
ELSEVIER Science of Computer Programming 26 (1996) 79-97

Science of
Computer
Programming

Specifying the Caltech asynchronous microprocessor

R. J.R. Back a,1, A.J. Martinb, K. SereCyl>*
aibo Akademi University, Department of Computer Science, FIN-20520 Turku, Finland

b California Institute of Technology, Department of Computer Science, Pasadena CA 91125, USA
c University of Kuopio, Department of Computer Science and Applied Mathematics,

FIN-7021 I Kuopio. Finland

Abstract

The action systems framework for modelling parallel programs is used to formally specify
a microprocessor. First the microprocessor is specified as a sequential program. The sequen-
tial specification is then decomposed and rejned into a concurrent program using correctness-
preserving program transformations. Previously this microprocessor has been specified at Caltech,
where an asynchronous circuit for the microprocessor was derived from the specification. We
propose a specification strategy that is based on the idea of spatial decomposition of the program
variable space.

1. Introduction

An action system is a parallel or distributed program where parallel activity is de-
scribed in terms of events, so-called actions. The actions are atomic: if an action is
chosen for execution, it is executed to completion without any interference from the
other actions in the system. Several actions can be executed in parallel, as long as
the actions do not share any variables. Atomicity guarantees that a parallel execu-
tion of an action system gives the same results as a sequential and non-deterministic
execution.

A recent extension of the action system framework, adding procedure declarations to
action systems [6], gives us a very general mechanism for synchronized communication
between action systems. When an action in one action system calls a procedure in
another action system, the effect is that of a remote procedure call. The calling action
and the procedure body involved in the call are each executed as a single atomic entity.

The use of action systems permits the design of the logical behaviour of a system
to be separated from the issue of how the system is to be implemented. The decision
whether the action system is to be executed in a sequential or parallel fashion can

* Corresponding author.
’ Partially supported by the Academy of Finland.

0167-6423196/$15.00 @ 1996 El sevier Science B.V. All rights reserved
SSDI 0167-6423(95)00023-2

80 R.J.R. Back et al. IScience of Computer Programminy 26 (1996) 79-97

be postponed to a later stage, when the logical behaviour of the action system has
been designed. The construction of the program is thus done within a single unifying
framework.

The action systems formalism was proposed by Back and Kurki-Suonio [3]. Later
similar event-based formalisms have been put forward by several other researchers, see
for example the work of Chandy and Misra [8], who describe their UNITY framework
and France2 [lo], who develops his IP-language.

The rejinement calculus is a formalization of the stepwise refinement method of
program construction. It was originally proposed by Back [l] and has been later studied
and extended by several researchers, see [13, 141 among others.

Originally, the refinement calculus was designed as a framework for systematic
derivation of sequential programs only. Back and Sere [5, 151 extended the refine-
ment calculus to the design of action systems and hence it was possible to handle
parallel algorithms within the calculus. Back [2] made yet another extension to the
calculus showing how reactive programs could be derived in a stepwise manner within
it relying heavily on the work done in data refinement. In both cases parallel and con-
current activity is modelled within a purely sequential framework. In [6] Back and
Sere show how action systems with remote procedure calls can be derived within the
refinement calculus for reactive systems. We will here show how this extension of the
refinement calculus/action system framework is applied to a non-trivial case study, the
formal derivation of an asynchronous microprocessor.

The initial specification of the microprocessor will be given as a sequential program
that has the syntactic form of an action system. Our goal is to isolate the different
functional components of the microprocessor, like instruction memory, data memory,
ALU, registers, etc., into action systems of their own. The component action systems
are joined together in a parallel composition, where they interact with each other using
shared variables and remote procedure calls. The parallel composition of action sys-
tems is derived from the sequential specification using correctness-preserving program
transformations within the refinement calculus.

The derivation is based on the novel idea of spatial decomposition of the program
variables. At each step we identify one functional component of the microprocessor
and gather the program variables and their associated code relevant to this component
into a separate module, i.e., an action system. The approach is well supported by the
refinement calculus. Back and Sere [7] show how this idea is reflected in a specification
language based on action systems and the refinement calculus.

Martin [12] has developed a methodology for designing asynchronous VLSI circuits
that is based on methods familiar from parallel program design. Using this method
he has specified the same microprocessor within the CSP-framework, but without a
completely formal calculus. A delay-insensitive, asynchronous circuit for the micropro-
cessor was derived from the concurrent program that is more or less equivalent to the
parallel composition of action systems that we derive here.

Our purpose here is to demonstrate that, in addition with software design, action
systems and the refinement calculus provide us with a uniform framework for formal

R.J. R. Back et al. IScience of Computer Programming 26 (1996) 79-97 81

VLSI circuit design. In this paper we concentrate on the initial steps of circuit design
focusing on a high level specification of the microprocessor as a collection of parallel
processes. In an accompanying paper [l l] we develop these ideas close to the archi-
tectureal level by e.g. taking into account the delay-insensitive features of the target
circuit.

