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Abstract

We study the notion of class refinement in a concurrent object-oriented setting.
Classes, defining attributes and methods, serve as templates for creating objects.
For expressing concurrency, actions are added to classes and methods with guards
are considered. A class can be defined by inheriting from a given class. Class re-
finement is defined to support algorithmic refinement, data refinement, and atomic-
ity refinement. Behavioral class refinement is defined in terms of trace refinement
of action systems. A simulation-based proof rule for class refinement using a re-
finement relation is given. The special case of atomicity refinement by early returns
is considered. The use of the class refinement rule is illustrated by examples.

Keywords: class refinement, concurrent objects, action-based concurrency, algo-
rithmic/data/atomicity refinement, trace semantics, simulation relation
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1 Introduction

For the development of larger programs, a recommended practice is to separate a
concise but precise specification of what the program should do from a possibly
involved and detailed implementation. We view the specification as an abstract
programP and the implementation as a concrete programQ. The task of ensur-
ing that the implementation is correct with respect to its specification is eased by
introducing intermediate steps such that each step is arefinementof the previous,
formally expressed as:

P = P0v P1v P2v . . .v Pn = Q

In the development of sequential programs,algorithmic refinementsteps replace
abstract (or more abstract) statements by concrete (or more concrete) statements
whereasdata refinementsteps replace abstract (or more abstract) data structures
by concrete (or more concrete) data structures. In the development of concurrent
programs,atomicity refinementsteps replace sequential (or less concurrent) parts
by concurrent (or more concurrent) ones.

These general principles are applied here to classes. For example, a file can be
specified as an object of a class whose state is a sequence and a current position
and whose read and write operations access the sequence at the current position.
A typical implementation of this class would use pointers and blocks for storage
and would process write operations in the background, hence changing the state
space and introducing concurrency. Similarly, displaying (complex) graphical data
on the screen may be specified by an operation that modifies the screen bitmap
accordingly in one step. An implementation could process the update in small steps
in the background, perhaps allowing other commands to be accepted, including
those which may cause the update to be aborted. In both examples, the illusion to
the user of the operations is maintained that the operations are executedatomically.
In both examples, concurrency is introduced in the implementation for allowing a
better utilization of resources, which is an aspect we are concerned about without
formalizing it.

In this paper we propose a formal model for objects with (private) attributes and
(public) methods, with self- and super-calls in methods, classes with inheritance,
and action-based concurrency. Object have (private) actions which, as long as
they are enabled, may execute and change the object’s state while other parts of
the program are in progress. Classes serve as templates for creating objects and
inheritance is understood as a mechanism for modifying classes.

The notion of class refinement expresses that an object of the refining class
behaves as an object of the refined class. Class refinement between two classes
is defined in terms of the observable traces of objects of those classes. We give a
simulation condition for establishing class refinement by using a relation between
the attributes of those classes. As the main result, we prove that simulation by
relation implies class refinement.
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The proposed class refinement extends class refinement as defined for sequen-
tial objects [25, 24] by adding actions to classes. Class refinement has also been
studied under the name behavioral subtyping in less formal settings guaranteeing
only partial correctness by America [2] and by Liskov and Wing [22]. Different
models for classes and objects have been proposed [1]. We extend the model of
classes as self-referential structures with a delayed taking of the fixpoint of [27, 14].

The action system model for parallel, distributed, and reactive systems was
proposed by Back and Kurki-Suonio [6, 7]. The same basic approach has later
been used in other models for distributed computing, notably UNITY [12] and
TLA [19].

Back and Sere [8] have added procedures to action systems. They, as well as
Sere and Wald́en [26] and Bonsangue et al [11], have also studied input/output
refinement of action systems with methods, which is similar to our classes after
self- and super-references have been resolved. Using trace refinement, we extend
those results to reactive behavior and handle non-terminating systems.

The action system model has been extended with different notions of objects.
Järvinen and Kurki-Suonio [16] used aggregation rather than inheritance and over-
riding, based their semantics on TLA, and concentrated on superposition refine-
ment. Back et al [5] concentrated on the design of a language. Bonsangue et al
[11] developed a less formal model with an action-system-per-object semantics.

Atomicity refinement has first been proposed by Lipton [21]. Back studied in-
put/output behavior preserving atomicity refinement in action systems [3, 4]. Sere
and Wald́en [26] and Bonsangue et al [11] have extended this to procedures and
methods, still refining only input/output behavior. Lamport and Schneider [20]
and Cohen and Lamport [13] have studied atomicity refinement in TLA consid-
ering liveness properties beyond termination. de Bakker and de Vink [15] give
an overview of atomicity refinement in process algebras and Petri nets. The idea
of an early return, or release, statement has been proposed by Jones [17, 18] in a
framework with explicit constructs for parallelism.

Outline. In Section 2 we review the fundamentals of statements and action sys-
tems. A point we like to make in the presentation is the (in-) dependence of various
aspects. Section 3 introduces classes with attributes, methods, and actions as well
as local object creation, inheritance, and self- and super-references in methods
and actions. Section 4 defines class refinement, gives a condition for class simu-
lation using a relation, and proves that class simulation implies class refinement.
Class refinement is independent of how the classes are constructed by inheritance.
Section 5 introduces dynamic object structures, which are necessary for allowing
objects to run concurrently. In Section 6 we study early returns as a special case of
atomicity refinement. Finally, Section 7 draws the conclusions.
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2 Statements and Action Systems

We review the fundamentals of statement defined by predicate transformers fol-
lowing [10] and of action systems following [9].

Predicate Transformers. State predicates of typePΣ are functions from ele-
ments of typeΣ to Bool. Relations of type∆↔ Ω are functions from∆ to predi-
cates overΩ. Predicate transformers of type∆ 7→Ω are functions from predicates
overΩ (the postconditions) to predicates over∆ (the preconditions):

PΣ =̂ Σ→ Bool
∆↔Ω =̂ ∆→ PΩ
∆ 7→Ω =̂ PΩ→ P∆

On predicates, conjunction∧, disjunction∨, implication⇒, and negation¬ are
defined by the pointwise extension of the corresponding operations onBool. The
entailment ordering≤ is defined by universal implication. The predicatestrue
andfalserepresent the universally true, respectively false predicates. On relations,
we use union∪, intersection∩, relational composition◦, and the relational image
R [p] of a predicatep, defined byR [p] y =̂ (∃x • R x y∧p x). The identity relation
is denoted byId. Statements are defined by predicate transformers because only
their input/output behavior is of interest. Thus, for statementSand predicateq we
haveS q= wp(S,q), wherewp is in Dijkstra’s notation the weakest precondition
of statementS to establish postconditionq. More precisely, we identify program
statements with monotonic predicate transformers, i.e. predicate transformersSfor
whichp≤ q⇒ S p≤ S q.

