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Abstract

We study rough approximations based on indiscernibility relations which are not
necessarily reflexive, symmetric or transitive. For this, we define in a lattice-
theoretical setting two maps which mimic the rough approximation operators and
note that this setting is suitable also for other operators based on binary relations.
Properties of the ordered sets of the upper and the lower approximations of the
elements of an atomic Boolean lattice are studied.



1 Introduction

The basic ideas of rough set theory introduced by Pawlak [8] deal with situations
in which the objects of a certain universe can be identified only within the limits
determined by the knowledge represented by a given indiscernibility relation. The
indiscernibility relation enables us to divide objects of the universe U into three
disjoint sets with respect to any subset X C U

(1) the objects, which surely are in X;
(2) the objects, which are surely not in X;
(3) the objects, which possibly are in X.

The objects in class 1 form the lower approximation of X, and the objects of type
1 and 3 form together its upper approximation. The boundary of X consists of the
objects in class 3.

Usually indiscernibility relations are supposed to be equivalences. In this work
we do not restrict the properties of an indiscernibility relation. Namely, as we will
see, it can be argued that neither reflexivity, symmetry nor transitivity are necessary
properties of indiscernibility relations.

We start our study by defining formally the upper and the lower approximations
of an indiscernibility relation ~ on U. For any = € U, we denote

[zlx ={yeU|z =y}

Thus, [z]~ consists of the elements which cannot be discerned from x. For any
subset X of U, let

(1.1) XY = {ze€U]|[z]l~C X} and
(1.2) Xt = {zeU]|Xn[z]x #0}.

The sets XY and X4 are called the lower and the upper approximation of X,
respectively. The set B(X) = X4 — XV is the boundary of X.

The above definitions mean that z € X4 if there is an element in X to which
x is ~-related. Similarly, z € XV if all the elements to which z is ~-related are
in X. Furthermore, z € B(X) if both in X and outside X there are elements to
which z is ~-related.

Two sets X and Y are said to be equivalent, denoted by X =Y, if XY =Y"
and X4 = YA, The equivalence classes of = are called rough sets. The set of all
rough sets is denoted by R. The idea is that if subsets of U are observed within the
limits given by the knowledge represented by =z, then the sets in the same rough
set look the same; X = Y means that exactly the same elements belong certainly
to X and to Y, and that exactly the same elements belong possibly to X andto Y.

It seems that there is no natural representative for a rough set. However, this
problem can be easily avoided by using Iwirski’s [4] approach to rough sets based
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Figure 1: The ordered set (R, <)

on the fact that each rough set S € R is uniquely determined by the pair (X7, X4),
where X is any member of S. Now there is a natural order relation on R defined

by
(X', X4 <YY" v*) < X"CYVand X* CYL

Example 1.1 Suppose that the object set U = {1,2,3,4} consists of four per-
sons called 1, 2, 3, and 4, respectively. In Table 1 is presented some information
concerning these persons.

| GENDER  AGE

1 | Male Old

2 | Female Young

3 | Male Middle-aged
4 | Female Young

Table 1: The gender and the age of persons 1, 2, 3, and 4

Let the relation = be defined so that two persons are ~-related if and only if
their values for the attributes GENDER and AGE are the same. Then obviously ~
is an equivalence which has the ~-classes {1}, {3}, and {2,4}.

Let us denote the subsets of U, which differ from () and U, by sequences of
their elements. For example, {1,2,3} is written as 123. It is easy to see that R
consists of twelve rough sets, which are {0}, {1}, {3}, {2, 4}, {13}, {12, 14},
{23,34}, {24}, {123,134}, {124}, {234}, and {U}. The ordered set (R, <) is
presented in Figure 1.

For an arbitrary binary relation we can now give the following definition.



Definition 1.2 A binary relation = on a nonempty set U is said to be

1.

2.

reflexive, if t =~ x for allx € U;

symmetric, if ¢ = y implies y =~ z for all z,y € U;

. transitive, if t =~ yand y ~ z imply = z forall z,y, z € U;

a quasi-ordering, if it is reflexive and transitive;

a tolerance relation, if it is reflexive and symmetric;

. an equivalence relation, if it is reflexive, symmetric, and transitive.