A somewhat related method and formalism is developed in [16], but the emphasis
is put on the verification of and formal models for delay-insensitive circuits.

1.1. Overview of the paper

In Section 2, we describe the action systems formalism. In Section 3, we describe
how action systems are composed into parallel systems. We also briefly describe the
refinement calculus. In Section 4, we give an initial specification for the microprocessor
as a sequential program. In Section 5, this specification is stepwise turned into a parallel
composition of action systems, where each action system represents one functional
component of the target microprocessor. Finally in Section 6, we conclude with some
remarks on the proposed method.

2. Action systems

An action system is a statement of the form

d :: var v; proc w ??

I[varx:=xO;proc pI =P,;...;p,=P,;do A,[. ..[A.od]I:z

The identifiers x are the variables declared in d and initialized to x0, ~1,. . , p,, are
the procedure headers, and Pi is the procedure body of pi, i = 1,. . . , n. Within the

loop, Al , . . . , A,,, are the actions of d. Finally, z, v and w are pairwise disjoint lists of
identifiers. The list z is the import list, indicating which variables and procedures are
referenced, but not declared in A. The lists v and w are the export lists, indicating
which variables and procedures declared in d are accessible from other action systems.
Procedure bodies and actions can be arbitrary statements, and may contain procedure
calls.

Both procedure bodies and actions will in general be guarded commands, i.e., state-
ments of the form

A=g+S,

where g is a boolean condition, the guard, and S is a program statement, the body.
The guard of A will be denoted by gA and the body will be denoted by sA.

The local variables (procedures) of ZZ? are those variables xi (procedures pi) that
are not listed in the export list. The global variables (procedures) of ,c4 are the vari-
ables (procedures) listed in the import and export lists. The local and global variables

82 R.J.R. Back et al. IScience of Computer Programming 26 (1996) 79-97

(procedures) are assumed to be disjoint. Hence, x n z = 0, where x denotes the list
of variables declared in d (no redeclaration of variables is thus permitted). The state
variables of d consist of the local variables and the global variables.

A statement or an action is said to be local to an action system if it only refers to
local variables of the action system. The procedures and actions are allowed to refer
to all the state variables of an action system. Furthermore, each procedure and action
may have local variables of its own.

We consider two different parameter passing mechanisms for procedures, call-by-
value and call-by-result. Call-by-value is denoted with p(f), where f stands for the
formal parameters, and call-by-result with p(varf). For simplicity, we will here assume
that the procedures are not recursive.

3. Composing and refining action systems

Consider two action systems,

a? :: var v; proc r 0

I[varx:=xO;proc p=P;do Al I... uAm od]l:z

93:: var w;procs 0

I[vary:=yO;procq=Q;do B1[. [&od]]:u

where x f? y = 8, v n w = 8 and r n s = 0. Furthermore, the lists of local procedures
declared in the two action systems are required to be disjoint.

The parallel composition d 11 .GJ of d and 98 is the action system %?

%T :: var 6; proc c ??

I[var x, y := x0, y0; proc p = P; q = Q;

do A, [...[A,,, 0 B1 [...I & od

II :a

where a = z U u - (v U r U w U s), b = v U w, c = Y U s. Thus, parallel compo-
sition will combine the state spaces of the two constituent action systems, merging
the global variables and global procedures and keeping the local variables distinct.
The imported identifiers denote those global variables and/or procedures that are not
declared in either d or 98’. The exported identifiers are the variables and/or proce-
dures declared global in d or a’. The procedure declarations and the actions in the
parallel composition consists of the procedure declarations and actions in the original
systems.

Parallel composition is a way of associating a meaning to procedures that are called
in an action system but which are not declared there, i.e., they are part of the im-
port list. The meaning can be given by a procedure declared in another action system,

R.J. R. Back et al. IScience of Computer Programming 26 (1996) 79-97 83

provided the procedure has been declared global, i.e., it is included in the action sys-
tems export list.

The behaviour of a parallel composition of action systems is dependent on how
the individual action systems, the reactive components, interact with each other via
the shared global variables and remote procedure calls. We have for instance that a
reactive component does not terminate by itself: termination is a global property of the
composed action system. More on these topics can be found in [2].

3.1. Hiding and revealing

Let var ~1, ~2; proc ~3,214 ??d : z be an action system of the form above, where z
denotes the import list and VI, ~2, ~3, v4 denote the export lists. We can hide some of the
exported global variables (~2) and procedure names (~4) by removing them from the
export list, A&” = var VI; proc 213 ??~2 : z. Hiding the variables v2 and procedure names
v4 makes them inaccessible from other actions outside d’ in a parallel composition.
Hiding thus has an effect only on the variables and procedures in the export list. The
opposite operation, revealing, is also useful.

