Science of Computer Programming 20 (1993) 223-251 223
Elsevier

Statement inversion and strongest
postcondition

R.J.R. Back and J. von Wright

Abo Akademi University, Department of Computer Science, Lemminkdisenkatu 14,
SF-20520 Turku, Finland

Communicated by C.B. Jones
Received April 1990
Revised September 1992

Abstract
Back, R.J.R. and J. von Wright, Statement inversion and strongest postcondition, Science
of Computer Science 20 (1993) 223-251.

A notion of inverse commands is defined for a language which permits both demonic and
angelic nondeterminism, as well as miracles and nontermination. Every conjunctive and
terminating command is invertible, the inverse being non-miraculous and disjunctive. A
simulation relation between commands is described using inverse commands. A generalised
form of inverse is defined for arbitrary conjunctive commands. The generalised inverses are
shown to be closely related to strongest postconditions.

1. Introduction

The weakest precondition calculus of Dijkstra [7] originally confined it-
self to the language of guarded commands, containing only executable pro-
gram constructs. Later extensions have added specification constructs, per-
mitting unbounded nondeterminism, miracles, and angelic nondeterminism
[1,4,11,13,14]. This way the weakest precondition calculus has been extended
to non-executable program constructs. In addition to making the calculus
mathematically simpler, this has made it possible to treat, e.g., arbitrary input—
output specifications, data refinement and parallel programs within the same
calculus. The weakest precondition calculus is the basis for the refinement

Correspondence to: J. von Wright, University of Cambridge Computer Laboratory, New Museums
Site, Pembroke Street, Cambridge CB2 3QG, England, UK. E-mail: pjv1000@cl.cam.ac.uk. From
August 1993: SHH, B.O. Box 287, SF-65101, Vasa, Finland.

0167-6423/93/$ 06.00 © 1993 — Elsevier Science Publishers B.V. All rights reserved

224 R.J.R. Back, J. von Wright

calculus, invented by Back [1] and further developed by Back [2], Morgan
[12], and Morris [13].

Identifying statements with their weakest precondition predicate transformers
makes the language a subset of the complete lattice of monotonic predicate
transformers, thus permitting lattice-based reasoning about programs [4,13].
We follow this by now reasonably well-established tradition, writing S(Q)
rather than wp(S, Q) for the weakest precondition of statement S with respect
to predicate Q.

The weakest precondition calculus is a calculus of total correctness. Par-
tial correctness can be studied through weakest liberal preconditions (wlp) or
strongest postconditions (sp)}. Generally, wip has been used, often in associa-
tion with wp in order to give a more fine-grained semantics, while sp has not
been used very much. Strongest postconditions are theoretically investigated
by de Bakker [6]. The relation between strongest postcondition and weakest
precondition is close to a relation of inversion; Back [2] gives postulates that
characterise this relation.

In this paper we define a notion of inverse commands in the following way:
S~ is the inverse of S if

where < is the refinement relation. This is a generalisation of the concept
of inverse used in function theory; if S is functional, then S~! is the inverse
function of S. We show how inverse commands can be computed directly
in the command lattice defined by Back and von Wright in [4] and how
ordinary program constructs are inverted. We also show how a simulation
relation between commands can be characterised using inverse commands.

Inverses exist only for commands which are always terminating and conjunc-
tive. To overcome the termination restriction, we define generalised inverses
which exist for all conjunctive commands: the command S~ is defined to be
a generalised inverse of .S if S~ inverts .S whenever S terminates. Generalised
inverses are not unique, but every conjunctive command has a unique least
generalised inverse. We also show how generalised inverses can be computed
for arbitrary conjunctive commands.

An important aspect of this paper is that we work wholly within the total
correctness framework of the refinement calculus. Thus we do not define the
notions of weakest liberal precondition or strongest postcondition. Instead, we
show how generalised inverses share many essential properties with strongest
postconditions, permitting them to replace strongest postconditions in rea-
soning about programs. In particular, we characterise the refinement relation
between conjunctive commands in a total correctness formula involving gener-
alised inverses. This result is essentially a reformulation of a theorem in [2],
where strongest postconditions are used.

Statement inversion and strongest postcondition 225

Organisation of the paper

The rest of the paper is organised as follows. Section 2 gives a short de-
scription of the command language C, defined in [4]. This command language
contains all monotonic predicate transformers. We show how ordinary spec-
ification and program constructs can be defined in C. This section contains
mostly old material and it is rather dense; the reader is referred to [4] for
more detail and for proofs. In Section 3, we define the concept of inverse
command and show existence and uniqueness properties. We give rules for
computing inverses and show how inverses can be used to describe data re-
finement between commands, a topic which is treated in more detail in a
separate paper [3]. In Section 4 we define generalised inverses and show how
a generalised inverse can be computed for an arbitrary conjunctive command.
In Section 5 we show that a generalised inverse of a conjunctive command S
is very similar to the strongest postcondition predicate transformer of S. We
also characterise the refinement relation between conjunctive commands using
a total correctness formula involving generalised inverses. Finally, Section 6
contains some concluding remarks.

Remark on proof style and notation

We use a calculational style of proof, with comments written in brackets [...].
In many proofs, we use distributivity properties of commands, which have been
proved in [4]. In such cases, we simply justify the calculation by a reference
to “distributivity”. In formulas, we use the convention that substitution binds
stronger than logical connectives. Also, the scope of quantifiers extends as far
to the right as possible.

