Class Refinement as Semantics of
Correct Object Substitutability

Ralph-Johan Back,
Anna Mikhajlova,
Joakim von Wright

== Turku Centre for Computer Science
TUCS Technical Report No 333

- - - March 2000

j==1}
- . ISBN 952-12-0620-9

TUCS ISSN 1239-1891

Abstract

Subtype polymorphism, based on syntactic conformance of objects’ meth-
ods and used for substituting subtype objects for supertype objects, is a
characteristic feature of the object-oriented programming style. While cer-
tainly very useful, typechecking of syntactic conformance of subtype objects
to supertype objects is insufficient to guarantee correctness of object substi-
tutability. In addition, the behaviour of subtype objects must be constrained
to achieve correctness. In class-based systems classes specify the behaviour
of the objects they instantiate. In this paper we define the class refinement
relation which captures the semantic constraints that must be imposed on
classes to guarantee correctness of substitutability in all clients of the objects
these classes instantiate. Clients of class instances are modelled as programs
making an iterative choice over invocation of class methods, and we formally
prove that when a class C” refines a class C, substituting instances of C’ for
instances of C' is refinement for the clients.

This technical report supersedes TUCS Technical Report No 147.
Keywords: class refinement, code inheritance, behavioural compatibility,

object substitutability, subclassing, subtyping, semantics of object-oriented
constructs, correctness, implicit and explicit invariants, new methods

TUCS Research Group
Programming Methodology Research Group

1 Introduction

The issue of correctness of object-oriented programs deserves close consider-
ation in view of the popularity of this programming style and the necessity
to enhance reliability of programs. Not only is correctness a crucial re-
quirement for safety-critical systems, but also it is becoming increasingly
important for distributed object-oriented systems and frameworks, which
are composed by independent users and characterized by a late integration
phase. We consider here a formal basis for ensuring correctness of class-
based statically-typed object-oriented systems.

Subtype polymorphism, which is generally recognized as central to object-
orientation, is based on syntactic conformance of objects’ methods and used
for substituting subtype objects for supertype objects. In most object-
oriented languages, such as Simula, Eiffel, and C++, subclassing or im-
plementation inheritance forms a basis for subtype polymorphism, i.e. sig-
natures of subclass methods automatically conform to those of superclass
methods, and, syntactically, subclass instances can be substituted for su-
perclass instances. As the mechanism of polymorphic substitutability is,
to a great extent, independent of the mechanism of implementation reuse,
languages like Java and Sather separate the subtyping and subclassing hi-
erarchies.

With both approaches, typechecking can be used to verify syntactic con-
formance of subtype objects to their supertype objects. However, it has been
recognized that, while certainly very useful, typechecking is insufficient to
guarantee correctness of object substitutability. An attempt to establish
behavioural conformance along with syntactic one has created a research
direction known as behavioural subtyping [4, 27, 15, 26, 16]. The essence of
behavioural subtyping is to associate behaviour with type signatures and
to identify subtypes that conform to their supertypes not only syntactically
but also semantically.

In our view subtyping is a mechanism for substituting objects with cer-
tain method signatures for other objects with conforming method signa-
tures and, as such, is a purely syntactic concept. Behaviour of objects,
on the other hand, has little to do with their syntactic interfaces and is
expressed in the specification of the objects’ methods manipulating the ob-
jects’ attributes. Most importantly, syntactic subtyping is decidable and
can be checked by a computer, while behaviour-preserving subtyping is un-
decidable. Hence, in our approach we separate syntactic subtyping from be-
havioural conformance of subtype objects to supertype objects. We consider
classes to be the carriers of behaviour and compare them for behavioural
compatibility. Instances of one class are guaranteed to behave as expected
from instances of another, more abstract, class if the more concrete class is
a refinement of the more abstract. We give a definition of class refinement,
which we regard as semantics of correct substitutability of subclass instances

for superclass instances in clients. We formally prove that when a class C’
refines a class C, substituting instances of C’ for instances of C' is refinement
for the clients.

Our definition of class refinement guards against inconsistencies poten-
tially introduced by new methods in the presence of subtype aliasing or in
a general computational environment permitting sharing of objects by mul-
tiple clients. New methods introduced in class C' may break the strongest
invariant of class C', and clients of C relying on this invariant may get in-
validated when using instances of C’ instead. New methods may take an
instance of C’ to a state which is perceived as unreachable from the per-
spective of a client relying of the strongest invariant of C'. We formalise the
notion of consistent new methods and prove that they preserve the strongest
invariant of the class being refined, ensuring in this way safe substitutability
of the corresponding objects in all clients.

Class refinement is orthogonal to subclassing. A class and its subclass
may not be in refinement, and two classes can be in refinement even if one of
them is not declared to be a subclass of the other. With separate interface
inheritance and implementation inheritance hierarchies, a subclass may not
even be intended for behavioural conformance with its superclass, as the
substitution mechanism is completely independent of the reuse mechanism.
Syntactic conformance of method signatures, however, is a prerequisite for
class refinement, as it is meaningless to compare behaviour of classes whose
instances are not intended for substitution. For simplicity, we consider sub-
classing to be the basis for subtyping and, consequently, require that class
refinement be established between a class and its declared subclasses. How-
ever, the same principles also apply to systems with separate subclassing
and interface inheritance hierarchies, as we will explain in the concluding
section.

We build a logical framework for reasoning about object-oriented pro-
grams as a conservative extension of the refinement calculus [32, 10], which is
used for reasoning about correctness and refinement of imperative programs
in a rigorous, mathematically precise manner. The refinement calculus is
particularly suited for describing object-oriented programs because it al-
lows us to describe classes at various abstraction levels, using specification
statements along with ordinary executable statements. The notion of an
abstract class, specifying behaviour common to its subclasses, can be fully
elaborated in this formalization, since the state of class instances can be
given using abstract mathematical constructions, like sets and sequences,
and class methods can be described as nondeterministic statements, ab-
stractly but precisely specifying the intended behaviour. The versatility of
the specification language that we use permits treating specifications and
implementations in a uniform manner considering implementations to be
just deterministic specifications.

The expressiveness of higher-order logic, which is the formal basis of the

refinement calculus, allows us to define relations between classes, such as
class refinement, entirely within logic. Reasoning about these relations can,
therefore, be carried out completely formally. The detailed elaboration of
our formalization permits mechanized reasoning and mechanical verification,
because, being so precisely defined, every concept can be formalized within
a theorem proving environment such as HOL [18] or PVS [35].

2 Refinement Calculus Basics

We formalize objects, classes, and relationships between them in the refine-
ment calculus, which is used for reasoning about correctness and refinement
of imperative programs. Let us briefly introduce the main concepts of this
formalism.

2.1 Predicates, Relations, and Predicate Transformers

A program state with components is modelled by a tuple of values, and a
set of states (type) X is a product space, ¥ =31 X ... X X,,.

A predicate over ¥ is a boolean function p : ¥ — Bool which assigns a
truth value to each state. The set of predicates on ¥ is denoted PX. The
entailment ordering on predicates is defined by pointwise extension. For
p,q : PX, p entails g, written p C ¢, is defined as follows:

pCq = (Vo:X po=qo)

Conjunction N and disjunction U of (similarly-typed) predicates are also
defined pointwise.

A relation from 3 to I is a function of type X — PI' that maps each state
o to a predicate on I'. We write ¥ < I' to denote a set of all relations from
> to I'. This view of relations is isomorphic to viewing them as predicates
on the Cartesian space X xI'. A function f : ¥ — I' can always be lifted to a
(deterministic) relation | f | : ¥ <> I'. Functional and relational compositions
are defined in a standard way.

A predicate transformer is a function S : PI' — PX from predicates to
predicates. We write

Y—I = PI' - PX

to denote a set of all predicate transformers from 3 to I'. The refinement
ordering on predicate transformers is defined by pointwise extension from
predicates. For ST : ¥ +— I, S is refined by T, written S T T, is defined
as follows:

SCT = (WVg:PI'-Sq C Ty

Product operators combine predicates, functions, relations, and predi-
cate transformers by forming Cartesian products of their state spaces. For

example, a product P x @ of two relations P : X1 <> 'y and Q : o <> I'g is
a relation of type (X1 x X3) «» (I'y x I'g) defined by

(P xQ)(01,02) (11,72) = Porm A Qo2

For predicate transformers S; : ¥; — I'1 and Sy : Yo — [I'g, their
product S7 x Sy is a predicate transformer of type X1 X Yo +— I'1 x I'g
whose execution has the same effect as simultaneous execution of S; and
Sy. In addition to many other useful properties, presented, e.g., in [7, 9],
the product operator preserves refinement:

SIC ST A Sy Sy, = (S1x89)C (5] xS

For modelling subtype polymorphism and dynamic binding we employ
sum types. The sum or disjoint union of two types X and I' is written X+ 1.
The types X and I' are called base types of the sum in this case. Associated
with the sum types, are the injection functions which map elements of the
base type to elements of the summation

t1:2—X+7T to: I' =X 4+7T

and projection relations which relate elements of the summation with ele-
ments of its base types

m:u+1T <X mg: X+ T

The projection is the inverse of the injection, so that L= |4, where
| 11| is the injection function lifted to a relation. Since any element of 3 +T°
comes either from Y or from I', but not both, the ranges of the injections
ran t1 and ran v partition X4I". For ¢ : X+1T', the projection 71 will relate it
to a unique o’ : ¥ only if 0 € ran ¢, and similarly for 9. Sum types, as well
as product types, associate to the right, so that X1 +39+Y3 = 31+ (X2+X3).

We define the type X to be a subtype of ¥/, written ¥ <: ¥/, if ¥ = ¥/,
or ¥ <: X where ¥ = X| + ...+ 3% and i € {1,...,n}. For example,
Y <: ¥+ Y and, of course, ¥ + ¥/ <: ¥ + Y. The subtype relation
is reflexive, transitive, and antisymmetric. For any ¥ and Y’ such that
¥ <: Y/, we can construct the corresponding injection function ¢y, : ¥ — X/
and projection relation 7y; : ¥/ <+ ¥ in a straightforward way.

2.2 Specification Language

The language used in the refinement calculus includes executable statements
along with (abstract) specification statements. Every statement has a pre-
cise mathematical meaning as a monotonic predicate transformer. A state-
ment with initial state in 3> and final state in I' determines a monotonic
predicate transformer S : ¥ +— I’ that maps any postcondition ¢ : PI' to
the weakest precondition p : P such that the statement is guaranteed to

terminate in a final state satisfying ¢ whenever the initial state satisfies p.
A statement need not have identical initial and final state spaces, though
if it does, we write S : Z(X) instead of S : ¥ +— ¥ for the corresponding
predicate transformer. Following an established tradition, we will from now
on identify statements with the monotonic predicate transformers that they
determine in this manner.

The total correctness assertion p {| S|} ¢ is said to hold if execution of
the statement S establishes the postcondition ¢ when started in the set of
states p. The pair of state predicates (p,q) is usually referred to as the
pre- and post-condition specification of the statement S. Formally, the total
correctness assertion p { S|} ¢ is defined to be p C S ¢. The refinement
ordering on predicate transformers models the notion of total-correctness
preserving program refinement. For statements S and T, the relation S C T
holds if and only if T satisfies any specification satisfied by S.

SCT = (Vpq-p{Sha = p{T}q

Predicate transformers form a complete lattice under the refinement or-
dering. The bottom element is the predicate transformer abort that maps
each postcondition to the identically false predicate false, and the top ele-
ment is the predicate transformer magic that maps each postcondition to
the identically true predicate true. We know nothing about how abort is
executed and it is never guaranteed to terminate. The magic statement
is miraculous since it is always guaranteed to establish any postcondition;
as such, magic is the opposite of the abortion and is not considered to be
an error. Intuitively, magic can be understood as an infinite wait state-
ment, and, although not directly implementable, it serves as a convenient
abstraction in manipulating program statements.

