
Michal Kunc | Alexander Okhotin (Eds.)

Turku Centre Computer Sciencefor

TUCS General Publication
No 44, June 2007

Theory and Applications of

Language Equations

Proceedings of the 1st International Workshop,

Turku, Finland, 2 July 2007

TUCS General Publication

No 44, June 2007

Theory and Applications of

Language Equations

Proceedings of the 1st International Workshop,

Turku, Finland, 2 July 2007

Michal Kunc

Alexander Okhotin

Editors:

Editors

Michal Kunc

Department of Mathematics

Masaryk University

Janáčkovo nám. 2a

602 00 Brno

Czech Republic

Alexander Okhotin

Department of Mathematics

University of Turku

Yliopistonmäki

20014 Turku

Finland

ISBN 978–952–12–1920–7

ISSN 1239–1905

Painosalama Oy

Turku, Finland

2007

Preface

The first workshop on Theory and Applications of Language Equations
(TALE 2007) was held in Turku, Finland on 2 July 2007 as a satellite event
to the annually held conference on Developments in Language Theory (DLT
2007).

The main topic of the workshop are equations with formal languages as un-
knowns. Such equations are among the most natural objects of formal language
theory and have been studied since its inception in early 1960s. The recent
renewal of interest in this fundamental subject prompted us to organize a work-
shop aimed to bring together researchers working on different aspects of different
variants of language equations and related formalisms. The scope of the work-
shop covers such subjects as decision problems for language equations, families
of languages defined by language equations, language equations with various op-
erations, different forms of language equations, identities on formal languages,
representation of applied problems by language equations, conjunctive gram-
mars, Boolean grammars, descriptional complexity of language equations and
set constraints.

The workshop programme consisted of 3 invited talks given by experts in
areas closely related to language equations, and of 6 contributed talks selected
by the programme committee, with each submission being reviewed by at least
three programme committee members.

We are grateful to all authors for their contributions to this event and to the
programme committee for selecting the workshop programme. The reviewing
process was conducted using EasyChair and this volume was typeset using TEX,
and we are grateful to Andrei Voronkov and Donald Knuth for their respective
systems.

We are indebted to the co-chairmen of DLT 2007, Tero Harju and Juhani
Karhumäki, for their support of our workshop. Let us thank all organizers of
DLT 2007, Vesa Halava in particular, for their help with local arrangements,
and Elisa Mikkola for secretarial assistance. We wish to thank our publisher,
Turku Centre for Computer Science, and the printing office, Painosalama Oy,
for an efficient production of this volume.

Finally, we are grateful to the Academy of Finland for generous financial
support to this workshop granted within project 118540, “Language equations”.

June 2007 Michal Kunc
Alexander Okhotin

iii

Workshop Organization

Programme Committee

Juhani Karhumäki (Turku, Finland)
Michal Kunc (Brno, Czech Republic, acting chairman)
Alexander Okhotin (Turku, Finland, ex-chairman)
Kai Salomaa (Kingston, Ontario, Canada)
Sophie Tison (Lille, France)

Local Organization

Alexander Okhotin

External Reviewers

Françoise Gire
Artur Jeż
Michel Latteux
Christos Nomikos
Yves Roos

iv

Workshop Programme

Monday, 2 July 2007

9:50 Opening
10:00 Invited speaker: W. Kuich (joint work with Z. Ésik)

“Fixed points in semiring theory” (p. 5)
11:00 Coffee break
11:30 Invited speaker: W. Charatonik

“Set constraints and language equations” (p. 1)
12:30 M. Daley, M. Domaratzki, K. Salomaa

“On the operational orthogonality of languages” (p. 43)
13:00 Lunch
14:30 Invited speaker: N. Yevtushenko

(joint work with T. Villa and S. Zharikova)
“Solving language equations over synchronous and parallel
composition operators” (p. 14)

15:30 J. Cassaigne, J. Karhumäki, P. Salmela

“Conjugacy of finite biprefix codes” (p. 33)
16:00 O. Ly

“A constructive solution of the language inequation XA ⊆ BX” (p. 76)
16:30 Coffee break
17:00 V. Kountouriotis, C. Nomikos, P. Rondogiannis

“Conjunctive macro grammars” (p. 67)
17:30 D. Zook

“Multi-conjunctive grammars” (p. 85)
18:00 A. Jeż, A. Okhotin

“Language equations with positional addition” (p. 54)
18:30 Closing

All talks were held at the ICT building of the University of Turku (Jouka-
haisenkatu 3–5 B), in lecture hall Beta.

v

vi

Table of Contents

Preface . iii

Workshop Organization . iv

Workshop Programme . v

Invited papers

Set constraints and language equations . 1
Witold Charatonik

Fixed points in semiring theory . 5
Zoltán Ésik, Werner Kuich

Solving language equations over synchronous and parallel composition
operators . 14
Nina Yevtushenko, Tiziano Villa, Svetlana Zharikova

Contributed papers

Conjugacy of finite biprefix codes . 33
Julien Cassaigne, Juhani Karhumäki, Petri Salmela

On the operational orthogonality of languages . 43
Mark Daley, Michael Domaratzki and Kai Salomaa

Language equations with positional addition . 54
Artur Jeż, Alexander Okhotin

Conjunctive macro grammars . 67
Vassilis Kountouriotis, Christos Nomikos, Panos Rondogiannis

A constructive solution of the language inequation XA ⊆ BX 76
Olivier Ly

Multi-conjunctive grammars . 85
David Zook

Author Index . 101

vii

Set constraints and language equations

Witold Charatonik

Institute of Computer Science, University of WrocÃlaw, Poland

Abstract. Set constraints are relations between sets of ground terms
over a given alphabet. Syntactically, they are conjunctions of inclusions
between expressions built over variables, constructors (constants and
function symbols from a given alphabet) and a choice of set operators
that defines a specific class of set constraints. They give a natural formal-
ism for many problems in program analysis, type inference, order-sorted
unification, constraint logic programming.
In this talk we briefly present the history of set constraints, the methods
of solving them and the complexity of their satisfiability problem. We
also give some examples of applications, in particular in solving restricted
classes of language equations over tree and word languages.

1 Introduction

Set constraints denote relations between sets of trees. Syntactically, they are
conjunctions of inclusions between expressions built over variables, constructors
(constants and function symbols from a given alphabet) and a choice of set oper-
ators that defines a specific class of set constraints. The main application domain
is set-based program analysis and type inference for functional, imperative and
logic programming languages, but they are also used in order-sorted languages
and in constraint logic programming.

Set constraints were studied from the logical and topological point of view and
also in domains different from the Herbrand universe. See [1, 8, 9] for overviews
on set constraints.

1.1 Syntax and semantics

Syntactically, a system of set constraints is a finite conjunction of inclusions
E ⊆ E′ (or, in the case of negative set constraints, also E 6⊆ E′), where E and
E′ are set expressions over a given finite signature Σ of function symbols, and
an infinite collection V of set-valued variables. Set expressions are generated by
the grammar

E ::= ⊥ | > | α | E ∪ E | E ∩ E | Ē | f(E1, ..., En) | f−i(E)

where α is a set variable in V and f ∈ Σ. In different papers this grammar is
often restricted or extended by some specific set operators to obtain different
classes of constraints.

M. Kunc, A. Okhotin (Eds.): Theory and Applications of Language Equations
TUCS General Publication No 44, pp. 1–4, 2007.

2 Witold Charatonik

Semantically, the variables range over subsets of the Herbrand universe TΣ

over Σ, i.e., over sets of constant (ground) terms. A system of set constraints is
said to be consistent if there exists a mapping (called the solution of the system)
assigning sets of ground terms over Σ to the variables in such a way that the
conjunction of inclusions evaluates to true. More formally, if σ : V → P(TΣ)
assigns to variables in V sets of ground terms in TΣ then we define

[[⊥]]σ = ∅
[[>]]σ = TΣ

[[α]]σ = σ(α)
[[E1 ∪ E2]]σ = [[E1]]σ ∪ [[E2]]σ
[[E1 ∩ E2]]σ = [[E1]]σ ∩ [[E2]]σ

[[Ē]]σ = TΣ \ [[E]]σ
[[f(E1, ..., En)]]σ = {f(t1, . . . , tn) | t1 ∈ [[E1]]σ, . . . tn ∈ [[En]]σ}

[[f−i(E)]]σ = {ti | ∃t1, . . . , ti−1, ti+1, . . . , tn : f(t1, . . . , tn) ∈ [[E]]σ}

and say that σ is a solution of
∧

i Ei ⊆ E′
i if [[Ei]]σ is a subset of [[E′

i]]σ for all i.

2 Set constraints as language equations

Here we formulate some results from the theory of set constraints in terms of
language equations, both for tree and word languages.

2.1 Tree languages

A tree language over a signature Σ is any subset of the Herbrand universe TΣ .
It is regular if it can be recognized by a finite tree automaton.

Theorem 1 ([3, 4]). The satisfiability problem for systems of equations of the
form

∧n
i=1 Ei = E′

i, where Ei and E′
i are expressions generated by the grammar

in Section 1.1, is NEXPTIME-complete.

Now we consider equations in a form similar to a tree grammar. Formally,
we call a system of equations over tree languages definite if it is of the form∧n

i=1 αi = Ei where αi are distinct variables and Ei are expressions, generated
by the grammar in Section 1.1, that do not contain the complement symbol.
The emptiness problem for a system E of definite equations and a variable α is
a problem whether for every solution σ of E the set σ(α) is empty. A solution σ
is regular if for every variable α the set σ(α) is a regular tree language.

Theorem 2 ([7, 5, 6]). Every system of definite equations is satisfiable and it
has both the least and the greatest solution. Both these solutions are regular and
can be effectively computed in DEXPTIME. The emptiness problem for systems
of definite equations is DEXPTIME-complete.

This theorem remains true for languages of infinite trees, see [6] for details.

Set constraints and language equations 3

2.2 Word languages

Let A be a finite alphabet. Consider expressions generated by the grammar

E ::= ⊥ | > | a | α | E ∪ E | E ∩ E | Ē | aE | a−1(E)

where α is a variable in V and a ∈ A, with the semantics given by

[[⊥]]σ = ∅
[[>]]σ = A∗

[[α]]σ = σ(α)
[[E1 ∪ E2]]σ = [[E1]]σ ∪ [[E2]]σ
[[E1 ∩ E2]]σ = [[E1]]σ ∩ [[E2]]σ

[[Ē]]σ = A∗ \ [[E]]σ
[[aE]]σ = {aw | w ∈ [[E]]σ}

[[a−1(E)]]σ = {w ∈ A∗ | aw ∈ [[E]]σ}
where σ : V → P(A∗) is any assignment of languages over A to variables in V.

Theorem 3. The satisfiability problem for systems of equations of the form∧n
i=1 Ei = E′

i, where Ei and E′
i are expressions generated by the grammar above,

is DEXPTIME-complete.

The proof of this theorem is an easy reduction to and from unary set con-
straints [2], combined with elimination of projection symbols that is possible in
the unary case.

References

1. A. Aiken. Set constraints: Results, applications and future directions. In Proceedings
of the Workshop on Principles and Practice of Constraint Programming, volume 874
of LNCS, pages 326–335, 1994.

2. A. Aiken, D. Kozen, M. Vardi, and E. L. Wimmers. The complexity of set con-
straints. In Computer Science Logic’93, volume 832 of LNCS, pages 1–17, 1993.

3. L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic
class. In Eighth Annual IEEE Symposium on Logic in Computer Science, pages
75–83, 1993.

4. W. Charatonik and L. Pacholski. Set constraints with projections are in NEXP-
TIME. In Proceedings of the 35th Symposium on Foundations of Computer Science,
pages 642–653, 1994.

5. W. Charatonik and A. Podelski. Set constraints with intersection. In Twelfth Annual
IEEE Symposium on Logic in Computer Science, pages 362–372, 1997.

6. W. Charatonik and A. Podelski. Co-definite set constraints. In 9th International
Conference on Rewriting Techniques and Applications, volume 1379 of LNCS, pages
211–225, 1998.

7. N. Heintze and J. Jaffar. A decision procedure for a class of set constraints. In Fifth
Annual IEEE Symposium on Logic in Computer Science, pages 42–51, 1990.

8. N. Heintze and J. Jaffar. Set constraints and set-based analysis. In Proceedings of
the Workshop on Principles and Practice of Constraint Programming, volume 874
of LNCS, pages 281–298, 1994.

4 Witold Charatonik

9. L. Pacholski and A. Podelski. Set constraints - a pearl in research on constraints.
In Proceedings of the Third International Conference on Principles and Practice of
Constraint Programming - CP97, volume 1330 of LNCS, 1997.

Fixed points in semiring theory?

Zoltán Ésik1,2 and Werner Kuich3

1 University of Szeged, Hungary
ze@inf.u-szeged.hu

2 Rovira i Virgili University, Tarragona, Spain
3 Technische Universität Wien, Austria

kuich@tuwien.ac.at

Abstract. We consider fixed point theory in continuous semirings and
discuss the Bekić-DeBakker-Scott rule, the diagonal equation and the
parameter identity.

We show applications to formal power series theory: deleting linear terms
in an algebraic system; and a Kleene Theorem for algebraic power series.

1 Introduction and preliminaries

Fixed point theory plays a prominent rôle in Theoretical Computer Science. Due
to a well-known fixed point theorem, complete partially ordered sets and contin-
uous functions have been used widely to give semantics to recursive definitions
(see Bloom, Ésik [2], Guessarian [9]) and to achieve least solutions to algebraic
systems (see Ginsburg, Rice [7], Kuich [12]). This paper gives an introduction
to the latter application of fixed point theory.

The paper consists of this and three more sections. In Section 2, we quote
the fixed point theorem and three very important facts about fixed points of
continuous functions: the Bekić-DeBakker-Scott rule, the diagonal equation and
the parameter identity.

In Section 3, we give the basics of algebraic systems and show how the fixed
point theorem yields least solutions to algebraic systems. In the last section,
we apply fixed point theory to algebraic systems (and hence, to context-free
grammars): deleting linear terms in algebraic systems; and a Kleene Theorem
for algebraic power series.

We now give some well-known facts about continuous semirings and complete
partially ordered sets.

A commutative monoid 〈A, +, 0〉 is called ordered iff it is equipped with a
partial order ≤ preserved by the + operation such that 0 ≤ a holds for all a ∈ A.
It then follows that a ≤ a + b, for all a, b ∈ A. In particular, a commutative
monoid 〈A, +, 0〉 is called naturally ordered iff the relation v defined by: a v b
iff there exists a c such that a + c = b, is a partial order.

? Partially supported by Aktion Österreich-Ungarn, Wissenschafts- und Erziehungsko-
operation, Projekt 68öu2.

M. Kunc, A. Okhotin (Eds.): Theory and Applications of Language Equations
TUCS General Publication No 44, pp. 5–13, 2007.

6 Zoltán Ésik and Werner Kuich

Recall that a non-empty subset D of a partially ordered set P is called
directed iff each pair of elements of D has an upper bound in D. Moreover, a
function f : P → Q between partially orderet sets is continuous iff it preserves
the least upper bound of any directed set, i.e., when f(sup D) = sup f(D), for
all directed sets D ⊆ P such that sup D exists. It follows that any continuous
function preserves the order.

An ordered commutative monoid 〈A, +, 0〉 is called a continuous monoid iff
each directed subset of A has a least upper bound and the + operation preserves
the least upper bound of directed sets, i.e., when

a + supD = sup(a + D) ,

for all directed sets D ⊆ A and for all a ∈ A. Here, a+D is the set {a+x | x ∈ D}.
It is known that an ordered commutative monoid A is continuous iff each

chain in A has a least upper bound and the + operation preserves least upper
bounds of non-empty chains, i. e., when a + supC = sup(a + C) holds for all
non-empty chains C in A. (See Markowsky [14].)

Proposition 1.1 Any continuous monoid 〈A,+, 0〉 is a complete monoid
equipped with the following sum operation:

∑

i∈I

ai = sup{
∑

i∈E

ai | E ⊆ I, E finite} ,

for all index sets I and all families (ai | i ∈ I) in A.

A semiring 〈A, +, ·, 0, 1〉 is called ordered if 〈A,+, 0〉 is an ordered monoid
and multiplication preserves the order. When the order on A is the natural order,
〈A, +, ·, 0, 1〉 is automatically an ordered semiring.

A semiring 〈A, +, ·, 0, 1〉 is called continuous if 〈A, +, 0〉 is a continuous
monoid and if multiplication is continuous, i.e.,

a · (sup
i∈I

ai) = sup
i∈I

(a · ai) and (sup
i∈I

ai) · a = sup
i∈I

(ai · a)

for all directed sets {ai | i ∈ I}. It follows that the distribution laws hold for
infinite sums:

a · (
∑

i∈I

ai) =
∑

i∈I

(a · ai) and (
∑

i∈I

ai) · a =
∑

i∈I

(ai · a)

for all families (ai | i ∈ I).
A complete partially ordered set, or cpo, for short, is a partially ordered set P

which has a bottom element, usually denoted ⊥, such that sup D exists for each
directed set D ⊆ P . Note that continuous monoids and continuous semirings are
cpo’s. When P and Q are cpo’s, a function f : P → Q is called continuous if f
preserves the least upper bound of directed sets (see also above). It is clear that
any composition of continuous functions is continuous, and any direct product
of cpo’s is a cpo equipped with the pointwise order. Moreover, when P, Q are

Fixed points in semiring theory 7

cpo’s, the set of continuous functions P → Q equipped with the pointwise order
is also a cpo.

Suppose that P and Qi, i ∈ I, are cpo’s and let
∏

i∈I Qi denote the direct
product of the Qi. Then for any j ∈ I, the jth projection function

∏
i∈I Qi → Qj

is continuous. Moreover, a function f : P → ∏
i∈I Qi is continuous iff each

“component function” fi : P → Qi is continuous. And when I is finite, say
I = {1, . . . , n}, then a function f :

∏
i∈I Qi → P is continuous iff it is continuous

separately in each argument, i. e., when

f(a1, . . . , sup D, . . . , an) = sup f(a1, . . . , D, . . . , an)

holds for each 1 ≤ i ≤ n, aj ∈ Qj , j 6= i, and for each directed set D ⊆ Qi.

2 Fixed points

The following well-known fixed point theorem plays a central rôle in our consid-
erations, see, e. g., Bloom, Ésik [2], Guessarian [9].

Theorem 2.1 Suppose that P and Q are cpo’s and f is a continuous function
P ×Q → P . Then for each q ∈ Q there is a least p ∈ P with p = f(p, q), called
the least fixed point of f with respect to the parameter q. Moreover, the function
Q → P that takes q to the least fixed point p is continuous.

The function Q → P arising from Theorem 2.1 that provides the parameter-
ized least fixed point for a given continuous function f : P ×Q → P is denoted
µx.f(x, y).

We now recall three very important elementary facts about least fixed points
of continuous functions. Theorem 2.2 is independently due to Bekić [1] and De
Bakker, Scott [3]. For Proposition 2.3, see also Niwiński [15].

Theorem 2.2 Suppose that f : P × Q × R → P and g : P × Q × R → Q are
continuous functions, where P,Q, R are cpo’s. Let h : P ×Q×R → P×Q denote
the “target pairing” of f and g, so that h(x, y, z) = (f(x, y, z), g(x, y, z)). Then

µ(x, y).h(x, y, z) = (µx.f(x, k(x, z), z), k(µx.f(x, k(x, z), z), z))

where µ(x, y).h(x, y, z) : R → P ×Q and k(x, z) = µy.g(x, y, z) : P ×R → Q.

Proposition 2.3 Suppose that f : P × P × Q → P is a continuous function,
where P and Q are cpo’s. Then

µx.µy.f(x, y, z) = µx.f(x, x, z).

Proposition 2.4 Suppose that f : P × Q → P and g : R → Q are continuous
functions, where P, Q,R are all cpo’s. Then

µx.f(x, g(z)) = h(g(z)) ,

8 Zoltán Ésik and Werner Kuich

where h(y) = µx.f(x, y).

We refer to the equation in Theorem 2.2 as the Bekić-DeBakker-Scott rule.
The equation in Proposition 2.3 is usually referred to as the diagonal equation,
or the double iteration equation. In the terminology of Bloom, Ésik [2], Proposi-
tion 2.4 asserts that the parameter identity holds.

The above results describe three equational properties of the least fixed
point operation on continuous functions. For a complete description, we refer
the reader to Bloom, Ésik [2], Ésik [5]. Least fixed points of continuous func-
tions on cpo’s are also least pre-fixed points. In Ésik [4], it is shown that the
equational properties of the least fixed point operation on continuous functions
on cpo’s are exactly the same as those of the least pre-fixed point operation on
order preserving functions on partially ordered sets in general.

3 Algebraic systems

We now define the basic notions concerning algebraic systems. In the sequel, A
denotes a continuous commutative semiring, Σ denotes an alphabet of letters
and Y = {y1, . . . , yn} denotes a finite set of variables. An algebraic system (with
variables in Y = {y1, . . . , yn}) is a system of equations

yi = pi, 1 ≤ i ≤ n ,

where each pi is a polynomial in A〈(Σ∪Y)∗〉. A solution to the algebraic system
yi = pi, 1 ≤ i ≤ n, is given by (σ1, . . . , σn) ∈ (A〈〈Σ∗〉〉)n such that

σi = pi(σ1, . . . , σn), 1 ≤ i ≤ n .

A solution (σ1, . . . , σn) of the algebraic system yi = pi, 1 ≤ i ≤ n, is termed a
least solution iff

σi ≤ τi, 1 ≤ i ≤ n ,

for all solutions (τ1, . . . , τn) of yi = pi, 1 ≤ i ≤ n.
Often it is convenient to write the algebraic system yi = pi, 1 ≤ i ≤ n, in

matrix notation. Defining the two column vectors

y =

y1

...
yn

 and p =

p1

...
pn

 ,

we can write our algebraic system in the matrix notation

y = p(y) or y = p .

A solution to y = p(y) is now given by σ ∈ (A〈〈Σ∗〉〉)n such that σ = p(σ). A
solution σ of y = p is termed a least solution iff σ ≤ τ for all solutions τ of y = p.

The main result we refer to in this section will be that an algebraic system
has a unique least solution. This is due to the following observations.

Fixed points in semiring theory 9

If the semiring A is a continuous commutative semiring then A〈〈Σ∗〉〉 is a
continuous semiring.

Moreover, for p ∈ A〈〈(Σ ∪ Y)∗〉〉, where Σ ∩ Y = ∅, p induces a continuous
function p : A〈〈Σ∗〉〉 → A〈〈Σ∗〉〉 in the variables of Y . Let now p ∈ (A〈(Σ ∪
Y)∗〉)n×1, i. e., p is a column vector of polynomials. Then p induces a mapping
p : (A〈〈Σ∗〉〉)n → (A〈〈Σ∗〉〉)n by (p(r1, . . . , rn))i = pi(r1, . . . , rn), 1 ≤ i ≤ n, i. e.,
the i-th component of the value of p at (r1, . . . , rn) ∈ (A〈〈Σ∗〉〉)n is given by the
value of the i-th component pi of p at (r1, . . . , rn). It is then easily shown that
this mapping p : (A〈〈Σ∗〉〉)n → (A〈〈Σ∗〉〉)n is continuous.

Consider now an algebraic system y = p. The least fixpoint of the mapping
p is nothing else than the least solution of y = p.

Theorem 3.1 Let A be a continuous commutative semiring. Then the least
solution of an algebraic system y = p exists in (A〈〈Σ∗〉〉)n and equals

µy.p(y) = sup(pj(0) | j ∈ N) .

Proof. By Theorem 2.1. ut
Theorem 3.1 indicates how we can compute an approximation to the least

solution of an algebraic system y = p. The approximation sequence σ0, σ1,
σ2,. . . ,σj ,. . . , where each σj ∈ (A〈〈Σ∗〉〉)n×1, associated to an algebraic system
y = p(y) is defined as follows:

σ0 = 0, σj+1 = p(σj), j ∈ N .

Clearly, (σj | j ∈ N) is a chain and µy.p(y) = sup (σj | j ∈ N), i.,e., we obtain the
least solution of y = p by computing the least upper bound of the approximation
sequence associated to it.

The collection of the components of the least solutions of all algebraic systems
is denoted by Aalg〈〈Σ∗〉〉.

4 Applications

Our first application considers algebraic systems of the form y = My + P .
By Proposition 1.1, all sums exist in A〈〈Σ∗〉〉 and thus in the semiring

(A〈〈Σ∗〉〉)n×n of all n× n-matrices over A〈〈Σ∗〉〉. When M is such a matrix,

M∗ =
∑

i≤0

M i .

An algebraic system yi = pi, 1 ≤ i ≤ n, is called linear system if pi =∑
1≤j≤n Mijyj + Ri, where Mij , Ri ∈ A〈Σ∗〉. Let M ∈ (A〈Σ∗〉)n×n (resp. R ∈

(A〈Σ∗〉)n×1) be the matrix (resp. column vector) with entries Mij (resp. Ri).
Then such a linear system can be written in matrix notation as y = My+R. The

10 Zoltán Ésik and Werner Kuich

approximation sequence σ0, σ1, σ2, . . . , σj , . . . , where each σj ∈ (A〈〈Σ∗〉〉)n×1,
associated to the linear system y = My + R is given by:

σ0 = 0, σj+1 =
∑

0≤i≤j

M iR, j ≥ 0 .

Hence, we have proved the following result.

Theorem 4.1 Let A be a continuous commutative semiring. Then M∗R is the
least solution of the linear system y = My + R, where M ∈ (A〈Σ∗〉)n×n and
R ∈ (A〈Σ∗〉)n×1.

We will now consider a very useful transformation of an algebraic system. We
write an algebraic system in the form y = My + P , where M ∈ (A〈ε〉)n×n and
supp(Pi) ⊆ (Σ ∪ Y)∗−Y , 1 ≤ i ≤ n. Here the entries of My contain polynomials
of the form ayi, a ∈ A, yi ∈ Y .

Theorem 4.2 The least solutions of the algebraic systems y = My + P and
y = M∗P , where M ∈ (A〈ε〉)n×n and supp(Pi) ⊆ (Σ ∪ Y)∗ − Y , 1 ≤ i ≤ n,
coincide.

Proof. We use the proof method of Ésik, Leiß [6]. By the diagonal equation,
Proposition 2.3, and by Theorem 4.1:

µy.(My + P (y)) = µy.µx.(Mx + P (y)) = µy.M∗P (y) .

ut
Observe that the context-free grammar corresponding to the algebraic system

y = M∗P has no chain rules, i. e., has no productions of the type yi → yj . (Com-
pare with Salomaa [16], Theorem 6.3; Harrison [10], Theorem 4.3.2; Hopcroft,
Ullman [11], Theorem 4.4.)

Our second application yields a Kleene Theorem for algebraic power series.
It is a generalization of a result of Gruska [8]. The presentation follows the lines
of Kuich [13].

In the sequel, Σ∞ denotes an infinite alphabet and Σ denotes a finite sub-
alphabet of Σ∞. All occuring symbols and variables are elements of Σ∞. Our
basic semiring will be A〈〈Σ∗

∞〉〉.
For the convenience of the reader, we formulate Theorem 2.2 (Bekić-

De Bakker-Scott rule) and Proposition 2.4 in the setting of A〈〈Σ∗
∞〉〉.

We introduce the following notation: Let r(y1, . . . , yi, . . . , yn) ∈ A〈〈Σ∗
∞〉〉,

where y1, . . . , yi, . . . , yn are variables that may occur in r (besides, there may
occur also other variables).

Consider disjoint alphabets {y1, . . . , yn} and {z1, . . . , zm} of variables and
let Σ̂∞ = Σ∞ − {y1, . . . , yn, z1, . . . , zm}. Let pi(z1, . . . , zm, y1, . . . , yn), 1 ≤ i ≤
n, and qj(z1, . . . , zm, y1, . . . , yn), 1 ≤ j ≤ m, be power series in A〈〈Σ∗

∞〉〉 and
consider the system of equations

zj = pj(z1, . . . , zm, y1, . . . , yn), 1 ≤ j ≤ m,
yi = qi(z1, . . . , zm, y1, . . . , yn) , 1 ≤ i ≤ n .

Fixed points in semiring theory 11

Let (t1(z1, . . . , zm), . . . , tn(z1, . . . , zm)) ∈ (A〈〈(Σ̂∞ ∪ {z1, . . . , zm})∗〉〉)n and
(r1, . . . , rm) ∈ (A〈〈Σ̂∗

∞〉〉)n be the least solutions of the sys-
tems yi = qi(z1, . . . , zm, y1, . . . , yn), 1 ≤ i ≤ n, and zj =
pj(z1, . . . , zm, t1(z1, . . . , zm), . . . , tn(z1, . . . , zm)), 1 ≤ j ≤ m, respectively.
Then (r1, . . . , rm, t1(r1, . . . , rm), . . . , tn(r1, . . . , rm)) is the least solution of the
original system.

In the next proposition we use a vectorial notation: z = (z1, . . . , zm), y =
(y1, . . . , yn), p = (p1, . . . , pm), q = (q1, . . . , qn), etc.

Theorem 4.3 (Bekić-De Bakker-Scott rule) Consider the system of equations

z = p(z, y), y = q(z, y).

Let t(z) and r be the least solutions of the systems y = q(z, y) and z = p(z, t(z)),
respectively. Then (r, t(r)) is the least solution of the system z = p(z, y), y =
q(z, y).

Moreover, r is the least solution of the system z = p(z, t(r)).

We denote the least σ ∈ A〈〈(Σ∞−{yi})∗〉〉 such that r(y1, . . . , σ, . . . , yn) = σ
by µyi.r(y1, . . . , yi, . . . , yn), 1 ≤ i ≤ n. This means that σ is the least solution of
the equation yi = r(y1, . . . , yi, . . . , yn) and µyi is a fixed point operator. Observe
that µyi.r(y1, . . . , yi, . . . , yn) ∈ A〈〈(Σ∞ − {yi})∗〉〉.
Proposition 4.4 Let r(y1, . . . , yn, y) ∈ A〈〈Σ∗

∞〉〉 and σi ∈ A〈〈(Σ∞ − {y})∗〉〉,
1 ≤ i ≤ n. Let s(y1, . . . , yn) = µy.r(y1, . . . , yn, y). Then

s(σ1, . . . , σn) = µy.r(σ1, . . . , σn, y).

Proof. By Proposition 2.4. ut
A subsemiring Ā of A〈〈Σ∗

∞〉〉 is called equationally closed iff, for all r ∈ Ā
and y ∈ Σ∞ the power series µy.r is again in Ā.

Let A{Σ∗
∞} = {r ∈ A〈Σ∗〉 | Σ ⊂ Σ∞ finite} and Aalg{{Σ∗

∞}} = {r ∈
Aalg〈〈Σ∗〉〉 | Σ ⊂ Σ∞ finite}. Denote by Aequ{{Σ∗

∞}} the least equationally closed
semiring containing A{Σ∗

∞}. We will prove in this section that Aequ{{Σ∗
∞}} =

Aalg{{Σ∗
∞}}.

Theorem 4.5 Let t(y1, . . . , yn), σj ∈ Aequ{{Σ∗
∞}}, 1 ≤ j ≤ n.

Then t(σ1, . . . , σn) ∈ Aequ{{Σ∗
∞}}.

Proof. The proof is by induction on the number of applications of the operations
+, · and µ to generate t(y1, . . . , yn).

(i) Let t(y1, . . . , yn) ∈ A{Σ∗
∞}, i. e., t(y1, . . . , yn) ∈ A〈Σ∗〉 for some Σ ⊂ Σ∞.

