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Abstract

This paper describes Millipede, a graphical programming environment for a
Transputer-based MIMD multiprocessor system. The environment provides a vi-
sual extension to the CSP/Occam programming model. Parallel programs are
described as graphs, where the nodes denote parallel processes and the edges de-
note communication channels between processes. Graphs are constructed using a
hierarchical graph editor which allows the user to group processes (nodes) together
into hierarchical process structures. The highest level in the graph hierarchy, called
the processor graph, also describes the processor network on which to execute the
parallel program. Millipede contains tools for mapping processor graphs onto a re-
configurable transputer network and for configuring the target processor network
accordingly. Monitoring data, produced and collected by a performance monitoring
system, can also be presented upon the processor graph.

1 Introduction

Programming multiprocessor systems is often associated with great difficulty. There are
different reasons for this. Firstly, there are less programming tools available for these
types of systems than for traditional sequential systems. This is partly due to the fact
that multiprocessors have not been widely available for as long a time as uniprocessor
systems. Another reason is that there are several different categories of multiprocessor
systems, each requiring their own set of programming tools. Furthermore, the im-
plementation of many traditional programming tools, such as for example debuggers,
becomes much more difficult in a multiprocessor environment. In fact, debugging of
parallel programs is in itself an active research area.

Many of the existing programming tools reflect the structure of parallel programs
very poorly and do not support the software development process very well. Parallel
programs are typically created using only a text editor. Clearly, a parallel program
organized as a set of textfiles is not very easy to understand and manage. Program
representations used in traditional programming tools can not always be used for paralle
systems. For instance, performance analysis tools typically present output data in form



of tables, histograms or charts. This way the dependencies between monitored recources
is hidden from the user, making the analysis unnecessary difficult.

System software for sequential computers completely hides the hardware architec-
ture from the user. For multiprocessor systems, the programmer often has to be very
much aware of the underlying hardware architecture and has to use this knowledge in
the programs. For instance, logical entities (e.g. processes, communication channels)
might have to be explicitly mapped onto physical ones (e.g. processors, physical com-
munication links), using specific programming language constructs. Often this mapping
has to be done textually, which is considered to be a laborous and error-prone task.
Especially when the programmer wants to experiment with several different mappings
while constructing the program, the amount of work can be considerable.

The Millipede programming environment, which we present in this paper, is an
attempt to solve the problems discussed above. Our design goal has been to use a
single program representation that can be used during the whole process of construct-
ing efficient parallel programs. The representation has to be intuitive and natural
from the programmers point of view. We feel that graphs are the most natural way
of representing parallel programs. As pointed out in [4], graphs have been used for
describing process structures, data dependencies, process to processor mapping, per-
formance visualization etc., and they are often used for development and description of
parallel algorithms. In the process graph representation we have chosen, the nodes of
a directed graph denote processes and the edges denote unidirectional communication
paths between processes. This graph representation is used as the interface to all tools
integrated into Millipede.

Overview of the work. The Millipede programming environment is designed to
facilitate the programming of transputer-based [15] (reconfigurable) multiprocessors,
and is an implementation of the design ideas originally presented in [1]. Millipede
integrates a set of programming tools that support the steps involved in constructing
efficient parallel programs, from the initial high-level description in form of a process
graph to a performance-tuned final executable program. All the tools are integrated
under a common graphical user interface that provides a graph-based visual extension to
the CSP/Occam programming model [11, 14], hiding the underlying target architecture
from the programmer.

Millipede adresses the problems of programming a traditional host/target processor
network, where a programmer has a fixed amount of processing units at his disposal.
Our ambition has not been to create an environment supporting multiple users which
share a common processor network. With the development of new hardware and dis-
tributed operating systems, these kind of systems will to some extent be of less im-
portance. However, in many application areas (e.g. real-time and embedded systems)
single-user environments will still have a great importance. Although we restrict our-
selves to single-user systems, we believe that the concepts presented in this paper are
also applicable in other multiprocessing environments.

The basis of the user interface to our programming environment is a graph editor.
Using the editor, the user constructs a labelled process graph from which an executable
parallel program automatically can be constructed. Each node in the graph is labelled
with a process name and a parameter list, and contains a reference to the source code



that describes the computational behaviour of the process. A process usually has a set
of input- and output-ports associated with it. A logical communication channel connects
an output-port on one process to an input-port on another process. Ports are labelled
with a name and a message datatype.

