
A Review on Networking and
Multiplayer Computer Games

Jouni Smed
University of Turku, Department of Computer Science,
Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland

Timo Kaukoranta
University of Turku, Department of Computer Science,
Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland

Harri Hakonen
Oy L M Ericsson Ab, Telecom R&D,
Joukahaisenkatu 1, FIN-20520 Turku, Finland

Turku Centre for Computer Science
TUCS Technical Report No 454
April 2002

ISBN 952-12-0983-6
ISSN 1239-1891

Abstract

Networking forms an essential part of multiplayer computer games. In this
paper, we review the techniques developed for improving networking in dis-
tributed interactive real-time applications. We present a survey of the rele-
vant literature concentrating on the research done on military simulations,
networked virtual environments, and multiplayer computer games. We also
discuss on resource management, consistency and responsiveness, and net-
working on the application level.

Keywords: computer games, networked virtual environments, online enter-
tainment, distributed interactive simulation

TUCS Research Group
Algorithmics laboratory

1 Introduction

Over the past twenty years three distinct classes of distributed interactive
real-time applications have become prominent: (1) military simulations [62],
(2) networked virtual environments (NVEs) [56], and (3) multiplayer com-
puter games (MCGs) [59]. The focus of scientific research has shifted from
the military simulations (the 1980s) through NVEs (the 1990s) currently to
MCGs (see Figure 1). Moreover, the entertainment industry is investing
seriously on MCGs, mobile gaming and online gaming in general.

The terminology encountered in the literature is diverse. For example,
until recently NVEs were usually called distributed virtual environments
(DVEs), which then gave way to collaborative virtual environments (CVEs)
[42], [8]. We have adopted the term NVE, since it encompasses both DVE and
CVE. Military terminology prefers the word ‘simulation’, because they can
be more than NVEs (e.g., logistical simulations). The relationship between
games and simulations is not straightforward. Granted, there are games that
are simulations (e.g., football manager games) and games that are especially
happening in a VE (e.g., flight simulators or first person shooters). However,
as the games get more abstracted, they are less and less simulations (see
Figure 2).

Networking is in dominating position when we consider the playability of
a MCG. The physical platform induces resource limitations (e.g., bandwidth
and latency) that reflect the underlying infrastructure (e.g., cabling and hard-
ware). Normally, there is not much we can do the physical platform—except
perhaps invest on new hardware. The logical platform builds upon the phys-
ical platform, and the choices made in the logical platform play a pivotal role
in the design of a MCG. It provides architecture for communication, data,
and control. Communication architecture defines the logical connections be-
tween the nodes in a network. For example, in peer-to-peer architecture a
set of equal nodes are interconnected, whereas in client/server architecture
one node acts as a server and all communication between nodes is handled
through it. Data and control architecture defines, how information is stored
and updated in the nodes. For example, in a centralized architecture one
node holds the data, whereas in a replicated architecture each node has its
own replica.

This paper concentrates on the features of logical platform. We cast a look
back and present a review of the research work done in the past twenty years.
This paper tries to sum up the story so far in the sense that it includes both
a tutorial to techniques in Section 2 and a survey of literature in Section 3.
Also, we discuss resource management, consistency and responsiveness, and
networking on the application level in Section 4. The concluding remarks

1

1980 1990 2000

SIMNET DIS HLA

DVE CVE
DIVE, Spline, MASSIVE, COVEN

NPSNET, STOW
military

academic

entertainment Amaze

RB2

Doom
Battle.net
Ultima OnlineMUD

Figure 1: History of distributed interactive real-time applications.

simulations

virtual
environments

computer
games

first person
shooters

manager games

puzzles

real-time
strategiessports games

flight simulators
board games

Figure 2: Relationship of simulations, virtual environments (VEs) and com-
puter games. While VEs simulate (possibly real-world) environments, com-
puter games do not necessarily belong to simulations or VEs.

2

appear in Section 5.

2 Techniques

Let us first reiterate the most common techniques to reduce bandwidth re-
quirements of a distributed interactive real-time application (for more details,
see [56]).

2.1 Packet Compression and Aggregation

The purpose of compression is to reduce the number of bits needed to repre-
sent particular information. Thus, the compression of network packets offers
an intuitive approach to minimize network traffic. Compression techniques
can be classified according to their ability to preserve information content.
Lossless techniques preserve all information, and, therefore, the reconstructed
data is exactly the same as the data before compression. As a rule of thumb,
lossless compression techniques can shrink the size of data approximately
down to half. To achieve a higher compression ratio, lossy compression tech-
niques can be employed. The idea is to leave out less relevant information
so that the distortion in the reconstructed data remains unnoticeable. This
is a widely used technique, for example, in audio and image compression.

Because we are compressing network packets, it is also worth noticing how
different compression techniques relate to data in packet format. Internal
compression concentrates on the information content of one packet without
references to other, previously transmitted packets. Therefore, it suits to the
cases where unreliable network transmission protocols such as User Datagram
Protocol (UDP) are used. On the other hand, external compression may
utilize information that has been already transmitted and, therefore, can be
assumed to be available to receivers. For example, we can transmit delta or
transition information which is likely to require less bits than the absolute
information. We can also give reference pointers to previously transmitted
data if the same data occurs again. External compression can consider a
large amount of data at a time, and, thus, it can better observe redundancy
in the information flow. Consequently, it allows better compression rations
than internal compression. However, because of the references to the previous
packets, external compression requires a reliable transmission protocol.

Packet aggregation reduces bandwidth requirements by merging several
packets and transmitting their content in one larger packet. Thus, the over-
head caused by packet headers is smaller. Bandwidth savings can be con-
siderable depending on the size of data in the original packets, the size of

3

packet headers, and the number of merged packets. For example, UDP/IP
and TCP/IP packet headers take 28 and 40 bytes, respectively.

There are two basic approach to determine the number of merged pack-
ets: timeout-based approach and quorum-based approach. In timeout-based
approach, all packets that are initiated before a fixed time period are merged.
This approach guarantees an upper bound on the delay caused by aggrega-
tion. Now, bandwidth savings depend on the packet initiation rate, and, in
the worst case, no savings are gained because no packets, or only one, are
initiated during the period. In the quorum-based approach, a fixed number
of packets is always merged. Because the transmission of the merged packet
is delayed until enough packets are initiated, there is no guarantee for the
transmission delay. Although bandwidth savings are predictable, long trans-
mission delays can hinder the user’s experience. The limitations of both ap-
proaches can be compensated by combining them. In this hybrid approach,
packets are merged whenever one of the conditions fulfills, either time period
expires or there are enough packets to merge.

