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Abstract

Dubois and Prade defined an interval-valued expectation of fuzzy numbers, view-
ing them as consonant random sets. Carlsson and Fullér defined an interval-valued
mean value of fuzzy numbers, viewing them as possibility distributions. In this pa-
per we shall introduce the notation of weighted interval-valued possibilistic mean
value of fuzzy numbers and investigate its relationship to the interval-valued prob-
abilistic mean. We shall also introduce the notations of crisp weighted possibilistic
mean value, variance and covariance of fuzzy numbers, which are consistent with
the extension principle. Furthermore, we show that the weighted variance of linear
combination of fuzzy numbers can be computed in a similar manner as in proba-
bility theory.
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1 Weighted possibilistic mean values

In 1987 Dubois and Prade [2] defined an interval-valued expectation of fuzzy num-
bers, viewing them as consonant random sets. They also showed that this expecta-
tion remains additive in the sense of addition of fuzzy numbers.

In this paper introducing a weighting function measuring the importance of
γ-level sets of fuzzy numbers we shall define the weighted lower possibilistic
and upper possibilistic mean values, crisp possibilistic mean value and variance
of fuzzy numbers, which are consistent with the extension principle and with the
well-known defintions of expectation and variance in probability theory. We shall
also show that the weighted interval-valued possibilistic mean is always a subset
(moreover a proper subset excluding some special cases) of the interval-valued
probabilistic mean for any weighting function.

The theory developed in this paper is fully motivated by the principles intro-
duced in [2, 4, 6] and by the possibilistic interpretation of the ordering introduced
in [5].

A fuzzy number A is a fuzzy set of the real line R with a normal, fuzzy convex
and continuous membership function of bounded support. The family of fuzzy
numbers will be denoted by F . A γ-level set of a fuzzy number A is defined by
[A]γ = {t ∈ R|A(t) ≥ γ} if γ > 0 and [A]γ = cl{t ∈ R|A(t) > 0} (the closure
of the support of A) if γ = 0. It is well-known that if A is a fuzzy number then
[A]γ is a compact subset of R for all γ ∈ [0, 1].

Definition 1.1. Let A ∈ F be fuzzy number with [A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1].
A function f : [0, 1] → R is said to be a weighting function if f is non-negative,
monoton increasing and satisfies the following normalization condition

∫ 1

0
f(γ)dγ = 1. (1)

We define the f -weighted possibilistic mean (or expected) value of fuzzy number A
as

M̄f (A) =
∫ 1

0

a1(γ) + a2(γ)
2

f(γ)dγ. (2)

It should be noted that if f(γ) = 2γ, γ ∈ [0, 1] then

M̄f (A) =
∫ 1

0

a1(γ) + a2(γ)
2

2γdγ =
∫ 1

0
[a1(γ) + a2(γ)] γdγ = M̄(A).

That is the f -weighted possibilistic mean value defined by (2) can be considered as
a generalization of possibilistic mean value introduced in [1]. From the definition
of a weighting function it can be seen that f(γ) might be zero for certain (unim-
portant) γ-level sets of A. So by introducing different weighting functions we can
give different (case-dependent) importances to γ-levels sets of fuzzy numbers.
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Remark 1.1. The f -weighted possibilistic mean value of fuzzy number A coincides
with the value of A (with respect to reducing function f ) introduced by Delgado,
Vila and Woxman in ([4], page 127). In fact, their paper has inspired us to intro-
duce the notation of f -weighted possibilistic mean.

In the following we will consider two weighting functions f1 and f2 to be equal
if the integral of their absolut difference |f1 − f2| is zero, that is∫ 1

0
|f1(γ)− f2(γ)|dγ = 0.

Let us introduce a family of weighting function 1 : [0, 1]→ R defined as

1(γ) =
{

1 if γ ∈ (0, 1]
a if γ = 0

where a ∈ [0, 1] is an arbitrary real number. It is clear that 1 is a weighting function
and

M̄1(A) =
∫ 1

0

a1(γ) + a2(γ)
2

1(γ)dγ =
∫ 1

0

a1(γ) + a2(γ)
2

dγ. (3)

Remark 1.2. We note here that the 1-weighted possibilistic mean value defined
by (3) coincides with the generative expectation of fuzzy numbers introduced by
Chanas and M. Nowakowski in ([3], page 47).

