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Abstract

We investigate the density of critical positions, that is, the ratio between the
number of critical positions and the number of all positions of a word, in
infinite sequences of words of index one, that is, the period of which is longer
than half of the length of the word.

On one hand, we considered words with the lowest possible number of
critical points, namely one, and show, as an example, that every Fibonacci
word longer than five has exactly one critical factorization which provides
a new way to prove two known facts about the periodicity of Fibonacci
words.

On the other hand, sequences of words with a high density of critical
points are considered. We show how to construct an infinite sequence of
words in four letters where every point in every word is critical. We construct
an infinite sequence of words in three letters with densities of critical points
approaching one, using square-free words, and an infinite sequence of words
in two letters with densities of critical points approaching two, using Thue–
Morse words. It is shown that these bounds are optimal.

Furthermore, we give a short proof of the Critical Factorization Theorem
and a theorem about the maximal distance between two critical points in
a word. We state that only words in a binary alphabet can have just one
critical factorization.

Keywords: combinatorics on words, repetitions, critical factorization theo-
rem, density of critical factorizations, Fibonacci words, Thue–Morse words
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1 Introduction

The Critical Factorization Theorem [3, 7] relates local periods with the global
period of finite words. It states that in every word w there is a position p
where the shortest repetition word z, i.e., w = uv with |u| = p and z is
a suffix of w1u and a prefix of vw2 for suitable w1 and w2, is as long as
the global period d of w, moreover, p < d. The position p is called critical.
Actually, we have at least one critical position in every d − 1 consecutive
positions in w. Consider the following example:

w = ab.aa.b

that has two critical positions 2 and 4 which are marked by dots. The period d
of w equals 3 and w is of index 1, since 2d > |w|. The shortest repetition word
in both critical positions is aab. Note, that the shortest repetition words in
the positions 1 and 3 are ba and a, respectively. The ratio of the number
of critical positions and the number of all positions is called the density of
critical positions. The density of w in our example is 2.

We are concerned with the density of critical positions in this paper. That
is, we investigate words with exactly one and as many as possible critical
positions.

After we have fixed the basic notations in Section 2, we give a technically
improved version of a proof [5] of the Critical Factorization Theorem [3, 7] and
state the maximal distance between two critical points in a word. In Section 3
we show that Fibonacci words, which can be defined by palindromes [6], of
length greater than five have exactly one critical position in contrast to the
fact that palindromes have at least two critical positions. This result also
implies immediately the two well-known facts that the period of a Fibonacci
word is a Fibonacci number and that the Fibonacci word is not ultimately
periodic, both proven differently in the literature. Section 4 contains the
constructions of infinite sequences of words in four letters with density one
for every word, infinite sequences of ternary words which has a limit of their
densities at one, using square-free words [12, 1, 2], and infinite sequences of
binary words which has a limit of their densities at two, using Thue–Morse
words [11, 10, 1, 2]. We also show that these limits are optimal.

2 Preliminaries

In this section we fix the notations for this paper. We refer to [8, 4] for more
basic and general definitions.
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Let A be a finite nonempty alphabet and A∗ be the monoid of all finite
words in A; the empty word is denoted by ε. Let Aω denote the set of all
infinite words in A. An infinite word w ∈ Aω is called ultimately periodic
if there exist two words u, v ∈ A∗ such that w = uvω. Let w ∈ A∗ in the
following. The length of w is denoted by |w| and its ith letter by w(i). By
definition |ε| = 0. If w = w1uw2 then u is called a factor of w. If w = uv
then u and v are called prefix and suffix, respectively, and let u = wv−1

and v = u−1w. Note, that ε and w are both prefixes and suffixes of w.
A word w is called bordered if there exists a word v 6= ε such that w = vuv,
and in this case, v is called a border of w. A word w is called primitive if
w = vk implies that k ≤ 1.