2.2 Interest Management

The entities usually produce update packets that are relevant only a minority
of the nodes. Therefore, an obvious way to save bandwidth is to disseminate
update packets only to those nodes who are interested in them. This interest
management includes techniques that allow the nodes to express interest
in only the subset of information that is relevant to them [8], [46]. An
expression of data interest is called the aura or the area of interest, and it
usually correlates with the sensing capabilities of the system being modeled
(see Figure 3). Simply put, an aura is a subspace where interaction occurs.
Thus, when two players’ auras intersect, they can be aware of each others
actions.

Interest management with auras is always symmetric: If the auras inter-
sect, both parties receive messages from each other. However, aura can be
divided further into a focus and a nimbus, which represent observer’s per-
ception and observed object’s perceptivity [7], [31]. Thus, awareness requires
that the player’s focus intersects with another player’s nimbus. By using
foci and nimbi it possible to construct a finer-grade message filtering, since
awareness needs not to be symmetric (see Figure 4). Auras, foci, and nimbi
can be modified by adapters in order to customize player’s interaction. For
example, the VE can offer infrared binoculars and camouflage tools.

In a area-of-interest filtering scheme, the nodes transmit their state changes
to subscription managers. The managers also receive subscriptions that ex-
press nodes’ information interests (or foci). The manager then transmits

4

(a) By using formulae the aura can be expressed precisely, like the circle around the sailboat
which indicates the observable range. However, the implementation can be complex and
the required computation hard.

(b) The space can be divided into static, discrete cells. The sailboat is interested in
the cells that intersect its aura. Cell-based filtering is easier to implement but it is less
discriminating than formula-based. The cell grid can also be hexagonal.

(c) Extents approximate the actual aura with rectangles (i.e., it is a bounding box). The
computation is simpler than by using formulae and the filtering better than by using cells.

Figure 3: Auras (or areas of interest) can be expressed using formulae, cells
or extents.

5

Seeker’s focus

Hider’s focus

Seeker’s nimbus
Hider’s nimbus

Figure 4: In hide-and-seek, the nimbus of the hiding person is smaller than
the seeker’s, and the seeker is not aware of the hider. Instead, the hider
can observe the seeker, since the seeker’s nimbus is larger and intersects the
hider’s focus.

to the node only the relevant information (i.e. that matches to the node’s
subscription). Area-of-interest filters can be called intrinsic filters because
they use application specific data content of an update packet to determine
which nodes need to receive it. This filtering provides fine-grained informa-
tion delivery but packet processing may require a considerable amount of
time. Extrinsic filters determine the receivers of a packet merely based on
its network attributes (e.g., address). Extrinsic filters are faster to process
than intrinsic filters, and even the network itself can provide them.

Multicasting is a network protocol technique that realizes this approach
[21]. In multicasting, an application transmits packets to a multicast group
identified by a multicast address. To receive packets from the multicast group,
the node has to subscribe (or join) it. Multicasting is comparatively efficient
network dissemination protocol. The challenge in the design of a multicast-
based application is how to categorize all transmitted information into mul-
ticast groups. Each packet sent to a multicast group should be relevant to
all subscribers. Although by using several multicast groups we can achieve a
fine-grained information supply, the maintenance can be problematical (e.g.,
their addressed can collide with other applications in the Internet or network
adapters can support a limited number of multicast subscriptions).

In group-per-object allocation strategy, each object has its own multicast
group to which the object transmits its updates. Assigned servers keep a
record of the multicast addresses so that the nodes can subscribe to the rele-
vant groups. By using several multicast groups, one object can provide more
fine-grained update dissemination and the subscribers can better approxi-

6

mate their foci.
In group-per-region allocation strategy, the virtual environment is divided

into regions that have their own multicast groups. All objects within the re-
gion transmit updates to the corresponding multicast address. Typically
objects subscribe to groups corresponding to their own region and the neigh-
boring regions. As an object crosses a region boundary it has to receive in-
formation about currently relevant multicast groups from directory servers.
Instead of categorizing objects based on their location in the VE, other at-
tributes are possible (e.g., object’s type or team).

2.3 Dead Reckoning

One approach to reduce bandwidth use is to send update packets less fre-
quently. To maintain consistency (or at least a reasonable semblance) we have
to somehow compensate the lack of information between the packet updates.
Especially in the case of position information, dead reckoning [57] methods
have proved to be successful. In dead reckoning, the missing information is
computed with an approximation technique. Based on previously received
information, the node predicts movement of a particular object. The pre-
dicted state of the object is used in the application until new information is
received from the source node. Depending on the accuracy of the prediction
technique, the approximated location can be some distance from its actual
location. To avoid jerky movements when new location information is ap-
plied a convergence algorithm is used to smooth the transfer. Thereby, dead
reckoning consists of two parts: a prediction technique and a convergence
technique.

The most common prediction technique is to use derivative polynomials.
In the case of positions, their natural interpretations are velocity, acceler-
ation, and jerk. If we use zero-order derivative polynomials, only position
information is transmitted and we achieve no gain. In the case of first-order
derivative polynomials, the velocity of an object is transmitted in addition
to the position. Velocity improves prediction accuracy noticeablely. To im-
prove accuracy further, we can add acceleration to the transmitted terms.
This second-order polynomial prediction is the most popular technique. How-
ever, higher derivatives increase the risk of inaccurate prediction: Because
the prediction is more sensitive for high-order terms, a small inaccuracy in
them may result in significant errors. Also, high-order derivative polynomi-
als increase the computational burden of the prediction. Additional terms
consume also our limited bandwidth resources.

To balance between bandwidth requirements and the risk of inaccurate
predicition, hybrid systems can dynamically select either first-order or second-

7

order prediction. For example, if the entity’s acceleration changes often, it is
probable that wrong value is applied to the prediction at some point. There-
fore, it might be safer to content with first-order prediction at that time.

Instead of transmitting higher polynomial terms, they can be approxi-
mated in the receiving node. The Position History-Based Dead Reckoning
(PHBDR) [58] protocol transmits only the absolute positions, and object’s
instantaneous velocity and acceleration are approximated by using the most
recent position updates. Also, the source node can apply the same prediction
technique as the destination node. When the source node determines that
the distance between the real state and the predicted state exceeds a given
threshold, the source transmits an update packet. The threshold can be dy-
namically changed according to the distance between the objects [17]. The
idea is that the farther the object is, the less frequent updates are needed.
Also, update lifetime can be considered (i.e., the time interval between two
consecutive state updates) [70]. The rationale is that a specified level can be
set for update lifetime, which limits the rate of sent messages.

