
Johan Lilius
Dragos Truscan

 | Ricardo J. Machado
 | João M. Fernandes (Editors)

Turku Centre Computer Sciencefor

TUCS General Publication
No 39, May 2005

Proceedings of

MOMPES’05

2nd International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software

Proceedings of

June 6, 2005, Rennes,, France

Johan Lilius
Ricardo J. Machado
Dragos Truscan
João M. Fernandes

MOMPES’05
2nd International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software

Editors:

i

Introduction

Welcome to the 2nd edition of the International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software (MOMPES 2005) held
in Rennes (France), June 6th, 2005.

The Object Management Group’s Model Driven Architecture (MDA)
paradigm is an approach to the development of software, based on the
separation between the specification of the systems and their implementation
using specific platforms. This workshop focuses on the scientific and practical
aspects related with the adoption of Model Driven development (MDD)
methodologies (notation, process, methods, and tools) for supporting the
construction of pervasive and embedded software. Suggested areas of interest
in the workshop include, but are not restricted to:

• Specification of Platform Independent Models (PIMs) and Platform
Specific Models (PSMs)

• PIM to PSM transformations
• MDD process for embedded and pervasive software
• Automatic code generation in MDD contexts
• Testing and validation in MDD contexts
• Tools for MDD of embedded and pervasive software
• Case studies on the application of MDD

We would like to thank the authors that submitted papers, the PC members

for their excellent work in reviewing the papers, the ACSD'05 organizers,
especially Laure Petrucci, for help in the local arrangements of this workshop,
and TUCS and CREST for support in publishing the proceedings. Finally, we
acknowledge the "Nordic Journal of Computing" for having accepted to
publish a special edition with a selection of (extended and revised) versions of
papers presented during the workshop.

MOMPES series of workshops proves once more to be a pertinent initiative
to be able to get together people from the application domain of embedded and
pervasive software and from the scientific community of model transformation.

We hope you all will enjoy the workshop!

The organizers:
Johan Lilius, TUCS (FI)
Ricardo J. Machado, Univ. Minho (PT)
Dragos Truscan, TUCS (FI)
João M. Fernandes, Univ. Minho (PT)

ii

Program Committee:

• Jörg Desel, Katholische Univ. Eichstätt-Ingolstadt (DE)
• João M. Fernandes, Univ. Minho (PT)
• Marcus Fontoura, IBM (US)
• Luís Gomes, Univ. Nova Lisboa (PT)
• Jens B. Jorgensen, Univ. Aarhus (DK)
• Ridha Khedri, McMaster Univ. (CA)
• Bernd Kleinjohann, C-Lab (DE)
• Kai Koskimies, Tampere UT (FI)
• Maciej Koutny, Univ. Newcastle (UK)
• Johan Lilius, TUCS (FI)
• Ricardo J. Machado, Univ. Minho (PT)
• Ana Moreira, Univ. Nova Lisboa (PT)
• Ian Oliver, Nokia (FI)
• Carlos E. Pereira, UFRGS (BR)
• Ivan Porres, TUCS (FI)
• João P. Sousa, CMU (US)

Organizing Committee:

• Johan Lilius, TUCS (FI)
• Ricardo J. Machado, Univ. Minho (PT)
• Dragos Truscan, TUCS (FI)
• João M. Fernandes, Univ. Minho (PT)

Local Arrangements:

• Eric Badouel, INRIA/IRISA (FR)
• Laure Petrucci, Univ. Paris XIII (FR)

iii

Contents

MODELING WITH COLOURED PETRI NETS

• Issam Al-Azzoni, Douglas G. Down, and Ridha Khedri,

Modeling and Verification of Cryptographic Protocols
Using Coloured Petri Nets and Design/CPN ………………………………… 1

• João P. Barros and Jens B. Jørgensen,
Model Transformations for an Elevator Controller:
Coloured Petri Nets in Object-oriented Analysis and Design…………… 21

• Jonathan Billington, Guy Edward Gallasch, and Laure Petrucci,
 Transforming Coloured Petri Nets to Counter Systems for
Parametric Verification: A Stop-and-Wait Protocol Case Study………….37

MODELING WITH UML

• Damien Azambre, Mathieu Bergeron, and John Mullins,

Validating UML and OCL models in SOCLe by simulation
and model-checking ………………………………………………………… …57

• Alexandre Bragança and Ricardo J. Machado

Deriving Software Product Line's Architectural
Requirements from Use Cases: an Experimental Approach………………77

MODELING APPROACHES

• Vesna Milijic,

Supporting the Modeling of Embedded Systems……………………………93

• Andreas Ulbrich, Torben Weis, and Kurt Geihs
A Modeling Language for Applications in Pervasive
Computing Environments ……………………………………………………109

Modeling and Veri cation of Cryptographic
Protocols Using Coloured Petri Nets and

Design/CPN

Issam Al-Azzoni, Douglas G. Down, and Ridha Khedri
McMaster University

1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
{alazzoi, downd, khedri}@mcmaster.ca

Abstract

In this paper, we present a technique to model and analyse cryptographic
protocols using coloured Petri nets. A model of the protocol is constructed
in a top-down manner: rst the protocol is modeled without an intruder,
then a generic intruder model is added. The technique is illustrated on the
TMN protocol, with several mechanisms introduced to reduce the size of the
occurrence graph. A smaller occurrence graph facilitates deducing whether
particular security goals are met.
Keywords: Cryptographic protocols, Protocol analysis, Coloured Petri nets,
Design CPN, Security goals.

1 Introduction

Cryptographic protocols play a crucial role in achieving security in today’s com-
munication systems. They are used in the Internet and in wired and wireless net-
works to ensure privacy, integrity and authentication. A cryptographic protocol
is a communication protocol that uses cryptographic algorithms (encryption and
decryption) to achieve certain security goals.

Generally, a cryptographic protocol involves two communicating agents who
exchange a few messages, with the help of a trusted server. The exchanged mes-
sages are composed from components such as keys, random numbers, timestamps,
and signatures [13]. At the end of the protocol, the agents involved may de-
duce certain properties such as the secrecy and authenticity of an exchanged mes-
sage [12].

In analysing a cryptographic protocol, all possible actions by an intruder must
be considered. An intruder is an attacker who wants to undermine the secur-
ity of a protocol. An intruder can perform the following actions to mount at-
tacks [12]: prevent a message from being delivered, make a copy of messages,
intercept a message by preventing it from reaching its destination and making a

Administrator
1

copy, fake a message, modify a message, replay a message, delay the delivery of a
message, and reorder messages. A fake message is fully generated using material
gleaned from past exchanged messages while a modi ed message is a genuine
message that the intruder partially altered.

The intruder manipulates messages as outlined above to mount an attack on
the protocol. In this paper, we are concerned with attacks that result from a ws
inherent in the protocol. Flaws in cryptographic protocols may allow an intruder
to authenticate as someone else, or gain information that should not be otherwise
revealed. We assume cryptographic algorithms are secure; i.e. it is not possible
to decrypt a ciphertext without knowledge of the decryption key. This assumption
allows us to focus on nding a ws inherent in the analysed protocol structure.

In this paper, we explore the use of coloured Petri nets [5] in the veri ca-
tion of cryptographic protocols. The ability to model concurrent behaviour has
made coloured Petri nets an appropriate analysis tool for cryptographic protocols.
There are two distinctive advantages of using coloured Petri nets: they provide a
graphical presentation of the protocol, and they have a small number of primitives
making them easy to learn and use. Furthermore, there exists a large variety of
algorithms for the analysis of coloured Petri nets. Several computer tools aid in
this process.

The computer tool Design/CPN [4, 10] had not been explored as a potential
automated veri cation tool. We claim that given the power of Design/CPN, one
can construct a coloured Petri net model of a cryptographic protocol and use ad-
vanced features to allow stronger and more ef cient veri cation. Examples of
such features include: inscriptions, occurrence graph tools, hierarchical features,
and ML queries.

In this paper, we are motivated to explore the use of Jensen’s form of coloured
Petri nets and Design/CPN in the veri cation of cryptographic protocols. In the
process, we develop a new technique that addresses limitations of the techniques
developed in [2, 14]. We focus on bene ting from the high level constructs of
Jensen’s coloured Petri nets, as well as using Design/CPN.

In the next section, we give an outline of the new technique. In Section 3, we
demonstrate the technique by using it in the modeling and analysis of the TMN
protocol. Finally, Section 4 summarises the technique’s bene ts and suggests
possible extensions. An extended version of this work can be found in [1].

2 Outline of the Technique

Our technique is a nite-state analysis method. Thus, it involves modeling the
protocol as a coloured Petri net, then an automated tool (Design/CPN) is used
to generate all possible states. Insecurities are discovered if an insecure state is
reachable in the CPN occurrence graph.

The technique has several technical features not existing in other cryptographic
protocol veri cation techniques using Petri nets. One of these features is the use

2

of a central place to hold the tokens intercepted by the intruder; we call this place
a DB-place. Its marking models the accumulated intruder knowledge. It is imple-
mented by using a global fusion set of places. Although the pages of the illustrat-
ive example presented here are not big enough to fully illustrate the advantages
of the use of fusion places, their use is extremely advantageous when one deals
with more complex protocols. The colour set of this fusion set is de ned to be the
union of the colour sets of tokens that can be possessed by the intruder. The use
of the DB-place makes the intruder model simple and clear.

We implement a token-passing scheme to prevent unnecessary interleaving
of the rings of protocol entity transitions. This results in a smaller occurrence
graph. Other techniques [2, 14] handle the issue of state explosion differently.
They restrict the behaviour of the intruder by introducing new assumptions. On
the other hand, the intruder model in our technique is less restricted. This implies
that our technique may capture a larger variety of attacks.

We use a top-down modeling approach. At the highest level of abstraction,
an entity is modeled as a substitution transition. Each substitution transition is
de ned in a separate subpage that provides a lower level description of the beha-
viour of the entity.

In modeling a cryptographic protocol using our technique, we follow these
steps:

1. Build a model with no intruder: In this step a) using CPN ML notation, we
declare the colour sets, functions, variables, and constants that will be used
in the net inscriptions of the CPN model; b) we build a top-level model in
which the protocol entities are modeled as substitution transitions; c) we
de ne the substitution transitions from the top-level model.

2. Add the intruder to the model: In this step, a) we extend the CPN declara-
tions to include the intruder; b) add the intruder transition to the top-level
model; c) de ne the intruder substitution transition.

3. Implement a token-passing scheme.

4. Specify security requirements stated in terms of CPN markings.

5. Analyse the resulting occurrence graph by using OG queries to locate mark-
ings that violate a security requirement.

3 The Technique

In this section, we rst present our sample protocol, TMN protocol, and then,
using our technique, we propose a model of this protocol. The selection of the
TMN protocol to illustrate our technique is motivated by its familiarity. Any other
protocol listed in [7] can be used for the illustration of our technique.

3

3.1 The TMN Protocol

The Tatebayashi, Matsuzaki, and Newman (TMN) protocol is a key exchange
cryptographic protocol for mobile communication systems. The protocol involves
two entities, A and B, and a server, J , to facilitate the distribution of a session
key, KAB . The attack illustrated in this paper is a known one. The reader can
 nd very similar attacks in [7, 8]. Moreover, three other known attacks on this
protocol are given in [7].

Initially, the TMN protocol assumes that both A and B know the public key
of J , KPb

J . We use the following notation: (i) A → B : X to indicate that
in the ith step of the protocol agent A sends message X to agent B. We write
A → B : X, Y to denote “A sends B the message X along with the message Y ”.
Furthermore, key(data) denotes the message data encrypted using the key key.
The protocol proceeds as follows:

(1) A → J : B,KPb
J (KAJ) (3) B → J : A,KPb

J (KAB)
(2) J → B : A (4) J → A : B,KAJ(KAB)

When A (the initiator) wants to start a session with B (the responder), A chooses
a key KAJ , encrypts it using the public key of J (KPb

J), and sends it along with
the identity of B to the server J (step 1). Upon receiving the rst message, the
server decrypts KPb

J (KAJ) using its private key (KPr
J) and obtains KAJ . Then,

in the second step, J sends a message to B containing the identity of A. When
B receives this message, it chooses a session key KAB , encrypts it using KPb

J ,
and sends it along with the identity of A to J (step 3). Upon receiving the third
message, the server decrypts KPb

J (KAB) using its private key (KPr
J) and obtains

KAB . Then, J sends to A the key KAB encrypted under KAJ along with the
identity of B (step 4). When A receives this message, it decrypts it using the key
KAJ , to obtain the session key KAB .

The keys KAJ and KAB are symmetric keys freshly created by A and B, re-
spectively. The key KAJ must be known only to A and J ; and is used to send KAB

in an encrypted form as indicated in step 4 of the protocol. The key KAB must be
known only to A, B and J , and it is used as a session key. Thus, A uses KAB to
encrypt messages it sends to B, and vice versa. When the communication session
between A and B is over, KAB is discarded. A new session key is used in every
protocol run.

3.2 Modeling the Protocol with no Intruder

CPN ML Declarations

In our modeling of cryptographic protocols, messages are composed of elds.
Some of these elds are atomic, they include entity identities, keys, and nonces.
The other elds are constructed from the atomic elds. For instance, a cipher
K(A) can be viewed as an ordered pair (A,K), where A is the identity and K is
the encryption key.

4

For the TMN protocol, we de ne the following:

1. Colour sets:

a) The atomic elds are the set of identities, I = {A,B}, and the set of
keys, K = {KAB,KAJ ,KPb

J ,KPr
J }.

b) All ciphers have the same format: k1(k2), where k1 and k2 are of type
K. For instance, KPb

J (KAJ) is the cipher of the rst message, etc. Thus, the cipher
colour set C is de ned as C = K ×K.

c) Messages are generally composed of an identity and a cipher. For in-
stance, in the TMN protocol, the rst message is (B,KPb

J (KAJ)) and the third
message is (A,KPb

J (KAB)). Thus, the message colour set M is de ned as M =
I × C. Note that the second message of the protocol only includes an identity.
Hence, I is used as the colour set for such messages.

d) The TMN protocol implicitly assumes that J knows the originator of the
 rst message it receives. To model this, we de ne the colour set MI = M × I .
Thus, the rst message that J receives is actually composed of two elds: the
message contents, (B,KPb

J (KAJ)), and the sender’s identity A.

e) We use a special colour set E = {e} to prevent an in nite number of
transition rings. For instance, by using a construct such as in Figure 1, we force
the transition T to re at most once. Using such constructs is needed whenever
a transition has double input arcs. As we show later, the labels of double arcs
indicate tokens inherent to an entity, or tokens that are to be used in subsequent
subtasks performed by the entity.

T

K

1‘Kaj

P1

K

1‘Kjp

P2

C

P3

P3

E

1‘e

k1

k2

(k1,k2)

Figure 1: By using the E set, transition T can re at most one time.

2. Variables: We use variables of the de ned colour sets as inscriptions for
arcs of the CPN. They are: k1, k2, and k of type K, c of type C, i of type
I , and m of type M .

3. Functions:

a) The function DecryptionKey(k : K) returns the decryption key of a
given key k.

5

b) The function SharedKey(i : I) returns the shared key between entity
B and the entity i. For instance, SharedKey(A) is KAB . We use this function
to model the behaviour of B in which it generates a session key based on the
initiator’s identity, as shown in step 2 of the protocol.

The TMN protocol declarations are given in Figure 2 using CPN ML notation.

color I = with A | B;
color K = with Kaj | Kjp | Kjpr | Kab;
color C = product K*K;
color M = product I*C;
color MI = product M*I;
color E = with e;
var k1,k2,k:K;
var c:C;
var i:I;
var m:M;
fun DecryptionKey(k:K):K = case k of Kaj=> Kaj
| Kjp => Kjpr | Kjpr => Kjp;
fun SharedKey(i:I):K= case i of A => Kab;

Figure 2: The declarations for the TMN model

The Top-Level Model

The computer tool Design/CPN supports hierarchical net construction. This makes
it possible to model cryptographic protocols in a modular way. Thus, the model
of a protocol is constructed by using sub-models of its agents. In CP-nets, this is
implemented by using substitution transitions.

First, we focus on the messages exchanged between the protocol entities. At
this level, protocol entities are modeled as transitions. Figure 3 shows a top-level
model of the TMN protocol. This net is described as follows:

1. Transition T1 represents entity A. In the rst step of the protocol, A gener-
ates a token of type MI . This corresponds to the rst message that A sends
to J , along with the identity of A to inform J about the initiator. In the last
step of the protocol, A consumes a token of type M .

2. Transition T2 represents entity J . In the rst step of the protocol, J con-
sumes a token of type MI . Then, J sends a token of type I , modeling
the second protocol step. In the third step of the protocol, J consumes a
token of type M generated by B. Finally, J generates a token of type M
modeling the last message of the protocol.

3. Transition T3 represents entity B. Entity B consumes a token of type I in
the second step, and generates a token of type M in the third step of the
protocol.

6

T1

HS EntityA#1
P1->P8
P4->P9

T2

HS EntityJ#3
P2->P10
P4->P19
P3->P12

T3

HS EntityB#2
P3->P7
P2->P1

P4
M

P1

MI

P2
I

P3
M

(m,i)

(i,c)

(m,i)

(i,c)

i

i

(i,c)

(i,c)

Figure 3: The TMN top-level model with no intruder

De ning the Top-Level Substitution Transitions

Due to space constraints, we consider in detail the model of the initiator A but
we refer the reader to [1] for the models of entities B and J . The following is an
informal description for the behaviour of A which is the initiator of the commu-
nication session. Thus, A always sends the message B,KPb

J (KAJ). The reply A
receives is in the format (i, c), where i is an identity and c is a cipher. Entity A
checks that i = B. If this is true, A decrypts c with KAJ . If c was decrypted with
KAJ , A accepts the received session key, and uses it for communication with B
in the current session.

Figure 4 shows the CPN model of entity A. It contains two subnets: one mod-
els the subtask of A initiating a protocol run in step 1, while the second models
the subtask of A receiving the last message from J .

Port assignments are used to relate the top-level page, named TMN, with the
entity models. As the port assignments for the substitution transition of A show
(Figure 3), the socket P1 is related to the output port P8 of EntityA, while the
socket P4 is related to the input port P9 of EntityA.

In EntityA, we use the instance fusion sets B = {P1, P10} and Kaj =
{P2, P12}. Fusion sets are used to allow an entity to control the order of subtasks
and check the validity of messages. For instance, A has to remember the key it
chooses (KAJ) in the rst step, in order to decrypt the cipher it receives in the last
step.

7

P9
M

P In

P8

MI

P Out

P1
I

1‘B

FI B

P2
K

1‘Kaj

FI Kaj

P3
K

1‘Kjp

P5

C

P6
M

T1

T3T2

P7
I

1‘A

P4
E

1‘e

P10
I

1‘B

FI B

T4 P11
C

T5
P13

K
P12

K

1‘Kaj

FI Kaj

k1

k2

(k1,k2)

c

i

(i,c)

i

m (m,i)

e

i

(i,c)

c (k1,k2)

k2

k1

Figure 4: Page EntityA

3.3 Modeling the Protocol with an Intruder

The intruder is modeled as a separate entity that controls the communication chan-
nels between the protocol entities. Thus, it intercepts the exchanged messages and
stores them for future use. Then, it attempts to decrypt the encrypted portions of
the intercepted messages. Finally, it attempts to modify the message contents, or
even generate new messages to replace the intercepted ones.

Extending the CPN ML Declarations

In order to add the intruder to the model, one must extend the CPN ML declara-
tions. The identity of the intruder In is added to the colour set I . Also, an intruder
key Ki is added to the colour set K. The DecryptionKey and SharedKey func-
tions are extended to handle the new colours: DecryptionKey(Ki) = Ki and
SharedKey(In) = Ki.

During the execution of the protocol, the intruder stores the intercepted mes-
sages for future use. We model the intruder memory as a global fusion set that
we call the DB fusion set (DB stands for database). We refer to a place that is a
member of the DB fusion set as a DB-place.

A DB-place is expected to hold tokens of atomic and non-atomic types. In the
TMN protocol, a DB-place should hold keys, identities, and ciphers. Thus, we
de ne the DB colour set as DB = I ∪K ∪C, and we use DB as the colour set of

8

a DB-place.
In CPN ML, DB is declared as follows: color DB=union cI:I + cK:K + cC:C;

Here, cI, cK, and cC are selectors [10]. Thus, the intruder’s possession of KAB

is modeled as reaching a marking where a token cK(Kab) is in a DB-place. The
reader can nd the nal CPN ML declarations in [1].

The Top-Level Model with an Intruder

Figure 5 shows the top level model of the TMN protocol with an intruder. The
substitution transition T4 represents the intruder, which was not included in the
earlier top level model given in Figure 3.

T1

HS EntityA#1
P1->P8
P8->P9

T3

HS

EntityJ#3
P7->P20
P3->P11
P2->P1
P6->P13

T2

HS EntityB#2
P5->P7
P4->P1

M

P8

MI

P1

I

P3

M

P6

T4

HS intruder#8

M

P7

MI

P2

I

P4

M

P5

(m,i)

(i,c)

i

(i,c)

(m,i)

(i,c)

(m,i)

(m,i)

(i,c)

(i,c)

ii

(i,c) (i,c)

i

(i,c)

Figure 5: The TMN top-level model with an intruder

Each place in Figure 3 is replaced with two corresponding places as shown in
Figure 5: one is an input place to the intruder while the second is an output place.
For instance, place P1 in Figure 3 is replaced with P1 and P2 in Figure 5. This
is needed to model the intruder’s ability to receive a message (the input place), to
deal with it (transition T4), and to substitute it with a new message (the output
place).

De ning the Intruder Substitution Transition

The intruder substitution transition (T4 in Figure 5) is de ned by the subpage
intruder shown in Figure 6.

The intruder model is constructed by using several intruder subprocesses.
Each intruder subprocess models the intruder’s possible actions to intercept tokens

9

Table 1: The intruder subprocesses

Pair Places Colour The Corresponding
Input Output Set Intruder Subprocess
P1 P2 MI intruder mi
P3 P4 I intruder i
P5 P6 M intruder m
P7 P8 M intruder m

that belong to a given colour set (type). Table 1 lists the intruder subprocesses,
along with their input/output places.

M

P Out

P6

M

P

In

P5

I

P Out P4

I

P In

P3

M

P In

P7

MI

P Out

P2

M

P Out P8

MI

P In P1

T4

HS intruder_m#4
P8->P10
P7->P1

T1

HS intruder_mi#7
P2->P6

T2

HS intruder_i#6

P4->P5
P3->P1

T3

HS intruder_m#
4
P6->P10
P5->P1

intruder_mi instance 1

intruder_i instance 2

intruder_m instance 2

intruder_m instance 3
mm

(m,i) (m,i)

ii

m m

Figure 6: The intruder page

The intruder subprocesses intruder mi, intruder m, and intruder i are
de ned in separate pages. The intruder page has one instance of intruder mi
(which de nes T1), one instance of intruder i (which de nes T2), and two in-
stances of intruder m (which de ne T3 and T4).

The intruder m subprocess is given in Figure 7. It models what an intruder
can do to intercepted tokens of type M . A token of type M has two elds: an
identity and a cipher. The intruder rst stores these elds of the intercepted token.
Then, it tries to decrypt the cipher using one of the keys stored in its database.
Finally, the intruder forms a new message to be sent in place of the intercepted
one. The intruder uses one of the ciphers stored in the database, or constructs a
new cipher by using keys stored in the database.

The intruder i subprocess models what an intruder can do to intercepted

10

M

P1
P In

DB

FG DB

P2

DB

FG DB

P6

DB

FG DB

P3

DB

FG DB

P4

1‘cK(Ki)++1‘cK(Kjp)++1‘cI(A)++1‘cI(B)++1‘cI(In)

T1 T2

DB

FG DB

P11

DB

FG DBP12

M

P14
P Out

T4

E
1‘e

P5

FG DB

P7

DB

FG DB

P8

DB

T3

DB

P8b

FG DB

E 1‘e

P9 FI E

E

P13
FI E

(i,c) cC(c)

 cI(i)

cC((k1,k2))

cK(DecryptionKey(k2))

cK(k1)

cC(c)

cI(i)

(i,c)

e

cK(k2)

cK(k1)

cI(i)

(i,(k1,k2))

e

e

Figure 7: Page intruder m

tokens of type I . It is constructed in a similar manner as intruder m (for details,
see [1]). The intruder mi subprocess models what an intruder can do to inter-
cepted tokens of type MI . A token of type MI has two elds: an identity and a
message. Thus, intruder mi can be constructed using instances of intruder i
and intruder m, as shown in Figure 8. An instance of intruder i is used to
handle the identity eld, and an instance of intruder m is used to handle the
message eld.

The last step in de ning the intruder is to specify its initial knowledge. One
speci es the initial intruder knowledge by setting the initial marking of a DB-
place. As the initial marking of P4 in intruder m indicates (Figure 7), the DB
is set initially to {KI ,K

Pb
J , A, B, In}.

3.4 Applying a Token-Passing Scheme

Using our technique as outlined up to this point, most models of cryptographic
protocols result in a large occurrence graph. The large size of the occurrence graph
can be explained by two aspects of the model: the nondeterministic behaviour of
the intruder, and the interleaved subprocesses.

The intruder model is nondeterministic in the sense that there are many pos-
sible actions the intruder can take at a given time. For instance, assume that in the
TMN model the intruder has the keys KI and K+

J , and it has three identities: A,
B, and I . Then, there are 12 possible messages (i, c) the intruder can use. Each

11

MI

P1

P In

M

P2

I

P3

M

P4

I

P5

MI

P6

P Out

T1 T4

T2

HS

intruder_m#4
P4->P14
P2->P1

T3

HS intruder_i#6
P3->P1

intruder_m instance 1

intruder_i instance 1

(m,i)
m

i

(m,i)

i

m

(i,c) (i,c)

i i

Figure 8: Page intruder mi

choice will have different implications in terms of the resulting markings.
The second factor attributing to the size of the occurrence graph is the inter-

leaving of subprocesses. Transitions of an entity and the intruder instances can be
interleaved, causing an unnecessary increase in the size of the occurrence graph.
For instance, consider a state where transition T1 of EntityA has not yet red.
At this state, many transitions of the intruder instances are enabled. The different
order of ring such transitions will result in different markings and paths in the
occurrence graph. The same thing happens after ring T2 of EntityA, etc.

Let E be the set of nite occurrence sequences of the possible execution of
the agents A, B, and J . For every sequence e, the intruder observes the set Se

of relevant information (keys, messages, and agent identities) that are carried by
e. Let R = {(e1, e2) | e1 ∈ E ∧ e2 ∈ E ∧ Se1 = Se2}. The relation R is an
equivalence relation. It is clear that interleaving of subprocesses belong to the
same R-equivalence class as their sequential execution. Hence, there is no need
to include all the the unnecessary interleaving of subprocesses in the occurrence
graph.

The model can be extended to prevent the unnecessary interleaving of subpro-
cesses. The goal is to allow a single subprocess to be enabled at a given time. This
is achieved using a token-passing scheme. For instance, if EntityA has the token,
no transitions from other subprocesses should re. This results in a reduction in
the size of the occurrence graph.

We note that applying the token-passing scheme does not restrict the model
assumptions. This is because it is assumed that an intruder would not obtain more
knowledge by the simultaneous execution of protocol entities than it would by the
interleaving of such executions. In other words, true concurrency is assumed not
to affect properties of cryptographic protocols.

To apply the token passing strategy, a new colour set is de ned, S = {s}. We
will refer to a place of colour S as an S-place. The token s is the token exchanged
among entities.

12

The following rules are the changes required to apply this scheme.

1. Add an input S-place to every substitution transition in the top level page.
Similarly, add an output S-place from every substitution transition in the
top level page. All of these S-places should be added to a single instance
fusion set. Thus, there is one resulting S-place. It must be initialised with
one s-token. This rule is demonstrated in Figure 9.

T1

HS

EntityA#1
P1->P8
P8->P9

T3

HS

EntityJ#3
P7->P20
P3->P11
SP8->SP2
P2->P1
P6->P13
SP7->SP1

T2
HS

EntityB#2
P5->P7
SP4->SP2
P4->P1
SP3->SP1

M

P8

MI

P1

I

P3

M

P6

T4

HS intruder#8
SP6->SP2
SP5->SP1

M

P7

MI

P2

I

P4

M

P5

S
FI S

SP1

S
FI S

SP2
1‘s

S

FI S

SP3

S

FI S

SP4

S

FI S

SP7

S

FI S

SP8

S

FI S

SP5

S

FI S

SP6

(m,i)

(i,c)

i

(i,c)

(m,i)

(i,c)

(m,i)

(m,i)

(i,c)

(i,c)

ii

(i,c) (i,c)

i

(i,c)

s s

s
s

s s

s s

Figure 9: The TMN page after adding the S-places

2. Add an S-place input port and an S-place output port to every subpage. The
input port should have an outgoing arc to the rst transition in every sub-
process of the subpage. Similarly, the output port should have an incoming
arc from the last transition in every subprocess of the subpage. Figure 10
shows the application of this rule to the EntityA page.

3. Applying the rst two rules does not prevent the intermediate intruder trans-
itions from ring. These are the transitions that have double input arcs
coming from DB-places, e.g. transitions T2 and T3 in intruder m. We
must allow these transitions to re only when the corresponding subpro-
cess has the s-token. To apply this, we create an instance fusion set S, in
every intruder subpage, to hold the s-token that is passed to the active in-
truder subprocess. To be more precise, a) we add an output arc from the
 rst transition of the intruder subpage to a place that belongs to the fusion
set S; b) we add an input arc from a place that belongs to the fusion set
S to the last transition of the intruder subpage; and c) we add double arcs
from a place that belongs to the fusion set S to the intermediate intruder
transitions.