An integer d, with 1 ≤ d ≤ |w|, is called a period of w if w(i) = w(i+d),
for all 1 ≤ i ≤ |w| − d. The smallest period of w is denoted by ∂(w) and it
is called the minimal period or the global period of w. The index ind(w) of
a word w is defined by

ind(w) =

⌊

|w|

∂(w)

⌋

.

Let an integer p with 1 ≤ p < |w| be called position or point in w. Intuitively,
a position p denotes the place between w(p) and w(p+1) in w. A word u 6= ε is
called a repetition word at position p if w = xy with |x| = p and there exist
x′ and y′ such that u 4 x′x and u ≤ yy′. For a point p in w, let

∂(w, p) = min
{

|u|
∣

∣ u is a repetition word at p
}

denote the local period at point p in w. Note, the repetition word of length
∂(w, p) at point p is unbordered and ∂(w, p) ≤ ∂(w). A factorization w = uv,
with u, v 6= ε and |u| = p, is called critical if ∂(w, p) = ∂(w), and, if this
holds, then p is called critical point, otherwise it is called noncritical point.
Let η(w) denote the number of critical points in a word w. We shall rep-
resent critical points of words by dots. For instance, the critical points of
w = abaaba are 2 and 4, and we show this by writing w = ab.aa.ba. In this
example, ∂(w) = 3.

Let w̃ = w(n) · · ·w(2)w(1) denote the reverse of w = w(1)w(2) · · ·w(n). We
call a word w a palindrome if w = w̃.

Let C be an ordering of A = {a1, a2, . . . , an}, say a1 C a2 C · · · C an.
Then C induces a lexicographic order on A∗ such that

u C v ⇐⇒ u ≤ v or u = xau′ and v = xbu′ with a C b

where a, b ∈ A. A suffix v (prefix u) of w is called maximal w.r.t. C if v ′ C v
(and ũ′ C ũ) for any suffix v′ (prefix u′) of w. Let C−1 denote the inverse
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order, say an C−1 · · · C−1 a2 C−1 a1, of C. Let µC(w) and µB(w) denote
the maximal suffixes of w w.r.t. C and C−1, respectively, and let νC(w) and
νB(w) denote the maximum prefixes of w w.r.t. C and C−1, respectively. If
the context is clear, we may write µC, µB, νC, and νB for µC(w), µB(w),
νC(w), and νB(w), respectively. We only consider alphabets of size larger
than one in the following.

The critical factorization theorem (CFT) was discovered by Césari and
Vincent [3] and developed into its current form by Duval [7].

Theorem 1 (Critical Factorization Theorem). Every word w, with
|w| ≥ 2, has at least one critical factorization w = uv, with u, v 6= ε and
|u| < ∂(w), i.e., ∂(w, |u|) = ∂(w).

The following proof of the CFT is a technically improved version of the
proof by Crochemore and Perrin in [5].

Proof. Let α = µC(w) and β = µB(w). Suppose |β| < |α|, say α = u′β.
Certainly α 6= β, since they start with a different letter, and note, that
|wβ−1| < ∂(w). Let z be an unbordered repetition word at |wβ−1|. We
show that |z| is a period of w, which will prove the claim.

If w is a factor of z2, then obviously |z| is a period of w. If w = w1βw2

for some w2 6= ε, then β C−1 βw2 contradicts the choice of β. If wβ−1 = yz,
then, by the above, z ≤ β, say β = zβ ′; but then z2β′ = zβ C−1 β = zβ ′

implies that β = zβ ′ C−1 β′; a contradiction. Consequently, β = zw′ and
w = z1zw

′ for a suffix z1 of the unbordered word z. Therefore u′ is a suffix
of z, and hence, u′w′ is a suffix of α. Consequently, u′w′ C α = u′β, and
so w′ C β, which together with w′ C−1 β implies that w′ ≤ β. Therefore
β = zw′ = w′z′, and thus β = zkz2 for some z2 ≤ z, which shows that |z| is
a period of w.

