
Mika Hirvensalo | Vesa Halava and

Igor Potapov | Jarkko Kari (Eds.)

Turku Centre Computer Sciencefor

TUCS General Publication
No 45, June 2007

Proceedings of the

Satellite Workshops of DLT 2007

Workshop on Probabilistic and Quantum Automata

Workshop on Reachability Problems

Workshop on Tilings and Self-Assembly



  



TUCS General Publication

No 45, June 2007

Proceedings of the

Satellite Workshops of DLT 2007

PART 1

PART 2

Workshop on Probabilistic and Quantum Automata

Workshop on Reachability Problems

Workshop on Tilings and Self-Assembly

PART 3



  



Workshop on

7 July 2007, Turku, Finland

Probabilistic and Quantum Automata

Editor:

Mika Hirvensalo



  



Preface

The workshop on Probabilistic and Quantum Automata (PQA 2007) was held
in Turku, Finland on July 7 2007 as a satellite event to the annual conference
Developments in Language Theory (DLT 2007). The date is characterized by an
extraordinary sequence 070707 not going to repeat before a century has elapsed.

The main topic of the workshop was as its title indicates, but other interest-
ing topics included quantum query algorithms and connections to the first-order
logic.

The basic pillar of the workshop consisted of three invited talks given by ex-
perts on quantum and probabilistic automata. In addition to that, the program
committee consisting of F. Ablayev (Kazan, Russia), A. Ambainis (Waterloo,
Canada), and M. Hirvensalo (Turku, Finland) accepted four papers to be pre-
sented as regular contributions. Unfortunately the third invited paper was not
able to reach the print shop in time, so it cannot be published in this volume.

I want to thank the organizers of DLT 2007, in particular to Vesa Halava
and Alexander Okhotin for their help with the arrangements, and Elisa Mikkola
for secretarial assistance. Thanks also go to Turku Centre for Computer Science
and the print shop Painosalama Oy for the production of this volume.

PQA 2007, DLT 2007, and International Visitor Program 2006–2007 was
supported by The Academy of Finland, The Finnish Cultural Foundation, Finnish
Academy of Science and Letters (Vilho, Yrjö and Kalle Väisälä Fund), Nokia
Foundation, Turku University Foundation, and Centro Hotel.

Turku, Finland June 2007 Mika Hirvensalo
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Classical Simulation Complexity of

Bounded-error and Unbounded-error Quantum

Branching Programs

Farid Ablayev⋆

Abstract. We present classical simulation techniques for measure once
quantum branching programs.

For bounded-error quantum branching program of width w that com-
putes a function with margin ǫ we present a classical deterministic branch-
ing program of the same length and width at most (1 + 1/ǫ)2w that
computes the same function.

Second technique is a classical stochastic simulation technique for
bounded-error quantum branching programs. Our result is that a re-
sulting stochastic classical branching program is of the same length and
almost the same width, but we lost bounded-error acceptance.

1 Introduction

Investigations of different aspects of quantum computations in the last decade
became a very intensively growing area of mathematics, computer science, and
physics. A good source of information on quantum computations is Nielsen’s
and Chuang’s book [7]. The interest in models of quantum computation has
been steadily increasing since the discovery of a polynomial time algorithm for
factoring by Peter Shor [12]. During the last decade different types of quantum
computation models based on Turing Machines, finite automata, circuits, and
branching programs have been considered. For several of these models of compu-
tations, some examples of functions were presented for which quantum models
appear to be much more efficient than their classical counterparts.

Complexity of classical simulation of quantum computations for different
models of computations were investigated in numerous papers [4, 8, 11].

In the paper we present two classical simulation techniques for measure once
quantum branching programs.

Our first result is the following. For bounded-error quantum branching pro-
gram of width w that computes a function with margin ǫ we present a clas-
sical deterministic branching program of the same length and width at most
(1+1/ǫ)2w that computes the same function. The construction of corresponding
deterministic branching program based on the properties that

1. quantum states are unit vectors (a set of all quantum states are form bounded
set for || · ||2 norm) and

⋆ Work done in part while visiting Max-Plank Institute for Mathematics Bonn in 2007
Email: ablayev@ksu.ru



2. that unitary transformation of quantum states preserves a distance.

Second technique is a classical stochastic simulation technique for bounded-error
quantum branching programs. Our result is that a resulting stochastic classical
branching program is of the same length and almost the same width, but we lost
bounded-error acceptance. Our construction of stochastic branching program is
based on:

1. Replacing complex matrices with real ones with dimension doubled and ten-
sor product construction as a bridge between || · ||1 norm and || · ||2 norm
(Lemma 3). This construction gives new matrices with quadratic increase in
dimension.

2. A Turakainen-type construction [13] to replace arbitrary real matrices with
stochastic ones with ”good properties” of the original ones (Lemma 4).

2 Definitions and Results

We start with definition of branching programs according to [14] (we call it con-
structive definition). Then we give an algebraic definition of branching programs
and present results of the paper.

Definition 1 A branching program (BP) on the variable set X = {x1, . . . , xn}
is a finite directed acyclic graph with one source node and sink nodes partitioned
into two sets – Accept and Reject. Each non-sink node is labeled by a variable xi

and has two outgoing edges labeled 0 and 1 respectively. An input σ is accepted
if and only if it induces a chain of transitions leading to a node in Accept, and
the set of such inputs is the language accepted by the program.

A branching program is oblivious if the nodes can be partitioned into levels
V1, . . . , Vℓ and a level Vℓ+1 such that the nodes in Vℓ+1 are the sink nodes, nodes
in each level Vj with j ≤ ℓ have outgoing edges only to nodes in the next level
Vj+1, and all nodes in a given level Vj query the same bit σij

of the input.

Definition 2 The size Size(P ) of a branching program P is the number of its
non-sink nodes. The length Length(P ) of branching program P is the maximum
length of a path from the source to one of the sinks. The width Width(P ) of
oblivious branching program P is the number Width(P ) = maxj |Vj |.

In this paper we deal with polynomial size branching programs. Recall that
arbitrary branching program can be transformed to oblivious branching program
(see for example [6]) with only polynomial increasing the size. So without loss
of generality we consider only oblivious branching programs in this paper.

Now we give a definition of a linear branching program based on oblivious
model. This definition is a generalization of the definition of quantum branch-
ing program presented in [2]. Deterministic, stochastic, and quantum oblivious
branching programs are particular cases of linear branching programs. Let Vk



be a k-dimensional vector space. We use |µ〉 and 〈µ| to denote column vectors
and row vectors of Vk, respectively, and 〈µ1 | µ2〉 denotes the complex inner
product. We write µ when it is not important whether µ is a column or a row
vector.

Definition 3 (Linear branching program) A Linear Branching Program
(LBP) P over Vk is defined as

P = 〈T, |µ0〉,Accept〉 ,

where T = (T1, . . . , Tℓ) is a sequence (of length ℓ) of instructions. Each instruc-
tion Tj is a triple Tj = {ij,Mj(0),Mj(1)}, where ij determines a variable xij

tested on the step j, Mj(0) and Mj(1) are k-dimensional linear transformations
of the vector space Vk. Vectors |µ〉 ∈ Vk are called states (state vectors) of P ,
|µ0〉 ∈ Vk is the initial state of P , and Accept ⊆ {1, . . . , k} is the accepting set.

According to the definition 2 it is natural to define the Width(P ) of linear
BP as the dimension of state space Vk. Further for LBP P it is natural do define
its size as Size(P ) = Width(P )Length(P ).

We define a computation on P with an input σ = σ1 . . . σn ∈ {0, 1}n as
follows:

1. A computation of P starts from the initial state |µ0〉;
2. The j’th step of computation of P applies instruction Tj: program P queries

a variable xij
, and applies the transition matrix Mj(σij

) to the current state
µ to obtain the state µ′ = Mj(σij

)µ;
3. The final state (i.e., the state after step ℓ) is

|µ(σ)〉 =

1
∏

j=ℓ

Mj(σij
)|µ0〉 .

Now oblivious deterministic, stochastic, and quantum branching programs
can be presented as follows:

Deterministic branching programs. A deterministic branching program is a linear
branching program over a vector space Rk. A state µ of such a program is a
Boolean vector with exactly one 1. The transition matrices M have exactly one
1 in each column.

Stochastic branching programs. The concept of deterministic branching programs
naturally generalizes to stochastic branching programs (SBP), by letting µ be
a probability distribution, and by letting the Mj be stochastic matrices, i.e.,
matrices with non-negative entries where each column sums to 1.

For a deterministic and stochastic branching program P , for an input σ ∈
{0, 1}n we define the acceptance probability of σ as follows

PrP (σ) = Pr(µ(σ)) =
∑

i∈Accept

|〈i | µ(σ)〉| = ‖ΠAcceptµ(σ)‖
1
. (1)



Here |i〉 is the basis vector with support on the node i (unit vector with value
1 at i and 0 elsewhere), and ΠAccept is a projection operator on the accepting
subspace span{|i〉 : i ∈ Accept}.

Quantum branching programs. We define a quantum branching program (QBP)
as a linear branching program over a Hilbert space Ck. The µ for such a program
are complex state vectors with ‖µ‖2 = 1, and the Mj are complex-valued unitary
matrices. For a quantum branching program P , for an input σ ∈ {0, 1}n we define
the acceptance probability of σ as follows

PrP (σ) = Pr(µ(σ)) =
∑

i∈Accept

|〈i | µ(σ)〉|2 = ‖ΠAcceptµ(σ)‖
2

2
, (2)

that is, the probability that if we measure µ(σ), we will observe it in the accepting
subspace. Note that this is a “measure-once” model analogous to the model of
quantum finite automata in [9], in which the system evolves unitarily except for
a single measurement at the end.

Notice that in contrast to algebraic definition of quantum and stochastic BPs
one can define these models in a (so called) constructive form. See for example
book [14] for constructive definition of SBP and the paper [11] for constructive
definition of QBP.

Acceptance criteria. We say that a LBP P computes a Boolean function f with
unbounded error if PrP (σ) > 1/2 if f(σ) = 1 and PrP (σ) ≤ 1/2 if f(σ) = 0. We
say that P computes f with threshold 1/2.

We say that a LBP P computes a Boolean function f with bounded error if
there is some ǫ > 0 such that PrP (σ) ≥ 1/2+ ǫ if f(σ) = 1 and PrP (σ) ≤ 1/2− ǫ
if f(σ) = 0. We say that P computes f with margin ǫ.

2.1 Deterministic Classical Simulations of Stochastic and Quantum
Branching Programs

Syntactic Stochastic and Quantum Programs For unbounded and bounded error
stochastic and quantum branching programs we define two subsets A and R
of the set F of sink state vectors (consistent and inconsistent) as follows. For
unbounded error programs, we define

A = {µ ∈ Vℓ+1 : Pr(µ) > 1/2} and R = {µ ∈ Vℓ+1 : Pr(µ) ≤ 1/2};

and for bounded error programs, we define

A = {µ ∈ Vℓ+1 : Pr(µ) ≥ 1/2 + ǫ} and R = {µ ∈ Vℓ+1 : Pr(µ) ≤ 1/2 − ǫ}

We call A and R the accepting and rejecting sets respectively.
Recall that Vℓ+1 includes the final states reachable by all possible paths, both

consistent and inconsistent. Then:



Definition 4 We call a stochastic or a quantum branching program syntactic if
its accepting and rejecting set of state vectors form a partition of the set of sink
states, i.e., if Vℓ+1 = A ∪R.

Note that without the syntactic restriction, it might happen that Vℓ+1 6= A∪R,
and that some inconsistent final state vector µ ∈ Vℓ+1 has the property that
1/2 − ǫ < Pr(µ) < 1/2 + ǫ.

Theorem 1 (Deterministic Simulation Theorem). If a function is com-
puted with bounded probability 1/2 + ǫ by a width-w syntactic stochastic branch-
ing program, then it is also computed by a deterministic branching program of
the same length, and width

w′ ≤

(

1 +
1

ǫ

)w

.

Similarly, if a function is computed with bounded probability 1/2 + ǫ by a
width-w syntactic quantum branching program, it is computed by a deterministic
program of the same length, and width

w′ ≤

(

1 +
1

ǫ

)2w

.

The proof of Theorem 1 is in the section Proofs.

2.2 Stochastic Classical Simulation of Quantum Branching
Programs

Theorem 2 (Stochastic Simulation Theorem). Let function f be unbounded
error (bounded error) computed by QBP Q. Then there exists SBP P that un-
bounded error computes f of the same length Length(P ) = Length(Q) and width
Width(P ) = 4Width2(Q) + 3.

Now we define probabilistic and quantum complexity classes based on branch-
ing programs as follows.

Definition 5 Let BPP -BP and PP -BP be the classes of functions computable
with bounded error and unbounded error respectively by stochastic branching pro-
gram of polynomial size;

Let BQP -BP and PrQP -BP be the classes of functions computable with
bounded error and unbounded error respectively by quantum branching program
of polynomial size.

Theorem 3.
PrQP -BP ⊆ PP -BP
BQP -BP ⊆ PP -BP

Proof. The proof of the Theorem is the consequence of the Simulation Theorem
2. 2

We present the proof of Theorem 2 in the section Proofs.



3 Proofs

3.1 Proof of Deterministic Simulation Theorem 1

We start with the idea of lower bounds proof and notations we use for formal
proof.

Let us denote (w, l)-P an w width and l length BP . The idea of proofs of
theorem 1 is that having syntactic stochastic (quantum) (w, l)-P that computes
a function f with margin ǫ we construct a deterministic BP (w′, l) - P ′ such
that P ′ computes the same function f and

w′ ≤

(

1 +
1

ǫ

)w

when P is stochastic BP and

w′ ≤

(

1 +
1

ǫ

)2w

when P is quantum BP .

The construction of P ′ is based on the following properties. We will view
on computation by oblivious (stochastic and quantum) BP (w, l)-P as an l
step linear process of transformation of vectors α of a current internal descrip-
tion (ID) of P . In stochastic case α = µ, where µ = (p1, . . . , pw) is a current
probability distribution of a states of P , and in quantum case α = |ψ〉, where
|ψ〉 = (z1, . . . , zw)T is a current distribution of amplitudes of states of P .

We represent this l step linear process as an (l + 1)-leveled deterministic
branching program DP , as follows: each node of DP labeled by vector α cor-
responds to an ID of P , and each level i ∈ {0, . . . , l} represents a step of the
computation. The level 0 contains initial node labeled α0 — the initial distribu-
tion of P . From each node α on the level i, i ∈ {0, . . . , l− 1}, out goes two edges
labeled xji

= 0 and xji
= 1 where xji

is a variable tested in the computational
step i. Edge xji

= 1, directed from parent α on a level i to child α′ on the
level i + 1 iff P being on the step i of computation in ID α tests xji

= 1 and
transforms its ID on the step i+ 1 to α′.

Denote Accept (Reject) a set of all accepting (rejecting) sink nodes of P .
Sink nodes of DP on the level l are labeled in addition by 1 (”accept”) and 0
(”reject”) as follows: in stochastic case sink node α = (p1, . . . , pw) labeled 1 if
Pr(α) =

∑

j∈Accept pj ≥ 1/2+ǫ, and labeled 0 if Pr(α) =
∑

j∈Accept pj ≤ 1/2−ǫ;

in quantum case node α = (z1, . . . , zw)T labeled 1 if Pr(α) =
∑

j∈Accept |zj |
2 ≥

1/2 + ǫ, and labeled 0 if Pr(α) =
∑

j∈Accept |zj |
2 ≤ 1/2− ǫ. Denote A (R) a set

of all sink nodes of DP labeled 1 (0).

From the above we have the following property.

Property 1 Deterministic branching program DP computes the same Boolean
function f as P .



In the next section we use metric point of view to DP for constructing
deterministic BP (w′, l)-P ′ that computes the same function as DP and hence
the same function as P .

Metric Properties of DP . Denote Ψi, i ∈ {0, . . . , l}, a set all possible IDs
of P on step i of computation. Let Ψ = ∪l

i=0Ψi. For stochastic P we define
metric on the space Ψ based on norm || · ||1. That is, for α = (p1, . . . , pw) and
α′ = (p′1, . . . , p

′
w) ρ(α, α′) = ||α − α′||1 =

∑w
i=1 |pi − p′i|. For quantum P we

define metric on the space Ψ based on norm || · ||2: for α = (z1, . . . , zw) and
α′ = (z′1, . . . , z

′
w) ρ(α, α′) = ||α − α||2. We will also use notation || · || for norm

|| · ||2.
Recall known notions of metric spaces we need in the proof (see for example

[5]). Denote Hw an w-dimensional vector space (real valued or complex valued)
with metric ρ. Points µ, µ′ from Hw are connected through θ-chain if there exists
a finite set of points µ1, µ2, . . . , µm from Hw such that µ1 = µ, µm = µ′ and
ρ(µi, µi+1) < θ for i ∈ {1, . . . ,m−1}. For Hw its subset C is called θ-component
if arbitrary two points µ, µ′ ∈ C are connected through θ-chain. It is known [5]
that if D is a finite diameter subset of a subspace of Hw (diameter of D is defined
as supµ,µ′∈D{ρ(µ, µ

′)} then for θ > 0 D is partitioned to a finite number t of its
θ-components.

Lemma 1 Let f be a Boolean function (1/2 + ǫ)-computed by P . Let DP be a
corresponding deterministic BP for P . Let θ > 0 and let for sink nodes of DP
the following holds: for arbitrary α ∈ A and α′ ∈ R it is holds that ρ(α, α′) ≥ θ.
Then, there exists a deterministic BP (w′, l)-P which computes f and

w′ ≤

(

1 +
2

θ

)w

when P is stochastic BP, and

w′ ≤

(

1 +
2

θ

)2w

when P is quantum BP.

Proof. Consider D a sphere of radius 1 with center in (0, . . . , 0). We clearly
have that Ψ ⊆ D. From the condition of the lemma it follows that subsets A
and R of Ψl is a union of some θ-components of Ψl. Next. Oblivious property of
BP P provides the following: on the each level i, i ∈ {0, . . . , l − 1}, of DP for
all nodes α ∈ Ψi it is tested the same variable xji

and applied the same linear
transition Mxji

(1) if xji
= 1 (Mxji

(0) if xji
= 0) where Mxji

(a) is stochastic
matrix when P is stochastic BP and Mxji

(a) is unitary when P is quantum BP .
It is known (and it can be easily verified) that transformations determined

by stochastic matrix M does not increase the distance. That is, if α′ = Mα and
β′ = Mβ then ρ(α′, β′) ≤ ρ(α, β). Unitary matrix M preserves the distance.
That is, it is holds that ||α′ − β′|| = ||α− β||.



Denote Ci the set of all θ-components of Ψi. For C ∈ Ci and matrix M
we denote MC = {α′ : α = Mα,α ∈ C}. From the property of non increasing
distance linear transformations (stochastic or uniform) it is holds that for C ∈ Ci

and for a ∈ {0, 1} there exists C′ ∈ Ci+1 such that MC ⊆ C′ for the stochastic
P and MC = C′ for the quantum P .

Now we describe deterministic BP P ′ that computes f as follows: P ′ is an
l-leveled oblivious BP . On the level i tested variable xji

(as in BP ) and all nodes
are labeled by θ-components C ∈ Ci. From the node C ∈ Ci edge labeled xji

= a
goes to to node C′ ∈ Ci+1 iff Mxji

(a)C ⊆ C′.
From the above it follows that P ′ computes the same function as DP
The width w(P ′) of P ′ is w′ = max{t0, . . . , tl} where ti is the number θ-

components of Ψi. Let w′ = ti. We estimate the number t of θ-components
(number of nodes of B) of Ψj as follows.

For each θ-component C ∈ Ci select one point α ∈ C. If we draw a sphere
of the radius θ/2 with the center α ∈ C then all such spheres do not intersect
pairwise. All these w′ spheres are in large sphere of radius 1 + θ/2 which has
center (0, 0, . . . , 0). The volume of a sphere of a radius r in Hw is crw when Hw

is real space and is cr2w when Hw is complex space (in the complex space Hw

each complex point is a 2-dimensional point). Constant c depends on the metric
of Hw. Now for stochastic and quantum case we have respectively that

w′ ≤
c (1 + θ/2)

w

c (θ/2)
w =

(

1 +
2

θ

)w

, w′ ≤
c (1 + θ/2)

2w

c (θ/2)
2w

=

(

1 +
2

θ

)2w

,

2

Below we present technical lemma that estimates parameter θ of the lemma
1 depending on margin ǫ of computation.

Lemma 2 Let f be a Boolean function (1/2 + ǫ)-computed by (w, l)-P . Let DP
be a corresponding deterministic BP for P .

Then for arbitrary α ∈ A and α′ ∈ R for the case of stochastic P it is holds
that:

||α− α′||1 ≥ θ = 2ǫ,

for the case of quantum P it is holds that:

||α− α′|| ≥ θ = 2ǫ.

Proof. Consider the case of stochastic P . α = (p1 . . . , pw)T , α′ = (p′1 . . . , p
′
w)T ,

||α− α′||1 =

w
∑

i=1

|pi − p′i| ≥
∑

i∈Accept

|pi − p′i| ≥ |
∑

i∈Accept

pi −
∑

i∈Accept

p′i|

From the condition of the lemma we have that
∑

i∈Accept pi ≥ 1/2 + ǫ and
∑

i∈Accept p
′
i ≤ 1/2 − ǫ. From this we have that

||α− α′||1 ≥ 1/2 + ǫ− (1/2 − ǫ) = 2ǫ.



Consider the case of quantum P . α = (z1, . . . , zd)
T and α′ = (z′1, . . . z

′
d)

T .
From the condition of the lemma it is holds that

2ǫ ≤
∑

i∈Accept

(|zi|
2 − |z′i|

2) =
∑

i∈Accept

(|zi| − |z′i|)(|zi| + |z′i|)

≤
∑

i∈Accept

(|zi − z′i|)(|zi| + |z′i|)

and similarly

2ǫ ≤
∑

i∈Reject

(|z′i|
2 − |zi|

2) =
∑

i∈Reject

(|z′i| − |zi|)(|zi| + |z′i|)

≤
∑

i∈Reject

(|zi − z′i|)(|zi| + |z′i|)

or

4ǫ ≤

w
∑

i=1

(|zi − z′i|)(|zi| + |z′i|).

From the above using known inequality
∑d

i=1 aibi ≤

√

∑d
i=1 a

2
i

√

∑d
i=1 b

2
i and

triangle inequality for the norm we get that

4ǫ ≤ ||α− α′||(|| |α| + |α′| || ≤ ||α− α′||(||α|| + ||α′|| = 2||α− α′||

2

Now the lower bounds of the theorem 1 follows immediately from lemmas 1
and 2. This completes the proof of theorem 1 2

3.2 Proof of Stochastic Simulation Theorem 2

We call LBP P a program of Type I, if it uses metric (1) when defining the
acceptance probability, and a program of Type II, if metric (2) is used.

The simulation technique we use in the proof explores the same idea as in [3].
The nonuniformity property of the model and oblivious property makes proof
clearer. The proof is based on three lemmas we present below.

Lemma 3 Let function f be computed by QBP Q. Then there exists LBP P
of Type I that computes f with Width(P ) = 4Width(Q)2 and Length(P ) =
Length(Q) such that PrQ(σ) = PrP (σ) for each σ ∈ {0, 1}n.

Proof sketch. First using the known real-valued simulation of complex-valued
matrix multiplication from QBP Q over Ck we construct LBP P ′ of Type II
over R2k with Width(P ′) = 2Width(Q) and Length(P ′) = Length(Q) such
that PrP ′

(σ) = PrQ(σ) for each σ ∈ {0, 1}n (see [2] for more details ).



Next we construct LBP P of Type I from LBP P ′ of Type II withWidth(P ) =
Width(P ′)2 and Length(P ) = Length(P ′) such that PrP ′

(σ) = PrP (σ) for each
σ ∈ {0, 1}n. Here we use relation among LBP of Type I and Type II (among
“linear” and “non linear” extracting a result of computation) used in [9, 3]. For
completeness of presentation we display it here for branching programs.

Let d = 2k. Let LBP P ′ = 〈T, |µ0〉,Accept〉 where T = ({ij,Mj(0),Mj(1)})ℓ
j=1.

We construct P = 〈T ′, |τ0〉,Accept′〉 as follows. The initial state |τ0〉 = |µ0 ⊗ µ0〉
— is d2-dimension vector, T ′ = ({ij,Wj(0),Wj(1)})ℓ

j=1 where Wj(σ) = Mj(σ)⊗

Mj(σ) is d2 × d2 matrix. Accepting set Accept′ ⊆ {1, . . . , d2} of states is defined
according to Accept ⊆ {1, . . . , d} as follows Accept′ = {j : j = (i − 1)d + i, i ∈
Accept}.

Using the fact that for real valued vectors c, b it holds that 〈c|b〉2 = 〈c⊗c|b⊗

b〉 we have that
∏1

j=ℓ Wj(σij
) =

∏1

j=ℓ(Mj(σij
) ⊗Mj(σij

)) =
∏1

j=ℓ Mj(σij
) ⊗

∏1

j=ℓ Mj(σij
).

PrP (σ) =
∑

i∈F ′

〈i|

1
∏

j=ℓ

Wj(σij
)|τ0〉 =

∑

i∈F

〈i⊗ i|

1
∏

j=ℓ

(Mj(σij
) ⊗Mj(σij

))|µ0 ⊗ µ0〉

=
∑

i∈F

〈i|

1
∏

j=ℓ

Mj(σij
)|µ0〉

2
= PrP ′

(σ).

From the construction of LBP P we have that Width(P ) = 4Width(Q)2 and
Length(P ) = Length(Q). 2

Lemma 4 Let function f be computed by LBP P of Type I. Then there exists
SBP P ′ that computes f with Width(P ′) = Width(P ) + 2, Length(P ′) =
Length(P ) such that for each σ = {0, 1}n it is true that

PrP ′

(σ) = cℓPrP (σ) + 1/(d+ 2)

where ℓ = Length(P ), d = Width(P ) , constant c ∈ (0, 1] depends on program
P .

Proof sketch. Let P = 〈T, |µ0〉,Accept〉, where T = (T1, . . . , Tℓ) and Tj =
{ij,Mj(0),Mj(1)}. Without loss of generality we suppose that a set Accept con-
sists only of one node. One can easily construct LBP with unique accepting node
from LBP with several accepting nodes (without increasing width and length)
using standard technique from Linear Automata Theory (see for example [10,
13]).

Let d = Width(P ). We construct SBP P ′ = 〈T ′, |µ′
0〉,Accept′〉 as follows. For

each instruction Tj of program P we define instruction T ′
j = {ij,Wj(0),Wj(1)}

of P ′ as follows.
First for each d × d matrix M of instruction Tj we define (d + 2) × (d + 2)

matrix



A=







0 0 . . . 0 0

b M
...

β q 0






,

such that sum of elements of each row and each column of A is zero (we are free
to select elements of column b, row q and number β).

Matrix A has the property: sum of elements of each row and each column
of A is zero. It is easy to verify that product of such matrices also would be a
matrix of the such type.

Now let R be stochastic (d+2)×(d+2) matrix who’s (i, j)-entry is 1/(d+2).
Select positive constant c ≤ 1 such that matrix W , defined as

W = cA+R

is stochastic matrix. Further by induction on ℓ we have that the product of
matrices of type W is also stochastic matrix of the same structure. Now for an
input σ = σ1 . . . σn we have that

W (σ) =

1
∏

j=ℓ

Wj(σij
) = cℓ

1
∏

j=ℓ

Aj(σij
) +R.

By selecting suitable initial probabilities distribution |µ′
0〉 and accepting nodes

we can pick up from W (σ) entry we need (entry that gives σ accepting probabil-
ity). From the construction of SBP P ′ we have that Width(P ′) = Width(P )+2,
Length(P ′) = Length(P ), PrP ′

(σ) = cℓPrP (σ)+1/(d+2) for each σ = {0, 1}n.
2

Lemma 4 says that having Type I LBP P that process its input σ with
threshold 1/2 one can construct SBP P ′ that process σ with threshold λ =
cℓ1/2 + 1/(d+ 2), where ℓ = Length(P ) and d = Width(P ).

Lemma 5 Let SBP P computes f with threshold λ ∈ [0, 1). Then for arbitrary
λ′ ∈ (λ, 1) there exists SBP P that computes f with threshold λ′ such that
Width(P ′) = Width(P ) + 1, Length(P ′) = Length(P ).

Proof: The proof uses standard technique from Probabilistic Automata Theory
(see for example the book [10]) and is omitted. 2

Lemmas 3,4,5 prove the statement of Theorem 2.
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Permutation Groups and the Strength of

Quantum Finite Automata with Mixed States ⋆

Rūsiņš Freivalds, Māris Ozols, Laura Mančinska

Institute of Mathematics and Computer Science, University of Latvia,
Raiņa bulvāris 29, R̄ıga, Latvia

Abstract. It was proved earlier by A. Ambainis and R. Freivalds that
the quantum finite automata with pure states can have exponentially
smaller number of states than the deterministic finite automata recog-
nizing the same language. There is a never published “folk theorem”
claiming that the quantum finite automata with mixed states are no
more than super-exponentially concise than the deterministic finite au-
tomata. It is not known whether the super-exponential advantage of the
quantum automata with mixed states is really achievable.
We show how this problem can be reduced to a certain problem about
permutation groups, namely: (1) if there is a fixed constant c and an in-
finite sequence of distinct integers n such that for each n there is a group
Gn of permutations of the set {1, 2, . . . , n} such that |Gn| = eΩ(n log n)

and the pairwise Hamming distance of permutations is at least c · n,
then (2) there is an infinite sequence of languages Ln such that for each
language there is a quantum finite automata with mixed states that
recognizes the language Ln and has O(n) states, while any deterministic
finite automaton recognizing Ln must have at least eΩ(n log n) states.
We do not know whether (1) is true, but we provide a list of several
known results on permutation groups, that possibly could be used to
prove (1). However, note that if (1) turns out to be false, it does not
imply, that (2) is also false.

1 Introduction

A. Ambainis and R. Freivalds proved in [1] that for recognition of some lan-
guages the quantum finite automata can have smaller number of states than
the deterministic ones, and this difference can even be exponential. The proof
contained a slight non-constructiveness, and the exponent was not shown explic-
itly. For probabilistic finite automata exponentiality of such a distinction was
not yet proved. The best (smaller) gap was proved by Ambainis [2]. The lan-
guages recognized by automata in [1] were presented explicitly but the exponent
was not. In a very recent paper by R.Freivalds [3] the non-constructiveness is
modified, and an explicit (and seemingly much better) exponent is obtained at
the expense of having only non-constructive description of the languages used.
Moreover, the best estimate in this paper was proved under the assumption of

⋆ This research is supported by Grant No.05.1528 from the Latvian Council of Science.



the well-known Artin’s Conjecture (1927) in Number Theory. [3] contains also
a theorem that does not depend on any open conjectures but the estimate is
worse, and the description of the languages used is even less constructive. This
seems to be the first result in finite automata depending on open conjectures in
Number Theory.

The following two theorems are proved in [3]:

Theorem 1. Assume Artin’s Conjecture. There exists an infinite sequence of
regular languages L1, L2, L3, . . . in a 2-letter alphabet and an infinite sequence
of positive integers z1, z2, z3, . . . such that for arbitrary j:

(1) there is a probabilistic reversible automaton with zj states that recognizes the
language Lj with the probability 19

36 ,
(2) any deterministic finite automaton recognizing Lj has at least

(2
1

4 )zj = (1.189207115 . . .)zj states.

Theorem 2. There exists an infinite sequence of regular languages L1, L2, L3, . . .
in a 2-letter alphabet and an infinite sequence of positive integers z1, z2, z3, . . .
such that for arbitrary j:

(1) there is a probabilistic reversible automaton with zj states that recognizes the
language Lj with the probability 68

135 ,
(2) any deterministic finite automaton recognizing Lj has at least

(7
1

14 )zj = (1.149116725 . . .)zj states.

The two theorems above are formulated in [3] as assertions about reversible
probabilistic automata. For probabilistic automata (reversible or not) it was
unknown before the paper [3] whether the gap between the size of probabilistic
and deterministic automata can be exponential. It is easy to re-write the proofs
in order to prove counterparts of Theorems 1 and 2 for quantum finite automata
with pure states. The aim of this paper is to propose a way how to prove a
counterpart of these theorems for quantum finite automata with mixed states.

2 Quantum automata with mixed states

Quantum algorithms with mixed states were first considered by D. Aharonov,
A. Kitaev, N. Nisan [4]. More detailed description of quantum finite automata
with mixed states can be found in A. Ambainis, M. Beaudry, M. Golovkins,
A. Ķikusts, M. Mercer, D. Thérien [5]. Since we are interested only in the most
simple and the most restricted version of these automata, we consider only
so-called Latvian QFA in this paper. These are the quantum finite automata
that can be implemented using the Nuclear Magnetic Resonance (NMR) tech-
nology. All the other types of quantum finite automata with mixed states are
less restrictive.

The automaton is defined by the initial density matrix ρ0. Every symbol ai in
the input alphabet is associated with a unitary matrix Ui. When the automaton



reads the symbol si, the current density matrix ρ is transformed into UiρU †
i .

When the reading of the input word is finished and the end-marker “$” is read,
the current density matrix ρ is transformed into U$ρU †

$ and separate measure-
ments of all states are performed. After that the probabilities of all the accepting
states are totaled, and the probabilities of all the rejecting states are totaled.

It is easy to see that quantum finite automata with pure states described
by C. Moore and J. Crutchfield [23] but not the quantum finite automata with
pure states described by A. Kondacs and J. Watrous [22] can be simulated by
Latvian QFA with no increase in the number of states.

3 From quantum automata to permutations

In this section we show how the problem of proving that quantum finite au-
tomata with mixed states have a super-exponential advantage over deterministic
automata can be reduced to a certain problem about permutation groups.

Definition 1. The Hamming distance or simply distance d(r, s) between two
n-permutations r and s on the set S is the number of elements x ∈ S such that
r(x) 6= s(x). The similarity e(r, s) is the number of x ∈ S such that r(x) = s(x).
Note that d(r, s) + e(r, s) = |S| = n.

Theorem 3. The assertion (1) implies the assertion (2), where:

(1) there is a fixed constant c and an infinite sequence of distinct integers n such
that for each n there is a group Gn of permutations of the set {1, 2, . . . , n},
the group has eΩ(n log n) elements and k generating elements, and the pair-
wise Hamming distance of permutations is at least c · n,

(2) there is an infinite sequence of distinct integers n such that for each n there is
a language Ln in a k-letter alphabet that can be recognized with probability c

2
by a quantum finite automata with mixed states that has 2n states, while any
deterministic finite automaton recognizing Ln must have at least eΩ(n log n)

states.

Proof. For each permutation group Gn we define the language Ln as follows:

The letters of Ln are the k generators of the group Gn and
it consists of words s1s2s3 . . . sm such that the product

s1 ◦ s2 ◦ s3 ◦ · · · ◦ sm differs from the identity permutation.

We will construct a quantum automaton with mixed states. It has 2n states
and the initial density matrix ρ0 is a diagonal block-matrix that consists of n
blocks ρ̃0:

ρ̃0 =
1

2n

(
1 1
1 1

)
. (1)

For example, in the case n = 4 the density matrix ρ0 is given in (3).
For each of k generators gi ∈ Gn we will construct the corresponding unitary

matrix Ui as follows – it is a 2n × 2n permutation matrix, that permutes the



elements in the even positions according to permutation gi, but leaves the odd
positions unpermuted.

For example, g = 3241 can be expressed as the following permutation matrix
that acts on a column vector:

g =




0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0


 . (2)

The initial density matrix ρ0 for n = 4 and the unitary matrix U that corresponds
to the permutation matrix (2) of premutation g are as follows:

ρ0 =
1

8




1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1




, U =




1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0




. (3)

The unitary matrix U$ for the end-marker is also a diagonal block-matrix. It
consists of n blocks that are the Hadamard matrices

H̃ =
1√
2

(
1 1
1 −1

)
. (4)

Notice how the Hadamard matrix H̃ acts on two specific 2× 2 density matrices:

if ρ =
1

2n

(
1 1
1 1

)
, then H̃ρH̃† =

1

2n

(
2 0
0 0

)
, (5)

if ρ =
1

2n

(
1 0
0 1

)
, then H̃ρH̃† =

1

2n

(
1 0
0 1

)
. (6)

For example, when the letter g is read, the unitary matrix U is applied to
the density matrix ρ0 (both are given in equation (3)) and the density matrix
ρ1 = Uρ0U

† is obtained. When the end-marker “$” is read, the density matrix
becomes ρ$ = U$ρ1U

†

$ . Matrices ρ1 and ρ$ are as follows:

ρ1 =
1

8




1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1




, ρ$ =
1

8




1 0 0 0 1
2

1
2

1
2 − 1

2
0 1 0 0 − 1

2 − 1
2

1
2 − 1

2
0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0
1
2 − 1

2 0 0 1 0 1
2

1
2

1
2 − 1

2 0 0 0 1 − 1
2 − 1

2
1
2

1
2 0 0 1

2 − 1
2 1 0

− 1
2 − 1

2 0 0 1
2 − 1

2 0 1




. (7)



Finally, we declare the states in the even positions to be accepting, but the
states in the odd positions to be rejecting. Therefore one must sum up the
diagonal entries that are in the even positions of the final density matrix to find
the probability that a given word is accepted.

In our example the final density matrix ρ$ is given in (7). It corresponds to
the input word “g$”, which is accepted with probability 1

8 (1 + 0 + 1 + 1) = 3
8

and rejected with probability 1
8 (1 + 2 + 1 + 1) = 5

8 . Note that the accepting and
rejecting probabilities sum up to 1.

It is easy to see, that the words that do not belong to the language Ln are
rejected with certainty, because the matrix U$ρ0U

†

$ has all zeros in the even po-
sitions on the main diagonal. However, the words that belong to Ln are accepted
with the probability at least d

2n
= cn

2n
= c

2 , because all permutations are at least
at the distance d from the identity permutation.

It is also easy to see that any deterministic automaton that recognizes the
language Ln must have at least N = |Gn| states, where |Gn| is the size of the
permutation group Gn. If the number of states is less than N , then there are
two distinct words u and v such that the deterministic automaton ends up in the
same state no matter which one of the two words it reads. Since Gn is a group,
for each word we can find an inverse, that returns the automaton in the initial
state (the only rejecting state). Since u and v are different, they have different
inverses and u◦u−1 is the identity permutation and must be rejected, but v◦u−1

is not the identity permutation and must be accepted – a contradiction. ⊓⊔

4 Sharply transitive permutation groups

We are interested in permutation groups such that distinct permutations have
large Hamming distance (see Sect. 3 for the definition of the Hamming distance
d(r, s) and the similarity e(r, s) of two permutations r and s). It turns out that
the notion of Hamming distance is related to the multiple transitivity of groups.

Definition 2. A group G of permutations on the set S is called k-transitive if
for every two k-tuples (x1, x2, . . . , xk) and (y1, y2, . . . , yk) of distinct elements of
S, there is a permutation p ∈ G such that p(xi) = yi for all i ∈ {1, 2, . . . , k}. If
there is exactly one such permutation p, then G is called sharply k-transitive.
Note that a sharply k-transitive group is also sharply (k − 1)-transitive.

It seems that it has been noted only recently (see, e.g., [10]) that the sharp
k-transitivity imposes a restriction on the Hamming distance. This is given by
the following trivial lemma:

Lemma 1. If G is a sharply k-transitive set of n-permutations, then for any
distinct r, s ∈ G:

d(r, s) ≥ n − k + 1. (8)

Proof. Let us assume that d(r, s) < n − k + 1 for some r, s ∈ G. It means, the
similarity e(r, s) ≥ k or both permutations act on some t-tuple (t ≥ k) in the
same way. This is a contradiction, since G is sharply k-transitive. ⊓⊔



Definition 3. G(n, d) denotes the size of the largest group of n-permutations
with the pairwise distance at least d (d ≤ n).

An analogue of the Singleton bound can be obtained for permutations [11]:

Lemma 2. The following upper bound holds:

G(n, d) ≤ n(n − 1)(n − 2) · · · (d + 1)d︸ ︷︷ ︸
n−d+1 multipliers

(9)

with equality if and only if there is a sharply (n − d + 1)-transitive group of
permutations.

Proof. We have d(r, s) ≥ d and e(r, s) ≤ n − d for every distinct r, s ∈ G. It
means, if we fix any (n − d + 1)-tuple x and apply all permutations from G to
it, the obtained tuples y must be different. The number of such tuples y can not
exceed the right hand side of (9).

If the size of the group G matches the upper bound, then all possible tuples
y of n − d + 1 distinct elements of S can be obtained if all permutations of G
are applied to any fixed tuple x. Moreover, for each y there is no more than one
such permutation. It means we can send any (n − d + 1)-tuple x to any y with
exactly one permutation thus the group is sharply (n − d + 1)-transitive.

The other way round – if the group is sharply (n − d + 1)-transitive, we can
send any fixed (n − d + 1)-tuple x to any y with exactly one permutation. Thus
there are at least as many permutations in the group as the right hand side of
(9). There are no other permutations, otherwise it would be possible to send the
given x to some y with two different permutations, which is a contradiction with
the assumption that the group is sharply (n − d + 1)-transitive. ⊓⊔

In the next several subsections we list the main known results on sharply
k-transitive groups (see [6] for the basic facts, [7, 9] for additional information).

4.1 Sharply n-transitive and (n − 1)-transitive groups

It is clear that the symmetric group Sn of all permutations on the set {1, 2, . . . , n}
is sharply n-transitive, because there is exactly one permutation that sends any
n-tuple to any other n-tuple. However, Sn is also sharply (n − 1)-transitive,
because if the action of the permutation on n− 1 elements is known, the action
on the last element is uniquely determined. From Lemma 1 we obtain that the
distance between distinct permutations of Sn is at least 2. It is clear, because
distance 1 is not possible for permutations.

The group Sn can be generated by two generators (in cycle notation):

g1 = (12)(3)(4) . . . (n), (10)

g2 = (123 . . . n). (11)

The first one corresponds to a transposition of first two elements, but the second
one – to a cyclic shift of all elements. The group Sn consists of n! permutations.



4.2 Sharply (n − 2)-transitive groups

The signature or sign of a permutation s is defined as the parity of the number
of inversions in s, i.e., pairs i, j such that i < j, but s(i) > s(j). For example,
s = 3241 has 4 inversions, namely 32, 31, 21, and 41 thus it is an even per-
mutation. It is easy to show that a transposition (a permutation that swaps to
elements) changes the sign of a permutation to the opposite. In fact the signature
“sgn” of a permutation is a group homomorphism from Sn to {−1, 1}, because
for any two permutations r and s we have sgn(s ◦ r) = sgn s · sgn r. Therefore it
is not hard to see that the set of all even permutations of the set {1, 2, . . . , n}
forms a group – the alternating group An.

It is simple to show that An is sharply (n − 2)-transitive – if we know the
action of a permutation on n − 2 elements, the remaining two elements can be
either swapped or remain in the same order. One of these cases corresponds to
an even permutation, but the other – to odd. From Lemma1 it follows that the
pairwise distance of distinct permutations of An is at least 3. This can also be
obtained directly – even permutations can not have distance 2, because then
they differ only by one transposition and therefore have different signs. Since
the number of odd and even permutations is the same, An consists of n!/2
permutations.

4.3 Sharply 1-transitive groups

An example of a sharply 1-transitive group is the cyclic group Cn that consists
of n permutations and is generated by a cyclic shift

g1 = (123 . . . n). (12)

Cn is clearly sharply 1-transitive, because there is exactly one way how to shift
any element to any other. The pairwise distance between distinct elements of
Cn is exactly n.

4.4 Sharply 2-transitive groups

An infinite sequence of sharply 2-transitive groups can be constructed using an
affine transformation y(x) = ax + b, where a, b ∈ Fn, a 6= 0. Here Fn denotes
the finite field of order n, i.e., a set of n elements together with two binary
operations – addition and multiplication, such that (Fn, +) and (Fn\{0}, ∗) are
Abelian groups and both distribute laws hold. Such a field Fn exists if and only
if n is a power of a prime number.

The function y(x) acts on the elements of the field Fn as a permutation,
because ax1 + b = ax2 + b implies x1 = x2. There are in total n(n − 1) such
permutations and they form a group: if y1(x) = a1x + b1 and y2(x) = a2x + b2,
then (y1 ◦ y2)(x) = y1(y2(x)) = (a1a2)x + (a1b2 + b1) which is also an affine
transformation. To prove that the group is sharply 2-transitive, we have to show



that there is a unique solution to the following system of two linear equations:

{
y1 = ax1 + b

y2 = ax2 + b
(13)

where x1 6= x2 and y1 6= y2. This solution is

a =
y1 − y2

x1 − x2
, b =

x1y2 − x2y1

x1 − x2
. (14)

Thus the group is sharply 2-transitive. In a similar way one can explicitly show
that the pairwise Hamming distance between distinct permutations is at least
n − 1, but it follows from Lemma1 as well.

4.5 Sharply 3-transitive groups

Let Fq be a finite field, where q is a power of a prime number.

Definition 4. The multiplicative group F
∗
q of the field Fq is the set of all

non-zero elements of Fq, i.e., F ∗
q = Fq\{0}.

Definition 5. The general linear group GL(m, Fq) is the set of all invertible
m× m matrices with elements from the field Fq. A matrix is invertible if it has
a non-zero determinant.

Definition 6. The projective general linear group PGL(m, Fq) is almost the
same as GL(m, Fq), except that matrices M, M ′ ∈ GL(m, Fq) are treated as
equal if there is a non-zero scalar c ∈ F

∗
q such that M = cM ′. In other words

PGL(m, q) = GL(m, q)/F
∗
q.

The matrices from the set GL(m, Fq) form a group, because the matrix mul-
tiplication is associative, the product of two invertible matrices is also invertible
and for each invertible matrix one can find an inverse. This group acts on the
set of non-zero m-dimensional column vectors over Fq as a permutation. The set
PGL(m, Fq) consists of equivalence classes of matrices and is also a group. It
acts on the equivalence classes of non-zero column vectors as a permutation.

The group PGL(m, Fq) is sharply 3-transitive, when m = 2. To prove this,
it is sufficient to show that for any two 3-tuples of vectors X = (x1,x2,x3) and
Y = (y1,y2,y3) from different equivalence classes there is exactly one matrix
M ∈ PGL(2, Fq) that sends the tuple X to Y . For vectors xi and yi this means

M · xi = ci · yi, (15)

where the constant ci is introduced, because we are dealing with the equivalence
classes of vectors. Thus for each i ∈ {1, 2, 3} we have a linear system of equations

(
a b
c d

) (
xi

1

xi
2

)
= ci

(
yi
1

yi
2

)
. (16)



We have to solve these systems with respect to matrix M , but in addition we
have three unknown constants: c1, c2, and c3. In fact, we are allowed to choose
one of them and thus specify some particular matrix M from its equivalence
class. If c3 = 1, the three systems of linear equations (16) are equivalent to




x1
1 x1

2 0 0 y1
1 0

0 0 x1
1 x1

2 y1
2 0

x2
1 x2

2 0 0 0 y2
1

0 0 x2
1 x2

2 0 y2
2

x3
1 x3

2 0 0 0 0
0 0 x3

1 x3
2 0 0







a
b
c
d

−c1

−c2




=




0
0
0
0
y3
1

y3
2




. (17)

It has a unique solution if the determinant does not vanish. Using some algebraic
manipulations one can show that

∣∣∣∣∣∣∣∣∣∣∣∣

x1
1 x1

2 0 0 y1
1 0

0 0 x1
1 x1

2 y1
2 0

x2
1 x2

2 0 0 0 y2
1

0 0 x2
1 x2

2 0 y2
2

x3
1 x3

2 0 0 0 0
0 0 x3

1 x3
2 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣
x1

1 x3
1

x1
2 x3

2

∣∣∣∣ ·
∣∣∣∣
x2

1 x3
1

x2
2 x3

2

∣∣∣∣ ·
∣∣∣∣
y1
1 y2

1

y1
2 y2

2

∣∣∣∣ 6= 0. (18)

None of the three small determinants vanish, because we were given that the
3-tuples X and Y consist of vectors from different equivalence classes, but such
vectors are clearly linearly independent. Therefore the big determinant clearly
does not vanish as well and the system (17) has a unique solution.

Let us find the number of equivalence classes of vectors and matrices in
PGL(2, Fq). The number of 2-dimensional non-zero vectors over Fq is q2 − 1.
There are q − 1 non-zero constants and thus there are q − 1 vectors in each
equivalence class. The number of classes is

n =
q2 − 1

q − 1
= q + 1. (19)

The number of matrices in PGL(2, Fq) is

|PGL(2, Fq)| =
|GL(2, Fq)|

q − 1
, (20)

because there are q−1 non-zero constants. The number of matrices in GL(2, Fq)
is the same as the number of pairs of linearly independent non-zero vectors. The
first vector can be chosen in q2 − 1 ways and it determines a set of q− 1 linearly
dependent vectors and the second vector can be chosen in (q2−1)−(q−1) = q2−q
ways. Therefore |GL(2, Fq)| = (q2 − 1)(q2 − q) and

|PGL(2, Fq)| = (q + 1)q(q − 1) = n(n − 1)(n − 2). (21)

The method for obtaining sharply 3-transitive groups given above can be
described using a different formalism – the linear fractional transformation (also



called Möbius transformation):

y(x) =
ax + b

cx + d
, (22)

where a, b, c, d ∈ Fq and ad− bc 6= 0 (otherwise a/c = b/d = α and y(x) = α). It
acts on the set Fq ∪{∞} as a permutation. The following conventions regarding
the element ∞ are used:

y

(
−d

c

)
= ∞, y(∞) =

{
∞ if c=0,
a
c

otherwise.
(23)

In fact, the element ∞ corresponds to the vector ( 1
0 ) in the above construction.

Note that the inverse of (22) is also a linear fractional transformation:

x(y) =
−dy + b

cy − a
. (24)

The same stands for the composition of two linear fractional transformations.

4.6 Sharply 4-transitive and 5-transitive groups

It is known that the Mathieu group M11 is sharply 4-transitive and therefore
the pairwise Hamming distance of distinct elements is at least 8. It consists of
11 · 10 · 9 · 8 = 7920 elements. It is generated by

g1 = (2, 10)(4, 11)(5, 7)(8, 9)(1)(3)(6), (25)

g2 = (1, 4, 3, 8)(2, 5, 6, 9)(7)(10)(11). (26)

The Mathieu group M12 is sharply 5-transitive and the pairwise Hamming
distance of distinct elements is also at least 8. It has 12 · 11 · 10 · 9 · 8 = 95040
elements and is generated by [10]:

g1 = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12), (27)

g2 = (1, 2, 3)(4, 5, 7)(8, 9, 11)(6)(10)(12). (28)

4.7 Summary of sharply k-transitive groups

The Table 1 provides a summary of the sharply k-transitive groups discussed
in the Sections 4.1 trough 4.6. These groups match the bound for G(n, d) in
Lemma 2 with equality. In Fig. 1 the points of the (n, d)-plane where the maximal
value of G(n, d) can be reached are shown. According to Table 1 these points can
be divided into 5 infinite classes (indicated with lines) and two sporadic groups –
the Mathieu groups. It turns out that there are no other groups of maximal size
except the Mathieu groups M11 and M12 between the lines d ≥ 4 and d ≤ n− 3:

Theorem 4 (see [7, 8, 10]). A sharply k-transitive group (k ≥ 4) is isomorphic
either to Sn (n ≥ 4), An (n ≥ 6) or one of the Mathieu groups M11 or M12.

However, the non-existence of maximal groups does not imply that there are
no groups with the required properties (see Sect. 6).
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Fig. 1. The maximal permutation groups.

Table 1. The summary of sharply k-transitive groups. The meanings of columns are
as follows: d – the pairwise Hamming distance, n – the possible values of the size of
the set S (pm stands for a power of any prime number), |Gn| – the size of the group,
Gn – the description of the group.

k d n |Gn| Gn Section

n, n − 1 2 any n! Sn 4.1
n − 2 3 any n!/2 An 4.2

5 8 12 95040 M12 4.6
4 8 11 7920 M11 4.6
3 n − 2 pm + 1 n(n − 1)(n − 2) PGL(2, Fn−1) 4.5
2 n − 1 pm n(n − 1) y(x) = ax + b 4.4
1 n any n Cn 4.3



5 Permuting polynomials

The affine transformations considered in Sect. 4.4 were actually linear polyno-
mials of x over the field Fn. The linear fractional transformation considered
in Sect. 4.5 is also a polynomial, because for any non-zero a ∈ Fq we have
a−1 ≡ aq−2 (this is a consequence of the analog of Fermat’s Little Theorem
ap−1 ≡ 1 mod p for finite fields). From this point of view it is interesting to
study the permuting polynomials over finite fields, because they can give rise to
permutation groups with large pairwise Hamming distance. In this section we
give some basic results on groups generated by permuting polynomials.

Let us assume that the size n of the set S on which the permutations act is a
power of a prime number (otherwise we can augment the set S with additional
elements). Then we can put S = Fn and express any permutation (actually any
function) f on this set as a polynomial (we assume that f acts trivially on the
appended elements if |S| was not a power of a prime number) as follows:

Definition 7. The Lagrange interpolating polynomial of a function f defined
on a finite field Fn as f(x1) = y1, f(x2) = y2, . . . , f(xn) = yn is given by:

P (x) =

n∑

i=1

Pi(x), where Pi(x) =

n∏

j=1
j 6=i

x − xj

xi − xj

yi. (29)

Note that the division is performed in the field Fn and the denominator always
differs from zero.

It is easy to see that the polynomial P (x) mimics the function f(x), i.e.,
P (x) = f(x) for all x ∈ Fn. As an example we will consider the permutation
groups over the field F5.

The symmetric group S5 is generated by g1(x) = x + 1 and g2(x) = x3. It
consists of all polynomials of the form:

ax3 + bx2 + 2a3b2x + d, a 6= 0, (30)

cx + d, c 6= 0. (31)

The alternating group A5 is generated by g1(x) = x + 1 and g2(x) = 2x3. It
consists of all polynomials of the form (30) and (31), except that in addition
we require that a ∈ {2, 3} (non-squares) and c ∈ {1, 4} (squares) respectively.
Affine transformations are generated by g1(x) = x + 1 and g2(x) = 2x and they
are of the form (31). The cyclic group C5 is generated by g1(x) = x + 1 and is
of the form (31) where c = 1.

As an example of a permutation group generated by polynomials when |S|
is not a power of a prime number, we can mention the case G(6, 4) = 120. The
corresponding group is generated by g1(x) = 6x + 5 and g2(x) = x4 + 3x + 1
where both polynomials are modulo 7.



