Distributed Cooperation with Action Systems

R. J. R. BACK
Abo Akademi
and

R. KURKI-SUONIO
Tampere University of Technology

Action systems provide a method to program distributed systems that emphasizes the overall behavior
of the system. System behavior is described in terms of the possible interactions (actions) that the
processes can engage in, rather than in terms of the sequential code that the processes execute. The
actions provide a symmetric communication mechanism that permits an arbitrary number of processes
to be synchronized by a common handshake. This is a generalization of the usual approach, employed
in languages like CSP and Ada, in which communication is asymmetric and restricted to involve only
two processes. Two different execution models are given for action systems: a sequential one and a
concurrent one. The sequential model is easier to use for reasoning, and is essentially equivalent to
the guarded iteration statement by Dijkstra. It is well suited for reasoning about system properties
in temporal logic, but requires a stronger fairness notion than it is reasonable to assume a distributed
implementation will support. The concurrent execution model reflects the true concurrency that is
present in a distributed execution, and corresponds to the way in which the system is actually
implemented. An efficient distributed implementation of action systems on a local area network is
described. The fairness assumptions of the concurrent model can be guaranteed in this implementa-
tion. The relationship between the two execution models is studied in detail in the paper. For systems
that will be called fairly serializable, the two models are shown to be equivalent. Proof methods are
given for verifying this property of action systems. It is shown that for fairly serializable systems,
properties that hold for any concurrent execution of the system can be established by temporal proofs
that are conducted entirely within the simpler sequential execution model.

Categories and Subject Descriptors: C.2.4 [Computer Communication Networks]: Distributed
Systems; D.1.3 [Programming Techniques]: Concurrent Programming; D.3.3 [Programming
Languages|: Language Constructs—concurrent programming structures; F.3.1 [Logics and Mean-
ings of Programs)]: Specifying and Verifying and Reasoning about Programs

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Broadcasting networks, distributed systems, fairness, guarded
commands, handshaking mechanisms, models of concurrency, multiprocess communication, program-
ming languages, program verification, scheduling, temporal logic, true concurrency

1. INTRODUCTION

The behavior of a distributed system is usually described in terms of a collection
of communicating processes. Each process carries out a sequential piece of
program and interacts with the other processes by sending and receiving

Authors’ addresses: R. J. R. Back, Abo Akademi, Department of Computer Science, Lemminkaisen-
katu 14, SF-20520 Abo, Finland; R. Kurki-Suonio, Tampere University of Technology, Computer
Systems Laboratory, P.O. Box 527, SF-33101 Tampere, Finland.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1988 ACM 0164-0925/88/1000-0513 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988, Pages 513-554.

514 . R. J. R. Back and R. Kurki-Suonio

messages. Message passing can be synchronized, as in CSP [25], Occam [27], or
Ada [1], or it can be asynchronous, as is usually the case in computer networks.
This approach can be implemented by standard techniques, and has proved useful
in designing distributed systems.

A problem with the process-based approach is that it can be difficult to get a
picture of the overall behavior of the system. Processes may interact in unex-
pected ways, and the number of potential interactions to be considered is usually
quite large. This is reflected in proof rules for process-based programs, which
tend to be cumbersome and intricate. In this paper we consider another approach
to describing distributed systems, which is dual to the process approach: The
behavior of the system is described in terms of the possible interactions that may
occur between the processes during execution. We refer to these interactions as
actions, and call a description of the system in terms of interactions an action
system. By focusing on the interactions that may occur, it is easier to design the
overall behavior of the system. On the other hand, it becomes harder to implement
such a system in a distributed fashion; so there is a trade-off involved.

The action system approach was first introduced in [5], where it was applied
to the stepwise refinement of distributed algorithms. A CSP implementation was
given for the special case of two-process actions. The semantic and proof theoretic
issues involved in action systems, with special emphasis on fairness issues, were
studied in a subsequent paper [7]. The work reported here is an extension of that
paper. A case study of applying the mechanism in the systematic derivation of a
correct distributed algorithm is given in [6]. Efficient implementations of action
systems are described in [7] and [4]. A more detailed study of fairness in action
systems is given in [8].

1.1 Informal Presentation of Action Systems

An action system is similar to a production system such as OPS5 [19], i.e., it is
a collection of productions that are executed repeatedly, as long as possible.
Another similar construct is the guarded iteration statement [15]

do guard, — statement,[. .. Oguard, — statement, od,

which has the same basic execution mechanism: guarded statements are executed
repeatedly, as long as some guard is true. The main difference between action
systems and these other language mechanisms is in the way they are executed:
guarded commands and production systems are designed for sequential execution,
whereas an action system is designed for concurrent execution by a collection of
independent communicating processes.

An action system consists of a collection of processes and a collection of actions.
A process is of the form

process p:var y,; statement,.
The variables y, stand for the local variables of process p, while statement, assigns
initial values to these variables. The local variables together constitute the global

state y of the action system.
An action is of the form

action a by processes,:guard, — statement,.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 515

This states that action a may be executed jointly by the processes in the set
processes,, provided that guard, is satisfied and the processes are not participating
in other actions (the action is then said to be enabled). Executing the action
changes the program state in the way described by statement,. We refer to the
statement as the body of the action. The guard and the body of an action may
only refer to local variables of the processes participating in the action, i.e., to
the set of variables y, = U{y, | p € processes,}.

In order to allow a distributed implementation of action systems, we will
require that the guards in actions are separable. This means that the guard is a
Boolean condition where each atomic predicate refers to local variables of only
one process. The truth of each atomic predicate in the guard can then be
determined by some process participating in the action by inspecting only its
own local variables. As an example, the guard

xz0ANy=s2)Vw=0

contains the atomic predicates x = 0, y < z and w = 0. It is separable if the local
variables y and z belong to the same process, otherwise it is not.

The execution of an action system proceeds by repeatedly executing individual
actions, as long as there are actions that are enabled. No process may participate
in more than one action at a time. As long as this restriction is obeyed, any
number of actions may be executed in parallel. An action that is executed by two
or more processes together is referred to as a joint action, because the processes
have to cooperate to achieve the effect of the action. An action that is executed
by one process only is referred to as a private action, because it can be carried
out by that process alone, without cooperation with other processes.

Example 1. Let us consider the Dining Philosophers problem as an example
of an action system. A diagram of this system is given in Figure 1. The action
system consists of n philosopher processes and n fork processes, n = 2, declared
as follows:

process Philosopher[i:1 .. nJ;
var hungry:boolean;
hungry := false;

process Fork[i:1..n];

A set of processes may be declared by appropriate indexing, as shown by the
example. Each philosopher process has a local variable hungry, initialized to
false, to indicate whether he is hungry or not. The fork processes do not have
any local variables at all, as they are used purely for synchronization. The global
state thus consists of the variables Philosopher[i].hungry,i=1,...,n.

There are two kinds of actions in the system, thinking actions and eating
actions. The thinking actions are

action Thinking[i:1 .. n] by Philosopher|i]:
=1 Philosopher{i].hungry —
Think;
Philosopher|il.hungry := true;
Thinking[i] is a private action by philosopher Philosopher[i]. It is enabled if the
philosopher is not hungry. Executing the action results in some unspecified

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

516 . R. J. R. Back and R. Kurki-Suonio

Philosopheri] Philosopher{i+1]

I Thinking]i] | IThinking[i+1] |

Fig. 1. Dining philosophers.

thinking being done, after which the philosopher becomes hungry again. Each
philosopher will thus repeatedly become hungry, as the thinking actions always
terminate.

The eating actions are

action Eating[i:1 .. n] by Philosopher[i], Fork[i], Fork[i + 1]:
Philosopher(i].hungry —
Eat;

Philosopher(i].hungry := false;

Eating[i] is a joint action by Philosopher[i] and his left and right forks, Fork|[i]
and Fork[i + 1]. The action is enabled when the philosopher is hungry. The
action body consists of an unspecified eating part followed by an assignment that
makes the philosopher nonhungry. We assume here and in the sequel that all
index arithmetic is modulo n, so i + 1 above stands for i mod n + 1.

Mutual exclusion and freedom from deadlock are here guaranteed by the action
mechanism: a fork can only be engaged in one action at a time, so an eating
action can only take place when the philosopher is hungry and the two forks are
simultaneously available. Individual starvation is, however, possible: a philoso-
pher will starve if his two neighbors keep eating alternatingly.

1.2 Communication in Action Systems

In the above example the processes are synchronized by the eating actions.
However, no transfer of information actually takes place here. To illustrate this,
as well as more intricate synchronization between processes, let us add a token-
passing mechanism by which individual starvation can be prevented.

Example 2. We add to each fork process a local Boolean variable token, which
is true when the fork has the token. The fork process is now

process Fork[i:1 - .. n]j;
var token:boolean;
token := (i =1);

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988,

Distributed Cooperation with Action Systems . 517

Initially, the token is at Fork[1]. The eating action is changed to

action Eating[i:1 - .- n] by Philosopher[i], Fork[i], Fork[i + 1]:
Philosopher(i].hungry A 1 Fork[i + 1].token —

Eat;

Philosopher(i].hungry := false;

if Fork[i].token

then Fork[i].token, Fork[i + 1].token := false, true;

This mechanism will prevent the philosopher whose right fork has a token from
eating, thus giving his right neighbor a chance to eat. The eating action will pass
the token from the left to the right fork of the philosopher, if there is a token at
the left fork. The synchronization of the eating action now involves conditions
on local variables in both the philosopher process and in the right fork process.

The example illustrates how process communication is implicit in the guard
and in the action bodies. The processes are synchronized by the guard: the eating
action, for instance, is only executed if the philosopher is hungry, the forks are
available, and the right fork does not have a token. An arbitrary number of
processes may be synchronized by a joint action: the eating action synchronizes
three processes. Information transfer is achieved with the action body: executing
the eating action passes the token from the left fork to the right fork. No explicit
synchronization or communication primitives are needed in the language.

Transfer of information is symmetric in the action system mechanism, in the
sense that all processes participating in an action are treated in the same way.
Each process can use the local variables of the other processes to update their
own local variables. Usually processes in a communication event are treated
asymmetrically. In CSP, for instance, information is only transferred from the
sender to the receiver. In Ada, input information is transferred from caller to
callee, while output information is transferred from callee to caller.

Another difference has to do with the possibility to choose between alternative
communications. In the original CSP [25] and in Occam, this is restricted to the
receiver (unless output guards are allowed), in Ada to the callee. (The restriction
on output guards is removed in [26], in which CSP is treated from a proof and
model theoretic point of view, and where implementation efficiency therefore is
not a prime concern.) In action systems, each process can be involved in many
different actions, any number of which can be simultaneously enabled. Each
process involved in an action may thus be in a position to choose between
alternative actions. The communication mechanism is thus symmetric also in
this aspect. The action mechanism can therefore be characterized as a generali-
zation of the communication mechanisms of CSP and Ada to symmetric multi-
process handshaking. This communication mechanism can be implemented in an
efficient manner, as shown in Section 3 below.

1.3 Reasoning about Action Systems

The close resemblance of action systems to the guarded iteration statements and
production systems suggests that one could reason about the behavior of an
action system as if it were executed in a sequential manner. Actions would be

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

518 . R. J. R. Back and R. Kurki-Suonio

executed one at a time, such that at each step one of the enabled actions would
be chosen nondeterministically and executed to completion before selecting the
next action. This is the way in which the guarded iteration statement is executed.
The advantages of being able to use this abstraction would be considerable.
The sequential execution model is simpler to reason about, and it has a well-
developed proof theory. For action systems that are intended to terminate one
can use Hoare logic [24] or the weakest precondition technique of Dijkstra [15].
For continually running action systems (reactive systems, in the terminology of
Pnueli [32]), temporal logic provides a suitable framework for reasoning, along
the lines of Manna and Pnueli [31].

The main problem to be considered in this paper is to what extent such a
simple sequential (and nondeterministic) execution model can be used in reason-
ing about actions systems, when the actions are in fact executed in parallel, in a
distributed fashion. The two models of execution lead to different views of when
an action can be considered enabled. In a sequential execution an action is
enabled if its guard is true. In a concurrent execution this is not sufficient; we
must also require that all processes needed for the action be free to participate
in it (i.e., they are not engaged in any other concurrently executing action).