For a different proof of the CFT by Duval, Mignosi, and Restivo, see
Chapter 8 in [9]. The next theorem justifies why we are only interested in
words of index one in our investigation of the density of critical points.

Theorem 2. Each set of ∂(w) − 1 consecutive points in w, where |w| ≥ 2,
has a critical point.

Proof. If w = uiu1, where u1 ≤ u and ∂(w) = |u|, then the maximal suffixes
w.r.t. any orders of A are longer than |ui−1u1|. Hence w has a critical point
at point p, where p < ∂(w).

Let p be any critical point of w = uv, where |u| = p, and let z be the
smallest repetition word at position p. So, |z| = ∂(w).
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We need to show that if |v| ≥ ∂(w), then there is critical point at p+ k
for 1 ≤ k < ∂(w). We have z ≤ v and ∂(v) = ∂(w). For, if ∂(v) < ∂(w),
then z is bordered; a contradiction. Now, v has a critical point k such that
we have k < ∂(v) = ∂(w). Clearly, this point p + k is critical also for w.
Now, (p+ k)− p = k < ∂(w).

Maybe an even stronger motivation for considering only words of index
one, is that in wk, with k ≥ 3, the critical points of the first factor w are
inherited by the next k − 2 factors w. That is, if wk = w1.w2w

k−1, where
|w1| is a critical point, then also |ww1| is a critical point of wk.

3 Words with Exactly One Critical Factor-

ization

Every word longer than one letter has at least one critical factorization. We
investigate words with only one critical factorization in this section. Trivially,
words of length two have no more than one critical point. We do not consider
such cases but arbitrary long words. However, the following lemma limits
our investigation to words in two letters.

Lemma 3. A word w with only one critical factorization is binary, that is,
it is over a two-letter alphabet.

Proof. Assume a word w contains the letters a, b, and c and has exactly
one critical factorization. Let a C b C c. By symmetry, we can assume
that |µB| < |µC|. Then p = |wµ−1

B
| is a critical point of w by the proof of

Theorem 1. Let a J c J b. Now, either |wµ−1
J
| or |wµ−1

I
| is a critical point

p′ of w, again by the proof of Theorem 1. But, p 6= p′ since µB begins with c
and µJ and µI begin with a and b, respectively. So, w has at least two
critical points; a contradiction.

By Lemma 3, we will only consider words in a and b in the rest of this
section. Let a C b. Theorem 1 straightforwardly leads to the following two
facts.

Lemma 4. If a word w has exactly one critical point, then either

w = νCµB and νC ≤ νB and µB 4 µC

or

w = νBµC and νB ≤ νC and µC 4 µB .
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The inverse of Lemma 4 does not hold in general. Consider w = aa.bb.abab
which has two critical points, but we do have

νC = aa ≤ aabb = νB and µB = bbabab 4 aabbabab = µC

and w = νCµB.

Lemma 5. Every palindrome w has at least two critical factorizations.

Proof. Assume w has exactly one critical point. By symmetry, we can assume
that µB 4 µC. By the definition of maximal prefix and suffix and since w is
a palindrome

µC(w) = ν̃C(w̃) = ν̃C(w) and µB(w) = ν̃B(w̃) = ν̃B(w)

where ν̃B(w) and ν̃C(w) denotes the inverse of νB(w) and νC(w), respectively.
Now, ν̃B 4 ν̃C, and hence, νB ≤ νC, which contradicts Lemma 4.

Let us now consider the critical points of Fibonacci words. Fibonacci
numbers are defined by

f0 = 1 , f1 = 1 , fk+2 = fk+1 + fk .

Fibonacci words are defined by

F1 = a , F2 = ab , Fk+2 = Fk+1Fk .