Table 2. Experimentally obtained results for G(n, d). The columns have the following
meaning: n – the size of the set S, d – the pairwise Hamming distance, G(n, d) – the size
of the group obtained, “Bound” – the upper bound for G(n, d) according to Lemma2,
“Generators” – the two generators of the group.

n d G(n, d) Bound Generators

7 4 168 840 6, 4, 3, 2, 5, 1, 7
6, 1, 7, 5, 2, 3, 4

8 5 336 1680 3, 8, 6, 2, 4, 5, 1, 7
7, 4, 6, 3, 1, 5, 2, 8

8 4 1344 6720 2, 6, 8, 4, 5, 7, 1, 3
7, 4, 3, 5, 1, 8, 6, 2

9 6 1512 3024 4, 5, 1, 8, 3, 7, 6, 2, 9
3, 4, 8, 5, 7, 1, 6, 9, 2

9 5 1512 15120 9, 4, 1, 6, 5, 2, 7, 8, 3
1, 4, 5, 3, 7, 9, 8, 2, 6

9 4 1512 60480 7, 2, 8, 3, 5, 6, 9, 4, 1
6, 1, 3, 8, 2, 4, 9, 5, 7

10 7 720 5040 3, 9, 5, 7, 4, 8, 10, 6, 1, 2
7, 9, 4, 5, 3, 6, 8, 1, 10, 2

10 6 1512 30240 8, 2, 10, 7, 4, 3, 1, 6, 5, 9
1, 2, 8, 5, 10, 6, 3, 7, 9, 4

10 5 1512 151200 1, 10, 3, 9, 6, 8, 5, 4, 7, 2
1, 10, 8, 3, 2, 4, 5, 7, 6, 9

10 4 1920 604800 5, 1, 4, 8, 9, 7, 6, 10, 2, 3
7, 8, 2, 1, 10, 3, 9, 6, 4, 5

15 12 2520 32760 7, 2, 4, 5, 11, 10, 13, 15, 3, 9, 6, 8, 14, 12, 1
9, 15, 11, 6, 4, 2, 10, 13, 7, 12, 8, 1, 14, 3, 5

16 12 40320 524160 16, 5, 6, 12, 14, 13, 11, 1, 10, 3, 7, 4, 15, 8, 9, 2
6, 7, 14, 8, 15, 3, 12, 2, 9, 10, 13, 11, 4, 16, 1, 5



6 Experimental results

We performed computer experiments to find permutation groups with pairwise
Hamming distance in the region between d ≥ 4 and d ≤ n − 3. The obtained
results for n = 7, 8, 9, 10 are shown in Table 2. In addition we mention also two
large groups for n = 15 and n = 16.

These groups were obtained by choosing two random permutations g1 and g2

and computing their closure with respect to the product of permutations. If at
some point the distance between any two distinct obtained permutations became
less than some predefined dmin, the process was terminated and restarted with
another random generators g1 and g2. Some of the groups obtained in this way
have very interesting properties:

(1) G(7, 4) has 168 = 7 · 6 · 4 elements and is isomorphic to the automorphism
group of the Fano plane.

(2) G(8, 4) has 1344 = 8 ·168 = 8 ·7 ·6 ·4 elements. This group has the property,
that the stabilizers of any element form a group that is isomorphic to the
automorphism group of the Fano plane. This group also has a property that
for any 3-tuples x and y of distinct elements there are exactly 4 permutations
that send x to y. It is isomorphic to the automorphism group of the octonion
multiplication table.

(3) G(8, 4) has 1512 = 9 ·168 = 9 ·8 ·7 ·3 elements and it has the same stabilizer
property, but for each 3-tuples x and y there are exactly 3 permutations that
send x to y.

(4) G(15, 12) has 2520 = 15 · 168 = 15 · 14 · 12 elements and it also has the
stabilizer property, but for each 2-tuples x and y there are exactly 12 per-
mutations that send x to y.

(5) G(16, 12) has 40320 = 16 · 15 · 168 = 16 · 15 · 14 · 12 elements. The stabilizers
of any two elements form a group that is isomorphic to the automorphism
group of the Fano plane. For any 3-tuples x and y there are exactly 12
permutations that send x to y.
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Abstract. The connection between formulae of the first order logic and
acceptance probability of quantum finite automata has been studied in
this paper. It has been proved that there is a subclass of the first or-
der languages that can be recognized by measure-many quantum finite
state automata with probability 1. Other properties of the first order
languages and acceptance probability of measure-many quantum finite
state automata have been studied in the paper.

1 Introduction

The connection between automata theory and logic dates back to the early sixties
to the work of Büchi [8] and Elgot [12]. They showed how a logical monadic
second-order formula can effectively be transformed into a finite state automaton
accepting the language defined by the formula and vice versus - how a finite
state automaton can be transformed to a logical monadic second-order formula
which specifies the language accepted by the automaton. Later the equivalence
between finite state automata and monadic second-order Logics over infinite
words and trees were shown in the works of Büchi [9], McNaughton [20], and
Rabin [24]. The next important step in the connection between automata theory
and logic was Pnueli’s work [23], where it was proposed to use Temporal Logic
for reasoning about continuously operating concurrent programs. And so in the
eighties, temporal Logics and fixed-point Logics took the role of specification
languages and more efficient transformations from logic formulae to automata
were found. The results of the research were powerful algorithms and software
systems for the verification of finite state programs (“model-checking”). The
research of the equivalence between automata theory and logic formalism also
influenced language theory itself. For example, automata classes were described
in the terms of logic.

The logical description of the behavior of computation models also influenced
complexity theory. In 1974 Fagin [13] gave a characterisation of nondeterministic
polynomial time (NP) as the set of properties expressible in the second order
existential logic. Later Immerman [15] and Vardi [26] characterized polynomial

⋆ The research has been supported by the European Social Fund.



time as the set of properties expressed in a first order inductive definition, which
is defined by adding a least point operator to the first order logic. And in the
similar way polynomial space has also been characterized.

A natural model of classical computing with finite memory is a finite state
automaton, likewise a quantum finite state automaton is a natural model of
quantum computation. Different notations of quantum finite state automata
are used. The two most popular notations of quantum finite state automata
are quantum finite state automata introduced by Moore and Crutchfield [21]
(measure-once quantum finite state automata) and quantum finite automata
introduced by Kondacs and Watrous [18] (measure-many quantum finite state
automata). They have a seemingly small difference, in the first definition a quan-
tum finite state automaton performs the measurement only at the end of the
computation, but in the second definition a quantum finite state automaton per-
forms the measurement at every step of the computation. Measure-once quantum
finite state automata and measure-many quantum finite state automata with iso-
lated cut point recognize only the subset of regular languages. Besides these two
models of quantum finite state automata there are also such models of quantum
finite state automata as “enhanced” quantum finite state automata [22], Lat-
vian quantum finite state automata [2], 1-way quantum finite state automata
with control language [7], quantum finite state automata with mixed states (in-
troduced by D.Aharonov, A.Kitaev and N.Nisan [1]) and quantum finite state
automata with quantum and classical states (introduced by A.Ambainis and
J.Watrous [5]).

Quantum finite state automata have their strengths and weaknesses in com-
parison to their classical counterparts. The strength of quantum finite state
automata is in the fact that quantum finite automata can be exponentially more
effective [4], but the main weakness is caused by necessity that a quantum process
has to be reversible, that makes the most of quantum finite state automata no-
tations unable to recognize all regular languages. And for many notations of
quantum finite state automata the problem to describe the class of the lan-
guages recognizable by the quantum automata is still open and as logic has had
a large impact on automata theory, it seams to be useful to look at the languages
recognizable by quantum finite state automata in the terms of logic, as well as
to look at the properties of quantum finite automata in the terms of logic.

The connection between quantum finite state automata and logic has been
studied in [10], where it was shown that measure-once quantum finite state
automata does not accept the languages defined by the first order logic except
the trivial languages. The connection between the first order logic and measure-
many quantum finite automata has been studied in [11] where the forms of the
first order formulae have been presented for which it is possible to construct
a measure-many quantum finite automaton recognizing the language and the
construction of the first order formulae have been shown for which there is no
measure-many quantum finite automaton recognizing the language defined by
the first order formula.



In the paper we study an acceptance probability of measure-many quantum
finite state automata and the first order logic. The language class of the first
order languages are presented for which it is possible to construct a measure-
many quantum finite state automaton recognizing the language with probability
1.

2 Main notations

2.1 First order logic

Let A be a finite alphabet and let ω = a1a2...an be a word over the alphabet A.
The corresponding word model for the word ω is represented by the relational
structure

ω = (dom(ω), S, <, (Qa)a∈A)

where dom(ω) = {1, 2, ..., n} is the set of the letters “positions” of ω (the “do-
main” of ω), S is the successor relation on dom(ω) with (i, i + 1) ∈ S for all
1 ≤ i ≤ n, < is the order relation on dom(ω), and Qa = {i ∈ dom(ω) | ai = a}
(“position carries letter a”).

We consider word models over the finite alphabet A. The corresponding first
order language has variables x, y, ... ranging over positions in the word models,
and is built from atomic formulae of the form

x = y, S(x, y), Qa(x), x < y

by means of the connectivities ¬,∨,∧,→,↔ and quantifiers ∃ and ∀. The no-
tation ϕ(x1, x2, ..., xn) indicates that in the formula ϕ at most the variables
x1, x2, ..., xn are free, i.e. they are not in the scope of a quantifier. A sentence is
a formula with no free variables. If p1, p2, ..., pn are positions from dom(ω) then
(ω, p1, p2, ..., pn) |= ϕ(x1, x2, ..., xn) means that ϕ is satisfied in the word model
ω when p1, p2, ..., pn serve as an interpretation of x1, x2, ..., xn. The language de-
fined by the sentence ϕ is L(φ) = {ω ∈ A∗ | ω |= ϕ}. Languages defined by such
sentences are the first order languages. For example, the sentence ∀x(Qa(x))
over the alphabet A = {a, b} defines the language containing all words that have
only letters a. This language is a first order language. The classical equivalence
result of the first order logic is results by Schützenberger [25]:

Theorem 1. For a language L ∈ A∗ the following are equivalent

1. L is star-free (the smallest class that satisfies following: all finite languages
over A belong to star free languages, if languages L1, L2 are star free then
so are L1 · L2, L1 ∪ L2, L1 ∩ L2 and L̄1 = A∗ \ L).

2. L is recognizable by a finite aperiodic monoid - a finite monoid M for which
there is and n ≥ 1 such that mn+1 = mn holds for all m ∈ M .

3. L is defined by a first order formula.



2.2 Quantum finite automata

Definition 1. A measure-many quantum finite state automaton is defined by a
6-tuple as follows [18]

A = (Q; Σ; δ; q0; Qacc; Qrej)

where

1. Q is a finite set of states,
2. Σ is an input alphabet and Γ=Σ ∪ { ♯; $ } is working alphabet of A, where

♯ and $ (/∈ Σ) are the left and the right end-markers,
3. δ is the transition function δ : Q × Γ × Q → C[0,1], which represents the

amplitudes that flows from the state q to the state q’ after reading symbol σ,
4. q0 ∈ Q is the initial state,
5. Qacc ⊆ Q and Qrej ⊆ Q are sets of accepting and rejecting states (Qacc ∩

Qrej = ⊘).

The states in Qacc and Qrej are halting states and the states in Qnon = Q \
(Qacc ∪ Qrej) are non-halting states.

For all states q1, q2, q
′ ∈ Q and symbols σ ∈ Γ , the function δ must be unitary,

thus the function satisfies the condition

∑

q′ δ(q1, σ, q′)δ(q2, σ, q′) =

{

1 (q1 = q2)
0 (q1 6= q2)

.

And it is assumed that an input word starts with the left end-marker and ends
with the right end-marker.

The linear superposition of the automaton’s A states is represented by a n-
dimensional complex unit vector, where n = |Q|. The vector is denoted by |φ〉 =
∑n

i=1 αi |qi〉, where {|qi〉} is the set orthonormal basis vectors corresponding to
the states of the automaton A.

The transition function δ is represented by a set of unitary matrices {Vσ}σ∈Γ ,
where Vσ is the unitary transition of the automaton A after reading the symbol
σ and is defined by Vσ(| q〉) =

∑

q′∈Q δ(q, σ, q′) | q′〉.
A computation of the automaton A on the input word ♯σ1σ2...σn$ proceeds

as follows. It starts in the superposition | q0〉, then a transition corresponding
to the current input letter is performed. After every transition the automaton
A measures its state with respect to the observable Eacc ⊕ Erej ⊕ Enon where
Eacc = span{| q〉 : q ∈ Qacc}, Erej = span{| q〉 : q ∈ Qrej} and Enon = span{|
q〉 : q ∈ Qnon}. If the observed state of the automaton A is in Eacc subspace, then
it accepts the input; if the observed state of A is in Erej subspace, then it rejects
the input, otherwise the computation continues. After every measurement the
superposition collapses to the measured subspace. A measurement is represented
by a diagonal zero-one projection matrices Pacc, Prej and Pnon which project
the vector onto Eacc, Erej and Enon.

Since the automaton A can have a non-zero probability of halting, it is useful
to keep a track of the cumulative accepting and rejecting probabilities. There-
fore, the state of the automaton A is represented by a triple (φ, pacc, prej),



where pacc and prej are the cumulative probabilities of accepting and reject-
ing. The transition of A on reading the symbol σ is denoted by (Pnon |φ′〉 , pacc +

‖Paccφ
′‖

2
, prej + ‖Prejφ

′‖
2
), where φ′ = Vσφ.

3 First order logic and quantum finite automata

In this section we look at the connection between accepting probabilities of
quantum finite automata and the first order logic. From the fact that intersection
of languages recognized by measure-once quantum finite automata and languages
defined by the first order logic follows that there are languages recognized by
measure many quantum finite automata which cannot be defined by the first
order logic. However there are first order languages recognized by measure-many
quantum finite automata with probability 1.

Theorem 2. The first order languages contains languages which can be recog-
nized by a measure-many quantum finite automaton with probability 1.

Proof. It is possible to define a class L1, which contains all languages defined by
the following rules:

1. ai ∈ Σ, {a1a2...akΣ∗} ∈ L1, k ∈ N
2. if Li ∈ L1 and Lj ∈ L1, then Li ∈ L1, Li ∪ Lj ∈ L1 and Li ∩ Lj ∈ L1.

And languages can be defined by the first order formula. The first order formula
describing the language can be constructed as follows:

1. ∀x1, x2, ..., xk(first(x1) → Qa1
(x1) ∧ S(x1, x2) → Qa2

(x2) ∧ S(x2, x3) →
... → Qak−1

(xk−1) ∧ S(xk−1, xk) → Qak
(xk){∧last(xk)}∗)

2. if φi defines language Li ∈ L1 and φj recognizes the language Lj ∈ L1, then
¬φi recognizes Li, φi ∨ φj - Li ∪ Lj ∈ L1 and φi ∧ φj - Li ∩ Lj ∈ L1.

Lemma 1. The languages in L1 can be recognized by a measure-many quantum
finite automaton with probability 1.

Proof. Lets look at the language Li ∈ L1 to construct the measure-many quan-
tum finite state automaton for the language Li, we need to represent the language
Li in the tree view. The representation tree is constructed in the following way
(there is exactly one edge from the parent node of level k to k+1 with a label ai

∀ai ∈ {Σ ∪ $}) :

– The representation tree for the language {a1a2...ak}. The first level is labeled
with 0. The edge from i to i+1 is labeled with a letter ai+1 (i < k), the edges
from the level k to k+1 are drawn for all symbols in Σ and the children
nodes are colored in red. The node of the level k+1 which is connected by
the edge from the level k to k+1 labeled with the right end-marker is colored
in blue. Afterwards the edges are added to parent nodes to make the whole
tree, so that there is exactly one edge from the parent node of the level j to
j+1, the children nodes (leaves) are marked in red.
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Representation tree for {a1a2...akΣ∗}
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– The representation tree for the language {a1a2...akΣ∗}. The edge from i to
i+1 is labeled with a letter ai+1, the last node is colored in blue. Afterwards
the edges are added to parent nodes to make the whole tree, so that there
is exactly one edge from the parent node of the level j to j+1. The children
nodes (leaves) are marked in red.

– For Li the Li tree blue nodes are colored in red and the red nodes in blue.
– The tree of Li ∪ Lj is union of the trees for Li and Lj. If the edge with a

label a from the level k to k + 1 in one of the trees goes to red leaf, then the
subtree of the other tree is chosen in the final tree, if the leaf in the one of
the trees is blue, then the final tree will have this edge.

– The tree of Li∩Lj is intersection of the trees for Li and Lj . If the edge with
a label a from the level k to k + 1 in one of the trees goes to red leaf, then
the final tree will have this edge, if the leaf in the one of the trees is blue,
then the subtree of the other tree is chosen in the final tree.

The measure-many quantum finite state automaton accepting the language
Li with probability 1 is the automaton A = (Q; Σ; δ; q0; Qa; Qr), where Q =
{q0, q1, ..., qn}, where n is the count of the nodes. Qa contains the states which
correspond to nodes colored in blue, Qr contains the states which correspond
to nodes colored in red. The transition function are defined by the representa-
tion tree. The edge (i, j, al) defines the transition |qi〉 = |qj〉 for letter al. The
transition function for the left end-marker is unitary transition.

Lets look at the languages that can be recognized by MM-QFA with accepting
probability 1 and which cannot be recognized by measure-once quantum finite
state automata. Currently we have shown a specific class of languages which can
be recognized by MM-QFA with probability 1 and which are first order definable.
Naturally, a question arises:

– Are there other first order languages which can be recognized by MM-QFA
with probability 1, but are not in the language class L1?



The answer to which is yes, for example, a language ab∗a can be recognized by
MM-QFA with probability 1 and it is first order definable. Another question for
further investigation is:

– Is it possible to give a characteristics of the languages which can be recog-
nized by MM-QFA with probability 1, but which cannot be recognized by
MO-QFA and are not first order definable? It is clear that such languages
exist, for example, a2kb where K ∈ Z.

But now lets look at the other issue - can we present the first order languages
which cannot be recognized by a measure-many quantum finite state automaton
with probability 1? The first order languages contain such languages which can
only be recognized by a measure-many quantum finite automaton with proba-
bility less than 1. One of examples is the language a∗b∗.

Theorem 3. There is no such probability p greater than 1
2 for which holds fol-

lowing:

– any measure-many quantum finite automaton accepts the first order lan-
guages ( recognized by MM-QFA) at least with probability p.

Proof. Lets assume that it is possible to provide such probability p. We can
express p as 1

2 + l. It is possible to find such n so that l > 3√
n−1

. At the same

time it is known [3], that language Ln ( Ln is defined as a∗
1a

∗
2a

∗
3...a

∗
n) cannot

be recognized with probability greater then 1
2 + 3√

n−1
. We got a contradiction

which means that such p does not exist.
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Abstract. We analyze the properties of probabilistic reversible decide-
and-halt automata (DH-PRA) and show that there is a strong relation-
ship between DH-PRA and 1-way quantum automata. We show that
a general class of regular languages is not recognizable by DH-PRA
by proving that two ”forbidden” constructions in minimal deterministic
automata correspond to languages not recognizable by DH-PRA. The
shown class is identical to a class known to be not recognizable by 1-way
quantum automata. We also prove that the class of languages recogniz-
able by DH-PRA is not closed under union and other non-trivial boolean
operations.

1 Introduction

In this paper we study probabilistic reversible decide-and-halt automata, intro-
duced in [GK 02]. Being entirely classical, the model however has close links to
quantum finite automata (QFA). Moreover, with some additional restrictions,
DH-PRA may be considered as a marginal special case of Nayak’s quantum
automata [N 99]. Such marginal, essentially classical, special cases sometimes
prove to be extremely useful in the research of the properties of QFA. For ex-
ample, classical probabilistic reversible automata (C-PRA) are instrumental to
prove that Latvian QFA [ABG 04] recognize exactly the regular languages whose
syntactic monoids are block groups.

In this paper, we consider bounded-error language recognition by DH-PRA.
There are two commonly used models how to interpret word acceptance and
hence, language recognition, by quantum automata. In classical acceptance model
the states are divided into two disjoint sets of accepting and non-accepting states
and the automaton accepts a word, if it is in accepting state after having read
the last symbol of the word and rejects it otherwise. In decide-and-halt accep-
tance model the states are divided into three disjoint sets of accepting, rejecting

⋆ Research supported by the European Social Fund, contract No.
2004/0001/VPD1/ESF/PIAA/04/NP/3.2.3.1/0001/0001/0063, by the Latvian
Council of Science, grant No. 05.1528 and by the University of Latvia research
project No. 2006/1-229715.



and non-halting states, and after reading each symbol of the word, the automa-
ton accepts the word if it is in accepting state, rejects if in rejecting state and
continues computation otherwise.

Classical one-way QFA (1-QFA) with pure states were introduced by C. Moore
and J. P. Crutchfield in [MC 00]. Subsequently, A. Kondacs and J. Watrous in-
troduced “decide-and-halt” 1-QFA with pure states in [KW 97]. Classical 1-QFA
with pure states and “decide-and-halt” 1-QFA with pure states are commonly
referred in literature as measure-once QFA (MO-QFA) and measure-many QFA
(MM-QFA), respectively. Since then 1-QFA with pure states have been studied a
lot. In particular, Kondacs and Watrous showed in [KW 97], that MM-QFA can
recognize only a proper subset of regular languages. In [BP 99], Brodsky and Pip-
penger noted that MO-QFA recognize the same language class as permutation
automata ([T 68]). Ambainis, Ķikusts and Valdats determined in [AKV 01] that
the class of languages recognized by MM-QFA is not closed under boolean op-
erations, as well as significantly improved the necessary condition of a language
to be recognized by MM-QFA, proposed by [BP 99]. Recently in [BMP 03] it
is shown that the class of languages recognizable by MM-QFA coincides with
a certain subclass of QFA with control language, but still it does not give the
description of that class. “Decide-and-halt” 1-QFA with mixed states were intro-
duced by A. Nayak in [N 99] as enhanced quantum finite automata. He showed
that similar weaknesses apply to this more general model (MM-QFA is a special
case of it) as shown for MM-QFA.

Probabilistic reversible automata (PRA) were introduced by M. Golovkins
and M. Kravtsev in [GK 02] as probabilistic automata which transition function
is determined by doubly stochastic operators. In case of one-way automata that
means that a doubly stochastic transition matrix corresponds to each symbol
in alphabet. This model is a probabilistic counterpart for Nayak’s model of en-
hanced quantum automata. In Nayak’s model, if a result of every observation is a
single configuration, not a superposition of configurations, we get a probabilistic
automaton which evolution matrices are doubly stochastic. So if the transition
matrices of a PRA are also unitary stochastic it is in fact a Nayak’s quantum
automaton.

In this paper we address another type of PRA, i.e., the DH-PRA defined in
[GK 02], that behave more like measure-many quantum automata [KW 97], as
they halt when entering accepting or rejecting states. We show a general class of
regular languages, not recognizable by DH-PRA. This class is identical to a class
not recognizable by MM-QFA [AKV 01] (and similar to the class of languages,
not recognizable by C-PRA [GK 02]). We also prove that the class of languages
recognizable by DH-PRA is not closed under union. That makes more credible
our assumption that there exists a strong relationship between DH-PRA and
MM-QFA, leading to a conjecture that DH-PRA are at least as powerful as
MM-QFA.

The paper is structured in the following way. Section 2 contains definitions
and general facts used throughout the paper. In Section 3 we show a class of
languages that are not recognizable by DH-PRA. In Section 4 we prove that the



class of languages recognizable by DH-PRA is not closed under union. Section 5
is the conclusion.

2 Preliminaries

We refer to Appendix for the definitions of classical and decide-and-halt accep-
tance and the general definition of probabilistic reversible automata.

A 1-way probabilistic reversible decide-and-halt automaton (DH-PRA) A =
(Q, Σ, q0, Qa, Qr, δ) is specified by a finite set of states Q, a finite input alphabet
Σ, an initial state q0 ∈ Q and a transition function δ : Q×Γ×Q −→ IR[0,1], where
Γ = Σ∪{#, $} is the input tape alphabet of A and #, $ are end-markers not in Σ.
For every input symbol σ ∈ Γ the transition function is determined by a doubly
stochastic |Q| × |Q| matrix Vσ, where (Vσ)i,j = δ(qj , σ, qi). The set of accepting
states is Qa and the set of rejecting states is Qr, where Qa∩Qr = ∅. Every input
word is enclosed into end-marker symbols # and $. Once an automaton enters
any state in Qa ∪ Qr the computation is halted and the input word is either
accepted or rejected. Let Qn = Q \ (Qa ∪ Qr) the set of nonhalting states. Any
state in Qa ∪ Qr is called halting.

Following notation used in quantum computation, throughout the paper, col-
umn vectors will be used in connection with the transition matrices, hence the
order of multiplication of transition matrices will be opposite to the order of
letters in the input word.

Let us note that any DH-PRA can be transformed into a probabilistic au-
tomaton with classical acceptance which recognizes the same language (end-
markers remain present). Indeed, for any halting state q let us modify the tran-
sition function, so that for any σ in Γ q ·σ = q. The set of final states is Qa. Let
l the number of the previously halting states.

The transition matrices Vσr
remain stochastic, but are not anymore doubly

stochastic. However, for each transition matrix Vσr
we can enumerate the states

of DH-PRA in the following way:

1. q1 ... qkr
are the states from which the halting states are not accessible with

σr;
2. qkr+1 ... qn−l are the non-halting states from which the halting states are

accessible with σr;
3. qn−l+1 ... qn are the halting states.

Then the structure of the transition matrix Vσr
= (αij) is





DST 0 0
0 aij 0
0 bij I



, where

– DST - kr × kr doubly stochastic matrix,
– I - l × l unit matrix,

– ∀i, kr + 1 ≤ i ≤ n − l,
n
∑

j=1

αij ≤ 1 (as originated from doubly stochastic

matrix where the sum of each row is one)



Note that for different letters of the alphabet Σ the numbering of the states
q1 . . . qn−l may be different. Following Markov chains notation, with respect to
a transition Vσr

, the states qkr+1 . . . qn−l are called transient and the states
q1 . . . qkr

and qn−l+1 . . . qn are called recurrent. The states qn−l+1 . . . qn are called
absorbing.

Let us call a matrix of the type above DH-stochastic matrix (even after the
states are renumbered).

Theorem 2.1. A stochastic matrix S is DH-stochastic, iff exists a permutation

P such that PSPT =





D 0 0
0 A 0
0 B I



, where D is a k × k doubly stochastic matrix

with k ≥ 0, A - l × l matrix with l ≥ 0, I - m× m unit matrix with m > 0, and
the sum of elements in any row in the matrices A and B is less or equal than
one.

Proof. Moved to Appendix.

Certainly, the transformation that corresponds to reading of a sequence of
letters also is described by a DH-stochastic matrix.

Lemma 2.2. For any σs, σt in Σ, Vσs
· Vσt

is also a DH-stochastic matrix.

Proof. Moved to Appendix.

Note that the transient states in Vσs
·Vσt

may be different from the transient
states in Vσs

and in Vσt
.

Before looking at forbidden constructions for DH-PRA we need to consider
the behavior of the Markov chain induced by the transition Vσr

in the long run.

Lemma 2.3. Given a DH-stochastic matrix A, there exists K such that

lim
n→∞

AKn =





DST ′ 0 0
0 0 0
0 aij I



, where DST ′ is a block diagonal kr × kr matrix

such that each block is a doubly stochastic matrix with every element equal to 1
ki

,
where ki is the size of the block.

Proof. Moved to Appendix.

Definition 2.4. By q
S

−→ q′, S ⊂ Σ∗, we denote that there is a positive prob-
ability to get to a state q′ by reading a single word ξ ∈ S, starting in a state
q.

3 On a Class of languages recognizable by 1-way

DH-PRA

It is easy to see that the class of languages recognized by C-PRA is a proper
subclass of languages recognized by DH-PRA. Indeed, by [FGK 04], we may



assume that C-PRA does not use any end-markers. Given a C-PRA A, for any
final state qi add an accepting halting state qh

i , and for any non-final state gj ,
add a rejecting halting state gh

j . Add the final end-marker $ with transitions

qi$ = qh
i , qh

i $ = qi, gj$ = gh
j , gh

j $ = gj. V$ is doubly stochastic. The addition
of end-marker ensures that any input word accepted (rejected) by A is also
accepted (rejected) by the DH-PRA with the same probability.

There exist languages recognized by DH-PRA, and not recognized by C-PRA.

Example 3.1. The language a(a,b)* known not to be recognizable by C-PRA is
recognizable by DH-PRA.

In this section we will prove that the regular languages whose minimal de-
terministic automaton contains certain forbidden constructions cannot be recog-
nized by 1-way DH-PRA. We start by definition of these ”forbidden” construc-
tions, that are quite similar to the ones defined for C-PRA.

Definition 3.2. We say that a regular language is of type 1 if the following is
true for the minimal deterministic automaton recognizing this language: There
exist two states q1, q2, there exist words x, y such that

1. q1 6= q2;
2. q1x = q2, q2x = q2;
3. q2y = q1.

Definition 3.3. We say that a regular language is of type 2 if the following is
true for the minimal deterministic automaton recognizing this language: There
exist three states q, q1, q2, there exist words x, y such that

1. q1 6= q2;
2. qx = q1, qy = q2;
3. q1x = q1, q1y = q1;
4. q2x = q2, q2y = q2.

The constructions 1 and 2 are forbidden for C-PRA and define block group
languages, see [GK 02] and [ABG 04].

Definition 3.4. We say that a regular language is of Type 3 (Figure 3) if a
regular language is of Type 2 and additional conditions hold for states q1, q2:
There exist 2 words z1 and z2 such that

1. reading z1 when in q1 leads to a final state and reading z1 when in q2 leads
to a non-final state;

2. reading z2 when in q2 leads to a final state and reading z2 when in q1 leads
to a non-final state.

Theorem 3.5. If a regular language is of Type 3 then it is not recognizable by
any DH-PRA.
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Proof. Assume from the contrary, that A is a DH-PRA automaton which recog-
nizes a language L ⊂ Σ∗ of Type 3.

Since L is of Type 3, it is recognized by a minimal deterministic automaton
D with particular three states q, q1, q2 such that q1 6= q2, qx = q1, qy = q2,
q1x = q1, q1y = q1, q2x = q2, q2y = q2, where x, y ∈ Σ∗. Furthermore, there
exists ω ∈ Σ∗ such that q0ω = q, where q0 is an initial state of D, and there exist
words z1 ∈ Σ∗, z2 ∈ Σ∗, such that q1z1 = q1

acc and q1z2 = q1
rej , q2z1 = q2

rej and

q2z2 = q2
acc, where q1

acc, q
2
acc are final states and q1

rej , q
2
rej are non-final states of

D.
The transition function of the automaton A is determined by DH-stochastic

matrices Vσ1
, . . . , Vσn

. The words from the construction of Type 3 are x =
σi1 . . . σik

and y = σj1 . . . σjs
. The transitions induced by words x and y are

determined by DH-stochastic matrices X = Vσik
. . . Vσi1

and Y = Vσjs
. . . Vσj1

.
Similarly, the transitions induced by words ω, z1 and z2 are determined by DH-
stochastic matrices W , Z1 and Z2.

Let us select 2 words x1 and x2 of the form x1 = ωyK(xKyK)m and x2 =
ω(xKyK)m.

We take K to be

– K > n, where n is a number of states of the given DH-PRA A;
– K is a multiple of K1 ∗ n where (XK1)i,i > 0 for all non-halting states of A

recurrent with respect to X ;
– K is a multiple of K2 ∗ n where (Y K2)i,i > 0 for all non-halting states in A

recurrent with respect to Y .

We can select such K1 and K2 by Corollary A.24. Recurrent states in X and
Y in general could be different, by the selection of K > n any transient state in
Y K is also transient in Y KXK . Indeed, qi transient with respect to Y K means
some halting state is accessible in 1 step from qi due to selection of K > n. So
qi is either



a) transient with respect to XK and then some transient state is accessible in 1
step with XK , thus qi is transient with respect to Y KXK , or

b) qi is recurrent with respect to XK and then qi
XK

−→ qi, but then qi transient
with respect to Y KXK . It easy to see that for any transient state q of any DH-
stochastic matrix A some absorbing state will be accessible by AK , K ≥ n, in 1

step. (As q
xK

−→ q′ where q′ is absorbing state, and q′
(xy)K

−→ q′.)

There could be some states recurrent for Y K that are transient states for
Y KXK . However, if qi and qj are states recurrent for Y K and are accessible
from each other with Y K , and qi is transient for Y KXK then qj is transient for
Y KXK as well. That holds as we selected K to satisfy the conditions of Lemma
A.26 for both X and Y . Indeed, assume from the contrary that qj is recurrent
for Y KXK . If
a) qj is transient with respect to XK then some halting state is accessed in 1
step with respect to XK and thus qj is transient with respect to Y KXK ;

b) qj is recurrent with respect to XK , then qj
XK

−→ qj and as qj
Y K

−→ qi and then
again qj is transient with respect to Y KXK .

So we get that lim
m→∞

(Y KXK)m converges to some matrix J of the form

described in Lemma 2.3. Consider JY K . With respect to non-halting recurrent
states of (Y KXK) the corresponding submatrix of Y K is a block diagonal matrix
of the same block ordering and size as J (although it is possible that some of
the blocks consist of smaller blocks). For the transient and halting states there
is the same position and size of identity matrix, all the rows corresponding to
transient states in J remain 0 rows, but the rows corresponding to halting states
are changed (see also Figure 4).

That means that after reading x1 = ωyK(xKyK)m and x2 = ω(xKyK)m

from the initial state we will get arbitrary close probability distributions for
non-halting states, but possibly different probability distributions for the halt-
ing states. Let ρa1 be accepting probability and ρr1 rejecting probability after

Fig. 4. The structure of the matrices Y
K and lim

m→∞

(Y K
X

K)m and lim
m→∞

(Y K
X

K)m
×

Y
K



reading x1. (So at that moment the automaton remains in a non-halting state
with probability 1− ρa1 − ρr1). Let ρa2 be accepting probability and ρr2 reject-
ing probability after reading x2. Consider reading z1 after x1 that needs to be
rejected and x2 that needs to be accepted. As distributions on non-halting states
before reading z1 are arbitrary close, and reading any word cannot significantly
increase their difference, at that moment the word x1z1 /∈ L is accepted with
probability ρa1 +c1, and the word x2z1 ∈ L is accepted with probability ρa2+c2,
where c1 and c2 are arbitrary close nonnegative values. Due to the assumption
that L is recognized with bounded error, we get ρa1 < ρa2. On the other hand,
consider reading z2 after x1 that needs to be accepted and x2 that needs to be
rejected. In the similar fashion, we get that ρa2 < ρa1. This is a contradiction.

⊓⊔

Theorem 3.6. If a regular language is of Type 1, it is not recognizable by any
DH-PRA.

Proof. The proof is moved to Appendix. It is similar to the proof of Theorem 3.5.
Behavior on words x1 = ω(xK(xy)K)m and x2 = ω(xK(xy)K)mxK is considered.

4 Closure properties

In this section we prove that the class of languages recognizable by DH-PRA
automata is not closed by the union. In [AKV 01] there is proposed a language
which is union of languages recognizable by QFA-DH which is not recognizable
by QFA-DH, we basically follow their proof.

Theorem 4.1. There are two languages L2 and L3 which are recognizable by
DH-PRA, but the union of them L1 = L2 ∪ L3 is not recognizable by DH-PRA.

Proof. Let L1 be the language consisting of all words that start with any number
of letters a and after the first letter b (if there is one) there is an odd number of
letters a. Its minimal automaton G1 is shown in Fig. 5.

Fig. 5. Minimal Automaton of L1

Fig. 6. Minimal Automaton of L2

”even”



This language satisfies the conditions of Theorem 3.5 (g1, g2 and g3 of The-
orem 3.5 are just g1, g2 and g3 of G1. x, y, z1, z2 are b, aba, ab and b.) Hence it
cannot be recognized by a DH-PRA. Consider two other languages L2 and L3

defined as follows. L2 consists of all the words which start with an even number
of letters a and after the first letter b (if there is one) there is an odd number of
letters a. L3 consists of all the words which start with an odd number of letters
a and after the first letter b (if there is one) there is an odd number of letters a.
It is easy to see that L1 = L2 ∪ L3. The minimal automaton for L2 is shown on
Fig. 6 and for L3 the difference is that initial state is g4.

We construct two DH-PRA automata K2 and K3 which recognize languages
G2 and G3. The automaton K2 consists of 12 states: g1, g2, g3, g4, g5, g6, g7, g8,
g9, g10, g11 and g12, where Qnon = {g1, g2, g3, g4, g12}, Qrej = {g5, g6, g7, g8}
and Qacc = {g9, g10, g11}. The initial state of K2 is g12. The transition matrices
V#, Va, Vb and V$ are defined as follows:

V# =









































1
3 0 0 0 0 0 0 0 0 0 0 2

3
0 2

3 0 0 0 0 0 0 0 0 0 1
3

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
2
3

1
3 0 0 0 0 0 0 0 0 0 0









































, Va =









































0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1









































,

Vb =









































0 0 0 0 0 0 0 1
2

1
2 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
1
2 0 0 0 0 0 0 1

2 0 0 0 0
1
2 0 0 0 0 0 0 0 1

2 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1









































, V$ =









































0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1









































.

1. After reading the left end-marker # K2 with probability 2
3 is in the state g1

and with probability 1
3 is in the state g2. G2 is in the initial state g1.

2. After reading even number of letters a K2 with probability 2
3 is in the state

g1 and with probability 1
3 is in the state g2.

3. After reading odd number of letters a K2 with probability 2
3 is in the state

g4 and with probability 1
3 is in the state g3.



4. If after reading an odd number of the letter a K2 receives the letter b or
right end-marker then it rejects input with probability at least 2

3 (from the
state g4 by reading b or right end-marker K2 goes to rejecting state)

5. If after reading even number of letters a K2 receives right end-marker then
it accepts the input with probability 2

3

6. If after reading even number of letters a K2 receives letter b then with
probability 1

3 K2 passes to accepting state, with probability 1
3 K2 passes to

rejecting state, and probability 1
3 K2 passes to the non-final state g2

7. By reading the letter a automaton K2 passes from g2 to g3 or back. By
reading the letter b automaton K2 passes from g2 to g2 and from g3 to g3,
so receiving right end-marker in the state g3 the input is accepted with total
probability 2

3 and receiving right end-marker in the state g2 the input is
rejected with total probability 2

3 .
This shows that K2 accepts the language L2 with probability 2

3 . Similarly
we construct K3 that accepts L3 with probability 2

3 . Thus we have shown
that there are two languages L2 and L3 which are recognizable by DH-PRA
with probability 2

3 , but the union of them L1 = L2 ∪ L3 is not recognizable
by DH-PRA.

As L2

⋂

L3 = ∅ then also L1 = L2△L3. So the class of languages recognizable by
DH-PRA is not closed under symmetric complement. As this class is closed under
complement and not closed under symmetric complement, it easily follows that
the class of languages recognizable by DH-PRA is not closed under any binary
boolean operation where both arguments are significant.

5 Conclusion

In this paper we continued the research of probabilistic reversible automata
(PRA) that were introduced by M. Golovkins and M. Kravtsev in [GK 02]. The
first type of PRA - automata with classical acceptance (C-PRA) was completely
described in [GK 02] and [ABG 04]. In those papers, it was shown a general
class of regular languages, not recognizable by C-PRA, and it was proved that
all the other regular languages are recognizable by C-PRA. In this paper we ini-
tiated similar research for another type of PRA, i.e., DH-PRA merely defined in
[GK 02], that behave more the way measure many quantum automata [KW 97]
do, as they halt when entering accepting and rejecting states.

We can see that although DH-PRA can recognize some languages not recog-
nizable by C-PRA the ”forbidden constructions” for both of them are very sim-
ilar. At the same time we see that forbidden constructions for DH-PRA are ac-
tually identical to some of those [AKV 01] known for quantum 1-way automata.
As we know from [ABG 04] the class of languages recognizable by C-PRA and
QFA-C is all the regular languages except the forbidden constructions exposed
in [GK 02]. As languages recognizable by C-PRA are also recognizable by DH-
PRA, there is one open problem which still remains: whether the set of languages
that are of Type 2 and not of Type 3 is recognizable by DH-PRA. The same



holds for the MM-QFA (by results of [AKV 01] and [ABG 04]). This fact and
similar closure properties give us an opportunity to speculate that possibly DH-
PRA and MM-QFA actually recognize the same class of languages, or, which
is even more credible, that DH-PRA is at least as powerful as 1-way quantum
automata.
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A Appendix

In the following definitions computation step corresponds to reading a single
input character.

A.1 Definition of acceptance

Definition A.1. “Decide-and-halt” acceptance. Consider an automaton with
the set of configurations partitioned into non-halting configurations and halting
configurations, where halting configurations are further classified as accepting
configurations and rejecting configurations. We say that an automaton accepts
(rejects) an input in a decide-and-halt manner, if the following conditions hold:

– the computation is halted as soon as the automaton enters a halting config-
uration;

– if the automaton enters an accepting configuration, the input is accepted;
– if the automaton enters a rejecting configuration, the input is rejected.

We refer to the decide-and-halt automata as DH-automata. In case of real-time
automata, we may use the following definition.

Definition A.2. Classical acceptance. Consider an automaton with the set of
configurations partitioned into accepting configurations and rejecting configura-
tions. We say that an automaton accepts (rejects) an input classically, if the
following conditions hold:

– the computation is halted as soon as the number of computation steps is equal
to the length of input;

– if the automaton has entered an accepting configuration when halted, the
input is accepted;

– if the automaton has entered a rejecting configuration when halted, the input
is rejected.

We refer to the classical acceptance automata as classical automata or C-automata.
Having defined word acceptance, we define language recognition in an equiv-

alent way as in [R 63].
By px,A we denote the probability that an input x is accepted by an automa-

ton A.
Furthermore, we denote PL = {px,A | x ∈ L}, PL = {px,A | x /∈ L}, p1 =

sup PL, p2 = inf PL.

Definition A.3. We say that an automaton A recognizes a language L with
interval (p1, p2), if p1 ≤ p2 and PL ∩ PL = ∅.

Definition A.4. We say that an automaton A recognizes a language L with
bounded error and interval (p1, p2), if p1 < p2.

We consider only bounded error language recognition.



A.2 Probabilistic reversible automaton

Definition A.5. A probabilistic automaton is called reversible if its evolution
is described by a doubly stochastic matrix, using canonical basis.

Definition A.6. 1-way probabilistic reversible automaton (PRA)
A = (Q, Σ, q0, δ) is specified by a finite set of states Q, a finite input alphabet
Σ, an initial state q0 ∈ Q, and a transition function

δ : Q × Γ × Q −→ IR[0,1],

where Γ = Σ ∪ {$, #} is the input tape alphabet of A and $, # are end-markers
not in Σ. Furthermore, transition function satisfies the following requirements:

∀(q1, σ1) ∈ Q × Γ
∑

q∈Q

δ(q1, σ1, q) = 1 (1)

∀(q1, σ1) ∈ Q × Γ
∑

q∈Q

δ(q, σ1, q1) = 1 (2)

For every input symbol σ ∈ Γ , the transition function may be determined
by a |Q| × |Q| matrix Vσ, where (Vσ)i,j = δ(qj , σ, qi).

Lemma A.7. The probabilistic automaton is reversible iff all matrices Vσ are
doubly stochastic.

Proof. Trivial.

A.3 Markov chains

We recall definitions and theorems from the theory of finite Markov chains.

Definition A.8. A state qj is accessible from qi (denoted qi → qj) if there is a
positive probability to get from qi to qj in 1 or more steps.

Note that some authors consider zero steps are valid for this definition, that
means qi → qi for any i.

Definition A.9. States qi and qj communicate (denoted qi ↔ qj) if qi → qj

and qj → qi.

For accessibility or communication in one step we will put the corresponding

matrix above the symbol. Example: qi
A

−→ qj means there is a positive probabil-
ity to get from qi to qj by performing transformation A. Or the same, Aj,i > 0.

Definition A.10. A state q is called recurrent if ∀i q → qi ⇒ qi → q. Otherwise
the state is called transient.

There are several different definitions for transient states proven to be equiv-
alent to the above, important for us is



Definition A.11. A state qi is called transient iff
∑

n→∞

(An)i,i < ∞.

Definition A.12. A state q is called absorbing if there is a zero probability of
exiting from this state.

Definition A.13. A Markov chain without transient states is called irreducible
if for all qi, qj qi ↔ qj. Otherwise the chain without transient states is called
reducible.

Definition A.14. The period of a recurrent state qi ∈ Q of a Markov chain
with a matrix A is defined as d(qi) = gcd{n > 0 | (An)i,i > 0}.

Definition A.15. A recurrent state qi is called aperiodic if d(qi) = 1. Otherwise
the recurrent state is called periodic.

Definition A.16. A Markov chain without transient states is called aperiodic
if all of its states are aperiodic. Otherwise the chain without transient states is
called periodic.

Definition A.17. Markov chain is called absorbing iff it contains at least one
absorbing state, and for any non-absorbing state qi there is an absorbing state
that is accessible from qi. Thus the states of absorbing Markov Chain can be
numbered so that transition matrix A has a form

(

A O
B I

)

,

where I - unit matrix, O - all zero matrix.

Definition A.18. A probability distribution X of a Markov chain with a matrix
A is called stationary, if AX = X.

We recall the following theorem from the theory of finite Markov chains:

Theorem A.19. If a Markov chain with a matrix A is irreducible and aperiodic,
then
a) it has a unique stationary distribution Z;
b) lim

n→∞

An = (Z, . . . , Z);

c) ∀X lim
n→∞

AnX = Z.

We recall the following fact regarding transient states of a Markov chain:

Theorem A.20. Given a Markov chain with a matrix A and a transient state
qi, for matrix An, for any j, if n → ∞, an

ij → 0.



A.4 Doubly Stochastic Markov chain

We recall the following definitions and facts from [GK 02].

Definition A.21. A Markov chain is called doubly stochastic, if its transition
matrix is a doubly stochastic matrix.

Corollary A.22. If a doubly stochastic Markov chain with an m×m matrix A
is irreducible and aperiodic,

a) lim
n→∞

An =





1
m

. . . 1
m

. . . . . . . . .
1
m

. . . 1
m



;

b) ∀X lim
n→∞

AnX =





1
m

. . .
1
m



.

Proof. By Theorem A.19.

Lemma A.23. If M is a doubly stochastic Markov chain with a matrix A, then
∀q q → q.

Corollary A.24. Suppose A is a doubly stochastic matrix. Then exists k > 0,
such that ∀i (Ak)i,i > 0.

Lemma A.25. If M is a doubly stochastic Markov chain with a matrix A, then
∀qa, qb Ab,a > 0 ⇒ qb → qa.

A.5 Working lemmas for Doubly stochastic Markov chains

These simple facts are used in the proofs of the paper.

Lemma A.26. Suppose A is a doubly stochastic matrix and k > 0, such that
∀i (Ak)i,i > 0. Then there exist m > 0 such that for all pairs qi, qj , if qi → qj

for Ak, then qi → qj in one step for Akm.

Proof. Assume qi → qj in x steps. Since by Lemma A.24, if qi → qi in one step,
then qi → qj in x+1 step as well. For any pair of states qi, qj , where qi → qj for
Ak, qj is accessible in less than n steps, where n is a number of rows in A (i.e.,
the number of elements in the underlying Markov chain). Thus m = n gives the
necessary constant.

Lemma A.27. Accessibility is a class property for states of doubly stochastic
Markov chains.

Proof. – reflexive - ∀i qi → qi by Lemma A.23;
– symmetric - If qi → qj then qj → qi by Lemma A.25;
– transitive - If qi → qj and qj → qk then qi → qk.



A.6 DH-stochastic matrices

In order to prove Theorem 2.1, we first formulate the following lemma:

Lemma A.28. Let A a k × m matrix such that m < k, where the sum of
elements in any column is one, and the sum of elements in any row is less or
equal than one. Then exists a k × (k − m) matrix B, such that (A B) is doubly
stochastic.

Proof. Let si the sum of elements of the i-th row of A. Let B =





1−s1

k−m
. . . 1−s1

k−m

. . . . . . . . .
1−sk

k−m
. . . 1−sk

k−m



.

Now the sum of elements in any column of B is
k−

kP
i=1

si

k−m
= 1. Hence (A B) is

stochastic. The sum of the i-th row of (A B) is si + (k − m) 1−si

k−m
= 1. Hence

(A B) is doubly stochastic. ⊓⊔

Proof of Theorem 2.1. To prove the theorem, it is sufficient to show that

any matrix of the form





D 0 0
0 A 0
0 B I



, specified in the theorem, can be obtained

from a doubly stochastic matrix. This indeed holds, since by Lemma A.28, the

matrix





D 0
0 A
0 B



 can be complemented with new columns to obtain a doubly

stochastic matrix. ⊓⊔

Proof of Lemma 2.2. Follows from matrix manipulation. To show that for
the states from which the halting states are not accessible with σtσs the matrix
is doubly stochastic, observe that no sum in the row can exceed one and also
cannot be less than one as otherwise summing by rows and columns would give
different results. ⊓⊔

Proof of Lemma 2.3. Follows if taken K such that AK
i,i > 0 for all recur-

rent states (possible by Lemma A.23). Rows filled entirely by zeros correspond
to transient states. As non-halting recurrent states in AK form doubly stochastic
matrix then they can be split into equivalence classes with respect to communica-
tion property (see Lemma A.27) and each block diagonal submatrix corresponds
to states in one equivalence classes. The values in these submatrixes are deter-
mined by Corollary A.22. ⊓⊔

A.7 Proof of Theorem 3.6

Proof. Assume from the contrary, that A is a DH-PRA automaton which recog-
nizes a language L ⊂ Σ∗ of Type 1.

Since L is of Type 1, it is recognized by a deterministic automaton D which
has two states q1, q2 such that q1 6= q2, q1x = q2, q2y = q1, q2x = q2 where



x, y ∈ Σ∗. Furthermore, exists ω ∈ Σ∗ such that q0ω = q1, where q0 is an
initial state of D, and exists a word z ∈ Σ∗, such that q1z = qacc if and only if
q2z = qrej , where qacc is an accepting state and qrej is a rejecting state of D.

The transition function of the automaton A is determined by DH-stochastic
matrices Vσ1

, . . . , Vσn
. The words x = σi1 . . . σik

and y = σj1 . . . σjs
, the tran-

sitions induced by words x and y are determined by DH-stochastic matrices
X = Vσik

. . . Vσi1
and Y = Vσjs

. . . Vσj1
. Similarly, the transitions induced by

word ω is determined by DH-stochastic matrix W .

Let us select 2 words x1 and x2 of the form x1 = ω(xK(xy)K)m and x2 =
ω(xK(xy)K)mxK .

We will show that for any ε we can select K and m such that |px1
− px2

| < ε.
Then as x1z ∈ L and x2z /∈ L we get a contradiction.

We take K to be

– K > n, where n is a number of states of the given DH-PRA A;

– K is a multiple of K1 ∗n such that (XK1)i,i > 0 for all non-halting states of
A recurrent in respect to X;

– K is a multiple of K2 ∗n such that ((Y X)K2)i,i > 0 for all non halting states
of A recurrent in respect to YX.

We can select such K1 and K2 by Corollary A.24. We should note however that
recurrent states in X and YX in general could be different! Given K > n we get
that any transient state for XK is also transient state for (Y X)KXK . As for
any transient state q of any DH stochastic matrix A some absorbing state will

be accessible by AK K ≥ n in 1 step, and if q′ is absorbing state that q
xK

−→ q′,

and q′
(xy)K

−→ q′.

But there could be some states recurrent for XK that are transient states
for (Y X)KXK . However if qi and qj are states recurrent for XK and qi ↔ qj

for XK and qi is transient for (Y X)KXK then qj is transient for (Y X)KXK as
well.

qi transient in respect to (Y X)KXK means there is some sequence of letters
starting with xK that leads to the absorbing state from qi but not from qj . But

that is contradiction as for any q′ qi
XK

−→ q′ will also hold qj
XK

−→ q′ as we selected
K to satisfy conditions of Lemma A.26.

So for lim
m→∞

we get ((Y X)KXK)m converges to some matrix J of the form

described in Lemma 2.3. XKJ = J follows from matrix multiplication rules: XK

in respect to non-halting recurrent states of ((Y X)KXK) is a block diagonal
matrix of the same block ordering and size (although it is possible that some
of blocks consist of smaller blocks), but for transient and halting states there is
the same position and size of identity matrix and all the rows corresponding to
transient states in J are 0 rows (see also Figure 7).

That means that after reading x1 = ω(xK(xy)K)m and x2 = ω(xK(xy)K)mxK

we will get arbitrary close probability distributions that gives us required con-
tradiction. Or formally,



Fig. 7. The structure of the matrices X
K and lim

m→∞

((Y X)K
X

K)m

lim
m→∞

ZXK((Y X)KXK)mW = lim
m→∞

Z((Y X)KXK)mW = ZJW . So

∀ε > 0 ∃m
∥

∥

∥

(

Z(XK((Y X)KXK)mW − Z((Y X)KXK)mW
)

Q0

∥

∥

∥ < ε. (3)

As we can select z such that ω(xk(xy)k)mxKz ∈ L and ω(xk(xy)k))mz /∈ L, that
requires existence of ε > 0, such that

∀m
∥

∥

∥

(

ZXK((Y X)KXK)mW − Z((Y X)KXK)mW
)

Q0

∥

∥

∥ > ε. (4)

⊓⊔



Nondeterministic quantum query with minimal

complexity

Lelde Lāce⋆
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Abstract. We study nondeterministic quantum algorithms [4] for Boolean
functions f. Such algorithms have positive acceptance probability on in-
put x iff f(x) = 1. We construct some nondeterministic quantum query
algorithms with complexity 1 for Boolean functions with 2, 4 and 2n
variables and study some properties of these functions.

1 INTRODUCTION

Recently it has become clear that a quantum computer could, in principle, solve
certain problems faster than a conventional computer. A quantum computer is
a device, which takes full advantage of quantum mechanical superposition and
interference.

Boolean decision trees model is the most simple model to compute Boolean
functions. In this model the primitive operation made by an algorithm is evalu-
ating an input Boolean variable. The cost of a (deterministic) algorithm is the
number of variables it evaluates on a worst case input. It is easy to find the
deterministic complexity of all explicit Boolean functions (for most functions it
is equal to the number of variables).

The black-box model of computation arises when one is given a black-box
containing an N -tuple of Boolean variables X = (x0, x1, ..., xN−1.). The box is
equipped to output xi on input i. We wish to determine some property of X ,
accessing the xi only through the black box. Such a black-box access is called
a query. A property of X is any Boolean function that depends on X , i.e. a
property is function f : {0, 1}N → {0, 1}. We want to compute such properties
using as few queries as possible.

In classical computing, nondeterministic computation has a prominent place
in many different models and for many good reasons. For example, in Turing
machine complexity, the study of nondeterminism leads naturally to the class of
NP-complete problems, which contains some of the most important and practi-
cally relevant computer science problems- as well as some of the hardest theo-
retical open questions.

In [4] R. de Wolf define nondeterministic quantum algorithm: a nondetermin-
istic quantum algorithm for f is defined to be a quantum algorithm that outputs
1 with positive probability if f(x) = 1 and that always outputs 0 if f(x) = 0.

⋆ Research supported by The European Social Fund (ESF)



We construct some nondeterministic quantum query algorithms with com-
plexity 1 for Boolean functions with 2, 4 and 2n variables and study some prop-
erties of these functions.

2 DEFINITIONS

2.1 Quantum computing

We introduce the basic model of quantum computing. For more details, see
textbooks by Gruska [2] and Nielsen and Chuang [3].

Quantum states: We consider finite dimensional quantum systems. An n-
dimensional pure state is a vector |ψ〉 ∈ Cn of norm 1. Let |1〉, |2〉, . . . , |n − 1〉
be an orthonormal basis for Cn. Then, any state can be expressed as |ψ〉 =
∑n−1

i=0
ai|i〉 for some a0 ∈ C, a1 ∈ C, . . . , an−1 ∈ C. Since the norm of |ψ〉 is 1,

|ai|
2 = 1. We call the states |1〉, |2〉, . . . , |n − 1〉 basic states. Any state of the

form
∑n−1

i=0
ai|i〉 is called a superposition of |1〉, |2〉, . . . , |n− 1〉. The coefficient

ai is called amplitude of |i〉.
A quantum system can undergo two basic operations: an unitary evolution

and a measurement.
Unitary evolution: A unitary transformation U is a linear transformation

on Ck that preserves the l2 norm (i.e., maps vectors of unit norm to vectors of
unit norm). If, before applying U , the system was in a state |ψ〉, then the state
after the transformation is U |ψ〉.

