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Abstract 

‘ILvo-person games are modeled as specifications in a language with angelic and demonic nondeterminism, and methods 
of program verification and transformation are used to reason about games. That a given strategy is winning can be proved 
using a variant of the traditional loop correctness rule. Furthermore, an implementation of the winning strategy can be 
derived using equivalence transformations. 
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1. Introduction 

Recently, specification languages have been proposed containing two modes of nondeterminism: demonic 
and angelic nondeterminism. In a predicate transformer framework, both kinds of nondeterminism are easily 
accommodated, and angelic nondeterminism has been shown to be useful in various ways [ 3,5,10], 

Execution of a command where both angelic and demonic nondeterminism is present can be described as 
a game, in which the angel tries to guide the execution to a successful end and the demon tries to prevent 
this [ 4,7]. Similar connections between games and reactive systems are discussed in [ 1,9], where results from 

game theory and descriptive set theory are used to shed light on properties of concurrent systems. 
In this paper, we show that it is possible to go in the other direction; we use program verification and 

program transformation methods to reason about two-person games. In particular, we show how a variation on 
the classical loop correctness rule [6] can be used to prove the existence of winning strategies in a game. 
We also indicate how program transformations in the style of [ 21 can be used to produce a description of the 
winning strategy as an implementable program. 

Our aim is modest - we do not claim that our method can replace traditional reasoning about two-person 
games. However, it points out a close connection between program verification and reasoning about games. 

We work in a total correctness framework. Commands are described as predicate transformers, with the 
intuition that S q (i.e., the weakest precondition for command S with respect to postcondition q) holds in 
state u if and only if execution of S in initial state u is guaranteed to establish q. This intuition has to be 
extended to allow angelic nondeterminism; an angelically nondeterministic command is guaranteed to establish 
postcondition q if at least one possible computation terminates with q holding (under demonic nondeterminism, 
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all possible computations must terminate with q holding). Our specification language is based on that in [ 33, to 
which we refer for more details. A novelty in this paper is the unguarded iteration. Combined with the notions 
of win (miracle) and loss (abortion), the unguarded iteration is used to represent the repetition of moves in a 
game. 

Notation and proof style. We assume that the reader is familiar with basic facts about lattices, monotonic 
functions and fixpoints. We use A-abstraction to describe functions and write function application as juxtapo- 
sition, so f x is function f applied to argument n. We use 5 for boolean equality and -L and T for the truth 
values. 

We write proofs in a calculational style. In proofs, we permit steps that are justified by properties of functions 

and quantifiers. This is very useful, e.g., in fixpoint reasoning. We also use the calculational proof format for 
proof outlines, with hints in the comments. 

2. A specification language 

A state is a tuple of values, e.g., (2,0, T). Each position in the tuple is a state component (also called a 

program variable). 
A state predicate is a boolean function on states. State predicates are easily expressed using A-notation. For 

example, thestatepredicate (h(x,y,b). bA(x<y)) holdsinstate (O,l,T) butnotinstate (2,O,l). 
By the rules of Lu-equivalence, the names of the bound variables in a state predicate are arbitrary. However, 

within a given context we usually give names to the bound variables in a consistent way. In this way we 

introduce names corresponding to program variables. For example, by writing ( A(x, y, b). b A (x < y) ), we 
indicate that the three state components are named X, y and b. 

State predicates are ordered by strength (pointwise extension from the booleans) ; we write p < q for 
(VU. p u =+ q a). Negation, conjunction, disjunction and implication of predicates are defined by lifting. 
For example, p A q is the predicate (Aa. p u A q a). We write false for the everywhere false predicate; 
false = (Au. I). The everywhere true predicate true is defined similarly. The state predicates over a fixed state 
space form a complete boolean lattice. 

A state relation is a binary state predicate, i.e., a mapping from (initial) states to (final) states to booleans. 
We let metavariables P, Q and R range over state relations, p, q and I over state predicates and u over states. 

2.1. A command notation 

A predicate transformer is a function from state predicates to state predicates. We identify commands with 

their semantic functions, so every command is at the same time a monotonic predicate transformer. We let 
metavariable S range over commands. When S q u E T, we say that command S establishes postcondition 
q in state U. If p < S q holds, then execution of S in any initial state satisfying p is guaranteed to establish 
postcondition q. 