2. The lattice-based command language

We assume that the concepts of partial orders and lattices (complete, dis-
tributive, and boolean lattices) are familiar, as well as Dijkstra’s weakest
precondition calculus. The lattice of monotonic functions from one lattice to
another is ordered by pointwise extension:

f<eg v fx) <gx).

2.1. Predicate transformers

Let Var be a countable set of program variables. We assume that every
variable x is associated with a nonempty set D, of values (the type of x). Lists
of variables are typically denoted u, while values are typically denoted ¢ and
lists of values d. A state is a function which maps every x in Var to some
value in D,. The set of all states (the state space) is denoted 2.

226 R.J.R. Back, J. von Wright

Let Bool = {ff,tt} be the complete lattice of truth values for a two-valued
logic, ordered so that ff < t. A predicate is a function from 2 to Bool. The set
of all predicates is denoted Pred.

Substitutions and quantification

A substitution in X is defined in the following way: o [¢/x] is the state which
differs from ¢ only in that it assigns the value ¢ to the variable x. Substitutions
in 2 are extended to Pred in the following way:

Pld/ul(c) = P(a[d/u]).
We also define quantified predicates:

vu. P < A\ Pld/u],
d

3u. P € \/Pld/u],
d

where d ranges over all lists of values (of appropriate type) of the same length
as u. Given these definitions, we can treat predicates much in the same way
as we treat ordinary first-order formulas.

Predicate transformers

A predicate transformer is a function on Pred. We write Mtran for the
complete lattice of all monotonic predicate transformers. The top element of
Mtran is magic which is the unit element of lattice meet. Similarly, the bottom
element abort is the unit element of lattice join. The unit element of functional
composition is the predicate transformer skip.

2.2. The command language

We now define the lattice-based command language of [4]. We call this
language C. It is powerful enough to express both program specifications and
executable statements.

Syntax and semantics
The commands are defined by the following syntax:

S = {P} (assert command)

[P] (assume command)

(u — d) (store command)

S1:8, (sequential composition)
Aic1Si (demonic choice)

VierSi (angelic choice)

Statement inversion and strongest postcondition 227

Here P is a predicate, S and S; are commands for all i and / is an index set
(I may be infinite), u is a list of distinct variables, and d a list of values of
the same length as u.

A command S in C denotes a predicate transformer in Mtran. S(Q) is the
predicate that holds for exactly those initial states for which S is guaranteed
to succeed in establishing Q. This is, in essence, the weakest precondition
semantics of [7], extended to the larger set of program constructs considered
here. The meaning of a command S is thus defined as follows:

{P}Y(Q) = PrQ,
[P1(Q) = P=0,

(4 —d)(Q) = Qld/ul,
(SESQ) = 51(52(Q)),
(/\S,~>(Q) = ASi(Q),
iel el
(\/&)(Q) =V Si(Q).
iel iel

Operational meaning

The assertion {P} leaves the state unchanged if the predicate P holds,
otherwise it aborts. The assumption [P] also leaves the state unchanged if P
holds, but succeeds (miraculously) otherwise. Miraculous success means that
the command succeeds in establishing any postcondition Q, even false. The
store command (u — d) assigns the variables u the values d, the other variables
keeping their old values.

The execution of a compound command S can be described as a game
between two parties, the demon and the angel. The demon chooses a command
S; to be executed in a demonic choice A, S;, while the angel chooses a
command S; to be executed in an angelic choice \/,.,;.S;. This interpretation
of command execution is discussed in [5].

iel

2.3. Sublanguages and completeness

The command language introduces a number of new features into the weakest
precondition calculus which were not present in the original guarded command
language of [7]. Of the original “healthiness” conditions proposed by Dijkstra,
only the monotonicity condition is satisfied by all commands in C.

We make the following definitions, for any S € C:

(L) S is non-miraculous (strict with respect to false) if S (false) = false.
(T) S 1s always terminating (strict with respect to true) if S(true) = true.

228 R.J.R. Back, J. von Wright

(A) S is conjunctive if S(A\;c; Qi) = Ny S(Qi) for all nonempty sets of

predicates {Q;}ics-

(V) S is disjunctive if S(V,;¢; Qi) = V,¢;S(Q;) for all nonempty sets of

predicates {Q;}ier-

These four properties are independent of each other. Thus there are sixteen
different ways of combining them. We index C with some of the symbols for
these properties to denote a sublanguage where all commands are required to
have the properties in question. Thus, for example, C is the set of all always
terminating disjunctive commands.

Dual commands
Every command S has a dual S°, defined by

def

S°(Q) = ~5(=Q).

The duality operator is investigated in more detail in [4]. We recall that
dualisation is antimonotonic:

Si1<S & S§<Sf (1)

We also note the following fundamental dualities in the command language:

{P}°> = [P], (2)
(Uu—d)?° = (u—d, (3)
(S1:82)° = SI;85, (4)
(/\S;) = \/S,-°. (5)
iel iel

Completeness of the command language

By definition, each command corresponds to a monotonic predicate trans-
former. Conversely, in [4] we show that every monotonic predicate transformer
can be constructed as a command.

In [5] we also show completeness results for a number of sublanguages of
C. We recall the results for the languages C, and C,, which will be used later
on.

Lemma 2.1. The commands in C and C] can be constructed as follows:
(a) Every conjunctive command can be constructed using the primitive com-
mands {P}, [P], and {u — d) and the constructors ;" and “N".
(b) Every conjunctive and always terminating command can be constructed
using the primitive commands [P) and (u — d) and the constructors ‘"
and “N”.