This difference shows up in the different notions of fairness that one might
reasonably expect to hold for an execution. If actions are executed in a sequential
manner, then fairness for actions means that if the guard of an action is infinitely
often true, then the action is infinitely often executed. We refer to this notion of
fair sequential execution as action fairness. As an example, action fairness for
the eating actions in Example 1 is sufficient to guarantee absence of individual
starvation: each philosopher that becomes hungry will sooner or later be able to
eat.

If actions are executed in a concurrent and distributed manner, then the
fairness notion becomes the following: If infinitely often the guard of an action
is true and all processes needed for the action are free to participate in it, then
the action is infinitely often executed. We refer to this notion of fair concurrent
execution as handshake fairness. An even weaker notion of fairness requires only
that processes are treated fairly: a process that infinitely often is able to
participate in some action should infinitely often do that. This is referred to as
process fairness. Sequential and concurrent executions thus have different notions
of fairness, and hence properties that hold for sequential executions of action
systems need not be valid for concurrent executions of the same action systems.

Handshake fairness for the eating action in Example 1 above would mean the
following: If infinitely often the eating action is enabled (the philosopher is
hungry and both his forks are free), then the eating action will take place
infinitely often. Handshake fairness is not sufficient to prevent individual star-
vation. If the two neighbors of a philosopher eat alternately, such that at each
moment one of the neighbors is eating, then there is never any moment when
the philosopher in the middle has both forks simultaneously available. The
computation is handshake fair, even if the philosopher never gets to eat.

Process fairness for the philosophers in Example 2 means that if infinitely
often the philosopher is free to engage in some action (eating or thinking), then
it will infinitely often participate in some action. In the example, process fairness

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 519

is sufficient to guarantee that the philosopher gets to eat infinitely often (assum-
ing that eating and thinking actions are always finite).

1.4 Overview of Paper

The content of the rest of the paper is as follows. Action systems are defined
formally in the next section. We define execution of an action system in a way
that corresponds to the execution of guarded iteration statements. We refer to
this execution model as the sequential execution model. We will show how to
prove properties of action systems in the temporal logic framework. For liveness
properties we assume action fairness for specific actions.

The implementation of action systems will be described in Section 3. We first
present a concurrent execution model. This model corresponds to a parallel and
distributed execution of actions in a system. We will show how this model can
be implemented in a distributed fashion. As a concrete example we consider the
implementation of this execution model on a local area network with reliable
broadcasting. All processes are assumed to receive the broadcast messages in the
same order. The unique ordering of messages makes it possible to build an
efficient distributed execution mechanism for actions. We show that the imple-
mentation is correct with respect to the concurrent execution model.

Two different execution models for action systems are thus given, the sequen-
tial model in Section 2 and the concurrent model in Section 3. The sequential
model is the one we want to reason about, while the concurrent model is the one
that we are able to implement efficiently in a distributed fashion. The relationship
between these two models is studied in Section 4. The main problem considered
is the following: to what extent can the abstraction of sequential execution be
kept up when execution is actually done according to the concurrent execution
model? In other words, to what extent are properties that hold for a sequential
execution of an action system valid also for a concurrent execution of the action
system?

We show that as far as safety properties go, this abstraction can be preserved
without problems. However, for liveness properties this is not the case, because
the notion of fairness that we want to use in the sequential model (action
fairness) is stronger than the fairness notions that are reasonable in the concur-
rent execution model (handshake fairness or process fairness). The latter notions
are restricted by what can be guaranteed in a distributed system without intro-
ducing a centralized scheduling mechanism for actions.

This leads us to study the fairness notions in the two execution models in more
detail. Computations in the concurrent execution model will be shown to simulate
the computations in the sequential execution model. This allows us to relate the
computations in the two models to each other, and to define action fairness for
computations in the concurrent model. We will say that an action system is fairly
serializable, if action fairness is guaranteed by handshake or process fairness in
the concurrent execution model. If the action system is fairly serializable, then
each fair computation in the concurrent model simulates an action fair compu-
tation in the sequential execution model.

We will define subclasses of action systems that are fairly serializable. These
subclasses are defined both by static properties of action systems and by dynamic

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

520 . R. J. R. Back and R. Kurki-Suonio

properties of the execution of action systems. The former can be established by
proving properties of the guards and bodies of individual actions, the latter by
proving that the execution of the action system satisfies certain temporal logic
formulas. In practice, proving that a certain action system is fairly serializable
amounts to proving that certain forms of conflicts and conspiracy among
processes cannot occur during execution of the system.

In Section 5 we then consider how to prove properties of concurrent executions
of action systems. We want to establish these properties by reasoning only about
sequential executions of action systems. For safety properties this does not
present any problem, as each safety property that holds for sequential execution
of an action system will also hold for concurrent execution of this system.
Liveness properties are proved in two stages. One first proves that any sequential
execution satisfies the required liveness property, assuming that the necessary
assumptions about action fairness are valid. One then proves that these fairness
assumptions hold in a concurrent execution, by proving that the action system
is fairly serializable for these actions.

We will also show that in the latter case it is sufficient to consider only
sequential executions of action systems. By introducing the notion of serializa-
bility we are thus able to establish both safety and liveness properties of
distributed executions of an action system using only the sequential execution
model in our reasoning. We may thus ignore that the action system is, in fact,
executed in a distributed fashion.

The concept of a global state is well defined in the sequential and concurrent
execution models, but it is not clear what it really corresponds to in an actual
distributed execution of an action system, i.e., whether the global states of a
concurrent computation can in fact be observed in a real distributed implemen-
tation of the action system. We will analyze this issue more closely and show
that if a temporal property holds in the concurrent execution model of an action
system, then the property can also be observed to hold in an actual distributed
execution of the system.

2. ACTION SYSTEMS

We will here define more precisely what an action system is and how it is
executed. We will use the temporal logic framework of Manna and Pnueli [31]
to define action systems and their executions.

A transition system is a quadruple (2, Z° T, .7) consisting of a set of states
2, a set of initial states £° C X, a finite set of transitions T, and a fairness family
F =\{F,, ..., F,}, F;C T. Each transition ¢t € T is a partial function t: £ — Z.
Transition ¢ is said to be enabled in a state ¢ € 2, if t (¢) is defined.

A computation in a transition system is a finite or infinite sequence ¢ of the
form

ty t ¢

2 i
C: 6g—> 0, —> -+ 0.1 —>0; -+, 0;EZ, tLET,

which satisfies the following four conditions:

(1) The computation is properly initialized, i.e., 6, € =°.

(2) The computation is admissible, i.e., for each transition ¢; in ¢, t; is enabled in
oi-1, and t;(o;—1) = 0.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 521

(3) If finite, the computation is properly ending, i.e., no transition in T is enabled
in the final state o,..

(4) If infinite, the computation is fair with respect to each fairness set F € &.
This means that the following condition holds: If ¢ contains an infinite
number of states ¢; in which a transition ¢t € F is enabled, then ¢ contains an
infinite number of transitions in F.

One could also impose the weaker requirement of justice (or weak fairness)
with respect to certain sets of transitions [31]. For simplicity we only deal with
fairness in this paper.

2.1 Formal Definition of Action Systems

An action system is a tuple S = (Proc, Act, Var, Init, Actions) where the
components are as follows:

(1) Proc is a nonempty set of process names.
(2) Act is a nonempty set of action names.

(3) Var = {y,|p € Proc} is a partitioning of the program variables into local
variables y, of the processes p € Proc. We write y = UVar for the set of all
program variables in the system.

(4) Init is a collection of process initialization statements S,(y,), p € Proc, that
assign initial values to the local variables y,.

(5) Actions is a collection of actions of the form
action a by Proc,: g.(v.) = S.(y.), a € Act.

Here Proc, C Proc is the set of processes participating in the action a,
¥« = U{y,|p € Proc,} is the set of local variables of these processes, the
Boolean condition g.(y,) is the action guard, and the statement S,(y.)
is the action body.

We will assume that all initialization statements S, and action bodies S, are
deterministic. Initialization statements are assumed to always terminate, while
action bodies are assumed to terminate whenever the guard is satisfied. In the
sequel we usually model the effect of an initialization statement S, by an
assignment y, := c,, where c, is some list of constants that matches the list of
variables y,. Similarly, we will model the effect of an action body S, by an
assignment v, := f,(y.), where f, is some (list of) function(s) that gives the effect
of executing the action body.

An action system S may be constrained by an initial condition Q on the program
variables, which must be established by the initialization of the action system.
Processes without initialization statements may assign any initial values to their
local variables that are consistent with the given initial condition. If no initial
condition is indicated, then it is assumed to be true.

A guard of the form g(y,), p € Proc, is called a local guard of p, as it only refers
to the local variables of process p. A guard is said to be separable if it is a Boolean
combination of local guards. An action system is said to be separable if each
action guard in the system is separable. Separability makes it easier to implement
action systems in a distributed fashion, as shown in Section 3. The semantic and

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

522 . R. J. R. Back and R. Kurki-Suonio

proof theoretic analysis does not depend on this assumption, so it will only be
made in that section.

The sequential execution model for an action system S, assuming action fairness
for the actions in A C Act, is the transition system Segs(A) = (Z,, Z3,T, F)
where

(1) each state ¢ € Z, is an assignment of values to the program variables y, i.e.,
o:y — D for some fixed domain of values D.

(2) =9 is the set of all initial states o, such that ¢0(y,) = ¢, for each p for which
an initialization statement y, := ¢, has been provided in Init,

(3) T = {act,|a € Act} is a set of action transitions, and
(4) #4 consists of all singleton sets {act,}, a € A.

An action transition act,: Z,— Z, is enabled in a state ¢ € 2, if the guard g.(y.)
of action a is true in o. It maps the values of the program variables v, to f.(y.),
leaving the other program variables unchanged. If an initial condition @ is given,
then the set of initial states is further restricted to those states o, that satisfy Q.

A computation c in Seqs(A) is said to be action fair for action a, if ¢ is fair with
respect to {act,}. By definition, each computation of Seqs(A4) is action fair for
every action in A.

Action fairness is a strong requirement. In our first example, action fairness
for eating actions is sufficient to prevent a philosopher from starvation. If
Philosopher[i] is hungry, then the eating action will be enabled, and it stays
enabled until the philosopher has eaten. Action fairness requires that the philos-
opher will eat sooner or later.

No concurrency is involved in the sequential execution model. It is therefore
the easiest way of thinking and reasoning about action systems. Actions are
executed one at a time, starting from a given initial state, as long as there are
enabled actions to execute. At each stage, one of the enabled actions is chosen
nondeterministically for execution. The computation terminates when there are
no enabled actions any more. This, in essence, is the way in which the guarded
iteration statement of Dijkstra is executed. The difference is that we are also
interested in infinite computations, in which case we also require action fairness
of the computation, i.e., we require that the alternatives in the guarded iteration
statement must be chosen in a fair manner [21].

2.2 Proving Properties of Sequential Executions

We will here show how to prove properties of action systems within the temporal
logic framework. The actions are identified with the transitions in the sequential
execution model. Hence one reasons about the behavior of an action system
directly in temporal logic, by considering all possible sequences of actions, subject
to the given action fairness constraints. The proof rules and proof methods of
[31] carry over directly to action systems, and can be used as such in establishing
their temporal properties. (Other expositions of the temporal logic approach are
given in [28, 32].) This close correspondence with the temporal logic framework
is one of the main advantages of and motivations for using the sequential
execution model for action systems.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 523

. Fork[i] ———Ea_un_g[—i]_—_'—Fork[in] Eating[i+1] Forkli+2] . ..

Philosopher]i] Reserveli+1] Philosopheri+1]

I Thinkingli] l lThinking[i+1] I

Fig. 2. Dining philosophers with reserve actions.

Example 3. We consider the solution with token passing in Example 2, but
modify it in such a way that a philosopher has to give preference to his right
neighbor only when the latter has made a reservation for his left fork by a special
reserve action. When the token eventually arrives at this fork, the left neighbor
is then forced to give the right neighbor a chance to eat, provided that the latter
has not eaten since he reserved the left fork. The resulting action system is
illustrated in Figure 2.

