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Abstract

The goal of this paper is to prove the possibilistic analog of the probabilistic
Cauchy-Schwarz inequality.
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1 Introduction

If X and Y are random variables with finite variances σX and σY then the proba-
bilistic Cauchy-Schwarz inequality can be stated as

[Cov(X,Y )]2 ≤ σXσY , (1)

where Cov(X,Y ) denotes the covariance between X and Y . Furthermore, the
correlation coefficient between X and Y is defined by

ρ(X,Y ) =
Cov(X,Y )
√
σXσY

,

and it is clear that −1 ≤ ρ(X,Y ) ≤ 1.
A fuzzy number A is a fuzzy set of the real line R with a normal, fuzzy convex

and continuous membership function of bounded support. The family of fuzzy
numbers will be denoted by F . A γ-level set of a fuzzy set A in Rn is defined by
[A]γ = {t ∈ Rn|A(t) ≥ γ} if γ ≥ 0 and [A]γ = cl{t ∈ Rn|A(t) > 0} (the
closure of the support of A) if γ = 0.

In the following we shall recall the definition and some basic properties of joint
possibility distributions [4].

Definition 1.1. Let A1, . . . , Am ∈ F be fuzzy numbers. A fuzzy set B in Rn is
called a joint possibility distribution of Ai, i = 1, . . . , n if it satisfies the relation-
ship

max
xj∈R,j �=i

B(x1, . . . , xn) = Ai(xi),

for all xi ∈ R and i = 1, . . . , n. Ai is called the i-th marginal possibility distribu-
tion of B.

Marginal probability distributions are determined from the joint one by the
principle of ’falling integrals’ and marginal possibility distributions are determined
from the joint possibility distribution by the principle of ’falling shadows’.

The biggest (in the sense of subsethood of fuzzy sets) joint possibility distribu-
tion defines the concept of independence of fuzzy numbers.

Definition 1.2. Fuzzy numbers Ai, i = 1, . . . , n are said to be independent if their
joint possibility distribution, B, is given as,

B(x1, . . . , xn) = min{A1(x1), . . . , An(xn)}

or, equivalently, [B]γ = [A1]γ × · · · × [An]γ , for all x1, . . . , xn ∈ R and
γ ∈ [0, 1].

Now we shall recall definition of central value and measure of possibilistic
dependency as has been introduced in [2].
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Definition 1.3. [2] Let A ∈ F be a fuzzy number with [A]γ = [a1(γ), a2(γ)],
γ ∈ [0, 1]. The central value of [A]γ is defined by

C([A]γ) =
1∫

[A]γ dx

∫
[A]γ

xdx.

It is easy to see that the central value of [A]γ is computed as

C([A]γ) =
1

a2(γ)− a1(γ)

∫ a2(γ)

a1(γ)
xdx =

a1(γ) + a2(γ)
2

.

Definition 1.4. Let A1, . . . , An ∈ F be fuzzy numbers, and let g : Rn → R be
a continuous function. Then, g(A1, . . . , An) is defined by the sup–min extension
principle [3] as follows

g(A1, . . . , An)(y) = sup
g(x1,...,xn)=y

min{A1(x1), . . . , An(xn)}.

Definition 1.5. [2] Let A1, . . . , An ∈ F be fuzzy numbers, let B be their joint
possibility distribution and let γ ∈ [0, 1]. The central value of the γ-level set of
g(A1, . . . , An) with respect to their joint possibility distribution B is defined by

CB ([g(A1, . . . , An)]γ) =
1∫

[B]γ dx

∫
[B]γ

g(x)dx,

where g(x) = g(x1, . . . , xn).

Definition 1.6. [2] Let A,B ∈ F be fuzzy numbers, let C be their joint possibility
distribution, and let γ ∈ [0, 1]. The dependency relation between the γ-level sets
of A and B is defined by

RelC([A]γ , [B]γ) = CC
([

(A− CC([A]γ))(B − CC([B]γ))
]γ)
,

Using the definition of central value we have

RelC([A]γ , [B]γ) =
1∫

[C]γ dxdy

∫
[C]γ

(x− CC([A]γ) · (y − CC([B]γ))dxdy

=
1∫

[C]γ dxdy

∫
[C]γ

xydxdy − CC([B]γ) ·
1∫

[C]γ dxdy

∫
[C]γ

xdxdy

− CC([A]γ) ·
1∫

[C]γ dxdy

∫
[C]γ

ydxdy + CC([A]γ) · CC([B]γ)

= CC([AB]γ)− CC([A]γ) · CC([B]γ),

for all γ ∈ [0, 1]. We recall here that

CC([A]γ) =
1∫

[C]γ dx

∫
[C]γ

xdx,
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and

CC([B]γ) =
1∫

[C]γ dy

∫
[C]γ

ydy.