Statement inversion and strongest postcondition 229

2.4. Specification and program constructs in the command language

The command language constructs are quite low level, and not as such
very usable in program derivations. We now show how to define more useful
derived constructs in the command language. These constructs are defined as
abbreviations for certain compound commands in C.

We first show how the unit elements of the three basic constructors can be
expressed using assertions and assumptions:

abort = {false},
skip = {true} = [truel,

magic = [false].

Update commands

The update commands permit an arbitrary postcondition to be established
directly by assigning suitable values to the program variables. We define the
demonic update command {Au. P) and its dual, the angelic update command
(Vu. P), as follows:

(At def(/d\u(__d> Pl.

vu. Py & (\d/ u «—d)) (P,

The predicate transformers for these commands can be computed from the
definition. They are:

(Au. P)(Q) = VYu. P = Q,
(Vu. PY(Q) = 3u. PAQ.

Both commands assign values to ¥ nondeterministically, so that the postcon-
dition P is established. If P cannot be established, then the demonic update
succeeds miraculously while the angelic update aborts. Thus the demonic up-
date is in C while the angelic update is in CL.

We note that the update commands can be described in the following simple
way:

(Au. Py = (Au. true); [P1, (6)

(Vu. Py = (Vu. true); {P}. (7)

230 R.J.R. Back, J. von Wright

Nondeterministic assignment commands

The update commands do not permit the new values of the variables to
depend on the old values. The (nondeterministic) assignments defined below
remedy this.

Assume that #’ is a list of variables, not in Var. We then define the demonic
miraculous assignment and its dual, the angelic strict assignment, as follows:

(nwi=u'. Py €N ([u = d)s (Au. Pld,ufu,u'])),
d

(Vu:=u'. P) &f \/({u =d};{(vu. Pld,ufu,u'l)).
d

Here the formula P may refer to the variables # and to #/, the latter standing
for the new values of u. In this way we indicate how the new values of u are
to be related to the old values. The predicate transformers of these commands
are as follows:

It
I

(Au:=u'. PY(Q) vu'. P = Qlu'/ul,

(Vu:=u'. P)(Q) Ju'. PAQ[W ul.

The ordinary multiple assignment command is defined using, e.g., the demonic
assignment:

ui=e ™ (Au:=u'. (W =e))

determining the predicate transformer (u := ¢)(Q) = Qle/u].

Conditional composition, recursion, and iteration
The conditional composition is defined as follows:

if (i, bi—S)fi & {\/b,}; A (16:1:S0).

iel iel

Let X be a command variable and let 7 (X) be a command constructed out
of X together with the basic commands and constructors of C. Then AX. T(X)
is a monotonic function on a complete lattice. Thus the least fixed point of
this function exists in C. We let the recursive composition uX. T(X) denote
this least fixpoint.

The iteration command can be defined using recursion,

dob—Sod = uX. ([b];S; X A [-b]).

Statement inversion and strongest postcondition 231
3. Inverse commands

A true inverse of a command S € C is a command S—! that satisfies
S~ LS = skip = S;S7,

i.e., a command that computes the input to S given the output. A true inverse
of § exists if and only if .S is bijective. The set of bijective commands form
a subset of Cr). This is a very restricted class of commands, making the
usefulness of this notion of inverses rather limited.

We shall now define a more general notion of inverse command that permits
an arbitrary command in C] to be inverted. This notion of inverse turns out
to be useful for describing coordinate transformations and data refinement.
We say that S! is the /nverse of S if

S~LS < skip < S;87N.

Our definition means that S~! is what is in category theory known as the left
adjoint of S (however, we will not assume that the reader is familiar with
category theory). We note in passing that we could construct a dual theory by
using refinements in the opposite direction in the definition above.

3.1. Properties of inverse commands

The following theorem shows when inverse commands exist.

Theorem 3.1 (Existence and uniqueness). Let S be a command in C.
(a) S~ is unique if it exists.
(b) S~ exists if and only if S € C,l.
(c) S~ et if this inverse exists.

Proof. These results are well known in category theory. Thus we just give an
outline of a non-categorical proof.
(a) Assume that S"; S < skip < §;8" and $”:S < skip < §;8”. Then

S = S'skip £ §.8,8" < skip;S" = §”
and S” < S’ by symmetry.

(b) The if part is easily proved by showing that A{Q | P < S(Q)} is an
inverse of S.

232 R.J.R. Back, J. von Wright

For the only-if part, we assume that S has an inverse S~1. Then

s(he)

5 [definition of inverse]
S(s-l(S(Q,-))>
>i

[if S is monotonic then S(A Q;) < AS(Q:)]

S(S“(/_\S(Q,-)))

[definition of inverse]

AS(Q)

Since S(A,; Qi) < A;S(Q;) holds by monotonicity, this proves part
(b).

(c) This can be proved in the same way as part (b) above. [
We have the following alternative characterisation of inverse commands.

Theorem 3.2. Let S be a command in C. Then
(a) S~ is the least solution (in C) to the equation skip < S; X in command
variable X.
(b) S~ is the greatest solution (in C) to the equation S;X < skip in
command variable X.

Proof. We prove only part (a) as the proof of part (b) is similar. By definition,
S~1! is a solution to the equation skip < S; X. Now assume that S’ is another
solution to this equation. Then

St = S Uskip < §748,8 < skipST = 8,

so S~! is the least solution. [J

Relational interpretation of inverse commands

The full command language € is too rich to permit a simple relational
interpretation. However, both the sublanguages C! and C{ have a simple
relational interpretation. We shall now show how the relational interpretations
of inverse commands are related to each other.