The sequential composition of predicate transformersS and T is defined by
their functional composition:

(S; T) q =̂ S(T q)

The identity on predicate transformers is denoted byskip. The guard[p] skips if
p holds and established “miraculously” any postcondition ifp does not hold (by
blocking execution). The (always blocking) guard[false] is called magic. The
assertion{p} skips if p holds and established no postcondition ifp does not hold
(the system crashes). The (never holding) assertion{false} is calledabort:

skip q =̂ q [p] q =̂ p⇒ q
magic q =̂ true {p} q =̂ p∧q
abort q =̂ false

The demonic (nondeterministic) choiceu establishes a postcondition only if both
alternatives do. The angelic choicet establishes a certain postcondition if already
one alternative does. The relational updates[R] and {R} both update the state
according to relationR. If several final states are possible, then[R] chooses one
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demonically and{R} chooses one angelically. IfR is of type∆↔Ω, then[R] and
{R} are of type∆ 7→Ω:

(SuT) q =̂ (S q)∧ (T q) [R] q δ =̂ (∀ω • Rδ ω⇒ q ω)
(StT) q =̂ (S q)∨ (T q) {R} q δ =̂ (∃ω • Rδ ω∧q ω)

All of the above constructs are monotonic. The universally and the positively con-
junctive predicate transformers are two important subsets of the monotonic predi-
cate transformers. Letqi for some index setI be a set of predicates. If

S(∀i ∈ I • qi) = (∀i ∈ I • S qi)

holds for any index setI , thenS is universally conjunctive. If the condition holds
for nonempty setsI thenS is positively conjunctive. Any universally conjunctive
predicate transformer is equal to[R] for some relationR. Any positively conjunc-
tive predicate transformer is equal to{p} ; [R] for some predicatep and some rela-
tion R.

Other statements can be defined in terms of the above ones, for example the
guarded statementp→ S =̂ [p] ; Sand the conditional:

if p then SelseT end =̂ (p→ S)u (¬p→ T)

The enabledness domain (guard) of a statementS is denoted bygrd Sand its ter-
mination domain bytrm S:

grd S =̂ ¬S false trm S=̂ S true

For example,grd (p→ S) = p∧ grd Sand trm ({p} ; [R]) = p.

Refinement. The reflexive and transitive refinement orderingv is defined by
universal entailment:

Sv T =̂ ∀q • S q≤ T q

The loop do Sod executes its body as long as it is enabled. This is defined by
taking the least fixed point of the functionF = λX • S; Xu [¬ grd S]. Sequential
composition and nondeterministic choice are monotonic in both operands, so a
least fixed pointµ F exists and is unique:

do Sod =̂ µ X • S; Xu [¬ grd S]

The loop while p do B is defined asdo p→ B od, provided thatB is always en-
abled, i.e.grd B= true.

Data refinementSvR S′ generalizes (plain) algorithmic refinement by relating
the initial and final state spaces ofS : Σ 7→ Σ andS′ : Σ′ 7→ Σ′ with a relationR :
Σ↔ Σ′:

SvR S′ =̂ S; [R]v [R] ; S′

Data refinementSvR S′ can be equivalently defined by{Q} ; Sv S; {Q}. Algo-
rithmic refinement is a special case of data refinement with the identity relation.
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Program Variables. Typically the state space is made up of a number of program
variables. Thus the state space is of the formΓ1× . . .× Γn. States are tuples
(x1, . . . ,xn). The variable names serve for selecting components of the state. For
example, ifx : Γ and y : ∆ are the only program variables, then the assignment
x := eupdatesx and leavesy unchanged:

x := e =̂ [R] where R (x,y) (x′,y′)≡ x′ = e∧y′ = y

The nondeterministic assignmentx :∈ q assignsx an arbitrary element of the setq:

x :∈ q =̂ [R] where R (x,y) (x′,y′)≡ x′ ∈ q∧y′ = y

The declaration of a local variabley : ∆ with initialization predicatey0 extends
the state space and setsy to any value for whichy0 y holds. A block construct
allows us to temporarily extend the state space with local variables, execute the
body of the block on the extended state space, and reduce the state space again:

var y | y0 • S =̂ enter y | y0 ; S; exit y
enter y | y0 =̂ [R] where R x(x′,y′)≡ x = x′ ∧y0 y′

exit y =̂ [R] where R (x,y) x′ ≡ x = x′

Leaving out the initialization predicate as invar y • S means initializing the vari-
able arbitrarily,var y | true • S. Where necessary, we also explicitly indicate the
type ∆ of the new variable as invar y : ∆. SinceΓ× (∆×Ω) is isomorphic to
(Γ×∆)×Ω, we can always find functions which transform an expression of one to
the other type. Hence we simply writeΓ×∆×Ω. For example, ifΓ = Γ1×·· ·×Γn

thenSabove would have the typeΓ1×·· ·×Γn×∆ 7→ Γ1×·· ·×Γn×∆.

Product Statements. For predicatesq1 : PΣ1 andq2 : PΣ2 the productq1×q2

of typeP (Σ1×Σ2) is defined as(q1×q2) (σ1,σ2) =̂ q1 σ1∧q2 σ2. For predicate
transformersS1 : ∆1 7→ Ω1 andS2 : ∆2 7→ Ω2, their productS1×S2 is a predicate
transformer of type∆1×∆2 7→ Ω1×Ω2 which corresponds to the simultaneous
execution ofS1 andS2:

(S1×S2) q =̂ ∃q1,q2 | q1×q2≤ q • S1 q1×S2 q2

Two statementsSandT over the same state space areindependentif they operate
on different components of the state space (disjoint variables). This is expressed
by stating that there must existS′,T′ such thatS= S′ × skip andT = skip×T′. If
R is a relation we say thatR is independent ofS if [R] andS are independent, or
equivalently{R} andSare independent. IfR andQ are independent ofSwe have
following subcommutativity properties:

S; [R]v [R] ; S {Q} ; Sv S; {Q}

For simplicity and readability, we usually omit the natural extensions of predi-
cates bytrue and of statements byskip when operating on an extended state space.
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Procedures. Declaration of a procedurep with value parametersv : ∆, result pa-
rametersr : Ω, and bodyS, written

procedurep(val v : ∆, res r : Ω) is S

definesp to stand forSof typeΓ×∆×Ω 7→ Γ×∆×Ω, if Γ is the type of the global
variables. A procedure callp(e,x) extends the state space by the value and result
parameters, sets the value parameters toe, executes the procedure body, sets the
result parameterx, and removes the parameters:

p(e,x) =̂ var v, r • v := e ; p ; x := r

Now suppose thatp is a recursive procedure, which is expressed by assuming that
S is of the forms p for somes. That is,Shas a free occurrence ofp. The meaning
of p is then given by taking the least fixed point of the functions, i.e. the least
solution ofλX • X = s X. Statements form a complete lattice with the refinement
ordering. Furthermore, we assume thats is defined withp occurring in monotonic
positions only. These two conditions guarantee that the least fixed pointµ sof s
exists and is unique. Hence we can definep =̂ µ s.