In connection with the parallel composition below we will use the following con-
vention. Let var al ; proc a2 ??d : a3 and var bl ; proc b2 ??~2.3 : b3 be two action systems.
Then their parallel composition is the action system

where c = a3 U b3 - (al U a2 U bl U b2) according to the definition above. Hence,
the parallel composition exports all the variables and procedures exported by either
d or 99. Sometimes there is no need to export all these identifiers, i.e., when they
are exclusively accessed by the two component action systems & and 9#. This ef-
fect is achieved with the following construct that turns out to be extremely useful
later:

var v;proc po I[d 11 99]I : c

Here the identifiers v and p are as follows: v & al U b, and p c a2 u b2.

3.2. Decomposing action systems

Given an action system

%‘::varu;procs ?? I[varv:=vO;do C,[. . [C,od]/:z

we can decompose it into smaller action systems by parallel composition. This means
that we split the variables, actions and procedures of %F into disjoint sets so
that

%F =varu;procs 0][varw:=wO;procr=R;~~Z])/99]]I:z

84 R.J. R. Back et al. IScience of Computer Programming 26 (1996) 79-97

where

d :: var a2;proc a3 ??

I[varx:=xO;proc p=P;do Al 0 . . . [A, od]I :a1

B :: var b2; proc b3 ??

I[var y := y0;proc q = Q;do B10 . ..fl& od]I : bl

The reactive components d and 2 interact with each other via the global variables
and procedures included in the lists a2, ax, b2, b3.

In the process of decomposing the action system C into parallel reactive components,
it may also be necessary to introduce some new procedures Y, to handle situations where
an action affects program variables in both x and y. As these variables are local in the
decomposed action system, no procedure or action can access both. Hence, one needs
to introduce auxiliary procedures that have access to the local variables, and in terms
of which the original procedure/action can be expressed.

3.3. Rejining action systems

Most of the steps we will carry out within the microprocessor derivation are purely
syntactic decomposition steps. There are, however, a couple of steps where a higher
level action system is refined into another action system. These steps are formally
carried out within the refinement calculus, where we consider action systems as ordinary
statements, i.e., as initialized iteration statements.

The refinement calculus is based on the following definition. Let S and S’ be two
statements. Then S is correctly rejined by S’, denoted S <S’, if for any postcondition Q

wp(X Q> * wp(S’> Q>.

Here wp is the weakest precondition predicate transformer of Dijkstra [9]
We will not go into details of this calculus here. The interested reader should consult

[l, 5,15,X 61.

4. Initial specification of the Caltech microprocessor

The microprocessor we want to specify has a conventional 16-bit-word instruction
set of load-store type. The processor uses two separate memories for instructions and
data. There are three types of instructions: ALU, memory and program-counter (PC).
The ALU instructions operate on the 16 registers. The memory instructions involve a
register and a data word. Some instructions use the following word as ofiet.

The initial action system is a sequential non-terminating loop. The variable i holds
the instruction under execution. It is of record type containing several fields. Each
instruction has an op field for the opcode, the other fields depend on the instruction.
The two memories are represented by the globally visible arrays imem and dmem.

R. J.R. Back et al. IScience of Computer Programming 26 (1996) 79-97 85

MO :: var imenz, dtnent ??

I[var i E record,pc, ofset, iment[ilour..ihigh],dmem[dl~)~r..dhigh],

rcg[O..lS],f
I’C := j’co;
do true +

i, pc :=. inlem[pc], pc $ 1;
if oflset(i.op) + oflsef,pr := inzem[pc],pcS- 1
0 Toffset(i.op) -+ skip

iF&(i.op) -+< reg[i.t],f >:= uhj(reg[i.z], req[i.y], i.op,f)
0 Id(i.op) --b reg[i.z] := dmem[reg[i.z] t reg[i.ir]]
0 st(i.op) -+ dmern[reg[i.s) t reg[i.y]] := reg[i.=]
0 Ids(i.op) + reg[i.z] :- dmem[uflsct t reg[i.y]]
0 stz(i.op) --+ dmen[oJset + reg[i.y]] := reg(i.21
0 Ida(i.op) + reg[i.r] := oflset + reg[i.y]
0 stpc(i.op) + reg[i.z] := pc t reg[i.y]
0 jmp(i.op) + pc := reg[i.y]

1 brch(i.op) +
if cond(f, i.cc) + pc :- pc t oflset 0 ~cond(f, i.cc) -+ skip fi

fi

Fig. I. Initial specification of the microprocessor

The index to imem is the program-counter variable pc. The registers are described
as the array reg[0..15]. The action system J&‘O in Fig. 1 describes the processor. Here
the statement < reg[i.z], f > := aZuf(reg[i.x], reg[i.y], i.o$, f) denotes a simultaneous
assignment of values to a pair of variables reg[i.z] and f.