Sets of processes can be grouped together into compound processes, thus forming a
hierarchical process structure. In other words, a compound process contains a subgraph
of processes, some of which can also be compound processes, and so on. The highest
level in the graph hierarchy, which we call the processor graph, describes the grouping of
processes onto a logical processor network. The processor graph is used to automatically
generate a process to processor mapping and to reconfigure the physical processor
network accordingly. The environment builds all necessary source code files using the
information in the process graph. Compilation, linking etc. is also administered by the
environment.

Since the main reason for using parallel computers is to gain efficiency, the perfor-
mance of programs is of crucial interest. Sometimes the achieved speedup of a program
is much less than expected. The reasons to such inefficiency are usually difficult to figure
out just by analysing the source code. Therefore, tools supporting performance analysis
are needed. In Millipede, performance monitoring data that has been collected during
program execution can be presented upon the processor graph of the program. The
utilization of the resources (CPU’s and communication links) of the physical processor
network are shown on the corresponding nodes and edges in the processor graph. The
user can then easily relate performance figures to the structure of the parallel program.

Related work. The need to simplify the task of writing efficient parallel programs
has resulted in the implementation of a number of other graphically oriented, integrated
programming environments. A majority of these systems are, however, designed for the
shared memory model of computation, like for example PIE [17, 13] and FAUST [10].

MARC [7] and TIPS [21] are integrated environments for transputer-based sys-
tems. Both posess features similar to the ones in Millipede, like automated process
to processor mapping and support for performance analysis. Neither one, however,
offers the intuitive abstraction mechanism provided by a process-graph representation
of programs.

TOPSYS [5] is an other example of a programming environment for distributed
memory systems. The environment includes tools for process to processor mapping,
program animation, program debugging, performance tuning and dynamic load bal-
ancing. Like MARC and TIPS, TOPSYS does not provide the user with the kind of
visual support that Millipede offers. For example, the performance analysis tool [6] uses
traditional data presentation techiques such as diagrams and histograms. We feel that
these techniques do not sufficiently support performance analysis of parallel programs.

The possibility to visualize different aspects of parallel processing using graphs has
also motivated other researchers. An early and often referenced graph-based program-
ming environment for parallel programming is Poker [20]. It gives the programmer
a possibility to specify the communication structure and assign processes to proces-
sors using a graph description, features which are typical for most of the more recent
programming environments.

Graph based tools supporting process-to-processor mapping have been presented



for instance in [20].

In [4] a powerful general purpose graph editor for parallel programs, called Para-
Graph, is described. The authors advocate a graph based representation of parallel
program similar to the one described in this paper. ParaGraph has advanced features
for handling large process graphs. It offers scalable graph specifications, based on graph
rewriting rules, and support for graph visualization. These are issues which have not
been considered in depth in the Millipede project. Some work in this direction has
been done, in form of support for regular replicated process structures. However, Para-
Graph is not a complete programming environment. It is basically a building block for
a programming environment user interface. ParaGraph does not support hierarchical
graph specifications. We feel that graph hierarchies are very useful for structuring large
graphs.

A somewhat different graph-representation is used in CODE/ROPE [9, 8]. The
user can specify dependcies between program components using dependency graphs.
The main idea behind CODE/ROPE is to support modular design of programs and
the structuring of reusable program libraries.

Organization of the paper. The rest of the paper is organized as follows: In sec-
tion 2 we discuss the basic concepts of the Millipede environment. Section 3 contains a
description of the user interface to the Millipede programming environment. The sup-
port for performance analysis that Millipede offers is presented in section 4. Finally, in
section 5 we describe possible future work and summarize our experiences from using
the Millipede programming environment in developing appication programs.

2 Hierarchical process graphs

Parallel programs consist of a number of parallel processes which cooperate with each
other in order to solve a given task. When constructing parallel programs, the program-
mer has to be able to organize the program in a way that reflects his/her understanding
of the program. Graphs are often used as an abstraction mechanism to describe parallel
processes and their dependencies, and they seem to be an ideal mechanism for express-
ing this kind of information. Therefore, in Millipede, parallel programs are represented
as hierarchical process graphs, in which the nodes denote parallel processes and the
edges denote communication paths between processes.

The interpretation of a process graph depends very much on which programming
model is assumed, i.e., wether an edge between two processes represents a shared
variable or a point-to-point communication channel. Millipede is designed with the
CSP/Occam-model in mind. Interprocess communication is assumed to be handled by
the means of synchronous message passing over unidirectional channels.

The process graphs in Millipede are constructed using four types of objects: processes,
input- and output-ports and channels.