Since t(σ1, . . . , σn) is generated from σ1, . . . , σn by applications of sum, product
and scalar product, we infer that t(σ1, . . . , σn) ∈ Aequ{{Σ∗

∞}}.
(ii) We only prove the case of the operator µ. Let σ1, . . . , σn ∈ Aequ{{Σ∗

∞}}∩
A〈〈Σ∗〉〉 for some Σ and choose a y ∈ Σ∞ that is not in Σ∪{y1, . . . , yn}. Without
loss of generality assume that t(y1, . . . , yn) = µy.r(y1, . . . , yn, y) (the variable y is
“bound”), where r(y1, . . . , yn, y) ∈ Aequ{{Σ∗

∞}}. By induction hypothesis, we ob-
tain r(σ1, . . . , σn, y) ∈ Aequ{{Σ∗

∞}}. Hence, t(σ1, . . . , σn) = µy.r(σ1, . . . , σn, y) ∈
Aequ{{Σ∗

∞}} by Proposition 4.4. ut

12 Zoltán Ésik and Werner Kuich

Theorem 4.6 Aalg{{Σ∗
∞}} ⊆ Aequ{{Σ∗

∞}}.
Proof. The proof is by induction on the number of variables of algebraic systems.
We use the following induction hypothesis: If τ ∈ (Aalg{{Σ∗

∞}})n, n ≥ 1, is the
least solution of an algebraic system yi = qi(y1, . . . , yn), 1 ≤ i ≤ n, with n
variables y1, . . . , yn where qi ∈ A{Σ∗

∞}, then τi ∈ Aequ{{Σ∗
∞}}.

(1) Let n = 1 and assume that r is the least solution of the algebraic system
z = p(z). Then r = µz.p(z) ∈ Aequ{{Σ∗

∞}}.
(2) Let z, y1, . . . , yn be variables and p, q1, . . . , qn be polynomials in A{Σ∗

∞},
and consider the algebraic system z = p(z, y), y = q(z, y), where y = (y1, . . . , yn)
and q = (q1, . . . , qn). Let t(z) ∈ (Aalg{{Σ∗

∞}})n be the least solution of
y = q(z, y). By our induction hypothesis we obtain t(z) ∈ (Aequ{{Σ∗

∞}})n. Since
p(z, y) is a polynomial, it is in Aequ{{Σ∗

∞}}. Hence, by Proposition 4.4, p(z, t(z))
is in Aequ{{Σ∗

∞}}. This implies µz.p(z, t(z)) ∈ Aequ{{Σ∗
∞}}. Again, by Propo-

sition 4.4, t(µz.p(z, t(z)) ∈ (Aequ{{Σ∗
∞}})n). By Theorem 4.3, (µz.p(z, t(z)),

t(µz.p(z, t(z)))) is the least solution of the algebraic system z = p(z, y),
y = q(z, y). Hence the components of the least solution of this algebraic sys-
tem are in Aequ{{Σ∗

∞}}. ut
We now show the converse to Theorem 4.6.

Theorem 4.7 Aequ{{Σ∗
∞}} ⊆ Aalg{{Σ∗

∞}}.
Proof. We show that Aalg{{Σ∗

∞}} is an equationally closed semiring that contains
A{Σ∗

∞}. Clearly, Aalg{{Σ∗
∞}} is a semiring containing A{Σ∗

∞}. Hence we have
only to show that µz.r is in Aalg{{Σ∗

∞}} for all r ∈ Aalg{{Σ∗
∞}} and z ∈ Σ∞.

Let r ∈ Aalg{{Σ∗
∞}} be the first component of the least solution of the

algebraic system yi = pi(y1, . . . , yn, z), 1 ≤ i ≤ n. Then, by Theorem 4.3,
µz.r is the z-component of the least solution of the algebraic system z = y1,
yi = pi(y1, . . . , yn, z), 1 ≤ i ≤ n. ut
Corollary 4.8 Let A be a continuous commutative semiring. Then
Aequ{{Σ∗

∞}} = Aalg{{Σ∗
∞}} and Aequ{{Σ∗

∞}} ∩ A〈〈Σ∗〉〉 = Aalg〈〈Σ∗〉〉, Σ ⊂ Σ∞,
Σ finite.

References

1. Bekić, H.: Definable operations in general algebras, and the theory of automata
and flowcharts. Tech. Report, IBM Labor, Wien, 1967.

2. Bloom, S. L., Ésik, Z.: Iteration Theories. EATCS Monographs on Theoretical
Computer Science. Springer, 1993.

3. De Bakker, J. W., Scott, D.: A theory of programs, IBM Seminar, Wien, 1969.
4. Ésik, Z.: Completeness of Park induction. Theor. Comput. Sci. 177(1997) 217–283.
5. Ésik, Z.: Group axioms for iteration. Inform. and Comput. 148(1999) 131–180.
6. Ésik, Z., Leiß, H.: Greibach normal form in algebraically complete semirings.

CSL2002, Lect. Notes Comput. Sci. 2471(2002) 135–150.
7. Ginsburg, S., Rice, H. G.: Two families of languages related to ALGOL. J. Assoc.

Comput. Mach. 9(1962) 350–371.

Fixed points in semiring theory 13

8. Gruska, J.: A characterization of context-free languages. Journal of Computer and
System Sciences 5(1971) 353–364.

9. Guessarian, I.: Algebraic Semantics. Lect. Notes Comput. Sci. 99, Springer, 1981.
10. Harrison, M. A.: Introduction to Formal Language Theory. Addison-Wesley, 1978.
11. Hopcroft, J. E., Ullman, J. D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.
12. Kuich, W.: Semirings and formal power series: Their relevance to formal languages

and automata theory. In: Handbook of Formal Languages (Eds.: G. Rozenberg and
A. Salomaa), Springer, 1997, Vol. 1, Chapter 9, 609–677.

13. Kuich, W.: Gaußian elimination and a characterization of algebraic power series.
MFCS98, Lect. Notes Comput. Sci. 1450(1998) 512–521.

14. Markowsky, G.: Chain-complete posets and directed sets with applications. Algebra
Universalis 6(1976) 53–68.

15. Niwiński, D.: On fixed-point clones (extended abstract). ICALP86, Lect. Notes
Comput. Sci. 226(1986) 464-473.

16. Salomaa, A.: Formal Languages. Academic Press, 1973.

Solving language equations over synchronous
and parallel composition operators

Nina Yevtushenko1, Tiziano Villa2, Svetlana Zharikova1

1 Tomsk State University, 36 Lenin Str., Tomsk, Russia
yevtushenko@elefot.tsu.ru, szh@ultranet.tomsk.ru

2 DI, University of Verona, Strada le Grazie, 15 - 37134 Verona, Italy and
PARADES, Via S.Pantaleo, 64 - 00186 Roma, Italy

tiziano.villa@univr.it

Abstract. Consider the problem of designing a component of a discrete
event system that combined with a known part of a system conforms
to a given overall specification. A key observation is that languages are
a suitable common framework for such applications, i.e., the problem
is reduced to solving an abstract equation over languages. In this pre-
sentation, we address the problem of solving synchronous and parallel
language equations. We study the most general solutions to language
equations defining the language operators needed to express them, and
also investigate restricted solutions to such equations. We show how an
equation can be effectively solved over regular languages. In particular,
we show that a solvable equation always has the largest solution, con-
sider the largest alphabet of actions over which a solution exists, and
briefly sketch how to compute the solution.

1 Introduction

Many problems over discrete event systems can be reduced to solving a language
inequality A@X ⊆ S or to solving a language equation A@X = S where X is
a free variable and @ is the composition operator. The applications range from
logical synthesis and supervisory control to logic verification and testing, from
model matching problem to discrete games. For different applications, appro-
priate equations were formulated and their solutions were investigated by vari-
ous researchers. Most papers are devoted to synchronous composition in Finite
State Machine (FSM) theory and to parallel composition in process algebra. Syn-
chronous composition corresponds to instantaneous communication of systems,
while parallel composition corresponds to communicating asynchronously allow-
ing arbitrary delay between communication events. Different types of languages
were considered when solving a language equation: e.g., regular and ω–regular
languages, Petri net languages etc. A key point is to find a solution within the
same class, i.e., if we solve an equation over regular languages then the solution
should be a regular language too.

Similarly to other kinds of equations, the solution may not be unique; hence
there is also the problem of finding the “best” solution. Also subsets of solutions

M. Kunc, A. Okhotin (Eds.): Theory and Applications of Language Equations
TUCS General Publication No 44, pp. 14–32, 2007.

Solving language equations over composition operators 15

that have appropriate additional properties might be required; thus, restricted
solutions to an equation are of interest also. To find optimal solutions with re-
spect to some criteria, one approach is first to find the largest solution containing
any particular solution, and then to extract a wanted solution from the largest
solution.

In this paper, we consider binary synchronous and parallel language inequali-
ties and equations and show that each solvable language equation has the largest
solution, whose property is that each solution is a subset of it; in particular, for
inequalities a language is a solution if and only if it is a subset of the largest
solution. We then discuss how the equations can be effectively solved for regular
languages based on operators over finite automata and consider some restricted
solutions which are of theoretical or practical relevance.

The paper is structured as follows. Section 2 deals with synchronous language
equations and discusses their largest and restricted solutions. Parallel language
equations are considered in Section 3. Effective algorithms for solving equations
over regular languages based on finite automata are presented in Section 4.
Section 5 briefly describes the related work and how the current paper unifies
the known approaches for solving equations over languages.

2 Synchronous equations over languages

In this section, we introduce the notion of a synchronous composition operator
over languages. To the best of our knowledge there was no such a notion before
our papers [1, 2]. However, a similar composition operator was defined for partic-
ular cases of the composition of Finite State Machines (FSM) (see, for example,
[3, 4]) and for these particular cases, the language of the FSM composition co-
incides with the synchronous composition of component FSM languages, as it is
defined in the following section.

2.1 Synchronous composition operator over languages

An alphabet is a non-empty set of symbols. The set of all finite strings over a
fixed alphabet A is denoted by A∗. A∗ includes the empty string ε. A subset
L ⊆ A∗ is called a language over alphabet A. Standard operations on languages
are defined: union, intersection, complement and difference. We also introduce
some additional operators over languages. A substitution [5] f is a mapping of
an alphabet A into subsets of B∗ for some alphabet B. The substitution f is
extended to strings by setting f(ε) = ε and f(βa) = f(β)f(a).

Given a finite set Γ = {A1, . . . , Ak} of alphabets, a non-empty subset
Γ1 ⊆ Γ and a language L over the Cartesian product A1× . . . × Ak

1, the
language L↓Γ1 = {β↓Γ1: β ∈ L} where ↓Γ1 is the canonical mapping ↓Γ1:
A1×. . .×Ak → ×

Aj∈Γ1

Aj , is the projection of language L onto the set Γ1.

1 Without loss of generality in this paper, we assume that each alphabet participates
in the Cartesian product only once.

16 Nina Yevtushenko, Tiziano Villa, Svetlana Zharikova

Given the Cartesian product ×
Aj∈Γ1

Aj , let f be the substitution such that

f(a1)={a: a ∈ ×
Aj∈Γ

Aj & a↓Γ1 = a1} for all a1 ∈ ×
Aj∈Γ1

Aj . Then given a

language L over the Cartesian product ×
Aj∈Γ1

Aj , the language L↑Γ = {f(β):

β ∈ L} is the lifting of language L over the set Γ . By definition, the lifting of
the empty language is empty.

The following straightforward facts hold for the projection and lifting oper-
ators.

Proposition 2.1. Given non-empty subsets Γ1 and Γ2 of the set Γ , for each
sequence α over the Cartesian product of alphabets of the set Γ1 ∪ Γ2 it holds
that

∀β ∈ α↑Γ (β↓Γ1 = α↓Γ1 and β↓Γ2 = α↓Γ2).2

Proposition 2.2. Given non-empty subsets Γ1 and Γ2 of the set Γ and
languages L and M over the Cartesian products ×

Aj∈Γ1

Aj and ×
Ai∈Γ2

Ai corre-

spondingly, for each sequence over the Cartesian product of alphabets of Γ1 ∪ Γ2

it holds that

α ∈ L↑Γ1∪Γ2 ∩M↑Γ1∪Γ2 if and only if α↓Γ1 ∈ L and α↓Γ2 ∈ M.

Proposition 2.3. Given non-empty subsets Γ1 and Γ2 of the set Γ and
languages L and M over the Cartesian products ×

Aj∈Γ1

Aj and ×
Ai∈Γ2

Ai corre-

spondingly, for each sequence α over the Cartesian product of alphabets of Γ , it
holds that

α↓Γ1∪Γ2 ∈ L↑Γ1∪Γ2 ∩M↑Γ1∪Γ2 if and only if α↓Γ1 ∈ L and α↓Γ2 ∈ M.

We now consider a so-called synchronous composition operator over lan-
guages. The synchronous composition operator corresponds to instantaneous
communication of discrete event systems. This composition operator general-
izes the synchronous composition operator introduced for languages over special
alphabets in [2, 6].

Let Γ = {A1, . . . , Ak} be a finite set of alphabets, Γ1 and Γ2 be non-empty
subsets of Γ and θ be a non-empty subset of Γ1 ∪ Γ2. Given two languages L1

and L2 defined over the Cartesian product of alphabets of the sets Γ1 and Γ2

correspondingly, the synchronous composition •θ (L1,L2), or simply L1•θ L2, is
the language [L1↑Γ1∪Γ2∩ L2↑Γ1∪Γ2]↓θ. The composition language is empty if one
component language is empty.

According to the definition, the above operator is commutative. We show
below that the operator also is associative.

Proposition 2.4. The synchronous composition operator is associative.

Proof. Consider non-empty subsets Γ1, Γ2 and Γ3 of the set Γ , Γ = Γ1∪Γ2∪Γ3,
a non-empty subset θ ⊆ Γ1 ∪ Γ2 and a non-empty subset ρ ⊆ Γ3 ∪ θ. We also
2 Use the fixed order of alphabets when lifting to Γ .

Solving language equations over composition operators 17

consider three languages L1, L2 and L3 where the language Lj is defined over
the Cartesian product of alphabets of the set Γj , j = 1,2,3, and show that

[((L1↑Γ1∪Γ2 ∩ L2↑Γ1∪Γ2)↓θ)↑Γ3∪θ ∩ L3↑Γ3∪θ]↓ρ = [L1↑Γ ∩ L2↑Γ ∩ L3↑Γ]↓ρ.

Part A We prove that

((L1↑Γ1∪Γ2 ∩ L2↑Γ1∪Γ2)↓θ)↑Γ3∪θ ∩ L3↑Γ3∪θ ⊇ L1↑Γ ∩ L2↑Γ ∩ L3↑Γ .

Let α ∈ L1↑Γ ∩ L2↑Γ ∩ L3↑Γ . According to Propositions 2.2 and 2.3,

α ∈ L1↑Γ ∩ L2↑Γ ∩ L3↑Γ

if and only if

α↓Γ1 ∈ L1 and α↓Γ2 ∈ L2 and α↓Γ3 ∈ L3

if and only if

α↓Γ1∪Γ2 ∈ (L1↑Γ1∪Γ2 ∩ L2↑Γ1∪Γ2) and α↓Γ3 ∈ L3.

Therefore,

α↓θ ∈ (L1↑Γ1∪Γ2 ∩ L2↑Γ1∪Γ2)↓θ and α↓Γ3 ∈ L3.

Thus, due to Proposition 2.2,

α ∈ (L1↑Γ1∪Γ2 ∩ L2↑Γ1∪Γ2)↓θ ∩ L3↑Γ3∪θ , i.e.,

[(L1↑Γ1∪Γ2 ∩ L2↑Γ1∪Γ2)↓θ ∩ L3↑Γ3∪θ]↓ρ ⊇ [L1↑Γ ∩ L2↑Γ ∩ L3↑Γ]↓ρ.

Part B We prove that

[L1↑Γ ∩ L2↑Γ ∩ L3↑Γ]↓ρ ⊇ [(L1↑Γ1∪Γ2 ∩ L2↑Γ1∪Γ2)↓θ ∩ L3↑Γ3∪θ]↓ρ.

Consider sequence α ∈ (L1↑Γ1∪Γ2 ∩ L2↑Γ1∪Γ2)↓θ ∩ L3↑Γ3∪θ.
According to Proposition 2.2,

α ∈ (L1↑Γ1∪Γ2 ∩ L2↑Γ1∪Γ2)↓θ ∩ L3↑Γ3∪θ

if and only if

α↓θ ∈ (L1↑Γ1∪Γ2 ∩ L2↑Γ1∪Γ2)↓θ and α↓Γ3 ∈ L3.

Therefore, due to Proposition 2.1, there exists a sequence β over the Cartesian
product of alphabets of the set Γ = Γ1 ∪ Γ2 ∪ Γ3 such that

β↑Γ1∪Γ2 ∈ L1↑Γ1∪Γ2 ∩ L2↑Γ1∪Γ2 and β↓θ = α↓θ and β↓Γ3 = α↓Γ3 , i.e.,

β↓ρ = α↓ρ

Due to Propositions 2.1 and 2.2, β ∈ L1↑Γ ∩ L2↑Γ ∩ L3↑Γ , i.e.,

[((L1↑Γ1∪Γ2 ∩ L2↑Γ1∪Γ2)↓θ)↑Γ3∪θ ∩ L3↑Γ3∪θ]↓ρ ⊆ [L1↑Γ ∩ L2↑Γ ∩ L3↑Γ]↓ρ.
ut

18 Nina Yevtushenko, Tiziano Villa, Svetlana Zharikova

Consider the composition of two discrete event systems in Figure 1. The
language L1 of the component S1 is defined over the Cartesian product I×U×V ,
and the language L2 of the component S2 is defined over the Cartesian product
U ×V ×O, where Γ1 = {I, U, V }, Γ2 = {U, V, O}, Γ = {I, U, V, O} and the
set θ = {I, V, O} describes the set of external ports of the composed system
S. The systems S1 and S2 interact by executing the same words via common
channels. When the external symbols i ∈ I, o ∈ O and v ∈ V appear at the
external ports of the composed system, the latter accepts the triple (i, v, o) if
and only if there exists u ∈ U such that (i, u, v) ∈ L1 and (u, v, o) ∈ L2. In other
words, a triple (α, β, γ) over (I×V ×O)∗ can be executed at the external ports of
the composed system if and only if there exists a sequence η ∈ U∗ such that the
triple (α, η, β) ∈ L1 and the triple (η, β, γ) ∈ L2. An example of the synchronous
composition of two regular languages represented by finite automata is shown in
Section 4 (Figure 2).

Figure 1. Composition of two discrete event systems.

Since the synchronous composition operator is commutative and associative,
the definition can be naturally extended to a finite number of component lan-
guages.

Let Γ = {A1, . . ., Ak} be a set of alphabets, Γ1, . . . , Γm, θ be non-empty

subsets of Γ and Γ =
m⋃

j=1

Γj . Given languages Lj , j = 1, . . ., m, defined over the

Cartesian product of alphabets of the set Γj correspondingly, the synchronous
composition •θ (L1,. . . , Lm) is the language [L1↑Γ ∩L2↑Γ ∩ . . .∩Lm↑Γ]↓θ 3. The
composition language is empty if one component language is empty.

2.2 Solving synchronous language equations

Consider the composition of two discrete event systems in Figure 1. Suppose
that the language L1 of the system S1 and the language L of the composition
S are known. The problem is to determine a language L2 over the Cartesian
product U ×V ×O such that the L1 •{I,O,V }L2 = L. The problem is well known

3 Use the fixed order of alphabets when lifting to Γ .

Solving language equations over composition operators 19

as “the unknown component problem” and can be solved through language
equation solving [2, 7].

2.2.1 Binary synchronous language equations
Given a set Γ={A1, . . . , Ak} of alphabets and non-empty subsets Γ1 and θ of

the set Γ , let language L1 be defined over the Cartesian product of the alphabets
of the set Γ1, while the language L be defined over the Cartesian product of the
alphabets of the set θ. The expressions L1 •θ X ⊆ L and L1 •θ X = L with a free
variable X that is a language over the Cartesian product of alphabets of a non-
empty set ρ ⊆ Γ1 ∪ θ, are called a binary synchronous language inequality and
a binary synchronous language equation correspondingly. A language Bρ over
the Cartesian product of alphabets of the set ρ is a solution to the inequality
L1 •θ X ⊆ L (or to the equation L1 •θ X = L) if L1 •θ Bρ ⊆ L (correspondingly,
L1 •θ Bρ = L). A solution Sρ over the Cartesian product of alphabets of the
set ρ is the largest solution to the inequality L1 •θ X ⊆ L (or to the equation
L1 •θ X = L) if each solution Bρ over the Cartesian product of alphabets of
the set ρ is a subset of Sρ. The following propositions state that an inequality
L1 •θ X ⊆ L has always the largest solution; moreover, a solvable equation also
has the largest solution.

Proposition 2.5. The largest solution over the Cartesian product of alpha-
bets of the set ρ to the inequality L1 •θ X ⊆ L is the language Sρ = L1 •ρ L.

Proof. A sequence α over the Cartesian product of alphabets of the set ρ is not
in a solution to the inequality L1 •θ X ⊆ L if and only if L1 •θ {α} 6⊂ L and the
following chain of equivalences follows:

L1 •θ {α} 6⊂ L

if and only if

(L1↑Γ1∪θ ∩ {α}↑Γ1∪θ)↓θ ∩ L = ∅

if and only if

L1↑Γ1∪θ ∩ {α}↑Γ1∪θ ∩ L↑Γ1∪θ = ∅

if and only if

α /∈ (L1↑Γ1∪θ ∩ L↑Γ1∪θ)↓ρ

if and only if

α ∈ L1 •ρ L.
ut

Therefore, the largest solution to the inequality L1 •θ X ⊆ L is given by the
language Sρ = L1 •ρ L. According to the definition of synchronous composition
operator it holds that L1 •θ L2 ⊆ L and L2 ⊆ L3 implies L1 •θ L3 ⊆ L. Thus,
the following statement holds.

20 Nina Yevtushenko, Tiziano Villa, Svetlana Zharikova

Theorem 2.1. Given an inequality L1 •θ X ⊆ L, the language Bρ over the
Cartesian product of alphabets of the set ρ is a solution to the inequality if and
only if Bρ ⊆ L1 •ρ L. Thus, if the language L1 •ρ L is empty then the inequality
L1 •θ X ⊆ L has a single trivial solution, namely the empty language.

As the above theorem states, the largest solution to a language inequality
can be considered as the “container” of all solutions to the inequality. In the
following theorem (Theorem 2.2) we state that a solvable language equation
L1 •θ X = L also has the largest solution. When the equation is unsolvable there
always exists the largest subset M of the language L such that the equation
L1 •θ X = M is solvable and has the largest solution. However, not each subset
of the largest solution inherits the property to be a solution and we still lack
the complete characterization of the set of solutions to a synchronous language
equation. Since in general the number of subsets of the largest solution is infinite,
the characterization problem is not trivial.

Theorem 2.2. 1. Given a language equation L1•θX = L, if L1•θL1 •ρ L = L

then the language Sρ = L1 •ρ L is the largest solution to the equation L1•θX = L
over the Cartesian product of alphabets of the set ρ. However, not each subset
of the Sρ inherits the property to be a solution to the language equation.

2. If L1 •θ L1 •ρ L ⊂ L then the equation L1 •θ X = L is unsolvable and
the language Mθ = L1 •θ L1 •ρ L is the largest subset of L such that the equa-
tion L1•θX = Mθ is solvable over the Cartesian product of alphabets of the set ρ.

Theorem 2.2 establishes necessary and sufficient conditions for the solvability
of a language equation L1 •θ X = L over a given set of alphabets. The existence
of a non-empty solution to the inequality as well as the existence of a solution
to the language equation significantly depends on the selected subset ρ ⊆ Γ1∪θ.
The following theorems state that there exists the largest set H of alphabets
such that an inequality L1 •θ X ⊆ L has a non-empty solution if and only if such
a solution exists over the Cartesian product of alphabets of H. Similar to this,
an equation is solvable if and only if the equation is solvable over the Cartesian
product of alphabets of H.

Theorem 2.3. 1. If the largest solution to the inequality L1 •θ X ⊆ L over
the Cartesian product of alphabets of the set ρ ⊆ Γ1 ∪ θ is not empty then the
inequality has a non-empty solution over the Cartesian product of alphabets of
the set Γ1 ∪ θ.

2. Given largest solution L1 •Γ1∪θ L to the inequality L1 •θ X ⊆ L over
the Cartesian product of alphabets of the set Γ1 ∪ θ, a language Bρ over the
Cartesian product of alphabets of the set ρ ⊂ Γ1 ∪ θ is a solution to the
inequality if and only if Bρ↑Γ1∪θ ⊆ L1 •Γ1∪θ L. If the language L1 •Γ1∪θ L is
empty then the only solution to the inequality over the Cartesian product of
alphabets of any non-empty subset ρ ⊂ Γ1 ∪ θ is the empty set.

Solving language equations over composition operators 21

Theorem 2.4. 1. If the equation L1 •θ X = L is solvable over the Cartesian
product of alphabets of the set ρ ⊂ Γ1 ∪ θ then the equation has a solution over
the Cartesian product of alphabets of the set Γ1 ∪ θ.

2. If the equation L1 •θ X = L has no solution over the Cartesian product of
alphabets of the set Γ1 ∪ θ then the equation L1 •θ X = L is unsolvable over the
Cartesian product of alphabets of any non-empty subset ρ ⊂ Γ1 ∪ θ.

3. If the equation L1 •θ X = L is solvable over the Cartesian product of
alphabets of the set Γ1 ∪ θ and L1 •Γ1∪θ L is the largest solution to the equation
over this alphabet, then for each solution Bρ to the equation over the Cartesian
product of alphabets of the set ρ ⊂ Γ1 ∪ θ, it holds that Bρ↑Γ1∪θ ⊆ L1 •Γ1∪θ L.

Theorems 2.1 and 2.3 completely characterize all possible solutions to syn-
chronous language inequalities. As for language equations, Theorems 2.2 and
2.4 only establish necessary and sufficient conditions for the equation solvability
over the Cartesian product of alphabets of a given set ρ ⊆ Γ1 ∪ θ.

2.3 Restricted solutions to language equations

Given a language inequality or a language equation, not each solution is of the-
oretical and practical interest. Additional research is necessary to reveal which
restricted solutions are useful for different applications. Currently, only some
straightforward restricted solutions have been identified. For example, the com-
posed system must be nontrivial at least. We also investigated special solutions
which are prefix closed, progressive [4] and compositionally progressive [8]. We
illustrate such restricted solutions for a synchronous language equation and for
the simplicity of presentation we assume that component languages are defined
over the Cartesian product of two alphabets.

The language L over alphabet A is prefix-closed if each prefix of each word
is in the language L. A language L over alphabet A = I × O is I-progressive
if α ∈ A∗ ∀i ∈ I ∃o ∈ O [α ∈ L → α(i, o) ∈ L]. A language L over alphabet
A = I ×O is I-defined if L↓I = I∗. If a language over A = I ×O is I-progressive
then it is also I-defined, but the converse does not hold. A progressive solution
ensures that the solution language is complete w.r.t. the alphabet I, i.e., for
each string β ∈ I∗ there exists a word in the language with the projection β.
Progressive solutions are used in logic synthesis, since physical devices usually
are input-enabled at each state, and especially are of interest when solving an
equation over Finite State Machines (FSM) [2, 4]. Given a language L1 over
alphabet I×U , a language B over alphabet O×U is I–compositionally progressive
(w.r.t. the language L1) if the language L1↑{I,U,O} ∩ B↑{I,U,O} is I-progressive.
When a solution to the language equation is compositionally progressive we
ensure that the corresponding composition does not fall into a deadlock when I
is the set of external inputs submitted by an environment.

Given language L1 over alphabet I × U , language L over alphabet I × O,
i.e., θ = {I, O}, and ρ = {U,O}, let Sρ = L1 •ρ L be the largest solution to the

22 Nina Yevtushenko, Tiziano Villa, Svetlana Zharikova

language equation L1 •θ X = L. It is interesting to investigate subsets of Sρ that
satisfy further properties, i.e., are prefix-closed, progressive etc.

If Sρ is prefix-closed then Sρ is the largest prefix-closed solution to the equa-
tion. However, not every solution to the equation is prefix closed. If Sρ is not
prefix-closed then denote by Pref(Sρ) the set obtained from Sρ by deleting each
string that has a prefix not in Sρ.

Proposition 2.6. If L1 •θ Pref(Sρ) = L then Pref(Sρ) is the largest prefix-
closed solution to the equation L1 •θ X = L. If L1 •θ Pref(Sρ) ⊂ L, then the
equation L1 •θ X = L has no prefix-closed solution.

If Sρ is defined over the alphabet U × O and Sρ is U -progressive then Sρ is
the largest U -progressive solution to the equation. However, not each subset of
Sρ inherits this property. If Sρ is not U -progressive then denote by Prog(Sρ)
the subset obtained from Sρ by deleting each string β such that for some u ∈ U ,
there is no o ∈ O for which β(u, o) ∈ Sρ.

Proposition 2.7. If L1 •θ Prog(Sρ) = L then Prog(Sρ) is the largest pro-
gressive solution to the equation L1 •θ X = L. If L1 •θ Prog(Sρ) ⊂ L, then the
equation L1 •θ X = L has no progressive solution.

We also studied compositionally progressive solutions over FSM languages
[8] and showed that if a synchronous FSM equation (FSM inequality) has a
compositionally progressive solution then the FSM equation (FSM inequality)
has the largest compositionally progressive solution.

3 Solving a parallel language equation

Synchronous composition of languages corresponds to instantaneous communi-
cation and usually describes modular compositions in hardware, while parallel
composition corresponds to communicating asynchronously, allowing arbitrary
delay between communication events and is used as a composition operator
in the process algebra. Despite of the fact that the restriction and expansion
operators differ from the projection and lifting operators used in synchronous
composition, synchronous and parallel language inequalities (synchronous and
parallel language equations) possess almost the same features. We also notice
that in the process algebra this kind of composition operator sometimes is called
synchronous, since an action can be executed if and only if both communicating
systems are ready to execute the action. However, in this setting, we use the
notion of the parallel composition operator.

3.1 Parallel composition operator

Let A be an alphabet, and a language L is defined over the alphabet A. Consider
a non-empty subset A1 of the alphabet A and the substitution h defined as
h(a) = a for all a ∈ A1 while h(a) = ε for all a ∈ A\A1, where ε is the empty
word. Then the language L⇓A1 = {h(β) : β ∈ L} is the restriction of language L
onto the subset A1. For each word β ∈ L that does not have symbols of alphabet
A1 the restriction of β is the empty word ε.

Solving language equations over composition operators 23

Let now language L be defined over alphabet A2 = A\A1. Consider the
mapping ψ : A2 → 2A∗ such that ψ(a) = {γaβ: γ, β ∈ A∗1}. Then the language
L⇑A = {ψ(β): β ∈ L} is the expansion of language L over the alphabet A.
Here we notice that the mapping ψ is not a substitution and thus, ψ(ε) = {α:
α ∈ A∗1}, i.e., if the language L = {ε} is defined over alphabet A2 then L⇑A = A∗1.
By definition, the expansion of the empty language is the empty language and
the following straightforward fact holds between the restriction and expansion
operators.

Proposition 3.1. Given an alphabet A and a non-empty subset A1 of the
alphabet A, consider a language L defined over the alphabet A1. For each string
β ∈ A∗, it holds that β⇓A1 ∈ L if and only if β ∈ L⇑A.

Given two languages L1 and L2, let the language Lj , j = 1, 2, be defined
over alphabet Aj , A = A1 ∪ A2 and E is a non-empty subset of A. The parallel
composition ♦E(L1, L2), or simply L1♦EL2, is the language (L1⇑A

∩ L2⇑A
)⇓E

.
Similar to the synchronous composition, the language L1♦EL2 is empty if one
component language is empty.

Similar to the synchronous composition the parallel composition operator
is commutative and associative, and therefore, the operator can be naturally
extended to k component languages, k > 2.