13

MI

P Out

P8

I

1‘B

FI B
P1

K

1‘Kaj

FI Kaj
P2

K

1‘Kjp

P3

C

P5

M

P6

T1

T3T2

I

1‘A

P7

E

1‘e

P4
S P In

SP1

SP Out SP2

M

P9P In

I

1‘B

P10

T4

C

P11

T5

K

P13

K

1‘Kaj

P12

k1

k2

(k1,k2)

c

i

(i,c)

i

m (m,i)

e
s

s

i

(i,c)

c (k1,k2)

k2

k1

s

s

Figure 10: The EntityA page after adding the S-places

These changes are demonstrated in Figure 12. For example, transitions T2
and T3 of intruder m will not re until the s-token arrives to the subprocess,
which means transition T1 res, consuming the s-token from the input port SP1.
When the s-token is returned back by the intruder subprocess (i.e. transition T4
 res and the s-token is deposited back to the output port SP2), transitions T2 and
T3 become disabled.

Note that the intruder intermediate subpages, e.g. intruder mi, must be ex-
tended to pass the received token to the lower level subpages. This is demonstrated
in Figure 11.

The application of these rules to the pages EntityB, EntityJ , intruder and
intruder i is provided in [1].

3.5 Identifying Security Requirements

Before simulating the model, one needs to identify the security requirements that
must be met by the protocol. These requirements should be stated in terms of
conditions on the CPN markings.

We consider the following requirement. The protocol must guarantee the
secrecy of the session key KAB . Thus, in a given session, KAB must be known
only by A,B, and J . In other words, the intruder should never know KAB . In

14

MI

P1

P In

M

P2

I

P3

M

P4

I

P5

MI

P6

P Out

T1 T4

T2

HS

intruder_m#4
IP3->SP2
P4->P14
IP2->SP1
P2->P1

T3

HS

intruder_i#6
IP5->SP2
IP4->SP1
P3->P1

intruder_m instance 1

intruder_i instance 1

S

P In

SP1

S

P Out

SP2

S

FI SIP1

S

FI S

IP6

S FI S

IP2

S FI S

IP3

S

FI S

IP4

S

FI S

IP5

(m,i)
m

i

(m,i)

i

m

(i,c) (i,c)

i i

s

s

s

s

s s

s s

Figure 11: The intruder mi page after adding the S-places

terms of CPN markings, this translates into the requirement that a token with col-
our Kab never reaches a DB-place.

Other security requirements that the TMN protocol aims to satisfy are dis-
cussed and veri ed in [1].

3.6 Analysing the Occurrence Graph

The nal step in the analysis of the model is to construct and analyse the occur-
rence graph. We use the OG tool in Design/CPN to automate this process. The
goal is to nd nodes (markings) that violate a security requirement.

We use the Occ Menu to invoke commands related to the occurrence graph [11].
Given the CPN model for a cryptographic protocol, we construct the full occur-
rence graph, and then run CPN queries to nd the insecure markings.

The security requirement that we consider states that a token with colour
Kab never reaches a DB-place. In CPN ML, we use the following predicate:
fn n => cf(cK(Kab), Mark.intruder m’P4 1 n) >0. Given a
marking n, this predicate evaluates to true if the DB-place P4 of intruder m
(rst instance) contains at least one token cK(Kab), and evaluates to false other-
wise. Note that cf is the coef cient function [10]. It takes two arguments: a col-
our and a multiset of tokens, and returns the coef cient of the speci ed colour in
the speci ed multiset. For instance, cf(A,5′A) returns 5. Thus, cf(cK(Kab),
Mark.intruder m’P4 1 n) returns the coef cient of cK(Kab) in the multiset
of tokens in P4 of the rst instance of intruder m in marking n.

The following function returns all nodes of the occurrence graph where the
DB-place has at least one token cK(k). It uses the predicate de ned above.

fun SecrecyViolation1(k:K):

15

M

P1
P In

DB

FG DB

P2

DB

FG DB

P6

DB

FG DB

P3

DB

FG DB

P4

1‘cK(Ki)++1‘cK(Kjp)++1‘cI(A)++1‘cI(B)++1‘cI(In)

T1 T2

DB

FG DB

P11

DB

FG DBP12

M

P14
P Out

T4

E
1‘e

P5

FG DB

P7

DB

FG DB

P8

DB

T3

S

P In
SP1

S

P Out
SP2

S
FG SG

IP1

S
FG SG

IP2

S

IP3
FG SG

S
FG SG

IP4

DB

P8b

FG DB

E 1‘e

P9 FI E

E

P13
FI E

(i,c) cC(c)

 cI(i)

cC((k1,k2))

cK(DecryptionKey(k2))

cK(k1)

cC(c)

cI(i)

(i,c)

e

cK(k2)

cK(k1)

s
s

s

s

s s

s

cI(i)

(i,(k1,k2))

e

e

s

Figure 12: The intruder m page after adding S-places

Node list
= PredAllNodes (fn n => cf(cK(k),
Mark.intruder m’P4 1 n) >0);

Thus, SecrecyV iolation1(Kab) returns all nodes of the occurrence graph that
violate the considered security requirement.

The full occurrence graph generated for the model has 19,237 nodes and
22,419 arcs. It took 19 seconds to construct the occurrence graph using a 1-GHz,
16GB machine.

Executing SecrecyV iolation1 returns a non empty node list. One of the
nodes returned by SecrecyV iolation1 is node 19170. We use the Design/CPN Oc-
currence Graph (OG) tool to nd a path from the initial marking (node 1 in the
OG) to the insecure marking (node 19170). This path is represented by the follow-
ing occurrence sequence. Each line in the occurrence sequence represents a step
that has a single binding element. Each line contains the following information:
the page name, the instance number (if missing, then there is a single instance),
the transition, and the binding. For instance, the line identi ed by (*), on its right
side, represents the step (T2 in the rst instance of intruder m, 〈k1 = Kab,
k2 = Ki〉).

EntityA T1 k1 = Kaj, k2 = Kjp
EntityA T2 i = B, c = (Kaj,Kjp)
EntityA T3 i = A,m = (B, (Kaj,Kjp))

16

intruder mi T1 m = (B, (Kaj,Kjp)), i = A
intruder i 1 T1 i = A
intruder i 1 T2 i = A
intruder m 1 T1 i = B, c = (Kaj,Kjp)
intruder i 2 T2 i = A
EntityB T1 i = A
EntityB T2 i = A, k2 = Kjp
EntityB T3 i = A, c = (Kab,Kjp)
intruder m 2 T1 i = A, c = (Kab,Kjp)
intruder m 1 T3 k1 = Ki, k2 = Kjp, i = A
intruder mi T4 i = A,m = (A, (Ki, Kjp))
EntityJ T1 i = A,m = (A, (Ki, Kjp))
EntityJ T2 i = A, c = (Ki, Kjp)
EntityJ T3 k1 = Ki, k2 = Kjp
EntityJ T4 i = A, k = Ki
intruder i 2 T1 i = A
intruder m 2 T4 i = A, c = (Kab,Kjp)
EntityJ T5 i = A, c = (Kab,Kjp)
EntityJ T6 k1 = Kab, k2 = Kjp
EntityJ T7 k1 = Kab, k2 = Ki
EntityJ T8 i = A, c = (Kab,Ki)
intruder m 3 T1 i = A, c = (Kab,Ki)
intruder m 1 T2 k1 = Kab, k2 = Ki (*)
intruder m 2 T2 k1 = Kab, k2 = Ki
intruder m 3 T3 i = B, k1 = Ki, k2 = Kjp
EntityA T4 i = B, c = (Ki, Kjp)

Note the reachability of Kab to a DB-place in the step identi ed by (*). This
attack is stated in a high level description as follows, noting that I(A) denotes I
impersonating A. Thus, a step of the form “I(A) → B : X” means that I poses
as A and sends X to B, whereas a step of the form “B → I(A) : X” means that I
intercepts the message X; originally sent from B to A.

(I1) A → I(J) : B,KPb
J (KAJ) (II2) J → I(A) : A

(I2) I(J) → B : A (II3) I(A) → J : A,KPb
J (KAB)

(I3) B → I(J) : A,KPb
J (KAB) (II4) J → I(A) : A,KI(KAB)

(II1) I(A) → J : A,KPb
J (KI)

This attack involves two separate runs of the protocol; labelled I and II . At the
end of II4, the intruder decrypts KI(KAB) to obtain KAB . Thus, the intruder is
able to impersonate A. Note the replay of KPb

J (KAB) in step II3 from I3.

17

4 Discussion

In this paper we have presented a promising technique that uses coloured Petri
nets for the veri cation of cryptographic protocols.

Our technique compares well with other nite-space methods [8, 9]. It in-
cludes the same veri cation assumptions. The same approach of reachability
analysis is used. The generated number of states is acceptable compared with
other methods. Furthermore, Design/CPN ts well to our technique, with several
advantageous features such as the ability to control the construction of the occur-
rence graph and the ability to stop searching when certain criteria are met. In other
terms, the capabilities of Design/CPN enable us to grasp the theoretical power of
CP nets in practice for dealing with complex systems. The state explosion prob-
lem can be slightly managed using for instance a token-passing scheme, but not
signi cantly reduced. In [3], the sweep-line method is introduced to reduce both
the space and the time used during state space exploration. One avenue for future
investigation would be to apply this method in the exploration of the state space
of more complex protocols modeled using the technique proposed in this paper.

There are two features in our technique that facilitate the construction of the
intruder model for cryptographic protocols. The rst feature is the use of a DB-
place to hold all intercepted tokens. The second feature is that the intruder model
is constructed by using several intruder subprocesses, where each intruder subpro-
cess is de ned based on the colour of the intercepted token. For instance, if the
intercepted token is an identity, then the intruder rst stores it and then it replays
any other identity it possesses. If the intercepted token is a cipher, the intruder has
the ability to try to decrypt the cipher and to form new ciphers. The net result of
this is clarity and simplicity of the intruder model, and the ability to construct the
intruder model in a systematic way.

Finally, the model presented for the TMN protocol involves a single instance
of each entity. Thus, an attack that involves multiple instances of a given entity in
multiple runs will not be captured under this restriction. Our model can easily be
extended to include more than one instance of a given entity by adding tokens to
the entity’s E-places. However, this would result in a dramatic increase in the size
of the occurrence graph. This problem also arises in other nite-state methods. In
such cases, analytic methods are applied to avoid generating the full reachability
tree. For the case of CP-nets, methods such as the matrix equation [5] seem to be
useful. Other techniques to yield a reduced representation of the occurrence graph
are applicable. These include the stubborn set method [6], and occurrence graphs
with equivalence classes [5].

References

[1] I. Al-Azzoni. The verification of cryptographic protocols using coloured
Petri nets. Master’s thesis, McMaster University, Hamilton, Ontario,

18

Canada, 2004.

[2] A. Basyouni and S. Tavares. New approach to cryptographic protocol ana-
lysis using coloured Petri nets. In Proceedings of the Canadian Conference
on Electrical and Computer Engineering (CCECE’97), pages 334–337, St.
John’s, Newfoundland, May 1997.

[3] S. Christensen, L. M. Kristensen, and T. Mailund. A sweep-line method for
state space exploration. In Proceedings of TACAS 2001, volume 2031 of
Lecture Notes in Computer Science, pages 450–464. Springer-Verlag, 2001.

[4] CPN Group at the University of Aarhus. Design/CPN Online, 2004.
http://www.daimi.au.dk/designCPN/.

[5] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, volume 2: Analysis Methods. Springer-Verlag, 2nd edition,
1996.

[6] L. M. Kristensen and A. Valmari. Finding stubborn sets of coloured Petri
nets without unfolding. Lecture Notes In Computer Science, 1420:104–123,
1998.

[7] Laboratoire Spéci cation et Véri cation. SPORE security protocols open re-
pository. http://www.lsv.ens-cachan.fr/spore/table.html. (accessed Decem-
ber 16, 2004).

[8] G. Lowe and B. Roscoe. Using CSP to detect errors in the TMN pro-
tocol. IEEE Transactions on Software Engineering, 23(10):659–669, Oc-
tober 1997.

[9] C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic
Programming, 26(2):113–131, Feb 1996.

[10] Meta Software Corporation. Design/CPN Reference Manual for X-Windows,
Version 2.0, 1993.

[11] Meta Software Corporation. Design/CPN Occurrence Graph Manual, Ver-
sion 3.0, 1996.

[12] P. Ryan and S. Schneider. The Modelling and Analysis of Security Protocols:
the CSP Approach. Addison-Wesley, 2001.

[13] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley, 2nd edition, 1996.

[14] D. M. Stal, S. E. Tavares, and H. Meijer. Backward state analysis of crypto-
graphic protocols using coloured Petri nets. In Workshop on Selected Areas
in Cryptography, SAC ’94 Workshop Record, pages 107–118, May 1994.

19

Model Transformations for an Elevator Controller:

Coloured Petri Nets in Object-oriented

Analysis and Design

João Paulo Barros1,2 and Jens Bæk Jørgensen3

1Instituto Politécnico de Beja, Escola Sup. de Tecnologia e Gestão
Rua Afonso III, n. 1, 7800-050 Beja, Portugal

2Universidade Nova de Lisboa/UNINOVA, Portugal
3Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

e-mail: jpb@uninova.pt, jbj@daimi.au.dk

Abstract

Coloured Petri nets (CPNs) are useful to model the behaviour of
systems. CPN models are expressive, executable, and scalable. Be-
sides, CPN have a standard and implemented formal, precise seman-
tics, which allows model verification. In this paper, we first demon-
strate how a CPN model can be used to capture requirements for a
considered example system, an elevator controller. Then, we show
how the requirements-level CPN model is transformed into an object-
oriented design-level CPN model, which is structurally and conceptu-
ally closer to object-oriented programming languages. The transfor-
mation reduces the gap between CPN models and the respective im-
plementation, thus simplifying the implementation or code generation
phase. Finally, we discuss the code generation from object-oriented
CPN models.

1 Introduction

Petri nets are sometimes seen as a formal language whose application is not
scalable to large systems. This perspective results from equating Petri nets
to low-level Petri nets, especially Place/Transition nets [19]. Yet, there are
numerous classes of Petri nets, all of them sharing a few fundamental char-
acteristics, e.g. graphical representation, precise semantics, and duality of
concepts [5]. In particular, coloured Petri nets (CPNs) [9] allow the creation
of compact, expressive, executable, hierarchical, and readable models.

This paper shows how to apply CPNs in object-oriented design. More
specifically, we show that CPN models can effectively be used to express
requirements in a precise and executable way. The resulting executable

21

model can be used to provide feedback in the analysis phase; it describes the
system behaviour and reactions to the possible external events it receives.
This behaviour and reactions should be caused by the software system we
are going to develop. The software system itself is described by a class
diagram and an object-oriented CPN model. The object-oriented CPN
model is closer to an implementation of the software than the requirements-
level CPN model. In this way CPN models are used to reduce the gap
between user-level requirements and implementations.

The paper is structured as follows: Section 2 presents the use cases
for the considered elevator controller; Section 3 shows a requirements-
level CPN model for the elevator controller while informally introducing
CPN’s syntax and semantics; starting from the use case diagram; Section
4 presents a class diagram for the elevator controller; Section 5 presents a
design-level object-oriented CPN model and Section 6 discusses code gen-
eration issues; finally, Section 7 discusses related work, and Section 8 con-
cludes.

2 Use Cases

The elevator controller, we consider, must work in a ten floor building in
which there are two elevator cages.

The main responsibility of the controller is to control the movement
of the two cages. Movement is triggered by passengers, who push request
buttons. On each floor, there are floor buttons, which can be pushed to
call the elevator; a push indicates whether the passenger wants to travel up
or down. Inside each cage, there are cage buttons, which can be pushed to
request to be carried to a particular floor. In addition to controlling the
movement of the cages, the controller is responsible for updating a location
indicator inside each cage, which displays the current floor of the cage.

There are many use cases that must be supported by the elevator con-
troller; examples are: (1) Collect passengers: When a passenger pushes a
floor button on floor f, eventually an elevator cage should arrive at floor f
and open its doors; (2) Deliver passengers: When a passenger pushes the
cage button for floor f in an elevator cage, eventually the elevator cage
should arrive at floor f and open its doors; (3) Show floor: When a cage
arrives at a floor, passengers inside the cage should be informed about the
current floor number. The relationship between the use cases and exter-
nal entities in the environment of the elevator controller are depicted in
Figure 1.

Let us take a closer look at the use case Collect passengers, whose trigger
event is the push of a floor button. This should generate a stimulus to the
elevator controller, which, upon reception, must do a number of things: (1)
The controller must turn on the light of the button that was pushed; (2)

22

Elevator controller

Collect
passengers

Deliver
passengers

Show
floor

Floor
button

Cage
button

Entry
sensor

Arrival
sensor

Motor

Elevator
door

Location
indicator

Figure 1: UML-style use case diagram for the elevator controller.

the controller must allocate the request to one of the cages. In particular,
this implies that the controller must determine whether the request can be
served immediately. This is possible only if the request comes from a floor
where there currently is an idle cage. In this case, the cage can just open
its doors; it is not necessary to start the motor; (3) if it is necessary to
start the motor, the controller must generate an appropriate signal to the
motor; (4) if it is sufficient to open the doors, the controller must generate
a signal to the doors instructing them to open.

We could illustrate this scenario and its continuation with cages moving,
sensors being triggered, etc. using, e.g., sequence diagrams. Alternatively,
we could describe the desired general behaviour of the elevator controller
and the entities in its environment using statecharts [7]. This is done, e.g.,
by Wieringa in [21]. However, our objective with this paper is to demon-
strate the applicability of CPNs [9] in object-oriented analysis and design
(statecharts and CPN models have their advantages and disadvantages in
comparison with each other, see, e.g., [6, 12]). Therefore, instead, we will
describe the desired general behaviour using CPN. We do so in the next
section.

3 Requirements-level CPN Model

We have built a CPN model, which models the desired behaviour of the
environment as controlled by the elevator controller.

The model is created and executed with the tool CPN Tools [3], which
has a graphical part and includes the programming language Standard
ML [16]. Together with the explanation of the model, this section is an
informal primer to the CPN language itself, which allows the reader to un-
derstand the model in general terms — although we do not explain all the
technicalities.

The CPN model consists of (1) declarations of data types, functions,

23

etc. and (2) a graphical net structure in the form of three related modules:
Do Cage Cycle, Handle Requests, and Move UpDown. As we will see, the
declarations are used as inscriptions in the graphical net structure.

3.1 Representation of Entities in the Environment

Entities in the environment are represented via data type declarations. This
applies both to the environment entities, which can be seen from the use
case diagram in Figure 1, but also relevant entities with which the controller
does not interact directly, but which it controls via other entities — e.g., the
controller controls a cage because the controller interacts with the cage’s
motor.

As an example, the data type CAGE used to represent the elevator cages
consists of 4-tuples of the form (cageid,floor,requestlist,direction);
cageid identifies the cage; floor is the number of the floor the cage cur-
rently is at, if the cage is stationary, or has last visited, if the cage is
moving; requestlist is the cage’s request list represented as a list of floor
numbers; direction holds the cage’s current direction of movement: up,
down, or no.

Other examples are floors that are represented as integers, and a floor
button as a pair (floor,direction), where direction is no if the button
has not been pushed and otherwise up or down, indicating the passenger’s
direction request. The cage buttons in each cage are represented as a pair
(cageid,buttonlist), where buttonlist is a list of integers correspond-
ing to the floors for which cage buttons currently have been pushed.

3.2 Representation of Cage Behaviour

The behaviour of cages is modelled in the Do Cage Cycle module, shown
in Figure 2.

A CPN model describes both states and events. The state of a CPN
model is a distribution of tokens on places. The latter are drawn as ellipses.
Each place has a data type, written in capital letters, which determines the
kinds of tokens the place may contain. In Figure 2, the two elevator cages
are modelled by CAGE tokens. Each CAGE token is at any time on exactly one
of the places Idle, Moving, Opened, or Closed, which all have data type
CAGE. The Floor Buttons and Cage Buttons places are used to model
the floor buttons and cage buttons, respectively. Tokens on these places
correspond to buttons and model whether buttons are on or off. The state
shown in Figure 2 is the model’s initial state, which represents a situation,
where both elevator cages are idle on floor 1 and no requests have been
made.

The events of a CPN model are represented using transitions, drawn
as rectangles. Arcs connect transitions with places. The events consist of

24

Idle
2 1‘(cg(1),1,[],no)++

1‘(cg(2),1,[],no)

CAGE initCages()

Moving

CAGE

Opened

CAGE

Closed

CAGE

Start
Motor

[not (servenow (c,cf,f::rl,cd))]

Serve
[servenow (c,cf,f::rl,cd)]

Arrive at
Destination

[stophere (c,cf,rl,cd)]

Serve
Next Req

[not(turnidle (c,cf,rl,cd))]

Close
Doors

Stop

[turnidle (c,cf,rl,cd)]

(c,cf,f::rl,cd)

setdirection(c,cf,f::rl,cd)

(c,cf,rl,cd)

(c,cf,
removerequest cf rl,cd)

(c,cf,f::rl,cd)

(c,cf,rl,cd)

resetdirection(c,cf,rl,cd)

(c,cf,rl,cd)

(c,cf,rl,cd)

(c,cf,rl,cd)

Handle
Requests

Handle Requests

Move
UpDown

Move UpDown

Floor
Buttons 10

FLOORBUTTON

initFloorButtons()

Fusion 1

Cage
Buttons 2

CAGEBUTTON

initCageButtons()

Fusion 2

(cf,d)

(c,bl)

(c, delete cf bl)

(cf,d)
(cf,no)

(c,bl)

(c,
delete cf bl)

(cf,no)

(c,cf,
removerequest cf rl,cd)

(c,cf,rl,no)

Figure 2: Do Cage Cycle module of the requirements-level CPN model.

transitions that remove tokens from input places and add tokens to output
places. A transition that is ready to remove and add tokens is enabled; it
may occur. There are two conditions for enabling: (1) Appropriate tokens
are present on the input places — the values in these tokens are bound
to the variables appearing in the inscriptions around the transition; (2) A
guard — a Boolean expression in square brackets — is true.

As an example, enabling of Start Motor requires: (1) that Idle con-
tains some CAGE token that matches the pattern (c,cf,f::rl,cd), i.e.,
a CAGE token with a non-empty request list; and (2) that the guard [not

(servenow (c,cf,f::rl,cd))] evaluates to true; i.e., that the state rep-
resents a situation in which cage c is not currently at floor f. Start Motor

is not enabled in the shown state; f::rl is a non-empty list and there are
no pending requests.

Handle Requests and Move UpDown in Figure 2 are special kinds of

25

transitions that refer to the two other modules of the model, which we do
not have space to describe in detail in this paper. The Handle Requests

module describes the handling of requests, i.e., the making and subsequent
allocation of requests to cages. The Move UpDown module describes the
up and down movement of the elevator cages between the floors, and the
update of the location indicators.

3.3 Use of the Requirements-level CPN Model

The CPN model we have just presented is described in more detail in [10].
The model can be seen as an executable use case in the sense of [11]. Exe-
cution of the model can be used to validate the three use cases of Figure 1.
More generally, the CPN model can be used as a vehicle for requirements
engineering. The model and its execution can be used to specify, validate,
and elicit requirements for the elevator controller.

The model describes when the controller should interact with external
entities like motors, buttons, sensors, and doors. The model also describes
what should be the effect of such interactions in the environment. Neither
the CPN model, nor the use case diagram in Figure 1, explicitly describe
details of the software we are designing for the elevator controller. The
elements of both the use case diagram and the CPN model are to be thought
of as real-world elements, like a real motor, a real button, and a real door.

To design the elevator controller, we need to make two steps that will
move us from the environment-level descriptions we have, to a description
of the software. This will involve (1) derivation of a class diagram and
(2) specification of behaviour, both of the individual class instances (intra-
object behaviour in the sense of [4]) and of the communication between class
instances (inter-object behaviour). We will address issue (1) in Section 4
and issue (2) in Section 5. For a further discussion of the importance of
distinguishing between models of the environment and models of software,
please refer to [8].

4 Class Diagram

A class diagram for the elevator controller is shown in Figure 3
The class diagram should be compared with the use case diagram of

Figure 1. Each class in the class diagram, which has the same name as
an actor in the use case diagram, is the software representation of that
actor inside the elevator controller, e.g., instances of the FloorButton class
represents the real-world, physical floor buttons. In addition to the classes
representing actors from the use case diagram, the class diagram contains
the classes Cage, FloorButtonAllocation, CageButtonAllocation, and
Initiator.

26

Cage

 state:{Idle, Moving, Opened, Closing}
 direction:{no, up, down}
 floor:1..10
 requestlist:List
 buttonList:List

 servenow():boolean
 setdirection():void
 removerequest():void
 stophere():boolean
 turnidle():boolean

FloorButton

 state

:{no, up, down}

Door

 state:{opened, close}

+doorOpen():void
+doorClose():void

Motor

 state:{stopped,running}

+motorStart():void
+motorStop():void

LocationIndicator

 floor:1..10

Initiator

FloorButtonAllocation

+FBAarrived():void
+FBAallocateRequest():void

CageButtonAllocation

+CBAarrived():void
+CBAallocateRequest():void

CageButton

 state:{on, off}

1

2

1

1

1

1

1
1

1 10

«call»

«call»

«permit»

1 1

1

1

«call»

«call»

1 1
1 10

Figure 3: Class diagram for the elevator controller.

The elevator controller will contain two instances of the Cage class;
each one represents one of the two real-world cages. The state of each cage
object reflects the information about the real world that the controller
needs in order to do its job. That information includes, e.g., knowledge of
the position and direction of movement of the modelled cage. In general,
attributes and operations of the classes in the class diagram are derived
from the requirements-level CPN model.

The classes FloorButtonAllocation and CageButtonAllocation are
used to model allocation of requests to cages. More specifically, they group
the several cage and floor buttons and delegate the request handling to the
respective button classes: FloorButton and CageButton. Taken together,
they play a similar role as the Handle Requests module in Figure 2. There
is exactly one instance of the Initiator class; its only aim is to create other
objects inside the elevator controller. The LocationIndicator class plays
a similar role to the Move Up Down module in Figure 2; its objects have
direct access to the respective Cage object’s private attributes and update
the location indicators while the cage is in state Moving;

Finally, the Motor and Door objects receive commands from the con-
troller; these commands are modelled by class operations.

5 Object-oriented CPN Model

From the requirements-level CPN model of Figure 2, we now move towards
a design-level CPN model. An essential difference between these two models
is that the requirements-level CPN model describes the desired behaviour
of real-world entities whereas the design-level CPN model describes the
desired behaviour of the software that must control the real-world entities.
Thus, the two models are related, but different. The design-level CPN
model describes the behaviour of each class of the class diagram, and the

27

combined behaviour of the entire controller. This is made possible through
the use of synchronous communication – modelled by transition fusion –
and a set of object-oriented modelling idioms.

Figure 4 shows the CPN model for the Motor class (see Figure 3), which
exemplifies the modelling of a class behaviour by a CPN. When defining
the CPN for a class we use the tokens to carry the object reference plus
all the object attributes, if any. As each object is modelled by a token, the
CPN class model models the behaviour of all class instances. This means
the CPN model is the object system model.

motorsToCreate

MotorID

1‘1++1‘2

stopped

MotorObj

running MotorObjmotorCreate

motorStart

motorStop

self self

self self

selfself

motorCreate.?((*OUT*)self)

motorStart.?((*IN*)self)

motorStop.?((*IN*)self)

Figure 4: CPN for the Motor class, using channels.

Class Motor models the behaviour for a maximum of two objects, with
two possible states: stopped and running. The objects are created by
transition motorCreate. This transition has an associated receive channel,
specified by the syntax channelName.?(parameters), where the ? stands
for the receive part of the channel. In object-oriented terms, one can think
of it as a class operation as it does not receive an object reference and, as in
this case, it typically returns a new object reference (the self attribute). In
the presented example, the motorCreate operation is called from transition
cageCreateBegin, which is part of the CPN model for class Cage (top-left
corner of Figure 6), which we will describe later.

The place motorsToCreate specifies that only two different objects can
be created. For each firing of transition motorCreate, one Motor object is
created. In this simple case, it consists of the variable self, which is the
object self reference. When a Motor object is created its state is stopped.
This is specified by place stopped in Figure 4. Later, after transition
motorStart firing, a Motor object state can take the value running.

Each Motor object has two public operations, whose single effect is
to change the object state: motorStart and motorStop. Each of these
operations is modelled by a transition and an associated receive channel
with the same name. An instance operation has the object reference as one
of its parameters. This has the advantage of being similar to the syntax
and semantics commonly found in object-oriented programming languages.

28

An operation call is specified by the send part of a channel and has the
syntax channelName.!(parameters). The channel’s semantics is defined by
the fusion of the two transitions (with the send and receive parts). The re-
sulting transition has a guard which is the conjunction of both guards. As
an example, Figure 5 shows a transition (named Stop/motorStop) with the
equivalent semantics to the synchronous channel motorStop between tran-
sition Stop in the bottom-right corner of Figure 6 and transition motorStop

in Figure 4.

stopped

MotorObj

running

MotorObj

Closing

CageObj

Idle

CageObj

Stop/motorStop

[turnidle(c,cf,rl,cd)]

motorRefmotorRef

(self, c,cf,rl,no,
doorRef, motorRef,
cbaRef, fbaRef)

(self, c,cf,rl,cd,
doorRef, motorRef,
 cbaRef, fbaRef)

Figure 5: Transition fusion for channel motorStop.

