrmin);
ifyy>y-—yy, y=y,yy;cright:=true;
orif yy <y-—skip
fi;
ly:=yy; cleft:=false;
Imax:=m max yy;
islmax =is; rmingiven :=isrmin

end rightpart;

begin
leftok, rightok, lready, rready :=true,
true, true, true;

in:
if lready A rready; E[i]? a(y)—

ly, ry:=small, large;

cleft, cright:=true, true;

Imax, rmin:=small, large;

leftok, rightok, Iready, rready =
false, false, false, false;

islmax, isrmin:=(i= 1), (i=n);

islmaxgiven, rmingiven:=(i=n), (i=1);

at comp

orifi<nnleftok; P[i+1]'h()
—slready:=true; at in

orifi>1A—leftok; P[i—1]? h()
—sleftok, lready:=true, (i=n); at in

orifi<nA—rightok; P[i+1]'j()
—srightok, rready:=true, (i=1); at in

orifi>1Arightok; P[i—1]7j()
—rready:=true; atin

fi;

comp:

ifi<nay>ry; PLi+ 1]!c(y, Imax, islmax)
-—s leftpart; at comp

orifi >1;P[i—1]7c(yy, m,is)
-—rightpart; at comp

orifi <n; P[i+1]'d(y, Imax,islmax)
—sleftpart; at comp

orifi >1Ay<ly,P[i—1]7d(yy, m,is)
-—rightpart; at comp

orifi <nnAcright; P[i+1]!e(y, Imax, islmax)
—>sleftpart; at comp

orifi>1 Acleft; P[i—1]?e(yy,m,is)
-—rightpart; at comp

orifi <nnaislmax; P[i+1]! f(y, Imax, islmax)
-—s leftpart; at comp

orifi >1A—islmax; P[i—1]? f(yy, m,is)
-—rightpart; at comp

orifi <nA—isrmin; P[i+1]! g(y, Imax, islmax)
-—s leftpart; at comp

orifi > 1 Aisrmin; P[i—1]? g(yy, m,is)
-—rightpart; at comp

orif y > Imax A y <rmin A islmax
A isrmin A lmaxgiven A rmingiven
— E[i]'b(y);

leftok, rightok:=(i=1),(i=n); atin
fi

end P.

6 Concluding remarks

Let us first briefly summarize the main new contri-
butions of this paper.

1.

The action system approach as a way to de-
scribe distributed systems and as a conceptually
simple basis for stepwise refinement of distrib-
uted programs is presented. The formalism is
motivated by the simplicity of the proof theory.
The temporal logic approach of Manna and
Pnueli (1983), Pnueli (1986) can be used as such
to prove properties of action systems.

A method by which control in a distributed
program can be refined in a stepwise manner,
by adding control variables and control actions
and adapting the existing actions to utilize the
information gathered by these, is formalized
and the conditions under which this method
preserves temporal correctness are given. The
method supports stepwise refinement of a dis-
tributed system, starting from a rather high lev-
el description, where the processes are assumed
to have information about the global state of
the system, and then gradually changing this
to a system where processes only utilize the in-
formation that they have available in their own
local variables.

A method by which a decentralized action sys-
tem can be atomatically translated into a CSP
program (with output guards) is described.

This paper was first presented at the 2nd ACM

Conference of Principles in Distributed Computing
in Montreal 1983 (Back and Kurki-Suonio 1983).
Since then, a number of other researchers have also
taken up the issues considered here (in some cases
unaware of the results described above). We will
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below briefly describe the main developments
along these lines.