Definition 1.2. Let f be a weighting function and let A be a fuzzy number. Then
we define the f -weighted interval-valued possibilistic mean of A as

Mf (A) = [M−
f (A),M+

f (A)],

where

M−
f (A) =

∫ 1

0
a1(γ)f(γ)dγ =

∫ 1
0 a1(γ)f(γ)dγ∫ 1

0 f(γ)dγ

=

∫ 1
0 a1(γ)f(Pos[A ≤ a1(γ)])dγ∫ 1

0 f(Pos[A ≤ a1(γ)])dγ

=

∫ 1
0 min[A]γf(Pos[A ≤ a1(γ)])dγ∫ 1

0 f(Pos[A ≤ a1(γ)])dγ
,

and

M+
f (A) =

∫ 1

0
a2(γ)f(γ)dγ =

∫ 1
0 a2(γ)f(γ)dγ∫ 1

0 f(γ)dγ

=

∫ 1
0 a2(γ)f(Pos[A ≥ a2(γ)])dγ∫ 1

0 f(Pos[A ≥ a2(γ)])dγ

=

∫ 1
0 min[A]γf(Pos[A ≥ a2(γ)])dγ∫ 1

0 f(Pos[A ≥ a2(γ)])dγ
.
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Here we used the relationships

Pos[A ≤ a1(γ)] = sup
u≤a1(γ)

A(u) = γ,

and
Pos[A ≥ a2(γ)] = sup

u≥a2(γ)
A(u) = γ.

So M−
f (A) is the f -weighted average of the minimum of the γ-cuts and it is

why we call it the f -weighted lower possibilistic mean value of fuzzy number A.
Similarly, M+

f (A) is the f -weighted average of the maximum of the γ-cuts and it
is why we call it the f -weighted upper possibilistic mean value of fuzzy number
A.

The following two theorems can directly be proved using the definition of f -
weighted interval-valued possibilistic mean.

Theorem 1.1. Let A,B ∈ F and let f be a weighting function, and let λ be a real
number. Then

Mf (A + B) = Mf (A) + Mf (B), Mf (λA) = λMf (A).

Remark 1.3. The f -weighted possibilistic mean of A, defined by (2), is the arith-
metic mean of its f -weighted lower and upper possibilistic mean values, i.e.

M̄f (A) =
Mf
−(A) + M+

f (A)

2
. (4)

Theorem 1.2. Let A and B be two fuzzy numbers, and let λ ∈ R. Then we have

M̄f (A + B) = M̄f (A) + M̄f (B), M̄f (λA) = λM̄f (A).

2 Relation to upper and lower probability mean values

In this Section we will show an important relationship between the interval-valued
expectation E(A) = [E∗(A), E∗(A)] introduced by Dubois and Parde in [2] and
the f -weighted interval-valued possibilistic mean Mf (A) = [M−

f (A),M+
f (A)]

for any fuzzy number with strictly decreasing shape functions.
An LR-type fuzzy number A can be described with the following membership

function:

A(u) =




L

(
q− − u

α

)
if q− − α ≤ u ≤ q−

1 if u ∈ [q−, q+]

R

(
u− q+

β

)
if q+ ≤ u ≤ q+ + β

0 otherwise
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where [q−, q+] is the peak of fuzzy number A; q− and q+ are the lower and up-
per modal values; L,R : [0, 1] → [0, 1] with L(0) = R(0) = 1 and L(1) =
R(1) = 0 are non-increasing, continuous functions. We will use the notation A =
(q−, q+, α, β)LR. Hence, the closure of the support of A is exactly [q−−α, q++β].
If L and R are strictly decreasing functions then the γ-level sets of A can easily be
computed as

[A]γ = [q− − αL−1(γ), q+ + βR−1(γ)], γ ∈ [0, 1].

The lower and upper probability mean values of the fuzzy number A are computed
by [2]

E∗(A) = q− − α

∫ 1

0
L(u)du, E∗(A) = q+ + β

∫ 1

0
R(u)du. (5)

The f -weighted lower and upper possibilistic mean values are computed by

M−
f (A) =

∫ 1

0

(
q− − αL−1(γ)

)
f(γ)dγ

=
∫ 1

0
q−f(γ)dγ −

∫ 1

0
αL−1(γ)f(γ)dγ

= q− − α

∫ 1

0
L−1(γ)f(γ)dγ,

M+
f (A) =

∫ 1

0

(
q+ + βR−1(γ)

)
f(γ)dγ

=
∫ 1

0
q+f(γ)dγ +

∫ 1

0
βR−1(γ)f(γ)dγ

= q+ + β

∫ 1

0
R−1(γ)f(γ)dγ.

(6)

We can state the following theorem.