5. Decomposition into parallel action systems

Let us decompose the action system J&‘O into a parallel composition of action sys-
tems so that each system models one functional component of the microprocessor. At
each step one component is identified by its program variables. These variables and
the associated code is gathered into a module of its own. Furthermore, we make a de-
cision on how the variables of the module should be accessed, exporting the variables
and accessing them as shared variables, or making them local and accessing them via
global procedures.

The components in the order of their introduction and their associated variables are
as follows:
(1) Instruction memory: imem[iZow..ihigh]
(2) Program counter and offset: pc, ofiet

86 R.J.R. Back et al. IScience of Computer Programming 26 (1996) 79-97

(3) Register array: reg[O..l5]
(4) Arithmetic-logical unit: f
(5) Data memory: dmem[dZow..dhigh]
(6) Instruction execution: i
The main lines of the derivation will follow the presentation of Martin [12] rather
closely. We describe the first three steps more carefully, the other steps follow a
similar pattern.

5.1. Instruction memory

We start by making the instruction memory an action system of its own. We assign
the variable imem to become local to this action system and hence, references to imem
must be done via a procedure call. There are two such references in the specification,
one that writes imem[pc] into the variable i and the other that writes imem[pc] to
offset.

Let us create a procedure IMEM that reads the instruction denoted by pc, imem[pc],
into a variable k (k will be later instantiated to i and ofiet respective):

k, pc := imem[pc], pc + 1

= k := imem[pc]; pc := pc + 1

< {introducing local variables}

I[var j;j := imem[pc]; k := j]I; pc := pc + 1

= {introducing a procedure}

I[proc IMEM(var .j) = (j := imem[pc]);ZMEM(k); pc := pc + 1]I

Hence, the action system A“0 is refined by the following action system:

A1 :: var imem, dmem ??

I[var i E record, pc, offset, imem[ilow..ihigh], dmem[dlow..dhigh],

reg[O..l5],f

proc IMEM(var j) = (j := imem[pc]);

pc := pco;

do true +

ZMEM(i); pc := pc + 1;

if ofiet(i.op) + ZMEM(ofiet); pc := pc + 1

[lofSset(i.op) + skip

fi;
if . . . as before.. . fi

od

]I :<>

R.J.R Back et al. IScience of’ Computer Programming 26 (1996) 79-97 87

5.1.1. Separate FETCH and IMEM
The next step is to separate the instruction memory into an action system of its

own. We therefore decompose the initial specification of the microprocessor as
follows:

A%‘, = var imem,dmem ?? I[A!‘2 (1 Y 11 :< >

where

“4f2 :: var pc, dmem ??

([var i E record, pc, o&set, dmem[d low..dhigh], reg[O..l5], f

pc := pco;

do true 4

IMEM(i); pc := pc + 1;

if ofiet(i.op) + ZMEM(ofSset); pc := pc + 1

I-ofSset(i.op) -+ skip

fi;
if . . .as before.. . fi

od

]I : IMEM

9 :: var imem; proc IMEM ??

I[var imem[iZow..ihigh]; proc ZMEM(var j) = (j := imem[pc])]I : pc

The instruction memory imem is now located in the module 4. The program counter,
pc, is a shared variable between the two component modules. It is located in the
module Ml. Also the procedure IMEM has become global as it is accessed from
JZ2. The instruction memory imem is not directly accessed in J&. However, both pc
and ZMEM are local to the parallel composition. Therefore this exports only the two
memories. imem and dmem.

5.2. Program counter

Our next step is to isolate the program counter and offset administration from the
rest of the processor. The program counter pc is referenced at instruction and offset
fetch and during the execution of the stpc, jmp, and brch instructions.

Let us start by refining the pc updates at instruction fetch time as follows:

IMEM(k); pc := pc + 1

d {introducing a local variable}

I[var y;ZMEM(k); y := pc + 1; pc := y]I

< {commuting statements}

I[var y;y := pc + l;IMEM(k);pc := y 11

88 R. J. R. Buck et al. IScience of Computer Programming 26 (1996) 79-97

= {introducing procedures}

I[var y;proc PC11 = (y := pc + 1);proc PC12 = (pc := y)]I;

PCIl; IMEM(k); PC12

where y is a fresh variable. We have refined the pc access into a separate read-access
and a write-access. This will allow us a parallel pc update and instruction fetch as will
become clear below. The pc update at the brch instruction can be treated similarly:

pc := pc + 0fSset

< {introducing a local variable}

I[var 2; z := pc + offset; pc := z] 1

= {introducing procedures}

I[var z;proc PCAl = (z := pc + ofSset);proc PCA2 = (pc := z)]I

PCAl; PCA2

The other two pc accesses are read-accesses and hence, correspond to procedure calls.
Now it is a straightforward task to make the pc accesses via procedures:

9 :: var pc; proc PCI 1, PCI2, PCA 1, PCA2, PCST, PCJMP ??