3.2 Parallel language equations

Given two languages L1 and L, let language L1 be defined over alphabet A1, the
language L be defined over alphabet E, A1∪E = A and R is a non-empty subset
of A. Consider the language inequality L1♦EX ⊆ L and a language equation
L1♦EX = L with a free variable X that is a language over alphabet R. A
language BR over the alphabet R is a solution to the inequality L1♦EX ⊆ L
if L1♦EBR ⊆ L. The language BR is a solution to the equation L1♦EX = L
if L1♦EBR = L. A solution SR over the alphabet R is the largest solution to
the inequality L1♦EX ⊆ L (to the equation L1♦EX = L) if each solution over
alphabet R is a subset of SR. Similar to a binary synchronous equation, the
following results state that a parallel inequality as well as a solvable parallel
language equation has always the largest solution.

Proposition 3.2. The largest solution over the alphabet R to the inequality
L1♦EX ⊆ L is the language SR = L1♦RL.

Proof. A sequence α over the alphabet R is not in a solution to the inequality
L1♦EX ⊆ L if and only if L1♦E{α} 6⊂ L and the following chain of equivalences
follows:

L1♦E{α} 6⊂ L

if and only if

(L1⇑A ∩ {α}⇑A)⇓E ∩ L = ∅

24 Nina Yevtushenko, Tiziano Villa, Svetlana Zharikova

if and only if

L1⇑A ∩ {α}⇑A ∩ L⇑A = ∅

if and only if

α /∈ (L1⇑A ∩ L⇑A)⇓R

if and only if

α ∈ L1♦RL
ut

Therefore, the largest solution to the inequality L1♦EX ⊆ L is given by the
language SR = L1♦RL. According to the definition of the parallel composition
operator it holds that L1♦EL2 ⊆ L and L2 ⊆ L3 implies L1♦EL3 ⊆ L. Thus,
the following statement holds.

Theorem 3.1. Given an inequality L1♦EX ⊆ L, the language BR over the
alphabet R is a solution to the inequality if and only if BR ⊆ L1♦RL. Thus,
if the language L1♦RL is empty then the inequality L1♦EX ⊆ L has a single
trivial solution, namely the empty language.

As the above theorem states, similar to a synchronous language inequality,
the largest solution to a parallel language inequality can be considered as the
“container” of all solutions to the inequality. Correspondingly, the following the-
orem (Theorem 3.2) states that a solvable language equation L1♦EX = L also
has the largest solution. When the equation is unsolvable there always exists
the largest subset M of the language L such that the equation L1♦EX = M is
solvable and has the largest solution.

Theorem 3.2. Given a language equation L1♦EX = L, if L1♦L1♦RL = L

then the language SR = L1♦RL is the largest solution to the equation
L1♦EX = L over the alphabet R. However, not each subset of the SR inherits
the property to be a solution to the language equation.

The following theorem states that if the equation has no solution over al-
phabet A then the equation has no solution over any subset R of the alphabet
A.

Theorem 3.3. If the equation L1♦EX = L has no solution over the
alphabet A then the equation is unsolvable over any alphabet R that is a subset
of A. If the equation L1♦EX = L is solvable over alphabet A, alphabet R is
a proper subset of A and a language BR over alphabet R is a solution to the
equation then it holds that BR⇑A ⊆ L1♦RL.

Similar to synchronous language equations, not each subset of the largest
solution to a parallel language equation inherits the property to be a solution
and the complete characterization of the set of solutions to a parallel language
equation is still an open issue.

Solving language equations over composition operators 25

We illustrate a parallel language equation solving in Section 4 when solving
equations over regular languages.

4 Solving equations over regular languages

Given a language inequality or a language equation, the problem then is whether
we can operate algorithmically on given languages. Usually such languages are
presented through their corresponding mathematical machines. Different types of
mathematical machines are used to model components of a discrete event system.
The most commonly known are Finite Automata (FA), Finite State Machines
(FSM), Petri Nets (PN), Finite ω-automata (ω-FA). A key point is to find a
solution within the same class, i.e., if we solve an equation over regular languages,
then a solution must be a regular language too. Language equations can be solved
effectively when they are defined over languages that can be computed with finite
procedures. For example, we can operate on Finite Automata (FA) when solving
equations over regular languages [5].

A finite automaton is a quintuple S = 〈S, A, δS , s0, FS〉, where S is a finite
non-empty set of states with the initial state s0 and a subset FS of final (or
accepting) states, A is an alphabet of actions, and δS ⊆ A×S×S is a transition
relation. We say that there is a transition from a state s to a state s′ labeled
with an action a, if and only if the triple (a, s, s′) is in the transition relation
δS . The automaton S is called deterministic, if for each state s ∈ S and any
action a ∈ A there exists at most one state s′, such that (a, s, s′) ∈ δS . If S is
not deterministic, then it is called nondeterministic.

Well-known results state that each regular language can be represented by
a deterministic finite automaton and that regular languages are closed under
the union, intersection and complementation. Regular languages are also closed
under projection, lifting, restriction and expansion. Below we sketch the con-
structions for the less known operations of projection, lifting, restriction and
expansion.

Projection (↓) Given FA F that accepts language L over I × U , FA F↓I
that accepts language L↓I over I is obtained by replacing each edge ((i,u),s,s′)
in F by the edge (i,s,s′). 4

Lifting (↑) Given FA F that accepts language L over I, FA F↑{I,U} that
accepts language L↑{I,U} over I × U is obtained by replacing each edge (i,s,s′)
in F by the set of edges {((i,u),s,s′): u ∈ U}.

Restriction (⇓) Given FA F that accepts language L over A and a non-
empty subset V of A, FA F⇓V that accepts language L⇓V over V is obtained by
replacing each edge (a,s,s′) in F , with a ∈ A \ V , by the edge (ε,s,s′). 5

Expansion (⇑) Given alphabet A, a non-empty subset V of A, FA F that
accepts language L over V , FA F⇑A that accepts language L⇑A over A is obtained

4 Apply the subset construction to obtain an equivalent deterministic FA.
5 Apply the closure procedure to obtain an equivalent deterministic FA without ε-

moves.

26 Nina Yevtushenko, Tiziano Villa, Svetlana Zharikova

by the following procedure: for each state s of FA F , ∀a ∈ A\V the edge (self-
loop) (a,s,s) is added.

The procedures for projection, lifting and restriction guarantee the substitu-
tion property f(ε) = ε.

Given that all the operators used to express the solution of regular lan-
guage equations (Theorems 2.1 and 3.1) have constructive counterparts on finite
automata, we conclude that there is an effective (constructive) way to solve
equations over regular languages.

As an example, given a regular language equation L1•θX = L, where L1 is
a regular language over alphabet I ×U , L is a regular language over I ×O, and
the unknown is a regular language X over U × O, an algorithm for building X
follows (if a solution exists).

Procedure 4.1 Deriving the largest solution over alphabet ρ to a regular
language equation L1•θX = L (if a solution exists)

Input. Regular language L1 over alphabet I × U , regular language L over
alphabet I ×O, ρ = {U , O} and language equation L1•θX = L

Output. The largest solution Sρ over alphabet U ×O to the language equa-
tion (if the equation is solvable)

1. Derive finite automata F1 and F which accept respectively regular lan-
guages L1 and L.

2. If F is a nondeterministic automaton then determinize F by the subset
construction and obtain the automaton F by interchanging the sets of accepting
and non-accepting states of F .

3. Obtain the automaton F1↑{I,U,O} by replacing each label (i,u) with all
triples (i,u,o), o ∈ O.

4. Obtain the automaton F ↑{I,U,O} by replacing each label (i,o) with all
triples (i,u,o), u ∈ U .

5. Build the intersection F1↑{I,U,O} ∩ F ↑{I,U,O}. The states of the obtained
automaton are pairs of states of F1↑{I,U,O} and F ↑{I,U,O}, the initial state is the
pair of initial states, and a state of the intersection is accepting if both states of
the pair are accepting.

6. Project F1↑{I,U,O} ∩F ↑{I,U,O} to ρ = {U , O} by deleting i from the labels
(i,u,o). The obtained automaton in general is nondeterministic; in this case,
determinize it by the subset construction and obtain the automaton F1•ρF which
accepts the language L1•ρL. Obtain the automaton Sρ which accepts the regular
language L1•ρL by interchanging the sets of accepting and non-accepting states
of F1•ρF .

7. Derive the automaton (F1↑{I,U,O} ∩ Sρ↑{I,U,O})↓{I,O}. If the automaton

accepts the language L then the regular language L1•ρL is the largest solution
over the alphabet U × O to the equation L1•θX = L. Otherwise, the regular
language equation L1•θX = L has no solution over the alphabet U ×O.

We illustrate the procedure for automata shown in Figure 2 where accepting
states are shown in double lines. Automata F1 and F accept correspondingly
the languages L1 and L over alphabets I × U and I × O. The automaton F

Solving language equations over composition operators 27

(Figure 2c) accepts the language L. Figure 2d shows the automaton F1↑{I,U,O} ∩
F ↑{I,U,O} that accepts the intersection L1↑{I,U,O}∩L↑{I,U,O}. Figure 2e presents
the deterministic automaton that accepts the projection of L1↑{I,U,O}∩L↑{I,U,O}
onto alphabet U ×O, i.e., the synchronous composition L1•{U,O}L, while Figure

2f shows the automaton that accepts the largest solution Sρ = L1•ρL to the
equation L1•{I,O}X = L over alphabet U ×O.

Figure 2. Solving a synchronous equation over regular languages:
a) automaton F1; b) automaton F ; c) automaton F ; d) automaton L1•ρL;
e) a deterministic automaton (F1↑{I,U,O}∩F ↑{I,U,O})↓{U,O} which accepts the language

L1•{U,O}L; f) the automaton which accepts the largest solution Sρ = L1•ρL.

We also illustrate how a solution to a parallel language equation can be
derived when all the languages are regular. Given a regular language equation
L1♦EX = L where L1 is a regular language over alphabet A1, L is a regular
language over alphabet E, and the unknown language X is over alphabet R ⊆
A1 ∪ E, an algorithm to build X follows (if a solution exists).

Procedure 4.2. Deriving the largest solution over alphabet R to a regular
language equation L1♦EX = L (if a solution exists)

Input. Regular language L1 over alphabet A1, regular language L over al-
phabet E, A = A1∪E, an alphabet R ⊆ A and a language equation L1♦EX = L

Output. The largest solution SR over alphabet R to the language equation
(if the equation is solvable)

1. Derive finite automata F1 and F which accept respectively regular lan-
guages L1 and L.

28 Nina Yevtushenko, Tiziano Villa, Svetlana Zharikova

2. If F is a nondeterministic automaton then determinize F by the subset con-
struction and obtain F by interchanging the sets of accepting and non-accepting
states of F .

3. Obtain the automaton F1⇑A by adding a self-loop (a,s,s) for each state s
of FA F1 and each a ∈ A\A1.

Obtain the automaton F⇑A by adding a self-loop (a,f ,f) for each state f of
FA F and each a ∈ A\E.

4. Build the intersection F1⇑A ∩ F⇑A where states of F1⇑A ∩ F⇑A are pairs
of states of F1⇑A and F⇑A.

5. Restrict F1⇑A∩F⇑A to the alphabet R and apply the closure construction
to obtain a deterministic automaton SR which accepts the language L1♦RL.

6. Derive the automaton (F1⇑A ∩ SR⇑A)⇓E . If the automaton accepts the
language L then the regular language L1♦RL is the largest solution over the
alphabet R to the equation L1♦EX = L. Otherwise, the regular language
equation L1♦EX = L has no solution over the alphabet R.

If the regular language equation L1♦EX = L is solvable over alphabet R
then the largest solution that is a regular language is obtained by Procedure 4.2.
However, the question whether a regular language equation can have solutions
that are not regular is open. If the language equation is unsolvable over alphabet
R then we can attempt to solve the equation over a larger alphabet. However,
if the equation is unsolvable over alphabet A = A1 ∪ E then the equation is
unsolvable over any non-empty subset of the alphabet A.

Figure 3. Solving a parallel equation over regular languages:
a) automaton F1; b) automaton F ; c) automaton SR.

As an example, consider finite automata represented in Figure 3 [9]. We
consider the automaton F1 defined over the alphabet A1 = {e1, e2, i} and the
automaton F defined over the alphabet E = {e1, e2, x}. The automaton SR

shown in Figure 3c is defined over alphabet R = {e1, e2, i, x} and accepts the
largest solution SR = L1♦RL to the equation L1♦EX = L.

Solving language equations over composition operators 29

Here we notice that there exist effective algorithms based on operators over
finite automata for deriving largest restricted solutions [2, 4, 10]. Moreover, such
algorithms exist also for deriving the largest compositionally progressive solution
over regular languages [8, 9].

5 Related work

Various contributions investigating partial aspects of the topic of this research
have been published in the past. The first results related to solving equations in
logic synthesis over series composition of FSMs were obtained in 1972 by Kim
and Newborn [11] and have been developed by the group of Brayton (Berkeley)
(see, for example, [4, 12, 13]). It has been shown, that for the synchronous in-
equality of FSM languages, the most general solution is a nondeterministic FSM
containing a behavior of each deterministic solution. The most general solution
can be obtained using a number of methods such as fixed-point computation,
WS1S logic, E-machine derivation, and simulation relation (see, for example, [4,
14]). The results were shown to be useful for the optimization of a component
implementation in a logic network, the design of a discrete controller, and in
finding the winning strategy of discrete games. The same results were obtained
independently by the scientific groups of Yevtushenko and Petrenko for testing
a component FSM of a complex system. In this case, the most general solu-
tion describes a behavior of the component that cannot be tested, due to lack
of observability or controllability. Parallel equations over finite automata have
been studied in process algebra. The solvability of a parallel language equation
over finite automata where each state is accepting was established by Merlin
and Bochmann [15]. The algorithm for deriving the largest solution for this case
was proposed by Qin and Lewis [16]. Later, the results were extended by Yev-
tushenko and Petrenko and other researchers to solve parallel FSM equations [9,
10, 17].

Afterwards, the teams from Berkeley and Tomsk, led respectively by Bray-
ton and Yevtushenko, together with Petrenko from Canada and Villa from Italy,
became aware of the similarities of the results that they had obtained indepen-
dently To unify their results in a common frame, they proposed to model the
problem as solving equations over languages, specialized over different types of
languages and composition operators, according to different applications. The
results of these investigations were presented through a sequence of papers [1,
2, 6, 8, 18–20] that dealt especially with language equations for synchronous and
parallel composition operators, and applied them to regular and FSM languages.
They obtained the most general solutions for the language inequalities and lan-
guage equations of the form A •X ⊆ C and A♦X ⊆ C, for various composition
topologies. Moreover, restricted solutions of theoretical or practical interest were
characterized. The research is in progress for compositionally progressive solu-
tions, to obtain algorithms for deriving the largest compositionally progressive
solutions for synchronous and parallel regular (FSM) language equations (if such
a solution exists) [8, 9].

30 Nina Yevtushenko, Tiziano Villa, Svetlana Zharikova

A related important research effort has been conducted in the supervisory
control community to study the problem of synthesizing discrete controllers (see,
for example, [21–25]). However, methods for language equation solving cannot
be directly used in supervisory control, and vice versa. Nevertheless, it is very in-
teresting to establish links between the supervisory control and equation solving.
The algorithm for solving equations over regular languages have an exponential
complexity in the worst-case. The reason is the complement operator over finite
automata, which requires a deterministic automaton as an input. The algorithm
in supervisory control applied to regular languages has a polynomial complexity,
even for partial controllability and observability. Therefore, on the one hand,
the equation solving approach seems to be more general as it can deal with ar-
bitrary topologies. On the other hand, the supervisory control approach has a
low worst-case complexity, and it helps to characterize the topologies for equa-
tion solving whose computational complexity is lower than in general case. Such
topologies are partly described in the papers [12, 26]. However, the complete
characterization of such topologies is still an open issue.

6 Conclusion

The problem of solving language equations over synchronous and parallel com-
position operators has been studied. The most general (largest) solutions and
the largest alphabets over which a solution exists were characterized. It has been
shown that equations over regular languages can be effectively solved by compu-
tations over finite automata. Restricted solutions to equations were discussed.
The language approach seems to unify the previously reported techniques for
solving equations in logic synthesis and process algebra, and it appears to be
capable of modeling problems with various notions of composition operators
and language acceptance conditions, such as Petri nets, ω-languages, etc. How-
ever, procedures for solving effectively equations over Petri net languages and
ω-languages must face the problem that generally these languages are not closed
under complementation.

We notice that synchronous and parallel composition operators can be easily
extended to be defined over more than two languages, and thus, the same ap-
proach can be applied for solving multi component language equations [27] and
systems of language equations [28–30].

7 Acknowledgments

The first and the third authors gratefully acknowledge the support of grants
by the Russian Found of Basic Research, in particular, RFBR-NSC Grant 06-
08-89500. The second author gratefully acknowledges the support of the project
FP6-2005-IST-5-033709 (VERTIGO). All the authors gratefully acknowledge the
support of NATO Collaborative Linkage Grants No 971217, 979698 and 982314.

Solving language equations over composition operators 31

References

1. N. Yevtushenko, T. Villa. A. Petrenko, R.K. Brayton, A. Sangiovanni-Vincentelli.
Solving equations in logic synthesis. – Tomsk, Spectrum Publishers, 1999. – 27 p.
(In Russian).

2. N. Yevtushenko, T. Villa. R.K. Brayton, A. Petrenko, A. Sangiovanni-Vincentelli.
Logic synthesis by equation solving // Proceedings of XVI Intern. Workshop on
Logic synthesis, USA, 2000, p. 11-14.

3. J. Hartmanis, R.E. Stearns. The algebraic structure theory of sequential machines.
Prentice Hall, N.Y., 1966.

4. T. Kam, T. Villa, R. Brayton, A. Sangiovanni-Vincentelli. Synthesis of finite state
machines: functional optimization. Kluwer Academic Publishers, 1997.

5. J.E. Hopcroft, J.D. Ullman. Introduction to automata theory, languages and com-
putations. Addison-Wesley Publishing Company, 1979.

6. N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli.
Solution of synchronous language equations for logic synthesis. Vestnik TSU, 2002,
N 1, pp. 132-138.

7. N. Yevtushenko, T. Villa, R.K. Brayton, A. Mishchenko, and A.L. Sangiovanni-
Vincentelli. Sequential synthesis by language equation solving. Techni-
cal report, Tech.Rep. No. UCB/ERL M03/9, Berkeley, CA, April 2003,
http://www.parades.rm.cnr.it/villa/articoli/ps/TR-UCB ERL-M03.9.ps.

8. N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli.
Compositionally progressive solutions of synchronous language equations, In: Pro-
ceedings of IWLS, 2003, pp. 148-155

9. K. El-Fakih, N. Yevtushenko, S. Buffalov, G. v. Bochmann. Progressive solutions
to a parallel automata equation. Theoretical Computer Science, 362, 2006, pp. 17-
32 (The preliminary version was published in Lectures Notes in Computer Science,
2003, vol. 2767, pp. 367-382).

10. A. Petrenko, N. Yevtushenko. Solving asynchronous equations. In: Formal De-
scription Techniques and Protocol Specifications, Testing and Verification, FORTE
X1/PSTVXIII, 1998, pp. 231-247.

11. J. Kim and M.M. Newborn. The specification of sequential machines with input
restrictions. IRE Trans. on Electronic Computers. 1972, pp. 1440-1443.

12. Di Benedetto, A.L. Sangiovanni-Vincentelli, T. Villa. Model matching of finite state
machines, IEEE Transactions on Automatic Control. 2001, 46, N.11, pp. 1726-1743.

13. S. Hassoun and T. Villa Optimization of synchronous circuits. In: Logic Synthesis
and Verification (eds., R. Brayton, S. Hassoun and T. Sasao), Kluwer Academic
Publishers, 2002, pp. 225-253.

14. E. Wolf. Hierarchical models of synchronous circuits for formal verification and
substitution. PhD thesis, 1995, Stanford University.

15. P. Merlin, G.v. Bochmann. On the construction of submodule specification and
communication protocols. ACM Transactions on Programming Languages and Sys-
tems, 1983, 5(1), pp. 1-25.

16. H. Qin, P. Lewis. Factorization of finite state machines under strong and observa-
tional equivalence. Formal Aspects of Computing, 1991, 3, pp. 284-307.

17. S. Buffalov, N. Yevtushenko. Studying solutions to a parallel FSM equation. Bul-
letin of the Novosibirsk Computing Center, Computer Science, V.11, 2001, pp.
7-16.

18. N. Yevtushenko, T. Villa. R.K. Brayton, A. Petrenko, A. Sangiovanni-Vincentelli.
Solving a parallel language equation // In: Proceedings of the ICCAD’01, USA,
2001. pp. 103-110.

32 Nina Yevtushenko, Tiziano Villa, Svetlana Zharikova

19. N. Yevtushenko, T. Villa, R. K. Brayton, A. Mishchenko, and A. L. Sangiovanni-
Vincentelli. Composition operators in language equations. In: Proceedings of IWLS
2004, pp. 409-415.

20. T. Villa, N. Yevtushenko, S. Zharikova. Characterization of progressive solutions to
a synchronous FSM equation. Vestnik TSU, N 278, 2003, pp. 129-133 (in Russian).

21. G. Barrett, S. Lafortune. Bisimulation, the strong supervisory control problem and
strong model matching for finite state machines. Discrete Event Dynamic Systems:
Theory and Applications. 1998, 8(4), pp. 377-429.

22. S. Cassandras, S. Lafortune. Introduction to discrete event systems. Kluwer Aca-
demic Publishers. 1999.

23. R. Kumar, S. Nelvagal, S.I. Marcus. Approach for protocol conversion. Discrete
Event Systems: Theory and Applications. 1997, 7(3), pp. 295-315.

24. R. Kumar, V.K. Garg. Modeling and control of logical discrete event systems.
Kluwer Academic Publishers, 1995.

25. P. Ramadge, W. Wonham. The control of discrete event systems. Proceedings of
IEEE, 77(1), 1989, pp. 81-98.

26. N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-Vincentelli,
Equisolvability of Series vs. Controller’s Topology in Synchronous Language Equa-
tions. Intern conf. DATE, 2003, pp. 11154-11155.

27. N. Spitsyna. Deriving test suites for testing communication Finite State Machines.
PhD thesis, Tomsk State University, 2005 (in Russian).

28. S. Zharikova. Optimizing digital circuits by solving systems of equations. Vestnik
TSU, 2003, N 1, pp. 255–259 (in Russian).

29. N. Yevtushenko, S. Zharikova, M. Vetrova. Multi Component Digital Circuit Op-
timization by Solving FSM Equations. Euromicro Symposium on Digital System
Design, IEEE Computer society, 2003, pp. 62-68.

30. S. Zharikova, N. Yevtushenko, M. Vetrova. FSM decomposition optimization by
FSM equation solving. In: Proceedings of XV Intern. Conf. Design and complexity
of control systems, 2004, pp. 29-34 (in Russian).

Conjugacy of finite biprefix codes?

Julien Cassaigne1, Juhani Karhumäki2, and Petri Salmela2

1 Institut de Mathématiques de Luminy — CNRS/FRUMAM, Case 907,
FR-13288 Marseille Cedex 9, France;

cassaigne@iml.univ-mrs.fr
2 Department of Mathematics and TUCS,

University of Turku, FI-20014 University of Turku, Finland;
{karhumak,pesasa}@utu.fi

Abstract. Two languages X and Y are called conjugates, if they satisfy
the conjugacy equation XZ = ZY for some non-empty language Z. We
will compare solutions of this equation with those of the corresponding
equation of words and study the case of finite biprefix codes X and Y . We
show that the maximal Z in this case is rational. We will also characterize
X and Y in the case where they are both finite biprefix codes. This yields
decidability of conjugacy of two finite biprefix codes.

1 Introduction

The conjugacy equation xz = zy is a basic equation for words. Words x and y
are conjugates, i.e., they satisfy the conjugacy equation for some word z if and
only if x and y have factorizations x = pq and y = qp with some words p and q,
and then the above z can be expressed as z = (pq)ip.

For languages we say that languages X and Y are conjugates, if they sat-
isfy the conjugacy equation XZ = ZY for some non-empty language Z. For
empty set Z the conjugacy equation always holds. We also restrict our research
on languages X and Y which do not include empty word and namely we study
finite biprefix codes. We can also note, that not all biprefix codes X and Y are
conjugates. For example with X = {a} and Y = {b} the conjugacy equation
aZ = Zb does not have non-empty solution Z. The conjugacy equation on lan-
guages is not equally easy to solve as the same equation on words. Solutions
of conjugacy equation of words can be extended to languages simply by replac-
ing words x, y, z, p and q by languages X,Y, Z, P and Q, but in several cases
these are not all possible solutions. For example, as observed in [2], the solu-
tion X = {a, ab, abb, ba, babb}, Y = {a, ba, bba, bbba}, Z = {a, ba} is not of this
type. However, for some special classes of languages all solutions can be obtained
essentially as solutions of the word case. This is the topic of this note.

In this paper we first define so-called word type solutions of conjugacy equa-
tion on languages. The solutions for words can be expressed as x = (pq)k, y =

? Supported by the Academy of Finland under grant 203354 and Finnish Mathematical
Society International Visitors Program

M. Kunc, A. Okhotin (Eds.): Theory and Applications of Language Equations
TUCS General Publication No 44, pp. 33–42, 2007.

34 Julien Cassaigne, Juhani Karhumäki, and Petri Salmela

(qp)k and z = (pq)ip with some integers i, k and primitive word pq. This for-
mulation of solutions is equivalent to the one above. For language equations we
refer to solutions of form

X = (PQ)k, Y = (QP)k and Z =
⋃

i∈I

(PQ)iP

with primitive languages PQ as word type solutions. This notion has been stud-
ied in [2] by Cassaigne, Karhumäki and Maňuch, however, our notation is a slight
extension.

We prove our three results. First we define and study the greatest conjugator
of X and Y , that is the greatest language Z (with respect to the subset relation)
such that XZ = ZY . We show that for finite biprefix codes X and Y the
conjugator is rational. This is done by proving that the conjugator is always of
form X∗U for some finite language U .

After this we characterize finite biprefix codes X and Y satisfying the conju-
gacy equation with some language Z. We show that these languages can always
be factorized as X = UV and Y = V U for some biprefix codes U and V . This
is achieved by not so obvious combinatorial analysis.

Our third result proves that the conjugacy problem for finite biprefix codes,
i.e., the problem, whether given finite biprefix codes X and Y are conjugates,
is decidable. This is shown as corollary of the previous result and the fact that
the set of all biprefix codes is the free monoid. In the case of arbitrary finite
language the problem is open, and does not seem to be easy.

2 Preliminaries

Let A be a finite alphabet, and A∗ the free monoid generated by A. Lowercase
letters are used to denote words, i.e., elements of A∗, and uppercase letters
languages, i.e., subsets of A∗. The empty word will be denoted by 1. For words
notation |w| means the length of word w and for languages |X| is the cardinality
of X. Language is uniform, if all its elements have the same length.

Notation Pref(X) is used for the set of all prefixes of words in X, and similarly
Suf(X) means all suffixes of words in X. Empty word and words in X are
included. We use also a shorthand LI for the union of powers

⋃
i∈I Li. Notation

L≤n is a shorthand for
⋃

0≤i≤n Li. The language L is called primitive, if L = Ki

implies L = K and i = 1, i.e., if the language L is not a proper power of any
other language. If the language is not primitive it is imprimitive.

When we say that an element w in language L is prefix (resp. suffix) incom-
parable, we mean that neither w is a prefix (resp. suffix) of any other word in L
nor any other word in L is a prefix (resp. suffix) of w. Sometimes this kind of
element is also called left (resp. right) singular in L. (see [5], [10] or [8]) The lan-
guage L is a prefix (resp. suffix) code or just prefix (resp. suffix), if all elements
in L are left (resp. right) singular.

If the language L is both prefix and suffix code, we say it is biprefix code or
just biprefix. It is also known, that the families of prefix, suffix and biprefix codes

Conjugacy of finite biprefix codes 35

are free monoids [1], [9]. This means that each prefix (resp. suffix or biprefix)
code has unique factorization as catenation of indecomposable prefix (resp. suffix
or biprefix) codes. This means that each prefix (resp. suffix or biprefix) set can
be viewed as a word over a special alphabet. The free base of each of these
monoids is infinite, but in many cases only finite subset is needed.

We also note that for the conjugacy equation XZ = ZY we always have
Z ⊆ Pref(X∗)∩Suf(Y ∗). This is clear, since obviously also XnZ = ZY n for any
integer n and, for any words z ∈ Z and y ∈ Y there exists words xi ∈ X and
z′ ∈ Z such that zy|z| = x1 · · ·x|z|z′. This means, since |z| < |x1| + · · · + |x|z||,
that z is a prefix of x1 · · ·x|z| ∈ X |z|, i.e., z ∈ Pref(X∗). Dually, z is also suffix
of some word in Y ∗.

3 Word type solutions

We recall that the conjugacy equation xz = zy for non-empty words has the
general solution

xz = zy ⇐⇒ ∃p, q ∈ Σ∗ s.t. x = pq, y = qp and z ∈ (pq)∗p. (1)

This motivates the notion of word type solution of conjugacy equation of the
languages. In [2] this has been straightforwardly defined as:

X = PQ, Y = QP and Z = (PQ)IP (I ⊆ IN). (2)

We call these solutions word type 1 solutions.
However, there is also a slightly more general way to define word type solu-

tions. The condition (1), in the case of words, is equivalent to the condition

xz = zy ⇐⇒ ∃p, q ∈ Σ∗ s.t. x = (pq)k, y = (qp)k and z ∈ (pq)∗p. (3)

This motivates to define, word type solution of languages as:

X = (PQ)k, Y = (QP)k and Z = (PQ)IP (I ⊆ IN). (4)

We call such solutions word type 2 solutions, clearly they include all word type
1 solutions.

These indeed are different notions as shown in the next example.

Example 1. Let X = BCBC and Y = CBCB for B = {b} and C = {c} (or
some other biprefix codes). Now both solutions

P1 = B, Q1 = CBC,

X = P1Q1, Y = Q1P1, Z1 = P1Q1P1 = (BCBC)B

and

P2 = BCB, Q2 = C,

X = P2Q2, Y = Q2P2, Z2 = P2Q2P2 = (BCBC)BCB

36 Julien Cassaigne, Juhani Karhumäki, and Petri Salmela

are of word type in the sense of (2), but their union Z1 ∪ Z2 = BCBCB ∪
BCBCBCB is not. However, if we would use (4) as the definition of word type
solution, we would have

P = B,Q = C, X = (PQ)2, Y = (QP)2, Z1 = (PQ)2P = (BC)2B,

P = B, Q = C, X = (PQ)2, Y = (QP)2, Z2 = (PQ)3P = (BC)3B

and
Z = Z1 ∪ Z2 = (PQ){2,3}P.

We choose (4) as our definition of word type conjugation of languages.

4 The maximal conjugator

For the commutation equation XY = Y X there has been active research on the
centralizer, that is on the greatest language commuting with given language X.
J.H. Conway asked in [4], whether the centralizer of given rational language is
rational as well. This so-called Conway’s problem has been solved negatively in
general [7], but has proven to have positive answers in several special cases.

For the conjugacy equation XZ = ZY we can similarly study the maximal
solution Z for given languages X and Y . The maximal solution exists and is the
unique greatest one. In the case that X and Y are not conjugates the maximal
(and only) solution is the empty set. If X and Y are conjugates, and conjugated
via all Zi for i in some index set I, then they are, by the distributivity of
catenation and union operations, conjugated also via the union

⋃
i∈I Zi. Hence

the unique maximal solution is the union of all solutions Z. The special case
where X = Y gives us the centralizer of X.

We can ask the question similar to the Conway’s problem, namely whether
the maximal conjugator of given languages X and Y is rational. The general
answer is of course negative, since the original Conway’s problem has a negative
answer. However, we can again study some special cases. In what follows we use
similar reasoning for conjugacy as has been used for commutation in [6]. First
we need the following lemma.