Theorem 2.1. Let f be a weighting function and let A be a fuzzy number of type
LR with strictly decreasing and continuous shape functions. Then, the f -weighted
interval-valued possibilistic mean value of A is a subset of the interval-valued
probabilistic mean value, i.e.

Mf (A) ⊆ E(A).

Furthermore, Mf (A) is a proper subset of E(A) whenever f �= 1.

Proof. From (5) and (6) we can see that it is sufficient to prove that

∫ 1

0
L−1(γ)f(γ)dγ ≤

∫ 1

0
L(u)du,

∫ 1

0
R−1(γ)f(γ)dγ ≤

∫ 1

0
R(u)du
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inequatilies hold. Since L and R are continuous, strictly decreasing functions with
L(0) = R(0) = 1, L(1) = R(1) = 0 the following equations hold,

∫ 1

0
L(u)du =

∫ 1

0
L−1(γ)dγ,

∫ 1

0
R(u)du =

∫ 1

0
R−1(γ)dγ.

Hence, it is sufficient to prove that

∫ 1

0
L−1(γ)f(γ)dγ ≤

∫ 1

0
L−1(γ)dγ, (7)

and ∫ 1

0
R−1(γ)f(γ)dγ ≤

∫ 1

0
R−1(γ)dγ. (8)

We will prove only (7) becasue (8) can be proved in a similar manner. First we
note that inequality (7) holds for the constant weighting function 1 since

∫ 1

0
L−1(γ)1(γ)dγ =

∫ 1

0
L−1(γ) dγ.

Let n ∈ N be an integer number and let xi, yi ∈ R, i = 1, . . . , n be real numbers.
Then we find,

∑
1≤i<j≤n

xi − xj

n
· yi − yj

n
=

1
n2

∑
1≤i<j≤n

(xi − xj)(yi − yj)

=
1

2n2

n∑
i=1

n∑
j=1

(xi − xj)(yi − yj)

=
1

2n2

n∑
i=1

n∑
j=1

(xiyi + xjyj − xiyj − xjyi)

=
1
n2

(
n

n∑
i=1

xiyi −
n∑
i=1

n∑
j=1

xiyj

)

=
1
n

n∑
i=1

xiyi −
(

1
n

n∑
i=1

xi

)(
1
n

n∑
j=1

yj

)
.

That is,

∑
1≤i<j≤n

xi − xj

n
·
yi − yj

n
=

1
n

n∑
i=1

xiyi −
(

1
n

n∑
i=1

xi

)(
1
n

n∑
i=1

yi

)
, (9)

Let us now consider an equidistant partition of interval [0, 1]

{0 = z0 < z1 < z2 < · · · < zn = 1} (10)
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where zi − zi−1 = 1/n for i = 1, 2, . . . , n, and let us introduce the following
notations

xi = f(ξi), yi = L−1(ξi),

where ξi ∈ (zi−1, zi), for i = 1, 2, . . . , n. Since f is non-decreasing and L−1 is
strictly decreasing on [0, 1] we get x1 ≤ x2 ≤ · · · ≤ xn and y1 > y2 > · · · > yn.
Furthermore, from xi − xj ≤ 0 and yi − yj > 0, i < j and (9) it follows that

∑
1≤i<j≤n

xi − xj

n
·
yi − yj

n
=

1
n

n∑
i=1

xiyi −
(

1
n

n∑
i=1

xi

)(
1
n

n∑
i=1

yi

)
≤ 0.

Since xi = f(ξi), yi = L−1(ξi), i = 1, 2, . . . , n, in the limit case we have

lim
n→∞

1
n

n∑
i=1

xiyi =
∫ 1

0
f(γ)L−1(γ)dγ,

lim
n→∞

1
n

n∑
i=1

xi =
∫ 1

0
f(γ)dγ,

lim
n→∞

1
n

n∑
i=1

yi =
∫ 1

0
L−1(γ)dγ.

Therefore, we get

∫ 1

0
f(γ)L−1(γ)dγ −

∫ 1

0
f(γ)dγ ·

∫ 1

0
L−1(γ)dγ ≤ 0.

Finally, from the normality condition of the integral of the weighted function f (1)
we get (7).