A command S in C] can be interpreted as a state transformer fs (ie., a
function from 2 to the powerset P(2)) as follows:

geS(Q) & [fs(o)COQ,

Statement inversion and strongest postcondition 233

where 0 € S(Q) means that S(Q) holds in ¢ (this is correct since we can
always treat predicates as sets of states). Similarly, a command S in C¢ can
be interpreted as a state transformer gs defined as follows:

ceS(Q) & gs(a)NQ#0

We shall now show that fs and g¢ 1, viewed as relations on X, are inverse
relations. This is seen as follows. In the proof of Theorem 3.1 it was noted
that

S7HP) = NQIP <S(Q)} (8)

for S € ¢} and arbitrary predicate P. Then (treating predicates as sets of
states)

o€ ggi(a’)
& [set theory]
gs-1(a)n{o} #0
< [definition of gg-1]
o €S '({o})
& [(8)]
o' e N{QloesS(Q)}
& [definition of f5]
o' e N(Q| fs(o) CQ}
& [set theory]
o' e fs(O’).

Inverses and duals

The inverse construct is antimonotonic with respect to the refinement rela-
tion, as the following lemma shows.

Lemma 3.3. If'S| < Sy, then S;' < 87"

Proof. Assume that S| < S,. Then

52—1 = S;l;skip < 52_1;51;51_1
< S;LSyST < skipSTh = S O

In many respects inverses resemble duals. In fact, both are lattice isomor-

phisms from (C], <) to (Ct, »). Inverses and duals also commute, in the
following sense.

Lemma 34. If S €C/, then ((S~1)°)~! = §°.

234 R.J.R. Back, J. von Wright

T mny » (L
CA = Cv
'
dual dual
1l g T
CV -~ inu C/\

Fig. 1. Inverses and duals.
Proof. Since skip® = skip, we have by (1) and (4):
S7LS <skip< $;87 = S (S7)° < skip < (ST 80

showing that .S° is the inverse of (S™')°. O

Thus the diagram in Fig. 1 commutes (where inv denotes taking inverses
and dual denotes taking duals).

3.2. Computing the inverse of a command

The following theorem shows that inverses of commands can be computed
compositionally.

Theorem 3.5. Let u be a list of variables, d a list of values, and S; commands
inCl. Then

(P17 = {P},
(u—dy=' = {u =d};(vu. true),
(Si;8)7" = SN

—1 _
(/\Si) = \/ S; L
Proof. For the first case, we have

{PH[PI(Q)) PAQ < Q

PA(P=0Q)

and

[PIHPH(Q))
showing that {P}; [P] < skip < [P]; {P}.

P=(PANQ) = -PVQ = Q

Statement inversion and strongest postcondition 235

For the second case, we have that

(u = d};{(vu. true); (u — d)) (Q)
= [definitions]
(0 =d)AJu. Qd/u]
= [Q[d/u] does not depend on u]
(u=d)ngld/u]
< [general property of existential quantification
over a nonempty domain|]

Ju. (u=d)AQ[d/u]
= [one-point rule of predicate calculus]

Q

and a similar calculation shows that ((u — d);{u = d};{Vu. true))(Q) = Q

holds.
For sequential composition we have that

Sy STh S8 < Sy skip Sy = S5y < skip

by the definition of inverses and the properties of skip. In the same way, one
proves skip < Sl,Sz,S S'
Finally, for demonic ch01ce we have that

(Vo) (As)

[distributivity properties of commands]

v (s (As)

< [a meet is less than all its elements]
\/(S7%580)
i

< [every disjunct is refined by skip]
skip

and similarly that skip < (A;S1); (V; S). O

Because of the completeness result in Lemma 2.1, we see that Theorem 3.5
shows how every inverse can be computed compositionally. For example, we

have the following inverses:
skip™' = skip,

magic™' = abort.

236 R.J.R. Back, J. von Wright

3.3. Inverses of program constructs

Applying Theorem 3.5, we now compute inverses of some program constructs
that are invertible.

Lemma 3.6.
(Au. Py~ = {P};(vu. true),

(= P)™' = \[({Pld,u/u,u']};(u — d)).
d

Proof. First, straightforward calculations show that the inverse of (Au. true) is
(Vu. true). Now we have

(Au. Py~

= [(6)]
((Au. true); [P])~!

= [above; Theorem 3.5]
{P}; (Vu. true)

completing the proof of the first part. For the demonic miraculous assignment,
we have

(Au:=u'. P)7!
= [definition of demonic miraculous assignment]
-1
(/\([u = d;(Au. Pld,u/u, u']>>)
d
= [Theorem 3.5; first part of this lemma]

\/({P[d,u/u, ' 1}, (Vu. true);{u = d})
d

= [straightforward calculation shows that
(vu. truey;{u = d} = (u — d)]

VAP, ufu i 1} (u—d)). O
d

As an example, we can use Lemma 3.6 to compute the inverse of the ordinary
assignment:

(u:=e) ! = V({u =eld/ul};(u—d)). (9
d

Statement inversion and strongest postcondition 237

(o4) = el

E I
! /
T o o

Fig. 2. Encoding and decoding.

3.4. Coordinate transformation and refinement

Consider two commands, S and S’. We want to model the intuitive idea
that S’ is constructed from S by changing the way in which the program state
is represented, i.e., by a coordinate transformation on the state space.