Figure 6 shows the CPN model for class Cage. The requirements-level
model in Figure 2 defined a CAGE data type with the form (cageid, floor,

requestlist, direction). For the class model, all these four elements
are defined as attributes for Cage objects. We also define, as Cage objects’
attributes, the references to the composite objects CageButtonAllocation,
LocationIndicator, Door, and Motor, and the references to the aggregate
object FloorButtonAllocation. Hence, each Cage object has the form
(self, cageid, floor, requestlist, direction, doorRef, motorRef,

cbaRef, fbaRef). Besides the variable self for the objects’ self reference,
we use variables with the syntax nameRef for specifying references to other
objects. The remaining variables are the ones used for the requirements
level model in Figure 2.

The Cage class has the same basic structure as the Do Cage Cycle

module in Figure 2. The differences are due not only to a more detailed
specification, which is closer to the actual controller implementation, but
also due to an increased modularity made possible by the use of synchronous
channels.

Whereas the initial Do Cage Cycle module (Figure 2) assumes that
both cages initially exist in the Idle state, the Cage class net models the
cage objects creation explicitly. The operation cageCreateBegin creates a
Cage object (and so it returns the new object reference), and also calls the
create operations for all the composite objects. Differently, the reference
for the aggregate FloorButtonAllocation object (fbaRef) is received from
the object Initiator that creates the cage object.

The Motor class (see Figure 4) returns the object reference (self)
through the channel motorCreate. This reference is then used by the Cage

29

Idle

CageObj

Moving CageObj
LocationIndicator

OpenedCageObj

Closing

CageObj

beingCreated

CageObj

cageToCreate

CageID

1‘1++1‘2

Start
Motor

[not (servenow (c, cf, f::rl,cd))]

Serve

[servenow (c, cf, f::rl,cd)]

Arrive at
Destination[stophere cf rl]

Serve
Next Req

[not(turnidle (c,cf,rl,cd))]

Close
Doors

Stop

[turnidle (c,cf,rl,cd)]

cageCreateBegin

cageCreateEnd

allocateCageRequest

allocateFloorRequest

(self, c,cf,f::rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

setdirection(self, c,cf,f::rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf, removerequest cf rl, cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,f::rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,
removerequest cf rl,
cd, doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,rl,cd,
doorRef, motorRef,
cbaRef, fbaRef)

resetdirection(self, c,cf,rl,cd, doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,rl,no,
doorRef, motorRef,
cbaRef, fbaRef)

(self, c,cf,rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf,rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,1,[],no,
doorRef, motorRef,
cbaRef, fbaRef)

self

1‘cageObj1++1‘cageObj2

(self, c,cf,rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf, addrequest f rl, cd,
doorRef, motorRef, cbaRef, fbaRef)

(id, c,cf,rl,cd,
doorRef, motorRef, cbaRef, fbaRef)

(self, c,cf, addrequest f rl, cd,
doorRef, motorRef, cbaRef, fbaRef)

1‘cageObj1++1‘cageObj2

CBAarrived.!((*IN*)cbaRef, (*IN*)cf)
FBAarrived.!((*IN*)fbaRef, (*IN*)cf)
doorOpen.!((*IN*)doorRef)

CageCreate.?((*IN*)c, (*IN*)fbaRef,
 (*OUT*)self)

doorCreate.!((*OUT*)doorRef)
motorCreate.!((*OUT*)motorRef)
CBAcreateBegin.!((*IN*)cc,10,
 (*OUT*)cbaRef)
LIcreate.!((*IN*)self)

motorStart.!((*IN*)motorRef)

doorClose.!(did)

motorStop.!((*IN*)motorRef)

CBAallocateRequest.!(
 (*IN*)cbaRef,
 (*IN*)cf)

CBAarrived.!((*IN*)cbaRef, (*IN*)cageFloor)
FBAarrived.!((*IN*)fbaRef, (*IN*)cageFloor)
motorWait.!((*IN*)motorRef)
doorOpen.!((*IN*)doorRef)

motorGo.!((*IN*)motorRef)

FBAallocateRequest.!(
 (*IN*)cbaRef,
 (*IN*)cf)

Figure 6: CPN for the Cage class, using channels.

objects (it must evaluate to the same value as the motorRef variable in
class Cage). The Door class is handled in the same way.

When compared to the Do Cage Cycle module, the Cage class has three
main differences:

1. The Move UpDown module is replaced by the LocationIndicator

30

class.

2. The cage buttons requests are now handled by the CageButtonAlloca
tion class together with the CageButton class; likewise, the floor
buttons’ requests are now handled by class FloorButtonAllocation
together with FloorButton; channels associated to the Arrive at

Destination and Serve transitions are now responsible for updat-
ing the buttons’ state; additional transitions allocateCageRequest

and allocateFloorRequest get the pending requests, through the
associated channels, from the CageButtonAllocation class and the
FloorButtonAllocation class, respectively.

3. The cage door and cage motor are now created as composite ob-
jects (in transition cageCreate); after, the Motor class objects change
state through channels motorStart and motorStop; the Door objects
change state through channels doorOpen and doorClose.

Compared with the requirements-level CPN model, the object-oriented
design-level CPN model that we have just presented is a step towards code
in an object-oriented programming language; we discuss this in more detail
in the next section.

6 Towards an Implementation

The straightforward approach to execute a CPN model is to use a simulator
like CPN Tools or Renew [20]. Yet, this not always possible as the model
may have to be run on a platform where the simulator is not available or
has insufficient performance. The alternative is a code generation approach
as this allows code optimisations adaptable to each software and hardware
platform.

One way to implement the CPN model is to translate it to a state
machine. Yet, this state machine will probably be too large to be useful
in practice: in fact, through that approach we will be implementing the
complete state space. In many cases, this is not a solution, as the state space
is simply too large. Yet, for small enough state spaces this can be an efficient
solution, especially for hardware platforms, which have limited memory
resources but are able to efficiently execute state machines. These state
machines can be coded in ANSI C, which is usually available for embedded
operating systems. This path allows the design, in a high-level specification
language, of object-oriented models, which are finally implemented as a
state-machine. In this sense, the CPN model can be seen as a higher-level
alternative to a state-machine (or statechart) based model.

The alternative approach is to generate an interpreter for the model.
This could be implemented as two distinct packages: (1) the net structure
specification; (2) the net executor.

31

The following guidelines allow a straightforward implementation for the
net structure, in a general object-oriented programming language (e.g. Java
or C++):

• Each Colour Type is defined as a class.

• Each CPN page is implemented as a class.

• Each place, transition, and arc, is an object of class Place, Transition,
and Arc, respectively.

• Each CPN class contains as attributes the respective page variables,
transitions and places.

• Each place object contains a bag of elements of the data type associ-
ated to the place in the net model (the place colour).

• Each transition object has four methods: (1) one to test the tran-
sition state (enabled or not enabled); (2) one to fire the transition,
accordingly changing the markings of the respective input and out-
put places; (3) one implementing the guard; (4) one implementing
the code segment.

• Each arc object has a reference to a place object and a reference to
a transition object; it also contains a method implementing the arc
expression and returning a value of the place colour.

• Each port place, in a hierarchical CPN, is a reference attribute to a
place object in another class.

• Each place fusion, again for a hierarchical CPN, is coded as a place
object and a set of place object references.

For each execution step, the net executor package executes three sub-
steps: (1) calculates the set of enabled transitions; (2) chooses a subset to
fire; (3) fires the transitions in the chosen subset.

For large nets, the first sub-step can impose a significant computation
delay. The binding computation has the potential to become the execution
bottleneck, although it can be minimised by testing only the transitions
where, at least, one input place has changed its marking in the previous
step.

The usual memory versus speed compromise clearly shows up when
implementing CPNs: either the CPN compactness compared to a low-level
Petri net, has to go away through the total unfolding of the model, in the
form of a state-machine; or we implement a direct execution implying the
binding’s computation, which is slower although more memory efficient.

32

7 Related Work

The channels for synchronous communication were first proposed by Chris-
tensen and Hansen [2]. They bring the transition fusion concept to CPNs.
In particular, transitions are able to communicate complex values. By al-
lowing synchronous communication modelling in CPNs plus data communi-
cation, synchronous channels offer an effective way to create more compact
and readable models. The initial proposal by Christensen and Hansen is
totally symmetric, namely there is no sender and receiver sides for each
channel.

Kummer proposed a direction of invocation to each channel [15]: we
get sender and receiver sides for each channel. Yet, the parameters are
still bidirectional. For example, one net (using a send channel in one of
its transitions) can pass a value through one parameter and receive a value
from another parameter. In [1] it was proposed to further disambiguate this
bidirectional nature for channel parameters by qualifying the parameters
as IN, OUT, or INOUT. These give channels the usual parameter passing
semantics. Together with the direction of invocation, channels become
closer to method invocation. Here, we used these qualifiers inside Standard
ML comments, as they are not supported by CPN Tools. Presently, the
same happens to synchronous channels.

It is clear that if we want to generate executable, autonomous code
from a CPN model, we should use the inscription language as the target
programming language. CPN Tools uses Standard ML as the inscription
language. Hence, it is easier to generate Standard ML code for model
execution [17, 13]. Another approach is to use a code-level library, in the
target language, supporting the net execution and add it to a net structure
specification also in the target language (e.g. [18]). A general object-
oriented language can also be used. A significant example is the Renew

tool [20], which supports an extension to CPNs, is written in Java, and
uses Java as the inscription language.

8 Conclusions and Future Work

CPN models as we have presented them in this paper might candidate to be
used in object-oriented analysis and design, e.g., in development projects
tailored from the widely used Rational Unified Process (RUP) [14]. RUP
emphasises the use of UML models as key artifacts in software development.
If a deviation from UML is acceptable by the project stakeholders, creating
and executing CPN models fit well in the elaboration phase or the inception
phase of RUP. However, it will take a major effort, of course, to transfer
the specific observations done in the small case study of this paper into
generally applicable guidelines for the interplay between traditional RUP
artifacts like use case diagrams and class diagrams and various kinds of

33

CPN models.
Compared to many other graphical languages for behaviour description,

CPNs have the following advantages: (1) they have a precise syntax and
semantics; (2) they are executable; (3) they are verifiable; (4) they scale
well as testified by numerous examples in literature.

CPN’s main drawbacks seem to be (1) the lack of clear connections
to other system views, namely to a structure diagram; (2) their efficient
implementation. The first point was addressed here through the use of
channels for synchronous communication. In particular, transitions are
able to communicate complex values. By allowing synchronous communi-
cation modelling in CPNs plus data communication, synchronous channels
improve models modularity and readability. In particular, when used to-
gether with the presented idioms, they allow the designer to think and
model in object-oriented terms (see also [1]). In this way, they provide a
one-to-one relationship between classes and the modules of a CPN model,
thus establishing a clear connection to class diagrams.

The mapping between object-oriented CPN models and executable au-
tonomous code is still a subject for further work. In particular, the object-
oriented CPN model must be able to specify the platform specific code
and data. Code segments associated to transition firing and CPNs data
declarations may facilitate this. Yet, as the literature and applications on
CPNs model implementation is scarce, it is still debatable if this is sufficient.
We attribute this situation to the Petri net’s community traditional bias
towards model verification and analysis. This comes probably from the
deeply formal and abstract Petri nets’ origin, as a mathematical object.
Yet, CPNs, even without further semantic extensions, are a class of Petri
nets ready to be applied to object-oriented design.

References

[1] J. P. Barros and L. Gomes. On the Use of Coloured Petri nets for Object-
Oriented Design. In Jordi Cortadella and Wolfgang Reisig, editors, ICATPN
2004, Bologna, Italy, June 21-25, 2004, volume 3099 of LNCS, pages 117–136.
Springer, jun 2004.

[2] S. Christensen and N. D. Hansen. Coloured Petri Nets Extended with Chan-
nels for Synchronous Communication. In R. Valette, editor, ICATPN 1994,
Zaragoza, Spain, volume 815 of LNCS, pages 159–178. Springer, jun 1994.

[3] CPN Tools. CPN Tools homepage. http://wiki.daimi.au.dk/cpntools,
2004.

[4] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.
Formal Methods in System Design, 19:45–80, 2001.

[5] J. Desel and G. Juhás. What is a Petri net, volume 2128 of LNCS, pages
1–25. Springer, 2001.

34

[6] M. Elkoutbi and R. K. Keller. User Interface Prototyping Based on UML Sce-
narios and High-Level Petri Nets. In Proceedings of 21st Petri Nets Confer-
ence, volume 1825 of LNCS, pages 166–186, Aarhus, Denmark, 2000. Springer.

[7] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8:231–274, 1987.

[8] M. Jackson. Problem Frames — Analyzing and Structuring Software Devel-
opment Problems. Addison-Wesley, 2001.

[9] K. Jensen. Coloured Petri Nets — Basic Concepts, Analysis Methods and
Practical Use. Volume 1-3. Monographs in Theoretical Computer Science.
An EATCS Series. Springer, 1992-97.

[10] J. B. Jørgensen. CPN Models as Enhancements to a Traditional Soft-
ware Specification for an Elevator Controller. In Proc. of 3rd Workshop on
Modelling of Objects, Components, and Agents (MOCA’04), pages 99–116,
Aarhus, Denmark, 2004. University of Aarhus. Technical report.

[11] J. B. Jørgensen and C. Bossen. Executable Use Cases: Requirements for a
Pervasive Health Care System. IEEE Software, 21(2):34–41, 2004.

[12] J. B. Jørgensen and S. Christensen. Executable Design Models for a Pervasive
Healthcare Middleware System. In Proc. of 5th UML Conference, volume 2460
of LNCS, pages 140–149, Dresden, Germany, 2002. Springer.

[13] L. M. Kristensen and S. Christensen. Implementing Coloured Petri Nets Using
a Functional Programming Language. Higher-Order and Symbolic Computu-
tation, 17(3):207–243, 2004.

[14] P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley,
1999.

[15] O. Kummer. Simulating Synchronous Channels and Net Instances. In
Jörg Desel, Peter Kemper, Ekkart Kindler, and Andreas Oberweis, editors,
Forschungsbericht Nr. 694: 5. Workshop Algorithmen und Werkzeuge für
Petrinetze, Forschungsbericht Nr. 694, pages 73–78. Fachbereich Informatik,
Universität Dortmund, 1998.

[16] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML. MIT Press, 1997.

[17] K. H. Mortensen. Automatic Code Generation from Coloured Petri Nets
for an Access Control System. In Kurt Jensen (ed.): Second Workshop on
Practical Use of Coloured Petri Nets and Design/CPN, Aarhus, Denmark,
pages 41–58, October 1999.

[18] C. Reinke. Haskell-Coloured Petri Nets. In IFL ’99: Selected Papers from
the 11th International Workshop on Implementation of Functional Languages,
pages 165–180. Springer-Verlag, 2000.

[19] W. Reisig. Petri nets: an Introduction. Springer-Verlag New York, Inc., 1985.

[20] RENEW. The Reference Net Workshop homepage. http://www.renew.de/,
2004.

[21] R. J. Wieringa. Design Methods for Reactive Systems: Yourdon, Statemate,
and the UML. Morgan Kaufmann, 2003.

35

Transforming Coloured Petri Nets to Counter
Systems for Parametric Verification: A

Stop-and-Wait Protocol Case Study ∗

Jonathan Billington and Guy Edward Gallasch
Computer Systems Engineering Centre

School of Electrical and Information Engineering
University of South Australia

Mawson Lakes, SA, 5095, AUSTRALIA
Jonathan.Billington@unisa.edu.au

Guy.Gallasch@postgrads.unisa.edu.au

Laure Petrucci
LIPN, CNRS UMR 7030, Université Paris XIII

99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE

petrucci@lipn.univ-paris13.fr

Abstract

Protocols may contain parameters that are chosen from a wide range.
In some cases we would like our analysis results to apply to an arbitrary
upper limit on a parameter value, such as the maximum number of retrans-
missions. In this case we have an infinite family of finite state systems. This
makes their verification difficult. However, techniques and tools are being
developed for the verification of parametric and infinite state systems. We
explore the use of one such tool, FAST, for verifying several properties of
the stop-and-wait class of protocols, where the maximum number of retrans-
missions and the maximum sequence number are consider parameters. We
are also interested in using expressive languages for representing protocols
such as Coloured Petri nets (CPNs). FAST’s foundation is counter systems,
which are automata whose states are a vector of non-negative integers, with
operations limited to Presburger arithmetic. We therefore also present some
first steps in transforming CPNs to counter systems in the context of stop-
and-wait protocols operating over unbounded FIFO channels.

∗This work is supported by the Australian Research Council Linkage International grant
LX04544639, and the French-Australian Science and Technology programme FR040062.

37

1 Introduction

1.1 Background and Motivation

The design and development of computer communication protocols is central to
the development of embedded and pervasive computing systems which nearly
always involve the co-operation of distributed components. It is important that
protocols behave according to their requirements, since their failure can have seri-
ous consequences particularly for life critical or financially sensitive applications.
Being able to verify that protocols behave correctly is a significant challenge since
they usually include a number of parameters (such as a maximum sequence num-
ber, flow and congestion control window sizes, and the maximum number of re-
transmissions) that may be chosen to suit the operating environment, and may vary
widely. Thus we would like to consider a class of protocols where the parameters
can take any value within their range, and verify their correctness for all values of
the parameters. Sometimes the ranges for these parameters are unbounded, giving
rise to an infinite family of state spaces, one for each value of the parameter. At
other times no limit may be placed on the value of a parameter (e.g. the number
of times a packet can be retransmitted) which may result in an infinite state space.

The approach we use to tackle this problem is that of model driven develop-
ment. The first step is to develop a formal model of our system which we then
analyse either using tools or if they fail then by hand or a combination of both.
The model is normally at the design level and the proofs are intended to show
that the design satisfies the requirements of the system. This is rather important
because removing errors at the design stage is very cost effective in the devel-
opment of systems compared with removing errors in the implementation using
testing. The effect is even more pronounced if the errors are discovered after the
product has been released. The development of the model and its analysis can
also increase the level of understanding of the requirements. Further, if the model
is executable it can be used in fast prototyping of system specifications. This also
increases the designer’s and customer’s understanding of requirements, which is
widely acknowledged as a problematic area in software development.

In previous work [8] we summarised a protocol verification methodology
based on Coloured Petri nets [18] and finite state automata. (Coloured Petri Nets
(CPNs) are an executable modelling language with a formal semantics, based on
Petri nets and the ML functional programming language.) This methodology uses
state space methods and has been applied successfully for finite state systems, for
small values of parameters. Techniques (such as partial orders, BDDs, and the
sweep-line method) for alleviating the state space explosion problem [28] help
to extend the method to larger ranges of parameters, but cannot handle large or
unbounded values.

In [8], the methodology is illustrated using a stop-and-wait Protocol (SWP) [25,
22] which involves two parameters: the maximum sequence number, MaxSeqNb;
and the maximum number of retransmissions, MaxRetrans. From a modelling

38

point of view, the values of these parameters may be chosen arbitrarily. We would
thus like to prove that the SWP class is correct for any values of MaxSeqNb ≥ 1
and MaxRetrans ≥ 0. This becomes impossible using finite state techniques, as we
need to consider an infinite number of increasingly larger finite state spaces. For
FIFO channels (either lossy or lossless), a hand proof is given in [8] that shows
that the number of messages in the message channel (and the number of acks in
the acknowledgement channel) has a least upper bound of 2MaxRetrans + 1, for
any positive value of MaxSeqNb, and any non-negative value of MaxRetrans. For
other properties, such as verifying that the protocol conforms to its service of al-
ternating send and receive events, the standard methodology was used for a range
of parameter values (0 < MaxSeqNb < 1024, 0 ≤ MaxRetrans ≤ 4), but no gen-
eral result was obtained. This has motivated us to search for methods that will
handle unbounded parameters and provide some degree of automation.

This paper addresses the unbounded parameter problem by using a tool called
FAST (Fast Acceleration of Symbolic Transition systems) [3], based on counter
systems [17]. FAST performs symbolic analysis of infinite state systems by using
accelerations (meta-transitions) to encode an arbitrary number of iterations of
sequences of actions within the system. Parameters can be input as variables that
are not constrained, and hence automated parametric verification of systems may
be possible. However, we face two difficulties using this tool. Firstly, FAST’s
input language is based on counter systems (CS), whereas we would like to use
the much more expressive language of CPNs. CS can model Place/Transition
nets augmented with special arc types such as inhibitors [15], but as far as we are
aware no attempt has previously been made to translate CPNs to CS. Secondly,
FAST provides a semi-algorithm, which is not guaranteed to terminate. Hence we
can never be sure the verification will succeed.

The purpose of our work is thus to explore the potential of FAST for the para-
metric verification of communication protocols which have been previously mod-
elled using CPNs. This paper investigates the class of stop-and-wait protocols.
This is because they require parametric verification and are the simplest repre-
sentative example of the class of protocols which provide flow control and bit
error recovery that are used in practice, such as in the data link and transport lay-
ers of communication protocol architectures. We slightly revise our CPN model
in [8] to make it easier to translate to a counter system. We find that translating
CPN places representing states, stored sequence numbers and the retransmission
counter is straightforward, but queues are more of a challenge. We are able to
use 4 integer variables to represent the FIFO queue, due to the operation of the
SWP. The conditions that are required for the queue model to be valid are checked
using FAST, as well as the following properties: channel bounds; deadlocks; the
stop-and-wait property; in-sequence delivery; and message loss and duplication;
for both lossless and lossy FIFO channels.

39

1.2 Related Work

The simplest SWP restricts its sequence numbers to 0 and 1 and is known as the
Alternating Bit protocol (ABP) [5]. The ABP and its extensions (e.g. [12]) have
been used extensively in the literature as case studies (e.g. [21]). Often such pa-
pers demonstrate in various ways whether the ABP works as expected over (lossy
or lossless) FIFO channels [24, 9], investigate performance [23, 20], demonstrate
new tools [9], or illustrate verification methodologies [14], the application of for-
mal description techniques [27], new modelling languages or derivatives of exist-
ing languages [24, 23, 20]. However, none of these papers address the issue of
parametric verification of the ABP (i.e. for arbitrary values of MaxRetrans.)

More recently there has been work in the area of symbolic verification of the
ABP. Valmari and his co-workers (e.g. [29]) promote a behavioural fixed point
method and compositional techniques for the verification of parametric systems.
In [29] a variant of the ABP using limited retransmission, i.e. where there is
an arbitrary bound (e.g. MaxRetrans) on the number of retransmissions, is veri-
fied using Valmari’s CFFD equivalence. There are several differences with our
work. Perhaps the most significant is that the channels are limited to holding
only one message or acknowledgement at a time, whereas ours are unbounded
FIFO queues. Valmari [29] concedes this to be a much more difficult problem.
Valmari’s method relies on defining a separate counter process which needs to
be synchronised (using parallel composition) with the sender logic, which has 18
states. The counter itself is a recursive parallel composition of counter cells. The
receiver is a relatively straightforward 6 state process. The ack channel is given
as a 3 state process, but the data channel is more complex and not given explicitly
in the paper. To obtain the model, all these processes need to be synchronised
with parallel composition. In contrast our CPN model integrates all these aspects
in the one model, and extends the model to include unbounded FIFO queues and
sequence numbers with an arbitrary maximum sequence number as a parameter.
However, our model does not have explicit communication with the users (but
relies on the send and (non-duplicate) receive transitions to be considered as syn-
chronised communication with the user) and does not consider reporting errors
to the user. We see no problem in extending our model to include these features,
however, our aim is to illustrate the use of FAST in analysing parameterised CPN
models, rather than a direct comparison with a particular ABP variant.

The ABP and another variant called the Bounded Retransmission Protocol are
used in [2] to demonstrate a symbolic verification methodology [1]. TReX (Tool
for Reachability Analysis of Complex Systems) [26] was used to implement this
methodology in [2]. The content of unbounded lossy FIFO channels is modelled
by (a restricted class of) regular expressions thus providing a symbolic represen-
tation of the channels. Similar to FAST, an acceleration technique is used. This
allows a small symbolic state space to be calculated based on the states of the
sender and receiver ABP processes. They verify that the ABP conforms to its ser-
vice of alternating sends and receives, using the Aldebaran tool [11] for finite state

40

automata. The maximum number of retransmissions was considered to be unlim-
ited giving rise to a single, infinite-state model. This differs from our approach of
modelling MaxRetrans as a parameter and thus having an infinite number of finite-
state models, one for each parameter value. As mentioned above, we also model
an arbitrary maximum sequence number, rather than being limited to a maximum
sequence number of 1.

1.3 Contribution and Organisation

This paper provides two contributions. Firstly, we believe it is the first time
that parametric verification of the stop-and-wait protocol class operating over un-
bounded FIFO channels has been undertaken where MaxRetrans has been modelled
as a parameter. We are able to verify the SWP for arbitrary values of MaxRetrans
for small values of MaxSeqNb (i.e. 1 to 5), for an extensive range of safety prop-
erties. Secondly, we provide some steps towards a method for translating CPNs
into counter systems.

The rest of the paper is organised as follows. Section 2 describes the stop-and-
wait protocol using a Coloured Petri net model. Counter Systems are introduced
in Section 3 which also describes a methodology for translating a CPN model into
a CS. This methodology is applied in Section 4 to the SWP CPN of Section 2.
The expected properties of the SWP are described in Section 5. After introduc-
ing FAST, we analyse the SWP CS in Section 6. Section 7 provides concluding
remarks and identifies areas of future work.

2 Stop-and-Wait Class of Protocols: A CPN Model

We explain the class of stop-and-wait protocols by providing a parameterised
Coloured Petri Net (CPN) model of it as shown in Figs. 1 and 2, which were
created using Design/CPN [13]. Essentially three changes are made to the CPN
model presented in [7, 8]:

• in the sender, one place (instead of two) is used to store its states, so that
the colour set Sender comprises two states: s ready and wait ack;

• one place (receiver state) is used in the receiver to store its states;

• a new place in the receiver stores its current sequence number; and

• arc inscriptions are revised accordingly.

This makes the CPN diagram more compact and provides a consistent modelling
style. Control flow is indicated by bold arcs.

The protocol operates between a sender, shown on the left of Fig. 1 and a re-
ceiver shown on the right. The communication medium (Network) is represented
by two lossy FIFO queues, one for each direction of message flow. The queues
are modelled by using a list type for places mess channel and ack channel, adding

41

receiver_state

Receiver

r_ready

send_mess receive_mess

receive_ack

[rn = NextSeq(sn)]

send_ack

send_seq_no

Seq

0

mess_channel

MessList

[]

ack_channel

MessList

[]

mess_loss

ack_loss

timeout_retrans

[rc < MaxRetrans]

retrans_counter

RetransCounter

0

sender_state

Sender

s_ready

receive_dup_ack

[rn <> NextSeq(sn)]

Sender Network Receiver

recv_seq_no

Seq

0

sn

queue^^[sn] sn::queue r_ready

if(sn = rn)
then NextSeq(rn)
else rn

r_ready

queue^^[sn]

rc rc+1

rc

0

wait_ack

s_ready

wait_ack

rn::queue

queue

rn::queue queue^^[rn]

sn

NextSeq(sn)

rn::queue

sn

sn

queue

queue
sn::queue

queue

queuequeue

queue

queue

s_ready

wait_ack

rn

rnrn

process

process

Figure 1: CPN of the SWP operating over a lossy FIFO channel.

val MaxRetrans = 1;
val MaxSeqNb = 1;

color Sender = with s_ready | wait_ack;
color Receiver = with r_ready | process;
color Seq = int with 0..MaxSeqNb;
color RetransCounter = int with 0..MaxRetrans;
color Message = Seq;
color MessList = list Message;

var sn,rn : Seq;
var rc : RetransCounter;
var queue : MessList;

fun NextSeq(n) = if(n = MaxSeqNb) then 0 else n+1;

Figure 2: Global Declarations for the Stop-and-Wait Protocol CPN.

messages to the end of the queue (using the operator ˆˆ) and removing messages
from the head of the queue (using ::). Loss is represented by arbitrarily removing
the head of the queue.

The protocol is implemented by the sender and receiver procedures. The
sender has two states: s ready and wait ack, with the current state stored in place
sender state. When ready, it sends a message (transition send mess) and waits
for an acknowledgement before sending the next message (hence, stop-and-wait).
To overcome the possibility that the message has been lost, the sender sets a timer
running on sending a message, and if it expires before receiving the acknowledge-
ment (receive ack), the message is retransmitted (transition timeout retrans) and the
timer is set running again. However, the acknowledgement could be lost even
though the message had been received. In this case, the receiver needs to detect
and discard duplicate messages. To do this, a sequence number is associated with

42

each message, and stored by the sender (place send seq no). In the CPN model,
messages are represented by their sequence number only, as data is not used in the
procedures. The receiver also stores a sequence number (place recv seq no) which
is used to detect duplicates. The sequence number space is finite, but allows for
any range of consecutive integers, starting from zero. In our model we use the pa-
rameter MaxSeqNb to repesent the maximum value of the sequence number space.
If a new message arrives at the receiver (transition receive mess with sn=rn), the se-
quence number is incremented, modulo MaxSeqNb (NextSeq(rn)), whereas if a du-
plicate is detected (sn6=rn) the sequence number remains the same. The sequence
number in the receiver represents the next message to be received, and this is the
value that is sent back to the sender, as an acknowledgement. Acknowledgements
are returned on receipt of each message, whether or not it is a duplicate. (This
is required to recover from loss of acknowledgements.) To model flow control,
we have two states in the receiver (r ready and process), which allow the sending
of the acknowledgement to be asynchronous with the receipt of a message. The
current state is stored in place receiver state.