The process objects denote user defined processes, which are executed in parallel.
Each process object is labelled with a name, an optional parameter list and source code
that describes the computational behaviour of the process.



Processes can have an arbitrary number of input- and output-ports associated with
them. Port objects are labelled with a name and a message datatype (the message
protocol). A channel, represented by a directed arc, connects an output-port in one
process to an input-port in another process. Processes can only refer to a channel via
the port name to which the channel is connected. Thus the port name is used as a
local name for the channel.

A set of processes can be grouped together into a compound process, which will
contain the original set of processes as a subgraph. The component processes of a com-
pound process can be either ordinary processes or compound processes themselves. In
this way it is possible to construct arbitrarly large hierarchical process graph structures.
Compound processes are interpreted as pseudo-parallel processes which are executed
on the same processor (using a time-sharing scheduler). The highest level in the process
hierarchy, which we call the processor graph, describes the configuration of the logical
processor network on which the process graph will be executed.

A labelled process graph of this kind completely describes a parallel program: the
processes of the program, the procedures that constitute the processes and the inter-
connections between the processes. The graph also describes the grouping of processes
into logical processors, which is needed to map the program to a target processor
network. This information can be used for extracting a textual representation of the
program, which can be compiled and exexuted.

Since the process graph describes the logical structure of the parallel program it
is also very well suited for both diagnostic and performance debugging as well as pro-
gram animation. Performance figures, error messages and other kind of information
to the user, can be presented in a way that relates well to the programmers own view
of the program. Graphs have successfully been used for parallel debugging [12] and
performance analysis [21].

The above examples show what a powerful visualization mechanism graphs are in
the field of parallel programming. By constructing the Millipede environment we have
tried to show that this mechanism can be used by several tools together in one single
environment.

3 The Millipede programming environment

The Millipede programming environment is implemented on a Sun SPARCstation,
which acts as a host computer for the Hathi-2 multiprocessor system [2], a transputer-
based reconfigurable general-purpose multiprocessor system. The menu-driven graphi-
cal user interface is based on X-Windows and is implemented using DesignML [16]. In
the current implementation, Millipede supports parallel programs written in Occam.
Part of the programming tools integrated into the environment are commercially avail-
able products (e.g. Occam Toolset), and some are designed especially for the Hathi-2
system.

When the Millipede programming environment is started, the user is presented with
a worksheet on which he/she can draw the process graph. Graphs are constructed by
selecting objects from a palette (see Figure 1) and pasting them onto the worksheet.
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Figure 1: The palette page

The palette contains four types of objects (listed in order of appearance): A process
object, an output-port, an input-port and a host computer object.

To construct a process, the user selects the process object from the palette and
pastes this onto the worksheet. The process name and the optional parameter list
can be edited by selecting the process and choosing an appropriate command from the
Process menu. The code of the process is edited in a similar way by invoking the Edit
command. The user is then presented with an editing window in which the source code
of the process is written.

Ports are created by selecting either the input- or the output port object from the
palette and pasting it onto a process. The port attributes (name and message protocol)
can be edited by choosing a command from the Port menu. Channels between processes
are introduced by connecting an input-port to an output-port. The environment checks
that the connection is legal, i.e., that the channel connects an output-port to an input-
port and that the two ports have a matching message protocol. In Figure 2 an example
of a user constructed process graph is shown.

Compound processes are created by selecting a set of processes and choosing a
Group menu command. The selected processes are then grouped together into a single
compound process, which is distinguished from a simple processe by a thicker border
line. Figure 3 shows an example of a process graph containing a compound process. By
clicking on a compound process, it’s subgraph is brought forward. Figure 4 shows the
subraph of the compound process. A compound process can also be ungrouped with
an Ungroup menu choice, thus restoring the original process graph. The darkened
port objects on the subgraph denote ports that connect the subgraph to the compound
process

Using these primitive operations the user can construct a hierarchical process graph
that represents a parallel program. In order to create an executable program from the
process graph, the user chooses a Make command from the Program menu. This
launces a sequence of actions, all using information extracted from the process graph
and carried out automatically by the environment. Below we briefly describe these
steps needed to create the executable program from the process graph:
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Code generation. The process graph is parsed, and for each simple process a source
code file, in the form of an Occam-2 procedure, is created. The procedure head is
constucted from the process name, the ports associated with the process and the op-
tional parameter list. The procedure body is simply constructed by appending the
user-provided source code of the process to the file.