Lemma 1 (Interchange lemma). If X and Y are finite languages, such that
Y has a suffix incomparable element y and XZ = ZY for some language Z, then
for each word z ∈ Z there exists an integer n and a word u ∈ Pref(X) \X such
that z = x1x2 · · ·xnu for some xi ∈ X, and moreover Xnu ⊆ Z.

Proof. Let X and Y be finite languages, y a suffix incomparable element in Y ,
and Z such that XZ = ZY . Then for each z ∈ Z there exists an integer n and
factorization z = x1x2 · · ·xnu such that xi ∈ X, u ∈ Pref(X) \X and

zyn = x1x2 · · ·xnuyn ∈ ZY n = XnZ

with uyn ∈ Z. Then again

x′1x
′
2 · · ·x′nuyn ∈ XnZ = ZY n

Conjugacy of finite biprefix codes 37

where x′i are arbitrary elements from X. This shows that Xnu ⊆ Z, since y is
suffix incomparable in Y .

Theorem 1. For finite languages X and Y , such that Y has suffix incomparable
element y, the maximal conjugator is rational.

Proof. Let X and Y be finite languages, y a suffix incomparable element in Y ,
and Z their greatest conjugator. By Lemma 1 for each word z ∈ Z we have
z ∈ Xnu ⊆ Z for some integer n and word u ∈ Pref(X). Since X2Z = XZY
the language XZ is included in the greatest conjugator Z. Hence also X∗Z ⊆ Z
and X∗Xnu ⊆ Z.

Let U ⊆ Pref(X) be the set of all words u occurring in the above construc-
tions. Since the language X is finite, so is U . Now, for each u ∈ U , there exists
minimal integer nu such that X∗Xnuu ⊆ Z and each word z ∈ Z is in one of
these sets. Hence we conclude that the maximal conjugator of X and Y is

Z = X∗
(⋃

u∈U

Xnuu

)
.

This set is rational, since the set ∪u∈UXnuu is finite. Note that if X and Y are
not conjugates, then Z is the empty set.

The proof of previous Theorem is not constructive, since it needs the maximal
conjugator to be given. Hence the result is noneffective.

In a suffix set all elements are suffix incomparable, therefore this result holds
in the case of finite biprefix codes X and Y .

5 Characterization of conjugacy of finite biprefix codes

In this section we characterize, when biprefix codes X and Y are conjugates.
In what follows, we assume that X and Y are finite biprefix codes such that

XZ = ZY for some nonempty language Z.

Lemma 2. We have: For every integer n ≥ min{|x| | x ∈ X} there exist finite
biprefix codes Un and Vn satisfying

X ∩A≤n = UnVn ∩A≤n and
Y ∩A≤n = VnUn ∩A≤n.

(5)

Proof. Let X0, Y0, Z0 be the sets of elements in X, Y, Z of minimal length and
n0 = min{|x| | x ∈ X}. Then, since X0, Y0 and Z0 are uniform languages,
X0Z0 = Z0Y0 holds and the solution is of word type, see [2]. This means that
X0 = Un0Vn0 , Y0 = Vn0Un0 and Z0 = (Un0Vn0)

mUn0 for some unifor Un0 and
Vn0 and integer m ≥ 0. Hence (5) holds for n = n0.

Let us choose u0 ∈ Un0 , v0 ∈ Vn0 and z0 = (u0v0)mu0 ∈ Z0. We assume that
we have already constructed Ui and Vi for n0 ≤ i < n and next we construct Un

and Vn for n > n0, so that Un−1 ⊆ Un and Vn−1 ⊆ Vn.

38 Julien Cassaigne, Juhani Karhumäki, and Petri Salmela

First we show that Un−1Vn−1 ∩ A≤n ⊆ X and Vn−1Un−1 ∩ A≤n ⊆ Y . Let
u ∈ Un−1, v ∈ Vn−1 such that |uv| = n, if such elements exist. Then |uv0| < n
and |u0v| < n, so uv0, u0v ∈ X and v0u, vu0 ∈ Y . Now z0v0uvu0 ∈ ZY 2 = X2Z
and by regrouping elements we have

z0v0uvu0(v0u0)m = (u0v0)m+1uvz0 ∈ ZXm+2 = Xm+2Z

and since X is biprefix, we get uvz0 ∈ XZ. Hence uvz0 = xz with x ∈ X and
z ∈ Z. Here |z| ≥ |z0|, i.e., x is a prefix of uv ∈ Un−1Vn−1. If |x| < n, i.e., x is
a proper prefix of uv, then also x ∈ Un−1Vn−1 and this is a contradiction, since
Un−1Vn−1 is a biprefix. Therefore |x| = n and x = uv ∈ X. Similarly vu ∈ Y
and so Un−1Vn−1 ∩A≤n ⊆ X and Vn−1Un−1 ∩A≤n ⊆ Y .

Next we deal with the words in X∩An\Un−1Vn−1 (and in X∩An\Un−1Vn−1)
and show that some words can be added to Un−1 and Vn−1 to form Un and Vn.

If there exists x ∈ X ∩An \ Un−1Vn−1, then

(u0v0)m+1xz0 = z0v0xu0(v0u0)m ∈ Xm+2Z = ZY m+2

and hence Y is biprefix, z0v0xu0 ∈ ZY 2. Therefore Z0v0xu0 = zyy′ for some
y, y′ ∈ Y and z ∈ Z, |z| ≥ |z0|. See the Figure 1 for illustration. Now yy′ is suffix
of v0xu0 and |u0| ≤ n0 ≤ |y′| ≤ |v0xu0| − |y| = n + n0 − |y| ≤ n. So y′ = v′u0,
where v′ is a suffix of x. We have two cases:

– If |y′| < n, then y′ = v′u0 ∈ Vn−1Un−1 and, since Un−1 is a biprefix, v′ ∈
Vn−1. Now x = u′v′, where u′ /∈ Un−1, and y is a suffix of v0u

′. For lengths
we have now n0 ≤ |y| ≤ |v0u

′| = |v0xu0|− |y′| = n+n0−|y′| ≤ n. There are
two subcases on the length of y:
• If |y| < n, then y = v′′u′′ ∈ Vn−1Un−1 for v′′ ∈ Vn−1, u

′′ ∈ Un−1. Now
|v′′u′′| ≤ |v0u

′|, since y = v′′u′′ is a suffix of v0u
′, and also |v′′| ≥ |v0|.

Hence |u′′| ≤ |u′| and u′′ is a suffix of u′. In fact u′ 6= u′′, since u′ /∈ Un−1

and u′′ ∈ Un−1. Now u′′v′ ∈ Un−1Vn−1 and, as we just proved above, by
its length

|u′′v′| ≤ |v0xu0| − |v′′| − |u0| ≤ n

also u′′v′ ∈ X. This means that u′′v′ and x = u′v′ are both in X and
u′′v′ is a proper suffix of x = u′v′. This contradicts the fact that X is a
biprefix.

• On the other hand, if |y| = n = |x|, then |y′| = n0, |z| = |z0| and
y = v0u

′. In this case we add u′ to Un, so that x ∈ UnVn0 .
– If |y′| = n, then x = u′v′ with |u′| = |u0| and |y| = |v0xu0| − |y′| = n0, so

y = v0u
′. Hence y ∈ Vn0Un0 and so u′ ∈ Un0 . In this case we add v′ to Vn so

that x ∈ Un0Vn.

We proceed similarly for y ∈ Y ∩An \ Vn−1Un−1. Note that by the construction
of Un and Vn maxv∈Vn |v|+minu∈Un |u| ≤ n and maxu∈Un |u|+minv∈Vn |v| ≤ n.

Now for each element u in Un \ Un−1 there exist elements v′ and v′′ in Vn0

such that uv′ ∈ X ∩An and v′′u ∈ Y ∩An. We have to show that uV0 ⊆ X and
V0u ⊆ Y .

Conjugacy of finite biprefix codes 39

Fig. 1. Illustration of equation z0v0xu0 = zyy′.

Let v ∈ Vn0 . Then vu0 ∈ Y and u0v ∈ X. Since

(u0v0)mu0v
′′uvz0 = z0(v′′u)(vu0)(v0u0)m ∈ ZY m+2 = Xm+2Z,

there is u0v
′′uvz0 ∈ X2Z. Since u0v

′′ ∈ Un0Vn0 ⊆ X we obtain uvz0 ∈ XZ, so
uvz0 = xz.

If |x| < n = |uv|, then x ∈ Un−1Vn−1 ⊆ UnVn and x is proper prefix of
uv ∈ UnVn. However, this can not be the case, since Un and Vn are both biprefix
codes (see below).

If |x| > n, then |z| < |z0| which contradicts the minimality of |z0|. Hence
|x| = n = |uv| and x = uv ∈ X. VN0 is obtained dually.

Similarly, for each element v in Vn \ Vn−1 there exist elements u′ and u′′ in
U0 such that u′v ∈ X ∩An and vu′′ ∈ Y ∩An and we can prove that Un0v ⊆ X
and vUn0 ⊆ Y .

Un and Vn are biprefix codes: If u′ ∈ Un is a proper prefix of u ∈ Un, we
can assume that |u| = n − |v0| (otherwise we are in Un−1, which is a biprefix)
and u′ ∈ Un−1. Then there exists such v′′ ∈ Vn0 that v′′u ∈ Y , but then also
v′′u′ ∈ Vn0Un−1 ⊆ Y . Since Y is biprefix, we have a contradiction.

Similar reasoning applies also, if u′ ∈ Un is a proper suffix of u ∈ Un. Hence
Un is also a suffix code and therefore it is a biprefix.

Similarly Vn is a biprefix code.

Theorem 2. If finite biprefix codes X and Y are conjugates, then X = UV and
Y = V U for some biprefix codes U and V .

Proof. Applying Lemma 2 for n = maxx∈X |x|+ maxy∈Y |y| − n0, we obtain:

for all u ∈ Un, uv0 ∈ X, so |u| ≤ maxx∈X |x| − |v0|
for all v ∈ Vn, vu0 ∈ Y, so |v| ≤ maxy∈Y |y| − |u0|

}
so |uv| ≤ n

Hence

UnVn ∩A≤n = UnVn

VnUn ∩A≤n = VnUn

X ∩A≤n = X

Y ∩A≤n = Y

and we have X = UnVn and Y = VnUn.

40 Julien Cassaigne, Juhani Karhumäki, and Petri Salmela

The theorem 2 deserves a few comments. It shows that if finite biprefixes X
and Y are conjugates, that is satisfy the conjugacy equation XZ = ZY with
nonempty Z, they can be decomposed into the form

X = PQ and Y = QP for some biprefixes P and Q.

Of course, the reverse holds as well, namely they satisfy the conjugacy equation,
e.g., for Z = P (QP)I , with I ⊆ IN. Hence the conjugacy in the case of finite
biprefixes can be defined equivalently in the above two ways. In general, these
definitions are not equivalent as discussed in [3].

To continue our analysis let us see what happens if the biprefixes X and Y
have two different factorizations

X = UV, Y = V U and X = U ′V ′, Y = V ′U ′.

This indeed is possible, if X and Y are not primitive, as pointed out in Example 1.
We show that this is actually the only way this can happen. For this we need
the following simple lemma on words.

Lemma 3. All solutions of the pair of word equations
{

xy = uv
yx = vu

over some finite alphabet are of the form x = β(αβ)i, y = (αβ)jα, u = β(αβ)k

and v = (αβ)lα with i + j = k + l.

Proof. If we assume that |u| ≤ |x|, the first equation implies that for some word t

x = ut

and hence
v = ty and yut = tyu.

The latter condition means that yu and t commute, i.e., we can write

t = (αβ)f , y = (αβ)dα, and u = β(αβ)e,

where α, β ∈ A∗ and d, e, f ≥ 0. This leads to the solutions

x = β(αβ)e+f

y = (αβ)dα
u = β(αβ)e

u = (αβ)f+dα

.

The case |x| ≤ |u| is symmetric and solutions are the same up to renaming of x,
y, u and v.

Since biprefix codes can be viewed as words over the alphabet of all inde-
composable biprefixes, we conclude from Theorem 2 and Lemma 3 the following
theorem.

Conjugacy of finite biprefix codes 41

Theorem 3. If finite biprefix codes X and Y are conjugates, then X = (PQ)i

and Y = (QP)i for primitive languages PQ and QP and unique biprefix codes
P and Q.

Proof. The theorem 2 implies that X and Y have some factorization X = UV
and Y = V U with biprefix codes U and V . If X = UV = U ′V ′ and Y = V U =
V ′U ′ are two different such factorizations of X and Y , then we can simply apply
the Lemma 3 for equations {

UV = U ′V ′

V U = V ′U ′ .

Here biprefix codes are now viewed as words over the alphabet appropriate
finite set of indecomposable biprefix codes. This gives that always U = P (QP)j ,
V = (QP)kQ, U ′ = P (QP)l and V ′ = (QP)mQ for some integers j, k, l and m.
Then X = (PQ)i and Y = (QP)i for some integer i. Naturally P and Q can be
chosen so that PQ and QP are primitive roots of X and Y respectively.

Hence all different factorizations X = UV , Y = V U can be given in the form
above as products of the same biprefix codes P and Q. then

Now, we are ready to conclude our remarks. If X and Y are finite biprefixes,
which are conjugates, then there exist unique biprefixes P and Q such that
X = (PQ)i and Y = (QP)i. Hence X and Y are conjugates in the form of word
type 2 as in formula 4. On the other hand the form of Z is still open and it is
not necessarily always Z = (PQ)IP . This needs to be examined more closely in
the future.

6 Conjugacy problem for finite biprefix codes

We will refer to the problem ”Are given finite languages X and Y conjugates?”
as the conjugacy problem. In general, the decidability status of this problem is
not known. Our results allow to answer it in the case of biprefix codes.

Theorem 4. The conjugacy problem for finite biprefix codes is decidable.

Proof. Let X and Y be finite biprefix codes. Languages X and Y have unique
factorizations as catenation of indecomposable biprefix codes. These factoriza-
tions can be found for example by finding the minimal DFA for these biprefixes.
Theorem 2 shows that if X and Y are conjugates, then X = UV and Y = V U
for some biprefix codes U and V . Since the prime factorizations of X and Y are
finite, there are only a finite number of candidates for U and V . If U and V can
be found, then equation XZ = ZY has at least word type solutions with given
X and Y . If on the other hand, suitable U and V can not be found, then X and
Y are not conjugates.

42 Julien Cassaigne, Juhani Karhumäki, and Petri Salmela

References

1. J. Berstel, D. Perrin: Theory of Codes, Academic Press, New York (1985).
2. J. Cassaigne, J. Karhumäki and J. Maňuch, On Conjugacy of Languages, Theoret.

Informatics Appl. 35 (2001) 535–550.
3. Ch. Choffrut, Conjugacy in Free Inverse Monoids. Proceedings of the Second In-

ternational Workshop on Word Equations and Related Topics, LNCS 677 : 6–22
Springer-Verlag, London, UK (1991).

4. J.H. Conway, Regular algebra and finite machines. Chapman Hall (1971).
5. J. Karhumäki, M. Latteux, I. Petre, The commutation with codes. Theor. Comp.

Sci. 340 (2005) 322–333.
6. J. Karhumäki, I. Petre, The Branching Point Approach to Conway’s Problem,

in W. Brauer et al. (Eds.): Formal and Natural Computing, LNCS 2300, 69–76,
Springer-Verlag, Berlin Heidelberg (2002).

7. M. Kunc, The power of commuting with finite sets of words, in Proc. of STACS
2005 , Lect. Notes in Comput. Sci. 3404 (2005) 569–580.

8. P. Massazza, P. Salmela, On the simplest centralizer of a language, in RAIRO –
Theoret. Informatics Appl. 40, 295–301 (2006).

9. D. Perrin, Codes conjugués. Inform. and Control 20 (1972) 222 – 231.
10. B. Ratoandromanana, Codes et motifs, RAIRO Inform. Theor., 23 (4), (1989)

425–444.

On the operational orthogonality of languages

Mark Daley1, Michael Domaratzki2 and Kai Salomaa3

1 Department of Computer Science and Department of Biology, University of
Western Ontario, London, Ontario N6A 5B7, Canada, daley@csd.uwo.ca

2 Department of Computer Science, University of Manitoba, Winnipeg, Manitoba
R3T 2N2, Canada, mdomarat@cs.umanitoba.ca

3 School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada,
ksalomaa@cs.queensu.ca

Abstract. Motivated by the applications of signal orthogonality in the
Code Division Multiple Access (CDMA) multiplexing scheme, we intro-
duce the generalized notion of orthogonality for languages relative to
any binary word operation. We consider basic algebraic and decision-
theoretic properties of orthogonal languages. We also consider the solv-
ability of language equations involving the orthogonal concatenation op-
eration.

1 Introduction

The Code Division Multiple Access (CDMA) multiplexing scheme used in ra-
dio communications allows for the simultaneous reception of transmissions from
multiple senders by assigning each sender a waveform which, when superimposed
with the waveforms of other senders, generates a signal which can be uniquely
decomposed back in to the original waveforms. This is possible due to the addi-
tive nature of interfering radio waves and the careful choice of waveforms which
are mutually orthogonal. In the case of binary signaling, we may represent wave-
forms as binary vectors of some finite size leading to a simple choice of those
waveforms which are represented by orthogonal vectors in the sense of traditional
linear algebra4.

The theoretical and practical properties of CDMA have been investigated
thoroughly in the engineering literature, including algebraic studies of CDMA
variants (see, e.g., [2]). These studies, however, principally concern themselves
with the details of radio communications, rather than abstract communications
channels. In this paper we seek to generalize the notion of orthogonality to
arbitrary word operations to perhaps facilitate the investigation of code-division
multiplexing schemes in the more general context of abstract coding theory.
Restrictions of operational orthogonality have been previously studied for the
concatenation operation in the formal language theory literature on language
equations. We present here a general framework for studying orthogonality in
the light of previous related work and demonstrate preliminary results for the
operations of concatenation and shuffle on trajectories.
4 We refer the reader to [13] for an introductory text on CDMA.

M. Kunc, A. Okhotin (Eds.): Theory and Applications of Language Equations
TUCS General Publication No 44, pp. 43–53, 2007.

44 Mark Daley, Michael Domaratzki and Kai Salomaa

2 Preliminaries

In the following Σ is a finite alphabet. The set of all words over Σ is Σ∗ and Σ+

is the set of non-empty words over Σ. The length of a word w ∈ Σ∗ is |w| and
ε is the empty word. The set of symbols of Σ occurring in a word w is alph(w).

For w ∈ Σ∗ and L ⊆ Σ∗ we define

w−1L = {u ∈ Σ∗ | wu ∈ L}, Lw−1 = {u ∈ Σ∗ | uw ∈ L}.

The reversal of a word w = a1 · · · an, a ∈ Σ, i = 1, . . . , n, is wR = an · · · a1 and
the reversal of a language L is LR = {wR | w ∈ L}.

Let L ⊆ Σ∗. The set of prefixes (respectively, proper prefixes) of words of
L is denoted pref(L) (respectively, ppref(L)). Similarly the sets of suffixes and
proper suffixes of words of L are suf(L) and psuf(L).

A nondeterministic finite automaton (NFA) is a four-tuple

A = (Σ,Q, q0, F, δ),

where Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the start state,
F ⊆ Q is the set of accepting states and δ : Q×Σ → P(Q) defines the transitions
of A. The automaton A is deterministic (a DFA) if for all q ∈ Q and a ∈ Σ,
|δ(q, a)| ≤ 1.

In the standard way the transition function δ is extended to a function Q×
Σ∗ → P(Q) and the language accepted by A is

L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅}.

The nondeterministic and deterministic finite automata accept exactly the reg-
ular languages [15].

The notions associated with orthogonality have close connections to formal
power series and, for example, the proof of the main decidability result for or-
thogonal catenation [1] relies on power series. Here we do not discuss power
series in detail and the interested reader can find more information e.g. in [10].

To conclude this section we recall the notion of shuffle on trajectories oper-
ation originally introduced in [11].

A trajectory t is a word over the alphabet {0, 1}. For x, y ∈ Σ∗, the shuffle
of x and y along a trajectory t, x t y, is defined inductively as follows.

If x = ax′, y = by′ (with a, b ∈ Σ) and t = et′ (with e ∈ {0, 1}), then

x et′ y =
{

a(x′ t′ by′) if e = 0;
b(ax′ t′ y′) if e = 1.

If x = ax′ (a ∈ Σ), y = ε and t = et′ (e ∈ {0, 1}), then

x et′ ε =
{

a(x′ t′ ε) if e = 0;
∅ otherwise.

On the operational orthogonality of languages 45

If x = ε, y = by′ (b ∈ Σ) and t = et′ (e ∈ {0, 1}), then

ε et′ y =
{

b(ε t′ y′) if e = 1;
∅ otherwise.

We let x ε y = ∅ if {x, y} 6= {ε}. Finally, if x = y = ε, then ε t ε = ε if t = ε
and ∅ otherwise.

We extend shuffle on trajectories to sets T ⊆ {0, 1}∗ of trajectories as follows:

x T y =
⋃

t∈T

x t y.

Further, for L1, L2 ⊆ Σ∗, we define

L1 T L2 =
⋃

x∈L1
y∈L2

x T y.

3 Definition and Basic Properties of Orthogonality

We begin by introducing the notion of operational orthogonality. By a binary5

word operation on Σ∗ we mean a function ◦ : (Σ∗)2 → 2Σ∗ . The operation ◦ is
extended to languages L1, L2 ⊆ Σ∗ as

L1 ◦ L2 =
⋃

x∈L1,y∈L2

x ◦ y.

Let L, L1, L2 be languages over Σ.

Definition 1. We say that L is an orthogonal ◦-composition of L1 and L2,
denoted

L = L1 ◦⊥ L2,

if the following two conditions hold

(OR1) L = L1 ◦ L2, and
(OR2) (∀ui, vi ∈ Li, i = 1, 2) if (u1, u2) 6= (v1, v2) then u1 ◦ u2 ∩ v1 ◦ v2 = ∅.

Given languages L1 and L2, we define their orthogonal ◦-composition as

L1 ◦⊥ L2 =
{

L1 ◦ L2 if condition (OR2) holds,
undefined otherwise.

If L1◦⊥L2 is defined, we say also that the languages L1 and L2 are ◦-orthogonal.
Note that in the above statement the order of the languages is significant since
the ◦-orthogonality relation is not symmetric.

For commutative word operations we can make the following observations:
5 All below notions can be extended in an obvious way for n-ary operations, n ≥ 2.

For simplicity below we discuss only the binary case.

46 Mark Daley, Michael Domaratzki and Kai Salomaa

Lemma 1. Let ◦ be a commutative binary word operation. Then L1 and L2 are
◦-orthogonal if and only if L2 and L1 are ◦-orthogonal.

Proof. Let ◦ be a commutative binary word operation, and assume that L1 and
L2 are ◦-orthogonal. Assume, contrary to what we want to prove, that L2 and
L1 are not ◦-orthogonal. Then there exists x ∈ L2 ◦ L1 with two factorizations
x ∈ y1 ◦ z1 and x ∈ y2 ◦ z2, where y1, y2 ∈ L2 and z1, z2 ∈ L1. But now since,
e.g., y1 ◦ z1 = z1 ◦ y1, we have contradicted that L1 and L2 are ◦-orthogonal. ut

More generally, using the notation from Kari [7], let ◦R be the word operation
defined by x ◦R y = y ◦ x. Then the following result is established

Lemma 2. Let ◦ be a binary word operation. Then L1 and L2 are ◦-orthogonal
if and only if L2 and L1 are ◦R-orthogonal.

We note that the converse of Lemma 1 does not hold. In particular, if ◦ is the
binary word operation defined by a ◦ b = {ab} and x ◦ y = ∅ for (x, y) 6= (a, b),
then the operation ◦ is not commutative, but any pair of languages L1 and L2

are ◦-orthogonal.

4 Concatenation Orthogonality

In the following we concentrate on the catenation operation. When we need
to use notation for orthogonality of the operation, we denote catenation by ¯.
When we do not need notation for orthogonality we denote, as usual, catenation
of languages L1 and L2 simply as L1L2.

Let L ⊆ Σ∗ be a language. If L is a code then L ¯⊥ L is defined, i.e., L is
¯-orthogonal with itself. However, the converse does not hold since

{a, b, ab} ¯⊥ {a, b, ab} = {aa, ab, aab, ba, bb, bab, aba, abb, abab},

and hence {a, b, ab} is ¯-orthogonal with itself.
By definition, a sufficient condition for languages L and L′ to be¯-orthogonal

is that

(i) L is a prefix code, or,
(ii) L′ is a suffix code.

In particular, it follows that

L and Σ∗ are ¯-orthogonal iff L is a prefix code, (1)

and,
Σ∗ and L are ¯-orthogonal iff L is a suffix code. (2)

The below result showing that the operation ¯⊥ is associative for non-empty
languages follows easily from the corresponding well known property of formal
power series.

On the operational orthogonality of languages 47

Lemma 3. Let Li, i = 1, 2, 3, be non-empty languages. Then

(L1 ¯⊥ L2)¯⊥ L3 = L1 ¯⊥ (L2 ¯⊥ L3).

The above equality includes the condition that the left side is defined iff the
right side is defined.

Lemma 3 needs the assumption on the non-emptiness of the languages. For
example, if L = {a, aa} then

(∅¯⊥ L)¯⊥ L = ∅

but ∅ ¯⊥ (L ¯⊥ L) is undefined. In the statement of Lemma 3 it would be
sufficient to require that only L1 and L3 are non-empty.

A natural question will be for which languages we can decide whether or not
the languages are concatenation-orthogonal.

Proposition 1. Given regular languages L1 and L2, it is decidable whether or
not L1 and L2 are ¯-orthogonal.

Proof. The result is well-known and follows also from Theorem 5 below since
catenation can be expressed as shuffle along the regular set of trajectories 0∗1∗.

ut
As can be expected, the result of Theorem 1 cannot be extended for context-

free languages, not even in the case where only one of the languages L1 or L2 is
context-free. Since it is undecidable whether or not a given linear context-free
language is a prefix- (respectively, a suffix-) code [6], the observations (1) and (2)
give the following undecidability result.

Theorem 1. Given a linear language L and a regular language R it is undecid-
able whether or not

(i) L and R are ¯-orthogonal,
(ii) R and L are ¯-orthogonal.

If L1 and L2 are languages over a unary alphabet {a}, L1 and L2 cannot be
¯-orthogonal whenever they contain any two words in common. This relates to
the commutativity of unary concatenation. For commutative operations it may
be appropriate to consider a somewhat different definition of orthogonality. We
hope to return to this topic in later work.

4.1 Language equations

Here we consider language equations involving the orthogonal catenation opera-
tion. The result of Proposition 1 means that given regular languages L, L1 and
L2 we can effectively decide whether or not the equation

L = L1 ¯⊥ L2

48 Mark Daley, Michael Domaratzki and Kai Salomaa

having no variables holds.
Next we consider one-variable equations

L = L1 ¯⊥ X, (3)

or its symmetric variant
L = X ¯⊥ L1, (4)

and two variable equations
L = X ¯⊥ Y. (5)

Recall that the orthogonality property is not symmetric. However, we can
make the observation that if L1 and L2 are ¯-orthogonal then LR

2 and LR
1 are

¯-orthogonal and
(L1 ¯⊥ L2)R = LR

2 ¯⊥ LR
1 .

Thus an equation L = X ¯⊥ L1 has a solution X0 if and only if the equation
LR = LR

1 ¯⊥ X has a solution XR
0 . This means, in particular, that when the

language constants are regular (or restricted to any language family that is closed
under reversal) an equation (4) can always be reduced to an equation (3). In the
following we restrict one-variable equations to be of type (3).

A two-variable equation (5) has always the solution

L = L¯⊥ {ε} = {ε} ¯⊥ L.

We say that these solutions are trivial solutions.
Without loss of generality we can assume that all solutions to equations (3)

or (5) must be over an alphabet Σ where Σ contains all symbols occurring in
words of L. The alphabet Σ is usually not mentioned separately.

The following strong result is established by Anselmo and Restivo [1].

Theorem 2. [1] For regular languages L and L1 it is decidable whether or not
an equation (3) has a solution. A possible solution is regular and can be effectively
constructed.

The solutions for one-variable language equations L = L1X obviously do not
need to be unique if we do not impose the condition of orthogonality. The proof
of Theorem 2 in [1] implies that if (3) has a solution, it is unique. The proof
given in [1] uses formal power series and below we give an elementary proof of
the fact that one variable equations with orthogonal catenation have a unique
solution, even without assuming regularity of the languages L and L1.

Lemma 4. Let L and L1 be nonempty languages. If an equation L = L1 ¯⊥ X
has a solution for the variable X, the solution is unique.

Proof. For the sake of contradiction assume that there exist languages L2 6= L′2
such that

L = L1 ¯⊥ L2 = L1 ¯⊥ L′2. (6)

On the operational orthogonality of languages 49

Let v2 be a word of minimal length in the symmetric difference of L2 and L′2.
Without loss of generality we can assume that v2 ∈ L2 − L′2. Let u1 be a word
of minimal length in L1. Now (6) implies that there exist u′1 ∈ L1 and v′2 ∈ L′2
such that

u1v2 = u′1v
′
2. (7)

If v′2 ∈ L2, then the above equation would violate the ¯-orthogonality of L1 and
L2, and we can conclude that v′2 ∈ L′2 − L2.

In particular, v′2 6= v2 and since v2 is of minimal length in the symmetric
difference of L2 and L′2 it follows that |v′2| > |v2|. Now by (7), |u′1| < |u1| which
contradicts the assumption that u1 is of minimal length in L1. ut

It is known that any one-variable equation involving (ordinary) catenation

L = L1X (8)

has a minimal solution [9]. As a consequence of Theorem 2 or Lemma 4 we
observe that any solution to (3) has to be a minimal solution to the corresponding
equation L = L1X involving ordinary catenation.

The analogy of Lemma 4 does not hold for two-variable equations (5). For
example, by considering decompositions of individual words it is easy to see that
solutions to (5) need not be unique.

For two-variable equations involving ordinary catenation

L = XY, (9)

where L is regular, the existence of non-trivial solutions is decidable [3, 9, 12].
For a given regular language L it is possible that the equation (9) has a

non-trivial solution but the corresponding two-variable equation with orthogonal
catenation (5) has only trivial solutions. As an example we can consider the finite
language {ε, a, a2} = {1, a} · {1, a} where catenation is clearly non-orthogonal.

While any solution to (3) has to be regular, assuming that L and L1 are
regular, it is noted in [1] that a regular language can be the orthogonal catenation
of two non-regular languages. For example,

a∗ = Π∞
i=0(ε + a22i

)¯⊥ Π∞
i=0(ε + a22i+1

). (10)

The unary language a∗ has different orthogonal decompositions into regular
components, however, in this case one of the components has to be finite.

Lemma 5. Let L be a regular unary language. If (5) has a solution (LX , LY)
where LX and LY are regular, then one of the languages LX or LY has to be
finite.

Proof. If LX and LY are infinite and regular, there exist m1,m2 ≥ 0 and n1, n2 ≥
1 such that am1(an1)∗ ⊆ LX and am2(an2)∗ ⊆ LY . This means that the word
am1+m2+n1n2 has two different decompositions into words of LX and LY , and
the languages are not ¯-orthogonal. ut

50 Mark Daley, Michael Domaratzki and Kai Salomaa

From Theorem 2 it follows that in any solution for (5), where L is regular, if
the language for one of the variables X or Y is regular, also the language for the
other variable has to be regular. This property clearly does not hold for solutions
of equation (9) involving ordinary catenation.

Open problem 3. (i) Is it possible, for a regular language L, that (5) has non-
regular solutions for X and Y but no non-trivial regular solution?

(ii) Given a regular language L is it decidable whether or not (5) has a non-
trivial solution (respectively, a non-trivial regular solution)?

To conclude this section we show that existence of solutions for two-variable
equations is undecidable when the constant language is context-free.