Conjunction M and disjunction U of (similarly-typed) predicate trans-
formers are defined pointwise, e.g.,

(l_liEI-Si)q = (ﬁiEI-Siq)

Both conjunction and disjunction of predicate transformers model nondeter-
ministic choice among executing either of .5;. Conjunction models demonic
nondeterministic choice in the sense that nondeterminism is uncontrollable
and each alternative must establish the postcondition. Disjunction, on the
other hand, models angelic nondeterminism, where the choice between al-
ternatives is free and aimed at establishing the postcondition.

Sequential composition of program statements is modelled by functional
composition of predicate transformers and the program statement skip is
modelled by the identity predicate transformer:

(S;T)q = S(Tq)
skipg = ¢

Given a function f : ¥ — I' and a relation P : ¥ < I, the functional
update (f) : ¥ — T, the angelic update {P} : ¥ — TI', and the demonic
update [P] : ¥+ T" are defined by

(flac = q(fo)
{Ptqo = (@y:T-Poy A q7)
[Plgo = (W:T-Poy = qv)

The functional update applies the function f to the state o to yield the new
state f 0. When started in a state o, {P} angelically chooses a new state
v such that P o v holds, while [P] demonically chooses a new state v such
that P o 7 holds. If no such state exists, then {P} aborts, whereas [P]
behaves as magic. For the identity function id and the identity relation Id,
all of (id), {Id}, and [Id] behave as skip.

Following [9], we use the notions of assignments, program variables, and
variable declarations based on a simple syntactic extension to the typed
lambda calculus. For a function (Au - ¢) which replaces the old state u with
the new state t, changing some components x1, . .., Z,, of u while leaving the
others unchanged, the functional assignment describing such a state change
is defined by

(Au - 21, T =ty tm) = (A ulxy, g =t E])

For a relation (Au - Au’ - b), which using the set notation could also
be written as (Au - {u'|b}), changing a component z of state u to some 2’
related to x via a boolean expression b, the relational assignment is defined

by
Au - x:=2"1b) = (M- {u[z :=2]|b})

As such, the notation for both functional and relational assignments is
a convenient syntactic abbreviation for the corresponding lambda term de-
scribing a certain state change. Unfortunately, lambda terms do not main-
tain consistent naming of state components, due to the possibility of a-
conversion of bound variables. To enforce naming consistency, we use the
program variable notation, writing, e.g., (var z,y - (x := z+y); (y :=0)) to
express that each function term is to be understood as a lambda abstraction
over the bound variables z, y:

(var z,y - (z:=z+y);(y:=0)) =
Az,y -z :=z+vy);(A\x,y - y:=0)

Ordinary program statements may be modelled using the basic predicate
transformers and operators presented above, using the program variable no-
tation. For example, the (multiple) assignment statement may be modelled
by the functional update:

(var u - o1, ..., Ty =11, ..., tym) = (M- T1, .00 Ty =11, 0, b))

Our specification language includes specification statements. The de-
monic assignment and the angelic assignment are modelled by the demonic
and the angelic updates respectively:

[var u - z:=2'|b] = [\u-z:=2a"|b
{varu - z:=2'|b} = {du-xz:=2'|b}

Intuitively, the demonic assignment expresses an uncontrollable nondeter-
ministic choice in selecting a new value ' satisfying b, whereas the angelic
assignment expresses a free choice. The angelic assignment can, e.g., be
understood as a request to the user to supply a new value.

Our specification language also includes the assertion and the assumption
statements, written {b} and [b] respectively, where b is a predicate stating
a condition on program variables. Both the assertion and the assumption
behave as skip if b is satisfied; otherwise, the assertion aborts, whereas the
assumption behaves as magic.

The conditional statement is defined by the demonic choice of guarded
alternatives or the angelic choice of asserted alternatives:

if g then Sy else So fi = [g]; 51 M [g];S2 = {g};51 U {—g};So

Iteration is defined as the least fixpoint of a function on predicate trans-
formers with respect to the refinement ordering:

while g do S od = (uX - if g then S; X else skip fi)

A variant of iteration, the iterative choice [10, 8], allows the user to choose
repeatedly an alternative that is enabled and have it executed until the user
decides to stop:

dogy = S510...0 gn::Sp,od =
(uX - {gn s S X UL .. U{gn}; Sn; X U skip)

We will abbreviate g1 :: S1{ ... 0 gn 2 Sp by 0119 = Si.

Finally, the language supports blocks with local variables. Introduction
and removal of new variables are modelled by demonic and functional up-
dates respectively:

enterp = [Mu- ANz,v) - p(z,u) A u=1]
exit = (Mx,u) - u)

Here p is the predicate initializing the new variables. We can define a block
introducing a local variable z initialized according to a boolean expression
b as follows:

~

(var u - begin (var z,u - b); S;end)
(var u - enter (var x,u - b); S;exit)

When the variable declaration is clear from the context, we will for simplicity
write just begin var x - b; S; end.

The program variable declaration can be propagated outside statements
and distributed through sequential composition, so that, e.g.,

(varu - [x:=2' |2’ > 0;y:=x) =
[var u - x:=2' |2’ > 0];(var u - y := x)
When the variable declaration is clear from the context, we will omit it.

As suggested in [10], we can define an interactive executable language,
where a statement is built by the following syntax:

S == abort (abortion)
| skip (skip)
| {b} (assertion)
| Tlyenos T =11, .. tm (assignment)
| {z:=2"|b} (angelic assignment)
| S1; S (sequential composition)
| if g then S; else S, fi (conditional statement)
| while g do S od (iteration)
| do g1 :: 510 ... 0 gn 2 S, od (iterative choice)
| begin var z - b; S;end (block with local variables)

When extended with miraculous statements, this executable language
becomes a general specification language:

S u=
| magic (magic)
| [0] (assumption)
| [z :=2'|b] (demonic assignment)

In the next section we explain how to extend this language with object-
oriented constructs.

2.3 Data Refinement

Data refinement is a general technique by which one can change the state
space in a refinement. For statements S : Z(X) and " : 2(X'),let R: ¥/ < X
be a relation between the state spaces ¥ and X’. According to [6], the
statement S is said to be data refined by S’ via R, denoted S Cgr 9’, if

{R}; S C S5 {R}

This notion of data refinement is the standard one, often referred to as for-
ward data refinement or downward simulation. Alternative and equivalent
characterizations of data refinement using the inverse relation R~! are then

S;[R°Y C [RT];5 S C [RY;5;{R} {R};S;[R°Y1 C ¢

These characterizations follow from the fact that { R} and [R!] form a Ga-
lois connection, i.e. {R};[R™!] C skip and skip = [R™!];{R}. Further

on we will abbreviate {R}; S;[R™!] by S| R and [R™1]; S";{R} by S'T R.
The refinement calculus provides rules for transforming more abstract pro-
gram structures into more concrete ones based on the notion of refinement
of predicate transformers presented above. A large collection of algorithmic
and data refinement rules is given, for instance, in [10, 32]. In the Appendix,
we present some of these rules, used in proofs of theorems and lemmas in
this paper.

3 Modelling Object-Oriented Constructs

We focus on modelling class-based statically-typed object-oriented languages,
which form the mainstream of object-oriented programming. Accordingly,
we take a view that objects are instances of classes. A class describes objects
with similar behaviour through specifying their interface. The interface rep-
resents signatures of object methods, i.e. the method name and the types of
value and result parameters. For simplicity, we consider all object attributes
as private or hidden, and all methods as public or visible to clients of the
object. We consider an object type to be the type of object attributes having
an additional unique global identifier distinguishing this object type from
the others. A class can be given by the following declaration:

C = class
var attry : Xq,...,attr, 1 Xpn

C(val Zo : Fo) = K,
M@thl (val Iy I‘l,res Y1 Al) = Ml,

Meth,, (val x,, : Ty, res y, : A,) = M,
end

This class specifies the interface Meth; (val: T'j,res: Ay),..., Meth, (val:
Iy,res: A,), where I'; and A; are the types of value and result parameters
respectively. A method may be parameterless, with both I'; and A; being
the unit type (), or may have only value or only result parameters.

The class C describes (possibly abstract) attributes, specifies the way the
objects are created, and gives a (possibly nondeterministic) specification for
each method. Class attributes (attry,...,attr,,) have the corresponding
types X1 through X,,. Apart from the declared attributes, every class has
an implicit constant attribute type : String which contains the name of the
object type specified by this class. This constant identifier is unique in every
class. We will use an identifier self for the tuple (attry,...,attry,, type).
The type of self is then ¥ = X; x ... X X, X String. We impose a
non-recursiveness restriction on ¥ so that none of 3; is equal to ». This
restriction allows us to stay within the simple-typed lambda calculus, and is

not a major limitation, as pointers introduced in Sec. 3.3 allow (indirectly)
recursive types to be modelled.

A class constructor is used to instantiate objects and has the same name
as the class. Due to the fact that the constructor concerns object creation
rather than object functionality, it is associated with the class rather than
with the specified interface. Semantically, the constructor is equivalent to a
stand-alone global procedure which is associated with the class for encapsu-
lation reasons. The statement K : I'g — X x I'g, representing the body of
the constructor, introduces the attributes into the state space and initializes
them using the value parameter(s) x¢ : I'o. Methods Meth; through Meth,,,
specified by bodies My, ..., M,, operate on the attributes and realize the ob-
ject functionality. Every statement M; is, in general, of type Z(X x I'; x A;).
The identifier self acts in this model as an implicit result parameter of the
constructor and an implicit variable parameter of the methods.

Being declared as such, the class C is a tuple (K, My,..., M,). Further
on we will refer to K as the constructor and to My, ..., M, as the methods,
unless stated otherwise. The object type specified by a class can always be
extracted from the class and we do not need to declare it explicitly. We use
7(C) to denote the type of objects generated by the class C; as such, 7(C)
is just another name for X.

3.1 Object Instantiation and Method Invocations

Initialization of a new variable ¢ of object type 7(C') involves invoking the
corresponding class constructor:

create var c¢.C(e) = enter (var zo,u - 9 = e); K x skip;
enter (var c, (self,xg),u - ¢ = self); Swap;
exit
where Swap = (A\z,y,z - y,x,z). A variable zg : T'y is first entered into
the state space and initialized with the value of e. Then the constructor
K is “injected” into the global state space, skipping on the global state
component u. The next statement enters a variable ¢ and initializes it to
the value of the state component self. The state rearranging Swap makes
the pair (self,zg) the first state component before exiting it from the block.

Naturally, a variable of an object type initialized in this way can be local to
a block:

create var c.C(e); S;end = create var c.C(e); S; exit

Invocation of a method Meth;(val z; : T';,res y; : A;) on an object ¢
instantiated by class C' is modelled by
(var c,u - c.Meth; (g;,d;)) = begin (var (self,z;,y;),c,u-
self =c A\ x; = gi);
M; x skip;c, d; := self , y;;
end

10

where u : ® are global variables including d; : A;, and ¢; : I'; is some
expression.

3.2 Modelling Object Clients

A client program using an object ¢ : 7(C') does so by invoking its methods.
Every time a client has a choice of which method to choose for execution. In
general, each option is preceded with an assertion which determines whether
the option is enabled in a particular state. While at least one of the asser-
tions holds, the client may repeatedly choose a particular option which is
enabled and have it executed. The client decides on its own when it is willing
to stop choosing options. Such an iterative choice of method invocations,
followed by arbitrary statements not affecting the object directly, describes
all the actions the client program might undertake:

(var c¢,u - begin var [- b;do (;,q; :: c.Meth;(g;,d;); L; od;end)

Here u : ® are global variables including d;, [: A are some local variables
initialized according to b, predicates q; ... g, are the asserted conditions on
the state, and statements L; through L, are arbitrary. The initialization
b, the assertions ¢ ...q,, and the statements Lq,..., L, do not refer to c,
which is justified by the assumption that the object state is encapsulated.
Therefore, ¢ is not free in b, every g; is of the form ¢, x true x ¢, with ¢, : PA
and ¢/ : P®, and every L; is of the form L} x skip x LY, with L : Z(A) and
L7 : Z(®).