A set of mutually recursive procedures is defined by taking the fixpoint of state-
ment tuples. For tuples(s1, . . . ,sn) and(s′1, . . . ,s

′
n), wheresi ands′i are statements

of the same type, the refinement ordering is defined elementwise:

(s1, . . . ,sn)v (s′1, . . . ,s
′
n) =̂ (s1v s′1)∧ . . .∧ (snv s′n)

Statement tuples also form a complete lattice with the refinement ordering. Letp
stand for the tuple(p1, . . . ,pn), assume thatS1 = s1 p, . . . ,Sn = sn p, and letsstand
for λp • (s1 p, . . . ,sn p). The set of procedure declarations

procedurep1 is S1, . . . , procedurepn is Sn

definesp to be the least fixpoint ofs, i.e. p =̂ µ s. Assuming again that allpi occur
only in monotonic positions in allsj , a least fixed point exists and is unique.

Action Systems. Statements modeled as predicate transformers can express only
atomic computations. In concurrent programs, components of the program interact
during the computation. For reactive systems, the possible sequences of observable
states rather than the input/output behavior are of interest. Such components can be
modeled by action systems. Action systems have local variables and a body that is
repeatedly executed as long as it is enabled. Action systems can represent terminat-
ing, non-terminating, and aborting computations. Formally an action system is a
pairAS= (a0,A) wherea0 : PΣ is the initializing predicate of the local state. Upon
initialization, arbitrary values satisfyinga0 are chosen for the local variables. The
global state spaceΓ is declared and initialized outside. ActionA : Γ×Σ 7→ Γ×Σ is
a positively conjunctive statement, which acts on the local state of typeΣ and global
state of typeΓ. BecauseA is positively conjunctive, it can be written as{p} ; [R].
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The next relation ofA relates an initial state(u,v) in both the enabledness domain
and termination domain to all possible next states(u′,v′):

nxt A(u,v) (u′,v′) =̂ p (u,v)∧R (u,v) (u′,v′)

A behavior ofA is a sequence of pairs

s= 〈(u0,v0),(u1,v1), . . .〉
wherev0 is the initial value of the local state, such thata0 v0, and all consecutive
elements of the sequence are in the next relation:

nxt A(ui ,vi) (ui+1,vi+1)

The setbeh ASis the set of all behaviors. A behavior is terminating if it is finite
and for the last element(un,vn) the actionA is not enabled,¬ grd A(un,vn). A
behavior is aborting if it is finite and for the last element(un,vn) the action aborts,
i.e. (un,vn) is not in the termination domain,¬ trm A(un,vn). A behavior is non-
terminating if it is not of finite length. The setbeh Acan be thought of as the
(disjoint) union of terminating, aborting, and non-terminating behaviors ofAS.

Action systems are typically composed of a set of actionsA1, . . . ,An operating
on different parts of the state space. In the interleaving model, parallelism of two
actions is modeled by taking them in arbitrary, demonically chosen order. Hence
the meaning of such an action system is given by taking the nondeterministic choice
between all actions,AS= (a0,A) whereA = A1u . . .uAn. We use the following
syntax for an action system with local variables nameda:

AS= var a | a0 • do A1 [] . . . [] An od

Parallel Composition. The parallel composition of action systemsAS= (a0,A)
andBS= (b0,B) with the same global state space merges the local state spaces
(possibly renaming variables to make them mutually distinct) and combines the
actions by nondeterministic choice:

AS‖ BS =̂ (a0∧b0,AuB)

This models an arbitrary interleaving of the action ofASandBSwithout any as-
sumption of fairness. Asgrd (AuB) = grd A∨ grd B, the combined system ter-
minates only if bothA andB are not enabled. Astrm (AuB) = trm A∧ trm B,
the combined action system aborts if eitherA or B aborts. Parallel composition is
commutative and associative, up to the order of state components.

We have omitted the explicit state space reordering and the natural extensions
by skip for A andB to operate on the global state space and their respective local
state space inAuB.

Given an action systemAS, we can make part of its global state space local
by var b | b0 • AS (typically for hiding common variables of two action systems
composed in parallel). Ifa andb are disjoint then:

var b | b0 • var a | a0 • do A od =̂ var a,b | a0∧b0 • do A od
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Trace Refinement. Behaviors contain a local state component, which is not ob-
servable from outside. Furthermore, behaviors may contain stuttering steps which
are not observable from the outside either. A state(ui+1,vi+1) is a stuttering state if
ui = ui+1. Traces on the other hand capture only the observable part of behaviors.
For a behaviors, its tracetr s is obtained by

1. removing all finite stuttering states froms, and

2. removing the local state component from all states ins.

Behaviors approximates behaviort, writtens¹ t, if either

• s is aborting andtr s is a prefix oftr t, or

• neithers nor t are aborting andtr s = tr t.

Trace refinement between action systemsASandAS′ with same global state space
holds if all behaviors ofAS′ have an approximating behavior ofAS:

AS
tr
v AS′ =̂ ∀t ∈ beh AS′ • ∃s∈ beh AS• s¹ t

Since only finite stuttering is removed, an infinite behavior gives rise to an infinite
trace and an a finite behavior gives rise to a finite trace. Both “concrete stuttering”
in AS′ as well as “abstract stuttering” inASis allowed.

Simulation. Trace refinement can be shown to hold by simulation. Here we con-
sider forward simulation betweenAS= (a0,A) andAS′ = (a′0,A

′) with the same
global state space using a relationR. An actionA\ is a stuttering action if it always
terminates and it leaves the global state unchanged:

trm A\ = true and nxt A\ (u,v) (u′,v′)⇒ u = u′

Let Sn be then-fold sequential composition of statementS, defined byS0 = skip
and Sn+1 = S; Sn. Let S∗ stand for the nondeterministic choice between alln-
fold sequential compositions ofS, defined byS∗ = (u i ∈ Nat • Sn). DefineA0 =
enter a | a0 andA′0 = enter a′ | a′0. Action systemASis forward simulated byAS′

usingR, writtenASvR AS′, if there are decompositionsA= A]uA\ andA′= A′]uA′\
such thatA\ andA′\ are stuttering actions and

(a) Initialization: A0 ; A∗\ ; [R]v A′0 ; A′∗\
(b) Actions: A] ; A∗\ ; [R]v [R] ; A′] ; A′∗\
(c) Exit Condition: R[ trm A∧ grd A]≤ grd A′

(d) Internal Convergence: R[ trm A∧ trm (do A\ od)]≤ trm (do A′\ od)

Theorem 1 Let AS and AS′ be action systems and R a relation. Then:

ASvR AS′ ⇒ AS
tr
v AS′

8



In general, action system refinement is not compositional in the sense that refining
one action system would lead to a refinement in an environment with other action
systems running in parallel. However, we get compositionality under the additional
constraint ofnon-interference. Let BS= (b0,B) be an action system and letR be
refinement relation forAS. Action B does not interfere withR if

trm B∧ r ≤ B r

wherer u b = R (u,a) (u,a′). In other words,r is an invariant ofB.