Theorem 4. Given a linear context-free language L it is undecidable whether
or not the equation (5) has a non-trivial solution.

Proof. 6 Let IPCP = (u1, . . . , um; v1, . . . , vm), ui, vi ∈ {a, b}+, i = 1, . . . ,m,
m ≥ 1, be an arbitrary instance of the Post correspondence problem (PCP).
Without loss of generality we assume that

u1 6= v1. (11)

We denote

I ′PCP = (u1, . . . , um, um+1; v1, . . . , vm, vm+1) where um+1 = c, vm+1 = cc.

Now I ′PCP is a PCP instance over the alphabet {a, b, c}. The new elements um+1

and vm+1 have been added only for technical reasons and they clearly cannot be
used in any solution for I ′PCP (because they have different length and no other
words of I ′PCP contain occurrences of c). Thus

the instance I ′PCP has a solution iff the instance IPCP has a solution. (12)

We define

Ω = {1, . . . , m,m + 1, #, a, b, c} and Σ = Ω ∪ {$}.
For notational convenience, the alphabet Σ is allowed to depend on the given
PCP instance. Everything below works if we code the symbols 1, . . . , m+1 over a
fixed alphabet where the coding is chosen so that the first symbol of the encoding
of m + 1 is distinct from the first symbol of the encoding of 1.

We define a linear context-free language L ⊆ Σ∗:

L = {ik · · · i1#ui1 · · ·uik
| k ≥ 1, 1 ≤ ij ≤ m + 1, j = 1, . . . , k} · {ε, $}

∪ {ik · · · i1#vi1 · · · vik
| k ≥ 1, 1 ≤ ij ≤ m + 1, j = 1, . . . , k} · {$, $$}.

First we establish some properties of any decomposition of L as a non-trivial
catenation of two languages (without imposing any orthogonality condition).
Then we show that (5) has a non-trivial solution if and only if the PCP instance
I ′PCP does not have a solution.
6 One of the referees has pointed out that Theorem 4 has a shorter proof that uses a

reduction to the equivalence problem of linear languages.

On the operational orthogonality of languages 51

Claim. If we can write
L = L1 · L2, (13)

where L1 6= {ε}, then L2 ⊆ {ε, $, $$}.
Proof. If the claim does not hold, then (since the symbols $ occur only at the
end of words of L) the language L2 contains a word y ∈ Ω+ · {ε, $, $$}. If y ∈ L,
then there cannot exist any nonempty word w such that wy ∈ L. In other words,
if ε ∈ L1 then L1 = {ε} which is a contradiction.

Hence we can conclude that ε 6∈ L1 and (13) implies that there exist z1, z2 ∈
Σ∗ such that 1 · z1 ∈ L1 and (m + 1) · z2 ∈ L1. However, only one of the words
1 · z1 · y and (m + 1) · z2 · y can be in L because um+1, vm+1 end with c and u1,
v1 do not end with c.

This concludes the proof of the claim. ut
Claim. If we can write L = L1 · L2 where L1 6= {ε}, then $$ 6∈ L2.

Proof. By Claim 4.1, we know that L2 ⊆ $∗. Since 1#u1 ∈ L, it has to be the
case that 1#u1 ∈ L1. Now if $$ ∈ L2, then 1#u1$$ ∈ L1 · L2 but 1#u1$$ 6∈ L
by the definition of L and (11). ut

Now we continue to show that I ′PCP has a solution if and only if the equa-
tion (5) does not have any non-trivial solution.

First assume that i1, . . . , ik is a solution for I ′PCP . Let L1 and L2 be an
arbitrary non-trivial solution for X and Y in (5). By Claim 4.1 and Claim 4.1
we know that the only possibilities are that L2 = {$} or L2 = {ε, $}. The first
case is impossible, since there exist words in L which do not end with $. Thus,
we must have L2 = {ε, $}.

Since w1 = ik · · · i1#ui1 · · ·uik
∈ L, it follows that w1 ∈ L1. Since

ik · · · i1#vi1 · · · vik
$$ ∈ L,

it must be the case that w2 = ik · · · i1#vi1 · · · vik
$ ∈ L1. (Note that the word

ik · · · i1#vi1 · · · vik
$$ cannot be in L1 since L1$ ⊆ L.) Now the word w1 ·$ = w2 ·ε

has two different decompositions and the languages L1 and L2 cannot be ¯-
orthogonal.

Second, assume that I ′PCP does not have a solution. We define

L1 = {ik · · · i1#ui1 · · ·uik
| k ≥ 1, 1 ≤ ij ≤ m + 1, j = 1, . . . , k}

∪ {ik · · · i1#vi1 · · · vik
| k ≥ 1, 1 ≤ ij ≤ m + 1, j = 1, . . . , k} · {$}.

We have L = L1 ·{ε, $} and we verify that L1 and {ε, $} are ¯-orthogonal. If this
were not the case, there must exist r, s ≥ 1 and 1 ≤ i1, . . . , ir, j1, . . . , js ≤ m+1,
such that

ir · · · i1#ui1 · · ·uir · $ = js · · · j1#vj1 · · · vjs$ · ε.
The above implies that r = s, ir · · · i1 = jr · · · j1 and ui1 · · ·uir = vi1 · · · vir . This
is impossible since I ′PCP was assumed not to have a solution.

By (12) this concludes the proof of the theorem. ut

52 Mark Daley, Michael Domaratzki and Kai Salomaa

5 Shuffle on Trajectories Orthogonality

In this section we consider orthogonality modulo the shuffle on trajectories oper-
ation. We consider the question of the decidability of the orthogonality property
for this operation.

Theorem 5. Given regular languages L1, L2 ⊆ Σ∗ and a regular set of trajec-
tories T , it is decidable whether L1 and L2 are T -orthogonal.

Proof. 7 Let fi be the rational transduction defined by

fi = {(u, u′) : u′ ∈ u ;T Li}

for i = 1, 2. Here ;T is the deletion along trajectories operation [4, 8]; the closure
properties of ;T easily show that fi is a rational transduction for i = 1, 2. Let
L = L1 T L2. Then L1 and L2 are T -orthogonal if and only if fi|L is a function
for i = 1, 2. Whether or not each fi|L is a function can be decided by a result of
Schützenberger [14].

We note that Iwama [5] has proven that it is decidable whether L1 and L2

are -orthogonal for regular languages L1, L2 (i.e., the case of T = {0, 1}∗).

6 Conclusions

In this paper, we have considered orthogonality as a general concept of binary
operations. Our investigation is motivated by the concept of CDMA multiplexing
schemes. We have obtained new results for orthogonality related to shuffle on
trajectories and concatenation. Some questions are still open, including deciding
whether a regular language has an orthogonal decomposition with respect to
concatenation, and one-variable language equations with respect to orthogonal
shuffle on trajectories.

7 Acknowledgement

We thank the anonymous referees for correcting several mistakes in an earlier
version of the paper.

References

1. M. Anselmo and A. Restivo, On languages factorizing the free monoid, Interna-
tional Journal of Algebra and Computation 6 (1996) 413–427.

2. J. Castaing and L. Delathauwer, An Algebraic Technique for the Blind Separa-
tion of DS-CDMA Signals, in Proc. 12th European Signal Processing Conference
(EUSIPCO 2004), Vienna. (2004) 377–380.

7 We are grateful to the anonymous referee who suggested this construction.

On the operational orthogonality of languages 53

3. J.H. Conway, Regular algebra and finite machines. Chapman and Hall, 1971.
4. M. Domaratzki, Deletion along trajectories, Theor. Comp. Sci. 320, 2–3 (2004),

293–313.
5. K. Iwama, Unique decomposability of shuffled strings. In Proceedings of the Fif-

teenth Annual ACM Symposium on Theory of Computing (1983), D. Johnson et
al., Eds., pp. 374–381.

6. H. Jürgensen and S. Konstantinidis, Codes. In: Handbook of Formal Languages,
Vol. I, (G. Rozenberg and A. Salomaa, Eds.) Springer, 1997, pp. 511–607.

7. L. Kari, On language equations with invertible operations. Theor. Comp. Sci. 132
(1994), 129–150.

8. L. Kari and P. Sośık, Language deletions on trajectories, Tech. Rep. 606, Computer
Science Department, University of Western Ontario, 2003.

9. L. Kari and G. Thierrin, Maximal and minimal solutions to language equations,
J. Comput. System Sci. 53 (1996) 487–496.

10. W. Kuich and A. Salomaa, Semirings, Automata, Languages. EATCS Monographs
on Theoretical Computer Science, Springer-Verlag, 1986.

11. A. Mateescu, G. Rozenberg and A. Salomaa, Shuffle on trajectories: Syntactic
constraints, Theor. Comput. Sci. 197 (1998) 1–56.

12. A. Mateescu, A. Salomaa and S. Yu, Factorizations of languages and commutativity
conditions, Acta Cybernetica 15 (2002) 339–351.

13. R. Rao and S. Dianat, Basics of Code Division Multiple Access(CDMA), SPIE,
2005.

14. M.P. Schützenberger, Sur les relation rationnelles entre monöıdes libres, Theor.
Comput. Sci. 3 (1976) 243–259.

15. S. Yu, Regular languages. In: Handbook of Formal Languages, Vol. I, (G. Rozenberg
and A. Salomaa, Eds.) Springer, 1997, pp. 41–110.

Language equations with positional addition

Artur Jeż1 ? and Alexander Okhotin2,3 ??

1 Institute of Computer Science, University of WrocÃlaw, Poland aje@ii.uni.wroc.pl
2 Academy of Finland

3 Department of Mathematics, University of Turku, Finland
alexander.okhotin@utu.fi

Abstract. Language equations with an operation of adding numbers
written in a positional notation are considered. It is shown that this
operation together with union and intersection invests equations with
a sufficient expressive power to simulate every trellis automaton, as well
as to specify some languages not accepted by any trellis automaton. The
results have applications to conjunctive grammars over a unary alphabet
and the related families of language equations.

1 Introduction

Resolved systems of language equations of the general form

X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)
(*)

with different operations allowed in their right-hand sides are the oldest and
likely the most studied type of language equations.

As established by Ginsburg and Rice [3], if the allowed operations in (*) are
concatenation and union, then least solutions of such systems provide semantics
to the context-free grammars. If in addition the intersection operation may be
used, the resulting systems define the class of conjunctive grammars introduced
by Okhotin [9, 10]; these grammars have attractive practical properties, such
as efficient parsing algorithms, and are surveyed in a recent article [14]. The
case of systems (*) using negation but neither union nor intersection was first
considered by Leiss [8] and recently studied by Okhotin and Yakimova [13]; by
their expressive power, these systems are incomparable with the context-free
grammars.

An important case of such equations is the case of a unary al-
phabet. In the case of union and concatenation, it is well-known that
the unary context-free languages are regular. In contrast, equations with
concatenation and complementation can specify the nonregular language
? Supported by MNiSW grant number N206 024 31/3826, 2006–2008.

?? Supported by the Academy of Finland under grant 118540.

M. Kunc, A. Okhotin (Eds.): Theory and Applications of Language Equations
TUCS General Publication No 44, pp. 54–66, 2007.

Language equations with positional addition 55

{an | the octal notation of n starts with 1, 2 or 3}, see Leiss [8]. As for equa-
tions with union, intersection and complementation, their expressive power over
a unary alphabet (or, equivalently, the expressive power of unary conjunctive
grammars) was one of the long-standing open problems in the area [9, 14], and
it was conjectured that only regular languages are can be obtained.

This conjecture has recently been disproved by Jeż [6] who constructed a
conjunctive grammar for the language {a4n | n ∈ N}. This grammar, written in
the form of a system of language equations, is as follows:

X1 = (X2X2 ∩X1X3) ∪ a
X2 = (X12X2 ∩X1X1) ∪ aa
X3 = (X12X12 ∩X1X2) ∪ aaa

X12 = (X3X3 ∩X1X2)

(1)

Its least solution is Xi = {a` | base-4 notation of ` is i0 . . . 0}, for i = 1, 2, 3, 12.
The system (1) effectively encodes manipulations with the positional notation

of numbers. In order to continue the study of unary language equations, it would
be convenient to deal explicitly with numbers written in positional notation.
The subject of the present paper are equations on languages over alphabets
Σk = {0, 1, . . . , k− 1}, in which every word is interpreted as k-ary notation of a
number. Instead of the concatenation operation we shall use addition of numbers
written in k-ary notation. Our goal is to establish the expressive power of such
equations and apply these results to unary language equations.

2 Languages of numbers written in positional notation

Fix a number k > 2 and consider the alphabet Σk = {0, 1, 2, . . . , k− 1} of k-ary
digits. Words over this alphabet represent non-negative integers written in k-ary
notation. Let the empty word ε ∈ Σ∗

k denote the number 0. No representation of
a number shall begin with 0, that is, the set of valid representations of numbers
is Σ∗

k \ 0Σ∗
k . We shall consider formal languages over this alphabet, such as the

following language of binary notations of all powers of two: 10∗ ⊆ Σ∗
2 .

Define a word operation ¢k : Σ∗
k × Σ∗

k → Σ∗
k , which represents addition of

numbers in k-ary notation:

u ¢k v = {the k-ary notation of i + j | u is the k-ary notation of i,

v is the k-ary notation of j}

The notation ¢ will be used when the alphabet is clear from the context. We shall
use this operation in the language-theoretic rather than arithmetical context.
Then it can be said that u ¢ v combines the corresponding symbols of u and
v and thus computes a certain word of length max(|u|, |v|) or max(|u|, |v|) + 1.
This, in particular, can be used to modify individual symbols of a word:

Example 1 (Modifying a digit). Let uiv ∈ Σ∗
k \ 0Σ∗

k , let i 6= k − 1. Then uiv ¢
10|v| = u(i + 1)v, that is, one symbol has been modified.

56 Artur Jeż and Alexander Okhotin

Note that such a modification is irreversible: there is no w ∈ Σ∗
k , such that

u(i + 1)v ¢k w = uiv. Define the corresponding subtraction operator on words
as follows:

u ¯k v = {the k-ary notation of i− j | u is the k-ary notation of i,

v is the k-ary notation of j, for i > j} .

This operator is formally an inverse of ¢k, since w ¯k u = v if and only if
u ¢ v = w.

Let us extend the operations of k-ary addition and subtraction to languages
in the standard way as K ¢ L = {u ¢ v |u ∈ K, v ∈ L} and K ¯ L = {u ¯ v |u ∈
K, v ∈ L}. Then, for instance, for k = 10 it can be said that 9+ ¢ 2 = 10∗1 and
3∗ ¯ 1∗ = 3∗2∗.

By definition, this operation on languages is monotone with respect to the
partial ordering of languages by inclusion, that is, whenever K ⊆ K ′ and L ⊆ L′,
it holds that K¢K ′ ⊆ L¢L′. It is also continuous, in the sense that for every two
increasing sequences of languages {Kn}∞n=1 and {Ln}∞n=1, the sequence {Kn ¢
Ln}∞n=1 has the least upper bound

⊔
n>0 Kn ¢Ln =

⊔
n>0 Kn ¢

⊔
n>0 Ln. These

properties are essential for considering language equations with this operator.
By the basic results on fixed points, every resolved system of equations Xi =
ϕi(X1, . . . , Xn) (i = 1, . . . , n) using only monotone and continuous operations
(in particular ¢, ∪ and ∩) has a least solution given by

⊔
n>0 ϕn(∅, . . . ,∅),

where ϕ is a vector notation for (ϕ1, . . . , ϕn).
Our primary motivation for studying these equations is their correspondence

to language equations over an alphabet {a}. Define the bijection fk : Σ∗
k \0Σ∗

k →
a∗ as

fk(w) = an, where w read as k-ary notation represents n.

Since fk(u ¢k v) = fk(u) · fk(v) and f−1
k (am · an) = f−1

k (am) ¢ f−1
k (an), this

mapping is an isomorphism. Extend it to languages in a usual way as fk(L) =
{fk(w) |w ∈ L}, obtaining an isomorphism between unary languages and subsets
of Σ∗

k \0Σ∗
k . This isomorphism extends to systems of language equations over Σk

using Boolean operations and ¢, and language equations over {a} using Boolean
operations and concatenation: ¢ is replaced with “·”, constants are mapped by
f , Boolean operations are preserved. The solutions of the systems correspond as
follows:

Lemma 1. Let Xi = ϕi(X1, . . . , Xn) be a system of language equations over the
alphabet {a} and let Yi = ψi(Y1, . . . , Yn) be the corresponding language equations
over Σk. Then a vector of languages (fk(L1), . . . , fk(Ln)) is a solution of the
former system if and only if the vector of languages (L1, . . . , Ln) is a solution of
the latter system. In particular, least solutions are mapped to least solutions.

3 Known representations

Denote by Lk
∪,∩,¢ the family of languages that occur in least solutions of sys-

tems of equations Yi = ψi(Y1, . . . , Yn) over Σk, with union, intersection and ¢k.

Language equations with positional addition 57

Clearly, for every ultimately periodic set of numbers X, f−1(X) is in Lk
∪,∩,¢. By

Lemma 1, the system (1) with a nonperiodic solution translates to the following:

Example 2. The following system of language equations over Σ4 = {0, 1, 2, 3}

X1 = (X2¢X2 ∩ X1¢X3) ∪ {1}
X2 = (X12¢X2 ∩ X1¢X1) ∪ {2}
X3 = (X12¢X12 ∩ X1¢X2) ∪ {3}

X12 = X3¢X3 ∩ X1¢X2

has the least solution (10∗, 20∗, 30∗, 120∗).

Consider the equation for X1 under this substitution: X2 ¢ X2 = 20∗ ¢ 20∗ =
10+ ∪ 20∗20∗ and X1 ¢ X3 = 10∗ ¢ 30∗ = 10+ ∪ 10∗30∗ ∪ 30∗10∗, and clearly
their intersection is 10+.

The construction of Example 2 generalizes to w0∗, for any w ∈ Σ∗
k \0Σk with

|w| = 1, 2 [6, Thm. 3]. These results have the following important generalization:

Theorem 1 (Jeż [6, Thm. 4]). For every k > 2 every regular language
L ⊆ Σ∗

k \ 0Σ∗
k is defined by a resolved system of language equations with union,

intersection and ¢k, that is, L ∈ Lk
∪,∩,¢.

We include this system for completeness; for the proof the reader is referred
to the cited paper. Let M = (Σk, Q, q0, δ, F) be an NFA recognizing LR. We use
variables

{Xi,j,q, Xi,j : 1 6 i < k, 0 6 j < k, q ∈ Q} ∪ {Y } ,

with the goal that their least solution is

L(Xi,j) = ij0∗, L(Xi,j,q) = ijLM (q), L(Y) = L .

As mentioned above, Xi,j can be defined by this type of language equations,
and so we focus only on equations for Xi,j,q:

Xi,j,q =
(3⋂

n=0

Xi,n¢Xj−n,x,q′
)
∪ {ij : if q = q0}

for j > 3, every i, and every x, q′ such that q ∈ δ(q′, x) ,

Xi,j,q =
(4⋂

n=1

Xi−1,j+n¢Xk−n,x,q′
)
∪ {ij : if q = q0}

for j < 4 and i 6= 1 and every x, q′ such that q ∈ δ(q′, x) ,

X1,j,q =
(4⋂

n=1

Xk−n,0¢Xj+n,x,q′
)
∪ {1j : if q = q0}

for j < 4, every x, q′ such that q ∈ δ(q′, x) ,

Y = (L ∩Σk) ∪
⋃

i,j,q:
δ(q,ji)∩F 6=∅

Xi,j,q .

Theorem 1 implies that regular constants in such systems of language equa-
tions can be effectively expressed via singleton constants. We shall use regular
constants below, assuming that they are expressed according to Theorem 1.

58 Artur Jeż and Alexander Okhotin

4 Representing linear conjunctive languages

Let us improve the above result by representing a larger class of formal languages.
Linear conjunctive languages are defined by linear conjunctive grammars [9], or,
in other words, by resolved systems of language equations with ∪, ∩ and linear
concatenation. This family of languages can be equivalently defined by one of the
simplest types of cellular automata [12]. These are trellis automata, also known
as one-way real-time cellular automata, which were studied by Culik, Gruska
and Salomaa [2], Ibarra and Kim [5], and others. Our argument will proceed by
simulating the computation of such automata.

Let us define and explain trellis automata following Culik et al. [2]. A trellis
automaton (TA), defined as a quintuple (Σ,Q, I, δ, F), processes an input string
of length n > 1 using a uniform array of n(n+1)/2 nodes presented in the figure
below. Each node computes a value from a fixed finite set Q. The nodes in the
bottom row obtain their values directly from the input symbols using a function
I : Σ → Q. The rest of the nodes compute the function δ : Q × Q → Q on
the values in their predecessors. The string is accepted if and only if the value
computed by the top node belongs to the set of accepting states F ⊆ Q.

Definition 1. A trellis automaton is a quintuple M = (Σ,Q, I, δ, F), in which:
Σ is the input alphabet, Q is a finite non-empty set
of states, I : Σ → Q is a function that sets the initial
states, δ : Q×Q → Q is the transition function, and
F ⊂ Q is the set of final states.
Extend δ to a function δ : Q+ → Q by δ(q) = q and

δ(q1, . . . , qn) = δ(δ(q1, . . . , qn−1), δ(q2, . . . , qn)) ,

while I is extended to a homomorphism I : Σ∗ → Q∗.
Let LM (q) = {w | δ(I(w)) = q} and define L(M) =

⋃
q∈F LM (q).

Theorem 2 ([12]). A language L ⊆ Σ+ is generated by a linear conjunctive
grammar if and only if L is recognized by a trellis automaton.

Linear conjunctive languages are known to be closed under all Boolean oper-
ations, concatenation with regular languages and quotient with singletons, but
under neither concatenation nor star [2, 12]. In addition, it is known that linear
conjunctive languages over a one-letter alphabet generate only regular languages.
From this, the following simple result used in the following can be inferred:

Lemma 2. Let L be a linear conjunctive language over an alphabet Σ, let u, v ∈
Σ∗ and a ∈ Σ∗. Then the language K = L ∩ ua∗v is regular.

Proof. The language K̃ = {u}−1 ·K ·{v}−1 is linear conjunctive by the closure of
this family under quotient with singletons. Since K̃ is a unary linear conjunctive
language, it is regular. Then K = uK̃v is regular. ut

Language equations with positional addition 59

Let us now show how the computation of a trellis automaton can be simulated
by the class of language equations introduced in the previous section.

Lemma 3. For every k > 4 and for every trellis automaton M over Σk, such
that L(M) ∩ 0∗ = ∅, there exists and can be effectively constructed a resolved
system of language equations over the alphabet Σk using operations ∪, ∩ and
¢ and regular constants, such that the least solution of this system contains a
component

(
(1 · L(M)) ¯ 1

) · 10∗.

Proof. In this proof we abuse the notation of ¢ and ¯ by allowing their argu-
ments and the result to have leading 0’es. We shall do this only for the second
argument equal to 1. Under these conditions we define the result to have the
same length as the first argument, e.g., 0100 ¯10 1 is deemed to be 0099. We
shall never use this notation in a context where these requirements cannot be
fulfilled, that is, for (k − 1)+ ¢ 1 and for 0∗ ¯ 1. This abused notation is used
only in the text of the proof, while language equations strictly adhere to the
definition.

For a given trellis automaton M = (Σk, Q, I, δ, F) we define language equa-
tions with the set of variables Xq for q ∈ Q, and with an additional variable Y .
We will prove that their least solution is Xq = Lq, Y = L, where

Lq = 1
(
(LM (q) \ 0∗) ¯ 1

)
10∗ = {1w10` | ` > 0, w /∈ (k − 1)∗, w ¢ 1 ∈ LM (q)},

L = 1
(
(L(M) \ 0∗) ¯ 1

)
10∗ = {1w10` | ` > 0, w /∈ (k − 1)∗, w ¢ 1 ∈ L(M)} .

Let us define expressions λi and ρj , for i, j ∈ Σk, which depend upon the
variables Xq, and which we use as building blocks for constructing equations for
Xq. Let us also define constants Rq, which are regular by Lemma 2.

Rq = 1
((

(0∗(Σk \ 0) ∪ (Σk \ 0)0∗) ∩ LM (q)
)

¯ 1
)
10∗

λi(X) = 1iΣ∗
k ∩

⋃

i′

(
(X ∩ 1i′Σ∗) ¢ 10∗ ∩ 2i′Σ∗

k

)
¢ (k + i− 2)0∗, for i = 0, 1

λi(X) = 1iΣ∗
k ∩

⋃

i′

(
(X ∩ 1i′Σ∗) ¢ 10∗ ∩ 2i′Σ∗

k

)
¢ 1(i− 2)0∗ , for i > 2

ρj(X) =
⋃

j′

((
(X ∩ 1Σ∗

kj′10∗) ¢ 10∗ ∩ 1Σ∗
kj′20∗

)
¢ (k + j − 2)10∗

)
∩

∩ 1Σ∗
kj10∗ for j = 0, 1 (2)

ρj(X) =
⋃

j′

((
(X ∩ 1Σ∗

kj′10∗) ¢ 10∗ ∩ 1Σ∗
kj′20∗

)
¢ 1(j − 2)10∗

)
∩

∩ 1Σ∗
kj10∗ for 2 6 j 6 k − 2 (3)

ρk−1(X) =
⋃

j′

((
(X ∩ 1Σ∗

kj′10∗) ¢ 10∗ ∩ 1Σ∗
kj′20∗

)
¢ (k − 3)10∗

)
∩

∩ 1Σ∗
k(k − 1)10∗ (4)

60 Artur Jeż and Alexander Okhotin

Using this notation, the system of language equations is constructed as follows:

Xq = Rq ∪
⋃

q,q′:δ(q′,q′′)=q
i,j∈Σk

λi(Xq′′) ∩ ρj(Xq′) (for all q ∈ Q)

Y =
⋃

q∈F Xq

The construction works as follows: the sets Rq represent the starting part of Xq

that we use to compose longer words. A word w ∈ Σ>2 belongs to LM (q) iff
there are states q′, q′′ such that δ(q′, q′′) = q and Σ−1

k w ∈ LM (q′′) and wΣ−1
k ∈

LM (q′). And so a word 1(w ¯ 1)10∗ should belong to Xq if and only if there are
two witnesses belonging to Xq′′ and Xq′ (with some additional constraints). This
is specified in ρ and λ, respectively. These expressions represent adding digits
at some specific positions, so that selected digits in the original word could be
modified in the resulting word, while the rest of the digits remain the same. The
main technical difficulty is to force the addition of digits at proper positions.
This is achieved by adding the digits in two phases, and by checking the form of
intermediate and final results using intersection with regular constants.

Main Claim. The least solution of the system is (. . . , Lq, . . . , L).

Claim 1. For every word 1w10m ∈ 1Σ+
k 10∗ \ 1(k − 1)∗10∗,

λi({1w10m}) = {1iw10m}.

Proof. Consider the expression λi for any i. Let u = 1i′w′10m. In the subexpres-
sion corresponding to i′ we add u′ = 10` for any ` > 0 and require that the result
has 2i′ as its first two digits. If the leading 1s in u and u′ are in the same position,
that is, if |i′w′10m| = `, then the sum is 2i′w′10m ∈ 2i′Σ∗

k . If the 1 in u′ is to the
left of the leading 1 from u then u¢u′ begins with 1. If the leading 1 of u′ lands
to the right of the leading 1 of u, then either the result does not begin with 2 (if
there is no carrying into the first position), or the second digit is not i′ (if there
is such a carrying). These wrong combinations are filtered out by intersection
with 2i′Σ∗

k . Altogether we obtain ({1i′w′10m}¢ 10∗) ∩ 2i′Σ∗
k = {2i′w′10m}.

The second addition in λi follows the same principle. Our analysis splits
depending on the value of i. Consider first i ∈ {0, 1}. We start with u′′ =
2i′w′10m, add u′′′ = (k + i − 2)0` to it and require that the result begins with
1i. Since u′′ has 2 as the leading symbol, we must modify it to obtain a result of
this form. If the positions of 2 and (k+ i−2) are the same, that is, |i′w′10m| = `,
then the result u′′ ¢ u′′′ = 1ii′w′10m is as intended. If we add k + i − 2 left of
2 in u′′, then the leading digit is k + i − 2 ∈ {k − 2, k − 1}, which is not 1,
since k > 4. If we add to the right, then the leading digit is 2 or 3. Therefore,
({2i′w′10m}¢ (k + i− 2)0∗) ∩ 1i′Σ∗

k = {1ii′w′10m}.
Consider now i > 2. If i − 2 is at the same position as the leading 2 in u′′,

then we obtain 1iw10m, as intended. If we add i − 2 to the left of the leading
2 in u′′, then the second digit from the left in the result is i − 2. If the leading
1 is right of 2, then the leading digit in u ¢ u′ ¢ u′′ is not 1, (since k > 4). If

Language equations with positional addition 61

the leading 1 hits the leading 2, then if we get 1 as a leading symbol, the second
symbol is 0 6= i. Thus all unintended results are filtered by intersection with
1i′Σ∗

k , and, as in the previous case, the result is {1ii′w′10m}. ut

Claim 2. For every word u ∈ 1Σ+
k 10∗ \ 1(k − 1)∗10∗,

ρj({u}) =

{
{1wj10m}, if u = 1w10m+1 and j = k − 1 ,

{1wj10m}, if u = 1(w ¯ 1)10m+1 and j 6= k − 1 ,

Proof. Consider the definition of ρj for any j and let u = 1w′j′10m, where
w′ ∈ Σ∗

k and j′ ∈ Σk. As in Lemma 1, we add any u′ = 10` and use intersection
with 1Σ∗

kj′20∗ to require that u ¢ u′ has j′2 as last non-zero digits. This can be
achieved only for m = `, and so u ¢ u′ = 1iw′j′20m for u′ = 10m. The analysis
splits depending on value of j.

Consider first j 6 1 and (2). We add u′′ = (k + j − 2)10t and require
that u ¢ u′ ¢ u′′ has j1 as last non-zero digits. If t = m − 1, then we obtain
1(w ¢ 1)j10m−1 as intended. Suppose t 6= m − 1 and that we obtain a word
with j1 as last non-zero digits. The ending 1 comes from u′′, since k > 4. Hence
m > 0. To obtain j as the second from the last non-zero digit we have to sum
up 2 and k + j − 2, otherwise it would be k + j − 2 (again we use k > 4). And
so we obtain 1(w′j′ ¢ 1)j10m−1.

Consider now 2 6 j 6 k − 2 and (3). We add u′′ = 1(j − 2)10t and require
that u ¢ u′ ¢ u′′ has j1 as last non-zero digits. Again for t = m we obtain
1(w ¢ 1)j10m−1, as desired. Suppose m− 1 6= t and we obtain word with j1 as
last non-zero digits. Then the ending 1 must clearly come from u′′, hence m > 0.
To get j as the second digit from the last non-zero digit we have to sum up 2
and j − 2, otherwise it would be j − 2. And so we obtain 1(w′j′ ¢ 1)j10m−1.

Note that this means that for j 6= k − 1 (despite of the value of j′) ρj

transforms 1w10m into 1(w ¢ 1)j0m−1, or equivalently, 1wj10m−1 is obtained
from 1(w ¯ 1)10m.

Consider the case j = k − 1. We add u′′ = (k − 3)10t and require that
u ¢ u′ ¢ u′′ has (k − 1)1 as last non-zero digits. If t = m − 1 then we obtain
1wj10m−1, as desired. Suppose t 6= m− 1 and we obtain word with (k − 1)1 as
last non-zero digits. Then the ending 1 must come from u′′. In particular, m > 0.
To obtain k − 1 as the second digit from the last non-zero digit we have to sum
up 2 and k−3, otherwise it would be k−3. And so we obtain 1w′j′(k−1)10m−1.

Note, that this means that ρk−1 transforms 1w10m into 1w(k−1)10m−1. ut

Claim 3. λi(Lq) = 1(i(LM (q) \ 0∗) ¯ 1)10∗.