It is commonly assumed that indiscernibility relations are equivalences. How-
ever, in the literature one can find studies in which rough approximation operators
are determined by tolerances (see e.g. [6]). Note also that Kortelainen [7] has stud-
ied so-called compositional modifiers based on quasi-orderings, which are quite
similar to operators (1.1) and (1.2).

Next we will argue that there exist indiscernibility relations which are not re-
flexive, symmetric, or transitive.

Reflexivity. It may seem reasonable to assume that every object is indiscernible

from himself. But in some occasions this is not true, since it is possible that
our information is so imprecise. For example, we may discern persons by
comparing photographs taken of them. But it may happen that we are unable
to recognize that a same person appears in two different photographs.

Symmetry. Usually it is supposed that indiscernibility relations are symmetric,

which means that if we cannot discern x from y, then we cannot discern y
from z either. But indiscernibility relations may be directional. For example,
if a person x speaks English and Finnish, and a person y speaks English,
Finnish and German, then x cannot discern y from himself by the property
“knowledge of languages” since y can communicate with  in any languages
that = speaks. On the other hand, y can discern  from himself by asking a
simple question in German, for example.

Transitivity. Transitivity is the least obvious of the three properties usually as-

sociated with indiscernibility relations. For example, if we define an indis-
cernibility relation on a set of human beings in such a way that two person
are indiscernible with respect to the property “age” if their time of birth dif-
fers by less than two hours. Then there may exist three persons z, y, and z,
such that  is born an hour before y and y is born 1% hours before z. Hence,
z is indiscernible from y and y is indiscernible from z, but « and z are not
indiscernible.



This work is structured as follows. The following section is devoted to basic
notations and general conventions concerning ordered sets. In Section 3 we in-
troduce generalizations of lower and upper approximations in a lattice-theoretical
setting and study their properties.

2 Preliminaries

‘We assume that the reader is familiar with the usual lattice-theoretical notation and
conventions, which can be found in [1, 2], for example.

First we recall some definitions concerning properties of maps. Let P = (P, <)
be an ordered set. A map f: P — P is said to be extensive, if z < f(z) for all
x € P. The map f is order-preserving if x < y implies f(z) < f(y). Moreover,
f is idempotent if f(f(x)) = f(z) forallz € P.

A map c: P — P is said to be a closure operator on P, if c is extensive,
order-preserving, and idempotent. An element z € P is c-closed if ¢(z) = .
Furthermore, if :: P — P is a closure operator on P2 = (P,>) then i is an
interior operator on P.

Let P = (P,<) and Q = (Q, <) be ordered sets. A map f: P — Q is an
order-embedding, if for any a,b € P, a < bin P if and only if f(a) < f(b) in
Q. Note that an order-embedding is always an injection. An order-embedding f
onto () is called an order-isomorphism between P and Q. When there exists an
order-isomorphism between P and @, we say that P and Q are order-isomorphic
and write P = Q. If (P, <) and (Q, >) are order-isomorphic, then P and Q are
said to be dually order-isomorphic.

Next we define dual Galois connections. It is known [6] that the pair of maps
which assigns to every set its upper and lower approximations forms a dual Galois
connection when the corresponding indiscernibility relation is symmetric. In the
next section we will show that an analogous result holds also in our generalized
setting.

Definition 2.1 Let P = (P, <) be an ordered set. A pair (*,¥) of maps *: P — P
and *: P — P (which we refer to as the right map and the left map, respectively)
is called a dual Galois connection on P if ® and < are order-preserving and p*> <
p < p®”<forall p € P.

The following proposition presents some basic properties of dual Galois con-
nections, which follow from the properties of Galois connections (see [2], for ex-
ample).

Proposition 2.2 Ler (*,¥) be a dual Galois connection on a complete lattice P.
(a) Forallp € P, p»* =p» and p®* = p*.

(b) The map c:P — P, p — p® s a closure operator on P and the map
k: P — P, p— p*™ is an interior operator on P.
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(¢) If c and k are the mappings defined in (b), then restricted to the sets of c-
closed elements P, and k-closed elements Py, respectively, ® and < yield
a pair *: P, — Py, . P, — P, of mutually inverse order-isomorphisms
between the complete lattices (P,, <) and (P, <).