The philosopher processes are as before, while the fork processes are extended
with local variables for the reservation. Initially the first fork has the token, and
no fork is reserved.

process Philosopher[i:1 .. n];
var hungry: boolean;
hungry := false;

process Fork[i:1.. n];
var token, reserved : boolean;
reserved := false;
token := (i = 1);

The thinking action is unchanged, while the eating action must be adapted to
take token passing and reservations into account. An additional action is intro-
duced by which a philosopher reserves his left fork.

action Thinking[i:1 .. n] by Philosopher[i]:
—1Philosopher|i].hungry —
Think;
Philosopher(i].hungry = true;
action Reserve[i:1 .. n] by Philosopher[i], Fork[i]:
Philosopher(i).hungry N 7 Fork[i].reserved —
Fork[i].reserved := true;
action Eating[i:1 .. n] by Philosopher[i], Fork|[i], Fork[i + 1]:
Philosopher(i].hungry N —(Fork[i + 1].token A Fork[i + 1].reserved) —
Eat;
Philosopher[i].hungry := false;
if Fork[i].token
then Fork[i].token, Fork[i + 1).token := false, true;
Fork[i).reserved := false;

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988,

524 . R. J. R. Back and R. Kurki-Suonio

We prove properties of this action system by reasoning about the possible
sequences of actions that can occur during a computation of the system, subject
to the given action fairness assumptions. A safety property OI states that
condition I holds throughout the computation of the action system, i.e., I is an
invariant of the system. This is established by proving that

(i) the initializations together establish the invariant, i.e.,
true{S,; ...; S, 1,

where p;, ..., p, are the processes for which initializations have been
provided, and

(ii) each action preserves the invariant, i.e.,
I N g.{S.iI
holds for each action a € Act.

Here P{S}Q stands for the partial correctness of statement S with respect to
precondition P and postcondition @ [24].

An example of an invariant property is that there is always exactly one fork
with an associated token in the action system described above, i.e.,

Y Fork[i].token = 1

=1
holds throughout the execution of the action system. This is obviously established
by the initializations of the local variables and it is preserved by each action
execution.

Our definition of action systems requires that each initialization statement
and action body terminates if executed. If we require total correctness rather
than partial correctness in (i) and (ii), then this property is established at the
same time as establishing the invariance of the given condition.

Liveness properties are also proved in the usual way, using permitted fairness
assumptions when necessary. As an example, consider the property that each
philosopher infinitely often gets hungry:

o< Philosopher[i].hungry,

for each i = 1, ..., n. This follows directly from the fact that whenever
Philosopher(i] is not hungry the thinking action is enabled. If action fairness is
assumed for thinking actions, then this action will be eventually executed. The
thinking action will then necessarily terminate, making the philosopher hungry.
Liveness in this case is straightforward to establish.

Proving that the action system is starvation free is more complicated. Starva-
tion freedom is expressed by the property

O(hungry; = < hungry;),

fori =1, ..., n. (For brevity, we write hungry; for Philosopher|[i].hungry and
similarly for the other local variables in the system.) We prove this property by
using the method of well-founded ranking [31]. In this method, the set of possible
states is partitioned into a number of cases which forms a well-founded order in

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 525

Eating(i}

Thinking(i+1)}
Eatingi]

Fig. 3. Proof diagram for starvation freedom.

Eating{i+1]

Reserve[i+1}
[ve]

Eating[i+1]

Eating]i]

the sense that (i) no transition leads from a lower case to a higher case, and
(i1) for each case for which there are lower cases, there is at least one transition
that necessarily leads to a lower case. These transitions are called helpful
transitions. Fairness for the helpful transitions guarantees that a case at the
bottom in this order is eventually reached.

Assume that philosopher i is initially hungry. We then have two cases: either
his right fork has a token or it does not. If it does have a token, there are
again two cases: either the right fork is reserved or it is not. Finally, in the
latter case we have two cases: either philosopher i + 1 is hungry or he is not.
This gives us altogether five possible cases to consider, which we denote by W;,
i=0,1, 2,3, 4 (W, is the case when philosopher i is not hungry):

Wo = 2hungry;,

W, = hungry; \ "token;,,

W, = hungry; N\ token;., A reserved;,,,

Ws = hungry; N\ token;., N\ —reserved;, N\ hungry;,,
W, = hungry; N\ token;.; N\ Treserved;.; \ T hungry:.

We already noted above that there is exactly one token in the system. Hence,
W, = —token;.s, for i = 4, 3, 2. Similarly, one can prove that fork { is only
reserved if philosopher i is hungry, so reserved;., = hungry;.,.

Figure 3 shows the helpful actions in these situations. In W;, for instance,
action Eating[i] will lead directly to W, whereas action Reserve[i + 1] will lead
to situation W, and Eating[i + 1] will lead to W,. None of the other actions can
change this situation. This shows that fairness for eating actions is sufficient to
guarantee that starvation is impossible. Note that we do not really need action
fairness for thinking and reserve actions to guarantee starvation freedom.

3. IMPLEMENTATION OF ACTION SYSTEMS

In this section we show how to implement an action system in a distributed
fashion. We first define a transition model for the concurrent execution of
actions. After this we show how this model can be implemented in a distributed
fashion. We describe an implementation of action systems on a local area network

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

526 . R. J. R. Back and R. Kurki-Suonio

with reliable broadcasting, and show that the implementation is correct in the
sense that it simulates the concurrent execution model of action systems.

3.1 Concurrent Execution Model

In order to model a parallel and distributed implementation of action systems,
we must describe the real concurrency that is present in these. This is done by
the concurrent execution model of an action system. The model is similar to the
sequential execution model, in that actions are still treated as the active compo-
nents that are executed. However, they now have to compete for the processes,
which are treated as passive resources in the system. Real concurrency is modeled
by indicating the start and the end of process participation in an action. An
action will be enabled only if its guard is true and all the processes needed for its
execution are free.

The concurrent execution model for an action system S = (Proc, Act, Var, Init,
Actions), assuming process fairness for the processes P C Proc and hand-
shake fairness for the actions A C Act, is a transition system Cong(P, A) =
(2, frees Z9reer T, Fp,a) where the components are defined as follows:

(1) The state of the transition system is determined by the variables y, together
with a collection of Boolean variables free = { free, { p € Proc}, indicating for
each process p whether it is free or currently involved in some action or
initialization.

(2) =9, is the set of all initial states o, such that (i) ¢, assigns the values ¢, to
the variables y, for each p for which an initialization statement has been
given, and (ii) free, = false for each p € Proc.

(3) For each action a € Act there is a handshake transition hs, in T, and for each
process p € Proc, there is a release transition rel, in T.

(4) The fairness sets in #p 4 include all singleton sets {rel,}, p € Proc. In addition,
for each p € P there is a process fairness set F, and for each a € A a
handshake fairness set F,, as described below.

The handshake transition ks, is enabled if g,(y,) holds and free, = true for
each p € Proc,. It maps the values of y, to f.(y.) and the values of free, to false,
for each p € Proc,, leaving all other state components unchanged. A release
transition rel, is enabled if free, = false. It maps the value of free, to true, leaving
the other state components unchanged.

If an initial condition @ is given for the action system, then the set of initial
states is further restricted to those states o, that satisfy @.

A handshake transition hs, corresponds to a synchronizing handshake. It can
be executed only if all processes needed for the action are free, free, = true for
each p € Proc,, and willing to participate in the action a, g,(y.) = true. The
effect of the action is considered to take place immediately, i.e., all variables
receive their updated values by transition hs,. The release transition rel, releases
process p from the action in which it is engaged. The initialization of the variables
free, implies that each process starts by a release transition. Intuitively, this
means that we do not assume that all processes are started up at the same time.

By making the start and the finish of process participation in the action into
separate transitions, we are able to model the fact that executing a transition

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 527

takes time, and that at any specific moment in the execution of an action system
some processes may be in the middle of executing an action, while other processes
are free and waiting to be engaged in some new action.

We define two different notions of fairness in the concurrent model. Both of
these can be achieved by a distributed implementation of an action system, as
we will show below. The first notion is process fairness. This means that if a
process is infinitely often able to make progress it is also infinitely often allowed
to do that. Formally, process fairness for a process p € P means fairness with
respect to the set of transitions

F, = |hs,|a € Act,}.

Here Act, = {a € Act | p € Proc,} is the set of all actions in which process p can
participate.

The second notion is handshake fairness. By this we mean that if the guard of
an action is infinitely often true and all the required processes are free, then the
action is also infinitely often executed. Formally, handshake fairness with respect
to an action a means fairness with respect to the singleton set

F. = {hs.}.

As stated above, a computation is always assumed to be fair with respect to
release transitions rel,. This reflects our assumption that action bodies always
terminate.

3.2 Distributed Implementation of Action Systems

There are essentially three problems involved in implementing an action system:
(i) it must be detected when actions become enabled; (ii) the enabled actions
must be scheduled for execution; and (iii) the action bodies must be executed.
All this must be done in a distributed fashion.

We will assume that all action guards are separable. A separable guard g,(y,)
can be written in disjunctive normal form gX(y,) V --- V g%(y,) where each
disjunct is of the form

gily) = N gip(w),
PE Proc,
i.e., it is a conjunction of local guards g% ,(y,) of the processes p involved in the
action. A conjunction of this form is called a simple guard. An action q,

action a by Proc,: g.(v.) — S.(y.)

can be replaced by actions a', . .., a*, where a’is

action a' by Proc.: gi{y.) — Sa(¥.),

i{=1,..., k This collection of actions has the same effect as the original action.
Hence, we may in the sequel assume that this action splitting has been done, and
that all action guards are simple.

A local guard only tests a condition on the local variables of one process.
Hence, each process can test the truth of its own local guard without consulting
the other processes. An action is then enabled if each process involved in the

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988,

528 . R. J. R. Back and R. Kurki-Suonio

action is free and has determined that its local guard is enabled. The first problem
can now be solved by letting each process announce its willingness to participate
in the actions for which its local guards evaluate to true when it becomes free
from executing a previous action or the initialization statement. By listening to
these announcements the processes in the system can find out when some specific
action becomes enabled.

The second problem is to build a distributed mechanism to select among the
enabled actions those that are to be executed. The main problem is what to do
with actions that become enabled at approximately the same time, but which
require some common process and hence exclude each other. There are different
ways of constructing such a distributed scheduling mechanism, depending on the
assumptions that one makes about the underlying communication network. This
problem is essentially a generalization of the problem of implementing CSP with
output guards [10]. We describe below a way of scheduling the enabled actions
when the communication mechanism is assumed to be a reliable broadcasting
channel. '

The third problem is how to execute an action body. The body of an action is
a sequential statement that may refer to local variables of all the participating
processes. Conceptually, we think of the action body as being executed in the
combined state space of the participating processes. This effect can be achieved
by executing the body in a distributed fashion as follows. Each process keeps a
copy of the local variables of all the other processes. When an action has been
selected for execution, the processes involved in this action send the values of
their local variables to all the other processes involved in the action, who update
their local copies with the current values of these variables. Each process then
executes the action body, using its own local variables and copies of the local
variables of other processes. The local variables of the processes involved in the
action will then be updated in the same way, as if the statement had been
executed directly on the original local variables. (This solution obviously has
room for improvement, but it is sufficient to show the basic idea.)

3.3 Implementation on a Local Area Network

Processors in a CSMA/CD network are connected by a common channel on
which they can broadcast messages to all other processes in the system. A process
waits for its turn to communicate until the channel is free (i.e., no other process
is broadcasting on it) before it attempts to transmit. If two or more processes
attempt to transmit at the same time, then they notice that the messages collide,
and each of them will wait a random time before trying again. We will assume
that the channel is reliable, so all processes will receive the same sequence of
messages.

Assume now that an action system S = (Proc, Act, Var, Init, Actions) is
given, and that each process is assigned to a different processor in the network.
Each action is assumed to have a simple guard. In order to record the availability
of processes for actions, each process p keeps an allocation table where it records
for each action those processes that have announced their willingness to partic-
ipate in the action. Each process will be in one of four phases: ready, waiting,

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988,

Distributed Cooperation with Action Systems + 529

Executing

Collecting

Fig. 4. Phases of implementation.

collecting, and executing. Initially all processes start up in the executing phase,
where they perform their initialization statements. They then cycle through the
four phases in the order listed above, as shown by Figure 4. The behavior of the
processes in each of the phases is as follows:

Ready: The process evaluates its local guard for each action that it could
participate in. Then it broadcasts a willingness message containing the names of
those actions that it is willing to participate in. It goes into the waiting phase
when it receives its own willingness message. While in the ready phase, the
process does not record any messages from other processes.

Waiting: Willingness messages are observed only by those processes that are
in the waiting phase. On receiving a willingness message, each of them updates
its allocation table accordingly and then inspects it to see whether there is an
action in which it could participate and for which also the other processes have
announced their willingness. If so, the process tries to broadcast a selection
message for such an action. For two processes, p is called older than ¢, if its last
willingness message was sent earlier. A selection message for an action a can be
sent only by the oldest process in Proc,, because it is the only one that has seen
the willingness messages of all the other processes in the action.