When a node receives an update message, the object’s predicted position
is likely to differ from the position based on the latest information. The
object needs to be moved to this new position, and convergence technique
defines how this correction is performed. A good convergence technique cor-
rects error quickly and unnoticeably (see Figure 5). The simplest technique is
zero-order convergence where the object is just moved to its new predicted po-
sition. However, this can cause annoying jerky movement. A better method
is to use linear convergence where a future convergence point is determined
from the new prediction path. Then the object is moved along direct path
from the current position to a convergence point. during convergence period.

Although linear convergence is clearly better than zero-order convergence,
it can still make unnatural turns when leaving the previous predicted path
and at entering to the new predicted path. To smooth out these problems,
more sophisticated curve-fitting techniques can be applied. The idea is to
select, in addition to the current position and convergence point, a number
of points along the previous predicted path and the new predicted path.
The curve is fitted to go through all the selected points, and it is used as
a path to move the entity to its new predicted path. For example, in the
case of a third-order curve, cubic spline, we pick one additional point on
the previous path before the current position and other additional point
along the new predicted path after the convergence point. High-order curves
provide smooth transition from the old path to the new path but they can
computationally intensive for some applications.

By including object specific information to the dead reckoning technique
we can achieve more accurate and natural movement. Therefore, it can be

8

Received:
t=1: p(3,1), v(4,2)

Linear
convergence path

Current predicted path

New predicted path

Received:
t=0: p(0,0), v(2,2)

t=1: p(2,2)

t=2: p(4,4)

t=2: p(7,3)

Convergence point
t=2.5: p(9,4)

Figure 5: Illustration of dead reckoning. Closed circles represent received
information about object’s position p and velocity v at given time t. Open
circles represent object’s predicted position at given time. At time t = 2
when object’s position is predicted to be (4, 4), new information is received
that at time t = 1 (because of the latency) object’s actual position was
(3, 1) and velocity was (4, 2). Instead of moving object to its new predicted
position (7, 3) immediately, a convergence point is calculated from the new
predicted path at 0.5 seconds later. During this convergence period the object
is rendered smoothly along the linear converge path to the new predicted
path, which it follows later on.

usuful to design specialized dead reckoning techniques for each object type.
However, this can be time consuming and maintenance of several algorithms
requires special care. Dead reckoning can introduce also other side effects
that need to be considered carefully. For example, because all nodes need
not to share same view to the entities’ states, collision detection algorithms
can be difficult to desing.

3 Related Work

We have divided the literature on distributed interactive real-time appli-
cations into three subsections according to the classification given in the
introduction.

3.1 Military Simulations

The United States Department of Defense has been developing networked
military simulations since the 1980s. The first developed protocol was SIM-

9

NET, which intends to provide interactive networking for real-time, human-
in-the-loop battle engagement simulation and war-gaming [1]. To achieve this
SIMNET aims at providing functional fidelity rather than accurate physical
reproduction. Networking utilizes a distributed architecture with no central
server, which allows that the participants can join and leave the simulation
at any time. The objects interact by broadcasting events to the network,
and the receiver is then responsible for calculating the effects (and every-
body is expected to uphold fair play). Between the updates object’s position
information is extrapolated by dead reckoning.

Distributed Interactive Simulation (DIS), which was issued as IEEE Stan-
dard 1278 in 1992, attempts to formally generalize and extend the SIMNET
protocol [41], [47]. The purpose is to allow any type of player on any type of
machine to participate the simulation. DIS allows to model different kind of
vehicles (e.g., airplanes or battleships), and, consequently, it is used in many
specialized systems such as NPSNET [43] or STOW [22].

The current military research efforts concentrate on developing systems
based on High Level Architecture (HLA), which was issued as IEEE Stan-
dard 1516 in 2000 [63]. HLA aims at providing a general architecture and
services for distributed data exchange. It does not prescribe any specific im-
plementation or technology. While the DIS protocol is closely linked with the
properties of military units and vehicles, the rationale behind HLA is that
it could be used with different types of simulations—even in non-military
applications—and it is targeted towards new simulation developments.

3.2 Networked Virtual Environments

While the military research focuses on diverse large-scale systems, NVEs are
mainly designed for local use and to support only a small number of partici-
pants. Usually, NVEs also pay closer attention to the virtual representations
of the participants (i.e., avatars) and the collaboration between the partici-
pants (e.g., operating at the same time with a shared object).

One of the first NVEs is Reality Built for Two (RB2) [12]. It uses a
central server to manage devices and distribute their data, and additional
machines for rendering the data. As the name suggests, it scales up to allow
two users to share the same VE.

MR Toolkit [53], [52], [66] divides the VE into four components: presen-
tation, interaction, geometric model, and computation. These components
can be distributed among the nodes in a network. The master processes of
different application instances can communicate with each other which allows
multiple users to share the same VE.

10

BrickNet [55] system uses a client/server architecture. Each client con-
nects to a server to request objects of interest and to communicate with other
clients. Client can deposit its own objects to the server and thus share them
with other clients. The clients run asynchronously, and the server ensures
that update messages are sent only to those clients who have subscribed the
object in question. Moreover, the subscribers can select the level of consis-
tency ranging from absolute to loose, which affects also the update delays.

RING [28], [29] is a client/server system where each object in the VE is
managed by exactly one client. The VE is subdivided spatially into cells, and
the other clients can have a replica of the object if they reside in the same cell.
This filtering is based on precomputed line-of-sight visibility information, and
it is carried out by servers, which can alter the client communication.

DIVE [27] uses a replicated world database and peer-to-peer communica-
tion. When an object is updated, it is done in the local replica and a message
is sent to all peers to update their own replicas accordingly. Naturally, this
subjects the replicated object to inconsistencies due to network delays. DIVE
compensates them by employing dead reckoning and by sending periodically
synchronization information. To reduce network traffic DIVE allows to di-
vide the VE into subhierarchies (e.g., based on geography) that are replicated
among a smaller set of nodes that have expressed interest in them. The sub-
hierarchies can be associated with multicast groups, which further reduces
the traffic.