While waiting for an acknowledgement, the sender may continue to retrans-
mit messages, until it reaches a preset limit (MaxRetrans). It then gives up hope of
the message getting through and passes control to a management entity for higher
level recovery (not modelled). If an acknowledgement arrives before this, indi-
cating that the message has been received (rn=NextSeq(sn)) transition receive ack
increments the send sequence number and returns the sender to ready, allowing
the next message to be sent. Duplicate acknowledgements are discarded by the
sender (receive dup ack) at any time.

3 Mapping the CPN Model to a Counter System

As we aim at obtaining an extensive set of analysis results on the stop-and-wait
protocol, parametric analysis is desirable. It can be achieved using tools such as
FAST [3]. FAST operates on counter systems, so it is necessary to transform our
CPN model into a CS. This is straightforward for Petri nets, even with extended
arcs [6, 4] but requires enhancement for CPNs.

Counter systems are automata extended with unbounded integer variables.
FAST uses accelerations (sometimes called meta-transitions) to enable it to cal-
culate the exact effect of iterating a behavioural loop an arbitrary number of
times, and produces a symbolic occurrence graph representing the infinite state
system. Details on counter systems and the theory behind FAST can be found
in [17, 10, 30, 19].

The places of a CPN are transformed into a set of counter system variables and
a single counter system state. This transformation is straightforward if the types
of the places are or can be mapped to integers (e.g. enumerated types). If a place
p has a type Type(p) that can be mapped to the integers by an injective mapping,
I
p

: Type(p) → N, and p always contains one token (∀M ∈ [M0〉, |M(p)| = 1),

43

then we can create an integer variable v
p

in the CS, that takes the values of the
token in the place transformed by I

p
for each marking. This is the case both for

the places in the sender and those in the receiver of our SWP CPN model.
However, the stop-and-wait protocol uses two FIFO queues: one for mes-

sages and one for acknowledgements, represented by places mess channel and
ack channel both typed by a message list, where messages are represented by se-
quence numbers (integers). These queues can be any size, depending on the max-
imum number of retransmissions [8]. The values of the sequence numbers depend
on the MaxSeqNb parameter. Because the sequence numbers are integers we can
store the value of a queue item in a variable, and the number of queue items of that
value in an associated variable. As long as sequence numbers do not wrap, we can
always remove the item with the ‘smallest’ value from the queue and hence main-
tain FIFO order. However, this will require an unbounded number of variables in
the general case, but not if the queue can only contain a finite number of values at
any one time. For example, if the queue can contain only one message value at a
time, then it can be represented by two variables: one storing the message value
and a second storing the number of messages in the queue.

For the SWP operating over FIFO channels it turns out that there can be at
most two different messages (represented by their sequence numbers) in the queue
at any one time and that the messages of the same type are contiguous in the
queue. Thus the queue is of the form mess1*mess2*. (Before doing the analysis,
this property is a conjecture, so we must check that this property holds as a first
step in validating the model.) Therefore, the queue can be modelled using four
variables:

• Old is the smallest/oldest sequence number (modulo MaxSeqNb) that is in
the queue;

• New is the latest sequence number that was put in the queue;

• NbOld is the number of messages with sequence number Old;

• NbNew is the number of messages with sequence number New.

Now, we will explain how to add messages to and remove messages from the
queue. We will also show that this is done in a consistent manner.

The queue can contain:

1. no message. Hence NbOld = NbNew = 0;

2. one type of message. Then, Old = New and NbOld = NbNew 6= 0;

3. two types of message. Thus, Old 6= New, NbOld 6= 0 and NbNew 6= 0.

In the following, a prime denotes the value of the variable after an action has
been performed. Variables that do not change are not mentioned.

First, consider adding a message with sequence number mess. If the queue is
in state (numbered as above):

44

1. The new message is the only one. Therefore, after adding the message:
Old’ = New’ = mess and NbOld’ = NbNew’ = 1. This is consistent with
the above statement for a queue having a single message, hence containing
only one type of message;

2. The new message can be either:

• of the same type as those already in the queue. Then, after adding the
new message, we have: NbOld’ = NbNew’ = NbOld+1(= NbNew+1).
This is consistent with the queue containing a single type of message;

• of a new type. Thus, New’ = mess and NbNew’ = 1. This is consistent
with the queue now having two types of message.

3. In this case, only a New message (i.e. a duplicate) can be added to the queue
and hence NbNew’ = NbNew + 1. This is consistent with the queue contain-
ing exactly two types of message.

Now, we explain how to remove a message mess. If the queue is in state:

1. It is empty, so this case should never occur as there is nothing to consume;

2. The message consumed is of the single type in the queue. Hence: mess =
Old = New and NbOld’ = NbNew’ = NbOld − 1 = NbNew − 1. Note that the
resulting queue can either contain messages of the same single type or no
message at all;

3. The message consumed can be of type either New or Old. Both cases can
be handled in a similar manner, but in this paper, the queues considered
are FIFO. Therefore, the message consumed is the oldest in the queue, i.e.
mess = Old. Then two cases can be considered:

• The message consumed is the last one of type Old, i.e. NbOld = 1.
Then the resulting queue contains a single type of message, Old’ =
New and NbOld’ = NbNew;

• There are several messages of type Old in the queue. Then, NbOld’ =
NbOld − 1.

4 The SWP CS Model

The CPN model of the stop-and-wait protocol can now be transformed into a
counter system by application of the techniques from the previous section.

4.1 SWP CS Variables

We first start with mapping the places of the SWP CPN to CS variables.

sender state can take two values, i.e. s ready or wait ack. It is coded, in the CS,
using a variable SState, with values 1 and 0 respectively;

45

send seq no becomes a variable SSeqNb, containing the last not-acknowledged
sequence number;

retrans counter is a variable Retrans, counting the number of retransmissions
that have occurred for message number SSeqNb;

receiver state can take two different values, i.e. r ready or process. It is repre-
sented using a variable RState, with values 1 and 0, respectively;

recv seq no becomes a variable RSeqNb, containing the number of the next ex-
pected message;

mess channel is modelled in the counter system using, as explained before, 4
variables MCOld, MCNew, NbMCOld and NbMCNew. They represent respec-
tively, the sequence number of the message in the channel that was put first,
the sequence number of the message in the channel that was put last, and
the numbers of such messages;

ack channel is modelled similarly with variables ACOld, NbACOld, ACNew and
NbACNew.

Two other variables are needed for the parameters of the system: the maxi-
mum sequence number MaxSeqNb and the maximum number of retransmissions
MaxRetrans.

4.2 SWP CS Transitions

When modelling the transitions, we must ensure that all possible cases are taken
into account. In fact, we will only include firable transitions in the model, and not
transitions that can never occur (dead transitions). It is important to reduce the
number of transitions as in our case transition compositions (see Section 6.2) de-
pend on the square of the number of transitions, thus increasing the computation
time significantly. However we will check in Section 6 that this is the case, to en-
sure that nothing is missing. The transitions operate on the 4 variables describing
queues. The wrapping from MaxSeqNb to 0 must be taken into account. The value
of the other variables are changed as described in the CPN model.

4.3 The Stop-and-Wait protocol CS Model

Here, we show an excerpt of the SWP CS model, illustrating FAST model input.
The model describes in a natural way the counter system to analyse. It comprises
the integer variables identified above, the single state marking of the counter system
obtained from the Petri net, and specifications of the transitions. Each transition
is described by its source and destination states (from and to fields), which is here
always the state marking. A guard is associated with each transition, giving an
enabling condition on the values of the variables. The effect of the transition
is given in action, describing how the values of variables are changed when the

46

transition occurs. The symbol && indicates logical AND, || represents logical
OR, ! indicates negation, and the prime notation is as defined in Section 3.

model SWP {
var SState, SSeqNb, Retrans, MaxRetrans, MCOld, MCNew, NbMCOld, NbMCNew,

ACOld, ACNew, NbACOld, NbACNew, RSeqNb, RState, MaxSeqNb;
states marking;

// send: case new message with no message in queue
transition sendM1 := {
from := marking;
to := marking;
guard := SState=1 && NbMCOld=0;
action := SState’=0, MCNew’=SSeqNb, NbMCNew’=1, MCOld’=SSeqNb, NbMCOld’=1; };

// receive duplicate: case message with seq nb MCNew = MCOld
transition receiveM1 := {
from := marking;
to := marking;
guard := RState=1 && NbMCOld>0 && !(MCOld=RSeqNb) && MCOld=MCNew;
action := RState’=0, NbMCOld’= NbMCOld-1, NbMCNew’=NbMCNew-1; };

// receive duplicate ack: case ack with seq nb ACNew = ACOld
transition recdupack1 := {
from := marking;
to := marking;
guard := NbACOld>0 && ACOld=ACNew && ((SSeqNb=MaxSeqNb && !(ACOld=0))

|| (SSeqNb<MaxSeqNb && !(ACOld=SSeqNb+1)));
action := NbACOld’=NbACOld-1, NbACNew’=NbACNew-1; };

// receive expected ack
transition recack := {
from := marking;
to := marking;
guard := NbACOld>0 && ACOld=ACNew && SState=0 && ((SSeqNb=MaxSeqNb &&

ACOld=0) || (SSeqNb<MaxSeqNb && ACOld=SSeqNb+1));
action := NbACOld’=NbACOld-1, NbACNew’=NbACNew-1, SState’=1,

Retrans’=0, SSeqNb’=ACOld; };
...
}

Let us explain the declaration of transition sendM1. It starts and ends in the
counter system state marking. The guard means that the sender sends a message
only if it is ready to do so (SState=1) and the case handled by this transition is
when the message channel is empty (NbMCOld=0). When these conditions are
met, the transition can be fired and the action occurs, leading to a state were the
sender is waiting for an acknowledgement (SState’=0), and the queue, containing
only one message, hence both old and new, is updated (MCNew’=MCOld’=SSeqNb,
NbMCNew’=NbMCOld’=1).

5 Required Properties of the CS Model

The model of the SWP should satisfy several properties, which are of two kinds:
the properties ensuring that our translation from the CPN model to the counter
system is sound, i.e. all the assumptions made are valid; and the properties that
the protocol itself should satisfy.

47

5.1 Model Soundness

For the model to be sound, we need to verify the modelling assumptions. Our
model is correct if both the message and acknowledgement channels: contain no
more than two different types of message, where the ‘type’ of the message refers
to its sequence number (i.e. Old and New from Section 3); and all messages of the
same type are contiguous in the queue (i.e. the contents of the queue is of the form
Old*New). To verify this, we check that if there are already two types of message
in the queue (i.e. Old and New), only transitions which can add a New message are
enabled.

We also verify the completeness of the model, i.e. that all the relevant cases
are taken into account by transitions. Hence, all cases that are not explicitly de-
scribed by the guards can never occur. This is done by verifying that there is no
reachable marking that enables similar transitions, but with different conditions
concerning the channel contents.

5.2 SWP Properties

We wish to prove the following SWP properties:

Consecutive sequence numbers If there are different types of message in a
channel, they have consecutive numbers. Hence:

MCOld 6= MCNew ⇒ (MCNew = MCOld + 1 ∨ (MCNew = 0 ∧ MCOld = MaxSeqNb))

ACOld 6= ACNew ⇒ (ACNew = ACOld + 1 ∨ (ACNew = 0 ∧ ACOld = MaxSeqNb))

Number of messages in channels The lowest upper bounds for the number
of messages in both channels, and the lowest upper bound on the total number
of messages (i.e. messages plus acknowledgements) is 2MaxRetrans + 1. This is
checked by counting the messages in the channels. The number of messages in
the message channel is:

Nb Messages = if MCOld 6= MCNew thenNbMCOld + NbMCNew else NbMCOld

Hence, for the message channel:
Nb Messages ≤ 2MaxRetrans + 1

should hold over all reachable markings, but
Nb Messages ≤ 2MaxRetrans

should not. Similarly for the acknowledgement channel. The boundedness prop-
erty can be even more precise, taking into account the types (sequence numbers)
of messages:

if MCOld 6= MCNew then NbMCOld ≤ MaxRetrans ∧ NbMCNew ≤ MaxRetrans + 1

else NbMCOld ≤ MaxRetrans + 1

48

Stop-and-Wait Property A sent message is received before the next (new) mes-
sage is sent (i.e. alternating send and receive events.)

No data loss Each original message (or a retransmission) is eventually received,
except for the last message in case the original plus all retransmissions were lost,
and the maximum number of retransmissions is reached.

No duplication When a duplicate message arrives, it is detected as such and
discarded. No duplicate message is mistakenly accepted as a new one.

In-sequence delivery The messages are received in the order they are sent.

Deadlocks When using reliable channels, there should be no deadlock. When
using unreliable channels, only expected deadlocks should exist: the maximum
number of retransmissions is reached but the sender is stuck waiting for an ac-
knowlegement, and both message and acknowledgement channels are empty:

retrans = MaxRetrans, SState = 0,

MCOld = MCNew, NbMCOld = NbMCNew = 0,

ACOld = ACNew, NbACOld = NbACNew = 0

5.3 Instrumentation of the model

In order to check several of the properties, some instrumentation of the model is
required. We add a variable SRprop, which is set to the sequence number plus 1,
when a new message is sent. When an expected message (i.e. not a duplicate)
is received, this variable is set to 0. Checking the stop-and-wait property then
amounts to verifying that there is no pending new message in the message channel
when the sender is ready to send, i.e. no state such that:

SRprop > 0 ∧ SState = 1

When operating over a FIFO medium, because the stop-and-wait property
holds (a new message can only be sent if the expected one was received) it follows
that there is no loss of data (except possibly the last message as described.)

To verify the no duplication property, we check that there is no state such that
the receiver is ready to accept a new message with sequence number other than
the most recently sent by the sender, i.e. there is no state such that:

SRprop = MCOld + 1 ∧ RState = 1 ∧ NbMCOld > 0 ∧ ¬(MCOld = RSeqNb)

Effectively, when a duplicate is received, the value of SRprop should be either 0 if
no new message has yet been sent by the sender, or corresponds to the sequence
number plus 1 of the new message sent, i.e. a different sequence number to the
duplicate being received.

Finally, to prove the in-sequence delivery property, we note that variable SR-
prop contains the number (plus one) of the last new message sent, and that it is not

49

possible to receive an original message with a sequence number different to that
most recently sent, i.e.:

¬(SRprop = MCOld + 1) ∧ RState = 1 ∧ NbMCOld > 0 ∧ MCOld = RSeqNb

6 Analysis of SWP using FAST

6.1 Introduction to FAST

FAST [3, 4] is a tool dedicated to checking safety properties on counter systems.
The main issue addressed by FAST is the exact computation of the (infinite) state
space. On such a complex problem, although FAST uses a semi-algorithm which
is not guaranteed to terminate, experiments with its use on practical examples
have been promising [16].

6.1.1 Inputs and Outputs

FAST inputs are in the form of both a model and a strategy for the analysis. Out-
puts are messages indicating whether the system satisfies a property or not. The
model input format was described in Section 4 where an excerpt of our SWP
model was given.

The strategy is the sequence of computations to perform in order to check the
validity of the system. The strategy language is a script language which operates
on regions (sets of states), transitions and booleans. All the usual operators on sets
are available and primitives to compute the reachability set (forward or backward)
are provided. Checking a safety property involves declaring the initial states,
computing the reachability set A, declaring the property to check (good states) B,
and testing if A ⊆ B.

Here, we show an excerpt of the SWP CS strategy, illustrating FAST strategy
input.

strategy SWP {
...
Region init := {SState=1 && SSeqNb=0 && Retrans=0 && MCOld=0
&& MCNew=0 && NbMCOld=0 && NbMCNew=0 && ...};

Region reach := post*(init, t, 2);

// Consecutive sequence numbers in Message channel
Region diffminmaxM := {(MCOld=MCNew) || (MCNew=MCOld+1) ||
(MCOld=MaxSeqNb && MCNew=0)};

if (subSet(reach,diffminmaxM)) then
print("M channel consecutive seq numbers OK");
else print("M channel consecutive seq numbers NOK");

endif
...
}

50

First, a region init is declared, used to describe the initial states. Then, the set
of reachable states reach is computed from init, using forward reachability (func-
tion post*). Region diffminmaxM characterises the set of states with consecutive
sequence numbers in the message channel. If reach is a subset of diffminmaxM then
the consecutive sequence numbers property is satisfied, otherwise it is not. An
appropriate message is printed.

6.1.2 Architecture

The FAST computational engine can be used as a standalone application, or with
a graphical user interface in a client-server architecture [4]:

• the server is the computation engine of FAST. It contains a Presburger
library, the acceleration algorithm and the search heuristics;

• the client is a front-end which allows interaction with the server through a
graphical user interface. This interface facilitates guided editing of models
and strategies, with features such as pretty printing and predefined strate-
gies. Once the computation starts, feedback is supplied through different
measures and graphs (time elapsed, memory used, number of states, . . .).

6.2 Analysis Results

The results obtained by FAST confirm the expected properties from Section 5.
They are automatically checked for all values of the MaxRetrans parameter, al-
though FAST did not terminate in a reasonable amount of time when the maxi-
mum sequence number was also a parameter. Therefore, we conducted separate
runs of FAST with MaxSeqNb fixed, over the range from 1 to 5. The analysis was
performed on the lossy channel model as well as on a model with reliable channels
(where the loss transitions were removed).

Column Channels in Table 1 indicates whether the channel is reliable or lossy.
MaxSeqNb gives the values of the variable for the experiment.

The computation is done at a reasonable or even low cost w.r.t. both time
and memory usage, as shown by the experimental results in Table 1 for 1 ≤
MaxSeqNb ≤ 5. The FAST computation is divided into three steps (for technical
details, see e.g. [17]):

• transition compositions which take 2 minutes 5 seconds in the lossy case
(529 compositions) and 1 minute 36 seconds in the reliable case (289 com-
positions);

• accelerations computation which takes 31 seconds for 126 cycles in the
lossy case and 1 minute 13 seconds for 105 cycles in the reliable case;

• applying the accelerations to construct the state space.

51

The computation time for compositions and accelerations is exactly the same for
all cases, as the same preliminary computations are performed. The differences in
time result from the size of the internal representation of each element.

Table 1 gives the total computation times, as well as the peak memory recorded.
Column Nb states indicates the number of symbolic states at the end of the com-
putation.

Channels M
ax

S
eq

N
b

N
b

co
m

po
si

tio
ns

tim
e

(h
h:

m
m

:s
s)

m
em

or
y

(M
B

)

N
b

st
at

es

N
b

ac
ce

le
ra

tio
ns

N
b

cy
cl

es

Reliable 1 289 00:07:34 31 74 64 105
Reliable 2 289 00:36:29 37 167 113 105
Reliable 3 289 00:54:26 44 169 120 105
Reliable 4 289 02:07:14 48 349 123 105
Reliable 5 289 03:00:16 48 360 181 105
Lossy 1 529 00:12:29 19 87 60 126
Lossy 2 529 00:33:52 23 205 132 126
Lossy 3 529 01:28:56 27 199 193 126
Lossy 4 529 03:04:54 38 446 202 126
Lossy 5 529 03:30:21 39 432 233 126

Table 1: Experimental results

7 Conclusions and Future Work

Finite state methods for protocol verification can fail due to state explosion when
considering ranges of values for important parameters such as the maximum num-
ber of retransmissions or the size of the sequence number space. When consider-
ing these parameters, we would like to provide a general result that allows protocol
properties to be proved for any value of each parameter. When arbitrary values
are considered, we need to generate an infinite number of finite state spaces, one
for each value of the parameter. (This is quite different from considering, for ex-
ample, the specific case of no limit on the number of retransmissions, which gives
rise to a single infinite state system.)

This paper has addressed this problem for the stop-and-wait class of proto-
cols, where we modelled the parameters explicitly. We used a recently developed
tool called FAST to facilitate parametric verification. FAST allows symbolic state
spaces to be generated by taking advantage of encoding arbitrary iterations of se-
quences of events, known as accelerations. It is based on counter systems, which
are automata where states are vectors of (unbounded) integers.

The stop-and-wait protocol (SWP) has two parameters: MaxRetrans repre-
senting the maximum number of retransmissions; and MaxSeqNb representing the
maximum sequence number that can be used. In previous work [8] we modelled
the SWP using Coloured Petri Nets and provided a hand proof that the bound on
the number of messages in the FIFO communication channel was 2 MaxRetrans +

52

1. However, we were only able to prove other properties, such as the stop-and-
wait property of alternating sends and receives, for up to 10 bit sequence numbers
and with up to 4 retransmissions using automated finite state techniques.

In this paper we have overcome these limitations for the MaxRetrans parame-
ter. Fully automatic proofs have been obtained for channel bounds (confirming
the previous hand proofs and including proving that the sum of the messages
and acknowledgements in the channels does not exceed 2 MaxRetrans + 1), the
stop-and-wait property, that there is no loss of messages (except for the last one
when the maximum number of retransmissions is reached), no duplication and
that messages are delivered in-sequence. This has been done for 1 ≤ MaxSeqNb
≤ 5. Unfortunately, FAST does not terminate in a reasonable amount of time
when MaxSeqNb is considered as an unbounded parameter, or for values greater
than 5. However, we believe this experience will assist us with hand proofs that
the results hold for any positive integer value of MaxSeqNb.

Further we have shown how to translate our CPN model into a counter system
by using a novel approach to represent a FIFO queue by 4 integer variables. This
is valid when the queue can hold only two types of message indicated by their
sequence numbers and all messages of the same sequence number are adjacent.
This condition is proved using FAST as part of model validation. Some general
guidance has also been given for translating CPNs to counter systems.

Future challenges include generalising the method to channels that allow re-
ordering of messages and formally incorporating data independence, which has
been assumed in our work so far. Other ways of representing queues (perhaps
with one integer variable) that are efficient and suit the FAST framework of Pres-
burger arithmetic could be investigated. A more general and formal translation of
CPNs into counter systems is also of interest, to allow models that have already
been constructed in CPNs to be automatically translated and input to FAST. Au-
tomatically translating the properties formulated on the CPN model to those on
the counter system and translating the results back is also an interesting issue. We
would also like to investigate the use of other tools such as TReX and compare
them with FAST.

Acknowledgements

We thank the anonymous referees for their useful comments which helped us to
improve our paper.

References

[1] P. Abdulla, A. Annichini, and A. Bouajjani. Symbolic verification of lossy
channel systems: Application to the bounded retransmission protocol. In
Proceedings of TACAS’99, volume 1579 of LNCS, pages 208–222. Springer-
Verlag, 1999.

[2] P. Aziz Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson. Us-
ing Forward Reachability Analysis for Verification of Lossy Channel Sys-
tems. Formal Methods in System Design, 25(1):39–65, 2004.

53

[3] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration of
Symbolic Transition systems. In Proceedings of CAV’2003, volume 2725 of
LNCS, pages 118–121. Springer, 2003.

[4] S. Bardin and L. Petrucci. From PNML to counter systems for accelerating
Petri nets with FAST. In Proc. of the Workshop on Interchange Formats for
Petri Nets (at ICATPN 2004), June 2004.

[5] K.A. Bartlett, R.A. Scantlebury, and P.T. Wilkinson. A Note on Reliable
Full-Duplex Transmission over Half-Duplex Links. Communications of the
ACM, 12(5):260–261, May 1969.

[6] B. Bérard and L. Fribourg. Reachability analysis of (timed) Petri nets using
real arithmetic. In Proceedings of CONCUR’99, volume 1664 of LNCS,
pages 178–193. Springer, 1999.

[7] J. Billington and G. E. Gallasch. An Investigation of the Properties of Stop-
and-Wait Protocols over Channels which can Re-order messages. Technical
Report 15, CSEC, University of South Australia, Australia, May 2004.

[8] J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to
Protocol Verification. In Lectures on Concurrency and Petri Nets, Advances
in Petri Nets, volume 3098 of LNCS, pages 210–290. Springer-Verlag, 2004.

[9] J. Billington, G.R. Wheeler, and M.C. Wilbur-Ham. PROTEAN: A High-
level Petri Net Tool for the Specification and Verification of Communica-
tion Protocols. IEEE Transactions on Software Engineering, 14(3):301–316,
March 1988.

[10] A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and
finite automata. In H. Kirchner, editor, Proceedings of CAAP’96, volume
1059 of LNCS, pages 30–43. Springer, 1996.

[11] CADP homepage. http://www.inrialpes.fr/vasy/cadp/.

[12] CCITT. ISDN user-network interface Data link layer specification. Techni-
cal report, Draft Recommendation Q.921, Working Party XI/6, Issue 7, Jan.
1984.

[13] DESIGN/CPN online. http://www.daimi.au.dk/designCPN.

[14] M. Diaz. Modelling and Analysis of Communication and Co-operation Pro-
tocols Using Petri Net Based Models. In Protocol Specification, Testing and
Verification, pages 465–510. North-Holland, 1982.

[15] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast proto-
cols. In Proceedings of LICS’99, pages 352–359. IEEE CS Press, 1999.

[16] FAST homepage. http://www.lsv.ens-cachan.fr/fast/.

54

[17] A. Finkel and J. Leroux. How to compose Presburger-accelerations: Appli-
cations to broadcast protocols. In Proceedings of FST&TCS’2002, volume
2556 of LNCS, pages 145–156. Springer, 2002.

[18] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, volume 1. Springer, second edition, 1997.

[19] J. Leroux. The affine hull of a binary automaton is computable in polynomial
time. In Proceedings of INFINITY’2003, Electronic Notes in Theor. Comp.
Sci. Elsevier Science, 2003.

[20] M. A. Marsan, A. Bianco, L. Ciminiera, R. Sisto, and A. Valenzano. A LO-
TOS Extension for the Performance Analysis of Distributed Systems. IEEE
Transactions on Networking, 2(2):151–165, 1994.

[21] W. Reisig. Elements of Distributed Algorithms: Modelling and Analysis with
Petri Nets. Springer-Verlag, 1998.

[22] W. Stallings. Data and Computer Communications. Prentice Hall, 6th edi-
tion, 2000.

[23] L.J. Steggles and P. Kosiuczenko. A Timed Rewriting Logic Semantics for
SDL: a case study of the Alternating Bit Protocol. Electronic Notes in The-
oretical Computer Science, 15, 1998.

[24] I. Suzuki. Formal Analysis of the Alternating Bit Protocol by Temporal
Petri Nets. IEEE Transactions on Software Engineering, 16(11):1273–1281,
1990.

[25] A. Tanenbaum. Computer Networks. Prentice Hall, 4th edition, 2003.

[26] TREX homepage. http://www.liafa.jussieu.fr/˜sighirea/
trex.

[27] K. J. Turner (Ed.). Using Formal Description Techniques: An Introduction
to Estelle, Lotos and SDL. Wiley Series in Communication and Distributed
Systems. John Wiley & Sons, 1993.

[28] A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic
Models, volume 1491 of LNCS, pages 429–528. Springer-Verlag, 1998.

[29] A. Valmari and I. Kokkarinen. Unbounded Verification Results by Finite-
State Compositional Techniques: 10any States and Beyond. In Proceedings
of ACSD’98, pages 75–85. IEEE CS Press, March 1998.

[30] P. Wolper and B. Boigelot. On the construction of automata from linear arith-
metic constraints. In Proceedings of TACAS’2000, volume 1785 of LNCS,
pages 1–19. Springer, 2000.

55

Validating UML and OCL models
in SOCLe by simulation and model-checking ∗

Damien Azambre, Mathieu Bergeron†, and John Mullins‡

Dept. of Computer Engineering, École Polytechnique de Montréal§

Abstract

We present a toolset that offers dynamic veri cation of OCL constraints on UML
models. Veri cation is a necessary step when designing critical object-oriented
software. Our toolset translates a UML model into an Abstract State Machine
and translates each OCL constraint into a set of µ-formulas. Veri cation is done
through model-checking every µ-formula against the ASM’s behavior.

1. Introduction

In recent years, the Uni ed Modeling Language (UML) has been accepted as
a de facto standard for object-oriented software design. The UML notation sup-
ports designers by allowing them to express structural and behavioral aspects of
their design, mainly through class diagrams and statechart diagrams respectively.
Based on mathematical logic, the Object Constraint Language (OCL) is a nota-
tion embedded in UML allowing constraint speci cations such as well-formedness
conditions (e.g. in the de nition of UML itself) and contracts between parts of the
modeled system (e.g. class invariants or method pre- and post-conditions).

Also, used alongside formal method based tools, UML/OCL offers a unique
opportunity for developing complex or critical software systems with high quality
standards in an industrial context. Such systems require a high level guarantee that
they cope with their speci cations from end to end of their development cycle.

SOCLe is a model-checker that uses UML diagrams as a modeling language
and extended OCL constraints as a speci cation language. The latter are encoded

∗The SOCLe project is sponsored by Defence Research and Development Canada (DRDC) (Gov-
ernment of Canada).

†Supported by an NSERC scholarship for graduate studies (Government of Canada).
‡Corresponding author. Supported by an NSERC individual research grant (Government of

Canada).
§Mailing address: P.O. Box 6079, Stn. Centre-ville, Montreal (Quebec), Canada,

H3C 3A7. E-mail addresses: {damien.azambre, mathieu-2.bergeron,
john.mullins}@polymtl.ca

57

in propositional µ-calculus whose atomic formulas are OCL expressions, hence
enriching contracts with expressive temporal constructs in order to allow software
engineers to specify constraints on the temporal evolution of a system structure.

This work is part of a broader project, the SOCLe 1 project, whose aim is
building a basis for UML/OCL based methodology and a validation environment
for complex systems. The work presented in this paper only addresses the tool-
related issues such as: tool architecture, illustration of the basic principles of the
semantics de nition, and examples presenting the way the tool applies to speci c
models. The semantics itself is presented only to the extent necessary for under-
standing the paper. For more details on the actual semantics the reader is referred
to [2].