Basic commands. Basic commands in our language are the angelic update (R) and the demonic update [ R] . 
Here R is any state relation, and the weakest precondition semantics of the update commands are as follows: 

{R} q u E (la’. R u u’ A q a’) 

[R] qu = (Vu’. Rau’+qu’) 

This semantics reflects the following intuition. Executed in initial state u, the angelic update {R} chooses 
a final state u’ among those satisfying R u u’. The choice is angelic, which means that the choice is made 
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so that postcondition q is established, if possible. The demonic update makes a demonic choice between the 
possible final states, avoiding to establish q, if possible. 

If the initial state is such that there is no possible final state, then the angelic update is aborting. Intuitively, 
this is the situation where the angel has no choice available. In our game interpretation, we look at computations 
from the angel’s point of view, calling an aborting computation a loss. Dually, the demonic update leads to a 
miraculous computation if the demon has no final states to choose between. We call such a computation a win. 
A winning computation establishes any postcondition, even false. Alternatively, we can consider a win to be a 
deadlocked computation. 

As an example, consider state relation R = (Ax x’. x’ < x), where the state has only one component, 

which ranges over the natural numbers. Demonic update [R] decreases the value of the state component by an 
unspecified amount. If the value is initially 0, then [R] is a win. 

Assert and guard. A special case of the angelic update is the assert command {p}, which has next-state 
relation (Au CT’. p u A (CT’ = (T) ). If state predicate p holds, then the state is left unchanged, otherwise this 

command leads to a loss. Dually the guard command [p] leaves the state unchanged if predicate p holds in 
the state; otherwise it leads to a win. The semantics of the assert and guard commands are easily computed: 

{PI4 = PAq [PI 4 = P * 4 

Sequential composition. Sequential composition has its usual meaning: 

(S1;S2) 4 = Sl(S24) 

Execution of a sequential composition of two or more updates can be interpreted as a game between the angel 
and the demon. The angel chooses final values in each angelic update and the demon chooses values in each 
demonic update. The compound command S establishes postcondition q if the angel can make choices in such 
a way that the final state satisfies q, regardless of how the demon makes its choices. Thus S establishes q if the 
angel has a strategy that guarantees a final state satisfying q. 

2.2. Recursion and unguarded iteration 

The recursive command construct (pX. T) is defined whenever T is an expression built from commands and 
command variable X. Then (AX. T) is a monotonic function on commands, and ( ,uX. T) is its least fixpoint. 

Iteration commands are usually defined using guarded recursion, i.e., they have a termination condition which 
is evaluated before each iteration. We define the unguarded iteration command repeat S forever as the following 
least fixpoint: 

repeat S forever = (pX. S, X). 

Intuitively, repeat S forever is executed by recursive unfolding, i.e., by repeatedly executing the body S. Such 
an execution can go on forever, but it can also end in a loss (if an empty angelic choice occurs in the body) 
or a win (empty demonic choice). 

Semantically, execution of repeat S forever can lead to only two things: either no postcondition, not even 
true, is established (an infinite run or a loss) or else any postcondition, even false, is established (a win). This 
is because the unguarded iteration can never terminate in a proper state. 

Since commands are monotonic functions on the complete lattice of predicates, every command S has a least 
fixpoint. The following theorem shows that ,LLS characterises those states from which repeated execution of S 
leads to a win. 

Theorem 1. Assume that S is a command. Then 
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(repeat S forever) q = PUS 

for arbitrary predicate q. 

Proof. We prove this theorem using basic facts about fixpoints. An alternative proof applies the p-fusion 
theorem given in [ 81. We have 

ps 6 (pX. s;-uq 
* {least fixpoint property} 

S( (PX. s; X)q) 6 (PX. S; X)q 

= {definition of sequential composition} 

(s; (/LX. s;X))q < (PX. s;X)q 

E {folding least fixpoint} 

T 

for arbitrary predicate q, and furthermore 

0%. (PX. 8 m < PS) 
E {pointwise order} 

(PX. s; X) < (AC?. $1 

* {least fixpoint property} 

S; ( Aq. PSI 6 ( Aq. PSI 

G {pointwise order} 

(Vq. (s; (4.4)q < PS) 

= {definition of sequential composition) 

S(ruS) < PS 

3 {folding least fixpoint} 

so equality follows since the order < is antisymmetric. 0 

We will also use the following result, which says that if command S can re-establish a precondition while 
decreasing a termination function, then repeated execution of S will lead to a win. 