Now, we will show that Mf (A) is a proper subset of E(A) whenever f �= 1.
If f �= 1 then there exist α, β ∈ (0, 1) such that α < β and f(α) < f(β). Using
the notation ε = min{f(β) − f(α), L−1(α) − L−1(β)} we get that ε > 0 (since
f(β)− f(α) > 0 and L−1(α)− L−1(β) > 0).

We will now show that the inequalities

f(γ1)− f(γ2) ≤ −ε, L−1(γ1)− L−1(γ2) ≥ ε

hold for any γ1 ∈ [0, α] and γ2 ∈ [β, 1]. Indeed, from the monotonicity conditions
we get

f(γ1)− f(γ2) ≤ f(α)− f(β) ≤ −ε,
and

L−1(γ1)− L−1(γ2) ≥ L−1(α)− L−1(β) ≥ ε.

Multiplying these inequalities we get

(f(γ1)− f(γ2))
(
L−1(γ1)− L−1(γ2)

)
≤ −ε2
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for all γ1 ∈ [0, α] and γ2 ∈ [β, 1]. Consider again the equidistant partition (10) and
let us introduce the notations xi = f(ξi) and yi = L−1(ξi), where ξi ∈ (zi−1, zi),
for i = 1, 2, . . . , n. Denote the number of subintervals properly belonging to [0, α]
and [β, 1] by k and l, respectively. It can easily be seen that k > nα − 1 and
l > n(1− β)− 1. Now, let

n ≥ max{1/α, 1/(1− β)}.

From the inequality (xi − xj)(yi − yj) ≤ 0, (i < j) we find

∑
1≤i<j≤n

xi − xj

n
·
yi − yj

n
≤

1
n2

k∑
i=1

n∑
j=n−l+1

(xi − xj)(yi − yj)

≤
1
n2

k∑
i=1

n∑
j=n−l+1

(−ε2)

= −
ε2

n2
· k · l

< −
ε2

n2
(nα− 1)

(
n(1− β)− 1

)
= −ε2

(
α−

1
n

)(
(1− β)−

1
n

)
.

From α, β ∈ (0, 1) and ε > 0 and (9) it follows that∫ 1

0
f(γ)L−1(γ)dγ −

∫ 1

0
f(γ)dγ ·

∫ 1

0
L−1(γ)dγ =

∫ 1

0
f(γ)L−1(γ)dγ

−
∫ 1

0
L−1(γ)dγ ≤ −α(1− β)ε2 < 0.

Which proves the theorem.

Example 2.1. Let f(γ) = (n + 1)γn and let A = (a, α, β) be a triangular fuzzy
number with center a, left-width α > 0 and right-width β > 0 then a γ-level of A
is computed by

[A]γ = [a− (1− γ)α, a + (1− γ)β], ∀γ ∈ [0, 1].

Then the power-weighted lower and upper possibilistic mean values of A are com-
puted by

M−
f (A) =

∫ 1

0
[a− (1− γ)α](n + 1)γndγ

= a(n + 1)
∫ 1

0
γndγ − α(n + 1)

∫ 1

0
(1− γ)γndγ

= a−
α

n + 2
,
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and,

M+
f (A) =

∫ 1

0
[a + (1− γ)β](n + 1)γndγ

= a(n + 1)
∫ 1

0
γndγ + β(n + 1)

∫ 1

0
(1− γ)γndγ

= a +
β

n + 2
,

and therefore,

Mf (A) =

[
a−

α

n + 2
, a +

β

n + 2

]
.

That is,

M̄f (A) =
1
2

(
a−

α

n + 2
+ a +

β

n + 2

)
= a +

β − α

2(n + 2)
.

So,

lim
n→∞

M̄f (A) = lim
n→∞

(
a +

β − α

2(n + 2)

)
= a.

Example 2.2. Let A = (a, b, α, β) be a fuzzy number of trapezoidal form with
peak [a, b], left-width α > 0 and right-width β > 0, and let f(γ) = (n + 1)γn,
n ≥ 0. A γ-level of A is computed by

[A]γ = [a− (1− γ)α, b + (1− γ)β], ∀γ ∈ [0, 1],

then the power-weighted lower and upper possibilistic mean values of A are com-
puted by

M−
f (A) =

∫ 1

0
[a− (1− γ)α](n + 1)γndγ

= a(n + 1)
∫ 1

0
γndγ − α(n + 1)

∫ 1

0
(1− γ)γndγ

= a−
α

n + 2
,

and,

M+
f (A) =

∫ 1

0
[b + (1− γ)β](n + 1)γndγ

= b(n + 1)
∫ 1

0
γndγ + β(n + 1)

∫ 1

0
(1− γ)γndγ

= b +
β

n + 2
,
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and therefore,

Mf (A) =

[
a−

α

n + 2
, b +

β

n + 2

]

That is,

M̄f (A) =
1
2

(
a−

α

n + 2
+ b +

β

n + 2

)
=

a + b

2
+

β − α

2(n + 2)
.