Encoding and decoding

The basic idea is to introduce an encoding command E that computes the
representation ¢’ of each state g. We require that E € CI, Le., it is always
terminating and demonic (but it may be miraculous). The inverse of E is the
decoding command E~1.

We say that a command S is refined by S’ through the encoding E, denoted
S<e§,if

S < E;S,E7L (10)

If S is regarded as a specification and S’ as an implementation, then <g can
be regarded as a simulation relation, as illustrated by the diagram in Fig. 2.

We note that by the properties of inverse commands, the following charac-
terisation is equivalent to (10)

E"LSE < S (11)

In [3] we extend the command language with commands that introduce and
delete variables from the state. We investigate the refinement relation <g in
more detail, showing how it is useful for describing data refinement.

Example

We shall illustrate the idea of a coordinate transformation by a small example.
Consider a program S working on the global variables (polar coordinates in
the plane) ¢ and r, with the restrictions 0 < ¢ < 2z and r > 0. The coordinate
transformation that we are interested in is a reflection in the unit circle. It can
be expressed as an encoding command

E: [r>0]r:=1/r.

238 R.J.R. Back, J. von Wright

Calculating the inverse yields
E~': {r>0}r:=1/r

(Note the treatment of the origin where the transformation is undefined: E
terminates miraculously while E~! aborts.) We consider the following example
commands:

Si: ¢ri=¢+ in2r,
Sy {r>1hri=r—1,
and try to determine commands S; such that §; <g S} for i = 1,2. By
(11), we can choose E~1;S;; E (or any command that refines this command).
Straightforward calculations yield the following commands:
St gori=¢+ dmin
Sy {r<l}lri=r/(L=r).
We show the calculation for S;:
(E74%83E)(Q)
=r>0A0>1A0>0= Q[/U rD V]
=r>0Ar<1IA(r<1=Q["""/r])
=r>0Ar<1AQ[70=7/r]
<r<1lAa Q[’/“")/r],

where @ is an arbitrary predicate. The calculation shows that we could also
have chosen §j to be the command {0 < r < 1};r:=r/(1 -r).

4. Generalised inverses

For general conjunctive commands S € C, there need not always exist any
S’ such that skip < §; 8’ is satisfied. This is because skip always terminates,
while S;S’ does not terminate if § does not terminate. However, we can get
around the nontermination of S if we weaken the requirement on inverses as
follows. We say that S~ € C¢ is a generalised inverse of S, if

S7:S < skip and {S(true)} < S;S5™.

This does not define the generalised inverse uniquely. For example, choosing
S = abort, we have the requirements

ST;abort < skip and {abort(true)} < abort; S~

and any non-miraculous command S~ satisfies these conditions.

Statement inversion and strongest postcondition 239

4.1. Existence of generalised inverses

We first show that only conjunctive commands can have generalised inverses.
Lemma 4.1. If the command S has a generalised inverse, then S is conjunctive.

Proof. Assume that S~ is a generalised inverse of S and that {Q;} is a nonempty
set of predicates. Then

s(e)
;l [definition of generalised inverse]
N /\S_(S(Qi)))
l [if S is monotonic then S(A;(Q;)) < A;S(Q))]

s (hsa)

[definition of generalised inverse]

S (true) A (/\S(Qi))

= [distributivity property for nonempty conjunctions]

N\ (S (true) AS(Q:))

v

S

TN

\%

= [monotonicity]

NS Q).

Since S (A; Qi) < A;S(Q;) follows from monotonicity, this proves the lemma.
O

The following result shows how generalised inverses are closely connected to
the inverses considered in the preceding section.

Theorem 4.2. Assume that S € Cn. Then S has a least generalised inverse which
Is

([S(true)1;8)".
Proof. Let S € C, and let S’ = ([S(true)];S)~!. Then

true
& [definition of inverse]

240 R.J.R. Back, J. von Wright

S’ ([S(true)1;S) < skip
& [definition of refinement]
S' (=S (true) v S(Q)) < Q forall Q
& [8 is disjunctive]
S (=S (true)) v S'(S(Q)) < Q forall Q.

Thus the following holds for all predicates Q:
S’ (=S (true)) < Q, (12)
S'(S(Q)) < Q. (13)
Also,

{S(true)} < S;8'

< [definition of assert command]
S(true) NQ < S(S’'(Q)) for all Q

< [general property of complete lattices]
Q < ~S(true) vS(S'(Q)) forall Q

< [definition of refinement]
skip < ([S(true)1;S); S’

< [definition of inverse]

true.

Since (13) implies that §’:S < skip, we have shown that S’ is in fact a

generalised inverse of S.
To prove that S’ is the least generalised inverse of S, we first note that

choosing Q = false in (12) we get
S’ (=S (true)) = false. (14)
Next,

S ([S(true)1(Q))
= [definition of assumption command]
S’ (=S (true) v Q)
= [§ is disjunctive]
S' (=S (true)) v S’ (Q)
= [(14)]
S'(Q).

Statement inversion and strongest postcondition 241

So we get
S [S(true)] = S, (15)
Now assume that .S” is another generalised inverse of .S. Then we have

S’; skip
< [skip € [P};{P} holds for all predicates P]
S’ [S(true) }; {S(true)}
= [(15)]
S’ {S(true)}
< [S” is a generalised inverse]
S’ S8
< [S is a generalised inverse]
skip; S’.

So 8" £ §” and §' is in fact the least generalised inverse of S. []

Since {S(true)} = {true} = skip for S € C{ we have that inverses and
generalised inverses coincide in C:

Corollary 4.3. If S € C], then S~ is the unique generalised inverse of S.