Theorem 2. Assume that f is a monotonic function over predicates, p is a predicate, t is a state function 

ranging over some well-founded set W and 

pA(A(T.tu<w) < f(pA(ha.tcr<w)) 

for all w EW Then p < pf, 

Proof. Set pw = p A (Au. t u < w), for all w E W. We first prove (VW E N pw < ,uf) by well-founded 
induction on w. The induction hypothesis is (Vu < w. p. < pf ). We have 
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pA(Aa.ta<w) 

< {assumption} 

f(pA(AcT.ta<w)) 

= {see below} 

f(pA(Aa.3u<w.ta<U)) 

= {pointwise order} 

.f(V(PAwtcr$o))) 
Ll<W 

< {induction assumption} 

f(P”f> 
= {folding least fixpoint} 

p&f 

where the second step uses the trivial fact that in an ordered set, 

x < w G (3v < w. X < v) 

Now, 

P = ( v Pw) G Pf 
WEW 

which finishes the proof. 0 

3. Modelling games 

A game is played on a board (the state) between two opponents: Player (or the angel) and Opponent (or 
the demon). The choices of Player can be coded as an angelic update command {P} on the state. Similarly, 
the choices of Opponent can be coded as a demonic update command [Q] on the state. In the simple case 
when the two players alternate making moves, the game can be represented as the iteration 

G = repeat {P}; [Q] forever 

if Player moves first. 
We can also have more complicated commands in the body, if the rules of the game are more intricate. We 

may also add guards and assertions, to indicate points at which it is decided that the game is won by either 

player. 

Example. As an example, consider a simple version of the game of Nim, where the players alternate removing 
one or two matches from a pile. Player is the first to move, and the player who removes the last match loses. 

The state has only one variable x (the number of matches) and to simplify things, we let x range over the 
natural numbers with the subtraction rule 0 - 1 = 0 (“monus” rather than “minus”). 

We introduce the following abbreviations: check is the state predicate (Ax. x > 0) and Move is the state 

relation (Ax x’. x - 2 < x’ < x). Then the game can be expressed in the following simple form: 

G = repeat [check] ; {Move}; {check}; [Move] forever. 

The guard [check] is a check to see if Player has already won. If not, then Player makes a move, setting the 
final value of x to either x - 2 or x - 1. After this, we have the dual situation. The assertion {check} is a check 
to see if Opponent has won. If not, then Opponent moves according to the demonic update. 
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4. Proof of winning strategies 

We have shown how games can be represented as unguarded iterations. The question is now: what can we 
prove about a game? If the game repeat S forever establishes postcondition false, then Player can make choices 
in the angelic updates in such a way that there is a win, regardless of what choices Opponent makes in the 
demonic updates. This justifies the following definition: we say that Player has a winning strategyfor the game 
repeat S forever under precondition p if 

p < (repeat S forever) false. 

Using the results from Section 2, we get a rule for proving the existence of winning strategies. 

Theorem 3. Player has a winning strategy for game repeat S forever under precondition p, provided the 
following two conditions hold for some predicate I (the invariant) and some total state function t ranging over 
some well-founded set W: 

p < I, 

ZA(Aa.ta<w) 6 S(ZA(A(T.~CT<W)) forallwEW. 

(1) 

(2) 

Proof. 

P 
3 

P 
-+ 

< (repeat S forever) false 

{Theorem 1) 

< ps 

{assumption (1)) 

I 6 ps 
+ {Theorem 2) 

(vwEwzA(Aa.taQw) <S(ZA(AcT.ta<w))) 

E {assumption (2)) 

T 0 

Note that repeat S forever is not a do-loop with a true guard (do true --+ S od), since the body of a 
do-loop can never be miraculous. Thus Theorem 3 is not a special case of the traditional rule for proving total 
correctness of loops, though it is similar to that rule. 

5. Example: Nim 

We now return to the example game of Nim. The global state has a single component X, ranging over natural 
numbers. It is well known that to win this game, it is necessary always to make the number x of matches satisfy 
the condition x mod 3 = 1. The strategy consists of always removing so many matches that x mod 3 = 1 holds. 