Measurements: In this survey, we just use the simplest case of quantum
measurement. It is the full measurement in the computation basis. Perform-
ing this measurement on a state |ψ〉 = a1|0〉 + . . . ak|k〉 gives the outcome i
with probability |ai|

2. The measurement changes the state of the system to |i〉.
Notice that the measurement destroys the original state |ψ〉 and repeating the
measurement gives the same i with probability 1 (because the state after the
first measurement is |i〉. More general classes of measurements are general von
Neumann and POVM measurements [3].

2.2 Query model

In the query model, the input x1, . . . , xN is contained in a black box and can
be accessed by queries to the black box. In each query, we give i to the black
box and the black box outputs xi. The goal is to solve the problem with the
minimum number of queries.

-

-

|a〉

|i〉

-

-

|a+ xi〉

|i〉
0

x1

1

x2

. . . 0

xN

Fig. 1 Quantum black box.



There are two ways how to define the query box in the quantum model.
The first is the extension of the classical query (Figure 1). It has two inputs: i,
consisting of [logN] bits and b consisting of 1 bit. If the input to the query box
is a basic state |i〉|b〉, the output is |i〉|b ⊕ xi〉. If the input is a superposition∑

i,b ai,b|i〉|b〉, the output is
∑

i,b ai,b|i〉|b⊕xi〉. Notice that this definition applies
both to case when xi are binary and to the case when they are k-valued. In the
k-valued case, we just make b to consist of ⌈log2k⌉ bits and take b ⊕ xi to be
bitwise XOR of b and xi.

In the second form of quantum query (which only applies to problems with
{0, 1}-valued xi), the black box has just one input i. If the input is a state∑

i ai|i〉, the output is
∑

i(−1)xiai|i〉 . While this form is less intuitive, it is
very convenient for the use in quantum algorithms, including Grover’s search
algorithm [1]. A query of second type can be simulated by a query of first type
[1].

A quantum query algorithm with T queries is just a sequence of unitary
transformations

U0 → O → U1 → O → . . .→ UT−1 → O → UT

on some finite- dimensional space Ck. U0, U1, . . . , UT can be any unitary trans-
formations that do not depend on the bits x1, . . . , xN inside the black box. O are
query transformations that consist of applying the query box to the first logN+1
bits of the state. That is, we represent basic states of Ck as |i, b, z〉. Then, O

maps |i, b, z〉 to |i, b ⊕ xi, z〉. We use Ox to denote the query transformation
corresponding to an input x = (x1, . . . xN ).

The computation starts with state |0〉. Then, we apply U0, Ox, . . . , Ox, UT

and measure the final state. The result of the computation is the rightmost bit
of the state obtained by the measurement (or several bits if we are considering
a problem where the answer has more than 2 values).

The quantum algorithm computes a function f(x1, . . . , xN ) if, for every x =
(x1, . . . , xN ) for which f is defined, the probability that the rightmost bit of
UTOxUT−1 . . . OxU0|0〉 equals f(x1, . . . , xN ) is at least 1 − ǫ < 1

2
.

3 MAIN RESULTS

3.1 Boolean functions with 2 variables

We have only four nontrivial Boolean functions with 2 variables.- OR, AND,
PARITY and ¬ PARITY. There is well known exact algorithm for Boolean
function PARITY in figure 2. Each exact quantum algorithm satisfies conditions
of nondeterministic quantum. From this follows that we have nondeterministic
quantum algorithm computing PARITY with one query. Function ¬ PARITY
we can compute by using the same algorithm we only need to switch function
output values.
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Fig. 2 Algorithm for function PARTY .

If we look at OR function - we do not have exact quantum algorithm for OR
function with one query. But we know that NQ(f) = ndeg(f). For example,
p(x1, x2) = x1 − x2 is a degree-1 nondeterministic polynomial for PARITY with
two variables: it assumes value 0 on x-weights 0 and 2 and +/-1 on weight 1. But
p(x1, x2) = x1+x2 is a degree-1 nondeterministic polynomial for OR : it assumes
value 0 on x-weights 0 and 1 and 2 on weight 1 and 2. There is nondeterministic
quantum algorithm for OR in figure 3 . Output I has value 1 other outputs -0.
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Fig. 3 Algorithm for function OR .

It is easy to see that nondeterministic query algorithms are not symmetric.
If function value is 0 we have stronger condition compared to function value 1.
We suppose that function has more 0 values, then nondeterministic complexity
of this function is bigger. p(x1, x2) = x1 ∗ x2 is a degree-2 nondeterministic
polynomial for AND. In this case ndeg(f) = def(f).

3.2 Boolean functions with 4 variables

We can use previous ideas (PARITY and ¬ PARITY) to make some nondeter-
ministic quantum algorithms with four variables.

Theorem 1. If there are nondeterministic quantum query algorithms for func-

tions F1(x1, ...xk) and F2(x1, ...xm) with complexities q1 and q2 then nondeter-

ministic quantum query algorithm exists for function F (x1, ...xk+m) = F1(x1, ...

xk) OR F2(xk+1, ...xk+m) with complexity q = max(q1, q2).



Proof. There is nondeterministic quantum query algorithm for function F shown
in figure 4. This algorithm gives value of function 0 if F1(x1, ...xk) and F2(x1, ...

xm) have values 0. If one of values or both are 1 then function value is 1. In both
algorithms A1 and A2 values of output states remain.

HHHj
����
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Fig. 4 Algorithm for function F .

If we use nondeterministic quantum query algorithms for functions PARITY
and ¬PARITY we can make 6 different functions with four variables. Zero values
of those functions are shown in table 1.

Table 1. Zero values of functions D1, . . . D6

D1 D2 D3 D4 D5 D6

x1x2x3x4 x1x2x3x4 x1x2x3x4 x1x2x3x4 x1x2x3x4 x1x2x3x4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1
1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0

The corresponding nondeterministic polynomials from these functions:

D1 x1 − x2 + 2x3 − 2x4

D2 x1 + 2x2 − 2x3 − x4

D3 x1 + 2x2 − x3 − 2x4

D4 2x1 − 2x2 + x3 + x4 − 1
D5 x1 + x2 + 2x3 − 2x4 − 1
D6 x1 + x2 + 2x3 + 2x4 − 3

It is easy to see that polynomials for functions D1, D2 and D3 are possible
to obtain one from another by changing variables. Functions D4 and D5 have
the same property. Function D2 has value 0 if input vector is symmetric.

D1(x1, x2, x3, x4) = D2(x2, x3, x4, x1) = D3(x1, x3, x2, x4)
D4(x1, x2, x3, x4) = D5(x3, x4, x1, x2)

For all i Di(x1, x2, x3, x4) = Di(1− x1, 1− x2, 1− x3, 1− x4). This property
is deduced from the fact that all functions are based on functions PARITY



and ¬PARITY . In figure 5 is shown another algorithm which computes some
Boolean function. Values of functions depend on values of output states.
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Fig. 5 Quantum query algorithm .

Each output state of this algorithm can recognize two input vectors (x1x2x3

x4) and (1−x11−x21−x31−x4). For example output state I recognizes ( 0 0 0 0)
and ( 1 1 1 1) but III - ( 0 0 1 1) and ( 1 1 0 0). States II, III and IV are mutually
symmetric they can be obtained one from another by changing variables. If we
choose two output states then we can recognize four input vectors. Maximum
number of output states with the same value is three. If we put one value to all
output states we obtain constant function.

There are zero values of functions E1, . . . E6 shown in table 2. Nondetermin-
istic quantum algorithms of these functions are obtained by assigning values of
zero to two output states of previous algorithm .

Table 2. Zero values of functions E1, . . . E6

E1(I,II) E2(I,III) E3(I,IV) E4(II,III) E5(II,IV) E6(II,IV)

x1x2x3x4 x1x2x3x4 x1x2x3x4 x1x2x3x4 x1x2x3x4 x1x2x3x4

1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0
0 1 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0
1 0 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1

It is easy to see that E1 = D3, E2 = D1, E3 = D2 and E5 = D6 and
E4(x1, x2, x3, x4) = E5(x1, x4, x2, x3) = E6(x1, x2, x4, x3).

The corresponding degree-1 nondeterministic polynomials from these func-
tions are:

E4 x1 + 2x2 + 2x3 + x4 − 3
E5 x1 + x2 + 2x3 + 2x4 − 3
E6 x1 + 2x2 + x3 + 2x4 − 3



Zero values of functions F1, . . . F4 are shown in table 3. Nondeterministic quan-
tum algorithms of these functions are obtained by assigning values of zero to
three output states of previous algorithm.

Table 3. Zero values of functions F1, . . . F4

F1(I,I,IIII) F2(I,II,IV) F3(I,II,IV) F4(II,III,IV)

x1x2x3x4 x1x2x3x4 x1x2x3x4 x1x2x3x4

1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0
0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1

F1(x1, x2, x3, x4) = F2(x1, x4, x3, x2) = F3(x1, x2, x4, x3).
The corresponding degree-1 nondeterministic polynomials from these func-

tions are:

F1 x1 − x2 − x3 + x4

F2 x1 + x2 − x3 − x4

F3 x1 − x2 + x3 − x4

F4 x1 + x2 + x3 + x4 − 2

Theorem 2. Nondeterministic quantum query algorithm with one query is not

able to recognize nonconstant function with F (x) = F (y) = 0 and ||x| − |y|| = 1.

Proof. If we can recognize function with nondeterministic one query algorithm
then nondeterministic degree-1 polynomial exists for this function. Assume that
x =(0,0,0,0) and y= (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1). Polynomial of
function can be written as c0 + c1x1 + c2x2 + c3x3 + c4x4. From F(0,0,0,0)=0
follows c0 = 0. From F(y)=0 follows c1 = 1, c2 = 0, c3 = 0 and c4 = 0. We obtain
constant function.

All previous examples have maximum six zero input vectors. Question arises
if this is a maximum possible value. From theorem 2 follows that two potential
groups of input values are:

I.(0000) (1100) (1010) (1001) (0110) (0101) (0011) (1111)
II. (1000) (0100) (0010) (0001) (1110) (1101) (1011) (0111)
Function polynomial is c0 + c1x1 + c2x2 + c3x3 + c4x4.
I. c0 = 0 from first input vector. c1 + c2 = 0 (2), c1 + c3 = 0 (3), c1 + c4 = 0

(4), c2 + c3 = 0 (5), c2 + c4 = 0 (6), c3 + c4 = 0 (7), c1 + c2 + c3 + c4 = 0 (8)



From 2,3,4 follows c2 = c3 = c4 = −c1
From 5 and 6 follows c2 = c3 = c4 = 0 and c1 = 0
And we get constant function.

II. c0+c1 = 0 (1) c0+c2 = 0 (2) c0+c3 = 0 (3) c0+c4 = 0 (4) c0+c1+c2+c3 =
0 (5) c0 + c1 + c2 + c4 = 0 (6) c0 + c1 + c3 + c4 = 0 (7) c0 + c2 + c3 + c4 = 0 (8)
From 1,2,3, and 4 follows c1 = c2 = c3 = c4 = −c0
5 and 6 are correct only if c0 = c1 = c2 = c3 = c4 = 0.
We again get constant function.

3.3 Boolean functions with 2n variables

In this paragraph we show some ideas how to make nondeterministic quantum
query algorithm with one query.

If we use algorithms of PARITY un ¬ PARITY functions we can get 2n

different nondeterministic quantum query algorithms. Each of these algorithms
have 22n input vectors but only 2n have function value 0.
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Fig. 6 Quantum query algorithm with 2n variables .

One of these algorithms gives zero values on input vectors ((00)*(11)*)*.
We can get this algorithm (Figure 6) if we put output 0 to all first outputs.
Nondeterministic polynomial is

∑n

i=1
i(x2i−1 − x2i)

We can make nondeterministic query algorithm which gives value zero if input
vector is symmetric (Figure 7). Nondeterministic polynomial of this function is∑n

i=1
i(xi − x2n−i+1). We put zero outputs to all first outputs.
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Fig. 7 Quantum query algorithm for symmetric function .

If we have some nondeterministic algorithms with k1, k2 < 2n variables and
k1 +k2 = 2n then we can make nondeterministic quantum query algorithm with
2n variables by using theorem T1. It is possible to merge not only two algorithms
but more than two.

Simplest degree-1 nondeterministic polynomial is x1 + x2 + x3.... If c0 = 0
then function value zero is only on input (000) and this is function OR. We can
make nondeterministic quantum query algorithm which computes function OR
with 2n variables similar with two variables OR algorithm (Section 3.1).

If we choose c0 = −n (−n+
∑2n

i=1
xi) then we obtain function P which give

zero value if input vector have n 1’s and n 0’s (|x| = n). We have Cn
2n such input

vectors.

Theorem 3. There is nondeterministic quantum query algorithm with one query

for function P .

Proof. Nondeterministic quantum query algorithm is shown in figure 8. If func-
tion value is 0 then algorithm has n positive and n negative equivalent amplitudes
after query. It is easy to see that in this case we can obtain in output I amplitude
0. Only output I has value 1, other outputs have values 0. Algorithm gives an
answer 0 with probability 1 if function value is 0. If function value is 1 then
algorithm have n+k positive and n−k negative amplitudes (k 6= 0) after query.
In this case output I always has nonzero amplitude.
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Fig. 8 Quantum query algorithm with 2n variables .

Theorem 4. There is a nondeterministic quantum query algorithm with one

query for function with 2n variables and nondeterministic polynomial −k +∑2n

i=1
xi , 0 ≤ k ≤ 2n.

Proof. If c0 = −k then given function has value 0 if input vector has k 1’s
(|x| = k). We add to algorithm 2n states and after then we use Hadamard matrix
H4n. We make initial attribute distribution so that added states simulate input
vector with k 0’s and 2n-k 1’s. Constructed algorithm has to give function value
0 if |y| = 2n and this problem reduces to recognizing function P (Theorem 3)

Theorem 5. There is a nondeterministic quantum query algorithm with one

query for function with nondeterministic polynomial
∑2n

i=1
x2i−1 − x2i

Proof. We make this algorithm the same as in Theorem 3 except we put output
value 1 to state II and values 0 to other states. Function gives value 0 only if
input vector have k 1’s in even positions and k 1’s in odd positions. Second row
in Hadamard matrix H2n consists of one by one 1

√

2n
and − 1

√

2n
. If function

value is 0 then algorithm has amplitude 0 in II state. In other cases in state II
algorithm has nonzero amplitude.

If we analyze all other possible degree-1 polynomials we can see that they
are much more than number of polynomials considered. But we can not make
nondeterministic quantum query algorithms for most of them so elegant.
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Abstract. Quantum algorithms can be analyzed in a query model to
compute Boolean functions where input is given in a black box and the
aim is to compute function value for arbitrary input using as few queries
as possible. We concentrate on quantum query algorithm designing tasks
in this paper. The main aim of the research was to find new efficient algo-
rithms and develop general algorithm designing techniques. We present
several exact quantum query algorithms for certain problems that are
better than classical counterparts. Next, we introduce algorithm trans-
formation methods that allow significant enlarging of exactly computable
functions sets. Finally, we propose quantum algorithm designing meth-
ods. Given algorithms for the set of sub-functions, our methods use them
to design a more complex one, based on algorithms described before.
Methods are applicable for input algorithms with specific properties and
preserve acceptable error probability and number of queries.

Kewords. Quantum computing, quantum query algorithms, complexity
theory, Boolean functions, quantum algorithm design.

1 Introduction

Let f(x1, x2, . . . , xn) : {0, 1}n → {0, 1} be a Boolean function. We have studied
the query model, where a black box contains the input (x1, x2, . . . , xn) and can
be accessed by questioning xi values. The goal here is to compute the value of
the function. The complexity of a query algorithm is measured by number of
questions it asks. The classical version of this model is known as decision trees

[1]. Quantum query algorithms can solve certain problems faster than classical
algorithms. The best-known exact quantum algorithm was designed for PARITY
function with n/2 questions vs. n questions required by classical algorithm [2,
3].

The problem of quantum algorithm construction is not that easy. Although
there is a large amount of lower and upper bound estimations of quantum al-
gorithm complexity [2, 6, 7], examples of non-trivial and original quantum query

⋆ Research supported by the European Social Fund.



algorithms are very few. Moreover, there is no special technique described to
build a quantum algorithm for a certain function with complexity defined in
advance.

Boolean functions are widely adopted in real life processes, that is the rea-
son why our capacity to build a quantum algorithm for an arbitrary function
appears to be extremely important. While working on common techniques, we
are trying to collect examples of efficient quantum algorithms to build up a base
for powerful computation using the advantages of the quantum computer.

2 Notation and Definitions

Let f(x1, x2 . . . , xn) : {0, 1}n → {0, 1} be a Boolean function. We use ⊕ to
denote XOR operation (exclusive OR). We use f̄ for the function 1− f . We use
abbreviation QQA for “quantum query algorithm” as well.

2.1 Quantum computing

We apply the basic model of quantum computing. For more details see textbooks
by Gruska [4] and Nielsen and Chuang [5]. An n-dimensional quantum pure state
is a vector |ψ〉 ∈ Cn of norm 1. Let |0〉, |1〉, . . ., |n− 1〉 be an orthonormal basis

for Cn. Then, any state can be expressed as |ψ〉 =
∑n−1

i=0 ai |i〉 for some ai ∈ C.

Since the norm of |ψ〉 is 1, we have
∑n−1

i=0 |ai|2 = 1. States |0〉, |1〉, . . ., |n− 1〉 are

called basic states. Any state of the form
∑n−1

i=0 ai |i〉 is called a superposition of
|0〉, |1〉, . . ., |n− 1〉. The coefficient ai is called an amplitude of |i〉. The state of
a system can be changed using unitary transformations. Unitary transformation
U is a linear transformation on C

n that maps vector of unit norm to vectors of
unit norm.

There is the simplest case of quantum measurement used in our model. It
is the full measurement in the computation basis. Performing this measurement
on the state |ψ〉 = a1 |0〉+ . . .+ ak |k〉 gives the outcome i with probability |ai|2.
The measurement changes the state of the system to |i〉 and destroys the original
state |ψ〉.

2.2 Query model

Query model is probably the simplest model for computing Boolean functions. In
this model, a black box contains the input (x1, x2, . . . , xn) and can be accessed
by questioning xi values. Query algorithm must be able to determine the value of
a function correctly for arbitrary input contained in a black box. The complexity
of the algorithm is measured by the number of queries to the black box which it
uses. The classical version of this model is known as decision trees. For details,
see the survey by Buhrman and de Wolf [1].

We consider computing Boolean functions in the quantum query model. For
more details, see the survey by Ambainis [6, 8] and textbooks by Gruska [4] and



de Wolf [2]. A quantum computation with T queries is a sequence of unitary
transformations:

U0 → Q0 → U1 → Q1 → . . .→ UT−1 → QT−1 → Ut,

where Ui’s can be arbitrary unitary transformations that do not depend on the
input bits x1, x2, . . ., xn; Qi’s are query transformations. Computation starts in
the state |0〉. Then we apply U0, Q0, . . ., QT−1, UT and measure the final state.

We use the following definition of query transformation: if input is a state
|ψ〉 =

∑

i ai |i〉, then the output is |φ〉 =
∑

i(−1)xkai |i〉, where we can arbitrarily
choose a variable assignment xk for each amplitude ai.

Each amplitude of the final quantum state corresponds to the algorithm
output. We assign a value of a function to each output. The result of running
algorithm on input X is j. Its probability equals the sum of squares of all the
amplitudes, which corresponds to outputs with value j.

A very convenient way of quantum query algorithm representation is graph-
ical picture and we will use this style describing designed quantum query algo-
rithms.

2.3 Query Algorithm Complexity

The complexity of a query algorithm is based on the number of questions it uses
to determine the value of a function on worst-case input.

The deterministic complexity of a function f , denoted by D(f), is the max-
imum number of questions that must be asked on any input by a deterministic
algorithm for f [1].

The sensitivity of f on input (x1, x2, . . . , xn) is the number of variables xi

with the following property: f(x1, . . . , xi, . . . , xn) 6= f(x1, . . . , 1 − xi, . . . , xn).
The sensitivity of f is the maximum sensitivity of all possible inputs. It has
been proved that D(f) ≥ s(f) [1].

A quantum query algorithm computes f exactly if the output equals f(x)
with a probability 1, for all x{0, 1}n. Complexity is denoted by QE(f) [1].

A quantum query algorithm computes f with bounded-error if the output
equals f(x) with probability p ≥ 1/2, for all x ∈ {0, 1}n. Complexity is denoted
by QP (f) [1].

3 Exact Quantum Query Algorithms for Certain

Problems

In this section we present exact QQAs for several certain problems. We would
like to emphasize that the best known separation between classical deterministic
and exact quantum algorithm complexity is n vs. ⌈n/2⌉ for PARITY function
[2, 3]. In our algorithms we do not exceed this limit and do not show the new
best record, but our algorithms obtain exactly the same complexity gap.



3.1 3-variable function with 2 queries

In this section we present quantum query algorithm for 3-variable Boolean func-
tion that saves one query comparing to the best possible classical deterministic
algorithm.

Problem 3.1. Check if all input variable values are equal.

Possible real life application is, for example, automated voting system, where
statement is automatically approved only if all participants voted for accep-
tance/rejection equally. We provide solution for 3-party voting routine. We re-
duce Problem 3.1 to computing the following Boolean function defined by the
logical formula: EQUALITY3(X) = ¬(x1 ⊕ x2) ∧ ¬(x2 ⊕ x3).

Deterministic complexity: D(EQUALITY3) = 3, by sensitivity on any ac-
cepting input.

Algorithm 1. Exact quantum query algorithm for EQUALITY3 is presented
in Fig. 1. Each horizontal line corresponds to the amplitude of the basic state.
Computation starts with amplitude distribution 〈0 |= (1, 0, 0, 0). Three large
rectangles correspond to the 4 × 4 unitary matrices (U0, U1, U2). Two vertical
layers of circles specify the queried variable order for each query (Q0, Q1). Finally,
four small squares at the end of each horizontal line define the assigned function
value for each output.

Fig. 1. Exact quantum query algorithm for EQUALITY3

We show the computation process for accepting input X = 111:

〈ψ | = (1/2, 1/2, 1/2, 1/2)Q0U1Q1U2 = (−1/2,−1/2,−1/2,−1/2)U1Q1U2

= (−1/2,−1/
√

2, 0,−1/2)Q1U2 = (1/2, 1/
√

2, 0, 1/2)U2 = (1, 0, 0, 0)

⇒ [ACCEPT ]

3.2 4-variable function with 2 queries

In this section we present our solution for the well-known computational problem
of comparing two binary strings.

Problem 3.2. Check if two binary strings are equal.



We present an algorithm for strings of length 2. We reduce Problem 3.2 to
computing the Boolean function of 4 variables. The first two variables represent
the first string, and the second two variables correspond to the second string.
Boolean function can be represented by formula: STRING EQ4(X) = ¬((x1 ⊕
x3) ∨ (x2 ⊕ x4)).

Deterministic complexity: D(STRING EQ4) = 4, by sensitivity on accept-
ing input.

Algorithm 2. Exact quantum query algorithm for STRING EQ4 is presented
in Fig. 2.

Fig. 2. Exact quantum query algorithm for STRING EQ4

3.3 2n-variable functions with n queries

In this section we present a set of exact QQAs, which perform the largest ad-
vantage of quantum query complexity over deterministic one that is known for
today.

Problem 3.3. Let us consider a function T4 of 4 variables defined by a truth-
table:

x1 x2 y1 y2 T4(XY ) x1 x2 y1 y2 T4(XY )
0 0 0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 1 0 1
0 1 0 1 1 1 1 0 0 1
0 1 1 0 1 1 1 1 1 1

otherwise T4(XY ) = 0

Deterministic complexity: D(T4) = 4, by sensitivity on any accepting input.

Algorithm 3. Exact QQA for T4 with 2 queries is presented in Figure 3.

It appears that the idea of this algorithm can be used for a bigger number
of variables. Let us define a function T6 of 6 variables:



Fig. 3. Exact quantum query algorithm for T4

XY T6 XY T6 XY T6 XY T6

000000 1 010010 1 100001 1 110011 1
000101 1 010111 1 100100 1 110110 1
001001 1 011011 1 101000 1 111010 1
001100 1 011110 1 101101 1 111111 1
otherwise T6(XY ) = 0

T6 is computable by algorithm similar to Algorithm 3, which is specified by
following sequence: U0 → Q1Q2Q3 → U1, where Q1 = (α1 = x1, α2 = x2, α2 =
y1, α4 = y2), Q2 = (α1 = x2, α2 = x3, α2 = y2, α4 = y3), Q3 = (α1 = y1, α2 =
y3, α2 = x1, α4 = x3).

It is possible to generalize this idea.

Theorem 3.4. For Boolean function T2n of 2n variables, an exact quantum

query algorithm does exist, that computes this function with n queries.

Proof. The idea of the algorithm remains the same as in the case of T4 and T6, we
use a chain of transformations U0 → Q→ U1, where Q is a sequence of queries.
We visualize Q in the form of a matrix, where i-th query is represented by the
i-th column of matrix Q. Generalizing Q for T2n: use Qeven for even number n,
Qodd for odd n.

Qeven =









x1 . . . xn

2
y1 . . . yn

2

xn

2
+1 . . . xn yn

2
+1 . . . yn

y1 . . . yn

2
x1 . . . xn

2

yn

2
+1 . . . yn xn

2
+1 . . . xn









Qodd =









x1 . . . x⌊n

2
⌋+1 y1 . . . y⌊n

2
⌋

x⌊n

2
⌋+1 . . . xn y⌊n

2
⌋+2 . . . yn

y1 . . . y⌊n

2
⌋+1 x1 . . . x⌊n

2
⌋

y⌊n

2
⌋+1 . . . yn x⌊n

2
⌋+2 . . . xn









The fact is that the exact quantum algorithm computing the function T2n can
be changed to compute T2(n+1) by transformation of query sequence Q. Hence,
we have an unlimited set of exact quantum algorithms computing corresponding
functions T2n with n queries only, while deterministic algorithm can do it with
2n queries.



4 Algorithm Transformation Methods

In this section we introduce quantum query algorithm transformation methods
that can be useful for enlarging a set of exactly computable Boolean functions.
Each method on input receives exact QQA, processes it as defined, and as the
result, a slightly different exact algorithm that computes another function is
obtained.

4.1 Output value assignment inversion

The first method is the simplest one. All we need to do with original algorithm
is to change assigned function value for each output to the opposite.

First Transformation Method - Output value assignment inversion

Input. An arbitrary exact QQA that computes f(X).
Transformation actions.

• For each algorithm output change assigned value of function to opposite.
If original assignment was QM = (α1 ≡ k1, . . . , αm ≡ km),
where ki ∈ {0, 1},
then it is transformed to QM ′ = (α1 ≡ k1, . . . , αm ≡ km),

where ki = 1 − ki.

Output. An exact QQA that computes f(X).

Box 1. Description of the First Transformation Method.

4.2 Output value assignment permutation

Describing the next method we will limit ourselves to using only exact QQA
with specific properties as an input for transformation method.

Property 1. An exact QQA satisfies Property 1 IFF on any input system state
before a measurement is such that for exactly one amplitude αi holds true that
|αi|2 = 1. For other amplitudes holds true that |αj |2 = 0, for ∀j 6= i.

Algorithm 1, Algorithm 2 and Algorithm 3 from section 3 satisfy Property
1.



Second Transformation Method

- Output value assignment permutation

Input.
• An exact QQA satisfying Property 1 that computes f(X).
• Permutation σ of the set OutputValues={k1, k2, . . . , km}.

Transformation actions.
• Permute function values assigned to outputs in order specified by σ.

If original assignment was QM = (α1 ≡ k1, . . . , αm = km),
where ki ∈ {0, 1},
then it is transformed to QM ′ = (α1 ≡ σ(k1), . . . , αm ≡ σ(km)).

where ki = 1 − ki.
Output. An exact QQA for some function g(X).

Box 2. Description of the Second Transformation Method.

Proof of correctness. Application of the method does not break the exactness
of QQA, because the essence of Property 1 is that before the measurement we
always obtain non-zero amplitude in exactly one output. Since function value
is clearly specified for each output we would always observe specific value with
probability 1 for any input.

The structure of the new function g(X) strictly depends on internal proper-
ties of the original algorithm. To explicitly define new function there is a need
to inspect original algorithm behavior on each input and construct a truth table
for new output value assignment.

4.3 Query variable permutation

Let σ be a permutation of the set {1, 2, . . . , n}, where elements correspond to
variable numbers. By saying that the function g(X) is obtained by permutation
of f(X) variables we mean the following: g(X) = f(xσ(1), xσ(2), . . . , xσ(n)). In
our Third Transformation Method we expand the idea of variable permutation
to QQA algorithm definition.

Third Transformation Method - Query variable permutation

Input.
• An arbitrary exact QQA that computes fn(X)
• Permutation σ of the set VarNum={0, 1, . . . , n}.

Transformation actions.
• Apply permutation of variable numbers σ to all query

transformations.
If original i-th query was defined as QQi = (α1 ≡ k1, . . . , αm ≡ km),
Then it is transformed to QQ′

i = (αi = σ(k1), . . . , αm = σ(km)),
ki ∈ {1, . . . , n}.

Output. An exact QQA for computing a function
g(X) = f(xσ(1), xσ(2), . . . , xσ(n)).

Box 2. Description of the Third Transformation Method.



5 Algorithm Designing Methods

In this section we will present several quantum query algorithm designing meth-
ods. Each method requires explicitly specified exact QQAs on input, and as
a result a bounded-error QQA for more complex function is constructed. Our
methods maintain quantum query complexity for complex function in compari-
son to increased deterministic complexity, thus enlarging the gap between clas-
sical and quantum complexities of the algorithm.

5.1 Obtaining a gap D(f) = 6 vs. Q3/4(f) = 2

We consider composite Boolean function, where two instances of EQUALITY3

(section 3.1) are joined with logical AND operation:

EQUALITY
∧2
3 (x1, . . . , x6) = (¬(x1⊕x2)∧¬(x2⊕x3))∧(¬(x4⊕x5)∧¬(x5⊕x6))

Deterministic complexity. D(EQUALITY
∧2
3 ) = 6, by sensitivity on X =

111111.

Our approach in designing an algorithm for EQUALITY
∧2
3 is to employ quan-

tum parallelism and superposition principle. We execute algorithm pattern de-
fined by original algorithm for EQUALITY3 in parallel for both blocks of vari-
ables of EQUALITY

∧2
3 . Finally we apply additional quantum gate to correlate

amplitude distribution. Algorithm flow is depicted explicitly in Figure 4.

Fig. 4. Bounded-error QQA for EQUALITY∧2

3

Quantum complexity. Algorithm presented in Figure 4 computes EQUALITY
∧2
3

using 2 queries with correct answer probability p = 3/4: Q3/4(EQUALITY
∧2
3 ) =

2.



5.2 First Designing Method

In this section we will generalize approach used in the previous section. To be
able to use generalized version of method we will limit ourselves to examining
only exact QQA with specific properties.

Property 2+ We say that the exact QQA satisfies Property2+ IFF there is
exactly one accepting basic state and on any input for its amplitude α ∈ C only
two values are possible before the final measurement: either α = 0 or α = 1.

Algorithm 1 presented in section 3.1 satisfies Property 2+.

Property 2- We say that the exact QQA satisfies Property2- IFF there is exactly
one accepting basic state and on any input for its amplitude α ∈ C only two
values are possible before the final measurement: either α = 0 or α = −1.

Lemma 5.1. It is possible to transform algorithm that satisfies Property2- to

algorithm satisfying Property2+ by applying additional unitary transformation.

Proof. Let us assume that we have QQA satisfying Property2- and k is the
number of accepting output. To transform algorithm to satisfy Property2+ apply
the following quantum gate:

U = (uij) =







0, ifi 6= j
1, ifi = j 6= k
−1, ifi = j = k



First Designing Method

Input.
• Two exact QQAs A1 and A2 satisfying Property2+ that compute

correspondingly Boolean functions f1(X1) and f2(X2).
Transformation actions.

1. If A1 and A2 utilize quantum systems of different size, then extend
the smallest one with auxiliary space to obtain equal number of
amplitudes. We denote the dimension of obtained Hilbert spaces
with m.

2. For new algorithm utilize a quantum system with 2m amplitudes.
3. Combine unitary transformations and queries of A1 and A2 in

the following way: Ui =

(

U1
i O
O U2

i

)

, where O’s are m×m

zero-matrices, U1
i and U2

i are either unitary transformations or
query transformations of A1 and A2.

4. Start computation from the state

〈ψ |= (1/
√

2, 0, . . . , 0, 1/
√

2, 0, . . . , 0).
5. Before the final measurement apply additional unitary gate.

Let’s denote the positions of accepting outputs of A1 and A2 by
acc1 and acc2. Then the final gate is defined as follows:

U = (uij) =























1, if (i = j)& (i 6= acc1)& (i 6= (m+ acc2))

1/
√

2, if (i = j = acc1)OR(i = j = (m+ acc2))

1/
√

2, if (i = acc1)& (j = (m+ acc2))
OR(i = (m+ ac2))&(j = acc1)

0, otherwise
6. Define as accepting output exactly one basic state |acc1〉.

Output. A bounded-error QQA A computing a function
F (X) = f1(X) ∧ f2(X2) with probability p = 3/4 and complexity
Q3/4(A) = max(QE(A1), QE(A2)).

Box 4. Description of the First Designing Method.

5.3 Obtaining a gap D(f) = 8 vs. Q3/4(f) = 2

We will try to apply approach described in the First Designing Method to a
function STRING EQ4 (section 3.2), ignoring the fact that algorithm does not
satisfy required property. The resulting algorithm Algorithm 4 has exactly the
same structure as the one presented in Figure 4, the difference is that now we
execute exact QQA for STRING EQ4 in parallel instead of EQUALITY3.

Quantum complexity. Bounded-error QQA Algorithm 4 is computing Boolean
function defined as:

STRING EQ
||
2 =







1, ifX ∈ {00000000, 00001111, 11110000, 11111111}
1, ifX ∈ {01010101, 01011010, 10101010, 10100101}
0, otherwise

and

complexity Q3/4(Algorithm4) is 2.



Deterministic complexity. D(STRING EQ
||
2 ) = 8, by sensitivity on accept-

ing input.

5.4 Second Designing Method

Let us define the next property of exact QQA that extends previous Property2x.

Property 3. We say that the exact QQA satisfies Property3 IFF there is exactly
one accepting basic state and after processing any input its amplitude before the
measurement is α ∈ {−1, 0, 1}.

Algorithm 2 (section 3.2) and Algorithm 3 (section 3.3) satisfy Property 3.
We denote a set of accepting inputs for Boolean function F by AccF . While

discussing exact QQA satisfying Property3 we define the following sets:

Acc+F = {X ∈ AccF | accepting output amplitude before measurement is +1}
Acc−F = {X ∈ AccF | accepting output amplitude before measurement is −1}

Second Designing Method

Input.
• Two exact QQAs A1 and A2 satisfying Property3 that compute

correspondingly Boolean functions f1(X1) and f2(X2).
Transformation actions.

• Perform steps 1–6 described in the First Designing Method
(Box 4).

Output. A bounded-error QQA A computing a function F (X) defined
below with correct answer probability p = 3/4 and complexity
Q3/4(A) = max(QE(A1), QE(A2)).

F (X) =

{

1, ifX ∈ (Acc+f1 ×Acc+f2) ∪ (Acc−f1 ×Acc−f2)

0, otherwise

Box 5. Description of the Second Designing Method.

5.5 Obtaining a gap D(f) ≥ 9 vs. Q9/16(f) = 2

Let us try to increase the effect gained by employing quantum parallelism. The
next idea is to execute 4 instances of algorithm in parallel, adjusting algorithm
parameters in appropriate way. We will take function EQUALITY3 from section
3.1 as a pattern. Designed Algorithm 5 and additional gates are presented in
Figure 5 below.

Additional quantum gates (empty matrix cells correspond to “0”) U ′ and U ′′

are as in Figures 6 and 7, respectively.
After examination of algorithm computational flow and calculation of prob-

abilities we obtained result that is formulated in the next statement. Quantum
complexity. Bounded-error QQA Algorithm5 is computing function defined as:

F (x1, . . . , x12) = 1

⇐⇒





Not less than 3 functions from: EQUALITY(x1, x2, x3)
EQUALITY(x4, x5, x6), EQUALITY(x7, x8, x9)
EQUALITY(x10, x11, x12) give value “1”.)







Fig. 5. Quantum query algorithm Algorithm 5.

Fig. 6. Matrix U
′



Fig. 7. Matrix U
′′

and complexity is Q9/16(Algorithm5) = 2.

Deterministic complexity. This time we did not achieve maximal possible
gap. From the definition of function F we find that sensitivity is s(F ) = 9. Thus
in this case we can only register a gap D(f) ≥ 9 vs. Q9/16(f) = 2.

5.6 Third Designing Method

Our last method is generalization of approach demonstrated in the previous
section. We leave detailed description of transformation actions for an interested
reader as an exercise.

Third Designing Method

Input.
• Four exact QQAs A1, A2, A3, A4 satisfying Property2+ that compute

correspondingly Boolean functions f1(X1), f2(X2), f3(X3), f4(X4).
Transformation actions.

• Combine approach described in section 5.5 with the First Designing
Method and adjust according to the structure of input exact QQAs.

Output. A bounded-error QQA A computing a function F (X) with
probability p = 9/16 and complexity Q9/16 = max(QE(A1), QE(A2),
QE(A3), QE(A4)), and:
F (X) = 1 ⇐⇒ (f1(X1) + f2(X2) + f3(X3) + f4(X4) ≥ 3)



Box 6. Description of the Third Designing Method.

We would like to note, that it is technically possible to apply approach described
in the Third Designing Method to exact QQAs satisfying Property 3. Definition
of a computable function will be more complex, but the most important is that
we can design a lot of different algorithms without increasing number of queries
in such a way.

6 Results of Applying Methods

We have applied transformation and designing methods to two basic exact QQAs
described in Section 3. Totally we obtained 32 exact QQAs and 512 QQAs with
bounded error. Each algorithm computes different Boolean function and uses
only 2 queries. Results are summarized in Table 1, where n is number of variables
of computable function.

Exact QQAs QQAs with Bounded error
Total Property 2x Property 3 n=6 n=7 n=8 n=12

n=3 8 4 4 16 96 256
n=4 24 12 144

Total: 32 algorithms 512 algorithms

Table 1. Results of transformations and designing methods application.

The important point is that invention of each brand-new exact QQA with re-
quired properties will significantly increase a set of efficiently computable func-
tions at once.

7 Conclusion

We describe exact quantum query algorithms for several problems in the present
paper. Moreover, all our algorithms have the largest possible gap between quan-
tum and deterministic complexities known for today. Next, we propose tech-
niques that allow transformation of an existing quantum query algorithm for a
certain Boolean function so that the resulting algorithm computes a function
with other logical structure. Finally, we suggest approaches that allow build-
ing bounded-error quantum query algorithms for complex functions based on
the already known exact algorithms. Combination of those three aspects allows
us to construct large sets of efficient quantum algorithms for various Boolean
functions.

Further work in that direction could be to invent new efficient quantum algo-
rithms that exceed already known separation from classical algorithms. Another
important direction is improvement of general algorithm designing techniques.
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Preface

The Workshop on Reachability Problems in Computational Models is a satel-
lite event of the Developments in Language Theory Conference (DLT’07) that
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Products of Matrices and Reachability

of their Optimal Rate of Growth

Vincent Blondel

Department of Mathematical Engineering

Faculty of Applied Sciences

Catholic University of Louvain

Louvain-la-Neuve, Belgium

Abstract. In this talk I will survey several aspects of an apparently simple (but

so far unsolved) question: under what conditions on the matrices A and B do all

infinite products of the type ABBABAAAB... converge to zero? Even for matrices

with rational entries, there is no known algorithm for this problem and it is so far

unknown if the problem is algorithmically decidable.

The maximal asymptotic growth rate that can be obtained by forming long prod-

ucts of matrices was first defined by Rota and Strang in the 1960s and is known

as the ”joint spectral radius” of the matrices. Convergence to zero of all infinite

products is equivalent to the requirement that the joint spectral radius be less than

one. In the last decade the joint spectral radius has appeared a number of applica-

tion contexts, including hybrid systems, multi-agent networks, wavelets, capacity

of codes, and sensor networks.

The joint spectral radius is notoriously difficult to compute even when constraints

are imposed on the number of matrices, on their size, or on their entries. I will

briefly describe a number of NP-hard, undecidable and other depressing negative

results and will then move to more positive aspects. In particular, I will describe

an algorithm that computes the joint spectral with arbitrary high accuracy and

that is polynomial in the size of the matrices once the desired accuracy is fixed

and I will present recent results for the computation of the capacity of codes and

for sensor networks.

During the talk I will mention a problem that has attracted much attention and

that is still unsolved. The problem is this: assume that we want to obtain the

largest possible asymptotic rate of growth of long products of matrices; can this

optimal rate always be obtained by a periodic product? This is known not to be

true for matrices with real entries but the case of rational (or even binary) entries

is unsolved. This last question relates to a number of situations where one is asked

whether or not optimality can be achieved with a periodic strategy.

This is joint work with a number of co-authors. Some of my co-authored publi-

cations that are relevant to this subject are [1–7].
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Abstract. We consider logics on Z and N which are weaker than Pres-
burger Arithmetic and we settle the following decision problem: given a
k-ary relation on Z and N which is first order definable in Presburger
Arithmetic, is it definable in these weaker logics? These logics, intu-
itively, are obtained in two different ways. First by introducing modulo
and threshold counting predicates on the difference of two variables and
second by depriving Z from the ordering.

1 Background and definitions

Presburger arithmetic is the first order theory of integers Z with the operation
of addition and the usual ordering, though the same term might also refer to
the first order theory of nonnegative integers with the addition and the equality.
Whichever arithmetic is meant should be clear from the context. The validity of
a closed formula in this structure is proved decidable via quantifier elimination
in the extension including all predicates x = b mod a with a ∈ N and 0 ≤ b < a,
see e.g., [8, Chap. III.4]. Though long underestimated, this result is nowadays one
of the main tools available in model-checking and program verification and the
number of papers refereeing to it exceed several hundreds. Here we are concerned
with definability in various, strictly weaker substructures on the same domain
or possibly on the domain of nonnegative integers. The general question is as
follows: given an arbitrary Presburger formula with n free variables defining
an n-ary relation, is it first order definable in the weaker structure? E., g., the
binary relation in Z defined by the formula φ(x, y) = ((x > 0)∨ (x < 0))∧ ((y >

0) ∨ (y < 0)) is definable without the ordering but the relation φ(x, y) = x < y

is not.
The substructures we investigate are summarized in table 1. The integers

a, b, c satisfy the conditions 0 ≤ b < a and c ∈ Z or c ∈ N, depending on which
structure it refers to. The subscripts used should suggest the general idea of
modulo and threshold counting. Observe that the first structure has no predicate
(except equality) while the remaining structures have no operations.

Some of these structures were studied earlier from different points of view.
In [5] the author studies the complexity of the validity of a closed expression in
Zthresh and of the quantifier elimination. A precise estimate is given and com-
pared to the similar problems in full Presburger arithmetic. The same questions
are solved when substituting the additive group of rationals Q for the group of



structure domain functions predicates

Z Z x + y x < y

Np N x + y =

ZW Z x + y =

Zthresh + mod Z none (x ≥ c)c∈Z, (x ± y ≥ c)c∈Z, (x = b mod a)0≤b<a

Nthresh+ mod N none (x ≥ c)c∈N, (x − y ≥ c)c∈N, (x = b mod a)0≤b<a

Zmod Z none x ± y ≥ 0, (x = b mod a)0≤b<a

Nmod N none x − y ≥ 0, (x = b mod a)0≤b<a

Zthresh Z none (x ≥ c)c∈Z, (x ± y ≥ c)c∈Z

Nthresh N none (x ≥ c)c∈N, (x − y ≥ c)c∈N

Table 1. The different structures studied in this paper.

integers. In [6] the structure Nthresh +mod is not obtained as a reduction of the
Presburger arithmetics but rather as an extension of the first order logic of the
successor. A characterization is given but no decidability issue is tackled.

Our main result is the following, cf. [2] and [1].

Theorem Given a relation over Z (resp. N) which is first order definable in
Presburger Arithmetic, for each one of the structures of table 1 whose domain is
Z (resp. N), it is recursively decidable whether or not this relation is first order
definable in this structure.

2 The ingredients of the proof

In this section we intend to give an idea of the ingredients for the proof of the
main result. We concentrate on the two structures ZW and Zthresh+ mod. In
other words we are given a relation in Zk defined by a Z-formula with k free
variables and we want to decide whether or not it is ZW - (resp. Zthresh+ mod-)
definable. The proof for the remaining structures does not require essentially
different arguments.

The following is the basic result on first order definable subsets in Presburger
arithmetic, see [4, 3, 7].

Theorem 1. Given a subset X ⊆ Zk (resp. X ⊆ Nk) the following conditions
are equivalent

1. X is a finite union of Z-linear (resp. N-linear) subsets, i.e, of subsets of the
form x0 +Nx1+ · · ·+Nxn for some n ≥ 0 and some x0, x1, . . . xn ∈ Zk (resp.
Nk)

2. X is a finite union of Z-simple (resp. N-simple) subsets, i.e, of subsets of
the form x0 + Nx1 + · · · + Nxn for some n ≥ 0 and some x0, x1, . . . xn ∈ Zk

(resp. Nk) which are linearly independent as Q-vectors.
3. X is first order definable in the structure 〈Z, =, <, +, 0, 1〉 (resp. 〈N, =, <

, +, 0, 1〉 )

Furthermore, there exists a procedure which converts one form into another



2.1 The case Zthresh+ mod

The Zthresh+mod-definable relations have a simple decomposition in terms of
norm one vectors. Here is a precise definition. We consider the set {0, 1,−1}k ∩
(Zk −{0}k) of (L∞-) norm one vectors and we provide it with a partial ordering
by writing e ≥ f if the following condition holds: if the i-th component of f

is nonzero, then f and e have the same i-th component. These vectors are not
linearly independent, however we have the disjoint union

Zk =
⋃

E

(

∑

e∈E

(N − {0})e

)

(1)

where E ranges over all strictly decreasing sequences of norm one vectors and
where by convention the empty sequence represents the null vector.

The decomposition mentioned above involves the family of recognizable rela-
tions in Nk which is an important subfamily of the Presburger definable relations.
We recall its definition.

Definition 1. A subset X ⊆ Nk is recognizable if it is a finite union of direct
products such as

X1 × · · · × Xk

where for i = 1, . . . , k, Xi is a finite union of arithmetic sequences, i.e., sequences
of the form {a + kp | k ∈ N} for some a, b ∈ N.

We are now able to state the main characterization of the family of Zthresh+mod-
definable relations on which the decidability result is based: indeed, recognizabil-
ity in Z is decidable as proved in [4, Corollary 4.5].

Theorem 2. A relation X ⊆ Zk is definable in Zthresh+ mod if and only if it is
a finite union of relations of the form

X1e1 + · · · + Xpep

where 0 < p ≤ k, e1 > · · · > ep is a strictly decreasing sequence of norm one
vector and X1 × · · · × Xp is recognizable.

2.2 The case Z
W

We proceed top-down. We are given a subset in Zk defined by a Z-formula with
k free variables and we transform it into a finite union of simple sets as asserted
in Theorem 1. Call the integer n appearing in the expression of the simple set
its dimension and observe that n is at most equal to k. By applying a simple
geometric transformation of the space, we show that we can always assume that
this union possesses at least one element of the dimension of the space, i.e.,
without loss of generality equal to k. The crux of the proof is the following
result.



Theorem 3. Let X ⊆ Zk be a Z-definable set of the form X = T ∪
m
⋃

i=1

Yi where

Yi = a(i) +
∑k

j=1 Nb
(i)
j for some linearly independent vectors b

(i)
j (i.e. it is a

simple set of dimension k) and T is a finite union of N-simple sets of dimension
less than k. Then X is ZW -definable if, and only if, it can be decomposed as
S ∪ (P \ R), where:

1. P =
⋃

1≤i≤m

(a(i) +
k
∑

j=1

Zb
(j)
j );

2. R and S are ZW -definable sets which are included in a finite union of Z-
simple sets of dimension less than k;

3. R ⊆ P and S ∩ P = ∅.

Indeed, given X , we can compute P , test equality 1 and obtain S = X \ P

and R = P \ X . The result applies recursively to R and S.
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8. C. Smoryński. Logical Number Theory I: An Introduction. Springer Verlag, 1991.
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Abstract. One of the problems faced by Software Model Checking is the com-

plexity of the control-flow mechanisms of modern programming languages. The

combination of recursion and thread creation makes languages Turing-powerful

even in the absence of data. In particular, the reachability of a program point is

already undecidable for programs without variables!

In this talk I model control-flow primitives using term rewriting systems, and

survey some results on their associated reachability and symbolic reachability

problems. The symbolic reachability problem (informally stated) consists of com-

puting a useful finite representation of the set of forward or backward reachable

states.
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Abstract. We give a brief survey of results that use “reversal-bounded counters”

in studying reachability problems for various classes of transition systems. We

also discuss the connection between the decidability of reachability in counter

machines and the solvability of certain quadratic Diophantine equations. Finally,

we report on some preliminary results concerning the emptiness problem for

“stateless” multihead two-way (resp., one-way) nondeterministic finite automata.

1 Introduction

The verification problem is to decide whether a machine (representing a system) satis-

fies a desired property. Seeking algorithmic solutions to the problem is very important

in many areas of computer science, since the machine can be interpreted as a proto-

col, a chip, a software design, etc. Even in emerging and nonclassical (the so called

unconventional or natural) models of computing such as membrane and DNA comput-

ing systems, verification problems are still an important topic to pursue; e.g., to predict

whether a cell system modeled as a P system [22] will evolve into a desired configura-

tion.

There is a natural connection between automata theory and verification problems.

Automata theory tries to answer questions concerning machine models, languages, and

their decidability properties. An automaton defines an (abstracted) transition system,

and the language accepted by the automaton defines a set of expected sequence of events

(an input symbol is interpreted as an event) for the transition system. In this way, the

automaton is a natural abstraction of a system, and the language represents the system’s

requirement (the property that the system is intended to satisfy). Therefore, in principle,

automata theory is useful in asserting whether a particular class of transition systems is

decidable for a certain class of verification queries like reachability.

? The work of Oscar H. Ibarra was supported in part by NSF Grants CCF-0430945 and CCF-

0524136. The work of Zhe Dang and Linmin Yang was supported in part by NSF Grant CCF-

0430531.



Integer variables are the most common unbounded storage devices in modeling infi-

nite state transition systems (such as the size of the sliding window in the Transmission

Control Protocol (TCP), the accumulated delay for an event in a discrete timed automa-

ton [1], etc.). Such variables, in automata theory, are further modeled as counters, each

of which can store a nonnegative integer number and can be incremented/decremented

by one and tested against zero. Since two-counter machines (i.e., Minsky machines)

are Turing-complete, it is important to study under what restrictions a multicounter ma-

chine has decidable reachability. One such restriction is to require that a counter be

reversal-bounded (i.e., the number of alternations between nondecreasing mode and

nonincreasing mode and vice-versa is bounded by a fixed integer independent of the

computation) [12].

In this paper, we provide a survey on some of the results that use reversal-bounded

counters in studying reachability problems for various classes of transition systems. It

is known that a reversal-bounded multicounter machine with a one-way input tape ac-

cepts a semilinear language, even when the machine is augmented with a pushdown

stack [12]. This result is already useful in showing that the reachability relation of non-

deterministic pushdown machine with reversal-bounded counters is also semilinear and

hence, a certain class of verification queries like reachability and safety are decidable.

This result has also been used in verification problems for systems that apparently pos-

sess non-reversal-bounded counters (e.g., reachability in timed automata [5, 4]). When

a reversal-bounded multicounter machine is equipped with a two-way input tape, how-

ever, it turns out that such a machine does not have a decidable emptiness problem

even when it is deterministic and over a bounded language (i.e., the inputs are in the

form ai1
1 . . . ain

n for some fixed n and distinct symbols a1, . . . , an, where i1, . . . , in are

nonnegative integers) [12]. The case when the machine has only one reversal-bounded

counter is interesting. More precisely, we use 2DCM(1) (resp. 2NCM(1)) to denote a

deterministic (resp. nondeterministic) two-way finite automaton augmented with one

reversal-bounded counter. It is known that the emptiness problem for 2DCM(1) over

a bounded language is decidable [10]. This result was later generalized to 2DCM(1)

(not necessarily over a bounded language) [15]. For the nondeterministic counterpart,

it has been shown that the emptiness problem for 2NCM(1) over a bounded language is

decidable [6]. However, in general, the emptiness problem for 2NCM(1) is still an open

problem.

A surprisingly complex case is when a two-way finite automaton is augmented with

monotonic (i.e., nondecreasing) counters. Notice that a monotonic counter is essentially

a reversal-bounded counter making 0 reversal. Such a machine is called 2FACM [13].

We are interested in the following reachability problem: Given a 2FACM M , a state q,
and a Presburger relation E over counter values, is there (i1, . . . , in) such that M , when

started in its initial state on the left end of the input ai1
1 . . . ain

n with all counters initially

zero, reaches some configuration where the state is q and the counter values satisfy E?

One can show that when M always halts, the problem is decidable. However, when M
does not always halt, the problem can be reduced to the solvability of a special class of

systems of quadratic Diophantine equations. In turn, reversal-bounded arguments can

be used to establish new classes of solvable Diophantine equation systems [14, 24].



Biologically inspired computing models like P systems [22] are often stateless. This

is because it is difficult and even unrealistic to maintain a global state for a massively

parallel group of objects. The most common form of stateless counter machines are

probably the Vector Addition Systems (VASs), which are well-studied. Indeed, VASs

have been shown intimately related to certain classes of P systems [16]. Clearly, it is of

interest to study other models of stateless automata. In this paper, we mention briefly

some of our preliminary results concerning stateless multihead two-way (resp., one-

way) nondeterministic finite automata.

2 Counter Machines

Let k be a nonnegative integer. A k-counter machine is a two-way nondeterministic

finite automaton with input end markers (two-way NFA) augmented with k counters,

each of which can be incremented by 1, decremented by 1, and tested for zero. We

assume, w.l.o.g., that each counter can only store a nonnegative integer, since the sign

can be stored in the states. If r is a nonnegative integer, let 2NCM(k,r) denote the class

of k-counter machines where each counter is r reversal-bounded; i.e., it makes at most

r alternations between nondecreasing and nonincreasing modes in any computation;

e.g., a counter whose values change according to the pattern 0 1 1 2 3 4 4 3 2 1 0 1 1 0
is 3-reversal, where the reversals are underlined. For convenience, we sometimes refer

to a machine in the class as a 2NCM(k,r).
A 2NCM(k,r) is finite-crossing [9, 12] if there is a positive integer d such that in

any computation, the input head crosses the boundary between any two adjacent cells

of the input no more than d times. Note that a 1-crossing 2NCM(k,r) is a one-way

nondeterministic finite automaton augmented with k r-reversal counters. 2NCM(k)

will denote the union of 2NCM(k,r), r = 1, 2, . . .. For deterministic machines, we

use ‘D’ in place of ‘N’. If M is a machine, L(M) denotes the language it accepts. A

language is bounded if it is a subset of a∗
1a

∗
2 . . . a∗

n for some fixed n and distinct symbols

symbols a1, a2, . . . , an.

In the following, we summarize the important results concerning reversal-bounded

counter machines.

Theorem 1. There is a fixed r such that the emptiness problem for 2DCM(2,r) over

bounded languages is undecidable [12].