MASSIVE [31], [32] supports different computer platforms and allows the
users to interact with each other over a combination of graphics, audio and
text media. The system uses awareness-based filtering, where each entity
expresses a focus and nimbus for each medium (e.g., the focus for textual
medium can be smaller than the focus for graphical medium). MASSIVE
uses a client/server architecture and multicasting. The server provides the
clients with an initial point of access to the VE. Entities are replicated on
demand and they are associated with multicast groups.

The efforts of DIVE and MASSIVE systems are now combined and coor-
dinated in the COVEN project [48]

In Spline [4], [67] the VE is divided into locales, which have arbitrary
size and shape and are associated with multicast addresses. Spline uses a
distributed architecture where each node maintains a partial copy of the VE
corresponding to the focus of attention. The user can see several locales, but
each object is at most in one locale at a time.

In GreenSpace [44], [51] each entity use multicasting to transmit its state,
and a lightweight server assigns multicast addresses and informs the entities
of changes in a VE. The system uses Virtual Reality Modeling Language
(VRML) for rendering the VE.

11

In Community Place [37], [38] each entity sends position information to
a server. The server uses spatial filtering based on auras to decide which
other entities need to be aware of these position changes. The server also
distributes updates to local scenes and events. The static elements of a scene
are loaded as VRML, while dynamic data is managed through local scripts
and message passing. If the server becomes a bottleneck, it can be replicated.

AGORA [33] is a VRML-based system that uses a client/server architec-
ture and a shared, centralized database. The server distributes the update
messages by adding them into either a sequential (i.e., order preserving)
or non-sequential (i.e., possibly unreliable) transmission queue according to
their type.

SmallTool [16], [15] uses VRML and a distributed worlds transfer and
communication protocol (DWTP), which provides daemons for transmitting
VE contents, detecting transmission failures and recovering lost packages.
In addition to being replicated, each object can specify whether a particular
event requires a reliable distribution and what is the event’s maximum update
frequency.

Living Worlds [68] is a VRML-based system which allows anonymous
interactions between loosely coupled parties. The VE is divided into zones
which are associated with a server. Each object is owned by one client, and
the server nominates a new owner if the previous one leaves the zone. The
system is subjected to unpredictable delays, which can be analyzed by using
Extended User Action Notation (XUAN) [24]. To overcome the problems,
the systems requires better level of detail control, world partitioning, and a
communication protocol supporting QoS (quality of service) so that when
the number of participant grow, the amount information remains relatively
constant.

DVECOM [20] is a centralized system which guarantees both synchro-
nization and consistency of the displays. The system provides QoS by de-
grading the rendering of the VE, if the client’s resources are lacking.

Urbi et Orbi [64], [25], [26] includes a scripting language for giving a high-
level description of the objects in a VE. The object description comprises also
object’s behavior and distribution policy. If an object is deterministic, it is
replicated on each node in the network, and each node is responsible for
updating the local replica. An indeterministic object is distributed to one
node from where it begins to multicast update messages to the network.

In PaRADE [50] system replicated databases are maintained through the
communication of non-deterministic events and local calculation of determin-
istic events. Events can be discrete (e.g., a state change) or continuous (e.g.,
an audio stream). Discrete events require that the before-after relations are
preserved, whereas continuous events are stamped with a wallclock time that

12

is kept synchronized in each node.
CIAO [61] uses an optimistic method for concurrency control for repli-

cated objects. An update is carried out immediately in the local replica and
transmitted to the remote nodes. If a conflicting operation occurs, a token
associated with the manipulated object is used to maintain consistency. Ini-
tially, object’s creator has the token. When the owner of the token receives
the update message, it validates the operation by giving the token to the
node which commenced the update.

Real-Time Transport Protocol (RTP/I) [45], [65] is aimed at distributed
interactive media. It includes three methods for ensuring that all application
instances look as if all operations have been executed in the same order.
Inconsistencies caused by operation delays (e.g., network latency) are handled
by delaying deliberately the local updates to match the transmission delays.
Each node keeps a history, and if an inconsistency occurs, the situation is
rolled back, the conflicting operation is carried out, and situation is rolled
forward back to the current time. As a last resort, the protocol includes also
a method for explicit state request.

Synchronous Collaboration Transport Protocol (SCTP) [54] focuses on
collaboration on closely coupled, highly synchronized tasks. An interaction
creates a stream of update messages, where the most important message is the
last one. In the protocol, one message sequence related to user’s interaction
with a shared object is grouped into one stream. This interaction stream has
critical messages (especially the last one) which are sent reliably, while the
are sent by best effort transport.

3.3 Multiplayer Computer Games

Until recently the problems of MCGs and online gaming have been dealt
marginally in the scientific literature. Usually the papers concentrate on
simple games and limited problem settings.

Multi-User Dungeons (MUDs) [5] are text-based MCGs, that began turn
of the 1980s. The players have access to a shared database comprising, for
example, rooms, exits, and artifacts. The players are inside a room where
they can browse and manipulate the database. They can move between
the rooms through the exits that connect them. Users can add new rooms
and other objects to the database and give them unique behavior by using
an embedded programming language. Users can also communicate directly
with each other in real time.

In Amaze [9] the players are in a 2D maze and their goal is shoot missiles
to other players. Each node uses point-to-point communication to transmit
once a second position and velocity updates (thus allowing dead reckoning).

13

Players can join and leave at any time, and the system supports computer-
controlled players.

XPilot [60] is a 2D dogfight game which uses a simple client/server ar-
chitecture. Because it does not employ dead reckoning, the responsiveness is
effectively determined by the network latency.

Artery [18], [19] system provides a programming interface for MCGs.
Networking is based on DIS protocol, and the system tries to reduce the
traffic by utilizing application-specific semantic knowledge. The system also
supports dead reckoning, message aggregation, and interest management.

In MiMaze [39], [30], [23] the players try shoot each other in a 3D maze.
It uses a distributed architecture, and requires a server only for initializa-
tion. To cope with different transmission delays MiMaze employs a bucket
synchronization mechanism. Delays between participating hosts are evalu-
ated by using a wallclock time. A message issued at absolute time is delayed
according the measured transmission delay so that all participants can eval-
uate it at the same time. If the message is missed or it arrives too late, dead
reckoning is used to extrapolate the information.

Distributed Entertainment Environment (DEE) [49] is an architecture for
distributed gaming. It divides the game world into a conceptual model (i.e.,
rules and object attributes), a dynamic model (i.e., interaction at the spatial
level), and a visual model (i.e., rendering information). To reduce network
traffic the conceptual and dynamic models are stored in a server, while each
participating client have its own instance of the visual model.