Obviously, |Fi| = fi. Let F = limn→∞ Fn be the Fibonacci word. Observe
that Fi ≤ Fn, with 1 ≤ i ≤ n. It is also clear that all Fibonacci words
are primitive. The following lemma will be used to estimate the number of
critical points in Fibonacci words.

Lemma 6. We have that fn−2 < ∂(Fn) ≤ fn−1 for all n > 2.

Proof. Indeed, ∂(Fn) ≤ fn−1, and if ∂(Fn) < fn−2, then Fn−2 is not primitive
since

Fn−2Fn−2 < Fn−2Fn−3Fn−2 = Fn ,

a contradiction, whereas if ∂(Fn) = fn−2, then Fn ≤ F+
n−2, and Fn−2 4 Fn

implies that Fn−1 or Fn−2 is not primitive; a contradiction.
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Remark 7. Fibonacci words have a close connection to palindromes as the
following properties show. Firstly, Fn = αndn where n ≥ 3 and αn is a palin-
drome and dn = ab if n is even and dn = ba if n is odd. This result is
credited to Berstel in [6]. Secondly, Fn = βnγn, where n ≥ 5 and βn and γn

are palindromes of length fn−1− 2 and fn−2 +2, respectively, by de Luca [6].
Moreover, de Luca shows that these two properties define the set of Fibonacci
words.

Given Remark 7 and Lemma 5, every palindrome has at least two critical
factorizations, the following Theorem 9 is rather surprising.

Example 8 (Fibonacci words). We have

F2 = a.b , F3 = a.b.a , F4 = ab.aa.b .

By the following Theorem, however, all Fibonacci words Fn, with n > 4 has
exactly one critical point, and that critical point is at position fn−1 − 1.

Theorem 9. A Fibonacci word Fn, with n > 4, has exactly one critical
point p. Moreover, p is at position fn−1 − 1.

Proof. Let n ≥ 7, and let p be a critical point of Fn. Then p > fn−2, because

Fn−2Fn−2 < Fn−2Fn−3Fn−2 = Fn

and by Lemma 6. Consider the factorization

Fn = Fn−2Fn−3Fn−2 = Fn−2Fn−4Fn−5Fn−2 .

Then p > fn−2 + fn−4, since positions i, where fn−2 ≤ i ≤ fn−2 + fn−4, are
not critical

Fn−3Fn−4Fn−4Fn−4 = Fn−2Fn−4Fn−4 < Fn−2Fn−4Fn−5Fn−2 = Fn ,

since these positions occur inside the second factor Fn−4 in the power F 3
n−4.

By induction we obtain

Fn−2 Fn−4 · · · Fn−2i+1 Fn−2i Fn−2i Fn−2i

= Fn−2 Fn−4 · · · Fn−2i+2 Fn−2i Fn−2i

< Fn−2 Fn−4 · · · Fn−2i+2 Fn−2i Fn−2i−1Fn−2

= Fn

where 1 ≤ i ≤
⌈

n
2

⌉

− 2, and

p >

dn

2
e−2
∑

i=1

fn−2i .
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So, we have

Fn = Fn−2Fn−4 · · ·F3F2Fn−2 or Fn = Fn−2Fn−4 · · ·F4F3Fn−2

where p > fn−1−2 and p > fn−1−3, respectively, and fn−1 > p by Lemma 6
and Theorem 2. So, p = fn−1 − 1 or p = fn−1 − 2, that is, a critical point
has to exist in the suffix

F2Fn−2 4 Fn or F3Fn−2 4 Fn

where the former case gives the result. The latter case leaves the possibilities
a.b.aFn−2 4 Fn. But since b 4 F4, we have bab.aFn−2 4 Fn and only the
marked position is critical which proves the claim.

The following well known facts follow immediately from Theorem 9.

Corollary 10. A Fibonacci word Fn has the period fn−1, and the Fibonacci
word F is not ultimately periodic.

The Fibonacci words are certainly not the only words with exactly one
critical factorization.