Theorem 2. The emptiness problem is decidable for the following classes:

(a) 2DCM(1) [15].

(b) 2NCM(1) over bounded languages [6].

(c) 2NCM(k) over a unary alphabet, for every k [15].

(d) finite-crossing 2NCM(k), for every k [9, 12].

(e) NPCM = nondeterministic one-way pushdown automata with reversal-bounded

counters.

Let Y be a finite set of variables over integers. For all integers ay, with y ∈ Y , b and

c (with b > 0),
∑

y∈Y ayy < c is an atomic linear relation on Y and
∑

y∈Y ayy ≡b c
is a linear congruence on Y . A linear relation on Y is a Boolean combination (using



¬ and ∧) of atomic linear relations on Y . A Presburger formula on Y is the Boolean

combination of atomic linear relations on Y and linear congruences on Y . A set P
of tuples of nonnegative integers is Presburger-definable or a Presburger relation if

there exists a Presburger formula F on Y such that P is exactly the set of the solutions

for Y that make F true. It is well known that Presburger formulas are closed under

quantification.

Let N be the set of nonnegative integers and n be a positive integer. A subset S
of Nn is a linear set if there exist vectors v0, v1, ..., vt in Nn such that S = {v | v =
v0+a1v1 + . . .+atvt, ∀1 ≤ i ≤ t, ai ∈ N}. S is a semilinear set if it is a finite union of

linear sets. It is known that S is a semilinear set if and only if S is Presburger-definable

[8].

Let Σ be an alphabet consisting of n symbols a1, ..., an. For each string (word) w
in Σ∗, we define the Parikh map of w, denoted by p(w), as follows:

p(w) = (i1, ..., in), where ij is the number of occurrences of aj in w.

If L is a subset of Σ∗, the Parikh map of L is defined by p(L) = {p(w) | w ∈ L}. L is

a semilinear language if its Parikh map p(L) is a semilinear set.

Theorem 3. p(L(M)) is an effectively computable semilinear set when:

(a) M is a finite-crossing 2NCM(k), for every k [9, 12].

(b) M is an NPCM [12].

Theorem 3 generalizes to the following: Let M be any class of machines such

p(L(M)) is an effectively computable semilinear set for every machine M in M. Then

p(L(M ′) is an effectively computable semilinear set for every machine M ′ in M aug-

mented with reversal-bounded counters. The result is not true for machines that are not

finite-crossing. For example, a 2DCM(1,1) can recognize the language {0i1j | i divides

j}, which is not semilinear.

The first part of the next theorem was shown in [12]. The second part is easily

verified.

Theorem 4. Let S be a subset of Nn and L = {ai1
1 . . . ain

n | (i1, . . . , in) ∈ S}. If S is

Presburger-definable (i.e., semilinear), then:

(a) L can be accepted by a 1-crossing 2DCM(k) for some k.

(b) L can be accepted by a 2DCM(1).

3 Reachability and Safety

The results of the previous section can be used to analyze verification problems (such

as reachability and safety) in infinite-state transition systems that can be modeled by

multicounter machines. Decidability of reachability is of importance in the areas of

model checking, verification, and testing [7, 3, 20]. In these areas, a machine is used as

a system specification rather than a language recognizer, the interest being more in the

behaviors that the machine generates.



In what follows, let M be a nondeterministic finite automaton (with no input tape)

with a pushdown stack and k reversal-bounded counters. Let Γ be the pushdown al-

phabet and {1, 2, . . . , s} be the state set for some s . As usual, each counter can be

incremented by integer constants (+,−, 0) and can be tested (<, >, =) to integer con-

stants. Let (j, v1, ..., vk, w) denote the configuration of M when it is in state j, counter

i has value vi for 1 ≤ i ≤ k, and the pushdown stack contains word w ∈ Γ ∗ (with the

right-most bit of w being the top of the stack). Thus, the set of all possible configura-

tions is a subset of Nk+1 × Γ ∗. We use the symbols α, β, . . . to denote configurations.

If α is a configuration, αr will denote the configuration where the pushdown word w in

α is written in reverse, i.e, wr in αr.

Given M , let R(M) = {(α, β) | α can reach β in 0 or more moves }. R(M) is

called the binary reachability set of M . For a set S of configurations, define post*M (S)
to be the set of all successors of configurations in S; i.e., post*M(S) = {α | α
can be reached from some configuration in S in 0 or more moves }. Similarly, de-

fine pre*M(S) = {α | α can reach some configuration in S in 0 or more moves }.
post*M (S) and pre*M (S) are called the forward and backward reachability of M with

respect to S, respectively.

Note that configuration α = (j, v1, ..., vk, w) in Nk+1 ×Γ ∗ can be represented as a

string E(α) = j%v1 . . . %vk%w, where j, v1, ..., vk are represented in unary (separated

by a distinguished symbol %). Using this encoding, we can define the language LM =
{E(α)#E(βr) | (α, β) ∈ R(M)} (# is a new symbol). Then we have:

Theorem 5. LM can be accepted by an NPCM (i.e. by a nondeterministic one-way

pushdown automaton with reversal-bounded counters). It follows that the binary reach-

ability set is semilinear.

We say that a set S ⊆ Nk+1 × Γ ∗ is NCM-recognizable if E(S) = {E(α) | α in

S} can be accepted by an NCM. The problem of safety is of importance in the area of

verification. The following theorem can be shown:

Theorem 6. It is decidable to determine for a given nondeterministic finite automaton

(with no input tape) with a pushdown stack and reversal-bounded counters M and two

given sets of NCM-recognizable configurations S and T , whether every configuration

in S can only reach configurations in T . Thus, safety is decidable.

4 Diophantine Equations and Counter Machines

It is well-known that it is undecidable to determine, given an arbitrary multi-variable

polynomial with integers coefficients, whether it has a solution over the nonnegative

integers [18]. Some interesting nontrivial special cases have been shown to be decidable

(e.g., [17]).

In this section we look at a class of systems of Diophantine equations for which the

existence of solutions was shown to be decidable in [14] The decidability can be used

to investigate certain verification problems concerning counter machines. We note that

a similar class of equations was independently studied in [2].



4.1 A Solvable Class

For 1 ≤ i ≤ k, let Ri denote pi(y)Fi + Gi, where pi(y) is a polynomial in y with

integer coefficients (e.g., 8y5 − 3y2 + 7y − 6), and Fi, Gi are linear polynomials in

x1, ..., xn with integer coefficients (e.g.,−10x1+5x2+7x4−3x7+9). Let P (z1, ..., zk)
be a Presburger relation over the nonnegative integers, i.e., definable by a Presburger

formula.

Theorem 7. The following problem is decidable:

Given: R1, ..., Rk and a Presburger relation P .

Question: Are there nonnegative integer values for y, x1, ..., xn such that for these

values, (R1, ..., Rk) satisfies P?

Note that pi, Fi, Gi can be a constant (in particular, 0 or 1). Hence, Ri can be just pi, Fi,

or Gi. In particular, Ri can be y or one of the x-variables.

The proof of the above theorem uses the following known results concerning reversal-

bounded multicounter machines:

1. Let M be nondeterministic two-way finite automaton over a unary input (with left

and right end markers) augmented with reversal-bounded counters. Thus the in-

puts to such a machine is of the form $oy$, where y is a nonnegative integer, and

$ is the end marker. (A counter is reversal-bounded if at each step, it can be in-

cremented/decremented by 1 or left unchanged and tested for zero, but can only

reverse its mode from nondecreasing to nonincreasing and vice-versa at most a

fixed number of times, independent of the input.) Call this machine 2NCM.

It is known that the emptiness problem for 2NCMs (does the machine accept some

unary input?) is decidable [15]. Note that, in contrast, it follows from Minsky’s

result [19], that the emptiness problem problem is undecidable for deterministic

two-way finite automata over unary input (with end markers) augmented with one

unrestricted counter.

2. Let G be a nondeterministic finite automaton with r nondecreasing counters (thus

at each step, each counter can only be incremented by 0 or 1). G starts with all

counters zero. If G halts and accepts, then we say that the values (n1, ..., nr) of

the counters when it halts are generated by G. G is called a monotonic counter

generator.

Let P ⊆ Nr. Then P is a Presburger relation or, equivalently, a semilinear set if

and only if we can (effectively) construct a monotonic counter generator G such

that the set of tuples generated by G is {(n1, ..., nr) | P (n1, ..., nr) is satisfied }
[23].

We sketch the proof of above theorem, as given in [14].

Proof. Let G be the monotonic counter generator for the Presburger relation P (z1, ..., zk).
We show how to construct a 2NCM M to accept the unary language {oy | y is a nonneg-

ative integer, and there exist x1, ..., xn such that for these values, (R1, ..., Rk) satisfies

P}. M operates as follows:



1. Given oy, M first nondeterministically guesses x1, ..., xn and stores them in k
counters.

2. With oy on the input and (x1, ..., xn) on the counters, and using (many) auxiliary

reversal-bounded counters, M computes Ri = pi(y)Fi + Gi for i = 1, ..., k.

3. Then M checks that (R1, ..., Rk) satisfies P , by simulating the generator G. (Note

that in the simulation of the counters of G, an increment is simulated by a decre-

ment.)

Items 1 and 3 above are obvious. That item 2 can be implemented by M using reversal-

bounded counters follows from the the following observations:

1. Clearly, each Fi(x1, ..., xn) and each Gi(x1, ..., xn) can be computed using reversal-

bounded counters.

2. ysx for any s and x can be computed using reversal-bounded counters as follows:

Suppose x is in counter 1 and oy is on the input tape, M makes left-to-right (right-to-

left) sweeps on the input while incrementing counter 2 on every move of the input head.

At the end of every sweep, M decrements counter 1 by 1. When counter 1 becomes

zero, counter 2 has value yx. Now that we have yx in counter 2, we can use the same

idea to produce y2x in counter 1, etc. Note that for a given s, ysx can be computed with

counters 1 and 2 being reversal-bounded (each making no more than s/2 reversals).

Hence, the system has a solution if and only if the unary language accepted by M is not

empty, which is decidable (since M is reversal-bounded).

4.2 Applications to Reachability Problems in Counter Machines

The question of the decidability of the class of Diophantine equations studied in Sec-

tion 1 arose when we were studying some verification problems concerning counter

machines in [13]. The decidability of one such property turned out to be equivalent to

the decidability of the class in Section 1, where the pi(y)’s are linear polynomials in y.

Consider a class of machines M as follows. M is a deterministic two-way finite

automaton augmented with k monotonic counters C1, . . . , Ck. The two-way input, w
(which is provided with left and right end markers), comes from a bounded language,

i.e., w = ai1
1 . . . ain

n for some fixed n and distinct symbols a1, . . . , an, and i1, . . . , in
are nonnegative integers. The counters are initially zero and can be incremented by 0

or 1 at each step, but cannot be decremented. They do not participate in the dynamic

of the machine. We shall simply call M a 2FAMC. We do not assume that the machine

halts on all inputs.

Note that the set of tuples of nonnegative integers “generated” by a 2FACM (at a

specified state) need not be semilinear (Presburger) in general. For example, consider

a 2FACM with two monotonic counters C1 and C2. On unary input x of length n, M
initially stores n in C1. Then M makes left-to-right and right-to-left sweeps of the input,

adding n to C2 after every left-to-right sweep. M iterates this process without halting.

Let s be the state of M just after a left-to-right sweep. Then the set of tuples of values

of the counters when it is in state s is Qs = {(n, kn) | n ≥ 0, k > 0}, which is not

semilinear.



We are interested in the problem of deciding, given a 2FAMC M and a Presburger

relation E, whether the set of tuples generated by M satisfies E. The decidability of

this question was left unresolved in [13], even for simple Presburger relations.

An atomic equality relation on the counters is a relation of the form Ci = Cj , i 6= j.
An equality relation E is a conjunction of atomic equality relations. An example of E
is (C1 = C3 ∧ C1 = C4 ∧ C2 = C3). We say that M satisfies E at state q if there is

some input w = ai1
1 . . . ain

n such that M on input w, enters some configuration where

the state is q and the counter values satisfy the relation E. For convenience, when q is

understood, we simply say M satisfies E.

Since M does not necessarily halt, a configuration that satisfies E can be an inter-

mediate configuration of a possibly infinite computation. Note also that M can satisfy

E many times during the computation. We are interested in the following:

Reachability Problem Under Equality Relation:

Given: A 2FAMC M and an equality relation E.

Question: Does M satisfy E?

An obvious generalization of the above problem is when E is an arbitrary Presburger

relation (note that an equality relation is a special form of a Presburger relation).

It turns out that the above problem (where E is an equality relation) is equivalent to

the solvability of the following:

Problem DE:

Given: A system S consisting of the following (k + m) equations:

Ai = Bi, i = 1, . . . , k
yFi = Gi, i = 1, . . . , m

where Ai, Bi, Fi, Gi are linear polynomials in nonnegative integer variables x1, . . . ,
xn with integer coefficients. Hence these polynomials are of the form a0 + a1x1 +
. . . + anxn, where each ai is an integer (positive, negative, or zero).

Question: Does S have a solution, i.e., there are nonnegative integers y, x1, . . . , xn

satisfying S?

Note that the system S above is a special case of the system we considered in Section

1. Hence Problem DE is decidable. The following was shown in [13]:

Theorem 8. The Reachability Problem under equality relation is equivalent to Prob-

lem DE in the following sense:

1. Given a system S, we can effectively construct a 2FAMC M and an equality relation

E such that S has a solution if and only if M satisfies E.

2. Given a 2FAMC and an equality relation E, we can effectively construct a finite

number of systems S of equations of the form Ai = Bi or of the form yFi =
Gi (where Ai, Bi, Fi, Gi are linear polynomials in nonnegative integer variables

x1, . . . , xn with integer coefficients) such that M satisfies E if and only if one of

the S’s has a solution in the nonnegative integers y, x1, . . . , xn.



The following corollary follows from Theorems 7 and 8:

Corollary 1. The Reachability Problem for 2FMACs under equality relation is decid-

able.

Reachability Problem Under Arbitrary Presburger Relation

Corollary 1 only proved the Reachability Problem when E is an equality relation. In

this section, we look at the general case when the relation E is an arbitrary Presburger

relation E(c1, ..., ck) over the counter values c1, ..., ck, and show that the reachability

problem is still decidable, resolving a more general open problem that was also posed

in [13].

The idea is as follows. In [13], it was shown that the value of counter ci (1 ≤ i ≤ k)

at any time can effectively be represented by equations of the form:

ci = Ai + yBi + Ci

where y is a nonnegative integer variable, and Ai, Bi, Ci are nonnegative linear poly-

nomials in some nonnegative integer variables x1, ..., xn. (We can combine Ai and

Ci into a single linear polynomial, but we wanted to first show the representation

above to be consistent with the formulation in [13].) Then, the value of counter ci =
yBi + (Ai + Ci). It then follows from Theorem 7 that we can decide whether for this

system of equations there exist nonnegative integers y, x1, ..., xn such that (c1, ..., ck)
satisfies the Presburger relation E. Thus, we have:

Theorem 9. The Reachability Problem for 2FAMCs under arbitrary Presburger rela-

tion is decidable.

4.3 Variations

Now consider the following system of equations, S, which we call a width-2 system:

Ai = Bi, i = 1, . . . , k
yiFi = Gi ∧ yiHi = Ii, i = 1, . . . , m

where Ai, Bi, Fi, Gi, Hi, Ii are linear polynomials in nonnegative variables x1, . . . , xn.

Note that each yi is involved in exactly two equations. We say that S has a solution if

there are nonnegative integers y1, . . . , ym, x1, . . . , xn satisfying S. It was shown in

[13], using an intricate reduction to Hilbert’s Tenth Problem, that it is undecidable to

determine, given a width-2 system S, whether it has a (nonnegative integer) solution in

y1, ..., ym, x1, ..., xn.

A semi-equality relation E is a set of equality relations. Thus, E = {E1, . . . , Em},
where each Ei is an equality relation (i.e., a conjunction of atomic equality relations).

Note that when m = 1, E is simply an equality relation. E is of width k if each Ei is

a conjunction of at most k atomic equality relations. Given M , a semi-equality relation

E = {E1, . . . , Em}, and states q1, . . . , qm (not necessarily distinct), M satisfies E if

there is a tuple (i1, . . . , in) such that M on input (i1, . . . , in) has a computation where

the counter values satisfy each Ei at state qi during the computation (not necessarily at

the same time, and not necessarily in the given order). To avoid writing so many sub-

scripts, when {q1, . . . , qm} is understood, we simply say M satisfies E. The connection

of width-2 systems to 2FAMCs is given by the following result shown in [13]



Theorem 10. Given a width-2 system S, we can effectively construct a 2FAMC M and

a width 2 semi-equality relation E such that S has a solution if and only if M satisfies

E. Conversely, given a 2FAMC M and a width 2 semi-equality relation E, we can

effectively construct a finite number of width 2 systems S such that M satisfies E if and

only if one of the S’s has a solution.

Next, consider the following simpler case, called width-1 system, S:

Ai = Bi, i = 1, . . . , k
yiFi = Gi, i = 1, . . . , m

where, again, Ai, Bi, Fi, Gi are linear polynomials in x1, . . . , xn. Thus, each yi is in-

volved in only one equation. It known [13] that it is decidable to determine, given a

width-1 system, whether it has a solution.

Theorem 11. Given a width-1 system S, we can effectively construct a 2FAMC M and

a width 1 semi-equality relation E such that S has a solution if and only if M satisfies

E. Conversely, given a 2FAMC M and a width 1 semi-equality relation E, we can

effectively construct a finite number of width-1 systems S such that M satisfies E if and

only if one of the S’s has a solution.

5 Nondeterministic 2FAMC

In this section, we consider the reachability problem when the 2FAMC is nondetermin-

istic. The results we discuss below were shown in [13]. We also reproduce the proofs

as they appeared in [13]. We begin with the following theorem.

Theorem 12. 1. There is a fixed k such that it is undecidable to determine, given a

nondeterministic 2FAMC M with k monotonic counters and an equality relation

E, whether M satisfies E. The result also holds for the case when M always halts.

2. It is decidable to determine, given a nondeterministic 2FAMC M over a unary input

alphabet (but no restriction on the number of monotonic counters) and a Presburger

relation E, whether M satisfies E.

Proof. We first prove Part 1. From Theorem 1, there is a fixed r such the empti-

ness problem for 2DCM(2,r) over bounded languages is undecidable. Let M be such

an automaton. Clearly, we can convert M to an equivalent automaton M ′ which has

2(1 + r−1
2 ) 1-reversal counters where each counter starts at zero, and on input w, M ′

accepts if and only if it halts with all counters zero. To insure this, we can add to

M ′ a dummy counter which is incremented at the beginning and only decremented,

i.e., becomes zero when the input is accepted. Suppose M ′ has k 1-reversal coun-

ters, C1, ..., Ck (one of these is the dummy counter). Note that k is fixed since r is

fixed. We modify M ′ to a nondeterministic 2FAMC M ′′ with 2k monotonic counters:

C+
1 , C−

1 , ..., C+
k , C−

k , where C+
i and C−

i are associated with counter Ci. M ′′ on input

w simulates the computation of M ′ , first using counter C+
i to simulate Ci when the

latter is in a nondecreasing mode. When counter Ci reverses (thus entering the nonin-

creasing mode), M ′′ continues the simulation but using counter C−
i : incrementing this



counter when M ′ decrements Ci. At some time during the computation (which may be

different for each i), M ′ guesses that Ci has reached the zero value. From that point on,

M ′′ will no longer use counters C+
i and C−

i , but continues the simulation. When M ′′

has guessed that C+
i = C−

i for all i’s (note that for sure the two counters corresponding

to the dummy counter are equal), it halts in a unique state f . Clearly, w is accepted by

M ′ if and only if M ′′ on w can reach a configuration with C+
i = C−

i for i = 1, ..., k
(this is relation E) in state f .

For Part 2, given an 2FAMC M with monotonic counters C1, ..., Ck, we construct a

2NCM(1) (i.e., two-way nondeterministic finite automaton with reversal-boundedcoun-

ters) over a unary input M ′. M ′ simulates M faithfully. At some point, M ′ guesses that

the values of the monotonic counters satisfy the relation E. M ′ then uses another set

of counters to verify that this is the case, and accepts. The result follows from the de-

cidability of the emptiness problem for 2NCM(1) over unary input (Theorem 2(c)) and

and the fact that a Presburger relation on C1, ..., Ck can be verified using additional

reversal-bounded counters (Theorem 4(a)).

ut

In Theorem 12, Part 2, the relation E is defined over monotonic counters C1, . . . ,
Ck and a specified state. In fact, the theorem still holds when the relation is defined

over C1, . . . , Ck, i1, . . . , in, the input head position, and the state. This is because n+2
additional monotonic counters can be added to “store” the values of i1, . . . , in, the input

head position, and the state at the time when the test for E is performed. The next result

looks at the case when k = 1.

Theorem 13. The reachability problem is decidable when M is a nondeterministic

2FAMC and k = 1, i.e., there is only one monotonic counter. The result holds even

when the relation E is a Presburger relation that involves the state, the input head

position, the input (i1, . . . , in), and the monotonic counter.

Proof. Given M , we construct a 2NCM(1) (i.e., a two-way nondeterministic finite au-

tomaton with one reversal-bounded counter) M ′ which accepts a nonempty language if

and only if M satisfies the relation E. Let Σ = {a1, . . . , an} be the input alphabet of

M . The input alphabet of M ′ is ∆ = {a1, . . . , an, �, b, c, d}, where �, b, c, d are new

symbols. Given input y, M ′ first checks that y has exactly one occurrence of �, and

y with this � deleted is a string of the form ai1
1 . . . ain

n bjckdm. M ′ then simulates M
faithfully on ai1

1 . . . ain

n , using its reversal-bounded counter to simulate the monotonic

counter of M . During the simulation, when M ′ sees �, it nondeterministically either

ignores it and continues the simulation, or enters the testing phase. When M ′ decides

to enter the testing phase (thus its input head is on �), it checks the following: (1) the

number j of b’s is the input head position (i.e., the distance of � from the left end of

the input), (2) the number k of c’s is the value of the counter, and (3) the number m
of d’s represents the current state. M ′ accepts the input y if i1, . . . , in, j, k, m satisfy

the Presburger relation E. Note that M ′ can check the Presburger relation by Theorem

4(b). Clearly, M ′ accepts a bounded language. The result follows since the emptiness

problem for 2NCM(1)’s over bounded languages is decidable (Theorem 2(b)). ut

It is open whether Theorem 13 holds when k = 2. But consider a nondeterministic

machine M with k monotonic counters, C1, . . . , Ck , ordered in that for 2 ≤ i ≤ k,



when Ci is first incremented, C1, . . . , Ci−1 can no longer change in value. The follow-

ing corollary generalizes Theorem 13:

Corollary 2. It is decidable to determine, given a nondeterministic machine M with k
monotonic ordered counters and an arbitrary Presburger relation E (over the state, the

input head position, i1, . . . , in, and the k counters), whether M satisfies E.

Proof. Since the k counters are ordered, it is straightforward to generalize the con-

struction in the proof of Theorem 13. M ′ will now have alphabet ∆ = {a1, . . . , an,
�1, . . . , �k, b, c1, . . . , ck, d}. The marker �i is used to remember the input head position

when M goes from counter Ci to Ci+1 (1 ≤ i < k). As before, marker �k is used to

record the position of the input head prior to testing E. Symbol ci is used to record the

value of counter Ci. We leave the details to the reader. ut

Remark: It is easy to check that Theorem 13, and Corollary 2 remain valid when the

monotonic counter is replaced by a reversal-bounded counter.

Open Problem: In Theorem 12, Part 1, it would be interesting to find the smallest k for

which the problem is undecidable (even the case k = 2 is open).

When E is a semi-equality relation, we have the following result in [13] which

contrasts Theorem 11:

Theorem 14. It is undecidable to determine, given a nondeterministic 2FAMC M and

a width 1 semi-equality relation E, whether M satisfies E.

Next, consider the following problem, where M is a 2NCM(1) over a∗
1 . . . a∗

n and

E(x1, . . . , xm) is a Presburger formula. We use C[t] to denote the value of counter C
at time t (“time” is used to count the total number of moves). Let q1, . . . , qm be given

states. We say that M m-satisfies E if for some input (i1, . . . , in), there is a computation

of M such that for some t1 < . . . < tm, E(C[t1], . . . , C[tm]) is true and for each qi

(1 ≤ i ≤ m), M is at qi when the current time is ti. We show that this problem is

decidable. Notice that this decidability does not simply follow from Corollary 2.

Theorem 15. It is decidable to determine, given a 2NCM(1) M and a Presburger for-

mula E(x1, . . . , xm), whether M m-satisfies E.

Proof. We construct from M and E another 2NCM(1) M ′ over input alphabet {a1, . . . ,
an, b1, . . . , bm, d1, . . . , dm}. An input w to M ′ is valid if: (a) w has exactly one occur-

rence of dk for each k = 1, . . . , m; (b) w with the dk’s deleted results in a string of the

form ai1
1 . . . ain

n bj1
1 . . . bjm

m ; (c) All the dk’s occur before the occurrence of any bi in w.

We refer to d1, . . . , dk as “markers”.

M ′ first checks that input w is valid. Then it simulates the computation of M on

(i1, . . . , in) ignoring the markers. At some time t1 during the computation, chosen

nondeterministically, M ′ will be in some position within ir. M
′ checks that the symbol

directly to the right of this position is marker d1 (and the state of M is q1). (Note that M ′

may have seen this marker many times earlier but ignored it during the simulation until

it decided that it has reached time t1.) This marker is needed so that M ′ can return to



this position after doing the following: M ′ moves its input head to the right and checks

that j1 is equal to the value of the counter C (if not, it halts and rejects). If it checks

okay, then M ′ restores the value of the counter and moves its input head to marker

d1. Then M ′ resumes the simulation of M , and in the same way nondeterministically

guesses times t2, . . . , tm and checks that the values of counter C at these times are

j2, . . . , jm (as well as the states are q2, . . . , qm), respectively. Finally, M ′ verifies that

E(j1, . . . , jm) is true.

Clearly, M m-satisfies E(C[t1], . . . , C[tm]) for some i1, . . . , in, t1, . . . , tm if and

only if M ′ accepts some input w. The result now follows since emptiness for 2NCM(1)

over bounded languages is decidable by Theorem 2(b). ut

When the times t1, . . . , tm are involved in the Presburger formula, i.e., we now have

E(x1, . . . , xm, t1, . . . , tm), then the above problem is undecidable.

Theorem 16. It is undecidable to determine, given a 2NCM(1) M and a Presburger

formula E(x1, . . . , xm, t1, . . . , tm), whether M m-satisfies E.

Proof. It is known that, in general, a system of quadratic Diophantine equations is un-

solvable [18]. Hence, it is undecidable to determine, given an n and a Presburger for-

mula

P (A1, . . . , An, A1A1, . . . , A1An, . . . , AiAi, . . . , AiAn, . . . , An−1An, AnAn) (1)

(note that we write P in terms of the Ai’s and the AiAj ’s, 1 ≤ i ≤ j ≤ n), whether it

has a nonnegative integer solution in A1, . . . , An. Now, we construct an m, a 2NCM(1)

M and an E such that (1) has a solution if and only if M m-satisfies E. The result then

follows.

M operates on input (A1, . . . , An) in two phases as follows with the counter ini-

tially being 0. In the first phase, for each i = 1, . . . , n, M increments the counter to Ai

while reading the block of Ai (and enters the state qi – we use ti to denote the current

time) and then decrements the counter to 0. As a result, C[ti] = Ai (1 ≤ i ≤ n). Sup-

pose that the state is now qn+1 and the current time is tn+1. In the second phase, from

i = 1 to n, M executes the following subroutine:

1. j := i;
2. Repeat below for 0 or more times (nondeterministically chosen):

2.1. Read the segment of Ai on the input from left to the right and back;

2.2. Increment the counter by 1;

3. Decrement the counter to 0;

4. j := j + 1;

5. If j > n then exit this subroutine else goto 2.

Let qij be the state of M when it is about to execute step 3. Note that each qij is visited

only once during M ’s computation. We use Tij to denote the time when M visits qij

(for simplicity and without loss of generality, we only count the times spent in step 2

and step 3). Assume that ∧i≤jC[Tij ] = Aj . Under this assumption, the loop in step

2 must be repeated for Aj times for each i and j. For 1 ≤ i ≤ n and i ≤ j < n,

Ti(j+1) − Tij = Aj + (2Ai + 1)Aj+1. This is because, between time Tij and time

Ti(j+1), M executes step 3 (takes Aj time units) and executes the loop in step 2 for



Aj+1 times (each loop takes 2Ai time units in step 2.1 and one time unit in step 2.2).

Similarly, for 1 ≤ i < n, T(i+1)(i+1) − Tin = An + (2Ai+1 + 1)Ai+1, and T11 =
(2A1 + 1)A1 + tn+1 (tn+1 is the time when the second phase started). Therefore, each

AiAj , i ≤ j, can be expressed as a linear combination (with positive, negative, zero

coefficients) of the Tij’s and Ai’s. Hence, combining the result of phase 1, each AiAj

as well as each Ai can be expressed as a linear combination of the Tij’s, C[ti]’s, and

tn+1. Substituting each AiAj and each Ai in the conjunction of the assumption and

(1) with the linear combinations representing them, it is not hard to obtain an E with

m = (n + 1) + n(n+1)
2 as required. Note that M is m − 1 reversal bounded. ut

6 Stateless Automata

In this section, we briefly mention some recent results we have obtained concerning

“stateless automata” (that will be reported in full elsewhere). These automata are useful

in analyzing some problem in membrane computing (P systems).

A stateless multihead two-way NFA M is equipped with an input on alphabet Σ
and heads H1, . . . , Hk for some k. The heads are two-way, the input is read-only, and

there are no states. An Hi-move (also called a local move) MOVEi of the NFA can be

described as a triple (Hi, a, D), where Hi is the head involved in the move, a is the

input symbol under the head Hi, and D ∈ {R, L, S} meaning that, as a result of the

move, the head Hi goes to the right, goes to the left, or simply stays. When a head Hi

tries to execute a local move (Hi, a, D), it requires that the symbol under Hi must be a,

otherwise M just crashes. A generalized move is in the form of (Hi,S,D), where S is a

set of symbols, andD is a set of directions (i.e., R, L, S). When executing a generalized

move (Hi,S,D), the symbol Hi reads must belong to S, and Hi nondeterministically

picks up a direction from D.

Note that a local move is a special case of a generalized move. An instruction of

M is a sequence of local or generalized moves, in the form of [MOVEi1 , MOVEi2 , . . .,
MOVEim

], for some m, 1 ≤ m ≤ k, and i1 < . . . < im. (If m = 1, the instruc-

tion is simple called a local instruction.) When an instruction is executed, the heads

Hi1 , . . . , Him
perform the moves MOVEi1 , . . ., MOVEim

, respectively and simultane-

ously. Any head falling off the tape will cause M to crash. The NFA M has a finite set

of such instructions, and each time, nondeterministically picks an instruction to execute.

M has a distinguished (accept ing) heads F ⊆ {H1, ..., Hk}. Initially, all heads are at

the leftmost cell of the input tape. M halts and accepts the input when the designated

heads are all at the rightmost cell. We assume that the input tape of M has a left end

marker . and a right end marker $. Thus, for any input a1...an, n ≥ 2, a1 = ., an = $,

and for 2 ≤ i ≤ n − 1, each ai is different from the end markers.

Theorem 17. The emptiness problem for stateless multihead two-way NFAs is unde-

cidable. The problem becomes decidable when the NFAs have only local instructions.

Actually, we can show that the above theorem holds even if M has only one-way

heads:

Theorem 18. The emptiness problem for stateless 3-head one-way NFAs is undecid-

able.



We don’t know whether the result above holds for NFAs with only two one-way

heads.

Next, we consider the case when the input is restricted. Recall that a language is

bounded if it is a subset of a∗
1a

∗
2 . . . a∗

k for some given symbols a1, . . . , ak.

It is known [11] that if M is a multihead one-way NFA with states but with bounded

input, the language it accepts is a semilinear set effectively constructable from M . In

fact, this result holds, even if M has two-way heads, but the heads can only reverse

directions from right to left or from left to right at most r times, for some fixed r
independent of the input. It follows that Theorem 18 can not be strengthen to hold for

one-way machines accepting bounded languages. However, for two-way machines, by

using the unsolvability of Diophantine systems, we can prove the following:

Theorem 19. The emptiness problem for stateless multihead two-way NFAs remains

undecidable even when the input is bounded.

A special case of Theorem 19 is when the input is unary and without end markers.

In this case, the heads are initially at the leftmost input cell and the automaton accepts

when the heads are all at the rightmost cell (we assume that there are at least two cells

on the input). Using a VAS to simulate the multihead position changes, one can show:

Theorem 20. The emptiness problem for stateless multihead two-way NFAs is decid-

able when the input is unary and without end markers.

However, the above theorem does not hold when we add a left end marker (resp.,

right end marker) to the unary input, i.e., the input is in the form .a . . . a (resp., a . . . a$),

where the input is of length at least 2). The following theorem (whose proof is quite

intricate) is an improvement of Theorem 19.

Theorem 21. The emptiness problem for stateless multihead two-way NFAs is undecid-

able even when the input is unary but with the left end marker (resp., right end marker).

7 Conclusion

In this paper, we gave a brief survey of results that use reversal-bounded counters in

studying reachability problems for various classes of transition systems. We also dis-

cussed the connection between the decidability of reachability in counter machines and

the solvability of certain quadratic Diophantine equations. Finally, we reported on some

preliminary results concerning the emptiness problem for stateless multihead two-way

(resp., one-way) nondeterministic finite automata.
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16. Oscar H. Ibarra, Zhe Dang, and Ömer Egecioglu. Catalytic p systems, semilinear sets, and

vector addition systems. Theor. Comput. Sci., 312(2-3):379–399, 2004.

17. L. Lipshitz. The diophantine problem for addition and divisibility. Transactions of AMS,

235:271–283, 1978.

18. Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.

19. M. Minsky. Recursive unsolvability of Post’s problem of Tag and other topics in the theory

of Turing machines. Ann. of Math., 74:437–455, 1961.

20. P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces. In Proc.

Int. Conf. on Computer-Aided Verification (CAV), Lecture Notes in Computer Science, pages

88–97. Springer, 1998.

21. Gh. Paun. Computing with membranes. Journal of Computer and System Sciences,

61(1):108–143, 2000.

22. Gh. Paun. Membrane Computing, An Introduction. Springer-Verlag, 2002.

23. O. H. Ibarra J. Karhumaki T. Harju and A. Salomaa. Some decision problems concerning

semilinearity and commutation. Journal of Computer and System Sciences, 65:278–294,

2002.

24. Gaoyan Xie, Zhe Dang, and Oscar H. Ibarra. A solvable class of quadratic diophantine

equations with applications to verification of infinite-state systems. In Jos C. M. Baeten,

Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, ICALP, volume 2719

of Lecture Notes in Computer Science, pages 668–680. Springer, 2003.



25. L. Yang, Z. Dang, and O.H. Ibarra. Bond computing systems: a biologically inspired and

high-level dynamics model for pervasive computing. The 6th International Conference on

Unconventional Computation (UC’07), Lecture Notes in Computer Science.



Is the Joint Spectral Radius of Rational

Matrices Reachable by a Finite Product??
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Abstract. A set of matrices is said to have the finiteness property if
the maximal rate of growth of long products of matrices taken from the
set can be obtained by a periodic product. It was conjectured a decade
ago that all finite sets of real matrices have the finiteness property. This
“finiteness conjecture”, is now known to be false but no explicit coun-
terexample is available and in particular it is unclear if a counterexample
with matrices having rational or binary entries is possible. In this paper,
we prove that all finite sets of nonnegative rational matrices have the
finiteness property if and only if pairs of binary matrices do, we state
a similar result when negative entries are allowed, and we prove that
all pairs of 2 × 2 binary matrices have the finiteness property. We also
describe implications of our results for the stability problem for sets of
matrices.

1 Introduction

The joint spectral radius of a set of matrices characterizes the maximum rate of
growth that can be obtained by forming long products of matrices. Let Σ ⊂ R

n×n

be a finite set of matrices. The joint spectral radius of Σ is defined by:

ρ(Σ) = lim sup
t→∞

max{‖A‖1/t : A ∈ Σt} (1)

where Σt is the set of products of length t of matrices from Σ, i.e., Σt =
{A1 . . . At : Ai ∈ Σ}. It is easy to verify that the quantity ρ(Σ) does not depend
on the chosen matrix norm. It has been proved in [1] that the following equality
holds for finite (or bounded) sets Σ:

ρ(Σ) = lim sup
t→∞

max{ρ(A)1/t : A ∈ Σt}
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(ρ is used here to denote the usual spectral radius). It is also known that the
following inequalities hold for all t:

max {ρ(A)1/t : A ∈ Σt} ≤ ρ(Σ) ≤ max {||A||1/t : A ∈ Σt}. (2)

These inequalities provide a straightforward way to approximate the joint spec-
tral radius to any desired accuracy: evaluate the upper and lower bounds for
products of increasing length t, until ρ is squeezed in a sufficiently small interval
and the desired accuracy is reached. Unfortunately, this method, and in fact any
other general method for computing or approximating the joint spectral radius,
is bound to be inefficient. Indeed, it has been proved that, unless P = NP , there
is no algorithm that computes or even approximates with a priori guaranteed
accuracy the joint spectral radius of a set of matrices in polynomial time [5].
And this is true even if the matrices have binary entries.

For some sets Σ, the right hand side inequality in (2) is strict for all t. This
is the case for example for the set consisting of just one matrix

(

1 1
0 1

)

.

Thus, there is no hope to reach the exact value of the joint spectral radius by
simply evaluating the right hand side in (2). On the other hand, since ρ(Ak) =
ρk(A) the left hand side always provides the exact value when the set Σ consists
of only one matrix and one can thus hope to reach the exact value of the joint
spectral radius by evaluating the maximal spectral radii of products of increasing
length. If for some t and A ∈ Σt we have ρ(A)1/t = ρ(Σ), then the value of the
joint spectral radius is reached. Sets of matrices for which such a product is
possible are said to have the finiteness property:

Definition 1. A set Σ of matrices is said to have the finiteness property if
there exists some product A = A1 . . . At with Ai ∈ Σ for which ρ(Σ) = ρ(A)1/t.

One of the interests of the finiteness property arises from its connection with
the stability question for a set of matrices. This problem is of practical interest in
a number of application contexts. A set of matrices Σ is stable if all long products
of matrices taken from the set converge to zero. There are no known algorithms
for deciding stability of a set of matrices and it is unknown if this problem is
algorithmically decidable. One can verify that stability of the set Σ is equivalent
to the condition ρ(Σ) < 1 and we may therefore hope to decide stability as
follows: for increasing values of t evaluate ρ

t
= max{ρ(A)1/t : A ∈ Σt} and

ρt = max{||A||1/t : A ∈ Σt}. From (2) we know that ρ
t
≤ ρ ≤ ρt and so, as

soon as a t is reached for which ρt < 1 we stop and declare the set stable, and
as soon as a t is reached for which ρ

t
≥ 1 we stop and declare the set unstable.

This algorithm will always stop unless ρ = 1 and ρ
t

< 1 for all t. But this last
situation never occurs for sets of matrices that satisfy the finiteness property
and so we conclude:

Proposition 1. Stability is algorithmically decidable for sets of matrices that
have the finiteness property.



It was first conjectured in 1995 by Lagarias and Wang that all sets of real
matrices have the finiteness property [13]. This conjecture, known as the finite-
ness conjecture, has attracted intense attention in recent years and has been
proved to be false by several authors [4,7,12]. So far all proofs provided are non-
constructive and all sets of matrices whose joint spectral radius is known exactly
satisfy the finiteness property. The finiteness property is also known to hold in a
number of particular cases including the case were the matrices are symmetric,
or if the Lie algebra associated with the set of matrices is solvable [20, Corollary
6.19]: in this case the joint spectral radius is simply equal to the maximum of
the spectral radii of the matrices. This follows directly from a result of Liberzon
et al. [14] after a conjecture of Gurvits [9].

The definition of the finiteness property leads to a number of natural ques-
tions: When does the finiteness property hold? Is it decidable to determine if a
given set of matrices satisfies the finiteness property? Do matrices with rational
entries satisfy the finiteness property? Do matrices with binary entries satisfy
the finiteness property? In the first theorem in this paper we prove a connection
between rational and binary matrices:

Theorem 1. The finiteness property holds for all sets of nonnegative rational
matrices if and only if it holds for all pairs of binary matrices.

The case of binary matrices appears to be important in a number applica-
tions [8, 15, 17–19]. These applications have led to a number of joint spectral
radius computations for binary matrices [10, 17, 18]. The results obtained so far
seem to indicate that for binary matrices there is always an optimal infinite
periodic product. Moreover, when the matrices have binary entries they can be
interpreted as adjacency matrices of graphs on an identical set of nodes and in
this context it seems natural to expect optimality to be obtained for periodic
products. Motivated by these observations, the following conjecture is phrased
in [3]:

Conjecture 1. Pairs of binary matrices have the finiteness property.

Of course if this conjecture is correct then nonnegative rational matrices also
satisfy the finiteness property and this in turn implies that stability, that is, the
question ρ < 1, is decidable for sets of matrices with nonnegative rational entries.
From a decidability perspective this last result would be somewhat surprising
since it is known that the closely related question ρ ≤ 1 is not algorithmically
decidable for such sets of matrices [2, 6].

Motivated by the relation between binary and rational matrices, we prove
in our second theorem that pairs of 2 × 2 binary matrices satisfy the finiteness
property. We have not been able to find a unique argument for all possible pairs
and we therefore proceed by enumerating a number of cases and by providing
separate proofs for each of them. This somewhat unsatisfactory proof is never-
theless encouraging in that it could possibly be representative of the difficulties
arising for pairs of binary matrices of arbitrary dimension. In particular, some
of the techniques we use can be applied to matrices of arbitrary dimension.



Let us finally notice that in all the numerical computations that we have
performed on binary matrices not only the finiteness property always seemed
to hold but the period length of optimal products was always very short. The
computation of the joint spectral radius is known to be NP-hard for binary
matrices but this does not exclude the possibility of a bound on the period
length that is linear in the dimensions of the matrices. In the case of matrices
characterizing the capacity of codes avoiding forbidden difference patterns, the
length of the period is even suspected to be sublinear (see Conjecture 1 in [10]).

2 Finiteness property for rational and binary matrices

In this section, we show that the finiteness property holds for nonnegative ra-
tional matrices if and only if it holds for pairs of binary matrices. The proof
proceeds in three steps. First we reduce the nonnegative rational case to the
nonnegative integer case, we then reduce this case to the binary case, and finally
we show how to reduce the number of matrices to two. For the sake of concise-
ness, the ideas of the proofs are rapidly sketched, while the precise reasoning can
be found in the appendices.

Proposition 2. The finiteness property holds for sets of nonnegative rational
matrices if and only if it holds for sets of nonnegative integer matrices.

Proof. From the definition of the joint spectral radius we have that for any
α > 0, ρ(Σ) = (1/α)ρ(αΣ). Now, for any set Σ of matrices with nonnegative
rational entries , let us pick an α 6= 0 ∈ N such that αΣ ⊆ N

n×n. If there exists
a positive integer t and a matrix A ∈ (αΣ)t such that ρ(αΣ) = ρ1/t(A), then
ρ(Σ) = (1/α)ρ1/t(A) = ρ1/t(A/αt), where A/αt ∈ Σt.

We now turn to the reduction from the integer to the binary case.

Theorem 2. The finiteness property holds for sets of nonnegative integer ma-
trices if and only if it holds for sets of binary matrices.

Proof. Consider a finite set of nonnegative integer matrices Σ ⊂ N
n×n. We think

of the matrices in Σ as adjacency matrices of weighted graphs on a set of n nodes
and we construct auxiliary graphs such that paths of weight w in the original
weighted graphs are replaced by w paths of weight one in the auxiliary graphs.
For every matrix A ∈ Σ ⊂ N

n×n, we introduce a new matrix Ã ∈ {0, 1}nm×nm

as follows. We define m as the largest entry of the matrices in Σ. Then, for every
node vi (i = 1, . . . , n) in the original graphs, we introduce m nodes ṽi,1, . . . , ṽi,m

in the auxiliary graphs. The auxiliary graphs have nm nodes; we now define their
edges. For all A ∈ Σ and Ai,j = k 6= 0, we define km edges in Ã from nodes
ṽi,s : 1 ≤ s ≤ k to the nodes ṽj,t : 1 ≤ t ≤ m. The following reasoning leads now
to the claim:

– For any product A ∈ Σt, and any couple of indices (i, j), the corresponding
product Ã ∈ Σ̃t has the following property: ∀s, Ai,j =

∑

r Ãṽi,r ,ṽj,s
. This is

easy to show by induction on the length of the product.



– ∀t, ∀A ∈ Σt, ||A||1 = ||Ã||1, where || · ||1 represents the maximum sum of
the absolute values of all entries of any column in a matrix.

– ρ(Σ) = ρ(Σ̃), and if ρ(Σ̃) = ρ1/T (Ã) : Ã ∈ Σ̃T , then ρ(Σ) = ρ1/T (A), where
A is the product in ΣT corresponding to Ã.

We finally consider the last reduction: we are given a set of matrices and we
reformulate the finiteness property for this set into the finiteness property for
two particular matrices constructed from the set. The construction is such that
the entries of the two matrices are exactly those of the original matrices, except
for some entries that are equal to zero or one.

More specifically, assume that we are given m matrices A1, . . . , Am of dimen-
sion n. From these m matrices we construct two matrices Ã0, Ã1 of dimension
(2m − 1)n. The matrices Ã0, Ã1 consist of (2m − 1) × (2m − 1) square blocks
of dimension n that are either equal to 0, I or to one of the matrices Ai. The
explicit construction of these two matrices is best illustrated with a graph.

Consider the graph G0 on a set of 2m − 1 nodes si (i = 1, . . . , 2m − 1) and
whose edges are given by (i, i + 1) for i = 1, . . . , 2m − 2. We also consider a
graph G1 defined on the same set of nodes and whose edges of weight ai are
given by (m + i − 1, i) for i = 1, . . . , m. These two graphs are represented on
Figure 1 for the case m = 5. In such a graph a directed path that leaves the
node m returns there after m steps and whenever it does so, the path passes
exactly once through an edge of graph G1. Let us now describe how to construct
the matrices Ã0, Ã1. The matrices are obtained by constructing the adjacency
matrices of the graphs G0 and G1 and by replacing the entries 1 and 0 by the
matrices I and 0 of dimension n, and the weight ai by the matrices Ai. For the
case m = 5 the matrices Ã0, Ã1 are thus given by:

Ã0 =





























0 I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0 0
0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 I
0 0 0 0 0 0 0 0 0





























Ã1 =





























0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

A1 0 0 0 0 0 0 0 0
0 A2 0 0 0 0 0 0 0
0 0 A3 0 0 0 0 0 0
0 0 0 A4 0 0 0 0 0
0 0 0 0 A5 0 0 0 0





























The two matrices so constructed inherit some of the properties of the graphs
G0 and G1 and this allows us to prove the following theorem.

Theorem 3. Consider a set of m ≥ 1 matrices Σ = {A1, . . . , Am : Ai ∈ R
n×n}

and define Σ̃ = {Ã0, Ã1} with the matrices Ã0 and Ã1 as defined above. Then
ρ(Σ̃) = ρ(Σ)1/m. Moreover, the finiteness property holds for Σ if and only it
holds for Σ̃.

Proof. The crucial observation for the proof is the following. Consider a path in
G0 and G1. Edges in G0 and G1 have outdegree at most equal to one and so if



Fig. 1. Schematic representation of the macro transitions between subspaces. The full
edges represent transitions in Ã0 and the dashed edges transitions in Ã1.

a sequence of graphs among G0 and G1 is given, there is only one path leaving
i that follows that particular sequence. This fact ensures that any block in any
product of matrices in Σ̃ is a pure product of blocks of the matrices in Σ̃, and
not a sum of such products. Moreover, any path leaving from i and of length km
either returns to i after passing through k edges of G1, or ends at node i + m
after passing through k − 1 edges of G1, or ends at node i + m (mod 2m) after
passing through k + 1 edges of G1. From this it follows that in a product of
length km of the matrices Ã0 and Ã1 there is exactly one nonzero block in every
line of blocks, and this block is a product of length k− 1, k, or k + 1 of matrices
from Σ.

We now show that ρ(Σ̃) ≥ ρ(Σ)1/m by proving that for any matrix A ∈ Σt,
there is a matrix Ã ∈ Σ̃tm such that ||Ã|| ≥ ||A||. Define B̃i = Ãi−1

0 Ã1Ã
m−i
0 ∈

Σ̃m for i = 1, . . . , m so that the block in position (m, m) in B̃i is simply equal to
Ai. Consider now some product of length t, A = Ai1 · · ·Ait

∈ Σt and construct
the corresponding matrix product Ã = B̃i1 . . . B̃it

∈ Σ̃tm. The block in position
(m, m) in Ã is equal to Ai1 . . . Ait

and so ||Ã|| ≥ ||A|| and ρ(Σ̃) ≥ ρ(Σ)1/m.
Let us now show that ρ(Σ̃) ≤ ρ(Σ)1/m. Consider therefore an arbitrary

product Ã ∈ Σ̃l and decompose Ã = C̃Ã′ with C̃ a product of at most m factors
and Ã′ ∈ Σkm. By the observation above we know that there is at most one
nonzero block in every line of blocks of Ã′, and this block is a product of length
k − 1, k, or k + 1 of matrices from Σ. Therefore, if the norm is chosen to be
the maximum line sum, we have ||Ã|| ≤ K1K2||A|| where A is some product of
length k − 1 of matrices from Σ, K1 is the maximal norm of a product of at
most m matrices in Σ̃, and K2 is the maximal norm of a product of at most 2
matrices in Σ. Using the last inequality, we arrive at

||Ã||1/(k−1) ≤ (K1K2)
1/(k−1)||A||1/(k−1).

The initial product Ã is an arbitrary product of length l = km + r and so by
letting k tend to infinity and using the definition of the joint spectral radius we
conclude ρ(Σ̃) ≤ ρ(Σ)1/m.

We have thus proved that ρ(Σ̃) = ρ(Σ)1/m. It remains to prove the equiv-
alence of the finiteness property. If Σ satisfies the finiteness property then



ρ(Σ) = ρ(A1 . . . AT )1/t, then ρ(Σ̃) = ρ(Σ)1/m = ρ(B̃1 . . . B̃T )1/(Tm) and so Σ̃
does too. In the opposite direction, if the finiteness property holds for Σ̃, then we
must have ρ(Σ̃) = ρ(B̃1 . . . B̃T )1/T , and then ρ(Σ) = ρ(Σ̃)m = ρ(A1 . . . AT )1/T .

By combining the results obtained so far in this section, we can now state
our main result. Before we do so, let us notice that the nonnegativeness of the
matrices was not essential in the arguments given so far and this makes a separate
statement possible for matrices with arbitrary rational entries.

Theorem 4. The finiteness property holds for all sets of nonnegative rational
matrices if and only if it holds for all pairs of binary matrices.

The finiteness property holds for all sets of rational matrices if and only if it
holds for all pairs of matrices with entries in {0, 1,−1}.

Proof. The proof for the nonnegative case is a direct consequence of Proposition
2, Theorem 2 and Theorem 3. For the case of arbitrary rational entries, the
results and proofs of Proposition 2 and Theorem 3 may be applied as they are.
For the construction in the proof of Theorem 2, one just has to weight any edge
with −1 whenever it represents a negative entry, and the reasoning in the proof
still holds.

Let us finally remark that for the purpose of reducing the finiteness property
of rational matrices to pairs of binary matrices, we have proved here that for
any set Σ of m matrices with integer (resp. nonnegative integer) entries, there
is always a pair of matrices Σ̃ with entries in {0, 1,−1} (resp. in {0, 1}) such
that ρ(Σ) = ρ(Σ̃)m. Loosely speaking pairs of binary matrices have the same
combinatorial complexity.

3 The finiteness property for pairs of 2 × 2 binary

matrices.

In this section, we prove that the finiteness property holds for pairs of binary
matrices of size 2× 2. Even if this result may at first sight appear anecdoctic, it
has some relevance since it has been shown in the previous section that pairs of
binary matrices are not restrictive. Moreover, even for this 2×2 case, non-trivial
behaviours occur. For instance, the set of matrices

{(

1 1
0 1

)

,

(

0 1
1 0

)}

,

whose behaviour could at first sight seem very simple, happens to have a joint
spectral radius equal to ((3 +

√
13)/2)1/4, and this value is only reached by

products of length at least four. Another interest of this section is to present
techniques that may prove useful to establish the finiteness property for matrices
of larger dimension.

There are 256 ordered pairs of binary matrices of dimension 2. Since we are
only interested in unordered sets we can lower this number to (24(24 − 1))/2 =



120. We first present a series of simple properties that allow us to handle most
of these cases and we then give a complete analysis of the few remaining cases.
The proofs of these properties are given in the appendices. In the following, we
note A ≤ B if the matrix B − A has nonnegative entries.

Proposition 3. For any set of matrices Σ = {A0, A1} ⊂ R
2×2, we have

– ρ({A0, A1}) = ρ({AT
0 , AT

1 }), where AT is the transpose of A,

– ρ({A0, A1}) = ρ({SA0S, SA1S}), where S =

(

0 1
1 0

)

.

Moreover, in both cases the finiteness property holds for one set if and only if it
holds for the other.

Proof. The spectral radius of a matrix is not changed by transposing or by
applying similarity transformations. So for any product of matrices in Σ there
is an obvious product of identical length of matrices in the other set that has
the same spectral radius.

Proposition 4. [20, Proposition 6.13] The finiteness property holds for sets of
symmetric matrices.

Proof. The matrix norm induced by the euclidean vector norm is given by the
largest singular value of the matrix. For symmetric matrices the largest singular
value is equal to the largest magnitude of the eigenvalues. Thus

max {||A|| : A ∈ Σ} = max {ρ(A) : A ∈ Σ}

and from (2) it follows that ρ(Σ) = max {ρ(A) : A ∈ Σ}.

Proposition 5. Let Σ = {A0, A1} ∈ N
n×n. The finiteness property holds in the

following situations:

1. ρ(Σ) ≤ 1,
2. A0 ≤ I (or A1 ≤ I).

Proof. (1) It is known that for sets of nonnegative integer matrices, if ρ ≤ 1,
then either ρ = 0 and the finiteness property holds, or ρ = 1, and there is a
product of matrices in Σ with a diagonal entry equal to one [11]. Such a product
A ∈ Σt satisfies ρ(Σ) = ρ(A)1/t = 1 and so the finiteness property holds when
ρ(Σ) ≤ 1.
(2) If ρ(A1) ≤ 1, then ρ(A) ≤ 1 for all A ∈ Σt and thus ρ(Σ) ≤ 1 and the result
follows from (1). If ρ(A1) > 1 then ρ(Σ) = ρ(A1) and so the finiteness property
holds.

Proposition 6. Let Σ = {A0, A1} ∈ N
n×n. The finiteness property holds in the

following situations:

1. A0 ≤ A1 (or A1 ≤ A0),
2. A0A1 ≤ A2

1 (or A1A0 ≤ A2
1),



3. A0A1 ≤ A1A0.

Proof. (1) Any product of length t is bounded by At
1. Hence the joint spectral

radius of Σ is given by limt→∞ ||At
1||1/t = ρ(A1).

(2) and (3). Let A ∈ Σt be some product of length t. If A0A1 ≤ A2
1 or A0A1 ≤

A1A0 we have A ≤ At1
1 At0

0 for some t0 + t1 = t. The joint spectral radius is thus
given by

ρ = lim
t→∞

max
t1+t0=t

||At1
1 At0

0 ||1/t ≤ lim
t→∞

max
t1+t0=t

||At1
1 ||1/t||At0

0 ||1/t

≤ max (ρ(A0), ρ(A1)).