The framework includes: An Abstract State Machine (ASM) based semantics
of a signi cant fragment of UML including class diagrams, objects diagrams and
statechart and supporting the main object-oriented software features such as con-
currency, inheritance and object creation; A compiler mapping UML diagrams to
an ASM implementing this semantics; A semantics of OCL expressions integrated
within the UML semantics for guards, method calls and assignments; An ASM
external function implementing this semantics as a recursive function; An ASM
simulator computing the behavior of a UML model. We have chosen the formal-
ism of ASM for its expressiveness and its high level of abstraction. A propositional
µ-calculus to enrich OCL constraints is integrated along the lines proposed in [4].
It would be unrealistic to expect most developers to acquire an understanding of
temporal logic with x points. Also following a Brad eld et al. suggestion [4],
we design templates with their own user-friendly syntax to express liveness con-
straints and we show how the existing OCL contract types (invariants and pre- and
post-conditions) may be regarded as such templates.

This paper is structured as follows. Section 2 discusses similar tools found in
the literature. Section 3 presents the architecture of our toolset. Sections 4, 5, 6
and 7 sketch the multiple semantics integrated in the framework using a running
example. Section 8 completes the example and illustrates the need for extended
OCL constraints. Finally, Section 9 presents ongoing improvements to the toolset
and conclusions. Note that we assume some familiarity with model-checking,
UML and OCL and the ASM formalism. We refer the reader to [15] for an intro-
duction to UML. Details about OCL expressions can be found in [14]. We refer to
Gurevich [10] for further details on Abstract State Machines.

2. Related work

Several software architecture integrating model checking tools within UML have
been proposed. However, most of them are based on a semantics of UML de ned
in terms of the modeling language of some model-checking tool (e.g. [13, 12, 16,
3, 17]).

1Secure OCL extensions.

58

Lilius and Paltor [13] propose vUML, a tool that translates UML statechart dia-
grams into Promela, the modeling language of the SPIN model-checker. Speci -
cations are expressed through LTL (Linear Temporal Logic) formulas transmitted
to SPIN. Similarly, Latella et al. [12] and Schäfer et al. [17] give a correct
translation from a subset of UML statechart diagrams into Promela. The toolset
proposed by Shen et al. [16] maps the static part of the UML model including
OCL expressions on object diagram onto ASM and offers static veri cation in-
cluding: Syntactic correctness according to well-formedness constraints of the
UML metamodel; Coherence of the object diagram with respect to the class dia-
gram. However, OCL expressions are not integrated in the UML semantics and are
not evaluated as the model evolves. The statecharts, modeling the behavior, are
mapped onto SMV. In [3], Bozga et al. propose a model-checking of operational
UML models based on a mapping of UML models into a framework of communi-
cating extended automata (in the IF language) for which there exists veri cation
tools.

For specifying properties, some approaches opt for the property speci cation
language of the model checker itself, e.g. [13, 12, 16]. Other approaches [17] use
speci c diagrams e.g. collaboration diagrams, which specify intended sequences
of messages between objects, but are not expressive enough to specify more com-
plex properties. In [3], Bozga et al. propose an extension of UML (observers
classes) expressive enough to express a large class of linear temporal logic. In
contrast to these works, our approach is the only one which focusses on OCL and
which allows to verify automatically temporal contracts described in extended
OCL about the behavior of the system. As such, SOCLe is the rst OCL constraints
model-checker.

There are already works to extend OCL with temporal logic in various direc-
tions. Temporal semantics for OCL constraints are suggested by Distefano et al.
using CTL (Computational Tree Logic) [7] and a subset of OCL. Inheritance is
not considered in this approah. In [8], Flake and Mueller present an OCL exten-
sion, also based on CTL. This extension concerns system behavior modeled with
statecharts but the evolution of attributes is not considered there. Brad eld et al.
propose to extend OCL with temporal constructs based on the observational µ-
calculus [4]. The idea is to replace atomic properties of these temporal logics by
OCL expressions. These expressions are evaluated dynamically as the formula is
veri ed. The authors suggest using templates with a user-friendly syntax which
then have to be translated to observational µ-calculus. However, this framework
has never been integrated to a model-checking tool within UML. In [18], an ex-
tension of OCL with elements of a bounded linear temporal logic is proposed by
Ziemann and Gogolla. The semantics of this extension is given with respect to
sequences of states representing the UML model evolution. However, the authors
do not discuss how to compute these sequences from the model’s behavioral dia-
grams, contrasting with the approach presented here.

Finally, some tools support OCL expressions and constraints, but with different
objectives in mind. The KeY tool [1] translates OCL constraints into Dynamic

59

Logic predicates (an extension of the Hoare logic). Constraints are to be proved
with the help of a theorem-prover on Java CARD programs. The USE tool [9]
offers the evaluation of OCL expression and constraints on manually constructed
object models and sequence diagrams. The OCLE tool [5] offers static validation
of UML models through metamodel-level OCL constraints and code generation of
model-level OCL constraints.

3. Toolset architecture

The SOCLe toolset is divided in three main modules: i) an XmiToAsm com-
piler, ii) a specialized ASM interpreter and iii) a µ-formula model-checker (Fig. 1).
The toolset works with UML models expressed in the XML Metadata Interchange
format, which is supported by most UML CASE tools.

UML Editing Tool
UML Compiler

ASM InterpreterModel-Checker

UML Model (.xmi)

OCL Constraints (.xmi)

Executable UML Model (.asm)

Execution GraphModel-Checking Diagnosis

Designer

ASM Rule (.asm)

Figure 1. Toolset architecture

The veri cation process has three phases: translating the UML model into an
ASM speci cation, executing the model and verifying OCL constraints against the
resulting execution graph. The rst two phases rely on the state-based Abstract
State Machine formalism. Roughly, an ASM state is a collection of sorts (data
domains) and a set of enumerated functions over these sorts. The ASM evolution
is speci ed by a transition rule built from predicates, control sub-rules and up-
date sub-rules. Predicates are evaluated according to the current interpretation of
the ASM state enumerated functions. Control rules, supporting non-determinism,
choose a set of update rules to be applied. Update rules modify the interpretation
of the current ASM state functions, hence yielding successor states.

Module i) translates the UML model to an ASM according to a UML model static
semantics (Section 4). Basic model elements, such as class or method names,
are mapped to sorts. More complex elements, such as method declarations and
statechart transitions, are translated into enumerated functions. The object dia-
gram is mapped to a speci c subset of these functions and represents the initial
con guration of the UML model (see Subsection 4.3).

60

Module ii) executes the ASM speci cation. From a con guration, successor
con gurations are computed by evaluating an ASM rule capturing the dynamic
semantics of UML models (see Section 5). Edges are labeled with statechart tran-
sitions red as the UML model evolved.

Module iii) veri es the designer’s OCL constraints by translating them into
a set of µ-formulas and applying a tableau based µ-calculus veri cation algo-
rithm [6]. The result is transmitted back to the interface through a set of diagnostic
 les. Section 7 details the model-checking procedure.

The toolset also includes a graphical user interface embedded into ArgoUML,
a customizable open-source UML CASE tool developed by Tigris2. It allows the
designer to visualize veri cation results and inspect the model’s execution graph.

4. Static semantics of UML

The UML models supported by the tool must contain exactly one class diagram,
one statechart diagram for each class and one object diagram. In this section we
illustrate the main features of the static semantics of these three diagrams through
a running example, the modeling of a simple object-oriented component acting as
a small memory cell.

4.1. Class diagram

Figure 2 presents the supported features of the class diagram. Class Cell mod-
els a simple memory cell with assignment, retrieval and incrementation. Class
BackupCell models an extended memory cell with a restore functionality. Notice
how class Client is tagged with the thread stereotype. As a result, a calling stack
will be associated with all instances of this class.

Figure 2. Example of a class diagram
2http://argouml.tigris.org/

61

The rst step to create the ASM speci cation is to map class, method and eld
names to the following ASM sorts (note that an association is mapped to a eld of
the owner class):

sort ClassName = {Cell ,BackupCell ,Client}
sort FieldName = {content , backup, bc}
sort MethName = {set , get , inc, restore}

(1)

Remaining information, like the direct inheritance relation �, is then extracted
and additional functions are elaborated. Here is some examples, which are par-
tially enumerated for space reasons using the . . . symbol:

fun � = BackupCell �→ Cell ,
Cell �→ Cell ,
. . .

fun �o = Cell/set �→ Cell/set ,
BackupCell/set �→ Cell/set ,
. . .

fun lookup = BackupCell , inc �→ Cell ,
BackupCell , set �→ BackupCell ,
. . .

(2)

The � relation is the inheritance relation. For example, class BackupCell
is a subclass of class Cell . The �o indicates if a method overrides (rede nes)
one of its superclass methods. For example, method set of class BackupCell
(BackupCell/set) overrides method set of class Cell (BackupCell/set). These
functions are necessary to de ne the important lookup function, which indicates
whether re ned or inherited behavior will be executed following a method call.
For instance, if method inc is called on an instance of BackupCell , the be-
havior of class Cell will be executed (since that method is not de ned in class
BackupCell but inherited from its superclass).

4.2. Statechart diagrams

Similarly, statechart diagrams are mapped to ASM sorts and functions. Fig. 3
shows supported features for this diagram. Notice how functionalities of the mem-
ory cell are modeled by sub-states specifying the behavior of a method. For ex-
ample, method inc is modeled in three steps: Transition ct3 retrieves the current
value of eld content by calling method get ; Transition ct4 increments that cur-
rent value by calling method set ; Finally, transition ct5 waits for method set to
return and terminates method inc.

The control o w of a statechart is speci ed by states and transitions. The basic
condition for a transition to be red is that its source state is active. The basic
response to ring a transition is the activation of its target state. In the case of a

62

Figure 3. Example of a statechart diagram

composite state, the initial states it encompasses are also activated. This control
 o w of statecharts is inspired by Harel’s statecharts [11] and is statically elabo-
rated and stored in ASM functions. For example, the compiler determines which
states are activated and deactivated when ring a transition:

fun act = ct1 �→ {},
ct3 �→ {cs1},
. . .

fun deact = ct1 �→ {CellSet},
ct3 �→ {ci3},
. . .

(3)

In addition, transitions are labeled with a trigger, a guard and a list of actions.
Triggers refer to signals (atomic events), method calls or method returns. For ex-
ample, the actions of a transition labeled with trigger inc will model that method’s
instructions. Guards are boolean OCL expressions. OCL expressions are presented
in Section 6. The toolset supports the following actions: method call/return, eld
assignment, object creation/deletion, and signal emission. Actions are speci ed
in part with OCL expressions, which enables the designer to model high-level be-
havior by using non-determinism. For instance, in a method call action, an OCL
expression speci es a collection of possible receiver objects from which the actual
receiver is chosen non-deterministically.

Finally, statechart compilation includes a fair amount of static veri cation: i)
statecharts are inspected to insure they are well-formed, ii) OCL expressions are
type-checked to insure that guards are boolean expressions, that parameters of
method calls are well-typed, etc. iii) triggers and actions are analyzed to insure

63

consistency with the class diagram methods and elds declarations.

4.3. Object diagram

The object diagram is mapped to ASM sorts and functions that hold the UML
model con guration. Figure 4 shows such a diagram with all features covered
by the toolset. It models a simple con guration in which a client accesses two
memory cells.

Figure 4. Example of an object diagram

ASM functions as , class , heap and st respectively hold active states, objects
type and eld environment, and calling stacks (one for each thread; in this case
only object c is a thread):

fun as = bc1 �→ {ci1, ci2, . . .},
c �→ {cli1},
. . .

fun class = bc1 �→ BackupCell ,
c �→ Client ,
. . .

fun heap = bc1, content �→ 0,
bc1, backup �→ 0,
. . .

fun st = c �→ 〈(run , ∅,⊥, c)〉

(4)

Notice how the calling stack of object c contains method run in the initial
con guration to insure that the thread is active.

64

5. Dynamic semantics of UML

The ASM transition rule capturing UML models dynamic semantics is roughly
structured as follows: i) choose the current thread, ii) select the current object
and current statechart, iii) choose one of the enabled transition and iv) re the
transition.

Subrules i) and iii) use a non-deterministic choice to model both thread-level
and statechart-level concurrency. The former models a simple thread scheduler.
The current object õ is selected from an active thread’s calling stack, i.e. õ is
currently executing a method. The latter computes transition interleaving of a
statechart’s concurrent regions.

In sub-rule ii), the current statechart is either the statechart of the current ob-
ject’s class or the statechart of one of its superclass if inherited behavior is to be
executed (this is decided according to the lookup function of Eq. 2). This mecha-
nism captures behavioral inheritance, an important feature of object-orientation.

Sub-rule iii) dynamically determines whether a transition is enabled. The basic
condition that the source state is active is checked against the current value of
function as (Eq. 4). Moreover, a transition is enabled if a) its trigger corresponds
to an active event, b) its guard is satis ed and c) all of its actions can be red.
For example, an assignment action will not be red if it violates the multiplicity
requirement (see Fig. 2).

In sub-rule iv), the selected transition t̃ is red. The basic effect (i.e. deactivat-
ing and activating states) is captured by updating function as using the statically
elaborated functions act and deact (Eq. 3):

as(õ) := (as(õ) \ deact(t̃)) ∪ act(t̃) (5)

Then, the transition’s action list is iterated and every action is red. Object
are created by using the sort extensions mechanism of the ASM formalism and by
updating function heap (Eq. 4) accordingly. For example, if an object creation
action a of the form “new f ” is red by the current object õ, the following ASM
sub-rule updates the UML model con guration:

extend Objects with x do
heap(õ, f) := x :: heap(õ, f) (6)

The assignment action uses the OCL expression evaluation function and updates
function heap (Eq. 4) accordingly. For example, if an assignment action a of the
form “content := self .content + i” is red by the current object õ, the
following ASM sub-rule updates the UML model con guration:

heap(õ, content) := [[a.e]]ρ (7)

65

It uses function [[]]ρ to evaluate a.e, the OCL expression of the assignment
action (in this case “self .content + i”) and updates function heap (Eq. 4).
Function [[]]ρ evaluates an OCL expression by recursively evaluating its sub-
expressions, with respect to the current UML con guration and a variable assign-
ment ρ. The environment always maps the variable self to the current object õ.
In addition here, it maps variable i to the value of the formal parameter of method
inc as indicated on the calling stack. As the function is external, it uses ASM func-
tions to access the current UML model con guration but is not enumerated in the
ASM state. It implements an OCL expression semantics presented in Section 6.

6. OCL expressions

The syntax of an OCL expression e is given by Figure 5. It includes a signi cant
fragment of OCL expressions de ned in [14].

e ::= v | x | � e | e � e | e . f |
e1 → iterate {x1 ; x2 = e2 | e3 }

Figure 5. OCL expressions syntax

Symbols v and x denote values and variables respectively. Values include
booleans, integers, object names and lists. As a simpli cation, booleans are
not considered as three-valued and other OCL collections, such as sets and bags
(multi-sets), are dropped. Construct � e (resp. e � e) stands for the applica-
tion of a any usual unary (resp. binary) operator on booleans, integers and lists.
Construct e . f returns the value that eld f takes in the object denoted by e.
Formally, the semantics of these constructs is de ned as follows:

[[v]]ρ = v
[[x]]ρ = ρ(x)
[[� e1]]ρ = � [[e1]]ρ
[[e1 � e2]]ρ = [[e1]]ρ � [[e2]]ρ
[[e1 . f]]ρ = heap([[e1]]ρ, f)

(8)

The application ρ(x) retrieves the value of variable x in the variable environ-
ment. The application heap([[e1]]ρ, f) fetches the value of eld f according to the
current interpretation of the ASM function heap (Eq. 4).

The iterate construct is the OCL main collection operator. It lets variable x1
iterate through values of the collection denoted by e1, stores successive values of
e3 in variable x2 (which rst evaluates to e2) and returns the nal value of x2.
Formally, the semantics of this construct is de ned as follows:

66

[[e1→iterate{x1;x2 = e2 | e3}]]ρ =

let v1 = [[e1]]ρ in
let v2 = [[e2]]ρ in
case v1 of

〈〉 : v2

〈l1〉 : [[e3]]ρ[x1 �→l1,x2 �→v2]

〈l1, l2, . . .〉 : let v3 = [[e3]]ρ[x1 �→l1,x2 �→v2] in
[[〈l2, . . .〉→iterate{x1;x2 = v3 | e3}]]ρ

(9)

In the rst case, the list to iterate is empty and the construct takes the value
of expression e2. In the second case, the list contains only one value and the
construct takes the value of expression e3, which may refer to variable x1 or x2.
Consequently, the value of these variables is updated in the variable environment.
In the third case, the rst value of the list (l1) is removed and the evaluation process
is iterated on the remaining list. The iterate construct is quite expressive and is
used to encode additional collection operators, which are supported by the SOCLe
toolset. Figure 6 illustrates some of them.

e1→size ≡ e1→iterate(v1; v2 = 0 | v2 + 1)
e1→forall{v1 | e2} ≡ e1→iterate(v1; v2 = true | v2 ∧ e2)
e1→exists{v1 | e2} ≡ e1→iterate(v1; v2 = false | v2 ∨ e2)

Figure 6. Collection operators

7. OCL constraints

We give a propositional µ-calculus semantics to OCL constraints. Expressions
are evaluated during execution graph computation. Atomic properties of a µ-
formula are replaced with predicates over a UML con guration. These predicates
return information about evaluated OCL expressions and method instances. We
illustrate the approach using the OCL constraint of Fig. 7.

context: BackupCell :: inc(i : int)
pre: true (e1)
post: self .backup = (self .content)@pre (e2)

Figure 7. OCL constraint c1

67

By virtue of its explicit context, the constraint applies to every instance of
method inc called on an instance of class BackupCell . If the pre-condition (ex-
pression e1) is satis ed, the method must return in a con guration in which the
post-condition (expression e2) holds. The special OCL operator @pre returns the
value that an expression had prior to the method call.

In the UML model con guration, speci c ASM functions support the veri ca-
tion of a constraint. First of all, OCL expressions are named (here e1 and e2).
Then, function meth is used to dynamically name method instances (an external
function is used to avoid name clashes):

fun meth = (bc1, inc) �→ {inc1, inc2, . . .},
. . .

(10)

Then, function exp (Eq. 12) holds the evaluation or partial evaluation of constraint-
related OCL expressions. The need for partial evaluation arises from the @pre
operator. Similarly to OCL expression evaluation, partial evaluation is done by an
external and recursive function, namely {{ }}ρ. Before a method call, function {{ }}ρ
is used and the @pre expression is evaluated, but the remainder of the expression
is left unevaluated:

fun exp = (inc1, e1) �→ true,
(inc1, e2) �→ self .backup = 3,
. . .

(11)

After the method call, the remainder of the expression is evaluated:

fun exp = (inc1, e1) �→ true,
(inc1, e2) �→ false ,
. . .

(12)

Finally, functions now and post mark the initial con guration of a method
instance and the several possible con gurations following its return.

fun now = inc1 �→ true,
. . .

fun post = inc1 �→ false,
. . .

(13)

During the ASM execution, an additional sub-rule updates the aforementioned
functions. Figure 8 summarizes information added to UML con gurations in order
to verify OCL constraints.

The next step is to derive a µ-formula from the constraint. Figure 9 gives the
syntax of any µ-formula φ.

68

now (inc1) = false

exp(inc1, e1) = [[e1]]

now (inc1) = false

now (inc1) = false

now (inc1) = true

post(inc1) = true

post(inc1) = false

post (inc1) = false

post (inc1) = false

exp(inc1, e2) = {{ e2 }}

exp(inc1, e1) = [[e1]]
exp(inc1, e2) = [[exp(inc1, e2)]]

inc is called:

inc returns:

Figure 8. Constraint speci c con guration

φ ::= Φ | X | ¬φ | φ ∨ φ | 〈〉φ | []φ |
φ ∧ φ | φ ⇒ φ | µX.φ | νX. φ

Figure 9. µ-calculus syntax

The symbol Φ denotes a predicate over a UML con guration, such as “exp(inc1, e2)”.
The symbol X is a µ-variable. The construct 〈〉φ means: φ holds in some succes-
sor con guration. The construct []φ means: φ holds in every successor con gura-
tion. Intuitively, µX.φ is considered as nitely iterating φ and νX.φ as in nitely
iterating φ. We refer the reader to [6] for a formal semantics of µ-formulas. In
order to give a simpli ed account of the implemented µ-formula, we assume a
backward existential modality noted

←−〈〉φ, which means φ holds in some prede-
cessor con guration.

Continuing our example, the formula φc1 below (Eq. 14) is derived from con-
straint c1 (Fig. 7).

φc1 ≡ νX. []X ∧ (φ1 ⇒ µY. []Y ∨ φ2) (14)

The µ-formula states that the following is always true: if a method is called with
a valid pre-condition (φ1), it will eventually return and satisfy its post-condition
(φ2). Equation 15 below details sub-formulas φ1 and φ2. Notice how the free

69

variable m is used as a place-holder for a method instance name.

φ1 ≡ now (m) ∧←−〈〉exp(m, e1)
φ2 ≡ po s t (m) ∧ exp(m, e2)

(15)

Predicate “now (m)” is true in the initial con guration of method instance m.
The pre-condition is satis ed if there exists at least one predecessor of that con-
 guration in which the predicate “exp(m, e1)” is true, i.e. in which expression e1
holds. Formula φ2 is similar and relates to the post-condition.

The last step to verify constraint c1 is to generate a µ-formula for each instance
of method inc. In each µ-formula, the free variable m is replaced with the ap-
propriate method instance name. Formally, a UML model with execution graph Θ
satis es constraint c1 if:

∀ o . class(o) � BackupCell :
∀ m′ . m′ ∈ meth(o, inc) :

Θ |= Φc1[m �→ m′]
(16)

8. Extending OCL contracts: An example

Recall the class diagram of Fig. 2. As mentioned, class BackupCell models an
extended memory cell by adding a restore functionality. To do so, the behavior of
method set is rede ned in the class statechart (Fig. 10).

BackupCell

restore

set

%set() / %restore()

%set() / %set()%get(x) / backup = x ; super.set(i)set(i) / get()

restore() / super.set(backup)

Figure 10. BackupCell statechart

First, the value of eld content is copied to eld backup, then the eld content
is set by calling method set of the superclass. When method inc is called on an
instance of class BackupCell , Cell ’s statechart executes the inherited behavior.
According to the inheritance semantics, the overridden method set is called to
update the value of eld content , hence correctly executing the backup copy.

70

Even though method inc is not rede ned in class BackupCell , it exhibits a re ned
behavior.

In a rst attempt to validate the re ned method inc’s behavior, the designer may
use constraint c1 of Section 7 (Fig. 7). It states that upon return of any instance
of method inc (called on an instance of class BackupCell), eld backup must
contain the value that eld content had prior to the method call.

If the constraint is veri ed on a model that uses Fig. 4 as its initial con gura-
tion, the SOCLe toolset diagnoses that the constraint is satis ed. The designer con-
cludes that inheritance was used correctly. Things get more complicated, however,
if the initial con guration allows two instances of class Client to concurrently call
methods of the same memory cell. When such an initial con guration is used, the
SOCLe toolset reports a faulty execution sequence (Fig. 11).

Figure 11. The SOCLe toolset diagnosis

The toolset displays the entire execution graph of the model and highlights
the faulty execution sequence. Inspection of the faulty sequence reveals that, as
expected, the constraint is violated when concurrent calls are made to method inc
(Fig. 12).

The rst instance of method inc is called and res its rst transition. The sec-
ond instance of method inc is called and returns before the rst instance can exe-
cute any other transition. After the second instance has returned, the rst resumes
and nishes its job. The constraint is violated (for the rst instance of method
inc) as eld backup does not hold the value eld content had prior to the call.
Notice, however, that eld backup correctly holds the last value of eld co n t e n t .
The designer concludes that a pure post-condition is not suitable to express the

71

content :

backup :

1

0

4

1

6

4

copy incr . copy incr .

1

1

4

4
cl2 : inc(3)

cl1 : inc(2)

= �=

Figure 12. Counter-example for constraint c1

desired behavior.
Fortunately, our approach allows her to use more intricate constraints, which

are supported by the expressive power of the µ-calculus. The designer reformu-
lates her constraint (Fig. 13).

context: BackupCell :: inc(i : int)
post: self .content = (self .content)@post
back to: self .content = (self .backup)@post

Figure 13. OCL constraint c2

It states that from the post-condition, the expression “content = content@post”
must hold until (backwards in time) the expression “content = backup@post”
eventually holds. Although more intricate, it correctly captures the idea that
 eld backup must hold the last value of eld content . The designer uses the
post-condition of method inc as an indicator that the value of eld content has
changed. A similar constraint should also be formulated for method set . Perhaps
not surprisingly, that constraint is also violated when concurrent calls are made to
the method inc (Fig. 14).

content :

backup :

1

0

1

1

6

1

copy copy incr . incr .

1

1

4

1
cl2 : inc(3)

cl1 : inc(2)

= �=

Figure 14. Counter-example for constraint c2

This time, the rst instance of method inc executes the copy before the second
instance executes in its entirety. When the rst instance resumes, it executes the
incrementation. Again, the constraint is violated for the rst instance.

Finally, the designer concludes that copy and incrementation actions must not
be interrupted. This is modeled in UML by using signals preventing critical sec-
tions from being interrupted. Once corrected, the model satis es the second OCL

72

constraint even when concurrent calls to method inc occur.
Some remarks follows from this simple example. Even with a simple model,

behavioral inheritance is dif cult to use and needs careful modeling and veri ca-
tion. The SOCLe toolset has helped the designer to clearly express the intended be-
havior of her model. Furthermore, analysis of faulty execution sequences helped
pinpoint the source of error due to concurrency interleaving. We believe that early
formulation of the concurrency scheme for software can greatly aid in exposing
these errors that are dif cult to detect using conventional testing techniques.

9. Conclusion and future works

In this paper, we have presented a toolset that enforces static veri cations on
a UML model and mechanically veri es OCL constraints. Our toolset relies on:
An ASM based semantics of UML models; A recursive OCL expression evaluation
function de ned with respect to UML con gurations; A propositional µ-calculus
built from boolean OCL expressions that acts as an OCL constraint language; And
a tableau based veri cation algorithm of extended OCL constraints. We have illus-
trated how the ASM semantics captures complex features of UML like concurrency,
inheritance and object creation, and developed an ASM interpreter specialized for
this semantics. We have also de ned and illustrated the formal semantics of a frag-
ment of the OCL expressions and extended OCL constraints as implemented in the
toolset. We have nally motivated, through an example, the need for specifying
and verifying extended contracts and how the toolset supports such veri cation.

Three major improvements of the toolset are currently underway: i) model re-
duction and ii) on-the- y model-checking of OCL constraints and iii) symbolic
model-checking. Improvement i) consists of translating the UML model into an
intermediate control o w language before using the ASM formalism. The inter-
mediary representation facilitates the implementation of various static analysis
techniques such as slicing and code generation. Improvement ii) utilizes a lo-
cal model-checking algorithm to drive the computation of a model’s execution
graph. Memory requirements are greatly reduced as some constraints can be falsi-
 ed/v eri ed even if the execution graph is only partially computed. Improvement
iii) consists to use compact state sets representation combined with veri cation
techniques allowing to handle directly these sets from their symbolic representa-
tion. This should result in a signi cant breakthrough because it will allow systems
with much larger state spaces to be veri ed.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Mar-
tin Giese, Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas
Roth, Steffen Schlager, and Peter H. Schmitt. The KeY tool. Technical Re-
port 2003-05, Department of Computing Science, Chalmers University of
Technology and Göteborg University, March 2003.

73

[2] Mathieu Bergeron and John Mullins. Model-checking UML De-
signs Using a Temporal Extension of the Object Constraint Lan-
guage. Technical Report 1/04, École Polytechnique de Montréal, 2004.
http://www.polymtl.ca/crac/socle/publications.html.

[3] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis.
Tools and applications II: The if toolset. In Flavio Corradinni and Marco
Bernanrdo, editors, Proceedings of SFM’04, volume 3185 of LNCS, Berti-
noro, Italy, 2004. Springer.

[4] Julian Brad eld, Juliana Küster Filipe, and Perdita Stevens. Enriching
OCL using observational mu-calculus. Lecture Notes in Computer Science,
2306:203–??, 2002.

[5] Dan Chiorean, Mihai Pasca, Adrian Carcu, Cristian Botiza, and Sorin
Moldovan. Ensuring UML Models Consistency Using The OCL Environ-
ment. In UML 2003 - OCL Workshop, October 2003.

[6] R. Cleaveland. Tableaux-Based Model Checking in the Propositional µ-
calculus. Acta Informatica, 27:725–747, 1990.

[7] Dino Distefano, Joost-Pieter Katoen, and Rensink Rensink. On a temporal
logic for object-based systems. In Scott F. Smith and Carolyn L. Talcott,
editors, Formal Methods for Open Object-Based Distributed Systems IV -
Proc. FMOODS’2000, September, 2000, Stanford, California, USA. Kluwer
Academic Publishers, 2000.

[8] Stephan Flake and Wolfgang Mueller. An OCL extension for real-time con-
straints. In Tony Clark and Jos Warmer, editors, Object Modeling with the
OCL: The Rationale behind the Object Constraint Language, pages 150–
171. Springer, 2002.

[9] Martin Gogolla, Mark Richters, and Jörn Bohling. Tool Support for Vali-
dating UML and OCL Models Through Automatic Snapshot Generation. In
SAICSIT ’03: Proceedings of the 2003 annual research conference of the
South African institute of computer scientists and information technologists
on Enablement through technology, pages 248–257. South African Institute
for Computer Scientists and Information Technologists, 2003.