Theorem 2 Let AS, AS′, and BS be action systems, let R be a relation, and assume
BS= (b0,B). If B does not interfere with R then:

ASvR AS′ ⇒ AS‖ BS
tr
v AS′ ‖ BS

3 Objects and Classes

Conventionally, a class is a template that defines a set of attributes and methods.
Methods of a class may contain self-references to the method itself and other meth-
ods of the class. Instantiating a class creates a new object with initialized attributes
and method bodies as defined by the class. A subclass inherits attributes and meth-
ods from its superclass, possibly adding new attributes and methods and overwrit-
ing inherited methods. Methods in a subclass may contain super-references to
methods in the superclass. Formally, classes are modeled as self-referential re-
cursive structures, where self-references are not resolved at the time the class is
declared, but resolving is delayed until objects are created [27]. These principles
are extended here: classes define additionally a set of actions, which are inherited
and can be overwritten and extended in subclasses. Self-references are then pos-
sible between both methods and actions, and are resolved only at the time when
objects are created. Also, both methods and actions may contain super-references
to methods and actions in a superclass. This implies that for this purpose actions
are given names.

Let Σ the type of the attributes of some classC and letα be a type variable to be
instantiated by the type of the global variables and possibly by the type of further
attributes of subclasses. Typically, there are a number of attributes and global
variables, so elements of the types will be tuples and the variable and attribute
names are used for accessing the corresponding components. The set of methods
and actions of a class are also modeled by a tuple with the method and action name
accessing the corresponding component. For the types of methodsmi and actions
aj of C we define

CMi = α×Σ×∆i×Ωi 7→ α×Σ×∆i×Ωi

CA = α×Σ 7→ α×Σ

where∆i andΩi are the types of the value and result parameters of methodmi , re-
spectively. Within a class, methodsmi and actionsaj of that class can be referred to
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- C -self

(a)

- C
self?

(b)

Figure 1: Illustration of (a) classC and of (b) taking the fixpoint ofC. The incom-
ing arrow represents calls toC, the outgoing arrow stands for self-calls ofC.

by self.mi andself.aj , respectively. This is formalized by havingself.mi andself.aj

as parameters of all methods and actions, allowing all methods and actions to be
referred to by all methods and actions, a generalization whose usefulness becomes
clearer when considering inheritance. Letself stand for the tuple of method and
action names prefixed byself:

self = (self.m1, . . . ,self.mm,self.a1, . . . ,self.aa)

The collection of all methods and actions of a class can then be expressed as a tuple
csparameterized withself,

cs= λself • (cm1, . . . ,cmm,ca1, . . . ,caa)

wherecmi : CMi , caj : CA, self.mi : CMi , andself.aj : CA. A class does also specify
possible initial valuesc0 : PΣ of its attributesc. Hence a classC takes the form of
a tuple:

C = (c0,cs)

Note thatself is here used to refer to methods and actions, but not to reference
attributes (fields) of an object. Figure 1(a) illustrates the definition of a class. For
defining classC with attributes, methods, and actions as above we use the syntax:

classC
attr c | c0,
meth m1(val v1, res r1) is cm1,
. . . ,
meth mm(val vm, res rm) is cmm,
action a1 is ca1,
. . . ,
action aa is caa

end

Objects have all self-calls resolved with methods of the object itself. Self-calls may
be mutually recursive, like mutually recursive procedures. Modeling this formally
amounts to taking the least fixed point of the functioncs (Figure 1(b)). Meth-
ods and actions of objects of classC, denoted byC.mi andC.ai , respectively, are
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defined by taking the fixpoint of the tuple of all methods and actions and then
selecting the corresponding method and action, respectively:

C.mi =̂ (µ cs).mi C.ai =̂ (µ cs).ai

Declaring a variablex to be of classC means declaring it to be of typeΣ and
initializing it with c0:

var x : C • S =̂ var x | c0 • S

Such a variable corresponds to a local, stack allocated object in programming lan-
guages. Since actions cannot access variables which are local to some statements,
concurrency cannot be expressed this way. For this purpose dynamic object struc-
tures are introduced later.

A method callx.mi of objectx of classC corresponds to a procedure call with
x as a value-result parameter.

x.mi =̂ var c • c := x ; C.mi ; x := c

The name of the formal parameter is that of the attributes, namelyc. Therefore,c
is used to access local data in the body ofC.mi . This corresponds tothis in some
programming languages.

Additional value and result parameters are treated like for procedure calls. For
convenience, we also use the same notation for selecting an action of an object:

x.ai =̂ C.ai

Inheritance is expressed by the application of a modifier to a base class: IfD inher-
its from C, thenD is equivalent toL mod C, where modifierL corresponds to the
extending part of the definition ofD. This model of single inheritance is equiva-
lent to dynamic method lookups along the inheritance structure as implemented in
object-oriented languages [14]. We callC the superclass ofD andD a subclass of
C.

Let C be as above. A modifierL specifies additional attributes, sayl of type
Λ. We consider only modifiers which redefine all methods of the base class. If a
method should remain unchanged, this is expressed by making a supercall to the
same method of the base class. A modifier also redefines all actions of the base
class and possibly adds new actions. For the types of methodsmi and actionsaj of
L we define

LMi = β×Λ×Σ×∆i×Ωi 7→ β×Λ×Σ×∆i×Ωi

LA = β×Λ×Σ 7→ β×Λ×Σ

whereβ is the type variable for further attributes in subclasses. Thus, we instantiate
α of CMi andCAby β×Λ. The types of the value and result parameters of method
mi are, exactly as inC, ∆i andΩi . Within L, methodsmi and actionsaj of that class
can be referred to byself.mh andself.ak, and those of the superclassC by super.mi

11
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Figure 2: Illustration of (a) modifierL, of (b) L mod C, and of (c) taking the fix-
point ofL mod C

andsuper.aj , respectively. This is formalized by havingself.mh,self.ak,super.mi ,
andsuper.aj as parameters of all methods and actions:

self = (self.m1, . . . ,self.mm,self.a1, . . . ,self.ab)
super = (super.m1, . . . ,super.mm,super.a1, . . . ,super.aa)

The collection of all methods and actions of modifierL can then be expressed as a
tuple ls parameterized with bothself andsuper,

ls = λself • λsuper• (lm1, . . . , lmm, la1, . . . , lab)

wherelmk : LMk, lah : LA, self.mh : LMh, self.ak : LA, super.mi : CMi , andsuper.aj :
CA. A modifier also specifies initial valuesl0 : Λ of the new attributesl. Hence a
modifierL takes the form of a tuple:

L = (l0, ls)

For defining modifierL with attributes, methods, and actions as above we use the
following syntax, where unmentioned methodsmi and actionsaj are defined as
super.mi andsuper.aj , respectively:

modifier L
attr l | l0,
meth m1(val v1, res r1) is lm1,
. . . ,
meth mm(val v1, res rm) is lmm,
action a1 is la1,
. . . ,
action ab is lab

end

The modification ofC by L redirects self-calls inC to L, redirects super-calls inL
to C, and leaves the self-calls inL unresolved for possible further modification (see
also Figure 2(b)):

L mod C =̂ (l0∧c0,λself • ls self(csself))
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Hereself = (self.m1, . . . ,self.mm,self.a1, . . . ,self.aa) is identical asself in the def-
inition of cs. For modifying some classC with L as above and calling the resultD
we can also use a more conventional syntax:

classD
inherit C

attr l | l0,
meth m1(val v1, res r1) is lm1,
. . . ,
meth mm(val v1, res rm) is lmm,
action a1 is la1,
. . . ,
action ab is laa

end

4 Class Refinement

In this section we define class refinement in terms of trace refinement. Also, a
simulation condition between classes with a relation is defined and proved to imply
class refinement. The reasoning is done with a single object of a class running in
isolation; dynamic object creation is considered later.