Hence the joint spectral radius is given by max (ρ(A0), ρ(A1)).

In order to analyse all possible sets of matrices, we consider all possible pairs
(n0, n1), where ni is the number of nonzero entries in Ai. From Proposition 6,
we can suppose ni = 1, 2, or 3 and without loss of generality we take n0 ≤ n1.

– n0 = 1 :
• If n1 = 1 or n1 = 2, the maximum row sum or the maximum column sum

is equal to one for both matrices, and since these quantities are norms it
follows from (2) that the joint spectral radius is less than one and from
Proposition 5 that the finiteness property holds.

• If n1 = 3, it follows from Proposition 6 that the only interesting cases
are:

Σ =

{(

1 0
0 0

)

,

(

0 1
1 1

)}

and Σ0 =

{(

0 1
0 0

)

,

(

1 0
1 1

)}

.

In the first case the matrices are symmetric and so the finiteness property
holds by Proposition 4. We keep Σ0 for later.

– n0 = 2 :
• n1 = 2 : The only interesting cases are:

Σ =

{(

1 1
0 0

)

,

(

0 1
0 1

)}

and Σ1 =

{(

1 1
0 0

)

,

(

1 0
1 0

)}

.

Indeed in all the other cases either the maximum row sum or the maxi-
mum column sum is equal to one and the finiteness property follows from
Proposition 5. The joint spectral radius of the first set is equal to one.
Indeed, it is known that for nonnegative integer matrices, if the joint
spectral radius is larger than one, then there must be a product of ma-
trices with a diagonal entry larger than one [11]. This is impossible here,
since as soon as a path leaves the first node, it cannot come back to it,
and no path can leave the second node. By Proposition 5 the finiteness
property holds for the first set. We keep Σ1 for further analysis.

• n1 = 3 : If the zero entry of A1 is on the diagonal (say, the second
diagonal entry), then, from Proposition 5 we only need to consider the
following case:

{(

0 1
0 1

)

,

(

1 1
1 0

)}

.



These matrices are such that A0A1 ≤ A2
1 and so the finiteness property

follows from Proposition 6.
If the zero entry of A1 is not a diagonal entry, we have to consider the
following cases:

Σ2 =

{(

1 0
1 0

)

,

(

1 1
0 1

)}

and Σ3 =

{(

0 1
1 0

)

,

(

1 1
0 1

)}

.

We will handle Σ2 and Σ3 later.
– n0, n1 = 3 : It has already been noticed by several authors (see, e.g., [20,

Proposition 5.17]) that

ρ

({(

1 1
0 1

)

,

(

1 0
1 1

)})

= ρ

((

1 1
0 1

)

·
(

1 0
1 1

))1/2

=

√

1 +
√

5

2
.

After excluding the case of symmetric matrices and using the symmetry
argument of Proposition 3, the only remaining case is:

{(

1 1
0 1

)

,

(

1 1
1 0

)}

,

but again these matrices are such that A0A1 ≤ A2
1 and so the finiteness

property follows from Proposition 6.

We now analyse the cases that we have identified above. For Σ0, notice that
A2

0 ≤ A0A1. Therefore, any product of length t is dominated by a product of
the form At1

1 A0A
t2
1 A0 . . . Atl

1 for some t1, tl ≥ 0 and ti ≥ 1 (i = 2, . . . , l − 1).
The norm of such a product is equal to (t1 + 1)(tl + 1)t2 · · · tl−1. The maximal
rate of growth of this norm with the product length is given by 5

√
4 and so the

joint spectral radius is equal to 5
√

4 = ρ(A4
1A0)

1/5
. The maximal rate of growth

is obtained for ti = 4.
For Σ1, simply notice that maxA∈Σ2 ρ(A) = maxA∈Σ2 ||A||∞ = 2, where

|| · ||∞ denotes the maximum row sum norm. Hence by (2) we have ρ(Σ) =
ρ(A0A1)

1/2 =
√

2.
Consider now Σ2. These matrices are such that A2

0 ≤ A0A1 and so any
product of length t is dominated by a product of the form At1

1 A0A
t2
1 A0 . . . Atl

1

for some t1, tl ≥ 0 and ti ≥ 1 (i = 2, . . . , l − 1). We have

At1
1 A0 . . . Atl

1 A0 =

(

(t1 + 1) . . . (tl + 1) 0
(t2 + 1) . . . (tl + 1) 0

)

and the maximum rate of growth of the norm of such a product is equal to
√

2.
This rate is obtained for ti = 3 and ρ = ρ(A3

1A0)
1/4 =

√
2.

The last case, Σ3, is more complex and we give an independent proof for it.

Proposition 7. The finiteness property holds for the set
{(

1 1
0 1

)

,

(

0 1
1 0

)}

.



Proof. Because A2
0 = I we can assume the existence of a sequence of maximal-

normed products Πi of length Li, of the shape Bt1 . . . Btl
with Bti

= Ati

1 A0,
∑

tk+
l = Li, and lim ||Πi||1/Li = ρ(Σ). We show that actually any maximal-normed
product only has factors B3, except a bounded number of factors that are equal
to B1, B2, or B4 and so the finiteness property holds.
Let us analyse one of these products Π . We suppose without loss of generality
that Π begins with a factor B3. First, it does not contain any factor Bt : t > 4
because for such t, Bt−3B2 ≥ Bt and we can replace these factors without
changing the length.
Now, our product Π has less than 8 factors B4, because replacing the first seven
factors B4 with B3, and the eighth one with (B3)

3 we get a bigger-normed prod-
uct of the same length (this is because B3 ≥ (3/4)B4, and (B3)

3 ≥ (33/4)B4).
We remove these (at most) seven factors B4 and by doing this, we just divide
the norm by at most a constant K0.
We now construct a bigger-normed product Π ′ by replacing the left hand sides of
the following inequalities by the respective right hand sides, which are products
of the same length:

BiB1B1Bj ≤ BiB3Bj

B2B1B2 ≤ B3B3

B3B1B2 ≤ B2B2B2

B2B1B3 ≤ B2B2B2.

If the factor B3B1B3 appears eight times, we replace it seven times with B3
2 ≥

(4/5)B3B1B3 and the last time with B3
2B2

3 which is greater than 7B3
2 . By re-

peating this we get a new product Π ′′ ≥ 7(4/5)8Π ′(1/K0) > Π ′(1/K0) that has
a bounded number of factors B1. We remove these factors from the product and
by doing this we only divide by at most a constant K1.
If there are more than four factors B2 in the product, we replace the first
three ones with B3, and remove the fourth one. It appears that for any X ∈
{B2, B3}, B2

3X > 1.35B3B2X, and on the other hand, B2
3X ≥ B2

3B2X
1

2,4349 .

Then each time we replace four factors B2 we get a new product: Π ′′′ ≥
1.353

2.4348Π ′′(1/K1) > Π ′′(1/K1). Finally we can remove the (at most) three last
factors B2 and by doing this, we only divide the product by at most a constant
K2. By doing these operations to every Πi, we get a sequence of products Π ′′′

i ,
of length at most Li. Now, introducing K = K0K1K2, we compute

ρ ≥ lim ||Π ′′′

i ||1/(Li) ≥ lim ||(1/K)Πi||1/(Li) = ρ.

Hence ρ = lim ||(A3
1A0)

t||1/(4t) = ρ(A3
1A0)

1/4 = ((3+
√

13)/2)1/4, and the finite-
ness property holds.

4 Conclusion

This paper provides a contribution to the analysis of the finiteness property for
matrices that have rational entries. We have shown that the finiteness property



holds for all sets of matrices with nonnegative rational entries if and only if it
holds for pairs of matrices with binary entries. For pairs of binary matrices of
dimension 2 × 2 we have shown that the property holds true and we conjecture
that it holds for binary matrices of arbitrary dimension. A natural way to prove
the conjecture for pairs of binary matrices would be to use induction on the
size of the matrices, but this does not seem to be easy. If the conjecture is
true, it follows that the stability question for matrices with nonnegative rational
entries is algorithmically decidable. If the conjecture is false, then the results
and techniques developed in this paper can possibly help for constructing a
counterexample.
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Catholique de Louvain, 2005.



Reachability Problems in Low-Dimensional

Iterative Maps

Oleksiy Kurganskyy1, Igor Potapov2, and Fernando Sancho Caparrini3

1 Institute of Applied Mathematics and Mechanics, Ukrainian National Academy of
Sciences, 74 R. Luxemburg St, Donetsk, Ukraine, kurgansk@gmx.de

2 Department of Computer Science, University of Liverpool, Chadwick Building,
Peach St, Liverpool L69 7ZF, U.K., igor@csc.liv.ac.uk

3 Department of Computer Science and Artificial Intelligence, University of Seville,
Spain, fsancho@us.es

Abstract. In this paper we analyse the dynamics of one-dimensional
piecewise maps (PAMs). We show that one-dimensional PAMs are equiv-
alent to pseudo-billiard or so called “strange billiard” systems. We also
show that the more general class of rational functions leads to undecid-
ability of reachability problem for one-dimensional piecewise maps with
a finite number of intervals.

Keywords: Theory of computing, iterative piecewise maps, pseudo-billiard
systems, universality

1 Introduction

In the present work we investigate a class of hybrid systems defined by one-
dimensional piecewise maps. We are mainly interested in a class of one-dimensional
piecewise-affine maps (PAMS) [2]. The analysis of piecewise-affine maps is one of
the simplest model that generate complex behaviour, see [2–4, 6, 7]. It is known
that the reachability problem is undecidable for the two-dimensional case and it
is open for dimension one [1, 2].

It was recently shown that PAM is equivalent to hierarchical piecewise con-
stant derivatives system (HPCD)[2]. In this paper we show that PAM is also
equivalent to planar pseudo-billiard systems (PBSs) or so called “strange bil-
liards” model that is a well known object in bifurcation and chaos theory [10,
11]. In contrast to HPCD which is a hybrid automaton where each state is de-
fined by planar piecewise constant derivatives system (PCD), the model of PBS
can also be seen as two dimensional linear hybrid automaton but with only one
state.

Although the reachability for PAMs is known to be open we think that the
shown equivalence between PBSs and PAMs can be useful and the results from
chaos theory about “strange billiards” [10, 5, 11] could help understand the com-
plexity in one-dimensional piecewise-affine maps.



In the second part of this paper we are exploring the complexity of more
general class of rational maps that includes affine maps. It was shown in [8]
that piecewise iterative maps defined by a very restricted basis of elementary
functions:

{x2, x3, 2
√

x, 3
√

x, x ± 1, 10 · x}

can simulate a Minsky machine even in dimension one. Comparing to [8], we
found a new way how to create a copy of information for a temporal use in
dimension one. We show that it is possible to avoid square root and cube root
functions using only rational functions. However in the current construction two
of the finite number of intervals we define are infinite. As a main result in this part
we show how to simulate (in direct way) a Minsky machine in one-dimensional
piecewise rational maps (PRM) of degree 2. From it follows that the reachability
problem for PRM is undecidable.

It would be interesting to investigate a natural class of one-dimensional piece-
wise linear rational maps that is in between affine and rational maps. The main
motivation for this class of systems is based on the fact that the reachability
in one-dimensional piecewise linear rational maps can be seen as parameterized
reachability in two dimensional linear1 maps. Another interesting question is
nondeterministic maps where transformations can be applied in any order. In
this case reachability problems for nondeterministic linear rational maps corre-
sponds to parametrized membership in 2 × 2 matrix semigroups. According to
undecidability in PRM we think that it is also very likely to find undecidability of
reachability problems in a nondeterministic version of one-dimensional rational
maps.

2 Preliminaries

In what follows we use traditional denotations N, Q and R for the sets of natu-
rals, rationals and reals respectively.

A function from a set A to a set B, we will denote by f : A → B. If f is
an injection such that dom(f) = A, then it will be denoted by f : A ↪→ B. In
some cases we put x 7→ y under the definition of a function f to express that
y = f(x), for example:

f : R → R

x 7→ ax + b

is a way to say that f(x) = ax + b.

If we have a set A in a topological space (usually we will consider R or R2

with the euclidian topology), we will denote by int(A) (the interior of A) the
greatest open subset of A (int(A) = ∪{G : G open and G ⊆ A}).
1 A two dimensional linear function f is a function of the following type f(x, y) =

ax + by



2.1 Dynamical Systems

Definition 1. A dynamical transition system is a triple S = (X, T, Σ), where
X is a set (the set of points of the system), T : X → X (the transition function
that produces the evolution of the system), and Σ is a collection of subsets of X
(this component is only considered in the case we are interested in the symbolic
behavior of the system).

Remark 1. Usually, we will require Σ to be a partition of X , or at least to be a
collection of pairwise disjoint subsets of X (in the case we are interested in the
dynamical behavior of some parts of X , using the rest as auxiliary computation).
Also, we will see Σ as an alphabet, and we will study the language generated by
the system on this alphabet.

Definition 2. Let S = (X, T, Σ) a dynamical system, and x ∈ X. The sequence
{xn}n≥0, such that:

– x0 = x,
– for every n ≥ 0, xn+1 = T (xn).

is called the orbit of x by the system S, and it will be denoted as OS(x).

x0

x1

x2 x6

x5

x7

x4

I1

I2

I3 I4

X

Fig. 1. Example of a dynamical system with an orbit in it

In Figure 1 we have a dynamical system S = (X, T, Σ) = {I1, I2, I3, I4}),
where a partial orbit of a point, x0, is shown.

Definition 3. Let S = (X, T, Σ) be a dynamical system, and x ∈ X. Let’s
associate the set X \ ∪w∈Σw to the element ε (the empty word). The symbolic
dynamics of x in terms of Σ is the set:

SS(x) = {w ∈ Σ∗ : ∀n ≥ 0 (OS(x)n ∈ wn)}

Where we use the notation w = w1w2 . . ..
In example above, SS(x0) = I1I2I2I1εI4I2 = I1I2I2I1I4I2. Note that point

x5 in the orbit has no representation in its symbolic dynamics.

Remark 2. If Σ is a collection of pairwise disjoint subsets of X , then for every
point x ∈ X , SS(x) has only one element.



Definition 4. Let S1 = (X1, T1, Σ1) and S2 = (X2, T2, Σ2) two dynamical sys-
tems. We will say that S2 simulates S1 if there exists an injection ϕ : X1 ↪→ X2,
and an injection σ : Σ1 ↪→ Σ2 such that for every x ∈ X1, we have:

SS2
(ϕ(x)) = σ̂(SS1

(x))

where σ̂ : Σ∗
1 ↪→ Σ∗

2 is the morphism generated by σ.

2.2 Pseudo Billiard Systems

Let us introduce the pseudo billiard model that already appeared in a different
context and became an abstract framework for some practical problems. In this
system we consider a number of segments with vector fields assigned to them.
The computation in this system can be described by the dynamics of the particle,
which initially moves with the constant velocity (in a particular direction) inside
a given region (not necessarily a polyhedron) and changes it instantaneously at
the moment of a collision with the boundary to the velocity defined by a given
vector field on the boundary.

We start with a more general definition for PBS’s, where we have no con-
straints on distributing the segments around the space. In this case, a particle
can touch the segments by both faces, and therefore it may cross them by the
action of their projection vectors.

Definition 5. A Pseudo Billiard System (PBS) is a pair (A,V), where A is a
set of pairwise disjoint segments in R2 (closed, open or semi-open), and V =
{vA}A∈A is a set of vectors in R2 − {(0, 0)} (vA is called the projection vector
of A).

The dynamics of a particle in PBS can be defined as follows. Let a particle P
that is represented by a vector x and is located on a segment A ∈ A, i.e. x ∈ A.
The transition function that moves P from x to a position x′ can be defined as
follows: x′ = x + λvA, where λ = min{δ > 0 : x + δvA ∈ ⋃

A′∈A A′}. We will
suppose that for every x ∈ A there exists such a λ (the particle is trapped inside
the system).

a)

x0

x1

x2

x3

b)

x0

x1

x2

x3

Fig. 2. An example of partial orbit: a) in a PBS, b) in a reflecting PBS

The PBS can be seen as a dynamical transition system S = (X, T, Σ) where:



– X =
⋃

A∈A A,
– T (x) = x + λvA, where x ∈ A and λ = min{δ > 0 : x + δvA ∈ ⋃

A′∈A A′}
– Σ is any collection of subsets of X (usually it will be a subset of A).

Definition 6. A PBS is reflecting, if for every A ∈ A, the set T−1(A) and
T (A) are in the same half-plane determined by A.

2.3 Piecewise Affine Maps

Definition 7. We say that f : R → R is a piecewise affine map (PAM) if there
exists a partition of dom(f) in a finite number of intervals of R (we allow the
intervals to be closed, open or semi-open intervals), I, and for every I ∈ I, there
exists aI , bI ∈ R such that: ∀x ∈ I, f(x) = aIx + bI .

Remark 3. If we have f(dom(f)) ⊆ dom(f), then we can consider a dynamical
system associated to it, S = (X, T, Σ) where:

– X = dom(f),
– T = f(x) and
– Σ is any collection of subsets of X (usually it will be a subset of I).

I1 I2

I3 I4 I5

x1

x2

x0

x3

Fig. 3. An example of partial orbit in a PAM (represented on the diagonal)

Definition 8. A rational function is a function defined as a ratio of polyno-
mials. For a single variable x a typical rational function is therefore f(x) =
P (x)/Q(x), where P and Q are polynomials in x as indeterminate, and Q is not
the zero polynomial.

We also give the definition of a more general class of rational functions that
we are going to study in the paper. We define it over Q to show that even in
this case the predictability of its behaviour is an undecidable problem.

Definition 9. A Piecewise (one-dimensional) rational map (PRM) is a function
that is defined on a finite sequence of disjoint intervals I− = (−∞, r−], I+ =
[l+, +∞), Ii = [li, ri] with r−, l+, li,ri ∈ Q, i = 1..k and uses rational functions
for different parts of its domain.



The computation in the above system can be understood as a generation of
sequence of points. One of the obvious problems that arises in such systems is a
point-to-point reachability problem that can be formulated as follows:

Problem 1. Given two points x, y ∈ Q and a one-dimensional piecewise map P .
Decide whether y is reachable from x in P .

3 Equivalence between Dynamical Systems

In this section we will study the equivalence between the models introduces
above. We will say that two models are equivalent if for every system of one
type there exists a system of another type that simulates it and vice versa. In
particular we are giving geometrical constructions to show the equivalence of one-
dimensional PAM, planar PBS and planar reflective PBS. Moreover using the
result that model of hierarchical piecewise constant derivative systems (HPCDs)
is equivalent to one-dimensional PAMs we can state that planar PBS is equivalent
to two-dimensional HPCDs (see [2]). Hence the complexity that can be obtained
with any of them is the same.

3.1 PAM simulates PBS

The first step through the equivalence will be devoted to prove that any PBS
system (reflecting or not) can be simulated by a PAM system.

Theorem 1. For every Pseudo Billiard System, {A,V}, there exists a Piecewise
Affine Map that simulates it.

Proof. Let us consider a PBS given by a set of segments A = {Ai} and a set of
associated projection vectors {vi}. You can see an example on Figure 4 .a.

a)

{ }

A1

A2

A3

A4

~v 1
~v 2

~v 3

~v 4

b)

A1

1,2

A1

1,4

A1

1,3A2

1,4A1

A2

A3

A4

~v 1

Fig. 4. a) Example of PBS to be simulated by a PAM; b) Projection of A1 on other
segments of the PBS, and the partition on A1 that it generates

The dynamics of the PBS is defined by projecting every point of Ai on some
other segment by using the projection vector vi. It is clear, from the definition
of PBS, that we can make a partition of Ai in segments, {Ak

i,j}, in such a way

that every point of {Ak
i,j} is projected on a point of Aj (see Figure 4 .b). The

next step is to associate for every segment of the system, Ai, an interval on



the line, Ii, by using an affine bijection, µi : Ai → Ii. Also, we will require
these intervals to be pairwise disjoint. For every i, j, k such that Ak

i,j 6= ∅, the

projection P k
i,j : Ak

i,j → Aj is an affine transformation. Also, all the functions µi

are affine transformations.

a) b) c) d)

Fig. 5. Projections: a) from A1; b) from A2; c) from A3; d) from A4

Hence, we can define an affine map

fi,j,k : µi(A
k
i,j) → µj(Aj)

x 7→ µj(P
k
i,j(µ

−1
i (x)))

Since {Ak
i,j}i,j,k is a partition of the points of the PBS, {Ik

i,j}i,j,k is a partition
of the set of intervals considered, hence we obtain that the map

f :
⋃

i,j,k

Ik
i,j →

⋃

i,j,k

Ik
i,j

x 7→ fi,j,k(x), if x ∈ Ik
i,j is a piecewise affine map.

A1 A2 A3 A4

A1

A2

A3

A4

Fig. 6. PAM obtained after the process

In order to prove the dynamical simulation, let us consider the following
injection between the set of points of the systems:

ϕ :
⋃

Ai ↪→ ⋃
Ii

x 7→ µi(x), if x ∈ Ai.

If Σ is the subset of A that produces the symbolic dynamics, then Σ ′ =
{ϕ(I) : I ∈ Σ} is the collection to be considered in the PAM, and σ : Σ → Σ ′



defined by σ(I) = ϕ(I) is the injection for the dynamics. From the construction,
it is obvious that f simulates the given PBS.

Lemma 1. The number of affine functions we need in order to simulate a PBS
is bounded2 by |A|(|A| + 2).

Proof. Idea: for every segment of the PBS, the partition we need to make all
possible projections on the other segments is bounded in size by |A| + 2.

3.2 PBS simulates PAM

Next, we will prove that for any PAM we can build a PBS simulating its dynami-
cal behavior. Indeed, we will see that they can be simulated using only reflecting
PBS’s, hence there is no difference (regarding the dynamical complexity of the
system) in using a general PBS or restrict ourselves to reflecting PBS’s.

Nevertheless, we will prove in a first step that, for every PAM we can get a
general PBS (usually not reflecting) that simulates the given PAM. The proof is
based on the graphical idea about how to compute the orbit of a point directly
on the graph generated by the PAM (where we consider the dynamics on the
diagonal rather than on the X axis) using the iterated projections between the
affine map and the diagonal.

Fig. 7. PBS associated to a PAM

In this example we can see that the PBS obtained by the dynamics of the
PAM over the diagonal is, in general, a non reflecting one, because depending
its definition, we will need to cross some of the affine map graphs to reach the
diagonal. In any case, it is not a problem, because if we must cross one map
from another one, it is because both of them are in the same half-plane from the
diagonal, and then their associated vectors are parallel and in the same direction.

It is easy to see that, if we restrict the dynamics on the set of segments over
the diagonal, rather than on the X axis, the system we obtain is equivalent to
the original one.

2 In case of reflecting PBSs, the bound can be reduced to |A| + 2



Theorem 2. For every Piecewise Affine Map there exists a Pseudo Billiard
System that simulates it.

Proof. Let f =
⋃n

i=1 fi a PAM where every fi is an affine map over an interval
Ii. We consider the following segments on R2:

– For every Ii = [ai, bi], we consider its projection on the diagonal, x = y, that
we note as Ai.

– For every Ii we consider the segment given by (ai, fi(ai)) − (bi, fi(bi)), that
we note as f(Ai).

We can consider that there is no intersection between the interior of seg-
ments of the PAM (otherwise if any Ai intersects with some f(Aj), we consider
the intersection point, and subdivide both segments, leaving this point in the
diagonal segment (in Figure 7 we have split the second affine function in order
to have segments with no intersection in their interiors). Of course, the obtained
PAM is equivalent to the original one.

The vectors associated with every segment is given by the following rule: for
every i

– if int(f(Ai)) is inside the half-plane x < y (the upper half) then the vector
associated to Ai is (0, 1), and the vector associated to f(Ai) is (1, 0).

– if int(f(Ai)) is inside the half-plane x > y (the lower half) then the vector
associated to Ai is (0,−1), and the vector associated to f(Ai) is (−1, 0).

In order to prove the dynamical simulation, let us consider the following
injection between the set of points of the systems:

ϕ :
⋃

Ii ↪→ ⋃
Ai

x 7→ (x, x)

and, following the same procedure as in theorem 1, the same injection be-
tween the dynamics of the systems.

From the construction, it is obvious that the resulting PBS simulates the
given PAM (note that we use only a part of the dynamics of the PBS, considering
only the dynamics on the diagonal, and not the evolution of the points through
the other segments, necessary for the correct computing of the evolution, but
not for the dynamics itself).

3.3 Reflecting PBS simulates PAM

Theorem 3. For every Piecewise Affine Map there exists a Reflecting Pseudo
Billiard System that simulates it.

Proof. Let f : I → I be a PAM expressed in such a way that I =
⋃n

i=1 Ii is union
of pairwise disjoint intervals, and for every i, f|Ii

= fi, where fi(x) = aix + bi is
an affine function.

The first step of the proof consists in assigning to every interval of the PAM
a segment in R2 where we simulate the dynamics of the system. Since fi : Ii → I



I1 I2 I3 I4 I5

I1

I2

I3

I4

I5

Fig. 8. PAM to be simulated

is affine, and Ii is an interval, fi(Ii) must be an interval too. Hence, the image of
every interval of our partition must be inside an union of intervals of our partition
that constitutes a larger interval. To make more direct the proof, we will maintain
the continuity among intervals of f by considering for every interval, Ii ⊆ R, of
f , the segment Ai = Ii × {0} ⊆ R2.

Now, we will simulate the dynamics of each affine map separately. Because
the segments Ai are in the same line, we can’t go directly from one to another
by using projections, therefore we will make use of auxiliary reflection segments
to produce the same result as f produces.

Depending on the coefficients of the affine map, there are three different
cases:

1. Case 1: ai > 0. In this case there is no flip from Ai to fi(Ai), so we will
need only one reflecting auxiliary segment to simulate the application of f ,
Bi (see figure 9 .a).

a)

the application of f , Bi (see fi g u re 1 1 ).

Ai fi(Ai)

Bi

F ig u re 1 1 : C ase 1 : a > 0
b) Ai fi(Ai)

Bi B′

i

F ig u re 1 2 : C a se 2 : a < 0
c) Ai

fi(Ai)

Bi

Fig. 9. a) Case 1: ai > 0 b) Case 2: ai < 0 c) Case 3: ai = 0

2. Case 2: ai < 0. In this case there is a flip from Ai to fi(Ai), so we will need
two reflecting auxiliary segments, Bi and B′

i, to simulate the application of
f (see figure 9 .b).

3. Case 3: ai = 0. In this case f(Ai) is a point, and we will make use of only
one reflecting auxiliary segment, Bi, to project to this point (see Figure 9 .c).
Indeed, it can be seen as a extremal subcase of case 1.



We can construct simultaneously all these segments with projection vectors
on R2 without disturbing one to each other, obtaining a reflecting PBS (see
Figure 10 for a complete construction for PAM in Figure 8).

a) A1 A2 A3 A4 A5

B2

B1

B
′

2

B3 B4

B5

B
′

4

b) A1 A2

A3

A4

A5

B2

B4

Figure 15: A reflecting PBS simulating previous PAM using 7 segments

Fig. 10. a) Reflecting PBS simulating PAM b) PBS with reduced number of segments

In order to prove the dynamical simulation, let us consider the following
injection between the set of points of the systems:

ϕ :
⋃

Ii ↪→ ⋃
Ai

x 7→ (x, 0)

and the same injection between the dynamics as in the previous theorems.
From the construction, it is obvious that the resulting PBS simulates the

given PAM (note that, again, we use only a part of the dynamics of the PBS,
considering only the dynamics on the segments Ai, and not the evolution of the
points through the other segments, necessary for the correct computing of the
evolution, but not for the dynamics itself).

From above construction, we obtain an upper bound to the number of seg-
ments we need in a reflecting PBS to simulate a PAM.

Corollary 1. Let f be a PAM with N affine functions. Let R be the number of
affine maps, fi, with ai < 0. Then, there is a reflecting PBS simulating f using,
at most, 2N + R reflecting segments.

Remark 4. The method of construction presented previously is not efficient in
general, but it works for any possible PAM. In a number of PAM’s, it is possible
to reduce the number of elements of the PBS simulating the PAM. For example,
in Figure 10 .a, we can identify segment A3 with B3 (of course, taking A3 out of
the X-axis), making unnecessary the use of B1, B3 and B5. Also, in this example,
if we change the orientation of A4 and A5 we can avoid the use of some auxiliary
segments, B′

2 and B′
4. We have reduced the construction from 12 segments to

only 7 (it is easy to check that in this example we need, at least, 5 segments in
order to simulate the dynamics), see Figure 10 .b.



Since Q is closed under linear rational transformations, if we restrict segments
and vectors in Q2 for the PBS, and intervals and coefficients in Q for the PAMs,
everything can be proved in the same way and the equivalence remains true.

4 Unpredictability in rational piecewise maps

In this section we show that the reachability problem in one dimensional ratio-
nal piecewise maps is undecidable since for every Minsky machine [9] we can
define a PRM that simulates its computation. Actually we need to show how
the states, transition function and updates of integer counters can be simulated
by a piecewise rational map P .

We found a new way how to create a copy of information for a temporal use in
dimension one by means of rational functions. It allows us to simulate (in direct
way) a Minsky machine in one-dimensional piecewise rational maps (PRM) of
degree 2. Note that one-dimensional piecewise affine maps is a subclass of PRMs.

Let A be a 2-counter machine with a set of states S = {1, 2, . . . , n}. The
configuration of A is a triple [k, l, s] where k and l are values of two counters
and s is a current state of A. Let us define the mapping φ : N×N×N → Q that
is an isomorphism between a configuration [k, l, s] of A and a rational number
s + 1

2k+13l+1 that is shifted to the interval (0,1)

φ([k, l, s]) → 1

10H
(s +

1

2k+13l+1
), H = dlg(|S|)e

Instead of classical Minsky machine from now on we will consider a well-
known equivalent model of two counter machine where one of the counters is used
as a scratchpad. Another, counter holds an integer whose prime factorization is
2c · 3d. The exponents c, d can be thought of as two virtual counters that are
being simulated. If the real counter is set to zero then incremented once, that
is equivalent to setting all the virtual counters to zero. If the real counter is
doubled, that is equivalent to incrementing c, and if it is halved, that is equivalent
to decrementing c. By a similar procedure, it can be multiplied or divided by 3,
which is equivalent to incrementing or decrementing d.

To check if a virtual counter such as c (d) is equal to zero, just divide the
real counter by 2 (3), see what the remainder is, then multiply by 2 (3) and add
back the remainder. That leaves the real counter unchanged. The remainder will
have been nonzero if and only if c (d) was zero.

Let A be in configuration [k, l, s] and it is represented by a number

x =
1

10H
(s +

1

2k+13l+1
).

Let us show that we can perform the operations of multiplication and division
by 2 and 3 in a piecewise rational map P . To multiply/divide virtual counter by
2 or/and 3 we can use the following expression for x, where a,b are integers:

(10Hx − s)2a3b + s

10H



Now, we construct a system of intervals with rational functions, associated to
them, that allows us to check divisibility of the value of the virtual counter by 2
and 3 or in other words to perform a zero testing on counters of original Minsky
machine. For each state s of a counter machine we define the following intervals
and functions:

Let us assume that the current configuration [k, l, s] of a machine M is rep-
resented by a rational number x. If M is in a state s then x belongs to the
interval [ s

10H , s+1
10H ]. Assuming that we know the current state we can add to x

an integer 2k+13l+1 by expression 1
(10Hx−s) + x. In fact for further simulation

of checking the emptiness of the one Minsky machine counter we would need to
add an integer 2k3l+1 using the expression 1

2(10Hx−s) + x. Such operation gives

us an extra information about the counter values in integer part of the number.
It is important that we can use it now for some temporal computations and keep
another copy of the current state and counter values in the decimal part of the
number.

Now we can easily check whether a virtual counter is divisible by 2 iteratively
applying x − 2 while the point x is in the interval [3, +∞). Finally a point x
should reach either the interval [2, 3], which corresponds to k 6= 0, or the interval
[1, 2], which corresponds to k = 0.

In a similar way we can check divisibility by 3 from a state s using nega-
tive numbers. If x ∈ [ s

10H , s+1
10H ] we apply −( 1

3(10Hx−s)
+ x) and then x + 3 for

any point in the interval (−∞,−4]. Next the number x should appear in the
interval [−4,−3], which corresponds to l 6= 0 or in the interval [−3,−1], which
corresponds to l = 0.

Now we define a piecewise rational map to simulate all operations of Minsky
machine such as state transitions, update of counters and testing them for zero.
Initially let us define two intervals for intermediate computations related to the
zero testing in counters:

If x ∈ [3, +∞) then apply x − 2, If x ∈ (−∞,−4] then apply x + 3

Next for every command of the Minsky machine

State s: IF k 6= 0 THEN k=k+a, l=l+b GOTO State t ELSE GOTO State p

we define a set of intervals with assigned rational functions:

If x ∈ [ s
10H , s+1

10H ] then apply 1
2(10Hx−s) + x

If x ∈ [2 + s
10H , 2 + s+1

10H ] then apply (10H (x−2)−s)·2a3b+t

10H

If x ∈ [1 + s
10H , 1 + s+1

10H ] then apply (10H (x−1)−s)+p

10H



where a ∈ Z stands for increasing (decreasing) of the first counter by an
integer a, and b ∈ Z stands for increasing (decreasing) of the second counter by
an integer b.

Next for every command of the Minsky machine with testing of the second
counter for zero

State s: IF l 6= 0 THEN k=k+a, l=l+b GOTO State t ELSE GOTO State p

We define a set of intervals in a similar way:

If x ∈ [ s
10H , s+1

10H ] then apply −( 1
3(10Hx−s) + x)

If x ∈ [−(3 + s
10H ),−(3 + s+1

10H )] then apply (10H(x+4)−s)·2a3b+t

10H

If x ∈ [−(2 + s
10H ),−(2 + s+1

10H )] then apply (10H(x+3)−s)+p

10H

If x ∈ [−(1 + s
10H ),−(1 + s+1

10H )] then apply (10H(x+2)−s)+p

10H

Since the computation of a Minsky machine can be simulated by a specially
designed PRM the following theorem holds:

Theorem 4. One-dimensional piecewise rational map with a finite number of
intervals is the universal model of computations.

Corollary 2. The reachability problem (Problem 1) for one-dimensional PRM
is undecidable.

Corollary 3. There exists a particular one-dimensional PRM , that corresponds
to the universal Minsky machine, for which the point-to-point reachability prob-
lem is undecidable.

5 Conclusion

In this paper we show that the model of one-dimensional PAMs is equivalent to
a known model of strange billiards from bifurcation and chaos theory. On the
other hand we show that predictability in more general one-dimensional class
of functions (that includes one-dimensional PAMs) is not possible since we can
encode a universal model of computation such as Minsky Machine.

It would be interesting to investigate a natural class of one-dimensional lin-
ear rational maps that is in between affine and rational maps. As far as we
know the reachability problem for piecewise or nondeterministic maps is open
in both cases. The reachability in piecewise linear rational maps related to pa-
rameterized reachability in two-dimensional linear maps and the reachability in
nondeterministic linear rational maps can be interpreted as parameterized vector
reachability problem in 2 × 2-matrix semigroups.
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Abstract. We present an approach to verification of parameterized sys-
tems, which is based on program transformation technique known as
supercompilation. In this approach the statements about safety proper-
ties of a system to be verified are translated into the statements about
properties of the program that simulates and tests the system. The su-
percompilation is used then to establish the required properties of the
program. In this paper we show that reachability analysis performed by
supercompilation can be seen as the proof of a correctness condition by
induction. We formulate suitable induction principles and proof strate-
gies and illustrate their use by examples of verification of parameterized
protocols.

Keywords: Program verification, cache coherence protocols, program
specialization, supercompilation.

1 Introduction

The verification of infinite-state or parameterized problems is, in general, an
undecidable problem. The research in this area is focused on finding restricted
classes of problems, for which verification is decidable and the development of
efficient verification procedures for practical applications. The research is active
and taking different routes [10, 8, 3, 2, 1]. But still many practically interesting
verification problems lie outside the scope of existing automated verification
methods and further development of these methods is required.

One of the recent interesting and promising directions for tackling infinite-
state, or parameterized, verification is to apply the methods developed in the area
of program transformation and metaprogramming, and in particular, program
specialization [11, 19, 18].

In this paper we are interested in one particular approach in program trans-
formation and specialization, known as supercompilation1. Supercompilation [36]

? The second author is supported by the Program for Basic Research of the Pre-
sidium of Russian Academy of Sciences (as a part of “Development of the basis
of scientific distributed informational-computing environment on the base of GRID
technologies”), and the Russian Ministry of Sciences and Education (grant 2007-4-
1.4-18-02-064).

1 from supervised compilation



has not drawn much attention yet in the context of verification, although it has
been mentioned in [19, 18] as potentially applicable here. The supercompilation
is a powerful semantic based program transformation technique [36, 39, 34] hav-
ing a long history well back to the 1960-70s, when it was proposed by V. Turchin.
The main idea behind a supercompiler is to observe the behavior of a functional
program P running on partially defined input with the aim to define a program,
which would be equivalent to the original one (on the domain of latter), but hav-
ing improved properties. The supercompiler unfolds a potentially infinite tree of
all possible computations of a parameterized program. In the process, it reduces
the redundancy that could be present in the original program. It folds the tree
into a finite graph of states and transitions between possible (paramemetrized)
configurations of the computing system. And, finally, it analyses global properties
of the graph and specializes this graph with respect to these properties (without
an additional unfolding). The resulting definition is constructed solely based on
the meta-interpretation of the source program rather than by a (step-by-step)
transformation of the program.

The result of supercompilation may be a specialized version of the original
program, taking into account the properties of partially known arguments, or
just a re-formulated, and sometimes more efficient, equivalent program (on the
domain of the original) [14].

Turchin’s ideas have been studied by a number of authors for a long time and
have, to some extent, been brought to the algorithmic and implementation stage
[29]. From the very beginning the development of supercompilation has been
conducted mainly in the context of the Refal programming language [38, 28],
another creation of V.Turchin. A number of the simplest model supercompilers
for subsets of LISP-like languages were implemented as well with an aim to
formalize some aspects of the supercompilation algorithms [33, 35, 34]. The most
advanced supercompiler for Refal is SCP4 [29, 27, 26, 28].

In [21–24] we proposed to use supercompilation for verification of parame-
terized systems using a particular scheme of parameterized testing. Using this
scheme we translate the statements about safety properties of a system to be
verified into the statements about properties of the program that simulates and
tests the system. The supercompilation is used then to establish the required
properties of the program. We have conducted series of experiments on verifica-
tion of parameterized cache coherence protocols and successfully verified [22] all
cache coherence protocols presented in [5] and [7]. We have also verified in this
way parameterized Java MetaLock algorithm and series of Petri Nets models.
This work started mainly as an experiment driven one and the approach proved
to be empirically successful. This left however the questions on its correctness
and completeness for classes of verification problems open. In this paper we ad-
dress the issue of correctness of proposed method. We develop a formal model,
which renders supercompilation process in the particular context of parame-
terized testing as a reachability analysis for term-rewriting systems by means
of inductive proofs of safety properties. This establises the correctness of the
method.



Further we illustrate our method by verification of parameterized MOESI
protocol [5]. Interestingly enough, using supercompilation to perform parame-
terized testing allows not only to verify the protocol but also to discover new
facts about the protocol. The facts are formulated by automatic generalization
of configurations - one of the tools of supercompilation. In particular, an anal-
ysis of the supercompilation trace shows that the protocol is correct with more
general assumptions on the initial state than reported in [5].

The paper is organized as follows. In the next section we give general de-
scription of our verification via parameterized testing approach in language-
independent terms. Section 3 presents the formal model and correctness result.

Then in section 4 we introduce some of the strategies leading to successful
verification of a class of parameterized cache coherence protocols. In section 5
we present a free monoid of terms and specify the strategies of the supercompiler
SCP4 in its terms. The size limit of the paper does not allow us to present a
detailed verification of the MOESI protocol using these strategies. We refer the
reader to the Appendix [25], which we put on an Internet page as a separated
document.

2 Parameterized Testing

In this section we describe our general technique for the verification of param-
eterized systems. The technique is based on the translation of the statements
about safety properties of a system to be verified into the statements about
properties of the program that simulates and tests the system.

The scheme works as follows. Let S be a parameterized system (a protocol)
and we would like to establish some safety property P of S. We write a program
ϕS simulating execution of S for n steps, where n is an input parameter. Let the
n be given in the unary system, as a string of characters. If the system is non-
deterministic, we label each step with an action, whose value is assumed to be
chosen at the branching point of execution, e.g. it may be a character labelling
the choice. Thus, we assume that given the values of input parameter n, the
program ϕS returns the state of the system S after the execution of n steps of
the system, following the choices provided by the labels of the steps. Let TP ( )
be a testing program, which given a state s of S returns the result of testing the
property P on s (True or False). Consider a composition TP ◦ϕS. This program
first simulates the execution of the system and then tests the property required.
Let the both programs terminate. Now the statement ”the safety property P
holds in any possible state reachable by the execution of the system S from an
initial state” is equivalent to the statement ”the program TP (ϕ(n)) never returns
the value False, no matter what values are given to the input parameter”.

In practical implementation of the scheme we use functional programming
language Refal to implement a program TP (ϕS(n)) and optimizer SCP4 (a su-
percompiler) to transform the program to a form, from which one can easily
establish the required property.



The idea of using testing and supercompilation for the verification purposes is
not new. In the classical paper [36] V.Turchin writes: Proving the correctness of
a program is theorem proving, so a supercompiler can be relevant. For example,
if we want to check that the output of a function F (x) always has the property
P (x), we can try to transform the function P (F (x)) into an identical T . The
idea has not been tried until recently for the problems interesting for verification
community. Our experiments have shown that indeed, the idea is viable and can
be adopted for non-trivial verifications problems for parameterized distributed
systems.

3 Correctness Issue and Formal Model

One of the immediate questions posed by almost everyone seeing the approach
in work for the first time is “Is this correct at all? Why should I believe your
claims about verification?”

Firstly, one can argue as follows. It has been shown, in particular in [33, 35,
32] that (variants of) supercompilation is a correct transformation, in a sense
it always returns (if any) the program equivalent to the input program (on the
domain of latter). Then we repeat the argument from Section 2. We should
note, in this respect, that SCP4 [27, 26, 29] is a large program dealing with the
concrete functional language Refal, which has specific semantic assumptions, like
built-in associativity of concatenation as a term forming construct. Furthermore,
SCP4 supercompiler, is a result for the more than two decades development and
it is highly optimized program, implementing different strategies which can be
tailored by the user to the particular cases. Proving the correctness of the whole
SCP4 is far from being trivial and is, actually, irrelevant to our experiments. Even
if we accept the correctness, it does not explain why supercompilation works
for establishing correctness properties. We address these issues in the present
paper by developing a formal model, which renders supercompilation process (in
the case of verification tasks) as an inductive proof of safety properties. That
establishes the correctness of the method. The formal model is a very simplified
and refined theoretical version of SCP4, which, nevertheless, is sufficient for
verification of a class of (parameterized) cache coherence protocols.

In this paper we confine ourselves by the claim that supercompiler SCP4
indeed implements the formal model we present. We provide some relevant com-
ments but detailed discussion of the claim lies outside the scope of this paper.
The model formulated in terms of term rewriting systems.

3.1 Term Rewriting Systems and Safety Properties

Let V be a denumerable set of symbols for variables and F = ∪iFi be a finite set
of functional symbols, here Fi is a set of functional symbols of arity i. Let T (V ,F)
be a free algebra of all terms build with variables from V and functional symbols
from F in a usual way. Let every Fi be divided into disjoint sets Fi = Fni ∪ Ci.
We refer to Fni as function names and to Ci as constructor names. Let C = ∪iCi.



A term without function names is passive. Let G(T ) ⊂ T (V ,F) be the set of
ground terms, i.e. terms without variables. Let O(T ) ⊂ G(T ) be the set of object
terms, i.e. ground passive terms. For a term t we denote the set of all variables
in t by V (t).

A substitution is a mapping θ : V → T (V ,F). A substitution can be extended
to act on all terms homomorphically. A substitution is called ground, object, or
strict iff its range is a subset of G(T ), O(T ) or T (V , C) (i.e. passive terms),
respectively. We use notation s = tθ for s = θ(t), call s be an instance of t and
denote this fact by s � t.

A term-rewriting system is a pair P = 〈t, R〉, where t is a term called initial
and R is a finite set of rules of the form f(p1, . . . , pk) → r, where f ∈ Fnk,
∀i (pi ∈ T (V , C))2, r ∈ T (V ,F), V (r) ⊆ V (f(p1, . . . , pk)).

Given a set of rules R define one-step transition relation ⇒R⊆ T (V ,F) ×
T (V ,F) as follows: t1 ⇒R t2 holds iff there exist a strict substitution θ and a
rule (l → r) ∈ R such that t1 = lθ and t2 = rθ. Reachability relation ⇒∗

R is
a transitive and reflexive closure of ⇒R. Notice, that any term reachable for a
ground term is also ground.

Definition 1. A binary relation ⇒ on a set T is terminating (or well-founded)
if there exists no infinite chain t1 ⇒ t2 ⇒ t3 ⇒ . . . of elements of T .

Henceforth we assume that transitive closure ⇒+
R of the restriction of ⇒R

on G(T ) × G(T ) is terminating.
An arbitrary subset Q of O(T ) is called a property. Let q be a finite set

(collection) of passive terms. A property Qq defined by q is a set of all object
instances of all terms from q, that is Qq = {τ | τ ∈ O(T ) ∧ ∃ρ ∈ q (τ � ρ)}

We consider the following reachability problem on for term-rewriting systems.

Verification of safety property
Given: A term-rewriting system P = 〈t, R〉 and property Qq.
Question: Is it true that all passive terms reachable in P from any ground
instance of t do not satisfy the property Qq? In formal notation, is the statement

∀s ∈ O(T )(∀t′ ∈ O(T )((t′ � t) ∧ (t′ ⇒∗
R s)) → s /∈ Qq)

true?
Many interesting verification problems for parameterized systems may be re-
duced to the above problem. See the section [25] for an example. In the next
subsection we present a method suitable for solving such a problem and demon-
strate its correctness.

3.2 Inductive Proofs of Safety Properties

Consider an instance of the above verification problem I = (〈t, R〉, Qq).

2 For simplicity we use only such kind of term-rewriting systems.



The proof of the safety property for I can be established by constructing
successful proof attempt which consists of a sequence of trees. Vertices of trees
will be labeled by terms. For a vertex a denote by ta the term labeling a.

We assume that we have a testing procedure, which given a vertex a checks
whether all ground instances of the ta do not satisfy the property Qq .

Another assumption is that any vertex in a tree is labelled as unready, open or
closed (one flag per vertex) and all generated vertices are unready until they are
explicitly open. We assume also that when any vertex of the proof tree labeled
by a passive term is generated it is immediately tested. If the testing produces
the negative result the whole proof tree building procedure stops and returns
the answer NO to the verification problem, otherwise the vertex is closed.

Given a directed tree T and its edge (a
e
→ b), we say the vertex a is the parent

of b and b is a child of a. A vertex a1 is an ancestor of a vertex an if there exists
a sequence of edges of T such that (a1

e
→ a2), (a2

e
→ a3), . . . , (an−1

e
→ an).

Definition 2. For a given I = (〈t, R〉, Qq) a proof attempt is a sequence of
directed trees T0, T1, . . . such that T0 is generated by the START rule, and Ti+1 is
obtained from Ti by application of one of the following rules: UNFOLD, CLOSE,
GENERALIZE.

The proof rules are defined as follows

START Create a root of the tree, label it by the initial term t of the term
rewriting system.

UNFOLD Choose any of the unready vertices a with the labeling term ta and
generate all terms t1, . . . tn such ta ⇒R ti. For every such ti create a child
vertex ai for a and put tai

= ti. Open the vertex a. If the parent of a is
open, then close the parent.

CLOSE I Choose any of the open vertices a and check whether there is a closed
vertex b, such that ta � tb. If yes close the vertex a and delete its children.
If there are no such a b do nothing.

CLOSE II Choose any of the open vertices a and check whether all its children
are closed there. If yes close the vertex a.

GENERALIZE Choose any of the open vertices a and any vertex b, ancestor
of the a in the tree. Generate a term τ such that both tb � τ and ta � τ
hold. Delete the subtree with the root b, except the vertex b itself. Replace
the label tb with τ . Mark the vertex b as unready.

Significance of the unready flag is related to effectiveness issue and will be
considered in the section 4.

Definition 3. A proof of an I is a finite proof attempt T0, . . . , Tn for I such
that all vertices in Tn are closed.

Let R be a term rewriting system, t ∈ T (V ,F) and t0 be a ground instance
of the term t. Let t̄0 = t0 ⇒R t1 ⇒R t2 . . . ⇒R tl be an arbitrary sequence of
terms derived from t0 by application of rules from R. Denote by R(t) the set of



all passive terms reachable in R from any ground instance of t and CR(t) the set
of all the sequences ḡ0 such that g0 is a ground instance of t and g|ḡ0|−1 ∈ R(t).
The following proposition is trivial.

Proposition 1. Let t be a term and τ be a term such that t � τ , then CR(t) ⊂
CR(τ) holds. (And hence R(t) ⊂ R(τ).)

Theorem 1. For an instance I = (〈t, R〉, Qq) of the verification problem above
if there is a proof for I then the answer for this I is YES.

Proof Let T0, . . . , TN be a proof for I .

The statement of the theorem follows from the following statement. Let t0 be
a ground instance of the initial term t. Let t̄ = t0 ⇒R t1 ⇒R t2 . . . ⇒R tl−1 be
an arbitrary sequence of terms derived from t0 by application of rules from R.
Then every ti is an instance of a term tai

for some vertex ai of T . The proof of
the statement is by induction on the length of the sequence. Let |t̄| = 1, that is
t̄ = t0 By construction of the proof attempt T0, . . . , TN the label τ of the initial
vertex of TN is (possibly generalized several times) term t, i.e. we have t � τ
and therefore t0 � τ . Notice that once a term labelling some vertex is generated
it may be generalized several times later in the proof attempt by application of
GENERALIZE rule.

Consider now the step of induction. Assume the statement for all sequences
of the length up to some l and let t̄ = t0 ⇒R t1 ⇒R t2 . . . ⇒R tl. By induction
hypothesis we have tl−1 � ta for some vertex a ∈ TN . Then two cases are
possible.

If there are some children a1, . . . , ak of a in TN then there exists some child
aj of a such that taj

is (possibly generalization of) the term tl (by the semantics
of UNFOLD rule). It follows then tl � taj

.

If there are no children of a in TN then ta should be active, otherwise there
could not be any term tl such that tl−1 � ta and tl−1 ⇒R tl. Moreover in that
case the vertex a is closed by the application CLOSE I rule and there should be
another vertex b ∈ TN such that ta � tb. If b has some children we repeat the
argument for the previous case taking vertex b instead of a. If it does not we
find yet another vertex c such that ta � tb � tc and repeat the argument for c.
Notice that there is no more than finitely many vertices in TN , so after finitely
many steps this case is reduced to the previous one. Step of induction is proved.

It follows that any ground passive term derivable from t0 is an instance of
one of the passive terms in TN . Since all reachable passive vertices in TN are
tested the statement of the theorem follows. �

Example 1. Let f ∈ Fn2, A, B ∈ C1, x, y, xi, yi ∈ V . Consider I = (〈t, R〉, Qq).
Here R is:

f(B(x), y) = f(x, B(y));
f(A(A(x)), y) = f(A(x), B(y));
f(A(B(x)), y) = y;



q contains the only term A(x) and t = f(B(x1), y1).
Let [τ ] be a vertex labelled with a term τ . We denote each closed vertex as

[τ ]c, each open vertex as [τ ]o and each unready vertex as [τ ]u. The first proof at-
tempt is successful: START rule gives the tree T0 containing the only vertex au =
[f(B(x1), y1)]

u, UNFOLD rule yields T1 = {ao, bu = [f(x2, B(y1))]
u, (ao e

→ bu)};
after the second UNFOLD we have T2 = {ac, bo, du

1 = [f(x3, B(B(y1)))]
u, du

2 =

[f(A(x4), B(B(y1)))]
u, du

3 = [B(y1)]
c, (ac e

→ bo), (bo e
→ du

1 ), (bo e
→ du

2 ), (bo e
→

du
3 )}; now two applications of UNFOLD rule open du

1 , du
2 and close bo; two

applications of CLOSE rule close do
1 and do

2 with bc as the witness. We have

T6 = {ac, bc, dc
1, d

c
2, d

c
3, (a

c e
→ bc), (bc e

→ dc
1), (b

c e
→ dc

2), (b
c e
→ dc

3)}, where all
vertices are closed.

The second proof attempt fails: T0, T1, T2 are the same as in the first attempt;
GENERALIZE gives T3 = {gu = [f(x3, y3)]

u}. Now it is easy to see this attempt
does not terminate.

The third proof attempt fails: T0, T1, T2 are the same as in the first attempt;
GENERALIZE gives T3 = {gu = [x3]

u}. Now gu can never be closed.

We show now that, in fact, the proof sequence is a compact representation
of the inductive proof of the correctness condition (none of the ground instances
of the reachable passive terms has the property Qq). First, we formulate the
induction scheme in general terms.

Let . be a well-founded partial ordering on a set K. Let M is the set of all
minimal elements of K: M = {t ∈ K | ¬∃(τ ∈ K).(τ 6= t)∧ (t . τ)}. Note that M
is not empty. Let Q be a predicate on K and S be a subset of K. The following
induction scheme can be used then to prove that Q holds everywhere on K (we
assume y / x ≡ x . y here):

(∀t ∈ M.Q(t)) ∧ (∀x ∈ K.(∀y ∈ S.y / x → Q(y)) → Q(x))

∀x ∈ K.Q(x)

Retuning to our context, let L is the set of the terms generated by applications
of GENERALIZE rule during the proof given above and t is the initial term of
the I . Let Hg be the following hypothesis: “none of the ground instances of g ∈ L
reaches a passive term having the property Qq”.

Then the proof given by the successful proof attempt can be considered as
simultaneous proofs of all hypotheses Hg , such that each of them follows the
inductive scheme given above and moreover the proofs may refer one to another.
Here K = O(T ), . is ⇒+

R, Q(t) = Ht, Mg is the set of all passive object terms
reachable from all ground instances of g, and Sg is the set of the ground instances
of the terms closed during applications of CLOSE rule. The subscript g indicates
the concrete proof of Hg .

4 Towards Effectiveness

The proof procedure presented in the previous section is non-determinstic. That
leads to necessity of development of deterministic proof strategies which would



be complete and/or efficient for classes of verification problems. In this section
we make first steps towards resolving these largely open issues, and present
the strategies which empirically has turned out to be sufficient for (practically
efficient) proofs of correctness of cache coherence protocols [5].

The second proof attempt given in the Example 1 demonstrates that critical
information may be lost during an application of GENERALIZE rule. The infor-
mation guaranteed transformation of the initial term uniformly on the values of
the parameters. The start vertex is not a branching point: there exists the only
edge outgoing from the vertex. Terminating of ⇒+

R (see the section 3.1) means
there cannot be an infinite sequence of such kind of vertices one after another.
Thus it is desirable to exclude such vertices from generalization.

Definition 4. An open or closed vertex b is pivot in a tree Tj iff b has at least
two outgoing edges.

A closed vertex can be both basic and pivot. Henceforth we impose the
following retsriction on the strategy of rule applications: both CLOSE and GEN-
ERALIZE rules choose only pivot vertices.