So,

lim
n→∞

M̄f (A) = lim
n→∞

(
a + b

2
+

β − α

2(n + 2)

)
=

a + b

2
.

Example 2.3. Let f(γ) = (n + 1)γn, n ≥ 0 and let A = (a, α, β) be a triangular
fuzzy number with center a, left-width α > 0 and right-width β > 0 then

Mf (A) =
[
a−

α

n + 2
, a +

β

n + 2

]
⊂ E(A) =

[
a−

α

2
, a +

β

2

]

and for n > 0 we have

M̄f (A) = a +
β − α

2(n + 2)
�= Ē(A) = a +

β − α

4
.

Example 2.4. Let A = (a, b, α, β) be a fuzzy number of trapezoidal form and let

f(γ) = (n− 1)

(
1

n
√

1− γ
− 1

)
,

where n ≥ 2. It is clear that f is a weighting function with f(0) = 0 and

lim
γ→1−0

f(γ) =∞.

Then the f -weighted lower and upper possibilistic mean values of A are computed
by

M−
f (A) =

∫ 1

0
[a− (1− γ)α](n− 1)

[
1

n
√

1− γ
− 1

]
dγ

= a− α(n− 1)
∫ 1

0

[
(1− γ)1−1/n − (1− γ)

]
dγ

= a− α(n− 1)

(
1

2− 1/n
−

1
2

)

= a−
(n− 1)α
2(2n− 1)

,
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and

M+
f (A) =

∫ 1

0
[b + (1− γ)β](n− 1)

[
1

n
√

1− γ
− 1

]
dγ

= b + β(n− 1)
∫ 1

0

[
(1− γ)1−1/n − (1− γ)

]
dγ

= b + β(n− 1)

(
1

2− 1/n
−

1
2

)

= b +
(n− 1)β
2(2n− 1)

,

and therefore

Mf (A) =

[
a−

(n− 1)α
2(2n− 1)

, b +
(n− 1)β
2(2n− 1)

]
.

That is,

M̄f (A) =
1
2

(
a−

(n− 1)α
2(2n− 1)

+ b +
(n− 1)β
2(2n− 1)

)
=

a + b

2
+

(n− 1)(β − α)
4(2n− 1)

.

So,

lim
n→∞

M̄f (A) = lim
n→∞

(
a + b

2
+

(n− 1)(β − α)
4(2n− 1)

)
=

a + b

2
+

β − α

8
.

Remark 2.1. When A is a symmetric fuzzy number then the equation M̄f (A) =
Ē(A) holds for any weighting function f . In the limit case, when A = (a, b, 0, 0) is
the characteristic function of interval [a, b], the f -weighted possibilistic and prob-
abilistic interval-valued means are equal, E(A) = Mf (A) = [a, b].

3 Weighted possibilistic variance

Definition 3.1. Let A and B be fuzzy numbers and let f be a weighting function.
We define the f -weighted possibilistic variance of A by

Varf (A) =
∫ 1

0

(
a2(γ)− a1(γ)

2

)2

f(γ)dγ, (11)

and the f -weighted covariance of A and B is defined as

Covf (A,B) =
∫ 1

0

a2(γ)− a1(γ)
2

·
b2(γ)− b1(γ)

2
f(γ)dγ. (12)
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It should be noted that if f(γ) = 2γ, γ ∈ [0, 1] then

Varf (A) =
∫ 1

0

(
a2(γ)− a1(γ)

2

)2

2γdγ

=
1
2

∫ 1

0
[a2(γ)− a1(γ)]2 γdγ = Var(A),

and

Covf (A,B) =
∫ 1

0

a2(γ)− a1(γ)
2

·
b2(γ)− b1(γ)

2
f(γ)dγ

=
1
2

∫ 1

0
(a2(γ)− a1(γ)) · (b2(γ)− b1(γ)) 2γdγ = Cov(A,B).

That is the f -weighted possibilistic variance and covariance defined by (11) and
(12) can be considered as a generalization of possibilistic variance and covariance
introduced in [1]. It can easily be verified that the weighted covariance is a sym-
metrical bilinear operator.