Example 11. Let w = aibaj, with i 6= j and i + j > 0, then η(w) = 1. If
i > j, then ∂(w) = |aib| and i is the only critical point of w. Similarly for
i < j, where i+ 1 is the only critical point of w. See Lemma 13 for the case
when i = j.

4 Words with a High Density of Critical Fac-

torizations

We investigate the densities of the critical points in words. The density δ(w)
of a word w is defined by

δ(w) =
η(w)

|w| − 1
.

Notice that in the above |w| − 1 is the number of all positions in w. Re-
call that we require all words to be of index one, otherwise, for any given
alphabet {a1, a2, . . . , ak} and n > 0, we have

δ ((a1a2 · · · ak)
n) = 1

that is, every position is critical. Moreover, there exists a sequence of words
of index one in the alphabet A = {a, b, c} such that the limit of their densities
is one.
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Example 12 (Square-free words). Let us consider the endomorphism
ϑ : A∗ → A∗ with

a 7→ abc b 7→ ac c 7→ b

by Thue [12], cf. [1, 2], and let

T2k+1 = a ϑ2k+1(a) c and T2k = a ϑ2k(a) b,

for all k > 0, then

lim
n→∞

δ(Tn) = 1

because every word Tn has a square prefix and suffix and ϑn(a) is square-free,
so, η(Tn) = |Tn| − 3 and δ(Tn) = 1− 2/(|Tn| − 1).

Of course, any square-free word with suitable borders can be used in
Example 12. It is also clear that with an alphabet with at least four letters,
say a, b, c, and d, the sequence {T ′

n}, with n ≥ 1 and T ′

n = d ϑn(a) d, consists
of words with density one only. Words in two letters, however, cannot be
square-free, if they are longer than three. So, the question arises: What is
the highest density for words in A = {a, b}? The following lemma implies
that ab, ba, aba, and bab are the only words in A which have density one.

Lemma 13. If w has two consecutive critical points, then either w = aibai

or w = biabi, with i > 0.

Proof. Assume, two consecutive critical points in w that are around b. Then
clearly w = w1a

i.b.ajw2, for some i, j > 0. If w1 = ε = w2, then necessarily
i = j, see Example 11. Assume, i 6= j. By symmetry, we can assume that
w1 6= ε, that is, w = vbaibajw2. If j ≥ i, then w has the repetition bai at
the first critical point: w = v[bai][bai]aj−iw2, where ∂(w) = |bai|. But then
w has index greater than one; a contradiction. Therefore, j < i, and in this
case, w2 = ε in order to avoid repetition inside w at the second critical point.
Also, ∂(w) = |ajb|, which implies that i = j; again a contradiction.

By Lemma 13 we have lim supn→∞
δ(wn) ≥ 1/2, for any infinite sequence

w1, w2, w3, . . . of words in A, and this bound is tight by the following
example.

Example 14 (Thue–Morse words). We consider the Thue–Morse endo-
morphism ϕ : A∗ → A∗ with

a 7→ ab and b 7→ ba

8



see [11, 10, 1, 2]. For the sake of brevity, let ϕn denote ϕn(a) and ϕ̄n denote
ϕn(b). Let

M2k+1 = a2ϕ2k+1b
2 and M2k = a2ϕ2ka

2,

for all k ≥ 0, then we show in Theorem 15 that η(Mn) = 2n−1 + 1 and

δ(Mn) =
1

2
−

1

2n+1 + 6

and hence,

lim
n→∞

δ(Mn) =
1

2
.

Note, that ϕn equals ϕ̄n up to renaming of a and b. Moreover, ϕn does not
contain overlapping factors, that is, factors of the form cucuc where c ∈ A.
Note also that |ϕn| = 2n−1.

Theorem 15. Every odd position in Mn, with n ≥ 1, except position 1 and
2n + 3, is critical.

We consider the following lemma before proving Theorem 15.