If two or more processes simultaneously try to transmit select messages, one
of them will succeed first, and the others will cancel their selections upon
receiving the conflicting select message. The action named in a selection message
is marked as selected by all processes in the waiting phase. Those processes that
are involved in this action go into the collecting phase, while the other waiting
processes remove from their allocation tables the process names that are now
committed to the selected action, and remain in the waiting phase. A process
that has cancelled its own selection and remains waiting inspects the allocation
table again. It tries to make a new selection if it finds actions that are still
enabled.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

530 R. J. R. Back and R. Kurki-Suonio

Collecting: Each process involved in a selected action broadcasts a message
containing the values of its local variables. A process remains in this phase until
it has succeeded in sending this message and has received the corresponding
messages from the other processes involved in the action. It then goes into the
executing phase.

Executing: A process in the executing phase has sufficient information about
the local states of all processes involved in the selected action to execute its own
part of the joint transaction, i.e., to update its own local variables in the required
manner. It does this as explained above, i.e., by executing a copy of the action
body, using the values of the local variables of the other processes that it received
in the previous phase. After this it returns to the ready phase, resets all entries
in its allocation table to empty, and the cycle starts all over again.

The efficiency of the implementation can be measured in terms of the number
of messages it requires. At least n messages must be sent for each executed
action, where n is the number of processes involved in the action, as each process
must at least announce its willingness to participate in subsequent actions. Our
implementation requires 2n + 1 messages for each executed action with n
participating processes. This number can be reduced by sending a local state
message only if this state is actually needed by some other process. If no transfer
of information is needed, but only synchronization, then n + 1 messages are
sufficient to schedule an action.

When a process selects a private action, its willingness and selection messages
may seem superfluous. They are, however, necessary if one wants to guarantee a
fair treatment of handshakes.

Actually, the number of messages required for each action could be reduced to
n + 1 by including the values of the local variables in the willingness message of
a process. This, however, would require that all processors listen continually to
all messages sent over the network, and would also require more storage at
processor nodes. The implementation above has the advantage that no commu-
nication overhead is associated with the execution phase.

An essential assumption in this implementation is that a process can cancel
its attempt to transmit a select message when another select message is received.
Although such an interconnection is not required to exist between the transmit
and receive parts of the data link layer of local area network implementations
[13], it seems reasonable that such a mechanism could be implemented without
violating the existing standards. Alternative implementations of multiprocess
handshaking that do not require this facility are described in [4].

3.4 Correctness of Implementation

In analyzing the correctness of the above implementation we first have to
determine a unique simulation mapping of the sequence of broadcasting events
in the implementation to computations in the concurrent execution model. We
say that a sequence of broadcasting events simulates a concurrent computation,
if each sequence of broadcasting events is mapped into some initial part of a
computation, such that the mapping is monotonic with respect to the prefix

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 531

ordering of sequences, and if each completed sequence of broadcasting events is
mapped to a (complete) computation.

More generally, let B and C be sets of sequences, and let B* and C* denote the
prefix closures of these sets. The function v: B* — C* is a simulation mapping if
the following conditions hold:

(i) v is monotonic, i.e., b < b’ = y(b) < v(b’), where < stands for the prefix
ordering of sequences.
(ii) For each finite sequence ¢ € C* there is some finite b € B* such that
y(b) =c.)
(iii) For each b € B, v(b) € C.

B simulates C if there is a simulation mapping v: B* — C*,

Notice the asymmetry that, although each sequence in B has to simulate a
sequence in C, all infinite sequences in C need not be simulated. In the case of
the above implementation, B consists of all possible complete message sequences
in the implementation of an action system S, while C is the set of all (fair)
concurrent computation sequences in Cons(P, A).

There is considerable freedom in determining the simulation mapping for an
implementation. This freedom can be used to avoid unfair computations being
simulated. With this in mind we choose the simulation mapping for our imple-
mentation as follows. Each select message is associated with the corresponding
handshake transition, and each willingness message is associated with a release
transition. The ordering of the transitions is determined by the order in which
the willingness messages are broadcast. The mutual ordering of the releases is
the same as that of the corresponding willingness messages. A handshake tran-
sition is, however, placed where the actual decision leading to the select message
takes place, i.e., immediately after the willingness message of the last process to
become free for the action, which is not necessarily at the place where the select
message for the action was sent. Hence, the ordering of the handshake transitions,
with respect to release transitions and other handshake transitions, is not
necessarily the same as the ordering of the select messages with respect to the
willingness messages and to the other select messages. The reason for this choice
has to do with fairness, and will be made clear below.

No assumptions are made about the relative speeds of the processes. It is
essential, however, that each processor be sufficiently fast, so that no relevant
message is lost before being processed.

The fairness properties of the implementation depend on the assumptions that
can be made of the communication channel. In the following it is essential that
a process that infinitely often tries to transmit will also infinitely often succeed.
Since collisions are resolved by random waits, this condition is met with proba-
bility one when a process is continually trying to send a message. This is the case
with all willingness and local state messages.

Another kind of situation arises when a process tries to send a selection
message as a response to some willingness message. The decision to send a
selection requires inspection of the allocation table, and several processes might
be simultaneously making competing decisions that exclude each other. In order

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988,

532 . R. J. R. Back and R. Kurki-Suonio

to give each process a fair chance in this competition, a random wait should be
inserted between the decision and the sending of the select message. Such a wait
is automatically included if the p-persistent carrier sense protocol [37] is used
with 0 < p < 1. With this technique the required condition is met with probability
one also in the case of select messages.

Let us now define the simulation mapping v of this implementation more
precisely. Let b be a message sequence containing a willingness message w, by
process p. Consider the situation that w, announces the willingness of p to
participate in an action a such that all other processes in Proc, have announced
their willingness in a already before p. There are now three possibilities: (i) If a
is selected (on the basis of this w,) in b, then w, is said to be satisfied by a in b;
(ii) if w, is not satisfied by a, but each prefix of b containing w, has an extension
where this is the case, then w, is said to be open in b; (iii) otherwise the selection
of some other action precludes the possibility of selecting a (on the basis of
this w,).

Restricting to message sequences b’ without open willingness messages, the
transition sequence v’ (b’) is defined as the sequence obtained from b’ by
replacing

(1) each occurrence of a willingness message w, that is satisfied by a in b by
rel, hs,,

(2) every other willingness message w, by rel,, and
(3) all other messages by the empty sequence .

The states in v’(b’) are uniquely determined by the initial states and the
sequence of transitions. Obviously, v’ is monotonic, and the construction of the
implementation guarantees that v’ (b”) is a properly initialized and admissible
computation sequence, whenever b’ is some prefix of a message sequence gener-
ated by the implementation.

For an arbitrary message sequence b € B*, let ¢(b) be the maximal prefix of b
with no open willingness message in b. The simulation mapping of the imple-
mentation is now defined as v(b) = v’ (¢(b)).

LEMMA 1. The implementation of the action system S given in the preceding
section simulates the concurrent execution model Cong(Proc, @), provided that the
processors are sufficiently fast to handle each message in time.

Proor. First we check that each finite computation sequence ¢ € Cong(Proc,
@) is simulated by some message sequence b. Such a b is obviously obtained from
¢ if we replace each rel, by an appropriate willingness message, and each hs, by
the corresponding selection and local state messages. The monotonicity of v is
clear, as it was constructed as the combination of two monotonic mappings.
What remains to be shown is that each complete message sequence is mapped
into a computation that is complete and fair with respect to each process
p € Proc.

A finite complete message sequence b must contain a last willingness message
w, for each p € Proc. This can neither be open nor satisfied. This means that

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 533

no action is enabled after b, and y(b) is then a finite and properly ending
computation.

For an infinite message sequence b we first notice that none of its willingness
messages can be open for any actions a. Otherwise the oldest process in Proc,
would continually try to send a selection message for a and would eventually
succeed with probability one. This implies that 4 (b) must also be infinite. It
remains to be shown that such a v (b) belongs, in fact, to Cons(Proc, @), i.e., v (b)
is fair with respect to each process p in Proc.

Suppose that an infinite v(b) is not process fair, and let Proc’ C Proc be the
(maximal) set of processes treated unfairly. There is then a prefix of b after
which no process p € Proc’ is transmitting any more. The last message of each
p € Proc’ is a willingness message; let p, be the oldest of these processes. Because
of unfairness with respect to p,, there is an action a such that p, € Proc,, and all
processes p € Proc, are infinitely often in a state where they are simultaneously
free and have all indicated their willingness to participate in a. Since p, is the
oldest in Proc’, and it eventually becomes older than any other process in Proc,,
it will infinitely often record all willingness messages and is therefore infinitely
often trying to send a select message. This will succeed with probability one,
which leads to contradiction. Hence, v (b) must be fair with respect to all processes
p € Proc. O

No assumptions were made in the protocol as to which select message is sent
by a process when several alternatives exist. If an alternative is infinitely often
possible, then a fair decision must also choose it infinitely often. Using random
choice this can be achieved with probability one. Next we shall show that our
implementation is handshake fair if all decisions are fair.

Suppose that a computation is not handshake fair with respect to an action
a € Act, and consider the suffix of the computation where a is no longer executed.
It is now infinitely often the case that all processes p € Proc, are free to participate
in a and have also indicated their willingness to do this. Some process p, must
also infinitely often be oldest among them. A fair decision by p, will now infinitely
often choose a, leading to a contradiction. Hence, we conclude that the imple-
mentation with fair decisions ensures handshake fairness.

The reason for associating the handshake transition with the moment of
decision and not with the moment when the actual select message is sent has to
do with the fairness requirements. It is possible that the process p, above, when
a specific willingness message is broadcast, already has made a decision to select
some action a on the basis of some earlier willingness message, although it has
not yet succeeded in sending the select message. The willingness message arriving
after the decision has been made but before the select message is sent may then
seemingly enable some new action a’ (involving processes in the selected action)
that p, cannot consider anymore. The way in which the simulation mapping was
defined does not, however, consider this to be unfair, since the handshake
transition hs,- is not considered to be enabled in such a situation.

Since the original actions may be split in the implementation to make the
guards simple, we finally check that fair decisions also ensure handshake fairness
with respect to the original actions. This is obviously the case, since handshake

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

534 . R. J. R. Back and R. Kurki-Suonio

fairness with respect to the split actions is a stronger requirement than handshake
fairness with respect to the original actions.

LEMMA 2. The above implementation of action systems is process fair and, if

the select decisions in the processes are fair, then the implementation is also
handshake fair.

We can summarize the results of this section in the following theorem.

THEOREM 1. The implementation of an action system S of Section 3.3 simulates
the concurrent execution model Cong(P, A) (up to probability one), when the
choice between actions in A is carried out by the processes in a fair manner.

4. FAIR SERIALIZABILITY

In this section we study the relationship between the two models for execution
of an action system, the sequential execution model of Section 2 and the
concurrent execution model of Section 3. Our aim is to find out to what extent
the sequential execution model is valid as a basis for reasoning about properties
of the action system, when the computation is, in fact, done according to the
concurrent execution model.

4.1 Serialization of Computations

In order to relate the sequential and the concurrent execution models to each
other, we first define the serialization of a concurrent computation c,

C: O'oi>0'1£> O'i—li)a'i
This is the sequence ¢’ that is obtained by replacing each handshake transition
t; = hs, in ¢ by the corresponding action transition act,, by omitting all release
transitions t; = rel, together with their associated states ¢;, and by deleting the
state component free from the remaining states.

In the sequel, we will talk about a sequential computation of an action system
S, when we mean a computation in the sequential execution model Seqs(J), i.e.,
no action fairness assumptions are made for the computation. Similarly, a
concurrent computation of an action system S is a computation in the concurrent
model Congs(J, &) for which no process or handshake fairness assumptions are
made. Whenever fairness assumptions are made for a computation, these will be
explicitly stated.

Serialization is a simulation mapping from the set of concurrent executions of
an action system S to the set of sequential executions of S. Actually, an even
stronger result holds, which says that each sequential execution is simulated by
some concurrent execution, if fairness requirements are not considered. More
precisely, we have the following result.

LEMMA 3. Let S be an action system. Then (i) the serialization of a concurrent
computation of S is a sequential computation of S, and (ii) each sequential
computation of S is the serialization of some concurrent computation of S.