Note that we do not allow clients to enquire objects about their types,
classes, attribute and method names. Although sometimes useful, such in-
trospection facilities are generally regarded as unsafe. Also, a client cannot
copy an object directly, but only through invoking a Copy method if one is
supplied in the interface of the corresponding object.

Objects can, of course, be their own clients, and any method of class C'
can invoke other methods of ', including itself. The most general behaviour
of a method Meth;(val z; : I'j,res y; : A;) can therefore be described by

(var self,xj,y; -
begin var [- b;do (' ,q; :: self.Meth;(gi,d;); L; od;end)

where self is free in b, all ¢; can directly access self, and all L; can di-
rectly access and modify it. For example, a method self-calling itself is an
instance of this general definition. The meaning of such a recursive method
is given by the least fixpoint of the corresponding function with respect to
the refinement ordering.

3.3 Modelling Dynamic Objects

Following [10], we model pointers to class instances as indices of an array of
these class instances. Natural numbers can be used as the index set of such

11

an array, and we can declare a program variable heap to contain the whole
dynamic data structure:

var heap : array Nat of 7(C)

The type of pointers to instances of class C' can then simply be defined as
the type of natural numbers. The index value 0 can be used as a nil pointer.
New pointer (index) values can be generated dynamically, on demand, by
keeping a separate counter new for the next unused index:

type pointer to 7(C') = Nat;
const nil : pointer to 7(C) = 0;
var new : pointer to 7(C) := 1;

There is a separate heap for each object type. Dynamic creation of an
object of type 7(C) and association of a pointer p : pointer to 7(C) with
this object are modelled as follows:

p:=new C(e) = p,new := new, new + 1;
create var c.C(e); heap [p] := c;end

To keep the array of class instances implicit, the notation p7 is used for
the access operation heap [p], so that p:= e stands for the update oper-
ation heap [p] := e, and pT.Meth;(g;,d;) stands for the method invocation
heap [p].Meth;(gi, d;).

3.4 Example

As an example of class specifications consider a text-editing application in
which a text document may be viewed and possibly changed in several dif-
ferent windows. Whenever the text is changed in any of the windows in re-
sponse to, e.g., user actions, all the other windows displaying the same text
are notified of this change and updated to achieve consistency in presenting
the data. We specify these interactions in Fig. 1. Views are responsible for
presenting the textual data in various windows and providing operations for
changing it. A text editor can open a new text document and display it
in several different windows. For this, it needs to invoke the constructor
TextDoc, create View instances using the corresponding constructor, with
the pointer to the newly-created text document passed as an argument, and
finally attach these View instances to the text document by invoking the
method AddView. When one of the views is asked to add some text to the
existing one, the method AddText is invoked. This method forwards the
request to the method AddText of the current view’s doc attribute. After
the new text is concatenated to the old one, all views on the document are
notified of the change and asked to update their state.

A point to notice here is that such a specification, although being rather
abstract, precisely documents the behaviour of the involved parties without

12

TextDoc = class View = class

var text : String, var trt : String,
views : set of pointer to 7(View) doc : pointer to 7(TextDoc)
TextDoc (val ¢ : String) = View (val d : pointer to
enter var text, views - 7(TextDoc)) =
text =t A views = {}, {d # nil};
enter var tzt, doc - doc = d;
AddView (val v : pointer to 7(View)) = doc 1. GetText(tat),

{v # nil}; views := views U {v},
AddText (val t : String) =
AddText (val t : String) = docT.AddText(t),
text := text t; self.Notify(),
Update () = doc?.GetText(txt)
GetText (res t : String) = t:= text, end

Notify () =
begin var (vs,v) - vs = views;
while vs # {} do
[v:i=2"|0v €ws];
vs :=wvs \ v;v1.Update()
od;
end
end

Figure 1: Example of class specification

resorting to verbal descriptions. The necessity for a precise documentation
was pointed out in [17] when discussing the Observer pattern which our
example follows. In particular, it was advised to document which Subject
(in our case TextDoc) methods trigger modifications. Also, the place of the
Notify method invocation can be fixed in the specification. We chose to call
it from the state-modifying AddText method of TextDoc after the change.
Alternatively, this method could be called from AddText of View after in-
voking the corresponding method on the doc attribute. The advantages and
disadvantages of both approaches are discussed in [17], we only would like
to note that fixing the invocation of this method in the specification helps
avoiding the problem of calling this method at inappropriate times or, even
worse, not calling it at all from the overridden methods in subclasses of
TextDoc and View.

3.5 Subclassing

New classes can be constructed from existing ones by inheriting some or
all of their attributes and methods, possibly overriding some attributes and

13

methods, and adding extra methods. This mechanism is known as subclass-
ing.!
A class constructed from C' by subclassing is declared as follows:

C’ = subclass of C
var attry : ¥, ...,attr; 0 X, attry ¥, attry, 2 8

C’ (val xp, :) = K,
Methy (val 21 : T'y,res yp : Ay) = M,

Methy, (val zy, : T, res yi, : Ap) = M,
NM@thl (val Uy - <I>1,res V1 . ‘111) = Nl,

NMethy, (val uy, : ®p,res v, : ¥,) = N,

A subclass may have attributes different from those of its superclass, inherit-
ing attry, ..., attr; and overriding attriy1, ..., attry, by attry, ... attr,. The
class constructor is not inherited from the superclass, but rather redefined in
every subclass. The statements Mj, ..., M, override the corresponding def-
initions of Methy, ..., Meth; given in C. The methods NMethy, ..., NMeth,
with bodies given by Ni,..., N, are new.

When a subclass C’ inherits all attributes of its superclass C' with-
out overriding them, methods defined in the superclass can be invoked
from methods M, ..., M[,Ni,..., N, using a special identifier super. For
example, a method Meth; (val z; : T';,res y; : A;) defined in C by M;
can be super-called inside any of Mj,...,M],Ny,...,N, by writing
super.Meth;(g;, d;), where g; and d; are some value and result arguments re-
spectively. Such a super-call corresponds to executing statement M; x skip,
with skip operating on the additional attributes of C’. Methods of the
superclass can also be inherited as a whole. In this case their redefinition
in the subclass corresponds to super-calling them, passing value and result
parameters as arguments. Following the standard convention, we omit such
inherited methods from the subclass declaration.

We view subclassing as a syntactic relation on classes, since subclasses
are distinguished by an appropriate declaration. Subclassing implies confor-
mance of interfaces, meaning that the interface specified by a subclass is an
extension of the interface specified by the superclass, having at least all the
method signatures of the latter and possibly introducing new ones. In an
extended interface the inherited method signatures can be modified to allow
more flexibility in polymorphic object substitutability. In the next section
we explain how this can be achieved.

We prefer the term subclassing to implementation inheritance because the latter lit-
erally means reuse of existing methods and does not, as such, suggest the possibility of
method overriding.

14

3.6 Modelling Subtype Polymorphism and Dynamic Binding

To model subtype polymorphism, we allow object types to be sum types.
The idea is to group together an object type of a certain class and object
types of all its subclasses, to form a polymorphic object type. A variable of
such a sum type can be instantiated to any base type of the summation, in
other words, to any object instantiated by a class whose object type is the
base type of the summation.

A sum of object types, denoted by 7(C)T is defined to be such that
its base types are 7(C') and all the object types of subclasses of C. For
example, if D is the only subclass of C' with the object type 7(D), then
7(C)* = 7(C) + 7(D), and we have that

7(C) <: 7(C)* and 7(D) <: 7(C) "

The diagram in Fig. 2 illustrates the relationship between subclassing
and subtyping hierarchies. The subclassing hierarchy on the left-hand side
corresponds to the subtyping hierarchy on the right-hand side, with the
arrows meaning “is the type of instances of”.

Suppose a method Meth; (val x; : I';,res y; : A;) is specified in both
C and D. An invocation of this method on an object p of type 7(C)7 is
modelled as a choice between two alternatives each calling Meth;, but one
assuming that p is instantiated by class C' and the other assuming instanti-
ation by class D:

p.Methi(gi, dz) =

{p € ran .o} {p € ran v;(p)};

begin var ¢ - T () p ¢ begin var d - 7 (p) p d;
c.Methi(gi, di); (] d.Methi(gi, di);
D= lr(0) G P = tr(D) s

end end

When p is an instance of C, the assertion {p € ran i} skips, and the
method Meth; is invoked on the object ¢ corresponding to the projection
mrc) of p. Afterwards, the value of c is injected to be of type ()t
and used to update p. The invocation c.Meth;(g;,d;) is modelled as in

Figure 2: The relationship between subclassing and subtyping hierarchies

15

Sec. 3.1. The assertion that p is an instance of D is false, aborting the
second alternative of the angelic choice, since for all predicates ¢, {q} =
if ¢ then skip else abort fi, and for all statements S, abort; S = abort.
The angelic choice between the two statements is then equal to the first
alternative, since S LI abort = S. Similarly, when p is an instance of D,
the first alternative aborts, and the choice is equal to the second alternative.
As such, the choice between the alternatives is deterministic.

A polymorphic variable p : 7(C)* can be instantiated by either class C
or its subclass. In practice we occasionally would like to underspecify which
particular class instantiates p. We can express this by using a demonic choice
of possible instantiations. We will write p.C'"(e), where e is any expression
of type I'g, for this kind of polymorphic instantiation:

~

create var p.Ct(e)

create var c.C(e); create var d.D(e);

begin var p - 7o) p ¢ - begin var p - 7 (py p d;
Swap; Swap;

end end

Intuitively, the demonic choice can be interpreted as underspecification,
which would eventually be eliminated in a refinement. Note that since the
demonic choice is refined by either alternative, we have that any concrete
instantiation refines the polymorphic instantiation. Modelling of both the
invocation of a method on a polymorphic variable and the instantiation
of such a variable generalizes to class hierarchies with several classes in a
straightforward way, recursively.

Being equipped with subtype polymorphism, we can allow overriding
methods in a subclass to be generalized on the type of value parameters
or specialized on the type of result parameters. In the first case this type
redefinition is contravariant and in the second covariant.? When one in-
terface is the same as the other, except that it can redefine contravariantly
value parameter types and covariantly result parameter types, this interface
conforms to the original one. For example, Meth; (val z; : I';,res y; : A;)
specified in class C' could be redefined in its subclass D so that the value

/

parameters are of type I';, such that I'; <: I';, and the result parameters are

of type Al, such that A} <: A;. An invocation of such a method would then
need to adjust the input arguments and the result using the correspond-
ing projections and injections. For example, invocation of Meth; (val 2 :
I, res y, : Al) specified by M/ in class D on an object d : 7(D) with input

argument g; : I'; and result argument d; : A; is modelled by

d.Meth; (gi,d;) = begin var self,z.y} - self =d Nz} =1, g;;
M x skip; d,d; := self ,iar Yl
end

2For a more extensive explanation of covariance and contravariance see, e.g., [1].

16

Here the value parameter x is initialized with the value of the input argu-
ment injected into the type I',. Similarly, the value of the method result v,
being of type Al, cannot be directly assigned to the variable d; : A; and is
injected into the type Al using the corresponding injection function.

Subtype polymorphism extends in a natural way to pointer types. A
sum of pointer types pointer to 7(C)" is defined to be such that its base
types are pointer to 7(C) and all the pointer types to subclasses of C. A
variable of such a polymorphic pointer type cannot be instantiated using
new, because the latter is defined to generate a new index in some array of
class instances associated with a base pointer type. A polymorphic pointer
variable can, however, be assigned a value of an existing index to one of the
arrays heapc, heape,, ..., heape, , which keep instances of C' and instances
of its subclasses C1, . .., C),. Before assignment, this pointer value should be
injected into the corresponding sum type.

Dynamic binding of self-referential methods can occur only when a sub-
class inherits all attributes of its superclass without overriding them. Essen-
tially, a super-call to a method self-calling other methods of the same class
resolves the latter with the definitions of the self-called methods in the class
which originated the super-call.