Proof. Since λj is a superposition of ∪, ∩ and ¢, λi(Lq) =
⋃

w∈Lq
λi({w}).

Then, substituting elements of Lq into Claim 1, we obtain that λi(Lq) contains
all words 1iw10m, such that w ∈ (LM (q) \ 0∗) ¯ 1, which gives the requested
expression. ut

Claim 4. ρj(Lq) = 1((LM (q) \ 0∗)(j + 1 mod k) ¯ 1)10∗.

62 Artur Jeż and Alexander Okhotin

Proof. As in the previous proof, we use the property that ρj(K) =⋃
w∈K ρj({w}) for any K. For j = k − 1, by the definition of Lq

ρk−1(Lq) = {1w(k − 1)10m | 1w10m+1 ∈ Lq} = 1((LM (q) \ 0∗) ¯ 1)(k − 1)10∗,

which, by Claim 2, equals 1((LM (q) \ 0∗)0 ¯ 1)10∗. For j 6= k − 1,

ρj(Lq) = {1wj10m | 1(w ¯ 1)10m+1 ∈ Lq} = 1(LM (q) \ 0∗)j10∗

according to the definition of Lq, which is equal to 1(((LM (q)\0∗)(j+1))¯1)10∗

by Claim 2. ut

Claim 5. For the least solution (. . . , Sq, . . .) of the constructed system and for
every q ∈ Q, Lq ⊆ Sq.

Proof. Let 1w10n ∈ Lq, that is, w ¢ 1 ∈ LM (q), where w ∈ Σ+
k \ (k− 1)+. Using

induction on the length of w, let us show that 1w10n ∈ Sq.
If w ¢1 ∈ LM (q) has at most one non-zero digit, which is the first one or the

last one, then 1w10n ∈ Rq ⊆ Sq by the equation for Xq.
Otherwise, let w ¢ 1 = iuj, where i, j ∈ Σk, u ∈ Σ∗

k and iu, uj /∈ 0∗. Since
iuj ∈ LM (q), there exist states q′, q′′ ∈ Q, such that iu ∈ LM (q′), uj ∈ LM (q′′)
and δ(q′, q′′) = q. Since iu, uj /∈ 0∗, we can define w′′ = uj ¯ 1 and w′ = iu ¯ 1.
Then, according to the definition of (. . . , Lq, . . .), 1w′10n+1 ∈ Lq′ and 1w′′10n ∈
Lq′′ . By the induction assumption, 1w′10n+1 ∈ Sq′ and 1w′′10n ∈ Sq′′ . We will
prove that

λi

({1w′′10n}) ∩ ρj−1 mod k

({1w′10n+1}) = {1w10n} .

First consider λi(1w′′10n). By Claim 1, λi(1w′′10n) = {1iw′′10n}. To see that
1iw′′10n = 1w10n, consider that w /∈ (k − 1)+, and hence the first symbol of w
and of w ¢ 1 are the same. Then w = iuj ¯ 1 = i(uj ¯ 1) = iw′′, which proves
that λi(1w′′10n) = {1w10n}.

Consider now ρj−1(1w′10n+1) in the case j 6= 0. By Claim 2, it equals {1(w′¢
1)(j − 1)10n}. Now note that (w′ ¢ 1)(j − 1) = (iu)(j − 1) = iuj ¯ 1 = w, and
hence ρj−1(1w′10n+1) = {1w10n}.

In the case j = 0, ρk−1(1w′10n+1) = {1w′(k − 1)10n} by Claim 2. To see
that w′(k − 1) = w, consider that w = iu0 ¯ 1 = (iu ¯ 1)(k − 1) = w′(k − 1).
Thus ρj−1 mod k({1w′10n+1}) = {1w10n} for each j.

The claim follows by the equation for Xq. ut

Claim 6. For every q ∈ Q, Lq ⊇ ϕq(. . . , Lq̃, . . .).

Proof. Consider any word 1w10n obtained by intersection of λi(Lq′′) and ρj(Lq′)
for some q′, q′′ such that δ(q′, q′′) = q. Then w /∈ (k − 1)+. By Claim 4, (w ¢
1)Σ−1

k ∈ LM (q′) and by Claim 3, Σ−1
k (w ¢ 1) ∈ LM (q′′). Hence, w ¢ 1 ∈ LM (q),

and this yields the claim. ut

Language equations with positional addition 63

The proof of the main claim proceeds as follows: By Claim 5,

(. . . ,∅, . . .) v (. . . , Lq, . . .) v (. . . , Sq, . . .)

Since ϕ is monotone,
⊔

n>0

ϕn(. . . ,∅, . . .) v
⊔

n>0

ϕn(. . . , Lq, . . .) v
⊔

n>0

ϕn(. . . , Sq, . . .)

Since (. . . , Sq, . . .) is the least solution,

(. . . , Sq, . . .) = ϕ(. . . , Sq, . . .) =
⊔

n>0

ϕn(. . . ,∅, . . .) .

Also, by Claim 6, ϕ(. . . , Lq, . . .) v (. . . , Lq, . . .), and hence

(. . . , Sq, . . .) v (. . . , Lq, . . .) v (. . . , Sq, . . .) ut
Lemma 4. For every k > 4 and for every trellis automaton M over Σk there
exists and can be effectively constructed a resolved system of language equations
over the alphabet Σk using the operations ∪, ∩ and ¢ and regular constants,
such that its least solution contains a component 1 · L(M).

Proof. For every j ∈ Σk, the language (L(M) · {j}−1) \ 0∗ is recognized by a
trellis automaton Mj due to the closure properties of trellis automata. Since
L(Mj)∩ 0∗ = ∅, by Lemma 3, there exists a system of language equations, such
that one of its variables, Yj , represents the language

(
((1 · L(M) · {j}−1) \ 10∗) ¯ 1

) · 10∗.

The languages (L(M) · {j}−1) \ 0∗ sum up to (L(M) · Σ−1
k) \ 0∗ and represent

the words in Σ∗
k \ 0∗Σk accepted by M . In order to reflect the remaining words

from the set L(M) ∩ 0∗Σk, consider the language C = 1 · (L(M) ∩ 0∗Σk); as it
is regular by Lemma 2, it can be regarded as a constant.

Let us combine the above equations for all j into a single system and add a
new equation

Z = C ∪
k−1⋃

j=0

(Yj ∩ 1Σ∗
k1) ¢ (1j ¯ 1)

The expression Yj ∩ 1Σ∗
k1 evaluates to {(1w ¯ 1)1 |wj ∈ L(M) \ 0∗j}, and then

(Yj ∩ 1Σ∗
k1) ¢ (1j ¯ 1) equals {1wj | wj ∈ L(M) \ 0∗j}. The union of these

expressions for all j is {1w | w ∈ L(M) \ 0∗Σk}, and then, because of the union
with C, the value of Z is 1L(M). ut
Theorem 3. For every k > 4 and for every trellis automaton M over Σk, such
that L(M) ∩ 0Σ∗

k = ∅, there exists and can be effectively constructed a resolved
system of language equations over the alphabet Σk using the operations ∪, ∩
and ¢ and singleton constants, such that its least solution contains a component
L(M).

64 Artur Jeż and Alexander Okhotin

Proof. For every i ∈ Σk\{0}, the language {i}−1 ·L(M) is generated by a certain
trellis automaton. By Lemma 4, there is a system of language equations, such
that one of its variables, Zi, represents the language 1 · ({i}−1 · L(M)).

Combine these systems and add a new variable T with the following equation:

T = (L(M) ∩Σk) ∪ Z1 ∪
⋃

i∈Σk\{0,1}
i′∈Σk

(
(Zi ∩ 1i′Σ∗

k) ¢ (i− 1)0∗ ∩ ii′Σ∗
k

)

Consider any Zi for i > 2. Substituting the value of Zi into the expression, one
first obtains

Zi ∩ 1i′Σ∗
k = 1(i−1 · L(M)) ∩ 1i′Σ∗

k = {1i′w | ii′w ∈ L(M)}.
The next operations in the expression are the addition of (i − 1)0∗ and the
intersection with ii′Σ∗. Let us establish the following fact:

Claim. For all i ∈ Σk \ {0, 1} i′ ∈ Σk and w ∈ Σ∗
k ,

{1i′w}¢ (i− 1)0∗ ∩ ii′Σ∗
k = {ii′w}.

Consider 1i′w ¢ (i − 1)0`. If ` = |i′w|, then the sum equals ii′w ∈ ii′Σ∗
k . If

` > |i′w|, the result is in (i − 1)0∗1i′w, and hence its intersection with ii′Σ∗
k

equals ∅.
Suppose ` = |w|, then (i − 1)0` ¢ 1i′w = i′′i′′′w, and the second digit i′′′

equals (i− 1) + i′ modulo k. Since i′ < i′ + i− 1 < i′ + k, i′′′ 6= i′, and therefore
i′′i′′′w is not in ii′Σ∗

k because of a mismatched second digit.
If ` < |w|, there are two subcases. If the addition of (i − 1)0` to i′w results

in a carry, then 1i′w ¢ (i − 1)0` = 2(i′ + 1 mod k)w, If there is no carry, then
1i′w ¢ (i− 1)0` is in 1Σ∗

k and again cannot be in ii′Σ∗
k . This concludes the case

study necessary to establish the claim, from which there follows
({1i′w | ii′w ∈ L(M)}¢ (i− 1)0∗

) ∩ ii′Σ∗ = L(M) ∩ ii′Σ∗ (5)

Summing this up over i′, we obtain L(M)∩ iΣ+, and summing up the latter
over i and adding Z1, we obtain L(M)∩ (Σ>2 \0Σ∗

k). One-letter words are given
separately. Hence, the T -component of the least solution of the system is L(M).

The transition from regular to singleton constants is by Theorem 1. ut

5 Separation from linear conjunctive languages

We have shown that every linear conjunctive language over a k-ary alpha-
bet is in Lk

∪,∩,¢. We shall now establish that Lk
∪,∩,¢ is a proper superset

of the linear conjunctive languages. This is done by specifying the language
{1n+1022n

+2n+1 | n > 0}, which is not linear conjunctive, as follows from Buch-
holz and Kutrib [1, Thms. 4.1, 5.5].

Proposition 1. The language L = {1n02n

1022n

| n > 0} is linear conjunctive.

Language equations with positional addition 65

To see this, consider the well-known fact that the language L1 = {1n02n |n > 0}
is recognized by a trellis automaton [5], that is, it is linear conjunctive. The
language L2 = {0m102m | m > 0} is linear conjunctive by the same construc-
tion. Then L = L110∗ ∩ 1∗L2 is a linear conjunctive language by their closure
properties.

Lemma 5. Consider Σ4 = {0, 1, 2, 3}. The language L′ = {1n+1022n
+2n+1 |n >

0} ⊆ Σ∗
4 is in L4

∪,∩,¢.

Proof. Consider the above language L over Σ4. It is in L4
∪,∩,¢ by Theorem 3.

Since L′ = (L ¢4 3+0∗) ∩ 1+0∗, the language L′ is in L4
∪,∩,¢ as well. ut

This is sufficient to separate Lk
∪,∩,¢ from linear conjunctive languages. Let

us now consider the complexity of languages in Lk
∪,∩,¢.

Lemma 6. The family Lk
∪,∩,¢ contains an NP-complete language.

Proof. Consider the alphabet Σ7. It is known that the following language of
Boolean circuits evaluating to true on given values is linear conjunctive [11]:

L = {ασ1 . . . σn | α ∈ {4, 5}∗, σi ∈ {1, 2}∗, α is a description of a circuit
with inputs x1, . . . , xn, which computes true on values xi = true iff σi = 2}

The exact form of the description α is irrelevant here; what is important that L
is in L7

∪,∩,¢. Next, consider the language

K = (L ¢ {1, 2}∗) ∩ {4, 5}∗3∗,

which is in L7
∪,∩,¢ as well. It is easy to see that the language K equals

{α3n | α ∈ {4, 5}∗, α is a description of a circuit with inputs x1, . . . , xn,

which evaluates to true on some input values},

and its NP-completeness is obvious. ut
Theorem 4. The family of languages Lk

∪,∩,¢ properly includes the family of
linear conjunctive languages. It is contained in EXPTIME and contains an NP-
complete language.

The EXPTIME upper bound follows from the P upper bound for conjunctive
grammars [9, 10] according to Lemma 1. The rest is given in Lemmata 5 and 6.

6 Conclusions and open problems

We have considered the expressive power of language equations over sets of posi-
tional notations of numbers. The new family was shown to be a proper superset
of linear conjunctive languages. It is contained in EXPTIME and includes some

66 Artur Jeż and Alexander Okhotin

NP-complete languages. More precise estimations of its complexity are proposed
for future research.

Our motivation for the study of these equations came from the study of lan-
guage equations over a unary alphabet, and our results have strong implications
on conjunctive grammars, on which we elaborate in an upcoming paper [7]. Us-
ing the known linear conjunctiveness of the language of computation histories
of a Turing machine [4, 12] together with Theorem 3, one can obtain undecid-
ability of emptiness and regularity for conjunctive grammars over {a}, as well
as construct languages that grow faster than a given computable function.

Irrespective of these connections, we believe we have demonstrated that lan-
guage equations over numbers in positional notation deserve attention on their
own.

References

1. T. Buchholz, M. Kutrib, “On time computability of functions in one-way cellular
automata”, Acta Informatica, 35:4 (1998), 329–352.

2. K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata”, I and II, Inter-
national Journal of Computer Mathematics, 15 (1984), 195–212, and 16 (1984),
3–22.

3. S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal
of the ACM, 9 (1962), 350–371.

4. J. Hartmanis, “Context-free languages and Turing machine computations”, Pro-
ceedings of Symposia in Applied Mathematics, Vol. 19, AMS, 1967, 42–51.

5. O. H. Ibarra, S. M. Kim, “Characterizations and computational complexity of
systolic trellis automata”, Theoretical Computer Science, 29 (1984), 123–153.

6. A. Jeż, “Conjunctive grammars can generate non-regular unary languages”, DLT
2007 (Turku, Finland, July 3–6, 2007), to appear.

7. A. Jeż, A. Okhotin, “Conjunctive grammars over a unary alphabet: undecidability
and unbounded growth”, Computer Science in Russia (CSR 2007, Ekaterinburg,
Russia, September 3–7, 2007), LNCS 4649, to appear.

8. E. L. Leiss, “Unrestricted complementation in language equations over a one-letter
alphabet”, Theoretical Computer Science, 132 (1994), 71–93.

9. A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Com-
binatorics, 6:4 (2001), 519–535.

10. A. Okhotin, “Conjunctive grammars and systems of language equations”, Pro-
gramming and Computer Software, 28 (2002), 243–249.

11. A. Okhotin, “The hardest linear conjunctive language”, Information Processing
Letters, 86:5 (2003), 247–253.

12. A. Okhotin, “On the equivalence of linear conjunctive grammars to trellis au-
tomata”, Informatique Théorique et Applications, 38:1 (2004), 69–88.

13. A. Okhotin, O. Yakimova, “On language equations with complementation”, DLT
2006 (Santa Barbara, USA, June 26–29, 2006), LNCS 4036, 420–432.

14. A. Okhotin, “Nine open problems for conjunctive and Boolean grammars”, Bulletin
of the EATCS, 91 (2007), 96–119.

Conjunctive macro grammars?

Vassilis Kountouriotis1, Christos Nomikos2, and Panos Rondogiannis1

1 Department of Informatics & Telecommunications
University of Athens, Athens, Greece

{bk,prondo}@di.uoa.gr
2 Department of Computer Science, University of Ioannina,

P.O. Box 1186, 45 110 Ioannina, Greece
cnomikos@cs.uoi.gr

Abstract. We introduce conjunctive macro grammars, a formalism that
extends outside-in macro grammars to use conjunction in the right hand
side of macro definitions. We argue that this new class of grammars
is purely declarative: each such grammar can be seen as consisting of
a set of functional language equations. In particular, we demonstrate
that every conjunctive macro grammar has a unique least fixed point,
which can be taken as its declarative meaning (or as the least solution of
the associated set of language equations). The new formalism properly
extends the class of languages that can be produced by macro grammars.
We discuss several open questions that are related to the new formalism.

1 Introduction

In this paper we introduce conjunctive macro grammars, a new formalism that
allows the use of conjunction in the right hand side of macro definitions. In this
way, conjunctive macro grammars can be seen as a syntactic extension of both
macro grammars [Fisc68] as-well-as conjunctive grammars [Okh01]. The new
formalism can be understood in a purely declarative way: the meaning of an
n-ary macro is a function that takes as arguments n sets of strings and returns
a set of strings. In this respect, conjunctive macro grammars are very close to
functional and logic programming languages. In fact, every grammar can be seen
as defining a set of functional language equations and the semantics of a grammar
can be seen as identifying the least fixed point (equivalently, least solution) of
the set of these functional equations.

The rest of the paper is organized as follows: Section 2 presents at an in-
tuitive level the basic concepts behind macro and conjunctive grammars and
outlines their capabilities. Section 3 introduces and motivates conjunctive macro
grammars. Section 4 develops the denotational semantics of conjunctive macro
? This work is supported by the 03E∆ 330 research project, implemented within

the framework of the “Reinforcement Programme of Human Research Manpower”
(ΠENE∆) and co-financed by National and Community Funds (75% from E.U.-
European Social Fund and 25% from the Greek Ministry of Development-General
Secretariat of Research and Technology and from the private sector).

M. Kunc, A. Okhotin (Eds.): Theory and Applications of Language Equations
TUCS General Publication No 44, pp. 67–75, 2007.

68 Vassilis Kountouriotis, Christos Nomikos, and Panos Rondogiannis

grammars. Finally, section 5 presents open problems and gives pointer to future
work.

2 Preliminaries

The two main formalism that we will be dealing with in this paper are conjunc-
tive grammars [Okh01] and macro grammars [Fisc68]. Intuitively, conjunctive
grammars extend context-free grammars by allowing conjunction in the right
hand side of rules. Formally:

Definition 1. A conjunctive grammar is a quadruple G = (Σ,N, P, S), where
Σ and N are disjoint finite nonempty sets of terminal and nonterminal symbols
respectively, P is a finite set of rules, each of the form

C → α1& · · ·&αm (m ≥ 1, C ∈ N, αi ∈ (Σ ∪N)∗)

and S ∈ N is the start symbol of the grammar.

The basic ideas behind conjunctive grammars can be illustrated by the fol-
lowing example [Okh04a]:

Example 1. Consider the grammar:

S → SAb&Cb | b
A → aA | ε
C → bCaa | aC | baa

It can be seen that this grammar computes the (non context-free) language
{ba2ba4b · · · ba2n−2ba2nb | n ≥ 0}. ut
Conjunctive grammars appear to be quite interesting in terms of expressive
power (while at the same time retaining a reasonable parsing time). In particu-
lar, conjunctive languages are different from the class of languages defined by the
intersections of context-free languages: while the intersections of unary context-
free languages are always regular, it has been recently shown that conjunctive
grammars on one symbol can define non-regular languages [Jez07]. Another issue
that makes conjunctive grammars very interesting is that they resemble a type
of logical formulas that are known as Horn clauses. In particular, Horn clauses
form the basis of what is usually called logic programming, a very interesting
and appealing type of programming. Actually, conjunctive grammars have been
recently extended to boolean grammars [Okh04], an extension which has trig-
gered investigations regarding the relationship between these new grammars and
the theory of non-monotonic logic programming (see [Wro05,KNR06,NR07]. We
will not further consider boolean grammars in this paper (apart from a short
discussion in the concluding section).

Macro grammars [Fisc68] is a very elegant extension of context-free languages
that supports a form of functions:

Conjunctive macro grammars 69

Definition 2. A macro grammar is a 6-tuple G = (Σ,F ,V, ρ, P, S), where Σ
is a finite set of terminal symbols; F is a finite set of nonterminal or function
symbols; V is a finite set of argument or variable symbols; ρ is a function from
F into nonnegative integers (ρ(F) is the number of arguments that F takes);
S ∈ F is the start symbol, with ρ(S) = 0; P is a finite set of productions of the
form:

F (x1, . . . , xρ(F)) → τ

where F ∈ F , x1, . . . , xρ(F) are distinct members of V, and τ is a term over
Σ, {x1, . . . , xρ(F)},F , ρ.

The set of terms over Σ,V,F , ρ is defined inductively:

– ε is a term, a is a term for every a ∈ Σ, and x is a term for every x ∈ V;
– if τ1 and τ2 are terms, then τ1 · τ2 is a term;
– if F ∈ F and τ1, . . . , τρ(F) are terms, then F (τ1, . . . , τρ(F)) is a term.

The basic ideas behind macro grammars are illustrated by the following ex-
ample:

Example 2. Consider the grammar:

S → f(a, b, c)
f(x, y, z) → f(xa, yb, zc)
f(x, y, z) → xyz

The grammar generates the non context-free language {anbncn | n ≥ 1}. Much
more demanding languages can be represented by macro-rules:

S → f(a, aaa)
f(x, y) → f(xy, yaa) | x

which generates the language {an2 | n ≥ 1}. The trick is (see [Fisc68]) to generate
the n’th square as the sum of the first n odd numbers. For this reason, f keeps
an2

in the first argument position and a2n+1 in the second. ut
One issue that comes to mind when first encountering macro grammars is “what
is the order of evaluation of function applications when there exist nested func-
tion calls?”. This question is closely related to the calling conventions of modern
programming languages. Fischer proposed two modes of evaluation, namely the
Inside-Out or IO (first evaluate the argument and then apply the function) and
the Outside-In (expand the function call from the outside-in, taking the argu-
ments in their unexpanded state). These two conventions correspond to the call-
by-value and the lazy-evaluation calling approaches that are in use in modern
programming languages.

To demonstrate the difference between the two conventions, we present the
following example (taken from [Fisc68]):

Example 3. Consider the grammar:

S → f(g(a))
f(x) → xx
g(x) → xa | xb

70 Vassilis Kountouriotis, Christos Nomikos, and Panos Rondogiannis

Then, under the IO rule the language defined is {aaaa, abab} while under the
OI rule the language defined is {aaaa, aaab, abaa, abab}.

In the rest of the paper we will restrict attention to the OI convention since it
is purely denotational ([Ten91,Wad07]). It is worth noting that macro grammars
under the OI convention coincide (in terms of expressive power) with indexed
grammars [Aho68]; this result is proved in [Fisc68].

From the above discussion it comes as a natural question “what would be
the properties of a grammar formalism that amalgamates conjunctive and macro
grammars?”. In a sense, conjunctive macro grammars appear to be the first-order
extension of conjunctive grammars (see also concluding section).

3 Conjunctive Macro Grammars

The class of conjunctive macro grammars results from an integration of conjunc-
tive grammars [Okh01] and macro grammars [Fisc68]. The syntax of this new
class of grammars can be formally defined as follows:

Definition 3. A conjunctive macro grammar is a 6-tuple G = (Σ,F ,V, ρ, P, S),
where Σ is a finite set of terminal symbols; F is a finite set of nonterminal
or function symbols; V is a finite set of argument or variable symbols; ρ is a
function from F into nonnegative integers (ρ(F) is the number of arguments
that F takes); S ∈ F is the start symbol, with ρ(S) = 0; P is a finite set of
productions of the form:

F (x1, . . . , xρ(F)) → τ1& · · ·&τm

where F ∈ F , x1, . . . , xρ(F) are distinct members of V, and τ1, . . . , τm are terms
over Σ, {x1, . . . , xρ(F)},F , ρ.

The set of terms over Σ,V,F , ρ is defined inductively:

– ε is a term, a is a term for every a ∈ Σ, and x is a term for every x ∈ V;
– if τ1 and τ2 are terms, then τ1 · τ2 is a term;
– if F ∈ F and τ1, . . . , τρ(F) are terms, then F (τ1, . . . , τρ(F)) is a term.

The macro grammars we consider can be “executed” with the outside-in (OI)
mode of derivation; intuitively, this means that only top-level occurrences of
function symbols can be rewritten at every step. The semantics we will shortly
defined express exactly this intuitive notion. In programming language terminol-
ogy, the semantics is lazy, ie., it does not evaluate the arguments of a function
except if this is absolutely necessary.

4 The Semantics of Conjunctive Macro Grammars

In this section we develop the denotational semantics of conjunctive macro gram-
mars. Incidentally, our presentation also applies to ordinary macro grammars

Conjunctive macro grammars 71

and, to our knowledge, this is the first such semantics for this type of gram-
mars (since the standard approach [Fisc68] is based on derivations and is clearly
operational).

In the developments that will follow we will need some basic definitions from
domain theory (see also [Ten91]). We start by defining the notion of domain,
which is the basic tool used for developing the semantics of functional languages:

Definition 4. A partially ordered set (D,¹) is ω-complete if and only if, for
every chain d ∈ Dω, the least upper bound

⊔
i∈ω di exists in D. A domain is a

partially ordered set that is ω-complete.

It is easy to see that if (D,¹) is a domain, then the set Dn also defines a
domain for every n ≥ 1. In this case the corresponding ordering for the product
domain is defined in a componentwise way.

The notion of monotonic and continuous functions on domains play an im-
portant role in the following:

Definition 5. Let (D,¹) be a domain. Then, a function f : D → D is called
monotonic if f(d) ¹ f(d′) when d ¹ d′. A function f is called continuous if for
every chain d ∈ Dω, f(

⊔
i∈ω di) =

⊔
i∈ω f(di).

We can now start developing the semantics of conjunctive macro grammars. We
start by the notion of interpretation of a grammar:

Definition 6. Let G = (Σ,F ,V, ρ, P, S) be a conjunctive macro grammar. An
interpretation I of G is a function such that for every function symbol F ∈ F ,
I(F) is a continuous function from (Σ∗)ρ(F) to Σ∗. In particular, if ρ(F) = 0
then I(F) is a subset of Σ∗.

We denote by ⊥ the interpretation which assigns:

– to every function symbol F , with ρ(F) = 0, the empty set;
– to every function symbol F , with ρ(F) > 0, the function which for every

input returns as a result the empty set;

In the following we will find very useful an ordering of interpretations:

Definition 7. Let G = (Σ,F ,V, ρ, P, S) be a conjunctive macro grammar and
let I, J be two interpretations of G. We write I ¹ J if:

– for every function symbol F with ρ(F) = 0, I(F) ⊆ J(F);
– for every function symbol F with ρ(F) > 0 and for all L1, . . . , Lρ(F) ⊆ Σ∗,

I(F)(L1, . . . , Lρ(F)) ⊆ J(F)(L1, . . . , Lρ(F)).

The following lemma demonstrates that the set of interpretations of a given
conjunctive macro grammar forms an ω-complete partial order under ¹:

Lemma 1. Let G = (Σ,F ,V, ρ, P, S) be a conjunctive macro grammar and let
I be the set of all interpretations of G. Then, (I,¹) is a domain.

72 Vassilis Kountouriotis, Christos Nomikos, and Panos Rondogiannis

Proof. It is straightforward to show that ¹ is a partial order. To show that the
least upper bound of a chain of interpretations exists in the domain, simply
define:

(
⊔

I∈U

I) (F)
(
L1, . . . , Lρ(F)

)
=

⋃

I∈U

I(F)
(
L1, . . . , Lρ(F)

)

From the above definition, the proof follows easily. ut
An interpretation I can be recursively extended to apply to any term as-well-

as to the conjunction of terms, as follows:

Definition 8. Let G = (Σ,F ,V, ρ, P, S) be a conjunctive macro grammar, let
I be an interpretation of G and let s be a function from V to 2Σ∗ . Then the
extension of I with respect to s is denoted by [[·]]s(I) and is recursively defined
as follows:

– [[ε]]s(I) = {ε};
– [[a]]s(I) = {a}, for every a ∈ Σ;
– [[F]]s(I) = I(F), for every F ∈ F such that ρ(F) = 0;
– [[x]]s(I) = s(x), for every x ∈ V;
– [[τ1 · τ2]]s(I) = [[τ1]]s(I) ◦ [[τ2]]s(I);
– [[F (τ1, . . . , τn)]]s(I) = I(F)([[τ1]]s(I), . . . , [[τn]]s(I));
– [[τ1& · · ·&τm]]s(I) = [[τ1]]s(I) ∩ · · · ∩ [[τm]]s(I).

We can now define the notion of a model of a conjunctive macro grammar.
Intuitively, models are those interpretations which satisfy all the rules of a con-
junctive macro grammar. Notice that we are not interested in all the models of a
grammar. Instead, we are seeking a special model, one that is the least (in some
sense to be defined shortly).

Definition 9. Let G = (Σ,F ,V, ρ, P, S) be a conjunctive macro grammar and
let I an interpretation of G. Then, I is called a model of G if for every rule
F (x1, . . . , xn) → τ1& · · ·&τm in P and for every function s from V to 2Σ∗ , it
holds that I(F)(s(x1), . . . , s(xn)) ⊇ [[τ1& · · ·&τm]]s(I).

We can now define the semantics of conjunctive macro grammars. The basic
idea is as follows. We start from an interpretation which is the least possibly
defined (namely with ⊥). Using this interpretation we evaluate the right hand
sides of all the rules of the grammars, getting in this way a better approximation
to the desired model. We continue this process with the new interpretation, until
we eventually get to a fixed point. The existence of this fixed point is guaranteed
since the operator we use in this process is monotonic and continuous (see below).
We start by defining the appropriate operator:

Definition 10. Let G = (Σ,F ,V, ρ, P, S) be a conjunctive macro grammar.
Then, the operator TG is a function which for every interpretation I of G, for
every n-ary function symbol F ∈ F and for every function s from V to 2Σ∗ is
defined as follows:

TG(I)(F)(s(x1), . . . , s(xn)) = {w ∈ Σ∗| there exists F (x1, . . . , xn) → τ1& · · ·&τm

in P such that w ∈ [[τ1& · · ·&τm]]s(I)}

Conjunctive macro grammars 73

We will demonstrate shortly that TG is monotonic and continuous. We first
need the following theorem:

Theorem 1. Let G = (Σ,F ,V, ρ, P, S) be a conjunctive macro grammar, and
let s be a function from V to 2Σ∗ . Then, for every term τ that appears in the
right hand side of a rule in P , the function [[τ]]s is monotonic and continuous.

Proof. By a structural induction on τ . ut

Theorem 2. Let G = (Σ,F ,V, ρ, P, S) be a conjunctive macro grammar. Then,
the operator TG is monotonic and continuous with respect to the ¹ ordering of
interpretations.

Proof. Monotonicity follows directly from the monotonicity of [[·]] (see Theo-
rem 1). We demonstrate continuity, ie., that

TG(
⊔

I∈U

I) =
⊔

I∈U

TG(I)

for every directed subset U of the set of all interpretations of G. Let F ∈ F ,
L1, . . . , Lρ(F) ⊆ Σ∗ and w ∈ Σ∗. Then, we have:

w ∈ TG(
⊔

I∈U

I)(F)(L1, . . . , Lρ(F))

if and only if there exists a rule F (x1, . . . , xρ(F)) → τ1& · · ·&τρ(F) ∈ P such that
w ∈ [[τ1& · · ·&τρ(F)]]s(

⊔
I∈U I), where s(xi) = Li. But then, by Theorem 1 this

is equivalent to the fact that

w ∈
⋃

I∈U

[[τ1& · · ·&τρ(F)]]s(I).

By the definition of TG this is equivalent to

w ∈
⊔

I∈U

TG(I).

This completes the proof of the theorem. ut

Theorem 3. Let G = (Σ,F ,V, ρ, P, S) be a conjunctive macro grammar. Then,
TG has a unique least fixed point [TG]↑ω which is defined as follows:

[TG]↑0 = ⊥
[TG]↑n+1 = TG

(
[TG]↑n

)

[TG]↑ω =
⊔

n<ω [TG]↑n

Moreover, TG is a model of G.