For an objectx of classC, let A [x] be the action system with all its actions.
ThusA [x] specifies howx behaves between external method calls tox:

A [x] = do x.a1 [] . . . [] x.aa od

Let O[x] be an arbitrary action system observing objectx only through method
calls. LetS0, . . . ,Sm be universally conjunctive statements that are independent of
the global state, i.e. they access only local variablesh:

O[x] = var h | h0 • do S0 ; abort [] S1 ; x.m1 [] . . . [] Sm ; x.mm od

Let K [C] be an arbitrary program operating on an objectx of classC such thatK
is the full context ofx, in the sense that no other program accessesx. Any such
program can be described by an interleaving of method calls tox and of actions of
x:

K [C] = var x : C • O[x] ‖ A [x]

ClassD is a refinement of classC, written C
cl
v D, if using an object of class

D instead ofC in all possible programs yields a trace refinement of the original
program:

C
cl
v D =̂ ∀K • K [C]

tr
vK [D]

Note that class refinement of two classes is independent of how the classes are
constructed using inheritance. Also, self-calls within the classes are resolved first.
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This means that this definition applies independently whether inheritance and self-
calls are considered.

For proving refinement between classesC = (c0,cs) andD = (d0,ds) we use a
simulation with a refinement relationR. DefineC0 = enter c | c0, D0 = enter d |
d0, and:

CX = C.a1u . . .uC.aa and DX = D.a1u . . .uD.ab

ClassC is simulated byD usingR, written C vR D, if there is a decomposition
CX= CX]uCX\ andDX = DX]uDX\ such thatCX\ andDX\ are stuttering actions
and:

(a) Initialization: C0 ; CX∗\ ; [R]v D0 ; DX∗\
(b) Methods: C.mi ; CX∗\ ; [R]v [R] ; D.mi ; DX∗\

for all mi in m1, . . . ,mm

(c) Actions: CX] ; CX∗\ ; [R]v [R] ; DX] ; DX∗\
(d) Method Guards: R[ trm C.mi ∧ trm CX∧ grd C.mi ]≤

grd D.mi ∨ grd DX for all mi in m1, . . . ,mm

(e) Exit Condition: R[ trm CX∧ grd CX]≤ grd DX
(f) Internal Convergence: R[ trm CX∧ trm (do CX\ od)]≤

trm (do DX\ od)

Theorem 3 Let C and D be classes and R a relation. Then:

CvR D⇒ C
cl
v D

Proof We define:

CY = (S0 ; abort)u (S1 ; C.m1)u . . .u (Sm ; C.mm)
DY = (S0 ; abort)u (S1 ; D.m1)u . . .u (Sm ; D.mm)

We have to show that (a) to (f) above implyK [C]
tr
vK [D] for anyK , which means

that for anyh0 andSi :

var h | h0 • var c | c0 • do CY [] CX od
tr
v

var h | h0 • var d | d0 • do DY [] DX od

We do so by applying Theorem 1 withA0 := C0, A] := CYuCX], A\ := CX\,
B0 := D0, B] := DYuDX], andB\ := DX\ to the inner action system and get four
conditions:

(1) Initialization: C0 ; CX∗\ ; [R]v D0 ; DX∗\
(2) Actions: (CYuCX]) ; CX∗\ ; [R]v [R] ; (DYuDX]) ; DX∗\
(3) Exit Condition: R[ trm (CYuCX)∧ grd (CYuCX)]≤

grd (DYuDX)
(4) Internal Convergence: R[ trm (CYuCX)∧ trm (do CX\ od)]≤

trm (do DX\ od)
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Condition (1) follows immediately from (a). For (2) we calculate, for anySi :

(CYuCX]) ; CX∗\ ; [R]v [R] ; (DYuDX]) ; DX∗\
≡ { ; distributes overu}

(CY ; CX∗\ ; [R])u (CX] ; CX∗\ ; [R])v
([R] ; DY ; DX∗\ )u ([R] ; DX] ; DX∗\ )

⇐ {monotonicity}
(CY ; CX∗\ ; [R]v [R] ; DY ; DX∗\ )∧
(CX] ; CX∗\ ; [R]v [R] ; DX] ; DX∗\ )

The second conjunct follows from (c). We continue with the first conjunct:

CY ; CX∗\ ; [R]v [R] ; DY ; DX∗\
≡ {definition ofCY, DY and ; distributes overu}

(S0 ; abort ; CX∗\ ; [R])u (S1 ; C.m1 ; CX∗\ ; [R])u . . .
u(Sm ; C.mm ; CX∗\ ; [R])v

([R] ; S0 ; abort ; DX∗\ )u ([R] ; S1 ; D.m1 ; DX∗\ )u . . .
u([R] ; Sm ; D.mm ; DX∗\ )

⇐ {abort ; S= abort andS; abort v [R] ; S; abort
for independent[R],S}

(S1 ; C.m1 ; CX∗\ ; [R])u . . .u (Sm ; C.mm ; CX∗\ ; [R])v
([R] ; S1 ; D.m1 ; DX∗\ )u . . .u ([R] ; Sm ; D.mm ; DX∗\ )

⇐ {monotonicity}
∀i ∈ {1, . . . ,m} • Si ; C.mi ; CX∗\ ; [R]v [R] ; Si ; D.mi ; DX∗\

⇐ {asSi ; [R]v [R] ; Si assumed}
∀i ∈ {1, . . . ,m} • Si ; C.mi ; CX∗\ ; [R]v Si ; [R] ; D.mi ; DX∗\

⇐ {monotonicity}
∀i ∈ {1, . . . ,m} • C.mi ; CX∗\ ; [R]v [R] ; D.mi ; DX∗\

The last line follows from (b). For (3) we calculate, for anySi :

R[ trm (CYuCX)∧ grd (CYuCX)]≤ grd (DYuDX)
≡ {as trm (SuT) = trm S∧ trm T and

grd (SuT) = grd S∨ grd T}
R[ trm CY∧ trm CX∧ (grd CY∨ grd CX)]≤ grd DY∨ grd DX

⇐ {monotonicity}
(R[ trm CY∧ trm CX∧ grd CY]≤ grd DY∨ grd DX)∧
(R[ trm CX∧ grd CX]≤ grd DX)

The second conjunct follows from (e). We continue with the first conjunct:

R[ trm CY∧ trm CX∧ grd CY]≤ grd DY∨ grd DX
⇐ {Suniversally conjunctive∧ S,T independent⇒

grd(S; T)≤ grd T}
R[ trm CY∧ trm CX∧ grd CY]≤
grd DY∨ grd (S0 ; DX)∨ . . .∨ grd (Sm ; DX)

15



≡ {grd (SuT) = grd S∨ grd T for anyS,T}
R[ trm CY∧ trm CX∧ grd CY]≤
grd (DYu (S0 ; DX)u . . .u (Sm ; DX))

≡ {R[p]≤ q≡ p≤ [R] q and[R](grd S) = grd ({R} ; S) (*)}
trm CY∧ trm CX∧ grd CY≤
grd ({R} ; (DYu (S0 ; DX)u . . .u (Sm ; DX)))

