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Abstract
The goal of this paper is to prove the possibilistic analog of the probabilistic
Cauchy-Schwarz inequality.

Keywords: Possibility distributions; Possibilistic variance, Possibilistic covari-
ance; Cauchy-Schwarz inequality



1 Introduction

If X andY are random variables with finite variances o x and oy then the proba-
bilistic Cauchy-Schwarz inequality can be stated as

[Cov(X,Y)]? < oxoy, (1)

where Cov(X,Y") denotes the covariance between X and Y. Furthermore, the
correlation coefficient between X and Y is defined by

Cov(X,Y)

X,Y) = :
p(X,Y) or

anditisclearthat —1 < p(X,Y) < 1.

A fuzzy number A isafuzzy set of thereal line R with anormal, fuzzy convex
and continuous membership function of bounded support. The family of fuzzy
numbers will be denoted by F. A ~y-level set of afuzzy set A in R™ is defined by
[A]Y = {t € R"A(t) > ~}if v > 0and [A]Y = cl{t € R"|A(t) > 0} (the
closure of the support of A) if v = 0.

In the following we shall recall the definition and some basic properties of joint
possibility distributions [4].

Definition 1.1. Let Ay,..., A, € F be fuzzy numbers. A fuzzy set B in R" is
called a joint possibility distribution of A;,7 = 1,...,n if it satisfies the relation-
ship
B ce n) = Az i),
Qe (%1505 Tn) (:)
forall z; e Randi =1,...,n. A; iscalled the i-th marginal possibility distribu-
tion of B.

Margina probability distributions are determined from the joint one by the
principle of *falling integrals’ and marginal possibility distributions are determined
from the joint possibility distribution by the principle of ’falling shadows .

The biggest (in the sense of subsethood of fuzzy sets) joint possibility distribu-
tion defines the concept of independence of fuzzy numbers.

Definition 1.2. Fuzzy numbers A;, 7 = 1, ..., n are said to be independent if their
joint possibility distribution, B, is given as,
B(zy,...,zy) = min{Ay(z1),..., An(xn)}

or, equivalently, [B]Y = [A1]7 x --- x [4,]", for &l z1,...,2, € R and
v €[0,1].

Now we shall recall definition of central value and measure of possibilistic
dependency as has been introduced in [2].



Definition 1.3. [2] Let A € F be a fuzzy number with [A]Y = [a1(7), a2(7)],
~ € [0, 1]. The central value of [A]” is defined by

1
N =g /W wde.

It is easy to see that the central value of [A]” is computed as

1 /“2(“’) a1(y) + az(7)

—_—Y—————— xdﬁU =
az(y) = a1() Ja, () 2

Definition 1.4. Let Aq,..., A, € F befuzzy numbers, and let g : R™ — R be
a continuous function. Then, g(A;, ..., A,) is defined by the sup—min extension
principle [3] asfollows

g(A1, ..., An)(y) = sup  min{Ai(x1),..., Ap(zn)}.

c(lA]) =

Definition 1.5. [2] Let Ay,..., A, € F befuzzy numbers, let B be their joint
possibility distribution and let v € [0,1]. The central value of the v-level set of
g(A1,..., Ay,) with respect to their joint possibility distribution B is defined by

Co lgrorees ) = g ot

where g(z) = g(x1, ..., xp).

Definition 1.6. [2] Let A, B € F befuzzy numbers, let C' be their joint possibility
distribution, and let v € [0, 1]. The dependency relation between the ~-level sets
of A and B isdefined by

Relo([A]7, [B]Y) = Co([(A = Co([A])(B — Co([BI")]7),
Using the definition of central value we have

1
1 1
= W/[O]v zydzdy — Co([B]") - m/{qW xdxdy
1
= Co([AB]") = Ca([A]7) - Ca([B]"),

Relo([A]7, [B]) /[cp(z —Cco([A]) - (y — Ce([B]"))dzdy

— Co([A]) /W ydzdy + Co([A]") - Co([B])

forall v € [0, 1]. Werecadll here that



and

1
Co([B]") = / ydy.

Definition 1.7. [1] A function f: [0,1] — R is said to be a weighting function

if f is non-negative, monoton increasing and satisfies the following normalization
condition

1
/ f(y)dy=1.
0

The covariance of A and B with respect to aweighting function f is defined as

2]
1
Covy(4.B) = [ Relc(Al [B)f()dr
1
- /0 [Ca([AB]) — Cal[A]) - Co(BI)] f(1)d.

In[2] we proved that if A, B € F areindependent then Cov (A, B) = 0. The
variance of afuzzy number A isdefined as|[2]

1 a —a 2
Var;(A) = Cov (A, A) :/0 (az(v) _ 1(7))

f(v)dy.