I[var PC;

I[var Y,Z
proc PC11 = (y := pc + 1);

proc PC12 = (pc := y);

proc PCAl = (z := pc + ufiet);

proc PCA2 = (pc := z);

proc PCST(var o) = (O := PC);

proc PCJMP(o) = (pc := 0);

II;
pc := pco;

]I : 0fSset

Every access to pc is now done via these procedures. For instance, the instruction
fetch and the subsequent PC-update IMEM(i); pc := pc + 1 is transformed to

PCIl; ZMEM(i); PC12.

Furthermore, the pc update pc := pc + offset in the branch instruction brch is trans-
formed to a pair of procedure calls

PCA 1; PCA2.

The offset is read during the execution of the ldx, stx, and Ida instructions. Fur-
thermore, it is referenced at instruction fetch and during the program counter update
at brch execution.

R.J.R. Back et al. IScience of Computer Programming 26 (1996) 79-97 89

The ofSset value in the load and store instructions is received via a call to a procedure
XOFF as follows:

reg[i.z] := dmem[ofiet + reg[i.y]]

< {introducing a local variable}

I[var of; ofs := o&vet; reg[i.z] := dmem[ofS + reg[i.y]] 11
= {introducing a procedure}

I[proc XOFF(var o) = (o := ofiet);

I[var ofs;XOFF(of); reg[i.z] := dmem[off + reg[i.y]]]I]I

The module for offset administration is defined next:

X :: var offset; proc XOFF ??

I[var oflet; proc XOFF(var o) = (o := ofSset)]I : < >

We now have that

_h!z = var dmem,pc ??I[_&‘3 II 9 II 3]I : MEA4

where A!3 is given in Fig. 2.

MS :: var drneln ??
I[var i E record, dmem[dlow..dhigh], reg[0..15],f

do true -_)
PCI 1; IMEM(i); PCI2;
if oflset(i.op) -+ PCII; IMEM(oflset); PC12
0 -offset(i.op) + skip

iF’&(i.op) 4-c regIi.z],f >:= aluf(reg[i.s], reg[i.y], i.op,j)
0 Id(i.op) j reg(i.z] := dmem[reg[i.s] t reg[i.y]]
i sfi(;ypL; dmem(reg[i.s] t reg[i.y]] := reg[i.,-]

z 1.0, --f
I[var ofl; A’OFF(oQ); reg[i.z] := dmern[ofl t regfi.y]]]I

0 sts(i.op) -_)
I[var of; XOFF(ofl); dmem[ofl+ Teg[i.y]I := reg[i.i]]I

0 Ida(i.op) 3
I[var ofl; XOFP(off); reg[i.z] :x 08 -t reg[i.y]]I

0 stPc(f.oP) -+ I[var r; PCST(r); reg[i.z] := r t reg[i.y]]I
; rp$.o:)j 11 var y; y := reg[i.y]; PCJMP(y)]I

rc i.0 -b
if cond(f, i.cc) -_) PCAl; PCA2 0 -cond(f, i.cc) --f skip fi

fi

]I: TiEM, PCIl, PCI2, PCAl, PCA2, PCST, PCJMP,SOFF, o&et

Fig. 2. The action system Af3.

90 R. J.R. Back et al. IScience of Computer Programming 26 (1996) 79-97

Observe that ofSset is shared between &3, 9’ and X, whereas pc is shared between
As, 9 and 9. Therefore ofiet is a hidden variable. The variable pc is revealed from
the parallel composition, because it is needed in the module 9.

5.3. Other components

Let us now briefly consider the registers, arithmetic-logical unit, data memory and
the instruction execution. These modules are specified using similar argumentation as
above.

5.3.1. Registers
First we isolate the register array from the rest of the program. The 16 registers are

accessed through four buses in [121. The buses are used by the ALU and the memory
unit to concurrently access the registers. With this in mind we decompose our system
further.

We define three procedures REGRX, REGRY, and REGRZ to read the value stored
in a register, corresponding to the x, y and z fields of an instruction i. Furthermore, the
ALU and the memory unit will use different procedures (buses), REGWA and REGWM
respectively, to write on the registers. The instruction under consideration is kept in a
shared variable j which is imported to the register modules from J&‘,.

Let B be the action system

B :: proc REGRX,REGRY,REGRZ,REGWA,REGWM ??