A generic model for MCGs on demand is described in [3], [2]. The game
data is stored in a server from where it is transferred locally to a CPU
server for running a particular game session. The game session data is sent
to the network where a front-end server acts as a proxy (e.g., stores level
data). From there the data is conveyed to the client, where rendering and
all computation intensive work is carried out.

User behavior in MCGs is analyzed and modelled in [14], [35], [34].
The data is drawn from real-world network traffic generated by first per-
son shooter games in a client/server architecture.

Network security and cheating prevention in MCGs are addressed in [6],
[69].

People working in the entertainment industry have recently started to
publish more openly their ideas and solutions in the trade magazines and
conferences [13], [40], [11], [10], [36].

14

4 Discussion

To build a more cohesive picture let us now discuss broader issues affecting
networking in MCGs. First, we present how networking resources are inter-
connected and how the different techniques affect them. Next, we introduce
a concept that enables us to understand the problems of achieving a consis-
tent and responsive system. Finally, we consider the relationship between
the logical platform and the application itself.

4.1 Resource Management

The amount of consumed resources of a networked application is directly
related to how much information has to be send and received by each par-
ticipating computer and how quickly it has to be delivered by the network.
Singhal and Zyda have call this rule Networked Virtual Environment Infor-
mation Principle [56]. They concretize it by giving Information Principle
Equation:

Resources = M ×H ×B × T × P (1)

where M is the number of messages transmitted, H the average number
of destination nodes for each message, B the average amount of network
bandwidth required for a message to each destination, T timeliness with
which the network must deliver packets to each destination (large values of
T imply a need for minimal delay and vice versa), and P the number of
processor cycles required to receive and process each message.

A system designer can use Information Principle Equation as a tool to
balance requirements and restrictions. By lowering any of the five variables
the resource demands decrease. However, when we reduce the expenditure
of one resource we have to compensate it somehow. This means that another
variable in the equation increases or the quality of experience to be in the
VE becomes lower. The choice of which variables are decreased and which
variables are used for compensating depends naturally on the application’s
requirements and resource bottlenecks.

Let us recap how the techniques of Sect.2 correlate with the variables of
the Information Principle Equation. In packet compression, we reduce the
average packet size (B) but because of encoding and decoding processes the
computational work (P) increases. Packet aggregation merges several pack-
ets to reduce bandwidth consumption caused by packet headers. Therefore,
the number of packets (M) decrease and the average packet size (B) in-
creases. Overall bandwidth consumption is reduced at slight processing cost
(P). Interest management techniques pursue to reduce the average number

15

of messages (M) and bandwidth (B) per message. This requires more or-
ganizing between the nodes, and, consequently, more messages (M). Dead
reckoning transmits update messages less frequently (M) but has to maintain
predicted states for objects (P). In addition, the quality of VE experience is
sometimes decreased due to inaccurate information.

4.2 Consistency and Responsiveness

Consistency refers to the similarity of the view to the data in the nodes
belonging to a network. Absolute consistency means that each node has uni-
form information. Responsiveness means the delay that it takes for an update
event to be registered in the database. Consistency and responsiveness are
not independent from each other. Traditionally, responsiveness has always
been subjected to consistency requirements in database research. However,
because of real-time interaction, responsiveness becomes more important el-
ement in MCGs and consistency may have to be compromised.

To achieve high consistency, the data and control architecture must guar-
antee that processes running on remote nodes are tightly coupled. This
usually requires high bandwidth, low latency, and a small number of remote
nodes. To achieve high responsiveness, the queries made to the data must
be responded quickly, which requires to loosely coupled nodes. In this case,
the nodes must include more computation to reduce the bandwidth and la-
tency requirements. In reality, a network architecture cannot achieve both
high consistency and high responsiveness at the same time, and the choice
of architecture is essentially a trade-off between these two attributes.

We can discern three parts in data and control architectures: the local
node, the network, and the relay connecting them [59] (see Figure 6). The
relay acts as an intermediary between the local node and the network, and
its structure defines how consistent and how responsive the architecture can
be.

The relay has two input and output pairs. The local input ilocal originated
from the local node, and the local output olocal is directed to the node. From
the network’s point of view, the relay sends (oglobal) and receives messages
(iglobal). The communication architecture prescribes where these messages
are transmitted (e.g., in client/server the messages are transmitted between
the server and each client). For instance, an application running in a local
node sends control messages (e.g., from keyboard or joystick) into a relay
and receives data messages (e.g., vehicle positions) from it. In turn, the
relay communicates with the relays of other nodes via a network.

Let us put aside the communication architecture and the operations inside
the local node and concentrate on the relay itself. Obviously, the message

16

local global

network

relay

node

ilocal

iglobal

oglobal

olocal

Figure 6: Data and control architecture defines how messages are relayed
between local and remote nodes.

flows from ilocal to oglobal and from iglobal to olocal must exist. This gives the
minimum form, a two-way relay (see Figure 7a). The functions f and g
denote that the message may undergo some operations (e.g., compression or
time-stamping) inside the relay before it is passed on. The two-way relay
is the model used, for instance, in distributed databases and centralized
systems. All new local messages are relayed to the network, and they do not
appear in the local node until a message from the network is received. In
effect, the two-way relay acts as a simple intermediary between the node and
the network. For example, a dumb terminal sends the characters typed on
the keyboard to a mainframe, which sends back the characters to be displayed
on the monitor.

It is easy to see that the two-way relay allows us to achieve high consis-
tency, because all messages have to go through the network, where a cen-
tralized server or a group of peers can confirm and establish a consistent
set of data. However, the two-way relay cannot guarantee high responsive-
ness. It will always depend on the networking resources (latency, bandwidth,
processing power), and the only way to make the system more responsive is
through improving them.