The proof of this lemma is straightforward given the definitions, and is
therefore omitted here.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 535

Action fairness is not a fairness property in the concurrent model. We can,
however, define a requirement on computations in the concurrent model that
corresponds to action fairness in the sequential model. We say that a concurrent
computation c is action fair for action q, if the following condition is satisfied: if
Z.(¥.) holds infinitely often in ¢, then transition hs, is taken infinitely often.
The following is an immediate consequence of the definitions.

LEMMA 4. A concurrent computation of an action system S is action fair for a if
and only if its serialization is action fair for a.

We write &% (a) to denote that each computation ¢ of S is action fair with
respect to a, and &7, if %% (a) holds for each a € Act. Similarly, we write #.% (a)
and #.% in the case of handshake fairness. We write 2% (p) to denote that each
computation of S is process fair for process p and 2%, if 2% (p) holds for each
p € Proc.

Let us say that a temporal logic formula R is insensitive to stuttering, if the
following holds: R holds for a computation sequence c if and only if R holds for
any computation sequence ¢’ that can be constructed from c by adding or deleting
a finite number of stuttering transitions. A stuttering transition is a transition
that does not change the state (i.e., an identity function). A temporal logic
formula that only uses the eventuality and always operators (and specifically
does not use the next state operator) is an example of a formula that is insensitive
to stuttering.

The concurrent execution model is a faithful implementation of the sequential
execution model, as far as observation of changes in the state y are concerned.
In fact, apart from possible observations of stuttering, any temporal logic property
that holds for all the sequential executions of an action system will also hold for
all concurrent executions, provided that the same action fairness assumptions
hold.

THEOREM 2. Any temporal property that holds in the sequential model Seqs(A)
of an action system S and that is insensitive to stuttering, will also hold in the
concurrent model Cons(Q, @), provided that & F (a) holds for each a € A. The
converse is true if the temporal property does not refer to the state component free.

PROOF. Let ¢ be a concurrent computation in Cong(J, &) and let ¢’ be the
serialization of c. By Lemma 4, c¢ is action fair for each action in A if and only if
¢’ is action fair for each action in A. Let R be a temporal property that is
insensitive to stuttering. Then R will be true for computation c¢ if and only if R
holds for the sequence of states ¢ = o9, 01, . .., generated by the computation c.
This is the case if and only if R holds for the sequence of states o* that we get
from o by dropping the state component free from all states, because R can only
refer to variables in the state component y. This in turn is equivalent to R being
true for the sequence of states ¢’ that we get from ¢* by dropping all repetitions
of states in the sequence, because R is assumed to be insensitive to stuttering.
This finally holds if and only if R is true for the computation sequence c’, as o’
is the sequence of states generated by the computation c¢’.

In conclusion, R holds for a sequential computation ¢’ that is fair for actions
A if and only if it holds for every concurrent computation ¢ of which it is a

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

536 . R. J. R. Back and R. Kurki-Suonio

serialization and that is fair for the actions A. The required conclusion now
follows by Lemma 3. [

The two models are thus otherwise equivalent, but their fairness notions are
different. The natural fairness notion in the serial model is not a proper fairness
notion in the concurrent model, and it leads to stronger requirements than it
seems possible to enforce in distributed implementations.

The relationships between the three notions of fairness are as follows:

THEOREM 3. Let S be some action system, and let a be an action in S. Then

(1) & F(a) in the concurrent execution model implies #5 (a),
(it) #F implies PF,
(iif) neither implication holds in the reverse direction.

Proor. For part (i) consider any concurrent computation ¢ that is not #.% (a).
Transition hs, is then enabled infinitely often in a suffix of ¢ without being
executed. This implies also that g, holds infinitely often and, hence, ¢ is not
S F(a).

For part (ii), if ¢ is a concurrent computation that is not 2% (p), then there
must be an action a € Act, such that hs, is infinitely often enabled but never
executed in a suffix of ¢, which means that ¢ is not #.%.

Part (iii) is demonstrated by examples. For part (i) consider the possibility for
starvation in the concurrent execution of the action system in Example 1. For
part (ii), the action system of Example 3 allows concurrent computations where
all philosophers eat infinitely often but none of the reserve actions are ever
executed. These computations are obviously 2% but not %, O

The problem is that these implications hold in the wrong direction. What we
actually need is that those fairness notions that can be guaranteed in a distributed
implementation (i.e., process fairness and handshake fairness) imply the fairness
notion that we want to use in reasoning about action systems, i.e., action fairness.
This, however, is not true in general, as shown by the theorem.

Different solutions are possible to this problem. One solution is to accept some
form of centralized scheduling, and in this way build implementations with
stronger fairness properties, such that action fairness can be guaranteed. Another
solution is to abandon the sequential execution model, and use the concurrent
execution model instead, together with the fairness notions provided with this
model. Either way, we would give up something quite important, either the
distributedness of our communication mechanism or the ease of reasoning that
the sequential model gives us.

We will here consider a third solution to this problem. We will try to identify
those classes of action systems for which handshake or process fairness are
sufficient to guarantee action fairness in the concurrent model. More formally,
let us say that an action system S is fairly serializable for an action a € Act, if
#F (a) holds in the concurrent execution model Cong(P, A).

Fair serializability of an action system will be a consequence of the specific
way in which the actions interact with each other. In essence, it means that there
is some mechanism in the system that prevents unfair executions from occurring.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems' . 537

Thus, given a specific action system, we may either prove that the action system
is fairly serializable for the set of actions for which we need action fairness or, if
this is not the case, we might try to transform the action system to another one,
which in all important aspects is similar to the original one, but which is also
fairly serializable. In the latter case, we are essentially building a scheduling
mechanism into the action system, to guarantee the kind of action fairness we
want.

4.2 Static Conditions for Serializability

There are three related phenomena that can prevent process fairness from
ensuring handshake fairness or action fairness, or prevent handshake fairness
from ensuring action fairness in the concurrent execution model. These will be
termed competition, omission, and conspiracy. We will in the sequel characterize
these phenomena formally, and give conditions that guarantee that they cannot
occur. We consider the possibility for these phenomena at two different levels,
static and dynamic. The static level is concerned with membership properties of
the sets Proc, and with predicates concerning effects of single actions in the
space of all states Z,. Predicates about the possible execution sequences of
actions belong to the dynamic level and involve temporal analysis. Here we shall
consider the static possibilities for competition, omission, and conspiracy. The
results are extended to the dynamic level in the next subsection.

Let us first introduce some notations. Two actions exclude each other, i.e.,
cannot be executed simultaneously, if they have some process in common. The
set of actions excluded by an action a € Act is denoted

Exclude, = {b € Act|a # b, Proc, N Proc, # J}.

Within this syntactically determinable set we define the subsets consisting of
actions that may compete with a, enable a, disable a, or keep a enabled:
Compete, = (b € Exclude,| 3y € Z,: g.(y) A g,(¥)},
Enable, = {b € Exclude,| 3y € Z,: g,(y) N 7g.(y) N g(fol¥)},
Disable, = {b € Exclude,| 3y € Z,: go(y) N ga(¥) A "ga(fb(y))}
Keep, = {b € Exclude,| 3y € Z,: g(y) N g.(y) N g(fo(¥))}.
Competition. By competition we understand the possibility that several actions
are simultaneously enabled and compete for overlapping sets of processes. Ab-
sence of competition for an action is a strong requirement, implying that the
processes involved in the action have no other alternatives. In Example 1 it is
the competing eating actions that cause problems; private thinking actions have

no competition.
An action a € Act is defined to be statically competition safe, if

Compete, = D,
i.e., if no other action is ever competing with a. We now have the following result.

LEMMA 5. #F guarantees & F (a) for an action a € Act, if a is statically
competition safe.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

538 . R. J. R. Back and R. Kurki-Suonio

Proor. Consider a suffix of a concurrent computation where g, holds infinitely
often for a statically competition safe a, but hs, is never taken. Since g, can be
turned false only by an action competing with a, g, will stay continually true. If
some process p € Proc, is engaged in another action, it will eventually be released
by rel,, after which competition safeness of a guarantees that p will stay free. All
p € Proc, will thus eventually become free, and % then guarantees the execution
of hs,, leading to a contradiction. [J

Omission. If an enabled action involves at least one process that has no
alternative actions to choose from, then 2% with respect to this process guar-
antees that the action is not neglected forever. Omission is the phenomenon that,
in the absence of such a process, an action is indefinitely neglected by giving
systematically preference to some other actions occupying the same processes.
In Example 3 the reserve actions have no such dedicated process and their
omission is therefore possible.

An action a € Act is defined to be statically omission safe, if there is a process
p € Proc, such that either p is not involved in any other action, i.e.,

Act, = {a),

or none of the actions requiring p is competing with a, and a is also not disabled
by any other action, i.e.,

Act, N Compete, = &, and
Disable, = @.

We have the following result.

LEMMA 6. #F guarantees # (a) for an action a € Act, if a is statically
omission safe.

PrOOF. Consider a suffix of a concurrent computation where infinitely often
g, is true and all p € Proc, are available for action a, but hs, is not taken.
By definition, statical omission safeness of a implies the existence of a process
p € Proc, for which the computation is not process fair. [

Conspiracy. By conspiracy we understand the phenomenon that an action is
prevented from execution by two or more other actions, each holding in turn
some of the processes that the action needs, so that all the processes are never
simultaneously available. Starvation of a philosopher in Example 1 is caused by
a conspiracy of the eating actions of his two neighbors.

Let us consider static safeness conditions against conspiracy. Conspiratorial
situations against an action a € Act involve an overlapped execution of a sequence
of at least two actions, each holding some processes in Proc,. A finite or infinite
sequence of actions ¢ = (by, by, ...) for which such a behavior is possible has to
satisfy the syntactic conditions

b, € Exclude,,
Proc, N Procy, & Proc,

i+1°

The latter condition states that it is possible for action b; to release all the
processes that b, needs, before releasing some process which action a needs.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 539

Thus, action b;;, can start before action a becomes enabled. Such a sequence £
will be called a cover of a.

Consider now a situation where an action a € Act is forever prevented from
execution by the conspiratorial behavior of other actions. Then each sequence of
states where g, holds must be included in a cover of a. Two different situations
arise, depending on whether g, holds continually or not.

First, if g, holds indefinitely from some point on, there must be an infinite
cover. This has to contain elementary cyclic covers £ = (b, ..., bx, b;) consisting
of k different actions, k = 2, that satisfy the static conditions

b, € Keep,, i=1,...,k

Such a finite cover is called a conspiratorial cycle against a.

Secondly, if g, is infinitely often turned on and off, then each interval when g,
is enabled must be included in a finite cover. The last action b, of such a cover
turns g, off; it is turned on either by the first action b; of the cover or by an
action b, that starts between b; and b, but is not part of the cover. This leads to
the definition of a conspiratorial chain £ = (by, by, ..., by), k = 2, against a as a
sequence where (by, ..., by) is a cover of a not containing internal cycles, b, = b,
or Proc, N Procy,, € Procy,, and the following static conditions are satisfied:

by, € Enable,,
b, € Keep,, 1<1i<k,
b, € Disable,.

An action a € Act is defined to be statically conspiracy safe, if there is no
conspiratorial cycle or conspiratorial chain against a.
The following lemma follows from the above analysis of conspiracy situations.

LEMMA 7. #Z% (a) for an action a € Act guarantees &% (a), if a is statically
conspiracy safe.

Obviously static competition safeness is stronger than the two other properties,
implying both static omission safeness and static conspiracy safeness.

Example 4. We show how static competition or conspiracy safeness could be
imposed on the eating actions in Example 1. Let us attach a new variable to each
fork, indicating a “left” or a “right” fork. If eating is allowed only with the proper
forks in both hands, and the two forks are always exchanged after eating, the
system is obviously competition safe. Hence process fairness guarantees that
action fairness holds for the eating actions, by Lemma 5. This means that all
actions are treated fairly in the system.

The sequential model with &% can then be used to prove that starvation is
not possible, unless all forks are of the same kind. Starvation freedom is expressed
by the property

O(Philosopher|i].hungry = <1 Philosopher[i].hungry).

This property is not sensitive to stuttering. Hence, by Theorem 2, if this property
holds in the sequential execution model assuming action fairness for all actions,
it will also hold in the concurrent execution model, when the assumption of

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

540 . R. J. R. Back and R. Kurki-Suonio

action fairness is satisfied. Hence process fairness is sufficient to guarantee that
starvation is not possible.