Given two terms t1 and t2 there can be a number of different generalizations,
see example 1 for the illustration. Aiming to preserve as much as possible the
structure of the terms, we impose the next restriction on GENERALIZATION
rule: result of generalization of any two terms t1 and t2 should be most specific
term τ , meaning both t1 � τ and t2 � τ hold and for any other term ξ such
that (t1 � ξ)∧(t2 � ξ � τ) implies that ξ equals to τ modulo variable’s names.

Further restriction is concerned with the choice of terms to be generalized.
In order to preserve the structure of terms it is natural and desirable to gener-
alize only terms, which are similar (in a sense) one to another. There is delicate
trade-off here. Informally, the fewer applications of GENERALIZE rule hap-
pened during a proof attempt the less information on the terms structure is
lost and more chances to close the passive vertices. On the other hand, to close
active vertices one may need more applications of GENERALIZE rule. The fol-
lowing criteria based on well-quasi-ordering have turned out to be empirically
successful.

A quasi-ordering is any reflexive and transitive binary relation.

Definition 5. A quasi-ordering � on a set T is a well-quasi-ordering if every
infinite sequence t1, t2, . . . of elements of T contains ti, tj (i < j) such that
ti � tj .

Given a well-quasi-ordering � on T (V ,F), we specify the strategy choosing
the vertices by GENERALIZE rule as follows: choose any of the pivot open
vertices a and any pivot vertex b, ancestor of the a in the tree such that tb � ta;
if there exists no such a b do nothing.

Further, there can be a number of such vertices b. Intuitively, the closer a
vertex b to the vertex a (among the all its ancestors) the closer any ground
instance of the b to a passive ground term terminating evaluation of the instance



by the term-rewriting system. So we add to the above generalization strategy
the requirement to choose the closest such a vertex b.

All our experiments verifying the class parameterized protocols [5] were suc-
cessful both under lazy (call by need) and under applicative (call by value)
strategies developing the stack of functions. For simplicity we selected the ap-
plicative strategy to demonstrate the main example given in the section [25].
We encode this semantic concept in syntax as follows. Given a composition
t = f(. . . , g(. . .), . . .), where f, g ∈ Fn, we transform the term to

Let(x, eq, g(. . .), in, f(. . . , x, . . .)),

Let ∈ Fn is a auxiliary name. The term g(. . .) is transformed recursively in the
same fashion. We note the semantics of both the t and the transformed term
is the same. We stress that without such representation of the composition the
other strategies do not lead to successful experiments with the cache coherence
protocols.

5 A Free Monoid of Terms

In this section we consider a free monoid of terms, which was actually used in our
experiments. Using this data structure and concepts and strategies given above
allows to obtain automatic proofs of correctness of cache coherence protocols
from [5]. See also remarks in Section 6.

We construct the monoid from T (V ,F) by minor modification of definition.
Let all the function names be unary Fn1, while the constructor set be C =
C2∪C1∪C0. Let us denote terms constructed with a f ∈ Fn1 as <f t>, where t is a
term. Let C2 contains the only associative element named as concatenation, used
in infix notation and denoted with the blank. The associativity allows to drop
the parentheses of the constructor at all. Let C1 contains the only constructor,
which denoted only with its parentheses (that is without a name). C0 = K∪{λ}.
We denote the constants from K with its names: that is without the parentheses.
The constant λ is denoted with nothing: it is the unit of the concatenation. Let
the variable set V be disjoined in two sets V = E ∪ S , where the names from
E are prefixed with ’e.’, while the names from S – with ’s.’. For a term t we
denote the set all e-variables (s-variables) in t by E(t) (correspondingly S(t)).
V(t) = E(t) ∪ S(t). The monoid of the terms may be defined with the following
grammar:

t ::= λ | c | v | <f t> | t1 t2 | (t)
λ ::=

where c ∈ K, v ∈ V , f ∈ Fn1. Thus a term is a finite sequence (including
the empty sequence). We denote the constructed free monoid as A(V ,F). Any
substitution has to map every v ∈ S into K ∪ S.



5.1 Restrictions on Term-rewriting Systems

Given a term-rewriting system 〈t, R〉 on the set A(V ,F). Associativity of the
concatenation simplifies the syntax structure of the terms, but it creates a prob-
lem with the one-step transition relation ⇒R⊆ A(V ,F)×A(V ,F), namely, given
a term τ and a rule (l → r) ∈ R, then there can be several substitutions match-
ing τ with the l. Thus we have a new kind of non-determinism here. An example
is as follows:

Example 2. τ = <f A> and l = <f e.x e.y>, where A ∈ K, e.x, e.y ∈ E ⊂
V . There exist two substitutions matching the terms: the first is θ1(e.x) =
λ, θ1(e.y) = A, the second is θ2(e.x) = A, θ1(e.y) = λ.

Multiplicity of v ∈ V in a term t is the number of occurrences of v in t. A
variable x ∈ E(t) is closed in a term t iff (1) t = (t1) and x is closed in t1; (2)
t = t1 . . . tn, where there exists at most one ti = x and ∀j the x is closed in tj .

We impose the following restriction on the left sides of the rules from R.
The multiplicity of any v ∈ E(l) equals 1 and v is closed in l. These restrictions
exclude recursive equations that have to be solved when we are looking for the
substitutions matching a given parameterized term with a left side of a rule.
The following term τ = <f (A e.p) (e.p A)> and l = <f (e.x) (e.x)> is an
example showing that the recursive equation A e.p = e.p A arises on e.p; the
reason of the recursion is the fact that the multiplicity of e.x ∈ E(l) is 2.3 The
second example τ = <f e.p> and l = <f e.x A e.y> as well as the example 2
demonstrate the problems, which are caused by unclosed variables (here both
e.x and e.y) in the left hand-sides of the rules.

Consider the example 2. Let us think of the τ as a left part of a rule ρ,
while of the l as a term to be match with τ with the goal to unfold. The both
substitutions given in the example 2 match the term l with τ . Hence, during the
application of UNFOLD rule we have to take into account the both substitutions
and generate two children of l from ρ. We solve this problem with the following
additional sub-rule:

SPLIT Given a term t to be unfolded (with a rule ρ = (l → r)) such that
E(t) includes unclosed variables. Take a subterm of t of the form ξ =
t1 . . . e.x . . . e.y . . . tn (i.e. the both variables e.x, e.y ∈ E(t) are not en-
closed with the parenthesis) such that there exist at least two substitutions
which match ξ with the corresponding subterm of l. Generate the following
three substitutions θ1(e.x) = s.n e.x1, θ2(e.x) = (e.z) e.x2, θ3(e.x) = λ.
Here e.x1, e.x2, e.z are fresh variables from E , s.n is a fresh variable from S.
Unfold tθi with the rule ρ.

The SPLIT rule is recursive and terminates. See the section [25] for the
examples using this rule.

The example 2 shows also another problem. The term l may be considered
as a generalization of the term τ : τ � l. The problems is: there exists a term

3 The solution of the equation is e.p = A∗.



ξ = e.z such that l 6= ξ, τ � ξ and both l � ξ and ξ � l hold. Now we specify
generalization. Given two terms t1, t2 ∈ A(V ,F) and the set G of all the most
specific terms generalizing both t1 and t2 (see the section 4). Let νx(t) be the
multiplicity of an x ∈ E(t). We use (as the result of generalization of t1, t2) g ∈ G

such that
∑

x∈E(g)

νx(g) is minimal over G.

5.2 The Well-quasi-ordering on A(V, F)

Given t1, t2 ∈ A(V ,F), there exist two elementary functions constructing a new
term from the given term. The functions are F1(t1, t2) = t1 t2 and F2(t1) = (t1).
There exists also a family of functions Ff (t1) = <f t1>, where f ∈ Fn1. We
consider a quasi-ordering such that: (1) with respect to it all these functions are
monotone non-decreasing t1 ∝ F1(t1, t2), t1 ∝ F2(t1), t1 ∝ Ff (t1); (2) these func-
tions are matched with the quasi-ordering: t1 ∝ t2 implies F2(t1) ∝ F2(t2), Ff (t1)
∝ Ff (t2) and for any term t both F1(t, t1) ∝ F1(t, t2) and F1(t1, t) ∝ F1(t2, t)
hold. The following relation is a variant of the Higman-Kruskal relation and is
a well-quasi-ordering [12, 15].

Definition 6. The homeomorphic embedding relation ∝ is the smallest transi-
tive relation on A(V ,F) satisfying the following properties, where h ∈ Fn1, s, t, ti
∈ A(V ,F).

1. ∀x, y ∈ E . x ∝ y, ∀u, v ∈ S. u ∝ v;

2. t ∝ <h t>, t ∝ (t), t ∝ s t, t ∝ t s;

3. s ∝ t, then <h s> ∝ <h t>, (s) ∝ (t), s t1 ∝ t t1, t1 s ∝ t1 t.

Corollary 1. 1. λ ∝ t ∝ t, where λ is the empty sequence;

2. ∃i1, . . . , ij such that 1 ≤ i1 < i2 < . . . < ij ≤ n, then ti1 . . . tij
∝ t1 . . . tn.

Given an infinite sequence of terms t1, . . . , tn, . . ., this relation is relevant to
approximation of increasing loops in the sequence; or in other words to looking
for the regular similar cases of mathematical induction on the structure of the
terms. That is to say the cases, which allow refer one to another by a step of the
induction. An additional restriction separates the basic cases of the induction
from the regular ones. The restriction is:

∀c ∈ K.() ∝/ (c) ∧ ∀v ∈ S.() ∝/ (v).

We impose this restriction on the relation ∝ and denote the obtained
relation as �. It is easy to see that such a restriction does not violate the quasi-
ordering property. Note that the restriction may be varied in the obvious way, but
for our experiments its simplest case given above is used to control applications
of GENERALIZE rule and has turned out to be sufficient.



6 Discussion

In addition to the MOESI protocol described in the Appendix [25] the supercom-
piler SCP4 verified by our scheme the following parameterized cache coherence
protocols: IEEE Futerbus+, MESI, MSI, “The University of Illions”, DEC Fire-
fly, “Berkeley”, Xerox PARC Dragon [5, 6]. All these protocols are specified anal-
ogously to the description given in the section [25]. In the case of the MOESI
protocol the time of automatic verification is 1 second (Windows XP/Service
Pack 2, Intel Pentium III, 450 MHz, 256 MB of RAM); verification of the other
protocols takes times, which slightly differ from the indicated.

One of the questions left open is why do we work in terms of the free monoid
A(V ,F) and how important is such a choice? Actually, supercompiler SCP4 is
able to prove correctness of the main example considered in the section [25] en-
coded in terms of a free algebra terms too, but the proof is much more bulky
as compared with the proof presented in section [The Inductive Proof ] of [25]
Moreover, the proof in this case requires additional capabilities of the supercom-
piler which are not presented in our formal model. We leave detailed analsys and
comparisons of different encodings to future work.

The work reported in this paper has started as mainly driven by experiments.
There is still much work to be done, both theoretically and experimentally. On
the theory side we would like to have the completeness results for classes of ver-
ification problems and particular strategies. The applicability of the strategies
already implemented in SCP4 is also worth to explore further. Recent experi-
ments have shown that SCP4 strategies are quite robust with respect to order
in wich rewriting rules are encoded in Refal programs. For example, the above
MOESI protocol can be verifed with any of 120 (=5!) permutations of rewriting
rules for RandomAction. See [24] for details to this subject.

Finally, comparisons with related work, especially with [11, 19, 20] and [31]
should be done. In both these approaches transformations of logic (as opposed
to our functional) programs are used to perform verification of parameterized
systems. Despite the differences in programing languages, systems encodings and
verifications schemes used, all three approaches have a common ground and rely
on variants of unfold/fold transformations.
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Abstract. In this paper, we consider the finite tiling problem which
was proved undecidable in the Euclidean plane by Jarkko Kari, see [5].
Here, we prove that the same problem for the hyperbolic plane is also
undecidable.
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1 Introduction

A lot of problems deal with tilings. Most of them are considered in the setting
of the Euclidean plane. A certain number of these problems turn out to be
undecidable in this frame, thanks to the facility to simulate the computation of
a Turing machine in this setting. The most famous case of such a problem is the
general tiling problem proved to be undecidable by Berger in 1966, see [1]. In
1971, R. Robinson gave a simplified proof of the same result, see [18]. Sometimes,
the general problem is simply called the tiling problem. The reason of these
different names lies in the fact that several conditions were put on the problem,
leading to different settings, and a dedicated proof was required each time when
the problem turned out to be undecidable. Among these variations, the most
well-known is the origin-constrained problem, proved to be undecidable by
Wang in 1958, see [21].

The general tiling prolem consists in the following. Given a finite set of tiles T ,
is there an algorithm which says whether it is possible to tile the plane with copies
of the tiles of T or not? The origin-constrained problem consists in the same
question to which a condition is appended: given a finite set of tiles T and a tile
T0 ∈ T , is there an algorithm which says whether it is possible or not to tile the
plane with copies of the tiles of T or not, the first tile being T0? In the general
problem there is no condition on the first tile: it can be a copy of any tile of T .

There are a lot of variants of these problems and the reader is referred to
[18], where an account is given on several such conditions.



The finite tiling problem is a slightly different question. Given a finite set
of tiles T and a tile b with b 6∈ T , called the blank, is there an algorithm which
says whether there is a tiling of the plane with copies of T ∪ {b} in which there
are only finitely many copies of tiles of T but at least one? This problem was
first formulated by J. Kari in [5], where it was proved to be undecidable. In the
case of the general tiling problem, a solution to the problem is a tiling of the
plane with copies of the tiles from T only. In the case of the finite tiling problem,
a solution to the problem is a tiling in which only finitely many copies of T are
used and at least one is used.

The general tiling problem for the hyperbolic plane was raised by R. Robin-
son in his 1971 paper, see [18]. In 1978, R. Robinson proved that the origin-
constrained problem is undecidable in the hyperbolic plane, see [19]. The gen-
eral tiling problem for the hyperbolic plane remained pending a long time. In
2006, the present author proved that the tiling problem with an intermediate
condition, so called generalized origin-constrained problem is undecidable,
see [9, 10]. Recently, the present author proved the general tiling problem to
be undecidable in the hyperbolic plane, see [11, 14]. At the same time, J. Kari
announced the same result, using a completely different approach, see [6].

In this paper, we prove that:

Theorem 1 The finite tiling problem is undecidable in the hyperbolic plane.

As we shall see, the solution makes use of the technique used in [9, 10].
In the next section, we remind the reader with necessary preliminaries to

make the paper self-contained. Then, in Section 2, we sketchilly remind the
solution to the origin-constrained problem which we have given in [9, 10]. In
Section 3, we prove the theorem. In the conclusion, we discuss a few possible
issues.

2 Preliminaries

In this section, we remind the basics of hyperbolic geometry and a few other
features about tilings in this setting. We conclude the section with a few expla-
nations on the space-time diagram of a Turing machine.

2.1 The hyperbolic plane

Hyperbolic geometry appeared in the first half of the 19th century, as the con-
clusion of the very long quest to prove the famous axiom of parallels of Euclid’s
Elements from the other axioms. As presently known, the axiom on parallels is
independent from the others. The discovery of hyperbolic geometry also raised
the notion of independency in an axiomatic theory. In the second half of the 19th

century, several models were devised in which the axioms of hyperbolic geometry
are satisfied. Among these models, Poincaré’s models became very popular. One
model makes use of the half-plane in the Euclidean plane, the other makes use of



a disc, also in the Euclidean plane. Each time we shall need to refer to a model,
especially for illustrations, we shall use Poincaré’s disc model.

Let us fix an open disc U of the Euclidean plane. Its points constitute the
points of the hyperbolic plane IH2. The border of U , ∂U , is called the set of
points at infinity. Lines are the trace in U of its diameters or the trace in U

of circles which are orthogonal to ∂U . The model has a very remarkable prop-
erty, which it shares with the half-plane model: hyperbolic angles between lines
are the euclidean angles between the corresponding circles. The model is easily
generalised to higher dimension, see [8] for definitions and properties of such
generalizations as well as references for further reading.

A

p

P
Q

l

q

m

s

Figure 1 An illustration of the Poincaré model.

On Figure 1, the lines p and q pass through the point A and they are parallel
to the line `. We notice that each of them has a common point at infinity with `:
P in the case of p and Q in the case of q. The line s which also passes through A

cuts the line `: it is a secant to this line. However, the line m, which also passes
through A does not meet `, neither in U , nor at infinity, i.e. on ∂U . Such a line is
called non-secant with `. Non-secant lines have a nice characterisitic property:
two lines are non-secant if and only if they have a common perpendicular which
is unique.

2.2 A tiling of the hyperbolic plane: the ternary heptagrid

Tessellations are a particular case of tilings. They are generated from a regular
polygon by reflection in tis sides and, recursively, of the images in their sides. In
the Euclidean case, there are, up to isomorphism and up to similarities, three



tesselations, respectively based on the square, the equilateral triangle and on the
regular hexagon.

In the hyperbolic plane, there are infinitely many tessellations. They are

based on the regular polygons with p sides and with
2π

q
as vertex angle and they

are denoted by {p, q}. This is a consequence of a famous theorem by Poincaré
which characterizes the triangles starting from which a tiling can be generated
by the recursive reflection process which we already mentioned. Any triangle

tiles the hyperbolic plane if its vertex angles are of the form
π

p
,

π

q
and

π

r
with

the condition that
1

p
+

1

q
+

1

r
< 1.

Among these tilings, we choose the tiling {7, 3} which we called the thernary
heptagrid in [2]. It is below illustrated by Figure 2.

Figure 2 The tiling {7, 3} of the hyperbolic plane in the Poincaré’s disc model.

In [2, 8], many properties of the ternary heptagrid are described. An impor-
tant tool to establish them is the splitting method, prefigured in [7] and for
which we refer to [8]. Here, we just suggest the use of this method which allows
to exhibit a tree, spanning the tiling: the Fibonacci tree. Below, the left-hand
side of Figure 3 illustrates the splitting of IH2 into a central tile T and seven
sectors dispatched around T . Each sector is spanned by a Fiboncacci tree. The
right-hand side of Figure 3. Illustrates how the sector can be split into sub-
regions. Now, we notice that two of these regions are copies of the same sector
and that the third region S can be split into a tile and then a copy of a sector



and a copy of S. Such a process gives rise to a tree which is in bijection with
the tiles of the sector. The tree structure will be used in the sequence and other
illustrations will allow the reader to better understand the process.

Figure 3 Left-hand side: the standard Fibonacci trees which span the tiling {7, 3} of
the hyperbolic plane. Right-hand side: the mid-point lines.

Another important tool to study the tiling {7, 3} is given by the mid-point

lines, which are illustrated by Figure 4, below. The lines have this name because
they join the mid-points of contiguous edges of tiles. We can see on the figure
how such lines allow to delimit a sector, a property which is proved in [2, 8].

Figure 4 The mid-point lines.

2.3 The space-time diagram of a Turing machine

As our proof of Theorem 1 makes use of the simulation of a Turing machine,
we skecthily remind a few features of the Turing machinesi, see [20, 4]. We shall
specifically remind the use of space-time diagrams.



A Turing machine is a device which consists of an infinite tape and of a
head. The tape is constituted of adjacent squares, each one containing a symbol
belonging to a finite alphabet A. The head looked at a square, the scanned

square and it is in a given state. Depending on its state and on the symbole
read in the scanned square, the machine performs an action specified by an
instruction: replace the read letter by a new letter, possibly the same one,
turn to a new state, possibly the same one, and go to the next scanned square
which is either the right-hand side neighbour of the scanned square, or its left-
hand side neighbour or again, the same scanned square. There are finitely many
instructions whose set constitutes the program of the machine. One symbol
of A plays a special rôle. It is called the blank and a square containing the
blank is called empty.

The configuration of a Turing machine is defined by two squares: the leftmost
and the rightmost ones, called the borders of the configuration. For the initial
configuration, these borders define the smallest finite interval of the tape which
contains both the square scanned by the head of the machine and all the non-
empty squares. It is assumed that at the initial time, there are finitely non-empty
squares in the tape. When the borders of the current configuration are defined,
the borders of the next configuration are either the same or one of them is move
by one square further: this is the case when the head scans a border and when
its action moves outside the current configuration.

Now, a space-time diagram of the execution of a Turing machine M con-
sists in placing successive configurations of the computation of M on the plane.
The initial configuration C0 is put along the X-axis with the origin at a fixed
position of the tape: it corresponds to the ordinate 0. The configuration i which
is obtained after i steps of computation is placed on the parallel to the X-axis
which has the ordinate i.

As can immediately be seen, the important feature is not that we have strictly
parallel lines, and that squares are alined along lines which are perpendicular to
the tapes. What is important is that we have a grid, which may be a more or
less distorted image of the just described representation.

3 The harp

The solution of the origin-constrained problem which we now consider takes
place in the tiling {7, 3} of the hyperbolic plane. We shall now see how it is
possible to implement a kind of grid which will allow us to simulate the space-
time diagram of a Turing machine. This is an important ingredient in the proof
of Theorem 1.

We use the angular sector determining a Fibonacci tree to construct a frame
in which we insert the space-time diagram of a Turing machine working on a
semi-infinite tape and starting its computation from an empty tape.

Such an angular sector is represented on the left-hand side of Figure 5 by the
two thick yellow rays supported by mid-point lines.



On the right-hand side of the figure, we can see the harp itself. It contains
a Fibonacci tree which can be viewed as a space time diagram of the Turing
computation. The rightmost branch of the tree represents the Turing tape at
the initial time, call it the frame. In the right-hand side of Figure 5, the frame
consists of the dark green tiles, the first four of them being numbered 1, 4,
12 and 33. Define levels in the Fibonacci tree as the set of tiles which are at
the same distance, in tiles, of the root of the tree. The distance from T to the
root is the smallest length of a sequence of tiles joining T to the root with the
condition that two consecutive terms of the sequence share a common side. We
call borders of the tree the two mid-point lines which determine it. Note that
each level meets the right-hand side border in two points, say A and B, with, for
instance, A being the closest to the root. From B, we define the other mid-point
line determined by B and we consider the ray rB of this line which is issued
from B and which goes inside the tree. We call chord the set of tiles which
belong to the tree, which meet rB and which are in the half-plane defined by rB

which does not contain the root of the tree. A chord represents the evolution, in
time, of the square of the tape: the one which is associated with the tile of the
chord which is in contact with the right-hand side border of the tree.
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Figure 5 The guidelines for the harp.

Now, the simulation of the computation of a Turing machine goes as follows.
The starting point of the computation is the tile which bears the root of the

tree: it is the single tile which is in contact with both borders.
Next, the computing signal, which bears the current state of the machine

head, goes to the middle son of the root and there, on the level 1, it goes to
the right as the head of the Turing machine never goes to the left of its initial
position. The tile which is immediately reached on the same level is a tile of the
border. At this point, it performs the required instruction.

Now, assume that the computing signal just performed an instruction: it is
on a chord. The tile sends the new content of the tape to the next tile on the
chord. The computing signal has now the new current state. It goes down along



the chord by one level and, on the new level, it goes in the direction indicated
by the instruction it has just performed. It remains on the same level until it
meets the next chord, in the direction which it follows. When the chord is met,
it performs the instruction. And the process is repeated.
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Figure 6 The tiles for the Turing computation.

The transportation of the signals: tiles a up to e. The rest of the tiles is devoted to
the implementation of the instructions of the Turing machine.

It is not difficult to see that this gives an alternative solution to the origin-
constrained problem, as indicated in [10]. Also in [10], we have indicated the tiles



which allow to construct the harp and its simulation process. For the convenience
of the reader, the tiles are again indicated here, by Figure 6.

4 A solution to the finite tiling problem

Now, we come to the proof of Theorem 1.
We first notice that there is just a slight modification to perform on the tiles

given in [10] in order to prove the theorem.
Indeed, we give a special colour to the border, call it the silver signal. This

colour is also generated by the halting instruction if it occurs. A silver signal
spreads on both sides along the level where the halting instruction was triggered.
Accordingly, it meets the silver signal of the borders. At the meeting point, the
signals merge in the shape of a corner. We als call border this part of the level
delimited by the two borders of the tree. It is clear that any tile which contains
the silver signal has an inward side and an outward one. We decide that the
edges which delimit the outside and which are not crossed by the silver signal
are blank. Accordinly, such a side may abut with the blank tile and so, this
delimits the computation and outside this area, the solution which consists in
tiling the area with the blank gives a solution. As we have to prove that there
is a finite solution, we need not that the blank edge must match with the blank
tile only: it is enough that such a matching can be performed.

And so, we proved that if the Turing machine halts, there is a tiling realized
by copies of T which contains at least the copy one tile of T and which only
contains finitely many copies of tiles of T .

Now, assume that there is such a tiling τ , that τ contains finitely many tiles
from T and at least one of them. Necessarily, in τ , there are tiles with a silver
signal. Indeed, the tiles of T which do not belong to the border have no blank
edge. This property can be checked from the tiles for the harp given in Figure 6
and the additional tiles which are given below, in Figure 7. In fact, the last
two rows of tiles in Figure 7 are actually new tiles, appended to the set of tiles
belonging to T . The other tiles of Figure 7 replace the corresponding tiles of
Figure 6 which define the root of the tree and its both borders: in the figure, the
replacing tiles have the same label as the former ones. Note that the new tiles of
Figure 7 are the tile u which transforms the silver signal raised by the halting
state into two signals for the basis of the finite figure. One signal goes to the left
and the other to the right. They meet the silver signals on the border of the tree
thanks to the corner tiles which are provided by the tile y for the left-hand
side corner and the tile z for the right-hand side one.

Now, it is not difficult to see that as the non blank area of the tiling is
finite, it must contain borders of the three possible kinds: left-hand side border,
right-hand side one and the border on a level. If at least one component is
missing, this means we have an infinite part with tiles of T only. Now, as there
is a left-hand side border and a right-hand side one, they must meet. And so,
the tiling necessarily contains an origin. Accordingly, the tiling simulates the
commputation of a Turing machine. Now, as it is finite, the simulated machine



halts. And so, we proved that there is a finite solution containing at least one
non blank tile if and only if the simulated Turing machine halts. And so, the
problem is undecidable.
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Figure 7 The tiles for the silver signal.

5 Conclusion

The finite tiling problem is used in [5] to prove that it is undecidable to know
whether a cellular automaton in the Euclidean plane with Moore neighbourhood
is surjective. At the present moment, there are two difficulties to transport this
proof to the hyperbolic plane. The first one is the use of the classical charac-
terization of surjective cellular automata with cellular automata whose global
function is injective when restricted to finite configurations, see [16, 17]. Although
Hedlund’s theorem can be transported to the hyperbolic plane at the price of
an additional condition, see [13], the arguments of Moore’s and Myhill’s proofs
cannot be transported to the hyperbolic plane. The second obstruction lies in the



plane-filling property: it is still open whether this holds or not for the hyperbolic
plane.

Accordingly, there is still much work to do in these directions.
Another point is the following. In the Euclidean plane, it is not difficult to see

that, from the proof of the finite tiling problem, we can prove that periodic tiling
problem is also undecidable. Recall that this latter problem consists in asking
whether, from a given finite set of prototiles, it is possible or not to tile the
plane in a periodic way. This problem was proved undecidable by Yu. Gurevich
and I. Koriakov, see, [3]. The present construction cannot be used to prove the
undecidability of the periodic tiling problem in the hyperbolic plane. However,
the construction of [11, 14, 12], combined with the construction of the present
proof, gives a solution which is still not immediate. This is done in [15], where
we also discuss the adaptation of the notion of periodicity in the hyperbolic
plane, a question which is not that straightforward.
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Abstract. Recently, it has been shown that for any higher order push-
down system H and for any regular set C of configurations, the set
pre

∗

H(C), is regular. In this paper, we give an alternative proof of this
result for second order automata. Our construction of automata for rec-
ognizing pre

∗

H(C) is explicit. The termination of saturation procedure
used is obvious. It gives a better bound on size of the automata recog-
nizing pre

∗

H(C) if there is no alternation present in H and in the automata
recognizing C. Using our techniques for two players reachability games
on second order pushdown systems, we generalize some result of [2] con-
cerning synthesis of strategies. Analogous to [2], we show two kinds of
winning strategies for player 0 and give algorithms to compute them. The
first is executable by second order pushdown automata and the second
is linear time executable minimum cost strategy.

1 Introduction

Higher order pushdown automata (hpda ) are a generalization of pushdown au-
tomata in that they can have nested stacks, such as stack of stacks. Higher order
Push and Pop operations are provided to push a copy of the topmost stack of
any order and to pop it. Order of a hpda depends on the depth of nested stacks
allowed by a hpda .

These models were introduced in [7] and were further studied in [9, 8]. Higher
order pushdown systems (hpds ) are hpda without any input. A configuration of
a hpds is a pair of its control state and its stack contents. A hpds can be viewed
as a transition system on the infinite set of configurations. In the last few years,
algorithmic properties of finitely presented infinite graphs have been extensively
investigated by verification community, see [5, 11, 6]. Here we survey a few results
which are of direct relevance to our work.

In [4], it was shown that for any pushdown system (order-1 hpds ), and any
regular set C of its configurations, pre∗(C), the set of configurations from which
an element of C is reachable, is also regular. [4] gave an iterative procedure, called
saturation procedure, to construct an automata recognizing pre∗(C), starting
from the automata recognizing C. The iteration step adds new edges to the
automata but no new states.



In [3], Bouajjani and Meyer, extended this result to higher order context free
processes, which are higher order pushdown systems with a single control state.
They have introduced a structured way to represent a regular set of configura-
tions of a hpds . For example a regular set of order-2 PDS configurations is given
by a automata with finitely many states but whose edge labels are ordinary finite
automata recognising order-1 stack configurations. Authors of [3] have general-
ized the saturation procedure to these automata to prove their results. Recently,
Hague and Ong [1] have extended results of [3] to higher order pushdown sys-
tems. This is a technically non-trivial result. Let A be a order-2 finite automata
recognizing a set of order-2 PDS configurations C. The saturation procedure of
[1] uses nested recursion involving automata appearing as edge labels of A and
the structure of A. As new states are added during this construction termination
of the recursion is not immediate and requires a proof. [1] gives details of all this.

In this paper, we give an alternative construction of an automata recogniz-
ing pre∗(C) for second order hpds . The state set of our automata to compute
pre∗(C) is fixed beforehand and remains the same throughout saturation pro-
cedure, so termination of saturation procedure is immediate. Further each state
has some intuitive meaning and saturation procedure is reduced essentially to
order-1 saturation procedure. Our result was arrived at independently of [1].

Unlike, [3, 1], we represent a regular set of order-2 hpda configurations by
ordinary automata. This is no restriction because as pointed out in [3] the two
notions of regularity for representing stack configurations are in fact the same. In
fact, given a (deterministic/nondeterministic) finite automata as in [3], one can
convert it into a (deterministic/nondeterministic) ordinary automata in polyno-
mial time.

In [1], size of the automata recognising pre∗(C) (and the time to construct
it) is double exponential in the size of hpds H (of order-2) and the size of au-
tomata A, recognising C. The authors in [1], in fact solve the more general
case of 2-player (or alternating) hpds with the same bounds. Further, in [1], A,
recognising C is also assumed to be alternating. Our bounds match theirs in the
general case. We consider the special case when H is nondeterministic and A in
given as a non-deterministic automata, in this case we show that an automata
recognising pre∗(C) can be constructed in time single exponential in the size of
hpds H and size of automata A. In case of 2-player (or alternating) hpds and non-
deterministic A our construction takes double exponential time which matches
the bound in [1], in fact in this case we construct an alternating automata with
single exponential states to recognise attractor set of C.

In [2], results of [4] are used to give uniform winning strategies in two player
reachability games on order-1 hpds . Two kinds of strategies are given in [2],
the first is minimum cost positional strategy executable in linear time and the
second is computable by a order-1 hpds . We generalize these results to order-2
hpds reachability games. We show a minimum cost positional strategy executable
in linear time and a strategy executable by second order pushdown automata in
order-2 hpds reachability games.



2 Preliminaries

A higher order pushdown system (hpds ) H is a triple (Q, Γ, ∆), where Q is a
finite set of control states, Γ is a (finite) stack alphabet and ∆ ⊆ Q × Γ × Act

is transition relation of H. For an order-2 hpds , the set of actions is defined as
Act = {push

q,w
1 , push

q
2, pop

q
i | i ∈ {1, 2}, q ∈ Q, w ∈ Γ ∗}.

Configurations of a hpds are pairs (q, s), where q is a control state of the
hpds and s is its stack configuration. The set of stack configurations of the
ordinary pushdown automata (order−1 hpds ) denoted by S1 and the set of
stack configurations of an order−2 hpds denoted by S2 are defined as follows.

S1 = { [1 w ]1 | w ∈ Γ ∗} , S2 = { [2 α ]2 | α ∈ (S1)
∗}

Throughout this paper we use symbol [i to denote start of stack of order
i and ]i for the end of stack of order i. Let pushw

1 , push2, pop1, pop2 stand for
stateless counterparts of actions push

q,w
1 , push

q
2, pop

q
1, pop

q
2 respectively. These

stateless counterparts act on stack configurations as follows.
pushw

1 ([1 a1 · · ·al]1) = [1 wa2 · · ·al]1,
pushw

1 ([2 s1 · · · sk ]2) = [2 pushw
1 (s1)s2 · · · sk ]2

push2([2 s1 · · · sk]2) = [2 s1s1s2 · · · sk]2
pop1([2 s1 · · · sk]2) = [2 pop1(s1) · · · sk]2,
popm([m s1 · · · sk]m) = [m s2 · · · sk]m, if k ≥ 1 else undefined, m ∈ {1, 2}.
We also define topmost element, top(s), of a stack configuration s, as below.
top([1 a1 · · ·al]1) = a1 , top([2 s1 · · · sk]2) = top(s1)
Transition relation ↪→H is defined on configurations of a hpds of order 2 as

follows.
(q′, s) ↪→H (q, Pushw

1 (s)) if (q′, top(s), Push
q,w
1 ) ∈ ∆

(q′, s) ↪→H (q, Push2(s)) if (q′, top(s), Push
q
2) ∈ ∆,

(q′, s) ↪→H (q, Popi(s)) if (q′, top(s), P op
q
i ) ∈ ∆, i ∈ {1, 2}.

Let S be a set of stack configurations of hpds H, pre∗H(S) is defined as
pre∗H(S) = {s | ∃s′ ∈ S[s ↪→H s′]}. We omit the subscript H from ↪→H whenever
it is clear from the context. ↪→∗ stands for the reflexive, transitive closure of ↪→.

We consider regular subsets of hpds configurations. Let H = (Q, Γ, ∆) be a
hpds of order−2. We define Q′ = {q′ | q ∈ Q}. A finite (multi)automata for
recognising configurations of H is given as A = (SA, Γ2, Q

′, δ, F ), where SA is
the set of states of A, Γ2 = Γ ∪{ [i, ]i | 1 ≤ i ≤ 2} is the input alphabet for A. δ

is the transition relation of A, Q′ is the set of its initial states and F is the set
of final states of A. Multi-automata were first introduced in [4] for order-1 PDS.

For any automata B and a state q of it, we use the notation L(B, q) to denote
the set of strings accepted by B when started in state q. The set of configurations,
CA, accepted by multi-automata A above is given as
CA = L(A) = {(q, s) | s ∈ L(A, q′)}.

2.1 Alternating Automata

An alternating automata R is given as (P, Σ, δ, F ), where P is a finite set of
states Σ is input alphabet and F is the set of final states. Transition function δ

of R is given as δ : P ×Σ → B+(P ), where B+(P ) is the set of positive boolean



formulae (constructed using connectives ∧ and ∨ only) over atoms in P . As any
function in B+(P ), can be written as a disjunction of conjunctions of elements
in P , transition function can also be thought of as a relation on P ×Σ × 2P . In
other words, it can be seen as a union of transitions of the form (q, a, S), where
q ∈ P , a ∈ Σ and S ⊆ P .

A run of an alternating automata on a input is a tree. More efficiently we
can represent it as a dag as in [2, 10]. Since we allow ε transitions (and later
transitions on a string of letters instead of a single letter), all paths through this
dag may not be of equal length. We give a slightly modified definition of a run
dag useful for our purposes.

A run-dag of automata B on input w is a rooted dag in which each node is
labeled with a state of B and each edge is labeled with an input symbol or input
string including empty string ε. If a node is labeled with q then all outgoing edges
from q in the dag are labeled by the same string u. Further, if the set of labels
of nodes to which these edges are connected is {qi1 , . . . , qik

} then there must be
a one step transition (q, u, {qi1 , . . . , qik

}) ∈ δ The concatenation of all labels in
any maximal path (path which is not contained in a bigger path) through this
dag should be a prefix of the string w, such that if it is a proper prefix of w then
its terminal node is labeled with a constant true or false.

A run dag is accepting if all its terminal nodes are labeled with ‘true’ or with
final states of B.

We extend the function/relation δ to take its second argument as a string
instead of a single letter as follows. (p, w, S) ∈ δ if there is a run dag on input
w with root labeled as p and its leaves are labeled with either ‘true’ or with an
element in S.

3 Computing pre
∗ for Hpds of order−2

Let H = (Q, Γ, ∆) be an order−2 hpds . We define Q′ = {q′ | q ∈ Q}.
Let A = (SA, Γ2, Q

′, δA,F) be a deterministic finite multi-automata with Q′ as
initial states. Let A accept a set CA of configurations of H. It is assumed w.l.o.g.
that sets Q and SA are mutually disjoint.

We design an alternating finite automata RH,A to accept pre∗H(CA).

RH,A = (SR, Γ2, δR,F × {↓})

State set of RH,A, denoted SR, is a disjoint union of several sets as below.

Let Q′′ = {q′′ | q ∈ Q}, UQ,A,↓ = Q ∪ SA ∪ {↓}, UA,↓ = SA ∪ {↓}

[ To remember notation U can be thought of as union ]

R1 = (Q × UQ,A,↓) ∪ (SA × UA,↓)

R2 = {sw | s ∈ R1, (w ∈ Γ ) or (Push
q,w
1 ∈ ∆, for some q ∈ Q)}

SR = Q′′ ∪ R1 ∪ R2 ∪ (Q × {2})

It will be shown that w ∈ L(RH,A, q′′i ) iff (q′′i , w) ∈ pre∗H(CA). We use below
R instead of RH,A when no confusion occurs.

We define the transition function δR as
⋃

i≥0 δi, where δi, i = 0, 1, 2, . . .

are defined below iteratively. The sequence δi, i = 0, 1, 2, . . . is monotone when



viewed as a relation on SR×Γ2×B+(SR). This part of the construction is called
saturation procedure.

3.1 Intuitive Idea

The idea behind the construction is to start with the transition group (0). The
automata now looks at the top of the stack symbol and sees which moves in
hpds are possible. The push1 and pop1 move are handled as in order-1 case.
Pop2 move is simply handled by ignoring the input till the end of current order-
1 stack. The push2 operation is to be handled differently as it makes two copies
of the current order-1 stack while there is only one copy in the input. To do so,
we simultaneously verify the operation on the top stack of the configuration and
the stack below. For this we need to know in which state is the top stack popped?
This is done by guessing this state. So at a push2 move the computation splits
into two threads one thread verifies that the current stack can be popped in
some state q and the other thread starts running on the current input with this
state. The verifying thread will die on meeting the end of current order-1 stack
either successfully or unsuccessfully.

The computation in the two threads is similar in many cases so we use unify-
ing notation for states involving pairs. States (p, ↓), through the use of ↓ indicates
main thread which is to continue beyond the current order-1 stack. Other pairs
denote threads which check constraints. Note both these type of threads can
spawn further threads.

In this way we will be able to keep information about hpds configurations
that can be reached. At each step, the automata has a choice to explore the next
configuration reached or check if the current configuration is in the target set,
whose pre∗ is being computed. These are the main ideas, the construction below
shows how these can be made to work.

3.2 Transitions in δ0

The transitions of R below are grouped according to transitions in hpds H.
To improve readability of triples below, we show SR × Γ2 part of the triple in
lightface and B+(SR) component in boldface.

(0). For q ∈ Q, (q
′′

, [2[1, (q, ↓)) ∈ δ0.

(i). (q, a,popp
1) ∈ ∆ then for t ∈ Q ∪ SA ∪ {↓}, ((q, t), a, (p, t)) ∈ δ0.

(ii). (q, a,pushp
2) ∈ ∆

(a)

then for each t ∈ Q, ((q, t), a,
∨

ql∈Q

[(p,ql)a ∧ (ql, t)a]) ∈ δ0,

(b)

and for each t ∈ UA,↓, ((q, t), a,
∨

t1∈Q∪SA

[(p, t1)a ∧ (t1, t)a]) ∈ δ0



/* See Lemma 1(5-7), for the intuitive meaning of states (p, ql)a etc. */
(iii). (q, a,popp

2) ∈ ∆ then we have the following triples in δ0

(a) ((q, ↓), a, (p,2)),
(b) ((r, 2), b, (r,2)), r ∈ Q, b ∈ Γ /* skip the current order-1 stack */
(c) ((r, 2), ]1[1, (r, ↓)), /* beginning of the next order-1 stack reached */
(d) ((r, 2), ]1]2, (δA(r′, [2]2), ↓)), /* this corresponds to the case when the

popped stack was the last one */
(e) ((q, p), a, true) /* popping the stack in state q on ‘a′ satisfies the con-

straint (q, p) */

(iv). (q, a,pushp,u
1 ) ∈ ∆ then for t ∈ UQ,A,↓, ((q, t), a, (p, t)u) ∈ δ0

(v). Transitions related to A
/* We have the following transitions for simulating automata A on a guessed
hpds configuration. */

(a) (q
′′

, [2, (δA(q′, [2), ↓)), for q ∈ Q.
/* The guessed configuration is the initial configuration */

(b) ((q, t), ε, (δA(q′, [2[1), t)), for all q ∈ Q, t ∈ UA,↓.
/* The automata R guesses a configuration */

(c)
((t1, t2), a, (δA(t1, a), t2)), for (t1 ∈ SA, t2 =↓, a ∈ Γ ∪ {[1, ]1})

OR for (t1 ∈ SA, t2 ∈ SA, a ∈ Γ ).
/* Simulates A in the first component */

(d) For t2 ∈ SA,

((t1, t2), ]1, true) ∈ δ0 if δA(t1, ]1) = t2
((t1, t2), ]1, false) ∈ δ0 otherwise

/* accepts if the constraint is satisfied at the end of current order-1 stack
*/

(vi). Transitions from states in R2

((t1, t2)a, ε, (δA(t1, [1a), t2)), for all t1 ∈ SA, t2 ∈ UA,↓, a ∈ Γ .

3.3 Saturation Step

Saturation process is as follows.
δk+1 := δk ∪ V , where
V = {((p, t)x, ε, S) | p ∈ Q, t ∈ UQ,A,↓, ((p, t), x, S) ∈ δk, (p, t)x ∈ R2}
For each k, δk ⊆ SR × Γ2 × 2SR . As (δk)k≥0 is a monotonically increasing

sequence, the saturation procedure terminates in at most |SR| × |Γ2| × 2|SR|

iterations.

3.4 Correctness of the Construction

The following lemma easily follows from the construction.

Lemma 1. 1. For t ∈ SA, w ∈ L(R,(t, ↓)) iff w ∈ L(A, t).
2. For t1, t2 ∈ SA, w ∈ L(R, (t1, t2)) iff w = x]1v, x ∈ Γ ∗ and

δA(t1, x]1) = t2.



3. w ∈ L(R,(q, 2)) iff w = x]1[1u for x ∈ Γ ∗ and u ∈ L(R, (q, ↓)) or w = x]1]2
for x ∈ Γ ∗ and [2]2 ∈ L(A, q′).

4. For q ∈ Q, w ∈ L(R, q′′) iff w = [2[1v for some v, and v ∈ L(R, (q, ↓)) or

w ∈ L(A, q′).
5. For r ∈ Q × (Q ∪ SA ∪ {↓}) and ru ∈ R2, w ∈ L(R, ru) iff uw ∈ L(R, r).
6. For t ∈ SA, a ∈ Γ , w ∈ L(R, (t, ↓)a) iff [1aw ∈ L(A, t).
7. For (t1, t2) ∈ SA × SA, a ∈ Γ , w ∈ L(R, (t1, t2)a) iff w = x]1v, x ∈ Γ ∗ and

δA(t1, [1ax]1) = t2.

Proof. We omit easy details from this extended abstract. ut

The theorem below is at the heart of the correctness proof.

Theorem 1. Let ↪→∗ be the reachability relation on configurations of hpds H.

The following assertions hold for all p, q ∈ Q, t ∈ SA, v, w ∈ Γ ∗
2 .

1. For q ∈ Q, w ∈ L(R, (q, ↓)) iff there is a τ ∈ L(A) such that

(q, [2[1w) ↪→∗ τ .

2. For p, q ∈ Q, w ∈ L(R, (p, q)) iff w = x]1u, for some x ∈ Γ ∗, and

(p, [2[1x]1]2) ↪→∗ (q, [2]2).
3. For p ∈ Q and t ∈ SA, w ∈ L(R, (p, t)) iff w = x]1u, for some x ∈ Γ ∗, and

(p, [2[1x]1]2) ↪→∗ (r, [2[1v]1]2) and δA(r, [2[1v]1) = t.

Proof. This is proved in two parts. We omit the details here which may be found
in full version. ut

Combining Lemma 1 part (4) and Theorem 1 part (1), we immediately have
the following corollary.

Corollary 1. For q ∈ Q, w ∈ L(R, q′′) iff w ∈ pre∗(CA).

We have presented the construction for deterministic A, however essentially
the same construction works for non-deterministic A also. The only change is
that we replace δA(r, a) by ∨ of states instead of a single state. More precisely,
transitions (iii.d), (v) and (vi) only need to be modified. We omit easy details.

Note that the situation changes if A is alternating. In that case, the form of
pairs (q, t) is to be replaced by (q, T ), where T ⊆ SA. This is because a path
in the simulation of A is given by a set of states. Consequently the number of
states in the automata becomes exponential in SA.

Corollary 2. Let H be a nondeterministic hpds with |Q| states and |∆| tran-

sitions and let A be a nondeterministic automaton with |SA| states. Then one

can effectively construct a finite alternating automata with O((|Q|+ |SA|)
2 · |∆|)

states to recognize pre∗(CA).

From the above alternating automata recognizing pre∗(CA), we can get by
standard construction a equivalent nondeterministic automata with 2z states,
where z is a polynomial in the size of H and A. This is one exponential less than
what the construction of [1] gives though the construction of [1] is optimal if H
and A are alternating.



4 Two Player Reachability Game over Hpds

In rest of the paper, we extend our techniques to study two player reachability
games over configuration graphs of second order hpds . Two player games in
general are an important model of reactive computation and have been widely
studied in the context of verification and synthesis of finite/infinite state systems
over the last few years, see [12, 13].

We first recall some preliminary notions about these games. A game structure
can be imposed on the configuration graph of a hpds by partitioning the states
of the hpds into two parts. H = (Q0⊕Q1, Γ, ∆) is a game structure where states
in Qm, m ∈ {0, 1}, correspond to player m.

A position in such a game is a configuration of H. A position belongs to player
m if control state in this position (configuration) ∈ Qm. Starting from a initial
position π0 a play proceeds as follows, if π0 belongs to player-m then player-m
chooses a position π1 such that π0 ↪→H π1. The play now enters position π1 and
continues this way, at stage i if position πi belongs to player-m, m ∈ {0, 1}, then
player-m chooses a position πi+1 such that πi ↪→H πi+1. A play is a sequence
(possibly infinite) π0π1 · · ·πi · · · of successive game positions.

In a reachability game for player k, k ∈ {0, 1}, a set of game positions (config-
urations of hpds ) E is also given. Player-k wins a play in this game if a position
∈ E is reached during this play otherwise player-(1− k) wins.

A strategy for player m, m ∈ {0, 1}, from position π0, is a function which
associates to each prefix π0π1 · · ·πi of a play, where πi belongs to player m, a
position πi+1 such that πi ↪→H πi+1. A strategy σ for player-m from position
π is a winning strategy if in any play begining with π where player-m plays
according to σ, player-m wins the play. A position π is winning for player-m if
there is a winning strategy for player-m from position π. The set of all winning
positions of player-m is called winning region or player-m.

It is well known that the winning region of player-k in the reachability game
for player-k is is given by attractor of E with respect to k, denoted Attrk(E)
and defined as below.

Attr0
k(E) = E

Attr
j+1
k (E) = {(q, s) | q ∈ Qk, ∃τ ∈ Attr

j
k(E)[(q, s) ↪→ τ ]}

∪ {(q, s) | q ∈ Q1−k, ∀τ [((q, s) ↪→ τ) → τ ∈ Attr
j
k(E)]}

Attrk(E) =
∧

j≥0 Attr
j
k(E)

Note that the reachability problem of the previous section can be considered
as a special case where all states belong to one player.

5 Regularity of the Attractor Set

Let reachability game for player k be given by game structure
H = (Q0 ⊕ Q1, Γ, ∆) and a regular set L(A) specified by automata A. In this
section we show that winning region of player-k in the above game is regular.

We can modify the automata R of section 3 to Rk to compute attractor set
with respect to player k. We need to replace the states such as (p, t) in section 3



by (p, T ), T ⊆ Q ∪ SA, as player k may not be able to guarantee to bring the
game in specific configuration but only in a set of configurations.

The state set of Rk, St(Rk), is defined as follows.
Let P(Z) denote the powerset of Z, let UP(Q,A) = P(Q ∪ SA) and let

UP(Q,A),↓ = UP(Q,A) ∪ {↓}.

Let R
(k)
1 = (Q ∪ SA) × UP(Q,A),↓

Let R
(k)
2 = {sw | s ∈ R

(k)
1 , (w ∈ Γ ) or (Push

q,w
1 ∈ ∆, for some q ∈ Q)}

St(R(k)) = Q′′ ∪ R
(k)
1 ∪ R

(k)
2 ∪ (Q × {2})

Intuitive meaning of state (p, T ) is that Rk accepts a configuration C from
(p, T ) iff either player k can guarantee that current order-1 stack can be popped
in a state ∈ T (in fact, T ∩Q) or it guarantees that the game from configuration
C can reach a configuration C ′ without popping topmost order-1 stack of C and
in a run of A on input C ′, A reaches a state ∈ T (in fact, T ∩ SA) at the end of
reading topmost order-1 stack of C. This is proved in Theorem 2(ii).

Transition function δRk is defined using the saturation procedure as in sec-
tion 3.

5.1 Transitions in δ0

(0). For q ∈ Q, (q
′′

, [2[1, (q, ↓)) ∈ δ0.

(i). q ∈ Qk, (q, a,popp
1) ∈ ∆ then for all T ∈ UP(Q,A),↓, ((q, T ), a, (p,T)).

(ii). q ∈ Qk, (q, a,pushp
2) ∈ ∆ then for all T ∈ UP(Q,A),↓,

((q, T ), a,
∨

T1⊆Q∪SA

[(p,T1)a
∧

∧t∈T1
(t,T)a])

(iii). q ∈ Qk, (q, a,popp
2) ∈ ∆ then we have the following triples in δ0

(a) ((q, ↓), a, (p,2)),
(b) ((r, 2), b, (r,2)), r ∈ Q, b ∈ Γ

(c) ((r, 2), ]1[1, (r, ↓)),
(d) ((r, 2), ]1]2, (δA(r′, [2]2), ↓)),
(e) ((q, T ), a, true), if p ∈ T

(iv). q ∈ Qk, and (q, a,pushp,u
1 ) ∈ ∆ then for all T ∈ UP(Q,A),↓, ((q, T ), a, (p,T)u)

(v). Transitions related to A

(a) (q
′′

, [2, (δA(q′, [2), ↓)), for q ∈ Q.
(b) ((q, T ), ε, (δA(q′, [2[1),T)), for all T ∈ UP(Q,A),↓.

(c)
((t1, T ), a, (δA(t1, a),T)), for (t1 ∈ SA, T =↓, a ∈ Γ ∪ {[1, ]1})

OR for (t1 ∈ SA, T ∈ UP(Q,A), a ∈ Γ ).
(d) For T ∈ UP(Q,A),

((t1, T ), ]1, true) ∈ δ0 if δA(t1, ]1) ∈ T

((t1, T ), ]1, false) ∈ δ0 otherwise



(vi). Transitions from states in R2

((t1, T )a, ε, (δA(t1, [1a),T)), for all t1 ∈ SA, T ∈ UP(Q,A),↓.
(vii). q ∈ Q1−k

We define for T ∈ UP(Q,A),↓,
I1((q, T ), a) =

∧

{(p, T ) | (q, a, pop
p
1) ∈ ∆}

I2((q, T ), a) =
∧

{(q, T )u | (q, a, push
p,u
1 ) ∈ ∆}

I3((q, T ), a) =
∧

{
∨

T1∈UP(Q,A)
[(q, T1)a ∧t∈T1 (t, T )a] | (q, a, push

p
2) ∈ ∆}

I4((q, ↓), a) =
∧

{(p, 2) | (q, a, pop
p
2) ∈ ∆}

For T ∈ UP(Q,A),

I4((q, T ), a) =

{

false if (q, a, pop
p
2) ∈ ∆, for some p 6∈ T

true otherwise

We add the following triples to δ0, for T ∈ UP(Q,A),↓,

((q, T ), a,

4
∧

j=1

Ij((q, T ), a))

[ Intuitively, I1, I2, I3 and I4 cover the cases when player 1 − k chooses moves
pop1, push1, push2 and pop2 respectively. In case of pop2, if player 1 − k can
pop the current stack to reach a state 6∈ T , then constraint of reaching a
state in T at the end of current order-1 stack can not be met and Rk rejects
from this state.]

5.2 Saturation Step

Saturation process is as follows.
δk+1 := δk ∪ {((p, T )x, ε, δk((p,T),x)) | p ∈ Q, (p, T )x ∈ R2}

5.3 Correctness of the Construction

Following is an easy Lemma, analogous to Lemma 1 of section 3.

Lemma 2. 1. For t ∈ SA, w ∈ L(R
k
, (t, ↓)) iff w ∈ L(A, t).

2. For t1 ∈ SA, T ∈ UP(Q,A), w ∈ L(R
k
, (t1, T )) iff w = x]1v, x ∈ Γ ∗ and

δA(t1, x]1) ∈ T .

3. w ∈ L(Rk
, (q, 2)) iff w = x]1[1u for x ∈ Γ ∗ and u ∈ L(Rk

, q) or w = x]1]2
for x ∈ Γ ∗ and [2]2 ∈ L(A, q′).

4. For q ∈ Q, w ∈ L(R
k
, q′′) iff w = [2[1v for some v, and v ∈ L(R

k
, (q, ↓)) or

w ∈ L(A, q′).

5. For r ∈ Q × (UP(Q,A),↓) and ru ∈ Rk
2 , w ∈ L(R

k
, ru) iff uw ∈ L(R

k
, r).

6. For t ∈ SA, a ∈ Γ , w ∈ L(R
k
, (t, ↓)a) iff [1aw ∈ L(A, t).

7. For (t1, T ) ∈ SA×UP(Q,A), a ∈ Γ , w ∈ L(R
k
, (t1, T )a) iff w = x]1v, x ∈ Γ ∗

and δA(t1, [1ax]1) ∈ T .



Proof. Proof is similar to that of Lemma 1, we omit it. ut

To state the main theorem in correctness proof, we first introduce a notation.
Let T ⊆ Q∪SA, we define M(T ) = {(r, [2s]2) | s ∈ S∗

1 , δA(r′, [2s) ∈ T}. M(T ) is
the set of configurations of H, on which automata A has a run which reaches a
state in T after seeing the last order−1 stack. Using this notation, we have the
following main theorem in the correctness proof which is analogous to Theorem 1
of section 3.