≡ {S; (TuU) = (S; T)u (S; U) and
abortuS= abort for anyS,T,U}

trm CY∧ trm CX∧ grd CY≤ grd (({R} ; S0 ; abort)u
({R} ; S1 ; (D.m1uDX))u . . .u ({R} ; Sm ; (D.mmuDX)))

⇐ {{R},S independent⇒{R} ; Sv S; {R} and
T v U⇒ grd U≤ grd T}

trm CY∧ trm CX∧ grd CY≤ grd ((S0 ; {R} ; abort)u
(S1 ; {R} ; (D.m1uDX))u . . .u (Sm ; {R} ; (D.mmuDX)))

⇐ { trm (SuT) = trm S∧ trm T and
grd (SuT) = grd S∨ grd T for anyS,T}

( trm (S0 ; abort)∧ trm CX∧ grd (S0 ; abort)≤
grd (S0 ; {R} ; abort))∧

(∀i ∈ {1, . . . ,m} • trm (Si ; C.mi)∧ trm CX∧ grd (Si ; C.mi)≤
grd (Si ; {R} ; (D.mi uDX)))

⇐ {{R} ; abort v abort and
T v U⇒ grd U≤ grd T for anyR,T,U}

∀i ∈ {1, . . . ,m} • trm (Si ; C.mi)∧ trm CX∧ grd (Si ; C.mi)≤
grd (Si ; {R} ; (D.mi uDX))

⇐ {Suniversally conjunctive∧ S,T independent⇒
trm T≤ trm (S; T)}

∀i ∈ {1, . . . ,m} • trm (Si ; C.mi)∧ trm (Si ; CX)∧ grd (Si ; C.mi)≤
grd (Si ; {R} ; (D.mi uDX))

⇐ { trm (SuT) = trm S∧ trm Sfor anyS,T and
; distributes overu}

∀i ∈ {1, . . . ,m} • trm (Si ; (C.mi uCX))∧ grd (Si ; C.mi)≤
grd (Si ; {R} ; (D.mi uDX))

⇐ { trm T∧ grd U≤ grd V⇒
trm (S; T)∧ grd (S; U)≤ grd (S; V)}

∀i ∈ {1, . . . ,m} • trm (C.mi uCX)∧ grd C.mi ≤
grd ({R} ; (D.mi uDX))

≡ {(*) above}
∀i ∈ {1, . . . ,m} • R[ trm (C.mi uCX)∧ grd C.mi ]≤ grd (D.mi uDX)

≡ { trm (SuT) = trm S∧ trm T and
grd (SuT) = grd S∨ grd T for anyS,T}

∀i ∈ {1, . . . ,m} • R[ trm C.mi ∧ trm CX∧ grd C.mi ]≤
grd D.mi ∨ grd DX)

The last line follows from (d). Condition (4) follows from (f) by monotonicity.ut
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A related theorem has first been given for action systems with remote proce-
dures in [8] and in a revised form in [26], which is similar to the corresponding
theorem for OO-action systems in [11]. The theorem given here generalizes those
in four ways. First, we consider trace refinement and not just input/output refine-
ment. Thus, class refinement also preserves reactive behavior and is meaningful
for non-terminating systems. Second, removing abstract stuttering in refinement
is explicitly considered. Third, the concrete stuttering action can be more general
than a (data-) refinement ofskip. Fourth, conditions (d) and (e) are weakened by
including the termination conditions into the antecedents of the implications.

The case with no explicit abstract stuttering and the concrete stuttering actions
being (data-) refinements ofskip is obtained as a special case. LetC andD be
classes and letC0, D0, CX, andDX be defined as above. Assume there exists a
decompositionDX = DX]uDX\ such thatDX\ is a stuttering action. The conditions
for this case are:

(a’) Initialization: C0 ; [R]v D0

(b’) Methods: C.mi ; [R]v [R] ; D.mi

for all mi in m1, . . . ,mm

(c’) Main Actions: CX ; [R]v [R] ; DX]
(d’) Internal Actions: [R]v [R] ; DX\
(e’) Method Guards: R[ trm C.mi ∧ trm CX∧ grd C.mi ]≤

grd D.mi ∨ grd DX for all mi in m1, . . . ,mm

(f’) Exit Condition: R[ trm CX∧ grd CX]≤ grd DX
(g’) Internal Convergence: R[ trm CX]≤ trm (do DX\ od)

Condition (d’) is equivalent toskipvR DX\, expressing that the concrete stuttering
actions are data refinements ofskip.

Theorem 4 Let C and D be classes and R a relation as above. If conditions (a’) –
(g’) hold then CvR D.

Proof We show that the above conditions (a’) – (g’) imply the conditions (a)
– (f) of class simulation. We setCX] := CX andCX\ := magic. Thus we have
CX0

\ = skip, CXi
\ = magic for all i > 0, and, therefore,CX∗\ = skip becauseskipu

magic= skip. With this, (a) follows immediately from (a’) and (d’).
By reflexivity and transitivity of refinement, we get from condition (d’) that

[R] v [R] ; DXi
\ for any i ≥ 0. Since[R] is refined by sequences of any length, it

is also refined by their choice,[R] v [R] ; DX∗\ . Condition (b) then follows by a
transitivity of the following calculation:

C.mi ; CX∗\ ; [R]
v {as[R]v [R] ; DX∗\ }

C.mi ; [R] ; DX∗\
v {condition (b’)}

[R] ; D.mi ; DX∗\
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Condition (c) follows analogously using (c’). The remaining conditions (d) to (f)
follow directly from (e’) to (g’). For (f) we observe thatdo CX\ od = magic and
trm magic= true. ut

Corollary 1 Let C and D be classes and R a relation as above. If conditions (a’)

– (g’) hold then C
cl
v D.

As with action system refinement, class refinement is not compositional in the
sense that refining the class of an object will not necessarily lead to a system with
other objects running in parallel being refined. However, we get compositionality
under the additional constraint of non-interference with the environment.

Theorem 5 Let C,D be classes, ES= (e0,E) be an action systems, and R a rela-
tion. If E does not interfere with R then:

CvR D⇒∀K • K [C] ‖ ES
tr
vK [D] ‖ ES

Proof By Theorems 2 and 3 and by the definition ofCvR D. ut

Example. We use an artificial aquarium as an example. Clearly, the observable
sequences of states, denoting the position of the fishes, are the relevant aspect in
such a system. A refinement of only the state transformation from initial to final
states would be insufficient: a dedicated artificial aquarium has no final state and
for a screen saver input/output refinement would only mean that at the end we are
again guaranteed to get the original screen back.