Chandy and Misra (Chandy 1985; Chandy and
Misra 1986, 1988) have proposed a very similar
method to describing distributed systems as our
actions systems, which they call UNITY. They bas-
ically view a distributed system as a collection of
(conditional) assignment statements. This is equiv-
alent to our mathematical model for action sys-
tems. There are some differences in the way in
which they understand the execution of an action
system, which means that they will have a some-
what weaker fairness notion than the one we use.
They have developed the assignment statement for-
malism so that it is also suitable to describe syn-
chronized parallel algorithms, of the kind used in
VLSI-design (a similar approach is also studied by
Martin and Tucker (1987). They have also devel-
oped a variant of the temporal logic proof theory
that is specially engineered to reasoning about the
behaviour of their systems, and which seems well
suited to reason about action systems also, with
some minor modifications. They have applied this
approach to a large number of classical program-
ming problems in distributed systems, thus show-
ing the power and versatility of the action based
approach. A somewhat similar approach, based on
the notion of events, is put forward by Shankar
and Lam (1987) and applied to the description of
distributed systems with real-time constraints.
Other approaches similar to the action system ap-
proach are the Raddle approach (see Evengelist
et al. 1987 for an overview) and work by Ramesh
and Mehndiratta 1987. In the latter approaches,
the emphasis is more on the actions as a means
for coordinating an arbitrary number of processes
in a joint communication. This view of action sys-
tems is also taken in Back et al. (1985).

The method for stepwise refinement of control
that we have analyzed here has previously been
used in different case studies of constructing dis-
tributed algorithms in connection with problems
such as termination detection (Dijkstra 1980; Fran-
cez 1980), algorithms for detecting deadlock
(Chandy et al. 1983) and for taking global snap-
shots (Chandy and Lamport 1985). Chandy and
Misra (1986) also use it explicitly as a method for
stepwise refinement of distributed programs. They
have a somewhat different approach to stepwise
refinement, as they concentrate on refining the
specification of the distributed system rather than
the program description itself. A similar approach
to stepwise refinement is also described in Back
and Kurki-Suonio (1984a). The technique used in
McCurley and Schneider (1986) is also along these

lines. The guards used at one step are not imple-
mentable because they make use of global state
information. Control computations are therefore
added to gather the necessary information into the
local variables of the processes and the original
guards are replaced by new guards that only use
this local information.

The approach described in this paper for step-
wise refinement has recently gained popularity as
a modularization method for distributed programs,
referred to as superposition. The program is seen
as being constructed in layers, where each higher
layer consists of control computations that do not
interfere with the more basic computations of the
lower layers. This modularization technique has
been described, with somewhat differing ap-
proaches, by Katz (1987), Bouge and Francez
(1988) and Chandy and Misra (1988). The last two
approaches do not permit control computations
to assign to variables in the base algorithm. Katz
(1988) takes a different view of superimposition,
by also allowing the variables in the original algo-
rithm to be modified by the control computation,
although in a controlled way.

The implementation of action systems has also
received attention. The main shortcoming of the
method proposed here is that it assumes CSP with
output guards. The presence of output guards
makes this language difficult to implement in a dis-
tributed fashion (see e.g., Buckley and Silberschatz
1983). The main problem is how the process should
reach agreement about which actions to be execut-
ed when two or more conflicting actions are en-
abled. In Back and Kurki-Suonio (1984b), Back
et al. (1985) and Back and Kurki-Suonio (1987),
we show how to solve this problem for actions
with an arbitrary number of processes on broad-
casting networks using broadcasting protocols
such as CSMA/CD. This shows that there are effi-
cient implementations of action systems. The prob-
lem of implementing action systems on point-to-
point networks has been considered by other au-
thors (Eklund 1985; Ramesh 1987; Bagrodia 1987).
It is also discussed by Chandy and Misra (1988),
who refer to it as the committee coordination prob-
lem.

Another interesting aspect of implementing ac-
tion systems is how to guarantee the fairness as-
sumptions needed to prove the liveness properties
of the systems. The problem of guaranteeing fair-
ness by distributed implementations was first con-
sidered in Back and Kurki-Suonio (1984b) and is
further studied in Back and Kurki-Suonio (1985,
1987). Essentially the same problem, in the context
of CSP implementations, is studied in Grumberg
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et al. (1984) and is also discussed in Francez (1986).

Another recent paper on this topics is Apt et al.
(1987).
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