I[var reg[O..l5]

proc REGRX(var v) = (v := reg[j.x])

proc REGRY(var v) = (v := reg[j.y])

proc REGRZ(var v) = (v := reg[j.z])

proc REGWA(v) = (reg[j.z] := v)

proc REGWM(v) = (reg[j.z] := v)

II :j

This module represents the register array and also the four buses as will become
clear later when we derive modules for the memory unit, the ALU and the instruction
execution.

We now have that

A3 =var dmem ??I[_&l?fd 11 W]I :

IMEM, PCI 1, PCI2, PCAl, PCA2, PCST, PCJMP,XOFF, ofset

where ~&‘4 is derived from As by the following changes. Each read-access to reg[i.x]
in ~?‘s is replaced with a call to REGRX in J%’ 4, every read-access to reg[i.y] is
replaced with REGRY and every read-access to reg[i.z] is replaced with REGRZ. A
write-access to reg[i.z] is replaced with a call to REGWA when the ALU writes this

R.J. R. Back et al. IScience of Computer Programminy 26 (1996) 79-97 91

register and with a call to REGWM when the access is made from the memory unit
as will be seen below. The register array reg[O..l5] is missing from ~8’4.

The register module 9 and the action system ~&‘4 communicate via a shared variable
j which is exported from ~@4. The variable j is assigned the value i immediately prior
the execution of the instruction kept in i. This effect is achieved in &4 by refining
Jl3 as follows:

if offset(i.op) + . . .as before.. . fi ;

if alu(i.op) + . . . as before.. . fi

< {introducing a local variable}

if qfiet(i.op) + .as before.. .fi ;

j := i;

if alu(i.op) + . . . as before.. .fi

The variable j is needed further on when generating a module for the instruction
execution. In the full paper [4] we refine the registers further in order to allow more
parallelism. In the final configuration each of the 16 registers constitutes a module of
its own.

5.3.2. Arithmetic-logical unit
Our following task is to isolate the arithmetic-logical unit. This unit is accessed in

the alu instruction execution. As mentioned above, it has its own bus to access the
register array, modelled by the procedure REGWA. Hence, this piece of code is refined
as follows:

< reg[i.z], f > := aluf(reg[i.x], reg[i.y], i.op, f)

< {introducing register procedures, from above}

I[var x, y; REGRX(x), REGRY(y);

I[var u; < u, f > := aluf(x, y, i.op, f); REGWA(u)] 1] 1

from where it is a straightforward task to generate the module for the arithmetic-logical
unit:

d :: proc ALU,ALUF ??

I[var f
proc ALU(u, w, op) =

(I[var V; < c, f >:= aluf(u,w,op, f);REGWA(u)]I);

proc ALUF(var e) = (e := f)

]I : REGWA

The ALUF procedure is used during the brch execution to read the value of the

flag f.

92 R.J. R. Back et al. IScience of Computer Programming 26 (1996) 79-97

We now have that

&!4 =var dmem ??I[45 11 d]I :

IMEM, PCI 1, PC12, PCA 1, PCA2, PCST, PCJMP, XOFF, offset

where for instance the above ALU reference in ~2’4 is transformed to a call to the
ALU unit as follows:

< reg[i.z], f > := aluf(reg[i.x], reg[i.y], i.op, f)

d {introducing procedures from above}

I[var x, y; REGRX(x); REGRY(y); ALU(x, y, i.op)] I

5.3.3. Data memory
Let us now consider the data memory, dmem. It also has its own bus to access the

registers, modelled by the procedures REGRZ and REGWM. The data memory is read
during the execution of the ld and ldx instructions and it is written during the store
instructions st and stx. In the final implementation, the execution of the Ida instruction
is also carried out via the data memory unit. Let us look at the Id and st instructions
more carefully.

We have for the load instruction that

reg[i.z] := dmem[reg[i.x] + reg[i.y]]

d {introducing register procedures, from above}

([var x, y; REGRX(x); REGRY(y);

I[var v; u := dmem[x + y];REGWM(u) 11]I

and for the store instruction that

dmem[reg[i.x] + reg[i.y]] := reg[i.z]

< {introducing register procedures, from above}

/[var x,y;REGRX(x);REGRY(y);

I[var u;REGRZ(v); dmem[x + y] := v]I]I

We now define

9 : : var dmem; proc MADD, MSTO, MLDA ??

I[var dmem[dZow..dhigh]

proc MADD(u,w) = (I[var v;v := dmem[u + w];REGWM(u)]I);

proc MSTO(u, w) =

(return; I[var v; REGRZ(v); dmem[u + w] := v] I >;

proc MLDA(u, w) = (I [var ma;ma := u + w;REGWM(ma)]I);

]I : REGWA4,REGRZ

R J. R. Back et al. IScience of’ Computer Programming 26 (1996) 79-97 93

The memory is now represented by the following module:

var dmem; proc MADD, MSTO, MLDA ??9 : REG WM, REGRZ

which exports the three memory access procedures MADD, MSTO, and MLDA and
imports the bus, i.e., the procedures REGWM and REGRZ.