Theorem 2. The following assertions hold for all p, q ∈ Q, and T ⊆ Q ∪ SA.

1. w ∈ L(R
k
, (q, ↓)) iff (q, [2[1w) ∈ Attrk(L(A)).

2. w ∈ L(Rk
, (p, T )) iff w = x]1u, for some x ∈ Γ ∗,

and (p, [2[1x]1]2) ∈ Attrk({(q, [2]2) | q ∈ T} ∪ M(T )).

Proof. In the full version. ut

Corollary 3. w ∈ L(R
k
, q′′) iff (q, w) ∈ Attrk(L(A)).

Proof. Immediate, using Theorem 2(1.) and Lemma 2(4.). ut

6 Strategy Extraction

From the results of section 3 and section 5, it follows that one can decide for an
arbitrary configuration whether it is in pre∗(C) or it is in the winning region of
player-k by simply checking membership in the corresponding automata. It is a
natural question to ask if a configuration u is in pre∗(C), can we also determine
the sequence of transitions of H which starting from u reach a configuration in
C or if u is in winning region of player-k then can we determine what is the
winning strategy of player-k from u to reach set E.

These questions have relevance to synthesis of transition systems and have
been investigated in [2] in the context of PDS. It turns out that accepting runs
of the corresponding automata on a configuration encode such strategies. In [2],
two kinds of strategies are synthesized for a player to win a reachability game
(in its winning region) in a PDS. One of these is executable by a pushdown
automata and another is a minimum cost strategy executable in linear time. In
this section we generalize these results of [2] to the setting of order-2 hpds .

6.1 Strategy Executable by Order-2 Hpda

An order-2 hpda executing a strategy is a deterministic order-2 pushdown au-
tomata with input and output tapes. It reads the moves of player 1−k from the
input tape and and outputs the moves of player k on the output tape. A more
formal definition can be given as in section 3.3 in [2].

In this section, we show how to design a order-2 hpda to execute player-k’s
winning strategy in the second order hpds reachability game.



Theorem 3. Let a game structure H for second order hpds and a regular set

E be given. One can effectively design a second order hpda B such that for

every configuration C in the winning region of player-k, after an appropriate

initialization B’s stack, B executes the winning strategy of player-k from position

C. The initialization of B can be done in linear time in the length of C.

Proof. We sketch the construction of B. The initialization of B’s stack is by
an accepting dag of automata computing Attrk(E) on input C. Let this dag be
D. We assume that each node of D has more information than just a state of
automata, for example it has information about transition taken at that node.
We view D as layered dag, a sequence of set of nodes or transitions. This sequence
is initially stored in the stack of B linearly, with root of D as top of B’s stack.
The control states of B include a subset of Rk’s state and some auxiliary states.
Initially B is in state q′′. Transition function of B depends on its control state
(say z) and topmost symbol (say φ) of B’s stack, and also on the input tape if
the control state of B corresponds to player 1−k’s state in H. We describe below
the action of B in various cases which are grouped according to transitions in
hpds .

Intuitively, D codes the winning strategy of player k from C. B walks through
various paths in D (depending on player 1 − k’s choices). B’s state represents
state of the node B is currently at, while φ represents all nodes at that level of
D.

(0) If z = q
′′

and (q
′′

, [2[1, q) ∈ φ, then B pops the topmost element of the stack
and enters state q.

(i) If z = (q, T ), q ∈ Qk and ((q, T ), a, (p,T)) ∈ φ then B outputs pop
p
1, pops

topmost element of its stack and moves to state (p, T ).
(ii) z = (q, T ), q ∈ Qk and ((q, T ), a, (p,T)u) ∈ φ then B outputs push

p,u
1 , pops

topmost element of its stack and moves to state (p, T )u.
(iii) z = (q, T ), q ∈ Qk and ((q,T), a, (p,T1)a ∧

∧

t∈T1
(t,T)a) ∈ φ for some

T1 ⊆ Q ∪ SA then B outputs push
p
2 and pops the top element from the

stack. (The current top of the stack has transitions with source (p, T1)a and
(t, T )a for each t ∈ T1). B remembers the transition α begining with (p, T1)a

and modifies the current top element of stack to contain transitions with
source (t, T )a only, for t ∈ T1. (That is B pops the top element and pushes
a new one which contains only transitions with source (t, T )a of the old top
element).
Now B does a push2 operation. Deletes the topmost element of the stack
and pushes a dag expansion of transition α on the stack and changes its
control state to (p, T1).

(iv) (q, a,popp
2) ∈ ∆ If z = q, q ∈ Qk and (q, ↓), a, (p,2))φ then B outputs pop

p
2,

pops the top element from the stack and changes its control state to (p, 2).
If z = (r, 2) and ((r, 2), b, (r,2)) ∈ φ then B does pop1 and remains in state
(r, 2).
If z = (r, 2) and ((r, 2), ]1[1, (r, ↓)) ∈ φ then B does pop1 and enters state
(r, ↓).



If z = (r, 2) and ((r, 2), ]1]2, (δA(r′, [2]2), ↓)) ∈ φ then B enters the Halt state.
If z = (r, 2) and ((q, T ), a, true) ∈ φ (corresponding to (q, a,popp

2) ∈ ∆)
then B does a pop

p
2 operation. In the topmost element of the stack now it

examines a transition with source (p, T )b for b ∈ Γ and enters state (p, T )b.
[such a unique (p, T )b is guaranteed to be there, by action of B in step (ii)].

(v),(vi) Transitions related to A:
If z = q′′ or z = (q, t) and the first or second transitions of group (v) ∈ φ

then B enters a Halt state. /* A configuration in the target set is reached
*/.

(vii) If z = q and q ∈ Q1−k then B reads the input to find transition say, β. B now
finds transitions begining with the target set of β in the top stack symbol
and proceeds to take same actions as in one of the earlier cases corresponding
to β.

(viii) Transition is added in the saturation step:
Let z = (p, T )x and ((p, T )x, ε, S) ∈ φ. S is a conjunction of states. Further
let l be the least number such that this transition is in δl+1.
B pops the topmost element from the stack and pushes a dag rooted at
(p, T ) for input x whose leaves are states S and has transitions in δl only. B

changes its control state to (p, T ).

This finishes the description of the hpda B. ut

Note that unlike in [2], the strategy executed by this hpda is not constant
time. This is because for a single pop2 operation in hpds there are as many
transitions (of group (iii).b) in the accepting dag as the number of elements in
the order-1 stack. It seems possible to make the strategy constant time by doing
a initialization of B’s stack in several order-1 stacks each containing the portion
of D corresponding to an order-1 stack in C. We have not worked out the details
yet.

6.2 Computing Min-Cost Strategy

Let C be a configuration in the winning region of player k in a hpds reachability
game for player-k. The number of steps (also called cost) in which player k is
guaranteed to reach the target set E assuming the worst case behaviour from
the opponent is easily seen to be the least j such that C ∈ Attr

j
k(E). A winning

strategy of player k in which he plays at any configuration a move which guar-
antees him to win the game in minimum cost from that configuration is called
minimum cost winning strategy of player k.

Analogous to a result of [2], we show that min-cost value for player k from
a configuration C can be characterized using accepting dags of Rk on input C.
Further, there is an accepting dag of Rk on input C which codes a min-cost
strategy of player k.

We define a cost labeled dag as a dag D alongwith a labeling by natural
number of each node of D. The labeling value of node n, denoted L(n), is defined
using the rules below.



(0) Nodes with states in set SA×UA,↓ or leaves marked ‘true’ have cost L(n) = 0.
(i) Transition rule used at n is ((q, T ), a, (p,T)), q ∈ Qk

[ Corresponding to (q, a, pop
p
1) ∈ ∆ ]

Let n1 be the child of n corresponding to (p,T) then L(n) = 1 + L(n1).
(ii) Transition rule used at n is ((q, T ), a, (p,T1)a

∧

∧t∈T1
(t,T)a), for some

T1 ⊆ Q ∪ SA.
[Corresponding to (q, a, push

p
2) ∈ ∆]

Let n0, n1, · · ·nr be children of n corresponding to (p, T1)a, {(t, T )a | t ∈ T1}
respectively. We have L(n) = 1 + L(n0) + max{L(ni) | 1 ≤ i ≤ r}

(iii) Transition rule used at n corresponds to (q, a,popp
2) ∈ ∆ for q ∈ Qk

(a) If the rule used is ((q, ↓), a, (p,2)) let n1 be the child of n corresponding
to (p,2). then we have L(n) = 1 + L(n1).

(b) If the rule used is ((q, T ), a, true) then we define L(n) = 1.
(c) If the rule used is ((r, 2), b, (r,2)) let n1 be the child of n corresponding

to (r,2). then we define L(n) = L(n1).
(d) If the rule used is ((r, 2), ]1[1, (r, ↓)), let n1 be the child of n corresponding

to (r, ↓) then we define L(n) = L(n1).
If the rule used is ((r, 2), ]1]2, (δA(r′, [2]2), ↓) then we define L(n) = 0

(iv) Transition rule used at n is (q, a,pushp,u
1 ) ∈ ∆, q ∈ Qk

[ Corresponding to (q, a,pushp,u
1 ) ∈ ∆]

Let n1 be the child of n corresponding to (p,T)u. We define L(n) = 1+L(n1).
(v),(vi) Transitions related to A: If rule used at n is from groups (v) or (vi) then we

define L(n) = 0.
(vii) Let n correspond to a state q ∈ Q1−k. ( the rule used is from group (vii) )

In this case n has children corresponding to each rule of ∆ applicable at n. Let
the cost of choosing these moves be {c1, · · · , cr}. then L(n) = max{c1, · · · , cr}.

(viii) Transition used at n is ((p, T )x, ε, S) (introduced in saturation step)
[Which is added during saturation procedure and is in δl+1.]
Let D1 be a cost labeled dag on input x for this transition, and using tran-
sitions of δl only. We define L(n) = value at the root of D1.
(Note the use of recursion here as labeling inside Dl must satisfy the cost
labeling rules. Also note that the choice of dag D1, is not unique.)

The following theorem is analogous to Theorem 2 of section 5 and is proved
in the similar way.

Theorem 4. Let D be a cost labeled dag for input w with root of D marked with

state m and cost with j.

1. (q, [2[1w) ∈ Attr
j
k(L(A)) iff there is an accepting dag D of Rk for input w,

rooted at (q, ↓) and with cost labeled j at its root.

2. Let p ∈ Q, T ⊆ Q ∪ SA and x ∈ Γ ∗.

(p, [2[1x]1]2) ∈ Attr
j
k({(q, [2]2) | q ∈ T}∪M(T )) iff there is an accepting dag

D of Rk for input x]1, rooted at (p, T ) and with cost labeled j at its root.

Proof. It follows by considering cost labeling in the proof of Theorem 2. ut



We construct a minimum cost dag of Rk on C in bottom up manner, con-
sidering at each step all possible moves of Rk and choosing the one leading to
minimum cost and satisfying the rules of cost labeled dag. For transitions of the
kind ((p, T )x, ε, S), we use the algorithm recursively constructing the dag with
transitions of lower levels only. For a fixed H,A this can be done in time linear
in the length of the configuration. This leads to the following theorem.

Theorem 5. For a fixed H, A, k, there is a linear time algorithm which takes

as its input a configuration of player k and outputs the minimum cost move

of player k in the reachability game above if the input configuration is in the

winning region of player k.

7 Conclusion

We have given an alternative construction of finite automata recognizing pre∗H(C),
where C is a regular set of configurations of a second order pushdown system
H. Our construction is explicit and simple to understand. It also yields results
about strategy synthesis which are a generalization from pushdown reachability
games to second order pushdown reachability games. Our approach can be ex-
tended to pushdown systems of higher than second order also though some new
phenomenon arise there which make the construction more involved. This will
be future work.
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Decidability and Complexity Analysis of

Forbidden State Problems for Discrete Event

Systems
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Abstract. The conventional forbidden state problem for discrete event
systems is concerned with the issue of synthesizing a maximally permis-
sive control policy to prevent a discrete event system from reaching any
forbidden state during the course of its computation. In this paper, we
regard the forbidden state problem as a decision problem, and investigate
the decidability/complexity issue of the problem under two new types of
control policies, namely, non-blocking and fair policies, for finite state
systems and Petri nets.

1 Introduction

In supervisory control of discrete event systems [7], a central problem, known as
the forbidden state problem, asks for the design of a supervisor to guide a system
with controllable/uncontrollable transitions to avoiding a certain set of forbid-
den states during the course of its computation. At any state, a state-feedback or
event-feedback supervisory control policy is capable of disabling certain control-
lable transitions, while leaving all the uncontrollable transitions enabled. It is
not hard to see that if a control policy avoiding forbidden states exists, then by
shutting down all the controllable transitions at any state the goal can certainly
be achieved. Traditionally, the forbidden state problem in supervisory control
seeks for a control policy that is maximally permissive in the sense that the pol-
icy enforces the weakest control among all policies avoiding forbidden states (if
they exist) [1, 2, 5].

In this paper, we consider the forbidden state problem with respect to two
new types of control policies, namely, non-blocking policy and fair policy, under
either the state-feedback or the event-feedback control. In addition, we focus
on the decision version of the forbidden state problem, i.e., deciding whether a
control policy exists or not under which the system can always be controlled to
avoid reaching any forbidden state. Under a non-blocking policy, if in a state
from which only controllable transitions are enabled, a control policy is not al-
lowed to ‘shut down’ the computation by disabling all potentially executable
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controllable transitions. Under a fair policy, if without the presence of the con-
troller, a controllable transition is enabled infinitely many times along an infinite
computation, then any control action involving the transition must not be denied
by the control policy forever. We investigate the forbidden state problem from a
complexity/decidability aspect for two types of systems: finite-state systems and
systems that can be modelled by Petri nets, which are the two most extensively
studied models in the community of discrete event systems, as indicated in many
articles (e.g., [1, 7]). Our results are summarized in the following tables:

Finite-state systems Conventional Non-blocking Fair

State-feedback NL-complete PTIME-complete NP-complete

Event-feedback NL-complete PTIME-complete PTIME-complete

Table 1. Complexity results of various forbidden state problems for finite state systems.

Petri nets Conventional Non-blocking Fair

State-feedback Decidable∗ Co-r.e.-complete Σ1

1 -hard

Event-feedback Decidable∗ Co-r.e.-complete Σ1

1 -hard

Table 2. Decidability results of various forbidden state problems for Petri nets. (Co-r.e.
denotes the complement of recursively enumerable sets; Σ1

1 denotes the first level of the
analytical hierarchy. Note: ∗ assuming the set of forbidden states to be upward-closed.)

The rest of the paper is organized as follows. Section 2 gives the basic defini-
tions of controlled transition systems, non-blocking and fair control policies, as
well as various forbidden state problems. Complexity analysis regarding state-
feedback and event-feedback forbidden state problems for finite state systems is
given in Section 3. Section 4 is concerned with the analysis of various forbidden
state problems for Petri nets from a decidability viewpoint.

2 Preliminaries

Let N denote the set of nonnegative integers, and N k the set of vectors of k
nonnegative integers. A transition system M is a 4-tuple (S, T, δ, q0), where S is
a (possibly infinite) set of states, T is a finite set of transitions, q0 ∈ S denotes the
initial state, and δ ⊆ (S×T ×S) defines the transition relation. For convenience,

(s, t, s′) ∈ δ is also written as s
t
→ s′, meaning that executing transition t from

state s yields a new state s′. We define en(s) = {t | ∃s′ ∈ S, (s, t, s′) ∈ δ}
to be the set of transitions enabled at state s. Given a sequence of transitions

σ=t1 · · · tn, we write s0

t1···tn→ sn (or s0

σ
→ sn) if ∀0 ≤ i ≤ n − 1, si

ti+1

→ si+1. We



let
∗
→ denote the transitive closure of →. That is, s

∗
→ s′ if there exists a sequence

of transitions σ ∈ T ∗ such that s
σ
→ s′. For an infinite string σ = t1t2 · · · ti · · · ∈

T ω, we write s0

σ
→ if ∀i ≥ 1 s0

σi→, where σi = t1t2 · · · ti. The reachability
set with respect to a start state s and a (finite or infinite) computation σ is

R(M, s, σ) ={s′ | s
σ′

→ s′, where σ′ is a prefix of σ}, i.e., the set of states
encountered along the computation σ. We write R(M, s) =

⋃
σ∈T∗ R(M, s, σ) to

denote the reachability set of M from state s.
A controlled transition system is a transition system M=(S, T, δ, q0) in which

the set of transitions is divided into two disjoint subsets Tc and Tu with Tc∩Tu =
∅ and Tc ∪ Tu = T . Transitions in Tc and Tu are called controllable and un-
controllable transitions, respectively. Let C ⊆ 2Tc . Each element of C is called
a control action. W.l.o.g., we always label the elements of C as C1, . . . , Cm

(i.e., C={C1, . . . , Cm}, for some m), and we also assume that Tc =
⋃

i=1...m Ci

throughout the rest of this paper. A state-feedback control policy is a mapping
h : S → C, specifying, for each state s ∈ S, the set h(s) (∈ C) which represents
the set of controllable transitions enabled under the policy h. An event-feedback
control policy is a mapping h : T ∗ → C from the set of possible event histories
to C. From the above definitions, it is clear that the control decision under a
state-feedback policy depends only on the current state of the system, whereas
under the event-feedback policy, the decision also hinders on the history of the
computation reaching the current state. With respect to a policy h, a sequence of
transitions σ = t1 · · · tn is a legitimate computation from state s0 under the state-
feedback (resp., event-feedback) policy if there exist s1, · · · , sn ∈ S such that

∀1 ≤ i ≤ n, si−1

ti→ si and if ti ∈ Tc, then ti ∈ h(si) (resp., ti ∈ h(t1 · · · ti−1))
(i.e., controllable transition ti must be enabled under h).

In this paper, we are concerned with the so-called forbidden state problem
(FSP, for short) for controlled transition systems. FST is the problem of, given
a controlled transition system M=(S, T, δ, q0) (where T = Tu ∪ Tc), a C ⊆ 2Tc ,
and a set Q of forbidden states, determining whether there exists a policy un-
der which all the (finite or infinite) computations σ of M from q0 never reach
a state in Q. Over the years, FSP has been a focal point of research in the
community of discrete event dynamic systems with its primary emphasis lying
in finding a maximally permissive policy (if it exists) (see, e.g., [1, 2, 5]. In this
paper, our interest in FSP is on the complexity of deciding whether a forbidden-
state-avoidance control policy exists or not for certain finite/infinite systems.
In addition to the conventional control policy, we consider two new types of
control policies with non-blocking and/or fairness constraints imposed on the
policy, and the control decision is based on state-feedback or event-feedback.
Suppose M=(S, T, δ, q0) (T = Tc ∪ Tu) is a controlled transition system and
C={C1, . . . , Cm} is the set of control actions.

1. Non-blocking policy: A policy h is non-blocking if for every state s, if en(s) ⊆
Tc, then the control policy must enable some control action C with en(s) ∩
C 6= ∅ at state s. In words, if in a state from which only controllable transi-
tions are enabled, a control policy is not allowed to ‘shut down’ the compu-
tation by disabling all potentially executable controllable transitions.



2. Fair policy: A policy h is said to be fair if it is non-blocking, and for every

infinite computation s0

t1→ s1

t2→ · · · si−1

ti→ si

ti+1

→ · · · and for every 1 ≤ j ≤
m, if there exist infinitely many i1, i2, ... such that Cj ∩ en(sil

) 6= ∅ (∀l ≥ 1)
then there exist infinitely many k1, k2 · · · such that Cj is chosen by the
control policy at states skl

, ∀l ≥ 1. In words, if without the presence of the
controller, a controllable transition is enabled infinitely many times along an
infinite computation, then any control action involving the transition must
not be denied by the control policy forever.

Consider the following decision versions of three variants of FSP, namely,
the conventional Forbidden State Problem (FSP), the Non-blocking Forbidden
State Problem (NFSP), and the Fair Forbidden State Problem (FFSP), under
state-feedback and event-feedback control. All three problems ask the following
question: Given a controlled transition system M=(S, T, δ, q0), a C ⊆ 2Tc , and
a set Q of forbidden states, deciding whether there exists a (state-feedback or
event-feedback) control policy h such that (

⋃
σ is legal under h R(M, q0, σ))∩Q =

∅, i.e., none of the (finite or infinite) computations from q0 under h ever reaches
a state in Q. For FSP, h is just a conventional control policy, whereas for NFSP
and FFSP, h is required to be non-blocking and fair, respectively.

a b

c
1 2 3

a b

c
1 2 3

d

(1)

(2)

Tu={a}; Tc={b,c},

Q={3}, ={{b},{c}}

4 b

c Tu={a}; Tc={b,c,d},

Q={3}, ={{b},{c},{d}}

Fig. 1. FSP under the conventional, non-blocking and fair control policies.

To illustrate the disparities among the aforementioned three control policies,
consider an example shown in Figure 1. For the system in Figure 1(1), the system
is forbidden-state-free under the conventional control policy by letting h(2) = ∅
(i.e., disabling b and c in state 2, assuming a state-feedback policy). However,
turning off b and c in state 2 violates the non-blocking constraint; hence, the
system is not forbidden-state-free under the non-blocking policy. Now consider
the system in Figure 1(2). If we always choose h(2) = {d} and h(4) = {c}

(yielding an infinite computation 1
a
→ 2

d
→ 4

c
→ 2

d
→ 4

c
→ 2 · · · ), then the system

is forbidden-state-free under the non-blocking policy. However, the above policy



is not fair as the control action {b} was enabled infinitely many times but was
never chosen under the above policy.

As finite state systems and Petri nets are without doubt the two most pop-
ular (and important) abstract models in the study of FSP for discrete event
systems (see, e.g., [1]), we focus on various FSP for these two models from the
complexity/decidability viewpoints in the rest of this paper.

3 Finite state systems

In this section, we study the computational complexity of state-feedback and
event-feedback FSP, NFSP, and FFSP for finite state systems.

Theorem 1. State-feedback and event-feedback NFSP are PTIME-complete for
finite state systems.

Proof. (Sketch) We first show the upper bound, i.e., NFSP is in PTIME. Con-
sider a finite state system M=(S, T, δ, q0) with C = {C1, ..., Cm}, and let Q the
the set of forbidden states.

We construct a sequence of disjoint sets (layers) of states U0, U1, ... in the
following way:

(1) U0 = Q ∪ {q | ∃p ∈ Q,σ ∈ T ∗
u , q

σ
→ p}, and

(2) ∀i ≥ 1, a state q 6∈
S

0≤l≤i−1
Ui−1 is included in Ui iff there exist a state q′ such

that

(a) q
σ
→ q′, for some σ ∈ T ∗

u

(b) en(q′) ⊆ Tc, and

(c) ∀1 ≤ j ≤ m, (Cj ∩ en(q′) 6= ∅) =⇒ ∃t ∈ Cj , q
′ t
→ q′′, for some q′′ ∈

S

0≤l≤i−1
Ui−1

Table 3. Procedure NFS

Intuitively speaking, Ui consists of those states each of which can reach some
state in a lower layer by a sequence of uncontrollable transitions followed by a
controllable transition, regardless of which control action is taken at the end.
What (c) says is that regardless of which control action Ci is chosen by the
supervisor, a state q′′ in

⋃
0≤l≤i−1

Ui−1 is always reachable. As the system is
of finite-state, the above procedure of constructing the sequences U0, U1, ...
eventually terminates when no new states can be added. Once this happens, it is
reasonably easy to see that from the initial state q0, there is a non-blocking policy
avoiding Q iff q0 ∈ (S −

⋃
i≥0

Ui). As the number of layers is bounded by |S|,
and each of steps (a), (b) and (c) can be done in polynomial time (for example,
(a) involves checking graph reachability), the entire procedure is clearly doable
in PTIME. Also note that the above procedure works for both state-feedback
and event-feedback policies.



Now we show the PTIME hardness result, which is done by reducing from
a well-known PTIME-complete problem, namely, the path system problem [4].
Recall that a path system is a 4-tuple P = (X, R, I, Z), where X is a finite set
of nodes, I(⊆ X) is the set of starting nodes, Z(⊆ X) is the set of terminal
nodes, and R(⊆ X × X × X) is the set of rules. A node x ∈ X is said to be
admissible if either x ∈ Z or ∃y, z ∈ X such that (x, y, z) ∈ R and both y and z
are admissible. The path system P = (X, R, I, Z), is said to have a solution iff
there is an admissible node in I .

s1

s2

sk

…

a’a, b

q0

x
1

x
j

x
d

x

a, b

a, b

a, b

y

z

q0

b’

X-Z Z

z1

z2

zh

…

I

Fig. 2. Simulating an instance of the path system problem.

To show our lower bound, given a path system P = (X, R, I, Z) we show how
to construct a finite state system M=(S, T, δ, q0) with C = {C1, ..., Cm}, and a
forbidden state set Q ⊆ S in such a way that starting from the initial state q0,
M can be controlled under a non-blocking policy to avoid reaching Q iff P has
no solution. Without loss of generality, let I = {s1, ..., sk}, Z = {z1, ..., zh} and
R = {r1, ..., rd}. M is defined to be the following (see Figure 2):

T = {a, a′, b, b′, u}, Tc = {a, a′, b, b′}, Tu = {u},
S = X ∪ {q0} ∪ {x1, x2, ..., xd | ∀x ∈ (X − Z)},
δ: (Let “q ∈ δ(p, a/b)” mean that both δ(p, a) = q and δ(p, b) = q)
(1) ∀1 ≤ i ≤ k, si ∈ δ(q0, u), (For clarity the label u is not shown in Figure

2)
(2) ∀x ∈ (X − Z), ∀j, 1 ≤ j ≤ d − 1, x1 ∈ δ(x, a/b), xj+1 ∈ δ(xj , a/b), and

x ∈ δ(xd, a/b),
(3) ∀x ∈ (X − Z), if rj = (x, y, z) then y ∈ δ(xj , a′) and z ∈ δ(xj , b′),

Let the set of control actions C be {{a, a′}, {b, b′}}. We also let the set of for-
bidden states Q be Z. We claim that P has no solution iff M can be con-
trolled to avoid reaching Q under a non-blocking policy. To show the only-if
part, assume that P has no solution. Let A and B be the sets of nonadmissi-
ble and admissible nodes, respectively. Let A′ = A ∪ {x1, ..., xd | x ∈ A}, and
B′ = B ∪ {x1, ..., xd | x ∈ (B − Z)}.



Clearly, I ⊆ A′ since P has no solution. According to the construction of M ,
for every node xj in A′ there exists at most one edge that connects xj to some
node in B′. (Otherwise, the corresponding x would be admissible.) Consequently
there exists a non-blocking policy that avoids Q. The policy is designed in such a

way that if xj a′

→ y (resp., xj b′

→ y), for some node y in B′, then the non-blocking

policy h will enable the edge xj b′

→ xj+1 (resp., xj a′

→ xj+1). By doing so, M will
not be ‘forced’ to enter B′ under the non-blocking policy. It is also worthy of
pointing out that the above is the only situation in which the controller needs to
make a ‘wise decision.’ For the rest, the controller is free to enable a, b or both;
hence, h is clearly non-blocking.

Now assume that P has a solution, i.e., some state, say s′ in I is admissible.
From the construction, we show that there does not exist a non-blocking on M
that always avoids Q. Let H be the ‘parse’ tree certifies the admissibility of s′.
That is, H is a finite labelled binary tree where:

– each node in H is either a leaf or has both a left child and a right child,
– each node is labelled by an element of X ,
– each leaf is labelled by an element of Z,
– whenever an internal node is labelled by x and its left and right children are

labelled by y and z, respectively, it must be that (x, y, z) ∈ R,
– the root is labelled by s′.

Clearly each node in such a tree must be labelled by an admissible element in X .
According to our construction (see (1) and (2)), any non-blocking policy always

has a chance to take the computation from q0 to s′ (because of q0

u
→ s′). From

s′, the above parse tree ensures that some leaf node (corresponding to a state in
Z(= Q)) to be unavoidable under any non-blocking policy. The above works for
both state-feedback and event-feedback policies. �

Theorem 2. State-feedback FFSP is NP-complete for finite state systems.

Proof. (Sketch) The problem is clearly solvable in NP. The lower bound proof
is done by reducing from the 3SAT. Let C = {D1, ..., Dm} be the set of clauses
and V = {x1, ..., xn} be the set of variables in an instance of 3SAT, where
Di = {αi1, αi2, αi3} and αij ∈ {x, x|x ∈ V } for 1 ≤ i ≤ m, 1 ≤ j ≤ 3. W.l.o.g.,
we assume that none of the Di contains both xj and x̄j , for any j. We construct
a finite state system M=(S, T, δ, q0), a set of control actions C, and a forbidden
state set Q in such a way that M can be controlled under a fair state-feedback
policy to avoid Q iff the 3SAT instance is satisfiable. The construction is shown
in Figure 3. In addition to states q0, qn+1, q and q′, M contains modules Vj

(1 ≤ j ≤ n), Li (1 ≤ i ≤ m), and X . Module Vj (resp., Li) corresponds to
variable xj (resp., clause Di). Now we describe each of the modules and the
connecting edges between modules in detail.

– The node set of Vj is {qj , q
′
j} ∪ {qi

j , q̄
i
j | 1 ≤ j ≤ m + 1}, ∀1 ≤ j ≤ n,

– The node set of Li is {ci
j | 1 ≤ j ≤ n}, ∀1 ≤ i ≤ m,

– The node set of X is {z} ∪ {ri | 1 ≤ i ≤ m},



– The edge set of M includes

1. ∀1 ≤ j ≤ n, qj
t
→ q1

j , qj
f
→ q̄1

j , qm+1

j → q′j , q̄m+1

j → q′j , q′j → qj+1,

if xj ∈ Di then (qi
j → ci

j and ci
j

i
→ qi+1

j ) else qi
j → qi+1

j ,

if x̄j ∈ Di then (q̄i
j → ci

j and ci
j

i
→ q̄i+1

j ) else q̄i
j → q̄i+1

j

2. ∀1 ≤ i ≤ m ri → ri+1, ri
i
→ z

3. q0 → q1, qn+1 → r1, rm → q, q
t
→ q′, q′

f
→ q0.

In the above construction, un-annotated edges correspond to uncontrollable tran-
sitions, and each label associated with an annotated edge corresponds to a con-
trollable transition. Let the set of control actions be C={{t}, {f}, {1}, ..., {m}},
and z be the only forbidden state.

The crux of the simulation is the following. A truth assignment of the 3SAT
instance corresponds to a path from q0 to qn+1 along which, for each Vj , 1 ≤
j ≤ n, the path traverses either the left branch (corresponding to assigning xj

to false) or the right branch (corresponding to assigning xj to true). If variable
xj (or x̄j) is in clause Di, then node ci

j along with its outgoing controllable
transition labelled i will be included in the path. Note that in our construction, a
controllable transition labelled i leading M to the forbidden state z is associated
with node ri, 1 ≤ 1 ≤ m. Since each of such ri, 1 ≤ 1 ≤ m is on a loop (from

q0 to qn+1 and back) that M repeats forever, ri
i
→ z is forced to take place

unless the control policy already performs i somewhere along the loop. (Recall
the definition of a fair control policy.) Consequently, to suppress each of the

ri
i
→ z(1 ≤ i ≤ m) under a fair control policy, one of the outgoing transitions

labelled i must take place in Module Li, meaning that the truth assignment
corresponding to the infinite computation under a fair policy satisfies all clauses.
The remaining details are easy. �

Note that in the NP-hardness proof of the above theorem, the construction
does not work under the event-feedback policy. To see this, consider state qj in
Figure 3. An event-feedback policy allows the controller to enable t and f at qj

at different points in time, making the simulation of a truth value assignment
for xj to be illegitimate. It turns out that event-feedback FFSP is solvable in
PTIME, as our next theorem shows.

To reason about event-feedback FFSP, a graph-theoretic approach is used.
We associate a graph GM,C to a finite state system M=(S, T, δ, q0) with C =
{C1, ..., Cm} the set of control actions. The edge-labelled graph GM,C =(V, E)
(with possibly self-loops and parallel edges) is such that

– V = S, and
– edge (p, q)l (l ∈ {0, 1, ..., m} denotes the label of the edge) is in E if ∃t ∈ T

p
t
→ q, and t ∈ Cl if l > 0; l = 0 if t ∈ Tu.

In words, each node of the graph corresponds to a state in the finite state system,
and an edge (p, q) is labelled 0 (resp, l > 0) if it corresponds to an uncontrollable
transition (resp., a controllable transition in control action set Cl). A strongly



q0

qn+1

rm

r1

riz

1

i

m

i

Li

Vjtf

tf

qj

qj
i

cj
i

qj
i+1

qj
1

X

qj
1

qj
i

i

i

Lmm

q’j

t

f

q

q’

Fig. 3. Simulation of a 3SAT instance.

connected component (SCC) G′ = (V ′, E′) (V ′ ⊆ V, E′ ⊆ E) of GM,C is called a
fair-SCC if

(C1) ∀p ∈ V ′, ∀q ∈ V , ((p, q)0 ∈ E =⇒ (p, q)0 ∈ E′),

(C2) ∀p, q ∈ V ′, ∀q′ ∈ V , ∀l ∈ {0, 1, ..., m}, (( (p, q)l ∈ E′ ∧ (p, q′)l ∈ E ) =⇒
(p, q′)l ∈ E′)

(C3) ∀p ∈ V ′, ∀q ∈ V − V ′, (( (p, q)l ∈ E − E′ ) =⇒ ∃p′, q′ ∈ V ′, (p′, q′)l ∈ E′).

Consider the SCC consisting of nodes p, q, r and their adjacent solid edges in
Figure 4. It is not hard to see that Figure 4(A) is a fair-SCC, as it meets all
three conditions above. The SCC in Figure 4(B), however, is not a fair-SCC as
condition (C1) (requesting (r, s)0 to be in the SCC) is violated. Also Figures
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Fig. 4. Examples of fair and unfair SCCs.

4(C) and (D) are not fair-SCCs as conditions (C2) and (C3), respectively, are
violated.

Intuitively, a fair-SCC is meant for capturing the set of states that occur
infinitely often under a fair event-feedback control policy. Condition (C1) ensures
that all the uncontrollable transitions emanating from states in a fair-SCC must
also be included in the SCC. Condition (C2) says that at any state in the fair-
SCC, outgoing transitions belonging to the same control action set must all be
included or all be excluded in the SCC. Condition (C3) is for ensuring the control
policy to be fair.

Now we are ready to show the PTIME-completeness result for event-feedback
FFSP.

Theorem 3. Event-feedback FFSP is PTIME-complete for finite state systems.

Proof. (Sketch) We first show the upper bound. There are two cases that the
supervisor can guide the system to avoid reaching any forbidden state. One case
is when the computation (possibly a tree structure) under control eventually
reaches a dead state (i.e., a state at which no transitions are enabled) which is
not a forbidden state. For this case, a breadth-first search approach can clearly be
applied to finding such a computation in polynomial time. Now consider the the
second case in which the computation under control is infinite. In what follows,
we illustrate how such an infinite computation can be found in polynomial time.

Given a finite state system M=(S, T, δ, q0) with C = {C1, ..., Cm} as the set of
control actions, and Q ⊆ S the set of forbidden states, we remove from GM,C all

the nodes in {q | q ∈ Q, or ∃p ∈ Q, ∃σ ∈ (Tu)∗, q
σ
→ p} and their adjacent edges,

and let the resulting graph be G′ = (V ′, E′). The idea behind our polynomial
time algorithm is to identify all the maximum fair-SCCs of G′, each of which is
associated with an event-feedback fair policy that is capable of avoiding Q once
a state in such a fair-SCC is entered. Then by replacing each of such maximum
fair-SCCs by a dead state (a state without outgoing transitions), then a fair
policy avoiding Q in the new graph (system) must be one that eventually guides
the system to dead states along all possible computations, which is solvable in
polynomial time following our earlier discussion.



Algorithm FSCC

(1) Find the set H = {G1, ..., Gk} of maximum strongly connected components
of G′;

(2) If H = ∅, then halt;
(3) Choose some Ḡ ∈ H .

if Ḡ is a fair-SCC, the output Ḡ and goto (2), else
Ḡ must violate one of Conditions C1, C2, and C3 in the definition of a fair-SCC

(a) Violating Conditions C1 or C3: find q in Ḡ such that
either (q, p)0(∈ E) is not in Ḡ (i.e., violating C1) or there is an
edge (q, q′)l outside Ḡ and no edge in Ḡ is labelled i (i.e., violating C3).
Let D be the subgraph of Ḡ by removing q and its adjacent edges.
Decompose D into maximum strongly connected components,
say R1, ..., Rf , and let H = (H − {Ḡ}) ∪ {R1, ..., Rf}; goto (2)

(b) Violating Conditions C2: find nodes q, q′ and edge (q, q′)l in Ḡ
and edge (q, r)l outside Ḡ. Let D be the subgraph of Ḡ
by removing all outgoing edges from q labelled l.
If D is strongly connected, then let H = (H − {Ḡ}) ∪ {D}; goto (2),
else decompose D into maximum strongly connected components,
say R1, ..., Rf , and let H = (H − {Ḡ}) ∪ {R1, ..., Rf}; goto (2)

Note that constructing the set of maximum strongly connected components and
deciding whether a subgraph is a fair-SCC are clearly doable in polynomial
time. Each time Algorithm FSCC returns to step (2), at least one edge or node
is removed from the graph; hence, the number of iterations of the procedure is
polynomial in the size of the graph. As a result, Algorithm FSCC is in PTIME.
Once the set of all maximum fair-SCC is identified, the remaining details follow
from the discussion in the beginning of this proof.

PTIME-hardness follows from a similar proof of that in Theorem 1. �

Theorem 4. State-feedback and event-feedback FSP are NL-complete for finite
state systems.

Proof. (Sketch) It suffices to consider the situation when all the controllable
transitions are disabled (i.e., the controller enforces the strongest control). In
this case, the problem boils down to testing whether any of the forbidden states
is reachable from the initial state, which is a problem solvable in nondeterministic
logspace. �

4 Petri nets

A Petri net is a 3-tuple (P, T, ϕ), where P is a finite set of places, T is a finite set
of transitions, and ϕ is a flow function ϕ : (P ×T ) ∪ (T ×P ) → N . Traditionally,
a state of a PN is called a marking, which is a mapping µ : P → N (µ assigns
tokens to each place of the net). A transition t ∈ T is enabled at a marking µ



iff ∀p ∈ P , ϕ(p, t) ≤ µ(p). If a transition t is enabled, it may fire by removing a
token from each input place and putting a token in each output place. We then

write µ
t
→ µ′, where µ′(p) = µ(p) − ϕ(p, t) + ϕ(t, p) ∀p ∈ P . A marked PN is a

pair ((P, T, ϕ), µ0), where (P, T, ϕ) is a PN, and µ0 is called the initial marking.
See [6] for more about Petri nets. A marked PN ((P, T, ϕ), µ0) can be regarded

as an infinite-state transition system (Nk, T, δ, µ0), where δ(µ, t) = µ′ if µ
t
→ µ′.

A set U ∈ Nk is said to be upward-closed if ∀x ∈ U, y ≥ x =⇒ y ∈ U .
In our subsequent discussion, we consider the forbidden state problem for

Petri nets when the set of forbidden states is expressed in Presburger formula.

Theorem 5. State-feedback and event-feedback NFSP for Petri nets are co-r.e.-
complete.

Proof. (Sketch) To show this result, we reduce the halting problem of determin-
istic 2-counter machines (2-CMs) to the NFSP of Petri nets.

A 2-CM M is a finite-state machine equipped with 2 counters c1 and c2 on
which instructions of the following forms can be applied (i = 1 or 2)

(Type 1) s: ci := ci + 1; goto s′

(Type 2) s: if ci = 0 then (goto s′) else (ci := ci − 1; goto s′′)

The blank-tape halting problem for 2-CMs is that of given a 2-CM starting
with a blank-tape, deciding whether the machine halts or not. As 2-CMs are
Turing-equivalent, the halting problem for 2-CMs is undecidable.
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s:  C:=C+1 goto s’  

s:  if C=0 goto s’  else (C:=C-1, goto s’ ’ ) 

halting state 

(A)

(B)

(C)

Fig. 5. Simulating a 2-CM.



In what follows, we show how to construct a PN P (along with a set C of
control actions and a set Q of forbidden states) from a given 2-CM M in such a
way that M does not halt on the blank tape iff there exists a non-blocking control
policy under which P always avoids Q. Simulating Type 1 instructions is rather
straightforward (see Figure 5(A)). For Type 2 instructions, one needs to know
whether the counter is zero or not, and then act accordingly. It is well-known
that Petri nets lack test-for-zero capabilities, making them strictly less powerful
than Turning machines. With the presence of a non-blocking control policy, we
are able to enforce zero-testing implicitly in a way shown in Figure 5(B). In
Figure 5(B), t=0 is a controllable transition, while the remaining transitions are
uncontrollable. A forbidden state corresponds to one of the following two cases:
a token is deposited in q or a token is added to the place simulating the halting
state of M (see Figure 5(C)). A legitimate simulation of M corresponds to a
non-blocking control policy under which t=0 is turned off (resp., on) every time
a Type 2 instruction is carried out on a non-zero (resp., zero) counter. It should
be noted that being non-blocking requires that t=0 be turned on when t− is
disabled (i.e., counter C is empty), ensuring that the simulation always proceeds
if possible. It is then reasonably easy to see that P has an infinite computation
under a non-blocking policy iff M is non-halting. The lower bound follows. To
show the upper bound, Procedure NFS in Table 3 (in the proof of Theorem
1) provides a semi-decision procedure for checking whether from a marking the
computation eventually reaches a forbidden state under all non-blocking policies.
For Petri nets, Procedure NFS, which generates U0, U1, ... may not terminate in
general. �

Theorem 6. State-feedback and event-feedback FFSP for Petri nets are Σ1
1 -hard

(i.e., hard for the first level of the analytical hierarchy).

Proof. (Sketch) It was shown in [3] that for Petri nets, the fair nontermination
problem (NTP fair, i.e., the problem of, given a Petri net, determining whether
there exists an infinite computation along which if a transition is enabled in-
finitely often, then the transition must occur infinitely many times) is Σ1

1 -hard.
In what follows, we show how to reduce NTP fair to FFSP , thus yielding Σ1

1 -
hardness for FFSP .

Let Petri net P be an instance of NTP fair. An instance P ′ of FFSP (along
with a set of forbidden states) is constructed to simulate P in such a way that
P has a fair nonterminating computation iff P ′ can be controlled under a fair
policy to avoid reaching a forbidden state. P ′ is constructed from P with the
following modifications:

- P ′ contains all the places and transitions of P ,
- a new place p and a new transition t with ϕ(p, t) = 1 are added; initially, p

contains a token,
- for every transition t′ in P , an arc from t′ to p is added (i.e., ϕ(t′, p) = 1),
- all transitions in P ′ are controllable transitions, and the set of control actions

is {{r} | r is a transition of P ′},
- a marking is a forbidden state is p is empty.



In P ′, the controller plays the role of nondeterministically ”guessing” a nonter-
minating fair computation that witnesses a solution (if it exists) of NTP fair. If
there exists an infinite computation avoiding all the forbidden states under a fair
controller, then such an infinite computation (ignoring the additional transition
t) is clearly fair with respect to P , and vice versa. Note that as the firing of each
of the transitions in P deposits a token to the newly added place p, it is easy to
schedule t to fire infinitely many times without making p empty. On the other
hand, if P does not have an infinite fair computation, then no fair control policy
can result in an infinite computation. Hence, a fair controller in this case only
leads to finite computations eventually reaching dead markings; hence, p will
eventually become empty as the non-blocking constraint requires t to fire when
no other transitions are capable of firing. In this case, forbidden states become
unavoidable. This completes the proof. �

Theorem 7. State-feedback and event-feedback FSP for Petri nets are decidable
if the set of forbidden states is upward-closed.

Proof. (Sketch) It is rather obvious that if there exists a conventional control
policy under which a system can always be guided to avoid reaching a state in
the set Q of forbidden states, then the policy disabling all controllable transi-
tions clearly serves as a witness for such a control policy. After removing all the
controllable transitions in a Petri net, a backward reachability analysis (starting
from the set Q) can easily generate exactly the set of states from which the
controller has no way of avoiding Q. As Q being upward-closed and the un-
derlying system being a Petri net, the backward reachability procedure always
terminates. �

Acknowledgments: The author thanks the anonymous referees for their com-
ments that improved the presentation of this paper.
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Algorithmic Self-Assembly of DNA: Theory and
Experiment

Erik Winfree

California Institute of Technology
Pasadena, CA 91125, USA

Self-assembly is a fundamental process in the self-organization of biological as well
as non-biological structures. Passive self-assembly of molecular units, being driven just
by thermodynamic binding energies and the geometrical structure of the molecules,
would seem to be the simplest case to study – but it can be remarkably complicated. In
fact, in a model of generalized crystal growth abstracted asthe self-assembly of Wang
tiles, passive self-assembly can be shown to be Turing universal. This leads to a number
of theoretical observations: complex shapes that have concise algorithmic descriptions
can be self-assembled from a small number of parts; these self-assembled structures can
perform error correction during growth and can self-heal after damage; and as a simple
form of self-replication, algorithmic crystals could provide an abiological example of
Darwinian evolution. In our lab, we have been working to demonstrate these principles
experimentally, using molecular Wang tiles constructed from DNA. Several examples
will be given.



Temporal Error Correction in Three Dimensional
Asynchronous Lattices

Matthew Cook

Institute of Neuroinformatics
Winterthurerstrasse 190

8057 Zurich, Switzerland

Self assembled tilings are useful for creating engineered structures at a very small
scale. One of the things we would like to eventually construct is computational struc-
tures computing on a lattice. At such a small scale we will be faced with error-prone
components and in many settings a lack of global synchronization. This takes us to
the realm of fault-tolerant asynchronous cellular automata, where the cells need to lo-
cally and actively maintain synchronicity. However, the mechanism for maintaining
synchronicity will also be error prone, which can lead to interesting topological defects
in the effective space-time sheet. In the search for ways to fix these defects, we find
that going to the more complicated case of three dimensions actually makes solving the
problem easier, and finally we can reduce the problem to a simple conjecture regarding
the smoothness of a diagonally growing surface of a crystal lattice. This is joint work
with Erik Winfree and Peter Gacs.



Self-assembly for tilings of the whole plane

Florent Becker

Laboratoire d’Informatique du Paralllisme
UMR 5668 CNRS, INRIA, Universit Lyon 1, NS Lyon

46 Alle d’Italie – 69364 Lyon Cedex 07 – France
Florent.Becker@ens-lyon.fr

Abstract. In this paper, we investigate the ability to use self-assembling sys-
tem to tileZ

2 with Wang tiles. We say that a self-assembling system is infalli-
ble when it covers the whole plane without mismatch (for any sequence of non-
deterministic choices), and we look at the set of tiling ofZ

2 obtained as limits of
its dynamics.
We prove that at temperature1, only periodic tilings can be assembled, up to
equivalence between tiles, but that at temperature2, much more complex pat-
terns can be assembled. We prove that it is even possible to self-assemble quasi-
periodic patterns, namely the famous Robinson tiling. We conjecture that other
substitution tilings can be assembled.

Self-assembling tilings are a model of spontaneous growth and organization of
structures that was introduced by Winfree in [8], and related to self-organizing polymers
of DNA. This very simple model is a refinement of Wang tilings,yet it was proved ex-
perimentally that some chemical systems can actually behave like this model[6]. Since
then, the problem of assembling finite shapes has been thoroughly studied, and the as-
sembly process for finite shapes starts to be well understood. Assembling a finite shape
consists in waiting for the process of self-assembly to stopand say that the set of cells
covered by tiles is the assembled shape.

Yet, despite the legacy of Wang tilings, the question of patterns that can be self-
assemblied and which cover the whole plane has almost never been studied. That is,
given a self-assembling system which does cover the whole plane, we will look at how
complex the patterns that appear on the plane can be. In [7], Winfree gives an example
of a non trivial pattern which can be self-assemblied: he shows a tile-set which covers
a quarter-plane with a Sierpinsky triangle. In this paper, we will show that, as for finite
shapes, thetemperatureof self assembly is a crucial parameter.

Definition of the problem

We introduce the notion ofinfallible self-assembly: a self-assembling system is infal-
lible if it covers the whole planeZ2 without fail: any (finite) pattern can (and will) be
extended into a tiling of the whole plane. Their non-determinism has been tamed: we
are sure that the whole plane will eventually be covered, butthe system still chooses a
pattern in a given set, which can even be uncountable. This infallibility would be crucial
for the practical applications of such assembly such as nanotechnologies.
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At temperature 1, the only patterns that can be self-assembled are periodic tilings
with a random (or non-deterministic) component. At temperature 2, we do not have a
characterization of the patterns which can be self-assembled, but we show that we can
assemble some quasi-periodic but non-periodic tilings. This is a very important step, as
it shows that some tilings where local information can be determinant far away can be
self-assembled.

Looking at patterns rather than shapes for self-assembly makes sense when studying
a number of natural phenomena which take place on a surface rather than building it.

This problem is also intresting on the links between cellular automata and tilings:
our self-assembling system can be seen as a cellular automaton. This CA starts from a
single cell and spreads a tiling onto the whole plane.

A self-assembling system isinfallible when any production can be extended to cover
the whole plane. This actually means that given any “fair” system for choosing where
the next tile will be attached, the system will eventually cover any position inZ2. We
will look at the set of tilings of the plane generated by such systems.

We say that a self-assembling system assembles a set of tilings when, starting from
the configuration with only the seed at(0, 0), it covers the whole plane with a tiling
from R, and if any tiling inR can be assembled in this way. The functioni is an
interpretation functions which maps several tiles ofTA to a tiles ofΣ: it is often useful
to have several tiles inTA representing the same tile inΣ. This means that the tiles of
TA have a visible part, which is given byi, and a hidden part, which we will use to
compute the tiling.

1 Temperature 1

We will now look at temperature1 self-assembling systems. This class is especially in-
teresting for several reasons. First, it is a natural model in the domain of self-assembling
tiling, and also the easiest to implement, for example with chemical means [8,6]. This
case also corresponds to the simplest algorithms for answering the question “what tile
can be put at(x, y) to extend this finite patternp”: to answer this question, one simply
needs to buildp, and then, following a path fromp to (x, y), put the tiles one after the
other.

We will show that this class of tilesets corresponds to tilesets which up to an equiv-
alence relationship between the tiles, are periodic.

The equivalence states that two tiles are equivalent when each can replace the other
in a tiling, and the consequences of this replacement don’t spread further than one tile:

Definition 1 LetR be a set of tilings, two tilest1, t2 ∈ Σ are equivalent (t1 ∼= t2) if, for
anyT ∈ R such thatT (0, 0) = t1, t′ defined byT ′(0, 0) = t2 andT ′(x, y) = T (x, y)
when(x, y) /∈ {(x − 1, y)(x + 1, y)(x, y − 1)(x, y + 1)} is in R.

We extend∼= to tilings as follows:T ∼= T ′ if and only if∀(x, y), T (x, y) ∼= T ′(x, y).
Thus, to any tilingT ∈ R, we can associate a tiling inR/ ∼=, that a is aT̃ : Z

2 → Σ/ ∼=
defined by:T̃ (x, y) is the equivalence class ofT (x, y) modulo∼=.

With this notion of equivalence, we can characterize the tilings which can be as-
sembled a temperature 1 self-assembly system.
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Theorem 1 Let R be a set of tilings which is assembled by a temperature1 self-
assembling system, thenR/ ∼= consists of a unique equivalence class, which is a peri-
odic tiling of the plane byΣ/ ∼=.

Lemma 1 LetR be a set of tilings which is assembled by a temperature1 deterministic
self-assembly systemA, R is reduced to a single element which is periodic.

Sketch of the proof for the lemmaWe will build a finite automatona from A, which
will be able to recognize the tiling. As this automaton will be deterministic, the tiling in
R will be unique; as the automaton is finite, the tiling will be periodic.

We will now give the proof of the theorem 1

Proof. Without the hypothesis of determinacy, one can still builda, but as a non-
deterministic finite automaton. What we will show is that when we determinize this
automaton, we get an automaton whose states are the equivalence classes for∼=.

We will build ā, the determinized version ofa, using the usual construction. The
stateā(w) is the set of statesa can be in after readingw.

We then prove that the states ofā are exactly the equivalence classes for∼=. The
quotient ofR by the states of̄a is reduced to a unique periodic tiling, sincea is a finite
automaton. SoR/ ∼= is reduced to a unique periodic tiling.

2 Temperature 2 (and beyond)

In [5], Winfree showed that it was possible to self-assembleSierpinsky’s triangle with a
temperature2 tile-set. In fact, the construction can be generalized, anda quarter-plane
can be covered with the space-time diagram of any 1-dimensional CA running on a par-
ticular set of configurations. This technique was also used in [2]. These configurations
can even be made non-deteministic, as well as the CA.

With this construction, a number of patterns, especially self-similar patterns, which
appear in the space-time diagrams of cellular automata. Oneof the most famous ex-
amples is Sierpinsky’s triangle, which appears as the space-time diagram of the XOR
cellular automaton.

Assembling space-time diagrams of1-dimensional CA does give a wide variety
patterns, but these patterns have a strong directionality:the seed plays a central part, and
can be seen as the origin of the pattern. It is in fact possibleto build much more regular
patterns that are not periodic. An interesting properties of tilings is quasi-periodicity.

A tiling T is quasi-periodic if for any pattern of sizen×n that appears inT appears
in every window of sizew × w of T for somew.

In [3], Berger showed that for some sets of Wang tiles, there was no possible peri-
odic tiling, and that all their tilings were quasi-periodic. Robinson improved the result
by introducing with a much smaller tile-set with that property. This tile-set was used to
prove that the tiling problem for Wang tile-sets is undecidable. It also features a strong
self-similarity and a hierarchical structure that we are going to use in our construction.

The patterns they can tile the plane with are shown on figure 1.The proof that they
are the only possible tilings and that they are quasi-periodic can be found in [1], an
annex to [4]. The vertices of the squares of rank(n + 1) are located at the center of the
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squares of sizen. Each of thesen-squares is contained in an-frame, as shown on the
figure. Thisn-frame is the set of tiles which “depend” on that frame.

3−square

3−frame

A tile, which
is also a 0−square

5−square

Fig. 1. Robinson tiling

Theorem 2 There is a self-assembling systemS at temperature2 which assembles the
set of Robinson’s tilings without infinite line.

The self-assembly system we are going to use is based on a duplication of each of
the tiles and each of the colors of Robinson’s tiling, by adding to them some additional
informations about what is going on in the construction.

The assembhly of the tiling is going to be made recursively, by building in turn
all then-frames containing(0, 0). For this, we need a self-assembling system which,
given an-frame, is able to build any of then + 1-squares that can contain it. It will use
some extra bits of informations put in the colors appearing on the border of then-frame,
and will give the same informations on its own border. We willalso show that ifc is a
configuration containing an-framefr then,∀c′ > c, ∃c′′ > c′ which contains an + 1
square containingfr. Then, by proving that we are able to build a first square with the
relevant extra bits on its borders, and by induction we will get thatS assembles the set
of Robinson’s tilings.

This result seems not to be too tightly linked to the particular innings of Robinson
tiling, and can surely be extended into a general scheme for all substitution tilings.
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Perfectly Quilted Rectangular Snake Tilings

Robert Brijder and Hendrik Jan Hoogeboom

LIACS, Leiden University, The Netherlands

1 Introduction

We consider languages consisting of pictures [6], which here are rectangular arrays
of symbols, assembled from unit-sized squares carrying onesymbol each. The squares
should be fitting together by their edges, like in a jig-saw puzzle. However, one abstracts
from the familiar curved form of the edges by considering marked edges, requiring that
adjacent squares in the assembled rectangle have matching markings on their common
edge.