74 Vassilis Kountouriotis, Christos Nomikos, and Panos Rondogiannis

Proof. It is well-known (see for example [Ten91][page 96]) that if D is a domain
with a least element ⊥ and f : D → D is a continuous function, then f has a
least fixed-point given by

⊔
i∈ω f i(⊥). The result then follows immediately. ut

Having defined in a formal way the denotational semantics of conjunctive macro
grammars, we can now state the following theorem:

Theorem 4. The class of languages definable by conjunctive macro grammars
is a proper superset of the class of grammars definable by ordinary macro gram-
mars.

Proof. It has been demonstrated [Fisc68] that macro languages under the OI
rule generate the same class of languages as the indexed grammars [Aho68]. It is
well-known that the indexed languages are not closed under intersection, from
which the result follows immediately. ut

5 Future Work

We have defined the class of conjunctive macro grammars and have demonstrated
that they posses a simple denotational semantics. There are many aspects of this
work that we are currently investigating (some of which we hope to include in
the final version of the paper). We briefly describe some of these aspects:

Derivation Semantics: Ordinary macro grammars under the OI rule posses a
very simple derivation-based semantics [Fisc68]. The same is true for conjunctive
grammars (see [Okh01]). It is a simple matter to define a derivation based seman-
tics for conjunctive macro grammars. Then, it shouldn’t be hard to demonstrate
the equivalence of the derivation semantics to the denotational ones defined in
this paper. Similar proofs are very common in the functional programming do-
main (see for example [Ten91][page104]).

Boolean macro grammars: It appears conceptually easy to extend the ideas in
this paper so as to obtain a syntactically broader class of grammars, namely
boolean macro grammars. At first sight it seems that the semantic ideas de-
veloped in [KNR06] can be generalized to this case, but so far we have not
considered all the details. With the addition of conjunction and negation, macro
grammars appear to behave as a small programming language. For example, one
can define the set of prime numbers, as follows:

S → ¬A
A → f(aa)
f(x) → f(xa) | g(x)
g(x) → xg(x) | xx

The non-terminal A defines the set of composite numbers (see [Fisc68]), and S
simply takes the complement of this set. It is interesting to investigate the power
that negation adds to conjunctive macro grammars.

Conjunctive macro grammars 75

Properties of Conjunctive Macro Grammars: The most interesting questions re-
garding the extended macro grammars we have presented, concern their proper-
ties. For example, there does not seem to exist any obvious way to separate the
conjunctive grammars from the macro conjunctive ones (this is a more general
problem in the area of conjunctive languages, see [Okh04a] for details). Also, it
is not obvious how broad the class of conjunctive macro grammars is.

An Infinite Hierarchy of Macro Grammars: Since macro grammars are in fact
first-order, it seems possible to be able to extend them to higher-orders [Wad07]
(pretty much as in the case of functional programming). It is interesting to
investigate the expressive power of each level in this hierarchy (ie., the power
of first-order (conjunctive) macro grammars, second order ones, and so on). It
would be interesting if the various levels of the hierarchy corresponded to well-
known complexity classes (but possibly this is too much to hope for).

Acknowledgments: The third author would like to thank Bill Wadge for in-
troducing him to macro grammars and for many useful discussions on their
properties.

References

[Aho68] Aho, A.: Indexed Grammars - An Extension of Context-Free Grammars.
JACM 15(4) (1968) 647-671.

[Fisc68] Fischer, M.: Grammars with Macro-Like Productions. FOCS (1968) 131–142
[Jez07] Jez, A.: Conjunctive grammars can generate non-regular unary languages.

DLT (2007) (to appear).
[KNR06] Kountouriotis, V., Nomikos, Ch., Rondogiannis, P.: Well-Founded Semantics

of Boolean Grammars. DLT (2006) 203–214.
[NR07] Nomikos, Ch., Rondogiannis, P.: Locally Stratified Boolean Grammars,

LATA (2007).
[Okh01] Okhotin, A.: Conjunctive Grammars. Journal of Automata, Languages and

Combinatorics 6(4) (2001) 519–535.
[Okh04] Okhotin, A.: Boolean Grammars. Information and Computation 194(1)

(2004) 19–48.
[Okh04a] Okhotin, A.: An overview of conjunctive grammars. In: Paun, Rozenberg,

Salomaa (Eds.), Current Trends in Theoretical Computer Science: The Chal-
lenge of the New Century, Vol. 2, World Scientific (2004) 545–566.

[Ten91] Tennent, R.: Semantics of Programming Languages. Prentice Hall (1991).
[Wad07] Wadge, W.: Personal Communication.
[Wro05] Wrona M.: Stratified Boolean Grammars. MFCS (2005) 801–812.

A constructive solution of the language
inequation XA ⊆ BX

Olivier Ly

LaBRI – Bordeaux 1 University
351, cours de la Libération, 33405 Talence, France

ly@labri.fr

Abstract. We consider the inequation XA ⊆ BX where A, B and
X are formal languages, X is unknown. It has been proved in [9] that
if B is a regular language then the maximal solution is also regular.
However, the proof, based on Kruskal’s Tree Theorem, does not give
any effective construction of the solution. Here we give such an effective
construction in the case where A and B are both finite and are such that
maxb∈B |b| < mina∈A |a|. Moreover, the complexity of our construction
is elementary.

Keywords: Automata, Games, Language Equations

Introduction

Language equations arise in a natural way in computer science. Let us just
think about Arden’s lemma for instance, or context-free languages which are
components of the least solutions of systems of polynomial equations.

However, even very simple questions may appear very difficult. For instance,
one can think about the equation XL = LX where X is unknown; this is the
long-standing Conway problem which asks whether the maximal language com-
muting with a given rational language is also rational or not ([2], see also [6, 1,
4, 5]).

Many advances have been done in this domain this last few years ([6, 4,
5]). But Conway’s problem has got a solution very recently, actually a negative
solution. It has been proved in [11] (see also [3]) that there exists a finite language
L such that the maximal solution of XL = LX is not recursively enumerable
even for some finite A and B. In addition, many natural classes of formal
languages have got characterizations in terms of equations (see [12, 13]).

In [9], it has been proved that the maximal solution of XA ⊆ BX is regular
if B is regular, whatever A is. But the situation is tight: if one imposes to X
to be contained in some given star-free language, then the maximal solution of
XA ⊆ BX can become non recursively enumerable (see [8]). This is a variation
of the negative result of [11]. Besides, the proof that the maximal solution of
XA ⊆ BX is regular is based on the Kruskal’s Tree Theorem (see [7]). It is
non constructive, i.e., it does not give any effective construction of the maximal
solution.

M. Kunc, A. Okhotin (Eds.): Theory and Applications of Language Equations
TUCS General Publication No 44, pp. 76–84, 2007.

A constructive solution of XA ⊆ BX 77

In this article, we give such an effective construction in the case where A
and B are both finite and are such that maxb∈B |b| < mina∈A |a|: we set up
an algorithm to construct an automaton recognizing the maximal solution of
XA ⊆ BX. Moreover, the complexity of our algorithm is elementary.

Like in [9], our proof takes the point of view of games. We consider a game
with two players: the attacker and the defender. Positions of the game are words.
The game consists of a succession of turns as follows: first, the attacker chooses
a word a ∈ A and appends it to w, where w is the current position of the game.
If w.a has no prefix in B then the attacker wins and the game stops. Otherwise
the defender chooses a prefix of w.a which belongs to B, and cuts it from w.a,
driving the game to a new position b\w.a for next turn. The defender wins if
the game consists of infinitely many turns. Membership of the maximal solution
of XA ⊆ BX can be translated into the existence of a winning strategy for the
defender (see [9]).

The main ingredient of our proof is a shrinking lemma for words having a
winning strategy, it shall be detailled in the text (see Section 2). The hypothesis
on lengths of words of A and B is used only for it.

The author wants to thank Professor G. Sénizergues for very helpful dis-
cussions; and the anonymous referee for indicating large simplifications of the
proof.

Preliminaries

In all the paper, Σ is a finite alphabet. A and B are finite languages over Σ such
that

max
b∈B

|b| < min
a∈A

|a|

Let w be a word, we denote by |w| the length of w. Let v be a prefix (respectively
a suffix) of w. We denote by v\w (respectively w/v) the unique word v′ such
that w = vv′ (respectively w = v′v).

The set of finite sequences of elements of A is denoted by TA, this is the
complete A-deterministic tree. “A-deterministic” because each node has one and
only one son associated to each a ∈ A; the edge associated to this son can be
considered as a-labeled. The empty sequence, i.e., the root, is denoted by ρ.

1 The Game of XA ⊆ BX

In a classical way, the equation XA ⊆ BX can be translated into the game
framework as follows.

We are supposed to be given with two languages A and B. We consider a
game with two players: Attacker and Defender . The game consists in a possibly
infinite sequence of turns. At the beginning of each turn, the position of the
game is a word. One turn on a position w goes as follows:

1. Attacker chooses a word a ∈ A and appends it to the right of w.

78 Olivier Ly

2. If no prefix of w.a does belong to B, then Defender looses, the game stops
and Attacker wins. Otherwise, Defender chooses a prefix b of w.a belonging
to B and erases it from w.a. And the game continues in the position b\w.a.

So, Attacker wins if he manages to block Defender ; and Defender wins if the
game consists of an infinite number of turns in which he never looses. We say
that Defender has a winning strategy on a word w if he has a strategy which
makes the game starting on w continue forever whatever Attacker does.

Lemma 1 (Equation and Game). A word w belongs to the maximal solution
of XA ⊆ BX if and only if Defender has a winning strategy.

Proof. See [10].

2 A Shrinking Lemma on Attacker ’s Strategies

2.1 The Shrinking Lemma

Let us denote by S the set of strict prefixes of words of B, including the empty
word. Let us consider a word w. We say that some s ∈ S is accessible through
w by Defender if w can be written as b1...bns where all the bi’s are words of B.
The set of all elements of S which are accessible through w is called the visibility
of Defender through w. It is denoted by Vis(w).

Remark 1. If Vis(w) = ∅ then Attacker has a winning strategy on w. But the
converse is false. Such a w is said to be terminal.

Definition 1 (B-relation). Let us be given with two words w and w′. We say
that w and w′ are B-related, which is denoted by w ↔B w′, if there exist 4 words
v1, v2, v3 and v′2 such that:

• w = v1v2v3 and w′ = v1v
′
2v3.

• For any s ∈ Vis(v1), Vis(sv2) = Vis(sv′2).
• |v1| ≥ N1.

where we define

N1 = p2
(mina∈A |a|)(maxb∈B |b|)
mina∈A |a| −maxb∈B |b| (2

|S|2 + 1)q

Let us note that v3 is superfluous in this definition. We just keep it for
convenience of notations.

Remark 2. For any two words w and w′, w ↔B w′ implies that Vis(w) = Vis(w′).

Lemma 2. The relation ↔B is a right congruence of finite index over the set
of words of length greater than N1.

A constructive solution of XA ⊆ BX 79

Proof. To see that ↔B is a right congruence, only transitivity is not straight-
forward: Let w ↔B w′ and w ↔B w′′. Let us note according to the previous
notations:

– w = v1v2 and w′ = v1v
′
2 (here we omit v3 which is supposed to be added at

the right of v2).
– w′ = v̄1v̄2 and w′′ = v̄1v̄

′
2

Let us assume that |v̄1| > |v1|. Therefore, v1 is a prefix of w′′. Let us pick some
s ∈ Vis(v1). Then Vis(sv2) = Vis(sv′2). Let S̄ = Vis(s.(v1\v̄1)). Then Vis(sv′2) is
the union of all the Vis(s̄v̄2) for s̄ ∈ S̄. Besides, any s̄ ∈ S̄ belongs also to Vis(v̄1).
And so, by assumption, Vis(s)v̄2 = Vis(s)v̄′2. Thus, Vis(sv2) is the union of all
the Vis(s̄v̄′2) for s̄ ∈ S̄, which is in turn equal to Vis(s(v1\v̄1).v̄′2). This proves
that w and w′′ are B-related with v′2 = (v1\v̄1).v̄′2.

To verify that ↔B is of finite index, it suffices to note that any sufficiently
large word is equivalent to a shorter word, prefix of it, and of bounded length.
To get that, one uses a simple counting argument, based on the fact that S is a
finite set and therefore has a finite number of subsets.

Let us mention that the congruence is computable.

Let σ be a strategy for Attacker (respectively Defender) over a word w. A
finite σ-sequence of plays in the game is a finite sequence of plays
(a1, b1), (a2, b2), . . . , (an, bn) where Attacker (respectively Defender) has play-
ed according to σ. This means that each ai of the sequence has been chosen
according to the previous bj for j < i and σ. The bi are unspecified and variable.

A strong strategy for Attacker (respectively Defender) is a strategy in the
game modified in such order that Attacker (respectively Defender) can play
several words of A (respectively B) at the same turn. Formally, a strong strategy
for Attacker (respectively Defender) is a strategy in the game defined by the pair
(A+, B) (respectively (A,B+)) instead of (A,B). Let us note that if Attacker has
a winning strong strategy, then he has a winning strategy, and this is the same
thing for Defender . Indeed, provided with a winning strong strategy, one can
win in the normal game by maintaining a (FIFO) queue of plays. We just use
the concept of strong strategy in order to be more comfortable when describing
winning strategies.

Lemma 3 (Shrinking Lemma). Let us be given with two B-related words w
and w′, and a strategy σ for Attacker over w. Then there exists an integer L and
a strong strategy σ′ for Attacker over w′ with the following property: Whatever
the plays of Defender, by following σ′, in less than L turns:

– Either Attacker wins
– Or he drives the game from w′ to a new word v′ such that there exists a

non-void finite σ-sequence of plays driving the game from w to a new word
v which is B-related to v′.

The integer L and σ′ depend on σ, w and w′.

80 Olivier Ly

Before going into its proof, let us state the main consequence of this result:

Theorem 1. Let w and w′ be two B-related words. Then Attacker has a winning
strategy over w if and only if he has one on w′.

Proof. Indeed, let us suppose that Attacker has a winning strategy over w. We
can construct a winning strategy over w′ as follows:

Lemma 3 provides us a strategy σ′ and an integer L. Let Attacker start
playing according to this strategy. According to the Lemma, after a finite number
of turns, less than L:

– Either Attacker wins. That is what we wanted and σ′ stops here.
– Or else, he drives the game to a word v′1 and the lemma provides us σ-

sequence of plays driving the game from w to a new word v1 which is B-
related to v′1.

The strategy σ is still winning over this new word v1, we then start again the
process with the words v1 and v′1. And so on.

Following that, we construct a sequence v1, v2, . . . , vk, . . . of words which
are positions of a play in the game where Attacker follows σ. Let us note that
each pair vi, vi+1 are separated by at least one turn, and in fact, several turns.
In particular, when the game arrives to the word vk, at least k turns have been
played. Besides, let us observe that σ, as a winning strategy of Attacker , is finite.
This implies that there exists an integer Lσ such that Attacker wins for sure in
less than Lσ turns from w. Therefore, k is also bounded by Lσ. This implies
that our process stops after at most Lσ cycles, which means that Attacker wins
within at most Lσ cycles.

In the proof of Lemma 3 we need the following concept:

Definition 2 (Waiting Loop). Let w be a word. We define a waiting loop to be
a decomposition w = w1w2w3w4 of w in 4 factors such that for any s ∈ Vis(w1),
Vis(sw2) = Vis(sw2w3) and w3 not empty.

Lemma 4 (Waiting Loops and B-Relation). Let w be a word, and let w =
w1w2w3w4 be a waiting loop such that |w1| ≥ N1. Then w is B-related to any
word of w1w2w

∗
3w4.

Proof. So, let w′ = w1w2w
k
3w4 for some integer k. According to the notations of

Definition 1, let us define v1 = w1, v2 = w2w3, v′2 = w2w
k
3 and v3 = w4. First,

let us note that |v1| > N1 is true, it is an hypothesis of the lemma.
We prove that for any s ∈ Vis(v1), Vis(sv2) = Vis(sv′2) by induction on k.

For k = 0, there is nothing to prove: this is the hypothesis of the lemma. Let us
thus suppose that it is true for some k ≥ 0. By induction, we just have to prove
that for any s ∈ Vis(v1), Vis(sw2w

k
3) = Vis(sw2w

k+1
3).

So let s ∈ Vis(v1). Let s′ ∈ Vis(sw2w
k
3). Let us show that s′ ∈ Vis(sw2w

k+1
3).

Let b1, . . . , bn ∈ B be such that b1 . . . bns′ = sw2w
k
3 . Let n′ be the greatest index

such that b1 . . . bn′ is a prefix of sw2. And let s′′ = b1 . . . bn′\sw2; s′′ belongs

A constructive solution of XA ⊆ BX 81

to Vis(sw2). Besides, by assumption, Vis(sw2) = Vis(sw2w3). Therefore, there
exists b′1, . . . , b

′
n′′ such that b′1 . . . b′n′′\sw2w3 = s′′. Finally, we obtain that

b′1 . . . b′n′′bn′+1 . . . bns′ = sw2w3w
k
3 = sw2w

k+1
3

which means that s′ ∈ Vis(sw2w
k+1
3). That is what we wanted. The converse is

similar.

Existence of waiting loop is given by the following simple result based on a
simple counting argument based on the fact that visibility sets are subsets of S.

Lemma 5 (Existence of waiting loops, Version 1). For any word w and
any prefix w1 of w such that the length of w1\w is greater than 2|S|

2
, there exists

a waiting loop of form w = w1w2w3w4.

We actually will use a more precise version:

Lemma 6 (Existence of waiting loops, Version 2). Let w be a word, and let
w = c1c2 . . . cn be a decomposition of w into n factors, where the ci’s are words.
Let n1 be such that n− n1 ≥ 2|S|

2
. Then w has a waiting loop w = w1w2w3w4

such that w1 = c1c2 . . . cn1 and the other wi’s are concatenations of some ci’s.
Formally: for i = 1, . . . , 4, wi = cni−1+1 . . . cni , where n0, n2, n3 and n4 are such
that 0 < n1 < n2 < n3 ≤ n, n0 = 0 and n4 = n.

Proof (of Lemma 3).
We describe the strategy σ′ from w′ turns after turns. In order to do that,

we describe a game G′ where Defender ’s plays are generic, and doing that we
describe turns after turns how Attacker has to play. During this description, we
shall use σ as an oracle to which we provide plays of Defender and which tells
us what σ suggests for Attacker ’s plays.

First of all, let us observe that Defender must play at least x N1
maxb∈B |b|y

turns before completely erasing v1 (here we keep notations of Definition 1 where
w = v1v2v3 and w′ = v1v

′
2v3). And besides, from the definition of N1 and the

fact that mina∈A |a| > maxb∈B |b| we get:

N1

maxb∈B |b| ≥
N1

mina∈A |a| + 2(2|S|
2
+ 1) (1)

Let us define
N ′

1 = pmax
b∈B

|b|(2|S|2 + 1)q

There are 3 stages in the strategy:

1. Informally, the first stage starts at the beginning and goes on until the word
obtained by concatenating all plays of Attacker is sufficiently long, actually more
than N1 + N ′

1.
According to the preliminary remark, during this stage, plays of Defender

remains into v1, because v1 is supposed to be great enough (see below). For

82 Olivier Ly

these plays thus, there is no difference between w and w′ which both have v1

as a common prefix. Then G′ can be considered as a game G on w and Attacker
follows σ.

So, precisely, the first stage consists of the n1 first plays of the game
(a1, b1), (a2, b2), . . . , (an1 , bn1) where n1 is such that |a1a2 . . . an1−1| ≤ N1+N ′

1 <
|a1a2 . . . an1 |. Let us note that n1, i.e., the moment at which Stage 1 ends,
depends on the plays of Defender and on σ which tells Attacker how to play.
However, we can say that n1 ≤ (N1 + N ′

1)/ mina∈A |a|+ 1. This implies that

n1 ≤ N1

mina∈A |a| +
maxb∈B |b|
mina∈A |a| (2

|S|2 + 1) ≤ N1

mina∈A |a| + 2|S|
2

+ 1

Together with Equation 1 of the preliminary remark, one can conclude that v1

has not been totally erased, and even more than that: It remains at least 2|S|
2

+ 1
turns before that, this means that there exists a word v of length greater than
maxb∈B |b|(2|S|2 + 1) such that v1 = b1b2 . . . bn1v. In particular, this justifies the
fact that Attacker can use σ to play during this stage.

2. In Stage 2, Attacker looks for a waiting loop. Formally: Attacker plays accord-
ing to σ until Turn n2 such that there exists n′2 such that

[wa1 . . . an1][an1+1 . . . an′2][an′2+1 . . . an2]ε

is a waiting loop. We choose n2 to be minimal for this property. Thanks to
Lemma 6, because the length of v is greater than maxb∈B |b|.(2|S|2 + 1), we are
sure that n2 occurs before v has been totally erased. In particular, Attacker can
still use σ to play during this stage.

3. During Stage 3, Attacker no longer follows σ. He plays the sequence
an′2+1, . . . , an2 in loop until Defender has almost erased v′2, i.e., until Turn n3

which is such that (b1 . . . bn3)\v1.v
′
2 ∈ Vis(v1.v

′
2) where bn2+1, . . . , bn3 are all the

plays of Defender during Stage 3. In the following, (b1 . . . bn3)\v1.v
′
2 is denoted by

s′. Let us note that at this point, Attacker may be inside the loop, i.e., he maybe
playing some ai with n′2 + 1 ≤ i < n2. Then whatever the plays of Defender ,
Attacker finishes the current loop. This drives the game to some Turn n4 such
that an4 = an2 .

Let us note that while Attacker is finishing his loop, which takes at most
2|S|

2
+ 1 turns, it may happen that Defender erases v3 and starts erasing the

first plays of Attacker , i.e., the plays of Stage 1. However, Stage 1 above ensures
that the first n1 plays of Attacker make a word of length greater than N1 + N ′

1.
Therefore, Defender must leave at least a word of length N1 from a1a2 . . . an1 .

Now, the succession of plays which have been done is

(a1, b1), (a2, b2), . . . , (an1 , bn1), . . . , (an′2 , bn′2), . . .

. . . (an2 , bn2), . . . , (an3 , bn3), . . . , (an4 , bn4).

A constructive solution of XA ⊆ BX 83

Let n′3 be the greatest integer such that n2 ≤ n′3 ≤ n3 and (b1 . . . bn′3)\v1 ∈
Vis(v1). In the following (b1 . . . bn′3)\v1 is denoted by s. We have that
(bn′3+1 . . . bn3)\s.v′2 = s′. Therefore s′ ∈ Vis(s.v′2). Besides, by the definition of
B-relation, Vis(s.v′2) = Vis(s.v2). Therefore s′ ∈ Vis(s.v2), and thus there exist
b̄1, . . . , b̄m such that b̄1 . . . b̄ms′ = s.v2.

Now, let us consider the game G on w defined as follows: in this game, we
consider the sequence of Defender ’s plays defined by

b1, . . . , bn2 , . . . , bn′3 , b̄1, . . . , b̄m, bn3+1, . . . , bn4

Let us consider the sequence of Attacker ’s plays corresponding to it according
to σ: ā1, . . . , ¯am′ where m′ = n′3 + m + n4 − n3 + 1. The first n2 plays āi’s are
exactly the ai’s that we have been just defined for σ′ in Stages 1 and 2, since in
these stages, Attacker actually used σ.

Let us go back to the definition of σ′ on the game G′. Let us recall that we
are at Turn n4 + 1, and Attacker is going to play. We define his play to be the
concatenation of ān2+1 . . . ām′ , let us denote it by an4+1. Let us recall that we
define σ′ as a strong strategy. This means that Attacker plays in G′ just like if
it were in G. Let bn4+1 be the next play of Defender .

Now, let us observe that if w′ has not been totally erased, it remains the
same word in G and in G′ to complete the pass, which is (b1 . . . bn4bn4+1)\w′, let
us denote it by u.

The description of σ′ ends here. To conclude, let us remark that if at some
point, Defender cannot play any more because the current word has no prefix in
B, then Attacker wins the game and σ′ ends.

It remains to show that the positions of the games G and G′ are B-related
words. To see that, we apply Lemma 4.

Let us suppose that w′ has not been totally erased and that it remains the
word u defined as above. Altogether, we get for G′ a position of form:

w1︷ ︸︸ ︷
ua1a2 . . . an1

w2︷ ︸︸ ︷
an1+1 . . . an′2 . . .

. . .

w∗3︷ ︸︸ ︷
(an′2+1 . . . an2).(an′2+1 . . . an2) . . . (an′2+1 . . . an2)

w4︷ ︸︸ ︷
ān2+1 . . . ā′m (2)

where v̄′2 ∈ an1+1 . . . an′2(an′2+1 . . . an2)
+. In G we get a position of form:

ua1a2 . . . an1︸ ︷︷ ︸
w1

an1+1 . . . an′2︸ ︷︷ ︸
w2

an′2+1 . . . an2︸ ︷︷ ︸
w3

ān2+1 . . . ā′m︸ ︷︷ ︸
w4

(3)

The words w1, w2, w3 and w4 defined above satisfy by construction the
condition of Lemma 4. They have been indeed chosen just in order to construct
a waiting loop. In addition, as we have seen during the description of σ′, if w′

has been totally erased, then this part remaining from a1a2 . . . an1 is still of
length greater than N1.

84 Olivier Ly

To conclude the proof, we have to give a bound on the number of turns which
have been done. Observe that during the 3 stages of plays, w′ can be erased and
at most 2|S|

2
+ 1 turns can be played after (in order to end the loop). This gives

the following bound:

L =
|w′|

min
b∈B

|b| + 2|S|
2

+ 1

3 Effective construction of the solution

To conclude, we consider the right congruence of Lemma 2 over words of length
greater than N1. It can be extended easily to a right congruence over all words
by setting any word of length less than N1 equivalent to itself only. One gets
a new right congruence which still is of finite index. By Theorem 1, any two
congruent words both belong in the greatest solution of AX ⊂ XB or both do
not.

Let us consider an automaton associated to it; and let us select the largest
subset of states of this automaton such that if we consider this set as the set of
final states; then we get a language which is solution of AX ⊂ XB.

References

1. C. Choffrut, J. Karhumäki, and I. Petre. The Commutation of Finite Sets: A
Challenging Problem. Theoretical Computer Science, 273:69–79, 2002.

2. J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
3. J. Karhumäki, M. Kunc, and A. Okhotin. Computing by Commuting. Theoretical

Computer Science, 356(1-2):200–211, 2006.
4. J. Karhumäki, M. Latteux, and I. Petre. Commutation with Codes. Theoretical

Computer Science, 340(1), 2005.
5. J. Karhumäki, M. Latteux, and I. Petre. Commutation with Ternary Sets of Words.

Th. Comput. Syst., 38(2), 2005.
6. J. Karhumäki and I. Petre. Conway’s Problem for Three-Word Sets. Theoretical

Computer Science, 289:705–725, 2002.
7. J.B. Kruskal. Well-Quasi-Ordering, the Tree Theorem and Vazsonyi’s Conjecture.

Trans. Amer. Math. Soc., 95:210–225, 1960.
8. M. Kunc. On Language Inequalities XK ⊆ LX. In Developments in Language

Theory (DLT). Springer, 2005.
9. M. Kunc. Regular Solutions of Language Inequalities and Well Quasi-Orders.

Theoretical Computer Science, 348(2-3):277–293, 2005.
10. M. Kunc. Simple Language Equations. Bulletin of the European Association for

Theoretical Computer Science, 85:81–102, 2005.
11. M. Kunc. The Power of Commuting with Finite Sets of Words. In LNCS, volume

2404, 2005.
12. A. Okhotin. Decision Problems for Language Equations. In Internat. Colloq. on

Automata, Languages and Programming (ICALP), pages 239–251. LNCS 2719,
2003.

13. A. Okhotin. A Characterization of the Arithmetical Hierarchy by Language Equa-
tions. In Descriptional Complexity of Formal Systems (DCFS), pages 225–237,
2004.

Multi-conjunctive grammars

David Zook1

LogicBlox, Atlanta GA 30309, USA,
david.zook@logicblox.com,

WWW home page: http://www.logicblox.com

Abstract. Context-Free Grammars (CFGs) are the current linqua
franca for the formal expression of programming language syntax. How-
ever every programming language also has context-sensitive require-
ments, which are typically expressed as custom-coded actions added to
the grammar. Conjunctive Grammars introduce conjunction into CFGs
while maintaining cubic worst-case parsing time. Here we present an el-
egant generalization of Conjunctive Grammars called Multi-Conjunctive
Grammars (MCGs) which range over fixed-width tuples of strings. MCGs
provide context-sensitive parsing while remaining amenable to the well-
known (suitably generalized) null- and unit-elimination techniques.

1 Introduction

A Context-Free Grammar (CFG) G defines a (possibly infinite) set of strings
L(G) over some finite alphabet

∑
. CFGs have many applications, including

specifying the syntax of programming languages. A variety of tools are available
for automatically converting a CFG G into an executable parser PG(x), where
PG(x) = true exactly when the string x ∈ L(G). The CFG shown in Figure 1
defines the set of even-length strings over the alphabet {a,b} (a formal syntax
and semantics of CFGs if given below). For this grammar, L(G) = { "", "aa",
"ab", "ba", "bb", "aaaa", ... }.

CFGs cannot express context-sensitive properties such as string equality,
which are essential to defining programming language syntax (for example, in
Java the name of a class’s constructor must match the name of the class). A wide
variety of enhancements to the CFG formalism have been proposed. In particu-
lar, Okhotin has succeeded in introducing conjunction (Conjunctive Grammars)
[2001] and negation (Boolean Grammars) [2004] in such a way that a parser still
is able to check a string with worst-case time complexity (n3) – no worse than
required for a CFG.

Conjunctive Grammars can express string equality but the required formula
is non-obvious and therefore hard to use for ordinary language specifiers. Here we
explore a more general approach, called Multi-Conjunctive Grammars (MCGs),
based on the observation that equality can be naturally expressed using CFG-
like techniques against tuples of strings. For example, the grammar shown in
Figure 2 defines string equality (without conjunction) over the alphabet {a,b} (ε
is the empty string). In the example, each non-terminal N has a finite fixed arity

M. Kunc, A. Okhotin (Eds.): Theory and Applications of Language Equations
TUCS General Publication No 44, pp. 85–100, 2007.

86 David Zook

k, indicating that L(Nk) ⊆ ∑k (We will often write the arity as a superscript
on the non-terminal although this is not part of MCG syntax). In particular,
the non-terminal E has k = 2, as indicated by the form of its rule bodies,
where angle-brackets enclose two components separated by a comma. Also, an
important difference from CFG semantics is illustrated by the body of second
rule – the two occurrences of E, E.1 and E.2, are not independent, as they
would be in a CFG. Instead, they represent the first and second components
(respectively) of a single 2-tuple from L(E). This feature is the foundation of
the context-sensitive properties of MCGs.

MCGs can express properties that go well beyond the capabilities of Conjunc-
tive Grammars and Boolean Grammars. One example is whole number addition
of natural numbers, as shown in Figure 3 (natural numbers are represented as
strings of ’1’s). In this example, conjunction is not even required. Using conjunc-
tion, even more complex grammars are possible, including whole number multi-
plication, as shown in Figure 4. (In the example, conjunction with E (equality)
is used in the definition of M to ensure that the number that gets ”added” to
the end of the third component is equal to one of the other two components.)