Thus the generalised inverse is really a generalisation of the concept of
inverse. A generalised inverse of .S acts as an inverse whenever .S is terminating.

4.2. Computing generalised inverses

We shall now show how generalised inverses can be computed, for all
conjunctive commands.

Theorem 4.4. Let S; be any generalised inverse of S;, for all i in some index
set, Then

(a) {P} is the least generalised inverse of {P},

(b) {P} is the least generalised inverse of [P],

(¢) {u = d};{Vu. true) is a generalised inverse of (u — d),

(d) S5;S; is a generalised inverse of S1;.5,,

(e) V,;S; is a generalised inverse of \; S;.

Proof. Part (a) follows from Theorem 4.2 and the following calculation:
[{P}(true)); {P} = [P);{P} = [P].

Parts (b) and (c) follow immediately from Theorem 3.5 and Corollary 4.3.

242 R.J.R. Back, J. von Wright

We now prove part (d). First,
S55S581:8, < skip
1s shown as in the proof of Theorem 3.5. Next, we note that
S;{P} = {S(P)};S Iif S is conjunctive (16)
since

(S;H{PH(Q) = S(PAQ) = S(PY)AS(Q) = ({S(P)};:S)(Q).
Now,

S1585855 8]

> [definition of generalised inverse]
S {Sa(true)}; ST

= [(16)]
{S1(S2(true)) }; Si; Sy

> [definition of generalised inverse]
{S1(Sy(true))}; {S, (true)}

= [definition of sequential composition and assert command]
{S1(Sy(true))y A Si(true)}

= [monotonicity]
{S1(S,(true))}

= [definition of sequential composition |
{(S1;82) (true) },

which completes the proof of the part (d).
Finally we prove part (¢). First,

(\/S;); (/I\Si> < skip

is shown as in the proof of Theorem 3.5. Furthermore, we have

S (y)

[distributivity properties of commands |

<>
A (vs)

[a join is greater than all of its elements]

Statement inversion and strongest postcondition 243

A(SiS7)
i
> [definition of generalised inverse]

/\({S,-(true)})

= [definitions of assert and demonic choice]
{ (/\Sl) (true)}

completing the proof. [J

Since every command in C, can be constructed using assertions, assumptions,
and store commands and the constructors “;” and “A” (Lemma 2.1), we have
shown how to calculate a generalised inverse to every conjunctive command
in a compositional way.

Simple examples show that the rules of Theorem 4.4 cannot be used to com-
pute least generalised inverses, e.g., S, V.S; need not be the least generalised
inverse of S; A S, even if §; and S, are least generalised inverses. To see
this, set .S; = abort and S, = skip. Similarly, S5;S; need not give the least
generalised inverse of S;;S; (choose S; tobe x := 0AXx:=1 and S, to be
([x = 0l;skip) A ([x = 1);abort)). In both cases the lack of compositional-
ity is caused by the fact that a demonic choice between nontermination and
termination is in fact no choice at all, since nontermination is always chosen.

Generalised inverses of command constructors

If T(X) is an expression built up of commands from C, and the symbol X,
then T = AX. T(X) is a command constructor on C,. We define a command
constructor T~ on C¢ to be a generalised inverse of T if, for all S € C,,
T—(S7) is a generalised inverse of T(S) whenever S~ is a generalised inverse
of S. We can compute a generalised inverse of a command constructor T by
computing a generalised inverse for the expression T (X) using Theorem 4.4,
but leaving X unchanged. For example, if S~ is a generalised inverse of S and

T(X) = [b]S; X A[-D],
then T~ i1s a generalised inverse of T, where

T=(X) = X;S87;{b} Vv {-b}.

N

4.3. Generalised inverses of program constructs

We now compute generalised inverses for program constructs which are
conjunctive but not always terminating.

244 R.J.R. Back, J. von Wright
Lemma 4.5. Assume that S is a generalised inverse of S;. Then \/;(S7;{b:})

is a generalised inverse of if ([J, b; — S;) fi. Furthermore, \/,(S;7';{b;}) is the
least generalised inverse of if ([); b; — S;) fi if all S; are in C].

Proof. Let IF denote the command if (; b; — §;) fi. By the definition of
conditional composition,

IF = {\/b,-};/_\([b,-];si>.

Theorem 4.4 yields the following generalised inverse:
= (Vesren) { Vo) = Vo,

Finally assume that all S; are in CJ. Then IF(true) = \/,; b; and
rame)iF = [V ol Vo di Adsso = Aasis)

having the inverse Vi(Si_l;{bi}). Thus by Theorem 4.2, Vi(Si_l;{b[}) is the
least generalised inverse of IF. [

Generalised inverse of recursion
We now consider recursion. Let T be a command constructor on C, and
define T, for all ordinals « as follows:

Ty = abort,
Ta+1 = T(Ta)>

T, = \/ Tp for limit ordinals o.

B<a
It is well known that there exists an ordinal ar such that
UX. T(X) = Ty,.

The following lemma now shows how to construct a generalised inverse to
uX. T(X).

Lemma 4.6. Assume that T is a command constructor on Cn and let T~ be a
generalised inverse of T. Then uX. T~ (X) is a generalised inverse of uX. T(X).

Statement inversion and strongest postcondition 245
Proof. We define 7, analogously with 7, for all ordinals a:
Ty = abort,
Tr =T (T,),

T, = \/ Ty for limit ordinals a.