Before we consider Boolean lattices, we present the following lemma. Note
that condition (a) can be found in [2], for example. Here p(P) denotes the power
set of P, that is, the set of all subsets of P.

Lemma 2.3 Let (P, <) be a complete lattice, S,T C P, and {X; | i € I} C
p(P).

(@) fSCT, then\] S <VT.
) V(U{Xi|iel})=V{VXi|iel}

Proof. (b) Forall s € I, X; C |J{X; | i« € I}. This implies by (a) that
VXi <V(WU{Xi|ieI}) foralliel.

Let = be an upper bound of {\/ X; | ¢ € I'}. Then foralli € I and y; € X,
y; < VX; < z. This means that z < z for all z € |J{X; | ¢ € I}. Thus,
V (U{X: | ¢ € I}) < z, which completes the proof. O

Next we recall some definitions concerning Boolean lattices. They are bounded
distributive lattices with a complementation operation.

Definition 2.4 A lattice £ = (L, <) is called a Boolean lattice, if
(a) L is distributive,
(b) L has a least element 0 and a greatest element 1, and

(c) each a € L has a complement a' € L suchthataVa' =1andaAad' =0.

In the following lemma is some properties of Boolean lattices.
Lemma 2.5 Let B = (B, <) be a Boolean lattice. Then for all a,b € B,
(@) 0 =1and 1 =0,
(b) a" =a,
(©) (avbd) =d ANV and (aND) =ad' vV, and
(d) aAb =0ifandonlyifa <b.

The following definition introduces the dual of a map. In Section 3 we show
that the pair of maps which assigns the lower and upper approximations to each
element are mutually dual.



Definition 2.6 Let B = (B, <) be a Boolean lattice. Two maps f: B — B and
g: B — B are the duals of each other if

f(z') = g(z)" and g(z') = f(z)'
for all z € B.

The following obvious lemma shows that the dual of a closure operator is an
interior operator.

Lemma 2.7 Let B = (B, <) be a Boolean lattice and let f: B — B be a closure
operator on B. If g: B — B is the dual of f, then g is an interior operator on B.

By the following lemma, which can be found in [1], the infinite distributive
laws hold in a complete Boolean lattice.

Lemma 2.8 Let B = (B, <) be a complete Boolean lattice. Then for all {z; | i €
I} C Bandy € B,
YA Vier®i) = Vier(y A zi)

and
YV (Nicr @) = Nicr(y V @3)-

We end this section by introducing atomic Boolean lattices. Let (P, <) be an
ordered set and x,y € P. We say that x is covered by y (or that y covers x), and
write x —< y, if £ < y and there is no element z in P withz < z < y.

Definition 2.9 Let £ = (L, <) be a lattice with a least element 0. Then a € L is
called an atom if 0 —< a. The set of atoms of L is denoted by A(L). The lattice
L is atomic if every element x of L is the supremum of the atoms below it, that is,

z=\V{a€ AL)|a <z}
It is obvious that in a lattice £ = (L, <) with a least element 0,
2.1) aNTx#0 <= a<z

forall a € A(L) and x € L. This implies that a A b = 0 for all a,b € A(L)
such that a # b. Furthermore, if £ is atomic, then for all x # 0 there exists an
atom a € A(L) such that a < x. Namely, if {a € A(L) | a < x} = 0, then
z=V{a€ A(L) |a<z}=V0=0.

3 Generalizations of approximations

In this section we study properties of approximations in a more general setting of
complete atomic Boolean lattices. We begin with the following definition.



Definition 3.1 Let B = (B, <) be a complete atomic Boolean lattice. We say that
amap ¢p: A(B) — B is

extensive, if x < ¢(z) forall z € A(B);
symmetric, if z < p(y) implies y < ¢(z) forall z,y € A(B);
closed, if y < (x) implies p(y) < ¢(zx) forall z,y € A(B).