A → ε
A → A a a
A → A a b
A → A b a
A → A b b

Fig. 1. CFG for Even-Length Strings

E → 〈 ε , ε 〉
E → 〈 E.1, a, E.2, a 〉
E → 〈 E.1, b, E.2, b 〉

Fig. 2. MCG Example 1: String Equality

S → 〈 ε, ε, ε 〉
S → 〈 S.1 1, S.2, S.3 1 〉
S → 〈 S.1 , S.2 1 , S.3 1 〉

Fig. 3. MCG Example 2: Addition

Multi-conjunctive grammars 87

M → 〈 ε, ε, ε 〉
M → 〈 M.1 1, M.2 & E.1, M.3 E.2 1 〉
M → 〈 M.1 & E.1, M.2 1, M.3 E.2 1 〉

Fig. 4. MCG Example 2: Multiplication

2 Background

Over the last several decades, interest has grown in formalisms that capture
common complexity classes intrinsically, in the sense that the formalism does
not explicitly include a limitation on time or space resources. In particular, for-
malisms intrinsically capturing PTIME and LOGSPACE have been discovered.
For example, in the realm of programming languages, Neil Jones has presented
Fro [1999], a first-order, cons-free functional language, which captures PTIME;
as well as the tail-recursive version Frotr, which captures LOGSPACE. In the
realm of database query languages, the logic programming language Datalog+
was shown by Papadimitriou [1985] to capture PTIME, and a restricted ver-
sion was shown by Graedel to capture LOGSPACE [1992]. In the realm of type
systems, Hoffman has shown that Linear types capture PTIME [2003].

In the realm of grammars, Groenink [1995] has shown that the SLMG’s
capture PTIME. This result is used below to show that MCG’s, which have
a certain structural similarity to SLMG’s, also capture PTIME. We are not
aware of any grammatical formalism that captures LOGSPACE. Furthermore,
we are not aware of any attempt to apply null- and unit-elimination techniques to
SLMG’s (or to Fro, Datalog+. or Linear types for that matter). We believe that
the MCG formalism makes applying these techniques relatively straightforward,
because the MCG syntax and semantics are straightforward generalizations from
CFG syntax and semantics.

3 Context-Free Grammars

We review the well-known facts of context-free grammars. To facilitate the de-
sired enhancements to the CFG syntax and semantics (and also because it is
interesting in its own right), we depart from the usual constructive description of
CFG semantics and provide a declarative description founded on first-order logic.
This foundation enables establishing some grammar re-writing rules, which in
turn shorten and illuminate proofs of various grammar properties.

3.1 Syntax

The syntax of a context-free grammar (CFG) starts with a tuple G =
(N, Σ,P, NS) where: 1) N is a finite set of symbols called the non-terminal
symbols; 2) Σ is the alphabet of G – a finite set of symbols (called the terminal
symbols) disjoint from N ; 3) P is a set of production rules; and 4) NS is an

88 David Zook

element of N called the start symbol. Since the details of rule syntax will be im-
portant below, we describe the CFG syntax as a CFG itself, as shown in Figure
5 (The rules for N (non-terminal symbol) and T (terminal symbol) are omitted
for brevity).

In addition, it should be noted that:

– The bodies of all rules with the same head are grouped together into a
disjunction (each sequence in the disjunction is an alternative)

– Terminal symbols are enclosed in single-quotation marks;
– A distinction is made between the appearance of a non-terminal symbol in

the head of a rule and the reference to it in the rule’s body.

In what follows, we use G, P , D, S, N , X, or R to designate an arbitrary
grammar, production rule, disjunction, sequence, non-terminal symbol, terminal
symbol, or non-terminal reference, respectively. Also, the general term grammar
expression (or just ”expression”) is used for either a disjunction, a sequence, a
terminal symbol or a non-terminal reference.

G → P | P G
P → N ’ → ’ D (Each N heads exactly one rule.)
D → S | S ’ | ’ D
S → U | U S
U → R | X | ε
R → N

G = Grammar
P = Production Rule
D = Disjunction
S = Sequence
U = Symbol
R = Reference to a non-terminal
N = Non-terminal symbol (any capital letter)
X = Terminal symbol (in single-quotes)
ε = Empty string

Fig. 5. Syntax of a Context-Free Grammar

3.2 Semantics

The intention of a context-free grammar is to define a set of strings L(G) ⊆
Σ∗, called the language of G. Traditionally, the language of a CFG is defined
”constructively” – a string x is in L(G) whenever x can be derived from the

Multi-conjunctive grammars 89

start symbol NS by a finite number of substitutions of one of the non-terminal
references N with one of the alternatives from N ’s rule. Here, we present the
semantics ”declaratively”, as a list of semantic equations, as shown in Figure 6.
Each construct within the grammar is given a grammar-specific language (set of
strings), defined in turn in terms of the languages of other constructs.

The well-known flaw in this declarative approach is that Equation S-IV intro-
duces a circularity, making straightforward structural induction fail. However,
the ”naive” equations in Figure 6 can be straightforwardly converted into a set
of axioms of a first-order logic (FOL) M(G). (A translation function from a CFG
to a FOL is defined in Figure 7.) As is well-known, a FOL may have zero, one,
or more than one satisfying interpretations, called models. A FOL is canonical
over some domain if it has exactly one model over that domain. So the challenge
(using the language of logic) is to to prove that a given CFG G that M(G) is
canonical over the domain

∑∗ (we assume that + has the usual meaning of string
concatenation). We call such a grammar well-defined, because the existence of
a unique model makes the question of the membership of a string x in L(G)
unambiguous. Proofs of well-definedness can be accomplished for some gram-
mars (but not all) using the well-known techniques of null- and unit-elimination.
In what follows, properties of these two techniques are proven using grammar
refactoring rules, whose correctness is proven using standard logical deduction.
The logical inference rules allow rewriting a FOL without changing the model(s)
which satisfy it.

S-I. L(G) = LG(NS)
S-II. LG(N → D) = LG(D)

where N → D is a rule in G
S-III. LG(S|D) = {s|s ∈ LG(S) or s ∈ LGD}
S-IV. LG(U S) = {s|s = u + v

u ∈ LG(U), v ∈ LG(S)}
S-V. LG(R) = LG(R → D)

where R → D is a rule in G
S-VI. LG(X) = {X}
S-VII. LG(ε) = {ε}

Fig. 6. CFG Naive Semantics

3.3 Grammar Refactoring Rules

A grammar refactoring rule allows a grammar to be modified without changing
the model(s) of its logical semantics. Clearly, if a grammar G can be refactored
into a new grammar G′ which is provably canonical, then G is also canonical,
and therefore well-defined. Some basic grammar refactoring rules are shown in

90 David Zook

M-I. M(P1..Pn) = M(P1) ∧ .. ∧M(Pn)
M-II. M(N → D) = < ∀x :: N(x) ↔ M(x, D) >
M-III. M(S1|..|Sn) = M(S1) ∨ .. ∨M(Sn)
M-IV. M(U1..Un) = < ∃y1, .., ym :: x = y1 + .. + yn∧

M(1, U1) ∧ .. ∧M(m, Um) >
M-V. M(i, R) = R(yi)
M-VI. M(i, X) = (yi = X)
M-VII. M(ε) = (yi = ε)

Fig. 7. CFG Logical Semantics

Figure 8. The correctness of these rules follows directly from the logical semantics
equations of Figure 7 using standard logical deduction.

R-I. (E1|E2) ⇒ (E2|E1)
R-II. (E ε) ⇒ E
R-III. (ε E) ⇒ E

Fig. 8. CFG Refactoring Rules

3.4 Null-Elimination

Definition 1.1 Two grammars G and H are equivalent (denoted G ≡ H)
iff L(G) = L(H). Likewise, two expressions (that is, disjunctions, sequences
or references) E and F are equivalent in grammar G (denoted E ≡G F iff
LG(E) = LG(F). If E and F are equivalent in every grammar, then they are
just equivalent (denoted E ≡ F .)

Definition 1.2 A nonterminal A is ε-free in a grammar G iff LG(A) does
not contain ε. Likewise, G is ε-free iff every non-terminal in G except for the
start symbol is ε-free in G.

Theorem 1.2 For every CFG G, there is an ε-free CFG Ĝ where L(G) =
L(Ĝ).

Proof For any expression E in G, define Ê to be an expression (if one exists)
such that L(Ẽ) = L(E)− {ε}. The grammar refactoring rules in Figure 9 allow
an expression Ê to be rewritten to ”push the tilde down” to the subexpressions
of E. The refactoring rules completely cover the CFG syntax. So, for any rule
A → E in G, there is a new rule Â → F where LG(Â) = LG(A) − {ε} and
tildes appear only on non-terminals in the body of F . Now let Ĝ contain such
a rewritten rule for every rule in G. In addition, let the first rule in Ĝ be either

Multi-conjunctive grammars 91

AS → ÂS if ε ∈ L(G); or AS → ÂS |ε otherwise. So Ĝ is equivalent to G but
also ε-free. QED.

This proof is constructive, and so it represents a guaranteed-to-terminate
procedure for null-elimination.

N-III. Ŝ1|..|Sn ⇒ Ŝ1|..|Ŝn

N-IV. S1|..|U1..ÛiS|..Sn ⇒ S1|..|U1..Ûi

|U1..Ŝ

|U1..ÛiŜ|..|Sn

N-V. N̂ ⇒ Ê, where N̂ → Ê is in G

N-VI. X̂ ⇒ X
N-VII. ε̂ ⇒ ∅

Fig. 9. CFG Null-Elimination Refactoring Rules

3.5 Unit-Elimination

Definition 1.3 In a CFG G, A unit is a sequence consisting of just one non-
terminal. A grammar is unit-free iff none of its rules contain any units. In any
CFG G, a rule containing a unit has the form N → S1..|N ′|..Sn, and also G must
contain a rule N ′ → S′1|..|S′n′ . Either (Case 1) N ′ is different from N or (Case 2)
it is the same. If different, then the body of N ′’s rule may be substituted for the
reference to N ′ in the body of N ’s rule using the first refactoring rule in Figure
10. Then if any other units remain in G, the step can be repeated.

However, when N ′ is actually the same as N , then the rule with the unit is
of the form: N → S1|..|N |..Sn. The logic semantics for this rule is of the form:
N(s) ≡ .. ∨ N(s) ∨ ... However, in any model of G, any set of strings can be
assigned to the predicate N(s) without endangering the satisfactoriness of the
model. Therefore, G is not well-defined in this case. Interestingly, by contrast, the
constructive semantics for CFG’s would allow N to be replaced with ∅, thereby
choosing one particular model (the minimal one). The constructive approach
has the advantage that every CFG can be transformed to have a unique model.
However from a declarative perspective, this choice of a model is arbitrary, and
so we terminate our unit-elimination procedure at this point.

Regardless of whether the grammar turns out to be well-defined, we want
the unit-elimination procedure to always terminate. To see that the procedure
must terminate, define a finite relation usesG(N1, N2), which is true iff the non-
terminal N2 is referenced by the body of N1’s rule in grammar G. There must
also exist finite uniquely defined relations dependsOnG(N1, N2) – the transitive
closure of userG, and xhortestPathG(N, N ′) which gives a unique positive in-
teger representing the number of edges in the shortest path (if any) from N to
N ′.

92 David Zook

Clearly, usesG can be thought of as a finite directed graph. In particular, in
Case 1 above, there is an edge usesG(N,N ′); and in Case 2, there is an edge
usesG(N,N). The substitution step described above shortens the length of all
paths containing the edge usesG(N, N ′) by one, without increasing the length
of any paths. Since there are a finite number of edges and paths in the graph,
the procedure always terminates (although some grammars may prove to be not
well-defined). QED.

U-I. N → S1|..|N ′|..|Sn ⇒G N → S1|..|S′1|..|S′k|..|Sn

N ′ → S′1|..|S′k

Fig. 10. CFG Unit-Elimination Refactoring Rules

3.6 Parser Generation

The value of the null- and unit-elimination techniques is highlighted by the
following theorem:

Theorem 1.4 Every ε-free and unit-free CFG is well-defined.
Proof (sketch) Since the details are messy and the ideas used to establish

this theorem are well-accepted, we present only a sketch of the proof. The ap-
proach to the proof is to use induction, but the challenge, as mentioned above,
is to properly found the induction. So, the following cases can be considered:

1. Base Case: Clearly, rules M-VI, M-VII and M-VIII (Figure 7 clearly have
a unique model in any grammar.

2. Non-recursive: Call a grammar G recursive if dependsOnG(N, N) = true,
for any non-terminal N . If G is not recursive, then usesG forms a tree rooted
on the start symbol, and the induction can be founded starting at the leaves
and working up toward the root, which is the start symbol.

3. Non-unitary Let Ln
G(N) be the set of strings of length n in LG(n). If a

graph G is both ε-free and unit-free, then for any rule N → E, the set Ln
G(N)

is uniquely defined in terms of Ln−1
G (N). So the uniqueness of the model can

be established for each n, and therefore for any set of finite-length strings.

For a well-defined CFG G, a parser may be generated in a target program-
ming language using well-known techniques.

4 Conjunctive Grammars

Having laid the groundwork above, the syntax and semantics for Conjunctive
Grammars can be reproduced in declarative style.

Multi-conjunctive grammars 93

4.1 Syntax

Conjunctive grammars allow a new binary operator: conjunction (’&’). For any
string x, x ∈ LG(S1&S2) whenever x ∈ LG(S1) and x ∈ LG(S2). In the syntax,
the precedence of the conjunction operator lies below that of disjunction but
above that of sequences. The CFG syntax can be modified for conjunction by
changing one production rule and adding another one, as indicated in Figure 11
(compare to Figure 5).

D → C | C ’ | ’ D
C → S | S ’ & ’ C

C = Conjunction

Fig. 11. Syntax of a Conjunctive Grammar

4.2 Semantics

The semantics for Conjunctive Grammars is also straightforward: the disjunction
rule is modified slightly to refer to conjunctions instead of sequences; and a new
rule is added for conjunctions, as indicated in Figures 12 and 13.

S-III. LG(C|D) = {x|x ∈ LG(C) or x ∈ LGD}

S-VIII. LG(S&C) = {x|x ∈ LG(S) and x ∈ LGC}

Fig. 12. Conjunctive Grammar Naive Semantics

M-III. M(C1|..|Cn) = M(C1) ∨ .. ∨M(Cn)

M-VIII. M(S1&..&Sn) = M(S1) ∧ .. ∧M(Sn)

Fig. 13. Conjunctive Grammar Logical Semantics

94 David Zook

4.3 Null-Elimination

The Null-elimination procedure for Conjunctive Grammars is also a straightfor-
ward enhancement to the CFG procedure, as indicated in Figure 14. The N-II
refactoring rule now applies to conjunctions instead of sequences; a new rule
N-VIII is added to handle conjunctions of sequences; and the N-III rule grows
in complexity because the sequences are now buried inside two ”layers”, the
enclosing conjunctions, in turn enclosed within disjunctions.

N-III. Ĉ1|..|Cn ⇒ Ĉ1|..|Ĉn

N-IV. C1|..|S1&..& ⇒ C1|..|S1&..&U1..Ûi&Sm

U1..ÛiS |S1&..&U1..Ŝ&Sm

&Sm|..Cn |S1&..&U1..ÛiŜ&Sm|..|Cn

N-VIII. ̂S1&..&Sn ⇒ Ŝ1&..&Ŝn

Fig. 14. Conjunctive Grammar Null-Elimination Rules

4.4 Unit-Elimination

The required modifications to the Unit-elimination refactoring rules are also
straightforward – the definition of a unit remains valid for a Conjunctive Gram-
mar. The substitution rule must be modified to take into account the extra
”layer” of conjunctions, but is very similar to the corresponding rule for CFGs.
The new refactoring rule is shown in Figure 15.

U-I. N → C1|..|S1&..&N ′&..Sk|..|Cn ⇒ N → C1|..
N ′ → C′1|..|C′m |S1&..&C′1&..Sk|

..
|S1&..&C′m&..Sk|
..|Cn

Fig. 15. Conjunctive Grammar Unit-Elimination Rules

4.5 Parser Generation

Conjunction makes no essential difference to the definitions or theorem con-
cerning well-definedness presented for CFG’s. The key property in founding the

Multi-conjunctive grammars 95

induction in the proof is still the ability to define the model for Ln
G(N) in terms

of Ln−1
G (N).

5 Multi-Conjunctive Grammars

By contrast with Conjunctive Grammars, whose languages are set of strings, the
languages of Multi-Conjunctive Grammars (MCG’s) are sets of tuples of strings.
An MCG G has a whole number k called the arity of G, which indicates the
width of the tuples in L(G). The syntax and semantics of MCG’s are intended
to be a straightforward generalization of Conjunctive Grammars to k-tuples.

5.1 Syntax

The syntax of an MCG is similar to the syntax of a Conjunctive Grammar
except that sequences are now replaced with tuples of sequences. A tuple is a
list of semi-colon-separated sequences, call the components of the tuple. The
changes required for the MCG syntax are shown in Figure 16 (The meaning of
”complete” will be given shortly).

In a MCG, each expression (disjunction, tuple, conjunction, sequence and
non-terminal) has an arity k – a whole number defined as follows:

1. Sequences have arity 1.
2. A Tuple with k components (i.e. sequences) has arity k.
3. Conjunctions have arity 1.
4. All subexpressions of a disjunction (or conjunction) must have the same arity

k, which in turn is the arity of the disjunction (or conjunction).
5. A non-terminal has the same arity as the body of its rule.
6. A grammar has the same arity as its start symbol.

A non-terminal with arity 1 is called simple; otherwise, it is complex. The
arity k of a non-terminal N is indicated by writing the non-terminal with a
superscript: Nk.

Importantly, a reference to a complex non-terminal N (with arity k > 1)
is written N.i, where i is a constant whole number indicating the desired com-
ponent of the non-terminal (see Figure 3 for an example MCG). An important
restriction is that, whenever a complex non-terminal N is used within a Tuple,
every component of N be referenced in T. Such a tuple is called complete. As will
be seen later, completeness of Tuples is important for making PTIME parsing
possible.

5.2 Semantics

Multi-Component Grammars define languages over tuples of strings instead of
individual strings. To support this, the two main syntax changes, as previously
mentioned are: 1) the introduction of the Tuple expression; and 2) the intro-
duction of the non-terminal references occurring throughout the Sequences in

96 David Zook

C → 〈 T 〉 | 〈 T 〉 ’ & ’ C
T → S | S ’;’ T (C must be complete.)

R → N ’.’ I

〈 T 〉 = A Tuple
I = A Whole Number

Fig. 16. Syntax of a Multi-Conjunctive Grammar

a Tuple. The semantics must express that the references to the various compo-
nents N.i of a complex non-terminal N must come from a single tuple in LG(N).
The logical semantics is shown in Figure 17. The interesting rule is M-IX. The
quantifiers that previously appeared for each individual Sequence are pulled out
and range over the entire Tuple. This is the purpose of the Q function. Similarly,
the R function appends to the end of the logical statement an extra atom for
each non-terminal N appearing anywhere in the Tuple. The extra atom asserts
that all of the variables ui

q corresponding to components N.j of the non-terminal
are in L(N) – that is to say, they are all part of the same tuple. These extra
atoms are the reason why the non-terminal itself in Rule M-V is mapped just to
true.

M-I. M(P1..Pn) = M(P1) ∧ .. ∧M(Pn)
M-II. M(N → D) = < ∀x :: N(x) ↔ M(x, D) >
M-III. M(C1|..|Cn) = M(C1) ∨ .. ∨M(Cn)
M-VIII. M(T1&..&Tn) = M(T1) ∧ .. ∧M(Tn)
M-IX. M(〈S1;..;Sn〉) = < Q(S1, .., Sn) ::

M(S1, 1) ∧ .. ∧M(Sn, n)∧
R(S1, .., Sn)

M-IV. M(U1..Un, i) = < ∃y1, .., yn :: x = y1 + .. + yn∧
M(U1, u

i
1) ∧ .. ∧M(Un, ui

n) >
M-V. M(R.l, u) = true (defer to end of tuple)
M-VI. M(X, u) = (u = X)
M-VII. M(ε, u) = (u = ε)
Q-I. Q(S1, .., Sn) = ∃ui

q, .. for each U i
q in each Si

R-I. R(S1, .., Sn) = .. ∧N(.., ui
p, ..) ∧ ..

for each N occurring in the Si’s
where ui

q occurs in position j
whenever U i

q is N.j.

Fig. 17. MCG Logical Semantics

Multi-conjunctive grammars 97

5.3 Null-Elimination

The enhancement to the null-elimination procedure starts by extending the def-
inition of ε-free to complex non-terminals – every component of which must be
ε-free. This is accomplished with the following definition.

Definition 2.2 A (complex) nonterminal A is ε-free in a MCG G iff no
string-tuple in LG(A) contains ε in any of its components. G is ε-free iff every
non-terminal in G except for the start symbol is ε-free in G.

We want to prove the corresponding theorem.
Theorem 2.2 For every MCG G, there is an ε-free MCG Ĝ where L(G) =

L(Ĝ).
Proof For an expression of arity k, the definition of Ẽk is expanded to

mean that ε is not in the language of any of E’s components LG(E.i). The
refactoring rules presented for Conjunctive Grammars (Figures 9 and 14) for
”pushing down” tilde to the Tuple level remain correct when re-interpreted for
MCG’s and complex non-terminals, with the exceptions shown in Figure 18. Rule
N-VIII must be modified to show that conjunctions are now made up of Tuples;
Rule N-IV must be expanded again to handle the extra ”layer” of syntax; and
the new Rule N-IX must be added to handle pushing the tilde through a Tuple.

The subtlest Rule, however, is the shortest – Rule N-X. This Rule is justified
by the new semantics of references to complex non-terminals. The Rule works
because the semantics ”gathers up” the N.i’s into a single atom.

With these changes, the tilde can again be pushed down all the way to the
non-terminal references. Note that all of the references N̂.i to a complex non-
terminal are considered together, as indicated in the semantics, as the compo-
nents of a single instance of the non-terminal N . This is the import of Rule
XI. These refactoring rules allow the conversion of any grammar to an ε-free
grammar.

N-IV. C1|..|T1&..& ⇒ C1|..
〈S1; ..; |T1&..&〈S1; ..; U1..Ûi; ..〉&Tm

U1..Ûi..Uk |T1&..&〈S1; ..; U1..Ŝ; ..〉&Tm

; ..Sp〉 |T1&..&〈S1; ..; U1..ÛiŜ; ..〉&Tm

&Sm|..Cn |..|Cn

N-VIII. ̂T1&..&Tn ⇒ T̂1&..&T̂n

N-IX. ̂〈S1, .., Sk〉 ≡ 〈Ŝ1, .., Ŝk〉

N-X. N̂.i ⇒ N̂ .i

Fig. 18. MCG Null-Elimination Refactoring Rules

98 David Zook

5.4 Unit-Elimination

The definition of a unit and of a unit-free grammar given for CFG’s and Con-
junctive Grammars is the same for MCG’s. Note that the import of the definition
is that no component of a Tuple will contain a unit. The unit-elimination pro-
cedure for MCG’s is the same in broad outline as the procedure for Conjunctive
Grammars. The uses relation is redefined to be over the individual components
of non-terminals: usesG(N1.i, N2.j) means that the reference N2.j appears in (a
Sequence within) the ith component of a Tuple in the rule defining N1. However,
the procedure for substituting a non-terminal N ′ into the rule for non-terminal
N is is significantly complicated by the need to simultaneously substitute more
than component at a time.

Case 1: N’ has arity 1: When the non-terminal being substituted has an
arity of 1, then the substitution procedure can be redefined is a straightforward
generalization of substitution for Conjunctive Queries, as shown in Figure 19. In
close analogy to the Conjunctive Grammar situation, this substitution shortens
the length of every path including the edge usesG(N.i, N ′.j) – unless N is N ′

and i = j (in which case the grammar is not well-defined for reasons analogous
to the Conjunctive case).

Case 1: N’ has arity > 1: When N ′ has k > 1 components, the substitu-
tion is complicated by the need to substitute in all k of N ′s components. The
complication is that even though the unit reference in N ’s rule to N ′ may be
(say) to component N ′.i, the other components may need to be substituted into
non-unit situations. In this case, the Tuple being substituted into is ”atomized”
– a new rule is introduced where each Symbol U within each Sequence in the
original Tuple is placed into its own component (see Figure 20. This has the effect
of making each reference N ′.j to N ′ into a unit. Then, the substitution can be
carried out as in Case 1, with all components being substituted simultaneously.

Unfortunately, the ”atomizing” procedure introduces new units (and also
new rules!) into the grammar, which would at first appear to be contrary to the
goal of eliminating all units. However, the new edges and vertices in the uses
graph can be discounted because have an important property: whenever a path
in the original graph contains a non-unitary edge, then the corresponding path
in the new graph also contains a non-unitary edge. So the introduction of the
new vertices and edges cannot introduce any new circularities. This property
allows the termination proof to go through.

5.5 Parser Generation

Parsing generation has some interesting complications. Following the logical
semantics, the parser must defer checking the components of a complex non-
terminal reference until they are all present. Then it makes one call to the pars-
ing function for that checks whether the tuple parses for that non-terminal. The
formalization of this procedure has been omitted here due to lack of space.

Multi-conjunctive grammars 99

U-IA. N → C1|..|T1&..&〈S1; ..; N.1; ..Sp〉&..Tm|..|Cn

N ′ → 〈S′11 〉&..&〈S′1q1〉|..|〈S′p
′

1 〉&..&〈S′p′
q′

p′
〉

⇒ N → C1|..
|T1&..〈S1; ..; S

′1
1 ; ..; Sp〉&..&〈S1; ..; S

′1
q1 ; ..; Sp〉&..Tm

..

|T1&..〈S1; ..; S
′p′
1 ; ..; Sp〉&..&〈S1; ..; S

′p′
q′

p′
; ..; Sp〉&..Tm

|..|Cn

Fig. 19. MCG Unit-Elimination Refactoring Rules – Simple Case: N’ has arity = 1

U-IB. N → C1|..|T1&..&
〈U1

1 ..U1
r1 ; ..; U

t
1..U

t
rt
〉

&..Tm|..|Cn

N ′ → 〈S′11 〉&..&〈S′1q1〉|..|〈S′p
′

1 〉&..&〈S′p′
q′

p′
〉

⇒
N → C1|..|T1&..&〈N̂ .1..N̂ .r1; ..〉&..Tm|..|Cn

N̂ → C1|..|T1&..
&〈U1

1 ; ..; U1
r1 ; ..; U

t
1; ..; U

t
rt
〉

&..Tm|..|Cn

N ′ → (unchanged)
⇒
N̂ → C1|..
|T1&..&〈..; S′1i ; ..〉&..Tm (Each S′1i sub’d for N.i)

..

|T1&..&〈..; S′p′i ; ..〉&..Tm (Each S′pi sub’d. for N.i)
|..|Cn

Fig. 20. MCG Unit-Elimination Refactoring Rules – Complex Case: N’ has arity > 1

100 David Zook

References

[1992] Graedel, E.: Capturing complexity classes with fragments of second order logic.
Theoretical Computer Science. 101(1):35–57

[1995] Groenink, Annius V.: An Elegant Grammatical Formalism for the Class of
Polynomial-time Recognisable Languages. In, Fourth Meeting on Mathematics
of Language. Philadelphia PA US

[2003] Hoffmann, M.: Linear types and non-size-increasing polynomial time computa-
tion. Inf. Comput. 183(1):57–85

[1999] Jones, Neil D.: LOGSPACE and PTIME Characterized by Programming Lan-
guages. Theoretical Computer Science. 228(1):151–174

[2001] Okhotin, Alexander: Conjunctive Grammars. Journal of Automata, Languages
and Combinatorics. 6(4):519–535

[2004] Okhotin, Alexander: Boolean Grammars. Inf. and Comput. 194:19–48
[1985] Papadimitriou, C. P.: A Note on the Expressive Power of Datalog. Bulletin of

the EATCS. 25:21–23

Author Index

Ésik, Zoltán, 5

Cassaigne, Julien, 33
Charatonik, Witold, 1

Daley, Mark, 43
Domaratzki, Michael, 43

Jeż, Artur, 54

Karhumäki, Juhani, 33
Kountouriotis, Vassilis, 67
Kuich, Werner, 5

Ly, Olivier, 76

Nomikos, Christos, 67

Okhotin, Alexander, 54

Rondogiannis, Panos, 67

Salmela, Petri, 33
Salomaa, Kai, 43

Villa, Tiziano, 14

Yevtushenko, Nina, 14

Zharikova, Svetlana, 14
Zook, David, 85

101

21. Johan Lilius, Seppo Virtanen (Eds.)
22. Mikael Collan
23.

(Eds.)

24. Ralph-Johan Back and Victor Bos

25. Pirkko Walden, Stina Störling-Sarkkila, Hannu Salmela and Eija H. Karsten
(Eds.)

26. Timo Järvi and Pekka Reijonen (Eds.)

27. Tero Harju and Juhani Karhumäki (Eds.)
28. Mats Aspnäs, Christel Donner, Monika Eklund, Pia Le Grand, Ulrika

Gustafsson, Timo Järvi and Nina Kivinen (Eds.)

29. João M. Fernandes, Johan Lilius, Ricardo J. Machado and Ivan Porres
(Eds.)

30. Mats Aspnäs, Christel Donner, Monika Eklund, Ulrika Gustafsson, Timo
Järvi and Nina Kivinen (Eds.)

31. Andrei Sabelfeld (Editor)
32. (Eds.)

33. Peter Selinger (Editor)

34. Kai Koskimies, Johan Lilius, Ivan Porres and Kasper Østerbye (Eds.)

35. Kai Koskimies, Ludwik Kuzniarz, Johan Lilius and Ivan Porres (Eds.)

36. Franca Cantoni and Hannu Salmela (Eds.)

37. Ralph-Johan Back and Kaisa Sere
38. Mats Aspnäs, Christel Donner, Monika Eklund, Ulrika Gustafsson, Timo

Järvi and Nina Kivinen (Eds.)

39. Johan Lilius, Ricardo J. Machado, Dragos Truscan and João M. Fernandes
(Eds.)

40. Ralph-Johan Back, Kaisa Sere and Luigia Petre

41. Tapio Salakoski, Tomi Mäntylä and Mikko Laakso (Eds.)

42. Petri Paju, Nina Kivinen, Timo Järvi and Jouko Ruissalo (Eds.)

, TTA Workshop Notes 2002

, Investment Planning – An Introduction

,

Turku Centre for Computer Science, Annual Report 2000-2001

, Centre for Reliable Software Technology,

Progress Report 2003

, ICT and Services: Combining Views from IS and Service Research

, People and Computers: Twenty-one

Ways of Looking at Information Systems

, Proceedings of WORDS'03

, Turku Centre for Computer

Science, Annual Report 2002

, Proceedings of the 1st International Workshop on Model-Based

Methodologies for Pervasive and Embedded Software

, Turku Centre for Computer Science, Annual

Report 2003

, Foundations of Computer Security

, Proceedings of the Workshop on

Discrete Models for Complex Systems

, Proceedings of the 2nd International Workshop on

Quantum Programming Languages

,

Proceedings of the 11th Nordic Workshop on Programming and Software

Development Tools and Techniques, NWPER'2004

,

Proceedings of the 2nd Nordic Workshop on the Unified Modeling Language,

NWUML'2004

, Proceedings of the Finnish-Italian

Workshop on Information Systems, FIWIS 2004

, CREST Progress Report 2002-2003

, Turku Centre for Computer Science, Annual

Report 2004

, Proceedings of MOMPES'05, 2nd International Workshop on Model-Based

Methodologies for Pervasive and Embedded Software

, CREST Progress Report 2004-

2005

, Koli Calling 2005 -

Proceedings of the Fifth Koli Calling Conference on Computer Science Education

,

Mats Aspnäs, Christel Donner, Monika Eklund, Pia Le Grand, Ulrika
Gustafsson, Timo Järvi, Nina Kivinen, Maria Prusila, Thomas Sund

Eugen Czeizler and Jarkko Kari

43. Tero Harju and Juhani Karhumäki (Eds.)

44. Michal Kunc and Alexander Okhotin (Eds.)

History of

Nordic Computing - HiNC2

, Proceedings of the Workshop on

Fibonacci Words 2006

, Theory and Applications of

Language Equations, Proceedings of the 1st International Workshop, Turku,

Finland, 2 July 2007

Turku Centre for Computer Science

TUCS General Publications

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics

Department of Information Technologies

Institute of Information Systems Sciences

�

�

�

�

ISBN 978-952-12-1920-7

ISSN 1239-1905