[10] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor,
Speci cation and Validation Methods, pages 9–36. Oxford University Press,
1995.

[11] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts.
ACM Transactions on Software Engineering and Methodology, 5(4):293–
333, 1996.

74

[12] Diego Latella, Istvan Majzik, and Mieke Massink. Automatic veri cation of
a behavioural subset of UML statechart diagrams using the SPIN model-
checker. The International Journal of Formal Methods, 11(6):637–664,
1999.

[13] Johan Lilius and Ivan Porres Paltor. vUML: a tool for verifying UML mod-
els. In IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pages 255–258. IEEE Computer Society, 1999.

[14] OMG. Response to the UML 2.0 OCL RfP (ad/2000-09-03). Technical
Report ad/2002-05-09, 2002.

[15] J. Rumbaugh, I. Jacobson, and G. Booch. Uni ed Modeling Language Ref-
erence Manual. Addison-Wesley, 1998.

[16] Wuwei Shen, Kevin Compton, and James K. Huggins. A toolset for support-
ing UML static and dynamic model checking. In 26th IEEE International
Computer Software and Applications Conference (COMPSAC), pages 147–
152, Oxford, England, August 2002. IEEE Computer Society.

[17] Stephan Merz Timm Schäfer, Alexander Knapp. Model Checking UML
State Machines and Collaborations. In CAV 2001 Workshop on Software
Model CheckingAlgebraic Methodology and Software Technology, 8th Inter-
national Conference, AMAST 2000, Paris, France, volume 55 (3) of ENTCS,
2001.

[18] Paul Ziemann and Martin Gogolla. An OCL extension for formulating tem-
poral constraints. Technical Report 1/03, Universität Bremen, 2003.

75

77

Deriving Software Product Line’s
Architectural Requirements from Use Cases:

an Experimental Approach

Alexandre Bragança1 and Ricardo J. Machado2
1 Dep. Eng. Informática, ISEP, IPP, Porto, Portugal,

alex@dei.isep.ipp.pt
2 Dep. Sistemas de Informação, Universidade do Minho,

Guimarães, Portugal,
rmac@dsi.uminho.pt

Abstract

One of the most important artifacts of a product line is the product
line architecture. In this paper we present an approach for deriving
a product line’s architecture from the requirements of the product
line. This approach is based on a transformational technique that
has been developed and applied to obtain system architectures
from requirements specified as UML use cases. In this paper we
evaluate if such a technique can be applied to product lines and, if
so, what adaptations are required. For presentation purposes we
use the public available IESE report of the GoPhone product line
that uses the UML modeling language.

1. Introduction

One of the most important artifacts of a product line is the product line
architecture. A product line architecture is the basis for the derivation of the
architectures of the members of the product line and also of the development of
reusable product line components. As such, the product line architecture must
encompass all the actual members of the product line as well as future
members. This makes it a crucial artifact of the product line engineering
process.

As for single systems development, the reference architecture for a product line
is basically obtained from requirements. UML use cases are a widely adopted
technique for functional requirements modeling. They are used with this
perspective in single system development and also in product line approaches
[1]. In a product line approach requirements result from domain analysis. The

78

domain analysis phase of product line engineering may involve several specific
activities, besides functional requirements modeling, such as product line
scoping and product portfolio definition.

The scoping activity aims at defining the products that the product line may
include. In order to do so it is necessary to identify what is the domain of the
product line and what are external and sub-domains. The result is usually a
diagram representing the relations between domains.

The product portfolio aims at identifying the exact members of the product line,
its characteristics and the timing for its development. To differentiate between
products of the product line it is necessary to identify its features. Some
features are common to several members of the product line while others are
not. Feature diagrams are usually adopted for this purpose [2].

The two major techniques for dealing with requirements in a product line
approach are use cases and feature models. They can be used together: the use
case model is user oriented while the feature model is reuser oriented [3]. In
this way, use cases focuses on requirements elicitation (what functionality
should by provided by the product line), while features address better the
functionality that can be composed for the members of the domain.

Regarding the reference architecture of a product line, use case models are the
driving force that guides its development. Nevertheless, there are not
documented processes in the product line area to help in the transition from use
case requirements to high-level reference architectures. For instance, RSEB[4]
(Reuse-driven Software Engineering Business) proposes that each use case
gives origin to three kinds of objects, following the boundary-control-data
pattern. But this is still just the starting point of the process. Other methods,
like PuLSE [5], simply provide a framework for guiding the design and
evaluation of the product line architecture.

In this context, we find that the derivation of a high-level architecture from the
requirements of a product line is still a topic of the product line engineering
process that needs further research. In this paper we address this problem. Our
approach is based on a proven technique that has been used for the derivation
of single system architectures from requirements modeled as UML use cases
[6]. The 4SRS (4-Step Rule Set) technique applies transformational steps in
order to derive a high-level architecture (system-level object model) from the
requirements of a system. In order to use this technique in the product line
context, adaptations are needed. For instance, the technique has to address the
variability concept that is essential to product lines. In order to best evaluate
our approach we use, along the paper, the publicly available IESE GoPhone
product line technical report [7]. This technical report presents a mobile phone
product line engineered using PuLSE and KobrA. KobrA is an object-oriented
customization of the PuLSE method [8].

79

The remainder of this paper is structured as follows. Section 2 discusses
product line requirements modeling based on use cases. Section 3 describes the
application of the 4SRS to derive an architecture for the GoPhone product line.
It also discusses the modifications required to adapt 4SRS to product lines. The
4SRS resulting logical architecture is presented in Section 4 and a comparison
is made with the architecture of the original GoPhone from the IESE report.
This Section also addresses the instantiation process of architectures for
members of the product line and the role of feature diagrams. Section 5
concludes the paper.

2. Requirements Modeling

Functional requirements of product lines can be modeled by use cases. Use
case modeling in a product line must capture the requirements for all the
possible members of the product line. As such, when adopting use cases to
model the requirements of a product line, the major issue is the representation
of variability. This means that each use case can vary, depending on the
functional requirements of the members of the product line.

Variability is usually modeled using the concept of variation points. These
variation points identify locations where variation will occur. In use cases,
variation points can be expressed in different ways: includes relationship,
extension points and use case parameters. To our knowledge, extension points
are the more common way of expressing variability in use cases.

«variant»
{U0.1} Send Message

Mobile User

Network

«variant»
{U0.2} Start Chat

«variant»
{U0.3} Show Message

Partner User

System

«include»

Fig. 1. Use case diagram depicting the main functionality of the messaging domain

(Based on the IESE’s GoPhone Technical Report [7])

80

Variability can also be modeled in use case diagrams by using stereotypes to
mark use cases. For instance, Gomaa proposes three stereotypes to classify use
cases regarding variability: «mandatory», «optional» and «alternative» [1].

Send Message

1. The user chooses the menu-item to send a message.
2. The user chooses the menu-item to start a new message.
3. Are there various message types?
<OPT> The system asks the user which kind of message he wants to send (Go Phone S, M, L,

XL, Elegance, Com, Smart)
4. The system switches to a text editor.
5. The user enters the text message.
6. Is T9 supported?
<ALT 1> If T9 is activated, the system compares the entered word with the dictionary. (Go

Phone XS, S, M, L, XL, Elegance)
7. Which kind of objects can be inserted into a message?
<ALT 1> The user can insert a picture into the message (Go Phone S, M, L, XL)
<ALT 2> The user can insert a picture or a drafted text-element into the message. (Go

Phone Elegance, Com, Smart)
<ALT 3> Ø (Go Phone XS)
8. Which kind of objects can be attached to a message?
<ALT 1> The user can attach files, business cards, calendar entries or sounds to the

message. (Go Phone Smart)
<ALT 2> The user can attach business cards or calendar entries to the message.(Go Phone

S, M, L, XL, Elegance, Com)
<ALT 3> Ø (Go Phone XS)
9. The user chooses the menu-item to send the message.
10. The system asks the user for a recipient.
11. Which kind of message will be sent?
<ALT 1> The user types the phone number or chooses the recipient from the

addressbook.(Go Phone XS, S, M, L, XL, Elegance)
<ALT 2> In case of a basic or extended SMS, the user types the phone number or chooses

the recipient from the addressbook. In case of an email, the user types the email-address
or chooses the recipient from the addressbook. (Go Phone Com, Smart)

12. The system connects to the network and sends the message, then the system waits for an
acknowledgement.

13. The network sends an acknowledgement to the system.
14. The system shows an acknowledgement to the user that the message was successfully

sent.
15. Is a sent message directly saved in the sent-message folder?
<ALT 1> The system asks the user if the message should be saved. If it should be saved, the

system saves the message in the ‘sent-message’ folder (Go Phone XS, S, M, L, XL,
Elegance)

<ALT 2> The system saves the message in the ‘sent-message’ folder.
(Go Phone Com, Smart)
16. The system switches to the main menu.

Fig. 2. Description of the use case Send Message (Based on the IESE’s GoPhone
Technical Report [7])

In GoPhone, a variant use case has the stereotype «variant». A variant use case
is a use case which functionality can vary between elements of the product line.
Figure 1 shows the use case for the messaging domain of the GoPhone product

81

line. From the model it is possible to observe that send message is a variant use
case of the product line. Further details regarding the use case variability are
specified textually, in the use case description. Figure 2 is an extract from the
textual documentation of the send message use case in the GoPhone report [7].

The send message description shows all the variation points of the use case.
Variation points are identified by OPT or ALT tags. This approach explicitly
points out all variation points of the use case but has disadvantages. For
instance, if the use case is long, it may become very difficult to recognize a
possible scenario for a member of the product line. Even further, this textual
description is not adequate when the aim is the automation of tasks or the
adoption of tools for dealing with variability.

In order to ease the automation of transforming the requirements of a product
line into its high-level architecture (i.e., apply the 4SRS technique) we propose
the explicit representation of the variation points in the use case model. In order
to do so, a careful analysis of the initial use cases must be done.

The initial use cases, that are used to communicate the system functionalities
with the stakeholders, must be transformed in order to express explicitly the
functional variations of the product line. This activity can be done without the
intervention of the users of the system. The main idea is to extract include and
extend relationships from the textual description of the use cases. The include
relationships will result from functional decomposition and will allow the
discovery of functional commonalities among use cases. The extend
relationships will basically result from extracting alternative and optional
functionality from the use cases.

We like to view these activities as the construction of a three dimensional space
representing the functionality of the product line: commonality, detail and
variability. For instance, for each use case, we can go deeper (y axis) and
broader (x axis) by adding detail as we do functional decomposition and find
commonality. In a third dimension (z axis) we can express variability. This
approach simplifies use case diagrams when requirements are extensive and
complex because, for a given use case, one can choose to view only one
perspective from the three dimensional space. In our approach we focus only
on product line variability, i.e., functionality that can vary according to product
line members. Variability that is common to all members of the product line
can also be represented in the use case diagrams. But this can clutter the
diagrams. We also advocate that this kind of variability can be better expressed
in other types of diagrams like, for instance, activity diagrams. In this paper we
will only address product line variability.

Next we briefly present how to construct the three dimensional space of use
cases.

82

Functional decomposition
The initial use cases of the product line should be developed following, for
instance, the process described by Alistair Cockburn [9]. This should result in
use cases with a main scenario description similar to the one presented in
Figure 2. These use cases should be at a medium level of detail, also know as
user level. Based on these initial use cases, an analysis should be made with the
goal of factor out fragments that have high degrees of commonality between
them. For instance, regarding the messaging domain of the GoPhone product
line we have found three of such fragments that have become the use cases
{U0.1.1} Choose Recipient (steps 10 and 11 of Figure 2),
{U0.1.2} Compose Message (steps 3 to 8 of Figure 2) and {U0.1.3}
Send Message to Network (steps 12 to 14 of Figure 2). These use cases
are common to the initial use cases {U0.1} Send Message and {U0.2}
Start Chat. According to the 4SRS technique, each use case name is
prefixed, within curly brackets, with a ‘U’ followed by period separated
numbers denoting the level of the use case.

«mandatory, variant»
{U0.1} Send Message

«variant»
{U0.1.1} Choose

Recipient

«variant»
{U0.1.2} Compose

Message

«final»
{U0.1.3} Send

Message to Network

«final»
{U0.1.4} Archive

Message

«include» «include» «include» «include»

Fig. 3. Decomposition of use case {U0.1} Send Message

We adopt Gomaa’s notation [1] for classifying use cases regarding their
inclusion in the product line. As such, use cases can be marked with the
stereotypes mandatory, optional or alternative. A mandatory use case is a use
case that has to be included in all members of the product line. Optional and
alternative use cases are only included in the members of the product line
according to an inclusion condition. Alternative use cases must be in a group
where usually one of the use cases is the default. This classification provides a
very good foundation for viewing and analyzing the use case model according
to the features of possible members of the product line.

When decomposing use cases, it is best to express the conditions regarding
product line membership in the relationships, not the use cases. The reason is
that these use cases can be included in several parent use cases, and the
inclusion can vary depending on the parent. In Figure 3, {U0.1} Send
Message has the stereotype mandatory, stating that this user level use case is

83

to be included in all members of the product line. All the included relationships
are mandatory, meaning that the use case {U0.1} Send Message requires
all of the included use cases. Regarding decomposability, the final stereotype
indicates that the use case is not decomposable any further. We also propose
the stereotype abstract, to mark use cases which have all their functionality
realized by others use cases, as a result of the decomposition. Since the default
stereotype for the include relationship is mandatory, the diagram of Figure 3
does not show this keyword near the relationships. To be noted that non-
mandatory functionality regarding {U0.1} Send Message should be left
to the variability perspective.

Variability externalization
The presented stereotypes do not provide hints regarding the variability of the
use cases. So, in order to also express this information in the use case model we
use the variant stereotype. When this stereotype appears on a use case it means
that the use case has variability at the level of the product line. For instance, in
Figure 3, use case {U0.1.2} Compose Message has the stereotype
variant. This means that, at the product line level, this use case is variable.
According to our three dimensional approach, Figure 4 presents {U0.1.2}
Compose Message in the variability perspective (z-axis). The extension
points of the use case are visible and also are the conditions of inclusion of the
extending use cases, according to the UML 2.0 notation. The information
required to construct these perspectives can be easily extracted from use case
textual descriptions. For instance, all the information required for Figure 4 can
be extracted from Figure 2.

«variant»
{U0.1.2} Compose

Message

{U0.1.2ep1} Select Type of Message
{U0.1.2ep2} Check Entered Word

{U0.1.2ep3} Insert Objects
{U0.1.2ep4} Attach Objects

«variant»
{U0.1.2e3} Insert

Objects

«final»
{U0.1.2e2} Check

Entered Word

«final»
{U0.1.2e1} Select
Type of Message

«variant»
{U0.1.2e4} Attach

Objects
«extend»

«extend» «extend»

«extend»

({U0.1.2ep1} Select Type of Message)
[Go Phone S, M, L, LX, Elegance, Com, Smart]

({U0.1.2ep2} Check Entered Word)
[Go Phone XS, S, M, L, XL, Elegance]

({U0.1.2ep3} Insert Objects)
[All except Go Phone XS]

({U0.1.2ep4} Attach Objects)
[All except Go Phone XS]

Fig. 4. Variability perspective of use case {U0.1.2} Compose Message

84

3. Architecture Derivation

This Section presents the application of the 4SRS technique to the GoPhone
product line use case models. We basically present a description of the
transformational steps with some examples to better explain the involved
transformations.

3.1 Step 1 – Object Creation

In this step, each use case originates three objects. This operation follows the
same approach as RSEB, which proposes the creation of three objects for each
use case: an interface object, a control object and a data object. For instance, in
the example of Figure 3, the use case {U0.1} Send Message originates
three objects: {O0.1.i}, {O0.1.c} and {O0.1.d}. This is an automatic
step, and also a blind one, since each and every non-abstract use case originates
three objects. Each object is named according to the corresponding use case
with a suffix that identifies the type of object.

Regarding the original technique, the adaptation required for dealing with
product lines is the need to detail the use case diagrams with all the extension
points. For instance, in the GoPhone case, this detail is never exposed in the
use case model. The variability points are only described within the use case
main scenario.

3.2 Step 2 – Object Elimination

This step of 4SRS is aimed at eliminating the unnecessary objects that resulted
from the previous step. After this step, the object model should have only the
objects that are functionally required, according to the requirements of the
product line. The original 4SRS technique also states that “this step also
supports the elimination of redundancy in the user requirements elicitation, as
well as the discovering of missing requirements”.

This is a major step of 4SRS and is comprised of several micro-steps.

Micro-step 2i: use case classification
In this micro-step, each use case is classified according to the interface-control-
data heuristic that was used to automatically generate the objects in the
previous step. The idea is that the classification of a use case can be a hint to
eliminate unnecessary objects. Use cases are then classified according to one of
the possibilities: “Ø”, “i”, “c”, “d”, “i-c”, “i-d”, “c-d”, “i-c-d”. Each letter is
associated with one of the interface-control-data possibilities: “i”-interface,
“c”-control and “d”-data. For instance, {U0.1.4} Archive Message is
classified as “d”, while {U0.1.2e2} Check Entered Word is classified
as being “c-d”.

85

Micro-step 2ii: local elimination
This micro-step regards the possible elimination of objects following the
classification of the use cases in the previous step. To assist in this task, the
description of the use cases should be used. For instance, the use case
{U0.1.2e2} Check Entered Word, that was classified as being of type
“c-d”, is described in the GoPhone report as “If T9 is activated, the system
compares the entered word with the dictionary”. The value of this use case is
based on the T9 functionality for validating and suggesting words. As such, the
control and data facets are much more important than the interface. According
to this, the object {O0.1.2e2.i} is removed from the object model.

Micro-step 2iii: object naming
This micro-step aim is to give proper names to objects that were not removed
in the previous micro-step. Names can be derived from the base use case name,
the description of the use case and also the classification of the object. For
instance, object {O0.1.2e2.d} is named as Word Repository.

Micro-step 2iv: object description
All the existing objects should have a description. According to 4SRS, this
description should be based on the use case description from which they
resulted. Next we present an example of such a description.

{O0.1.2e2.c} Word Validator: This object checks words as they are entered by
the user. This functionality is typical of phones that have the "T9" feature. For
checking and memorization of words, the object uses object {O0.1.2e2.d} Word
Repository.

Micro-step 2v: object representation
The aim of this micro-step is to globally validate the model. For instance,
redundancy can be discovered and removed. Basically, this step performs a
semantic validation of the object model and also of the use case model. For
instance, objects {O0.1.2e3e2.d} Picture Insertion,
{O0.1.2e3e1.d} Draft Text Insertion, {O0.1.2e4e2.d}
File Attach and {O0.3e3e1.d} File View and Save all
represent the functionality of a repository of files. As such, we maintain only
{O0.1.2e4e2.d} File Attach, since the semantic of this object
includes the functionality of the other three objects.

Micro-step 2vi: global elimination
This is an “automatic” micro-step, since it is based on the results of the
previous one. This step eliminates all the objects that were considered
redundant in the previous step. For instance, resulting from the last micro-step,
the objects {O0.1.2e3e2.d}, {O0.1.2e3e1.d} and {O0.3e3e1.d}
are removed, since its functionality can be provided by the object
{O0.1.2e4e2.d} File Attach. The result of this micro-step is a

86

minimum number of objects that represent the product line functional
requirements.

Micro-step 2vii: object renaming
The aim of this micro-step is to rename the objects that were not removed in
the previous micro-step and that represent other objects. The documentation of
such objects must also be updated. For instance, the {O0.1.2e4e2.d}
File Attach object is renamed {O0.1.2e4e2.d} File
Repository to proper represent its functionality, taking into account all the
previous objects it represents.

3.3 Step 3 – Object Packaging & Aggregation

In this step, objects that make sense to be treated in a unified way can be placed
in the same package. Aggregation can also be applied if there is a strong
relationship between objects. This is usually the case of legacy objects in a sub-
system. In the GoPhone product line this is not the case.

{P2} Messaging

{P1} Messaging UI

{P3} Network

{P4} Phone Database

{O0.1.i} Send Message UI

{O0.1.2.i} Compose Message

{O0.1.2e1.i} Message Type Selection

{O0.1.2e3.i} Object Insertion

{O0.1.2e3e2.i} Picture Insertion

{O0.1.2e3e1.i} Draft Text Insertion

{O0.1.2e4e4.i} Business Card Attach

{O0.1.2e4.i} Object Attaching

{O0.1.2e4e2.i} File Attach

{O0.1.1.i} Choose Recipient

{O0.1.2e4e1.i} Calendar Entry Attach

{O0.1.2e4e2.i} Sound Attach

{O0.1.1e2.i} Email Composition

{O0.1.1e1.i} Phone Number Composition

{O0.1.1e_e1.i} Addressbook Selection

{O0.2.i} Chat UI

{O0.3.i} Message Display

{O0.3e1.i} Sound Playing

{O0.3e3.i} Attachment Display

{O0.3e2.i} Picture Display

{O0.3e3e3.i} Calendar Entry
View and Save

{O0.1.3.i} Network Services

{O0.1.c} Message Sender

{O0.1.2e2.c} Word Validator

{O0.1.4.d} Message Repository

{O0.1.2e2.d} Word Repository

{O0.1.2e4e2.d} File Repository

{O0.1.2e4e1.d} Calendar
Repository

{O0.1.2e4e2.d} Sound Repository

{O0.1.2e4e4.d} Addressbook
Repository

{O0.2.c} Chat Controler

{O0.3e3e2.i} Business Card
View and Save

{O0.3e3e1.i} File View and Save

Fig. 5. Object model of the messaging domain

87

Since we are dealing only with the messaging domain of the product line, the
packaging of objects follows this fact. As such, objects representing the user
interface of the messaging domain are packaged in {P1} Messaging UI
and objects representing messaging controlling and behavior are packaged in
{P2} Messaging. Objects which major functionality is data persistence are
included in {P4} Phone Database. We call this package phone database
and not messaging database because it archives data regarding not only
messages but other phone concepts like, contacts or files. {P3} Network is a
package that includes objects with functionality regarding the mobile network,
i.e., they represent the interface between the mobile phone and the network.

3.4 Step 4 – Object Association

This step introduces associations between objects that can be obtained from
micro-step 2i. Also the relations between use cases can be used to generate
associations between objects.

This is the last step in the 4SRS technique. Figure 5 presents the resulting
object model for the messaging domain, including the packages. This object
model, which resulted from the application of the 4SRS technique, is a system
level object model. It provides high-level guidelines for the next phases of the
development process. As such, it provides the basis for the requirements of a
logical architecture that will support the following development phases. As it is
possible to observe in Figure 5, the object model that result from the 4SRS
technique includes all the functionality described in the source use cases. It is
even possible to expose some hints regarding the product line variability,
because, for instance, objects with an ‘e’ in their identification resulted from
extending use cases. In the next Section we explore some issues regarding the
logical architecture of a product line, namely variability representation and
product member instantiation.

4. Logical Architecture

The major aim of a logical architecture is to serve as the basis for the design of
a system. As such, it encompasses the description of the logical components of
the system and also the interactions between them [10]. As presented in the
previous Sections, the object model that results from 4SRS contains the
components (objects) and interactions between them (object associations). As
such, the object model that results from the 4SRS technique can be of great
value for a system architect, because it clearly provides ‘suggestions’ for the
logical components of a system and the interactions between them. This is very
different from the usual gap that exists between requirements and the initial
architecture for a system. This gap can be very ‘dangerous’ when the problem
domain is new and there is not much knowledge in the solution space of the

88

domain. In these cases it can be very difficult to design the system or even
apply design patterns.

In the GoPhone technical report, the product line architectural design is based
on the KobrA method and also on two patterns: the mediator pattern and the
state pattern. The objective of the mediator pattern is to achieve changeability
and extensibility of the components and, as such, achieve flexibility in the
product line. The justification for the state pattern is that it enables handling the
small displays of mobile phones. These two patterns result from non-functional
requirements: flexibility and state management. They impose some guidelines
in the architecture but they do not provide information regarding the functional
components of the architecture. This is what we propose to achieve with the
adoption of the 4SRS technique: a semi-automatic technique to obtain the
product line’s architecture functional requirements. The object model presented
in Figure 5, which resulted from applying the 4SRS technique, depicts a partial
view of such requirements for the GoPhone system. With such a model it is
possible to design the system by applying well-known patterns, such as the
mediator and the state pattern (such as in the GoPhone report). The difference
from the GoPhone report is that, with our approach, we know which logical
functional components are necessary to incorporate in the design. In this case,
our logical architecture for the GoPhone product line is very similar with the
one from the original report, the major difference being the fact that in our
process we did not adopt KobrA.

The 4SRS technique was originally designed for obtaining the logical
architecture of single systems. For this reason it does not deal explicitly with
variability. As we saw, the main resulting artifact of the 4SRS technique is the
object model. In our experimental approach to adapt 4SRS for product lines we
have already proposed the need to externalize variability in the use case model.
Regarding the logical architecture we also propose that other views of the
system are needed to properly address product line development requirements.
For instance, a class model may be more appropriate to express variability at
the architectural level. Also, activity models are more appropriate to express
fine grained variability. As such, we propose a multiple model approach for
4SRS. A similar approach can be also find in [11].

This multiple model approach is also more suited to deal with product line
member instantiation. Product line member instantiation is based on the
selection of features required for the member being instantiated. As mentioned
in Section 1, the usual approach is to build a feature diagram to guide this
instantiation. The construction of a feature diagram can be done in parallel with
the use case diagrams. In our approach, feature diagrams correspond to choices
in the variability perspective (z-axis), when navigating through the use case
model. A functional feature is basically realized by a use case. Extending use
cases become optional or alternative features. Figure 6 presents a feature
diagram for send message. The Figure also presents a possible example of the
selection of features for a product line member, by showing them in gray.

89

Send Message

Insertable Objects Recipient Attachable Objects Check Entered Word

Select Type Message

Save Sent Message

Picture

Draft Text Element

Phone Number Email

Addressbook

File

Calendar Entry

Sound

Business Card

Fig. 6. Feature diagram for Send Message (Based on the notation proposed in [1])

Figure 7 presents an excerpt of a possible class diagram depicting the send
message feature according to the feature selections of Figure 6. The class
model should be constructed after the object model. The major goal of the class
model, at this logical architectural level, is to be the first approximation to a
meta-level structural model of the product line architecture. In the process of
constructing the class model it is possible and even common that functionalities
provided by several objects become realized by a single class or a hierarchy of
classes.

Similar to the object diagram, the class diagram at this logical architectural
level is used to represent the product line at a component level of abstraction.
For the moment, we are not adopting component diagrams because they are
best suited for modeling the system at a lower level of abstraction, particularly
at the physical level.

The class model also provides a way to explicitly represent the product line
variability. So, the construction of the class model is also based on the use case
model and feature model. The description of the process for the construction of
the class model is out of the scope of this paper. We intend to address it in our
future work.

As it is possible to observe in Figure 7, in this experimental approach we have
adopted outgoing and incoming interfaces to model extension points. This
seams to be an appropriate choice at this logical component level. This option
does not compromise later design decisions of how to realize the extension
points. In fact, other authors have proposed comprehensive feature variability
realization techniques at the design level that are based on interfaces [12].

90

«interface»
Send Message UI

«interface»
Email Composition

«interface»
Phone Number
Composition

«interface»
Addressbook

Selection

«data»
Addressbook

Repository

«control»
Message Sender

«interface»
Network Services

«data»
Message

Repository

I. Choose Recipient

I. Select from Addressbook

«control»
Word Validator

«data»
Word Repository

I. Check Entered Word

«interface»
Choose Recipient

«interface»
Compose Message

«interface»
Object Insertion

«interface»
Object Attaching

I. Attach Objects

I. Insert Objects

Fig. 7. Excerpt of class diagram for Send Message

Since in our approach there is a very direct mapping between the use case
model and the feature model and because it is easy to keep trace links from the
class model to the object model and ultimately to the use case model, it is
possible to derive the architectural requirements for a product line member
based on its features.

5. Conclusions

In this paper we have explored an approach for deriving a software product line
logical architecture from its requirements, by adopting and adapting a
transformational technique. We have focused the discussion in the
transformational technique for obtaining an object model from the use case
model. This is only a part of a multi-view and multi-model process approach
for product line development. We intend to present and discuss more aspects of
this process in our future work.

We have found the results of this experimental approach very promising.
Nonetheless, several questions still remain open and require further validation.
For instance, the tree dimensional view of the use case model seems to be a
requirement for dealing with very complex product lines. But we need to

91

validate this with more case experiences. This will also provide a context to
further explore the technique for feature diagram construction based on the use
case variability perspective.

Another point open to further research regards variability representation. For
the moment our approach only deals with component level variability. It seams,
even in the GoPhone case, that more fine grained representation for variability
is needed. This is true for use cases, object and class diagrams. In our future
work we intend to approach this problem mainly by using activity diagrams in
the context of use cases and also explore aspect oriented approaches as a way
to deal with operation level variability. OCL seams also a promising approach
to express variability in the model in a more formal way.

References
[1] Gomaa, H., Designing Software Product Lines with UML. Addison Wesley. 2005.
[2] Kang, K.C., J. Lee, and P. Donohoe, Feature-Oriented Product Line Engineering.

IEEE Software, (July/August 2002). 2002.
[3] Griss, M.L., J. Favaro, and M. d'Alessandro. Integrating Feature Modeling with the

RSEB. in Fifth International Conference on Software Reuse. Victoria, Canada. IEEE
Computer Society Press. 1998.