Let &~ be a binary relation on a set U. The ordered set (p(U), C) is a com-
plete atomic Boolean lattice. Since the atoms {z} (z € U) of (p(U), C) can be
identified with the elements of U, the map

(3.1) o:U — p(U),z — [z]x

may be considered to be of the form ¢: A(B) — B, where B = (B, <) equals
(p(U), C). The following observations are obvious:

1. = isreflexive <= ¢ is extensive;
2. /& is symmetric <= ¢ is symmetric;
3. & is transitive <= ¢ is closed.

Next we introduce the generalizations of lower and upper approximations.

Definition 3.2 Let B = (B, <) be a complete atomic Boolean lattice and let
¢: A(B) — B be any map. For any element z € B, let

2" = \{ac AB) | pla) <z,
b = \/{a € A(B) | p(a) Nz # 0}.

v A

The elements =" and x* are the lower and the upper approximation of x with
respect to ¢, respectively. Two elements x and y are equivalent if they have the
same upper and the same lower approximations. The resulting equivalence classes
are called rough sets.

It is clear that if ¢ is a map defined in (3.1), then the functions of Definition 3.2
coincide with the operators (1.1) and (1.2). The next lemma is useful in our con-
siderations.

Lemma 3.3 Let B = (B,<) be a complete atomic Boolean lattice and let
0: A(B) — B be any map. Then for all a € A(B) and z € B,

(@ a<z¥ < p(a) <z

(b) a <z* <= p(a) Az #0.



Proof. (a) Suppose that a < z¥ = \/{b € A(B) | ¢(b) < z}. If p(a) £ =,
then
anz’ = an\[{be AB)|p®) <z}
= \/{aAb|be A(B)and p(b) <z} =0.
This implies a < (z)’, a contradiction! Thus, ¢(a) < z. On the other hand, if

o(a) <z, thena < \/{b € AB) | p(b) < z} =z".
Condition (b) can be proved similarly. 0

The end of this work is devoted the study of the operators (3.1) and (3.2) in
cases when the map ¢ is extensive, symmetric, or closed. However, we begin
by assuming that ¢ is arbitrary and present some obvious properties of the maps
V:P— Pand4: P — P.

Lemma 3.4 Let B = (B,<) be a complete atomic Boolean lattice and let
¢: A(B) — B be any map.

(@) 04 =0and 1" = 1;
(b) = < yimpliesz¥ <y and = < yA.

Note that Lemma 3.4(b) means that the maps ¥ and 4 are order-preserving. For
all S C B, we denote SY = {z¥ |z € S} and S4 = {z* | z € S}.

Recall that for a semilattice P = (P, o), an equivalence © on P is a congruence
on P if £1O@x9 and y1 Oy imply x1 0 y1Ox2 o x, for all z1,x2,y1,y2 € P.

Proposition 3.5 Let B = (B, <) be a complete atomic Boolean lattice and let
¢: A(B) — B be any map.

(a) The maps *: B — B and Y: B — B are mutually dual.
(b) Forall S C B, \J S* =(V S)A.
(c) Forall S C B, ASY =(A\S)".

(d) (B*,<) is a complete lattice; 0 is the least element and 1% is the greatest
element of (B4, <).

(e) (BY,<) is a complete lattice; 0V is the least element and 1 is the greatest
element of (BY, <)

(f) The kernel Oy = {(z,y) | z¥ =y} of the map ¥: B — B is a congruence
on the semilattice (B, \) such that the Oy-class of any x has a least element.

(2) The kernel ©4 = {(z,y) | z* = yA} of the map *: B — B is a congruence
on the semilattice (B, V) such that the ©,-class of any x has a greatest
element.



Proof. (a) Let a € A(B). Then
a < (z*) iffa £ 24 iff p(a) Az = 0iff p(a) < 2’ iffa < (2)".

This implies that (z4)" = (2’)". The other part can be proved similarly.

(b) Let S C B. The map 4: B — B is order-preserving, which implies that
VS4 < (VS)L Leta € A(B) and assume that p(a) A \/ S # 0. Then 0 #
w(a) ANV S = V{e(a) Az | z € S}, which implies that p(a) A x # 0 for some
z € S. Thus,

{ac AB) | p(a) A/ § #0} € | J{a € AB) | p(a) Az £0}

€S

and by Lemma 2.3,
(V8)* = Vi{ac A®B)|¢(a)r\/5+#0}
<\ (U{aeAw) | w(a)/\w#ﬂ}>

€S

= \/ {\/{ae.A(B)“o(a)/\ﬂ??éO}}

z€eS

= \{z* |z esy=\/5"

Hence, \/ S* = (\/ S)A. Claim (c) can be proved similarly. Assertions (d) and (e)
follow easily from (b), (¢), and Lemma 3.4(a).