The memory unit 9 is now removed from the rest of the code in module &?s.
Therefore, we have that

A5 =var dmem ??I[A6 11 9]I :

IMEM, PCI 1, PC12, PCA 1, PCAZ, PCST, PCJMP, XOFF, oflset,

REG WM, REGRZ

In k!6 we have replaced the direct memory accesses with the appropriate procedure
calls, for instance the above refined load and store instructions are transformed to

reg[i.z] := dmem[reg[i.x] + reg[i.y]]

< {introducing procedures from above}

I [var x, y; REGRX(x); REGRY(y); MADD (x, y)] 1

and

dmem[reg[i.x] + reg[i.y]] := reg[i.z]

< {introducing procedures from above}

I [var x, y; REGRX(x); REGRY(y); MSTO(x, y)] I

in J&6 respectively.
A slightly more optimized version of the memory unit is derived in the full paper

[41.

5.3.4. Instruction execution
We next isolate the instruction execution into a separate module. The code for this

module, &, is given in Fig. 3.
The instruction under execution is in this module represented by the variable j,

which is shared with the register array. The module uses two buses, modelled by
the procedures REGRX and REGRY respective, for additional communication with the
registers. We have replaced all the register, pc, oflet, memory, and ALU references
with appropriate procedure calls. Observe that the pc update during stpc execution is
carred out via a call to ALU.

This gives us the system

&6=varj ??I[&tiff7 11 811:

IMEM, PCI 1, PC12, PCA 1, PCA2, PCST, PCJMP, XOFF,

REGRX,REGRY,ALU,ALUF,MADD,MSTO,MLDA

94 R.J.R. Back et al. IScience of Computer Programming 26 (1996) 79-97

& :: var j; proc EXEC a
I[var j E record

proc EXEC(k) =
(j := k;
if ah(k.op) + return;

I[var 2, y; REGRX(s); REGRY(y); ALU(s, y, k.op)]I
0 Id(k.op) -9 return;

I[var 5, y; REGRX(s); REGR}‘(y); MADD(x, y)]I
0 st(k.op) -_) return;

I(var 2, y; RECRX(x); REGRY(y); MSTO(r, y)]I
1 Idz(k.op) +

I[var 08, y; XOJ’F’(o$); REGRY(y); MADD(ofl, y)]I

0 str(k.op) -+
I[var o$, y; XOFF(ofi); REGRY(y); MSTO(ofl, y)]I

0 Ida(k.op) -+
I[var o.f, Y; XOJWofI’); REGRY(y); MLWo.f, Y)]I

0 stpc(k.op) -+
I[var r, y; PCST(r); REGRY(y); ALU(r, y, add)]I

0 jmp(k.op) + I[var y; REGRY(y); PCJMP(y)]I
0 brch(k.op) + I[var fl; ALIT(

if cond($, k.cc) -_) PCAl; PCA2
0 -con.d(#-, k.cc) + skip
f-l II

fi)
j(:PCAI, PCA2, PCST, PCJMP,XOFF, REGRX, REGRY,

ALU, ALUF, MADD, MSTO, MLDA

Fig. 3. Instruction execution.

where the execution of an instruction in the variable i in 47 is now initiated via a
procedure call

EXEC(i).

5.4. ReJine the fetch-and-execute cycle

Finally, we refine the fetch and execute cycle to make parallel instruction fetch
and execution possible. In our framework, as mentioned earlier, we have to create
independent actions in order to make parallel activity possible. This calls for atomicity
refinement.

5.4.1. Create FETCH
Let us first collect all the transformations above, and see what is left of the act-

ion system As, i.e., the system A!, above. The procedures EXEC and its related
ALU together with the instruction and data memories, register array, and p and offset

R.J. R. Back et al. IScience of Computer Proyramming 26 (1996) 79-97 95

administration were all isolated into action systems of their own, separate from 4’3,
leaving only the appropriate procedure calls behind. The result is the system 47 that
will be from here on called F-0 where

BO :: I[var i E record

do true -9

PCI 1; IMEM(i); PCI2;

if ofSset(i.op) + PCIl; IMEM(offset); PC12

0 loffset(i.op) 4 skip

fi;
EXEC(i)

od

] 1 : ofiet, IMEM, PCI 1, PC12, EXEC

In this system there is only one atomic action and no parallelism is possible. Hence,
we split the action into two distinct parts so that FO <Fi where

Fl :: I[var i E record

do

< PCIl; MEM(i); PC12;

if ofSset(i.op) + PCI 1; IMEM(ofhet); PC12

ulofSset(i.op) + skip

fi >;

< EXEC(i) >

od

] 1 : ofset, ME&f, PCI 1, PC12, EXEC.