[4] Jacobson, I., M. Griss, and P. Jonsson, Software Reuse: Architecture, Process and
Organization for Business Success. Addison Wesley Longman. 1997.

[5] Anastasopoulos, M., J. Bayer, O. Flege, and C. Gacek. A Process for Product Line
Architecture Creation and Evaluation. IESE. Technical report: 038.00/E. 2000.

[6] Machado, R.J., J.M. Fernandes, P. Monteiro, and H. Rodrigues. On the Transformation
of UML Models for Service-Oriented Software. in ECBS International Conference and
Workshop on the Engineering of Computer Based Systems. Greenbelt, Maryland. 2005.

[7] Muthig, D., I. John, M. Anastasopoulos, T. Forster, J. Dorr, and K. Schmid. GoPhone -
A Software Product Line in the Mobile Phone Domain. IESE. Technical report:
025.04/E. 2004.

[8] Bayer, J., D. Muthig, and B. Gopfert. The Library Systems Product Line - A KobrA
Case Study. IESE. Technical report: 024.01/E. 2001.

[9] Cockburn, A., Writing Effective Use Cases. Addison-Wesley. 2001.
[10] Garlan, D. and M. Shaw. An Introduction to Software Architecture. Carnegie Mellon

University. Technical report: CMU-CS-94-166. 1994.
[11] Gomaa, H. and M.E. Shin. A Multiple-View Meta-modeling Approach for Variability

Management in Software Product Lines. in ICSR International Conference on Software
Reuse. Madrid. 2004.

[12] Lee, K. and K.C. Kang. Feature Dependency Analysis for Product Line Component
Design. in ICSR 2004 - International Conference on Software Reuse. Madrid. 2004.

Supporting the Modeling of Embedded Systems

Vesna Milijic
Department for Applied Computer Sciences

Catholic University Eichstätt-Ingolstadt, 85072 Eichstätt, Germany
vesna.milijic@ku-eichstaett.de

Abstract

A new approach for modeling embedded systems is presented that
uses a grammar to derive a specification of an embedded system. The
specification is transferred to an intermediate model that corresponds
to a Signal Petri net model with specific properties. These proper-
ties assure that the resulting Signal net model depicts an embedded
system. The approach is exemplarily applied to model a garage door
mechanism.

1 Introduction

For developing high-quality control systems including a high-quality docu-
mentation, formal methods are necessary to perform system analysis, ver-
ification and simulation. As various modeling techniques and formalisms
exist in the area of system engineering, the development of systems in in-
dustrial practice is thought to be supported well. However, we still face
incorrect systems and problems in system engineering.
In parts, this is due to not using the existing formalisms: an industrial
case study (see [2]) showed that creating and working on models is not an
easy task. Finally, designers often keep the usual development process of
writing down a specification document and implementing an ad hoc control
program. So the main reference of a system is not a formal system model,
but an informal specification document. This document suffers from being
incomplete, incorrect and being not up-to-date.
In contrast, if modeling is part of the system engineering process, other
problems arise.

� Even if modeling is done in industrial practice, the first step is to write
a specification document of the system in natural language. After
that, the modeler or someone else will translate this document into a
system model. In this step some of the statements of the document

93

turn out not to be suitable for specifying the system because they
deliver contradictory, false or insufficient information. So the modeler
is forced to iterate the time-consuming procedure of first specifying
and then modeling the system until it seems probably well modeled.
As there is no direct transfer between the specification document
and the model, the modeler can only guess if the model meets the
specification; they are not associated with each other automatically.

� Modeling formalisms are written for universal applicability. The mod-
eler usually designs only a certain type of systems (e.g. embedded
systems), but by the means of the modeling formalism he risks to
create models that do not belong to the desired type (e.g. workflow
systems). Thus, while trying to create a system out of the ideas
listed in the specification document, the modeler has to spend much
attention to miss out the types of systems he is not interested in.

� Some formalisms model at once the structure of a system and its
behaviour (e.g. Petri nets and their derivatives). They are especially
interesting as it is sufficient to have one single model for every kind
of analysis. However, modeling is more difficult, as any alteration of
the model can affect both structure and behaviour.

To overcome these problems, a new approach of system engineering is pro-
posed.

1.1 The General Approach

Despite the problems concerning the specification document, it is very im-
portant in the practice of system engineering. Using natural language, it
leads to a basic understanding of the system’s functionalities. Thus, it
should not be disposed - by the way, in the area of requirements engineer-
ing you can find new approaches that tend to express formal requirements
in natural language (see [9]).
However the ”formalism” of specification documents, namely natural lan-
guage, must be restricted: Only components and combination of these that
describe the desired system type will be accepted. For this reason, the
concept of sublanguages propagated by computer linguistics (see [6]) will
be adopted: By offering construction rules (in our case given by a context-
free grammar including global variables), a limited portion of all possible
natural language statements and texts are derived: Descriptions that are
created out of that grammar are specifications of the desired system type
(left side of figure 1).
As a direct translation into the chosen modeling formalism is not possible,

an intermediate formalism is needed. By defining chunks of the atomic ele-
ments of the original modeling formalism, we create semantic units that are

94

Figure 1: Design of embedded systems: a new approach

the basic elements of the intermediate formalism (denoted by the middle
part of figure 1). All components and combinations of the grammar must
be modeled in the intermediate formalism.
Finally, the formal model of the desired system type is obtained (right side
of figure 1).

1.2 In the Area of Embedded Systems

This approach is highly suitable for the area of embedded systems where
the need of an adequate formal model arises from the systems’ behavioural
complexity. As modeling formalism extended Signal nets are used (a deriva-
tion of Petri nets).
The next chapter will provide a definition of embedded systems and illus-
trate why extended Signal nets are an adequate modeling formalism. After
that, chapter 3 will define a sublanguage for specifying the behaviour of
embedded systems. Chapter 4 is concerned with the intermediate formal-
ism and in chapter 5, an example modeling case is showed. Finally, chapter
6 summarizes and gives a short forecast of future work to be done.

2 Embedded Systems and Signal Nets

2.1 Defining Embedded Systems

According to [7], a reactive system, which is superordinate to embedded sys-
tems, is an information system that continually interacts with its environ-
ment. Unlike transformational systems that calculate a result from input
data and then reach a terminal state, most reactive systems are intended
to run infinitely. Usually they are non-sequential distributed systems for
monitoring and control tasks. They contain several elements (software and
hardware) that communicate by signal exchange. Reactive systems can be
differentiated in circuits, process computers, and embedded systems ([1]).
Between those, the importance of interaction from environment to system
varies: While circuits are characterized by minor interaction with their envi-
ronment, process computers (e.g. PLC) work with parameters and respond

95

to environmental influence. Interaction with the environment is most im-
portant for embedded systems. As figure 2 shows, these systems are usually
integrated in a physical environment (embedding system) and, except the
user interface, they are hidden from the user. Notice that the behaviour
of an embedded system is completely defined by the internal state of the
system and the environmental influence, e.g. the manipulation by the user
or by the embedding system. However, since any combination of internal
state and environmental influence can cause system behaviour, embedded
systems possibly show strong behavioural complexity.
Examples of embedded systems are technical devices (like washing ma-
chines, coffee machines, antilocking systems) or building automation (heat-
ing or ventilation).

Figure 2: Schema of Embedded Systems

2.2 The Choice of Signal Nets

Extended Signal nets (an extension of Petri nets) were chosen as model-
ing language because they fit well regarding the properties of embedded
systems:

� The use of Petri nets is generally a good solution for modeling dis-
tributed systems. In contrast, state based approaches are not suffi-
cient for larger embedded systems because of the possibly huge state
space. Furthermore, the property of being executable will enable
model validation by simulating the system behaviour.

� Extended Signal nets are an adequate modeling formalism for embed-
ded systems as they support the concept of communicating and ini-
tializing system behaviour by signal exchange with signal arcs. Other
types of arcs perform reading, writing or checking tasks. The use
of high-level places enables modeling of sensor data in embedded
systems. Finally, extended Signal nets distinguish between exter-
nal places and transitions and internal ones, what corresponds to the
differentiation of plant and control in the case of embedded systems.

Assuming that the formalism of Petri nets is generally well-known, only the
specific features of extended Signal nets that are interesting for modeling

96

embedded systems will be explained next. For a more detailed description
see [3, 8].
A Signal arc (see figure 3) connects two transitions. If an enabled transition
is connected to another enabled transition by a signal arc, both transitions
fire synchronously (the first transition synchronizes the second transition).
A transition with an incoming signal arc will never fire without the syn-
chronization signal, whereas a transition with an outgoing signal arc can
also fire alone. If two or more signal arcs lead to one transition, this tran-
sition will fire at the first arrival of a signal (OR-semantics).
Signal nets offer a possibility to check relevant markings. This is done by
test arcs (figure 3): A transition, connected by a read arc to a place (no
high-level place), can only fire when the place is marked. A transition con-
nected to a place by an inhibitor arc fires if the place is not marked. Test
arcs never cause a marking change of the respective place.
Two types of places (figure 3) are allowed in the formalism of Signal nets:

Figure 3: a) Firing of the transition t1 triggers firing of transition t2 b)
Transition t3 will fire at the first firing time of either t1 or t2 c) read arc
d) inhibitor arc e) low-level place f) high-level place g) external state and
transition

Low-level places that are depicted by a simple circle and contain only a
simple token type (a black token), and high-level places. The latter are
drawn as double-framed circles. For the token domain, we restrict to real
numbers.
The gray color of places or transitions indicates that they are external.

3 A Grammar for Specifying Embedded Systems

What is an adequate specification language for embedded systems? Accord-
ing to Harel, it must respect the modelers’ kind of thoughts (see [5]): Speci-
fication sheets with statements of natural language that depict behavioural
characteristics of the system. For example, If you push the button ’down’ of
the remote control, the garage door will close. is such a behavioural specifi-
cation. Thus, the statements of our specification language should describe
behavioural characteristics. Additionally, since we restrict to model com-
ponents and combinations of components of embedded systems, only the

97

behaviour of those should enter the specifications (see figure 1). However,
since a generally accepted specification of embedded systems does not ex-
ist, the invented specification language can only be accounted as a simple
proposal that has to be further evaluated.
Typically, the systems to be modeled are composed of two parts: A model
of the plant that corresponds to the physical part of the embedded system
and a model of the control. The physical part is necessary to model the
environmental influence on the system’ s behaviour. It consists of the set
of possible control elements as actors (for example a switch to switch on
or off the coffee machine, a rotary switch to set the washing program to
30 or 60�) and of sensors that are needed to invoke a control algorithm
(for example ’if the heat sensor’ s value is over 23�, air conditioning has
to start’).
Notice that a description will be obtained that specifies a valid embedded
system but this might not be the desired one. Also, the problem of incom-
plete or inconsistent specification documents is not solvable by the use of
the grammar. Surely, the sublanguage could be strongly limited to avoid
undesirable behaviour, but this would diminish the set of derivable specifi-
cations. Since this is not intended, the resulting models must be validated
(e.g. by construction of system runs).
The rest of the chapter is devoted to the description of the possible state-
ments. Tables 1 to 12 and figure 5 show the grammar and the global
variables. Nonterminal symbols are written in typewriter font and capital
letters while terminal symbols are written in small letters. Global variables
are typed italic. The symbol ’|’ is separating two different production rules
of one nonterminal symbol.

3.1 Specifying Control Elements

I

IIIII

I

II

IVIII II I

a) b) c)

Figure 4: a) switch with two states b) pushbutton: no visual changing,
but internally the state changes into one direction c) rotary switch with
starting and ending point

First, relevant control elements have to be modeled. By the rules of
table 1, for each element an adequate representation is chosen (figure 4

98

depicts some control elements) and all possible states or values have to
be defined. By ’TYPE’, the controllability of the element is defined. If it
is controllable only by external manipulation, the control algorithm is not
allowed to change the state of the element.
When all control elements are defined, the rule ’S ⇒ BEHAVIOUR’ is called
which denotes the starting point of the behavioural description.

S ⇒ELEM is TYPE. S | BEHAVIOUR
ELEM ⇒switch/ button id, states, default state |

pushbutton id, states, default state |
rotary switch id, states, default state |
key panel id, states, default state |
display id, values, default value | sensor id, values, default value |

TYPE ⇒only controllable by external manipulation|
controllable by both external and internal manipulation

Table 1: Specifying Control Elements

3.2 Behaviour of the control algorithm

Every ’BEHAVIOUR’ denotes a behavioural characteristic of the embedded
system. By the first rule of table 2, further ’BEHAVIOUR’s can be added. In
the middle part, the rules define system behaviour of the control algorithm
that is independent from control elements. The lower part introduces be-
havioural scenarios that deal with dependencies between different parts of
the system. They will be subject of 3.3.

BEHAVIOUR ⇒BEHAVIOUR BEHAVIOUR |

UNIT occurs. SEQUENCE|
Every x seconds UNIT occurs. |
x times UNIT occurs. SEQUENCE|
Repeatedly UNIT occurs. |
UNIT and UNIT occur concurrently. SEQUENCE|

If SYSTEM-STATE2 CONDITION1, then CONSEQUENCE occurs.
SEQUENCE|
If CONDITION2, then CONSEQUENCE occurs. ELSE SEQUENCE|
If SYSTEM-STATE1 CONDITION1, then CONSEQUENCE occurs.
ELSE SEQUENCE

Table 2: Specifying Behavioural Characteristics

Every statement that specifies behaviour of solely the control algorithm
contains the nonterminal symbol ’UNIT’. A ’UNIT’ can denote an arbitrar-

99

ily big part of the control algorithm. It can be substituted by a simple
’ACTIVITY’ (i.e. a firing sequence or a measurement of values, see figure
5) or it defines some system behaviour on a lower level when it is substi-
tuted by ’execution of unit ...’. So a top-down structuring of the control
algorithm is possible by recursively modeling new ’UNITs’ that are part of
existing ’UNITs’. A structuring within one level can be reached by modeling
more than one ’BEHAVIOUR’ and replacing them by different ’UNITs’.
As table 3 shows, ’UNIT’ can also be used to reset another ’UNIT’ or a con-

ACTIVITY � firing sequence t1, t2 ACTIVITY �measurement p1

x

t1 t2

p1

Figure 5: Exemplary substitutions of ACTIVITY

trol element in its initial state. The construction rule for a reset-’UNIT’ is as
follows: For each place p of a unit or element to be reset, construct a new
transition tp with an outgoing flow arc from the place to the corresponding
transition. Additionally, construct an ingoing flow arc from all places that
are initially marked to the corresponding transition. For starting the reset,
a transition tstart is needed that triggers all other transitions tp by signal
arc connections (see figure 6 for an example).

UNIT ⇒ACTIVITY |
execution of unit id, description: BEHAVIOUR |
reset of unit id | reset of element id

Table 3: Substitution Rules for UNIT

Figure 6: On the left side a UNIT is depicted. The right side shows the
corresponding reset net

As denoted in the middle part of table 2, a ’UNIT’ can occur once or
repeatedly. By some statements, an endless occurrence is indicated (e.g.

100

’Every x seconds UNIT occurs’), other statements describe an ending be-
haviour: In such a case, ’SEQUENCE’ is appended to enable the modeling of
arbitrary many sequences by the rules given in table 4.

SEQUENCE ⇒λ | SEQUENCE SEQUENCE |
After that CONSEQUENCE occurs. |

Table 4: Substitution of SEQUENCE

3.3 Causal Related Behaviour

For modeling causal related behaviour, the lower part of table 2 is relevant.
These rules represent the initial point of all behavioural characteristics
dealing with dependencies and can be divided into a condition and a conse-
quence section and - if needed - a section that models events that occur in
case of violated conditions. Let us have a look at each section separately.

3.3.1 Condition Section

The condition section always starts with If... and depicts a situation which
is characterized by two components: The first component is able to initialize
the consequence section (see table 5) and the second describes a part of
the given system state that provides permission to the first component for
effectively doing initialization (see table 6).

CONDITION1/2⇒TIME STATE is given |
f (MP) is in the range of lb to ub |
f (MP) is in the range of lb to ub and CONDITION1 |
UNIT starts | UNIT ends (both only CONDITION1!) |
UNIT starts while STATE is given |
UNIT ends while STATE is given |
CONDITION1 or CONDITION1 (resp. COND2 or COND2)

Table 5: Rules for CONDITION1 and CONDITION2

Initializing Component The first substitution rule of table 5, ’⇒ TIME
STATE is given’, characterizes a state-based initialization of behaviour. As
’STATE’ is substitutable according to table 7, finally a marking vector for a
part of the net is specified.

By the substitution of ’TIME’ the modeler can decide if this condition
has to exist for a certain amount of time (i.e. first rule of table 8) or not
(i.e. by omitting ’TIME’ with the use of the λ-Rule).

101

SYSTEM-STATE1 ⇒SYSTEM-STATE1 SYSTEM-STATE1 |
SYSTEM-STATE1 SYSTEM-STATE2 |
- within x seconds Q | - not until x seconds Q

SYSTEM-STATE2 ⇒λ | SYSTEM-STATE2 SYSTEM-STATE2 |
- when x seconds have passed Q

Q ⇒after STATE is given - |
after UNIT has started - |
after UNIT is finished -

Table 6: Substitution of SYSTEM-STATE1, SYSTEM-STATE2 and Q

STATE ⇒(STATE and STATE) | (STATE xor STATE) |
not STATE | marking

Table 7: Substitution of STATE

In the case of modeling some sensor data as initialization factor for a
consequence section, the second and third substitution rule of table 5 are
applied. By the input of a lower bound (lb) and an upper bound (ub),
the modeler defines how to proceed depending on the measured value. As
sometimes not only the value itself is relevant but a result of a mathematical
function using one or more sensor values as parameters, ’f (MP)’ denotes
such a function using arbitrary many markings of places (according to the
substitution of ’MP’ depicted in table 9).

The rules that start with ’UNIT starts/ ends ...’ denote event-driven
starting points for future behaviour.
Of course, alternative conditions for initialization can be modeled by using
the last rule of ’CONDITION1/CONDITION2’.

A part of the given system state as initialization condition In
specifying behavioural characteristics of embedded systems, the modeler
sometimes needs access to former behaviour of the system. This access is
realized by the statements that can be produced by the rules of table 6:

3.3.2 Consequence Section

The common starting point for the consequence section is ’..., then CONSEQUENCE
occurs.’. Table 10 shows the substitution rules for ’CONSEQUENCE’: It is pos-
sible to either model a single consequence, or, by the use of ’FURTHER’, a

TIME ⇒λ | for x seconds

Table 8: Rules for TIME

102

MP ⇒MP, MP | marking

Table 9: Markings of Places

CONSEQUENCE ⇒UNIT FURTHER |
after x seconds UNIT FURTHER |
x times UNIT |
every x seconds UNIT as long as SYSTEM-STATE1
CONDITION1 FURTHER |
every x seconds UNIT as long as CONDITION1 FURTHER |
repeatedly UNIT as long as SYSTEM-STATE1 CONDITION1
FURTHER |
repeatedly UNIT as long as CONDITION1 FURTHER

Table 10: Substitution of CONSEQUENCE

set of consequences (according to table 11). Each consequence depicts a
somehow specified occurrence of an ’UNIT’. For all statements that imply
possibly infinite behaviour, the modeler can introduce an ending condition
’... as long as’ plus a condition denoting this.

FURTHER ⇒λ | , CONSEQUENCE

Table 11: Rules for FURTHER

3.3.3 Violated Condition Section

The behaviour of the system when violating some condition is denoted by
’ELSE’. If no special behaviour is desired in case of a not fulfilled condition,
’ELSE’ can be substituted by λ. If the modeler decides to define a be-
haviour in this case, he can use ’ELSE ⇒ Else CONSEQUENCE occurs.’(table
12). Here again, ’CONSEQUENCE’ can be substituted by only one or a set of
consequences as specified in the consequence section (3.3.2). The model for
’Else CONSEQUENCE occurs.’ heavily depends on the condition section: Let
us first focus condition sections that contain only an initialization com-
ponent but no additional system state as condition (i.e. statement ’If
CONDITION2, then CONSEQUENCE occurs. ELSE SEQUENCE’ which does not in-
clude ’SYSTEM-STATE1’ or ’SYSTEM-STATE2’): To continue system behaviour
at the arrival of a condition, this condition must be evaluated to either true
or false. If it is true, a consequence will occur, if it is false, an alternative
behaviour (specified by the substitution of ’ELSE’ will be executed. How-
ever some condition sections cannot be evaluated to false. For example,
this is the case for the condition ’UNIT starts’: At the occurrence of UNIT
starts, the condition is evaluated to true but as long as UNIT did not start,
it cannot be decided if the condition will be true in the future. Therefore,

103

ELSE ⇒λ | Else CONSEQUENCE occurs.

Table 12: Substitution of ELSE

the condition section can never be evaluated to be false.
For this reason, ’CONDITION1’ and ’CONDITION2’ are differentiated: While
’CONDITION2’ contains only conditions that can be evaluated to both true
and false, ’CONDITION1’ additionally contains conditions that cannot be
evaluated to false.
Let us look at ’SYSTEM-STATE1’ and ’SYSTEM-STATE2’: The statements
containing ’within x seconds after...’ allow an initialization of the conse-
quence section if the condition is fulfilled within the given time. If this
time has passed before the condition is fulfilled, the condition is violated.
Contrary, by using ’not until x seconds ...’, the condition is fulfilled when
’CONDITION1/CONDITION2’ happens after the given time has passed and vi-
olated when - at the occurrence of ’CONDITION1/CONDITION2’ - it has not
yet passed.
In contrast, the condition sections starting with ’when x seconds have
passed...’ mean the following: They are true, if ’CONDITION1/CONDITION2’
occurs any time after the given time has passed; everything that happens
within this time is ignored. But such condition sections cannot be evaluated
to false, so a differentiated use with respect to ’ELSE’ is needed. Also in the
case of ’If SYSTEM-STATE2 CONDITION1,...’, a substitution ’SYSTEM-STATE2
⇒ λ’ is admissible what possibly leads to a condition section that cannot
be evaluated to false. Therefore, statements containing such conditions are
subsumed to one nonterminal symbol (’SYSTEM-STATE2’) which does not
allow the use of ’ELSE’, while ’SYSTEM-STATE1’ contains all substitutions
that can be evaluated to both true and false.
Note that arbitrary many substitutions of ’SYSTEM-STATE1/SYSTEM-STATE2’
can be listed. Such a set of condition statements can possibly not be eval-
uated to false if it contains at least one statement of ’SYSTEM-STATE1’ and
the violated condition section is called the first time any of these has been
evaluated to false. For allowing the consequence section to start by oc-
currence of ’CONDITION1/CONDITION2’, every condition statement must be
fulfilled.

4 The Intermediate Formalism

As previously written, the elements of the intermediate formalism are com-
posed chunks of the basic modeling formalism. Furthermore, these compo-
nents are composed in specific ways only. Figure 7 shows an example. The
components and how to combine them has to be defined manually. After
this, any specified net of the desired type can be modeled. By lack of space,

104

y

off

on

Figure 7: Intermediate model for: ’If the control element turns from off to
on, then measurement of y occurs.’

this paper will only show some example compositions in the modeling case.

5 A Modeling Example

For demonstrating the practical use of this approach, a control for a garage
door is modeled in this section. By a remote control with two buttons
(UP and DOWN), a motor can be controlled that ascends or descends the
garage door. The motor is either running up, running down or in halt
position. Two resistance sensors observe whether the door is completely
open (’RS up’) and whether a resistance occurs on the downward direction
(’RS down’). The specification that is derived by the grammar is shown in
the following two paragraphs:

Definition of the control elements. Switch/ button (”UP”, states:
”on”/”off”, default: ”off”) is only controllable by external manipulation.
Sensor (”RS up”, values: 0 to 10, default: 0) is controllable by both exter-
nal and internal manipulation.
Switch/ button (”DOWN”, states: ”on”/”off”, default: ”off”) is only con-
trollable by external manipulation.
Sensor (”RS down”, values: 0 to 10, default: 0) is controllable by both
external and internal manipulation.
Switch/ button (”Motor”, states: ”run⇑”/”stop”/”run⇓”, default: ”stop”)
is controllable by both external and internal manipulation.

Behavioural characteristics. If not Motor: stop is given, then mea-
surement of RS up occurs. If not Motor: stop is given, then measurement
of RS down occurs.
If value of RS up is in the range of 0 to 2 and UP: on is given, then Motor:
stop → run⇑ occurs. If value of RS up is in the range of 3 to 10 and UP:
on is given, then Motor: run⇑ → stop occurs.
If value of RS down is in the range of 0 to 2 and DOWN: on is given, then
Motor: stop → run⇓ occurs. If value of RS down is in the range of 3 to 10
and DOWN: on is given, then Motor: run⇓ → stop occurs.

105

Figure 8: Generation tree for control elements

If UP: on → off starts or DOWN: on → off starts, then reset of Motor
occurs.
Figure 8 depicts the generation tree for the control element ”Motor” and the
first behavioural characteristic. The gray boxes denote the final specifica-
tion text. Figure 9 shows the resulting signal net model. The intermediate
model is depicted by the lighter gray boxes and the connection between
Signal net elements of different boxes.

Figure 9: Signal net model of a garage door control

106

6 Conclusion and Future Work

This paper presented a method to support the modeling of embedded sys-
tems. A grammar including global variables was used to derive specifica-
tions that can be transferred into specific Signal nets (i.e. the intermediate
model: extended Signal nets that represent embedded systems). Since
this approach should be convenient for modelers in practice, tool support
is needed to derive specifications out of the grammar. Also the invented
grammar should be evaluated to point out its use in the description of em-
bedded systems.
Furthermore, tool support is needed for defining new grammars for different
system types and their translations into chunks of extended Signal nets.

References

[1] Broy, M., Spaniol, O.(Eds.) keyword: real-time system In VDI-Lexikon
Informatik und Kommunikationstechnik, Heidelberg, Springer, 587 –
588, 1999.

[2] Desel J., Juhás G., Lorenz R., Milijic V., Neumair Ch., Schieber, R.:
Modellierung von Steuerungssystemen mit Signal-Petrinetzen – eine
Fallstudie aus der Automobilindustrie. In Schnieder, E. (Ed.): 8. Fach-
tagung Entwurf komplexer Automatisierungssysteme 2003, Proceedings
of EKA 2003, Braunschweig, Schwendowius, 273–297, 2003.

[3] Desel J., Milijic V., Neumair Ch.: Model Validation in Controller De-
sign In Lectures on Concurrency and Petri Nets, LNCS 3098, Heidel-
berg, Springer, 467–495, 2004.

[4] Hanisch H.-M., Lüder A.: A Signal Extension for Petri nets and its Use
in Controller Design. Fundamenta Informaticae, 41(4), 415–431, 2000.

[5] Harel, D., Marelly, R. Come, Lets Play: Scenario-Based Programming
Using LSCs and the Play-Engine, Heidelberg, Springer, 2003

[6] Sager J.C. Language Engineering and Translation: Consequences of
Automation, Amsterdam, John Benjamins B.V, 1994

[7] Schneider, H.-J. (Ed.) keyword: system, reactive In Lexikon der Infor-
matik und Datenverarbeitung, München, Oldenbourg, 850, 1998

[8] Starke P.H, Roch S. Analysing Signal-Net Systems. Informatik-Bericht
162, Humboldt Universität zu Berlin, Institut für Informatik, 2002

[9] Bitsch F. A Way for Applicable Formal Specification of Safety Re-
quirements by Tool-Support. In FORMS 2003 - Symposium on Formal
Methods for Railway Operation and Control Systems, 2003

107

A Modeling Language for Applications

in Pervasive Computing Environments∗

Andreas Ulbrich and Torben Weis
Berlin University of Technology

KBS/EN6, Einsteinufer 17
10587 Berlin, Germany

{ulbi,weis}@ivs.tu-berlin.de

Kurt Geihs
University of Kassel

Wilhelmshöher Allee 73
34121 Kassel, Germany
geihs@uni-kassel.de

Abstract

The wide-spread availability of programmable network-enabled
embedded devices, such as smart phones, electronic toys, home enter-
tainment systems, and even sensor networks provides an opportunity
for many new and exciting applications. However, such environments
impose a software engineering challenge due to their inherent hetero-
geneity and distribution. Model-driven development is a promising
approach to deal with such challenges. In this paper we present a
graphical modeling language for application development in perva-
sive computing environments. The language was designed to support
the construction of executable application models. It provides sim-
ple yet powerful constructs to master common programming task of
applications in such environments.

1 Introduction

In this paper we present VRDK, our approach to support application de-
velopment for pervasive computing environments. VRDK is built around
a graphical programming language and is based on the concept of model-
driven development.

Model-driven development has been successfully applied to various ap-
plication scenarios ranging from enterprise applications [19] to combat field
technology [8]. These applications assume that the target hardware, i.e. a
PC or a server, is powerful enough to run a middleware such as CORBA
CCM, or a realtime CORBA implementation. However, this assumption no
longer holds for pervasive computing. Such environments comprise small
programmable network-enabled devices. Smart phones, mobile robots,

∗The work presented in this paper is partially funded by Microsoft Research, Deutsche
Telekom Stiftung, and Deutsche Telekom.

109

game consoles, home entertainment equipment, and even tiny sensor board
are able to communicate over wireless networks. These devices impose a
software engineering challenge [1]. In comparison to PC and server hard-
ware, issues such as power consumption, CPU speed, and memory capacity
become a primary concern.

VRDK offers an executable modeling language for pervasive computing.
The main objective of VRDK is to provide a programming abstraction that
hides the gore detail from the developer. Developers can create applications
in the problem domain. Applications combine available components and
react to events. A component can either be a device such as a TV or door
bell or a software service such as a browser or media playback. Events
can be emitted by components, e.g. DVD playback started, or sensors, e.g.
person entered a room. Functionality can be attached to location, e.g. a
room. Processing in such a system is event-driven. An event may activate
a functionality which then can emit further events, do some processing, or
even split into other functionalities.