The static criteria for competition, omission, and conspiracy safeness are quite
strong, and there are many situations in which they would not be applicable.
These criteria are therefore to be taken as a first check, by which one identifies
those cases for which more refined methods are required.

4.3 Temporal Conditions for Fair Serializability

The discussion in the previous section suggests that static conditions for serial-
izability are too strong to handle all cases that can occur in practice. We therefore
proceed to extend the static analysis to a temporal or dynamic analysis of action
systems. While static safeness conditions ensure that certain unwanted situations
cannot possibly arise, the dynamic conditions state that they do not actually
occur in system executions.

The temporal expressions for our dynamic conditions will be liveness properties
in reduced action systems where some of the original actions are omitted. Let

S = (Proc, Act, Var, Init, Actions)

be an action system. We define the reduction of S by actions A € Act to be the
action system

S\A = (Proc, Act — A, Var, @, Actions’)

where Actions’ is constructed from Actions by deleting the actions in A. Note
that there are no initialization statements in the reduced system, so all processes
start with arbitrary values for their local variables. (Actually, the initial values
of the process variables will in the sequel always be restricted by some additional
initial condition that is imposed on the reduced action system.)

We modify some of the definitions to cover collections of actions instead of
single actions. For an arbitrary set of actions A C Act, we write g4 for the
disjunction V,e4 g.. We also extend &« (a) and #F (a) to cover sets of actions.
By «#% (A) we understand that some action in A is executed infinitely often if
g4 holds infinitely often. Similarly, #% (A) means that some action in A is
executed infinitely often, if some transition in {hs,|a € A} is infinitely often
enabled.

Notice that &#.% (4) and #¥ (A) do not imply &% (a) or #F (a) for any single
action a € A. The converse does, however, hold. More generally, we have that
#F (A) and &7 (B) implies &% (A U B), and similarly for handshake fairness.

Competition. Consider a situation where actions A € Act are not executed from
some point on, although g, holds infinitely often. Assuming #% it must then be
the case that some competing action b & A is executed infinitely often instead.
This kind of competition is not possible, if g4 A g, eventually becomes and
remains false unless some action in A is executed.

More formally, a set of actions A € Act is competition safe in action system S,
if there is an invariant I of S such that the implication

00ga = 007 (g A &)

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems « 5

holds for all a € A, b € Compete, — A in the reduction S\ A with initial condition
I, when &5 (b) is assumed. We now have the following result.

LEMMA 8. 2 guarantees & F (A) for a set of actions A C Act, if A is competition
safe.

PrOOF. Similar to Lemma 5, where competition was prevented once and
for all, except that competition is permitted here, but is guaranteed to stop
eventually. O

Omission. Consider a collection of actions A C Act with a common process
p € Proc, and let B denote its complement in Act,, A U B = Act,, ANB = .
The set of actions A is omission safe by process p in action system S, if there
is an invariant I of S such that the implication

0OCgs = O0gr

holds in the reduction S\A with initial condition I, when & (B) is assumed.
More generally, a collection of actions A C Act is defined to be omission safe if
it is a union A = UA; where each A, is omission safe by some process p.

We now have the following result.

LEMMA 9. &#F guarantees #5 (A) for a set of actions A C Act, if A is omission
safe.

If A is competition safe, then A N Act, is omission safe for all processes p
involved in A. This shows that competition safeness implies omission safeness
also in the dynamic case.

Conspiracy. Extending the static conditions for conspiracy safeness to the
dynamic case means, in fact, that the existentially quantified state y in the
definitions of the enabling, disabling, and keeping predicates is replaced by the
current state:

Enable;(y) = {b € Enablea| g(y) N 78.(y) N g (fo(¥))},
Disable,(y) = {b € Disable, | g,(y) N g8.(¥) N Tg.(fol ¥)},
Keep,(y) = {b € Keep, | g:(y) N g.(y) N g.(fo(¥))}-

In order for a cyclic cover £ = (b4, ..., by, b1) to cause conspiracy against a, the
condition b; € Keep,(y) must then hold for the current state y when b; is about
to participate in the conspiracy. Let this condition, for an arbitrary conspiratorial
cycle £ against q, be denoted by ¢ ;,

Pei(y): 8,(¥) N 8(¥) N 8l fo,(¥)).

Correspondingly, for a conspiratorial chain ¢ = (b,, ..., b.) against a, the
counterpart of the static conditions are

Ceo(y): 8o (y) N T8(y) N ga(fo,(¥)),
Pei(3): 8, (¥) N ga(y) N gl fo(y), 1<i<ek,

Pea(y): 8, () A 8a(y) A T8 (fo,(¥)).
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

542 . R. J. R. Back and R. Kurki-Suonio

. . e ——————
Action fairness
Conspiracy
safeness
Handshake fairness Competition
safeness
Omission
safeness

Process fairness

Fig. 5. Relationship between fairness notions.

Let A’ C A be a subset for which
00Cgs = (00g4-)

holds in the reduction S\ A with initial condition I, for some invariant I of S. To
prevent conspiracy against the actions A it is then obviously sufficient to prevent
conspiracy against the subset A’. Such a subset A’ is called a core of A.

A set of actions A C Act is now defined to be conspiracy safe in action system
S if there is a core A’ of A such that for each conspiratorial cycle or chain §
against @ € A’ with actions b; & A there is at least one condition ¢, ; which will
eventually become and stay false, if a is infinitely often enabled. This means that
for a conspiratorial cycle the condition

0g, = <O ¢E,i

must hold in the reduction S\ A with initial condition I, when &% (b) is assumed
for each action b € £. For each conspiratorial chain the condition

oog, = <0,

must hold in the reduction S\ A with initial condition I, when &% (b) is assumed
for each action b € £. As before, I is here some invariant of S. We now have the
following result.

LEMMA 10. #ZF (A) for a set of actions A C Act guarantees &/ F (A), provided
that A is conspiracy safe.

Competition safeness of A implies that both Keep,(y) — A and Disable,(y) —
A will eventually stay empty for all a € A, if g, holds infinitely often without any
action in A being executed. Therefore competition safeness implies conspiracy
safeness also in the dynamic case.

We summarize the results of Sections 4.2 and 4.3 in the following theorem.

THEOREM 4. Let S be an action system. Then

(i) PF guarantees & F (A) for a set of actions A C Act in S, if A is competition
safe,

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems + 543

(i) PF guarantees #F (A) for a set of actions A C Act in S, if A is omission
safe,

(i) #F(A) for a set of actions A C Act guarantees /. (A), provided that A is
conspiracy safe.

Although the conditions in this theorem are sufficient but not necessary, they
seem to provide reasonably powerful criteria for proofs of fair serializability. The
relationship between the fairness notions studied in this section are shown in
Figure 5.

5. PROVING PROPERTIES OF CONCURRENT EXECUTIONS

Let us now consider how to prove temporal properties of concurrent executions
of action systems. Our aim is to be able to prove that an actual distributed
execution of an action system has some desired property. Proving this would
basically require that we argue about the properties in terms of an implementation
of the action system, using for instance the implementation on local area networks
given in Section 3. This, however, would be very tedious, and we prefer to prove
properties with respect to the execution models that we have given for action
systems. In particular, we would like to use the sequential model, because this is
simpler and easier to reason about. Below we will tie together the results of the
preceding section and show how to prove properties that hold for the concurrent
model, by proving corresponding properties for the sequential execution model.
We will also discuss more carefully how properties that hold for the concurrent
execution model can be interpreted as properties of an actual distributed execu-
tion of an action system.

5.1 Proving Liveness Properties

Assume that we have an implementation of an action system S that guarantees
process fairness for all processes, and handshake fairness for some actions A in
Act. We want to prove that some temporal property R is satisfied by each
concurrent execution of the execution system that is #% and % (a), a € A.
Assume that the property R is insensitive to stuttering. We may now proceed as
follows.

(i) We first prove that the property R holds for each sequential execution of S,
assuming «.% (A’) for some sets of actions A’ in Act.

(ii) We then prove that each &% (A’) condition holds for concurrent executions
of S, assuming % and #¥ (a), a € A.

Let us consider both these steps in more detail.

From step (i) it follows by Theorem 2 that property R will also hold for each
concurrent execution of S for which the conditions &% (A4’) hold. Hence if we
can prove step (ii), then R will obviously hold for each concurrent execution of S
that is 2% and ¥ (4), a € A.

Consider now step (ii). Action fairness can be established using the results of
the previous section. Initially, we start with some collection of action fairness
obligations ¥ (A,), ..., ¥ (A,), that we need to establish. By the results of
the preceding section we may establish these fairness properties by proving that

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

544 . R. J. R. Back and R. Kurki-Suonio

the action system has certain safeness properties:

(1) A fairness obligation &/ #(A’) is established directly, if we can prove com-
petition safeness for this set of actions.

(2) We can reduce a fairness obligation /. (A’) to a fairness obligation #.% (A’}),
if we can prove conspiracy safeness for this set of actions.

(3) A fairness obligation #.% (A’) can be established directly, by proving omission
safeness for this set of actions.

The second step is established, if by using these rules we can reduce the fairness
obligations to those handshake fairness assumptions that we may assume for the
implementation, i.e., #.7 (a), for each a € A. These rules may be applied directly
to the sets A;, or we might partition these sets into smaller sets, and prove
fairness assumptions separately for each of these smaller sets. (This latter
approach is further elaborated in [8].)

Static competition, omission, and conspiracy safeness are expressed as prop-
erties in ordinary first-order calculus. Dynamic competition, omission and con-
spiracy safeness are expressed as temporal logic properties of the concurrent
execution model. In the latter case we have to show that some temporal property
@ holds for each concurrent execution of the reduced system S\A;, assuming
& F (C) for the reduction, for some sets of actions A/ and C in Act. The property
Q is in all these cases insensitive to stuttering and makes no reference to variables
free in the concurrent model. Hence, @ will hold in each concurrent execution of
S\A; assuming &% (C), if and only if it holds in each sequential execution of
S\A/ assuming &/ (C). Thus, to establish the required temporal properties, we
need only to consider sequential executions of action systems.

If the property @ cannot be established for the reduced system S\A/, even if
#F(C) is assumed, then we may repeat the above proof procedure, but now
applied to the system S\A/ with &% (C) and #% (a), a € A. The sequence of
reductions must eventually terminate, as at least one action is removed from the
system in each reduction.

In conclusion, by using the safeness notions and the notion of action fairness,
we are able to establish that some desired property holds for any concurrent
execution of an action system S by only reasoning about temporal properties of
sequential executions of S. We have thus achieved the goal that we set ourselves
in the introduction.

Example 5. We apply the above proof method to the dining philosophers
program of Example 3. We want to show that individual starvation cannot occur
in a concurrent execution of the example program, if each execution is process
fair. Thus we want to show that

O(hungry; = O hungry:) (1)

foreachi=1,...,n.
By the proof method above, we divide the proof into two steps:

(i) We first prove (in the sequential execution model) that (1) holds, assuming
action fairness for all eating actions.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 545

(i1) We then show that action fairness holds for all eating actions, assuming only
process fairness.

Part (i) of the proof has already been established in Section 2.2. Hence it only
remains to show part (ii), that the action system is fair for all eating actions.

Omission safeness. We show first that Eating[i] is omission safe. This will be
guaranteed by the process Philosopher|[i]. The two sets of actions in the definition
of omission safeness are in this case

A = {Eating[i]},
B = {Reserve[i], Thinking[i]}.

We have to show that I A 00g, = OO™gg holds in the reduced system, with
Eating[i] removed, assuming action fairness for {Reserve[i], Thinking[i]}. This
amounts to showing that, if hungry; holds infinitely often in the reduced system,
then eventually reserved; will become true. This is obviously the case when action
Reserve(i] is treated fairly.

Conspiracy safeness. Action fairness is now guaranteed if we can show that
{Eating[i]} is conspiracy safe. Figure 6 shows all possible covers of the action
Eating[t]. In the figure, there is an arrow from action b to b’, if b, b’ € Exclude,
and Proc, N Proc, € Proc,. We indicate whether an action can enable (E) or
disable (D) action Eating[i]; all actions except Thinking[i] can keep it enabled.
Analyzing these covers we see that any conspiratorial cycle must contain
either Reserve[i] or Eating[i — 1], and any conspiratorial chain must contain
Reserve[i + 1] and either Thinking[i] or Eating|[i + 1].