Suppose that class C’ inherits all attributes of its superclass C' and has
some new attributes, so that the first projection of self : ¥ x ¥/ in C’ is
equal to self : ¥ in C. The general behaviour of a self-referential method
Methj(val z; : T'j,res y; : A;) in C can be described by

(var self,zj,y; -
begin var [- b;do (' ,q; :: self.Meth;(g;,d;); L; od;end)

The input and result arguments g;,d; are among the variables self,x;,y;
and [.

Let the behaviour of this method be given in C’ by super.Meth;(x;,y;).
Then the super-call is defined to invoke the self-called methods on the cur-
rent self object:

(var self,xj,y; - super.Meth;(z;,y;)) =
(var self,z;,y;- begin (p) (var [, self,z;,y; - b);
do
" {p) qi == self Methi(gi,d;); Li | | p|
od;
end)

where p = (Az, (y,9'),2 - x,y,2) is the projection function removing the
extra attribute of self. Applying the functional update (p) to the predicates
(var [, self,x;,y; - b) and q1, . .., ¢n, and wrapping the statements L1, ..., Ly,
in the relation |p|, coerces them to operate on the extended state space
A x (2 x¥)xT; xAj. As such, this is a technicality not changing the

17

meaning of the corresponding statements. Self-calls to Methq, ..., Meth,
are resolved with the definitions of these methods given in C’.

As an example consider specifications of Bag and CountingBag presented
in Fig.3. The subclass CountingBag inherits the only attribute of its su-
perclass Bag, representing a bag of characters, and adds a counter of bag
elements. The method Add overrides the corresponding method of the su-
perclass by incrementing the counter and then super-calling Add of Bag.

The method AddAll joins two bags by self-calling Add. The self-call in
the definition of AddAll in Bag is resolved by substituting the body of Add
as defined in Bag:

Bag :: AddAll(val nb : bag of Char) = while nb# || do
begin var ¢ - ¢ € nb;
b:=bU|c|;
nb :=nb— |c|;
end
od

The definition of the method AddAll in CountingBag exemplifies dy-
namic binding of self-referential methods. First of all, inheriting this method
from Bag corresponds to super-calling it:

CountingBayg :: AddAll(val nb : bag of Char) = super.AddAll(nb)

According to the definition of a super-called method involving self-calls, we

Bag = class CountingBag = subclass of Bag
var b : bag of Char var b : bag of Char,n : Nat
Bag() = enter var b - b= ||, CountingBag() =

enter var byn - b= || An =0,
Add(val ¢ : Char) =
n:=n+ 1; super.Add(c)
end

Add(val ¢: Char) = b:=bU ||,

AddAll(val nb : bag of Char) =
while nb # || do
begin var ¢ - ¢ € nb;
self .Add(c);nb :=nb — |c|;
end
od
end

Figure 3: Example of subclassing with dynamic binding of self-referential
methods

18

then have that for self = (b,n), super.AddAll(nb) is equal to

(var (b,n),nb - while (p) (var b,nb - nb # []) do
begin (p) (var ¢,b,nb - ¢ € nb);
self .Add(c);
(var ¢,b,nb - nb:=nb—|c|)] | pl;
end
od)

which, using the definitions of p, |, and functional update, is equal to

(var (b,n),nb - while (var (b,n),nb - nb# ||) do
begin (var ¢, (b,n),nb - ¢ € nb);
self .Add(c);
(var ¢, (b,n),nb - nb:=nb—|c|);
end
od)

The self-call, being on self = (b,n), is resolved with the definition of Add in
CountingBayg.

4 Class Refinement

When a subclass overrides some methods of its superclass, there are no
guarantees that its instances will deliver the same or refined behaviour as
the instances of the superclass. Unrestricted method overriding in a subclass
can lead to arbitrary behaviour of its instances. When used in a superclass
context, such subclass instances can invalidate their clients. To avoid such
problems, we would like to ensure that whenever C’ is subclassed from C,
clients using objects instantiated by C' can safely use objects instantiated by
C’ instead. First we consider class refinement between two classes having
the same number of methods and then extend the definition to account for
additional methods defined in a subclass.

4.1 Class Refinement Without New Methods
Suppose classes C' and C’ specify interfaces

Methy (val :T'y,res : Ay),..., Meth, (val : T, res : A,) and
Methy (val : T, res : A)),..., Methy (val : T} res : Al)

respectively. Let C' and C’ be modelled by tuples (K, M, ..., M,) and
(K',M{,...,M]), where K : Ty — X xT'g and K':T(+— X' x I'{j are the
class constructors, and all M; : E(3 x I'; x A;) and M} : Z(X' x I, x Al) are
the corresponding methods. The value parameter types of the constructors

and the methods in C’ are either the same or contravariant, so that I'y <: I,

19

Figure 4: Constructor refinement a) and method refinement b)

and I'; <: I}, and the result parameter types of its methods are either the
same or covariant, A} <: A;.

Let R : ¥ < X be a relation coercing attribute types of C’ to those
of C, so that R is of the form (Ac¢ - {a|R ¢ a}). The refinement of class
constructors K and K’ with respect to R is defined as follows:

KCrK' = {mr,;K C K;{Rxmr,} (constructor refinement)

where 7p, is the projection relation coercing I'y to I'g. The commuting
diagram in Fig. 4 (a) illustrates constructor refinement.

The refinement of all corresponding methods M; and M/ with respect to
the relation R is defined by

M;CrM] = M;|(Rx7p, X |iar]) & M; (method refinement)

where 7, : I} <> T'; projects the corresponding value parameters, and |ta/]
Al — A; injects the corresponding result parameters. Obviously, when
I'; = I, the projection relation 7r, is the identity relation Id. The same
holds when A; = A/, namely, |tia/| = Id. The commuting diagram in
Fig.4 (b) illustrates method refinement.

Definition 1 For classes C = (K, My, ..., M,) and C' = (K', M1, ..., M]),
class refinement C C C' is defined as follows:

CCC = AR-KCrK' A(Vi|1<i<n - M;Cg M)

The class refinement relation is reflexive and transitive. This definition
of class refinement is also a proof rule allowing us to check for any two
given classes whether they are in refinement. However, from this definition
alone we cannot make any conclusions about the behaviour of clients using
instances of classes that are in refinement. Before presenting a theorem
which relates class refinement to object substitutability in clients, let us
introduce two useful lemmas.

Lemma 1 Let classes C and C' have constructors K : To— X x Ty and
K':T{— X' xTf with Ty <: T4. In a global state u : ®, for a relation
R:Y « %, a statement S : Z(X x @), and a constructor input argument
e: Iy,

20

K LCp K =
create var c.C(e); S;end C
create var ¢.C'(e); S| (R x Id);end

Lemma 2 Let classes C' and C' have methods M; : Z(X x T'; x A;) and
M} E(X x T} x AL) with T; <: T and A} <: A;. In a global state u : ® in-
cluding a variable d; : A;, for a relation R : ¥ < X and an input argument
gi: Fi)

(var c,u - c.Meth;(gi,d;)) | (R x Id) C
(var d,u - d.Meth;(g;,d;))

The following theorem proves that clients using objects instantiated by
some class are refined when using objects instantiated by its refinement.

Theorem 1 For classes C and C’', a program K expressible as an iterative
choice of invocations of C' methods, and a constructor input argument e : Ty,

cCcd =
create var c.C(e); K [c];end C
create var ¢.C’(e); K [¢];end

Proofs of Lemma 1, Lemma 2, and Theorem 1 are presented in the
Appendix. Declaring one class as a subclass of another raises the proof obli-
gation that the class refinement relation holds between these classes. This
is, in a way, a semantic constraint that we impose on subclassing to ensure
that behaviour of subclasses conforms to the behaviour of their superclasses
and that subclass instances can be substituted for superclass instances in all
clients.

For lack of space, we cannot present here an example of proving class
refinement in practice. The interested reader can refer to [30] presenting a
proof of class refinement for specifications of Collection and List interfaces
of the Java Collections Framework which is a part of the standard JDK2.0.

4.2 The Problem Introduced by New Methods

As was pointed out in [27] the effects of new methods become visible in
the presence of subsumption (subtype aliasing) as well as in the general
computational environment that allows sharing of objects by multiple users.
For example, when a client is working with an object ¢’ of a subclass C” of C,
it may freely call new methods defined in C’. Other clients of ¢’ considering
it as an instance of the polymorphic type 7(C)* can only anticipate changes
to ¢ specified by the methods of the class C. New methods specifying some
“unexpected behaviour” could take ¢ to (what for C' is) an unreachable
state, and clients of this object considering it from the superclass perspective
would be damaged.

21

Let us consider an example illustrating this problem. Suppose that a
class Counter introduces methods Val and Inc2 which, respectively, return
the value of the counter and increment the counter by two. A subclass
Counter’ inherits these methods and, in addition, defines a method Inc1
incrementing the counter by one:

Counter = class Counter’ = subclass of Counter
var n : Nat var n : Nat
Counter () = enter var n-n =0, Counter’ () = enter var n-n =0,
Inc2() = n:=n+2, Inc1 () = n:=n+1
Val (res r : Nat) = r:=n end
end

The implicit (or the strongest) invariant established by the class con-
structor and preserved by the methods of Counter states that the predicate
FEven holds of all states reachable by objects instantiated by Counter. The
new method Incl defined in the subclass breaks this invariant. A client K
of a polymorphic object ¢ : 7(Counter)™ might assume that this invariant
holds of all states reachable by ¢ and execute some statement S relying on
the invariant:

Klc] = if (Even c.Val()) then S else abort fi

When c is instantiated by Counter, other clients in the environment of K
will only be able to call the methods defined in the class Counter which
preserve the strongest invariant. When operating in such an environment,
K will always execute S. However, when c is instantiated by Counter’, K
may also work in the environment where other clients of ¢ know about its
origin and may call the method Inc! in addition to the methods Inc2 and
Val. Suppose, for example, that there is a client K’ which sees the class
Counter’, with the new method Inc1(), and tries to increase the counter by
as little as possible:

K'le] = if (cis 7(Counter’)) then c.Inci() else c.Inc2() fi

If objects c and ¢’ are now instantiated by Counter and Counter’ respectively
and initialized to zero, executing K'[c]; K[c] equals executing S, whereas
K'[']; K[c'] aborts because the strongest invariant is broken by K'.

To avoid this and similar problems, we want to ensure that invocation
of a new method does not result in any unexpected behaviour or, in other
words, that the new method preserves the strongest invariant of its super-
class. Let us formally analyse this consistency property and the requirements
that can be imposed on new methods to enforce this property.

4.3 Ensuring New Method Consistency

Let us first define the notion of the strongest class invariant. As suggested by
its name, the strongest class invariant is the least state predicate established

22

by the class constructor and preserved by all its methods.

Definition 2 For a class C = (K, M,...,M,), a state predicate I is the
strongest class invariant if it is the invariant of C' and of all invariants of
C it is the least one:

Inv (C,I) =
true { K} I AN MVi|1<i<n- -I{M][I)A
VI - true { K[} JANNMi|1<i<n- -J{M}J)=1CJ)

Suppose now that a class C' = (K, My, ..., M,) specifies the interface
Methy (val :T'y,res : Ay),..., Meth, (val : T, res : A,)
and a class C' = (K', M{,..., M, ,Ny,...,N,) specifies the interface

Methy (val :T'y,res : Ay),..., Methy, (val : T, res : A,),
NMethy (val : ®y,res : Vq),..., NMethy, (val : ®,,res : ¥,)

For simplicity, we assume that methods Methy, ..., Meth, in C' have the
same types of value and result parameters as the corresponding methods
in C. The case when the value parameter types are contravariant and the
result parameter types are covariant is treated similarly. We can express the
meaning of an invariant I of C' on the attributes of C' as {R} I, where R is
a relation coercing the attributes of C’ to those of C. To guarantee that a
new method N; of C’ preserves the strongest class invariant of C, we then
need to prove the correctness assertion {R} I {| N; [} {R} I for I such that
Inv (C,I). By satisfying this correctness assertion, the new method of C’
preserves the set of reachable states of C. In general, preserving a coerced
invariant {R} I by a statement S’ : Z(X') is the same as preserving the
invariant I by the statement S’ coerced to operate on the state space X, as
expressed in the following lemma.