Example 3.1. Let A = (a, b, α, β) be a trapezoidal fuzzy number and let f(γ) =
(n + 1)γn be a weighting function. Then,

Varf (A) = (n + 1)
∫ 1

0

[
a2(γ)− a1(γ)

2

]2

γndγ

=
n + 1

4

∫ 1

0
[(b− a) + (α + β)(1− γ)]2 γndγ

=
n + 1

4

[
(b− a)2

∫ 1

0
γndγ + 2(b− a)(α + β)

∫ 1

0
(1− γ)γndγ

+ (α + β)2
∫ 1

0
(1− γ)2γndγ

]

=
n + 1

4

[
(b− a)2

n + 1
+

2(b− a)(α + β)
(n + 1)(n + 2)

+
2(α + β)2

(n + 1)(n + 2)(n + 3)

]

=
(b− a)2

4
+

(b− a)(α + β)
2(n + 2)

+
(α + β)2

2(n + 2)(n + 3)

=
[
b− a

2
+

α + β

2(n + 2)

]2

+
(n + 1)(α + β)2

4(n + 2)2(n + 3)
.

So,

lim
n→∞

Varf (A) = lim
n→∞

([
b− a

2
+

α + β

2(n + 2)

]2

+
(n + 1)(α + β)2

4(n + 2)2(n + 3)

)
=

b− a

2
.
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The following theorem can be proved in a similar way as Theorem 4.1 from
[1].

Theorem 3.1. Let f and g be two weighting functions, let A, B and C be fuzzy
numbers and let x and y be real numbers. Then the following properties hold,

Covf (A,A) = Varf (A),Covf (A,B) = Covf (B,A),
Varf (x̄) = 0,Covf (x̄, A) = 0,

Covf (xA + yB,C) = |x|Covf (A,C) + |y|Covf (B,C),

Varf (xA + yB) = x2Varf (A) + y2Varf (B) + 2|x||y|Covf (A,B),

where x̄ and ȳ denote the characteristic functions of the sets {x} and {y}, respec-
tively.

Example 3.2. Let A = (a, b, α, β) and B = (a′, b′, α′, β′) be fuzzy numbers of
trapezoidal form. Let f(γ) = (n + 1)γn, n ≥ 0, be a weighting function then the
power-weighted covariance between A and B is computed by

Covf (A,B)

=
∫ 1

0

(b− a) + (1− γ)(α + β)
2

·
(b′ − a′) + (1− γ)(α′ + β′)

2
(n + 1)γndγ

=
n + 1

4

[
(b− a)(b′ − a′)

∫ 1

0
γndγ

+
[
(b− a)(α′ + β′) + (b′ − a′)(α + β)

] ∫ 1

0
(1− γ)γndγ

+ (α + β)(α′ + β′)
∫ 1

0
(1− γ)2γndγ

]

=
n + 1

4

[
(b− a)(b′ − a′)

n + 1
+

(b− a)(α′ + β′) + (b′ − a′)(α + β)
(n + 1)(n + 2)

+
2(α + β)(α′ + β′)

(n + 1)(n + 2)(n + 3)

]

=

[
b− a

2
+

α + β

2(n + 2)

][
b′ − a′

2
+

α′ + β′

2(n + 2)

]
+

(n + 1)(α + β)(α′ + β′)
4(n + 2)2(n + 3)

.

So,

lim
n→∞

Covf (A,B) = lim
n→∞

([
b− a

2
+

α + β

2(n + 2)

][
b′ − a′

2
+

α′ + β′

2(n + 2)

]

+
(n + 1)(α + β)(α′ + β′)

4(n + 2)2(n + 3)

)
=

b− a

2
·
b′ − a′

2
.
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If a = b and a′ = b′, i.e. we have two triangular fuzzy numbers, then their
covariance becomes

Covf (A,B) =
(α + β)(α′ + β′)
2(n + 2)(n + 3)

.

4 Summary

In this paper we have introduced the notations of the weighted lower possibilistic
and upper possibilistic mean values, crisp possibilistic mean value and variance
of fuzzy numbers, which are consistent with the extension principle and with the
well-known defintions of expectation and variance in probability theory. We have
also showed that the weighted interval-valued possibilistic mean is always a subset
(moreover a proper subset excluding some special cases) of the interval-valued
probabilistic mean for any weighting function.
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