Another approach to overcome this limitation is to bridge the two flows,
which forms a short-circuit relay (see Figure 7b). The locally originated
messages are now passed back into the local output inside the relay. As be-
fore, the function h indicates that the messages may undergo some changes.
We do not have to wait for the messages to pass the network and return
back us but we short-circuit them back locally. Clearly, we can now achieve
high responsiveness but it comes with a price: the local data can become
inconsistent with the other nodes. This means that some kind of rollback
or negotiation mechanism is required to solve the inconsistencies, when they

17

ilocal

olocal iglobal

oglobal
f

g

ilocal

olocal iglobal

oglobal
h

f

g

oglobal = f(ilocal)

olocal = g(iglobal)

oglobal = f(ilocal)

olocal = g(iglobal) × h(ilocal)

(a)

(b)

Figure 7: The relay has two alternatives for a structure: (a) A two-way
relay sends the local control messages to the network, which sends back
data messages to the node. (b) A short-circuit relay sends the local control
messages to the network and passes them locally back to the node.

become a problem. However, it should be noted that inconsistent data does
not necessarily entail a problem: the problem arises only if two (or more) par-
ties need to interact (or more precisely are aware) with each other and have
inconsistent data. In this case, we need a conflict resolution strategy where
the parties recognize, negotiate, and agree on the situation. For instance, a
foot soldier may content on observing an airplane and some inconsistencies
may exist, but another soldier can engage into a gunfight and the parties
must agree on their positions and hits.

Data and control architecture defines the nodes’ responsibility of the data
(see Figure 8). In centralized architecture, the relay mostly conveys local con-
trol to the network and receives data from it. This is reversed in distributed
architecture. In replicated architecture, the local input and output are a
mixture of control and data messages. Each architecture has characteristic
problems: in centralized architecture, access to the data may take time; in
distributed architecture, the allocation of the data fragments between the
nodes must be handled properly; in replicated architecture, updating the
data in each replica can be tricky.

4.3 Logical Platform and Application

We can discern a three-level hierarchy affecting networked applications: phys-
ical platform, logical platform, and application. The logical platform is in-

18

Centralized Distributed Replicated

Figure 8: In centralized data architecture, one (data server) node stores all
data. In replicated architecture, each node manages a replica of all data. In
distributed architecture, the data is distributed among the nodes.

tended for system designers. Here, we have programming language level ab-
stractions like data entities and communication channels. It is important to
notice that we need not to know anything about the application itself. Espe-
cially in networking, there is an unfortunate tendency to mix logical platform
concepts with application level concepts. Data, control and communication
architectures do not require knowledge on the application—although they
provide the basis for it. The application level adds context interpretation to
the data (e.g., an integer value represents position), and, thus, it is related
to the end-user.

Closely related issues are scalability (the ability to adapt resource changes),
persistence (leaving and entering the VE), and collaboration between players
(upholding integrity when sharing an object).

In MCGs scalability concerns, for example, how to construct an online
server that dynamically adapts to varying amount of players, or how to allo-
cate the computation of non-player characters among the nodes. To achieve
this kind of scalability there must be physical (i.e., hardware-based) paral-
lelism that enables logical (i.e., software) concurrency of computation. Scal-
ing up an MCG brings forth two complementary views: Each new participant
naturally burdens the communication resources but, at the same time, it also
offers additional computational power to the whole application. In MCGs,
the latter viewpoint has not been fully realized yet.

Persistence concerns how a remote node can coexist with an application.
Initially, the application has a state and the node must be configured to
conform this state (e.g., when players join an online server, they receive the

19

object data corresponding the current situation). Throughout the gameplay
the node and application live in a symbiosis, which is determined by the
underlying logical platform. For example, if in a distributed architecture a
node gets disconnected abruptly, the application looses the objects main-
tained by the node. When a node leaves the application, the application
must have a mechanism to uphold the game state by forwarding the node’s
responsibilities. To sum up, persistence must account, among other things,
configuration, error detection and recovery, and maintenance on both the
application and node.

In MCGs, collaboration usually means that there are team members that
act together to achieve a shared goal (e.g., eliminate the other team or over-
come some common obstacles). To support collaboration, the MCG has to
provide a player with rich and accurate information about the rest of the
team. Technically, collaboration requires that the communication between
players is prioritized. Interest management bases on the observation that the
closer two objects are, the more they communicate with each other. However,
the distance between team members does not have to be defined on spatial
terms (e.g., they may have implicit knowledge about each other’s status or
share a dedicated communication channel). Clearly, team is an application-
level concept. Because the concept of collaboration distance can be complex,
team cooperation consumes resources. Hence, it can be implemented more
effectively when the physical level mechanism supports it (e.g., in a LAN
with multicasting).

5 Concluding Remarks

The research work done on distributed interactive real-time applications pro-
vides insight into the problems of networking in multiplayer computer games.
We presented the techniques for reducing network traffic and surveyed the
relevant literature. Finally, we summarized the key factors of networking in
physical, logical and application levels.

If this was the story so far, what lies ahead? Naturally, we will see im-
provements on the hardware as well as the introduction of novel techniques—
and perhaps even new media. Also, the entertainment industry is likely to
continue to invest in developing online and mobile gaming. As in any soft-
ware project, the next logical step is encapsulation—this path has already
been taken in graphics rendering where developers use off-the-shelf 3D en-
gines. This is bound to happen also in networking. However, this requires
that the underlying concepts and their relationships are analyzed carefully
to gain consensus. Therefore, the lessons learned from the past should be

20

valued.

References

[1] E. A. Alluisi. The development of technology for collective training:
SIMNET, a case history. Human Factors, 33(3):343–62, 1991.

[2] R. A. Bangun and H. W. P. Beadle. A network architecture for
multiuser networked games on demand. In Proceedings of International
Conference on Information, Communications and Signal Processing,
volume 3, pages 1815–9, New York, NY, 1997.

[3] R. A. Bangun and H. W. P. Beadle. Traffic on a client-server based
architecture for multi-user network game applications. In Proceedings
of ICT ’97, volume 1, pages 93–8, Melbourne, Australia, Apr. 1997.

[4] J. W. Barrus, R. C. Waters, and D. B. Anderson. Locales: Supporting
large multiuser virtual environments. IEEE Computer Graphics and
Applications, 16(6):50–7, 1996.

[5] R. Bartle. Interactive multi-user computer games. Technical report,
British Telecom, June 1990. Electronic version available at
http://www.mud.co.uk/richard/imucg.htm.

[6] N. E. Baughman and B. N. Levine. Cheat-proof playout for centralized
and distributed online games. In Proceedings of the Twentieth IEEE
Computer and Communication Society INFOCOM Conference,
Anchorage, AK, Apr. 2001.

[7] S. Benford, J. Bowers, L. E. Fahlén, J. Mariani, and T. Rodden.
Supporting cooperative work in virtual environments. Computer
Journal, 37(8):653–68, 1994.

[8] S. Benford, C. Greenhalgh, T. Rodden, and J. Pycock. Collaborative
virtual environments. Communications of the ACM, 44(7):79–85, 2001.