Inspiration for this research was the well-known Hilbert curve as represented in [9],
depicted, slightly simplified, above. An old decidability problem on the formation of
infinite snake tilings could be solved [1] using an intricatetiling system devised earlier
by Kari in the context of cellular automata. The system is built from the usual four-sided
tiles, but it is applied in the context of the theory tosnake tilings, where the tiles are
connected as a meandering ribbon, each tile matching only two adjacent tiles (rather
than four). So, although the picture of the Hilbert tiling looks like a snake, a continuous
line visiting each unit of the resulting square once, this isnot the underlying (four-sided)
tiling.

Here we take the mental image of a snake that covers all positions of a rectangle
as our definition. Snake tilings basically are one-dimensional descriptions of pictures.
Each such description consists of a single string built fromthe labels of the squares
visited and the directions (up, right, down, left) in which the description continues.
They can be ‘programmed’ very much like automata walking over the grid, passing
through positions of the picture, and checking their contents. Such a ‘program’ then is
a regular language, states of an automaton corresponding tothe markings on the tiles.

We compare the descriptional power of regular snake tilingswith the classic notion
of finite tiling systems. We will show that, up to a multiplication factor, the requirement
that the snake covers all positions of a rectangle exactly once makes them equivalent to
tilings with four-sided tiles.
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2 Definitions

Let [m] = {1, . . . , m}. A tiling system is a finite set of unit squaresT each having
marked edges, together with a designated markingc. A T -tiling of a m × n rectangle
is a mapping from[m] × [n] into T such that adjacent tiles share the marking of their
common edge, and such that the outer border of the rectangle is completely marked by
c. The latter requirement enables us to fix some properties of the border tiles. Given
a mappingϕ : T → Σ, thepicture languagedefined by(Σ, T, ϕ, c) is the set ofΣ-
labelled rectangles that admit a tiling, i.e.,{ϕ ◦ t | t is T tiling of a rectangle}.

Example. Consider the following tiling system consisting of 18 tiles. The edges are
marked by{ 0, 1, 2, c } as indicated in the picture, where the special border markingc is
replaced by a thick line. These tiles are forced to form a square of odd side length, with
the blue tile taking the middle position. The mappingϕ ‘removes’ the edge markings,
leaving squares with a single coloured unit square in the middle.

0
0

0
0

1
0

0
1

0
1

1
0

2
1

1
0

2
2

0
0

0
0

2
2

0
0

00
0

10
1

1
0

0
0

0
1

0

1
0

0
0

0
2

2
0

1
0

0
0

2
0

A T -snakeon am × n rectangle is a pair of mappingsσ, τ from [k] into [m] × [n]
and from[k] into T respectively, such thatσ is injective, consecutive positionsσ(i)
andσ(i + 1) are adjacent in the rectangle, the assigned tilesτ(i) andτ(i + 1) share
the marking at their common edge, and the borders of the rectangle are marked by
c. Tiles in the snake may touch at other places, but there we do not force matching
markings (sometimes this is called aweaksnake). A snake is calledperfectly quiltedif
σ is bijective (sok = mn). Given a mappingϕ as above, a perfectly quiltedT -snake
defines a picture overΣ.

In order to have linear descriptions of snakes (and consequently linear descriptions
of pictures) we add directions to the sequenceτ of tiles, or as we do here, we consider
directed tiles(cf. the picture above and its rotations) which include initial and final tiles.
Now a snake is a string of (directed) tiles, and we require that successive tiles match
in their directions and the corresponding edge markings. This is a local, hence regular,
condition on the strings. As mentioned above we require thatthe outer border of the
rectangle is marked by the special symbolc. (1)

Given a regular language of snakes over a (directed) tiling systemT , and a mapping
ϕ : T → Σ, the perfectly quilted snakes from the language define a picture language

1 This natural requirement seems not necessary in the arguments of the present paper.
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overΣ. Such a language will be called aperfectly quilted rectangular snakelanguage,
or PQRS picture language for short.

Example. Consider the picture language of all odd sized squares over{B, W} such
that the middle position is labelled byB. A finite state automaton moving over a grid
would accept these by first checking that the input is an odd sized square by moving
along the diagonal from the SW-corner to the NE-corner. Thenthe middle position is
(non-deterministically!) checked by moving from the NE-corner to the middle position,
verifying there is aB at this position, then making a turn to the SE-corner. If this
succeeds, the turning point was the middle position. This iseasily transferred to four-
sided tiles, cf. the previous example. Note this picture language cannot be accepted by
deterministicautomata walking over grids [2].

Snakes cannot visit the same position twice. However, usingperfect quilting it is
possible to determine the center by spiraling inwards. In the case of an odd sized square
this walk stops at the first step after a turn to the north.

B

3 Tilings for Snakes

We show that every PQRS picture language can be defined by a four-sided tiling system,
but first we argue that this is not immediate. As before we assume the tiles are directed,
each tile is superimposed with an arrow indicating the direction of the snake before
and after the present tile. This direction can be encoded in the marking of the tile. We
eliminate the markings from the other two edges, replacing them by a ‘blank’ marking
(but we keep the special marking for the border of the rectangle). In this way a snake
tiling is also a four-sided tiling: the markings on all shared edges match.

Unfortunately not every two-sided tiling of a rectangle with matching arrows de-
fines a perfectly quilting snake for the rectangle. Tiles mayform separate circular com-
ponents, cf. the picture below. We have to force that the arrows form a single path.
Recall that picture languages defined by tiling systems are characterized using existen-
tial monadic second-order logic [7]. However, the obvious way to define connectedness
in monadic second-order logic uses universal quantification over sets of positions in
the rectangle. (First define the property of a ‘closed’ set oftiles, i.e., that it contains
for each of its tiles its successor along the snake. To define apath along the snake one
additionally requires that the closed set is ‘minimal’, i.e., there is no smaller set which
is also closed.) This is not allowed in the existential part of the logic. At a first glance
this makes our task impossible.

Surprisingly, Reinhardt [12] shows that the{a, b}-labelled pictures in which theb’s
form a connected area can be defined using tiles, which means that connectednesscan
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be defined for pictures without universal quantification. The trick is to ‘grow’ two sets
of trees. One set covers the area ofb’s, the other set of ‘tentacles’ connects (the bottom-
right corner of) each square to one of the outer walls. Separately, neither theb-tree nor
the tentacle trees can be guaranteed to be without cycles, but together the one forces the
other to be a tree. This method can also be used to define a connected snake, illustrated
in the right figure below.

Lemma.Every PQRS picture language can be generated by a (four-sided) tiling system.

4 Undecidability2

It is a classical result that emptiness is undecidable for picture languages defined by
tiling systems: tiles can be set-up to simulate the computations of a Turing machine
(TM). For snakes connectivity problems were investigated [4]; it is undecidable for a
given tiling system and two positions if there exists a snakefrom one position to the
other (when the first tile is specified).

The reader will not be surprised that also emptiness for PQRStilings is undecidable.
Again TM computations can be simulated, using mainly theform of the snake, and not
the labels of the tiles it passes. For this we use techniques like those used for chain
code picture languages [10], where strings define simple drawings consisting of line
segments.

A chain code picture languageis defined by a (regular) language over the alpha-
betD = {r, d, l, u}. These symbols are interpreted as instructions for a plotter which
at each step draws a unit segment in the designated directionright, down, left, or up.
For instance,d2urud2 results in the figureH, when we start in the NW-corner. Clearly
snakes and chain code pictures are related, although there are several technical differ-
ences. For instance, a segment of a chain code picture may be traced twice (as in the
H).

Although emptiness of chain code picture languages is trivially decidable (every
string overD defines a picture), many properties of chain code picture languages are
undecidable. For instance, whether the language contains apicture without subfigure

2 The result presented here alternatively follows from the next section. We prefer to keep the
construction because of its simplicity. It also shows the deep connections between snake tilings
and chain code picture languages.
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H [3], or whether it contains a self-avoiding picture [13] (interesting in the context of
snakes!).

We construct a set of directed tiles which code a computationof a TM if they de-
fine a continuous line visiting every position in a rectangular area. The line basically
zig-zags, as the green meander below. The horizontal segments code the consecutive
configurations of the TM as binary sequences. To code a0 the snake makes a detour
filling a block under the line, for a1 it fills a block above.

0 0

1

0

1

0

Without further instructions all horizontal segments follow the same pattern of
blocks above or under the horizontal line in order to make a perfect quilting pattern
(every position covered exactly once).

To accomodate local transformations of the configuration during a computation (as
the result of a write action of the TM, or a change of state) we show how to change a1
into a0. If a segment of the snake is forced to skip a block (neither traversing the one
above nor the one below), this can only yield a perfect quilting if the segment below
codes a1 and the segment above codes a0 at that position, so both blocks are covered.
The basic patterns are shown below: the coding of1, 0, 1→0, and0→1 as segments of
a snake.

Lemma. It is undecidable whether a directed tiling system defines a nonempty PQRS
picture language.

The only surprise in this proof is its complete simplicity. No complicated case anal-
ysis is needed, as in [13]. The perfect quilted form of the line simply forces a proper
computation. In the construction tiles are ‘programmed’ toform regular patterns that
can copy parts of the curve below, or locally change the configuration to model TM
instructions.

5 Weaving Snakes

The tiles defined by snakes are only required to fit along the snake: two edges for each
tile. The connectivity of classic tiling systems is greaterthan that of snakes as they have
to fit in four directions. Still we show that every four-sidedtiling can be defined using
PQRS tilings provided we cheat a little, using tiles larger than unit size. Super-tiles (as
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explained in [9]) make it possible to code edge colours by humps and bumps. Like in
the undecidability construction the snake follows a basic meander, where consecutive
rows match according to form (rather than edge marking).

B W W
B W B 7→

B
B

B
B

W
W

W
W

W
W

W
W

B
B

B
B

W
W

W
W

B
B

B
B

Thek-multiplication of them × n picturep is thekm × kn picturep′ such that
the labelp′(i, j) equalsp(i/k, j/k), where/ denotes integer division. The operation
is extended to languages. Consider now thek-multiplication of a picture languageL
defined by a tiling system (for a suitable valuek to be determined).

X
O

W
Z 7→

X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O O

W W W W W W W W
W W W W W W W W
W W W W W W W W
W W W W W W W W
W W W W W W W W
W W W W W W W W
W W W W W W W W
W W W W W W W W
Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z

Like for the simulation of a TM in the previous section the main route of the snake
is a meander following the super-tiles. This allows to checkthat the super-tiles fit in one
direction. The markings of the edges in the other direction is left as a trail of humbs and
bumps. The picture above shows two adjacent8 × 8 super-tiles.

All positions in a super-tile have the same label (colour). While meandering along
the edge the (small) tiles have to match the current label, but sometimes that of the
neighbouring super-tile, when the edge is crossed. This means the form of the trail also
codes for the label of the neighbouring tiles. We need a little math here. In a2k-size
super-tile (withk ≥ 2) we can codek bumps, with (at least)2k possibilities. Withc
edge markings andt tile labels, the trail should distinguishc · t2 possibilities, which can
be obtained by choosing an appropriatek. Note that4k2 unique tiles are necessary to
program the walk in such a supertile.

Lemma. For every picture language defined by a four-sided tiling systems there exists
a constantk such that itsk-multiplication is a PQRS picture language.

Another popular way to define sets of pictures aresubstitution tilings. In general
these can be used to obtain aperiodic tilings of the plane by geometric forms, like the
Penrose tilings. Here we consider the two-dimensional version of string morphisms, and
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replace each square in a rectangle by ank×ℓ rectangle which is determined by the label
of the original square. In this way a rectangle is changed into a larger rectangle. This
process can be iterated, starting from a simple rectangle, to obtain a picture language.
(In this way one may generate pleasing fractal pictures, seee.g., Chapter 5.4 of [14] or
Chapter 5 in [5].) In the illustration below each symbol is replaced by a particular2× 2
square.

It follows from the work of Mozes [11] that for each substitution tiling has an equiv-
alent four-sided tiling system with ‘matching rules’, likethe one explicitly constructed
by Kari.

A ⇒
B A
A C

⇒

B D
A B

B A
A C

B A
A C

C A
D C

⇒

B D
A B

B D
D C

B A
A C

B D
A B

B D
A B

B A
A C

B A
A C

C A
D C

B D
A B

B A
A C

B A
A C

C A
D C

C A
D C

B A
A C

B D
D C

C A
D C

The above construction needs for a multiplication factork which is large enough
to code enough edge types. Now that we consider a substitution h by 2 × 2 squares,
and consider a tilingT defined byh. We may takek of the form2ℓ. For a symbolσ let
hℓ(σ) be the2ℓ × 2ℓ tiling which results fromℓ times iterating substitutionh starting
with a single square labelled byσ. Now in the2ℓ-multiplicationT ′ of T we replace
each2ℓ × 2ℓ super-tile labelled by symbolσ by the2ℓ × 2ℓ tiling hℓ(σ). In this way
we obtain a tiling which again is defined by the substitutionh. Returning to the snake
construction for tiling systems, instead of checking a single label in every position of
the super-tile the snake may check the appropriate positionof such a super-tilehℓ(σ)
(as we can build that image into the ‘finite state’ the snake tiles).

Lemma. Every picture language defined by a substitution tiling is a PQRS picture lan-
guage.

6 Back to Hilbert

Also the Hilbert curve we started with can be obtained from a single tile by iterating
a 2-dimensional substitution. One needs twelve tiles and rules as in the picture given
below, a mapping already implicit in the definition of Hilbert [8].

⇒
,

⇒
,

⇒

So we have the rather amusing conclusion that the snake-likeHilbert pictures can
be defined using a PQRS tiling. This in a sense is a regular one-dimensional description
(with additional perfect quilting requirement). However,the PQRS snake tiles do not
follow the natural ‘flow’ of the Hilbert curve! The question that remains is whether the
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Hilbert curves can be defined as chain codes (with perfect quilting), so that the curve
‘follows’ its description.
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Abstract. It is shown that the tiling problem remains undecidable evenwhen
the instances are 4-way deterministic tile sets, i.e. the colors adjacent to any one
corner determine the tile within the tile set uniquely.

1 Introduction

A Wang tile(or atile in short) is a unit square with colored edges. The edges of a Wang
tile are callednorth, east, westandsouthedges in a natural way. A Wang tilet can be
considered also as an ordered 4-tuplet = (Nt, Et, Wt, St) containing the colors in a
predefined order. For the given tilet, expressionsNt, Et, Wt andSt are used to denote
north, east, west and south side colors, respectively. AWang tile setT (or a tile set in
short) is a finite set containing Wang tiles. Atiling is a mappingf : Z

2 → T , which
assigns a unique Wang tile for each integer pair of the plane.A tiling f is said to bevalid
if for every pair(x, y) ∈ Z

2 the tilef(x, y) ∈ T matches its neighboring tiles (e.g. the
south side of tilef(x, y) has the same color as the north side of tilef(x, y − 1)).

A Wang tile setT is said to beNW-deterministic, if within the tile set there does not
exist two different tiles with the same colors on the north- and west-sides. In general, a
Wang tile set isXY-deterministic, if the colors of X- and Y-sides uniquely determine a
tile in the given Wang tile set. A Wang tile set is4-way deterministic, if it is NE-, NW-,
SE- and SW-deterministic.

A mappingf : T1 → T2 is called atile homomorphismif it respects the colors, i.e.
f(t) = t′ with Nt′ = g(Nt), Et′ = g(Et), Wt′ = g(Wt) andSt′ = g(St), whereg is a
mapping from the set of the colors of the tile setT1 to the set of the colors of the tile set
T2. Thehomomorphic imagef(T ) of a tile setT is defined in the natural way as the set

f(T ) = {f(t)|t ∈ T } .

A tiling f : Z
2 → T is calledperiodicwith period(a, b) if f(x, y) = f(x+a, y+b)

for all (x, y) ∈ Z
2 and(a, b) 6= (0, 0). A tile setT is calledaperiodic, if there exists

some tiling with the tile setT , but no tiling with the tile setT is periodic. If the tile set
T admits a periodic tilingf : Z

2 → T with some period, then it admits also adoubly
periodic tiling g : Z

2 → T , that is, there exists such non-zero integersa andb that
g(x, y) = g(x + a, y) andg(x, y) = g(x, y + b) for all (x, y) ∈ Z

2 [1].

⋆ This research has been supported by the Finnish Cultural Foundation.
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The following question is referred to as thetiling problem: “Given a Wang tile setT ,
does there exist a valid tiling of the plane?” A tilingf : Z

2 → T is said tocontaina tile
t ∈ T , if for some integersx, y ∈ Z equationf(x, y) = t holds. The following question
is referred to as thetiling problem with a seed tile: “Given a Wang tile setT and a tile
t ∈ T , does there exist a valid tiling of the plane that contains the tile t?” If the tiling
problem with a seed tile was decidable, then the tiling problem would be decidable. Let
T be the tile set of the given instance of the tiling problem. Then the answer for the
tiling problem is affirmative if, and only if, for some tilet ∈ T the answer for the tiling
problem with a seed tile is affirmative considering the tile set T as the tile set of the
instance and the tilet as the seed tile of the instance.

2 The 4-way deterministic tiling problem with a seed tile

It is already known, that the tiling problem is undecidable [1,2]. The tiling problem is
known to be undecidable even when restricted to tile sets that are deterministic by one
corner [3]. It can be shown, that the tiling problem remains undecidable when restricted
to tile sets that are deterministic by two opposite corners [4].

In what follows, it is shown that the tiling problem is undecidable for tile sets that
are deterministic by all four corners. The proof is similar to Robinson’s original proof
[1], but relies on the 4-way deterministic aperiodic tile set given by Kari and Papasoglu
[5].

2.1 Turing machines

Here a Turing machineM is considered to be a four-tupleM = (S, T, δ, q0), where
S is the state set,T is the tape alphabet,δ is the transition function andq0 ∈ S is the
initial state. No “accept”, “reject” or “halt” states are defined explicitly. The tape of a
Turing machine is defined to be two-way infinite and symbolε is used to denote the
empty symbol of the Turing machine. The transition functionis a mapping

δ : S × T → S × T × {L, R},

that is, at every time step the read-write head moves either to the left or to the right.
A Turing machine is said tohalt, if it is in state q reading symbols and δ(q, s) in
undefined. Transition of the formδ(x, y) = (a, b, c) can also be written in the form
(x, y) → (a, b, c). TheTuring machine halting problemis considered to be the follow-
ing question: “Does the given Turing machineM halt when started on an empty tape?”
The halting problem is known to be undecidable.

A Turing machine can be represented with a Wang tile set as it has been shown by
Robinson [1]. The following tile set is almost the same as theoriginal tile set given by
Robinson:

Action tile and merging tiles for a left move Assume that the Turing machine con-
tains move(q, a) → (q′, a′, L). Then the tiles in figure 1 are added to the tile set.

Action tile and merging tiles for a right move Assume that the Turing machine con-
tains move(q, a) → (q′, a′, R). Then the tiles in figure 2 are added to the tile set.
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q′b
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(a) The tile which reads the next
symbolb.

a′

q
′

qa
6

�

(b) The tile which writes the
new symbola′.

Fig. 1. The tiles representing the read-write head for move(q, a) → (q′, a′, L)

a′

q
′

qa
6
-

(a) The tile which writes the
new symbola′.

q′b

q
′

b

6-

(b) The tile which reads the next
symbolb.

Fig. 2. The tiles representing the read-write head for move(q, a) → (q′, a′, R).

Alphabet tiles For every tape alphabet elementa, a tile of the form in figure 3 is added
to the tile set. This tile represents a single tape cell and its current contents.

Starting tiles To force the Turing machine to start on a blank tape only, the tiles in
figure 4 are added to the tile set. One of these tiles (namely, the one in figure 2.1)
is chosen to be the seed tile. If the seed tile is contained within a tiling, then a valid
tiling will necessarily represent a non-halting Turing machine computation. The
tiles in figures 2.1 and 2.1 define the tape to be initially empty. The tiles in figures
2.1 and 2.1 allow the area below the simulation to be correctly tiled always. An
example is given in figure 5 on the use of tiles in figure 4.

Following the terminology of Robinson [1], the tiles shown in figures 2.1 and 2.1
are referred to asaction tiles. The tiles shown in figures 2.1 and 2.1 are calledmerging

a

a

Fig. 3. The tiles to represents the symbols on the tape. Symbola denotes an arbitrary element of
the tape alphabet.
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ε

LL

(a) The left side of
the initial tape con-
figuration.

q0ε

RL

q0

(b) The seed tile.

ε

RR

(c) The right side of
the initial tape con-
figuration.

(d) The blank tile.

q0

q0

(e) The tiles below
the seed tile.

Fig. 4. The tiles that are used to start the Turing machine simulation.

The
read-write
head.
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ε
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ε
LL

q0ε

RL

q0

ε
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ε

RR

ε

RR

q0

q0

Fig. 5. The pattern representing the initial configuration of the Turing machine computation.

tiles and the tiles of the form in figure 3 are calledalphabet tiles. The tiles in figure 4
are referred to asstarting tiles.

Let (q, a) be any preimage pair for which a Turing machine transitionδ(q, a) has
not been defined. Then there will be no tile that would have thecolor qa on its south
side. Therefore, if the Turing machine halts, that is, if at some moment of time the read-
write head in stateq reads symbola, then the tiling cannot be completed to cover the
entire plane in a valid way.

2.2 Representing a Turing machine with a 4-way deterministic tile set

The undecidability of the 4-way determininistic tiling problem with a seed tile would
follow directly if the tiles of section 2.1 could be modified to produce a 4-way deter-
ministic tile set.

The original tile set is 4-way deterministic when action tiles and merging tiles are
excluded. Therefore, it is sufficient to be able to distinguish two different action tiles



22 Ville Lukkarila

or merging tiles from each other and to distinguish action tiles and merging tiles from
other tiles.

First, the tile set of Robinson is modified so that the tile setconsisting only of action
tiles and merging tiles becomes 4-way deterministic. Second, the tile set is modified so
that the action tiles and merging tiles can be distinguishedfrom rest of the tiles 4-way
deterministically. Formally, these modifications are doneby constructing the tile set as
a sandwich tile set in four layers as follows:

Layer 1. The tiling representing a Turing machine computation using the tile set con-
struction of Robinson [1].

Layer 2. Horizontal signals identifying the action tile andmerging tile pair (at layer 1)
occurring on the particular row.

Layer 3. The tiles used to distinguish the action tiles and the merging tiles from alpha-
bet tiles of layer 1 NW- and SW-deterministically.

Layer 4. The tiles used to distinguish the action tiles and the merging tiles from alpha-
bet tiles of layer 1 NE- and SE-deterministically.

Distinguishing different action tiles and merging tiles Let the number of different ac-
tion tiles and merging tiles of layer 1 ben for the given Turing machine. For simplicity,
let the different action tiles and merging tiles be identified with expressionst1, . . . , tn.

Let tk be any action tile or merging tile occurring on layer 1. Assume that integerk
identifies the tile uniquely. Then the tile is paired with thetiles of the form in figure 6
with eitheri = k or j = k. If the tile is of the form in figures 2.1 or 2.1, it is required
that i = k andj 6= k. Otherwise, if the tile is of the form in figures 2.1 or 2.1, it is
required thati 6= k andj = k. This makes it possible to distinguish any two action tiles
or merging tiles from each other just by observing the color of (either) the east side or
the west side.

(i,j)

(i,j)

Fig. 6. The tiles of layer 2.

All the other tiles are paired freely with all the tiles of theform in figure 6, where
1 ≤ i, j ≤ n. On a valid tiling, layer 2 consists of rows of tiles like the one in figure
2.2 if the underlying tile row contains action tile and move tile pairti andtj as in figure
2.2.

Distinguishing the action tiles and the merging tiles from other tiles

Lemma 1 (J. Kari, 2006).There exists a 4-way deterministic tile setD which admits
a valid tiling of the plane. Furthermore, there exists a valid tiling on which the tiles of
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ti tj

(a) Layer 1.
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(i,j)

(i,j)
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(i,j)
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j)

(i,
j)

(i,j)

(i,j)

(i,j)

(i,j)

(b) Layer 2.

Fig. 7. Associating action tile and move tile pairti andtj with the horizontal signal identifying
the tile pair.

a proper subset setD′ ⊂ D are exactly the tiles that are located on a single two-way
infinite diagonal line.

Proof (sketch).Due to the details of the construction, the proof is skipped almost en-
tirely.

The aperiodic tile set of Kari and Papasoglu [5] can be modified to produce the
desired tile set. Namely, certain kinds of binary signals can be drawn over the aperi-
odic tiling to locate the “diagonal”. These binary signals are started and redirected over
certain tiles of the original tile set [5]. The restriction of the signal tile set is 4-way
deterministic on each of the tiles of the aperiodic tile set.Because each of the original
tiles is paired with all the tiles of a 4-way deterministic tile set, the final tile set is 4-way
deterministic. ⊓⊔

Let D be the tile set of lemma 1 which is used to draw a northeast-southwest diago-
nal line 4-way deterministically. LetD = D1∪D2, whereD1 is the set of tiles used on
the diagonal line only and letD2 = D \D1. LetDR be the tile set which has been con-
structed by interchanging the north side colors and south side colors in the tiles of set
D. NowDR can be used to tile a diagonal line in the northwest-southeast direction. Let
DR

1 be the set of tiles located on this diagonal pattern and let again DR
2 = DR \ DR

1 .
Using tile setsD andDR one can distinguish action tiles and merging tiles from al-
phabet tiles by pairing the action tiles and the merging tiles of layer 1 with the tiles
representing a diagonal line.

The action tiles and the merging tiles 2.1 are paired with thetiles of setD1 at layer
3 and the action tiles and the merging tiles 2.1 are paired with the tiles of setD1 at layer
4. In a similar way, the action tiles and the merging tiles 2.1are paired with the tiles of
setDR

1 at layer 3 and the action tiles and the merging tiles 2.1 are paired with the tiles
of setDR

1 at layer 4.
Unless otherwise defined above, the tiles that are located onrow with a right move

(which can be determined by inspecting the colors used on theparticular tile at layer 2)



24 Ville Lukkarila

are associated with the tiles inD2 on layers 3 and 4. Similarly, unless otherwise defined,
the tiles that are located on row with a left move are associated with the tiles inDR

2 on
layers 3 and 4.

The idea of this construction is better seen in figure 8. The left side tiles are identi-
fied by the tiles on the diagonal lines on layer 3 and the right side tiles are identified by
the tiles on the diagonal lines on layer 4.

(a) Read-write
head move-
ment on layer
1.

(b) Distin-
guishing
different move
directions on
layer 2.

(c) Simulating
a diagonal line
on layer 3.

(d) Simulating
a diagonal line
on layer 4.

Fig. 8.Distinguishing action tiles and merging tiles from alphabet tiles by using diagonal patterns
that can be drawn 4-way deterministically.

This construction distinguishes the action tiles and the merging tiles from rest of the
tiles. The color used on layer 2 can be used to determine whichtile set, eitherD or DR,
has been used on layers 3 and 4. It needs to be noted thatD ∪ DR may not be 4-way
deterministic and thus it is important (on layer 2) to distinguish moves with different
directions. Furthermore, if layer 1 has been tiled in a validway, also layers 3 and 4
can be tiled correctly. This follows from the fact that a row of tiles of D can always
be followed by a row of tilesDR with matching colors sinceDR is only a “reflected”
version ofD andD admits a valid tiling.

It was possible to construct a 4-way deterministic tile set which can be mapped
homomorphically onto Robinson’s original tile set. Hence,the following theorem holds:

Theorem 1. The tiling problem with a seed tile remains undecidable whenrestricted
to tile sets that are 4-way deterministic.

3 The 4-way deterministic tiling problem

A finite row of tiles on the tiling by the aperiodic tile set is called free if it runs from a
horizontal border of a red square to another horizontal border of the same square without
intersecting any smaller red squares. Afreecolumn is defined in a similar manner.
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An instance of the tiling problem with a seed tile can be converted to an instance of
the tiling problem essentially the same way as was done by Robinson [1]. The instance
will be constructed so that the tiling problem with a seed tile will be “simulated” on the
intersections of free rows and columns.

The new instance (i.e. the tile set) is constructed in six layers for a given tile setT
and a seed tilet ∈ T . The rough outline of layers is the following:

Layer 1. The tiling forced by the aperiodic tile set of Kari and Papasoglu.
Layer 2. The tiles to identify free areas.
Layer 3. A tiling simulating a tiling by the given tile setT .
Layer 4. The tiles to force a copy of the seed tilet ∈ T to be located at the center of

every red square of layer 1
Layer 5. The tiles to forward the colors of the tile setT at layer 3 from a free area

border to a free area border.
Layer 6. The tiles to forward the colors of the tile setT at layer 3 from a red border to

a red border.

Theorem 2. The tiling problem is undecidable even when restricted to tile sets that are
4-way deterministic.

Proof (sketch).It is possible to divide the plane into squares of increasingsize using the
tile set of Kari and Papasoglu. The squares are colored either red or blue. No borders of
two squares of the same color can coincide.

The free rows and the free columns can be located 4-way deterministically. This can
be seen from figure 9. First, certain tiles (shown in figure 3) in the aperiodic tiling can
be identified. These tiles are used to draw signals which are used to locate the corner
points of the free rows and columns. To be precise, the signals are drawn to identify the
end points of the non-free rows and column as shown in figure 3.

The simulation of the tiling problem with a seed tile can be done the same way as in
the original proof [1]. A finite area of a tiling by the original tile set is simulated on the
free areas within the red squares. The size of the free area inside a red square square is
directly proportional to the size of the red square [1]. The area consisting of disjoint free
areas can be considered as a single continuous square even inthe 4-way deterministic
case.

One copy of the seed tile can be forced to be located at the center of the simulation
area with a simple 4-way deterministic construction. Therefore, a tiling by the original
tile set is forced to be simulated at arbitrarily long distances from the seed tile to any
direction.

The plane is tiled correctly if, and only if, on every red square the free area is
tiled correctly using the original tile set. Any valid tiling by the original tile set can be
simulated using the new tile set without a tiling error. Thisis seen by transferring the
outermost colors between the red squares by choosing the outermost colors nondeter-
ministically. ⊓⊔
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(a) The special points in the tiling to construct line
patterns that are used to identify the free rows and
columns.

(b) The free rows and columns can be
distinguished from the non-free areas
by drawing certain binary signals be-
tween the locations shown in figure 3.

(c) Using the signals shown in figure 3,
borders can be drawn for the free areas.

Fig. 9. Determining the free areas 4-way deterministically. First, the end points of the free rows
and columns are determined. Second, the borders are drawn between the end points.
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DNA: Not Merely the Secret of Life
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DNA is well-known as the genetic material of living organisms. Its most prominent
feature is that it contains information that enables it to replicate itself. This informa-
tion is contained in the well-known Watson-Crick base pairing interactions, adenine
with thymine and guanine with cytosine. The double helical structure that results from
this complementarity is well-known, and is indeed a cultural icon for our era. However
relevant the double helix is to genetics, it is a limiting feature when the goal is to pre-
pare more complex chemical species, because the helix axis is linear, in the sense that
it is unbranched. Consequently, the only structures that can be obtained by combining
molecules with linear helix axes are longer linear molecules or perhaps cyclic species,
including knots and catenanes. This problem can be solved byusing the notion of re-
ciprocal exchange, which leads to branched species. The topologies of these species are
readily programmed through sequence selection; in many cases, it is also possible to
program their structures. Branched species can be connected to one another using the
same interactions that genetic engineers use to produce their constructs, cohesion by
molecules tailed in complementary single-stranded overhangs, known as ’sticky ends.’
Such sticky-ended cohesion is used to produce N-connected objects and lattices.

Structural DNA nanotechnology is based on using stable branched DNA motifs with
3-12 arms, or related structures, such as double crossover (DX), triple crossover (TX),
and paranemic crossover (PX) motifs. We have been working since the early 1980’s
to combine these DNA motifs to produce target species. From branched junctions, we
have used ligation to construct DNA stick-polyhedra and topological targets, such as
Borromean rings.

Nanorobotics are key to the success of nanotechnology. PX DNA has been used to
produce a robust sequence-dependent device that changes states by varied hybridization
topology. We have used this device to make a translational device that prototypes the
simplest features of the ribosome. A protein-activated device that can be used to mea-
sure the ability of the protein to do work, and a bipedal walker have both been built.
Recently, we have extended the 2-state device to become a 3-state device.

A central goal of DNA nanotechnology is the self-assembly ofperiodic matter. We
have constructed 2-dimensional DNA arrays from many different motifs. We can pro-
duce specific designed patterns visible in the AFM from DX andTX molecules. We can
change the patterns by changing the components, and by modification after assembly.
Recently, we have used DNA scaffolding to organize active DNA components, as well
as other materials. Active DNA components include DNAzymesand DNA nanome-
chanical devices; both are active when incorporated in 2D DNA lattices. Multi-tile DNA
arrays have also been used to organize gold nanoparticles inspecific arrangements.

The key structural challenge in the area is the extension of the 2D results obtained
so far to 3D systems with a high degree of ordering. Several 3-space spanning motifs
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have been produced that can produce 2D arrays in each of the three directions con-
taining a pair of the vectors that span the 3D space. Crystalswith dimensions as large
as a millimeter, ordered to 10 resolution (as determined by X-ray diffraction) have
been produced. Ultimately, we expect to produce high resolution crystals of DNA host
lattices with heterologous guests, leading to bio-macromolecular systems amenable to
diffraction analysis.
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Viruses have a protein shell that encapsulates and hence provides protection for the
viral genome. It has long been recognised that viral capsidsare highly symmetrical,
and that the organisation of the proteins in the capsids follows icosahedral symmetry.
In this talk we discuss how the protein stoichiometry of viral capsids can be modelled
in terms of tilings with icosahedral symmetry (see, for example, [1], [2]). These tilings
encode the locations both of the capsid proteins and of the intersubunit bonds between
them, and they hence lend themselves as a basis for the construction of virus assembly
models. Such models assist in the development of new anti-viral strategies, for example,
by suggesting mechanisms to misdirect assembly.

For large classes of viruses capsid assembly does not dependon the presence of
the viral genome. For example, in vitro experiments based onthe major capsid protein
VP1 of Simian Virus 40 show that recombinant VP1 self-assemble into different types
of protein containers, tubular structures and sheets depending on the experimental con-
ditions (e.g. pH value and ion concentrations) [3]. From a mathematical point of view
one can therefore model this assembly process as tile assembly [4,5]: Tiles representing
clusters of capsid proteins attach to each other and gradually build up to a tiling that
encodes the topology of the proteins and inter-subunit bonds in the complete capsid
[1,2].

In those cases where the genomic material is important for assembly (for example
bacteriophage MS2 [6]), these tile assembly models need to include boundary con-
ditions implied by the interaction of the capsid proteins and the genomic material.
We show here that such boundary conditions can be included into the models via a
new symmetry principle that encodes all material boundaries in simple viruses [7,8].
Moreover, we discuss how the new symmetry principle may leadto tile assembly with
three-dimensional, rather than the previously used schematic two-dimensional, building
blocks.

References

1. R. Twarock (2004) A tiling approach to virus capsid assembly explaining a structural puzzle
in virology. J. Theor. Biol. 226, 477.

2. T.Keef & R.Twarock (2006) A new series of polyhedra as blueprints for viral capsids in the
family of Papovaviridae, q-bio.BM/0512047, submitted.

3. S. Kanesashi, S. et al (2003) Simian virus 40 VP1 capsid protein forms polymorphic assem-
blies in vitro. J. Gen. Virol. 84, 1899.



A Tiling Approach to the Structure and Assembly of Viruses 31

4. T.Keef, A.Taormina & R.Twarock (2005) Assembly Models for Papovaviridae based on
Tiling Theory. Phys. Biol. 2, 175.

5. T. Keef, C. Micheletti & R.Twarock (2006) Master equationapproach to the assembly of
viral capsids. J. Theor. Biol. 242, 713.

6. P. Stockley et al. (2006) A simple, RNA-Mediated Allosteric Switch Controls the Pathway
to Formation of a T=3 Capsid, submitted.

7. T. Keef, N. Grayson, S. Severini & R. Twarock (2007) Self-Assembly of Viral Capsids via a
Hamiltonian Paths Approach: The Case of Bacteriophage MS2,in progress.

8. T. Keef, K. Toropova, N. Ranson, P.G. Stockley & R. Twarock(2007) Unmasking the con-
sequences of icosahedral symmetry in a simple virus particle, submitted.



Computing by Self-assembly of Flexible Tiles
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DNA molecules have been assembled in rigid DX and TX molecules, arrayed in
assemblies similar to Wang tiles, as well as flexible branched junction molecules with
flexible arms that have been used in assemblies of arbitrary graphs. We present a theo-
retical model for self-assembling tiles with flexible branches motivated by DNA branched
junction molecules. We encode an instance of a “problem” as apot of such tiles, and
a “solution” as an assembled complete complex without any free sticky ends (called
ports), whose number of tiles is within predefined bounds. Wedevelop an algebraic
representation of this self-assembly process and use it to prove that this model of self-
assembly precisely captures NP-computability when the number of tiles in the minimal
complete complexes is bounded by a polynomial. We also show relationship between
both models of rigid and flexible tiles and show how to simulate computations obtained
from (bounded) rigid tile self-assembly by corresponding assemblies of flexible tiles.
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Extended Abstract

Syntactic methods (see for instance [1],[2]) have been often considered for performing
pattern analysis and recognition, by formally specifying the class of pictures of interest.
Pictures or patterns can be specified by different methods, such as grammars or au-
tomata. A sample of approaches can be found in [3], includingfor instance [4], where
isometric array grammars are considered for efficient syntactic pattern recognition and
picture generation. An alternative, theoretically sound,yet practically unexplored, ap-
proach is to use tiling: in the crudest form a specified set of small, say two by two,
tiles is listed, which can cover the intended class of pictures. A picture is recognized
if, and only if, it can be covered with tiles from the listed set. To overcome the limita-
tions of such rudimentary method, a more flexible formalism,calledTiling Systems(TS)
has been studied by theoreticians (see e.g. [5], [6], [7]).Wang Tiles[8] are an equiv-
alent variant of the formalism, which uses a more traditional concept of tiling where
tiles are placed side by side. With TS the picture is obtainedby first covering it with
tiles drawn from a listed set of two by two tiles, then by performing a pixel by pixel
mapping. Tiling Systems are a powerful technique: the corresponding pictures can be
recognized by non-deterministic cellular automata, whichorderly scan the diagonals
[9]. Such abstract machines are more powerful then the four ways automata of [10].
However TS definitions are hard to write and error-prone for non elementary pictures.
Moreover the NP-complete computational complexity of picture recognition has until
now blocked any attempt to realistic experimentation and application of TS, in spite of
a large amount of theoretical work.

Our work is concerned with a practical experimentation of tiling systems/Wang tiles
in conjunction with a new approach for performing pattern recognition and image gen-
eration or completion, based on powerful logical tools, theSAT-solvers, whose task is
to find Boolean values which make a propositional formula true. We have implemented
a recognizer/generator for TS defined pictures in a very attractive, unconventional way,
by transforming the tiling problem into a Boolean satisfiability one, then using an effi-
cient off-the-shelf SAT-solver. The tool is invaluable to assist in writing picture speci-
fications, is fast enough to experiment on reasonably sized samples, and has the bonus
of being able to complete a partial picture, by assigning to unknown pixels some values
which satisfy the picture specification. Therefore, SAT-TScan be also applied to image
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reconstruction or noise elimination, by parsing a picture where some pixels are tagged
as unknown.

A first, very simple and unoptimized prototype of the tool waspresented at the ESF
workshopAdvances on Two-dimensional language theory, held in Salerno, Italy, May
3-5, 2006. We intend to show here the more solid and efficient new version, together
with several examples and applications, such as the set of geographical maps which can
be colored with three colors, and various classes of nested patterns and connected paths.
SAT-TS is open source and freely available.1

The Encoding

We briefly present here the main ideas and principles for encoding tiling systems into
a SAT-problem. The actual encoding implemented in SAT-TS isa Conjunctive Normal
Form optimized variant of the one presented next.

Consider a Tiling SystemT = (Σ, Γ, Θ, π), whereΣ is the input alphabet,Γ is the
local alphabet,Θ is the set of tiles onΓ , andπ : Γ → Σ the projection.

Essentially, given an input picturep ∈ Σ∗,∗, i.e. a picture made of symbols taken
from Σ, the parsing problem consists in finding a pictureq ∈ Γ ∗,∗, having the same
size asp, such that:

1. its projection coincides withp, i.e.π(q) = p;
2. its tiling is compatible withΘ, i.e. every2 × 2 sub-picture ofq is in Θ.

If both conditions are true, then, and only then,p ∈ L(T ). Clearly,q is not necessarily
unique. Notice that this is an instance of typical inverse mathematical problems, which
are often computationally challenging.

Now, to encode the problem into SAT, we represent the pixels of the pictureq as
SAT’s propositional variables. In practice, this means that the statementq(i, j) = a (i.e.
pixel (i, j) of q contains the symbola), becomes a propositional variable of the SAT
problem.

To fully exploit the SAT encoding, we also accept partial input pictures. This means
that some ofp’s pixels may be left unspecified (conventionally marked by a“don’t
care” symbol ‘?’). With a slight abuse of notation, we say that the inverse projection of
a “don’t care” symbol inp is Γ , i.e.π−1(?) = Γ . Informally, this means that we do not
know anything about that pixel, so any symbol of the tile alphabet could be inq at that
position.

The encoding consists of expressing the afore mentioned Conditions 1) and 2), as
propositional logic formulas.

Condition 1) states thatq must be “compatible” withp, i.e. such thatπ(q) = p: 2

F1 :=
∧

(i,j)∈[(1,1)..|p|]

(

OnlyOne
a∈π−1(p(i,j))

(

q(i, j) = a
)

)

1 http://www.elet.polimi.it/upload/pradella/
2 For conciseness, we introduce theOnlyOne Boolean function, with any number of argu-

ments. Informally,OnlyOne is true if, and only if, exactly one of its arguments is true. E.g.
OnlyOne (A,B, C) ⇐⇒ (A ∧ ¬B ∧ ¬C) ∨ (¬A ∧ B ∧ ¬C) ∨ (¬A ∧ ¬B ∧ C).
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F1 depends only onp and on the projectionπ. The first AND is used to span the
whole picture, while the innerOnlyOne operator is used to check that one and only one
value taken from the alphabetΓ is assigned toq at a given position.

Condition 2) considers the tile setΘ: to acceptp, every tile used inq must be a
member ofΘ.

F2 :=
∧

(i,j)∈[(1,1)..|p|]

∨

t∈Θ

∧

h,k∈[0,1]





q(i + h, j + k)
=

t(h + 1, k + 1)





As in the previous formula, the first AND spans the whole picture. Then, the inner
OR states that one of the tiles inΘ must be present at a given position.

The TS-recognition problem is then encoded as the propositional formulaF1 ∧ F2.

References

1. Eiichi Tanaka. Theoretical aspects of syntactic patternrecognition. Pattern Recognition,
28(7):1053–1061, 1995.

2. K. S. Fu.Syntactic Pattern Recognition and Applications. Prentice-Hall, Englewoods Cliffs,
1982.

3. Nikolaos G. Bourbakis. Special issue on languages for image processing and pattern recog-
nition. Pattern Recognition, 32(2):253, 1999.

4. Kenichi Morita and Katsunobu Imai. Uniquely parsable array grammars for generating and
parsing connected patterns.Pattern Recognition, 32(2):269–276, 1999.

5. Dora Giammarresi and Antonio Restivo. Two-Dimensional Languages. In Arto Salomaa and
Grzegorz Rozenberg, editors,Handbook of Formal Languages, volume 3, Beyond Words,
pages 215–267. Springer-Verlag, Berlin, 1997.

6. R. Siromoney, K.G. Subramanian, V.R. Dare, and D.G. Thomas. Some results on picture
languages.Pattern Recognition, 32(2):295–304, 1999.

7. Alessandra Cherubini, Stefano Crespi Reghizzi, Matteo Pradella, and Pierluigi San Pietro.
Picture Languages: Tiling Systems versus Tile Rewriting Grammars.Theoretical Computer
Science, 356(1-2):90–103, 2006.

8. C. Allauzen and B. Durand. Tiling problems. In E. Borger and E. Gradel, editors,The
classical decision problem. Springer-Verlag, 1997.

9. Katsushi Inoue and Akira Nakamura. Some properties of two-dimensional on-line tessella-
tion acceptors.Information Sciences, 13:95–121, 1977.

10. M. Blum and C. Hewitt. Automata on a two-dimensional tape. In IEEE Symposium on
Switching and Automata Theory, pages 155–160, 1967.



Generation of contour words of rectilinear
pseudo-parallelograms

Christiane Bercoff⋆

c.bercoff@univ-cezanne.fr

Abstract. In this paper, the 5-tiles, simply connected subsets ofR
2 whose the

pattern is a rectilinear pseudo-parallelogram (an extended definition of Beauquier-
Nivat), are defined from a rewriting system on the contour word of its pattern.
From our definition, 5-tiles can to make the regular tilings of the plane by trans-
lation of one given pattern.

1 Introduction

Let us consider the latticeZ × Z. A cell is a unit square whose vertices have integer
coordinates. A (directed) polygonal line is a path on the lattice; it is said to besimpleif
no edge appears twice and it does not cross itself. Two cells are said to beadjacentif
they have a common edge and to becontiguousif they have a single common point. The
boundaryof two contiguous cells is a simple polygonal line passing around their contact
point, that’s why the contact point of two contiguous cells is said be anavoidable point.
A rectilinear tile is a finite union of adjacent or contiguous cells whose its boundary is
a uniquepolygonal line. The boundary of a rectilinear tile is clockwise oriented from
an origin.

-?

�	

E8 =E0 E1

E2

E3

E4E5

E6E7

o

Fig. 1. This polygonal line is the boundary of the rectilinear tile built with two contiguous cells.
E2 =E6 is an avoidable point.

Let T be a rectilinear tile and letA, B be two points on its boundary∂ T . The directed
polygonal line fromA to B along∂ T will be denoted by[AB] and itslengthwill be
denoted by

∣

∣ [AB]
∣

∣. If A belongs to the boundary∂ T we denoteA′ the point such as
∣

∣ [AA′]
∣

∣ =
∣

∣ [A′A]
∣

∣ = 1
2

∣

∣∂ T
∣

∣ A′ is called thesymmetricof A for ∂ T .

⋆ The author is supported by LATP, 39 rue Jolliot Curie, 13453 Marseille Cedex 13 - France
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Definition 1. (extended definition ofBEAUQUIER-NIVAT [1] valid for rectilinear tile)
A rectilinear tile is a pseudo-parallelogramABA′B′ if there are two pointsA, B ∈ ∂T
such thatB ∈ [AA′] with A′ symmetric ofA, B′ ∈ [A′ A] with B′ symmetric ofB and

∂T = [AB] ∪ [B A′] ∪ [A′ B′] ∪ [B′ A]

where[B′A′] is the translation of vector
−−→
AB′ of [BA] and

[AB′] is the translation of vector
−−→
BA of [BA′]

We consider the free group on< x, y > wherex represents a right step,y a up step
and the inversex (resp.y) a left step (resp. a down step). Areduced wordis a word
on Σ = {x, y, x, y} where all cancellations are done (namely each occurrrence of
aa, a∈ Σ is replaced by the empty wordε).
If s∈ Σ, s denotes theinverse wordof s i.e.

s = s1s2 . . . sn = sn sn−1 . . . s1.

If T is a rectilinear tile,ωT denotes thecontour wordthat is a reduced word onΣ which
codes the sequence of moves along the boundary, starting from an origin. The starting
point is not meaningful. Thus, the contour wordωT is acyclic word onΣ∗.

Our study takes the following property as one’s starting point.

Proposition 1. The contour wordω of the rectilinear pseudo-parallelogramABA′B′

admits theexact factorization
ω = α β α β

where α = ω[A B], β = ω[B A′], α = ω[A′ B′], β = ω[B′ A].

But, all word onΣ∗ as formα β α β is not the contour word of rectilinear tile
because theassociated path, denoted byP (α β α β), can cross itself : for example, if
α = x y andβ = y x, then the associated path to wordα β α β = x y y x y xx y is not
simple.

2 Main results

Let T a rectilinear tile. The image ofT in the translation of vectoru will be denoted by
T (u) andT (u) is called aninstanceof T .

Definition 2. A 5-tuile of patternq is a rectilinear tile make up the pseudo-parallelogram
q surrounded with the four instancesq(τ),q(ν), q(−τ), q(−ν) without gap or overlap-
ping between them.

In other words, the rectilinear pseudo-parallelogramq tiles the 5-tile of patternq.
The circular sequence

(

q(τ),q(ν),q(−τ), q(−ν)
)

is anexact4-surroundingin sense of
Beauquier-Nivat[1].

We prove the first result.
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Proposition 2. Letq be a rectilinear tile. The following two assertions are equivalent:

1. there exists two independent vectors of translationτ andν with integer coordinates
such that

(

q(τ), q(ν), q(−τ), q(−ν)
)

is an exact4-surrounding ofq.
2. there existsA, B, A′, B′ ∈ ∂ q whereA′ (resp.B′) is the symmetric ofA (resp. of

B) such that
if [AB]=q ∩ q(τ) and [BA′]=q ∩ q(ν)

then [A′B′]=q ∩ q(−τ) and [B′A]=q ∩ q(−ν)

Thus, the pointsA0 =q∩q(τ)∩q(−ν), B0 =q∩q(τ)∩q(ν), A′
0 =q∩q(ν)∩q(−τ)

andB′
0 =q ∩ q(−τ) ∩ q(−ν) define abichromatic colouringof ∂q.

We state a particular case of theorem 4.2 of Beauquier-Nivat[1].

Theorem 1. A rectilinear tileq have at least one exact4-surrounding if and only ifq
is a rectilinear pseudo-parallelogram.

Now, we can build some 5-tile.

Theorem 2. Let q be a rectilinear tile. The three assertions are equivalent:

1. the boundary∂q have at least one bichromatic colouring
2. there exists two wordsα andβ such thatωq = α β α β
3. there exists two independent vectors of translationτ andν with integer coordinates

such that
T = q ∪ q(τ) ∪ q(ν) ∪ q(−τ) ∪ q(−ν)

is a rectilinear pseudo-parallelogram

Since a 5-tile of patternq is a rectilinear pseudo-parallelogram, it can be using as pattern
for the 5-tile, called52

q-tile, which is tiled with 25 instances ofq. And so on. . .

In the following, we introduce a rewriting system which generates, from derivation of
an exact factorization of contour word of a given rectilinear pseudo-parallelogramq, all
the contour words of 5-tuile of pattern5n

q for every integern>0.

Definition 3. Let A = {α, β, α, β} be an alphabet whereα andβ are words onΣ∗

such that the pathP (α β α β) is simple. LetR=R1 ∪ R2 be a rewriting system onA
where

R1 = {α → α β α ; β → β α β ; α → α β α ; β → β α β }

R2 = {α → α β α ; β → β α β ; α → α β α ; β → β α β }

Proposition 3. Letω1 andω2 two words which derive fromα β α β in the systemR

α β α β
R1−→ ω1 and α β α β

R2−→ ω2

Then

1. ω1 and ω2 are conjugate : there existsu1, u2 ∈ A∗ such thatω1 = u1 u2 and
ω2 =u2 u1
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2. ω1 andω2 have at least one exact factorization inA∗ :
there existsα1, β1, α2, β2∈A∗ such thatα1 β1 α1 β1 = ω1 and ω2 = α2 β2 α2 β2

The sequence(Rk1

1 , Rk2

2 , . . . , Rki

j ) with k1+k2+· · ·+ki = n andj =

{

1 if i is odd
2 if i is even

is an-dérivation of rewriting systemR.
Now, we prove a combinatoric version of theorem 2.

Theorem 3. Let q be a rectilinear pseudo-parallelogram and letωq = α β α β be an
exact factorization of its contour word. For every integern>0 the word obtained from
a n-dérivation ofωq is a contour word of 5nq-tile.

The following result is an explicit form of theorem’s Dekking [4] about the contour
word of k-composition defined by iterated morphism onΣ∗. Here, the given result is
both :

more particular, because it deals with only the 5-tiles
more general, because the morphism is on the set of words ofΣ∗

Theorem 4. Let ω∞ the word obtained by transitive fermeture of systemR on a fac-
torizationα β α β of contour word of the rectilinear pseudo-parallelogramq i.e.

α β α β ω∞
∗

=⇒

R

Then, the polygonal pathP (ω∞) is simple and its fractal Hausdorff dimension is de-
fined by

dimP (ω∞) = 2
log 3

log 5

The subset of lattice limited by the polygonal pathP (ω∞) is said berep-5 fractile and
1/5 is thecontraction factor.

To draw a boundary of 5nq-tile, we use an algorithm which determine at each iteration
i, 0 ≤ i ≤ n the pointsAi, Bi, A

′
i, B

′
i of the bichromatic colouring of its boundary.

Since the rulesR1 andR2 preserves the exact factorization and the conjugaison (see
proposition 3), we have two possible colourings of the boundary of a given 5-tile.
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bichromatic colouring defined byR1 bichromatic colouring defined byR2
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Fig. 2. Relative position between the bichromatic colouring points of ∂q and the bichromatic
colouring points of the 5q-tile

The bichromatic colouring pointsAi, Bi, A
′
i, B

′
i are iterated defined as following. Let

f be the morphism :(Σ, .) → (ZZ×ZZ, +) defined by

f(x)=(1, 0) etf(y)=(0, 1) andf(s)=−f(s) andf(s t)=f(s) + f(t) ∀s, t∈Σ∗

Algorithm. Let q be a rectilinear pseudo-parallelogram which the contour word is
α β α β. If A0 is the origin on the boundary∂q, thenB0 = f(α), B′

0 = f(β) and

A′
0 = f(α) + f(β). If τ0 =

−−−→
B′

0A0 andν0 =
−−−→
A0B0 then

for i> 0,
Ai+1 = Ai + τi, Bi+1 = Bi + νi, A′

i+1 = A′
i − τi, B′

i+1 = B′
i − νi usingR1

Ai+1 = Ai − νi, Bi+1 = Bi + τi, A′
i+1 = A′

i + νi, B′
i+1 = B′

i − τi usingR2

τi+1 = Ai − B′
i andνi+1 = Bi − Ai

Example. Letq be a rectilinear pseudo-parallelogramwhich the contour word isα β α β
whereα = x y x y x andβ = y x y x y x y y. The 52q-tile which the contour word is
R1R1(α β α β) is defined by means :

A B A′ B′ τ ν

(0, 0) f(α) f(α)+f(β) f(β) A − B′ B − A

initialisation (0, 0) (3, 0) (2, 3) (−1, 3) (1,−3) (3, 0)

R1 A + τ B + ν A′ − τ B′ − ν

iteration1 (1,−3) (6, 0) (1, 6) (−4, 3) (5,−6) (5, 3)

iteration2 (6,−9) (11, 3) (−4, 12) (−9, 0) (15,−9) (5, 12)
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Now, starting fromA2 = (6,−9), we can draw the following 52q-tile which the contour
word is

R1R1(α β α β) = α β α β α β α β α β α β α β α β α β α β α β α β α β α β α β α β α β α β

o
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•
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•
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Fig. 3. The 52q-tile associated to wordR1R1(α β α β) where α = x y x y x and β =
y x y x y x y y.

Remarks.

We have obtained other results which are in the prepublication [2]. In particular, we
exhibit a family of rectilinear column-convex tiles which are all pseudo-parallelograms.
Because this tiles are defined with only a part of their contour word (encoding onN),
we can enumerate them. In another paper [3] (unpublished up to then), we also consider
the rectilinear pseudo-hexagons which are 7-tiles.
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