Definition 1.7. [1] A function f : [0, 1] → R is said to be a weighting function
if f is non-negative, monoton increasing and satisfies the following normalization
condition ∫ 1

0
f(γ)dγ = 1.

The covariance of A and B with respect to a weighting function f is defined as
[2]

Covf (A,B) =
∫ 1

0
RelC([A]γ , [B]γ)f(γ)dγ

=
∫ 1

0

[
CC([AB]γ)− CC([A]γ) · CC([B]γ)

]
f(γ)dγ.

In [2] we proved that if A,B ∈ F are independent then Covf (A,B) = 0. The
variance of a fuzzy number A is defined as [2]

Varf (A) = Covf (A,A) =
∫ 1

0

(a2(γ)− a1(γ))2

12
f(γ)dγ.

In [2] we proved the following theorem.

Theorem 1.1. Let A and B be fuzzy numbers, and let λ, µ ∈ R. Then

Varf (λA+ µB) = λ2Varf (A) + µ2Varf (B) + 2λµCovf (A,B).

and if A and B are independent then Var(A + B) = Var(A) + Var(B). That is
Var(A + B) can be computed using the marginal possibility distributions A and
B.

We shall introduce the following notation. Let A1, . . . , An ∈ F be fuzzy num-
bers, let B be their joint possibility distribution, and let g : Rn → R be a continu-
ous function. Then C([g(B)]γ) will stand for CB ([g(A1, . . . , An)]γ).

The following theorem is an extension of our results above.

Theorem 1.2. Let A1, . . . , An ∈ F be fuzzy numbers with joint possibility distri-
bution B, let C1, . . . , Cm ∈ F be fuzzy numbers with joint possibility distribution
D, let E be the joint possibility distribution of B and D, and let g : Rn → R and
h : Rm → R be continuous functions, and let γ ∈ [0, 1]. Then,

RelE ([g(B)]γ , [h(D)]γ) = CE ([g(B) · h(D)]γ) − CE([g(B)]γ) · CE([h(D)]γ).
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Remark 1.1. The dependency relation between γ-level sets of g(A1, . . . , An) =
g(B) and h(C1, . . . , Cm) = h(D) can be computed by

RelE ([g(B)]γ , [h(D)]γ) =
1∫

[E]γ dxdy

∫
[E]γ

g(x)h(y)dxdy

−
1∫

[E]γ dxdy

∫
[E]γ

g(x)dxdy ×
1∫

[E]γ dxdy

∫
[E]γ

h(y)dxdy,

for all γ ∈ [0, 1]. Obviously,

RelE ([g(B)]γ , [h(D)]γ) = RelE ([h(D)]γ , [g(B)]γ)

holds for all γ ∈ [0, 1], i.e. the dependency relation operator is symmetrical.

The following theorem says that the relation operator is bilinear operator as
well.

Theorem 1.3. Let Ai, Bj ∈ F , i = 1, . . . , n, j = 1, . . . ,m, let C be their joint
possibility distribution, and let λi, µj ∈ R, i = 1, . . . , n, j = 1, . . . ,m be real
numbers, and let γ ∈ [0, 1]. Then,

RelC

([ n∑
i=1

λiAi

]γ
,


 m∑
j=1

µjBj



γ )

=
n∑
i=1

m∑
j=1

λiµjRelC ([Ai]γ , [Bj ]γ) ,

Proof 1.1. We refer to Remark 1.1 with g(x) = λ1x1 + . . . + λnxn and h(y) =
µ1y1 + . . .+ µmym to obtain the statement of the theorem.