[9] E. J. Berglund and D. R. Cheriton. Amaze: A multiplayer computer
game. IEEE Software, 2(3):30–9, 1985.

[10] Y. W. Bernier. Leveling the playing field: Implementing lag
compensation to improve the online multiplayer experience. Game
Developer, 8(6):40–50, June 2001.

21

[11] P. Bettner and M. Terrano. 1500 archers on a 28.8: Network
programming in Age of Empires and beyond. In The 2001 Game
Developer Conference Proceedings, San Jose, CA, Mar. 2001.

[12] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko,
M. Oberman, and M. Teitel. Reality built for two: A virtual reality
tool. Computer Graphics, 24(2):35–6, 1990.

[13] J. Blow. A look at latency in networked games. Game Developer,
5(7):28–40, July 1998.

[14] M. S. Borella. Source models of network game traffic. Computer
Communications, 23(4):403–10, 2000.

[15] W. Broll. DWTP—an Internet protocol for shared virtual
environments. In Proceedings of the 3rd International Symposium on
the Virtual Reality Modeling Language, pages 49–56, Monterey, CA,
Feb. 1998.

[16] W. Broll. Smalltool—a toolkit for realizing shared virtual environments
on the Internet. Distributed Systems Engineering, 5(3):118–28, 1998.

[17] W. Cai, F. B. S. Lee, and L. Chen. An auto-adaptive dead reckoning
algorithm for distributed interactive simulation. In Proceedings of the
Thirteenth Workshop on Parallel and Distributed Simulation, pages
82–9, Atlanta, GA, May 1999.

[18] T. Chiueh. Distributed systems support for networked games. In
Proceedings of the Sixth Workshop on Hot Topics in Operating
Systems, pages 99–104, Cape Cod, MA, May 1997.

[19] T. Chiueh, A. Ballman, and P. Pradhan. Distributed system support
for network-based multi-user interactive applications. In Proceedings of
1st Distributed Simulation Symposium, Orlando, FL, Sept. 1997.

[20] Z. Choukair and D. Retailleau. A QoS model for collaboration through
distributed virtual environments. Journal of Network and Computer
Applications, 23(3):311–34, 2000.

[21] S. Deering. Host extensions for IP multicasting. Internet RFC 1112,
Aug. 1989. ftp://ftp.isi.edu/in-notes/rfc1112.txt.

[22] Defense Advanced Research Projects Agency. Synthetic Theater of
War. Web page, Mar. 2002. http://stow98.spawar.navy.mil/.

22

[23] C. Diot and L. Gautier. A distributed architecture for multiplayer
interactive applications on the Internet. IEEE Networks Magazine,
13(4):6–15, 1999.

[24] D. England and P. Gray. Temporal aspects of interaction in shared
virtual worlds. Interacting with Computers, 11(1):87–105, 1998.

[25] Y. Fabre, G. Pitel, L. Soubrevilla, E. Marchand, T. Géraud, and
A. Demaille. An asynchronous architecture to manage communication,
display, and user interaction in distributed virtual environments. In
J. D. Mulder and R. van Liere, editors, Proceedings of the Sixth
Eurographics Workshop on Virtual Environments, pages 105–13,
Amsterdam, The Netherlands, June 2000. Springer-Verlag.

[26] Y. Fabre, G. Pitel, L. Soubrevilla, E. Marchand, T. Géraud, and
A. Demaille. A framework to dynamically manage distributed virtual
environments. In J.-C. Heudin, editor, Proceedings of the Second
International Conference on Virtual Worlds, volume 1834 of Lecture
Notes in Artificial Intelligence, pages 54–64, Paris, France, July 2000.
Springer-Verlag.

[27] E. Frécon and M. Stenius. DIVE: A scaleable network architecture for
distributed virtual environments. Distributed Systems Engineering,
5(3):91–100, 1998.

[28] T. A. Funkhouser. RING: A client-server system for multi-user virtual
environments. In Proceedings of the 1995 Symposium on Interactive 3D
Graphics, pages 85–92, Monterey, CA, Apr. 1995.

[29] T. A. Funkhouser. Network topologies for scalable multi-user virtual
environments. In Proceedings of the Virtual Reality Annual
International Symposium, pages 222–8, Santa Clara, CA, Mar. 1996.

[30] L. Gautier and C. Diot. Design and evaluation of MiMaze, a
multi-player game on the Internet. In Proceedings of IEEE
International Conference on Multimedia Computing and Systems,
pages 233–6, Austin, TX, July 1998.

[31] C. Greenhalgh. Awareness-based communication management in the
MASSIVE systems. Distributed Systems Engineering, 5(3):129–37,
1998.

23

[32] C. Greenhalgh and S. Benford. MASSIVE: A collaborative virtual
environment for teleconferencing. ACM Transactions on
Computer-Human Interaction, 2(3):239–61, 1995.

[33] H. Harada, N. Kawaguchi, A. Iwakawa, K. Matsui, and T. Ohno.
Space-sharing architecture for a three-dimensional virtual community.
Distributed Systems Engineering, 5(3):101–6, 1998.

[34] T. Henderson. Latency and user behaviour on a multiplayer games
server. In Proceedings of Third International Workshop on Networked
Group Communication, pages 1–13, London, UK, Nov. 2001.

[35] T. Henderson and S. Bhatti. Modelling user behaviour in networked
games. In Proceedings of ACM Multimedia, pages 212–20, Ottawa,
Canada, Oct. 2001.

[36] R. Lambright. Distributing object state for networked games using
object views. Game Developer, 9(3):30–9, Mar. 2002.

[37] R. Lea, Y. Honda, and K. Matsuda. Virtual Society: Collaboration in
3D space on the Internet. Computer Supported Cooperative Working,
6(2/3):227–50, 1997.

[38] R. Lea, Y. Honda, K. Matsuda, and S. Matsuda. Community place:
Architecture and performance. In Proceedings of the 2nd Symposium
on Virtual Reality Modeling Language, pages 41–50, Monterey, CA,
Feb. 1997.

[39] E. Léty, L. Gautier, and C. Diot. MiMaze, a 3D multi-player game on
the Internet. In Proceedings of the 4th International Conference on
Virtual System and Multimedia, volume 1, pages 84–9, Gifu, Japan,
Nov. 1998.

[40] P. Lincroft. The Internet sucks: Or, what I learned coding X-Wing vs.
TIE Fighter. Gamasutra, Sep. 3, 1999.
http://www.gamasutra.com/features/19990903/ lincroft 01.htm.