Let us first consider the conspiratorial cycles. We will prove that for any
conspiratorial cycle (by, bs, ..., by, b1),

(I N\ Dgguingi)) = O0¢,;

holds for some j in the reduction S\ {Eating[i]} of S, with &% (b;) assumed for
j=1, ..., k. It is obviously sufficient to replace ¥;; here by the guard of &;.
After what was shown above about Reserve[i], it now suffices to prove that the
guard of Eating[i — 1] will eventually turn false in the reduced system without
action Eating[i]. This can be done by showing that hungry; eventually implies
both token; and reserved; in this reduced system.

We use well-founded ranking to establish this. We select a mapping f(y) =
(m, b) of system states y into a set W,

W=1{0,..., n— 1] X (true, false},

such that m is the smallest integer for which token,_,, = true and b is the value
of reserved;_,,. The existence of m is ensured by the invariant proved in Section
2.2, which states that there is always exactly one fork with an associated token.
The well-founded ordering in W is defined as follows: {m, b) > (m’, b’), if
m>m’,orif m=m’, b = false and b’ = true. The least element in W is
(0, true), and the required situation has been achieved when f(y) has this value.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

546 . R. J. R. Back and R. Kurki-Suonio

Eating[i-1] -<———————— Eatingli+1]
(E)

Reserve[i] <&—————PReserve[i+1]

N

Thinking(i
B)

Fig. 6. Covers for action Eating [i].

Let y be an arbitrary state satisfying the invariant, and let f(y) = (m, b) >
(0, true). Consider the following three different cases:

(i) m > 0, and b = false: the value of f () is decremented by the helpful actions
{Eating[i — m], Reserve[i — m]},
(i) m > 0, and b = true: the helpful action is {Eating[i — m]},
(ili) m = 0, and b = false: the helpful action is {Reserve[i]}.

Thus the situation where m = 0, and b = true will eventually be reached,
provided that we have action fairness for all sets of helpful actions in the reduced
system. Hence, we need to apply our fairness proof methods once again, but now
for the reduced system in which action Eating[i] has been removed. Thus, for
case (1), we need to prove that the reduced action system, with initial condition
m > 0, and b = false, is action fair for {Eating{i — m], Reserve[i — m]}, and
similarly for the other cases.

In order to check this we first notice that each set of helpful actions is omission
safe. Conspiracy safeness is straightforward in cases (ii) and (iii). In case (i) this
can be shown by selecting [Reserve[i — m]} as the core of A.

Let us then consider the conspiratorial chains. The only actions that can
enable Eating[i] are Eating[i + 1] and Thinking[i], and the only action that
can disable it is Reserve[i + 1]. Hence a conspiratorial chain must either
contain Thinking[i] and Reserve[i + 1] or it must contain Eating{i + 1]
and Reserve[i + 1]. We have to show that for each conspiratorial chain
{(bo, by, ..., by,

(I N\ OO gEatingi) = COMP

for some j in the reduction S\{Eating[i]} of S, with &% (b;) assumed for
j=0,1,...,k

Consider first a chain with actions Thinking[i] and Reserve[i + 1]. Action
Thinking[i] enables Eating[i] only if ~hungry; A 2 (reserved; N\ token;) holds. If
the enabling condition for Eating[i] holds infinitely often in the reduced system
without Eating[i], then hungry; holds infinitely often. This condition can only
be turned off by the action Eating[i], once it starts to hold in the reduced system,
so eventually it will hold forever. Consequently, the action Thinking[i] cannot

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 547

repeatedly enable the condition for action Eating[i] in the reduced system. Hence,
no chain with action Thinking[i] can achieve conspiracy against Eating[i].

Consider now a chain with actions Eating[i + 1] and Reserve[i + 1].
The action Reserve[i + 1] disables action Eating[i] only if hungry; A hungry.+1 A
Treserved;., N\ token;.,. Assume that the enabling condition for action Eating|i]
holds in the reduced system, i.e., hungry; A (Treserved;,, V —token;i.). If
token;,, = false, then this will hold forever, as it can only be set to true by
the removed action Eating[i]. If token.,, = true, then we have two cases. Either
the condition hungry;., does not hold infinitely often, in which case the condition
—hungry;,, will eventually hold forever, or hungry;., does hold infinitely often.
In the latter case action Eating[i + 1] will be infinitely often enabled, so by the
fairness assumption it will eventually be executed. Once executed, it will set
token,,, = false, which thereafter will stay false forever. In all these cases one of
the conditions required for the action Reserve[i + 1] to disable action Eating][i]
eventually becomes false forever. Hence no chain with actions Eating[i + 1] and
Res[i + 1] can achieve conspiracy against Eating[i].

This concludes our proof that the action system of Example 3 is action fair
for each eating action, and hence, by combining this result with the result of
Section 2.2, that the action system avoids starvation of the philosophers.

5.2 Interpretation of Correctness Proofs

The effect of an action a € Act, i.e., the updating of the variables of the
participating processes, is associated with the handshake transition hs, in the
concurrent model. All local variables are considered to be immediately updated
when the decision to execute action a is made. The fact that updating the local
variables in a process p takes time is modeled by the interval from handshake
hs, to the releases rel,, p € Proc,. Since this does not directly correspond to the
behavior of a real implementation, the validity of the model requires some
justification.

To make things more concrete, let us consider an action system with two
actions, Act = {a, b}, and three processes, Proc = {pi, p., ps}. Each process p; has
one local Boolean variable y;. The actions are defined by

action a by p,, p;:
Yi=Ye=>Y1, Yo 1= WY1, Y2
action b by p., p;:

Yo = Y3 > Y3 := T1Ys.

A possible sequence of events in a real implementation is given in Table I. The
question marks indicate situations where the value of a variable is not known for
certain, because an update is in progress.

Handshakes and releases in Table I correspond roughly to the respective
transitions in the concurrent execution model shown in Table II. In the concur-
rent model the local variables y; are immediately updated by the handshake
transitions. In an actual implementation the updating is done sometime during
the execution of the action body, and need not happen at the same time in
different processes. As a result, properties like (y; = y3) could have different
values in the concurrent model and in reality. In the model this expression is

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

548 . R. J. R. Back and R. Kurki-Suonio

Table I. Snapshots of the Real Operation of An Action System

Y1 Y2 Y3
initially: true true false
handshake a: ? ? false
release p, from a: ? false false
handshake b: ? ? ?
release p; from b: ? ? true
release p, from b: ? false true
release p, from a: false false true

Table II. Global States in Concurrent Execution Model of an
Action System

Y1 Y2 Y3
initially: true true false
handshake a: false false false
release p, from a: false false false
handshake b: false false true
release p; from b: false false true
release p, from b: false false true
release p, from a: false false true

turned true by hs, and false by hs;; in a real execution it might as well be first
turned true by ps; and then false by p,. Because of simultaneity it is not even
clear whether any such changes could be seen in a real execution.

This presents us with a problem of how to interpret properties that we have
proved to hold for a concurrent execution of an action system. Consider the
property O(y; = ¥,), which can be proved to hold for this action system. In a real
execution, when action a is executed, either p; or p; would update its local variable
before the other, thus temporarily destroying this invariant. Similarly a liveness
property like O(y, = y, = y3), which can be proved to hold in the action system,
might never actually hold in a real execution of the action system.

What should be the truth of an assertion about the global state, when some
program variables are in the middle of being updated? It is not satisfactory to
say that the assertion is only defined when all variables in it have a well-defined
value. In a real execution of an action system there need not be a single moment
of time (except for the initial and final states) when all program variables have
well-defined values. This is a consequence of the parallelism in execution. Still,
we would like to say that any execution of the action system in some real and
observable way does have the safety or liveness property that we have proved for
the concurrent execution model.

In our description of the behavior of a real system above we have assumed a
universal time that determines a complete ordering of events. There need not,
however, exist any means to determine this ordering by observing the system.
For observations one could assume a relativistic notion of time where no other
timing constraints are present except those determined by the handshakes [30].
Any sequence of observations that is not in conflict with this partial ordering is
then possible. A model of execution, such as our concurrent model, would be

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 549

considered valid if any sequénce of global states generated by the model is
consistent with these constraints.

The concept of a global state is, however, obscured if the relativistic notion of
time is adopted in the way suggested above. Although the sequence of global
states in the model is not in conflict with what might be observed of the real
system, it need not agree with any particular observations either. It can be
questioned whether reasoning with such a global state has any relevance. In other
words, if we prove that some safety property holds throughout the execution in
the concurrent model, this would only say to us that even if this property is not
true of our present observation of the system, there is some other way of observing
the system, in which the property does hold. To make some inference about the
actual behavior of the system it seems reasonable to require that the sequence of
states in the model will also be observed in the real execution of the action
system.

We will therefore propose another approach to this problem: We specify the
way in which one should observe the system, so that one sees a sequence of global
states that agrees with the sequence generated by the concurrent execution
model. A possible arrangement for such observations is as follows. A request is
broadcast simultaneously to all processes, asking them to give their local states.
If not engaged in a transaction, a process replies immediately to the request;
otherwise it delays the reply until the current action has been completed. The
replies are collected to form a global state, which will correspond to a global state
used in our model. The complete sequence of global states in the concurrent
model is obtained, if this sampling of the global state is done frequently enough,
and successive exact duplications of the global states are removed. Consequently,
any property that holds in the concurrent execution model of an action system
will also hold for the sequence of global states observed in this way of an actual
execution of an action system.

It is worth noticing that the particular view of time we selected for the model
has no effect on the fairness notions in the concurrent model, since no handshake
transition can be enabled while any of the processes in question is involved in
another action.

6. RELATED WORK

The generalized handshake mechanism and our approach to describing system
behavior in terms of joint actions was originally inspired by the Petri net approach
to system modeling. If action guards are ignored, then the generalized handshake
corresponds directly to the firing rule for transitions in Petri nets. An action
system can be understood as a special kind of Petri net where each process is
represented by a token, considered to carry the local variables of the process with
it. The addition of guards to Petri nets has been proposed in [14]. Also, the
action system approach is quite close to the shared variable transition model for
describing the behavior concurrent systems, as presented in [31]. They are, in
fact, identical for the sequential execution model. The main thing that distin-
guishes our approach from these is the requirement that the action guards be
separable, and that these transition systems are to be executed in parallel in a
distributed fashion.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

550 . R. J. R. Back and R. Kurki-Suonio

The work reported here generalizes previous work in [5]. There the notions of
centralized and decentralized action systems were defined, but only the serial
execution model was given. What we here call an action system corresponds to a
decentralized action system in that paper. An implementation in CSP was given
for the special case when each action involves at most two processes. Although
the fairness questions of the implementation were ignored, this CSP implemen-
tation can easily be shown to be #F or #%, depending on whether the
implementation of CSP supports process or channnel fairness [29]. The imple-
mentation given here is an improvement over the CSP implementation, as it is
given directly for a local area network, thus avoiding the problem of finding an
efficient implementation of CSP with output guards.

The idea of synchronizing more than two processes by common handshakes
has also been proposed by Francez and Hailpern in their work on scripts [22].
These are primarily seen as higher level procedure-like mechanisms for organizing
the cooperation of processes in a distributed system. It is also possible to achieve
the effect of joint actions with the script mechanism. The mechanism is not,
however, seen as a primitive communication mechanism, but is rather thought
to be built on existing communication mechanisms, such as CSP or Ada hand-
shaking. Proposals for synchronizing multiple processes that are somewhat
similar to ours have also been proposed by Ramesh [34] and Forman [20]. A
somewhat different approach to multiparty interaction is taken in [12].

Providing a distributed implementation of our mechanism is a generalization
of the problem of giving a distributed implementation of CSP with output guards,
which has been treated quite extensively in the literature (see [2, 10] for a
reference to work in this area). None of the implementations that we are
aware of is based on using a shared broadcast channel. The implementation by
Schneider [35] seems to be closest to ours, as it also uses broadcasting, but the
channel is not shared, and the necessary ordering of the messages is imposed by
timestamps.

The notions of process fairness and handshake fairness are, in fact, the same
as the process fairness and channel fairness that were introduced in [29] in the
context of CSP. The notion of action fairness, although quite natural in the case
of a shared variable interpretation of action systems, does not seem to have been
considered before in the context of distributed systems. It does not come up so
naturally in connection with conventional approaches, as they lack higher-level
notions for structuring process cooperation.