Theorem 1.4. Let A1, . . . , An ∈ F be fuzzy numbers with joint possibility distri-
bution B, and let C1, . . . , Cm ∈ F be fuzzy numbers with joint possibility distri-
bution D, and let g : Rn → R and h : Rm → R be continuous functions. If B and
D are independent, i.e, their joint possibility distribution E satisfies

[E]γ = [B]γ × [D]γ

for all γ ∈ [0, 1] (which implicitly includes that Ai and Cj are independent for
i = 1, . . . , n, j = 1, . . . ,m) then

RelE ([g(B)]γ , [h(D)]γ) = 0

holds for all γ ∈ [0, 1].
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Proof 1.2. From Remark 1.1 we have

RelE ([g(B)]γ , [h(D)]γ) =
1∫

[B×D]γ dxdy

∫
[B×D]γ

g(x)h(y)dxdy

−
1∫

[B×D]γ dxdy

∫
[B×D]γ

g(x)dxdy ·
1∫

[B×D]γ dxdy

∫
[B×D]γ

h(y)dxdy

=
1∫

[B]γ dx
∫
[D]γ dy

∫
[B]γ

g(x)dx
∫

[D]γ
h(y)dy

−
1∫

[B]γ dx

∫
[B]γ

g(x)dx×
1∫

[D]γ dy

∫
[D]γ

h(y)dy = 0.

Definition 1.8. Let A ∈ F be a fuzzy number, let B be the joint possibility distri-
bution of A and C([A]γ), and let γ ∈ [0, 1]. The self-relation of the γ-level set of A
is defined by

Rel([A]γ , [A]γ) = C([(A− C([A]γ)) · (A− C([A]γ))]γ) = C([(A− C([A]γ))2]γ).

The following theorems can be proved by applying Theorem 1.2.

Theorem 1.5. Let A ∈ F be a fuzzy number, and let γ ∈ [0, 1]. Then,

Rel ([A]γ , [A]γ) = C([A2]γ)− (C([A]γ))2 .

Theorem 1.6. Let A1, . . . , An ∈ F be fuzzy numbers with joint possibility distri-
bution B, let g : Rn → R be a continuous function, and let γ ∈ [0, 1]. Then,

Rel([g(B)]γ , [g(B)]γ) = C([(g(B))2]γ)− (C([g(B)]γ))2.

Remark 1.2. The self-relation of the γ-level set of g(A1, . . . , An) = g(B) can be
computed by

Rel ([g(B)]γ , [g(B)]γ) =
1∫

[B]γ dx

∫
[B]γ

g2(x)dx−
(

1∫
[B]γ dx

∫
[B]γ

g(x)dx
)2

,

and it is clear that,
Rel ([g(B)]γ , [g(B)]γ) ≥ 0

for any γ ∈ [0, 1].

2 The weak form of the possibilistic Cauchy-Schwarz in-
equality

Let A1, . . . , An ∈ F be fuzzy numbers with joint possibility distribution B, and
let C1, . . . , Cm ∈ F with joint possibility distribution D, and let E be the joint
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distribution of B and D, and let g : Rn → R and h : Rm → R be continuous
functions, and let λ ∈ R. Then applying Remark 1.2 we have that the inequality

Rel ([g(B) + λh(D)]γ , [g(B) + λh(D)]γ) ≥ 0,

holds for all γ ∈ [0, 1].
Using the linearity and symmetricity properties of the dependency relation op-

erator we have

RelE([g(B)]γ , [g(B)]γ) + 2λRelE([g(B)]γ , [h(D)]γ)

+λ2RelE([h(D)]γ , [h(D)]γ) ≥ 0,
(2)

for any λ ∈ R. Furthermore, the discriminant of (2) should satisfy the following
inequality,

[RelE([g(B)]γ , [h(D)]γ)]2 − RelE([g(B)]γ , [g(B)]γ)RelE([h(D)]γ , [h(D)]γ) ≤ 0,

for any γ ∈ [0, 1]. Hence, we can state the following theorem.

Theorem 2.1. Let A1, . . . , An ∈ F be fuzzy numbers with joint possibility distri-
bution B, let C1, . . . , Cm ∈ F be fuzzy numbers with joint distribution D, let E
be the joint distribution of B and D, and let g : Rn → R and h : Rm → R be
continuous functions. Then,

(RelE ([g(B)]γ , [h(D)]γ))2 ≤ RelE([g(B)]γ , [g(B)]γ)× RelE([h(D)]γ , [h(D)]γ)

holds for all γ ∈ [0, 1].

Especially, if g(x) = x and h(y) = y then Theorem 2.1 turns into the following
theorem, which we will call the weak form of Cauchy-Schwarz inequality for the
γ-level sets of the marginal possibility distributions.