The global variables: array [0..w−1,0..h−1] of NAT denotes the state (color)
of each quadrant of the screen, with constantsw> 6 andh> 6. The color value 0
stands for background water. The base classCreatureof all objects in our aquarium
is given by:

classCreature
attr x :∈ {0..w−1},y :∈ {0..h−1},col : NAT ,
meth move(val dx, val dy) is 0≤ x+dx< w∧0≤ y+dy< h→

skipu (s[x,y] := 0 ; x,y := x+dx,y+dy ; s[x,y] := col,
action newposis s[x,y] := 0 ; x :∈ {0..w−1} ; y :∈ {0..h−1} ;

s[x,y] := col
end

Fish described by classRayare a refinement with a special form of movement.
Rather than jumping wildly around the screen, they are always at the same vertical
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position, have a horizontal speedsxand move at most 3 pixels at once:

classRay
attr x := 0,y :∈ {0..h−1},col := 5,sx:= 1,
meth move(val dx, val dy) is 0≤ x+dx< w∧−3≤ dx≤ 3∧dy= 0→

s[x,y] := 0 ; x := x+dx ; s[x,y] := col),
action newposis 0≤ x+sx< w→ s[x,y] := 0 ; x := x+sx;

s[x,y] := col,
action bouncelis x+sx< 0→ sx:∈ {1..3},
action bounceris w≤ x+sx→ sx:∈ {−3..−1}

end

ClassRayrefines classCreaturewith the (local) refinement relationR:

R (s,x,y,col) (s′,x′,y′,col′,sx′) =̂
s= s′ ∧x = x′ ∧0≤ x< w∧y = y′ ∧0≤ y< h∧
col = col′ ∧−3≤ sx′ ≤ 3

Since we have no explicit abstract stuttering, we can use Theorem 4 to prove
CreaturevR Ray. We setCX := Creature.newpos, DX] := Ray.newpos, DX\ :=
Ray.bouncelu Ray.bouncer, andC0 andD0 to the respective initialization. We
show internal convergence (condition (f)) assuming that an access tos beyond the
screen aborts:

R[ trm CX]
= {definitions oftrm andCX}

R[λs,x,y,col • 0≤ x< w∧0≤ y< h]
= {definition ofR, relational image}

λs′,x′,y′,col′,sx′ • 0≤ x′ < w∧0≤ y< h∧−3≤ sx′ ≤ 3
≤ {universal implication}

λs′,x′,y′,col′,sx′ • −1≤ x′ ≤ w∨0≤ x′+sx′ < w
= {definitions, calculus}

trm (do DX\ od)

The other conditions can also be proved by unfolding the definitions and simple

calculus. By Corollary 1 we also getCreature
cl
vRay. Hence, replacing aCreature

by aRayin any context produces a trace refinement.

5 Dynamic Object Structures

We model the heap as an array and pointers as indices into this array [23]. We
first describe the basic ideas using only one class and then generalize it to multiple
classes with subtypes. LetC= (c0,cs) denote a class andΣ the type of its attributes.
We declare a program variableheapto contain the whole dynamic data structure:

var heap: array NAT of Σ
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Pointers to instances ofC are then simply natural numbers, that is the declaration
p : pointer to C stands forp : NAT. We use 0 to denotenil, that is the pointer not
referencing any object. We use a separate counternext, initialized to 1, to generate
new pointer values. Thus forp : pointer to C,

p := new C =̂ p := next; (var c | c0 • heap[p] := c) ; next:= next+1

whereheap[p] denotes an access of thepth array element.
To correctly handle nested method calls, we need to pass references rather

than the values of the referenced attributes for the implicit receiver argument. We
denote the receiver bythisand letc, the variable denoting the receiver’s attributes in
methods and actions, stand forheap[this]. This global replacement formalization
assumes that all object structures are dynamic. A simple extension using flags
could handle a combination of static and dynamic object structures. A method call
p.m is defined as:

var this : NAT • this := p ; C.m

In our formalization,this is used to reference the receiver object whereasself and
superare used in classes to reference methods and actions.

This formalization easily extends to multiple classes with subtyping. We de-
clare for each classCi with attribute typeΣi a separateheapi : array NAT of Σi .
Pointers are extended to tuples with one index indicating the heap and one index in-
dicating the element within the heap. Thus with a class declarationclassCi . . . end
we associate:

var heapi : array NAT of Σi ,
var nexti : NAT := 1

A pointer variable declarationp : pointer to Ci stands forp : NAT×NAT := (0,0).
The nil value is always represented by(0,0) to make it unique. The type ofthis
is now alsoNAT× NAT. Attribute access occurrences ofc in the method body
stand forheapfst this[snd this]. In the receiver role of method and action calls (c.m),
c stands forthis. Assuming thatCk, . . . ,Cl are all subtypes ofCi (including Ci),
object creation, method calls with dynamic dispatch, and type test are defined by:

p := new Ci =̂ p := (i,nexti) ; (var c | ci • heapi [nexti ] := c) ;
nexti := nexti +1

p.m() =̂ if p = (0,0) then abort
elsif fst p= k then (var this • this := p ; Ck.m)
. . .
elsif fst p= l then (var this • this := p ; Cl .m)
end

p instanceofCi =̂ fst p∈ {k, . . . , l}
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We assume that the heaps and the next counters are implicitly declared global vari-
ables that do not appear in the traces. With each class declarationCi , we associate
an action systemA [Ci ] which represents all actions of all objects of that class:

A [Ci ] = do
(var this : NAT× NAT • this :∈ {i}×{1..nexti−1} ;

(Ci .a1u . . .uCi .aa))
od

For a program with classesC1, . . . ,Cn we take the parallel composition of the action
systems for objects of each class. This composition is then to be combined with
further action systems containing normal actions and procedures:

A [C1] ‖ . . . ‖ A [Cn] ‖ BS

Example. Let classesCreatureandRaybe as in the aquarium example of Sec-
tion 4 and letCreaturevQ Turtle for some relationQ. Let G be the following
specification of an artificial aquarium, in which new objects may constantly be
added and where the most recently created object may be influenced through its
movemethod:

G = (var p : Creature:= nil • do p := new Creature[]
p 6= nil→ p.move(2,0) od) ‖ A [Creature]

By applying Theorem 3 twice and Theorem 5 we can show that this specification

is trace refined,G
tr
v H, by implementationH with rays and turtles:

H = (var p : Creature:= nil • do p := new Ray[] p := new Turtle
[] p 6= nil→ p.move(2,0) od) ‖ A [Ray] ‖ A [Turtle]

6 Early Return

Atomicity refinement is used to increase concurrency by decreasing the granularity
of atomic actions. Consider methodrnd that computes random numbers and for
later reference stores them in a time ordered sequence:

meth rnd( resy) is y :∈ NAT ; ‘storey in sequence’

Using atomicity refinement, we could split uprnd so that it returns control to the
caller after assigningy and schedules the —if the sequence is kept on secondary
storage— time consuming insertion operation for later. Thereby, the execution
time of any actiona calling rnd is reduced. Thus, other actions accessing the same
resources asa can be started earlier, thereby increasing concurrency.