Lemma 3 For a statement S' : 2(X'), a relation R : ¥ < %, and a state
predicate I : P, we have

(RIS BARMT = T{S"TR[} T

A proof of this lemma is presented in the Appendix.

Class refinement between a class C' and a class C’ introducing new meth-
ods is given as an extension of Def. 1 requiring that every new method of
C’ preserves the strongest class invariant of C.

Definition 3 Fora classC = (K, My, ..., M,) and a class C' = (K', M1, ...
M), Ny,...,Np), class refinement C T C' is defined as follows:

cco = (ER-KERKI/\(Vi‘ISiSTL-MZ’ERMZ{)/\
(VI - Inv (C 1) = (Vi |1<j<p- - {R}I{N;[} {R}])))

23

)

As one can expect, Theorem 1, relating class refinement to object substi-
tutability in clients, holds for the extended definition of class refinement as
well. Unfortunately, verifying correctness assertions for new methods can be
difficult in practice, because the strongest invariant of a superclass cannot
always be easily calculated from its specification, e.g., in the case of recursive
method invocations. When such verification is infeasible, we could instead
verify that new methods satisfy certain restrictions such that the correct-
ness assertions hold automatically. Intuitively, a new method preserves the
strongest invariant of the superclass if it does not modify attributes at all,
or if it modifies them as the old methods could have done. More precisely,
a new method preserves the strongest invariant of the superclass in the fol-
lowing cases:

e the new method is an observer, i.e. a non-modifying method

e the subclass adds new attributes without overriding the original at-
tributes of the superclass, overridden methods modify the original at-
tributes only via supercalls, and the new method modifies only the
new attributes

e the new method is composed of calls to old methods

e the new method is a refinement of (a combination of) old methods

Note that in the last case the new method can either data refine the
old method definitions as given in the superclass, or refine the old method
definitions as given in the subclass, or be a refinement of any combination
of these.

Formally, weak iteration of a demonic choice of statements Si,..., Sy,
namely (M7, S;)*, describes all possible combinations of these statements.
Any combination of statements refines this statement, e.g.,

(M2_; S;)* T Sy; 8358951

To be consistent, a new method should data refine an arbitrary combination
of old methods prefixed by enabledness guards and intermixed with arbi-
trary statements. We require that the arbitrary statements do not update
the attributes and necessarily terminate. A statement S is guaranteed to
terminate if it can establish any postcondition from any initial state, i.e.
true = S true.

As old methods and new methods operate on different state spaces, we
first have to adjust them to operate on the common state space. Recall that
methods M; of C operate on ¥ x I'; x A;, while methods M/ of C’ operate
on ¥ x I'; x A; and new methods N; on ¥/ x ®; x ¥,;. We can construct a
common state space II including all value and result parameter types of all
methods in C’ so that

=T xA1 x ... xTpyxApx P x ¥ x...x P, x ¥,

24

Then a projection function &; : II — I'; x A;, for ¢ = 1..n, will give us the
types of value and result parameters of method M. Similarly, a projection
function &,4; : II — ®; x U;, for j = 1..p, will give us the types of value
and result parameters of method N;. We can always coerce M/ to operate
on the state space ¥/ x II using the corresponding projection function.

As methods M; of C have to operate on the attributes of C’ rather than
C, they have to be appropriately coerced using the abstraction relation
R : Y < %. The resulting statement M; | R, being of type Z(X' x T; x 4A;),
still has to be coerced to operate on the common state space ¥/ x II, using
the corresponding projection function.

Putting everything together, we can now define consistency of new meth-
ods as follows.

Definition 4 For classes C = (K, My,...,M,) and C' = (K', M{, ..., M],
Ni,...,Np), some guards ¢;, and some terminating statements K; skipping
on the attributes of C', consistency of a new method Nj, for j = 1..p, with
respect to C' and an abstraction relation R : X' < X is defined as follows:

Consistent (N;,C,R) =

begin var [- b; (M, [¢]; (skip x M; | R) | |pi|; Ki)*;end T N;

Here the local block variables [introduce the value and result parameters
of all methods M{,..., M/ and all new methods except N;, whose value
and result parameters are already present in the state. Effectively, the state
space inside the block is II' x ¥’ x ®; x U, where II' is the same as II with
®; x U; projected away. The statement skip x M; | R operates on the state
space I1"” x ¥/ x I'; x A;, where II” is the same as IT with I'; x A; projected
away. To coerce this statement to operate on the state space of the block,
which has the same state components but in a slightly different order (unless
M; and N; happen to have value and result parameters of the same types),
we wrap it in the function p; : II' x ¥’ x ®; x U; — II"” x ¥’ x T; x A;. Note
that wrappings in the state-reassociating functions p; are just technicalities
not changing the meaning of the corresponding statements.

Definition 4 allows a new method to be an arbitrary non-modifying
method refining skip, since (M7, [¢;]; (skip x M; | R) | |pi|; K;)* T skip.
No less important, it follows from Def. 4 that a new method Nj; is also
consistent if it is composed of calls to overriding methods intermixed with
arbitrary statements or refines an arbitrary composition of such calls:

Corollary 1 For classes C = (K, My,...,M,) and C' = (K',Mj,...,M],
Ni,...,Np), some guards q;, and some terminating statements K; skipping
on the attributes of C’,

(Vi|1<i<n- -MCrM)A
begin var [- b; (M, [¢;]; (skip x M]) | |pi|; K;)*;end T N; =
Consistent (N;,C, R)

25

If all new methods in a class C’ are consistent, the constructor of C' is
refined by the constructor of C’ and all old methods of C' are refined by the
corresponding methods of C’; then class refinement between C and C’ is
guaranteed to hold, as proved by the following theorem.

Theorem 2 For classes C = (K, My, ..., M,) and C' = (K', Mj,..., M/,
Ni,...,N,),

BR-KCRK' A(Mi|l1<i<n - M CpM)A
(Vj|1<j<p- Consistent (N;,C,R))) = CLCCC'

A proof of this theorem is presented in the Appendix.

5 Conclusions and Related Work

This work is based on [31], but concentrates on class refinement and its
relation to object substitutability. One of the main contributions of the
present paper is in modelling clients of class instances by an iterative choice
of method invocations. In our opinion, polymorphic substitutability of ob-
jects in clients is central to the object-oriented programming style, and, in
this respect, the ability to reason about the behaviour of object clients, and
not only objects, is very important. Our model allows us to reason formally
about the relationship between refinement on classes and substitutability of
class instances in clients. We prove that substituting instances of a refined
class for instances of the original class is refinement for the clients.

5.1 Related Work in Formalization of Object-Oriented Con-
cepts

Related work in formalization of object-oriented concepts includes [13, 33,
34, 36, 2]. William Cook and Jens Palsberg in [13] give a denotational seman-
tics of inheritance and prove its correctness with respect to an operational
“method lookup” semantics. They model dynamic binding of self-referential
methods by representing classes as functions of self-called methods and con-
structing subclasses using modifying wrappers. There are only functional
methods in their model, whereas we consider the methods modifying object
state as well.

Martin Abadi and Rustan Leino in [2] develop a logic of object-oriented
programs in the style of Hoare [20], prove its soundness and discuss com-
pleteness issues. Rather than building a new logic, we extend a logic for
reasoning about imperative programs (the refinement calculus) with defini-
tions of classes, subclassing, subtyping, and class refinement. Our extension
is conservative in the sense that it does not extend the set of theorems
over the original constants in the underlying logic. Being itself a conserva-
tive extension of higher-order logic, the refinement calculus has the syntax of

26

higher-order logic, with some syntactic sugaring, and the simple set-theoretic
semantics of higher-order logic. As the refinement calculus identifies pro-
gram statements with the monotonic predicate transformers that they de-
termine, it does not emphasize the distinction between syntax, semantics,
and proof theory that is traditional in programming logics [10].

Semantics of an imperative Oberon-like programming language with sim-
ilar specification constructs as here, also based on predicate transformers, is
defined by David Naumann in [33] and recently extended to include more
interesting and useful features in [34]. The language does not include classes
or visibility controls, references or aliasing, but goes beyond our work in sup-
porting procedure variables. Also, procedures (methods) may have global
variables in [34]. We feel that permitting class methods access and modify
global variables is discordant with the object-oriented paradigm, for method-
ological reasons, and don’t model this feature.

Emil Sekerinski [36] defines a rich object-oriented programming and spec-
ification notation by using a type system with subtyping and type parame-
ters, and also using predicate transformers. In both approaches, subtyping
is based on extensions of record types. Here we use sum types instead, as
suggested by Ralph Back and Michael Butler in [7] and further elaborated in
[31]. One motivation for moving to sum types is to avoid complications in the
typing and the logic when reasoning about record types: the simply typed
lambda calculus as the formal basis is sufficient for our purposes. Also, to
allow objects of a subclass to have different (private) attributes from those
of the superclass, hiding by existential types was used in [36]. It turned out
that, when reasoning about method calls, this leads to complications which
are not present when using the model of sum types. Leonid Mikhajlov and
Emil Sekerinski in [28] give semantics to object-oriented constructs in the
refinement calculus, modelling dynamic binding of self-referential methods
following [13] but permitting state-modifying methods as we do here. As
their formalization is tailored for studying a particular problem, namely the
fragile base class problem, they consider a limited set of object-oriented
constructs and mechanisms.

The detailed elaboration of our formalization, especially the fact that we
define all object-oriented constructs and mechanisms on the semantic level,
within the logic, rather than by syntactic definitions, opens the possibility
of mechanized reasoning and mechanical verification. An interesting recent
work by Bart Jacobs et al. in [22] reports a work in progress on building
a front-end tool for translating Java classes to higher-order logic in PVS
[35]. The authors state that “current work involves incorporation of Hoare
logic [20], via appropriate definitions and rules in PVS”, and present in
[22] a description of the tool “directly based on definitions”. We develop
a theoretic foundation for reasoning about object-oriented programs based
on the logical framework for reasoning about imperative programs. A tool
supporting verification of correctness and refinement of imperative programs

27

and known as the Refinement Calculator [23] already exists and extending it
to handling object-oriented programs based on the formalization presented
here appears to be only natural.

5.2 Related Work on Behavioural Compatibility of Objects

The general idea behind our approach and the research direction known
as behavioural subtyping is essentially the same — to develop a specifica-
tion and verification methodology for reasoning about correctness of object-
oriented programs. Our work has been to a great extent inspired by works
of Pierre America, Barbara Liskov, Jeannette Wing, Gary Leavens, and
others [4, 5, 27, 25, 26, 16]. However, our approach differs in a number
of ways. First of all, as was already mentioned in the introduction, we
consider it essential to separate decidable syntactic properties of interface
conformance or subtyping from undecidable but provable properties of be-
havioural conformance or refinement. We use classes to express (at different
abstraction levels) the behaviour of objects and class refinement to express
behavioural conformance. Here we for simplicity consider systems where
subclassing forms a basis for subtype polymorphism. However, our model of
classes, subclassing, and subtype polymorphism as well as the definition of
class refinement can be used to reason about the meaning of programs using
separate subclassing and interface inheritance hierarchies. By associating a
specification class with every interface type, we can reason about the be-
haviour of objects having this interface. All classes claiming to implement a
certain interface must refine its specification class. Subclassing in this lay-
out does not, in general, require establishing class refinement between the
superclass and the subclass.