[41] M. R. Macedonia. A Network Software Architecture for Large Scale
Virtual Environments. PhD thesis, Naval Postgraduate School,
Monterey, CA, June 1995.

[42] M. R. Macedonia and M. J. Zyda. A taxonomy for networked virtual
environments. IEEE Multimedia, 4(1):48–56, 1997.

24

[43] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and
S. Zeswitz. NPSNET: A network software architecture for large-scale
virtual environment. Presence, 3(4):265–87, 1994.

[44] J. Mandeville, T. Furness, M. Kawahata, D. Campbell, P. Danset,
A. Dahl, J. Dauner, J. Davidson, J. Howell, K. Kandie, and
P. Schwartz. GreenSpace: Creating a distributed virtual environment
for global applications. In Proceedings of Networked Reality Workshop,
Boston, MA, Oct. 1995.

[45] M. Mauve, V. Hilt, C. Kuhmünch, and W. Effelsberg. RTP/I—towards
a common application level protocol for distributed interactive media.
IEEE Transactions on Multimedia, 3(1):152–61, 2001.

[46] K. L. Morse, L. Bic, and M. Dillencourt. Interest management in
large-scale virtual environments. Presence, 9(1):52–68, 2000.

[47] D. L. Neyland. Virtual Combat: A Guide to Distributed Interactive
Simulation. Stackpole Books, Mechanicsburg, PA, 1997.

[48] V. Normand. The COVEN project: Exploring applicative, technical,
and usage dimensions of collaborative virtual environments. Presence,
8(2):218–36, 1999.

[49] S. Powers, M. Hinds, and J. Morphett. DEE: An architecture for
distributed virtual environment gaming. Distributed Systems
Engineering, 5(3):107–17, 1998.

[50] D. J. Roberts and P. M. Sharkey. Maximising concurrency and
scalability in a consistent, causal, distributed virtual reality system,
whilst minimising the effect of network delays. In Sixth Workshop on
Enabling Technologies, Cambridge, MA, June 1997.

[51] P. Schwartz, L. Bricker, B. Campbell, T. Furness, K. Inkpen,
L. Matheson, N. Nakamura, L.-S. Shen, S. Tanney, and S. Yen. Virtual
Playground: Architectures for a shared virtual world. In Proceedings of
ACM Symposium on Virtual Reality Software and Technology, pages
43–50, 1998.

[52] C. Shaw and M. Green. The MR Toolkit peers package and
experiment. In IEEE Virtual Reality Annual International Symposium,
pages 463–9, Sept. 1993.

25

[53] C. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled simulation in
virtual reality. ACM Transactions on Information Systems,
11(3):287–317, 1993.

[54] S. Shirmohammadi and N. D. Georganas. An end-to-end
communication architecture for collaborative virtual environments.
Computer Networks, 35(2–3):351–67, 2001.

[55] G. Singh, L. Serra, W. Png, and H. Ng. BrickNet: A software toolkit
for network-based virtual worlds. Presence, 3(1):19–34, 1994.

[56] S. Singhal and M. Zyda. Networked Virtual Environments: Design and
Implementation. Addison Wesley, 1999.

[57] S. K. Singhal. Effective Remote Modeling in Large-Scale Distributed
Simulation and Visualization Environments. PhD thesis, Standford
University, Standford, CA, Aug. 1996.

[58] S. K. Singhal and D. R. Cheriton. Exploring position history for
efficient remote rendering in networked virtual reality. Presence,
4(2):169–93, 1995.

[59] J. Smed, T. Kaukoranta, and H. Hakonen. Aspects of networking in
multiplayer computer games. In L. W. Sing, W. H. Man, and W. Wai,
editors, Proceedings of International Conference on Application and
Development of Computer Games in the 21st Century, pages 74–81,
Hong Kong SAR, China, Nov. 2001.

[60] B. Stabell and K. R. Schouten. The story of XPilot. ACM Crossroads,
3(2), 1996. http://www.acm.org/crossroads/xrds3-2/xpilot.html.

[61] U.-J. Sung, J.-H. Yang, and K.-Y. Wohn. Concurrency control in
CIAO. In 1999 IEEE Virtual Reality Conference, pages 22–8, Houston,
TX, Mar. 1999.

[62] United States Department of Defence. Defence Modeling and
Simulation Office. Web page, Mar 2002. http://www.dmso.mil/.

[63] United States Department of Defence, Defence Modeling and
Simulation Office. High Level Architecture. Web page, 2002.
http://www.dmso.mil/public/transition/hla/.

[64] D. Verna, Y. Fabre, and G. Pitel. Urbi et Orbi: Unusual design and
implementation choices for distributed virtual environments. In

26

H. Thwaites, editor, VSMM 2000: Sixth International Conference on
Virtual Systems and Multimedia, pages 714–24, Gifu, Japan, Oct. 2000.

[65] J. Vogel and M. Mauve. Consistency control for distributed interactive
media. In Proceedings of ACM Multimedia 2000, pages 259–67,
Ottawa, Canada, Oct. 2001.

[66] Q. Wang, M. Green, and C. Shaw. EM—an environment manager for
building networked virtual environments. In IEEE Virtual Reality
Annual International Symposium, pages 11–8, Mar. 1995.

[67] R. Waters, D. Anderson, J. Barrus, D. Brogan, M. Casey, S. McKeown,
T. Nitta, I. Sterns, and W. Yerazunis. Diamond Park and Spline: A
social virtual reality system with 3D animation, spoken interaction,
and runtime modifiability. Technical Report TR-96-02a, MERL—A
Mitsubishi Electric Research Laboratory, Cambridge, MA, Nov. 1996.

[68] M. Wray and R. Hawkes. Distributed virtual environments and
VRML: An event-based architecture. Computer Networks and ISDN
Systems, 30(1–7):43–51, 1998.

[69] J. J. Yan and H.-J. Choi. Security issues in online games. In L. W.
Sing, W. H. Man, and W. Wai, editors, Proceedings of International
Conference on Application and Development of Computer Games in
the 21st Century, pages 143–50, Hong Kong SAR, China, Nov. 2001.

[70] S.-J. Yu and Y.-C. Choy. A dynamic message filtering technique for
3D cyberspaces. Computer Communications, 24(18):1745–58, 2001.

27

Turku Centre for Computer Science
Lemminkäisenkatu 14
FIN-20520 Turku
Finland

http://www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematical Sciences

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Science