In[2] we proved the following theorem.

Theorem 1.1. Let A and B be fuzzy numbers, and let A, 1 € R. Then
Var;(AA + uB) = A\?Var;(A) + p*Var(B) + 2AuCov (A, B).

and if A and B are independent then Var(A + B) = Var(A) + Var(B). That is
Var(A + B) can be computed using the marginal possibility distributions A and
B.

We shall introduce the following notation. Let Ay, ..., A,, € F befuzzy num-
bers, let B be their joint possibility distribution, and let g : R” — R be a continu-
ous function. Then C([g(B)]”) will stand for Cp ([g( A1, ..., An)]7).

The following theorem is an extension of our results above.

Theorem 1.2. Let Ay, ..., A, € F befuzzy numbers with joint possibility distri-
bution B, let C4, ..., C,, € F be fuzzy numbers with joint possibility distribution
D, let E bethejoint possibility distribution of B and D, and let g: R™ — R and
h: R™ — R be continuous functions, and let v € [0, 1]. Then,

Relg ([g(B)]", [n(D)]") = Ce ([9(B) - M(D)]") = Cr(lg(B)]") - Ce([M(D)]").



Remark 1.1. The dependency relation between ~-level sets of g(A44,...,A,) =
g(B) and h(C1,...,Cy) = h(D) can be computed by

Relis (B 0PI = 1 [ atwntoiteds

1 / 1
—7——— | g(z)dxdy x 7/ h(y)dzdy,
Jir dxdy Jymp Jurn dxdy Sy

for all y € [0, 1]. Obviously,
Relg ([9(B)]"; [M(D)]") = Relg ([A(D)]", [9(B)]")
holds for all v € [0, 1], i.e. the dependency relation operator is symmetrical.

The following theorem says that the relation operator is bilinear operator as
well.

Theorem 1.3. Let A;,Bj € F,i=1,...,n,5 = 1,...,m, let C be their joint
possibility distribution, and let A\;,1; € R, i = 1,...,n,5 = 1,...,m bereal
numbers, and let v € [0, 1]. Then,

~

> — Z Z XipiRele ([Aq]7,[B;]7),

i=1 j=1

¥
)

Relo(l:iAiAi] |:i Mij
=1 Jj=1

Proof 1.1. We refer to Remark 1.1 with g(x) = A\z1 + ... + Az, @nd h(y) =
iyl + - . . + pmym to obtain the statement of the theorem. O

Theorem 1.4. Let Ay,..., A, € F befuzzy numbers with joint possibility distri-
bution B, and let C4, ..., C,, € F be fuzzy numbers with joint possibility distri-
bution D, andlet g : R — R and h : R™ — R be continuous functions. If B and
D areindependent, i.e, their joint possibility distribution E satisfies

[E]" = [B]” x [D]"

for all v € [0,1] (which implicitly includes that A; and C; are independent for
i=1,...,n,5=1,...,m) then

Relg ([9(B)]", [R(D)]") = 0

holdsfor all v € [0, 1].



Proof 1.2. From Remark 1.1 we have

1

Rele (B MPI) = a0,

/ g(x)h(y)dzdy
[Bx D]

1 1
e [ g@dady [ h(y)dedy
f[BxD}v dxdy /[BxD]” f[BxD]‘Y dxdy Jipxpl»
Tl
- s@ds [ hiy)dy
g 4 Jipp dy Jisp (D)
1

1
- g(z)dzx x —/ h(y)dy = 0.
Jipp d /[Bw iy v Jipp

Definition 1.8. Let A € F be a fuzzy number, let B be the joint possibility distri-
bution of A and C([A]”), and let v € [0, 1]. The self-relation of the y-level set of A
is defined by

Rel([A]7, [A]") = C([(A = C([A]")) - (A = C([A)]") = C([(A = C([A]))*]").
The following theorems can be proved by applying Theorem 1.2.
Theorem 1.5. Let A € F beafuzzy number, and let v € [0, 1]. Then,
Rel ([A]7, [A]") = C([A*]") = (C([A]"))* .

Theorem 1.6. Let Ay,..., A, € F befuzzy numbers with joint possibility distri-
bution B, let g : R™ — R be a continuous function, and let v € [0, 1]. Then,

Rel([g(B)]", [g(B)]") = C([(9(B))*]") — (C(lg(B)]"))*.

Remark 1.2. The self-relation of the y-level set of g(A4,..., A,) = g(B) can be
computed by

2
Rel (o o) = g [ et (g [ o)

and it is clear that,
Rel ([9(B)]", [9(B)]") = 0

for any v € [0, 1].