(f) It can be easily seen that Oy is an equivalence on P. Let 1,22,y1,y2 € B
and assume that (z1,y1), (z2,y2) € Oy. Then

(ziAz)Y =z Azy =y] Ayy = (W1 Ay2)".

Thus, Oy is a congruence on (B, A).
It is clear that A[z]e, is the least element in the congruence class of z since

ANl ly" =2"H" = A" |y =2"}=2"
by (c). Assertion (g) can be proved similarly. a

Let us denote by c, (x) the greatest element in the ©,-class of any z € B. It
is easy to see that the map = — c, () is a closure operator on B. Similarly, if we
denote by cy(z) the least element of the Oy-class of z, the the map z — cy(z) is
an interior operator on B (see [5] for details).

Next we show that (B4, <) and (BY, <) are dually order-isomorphic.

Lemma 3.6 (BA <) = (BY,>).



Proof. We show that x4 +— (z')Y is the required dual order-isomorphism. It is
obvious that x4 — (z')Y is onto (BY, <).

Suppose that z4 < yA. Then forall a € A(B), p(a)Az # 0implies p(a)Ay #
0. Suppose that (y')Y £ (z')Y. This means that there exists an a € A(B) such
that p(a) < y' but p(a) £ z'. Since p(a) £ 2’ is equivalent to p(a) A z # 0, we
have that ¢p(a) A y # 0. But this means that ¢p(a) € ¥/, a contradiction! Hence,
@)Y < ()"

On the other hand, assume that (y')Y < (z’)Y. Let us suppose that z4 £ yA.
This means that there exists an a € A(B) such that p(a) Az # 0and p(a) Ay = 0.
But this implies that ¢(a) < 3y’ and a < (y')Y. Hence, a < (z')Y and p(a) < 2.
This is equivalent to ¢(a) A z = 0, a contradiction! Thus, z¥ < y". a

Next we study the properties of approximations more closely in cases when the
corresponding map ¢: A(B) — B is extensive, symmetric, or closed.

Extensiveness

Here we study the functions 4: B — B and Y: B — B defined by an extensive
mapping . We show that (BY, <) and (B4, <) are bounded by 0 and 1. Further-
more, each element of B is proved to be between its approximations.

Proposition 3.7 Let B = (B, <) be a complete atomic Boolean lattice and let
: A(B) — B be an extensive map. Then

(@) 0Y =0and 14 = 1;
(b) 2Y <z < zAforallz € B.

Proof. (a) Let a € A(B). Since ¢(a) > a, {a € A(B) | ¢(a) < 0} = 0.
Hence, 0Y = 0. Similarly, {a € A(B) | a A1 # 0} = A(B) and thus 14 = 1.

(b) Let a € A(B). Assume that a < z. If p(a) < 2/, thena < p(a) < 2.
Hence, a < zAz' = 0, acontradiction! This means that p(a) £ =’ and p(a) Az #
0. Thus,

{a€e A(B) |a<z} C{a€c AB)|¢(a) Nz #0}

and
z=\/{ac AB)|a<a} <\/{ac AB)|p(a) Az #0} =z*.
On the hand, if ¢(a) < z, then a < ¢(a) < , and hence
{a€ A(B) | p(a) <z} C {a€ A(B) |a <z}

This implies that

2" =\/{a € AB) | p(a) <z} < \/{a € AB) |a <z} ==z
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Symmetry

In this subsection we assume that ¢ is symmetric. First we show that the pair (4,Y)
is a dual Galois connection.

Proposition 3.8 Ler B = (B, <) be a complete atomic Boolean lattice and let
0: A(B) — B be a symmetric map. Then the pair (2" ) is a dual Galois connec-
tion on B.