The validity of the sequential model with action fairness led us to the problem
of fair serializability. Comparing this with the analogous notion in database
transactions we note that fair serializability has no effect on the result of the
transactions, only on the fairness notion that can be supported. This notion was
first proposed and studied in [7]. It was subsequently applied by Grumberg,
Francez, and Katz [23] to study the fair termination problem of CSP programs.
An alternative presentation of this basic idea is given in [21, Section 5.2]. Another
recent study on this topic is [3].

An important advantage of the action system approach is that it makes it easy
to construct distributed programs by stepwise refinement. The action system
approach was originally developed with this purpose in mind. The stepwise

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

Distributed Cooperation with Action Systems . 551

refinement method for action systems was originally described in [5]. A later
application of this method to the problem of removing virtual channels in a
distributed program is described in [36]. The action system approach is also very
useful for a Dijkstra-style way of developing programs by incrementally adding
invariants for a distributed system, and then giving actions that preserve these
invariants, while simultaneously achieving some liveness conditions (see, e.g.,
[16, 17]). A case study of this approach, in the context of action systems, is
described in [6].

An approach similar to action systems has recently been proposed by Chandy
and Misra [11]. They also argue for the necessity to describe the overall behavior
of a distributed system, rather than looking at the behavior of processes in the
system individually. The possible behaviors in their systems are described by
guarded iteration statements, which, as we have shown above, are equivalent to
the sequential execution model of action systems. They use this approach to
program a distributed algorithm in a stepwise manner, similar to the way in
which the distributed sorting algorithm is developed in [6]. We think that this
work provides additional support for the fruitfulness of the action system ap-
proach to the programming of the algorithmic behavior of a distributed system.

7. CONCLUSIONS

The main purpose of this paper has been to present and analyze the action
system approach to constructing distributed systems. We have tried to show that
this approach gives a good basis for describing the overall behavior of a distributed
system, and that it fits nicely into the temporal logic framework for verifying
safety and liveness properties. OQur analysis of action systems was divided into
three parts. First, we presented a simple sequential execution model for action
systems, on which the temporal reasoning about action systems is based. The
parallel execution is here modeled by sequential, nondeterministic execution, in
a way similar to the sequential execution of guarded iteration statements. The
notion of action fairness was introduced to allow proofs of liveness properties.

Next, we showed how to implement action systems in a distributed fashion.
For this purpose we defined another execution model, the concurrent execution
model, which corresponds to the way in which action systems are executed in the
implementation. The notions of handshake and process fairness were introduced
in this model. We showed that action systems can be implemented efficiently on
a broadcasting network, and that the required notions of process and action
fairness can be guaranteed by this implementation.

In the last part we studied the relationship between the two models of
execution. We showed that except for fairness, the two models are equivalent in
the sense that any temporal property that can be proved to hold for each
sequential execution of an action system will also hold for each concurrent
execution of the action system. The handshake and process fairness notions
guaranteed by the implementation are, however, weaker than the action fairness
notion that we need in proving properties in the sequential execution model. We
identified a class of action systems that we called fairly serializable, for which
process or handshake fairness does imply action fairness. We have given proof
rules by which fair serializability of action systems can be shown. By using these

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988,

552 . R. J. R. Back and R. Kurki-Suonio

proof rules one can prove both safety and fairness properties for action systems
within the simpler sequential execution model.

Let us finally wind up with some problems that we find interesting and worth
further study. One problem that the action system approach shares with other
endogenous models of program behavior is the modularization of large systems.
The strength of the process-based approaches, especially those based on com-
municating processes, is that they support a very nice, object-oriented way of
constructing a large program from smaller parts. The problem of finding a good
modularization mechanism for action systems is very similar to the corresponding
problems for Prolog and production system languages such as OPS5, as well as
for the modular construction of Petri nets.

The design of higher level control structures for action systems is also a topic
worth further study. Sequencing is a good example of the need for such constructs:
enforcing some actions to be executed in sequence requires unattractive manip-
ulation of Boolean flags, which makes the program harder to understand and
prove correct.

Distributed implementation of action systems on point-to-point networks
forms another class of interesting problems. This application area is quite
important, especially as the action system approach seems to be well suited to
construct multiprocessor algorithms on loosely coupled MIMD machines. Some
work in this area has been done in [18] and more recently in [9, 33]. Another
important topic has to do with efficient distributed execution of action bodies.
The body should be partitioned among the processes in such a way that redundant
computations are avoided.

Finally the problems involved in relating the sequential execution model to
the true concurrency model seem important and well worth studying in more
detail by using a more abstract model for true concurrency. Our results show
that the simple interleaving model of communication, in which communication
events are modeled by atomic actions that do not take any time, is insufficient
as a way of modeling the real behavior of distributed systems. Especially when
considering fairness properties, it is necessary to take into account that the
communication events, even in the case of synchronous handshakes, do take
time.

The methods for proving fair serializability that we described in Section 4
seem to provide a reasonably good collection of tools to tackle realistic problems.
However, they do not necessarily provide a complete set of tools, and the proof
method involved in using them can be quite cumbersome. A promising topic for
research would be to extend these methods and build a special-purpose proof
system by which the method of fair serializability could be used to establish
properties of real distributed executions of action systems in a more rigorous
fashion.

ACKNOWLEDGMENTS

We would like to thank the referees for their insightful comments on the paper.
Discussions with Mats Aspnés, Luc Bouge, Nissim Francez, Eeva Hartikainen,
Leslie Lamport, and Fred Schneider have also been very helpful.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988,

Distributed Cooperation with Action Systems . 553

REFERENCES

1.
2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Ada Programming Language. ANSI/MIL-STD-1815A-1983.

ANDREWS, G. R., AND SCHNEIDER, F. B. Concepts and notations for concurrent programming.
ACM Comput. Surv. 15,1 (March 1983), 3-43.

APT, K., FRANCEZ, N., AND KATZ, S. Appraising fairness in languages for distributed program-
ming. In 14th ACM Conference on Principles of Programming Languages (Munich, Jan. 1987),
ACM, New York, 1987, 189-198.

. Back, R. J. R., HARTIKAINEN, E., AND KURKI-SUONIO, R. Multi-process handshaking on

broadcasting networks. In Reports in Computer Science 42, Abo Akademi, Abo, Finland, 1985.

. Back, R. J. R., aND KURKI-SUONIO, R. Decentralization of process nets with a centralized

control. In Second ACM SIGACT-SIGOPS Sympostum on Principles of Distributed Computing
(Montreal, Aug. 1983). ACM, New York, 1983, 131-142.

. Back, R. J. R., AND KURKI-SUONIO, R. A case study in constructing distributed algorithms:

Distributed exchange sort. In Proceedings of Winter School on Theoretical Computer Science
(Lammi, Finland, Jan. 1984). Finnish Society of Information Processing Science, 1-33.

. BAck, R. J. R., AND KURKI-SUONIO, R. Co-operation in distributed systems using symmetric

multi-process handshaking. In Reports in Computer Science 34, Abo Akademi, Abo, Finland,
1984.

. BACK, R. J. R., AND KURKI-SUONIO, R. Serializability in distributed systems with handshaking.

In Automata, Languages and Programming. Lecture Notes in Computer Science 317. T. Lepisto
amd A. Salomaa, Eds. Springer Verlag, Berlin, 1988, 52-66.

. BAGRODIA, R. On the design of high performance distributed systems. Ph.D. dissertation, Univ.

of Texas, Austin, 1987.

BUCKLEY, G. N,, AND SILBERSCHATZ, A. An effective implementation for the generalized input-
output construct of CSP. ACM Trans. Program. Lang. Syst. 5, 2 (April 1983), 223-235.
CHANDY, M., AND MISRA, J. An example of stepwise refinement of distributed programs:
Quiscence detection. ACM Trans. Program. Lang. Syst. 8, 3 (July 1986), 326-343.
CHARLESWORTH, A. The multiway rendezvous. ACM Trans. Program. Lang. Syst. 9, 2 (July
1987), 350-366.

CSMA/CD Access Method and Physical Layer Specifications. IEEE Standard 802.3, IEEE, New
York, July 1983.

DE CiNDIO, F., DE MICHELIS, G., POMELLO, L., AND SIMONE, C. Superposed automata nets.
In Application and Theory of Petri Nets. Informatik-Fachberichte 52, C. Girault and W. Reisig,
Eds., Springer-Verlag, Berlin, 1982.

DIJKSTRA, E. W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.
DuKsTRA, E. W. Invariance and nondeterminacy. In Mathematical Logic and Programming
Languages. C. A. R. Hoare and J. C. Shepherdson, Eds. Prentice-Hall, Englewood Cliffs, N.J.,
1985, 157-165.

DuksTRA, E. W., LAMPORT, L., MARTIN, A. J., AND ScHOLTEN, C. S. On-the-fly garbage
collection: An exercise in cooperation. Commun. ACM 21, 11 (Nov. 1978), 966-975.

EKLUND, P. Synchronizing multiple processes in common handshakes. In Reports in Computer
Science 39, Abo Akademi, Abo, Finland, 1985.

Foray, C., AND DERMOT, M. C. OPS, a domain independent production system language. In
Proceedings of Fifth International Joint Conference on Artificial Intelligence (Cambridge, Mass.,
Aug. 1977), Morgan Kaufmann, 1977, 933-939.

ForMAN, . R. Raddle, an informal introduction. Tech. Rep. STP-182-85, Microelectronics and
Computer Technology Corp., Austin, Tex., 1986.

FRANCEZ, N. Fairness. Springer-Verlag, Berlin, 1986.

FRrRANCEZ, N., AND HAILPERN, B. Script: A communication abstraction mechanism. In Second
ACM-SIGACT-SIGOPS Symposium on Principles of Distributed Computing (Montreal, Aug.
1983). ACM, New York, 1983, 213-227.

GRUMBERG, O., FRANCEZ, N., AND KATz, S. Fair termination of communicating processes. In
Third ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (Vancouver,
Aug. 1984). ACM, New York, 1984, 254-265.

HoARE, C. A. R. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct.
1969), 576-580.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

554

25.
26.

27.
28.
29.

30.

31.

32.

33.

34.

35.
36.

37.

R. J. R. Back and R. Kurki-Suonio

HoaRE, C. A. R. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978),
666-677. Reprinted in Commun. ACM 26, 1 (Jan. 1983), 100-106.

Hoarg, C. A. R. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs, N.J.,
1985.

INMOS LTD. Occam Programming Manual. Prentice-Hall, Englewood Cliffs, N.J., 1985.
KROEGER, F. Temporal Logic of Programs. EATCS Monographs on Theoretical Computer Sci-
ence, vol. 8. Springer-Verlag, Berlin, 1986.

KUIPER, R., AND DE ROEVER, W. P. Fairness assumptions for CSP in a temporal logic
framework. In Formal Description of Programming Concepts—II, D. Bjgrner, Ed. North-Holland,
Amsterdam, 1983, 159-167.

LAMPORT, L. Time, clocks, and ordering of events in a distributed system. Commun. ACM 21,
7 (July 1978), 558-565.

MANNA, Z., AND PNUELI, A. How to cook a temporal proof system for your pet language. In
Tenth ACM Conference on Principles of Programming Languages (Austin, Tex., Jan. 1983). ACM,
New York, 1983, 141-154.

PNUELIL, A. Applications of temporal logic to the specification and verification of reactive
systems: A survey of current trends. In Current Trends in Concurrency. Lecture Notes in Computer
Science 224, J. W. de Bakker, W. P. de Roever, and G. Rozenberg, Eds., Springer-Verlag, Berlin,
1986, 510--584.

RAMESH, S. A new and efficient implementation of multiprocess synchronization. In PARLE
Parallel Architectures and Languages Europe. Lecture Notes in Computer Science 259, Springer-
Verlag, Berlin, 1987, 387-401.

RAMESH, S., AND MEHNDIRATTA, S. L. A new class of high-level programs for distributed
computing systems. In Proceedings of Fifth Conference on FST-TCS. Lecture Notes in Computer
Science 206, Springer-Verlag, Berlin, 1985, 42-72.

SCHNEIDER, F. R. Synchronization in distributed programs. ACM Trans. Program. Lang. Syst.
4,2 (April 1982), 125-148.

SERE, K. Stepwise removal of virtual channels in distributed algorithms. In Second International
Workshop on Distributed Algorithms (Amsterdam, 1987).

TANENBAUM, A. S. Computer Networks. Prentice-Hall, Englewood Cliffs, N.J., 1981.

Received August 1987; revised May 1988; accepted June 1988

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 4, 1988.