We introduce areleasestatement, which facilitates the above type of atomic-
ity refinement. Areleasereturns control to the caller of a method and schedules
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classC
attr c | c0,
meth m is S; release; T,
meth n is U,
action a is V

end

a) Method withrelease

classC
attr c, lck | c0∧ lck = 0,
meth m is lck = 0→ S; lck := 1,
meth n is lck = 0→ U,
action a is lck = 0→ V,
action r is lck = 1→ T ; lck := 0

end

b) Equivalent withoutrelease

Figure 3: Definition ofreleaseas enabling a remainder action

the remainder to be executed later on. If the method containing thereleasestate-
ment has result parameters, they must be assigned before executingrelease. For
example, we could rewrite methodrnd as follows:

meth rnd( resy) is y :∈ NAT ; release; ‘storey in sequence’

Figure 3 definesreleaseas enabling an actionr that performs the remainder.
The object is locked, that is none of its other methods or actions can be executed,
until the remainder action is completed. For simplicity, we do not allow self and
reentrant calls and parameter and local variable access in the remainder. These
generalizations are made below.

Introducingreleaseleads to class refinement:

Theorem 6 Let C and D be classes which are identical except that method m in C
and m in D, referred to as C:: m and D:: m, are defined by:

meth C :: m is S; T,
meth D :: m is S; release; T

If T does not modify global variables and does not access parameters, then C
cl
vD

holds.

Proof We apply Theorem 3 withR (u,c) (u′,c′, lck′) := u′ = u∧ ((l′ = 0∧c′ =
c)∨ (l′ = 1∧ nxt S c c′)), C0 := enter c | c0, CX] := V, CX\ := magic, D0 :=
enter c, lck | c0∧ lck = 0, DX] := lck = 0→ V, DX\ := lck = 1→ T ; lck := 0. The
theorem follows by simplifications of the conditions (a) – (f).
Note that Theorem 4 cannot be used for the proof since the remainder actionlck =
1→ T ; lck := 0 is a concrete stuttering action which is not a (data-) refinement of
skip.
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classC
attr c := c0,
meth m(val v, res r) is

var x • S; release; T,
meth n(val w, ress) is U
action a is V

end

a) Method withrelease

classC
attr c, lck,m v,m r,m x | c0∧ lck = 0,
meth m(val v, res r) is lck = 0→

var x • S; lck,m v,m r,m x := 1,v, r,x,
meth n(val w, ress) is lck = 0→ U,
action a is lck = 0→ V,
action r is lck = 1→

var v, r,x := m v,m r,m x • T ; lck := 0
end

b) Equivalent withoutrelease

Figure 4: Definition ofreleasewith Remainder Accessing Parameters and Local
Variables

The release statement can be generalized to allow the remainder to access
the value parameter and the local variables of the method and also read the result
parameter (Figure 4). The values of the parameters and local variables are stored
in additional attributes for use by the remainder.

Finally, we consider the case where an action contains multiple calls to methods
of the same object. If a method of an object that has an outstanding remainder
is called then the latter is executed as part of the call. Otherwise, the guard of
the methods called after performing areleasewould be false and, therefore, such
actions never enabled. Consider actionb whereo references an object of typeC as
in Figure 5:

action b is (var z : U • o.m(0,z) ; o.n(0,z))

If we simply lockedo, that is, defined the implicit guard ofn to belck = 0, thenb
would never be enabled.

We illustrate this with a random number class that stores a sequence of already
computed numbers:

classC
attr l := 0,s : array NAT of NAT ,
meth rnd( resy) is y :∈ NAT ; s[l], l := y, l +1,
meth get(val i, resy) is i < l→ y := s[i]

end
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classC
attr c | c0,
meth m(val v, res r) is

var x • S; release; T,
meth n(val w, ress) is U,

action a is V

end

a) Method withrelease

classC
attr c, lck,m v,m r,m x | c0∧ lck = 0
meth m(val v, res r) is

p ; var x • S; lck,m v,m r,m x := 1,v, r,x,
meth n(val w, ress) is p ; U,
meth p is if lck = 1 then

var v, r,x := m v,m r,m x • T ; lck := 0
end ,

action a is lck = 0→ V,
action r is lck = 1→ p

end

b) Equivalent withoutrelease

Figure 5: Definition ofreleasesupporting multiple calls to an object within an
action

ClassC is refined byD, where arelease is introduced in methodrnd after the
assignment ofy. We show directly the expansion according to Figure 5:

classD
attr l := 0,s : array NAT of NAT , lck := 0, rnd y,
meth rnd( resy) is p ; y :∈ NAT ; lck, rnd y := 1,y,
meth get(val i, resy) is p ; i < l→ y := s[i],
meth p is if lck = 1 then var y := rnd y • s[l], l, lck := y, l +1,0 end ,
action r is lck = 1→ p

end

We haveCvR D for the followingR:

R (l,s) (l′,s′, lck′, rnd y′)≡ lck′ ∈ {0,1}∧
(lck′ = 0⇒ l = l′ ∧ (∀i ∈ {0..l−1} • s[i] = s′[i]))∧
(lck′ = 1⇒ l = l′+1∧ (∀i ∈ {0..l−2} • s[i] = s′[i])∧s[l−1] = rnd y′)

The proof is a simple verification of the six conditions of class simulation with
CX] = magic, CX\ = magic, DX] = magic, DX\ = r, andC0 andD0 the respective
initializations.

7 Conclusions and Discussion

We have given a model for action-based concurrency with objects. Classes with
attributes, methods, and actions serve as templates for objects. Class refinement
supporting algorithmic, data, and atomicity refinement is defined based on trace
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refinement. Class refinement can be proved by a simulation rule. Early returns are
a special form of atomicity refinement. Dynamic data structures allow objects to
run concurrently.

Class refinement for concurrent objects is defined here as an extension of class
refinement defined in [24], following the general model of classes as self-referential
structures with a delayed taking of the fixpoint of [27, 14]. As known from [24], in-
heritance is not monotonic with respect to the refinement of the base class, leading
to the so called fragile base class problem. This problem persists in the concur-
rent setting here as well. With the possibility of self- and super-references between
actions, it extends to actions.

For expressing symmetric communication and synchronization among several
objects, multi-party actions have been studied in [5]. They can be introduced here
without further difficulties.

Many interesting questions are connected with early returns. The remainder of
a method into which we introduce areleasestatement cannot modify global vari-
ables. Otherwise, multiple changes that were previously executed in one atomic
step could now be performed in multiple steps. The definition of trace refinement
does not permit this. Making intermediate states visible and even making modifi-
cations to other global variable before the remainder’s changes to global variables
are performed are not legal refinements.

However, introducing in a refinement step changes to other objects in the re-
mainder is a useful concept studied in [18]. This is allowed if there are no other
references to those objects and hence those changes are not observable to the re-
maining program. For this [18] uses the concept of unique references. Spinning
the idea of non-observability even further, the global state could also be updated in
multiple steps if parts of it could be locked and be guaranteed not to be observed
until the remainder has been executed. Incorporating such refinement steps here is
an open issue.

The main advantage of areleasestatement over a “manual” atomicity refine-
ment are the readability (no need to syntactically split method into parts, syntac-
tically clutter guards and the split method with synchronization and variable save
statement) and the automatic resource locking. A version without resource lock-
ing would be possible and would allow additional interleavings, but would lead to
practically rather strong proof conditions, making it less attractive.

The releasestatement could also be introduced into action systems without
objects, for example within procedures. Objects, however, have the advantage that
they encapsulate tightly coupled state components and, thereby, make it in practice
easier to lock resources accessed by the remainder.
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