The next section discusses general aspects of programming models for
pervasive computing. Then, we provide an overview of our modeling lan-
guage and reason on its design. We briefly discuss model execution with
VRDK. After that, we present the related work. The paper closes with a
discussion and an outlook to future work.

2 Programming Model

Small devices are not small PCs. They do not have hard disks, removable
media, or large screens (if any). Instead they have little memory (between
4k and 64k bytes), slow processors (often 8bit), and energy constraints. Ap-
plications for small devices are conceptually different from those found on
PCs and servers. Most of the devices have some kind of sensors, for exam-
ple they can measure temperature, detect movement, or collect user input.
Furthermore, some have actuators. For example, an remote-controllable
light bulb can be treated as an actuator. Therefore, typical applications
perform four different actions in an endless loop: sensing, calculating, con-
trolling actuators, sending/receiving messages over the network.

Despite these general similarities, the programming model varies tremen-
dously between different devices. For example, applications for embedded
sensors boards (ESB [15]) are basically big loops. During each iteration
the sensor values are read and the actuators are set. This iteration must
be repeated at least every 150msec otherwise the board resets. In contrast,
Windows CE devices execute a full-featured operating system that decou-
ples the application from hardware-specific issues such as polling intervals.
Implementing the same behavior once for an ESB and once for a Windows
CE device requires writing two totally different implementations because

110

of the different programming models.

2.1 Enforcing a Common Programming Model

Our goal is to provide the same programming model for all devices. This
is usually achieved by abstracting from the various combinations of oper-
ating system, programming language, virtual machine, and communication
system. Through this abstraction a developer perceives a (virtually) homo-
geneous environment. However, runtime abstractions such as middleware
trade off resource consumption for a high-level programming model. Con-
sequently, CORBA is not common on small networked devices and .NET
Remoting is missing in the .NET Compact Framework (a subset of .NET
for PDAs and embedded devices). An approach that tries to maintain a
common high-level abstraction at runtime with a one-serves-all middleware
layer is doomed. Many devices lack the capabilities to host such a mid-
dleware. Especially very tiny devices have rather restricted programming
model. This makes runtime abstractions more costly as they require more
CPU cycles and in turn energy, often the most limiting resource.

We conclude that we need high-level programming abstraction at design
time. A model-driven approach can provide the desired abstraction and at
the same time synthesize implementations suitable for resource-constrained
devices.

We provide a modeling language for creating executable application
models for pervasive programming environments. This high-level language
provides the desired abstraction for such applications by hiding details of
target hardware and programming models. Following the model-driven
approach, our tools synthesize implementations tailored for the small de-
vices. This does not mean to abandon middleware. If, for example, the
target device provides a complete Java runtime then RMI can be utilized.
Otherwise, generated code fills in the gaps.

2.2 Parallelism and Distribution

Ubiquitous applications are inherently distributed. A ubiquitous applica-
tion relies on computing hardware attached to locations (room, floor, etc.)
and mobile devices (smartphones, wearable computers etc.) that move with
the user. Pervasive computing environments are highly parallel. Sensing
devices continuously read sensor values and emit events when the values
change. In other event-driven application domains (e.g. graphical user in-
terfaces) it is easy to sequentialize the events. Due to the distribution this
is not possible in ubiquitous systems. Thus we put a strong focus on par-
allelism and distribution in our modeling language. Concurrent processes
are first class entities. Communication between processes is asynchronous
and event-based. Our modeling language does not provide the concept of

111

global state. Hence, the only way for one process to influence another one
is by sending a message. This avoids many problems that could result in
unpredictable side effects. Furthermore, our modeling language provides
few but powerful elements to handle events from distributed sources.

The high degree of distribution is one of the main challenges of per-
vasive computing system. With our modeling language the developer can
program against the system as a hole. It is not necessary to write appli-
cation components for different devices. The modeling language exposes
an abstract, holistic view of the system, which provides distribution trans-
parency on the modeling level. It is the task of the model transformation
tool to partition the application logic and assign the partitions to available
devices. Furthermore, the model transformer must generate networking
code that glues together the distributed application parts.

3 Application Modeling Language

Our modeling language builds on a small set of core concepts: components,
behaviour, and location.

A component represents a piece of hard- of software that offers some well
defined functionality. Every component has a location in the physical world.
Developers can import pre-fabricated components in VRDK and use them
in a model. By intention our tool does not provide means for defining new
components. The main benefit of ubiquitous applications is to tie together
functionality that is already available. This idea is fundamental to our
modeling language. If you want to develop a new component (e.g. speech
recognizer, motion tracker, etc.) you are probably better off using object-
oriented modeling and development tools available today. Our modeling
language is a domain specific modeling language. It is not a general purpose
modeling language like UML. In the following sections we discuss the core
concepts of our language in detail.

3.1 Components

Applications embrace functionality of a large range of components, i.e. de-
vices and services. The developer imports components by simply dragging
it from a tool bar on the editor window (see Figure 1).

Our modeling tool has no built-in support for any component. Instead,
components are added to the tool with plugins. Currently, there are plu-
gins for using Smartphones, PDAs, Media Center PCs, Browser, Media
Player, Microsoft Agents, Embedded Sensor Boards (ESB), and RC5 re-
mote controls as components. A component introduces a set of events and
commands. The plugin can provide additional types as well as a graphical
notation for each command. For example, a Media Center PC emits an

112

Figure 1: Configuring the available components
Process

Function

Hardware

Location

GUI

Simulation

Ink Mouse Eraser Run

process call

1/8

emit
Signal

Signal

Process1

wait
Receiver

Receiver

Process2

Figure 2: Processes and interprocess communication

event when it starts DVD playback. Furthermore, this component intro-
duces commands for controlling the Media Center, e.g. to start playback
or adjust the volume.

3.2 Behavioral Model

Our modeling language builds on the concept of concurrent processes and
inter-process communication. Figure 2 shows the notation of two processes.
Process1 defines a signal titled Signal1. Process2 has a signal receiver
titled Receiver1. An animated conveyor belt can connect signals with
receivers. In this example, Signal and Receiver are connected. The an-
imation of the conveyor belt shows a flow from signal sender to receiver.
In order not to obfuscate the diagram permanently, the conveyor belt is
only shown if the mouse hovers over the sender or receiver. Its layout is
determined automatically.

A process contains a control flow. Control flows orchestrate events and

113

Process

Hardware

Function

process

loop

motor

receiver

wait

counter

call

branch

let

sender

emit

Ink Mouse Eraser Run

Signal1

Process1

Receiver1

Process2

wait
Receiver1

wait
timeout = 500

wait
s.Temperature > 23 ?

Figure 3: Waiting for events

actions. Commands execute actions, e.g. start DVD playback. They are
the only way to create side effects in the application. Most commands
are introduced by components as discussed above, but some fundamental
commands are defined in our modeling language. The let command assigns
the value of an expression (see section 3.3) to a local variable. Variables do
not have to be declared. For ease of use, they are implicitly defined once
they are used for the first time.

Applications in ubiquitous computing environments are by their very
nature event-driven. Events reflect changes in the environment, for example
a sensor value crosses a threshold or a user enters a room. Components
define the types of events that are available to an application. Furthermore,
the reception of a signal constitutes an event. The emit statement emits a
signal on a sender (Process1 in Figure 2). All connected receivers receive
the signal.

Our modeling language provides few but powerful constructs to orches-
trate events and commands in a control flow. The wait statement waits
for a single event to occur (Figure 3). It specifies the desired event. A
special event is the timeout event. Events are typed, especially they are
immutable value types. The event type defines the data that describes the
event as properties, e.g. a sensor value or a time stamp. Developers can
constrain events with expressions on these properties, for example that the
sensor value is above a certain threshold. In this case, the wait statement
is satisfied only when the event occurred and the expression holds.

The select statement (Figure 4) waits for any of its wait statements
to complete. It implies an or-semantic. Depending on the event, select
takes a different branch. When both events occur, the one detected first
wins. A common usage pattern for select is to wait for several events or a
timeout as the timeout case often requires additional actions. The introduc-
tion of select as first class citizen in the language has several advantages.
First, it provides an easy to use abstraction for a common programming
pattern. Second, it gives the model transformation a high level view on the
semantics of the application. Consider the example in Figure 4b/c. It is
clear that in (b) the order of event delivery is important to the outcome
of the application. In (c), delivery order does not matter. Guaranteeing
message ordering in a distributed system is difficult and requires expensive
mechanisms. Thus, application level knowledge can be used to synthesize
more efficient implementations by selecting the most appropriate ordering
mechanism.

An event sequence can be detected by sequentially detecting the events

114

Process

Function

Hardware

Location

GUI

Simulation

Ink Mouse Eraser Run

process

loop

receiver

wait

select

split

let

transaction

lamp

call

branch

sender

emit

case

flow

counter

Abort

wait
Blinds.Down

wait
Door.Locked

split

let
x := Start

Blinds.Down

Door.Locked

Process

wait
A

wait
B : B.v = A.v ?

?

loop

A

B

A.v

B.v

B : B.v

Process2

wait
Room.Leave

wait
Room.Enter

wait
timeout = 600

light
L1: Off

select

Room.Leave

Room.Enter

Process3

(a) with timeout

Process

Function

Hardware

Location

GUI

Simulation

Ink Mouse Eraser Run

process

loop

receiver

wait

select

split

let

transaction

lamp

call

branch

sender

emit

case

flow

counter

Abort

wait
A

let
x := x+1

wait
B

let
x := x+2

select
A

B

Process

wait
A

wait
B

select

let
x := x+1

A

B

Process2

wait
Room.Enter

wait
timeout = 600

light
L1: Off

select
Room.Enter

Process3

(b) order relevant

Process

Function

Hardware

Location

GUI

Simulation

Ink Mouse Eraser Run

process

loop

receiver

wait

select

split

let

transaction

lamp

call

branch

sender

emit

case

flow

counter

Abort

wait
A

let
x := x+1

wait
B

let
x := x+2

select
A

B

Process

wait
A

wait
B

select

let
x := x+1

A

B

Process2

wait
Room.Enter

wait
timeout = 600

light
L1: Off

select
Room.Enter

Process3

(c) order irrelevant

Figure 4: The select statement

Process

Function

Hardware

Location

GUI

Simulation

Ink Mouse Eraser Run

process

loop

receiver

wait

select

split

let

transaction

lamp

call

branch

sender

emit

case

flow

counter

Abort

wait
Blinds.Down

wait
Door.Locked

split

let
x := Start

Blinds.Down

Door.Locked

Process

wait
A

wait
B : B.v = A.v ?

 on

completion

A

B

A.v

B.v

B : B.v

Process2

wait
Room.Leave

case
Room.Enter

case
timeout = 600

lamp
M1: Off

select

Room.Leave

Room.Enter

Process3

(a) guarded sequence

Process

Function

Hardware

Location

GUI

Simulation

Ink Mouse Eraser Run

process

loop

receiver

wait

select

split

let

transaction

lamp

call

branch

sender

emit

case

flow

counter

Abort

wait
Blinds.Down

wait
Door.Locked

split

DVD
 Start

Blinds.Down

Door.Locked

Process

wait
A

wait
B : B.v = A.v ?

?

loop

A

B

A.v

B.v

B : B.v

Process2

wait
Room.Leave

case
Room.Enter

case
timeout = 600

lamp
M1: Off

select

Room.Leave

Room.Enter

Process3

(b) parallel detection

Figure 5: Event sequence and event conjunction

that make up the sequence. The example in Figure 4a detects that a person
left a room but did not reenter it in a certain amount of time. In that case
the light in the room is switched off.

This simple form of sequencing has a caveat, when a later wait is con-
strained by an earlier event in the sequence. Consider the example in
Figure 5a. The first wait detects any event A. Once the first wait com-
pleted, this event is fixed. The second event B is constrained to have the
same value as A. As the first A is fixed immediately, the second wait
will never complete on the event sequence A(v = 1), A(v = 2), B(v = 2).
However, in some cases it is necessary to detect A(v = 2), B(v = 2) dis-
regarding of A(v = 1). Thus, the language provides the on completion
guard for sequences. A guarded sequence is only complete when its last
event is detected. The semantics of the guarded sequence are quite dif-
ferent from simple sequences because multiple sequences, e.g. one starting
with A(v = 1) and one with A(v = 2), must be detected in parallel as
any of them could complete. The guarded sequences completes as soon as
the first complete sequence is detected. This concurrent detection implies
that a guarded sequence cannot contain commands that change application
state as the developer cannot know how often such a command would be
executed.

115

Process

Hardware

Function

process

loop

motor

receiver

wait

counter

call

branch

let

sender

emit

Ink Mouse Eraser Run

Signal1

Process1

Receiver1

Process2

emit
Signal1 = 42

wait
timeout = 500

wait
EX > 7 ?

wait
Receiver1

let
a := a*2

a < b² ?

loop

let
a := 1

let
a := 2

1 <= a <= 2 ?

(a) loop and branch (b) function call and definition

Figure 6: Basic control flow elements

The split statement executes threads in parallel. It implies a join at
the end, i.e. it only completes when all its branches complete. When waits
are used inside more than one branch of split, this statement implies an
and semantic for events. This is for example useful to synchronize on the
completion of more than one activity. The particular order of events is
not important. Using combinations of wait, select, and split, the ap-
plication can wait for every possible conjunction and disjunction of events,
conditions, and timeout. In summary, our modeling language provides very
easy to use constructs for composite event detection that have the same ex-
pressive power as specialized composite event languages [14].

Our compact imperative language does of course support loops and
branches (Figure 6a). Loops corresponds to while-loops in C-style pro-
gramming languages. The branch on the right side of Figure 6a tests
whether a is in a given range.

For convenience and reuse, developers can define and call functions
(Fig. 6b). Functions can have multiple in and out parameters and local
variables. No static variables are allowed as this would contradict our
requirement that there is no global state.

Figure 7 shows a complete example application. The DVD processes
switches the room to cinema mode (lights off, high volume) when DVD play-
back starts and switches back to normal mode when the playback stopped.
The second process Light switches the light on when someone moves in the
room. The special signal Suspend and Reset are used to coordinate both
processes. The DVD process suspends Light when it is in cinema mode.

3.3 Mathematical Expressions

Our modeling language features side-effect free mathematical expressions.
Every command can contain various mathematical expressions to compute
values. Thus, the modeling language distinguishes explicitly between com-

116

Figure 7: Example application

mands, which produce side-effects, and mathematical computations that
are free of side-effects. The main rational behind this restriction is that
one expression can be evaluated multiple times at different locations with-
out effecting the applications control flow. This is important for generating
a distributed implementation of the application. Imagine a wait statement
that waits for any temperature sensor to cross a certain threshold. Instead
of sending all events from each sensor to a central controller that evaluates
the the threshold expression, it is desirable to evaluate this expression on
each sensor device and only send a message when the expression holds.

3.4 Location

Location is an essential concept in ubiquitous applications. In VRDK the
user arranges components on a floor plan to tell the tool about the location
of a component. Thus, the user can create a static location model [3][6][12].

The programmer can either hardwire a location in his script or he can
handle location as a parameter. Hardwiring is the straight forward solution
to many simple problems. When you want to play music in the living room,
you can simply instruct the “play” command to use the Media Center PC,
which is located in the living room.

Now imagine you want to write a script that turns on the light in
any room when someone enters the room. Using hardwired locations, the
user would have to program one process for every room. This results in
duplicated code since the processes will all contain the same control flow.
The only differences are the hardwired devices.

In our modeling language we solve this problem with location-dependent
process groups (Figure 8a). The process group executes one process for ev-
ery location, for example for every room, floor, or house. All processes of

117

(a) process group (b) location model query

Figure 8: Location-dependent processing

the group share the same control flow. Creating such a process group is
extremely simple. The developer just selects Run in every room in the
property dialog of the process. Instead of using location-specific compo-
nents or services (e.g. the motion sensor in the living room), the user can
use anonymous components. For process groups, VRDK offers an anony-
mous instance of every supported component or service. Upon execution
of a process group, VRDK detects which anonymous components are used
and determines via the location model their location-specific counterparts.
In our example, VRDK will find out that the process group requires one
motion sensor and one controllable lamp per room. Rooms that do not
feature the required components do not participate in the process group.

Another way of dealing with location in VRDK is to query the location
model at runtime. Using the find any command the developer can search
for a certain device type at some location. Figure 8b uses command to
extend the previous example. If someone enters the room, the application
searches for an MsAgent and lets it speak. VRDK detects the query for
this component type and does therefore not demand such a component for
every room. Hence, we can still use one process group even though not
every room has an MsAgent.

4 Model Execution

VRDK has a built-in interpreter that can directly execute the model. The
first step of the interpreter is to build a state machine for every process. In
the second step, the interpreter initializes all components specified in the
model. Therefore, it uses the plugins. A VRDK plugin support the inter-

118

preter with components initialization, execution of component commands,
and notification of component events.

The interpreter is especially useful for rapid prototyping since it allows
the developer to run and test a complex distributed application by just
hitting the Run button. This convenience comes at a cost. Most notably,
the interpreter executes on the same PC that runs VRDK. All components
are remote controlled by this PC and must keep a connection to this PC.
Especially in the context of mobile devices such as PDAs or Smartphones,
this is no viable solution for a productive environment. Furthermore, the
network load is tremendous since every piece of information must be sent to
the PC. However, the interpreter is very useful for testing and debugging.

One common problem of debugging an application developed with a
model-driven tool chain is the missing abstraction at debugging time. Usu-
ally, debuggers operate on the PSM-level (i.e. C++ or C#) while the
programmer would prefer working on the PIM-level. Using the interpreter
this problem is eliminated. The interpreter knows which process and com-
mand of the model it currently executes. Thus, it can provide the developer
feedback directly on the PIM-level instead of the PSM-level.

For the deployment of the application in a real system the model must
be executed by a distributed implementation. It is the task of model trans-
formers to synthesize these implementations. The model transformers par-
tition the application model and assign application parts to different de-
vices. Our transformers work on the same state machines that are used for
the interpreter. State machines can be distributed over a set of devices. In
order to make a state transition, an activation message must be sent to the
device that has the target state. Generating efficient and robust distributed
implementations is still subject of ongoing research. The discussion of code
generation is beyond the scope of this paper.

5 Related Work

The need for programming abstractions for pervasive computing has led to
a number of different solutions. As already discussed before, runtime ab-
stractions are one way to approach the problem. One example is BASE [5]
and its complementing component model PCOM [4], both run on top of the
J2ME Limited Connected Device Configuration [16]. While BASE/PCOM
offers a fairly sophisticated programming model, BASE/PCOM compo-
nents are written against a device and the developer is responsible to or-
chestrate the communication between components on different devices. At
the same time J2ME prohibits the use on very small devices.

Approaches like TinyOS [10] target even smaller devices. However,
TinyOS provides an even less powerful programming model. On interesting
aspect of TinyOS and TinyOS applications is that they are implemented in

119

nesC [7]. The language is an extension of C that restricts the expressiveness
of C in such a way that full program analysis is possible. This can be
used for dead-code elimination or to detect race conditions. This is useful
for embedded devices and shares some similarities with a model-driven
approach.

Model-driven development is a viable approach to deal with the com-
plexity in certain application domains [19]. Consequently, it has been ap-
plied to the field of distributed embedded systems. For some problem
domains standardized extensions to the UML exist, e.g. the UML Real-
time profile. Tools like AIRES analyze models with real-time constraints
and synthesize an implementation [9]. The CoSMIC [8] tool applies model-
driven development to the field of distributed embedded real-time systems.
As a main difference to our approach CoSMIC assumes the existence of
a rich execution platform such as CIAO [17]. The model transformation
main responsibility is to configure the middleware for QoS provisioning.
Our first approach was to build on our extensible UML-based modeling tool
Kase [18]. However, we came to the conclusion that UML is not an ideal
basis for our modeling language. UML originates in the object-oriented
paradigm that is well suited for dealing with complexity of application
logic. However, in our application domain the application logic is rather
simple compared to its implementation. As UML is a general purpose mod-
eling language, it does not feature the modeling concepts that we need. But
extending and redefining the semantics of UML often leads to undesirable
results [2].

Recently research started to focus on more high-level programming ab-
stractions. Location-enhanced applications are a special application do-
main for pervasive computing. Topiary [13] is a graphical tool for pro-
totyping location-enhanced applications. Unlike our approach it is built
on the idea of storyboards. Developers can define what GUI elements are
shown when certain constraints on the locations of users are met. However,
due to the storyboard the control flow is limited and it was not designed
to actually control the environment.

In [11] an editor for applications in ubiquitous domestic environments is
presented. It allows the user to connect components using a jigsaw puzzle-
style approach. Devices available in a room present themselves as a jigsaw
piece on a graphical editor. For example, pieces for motion detector, cam-
era, and PDA can be combined to construct a simplistic surveillance system.
The motion detector triggers the camera and the camera shows its picture
on the PDA. The drawback of this approach is that it has only a linear
control flow and no means for mathematics. Essential control structures
like branches and loops cannot be mapped to this programming model.

120

6 Conclusions & Outlook

We presented a modeling language for applications in pervasive computing
environments. Our executable modeling language is specialized for this ap-
plication domain. Parallelism, events, location, and components are first
class citizens in the language. With the interpreter we could test the se-
mantics of the language and the usefulness of the modeling elements. We
believe that only with high level abstractions and a careful restriction of ex-
pressiveness, i.e. no global state, no side-effects, the generation of efficient
and robust implementations is possible. A model-driven approach has sub-
stantial advantages over a solely source-code-based development process.
It maintains a high-level abstraction and can at the same time target het-
erogeneous devices with different programming models.

Currently our research focuses on the generation of implementations.
Our two main concerns are efficiency and robustness. Pervasive computing
systems are prone to errors. Messages can get lost, devices can fail, and
even worse the user can interfere with the environment in any unforeseeable
way. Applications should keep working in face of such errors or recover au-
tomatically. Due to resource restrictions classic fault-tolerance techniques
are not suitable. Thus, we investigate how self-stabilizing implementations
can be generated.

References

[1] G. D. Abowd. Software engineering issues for ubiquitous computing.
In Proceedings of The 21st International Conference on Software En-
gineering (ICSE 1999), page 75, Los Angeles, USA, May 1999. IEEE.

[2] C. Atkinson, T. Kühne, and B. Henderson-Sellers. Stereotypical en-
counters of the third kind. In UML 2002, 2002.

[3] C. Becker and F. Dürr. On location models for ubiquitous computing.
Personal and Ubiquitous Computing, 9(1):20–31, 2005.

[4] C. Becker, M. Handte, G. Schiele, and K. Rothermel. PCOM – A com-
ponent system for pervasive computing. In Proceedings of the Second
International Conference on Pervasive Computing and Communica-
tions (PerCom’04), page 67, Orlando, Florida, 2004.

[5] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel. BASE – A
micro-broker-based middleware for pervasive computing. In Proceed-
ings of the First International Conference on Pervasive Computing and
Communications (PerCom’03), page 443, Fort Worth, Texas, 2003.

121

[6] B. Brumitt and S. S. Topological world modeling using semantic
spaces. In Workshop on Location Modeling for Ubiquitous Comput-
ing, 2001.

[7] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: A holistic approach to networked embedded sys-
tems. In Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, pages 1–11. ACM
Press, 2003.

[8] A. Gokhale, K. Balasubramanian, J. Balasubramanian, A. Krishna,
G. T. Edwards, G. Deng, E. Turkay, J. Parsons, and D. C. Schmidt.
Model Driven Middleware: A new paradigm for deploying and pro-
visioning distributed real-time and embedded applications. Journal
of Science of Computer Programming: Special Issue on Model Driven
Architecture, 2004.

[9] Z. Gu and K. G. Shin. Synthesis of real-time implementation from
uml-rt models. In Proceeding of the RTAS Workshop an Model-Driven
Embedded Systems (MoDES’04), Toronto, Canada, May 2004. IEEE.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System archtecture directions for networked sensors. SIGPLAN Not.,
35(11):93–104, 2000.

[11] J. Humble, A. Crabtree, T. Hemmings, K. kesson, B. Koleva, T. Rod-
den, and P. Hansson. playing with the bits user-configuration of ubiq-
uitous domestic environments. In UbiComp2003, 2003.

[12] B. Johanson, A. Fox, and T. Winograd. The interactive workspaces
project: Experiences with ubiquitous computing rooms. IEEE Perva-
sive Computing, 1(2):67–74, 2002.

[13] Y. Li, J. Jong, and J. Landay. Topiary: a tool for prototyping location-
enhanced applications. In Proceedings of the 17th annual ACM sym-
posium on User interface software and technology, pages 217 – 226.
ACM Press, 2004.

[14] P. R. Pietzuch, B. Shand, and J. Beacon. Composite event detec-
tion as a generic middleware extension. IEEE Network, pages 44–55,
January/February 2004.

[15] J. Schiller, A. Liers, H. Ritter, R. Winter, and T. Voigt. Scatterweb
- low power sensor nodes and energy aware routing. In Proceedings of
Hawaii International Conference on System Sciences (HICSS 2005),
Hawaii, USA, Jan. 2005.

122

[16] Sun Microsystems, Inc. J2ME Connected Limited Device Configura-
tion (CLDC), Specification Version 1.1. JSR-139, Mar. 2003.

[17] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan,
J. P. Loyall, R. E. Schantz, and C. D. Gill. QoS-enabled Middleware.
Wiley and Sons, New York, 2003.

[18] T. Weis, A. Ulbrich, and K. Geihs. Model metamorphosis. IEEE
Software, 20(5):46–51, September/October 2003.

[19] T. Weis, A. Ulbrich, K. Geihs, and C. Becker. Quality of service in mid-
dleware and applications: A model-driven approach. In Proceedings of
the 8th International Enterprise Distributed Object Computing Con-
ference (EDOC 2004), Monterey, California, USA, Sept. 2004. IEEE
CS Press.

123

15. Tero Harju and Iiro Honkala (Eds.)

16. Christer Carlsson (Editor)

17. Christer Carlsson (Editor)
18. Ralph-Johan Back, Timo Järvi, Nina Kivinen, Leena Palmulaakso-Nylund and

Thomas Sund (Eds.)

, Proceedings of the Seventh Nordic
Combinatorial Conference

, The State of the Art of Information System
Applications in 2007

, Information Systems Day

, Turku Centre for Computer Science, Annual Report 1999
20. Reima Suomi, Jarmo Tähkäpää (Eds.)
21. Johan Lilius, Seppo Virtanen (Eds.)
22. Mikael Collan
23.

(Eds.)

24. Ralph-Johan Back and Victor Bos

25. Pirkko Walden, Stina Störling-Sarkkila, Hannu Salmela and Eija H. Karsten
(Eds.)

26. Timo Järvi and Pekka Reijonen (Eds.)

27. Tero Harju and Juhani Karhumäki (Eds.)
28. Mats Aspnäs, Christel Donner, Monika Eklund, Pia Le Grand, Ulrika

Gustafsson, Timo Järvi and Nina Kivinen (Eds.)

29. João M. Fernandes, Johan Lilius, Ricardo J. Machado and Ivan Porres (Eds.)

30. Mats Aspnäs, Christel Donner, Monika Eklund, Ulrika Gustafsson, Timo Järvi
and Nina Kivinen (Eds.)

31. Andrei Sabelfeld (Eds.)

32. Eugen Czeizler and Jarkko Kari (Eds.)

33. Peter Selinger (Eds.)

35. Kai Koskimies, Ludwik Kuzniarz, Johan Lilius and Ivan Porres (Eds.)

36. Franca Cantoni and Hannu Salmela (Eds.)

37. Ralph-Johan Back and Kaisa Sere
38. Mats Aspnäs, Christel Donner, Monika Eklund, Ulrika Gustafsson, Timo Järvi

and Nina Kivinen (Eds.)
39. Johan Lilius, Ricardo J. Machado, Dragos Truscan and João M. Fernandes

(Eds.)

, Health and Wealth trough Knowledge
, TTA Workshop Notes 2002

, Investment Planning – An Introduction

,
Turku Centre for Computer Science, Annual Report 2000-2001

, Centre for Reliable Software Technology,
Progress Report 2003

, ICT and Services: Combining Views from IS and Service Research
, People and Computers: Twenty-one Ways

of Looking at Information Systems
, Proceedings of WORDS'03

, Turku Centre for Computer
Science, Annual Report 2002

,
Proceedings of the 1st International Workshop on Model-Based Methodologies for
Pervasive and Embedded Software

, Turku Centre for Computer Science, Annual Report 2003
, Proceedings of FCS'04 Workshop on Foundations of

Computer Security
, Proceedings of DMCS'04 Workshop on

Discrete Models for Complex Systems
, Proceedings of the 2nd International Workshop on Quantum

Programming Languages
,

Proceedings of the 2nd Nordic Workshop on the Unified Modeling Language
NWUML'2004

, Proceedings of the Finnish-Italian
Workshop on Information Systems, FIWIS 2004

, CREST Progress Report 2002-2003

, Turku Centre for Computer Science, Annual Report 2004

, Proceedings of MOMPES'05, 2nd International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software

Mats Aspnäs, Christel Donner, Monika Eklund, Pia Le Grand, Ulrika
Gustafsson, Timo Järvi, Nina Kivinen, Maria Prusila, Thomas Sund

Turku Centre for Computer Science

TUCS General Publications

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics and Business Administration

Department of Computer Science

Institute for Advanced Management Systems Research

Institute of Information Systems Sciences

�

�

�

�

�

ISBN 952-12-1556-9

ISSN 1239-1905