Proof. As we have noted, the maps Y: B — B and 4: B — B are order-
preserving. Let a € A(B). If a < x4, then p(x) A z¥ # 0. This implies that
there exists an atom b € A(B) such that b < ¢(a) A z¥. Thus b < ¢(a) and
b < zV. Since ¢ is symmetric, also a < ¢(b) holds. Because b < zV is equivalent
to ¢(b) < z, we get a < z and hence

{ac AB)|a<2z"%} C{ac AB)|a <z},

which implies 24 < z.
Let us denote y = z’. Then y'4 < y implies

T = yl S (yVA)I — ((yV)I)V — (yl)AV — xAV‘

O

By the previous proposition, the pair (4,¥ ) is a dual Galois connection when-
ever the map ¢ is symmetric. This means that these maps have the properties of
Proposition 2.2. In particular, the map = — zAY is a closure operator and the map
x — x4 is an interior operator. Let us denote

By ={z*Y |z € B} and B, = {z"* | z € B}.

Proposition 3.9 Let B = (B, <) be a complete atomic Boolean lattice and let
©: A(B) — B be a symmetric map. Then

(@) a* = p(a) for all a € A(B);
(b) z* = V{p(a) | a € A(B) and a < x} for every x € B;
(c) B, = BY and B; = B*;
d) (B4 <) = (BY,<).
Proof. (a) Let a € A(B). It obvious that
{be AB) [b<p(a)} ={be A(B) | a < »(b)},

11



since ¢ is symmetric. Thus,

pa) = \/{be AB)|b<p(a)}
= \/{be AB)|a <o)}
= \/{b€ AB) | anp(b) #0}
(b) Let x € B. Then
z=\/{a€ AB)|a <z}
and
b = (\la€ AB)|a<ah)*
= \/{a*|ac A(B)anda < z}
= \/{¢(a)|a € A(B)anda < z}.

(c) Assume that z € By. Then z = yY for y = x4, that is, z € BY. On the
other hand, if z € BY, then z = yY for some y € B and thus zAY = y7AY =
yY = z, thatis, z € By. The other part can be proved similarly.

Claim (d) is obvious, since (By, <) = (B, <) by Proposition 2.2. O

We denoted by c,(x) the greatest element in the ©4-class of z. Similarly,
cy(z) denotes the least element in the z’s Oy-class. We can now write the follow-
ing corollary.

Corollary 3.10 Let B = (B, <) be a complete atomic Boolean lattice and let
¢: A(B) — B be a symmetric map. Then

(@) ca(z) = zAY forall x € B,

(b) cy(z) = x4 forall z € B,

(c) (BY, <) is dually isomorphic with itself, and
(d) (BA, <) is dually isomorphic with itself.

Proof. (a) Since x4 = A4, we have (z,z4Y) € ©,. Furthermore, z < z4Y

holds by the definition of dual Galois connections. Equality (b) can be proved
similarly.
By Lemma 3.6 and Proposition 3.9(d),

(B'> S) = (BA> Z) = (B',Z) = (BAa S),

which proves (c) and (d). O
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Figure 2: The ordered set (B, <)

Note that we have now showed that
{z*Y |z € B} = {ca(z) |z € B} ={z" | z € B}

and
{z"* |z € B} = {cy(z) |z € B} = {z* | z € B}.

In the following example the map ¢ is extensive and closed, but not symmetric.
Example 3.11 Let B = {0,q,b,c,d, e, f,1} and let the order < be defined as in

Figure 2. The set of atoms of the complete atomic Boolean lattice B = (B, <) is
{a, b, c}. Let the map ¢: A(B) — B be defined by

Then obviously ¢ is extensive and closed. The map ¢ is not symmetric, since
b < p(a), but a £ ¢(b), for example.

T zY z*

0 0 0

a 0 a

b b aVbve=1
c 0 c

d aVb=d aVbVvVe=1
e 0 aVc=e
f bve=f aVbve=1
1|aVvbVe=1|aVbVe=1

Table 2: Lower and upper approximations

In Table 2 is presented the lower and upper approximations of the elements of
B. The dually order-isomorphic ordered sets (B4, <) and (BY, <) are shown in
Figure 3. Note that (B4, <) % (BY, <). Furthermore, these ordered sets are not
dually isomorphic with themselves.