When used in the context of separate subclassing and subtyping hier-
archies, class refinement is very similar to behavioural subtyping. Consider
a graphical representation of the corresponding settings in Fig.5. In both
cases I and I’ are certain interfaces (types) such that I’ is a syntactic sub-
type of I. In the case of behavioural subtyping in Fig.5 (a) the behaviour of
methods is specified in terms of pre- and postconditions. To verify that I’ is
a behavioural subtype of I, written I’ < I, America, Liskov, and Wing re-
quire proving that every precondition pre; is stronger than the corresponding
pre; and every postcondition post; is weaker than the corresponding post,
while Dhara and Leavens in [16] weaken the requirement for postconditions.
In addition to proving behavioural subtyping, one must also verify that the
classes C and D claiming to implement the types I and I’ respectively really
do so. America in [5] proposes a rigorous verification method that can be
used for this purpose. For verifying, e.g., that C implements I, he uses a
representation function mapping concrete states of C' to the set of abstract
states associated with I as well as a representation invariant constraining
the values of attributes in C, and requires proving that every method 7; of

28

a) type / class C b) | class S specifies / class C
{pre,} Meth,() {post,} Meth,()=T, Meth,() =S, Meth,()=T,
{pre,} Meth,() {post,} Meth,()=T, Meth ()=, Meth() =T,

type I’ class D class S’ specifies / class D
{pre'} Meth () {post’} Meth () =T, Meth,()=S', Meth () =T,
{pre’ } Meth () {post’ } Meth ()=T'. Meth () =S" Meth ()=T'.

Figure 5: Behavioural subtyping (a) and class refinement (b) in the case of
separate interface and implementation inheritance hierarchies

C preserves the representation invariant and establishes post; coerced to the
state space of C' when pre; also coerced to the state space of C' holds. Since
in [5] and other works on behavioural subtyping no formal semantics is given
to implementation constructs and mechanisms, such as, e.g., super-calls or
dynamic binding, this verification can only be done semi-formally.

Consider now the diagram (b) of Fig. 5 illustrating class refinement. First
of all, we can reason about specification classes S and S’ and implementa-
tion classes C and D in a uniform manner, and the behavioural conformance
between the participating classes is the class refinement. Since class refine-
ment is transitive, we get directly that D, implementing I’ by refining its
specification S’ also refines the specification S of I.

Class refinement can be used to verify correctness even if D happens
to be a subclass of C. Dynamic binding of self-referential methods, which
becomes possible in this case, can be resolved as described in Sec. 3.6, and
then we can prove that, e.g., S’ C D using the definition of class refinement.
With behavioural subtyping, however, it is not clear how one can prove that
a method satisfies certain pre- and postconditions in the presence of dynamic
binding of self-referential methods.

When used for reasoning about systems with unified subclassing and sub-
typing, our approach eliminates a significant amount of proof obligations as
compared to behavioural subtyping. We do not need to prove separately
that a class and its subclass implement the corresponding type and its be-
havioural subtype, all that needs to be proved is class refinement between
the subclass and the superclass.

Researchers working in the area of behavioural subtyping, e.g., Amer-
ica in [5], maintain that specifications in terms of pre- and postconditions
are more abstract and easier to understand than those in a more opera-
tional style, capturing method invocation order. We feel that the essence
of object-oriented programs is in invoking methods on objects, and, as our
TextDoc -View example shows, it might be necessary to specify explicitly
that a certain method calls other methods. When reasoning about correct-
ness, it is often necessary to know the method invocation order, which is
more difficult to specify in terms of pre- and postconditions. Therefore, we

29

consider it essential for a specification language to support both declarative
and operational specification styles, permitting abstract specifications when
it is desirable to abstract away from implementation details and also permit-
ting capturing method invocation order when it is essential. Similar ideas
are supported by Richard Helm et al. in [19]. They include method calls
in abstract specifications of contracts to express behavioural dependencies
between co-operating objects. Martin Biichi and Wolfgang Weck in [12] also
advocate a specification language combining specification statements with
method calls.

Mark Utting in his PhD thesis [37] extends the refinement calculus to
support a variety of object-oriented programming styles. One of the main
contributions of [37] is a formal definition in the refinement calculus of mod-
ular reasoning advocated by Leavens in [25]. It is assumed that all objects
are ordered by a substitution relation < which must be a preorder but
otherwise is unrestricted. An object-oriented system is defined to support
modular reasoning if methods of an object a, such that a < b, are refined by
the corresponding methods of b. Clearly our methodology of object-oriented
system development supports modular reasoning, because, if the substitu-
tion ordering is chosen so that a < b whenever the class of a is refined by the
class of b, then the corresponding methods are in refinement. Our definition
of class refinement is constructive, meaning that it can be used to formally
verify behavioural conformance between given classes. Proving refinement
between classes guarantees correctness of substitutability in all clients of the
objects these classes instantiate. Utting’s definition of modular reasoning,
on the other hand, is non-constructive; to cite Liskov and Wing’s description
in [27], “it tells you what to look for, but not how to prove that you got it”.

As it follows the style of behavioural subtyping, the approach reported
in [37] separates implementations and specifications (types) and checks be-
havioural conformance of types to their supertypes. Data refinement is
only allowed between the implementation and a specification of an object,
although a way of generalizing data refinement for the (behavioural) sub-
typing is discussed in the future work section. Utting’s approach to for-
malization of object-oriented programs differs from ours in several aspects,
motivated primarily by the fact that the refinement calculus used as the ba-
sis for his object-oriented extensions was formalized within infinitary rather
than higher-order logic. In particular, with the state space modelled by a
product space as we have here, encapsulation is built-in rather naturally
in the model: methods operate only on the instances of the corresponding
class and cannot access or modify instances of other classes. In [37] the state
is not considered to be a tuple of state components, but rather a function
from all variables (including object variables) to all values (including object
values) in the program. Methods of all objects operate on the global state
and encapsulation is only assumed.

Behavioural dependencies in the presence of subclassing have also been

30

studied in various extensions of Z specification languages, e.g., [24, 14], but
only between class specifications and not implementations. By having spec-
ification constructs as part of the (extended) programming language, we do
not have to treat specifications and implementations separately.

Data refinement of modules, abstract data types, and abstract machines
as, e.g., in [21, 32, 3] forms a basis for class refinement. The latter, however,
has special features due to subtype polymorphism and dynamic binding.
Our definition of class refinement is based on the method of proving data
refinement known as forward data refinement or downward simulation. Al-
though it was shown to be incomplete, this method is most widely used as
it is sufficient for most cases in practical program development.

Our treatment of new methods follows that of Liskov and Wing as pre-
sented in [27]. They describe two approaches to dealing with new method
consistency. The first approach requires that new methods satisfy the ex-
plicit class invariant and the history constraint, whereas the second approach
forces new methods to preserve the strongest superclass invariant. Here we
do not consider explicit class invariants and refer to [29] for a detailed anal-
ysis of consistency requirements that must be imposed in the presence of
explicit invariants. In this paper we present a formal analysis of the require-
ments that, when satisfied by new methods, are guaranteed to preserve the
strongest superclass invariant. Our definition of new method consistency is
more permissive than that of Liskov and Wing. They informally require that
“for each extra method an explanation be given of how its behaviour could
be effected by just those methods already defined for the supertype”. Our
definition of consistency permits new methods not only to be composed of
calls to existing methods, but also refine an arbitrary combination of the old
methods as defined in the subclass or data refine an arbitrary combination
of the old methods as defined in the superclass.

Acknowledgments
The authors would like to thank Emil Sekerinski, Leonid Mikhajlov, Michael
Butler, and Martin Biichi for valuable comments on this paper.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] M. Abadi and K. R. M. Leino. A logic of object-oriented programs.
In Proceedings of TAPSOFT’97, LNCS 1214, pages 682-696. Springer,
April 1997.

[3] J-R. Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

31

[4]

P. America. Inheritance and subtyping in a parallel object-oriented
language. In Proceedings of ECOOP’87, LNCS 276, pages 234-242,
Paris, France, 1987. Springer-Verlag.

P. America. Designing an object-oriented programming language
with behavioral subtyping. In J. de Bakker, W. P. de Roever, and
G. Rozenberg, editors, Foundations of Object-Oriented Languages,
REX School/Workshop, Noordwijkerhout, The Netherlands, May/June
1990, LNCS 489, pages 60-90, New York, N.Y., 1991. Springer-Verlag.

R. J. R. Back. Changing data representation in the refinement calculus.
In 21st Hawaii International Conference on System Sciences. IEEE,
January 1989.

R. J. R. Back and M. Butler. Exploring summation and product oper-
ators in the refinement calculus. In B. Mdller, editor, Mathematics of
Program Construction, 1995, volume 947. Springer-Verlag, 1995.

R. J. R. Back, A. Mikhajlova, and J. von Wright. Reasoning about
interactive systems. In J. M. Wing, J. Woodcock, and J. Davies, edi-
tors, Proceedings of the World Congress on Formal Methods (FM’99),
volume 1709 of LNCS, pages 1460-1476. Springer-Verlag, September
1999.

R. J. R. Back and J. von Wright. Programs on product spaces. Technical
Report 143, Turku Centre for Computer Science, November 1997.

R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic
Introduction. Springer-Verlag, April 1998.

R. J. R. Back and J. von Wright. Encoding, decoding and data re-
finement. Technical Report 236, Turku Centre for Computer Science,
March 1999.

M. Biichi and W. Weck. A plea for grey-box components. Technical Re-
port 122, Turku Center for Computer Science, Presented at the Work-
shop on Foundations of Component-Based Systems, Zurich, September
1997.

W. Cook and J. Palsberg. A denotational semantics of inheritance and
its correctness. In Proceedings OOPSLA’89, volume 24, pages 433-443.
ACM SIGPLAN notices, October 1989.

E. Cusack. Inheritance in object-oriented Z. In P. America, editor,

Proceedings of ECOOP’91, LNCS 512, pages 167-179, Geneva, Switzer-
land, July 15-19 1991. Springer-Verlag.

32

[15]

[16]

[17]

[18]

K. K. Dhara and G. T. Leavens. Weak behavioral subtyping for types
with mutable objects. In Mathematical Foundations of Programming
Semantics, volume 1 of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier, 1995.

K. K. Dhara and G. T. Leavens. Forcing behavioral subtyping through
specification inheritance. In Proceedings of the 18th International Con-
ference on Software Engineering, pages 258-267, Berlin, Germany,
1996.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University Press,
1993.

R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts: Specifying
behavioural compositions in object-oriented systems. In Proceedings of
OOPSLA/ECOOP’90, ACM SIGPLAN Notices, pages 169-180, Octo-
ber 1990.

C. A. R. Hoare. An axiomatic basis for computer programming. CACM,
12(10):576-583, 1969.

C. A. R. Hoare. Proofs of correctness of data representation. Acta
Informatica, 1(4):271-281, 1972.

B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel,
and H. Tews. Reasoning about Java classes (preliminary report). In
Proceedings of OOPSLA’98, pages 329-340, Vancouver, Canada, Octo-
ber 1998. Association for Computing Machinery.

T. Langbacka, R. Ruksenas, and J. von Wright. TkWinHOL: A tool for
window inference in HOL. Higher Order Logic Theorem Proving and
its Applications: 8th International Workshop, 971:245-260, September
1995.

K. Lano and H. Haughton. Reasoning and refinement in object-
oriented specification languages. In O. L. Madsen, editor, Proceedings
of ECOOP’92, LNCS 615. Springer-Verlag, 1992.

G. T. Leavens and W. E. Weihl. Reasoning about object-oriented pro-
grams that use subtypes (extended abstract). In Proceedings of OOP-
SLA/ECOOP’90, volume 25(10) of ACM SIGPLAN Notices, pages
212-223, 1990.

33

[26]

[27]

[30]

[31]

[35]

G. T. Leavens and W. E. Weihl. Specification and verification of
object-oriented programs using supertype abstraction. Acta Informat-
ica, 32(8):705-778, Nov. 1995.

B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems, 16(6):1811—
1841, November 1994.