Theorem 2.2. Let A,B ∈ F be fuzzy numbers, and let C be their joint possibility
distribution. Then,

(RelC ([A]γ , [B]γ))2 ≤ RelC([A]γ , [A]γ) · RelC([B]γ , [B]γ),

for any γ ∈ [0, 1].

3 The strong form of the possibilistic Cauchy-Schwarz in-
equality

Let A,B ∈ F be fuzzy numbers, and let C be their joint possibility distribution
and let

[C]γ = {(x, y) ∈ R2|x ∈ [u, v], y ∈ [w1(x), w2(x)]},
denote the parametrized representation of [C]γ . Then applying the Fubini theorem
we have ∫

[C]γ
dxdy =

∫ v

u

∫ w2(x)

w1(x)
dydx.
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Lemma 3.1. Let

F (x) =
∫ w2(x)

w1(x)
dy = w2(x)− w1(x), x ∈ [u, v].

If [C]γ is a convex subset of R2 then F is a concave function.

Proof 3.1. If F were not concave then there would exist x1, x2 ∈ [u, v], x1 < x2

and λ ∈ [0, 1] such that for x∗ = λx1 + (1− λ)x2 the following inequality would
hold

F (x∗) < λF (x1) + (1− λ)F (x2),

that is,

w2(x∗)− w1(x∗) < λ [w2(x1)− w1(x1)] + (1− λ) [w2(x2)− w1(x2)] (3)

would hold. Let T be the convex hull of the points (xi, w1(xi)), (xi, w2(xi)), i =
1, 2, i.e.

T = conv {(x1, w1(x1)), (x1, w2(x1)), (x2, w1(x2)), (x2, w2(x2))}
=

{
x ∈ R2|x = µ1(x1, w1(x1)) + µ2(x1, w2(x1))

+µ3(x2, w1(x2)) + µ4(x2, w2(x2)), µ1 + µ2 + µ3 + µ4 = 1,
µ1, µ2, µ3, µ4 ≥ 0} .

Since [C]γ is convex, T ⊆ [C]γ holds, and therefore

{y ∈ R|(x, y) ∈ T} ⊆ {y ∈ R|(x, y) ∈ [C]γ}

also holds for all x ∈ [x1, x2]. Applying this inequality relation to x = x∗ we find
that

w2(x∗)− w1(x∗) ≥ [λw2(x1) + (1− λ)w2(x2)]− [λw1(x1) + (1− λ)w1(x2)]
= λ [w2(x1)− w1(x1)] + (1− λ) [w2(x2)− w1(x2)] ,

which contradicts to (3).

It should be noted that since F is concave, it is continuous.

Theorem 3.1. Let A,B ∈ F be fuzzy numbers, and let C be their joint possibility
distribution. If [C]γ is a convex subset of R2 for any γ ∈ [0, 1] then the inequality

RelC([A]γ , [A]γ) ≤ Rel([A]γ , [A]γ) (4)

holds for all γ ∈ [0, 1].
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Remark 3.1. From Theorem 3.1 we can easily prove that

RelC([A]γ , [A]γ) =
∫ v

u
x2G(x)dx−

( ∫ v

u
xG(x)dx

)2

≤
1

v − u

∫ v

u
x2dx−

(
1

v − u

∫ v

u
xdx

)2

= Rel([A]γ , [A]γ),

and the equality holds if and only if G ≡ 1/(v − u), which means that in this case
the parametrization of [C]γ should be

[C]γ = {(x, y) ∈ R2|x ∈ [u, v], y ∈ [w1, w2]},

that is,
[C]γ = Projx([C]γ)× Projy([C]γ) = [A]γ × [B]γ .

We find that (4) holds with equality for all γ ∈ [0, 1] if and only if A and B (the
marginal possibility distributions of C) are independent.

Now we are in the position to state the strong form of the possibilistic Cauchy-
Schwarz inequality for the γ-level sets of marginal possibility distributions.

Theorem 3.2. Let A,B ∈ F be fuzzy numbers, and let C be their joint possibility
distribution. If [C]γ is a convex subset of R2 for any γ ∈ [0, 1] then the inequality

(RelC([A]γ , [B]γ))2 ≤ Rel([A]γ , [A]γ) · Rel([B]γ , [B]γ)

holds for all γ ∈ [0, 1].