Closedness

We end this work by studying the case in which ¢ is closed. First we present the
following observation.



(B, <) (BYS)
Figure 3: The ordered sets (BY, <) and (B4, <)
Lemma 3.12 Let B = (B, <) be a complete atomic Boolean lattice and let
¢: A(B) — B be a closed map. Then for all © € B,
(a) zhd < zA;
(b) z¥ <z"V.

Proof. (a) Leta € A(B). If a < z44, then p(a) A z* # 0. This means that
there exists an atom b € A(B) such that b < p(a) and b < z4. Now b < z4 is
equivalent to ¢(b) A x # 0 and since ¢ is closed, b < p(a) implies ¢(b) < ¢(a).
Thus, also ¢(a) A = # 0 holds and so a < z4. Hence,

{a € A(B) |a<2**} C{a€ A(B) | a < z*}

and A4 < A,
(b) Let us denote y = z’. Then yA4 < y4 and

2V =) =@ <) =(")) =) =2"".

Now we can write the following proposition.

Proposition 3.13 Let B = (B, <) be a complete atomic Boolean lattice and let
p: A(B) — B be an extensive and closed map.

(a) The map *: B — B is a closure operator.
(b) The map Y: B — B is an interior operator.

(c) (BY, <) and (BA, <) are sublattices of (B, <).

Proof. (a) The map 4: B — B is extensive because ¢ is extensive, and it is
order-preserving by Lemma 3.4(b). By Lemma 3.12 z44 < z4, and z4 < zA4
holds since ¢ is extensive. Claim (b) follows from Lemma 2.7 and Proposi-
tion 3.5(a).
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(c) Suppose that z¥,yY € BY. Then obviously,
z' Ay =(zAy)T,

which implies that z¥ A y¥ € BY.
Next we show that

It is clear that
zY <2Vvy' and z¥ =2V < (2" vy")".

Similarly, we can show that y¥ < (2 Vy")Y. Thus, (¥ Vy")" is an upper bound
of z¥ and yY. Let z € B be an upper bound of ¥ and y¥. Then z¥ < zand y¥ <
z, which implies z¥ Vy" < z. Because g is extensive, (zYVy")Y <z"Vvy' < 2.
Thus, ¥ V y¥ = (zY VyY)Y and ¥ V y¥ € BY. The other part can be proved
analogously. 0

It is known that every sublattice of a distributive lattice is distribute (see [2],
for example). Therefore, we can write the following corollary.

Corollary 3.14 Let B = (B,<) be a complete atomic Boolean lattice. If
0: A(B) — B is extensive and closed map, then (BY, <) and (B*,<) are dis-
tributive.

Note that it is known that if ¢: A(B) — B is extensive and symmetric, then
BY, <) and (BA, <) are not necessarily distributive (see [5] for an example).
p

Lemma 3.15 Let B = (B,<) be a complete atomic Boolean lattice and let
p: A(B) — B be extensive, symmetric, and closed. Then for all x € B,

¥4 =2Y and zAY = zA.

Proof. Since ¢ is extensive, ¥ < z¥4 for all z € P. Leta € A(B) and
suppose that a < ¥4, which means that ¢(a) A ¥ # 0. This implies that there
exists an atom b € A(B) such that b < ¢(a) and b < zV. Since ¢ is symmetric,
b < ¢(a) implies a < (b). The fact that ¢ is closed yields ¢(b) < ¢(a) and
p(a) < p(b), thatis, p(a) = ¢(b). Because b < ¥ we obtain p(a) = ¢(b) < z.
Hence, a < 2Y and so also Y4 < zVY holds.

The other part is now obvious:

.’L“ — (xA)II — ((xl)V)l — ((xl)VA)I — CEAV.
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By Proposition 3.13 and Lemma 3.15 it is clear that if ¢: A(B) — B is an
extensive, symmetric, and closed map, then BY = {:1:' | x € B} equals BA =
{z* | =z € B}. For simplicity, let us denote £ = BY = BA.

Proposition 3.16 Let B = (B, <) be a complete atomic Boolean lattice and let
p: A(B) — B be an extensive, reflexive, and closed map. The ordered set (€, <)
is a complete atomic Boolean sublattice of B.