We have used sequential notation for Fi by denoting the atomicity of actions explicitly
with brackets.

We have that F-1 and d share no variables. They communicate through the global
procedure EXEC only. When looking into the specification of the procedure EXEC
we notice, that when we are executing an ALU, load or store instruction, the control
returns to 91 immediately after the call of EXEC due to the return statements. At this
point the next instruction is fetched from the instruction memory. Hence, the execution
of these three instructions in & can proceed in parallel with the fetch of the next
instruction in 9-1.

6. Concluding remarks

We have created the action system ~4’s

&z’s :: var imem,dmem ?? I[JJ II Fl II B /I X II 8 1) a2 Ij 9 II 9]I :< >

96 R.J.R. Back et al. IScience of Computer Programming 26 (1996) 79-97

that is by construction a correct refinement of the initial high level microprocessor
specification 40, i.e.,

At Caltech, a delay-insensitive circuit is derived from a concurrent program that is
essentialy the same as our resulting action system [12]. The advantage of our method
is that it is based on a formal calculus for reasoning about programs, the refinement
calculus.

The main method used throughout our derivation was the spatial decomposition of an
action system into a parallel composition of action systems that mainly communicate
via (remote) procedure calls. Hence, most of the steps we carried out are correct by
construction. Only a couple of steps required more tedious proofs, i.e., those where the
atomicity of the system was refined.

When we compare our system to that in [12] there are a couple of notions that
are implicit in an action system. The bullet operator used in [12] corresponds to an
action in the sense that when an action is chosen for execution, it is jointly executed
to completion by the involved modules without interference from other actions. The
point of termination for an action need not coincide for every module involved in it as
long as atomicity is guaranteed. The probes in [12] are here modelled by the interplay
between the caller and the callee while making procedure calls.

References

[l] R.J.R. Back, On the correctness of refinement steps in program development, Ph.D. Thesis, Department
of Computer Science, University of Helsinki, Helsinki, Finland, 1978, Report A-1978-4.

[2] R.J.R. Back, Refinement calculus, Part II: Parallel and reactive programs, in: J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, ed., Stepwise Rejinement of Distributed Systems: Models, Formalisms,
Correctness. Proc. 1989, Lecture Notes in Computer Science, Vol. 430 (Springer, Berlin, 1990).

[3] R.J.R. Back and R. Kurki-Suonio, Decentralization of process nets with centralized control, in: Proc.
ACM SIGACT-SIGOPS Symp on Principles of Distributed Computing (1983) 131-142.

[4] R.J.R. Back, A.J. Martin and K. Sere, Specification of a microprocessor, Tech. Report, Abe Akademi
University, Department of Computer Science. Ser. A, No 148, Turku, Finland, 1992.

[5] R.J.R. Back and K. Sere, Stepwise refinement of parallel algorithms, Sci. Comput. Programming 13
(1989) 133-180.

[6] R.J.R. Back and K. Sere, Action systems with synchronous communication, in:E.-R. Olderog, ed., Proc.
PROCOMET’YI, San Miniato, Italy, June 1994. Programming Concepts, Methods and Calculi, IFIP
Trans. A-56 (North-Holland, Amsterdam, 1994) 107-126.

[7] R.J.R. Back and K. Sere, From modular systems to action systems, in: Proc. Formal Methods Europe’94,
Spain, October 1994, Lecture Notes in Computer Science (Springer, Berlin, 1994).

[S] K. Chandy and J. Misra, Parallel Program Design: A Foundation (Addison-Wesley, Reading, MA,
1988).

[9] E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, NJ, 1976).
[IO] N. Francez, Cooperating proofs for distributed programs with multiparty interactions, Inform. Processing

Lett. 32 (1989) 235-242.
[l I] T. Kuusela, J. Plosila, R. Ruksenas, K. Sere and Zhao Yi, Designing delay-insensitive circuits within

the action systems framework, Manuscript, 1995.
[12] A.J. Martin, Synthesis of asynchronous VLSI circuits, CalTech, Tech. Report, 1993.

R.J. R. Back et al. IScience of Computer Programming 26 (1996) 79-97 91

[13] CC. Morgan, The specification statement, ACM Trans. Programming Languages and Systems 10
(1988) 403419.

[14] J.M. Morris, A theoretical basis for stepwise refinement and the programming calculus, Sci, Comput.
Programming 9 (1987) 287-306.

[15] K. Sere, Stepwise refinement of parallel algorithms, Ph.D. Thesis, Department of Computer Science,
Abe Akademi University, Turku, Finland, 1990.

[161 J. Staunstrup and M.R. Greenstreet, Synchronized transitions, in: IFIP WG 10.5, Summer School on
Formal Methods for VLSI Design, Lecture Notes (1990).