Proof 3.2. From Theorem 3.1 we have that the inequalities

RelC([A]γ , [A]γ) ≤ Rel([A]γ , [A]γ),
RelC ([B]γ , [B]γ) ≤ Rel([B]γ , [B]γ),

hold for all γ ∈ [0, 1]. From Theorem 2.2 we get

(Rel([A]γ , [B]γ))2 ≤RelC ([A]γ , [A]γ) · RelC ([B]γ , [B]γ)
≤Rel([A]γ , [A]γ) · Rel([B]γ , [B]γ),

which ends the proof.

The following theorem states the possibilistic Cauchy-Schwarz inequality.

Theorem 3.3. Let A,B ∈ F be fuzzy numbers, and let C be their joint possibility
distribution and let f be a weighting function. If [C]γ is a convex subset of R2 for
any γ ∈ [0, 1] then the inequality

(Covf (A,B))2 ≤ Varf (A) ·Varf (B),

holds for any weighting function f .
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Summarizing our findings in this section we define the concept of correlation
between fuzzy numbers as follows.

Definition 3.1. LetA,B ∈ F be fuzzy numbers (with Varf (A) �= 0 and Varf (B) �=
0) with joint possibility distribution C. Then, the correlation coefficient between A
and B (with respect to weighting function f ) is defined by

ρf (A,B) =
Covf (A,B)√

Varf (A)Varf (B)
.

From Theorem 3.3 we find that if [C]γ is a convex subset of R2 for any γ ∈
[0, 1] then the inequality −1 ≤ ρf (A,B) ≤ 1, holds for any A,B ∈ F .

4 Illustration

We illustrate three important cases of correlation coefficient. In [2] we proved that
ifA andB are independent, that is, their joint possibility distribution isA×B then
ρf (A,B) = 0 for any weighting function f (Fig. 1).

Figure 1: If A and B are independent then ρf (A,B) = 0.

Consider now the case depicted in Fig. 2. It can be shown [2] that the de-
pendency relation between the γ-level sets of A and B (with respect to their joint
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possibility distribution C) is

RelC([A]γ , [B]γ) = CC([AB]γ)− CC([A]γ)CC([B]γ)

=
(a2(γ)− a1(γ))(b2(γ)− b1(γ))

12
.

Figure 2: The case of ρf (A,B) = 1.

Furthermore, the variances of A and B are computed by

Varf (A) = Covf (A,A) =
∫ 1

0

(a2(γ)− a1(γ))2

12
f(γ)dγ.

and,

Varf (B) = Covf (B,B) =
∫ 1

0

(b2(γ)− b1(γ))2
12

f(γ)dγ.

Therefore, we get

ρf (A,B) =
Covf (A,B)√

Varf (A)Varf (B)

=

∫ 1
0

(a2(γ)− a1(γ))(b2(γ)− b1(γ))
12

f(γ)dγ√∫ 1
0

(a2(γ)− a1(γ))2

12
f(γ)dγ

√∫ 1
0

(b2(γ)− b1(γ))2
12

f(γ)dγ
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From the linearity of A and B we have that there exists w ∈ R, with w ≥ 0
such that equality

a2(γ)− a1(γ) = w(b2(γ)− b1(γ)),

holds for any γ ∈ [0, 1]. Using this relationship we find that

ρf (A,B) = 1,

holds for any weighting function f .

Consider now the case depicted in Fig. 3. It can be shown [2] that the de-
pendency relation between the γ-level sets of A and B (with respect to their joint
possibility distribution D) is

RelD([A]γ , [B]γ) = CD([AB]γ)− CD([A]γ)CD([B]γ)

= −
(a2(γ)− a1(γ))(b2(γ)− b1(γ))

12
.

Figure 3: The case of ρf (A,B) = −1.
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Therefore, we get

ρf (A,B) =
Covf (A,B)√

Varf (A)Varf (B)

= −

∫ 1
0

(a2(γ)− a1(γ))(b2(γ)− b1(γ))
12

f(γ)dγ√∫ 1
0

(a2(γ)− a1(γ))2

12
f(γ)dγ

√∫ 1
0

(b2(γ)− b1(γ))2
12

f(γ)dγ

From the linearity of A and B we have that there exists w ∈ R, with w ≥ 0
such that the equality

a2(γ)− a1(γ) = w(b2(γ)− b1(γ)),

holds for any γ ∈ [0, 1]. Using this relation we find that

ρf (A,B) = −1

holds for any weighting function f .
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