Proof. Let z € €. This means that z = y" for some y € B. Thus, z4 =
y"d=y"=zandzY =y"" =¢yY = 2.
Let {z; | i € I} C £. Since z* = z; for all ¢ € I, we obtain

Vp{zilie I} =V{zf |i€ I} =(Vp{z:|ic TP

Thus, \/ g{zi | i € I} € £. Similarly, we can show that A g{z; | ¢ € I} € £. This
means that (€, <) is a complete sublattice of B.

We have already shown that (£, <) is distributive. By Lemma 3.4(a) and
Proposition 3.7(a), 0,1 € £. It is also clear that ' = (z¥) = (2/)* € & for
all z € £. Thus we have shown that (£, <) is a complete Boolean lattice.

We have still to show that (£, <) is atomic. We show that {a* | a € A(B)}
is the set of atoms of (£, <). Let z € £. This means that z* = z. Let us denote

Sy ={be AB) |b<z}. Thenz =\/ S, and

z=z*=(\/S)* =(\/{olbeSuH* =\/{v* | be S}

Let a € A(B) and suppose that 0 < z < a* for some z € S. This means that
forallb € S;, b < z < a* = p(a), which implies that a < ¢(b) = b for all
b € S;. Hence,a < \/{b* | b € S;} = z and a* < z* = z, a contradiction!
Thus, a4 is an atom of (€, <). It is also obvious that {a* | a € A(B)} is the set of
atoms.

Because a < z iffa* < z foralla € A(B) andz € &, z = z* = \/{a* |
a € A(B) and a < z}, which means that every element of £ is the supremum of
the atoms below it. Hence, (&, <) is also atomic. O

Remark 3.17 We have proved that if ¢: A(B) — B is extensive, reflexive, and
closed, then (£, <) is a complete atomic Boolean sublattice of B. Furthermore,
{a* | a € A(B)} is the set of atoms of (£, <).

Now we may present a result similar to Theorem 2 of Gehrke and Walker [3].
We state that the pointwise ordered set of all rough sets {(z",z4) | z € B} is
order-isomorphic to 27 x 37, where I = {a* | a € A(B) and p(a) = a} and
J ={a* | a € A(B) and ¢(a) # a}.

We end this paper with the following corollary of Proposition 3.16.
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Corollary 3.18 Let B = (B,<) be a complete atomic Boolean lattice. If
0: A(B) — B is reflexive and closed, then (B*,<) and (BY,<) are complete
atomic Boolean lattices.

Proof. Let A* = {a € A(B) | p(a) #0}andlet B* = {\/ X | X C A*}. It
is easy to see that (B*, <) is a complete atomic Boolean lattice and that A* is the
set of atoms of (B*, <).

Let us denote by * the map ¢ restricted to A*. First we show that ¢*(a) € B*
for all a € A*. Namely, if we assume that 0 # ¢*(a) € B — B* for some a € A*,
then there exists a b € A(B) — A* such that b < ¢*(a) = ¢(a). But since ¢ is
symmetric, we obtain 0 # a < ¢(b) and b € A*, a contradiction!

Obviously ¢* : A* — B* symmetric and closed. We show that ¢* is also
extensive, that is, a < ¢*(a) fora € A*. Leta € A*. Then 0 # ¢*(a) € B*,
which implies that there is an atom b € A* such that b < ¢*(a). But since ¢*
is symmetric, also a < ¢*(b) holds. Because ¢* is closed, b < ¢*(a) implies
©*(b) < ¢*(a). Hence, a < ¢*(b) < ¢*(a) and so ¢* is also extensive.

We can now apply Proposition 3.16, which says that the set of upper approxi-
mations (B2, <) defined by the map ¢* : A* — B* is a complete atomic Boolean
lattice. For all x € B,

zt = \[{a€ A(B)|¢(a) Az # 0}
= \{ee A(B) | ¢*(a) A # 0}
= \{aec A | ¢ (a) Aa #0} =

This means that BA = B®. Because (B2, <) is a complete atomic Boolean
lattice, (B4, <) is a complete atomic Boolean lattice. Since (B4,<) = (BY, <),
also (BY, <) is a complete atomic Boolean lattice. O
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