Lemma 16. The repetition words at every noncritical position in Mn, for
all n ≥ 1, are of length one or two.

Proof. In Mn, for any n > 2, the positions 1, 2, 2n + 2, and 2n + 3 are
noncritical, with repetition words of length one, and the positions 3 and 2n+1
are critical.

Clearly, the repetition word at every noncritical position in M1 = aaabbb
and M2 = aaabbaaa is of length one.

Assume, the repetition word at every noncritical position in Mk, with
k > 2, is of length one or two. By induction, the repetition word at every non-
critical position in Mk+1 is at most of length two because Mk+1 = a2ϕkϕ̄ka

2

and Mk+1 = a2ϕkϕ̄kb
2 for odd end even k, respectively. Note, that, by in-

duction hypothesis, the repetition word at every noncritical position in Mk

is at most of length two. Clearly, the repetition words of length less or equal
than two at positions 2 to 2k−2 in ϕk are not changed by preceding and suc-
ceeding words (a2 or b2). The repetition word at position |Mk+1|/2 = 2k + 2
in Mk+1 is either b or ba since ab 4 ϕk or ba 4 ϕk and ba ≤ ϕ̄k.

It remains to show that the positions 2k+1 and 2k+3 are critical in Mk+1.
Assume position 2k + 1 or 2k + 3 is not critical.

If k is even, then the repetition word u at position 2k + 1 is of the form
abavb and |u| < 2k +2, otherwise position 2k +1 is critical. The factor uu is
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followed by b in Mk+1, otherwise abavbabavba is a factor of ϕk+1; a contradic-
tion. But, now we have a 4 v, otherwise b3 is a factor of ϕk+1, a contradiction,
and ababa is a factor of ϕk+1; again a contradiction.

If k is odd, then the repetition word u′ at position 2k + 1 is of the form
bbava and |u| < 2k − 1, otherwise position 2k + 1 is critical. Certainly, the
factor uu must be preceded by a in Mk+1, otherwise b3 is a factor of ϕk+1;
a contradiction. But, now abbavabbava is a factor of ϕk+1; again a contra-
diction.

Position 2k + 3 is shown to be critical by similar arguments.

Proof of Theorem 15. We show that there are no two consecutive noncritical
positions in Mn except 1 and 2, and 2n + 2 and 2n + 3.

By Lemma 16, the words a, b, ab, and ba are the only repetition words
at noncritical positions in Mn. We need to consider only positions from 4 to
2n, since positions 3 and 2n + 1 are certainly critical.

Assume a is the repetition word at some position p and position p − 1
is noncritical. Now, a must be the repetition word at position p − 1 and
a3 is a factor of ϕn; a contradiction. The same argument holds if b is the
repetition word at position p.

Assume ab is the repetition word at some position p and position p − 1
is noncritical. Now, ba must be the repetition word at position p − 1 and
babab is a factor of ϕn; a contradiction. The same argument holds if ba is the
repetition word at position p.

The claim follows now from Lemma 13.

Remark 17. Is there a sequence with a higher density of critical points than
{Mn}, with n > 0? Certainly, there is no sequence with a limit larger
than 1/2 by Lemma 13. Actually, there is no binary word larger than 5 with
a density equal to 1/2 by the following Lemma 18. A word Mn is basically
an overlap-free word with cubic prefix and suffix. In any case, Lemma 20 will
show that any infinite sequence with a limit 1/2 of densities must include in-
finitely many words where the first and the last two positions are noncritical.
However, could we use other words than Thue–Morse words to construct
{Mn}, with n > 0? If we choose a word with an overlapping factor, say
w = w1au◦a◦uaw2, then w has two consecutive positions, marked by ◦, that
are not critical. Lemma 13 implies that w would not be a good choice. So,
what about other overlap-free words? Any infinite set of finite overlap-free
binary words would certainly do for {Mn}, with n > 0. However, ϕ is the
smallest morphism that takes an overlap-free word to a longer overlap-free
word. So, {Mn}, with n > 0, is optimal from that point of view.