L. Mikhajlov and E. Sekerinski. A study of the fragile base class
problem. In E. Jul, editor, Proceedings of ECOOP’98, pages 355—382.
Springer, July 1998.

A. Mikhajlova. Consistent extension of components in the presence of
explicit invariants. In Technology of Object-Oriented Languages and
Systems (TOOLS 29), pages 76-85. IEEE Computer Society Press,
June 1999.

A. Mikhajlova. Combining code with specifications: How to document
and verify frameworks. Special Issue of L’Objet on Formal Methods for
Object Systems, 6(1), 2000.

A. Mikhajlova and E. Sekerinski. Class refinement and interface refine-
ment in object-oriented programs. In Proceedings of the 4th Interna-
tional Formal Methods Europe Symposium, FME’97, LNCS 1313, pages
82-101. Springer, 1997.

C. C. Morgan. Programming from Specifications. Prentice—Hall, 1990.

D. A. Naumann. Predicate transformer semantics of an Oberon-like
language. In E.-R. Olderog, editor, Programming Concepts, Methods
and Calculi, pages 460-480, San Miniato, Italy, 1994.

D. A. Naumann. Predicate transformer semantics of a higher order
imperative language with record subtypes. Science of Computer Pro-
grammang, 1999. To appear. URL:

http://guinness.cs.stevens-tech.edu/ naumann/publications.html.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification
System. In D. Kapur, editor, 11th International Conference on Auto-
mated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748-752, Saratoga, NY, June 1992. Springer-Verlag.

E. Sekerinski. A type-theoretic basis for an object-oriented refinement
calculus. In S. Goldsack and S. Kent, editors, Formal Methods and
Object Technology. Springer-Verlag, 1996.

M. Utting. An Object-Oriented Refinement Calculus with Modular Rea-
soning. PhD thesis, University of New South Wales, Kensington, Aus-
tralia, 1992.

34

Appendix

Here we present refinement and correctness rules that will be used in proofs of
lemmas and theorems presented in the paper. Proofs of these rules can be found
in [10, 9, 11].

Correctness Rules

(@) p {5182 q = @r-p{SilrAr{SIq
byp{(iel-S)lq = (Viel-p{Slq

Jp{lrllg =pnrcyq

d)yr{{Str = r{sS*}r

e)r {{S} r = (true xr) {skip x S|} (true x r)

f) true = S true = (true x r) { S x skip [} (true x r)

g) (true x p) N (var z,u - b) {{| S|} (true x q) = p {|begin (var z,u - b); S;end [} ¢

1N 1

(
(
(
(
(
(

Algorithmic Refinement Rules

Skip is unit of sequential composition :
S;skip = S = skip; S

Relational product distribution through composition :
(Pr x Q1); (P2 X Q2) = (P1;P2) x (Q1;Q2)
Distribution of sequential composition through updates :
(a) (f);{g) = (f;9)
(b) [P];[Q] = [P;Q]
(c) {P1:{Q} = {P;Q}
Product distribution through updates :
(a) (f) x{g) = (fxg)

(b) [P < [Q] = [P xQ]
(©) {P} x{Q} = {PxQ}

Product distribution through sequential composition :

(a) (Sl,Tl) X (SQ,TQ) E (Sl X SQ), (Tl X TQ)

(b) (S1 x skip); (S2 x skip) = (S1;52) x skip

(c) skip x {R}; (S x skip) = S x {R}

(@) [Px Q] = [PxId:[I1dx Q] = [Idx Q] [P x Id

() {Px Q} = {Px I} {1dx Q) = {1dx Q}{P x Id)

Data Refinement Rules

The sequential composition rule states that the data refinement of a sequential
composition is refined by a sequential composition of the data refined components:

(S51;92) R © (S11R); (521 R)
Data refinement also distributes through demonic and angelic choice:

(SAT)IR T S|RNT|R
(SUT)|R T S|RUT|R

35

The indifferent block rule reduces data refinement of a block with local variables to
a data refinement of a statement inside that block, retaining the local variables:

begin (p X true); S;end | R T begin (p x true); S| (Id x R);end

When the initializing predicate is effected by the data refinement, the block rule
requires that this predicate is coerced accordingly:

begin p; S;end | R C begin p’; S| (Id x R);end,
where p' C (Az,y) - 3y - Ry'y A pl(a,y))

There are also two auxiliary block begin rules:

(a) begin p;[(R x Id)~!] C begin p/,

where p’ C (M(2/,y) - Jx - R’ = A p(z,y))
(b) {R};begin p C begin p’;{Id x R},

where p" € (Mz,y') - Jy - Ry'y A p(z,y))

Another block-related local variable rule allows us to change local variables in a
refinement. For any S : E(A x ¥) and R: A’ < A,

begin p; S;end C begin p'; S| (R x Id); end,
where p’ C (A(z',y) - 3z - Ra' x A p(z,y))

Using the program variable notation, this rule can be expressed as follows:

begin (var I’,u - (31 - RI'l A D));
begin (var [,u - b); S;end C S1(R x Id);
end

The indifferent statement rule describes the cases when a statement is not affected
by data refinement:

(skip x S) [(R x Id) C skip xS and (S xskip)|(Id x R) C S x skip

The iterative choice rule states that for any S; : ¥ — X, R : ¥ < X, and any
¢; : PXY indifferent to R,

do (" ,¢;::S;od|R C do " ,¢; :: S;| R od

where indifference means that ¢; = ¢} x true when R is of the form Id x R’, and
¢; = true X ¢; when R = R’ x Id.

Finally, the identity of inverse coercion rule states that wrapping the statement
S| R inT R undoes the effect of wrapping S in | R:

S C (SIRIR

Lemma 1. Let classes C and C' have constructors K : T'g— X x I'g and
K':T{— X xTf with Ty <: Ty, In a global state u : ®, for a relation
R:Y < X, a statement S : Z(X x @), and a constructor input argument
e Fo,

KCpr K =
create var c.C(e); S;end C create var ¢.C’(e); S| (R x Id);end

36

Proof We assume the antecedent and prove the consequent by refining the
left-hand side to the right-hand side:

create var c.C(e); S;end
= { definition of constructor invocation }

enter (var zg,u - xo = e); K x skip;

enter (var c, (self,xp),u - ¢ = self); Swap; exit; S; exit
E{ definitions }

A - AMzo,u') - 2o =e A u=1]; K x skip;

A((self, 20),w) - Ale, (self’),) - e = self A (self,z0),) = ((self’,),)]
(M, (self,xg),u) - ((self,xo),c,u)); (N(self,xg),c,u) - (c,u)); S; (Me,u) - u)

demonic update of a functional relation |f| is equal to
a functional update of a function f: [|f|] = (f),
distribution of sequential composition through functional updates,
definition of functional composition, logic
A - Mxo,u') - g =e A u=1]; K x skip;
<)‘<(5€lf7 -750)7 U,) ' (Self7 (Self7 m'0)7 U)>,
<)‘(67 (Selfa -T[)), U) : (Cv u))a Sa <>‘(Ca ’LL) : U)
cC { focus on a subexpression }
A - AMzo,u') - z0 =e AN u=1]; K x skip;
C { general rule skip T [R™!]; {R} }

Au - A(zo,v) - o =e A u=1];
[(7ry x Id)~Y; {7, x Id}; K x skip

distribution of sequential composition through demonic updates,
definition of relational composition, logic

A - Azh,u') - xf =y, e A u=1u];{mrp, x Id}; K x skip

product distribution through angelic updates, then
product distribution through sequential composition (b)

Au - Azh,u') - xh =1ty e A u=1];({mp, }; K) x skip
E{ assumption }

A - Azh,u') - xf =1try e AN u=1];(K';{R x mp, }) x skip

product distribution through sequential composition (b), then
product distribution through angelic updates

A - Azh,u') - x5 =, e A u=1u]; K" x skip; {(R x 7p,) x Id}

37

Au - Azg,u') - 2y =, e A u=1u]; K' x skip;
{(R x 7r,) x Id};

<)\((S€lf, .f()),’UJ) ’ (self, (Self,.fl’}o), u)>7

e, (self, z0),) - (e, w); S: (A(e,) - u)

definition of sequential composition,
definitions of angelic and functional updates, logic

A - Azh,u') - 2 =, e A u=1u]; K" x skip;
(M(self’,), u) - (self’, (self', x5), u));

{R x (R x mp,) x Id};

(A, (self,xo),u) - (e u)); S5 (A6 u) - w)

C { definitions, logic }

Au - A(zg,u') - x5 =, e A u=u']; K’ x skip;
(M(self’, x0), u) - (self’, (self’, xg), w));
<)‘(Clv(3€lf,7x/0)>u) ’ (Cl’u»?

{R x Id};

S; (Me,u) - u)

C { general rule skip = [R™!]; {R}, definition of | }

Au - Azh,u') - 2h =, e A u=1]; K’ x skip;
(A((self’, xp),u) - (self’, (self’,), u));

(A(c, (self’,2p),u) - (s u));

S (R x Id);

{R x Id}; (Mc,u) - u)

C { definitions, logic }

A - Azh,u') - xh =, e A u=1]; K" x skip;

(A((self’,x),u) - (self’, (self’, x(), u));
O, (self’)) - () S L(R x 1d); (A u) -)
E{ definitions }

create var ¢.C’'(e); S| (R x Id);end

O

Lemma 2. Let classes C' and C' have methods M; : Z(X x T'; x A;) and
M]:E(X x T x Al) with Ty <: T and Al <: A;. In a global state d; :
Aj,u: @, for a relation R : Y < ¥ and an input argument g; : T;,

(var ¢,d;,u - c.Methi(gi,d;)) | (Rx Id) T (var ,d;,u - ¢.Meth;(g;,d;))

38

Proof We prove the goal by assuming the antecedent and deriving the right-
hand side from the left-hand side as follows:

(var ¢,d;,u - c.Meth;(gi,d;)) | (R x Id)
= { definition of method invocation }

(var ¢, d;,u - begin (var (self,x;,y;),c,di,u - self =c A x; = g;);
M; x skip; ¢, d; := self,y;;end) | (R x Id)

E{ definitions }
{R X Id}7 [A(Cv dlvu) ’)‘((Selfamhyi)vc, d; U,) ’

self =c AN xi=g; A (¢,di,u) = (c,d;,u)];
M,; x skip;
(A((self s iy yi), e, diyu) - ((self,zi, yi), self , yi, u));
N(self,zi,y3), e, diyu) - (e,ds,u)); [(R x Id) ™1

] demonic and angelic updates of a functional relation are equal,
~] distribution of sequential composition through angelic updates
{R X Ida)‘<Cv di7 u) : /\((self, Ti, yi)7 Clv d;, ul) :
self =c AN xi=gi N (¢,diyu) = (¢, d),u)};
M; x skip;
<)\((S€lf, s, yi)7) di) u) ' ((self, T, yi)v Selfv Yi, u)>7
<)\((8€lf, T, yl)> ¢, di7 U) : (C> dia u)>7 [(R X Id)il]

cC { definition of relational composition, logic }

N, diyu) - M(self’ at,yl), & diy) -

self' = N o =up, gi N (¢ diyu) = (', d},u');
(Rxmp, X [tar]) x R x Id};
M; x skip;
(A((self s @i, yi), ¢, diy) - ((self, zi, y2), self, yi, w));
(N((self, i, yi), ¢, diyu) - (e, di,w)); [(Rx Id)~Y

distribution of sequential composition through angelic updates,
demonic and angelic updates of a functional relation are equal
A, di,w) - N((self’,xh, yh), " diyu') -
self' = N xf=up, gi A (' diyu) = (", dj,u)));
{(R x 7, X |ear]) x R x Id};
M; x skip;
<)\((S€lf, L, yi)v ¢, di’ u) : ((S@lf, T4, yi)v Sdfv Yi, u)>7
<)\((Selfa Li, yl)a & di7 U) : (Ca div U)>, [(R X Id)il]

product distribution through sequential composition
rules (e), (c) then skip is unit of sequential composition