For each compound process, a similar source code file is generated. The proce-
dure head is constructed as above. The procedure body is constructed by parsing
the subgraph and invoking all constituting processes in parallel with an Occam-2 PAR
statement. To generate actual channel parameters for the procedure invocations, the
environment has to parse the subgraph and extract information about how the consti-
tuting processes are interconnected.

Mapping. The processor graph describes a partitioning of the process graph onto
a logical processor network. The process-to-processor mapping tool automatically al-
locates the logical processor network onto physical processors in a way that can be
realized on the target multiprocessor. The mapping tool is based on a heuristic process-
to-processor mapping algorithm called self-adjusting mapping [18, 19]. The mapping
algorithm guarantees that a successful mapping is always found, by further combining
processes into compound processes if a mapping otherwise can not be found.

The result of the mapping is a source code file that exactly describes how the logi-
cal processor network is mapped onto the target processor network. This file specifies
exactly on which physical processors the logical processors are placed, and which phys-
ical communication channels are used to connect the processors to each other. When
compiled, this produces an executable image that can be loaded onto the target multi-
processor system and executed.

Configuring. The mapping of the logical processor graph onto the physical processor
network also defines the required configuration of the target network. This information
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Figure 5: Monitoring data presented upon a processor graph

is used to automatically reconfigure the target multiprocessor system. Special system
software designed for this purpose handles the reconfiguration of the target network
(see [2] for details).

After this, the user selects an Execute command from the Program menu, and
the executable image of the program is loaded onto the target multiprocessor system
by a network loader, and the execution starts.

4 Support for performance analysis

Parallel programs are designed with efficiency in mind. Sometimes, however, the
speedup of the program is far less than expected. The reasons for the inefficiency
is often due to imbalance in the usage of hardware resources in the multiprocessor
system. In Millipede, it is possible to present performance data about the utilization
of hardware resources in the target network. These figures are presented on the cor-
resesponding objects in the processor graph of the program. This way the user can
associate the figures directly to the structure of the program.

The performance analysis tool is based on a monitoring system [3] that collects
information about the utilization of the CPU’s and communication links during pro-
gram execution. The utilization degree of each hardware resource is measured in short
timesteps, the length of which are user definable, thus forming a performance trace of
the program execution.

The presentation system provides a set of pre-defined metrics which can be viewed
in a number of different ways. CPU utilization is presented as percent of utilization
during a time interval. The utilization of a link can be presented as the number of
communications during an interval, or as the number of bytes transferred over the link.
Furthermore, the data transmission time, the waiting time and the sum of these (the



total communication time) can be presented, either as absolute values in milliseconds
or as percent of the time interval. The user can step through the performance trace of
the execution one interval at a time. The system also gives the user the possibility to
view mean values and standard deviations over the whole or a part of the execution for
all the metrics mentioned above.

Figure 5 gives an example of how mean values of CPU and link utilization are
presented. The CPU utilization figures are printed after the process names of the
processes called node and last. Similarly, the link utilization figures are printed after the
portnames of these processes. The first value is the percentage of time spent waiting for
communication synchronization (transputers communicate synchronously). The second
value is the total percantage of time used for communication during the interval. There
are no utilization figures neither for the process host nor for the ports associated with
it. The reason for this is that the process connected to the server is automatically
mapped to the host transputer of the transputer network, which currently can not be
monitored.

5 Conclusions

The Millipede programming environment is designed to help programmers to construct
efficient parallel programs for reconfigurable transputer-based multiprocessor systems.
It integrates a number of programming tools under a common graph-based user in-
terface, which allows the user to construct and manipulate parallel programs in the
form of hierarchical process graphs. The programming environment hides the physi-
cal architecture of the target multiprocessor from the user, but still allows the user to
control how logical processes are grouped together and placed onto physical processors.
The environment allows the user to view a program as a process graph, taking care
of all source code control and mapping of processes and communication channels onto
physical processors and communication links in the target multiprocessor system.

Millipede is well suited for program development where the user wants to exper-
iment with different process placement strategies in order to find the most efficient
implementation. The ability to present monitoring information upon the processor
graph of a program and step through a performance trace of an execution enables the
user to compare different program versions. The graph-based user interface together
with the automatic process-to-process mapping facility makes it very easy to modify
the program and try out different implementations.

A prototype version of Millipede has been in use since spring 1991. The experiences
gained from using it to construct application programs are mainly positive. The envi-
ronment encourages the user to construct parallel programs as a collection of relatively
small and independent processes, which can be developed and tested separately.

Something about what should be improved in Millipede ...
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