5.1. Existence of a winning strategy 

Assume that precondition p is x mod 3 # 1 (since Player moves first, this is necessary to guarantee that 
Player can actually establish x mod 3 = 1 in the first move). Invariant Z is simply p and termination function t 



R.J.R. Back, J. van Wright/Information Processing Letters 53 (1995) 165-i-172 171 

is (Ax. x). This means that condition ( 1) is trivially satisfied and we only have to prove condition (21, i.e., 

that 

(Ax.xmod3#1Ax<n) < S(Ax._xmod3#1Ax<n) 

holds for arbitrary natural number n, where S = [check] ; {Move}; {check}; [Move]. 
We prove (3) by calculating S I, in two parts. First, we find the intermediate condition 

(3) 

({check}; [Move] ) (Ax. x mod 3 # 1 A x < n) 

= {definitions} 

(~x.x>OA(Vx’.x-2~x’<x~xmod3#1Ax’<n)) 

= {finite quantification} 

(Ax.x>OA(x-2)mod3#1Ax-2<nA(x-1)mod3#1Ax-l<n) 

= {arithmetic} 

(Ax.xmod3=1Ax<n) 

This is the condition that Player should establish on every move. 
Continuing, we find the precondition 

([check];{Move})(Ax.xmod3=1Ax<n) 

= {definitions} 

(Ax.x=OV(Jx’.x-2<x’<xAxmod3=1Ax’<n)) 

= {finite quantification} 

(Ax.x=OV((x-2)mod3=1Ax-2~n)V((x-1)mod3=1Ax-1~n)) 

2 {arithmetic, pointwise order} 

(Ax.xmod3#1Ax<n+l) 

Since this condition is implied by (Ax. x mod 3 # 1 A x < n), we have shown that (3) holds, i.e., that the 
game has a winning strategy. 

5.2. Extracting a Nim-playing program 

The above calculation shows that there exists a winning strategy for Player in the game of Nim. However, 
the angelic nondeterminism in Player’s move means that we do not have an implementation of the strategy. 
We shall now describe a method for finding an implementation, using program transformations. Because of the 
space limitation, we only outline the method. 

In order to get an implementation (i.e., a program that plays Nim), we apply equivalence preserving 
transformations to Player’s component {Move} of the game expression 0, in such a way that no angelic 

nondeterminism remains. 
First, we make a case split according to precondition p: 

0 = {p};Gv {-p};G 

where V is an angelic choice operator (there is no nondeterminism involved in this case; the right hand side is 
an if-then-else command). 

Now it is possible to use the fact that p is an invariant and the calculations in Section 5.1 to replace Player’s 
{Move} while preserving the value of {p}; G. We replace {Move} by the command [Move2], where Move2 is 

the state relation 
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(Axx’.(xmod3#2~x’=x-2))V(xmod3#O~x’=x-I) 

As a result, we have the following equality: 

{p}; 0 = {p}; repeat [check] ; [ Move21 ; {check}; [Move] forever 

The command [Move21 can be written using Dijkstra’s nondeterministic conditional as 

ifxmod3#2+x:=x-2~xmod3#O+x:=x-lfi (4) 

Replacing Player’s component by applying equivalence transformations can be seen as implementing a 
strategy. Thus, (4) shows how Player should play Nim under precondition p: if x mod 3 # 2, then remove two 
matches and if x mod 3 # 0, then remove one match. This strategy does not specify Player’s choice completeIy 

if x mod 3 = 1. In fact, no winning strategy exists under this precondition (this can be proved formally using 
the idea described below). 

6. Concluding remarks 

In those initial states where no winning strategy exists, our method cannot suggest strategies that would be 
useful against an imperfect opponent. A finer semantics could be of some use (e.g., preferring a loss after a 

longer game to a loss after a shorter game), but this would hardly lead to smart strategies. 
The methods we have outlined in this paper can also be used to show the nonexistence of winning strategies. 

This can be done by showing the existence of a winning strategy for the dual game, i.e., the game with the 
roles of Player and Opponent reversed and with a greatest fixpoint semantics. For dual games, condition (2) 
simply becomes I < S I, i.e., no termination function is needed. 
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