39

N diyu) - N((self’, xh, yh), ¢ dfyul) -

self' = N b =up, gi N (¢ diyu) = (", dj,)]
{(R xmp, X |ear])} x skip;
(M;; skip) x (skip; {R x Id});
<)‘((Selfvxiayi)v ¢, dlau) ' ((self,:):i, yi)7 Selfa yi:u»;
O(self 21, 91), s) - (e oy))s [(R x 1))

product distribution through sequential composition
rules (a) then (b)
A diyw) - N((self! 2t ylh), " diy ') -

s Wi

self' = N xp=up, gi A (' disu) = (", dj, W));

({R x 7, X [ear[}; M;) x skip; {Id x R x Id});

<)‘((Self7$iayi)v ¢, dlau) ' ((Self,mi, yi)7 Selfa yi:u»;
(N((self, i, yi), ¢, diyu) - (e, di,uw)); [(Rx Id) ™1

C { assumption, using general rule S|RC S" = {R}; SC S';{R} }
A diyw) - N((self! 2t yh), " diy ') -

s Wi

self' = N b =up, gi N (¢, diyu) = (¢, di,u)];

(M!;{R x mp, % |LA;‘}) x skip;{Id x R x Id});

(M(self ,xi, yi)y e, diyu) - ((self,xq, yi), self , yi, w));
(N((self , i, i), ¢, diyu) - (e, di,u)); [(R x 1d)™1]

= { product distribution through sequential composition rule (b), then (e) }
N diyw) - N((self!,zh, yh), " d ') -

self' = N b =up, gi N (¢, diyu) = (¢, diu)];
M; x skip; {(R x 7w, X |ear]) x R x Id};
<)\((self,a:i,yi),c, dlvu) : ((Sdfvxiuyi)7 self,yi,u»;
N((self s i, i), ¢, diyu) - (e, diyu)); [(R x Id)]

definition of sequential composition,
— | definitions of angelic and functional updates, logic

A diyw) - N((self!,zh, yh), ¢ dy ') -

self' = N b =up, gi N (¢, diyu) = (¢, diyu)];
M x skip;
<)\((S€lf/, l',/i, yz/‘)7 c,d;, u)) ((Selfl7 1‘;7 yg)’ self’, LAY Yis u));
{(R X mr,; X |LA;D X R X [d};
A((self ,ziyyi), ¢, diyu) - (¢, di,u)); (R x Id) ™)

definition of sequential composition,
— | definitions of angelic and functional updates, logic

40

P‘(Clvdiau) :)\((self',ajg,yé),c”,dg,u’) :
self' =d Nzl =up, gi N (,di,u) = (", d},u)];
M x skip;
<)\((S€lf/, x;7 y'/L)7 C/a dia ’LL) : ((self’, l’;—, y;)a Self/7 [’A; Yi, ’U,)>,
N((self’, 2, yb), diyu) - (¢ diyu)); {R x Id}; [(R x Id) ™!
C { general rule {R};[R™!] C skip }

A, diyu) - N(self’, b, yl), " di ') -

self' = N b =ur, gi N (¢ diyu) = (", dj,)]
M x skip;
<)‘((Self/7x;7yg)7clﬂdivu) ’ ((Self/7x§7y£)7 SelflabA; yi7u)>;
N((self’ b, yl), d diyu) - (dydiyw))

IS

= { definition of method invocation }
(var ¢, d;,u - ¢.Meth;(g;,d;))
Od

Theorem 1. For classes C and C', a program K expressible as an iterative
choice of invocations of C' methods, and a constructor input argument e : I'g,

cccc =
create var c.C(e); K [c];end C create var ¢.C’(e); K []; end

Proof Rewriting this implication with the definition of class refinement, we
get

(HR- KERK, AN (VZ | 1<1<n - MzERM@/)) =
create var ¢.C(e); K [c];end C create var ¢.C’(e); K []; end
Assume that R is a relation that satisfies the antecedent of this implication.

Using the first conjunct of the antecedent and Lemma 1, the implication is
then reduced to

(Vi|1<i<n-M;Eg M) =
(var c,u - K [c])| (Rx Id) C (var d,u - K [¢])

Assuming the antecedent and expressing K as an iterative choice of method
invocations, we get

begin (var [,c,u - p);

do (7" ,q; :: c.Methi(g;,d;); L; od;end | (R x Id) C
begin (var I, ¢, u - p);

do I ,q; :: ¢.Meth;i(g;,d;); L; od;end

The indifferent block rule allows us to reduce this goal to

(var l,c,u - do (I ,q; :: c.Methi(gi,d;); Li od) | (Id x R x Id) T
(var I,d,u - do (¢ :: ¢.Meth;(gi,d;); L od)

41

which we prove by beginning with the left-hand side and refining it to the
right-hand side as follows:

(var l,c,u - do (}1¢; :: c.Meth;(gi,d;); L; od) | (Id x R x Id)

M

{ iterative choice rule, since every ¢; is of the form ¢} x true x ¢/’ }

(var l,c,u - do OI'_,q; = (c.Meth;i(gi,d;); Li) | (Id x R x Id) od)

{ sequential composition and indifferent statement rules, }
since all statements L; are indifferent to Id x R x Id
(var l,c,u - do O} ,q; :: c.Meth;(gi,d;) | (Id x R x Id); L; od)
C { Lemma 2, using the assumption }
(var I,d,u - do (¢ :: ¢.Meth;(g;,d;); L; od)
This completes the proof. O

Lemma 3. For a statement S’ : Z(X'), a relation R : ¥ < X, and a state
predicate I : P, we have

{R}I{S'F{R}I = T{{S"TR}} I
Proof We prove the goal by mutual implication. The first part
{R}IS'PARYI = T {S"TR} I

is proved as follows:

{RY {5 {R} 1
= { definition of correctness assertion }
{R}I C S"{R}I
= { monotonicity of demonic update VP pq-p C g = [P]p C [Plq }
[RTA{R} I C [RTY]S"{R} I
= { definition of sequential composition }
([RTARY I € ([R]85 {R}) I
:>{ general rule skip C [R7!]; {R} }
skip I C ([R™1]; 8" {R}) I

{ T R abbreviates [R71]; '; { R} }
skipI C (S'"TR) I
= { definition of skip, definition of correctness assertion }

ISR} I

42

The second implication, I {{S’TR[} I = {R} I {S'[} {R} I, is proved

similarly:

T{S"TR[} I

{ T R abbreviates [R™']; 5"; { R} }
LR SR T

{ definition of correctness assertion }
I C (R 8{R}Y) I
= { monotonicity of angelic update VP pq -p C q = {P}p C {P}q }
{RYI C {R} ([R™'; 8" {R}) T
= { definition of sequential composition }
{R} I € ({Rh[R7']) S"{R}I
= { general rule {R};[R™!] C skip }
{R}I C S"{R} I
= { definition of correctness assertion }
{R} TS B AR}
d
Theorem 2. For classes C = (K, Mjy,...,M,) and C' = (K', M1, ..., M],
Ni,...,Np),
AR-KCrK' A (Vi |1<i<n-M;CgrM)A
(Vj|1<j<p - Consistent (N;,C,R))) = C LC '

Proof We begin with weakening the antecedent by eliminating the existen-
tial quantification and rewriting the consequent with the definition of class
refinement:
KERK/ AN (V’L | 1< <n - MiERMl‘/)/\
(Vj|1<j<p- Consistent (N;,C,R)) =
(HR- KERK, VAN (VZ | 1<:<n - MiERMZ‘/)/\
(VI - Inv (C.I) = (Vj|1<j<p- -{R}I{N;[} {R}I)))
Next, we instantiate the existentially quantified relation variable to R, get-
ting
KCgr K A (VZ ‘ 1<i<n- MiERMZ‘/)/\
(Vj|1<j<p- Consistent (N;,C,R)) =
KERK/ A (V’L ‘ 1<1<n - MZ‘ERMZ{)/\
(VI - Inv(C, 1) = (Vj|1<j<p-{R}I{N;[} {R}]))

43

Rewriting with the assumptions and simplifying, we get
(Vj|1<j<p- Consistent (N;,C,R)) =
(VI - Inv(C, 1) = (Vj|1<j<p-{R}I{N;[} {R}]))
Next, we strip off the universal quantification in the consequent and move
Inv (C,I) to the antecedent:

(Vj|1<j<p- Consistent (N;,C,R)) N Inv (C,I) =
(Vill1<j<p-{R}I{N;[} {R}I)
Using standard logical rules for quantifier manipulation, we further reduce
this goal to

Consistent (N;j,C,R) N Inv (C,I) = {R} I {{N; |} {R} I

Rewriting with the definition of consistency for new methods and using
therule SC S = (Vpqg-p{S}qg = p{S} q), we reduce the goal as
follows:
Inv (C,I) =
begin var [- b;
{RYI (T [a]s (skip x M; | R) | |psl; Ki)*; [} {R}]
end

Using the rule for proving correctness assertions for blocks, we reduce this
goal to

Inv (C,I) =

(true x {R} I) N (Mizy [aa);

(var I, self,uj,v; - b) { (skip x M; | R) | |pi|; K;)* b (true x {R} 1)
Next, we apply the rules for proving correctness assertions for weak iteration
and demonic choice, getting

Inv (C,I) =
(Vi|l1<i<n-

(true x {R} I) N [a:];

(var I, self,u;,v; - b) U (skip x M; | R)| |pils K, 1 (Frve < A7 D)
Stripping off the universal quantification in the consequent and discharging
the unnecessary condition 1 < i < n, we get

Inv (C,I) =
(true x {R} I) N

(VaI' l, self,uj,vj . b) {’ [Qi]; (Skip X MZlR)l‘pl‘vKl ’} (tT"LL@ x {R} I)

Applying now the rules for proving correctness assertions for sequential com-
position, we get
Inv (C,I) =
(3r - (true x {R} I) N (var [, self ,uj,vj - b) {| @] [} 7 A
r{ (skip x M; | R) | |pil; K; |} (true x {R} 1))

44

Next, instantiating r to (true x {R} I), we get

Inv (C,I) =
(true x {R} I) N (var [, self,u;,v; - b) { [q] [} (true x {R} I) A
(true x {R} I) { (skip x M; | R) | |pi|; K; [} (true x {R} I)

Applying now the rules for proving correctness assertions for guards and
simplifying, we get

Inv (C,I) =
(true x {R} I) { (skip x M; | R) | |pi|; K; [} (true x {R} I)

Applying again the rule for proving correctness assertions for sequential
composition and instantiating the existentially quantified predicate variable
to (true x {R} I), we get

Inv (C,I) =
(true x {R} I) { (skip x M; | R) | |pi| [} (true x {R} I) A
(true x {R} I) {| K; [} (true x {R} I)

Using the assumption that every K; is terminating and skipping on the
attributes of C’, and applying the rule for proving correctness assertions (f),
we reduce this goal to

Inv (C,I) = (true x {R} I) {| (skip x M; | R) | |pi| [} (true x {R} I)

Using the definition of | and then the rule for proving correctness assertions
for sequential composition, we get

Inv (C,I) = (Fry - (true x {R} I) {{lpil} [} 1 A
(Fra vy {|skip x My | R} ro A ra {|[|pi] 7]} (true x {R} 1))

Instantiating both 1 and 7o to (true x {R} I) and using the fact that p; is
a state-reassociating function not updating any of the state components, we
reduce the goal to

Inv (C,I) = (true x {R} I) { skip x M; | R|} (true x {R} I)

Applying the rule for proving correctness assertions (e) and then Lemma 3,
we reduce this goal to

Inv (C.1) = I{(M;|R)IR]} I
and then, using the identity of inverse coercion rule, to
Inv(C,I) = T{M;|} I

which holds according to the definition of Inv (C,I). O

45

Turku Centre for Computer Science
Lemminkiisenkatu 14

FIN-20520 Turku

Finland

http://www.tucs.abo.fi

University of Turku
e Department of Mathematical Sciences

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
o Institute of Information Systems Science