2 Theweak form of the possibilistic Cauchy-Schwarz in-
equality

Let Aq,..., A, € F befuzzy numbers with joint possibility distribution B, and
let C1,...,C,, € F with joint possibility distribution D, and let E be the joint

5



distribution of B and D, and let g: R® — R and h: R™ — R be continuous
functions, and let A € R. Then applying Remark 1.2 we have that the inequality
Rel ([9(B) + Ah(D)]", [9(B) + Ah(D)]") = 0,

holdsfor al v € [0, 1].
Using the linearity and symmetricity properties of the dependency relation op-
erator we have
Relp([g(B)]", [9(B)]") + 2ARelg([g(B)], [R(D)]")
+ARelp([h(D)], [h(D)]7) = 0,
for any A € R. Furthermore, the discriminant of (2) should satisfy the following
inequality,

[Relp([g(B)]", [h(D)]")]* = Relp(g(B)]", [9(B)] ) Relp([h(D)]", [M(D)]") < 0,

(2)

for any v € [0, 1]. Hence, we can state the following theorem.

Theorem 2.1. Let Ay,..., A, € F befuzzy numberswith joint possibility distri-
bution B, let C1,...,C,, € F befuzzy numbers with joint distribution D, let E
be the joint distribution of B and D, and let g : R™ — R and h: R™ — R be
continuous functions. Then,

(Relg ([9(B))", [h(D)]"))? < Relp([g(B))", [9(B)]") x Relp([A(D)]", [A(D)]")
holds for all v € [0, 1].

Especidly, if g(z) = x and h(y) = y then Theorem 2.1 turnsinto the following
theorem, which we will call the weak form of Cauchy-Schwarz inequality for the
~-level sets of the marginal possibility distributions.

Theorem 2.2. Let A, B € F befuzzy numbers, and let C' be their joint possibility
distribution. Then,

(Rele ([4]",[B]"))* < Rele([A]7, [A]") - Relo([B]”, [B]"),
for any v € [0, 1].

3 Thestrongform of the possibilistic Cauchy-Schwar z in-
equality

Let A, B € F befuzzy numbers, and let C' be their joint possibility distribution
and let
[C] = {(z,y) € R?|z € [u,v],y € [wi(), w2(2)]},

denote the parametrized representation of [C]”. Then applying the Fubini theorem

we have
v pwa(x)
dxdy:/ / dydz.
[C]Y u Jwi(z)



Lemma 3.1. Let

wa(x)
F(x) :/ " dy = wa(z) —wi(x), = € [u,v].

If [C]7 is a convex subset of R? then F' isa concave function.

Proof 3.1. If F" were not concave then there would exist 1, 25 € [u,v], z1 < 29
and X € [0, 1] such that for z* = Az; + (1 — A)x2 the following inequality would
hold

F(z*) < AF(x1) 4+ (1 = \)F(x2),

that is,
wa (") —wi(z%) < Afwa(z1) —wi(21)] + (1 = A) [wa(22) —wi(z2)]  (3)

would hold. Let 7" be the convex hull of the points (z;, w1 (x;)), (zi, wa(x;)), i =
1,2,i.e

T = conv {(z1, w1 (1)), (x1, w2(21)), (T2, w1(x2)), (T2, w2(22))}
= {z e R*|z = (w1, wi(21)) + paar, wa(1))
+p3(v2, w1(22)) + pa(ze, w2 (22)), p1 + p2 + p3 + pa =1,
[i1, 2, 13, fta > 0}

Since [C]" isconvex, T' C [C]" holds, and therefore
{y eR|(z,y) € T} S {y € R|(z,y) € [C]"}

also holdsfor all = € [x1, z3]. Applying thisinequality relation to = = x* we find
that

wa (™) —wi(z*) > [Mwz(z1) + (1 = Nwe(22)] — [Mwi(z1) + (1 — Nwi(22)]
= AMwa(z1) —wi(z1)] + (1 = A) [we(22) — wi(22)],

which contradictsto (3). O
It should be noted that since F' is concave, it is continuous.

Theorem 3.1. Let A, B € F befuzzy numbers, and let C' betheir joint possibility
distribution. If [C]” is a convex subset of R? for any ~ € [0, 1] then the inequality

Relo([A]7, [A]") < Rel([A]", [A]") @

holdsfor all v € [0, 1].