B<a

Since command constructors are by definition monotonic, we have by induction
that Ty < T, and Ty < T if B < a. By ordinal induction it is proved that
T, is a generalised inverse of T,, for all ordinals «. We show the induction
argument for limit ordinals «. First,

(v (y)

B<a B<a
> [distributivity properties of commands]

(V)

f<a y<a
> [a join is greater than all its elements]
V (Tp ;)
B<a
> [definition of generalised inverse]
\/ {Tp (true)}
B<a

= [definition of assert command;
meet distributes over arbitrary joins]

{ \/ Tﬂ(true)}

{

™

[definition of angelic choice]

\/ Tﬂ> (true)}.
B<a

VS

Second,

(V)(v)

B<a B<a
= [distributivity and disjunctivity]

V VT 1).

f<a y<a

246 R.J.R. Back, J. von Wright

When S < y, we have
Tﬂ';Ty < T,T, < skip,
and when y < f, we have
Ty T, < Ty3Ty < skip.
Thus
(\/ \/Tﬂ_;Ty> < (\/ \/skip) = skip,
f<a v<a f<a 7<a

which finishes the induction argument.

Since 7, is a generalised inverse of T, for all ordinals «, this must also
be true for the special ordinal a7, meaning that uX. 77 (X) is a generalised
inverse of uX. T(X). O

5. Strongest postcondition and generalised inverses

In this section we show how the concept of generalised inverse is closely
related to the concept of strongest postcondition.

5.1. Strongest postconditions

The strongest postcondition of a statement .S with respect to a precondition
P is intuitively characterised in the following way [7,10]: sp(S,Q) is the
strongest predicate such that execution of S with Q holding in the initial state
implies that sp (S, Q) holds on termination. Strongest postconditions have been
characterised inductively for simple nondeterministic languages by de Bakker
[6] and Back [2]. In our notation, these characterisations amount to the
following:

sp(u:=e,Q) = Jv. Qlv/ul A(u =efv/ul), (17)
sp({P},Q) = PAQ, (18)
sp([P].Q) = PAQ, (19)
sp(S1352,Q) = sp(S2,5p(S1,Q)), (20)
sp(S1AS2, Q) = sp(S1, Q) Vsp(S,, Q). (21)

Furthermore, the strongest postcondition for recursion in the case of bounded
nondeterminism is defined in [2] as follows:

sp(uX.T(X),Q) = \/ sp(T0. Q), (22)
n=0

Statement inversion and strongest postcondition 247

where T}, is defined inductively for all natural numbers #:
Ty = abort,
Tn+1 = T(Tn)

Another characterisation of strongest postconditions is given by Back in [2].
He gives four postulates that characterise strongest postconditions:

sp(S, false) = false, (23)
sp(S, PV Q) = sp(S,P)Vsp(S,Q), (24)
sp(S,wp(S,Q)) < Q, (25)
P < wp(S,true) = P < wp(S,sp(S, P)). (26)

Strongest postconditions are used in [2] to give a first-order characterisation
of the refinement relation: the refinement relation S < §’ holds if and only if
the following total correctness formula is valid:

wp (S, true) A (u = ug) [S'] sp(S, (1 = uy)), 27)

where ug is a list of fresh variables corresponding to the list of program
variables u.

5.2. Strongest postconditions and generalised inverses

We now show that for an arbitrary conjunctive command .S, S~ (Q) has the
same properties as sp(S, Q). The correspondence between strongest postcondi-
tion and generalised inverse is not complete since the generalised inverse is not
uniquely defined. However, it turns out that the characterisation theorem for
the refinement relation can be formulated using generalised inverses instead of
strongest postconditions.

We first note that all the following are immediate consequences of Theorems
4.4 and 3.5, Lemmas 4.5 and 4.6, and (9), slightly abusing the generalised
inverse notation.

(u:=e)"(Q) = (Qld/ul Au = e[d/u)), (28)
d

{P}7(Q) = PAQ, (29)

[P)(Q) = PAQ, (30)

(S1:8)" = S5157, (31)

(SIAS)” = Sl_ VSZ_, (32)

248 R.J.R. Back, J. von Wright
(WX.T(xX)~ = \/ T, (33)
n=0

where T, is a generalised inverse of T, as defined in Section 4.2. Comparing
(28)-(33) with equations (17)-(22), we see that generalised inverses have all
the essential properties of strongest postcondition.

In order to check the correspondence between generalised inverses and
strongest postcondition as regards postulates (23)—(26), we want to show the
following;

S™ (false) = false, (34)
ST(PVQ) = ST(PYVST(Q), (35)
STSWQ) < ¢ (36)
P < S(true) = P < S(S™(P)). (37)

The first two conditions state that generalised inverses are non-miraculous
and disjunctive, which is true by definition. Noting that condition (37) is
equivalent to

P AS(true) < S(S™(P)),

we see that the last two conditions are just the definition of generalised inverse.
Thus our generalised inverses match the postulates for strongest postconditions
given in [2].

We finish by proving the characterisation theorem for refinements within
the framework of generalised inverses.

Theorem 5.1. Let S and S’ be conjunctive commands and let u be a list con-
taining all program variables in S and S'. Then S < S’ holds if and only
if

S(truey A (u = ug) [S') S™(u = ug),

where ug is a list of fresh variables of the same length as v and S~ is any
generalised inverse of S.

Proof. We have to show that S < S8’ if and only if S(true) A (v = ug) <
S"(S7(u = ug)). Let S~ be a generalised inverse of S and assume that § < §".
Then the definition of generalised inverses and monotonicity give that

S(true) A (u = ug) < S(S™(u=uy)) < S'(S (v = up)),

which proves the if part.