10



Lemma 18. Every binary word w, with ind(w) = 1 and |w| > 5, implies
δ(w) < 1

2
.

Proof. Assume |w| > 5 and δ(w) = 1/2. Then there are no two consecutive
critical points in w by Lemma 13. Certainly ∂(w) > 3 since ind(w) = 1.

The first and the last position of w is not critical. Otherwise, let a.b ≤ w
and point 1 is critical, then aba and abba are not prefixes of w since the
repetition word in position 1 are then ba and bba, respectively; contradicting
∂(w) > 3. Also, abbbb is not a prefix of w since then δ(w) < 1/2 by Lemma 13.
Hence, abbba ≤ w and ∂(w) = 4 since the smallest repetition word in position
1 is now bbba. So, w equals a.bbb.aa or a.bbb.aab and has just two critical
points; a contradiction. The last position is a symetric case.

The claim follows now from Lemma 13.

Remark 19. The largest binary words of index one and density two are given
by Lemma 13:

aa.b.aa , bb.a.bb ,

and by the Fibonacci word F4 and its reverse F̃4:

ab.aa.b , ba.bb.a , b.aa.ba , a.bb.ab .

Lemma 20. Let {wn}, with |wn| > 5 for all n > 0, be an infinite sequence
of binary words such that

lim sup
n→∞

δ(wn) =
1

2
.

Then there is an infinite set I of natural numbers such that the first and the
last two positions of wi, for all i ∈ I, are noncritical.

Proof. Let wk be such that δ(wk) > 1/2 − ε for some positive real number
ε < 1/4. The first and the last position of wk are noncritical by the proof of
Lemma 18. We have |wk| > 1/(2ε) since

η(wk)

2η(wk) + 1
≥ δ(wk) >

1

2
− ε and η(wk) >

1

4ε
−

1

2

by the proof of Lemma 18, and

|wk| ≥ 2(η(wk) + 1) >
1

2ε

again by the proof of Lemma 18. Assume the second position of wk is critical.
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Let aa.b ≤ au ≤ wk where |u| = ∂(wk) − 1. The factor aa does not
appear in u. Actually, u = abk1abk2 · · · abkt , where kj ≥ 1 for all 1 ≤ j ≤ t,
and since |wk| > 1/ε and ind(w) = 1, we have |u| > 1/(4ε) and t > 1/(8ε).
Since C = {abi | 1 ≤ i ≤ t} is a code, we can consider u to be encoded in an
alphabet X of size |C|, let u′ be the encoded u. Certainly, u′ is square-free.
However, by the assumption that δ(wk) > 1/2 − ε, we must have a factor v
in u, with |v| > 1/(4ε), where critical and noncritical positions alternate, so,
bbb is not a factor of v. Let v′ be the encoding in X of the smallest factor
that contains v. Now, v′ must be a square-free word in at most two letters,
namely the once that encode ab and abb. But the longest square-free word
in two letters is xyx, with x, y ∈ X, and hence, |v′| < 9; a contradiction.

Let ab.a ≤ w = uv where |u| = ∂(w). Then u = aba∂(w)−2; a contradic-
tion.

Similar arguments hold for the last but one position when u ends in aa
or ba.
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algébrique, volume 11 of Publications du LaCIM, pages 65–80. Université
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Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal
Languages, volume 1, pages 329–438. Springer-Verlag, Berlin, 1997.

[5] Maxime Crochemore and Dominique Perrin. Two-way string-matching.
Journal of the Association for Computing Machinery, 38(3):651–675,
1991.

[6] Aldo de Luca. A combinatorial property of the fibonacci words. Infor-
mation Processing Letters, 12(4):193–195, August 1981.

12



[7] Jean-Pierre Duval. Périodes et répétitions des mots de monöıde libre.
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