Remark 3.1. From Theorem 3.1 we can easily prove that

Relc([A4]7, [A]7) = [:} G (z)dx — (/v xG(m)dm)Q

u

< - i u/uv z2dr — (v 1 u/uv xdaj>2 = Rel([A]7, [A]7),

and the equality holdsif and only if G = 1/(v — w), which meansthat in this case
the parametrization of [C]” should be

[C]W = {(:va) € R2|SL‘ € [u,v],y € [w1>w2]}7

that is,
[C] = Proj,([C]7) x Proj,([C]") = [A]” x [B]".

We find that (4) holds with equality for all v € [0,1] if and only if A and B (the
marginal possibility distributions of C') are independent.

Now we are in the position to state the strong form of the possibilistic Cauchy-
Schwarz inequality for the v-level sets of marginal possibility distributions.

Theorem 3.2. Let A, B € F be fuzzy numbers, and let C' be their joint possibility
distribution. If [C]” isa convex subset of R? for any v € [0, 1] then the inequality

(Relo([A], [B]))* < Rel([A]", [A]") - Rel([B]", [B]")
holdsfor all v € [0, 1].
Proof 3.2. From Theorem 3.1 we have that the inequalities
Relc([A]", [A]") < Rel([A]", [4]),
Relo ([B]”, [B]") < Rel([B]", [B]"),
hold for all v € [0, 1]. From Theorem 2.2 we get

(Rel([A]7, [B]"))* <Relc ([A]", [A]") - Rele ([B]”,[B]")
<Rel([A]", [A]") - Rel([B]", [B]"),

which ends the proof. O
The following theorem states the possibilistic Cauchy-Schwarz inequality.

Theorem 3.3. Let A, B € F befuzzy numbers, and let C' be their joint possibility
distribution and let f be a weighting function. If [C]” isa convex subset of R? for
any ~ € [0, 1] then the inequality

(Covy(A, B))? < Vary(A) - Vary(B),

holds for any weighting function f.



Summarizing our findings in this section we define the concept of correlation
between fuzzy numbers as follows.

Definition 3.1. Let A, B € F befuzzy numbers (with Var¢(A) # 0 and Var¢(B) #
0) with joint possibility distribution C'. Then, the correlation coefficient between A
and B (with respect to weighting function f) is defined by

B Covs(A, B)
B \/Var(A)Vary(B)

pf(Av B)

From Theorem 3.3 we find that if [C]” is a convex subset of R? for any v €
[0, 1] then theinequality —1 < p¢(A, B) < 1, holdsforany A, B € F.

4 l1llustration
Weillustrate three important cases of correlation coefficient. In [2] we proved that

if Aand B areindependent, that is, their joint possibility distributionis A x B then
p¢(A, B) = 0 for any weighting function f (Fig. 1).

Figure 1: If A and B areindependent then p¢(A, B) = 0.

Consider now the case depicted in Fig. 2. It can be shown [2] that the de-
pendency relation between the y-level setsof A and B (with respect to their joint

9



possibility distribution C) is
Relc ([A]", [B]") = Ce([AB]") — Ca([A])Co([B])

_ (a2(y) —ai1()(b2(7) — b1 (7))
12 '

>
y
X
Figure 2: Thecaseof ps(A, B) = 1.
Furthermore, the variances of A and B are computed by
1 a —a 2
Vary (4) = Covya,4) = [ 2004,
and’ 1 2
(b2(7) = b1(7))
Var;(B) = Cov (B, B) = /O O o)
Therefore, we get
COVf(A, B)
A,B) =
i ) \/Varf(A)Varf(B)
i I (az(v) — 01(7)1) 2(62(7) — b1 (7)) F()de
a —a 2 — 2
\/ ) a2, \/ LT



From the linearity of A and B we have that there exists w € R, withw > 0
such that equality

az2(v) — a1(7y) = w(bz(y) — b1(7)),

holdsfor any v € [0, 1]. Using this relationship we find that
pf(Aa B) =1,

holds for any weighting function f.

Consider now the case depicted in Fig. 3. It can be shown [2] that the de-
pendency relation between the v-level sets of A and B (with respect to their joint
possibility distribution D) is

Relp([A]", [B]”) = Cp([AB]") — Cp([A]")Cp([B]")

(a2(v) — a1())(b2(y) — b1 (7))
12 '

Figure 3: Thecaseof ps(A, B) = —1.
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Therefore, we get

Covs(A, B)

\/Varf )Vars(B)

I (az(y) — a1 (v )bz ) —bi(y )) ()

\/f01 (02(7) —a1(y d’Y\/fo (b2(y) — bl (7))? F)dn

From the linearity of A and B we have that there exists w € R, withw > 0
such that the equality

ps(A,B) =

az(y) —a1(v) = w(bz(7) — b1 (7)),
holds for any ~ € [0, 1]. Using thisrelation we find that
pf(Aa B) ==

holds for any weighting function f.
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