Statement inversion and strongest postcondition 249

To prove the only-if part, assume that S (true) A{u = up) < S'(S™(u = up))
and let Q be an arbitrary predicate. Now, if we can assume that

(u = u) < S(Q) (38)
holds, then

ST(w=u) < STES(Q)) <@
and by the assumption we have

S(true) AM(u = up) < S'(S™(u=up)) < S(Q)
from which we can conclude

(u=u) < S(Q)

since assumption (38) implies that (¥ = uy) < S(true).
We have now shown that

(u=u) < S(Q) = (u=u) < §(Q)

for arbitrary ug. Taking the join over all lists of values ¢ such that S(Q) holds
in the state o4 defined by g, (1) = d, we have

S =V w=d < SQ

d:5(Q) (04)

and thus S < §’, completing the proof of the only-if part. [

The importance of Theorem 5.1 lies in the fact that it gives us a first-
order condition for checking refinement between commands. Compared to
the formulation in [2], our version of the theorem does not need additional
postulates of strongest postcondition. Instead, we use generalised inverses,
which can be computed directly in the command language.

6. Conclusion

The idea of program inversion goes back to Dijkstra [8] and Gries [10].
A program S~! is the (true) inverse of the program S if it computes the
input of S, given the output. This means that S is not invertible if its input is
not defined uniquely by its output. Our work shows how the command lattice
framework, introduced in [4], permits a rich theory of command inversion. By
permitting angelic nondeterminism and miraculously terminating commands
we can consider a program to be invertible even though its input is not uniquely
determined by its output. In particular, we define a notion of inverse which
permits every conjunctive and always terminating command to be inverted.

250 R.J.R. Back, J. von Wright

The inverse of a command .S can intuitively be interpreted as the relational
inverse, with angelic nondeterminism instead of demonic and with partiality
interpreted as nontermination instead of miracles. Inverses are compositional
in the sense that the inverse of an arbitrary command can be calculated
by inverting its subcomponents separately. The properties of inverses make it
possible to define a simulation relation between commands using inverses. This
is generalised to cover data refinement in [3] where the command language is
extended with commands that add and delete variables from the state space.

Recently, Dijkstra and Scholten [9] have defined a notion of converse
predicate transformers, used to relate weakest liberal precondition and strongest
postcondition (these are adjoints of each other). Essentially, ¢’ is the converse
of ¢, if ¥ is (in our terminology) the dual of the inverse of f. We have not
used this approach, since we want to stay within the framework of weakest
precondition (total correctness) semantics.

We generalised the notion of inverses by defining .S~ to be the generalised
inverse of a conjunctive possibly nonterminating command .S if S~ inverts S
whenever S terminates. Generalised inverses can be computed compositionally
even though they are not unique. We also showed that generalised inverses
have properties that make them behave as strongest postcondition predicate
transformers. This lets us formulate the characterisation theorem for refinement
without postulating separate properties for strongest postconditions.

The connection between inverse commands and program inversion in the
traditional sense is investigated further in [15], where we show how generalised
inverses can be used in a calculational theory of program inversion.

Acknowledgements

The work reported here was supported by the Finsoft III program sponsored
by the Technology Development Centre of Finland. We thank the refereces for
their helpful comments.

References

[1] R.J.R. Back, Correctness Preserving Program Refinements. Proof Theory and Applications,
Mathematical Center Tracts 131 (Mathematical Centre, Amsterdam, 1980).

[2] R.J.R. Back, A calculus of refinements for program derivations, Acta Inform. 25 (1988)
593-624.

[3] RIJ.R. Back and J. von Wright, Command lattices, variable environments and data
refinement, Reports on Computer Science and Mathematics 102, Abo Akademi, Turku,
Finland (1990).

[4] R.J.R. Back and J. von Wright, Duality in specification languages: a lattice-theoretical
approach, Acta Inform. 27 (1990) 583-625.

{51 RJ.R. Back and J. von Wright, Combining angels, demons and miracles in program
specifications, Theoret. Comput. Sci. 100 (1992) 365-383.

16]
(7]
(8]
(91
(10]
[11]
[12]
[13]
(14]

[15]

Statement inversion and strongest postcondition 251

J.W. de Bakker, Mathematical Theory of Program Correctness (Prentice-Hall, Englewood
Cliffs, NJ, 1980).

E.W. Dijkstra, A Discipline of Programming (Prentice-Hall International, Englewood Cliffs,
NJ, 1976).

E.W. Dijkstra, Selected Writings on Computing: A Personal Perspective (Springer, Berlin,
1981).

E.W. Dijkstra and C.S. Scholten, Predicate Calculus and Program Semantics (Springer,
Berlin, 1990).

D. Gries, The Science of Programming (Springer, New York, 1981).

C.C. Morgan, Data refinement by miracles, Inform. Process. Lett. 26 {1988) 243-246.
C.C. Morgan, Programming from Specifications (Prentice-Hall, Englewood Cliffs, NJ, 1990).
J.M. Morris, A theoretical basis for stepwise refinement and the programming calculus, Sci.
Comput. Programming 9 (1987) 287-306.

G. Nelson, A generalization of Dijkstra’s calculus, ACM Trans. Programming Languages
Systems 11 (1989) 517-561.

J. von Wright, Program inversion in the refinement calculus, Inform. Process. Lett. 37 (2)
(1991) 95-100.

