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Abstract

In this paper we will introduce the expected value of functions of possibility dis-
tributions throughout their joint possibility distributions. We will show that the
expected value operator is linear and the covariance of weighted sums of possibil-
ity distributions can be computed in the same way as in probablity theory.

Keywords: Random variable; Joint probability distribution; Possibility distribu-
tion, Joint possibility distribution; Expected value; Covariance; Variance



1 Functions of random variables

In probability theory, the dependency between two random variables can be char-
acterized through their joint probability density function. Namely, if X and Y are
two random variables with probability density functions fX(x) and fY (y), respec-
tively, then the density function, fX,Y (x, y), of their joint random variable (X,Y ),
should satisfy the following properties∫

R

fX,Y (x, t)dt = fX(x),
∫
R

fX,Y (t, y)dt = fY (y), (1)

for all x, y ∈ R. Furthermore, fX(x) and fY (y) are called the the marginal prob-
ability density functions of random variable (X,Y ). X and Y are said to be inde-
pendent if

fX,Y (x, y) = fX(x)fY (y),

holds for all x, y. The expected value of random variable X is defined as

E(X) =
∫
R

xfX(x)dx,

and if g is a function of X then the expected value of g(X) can be computed as

E(g(X)) =
∫
R

g(x)fX(x)dx.

Furthermore, if h is a function of X and Y then the expected value of h(X,Y ) can
be computed as

E(h(X,Y )) =
∫
R2

h(x, y)fX,Y (x, y)dxdy.

Especially,

E(X + Y ) =
∫
R2

(x+ y)fX,Y (x, y)dxdy =
∫
R2

xfX,Y (x, y)dxdy

+
∫
R2

yfX,Y (x, y)dxdy =
∫
R

x

( ∫
R

fX,Y (x, y)dy
)
dx

+
∫
R

y

( ∫
R

fX,Y (x, y)dx
)
dy =

∫
R

xfX(x)dx

+
∫
R

yfY (y)dy = E(X) + E(Y ),

that is, the the expected value of X and Y can be determined according to their
individual density functions (that are the marginal probability functions of random
variable (X,Y )). The key issue here is that the joint probability distribution van-
ishes (even if X and Y are not independent), because of the principle of ’ falling
integrals’ (1).
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Let a, b ∈ R ∪ {−∞,∞} with a ≤ b, then the probability that X takes its value
from [a, b] is computed by

P(X ∈ [a, b]) =
∫ b

a
fX(x)dx.

The covariance between two random variables X and Y is defined as

Cov(X,Y ) = E
(
(X − E(X))(Y − E(Y ))

)
= E(XY )− E(X)E(Y )

=
∫
R2

xyfX,Y (x, y)dxdy −
∫
R

xfX(x)dx
∫
R

yfY (y)dy,

and ifX and Y are independent then Cov(X,Y ) = 0, sinceE(XY ) = E(X)E(Y ).
The covariance operator is a symmetrical bilinear operator and it is easy to see that
Cov(λ,X) = 0 for any λ ∈ R.
The variance of random variable X is defined as the covariance between X and
itself, that is

Var(X) = E(X2)− (E(X))2 =
∫
R

x2fX(x)dx−
(∫

R

xfX(x)dx
)2

.

For any random variables X and Y and real numbers λ, µ ∈ R the following
relationship holds

Var(λX + µY ) = λ2Var(X) + µ2Var(Y ) + 2λµCov(X,Y ).

2 Joint possibility distributions

In this section we shall introduce possibilistic dependencies between possibility
distributions. A fuzzy set A in R is said to be a fuzzy number if it is normal,
fuzzy convex and has an upper semi-continuous membership function of bounded
support. The family of all fuzzy numbers will be denoted by F . A γ-level set of
a fuzzy set A in Rm is defined by [A]γ = {x ∈ Rm : A(x) ≥ γ} if γ > 0 and
[A]γ = cl{x ∈ Rm : A(x) > γ} (the closure of the support of A) if γ = 0.
If A ∈ F is a fuzzy number then [A]γ is a convex and compact subset of R for
all γ ∈ [0, 1]. Fuzzy numbers can be considered as possibility distributions. Let
a, b ∈ R ∪ {−∞,∞} with a ≤ b, then the possibility that A ∈ F takes its value
from [a, b] is defined by [5]

Pos(A ∈ [a, b]) = max
x∈[a,b]

A(x).

Definition 2.1. A fuzzy set B in Rm is said to be a joint possibility distribution of
fuzzy numbers Ai ∈ F , i = 1, . . . ,m, if it satisfies the relationship

max
xj∈R, j �=i

B(x1, . . . , xm) = Ai(xi), ∀xi ∈ R, i = 1, . . . ,m.

Furthermore, Ai is called the i-th marginal possibility distribution of B, and the
projection of B on the i-th axis is Ai for i = 1, . . . ,m.
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We emphasise here that the joint possibility distribution always uniquely defines
its marginal distributions (the shadow of B on the i-th axis is exactly Ai), but not
vice versa. Let B denote a joint possibility distribution of A1, A2 ∈ F . Then B
should satisfy the relationships

max
y

B(x1, y) = A1(x1), max
y

B(y, x2) = A2(x2), ∀x1, x2 ∈ R.

The following theorem shows some important properties of joint possibility distri-
butions.

Theorem 2.1. Let Ai ∈ F , i = 1, . . . ,m, and let B be their joint possibility
distribution. Then,

B(x1, . . . , xm) ≤ min{A1(x1), . . . , Am(xm)} and [B]γ ⊆ [A1]γ × · · · × [Am]γ ,

hold for all x1, . . . , xm ∈ R and γ ∈ [0, 1].

If m = 2 then Theorem 2.1 states that any γ-level set of [B]γ should be contained
by the rectangle determined by the Cartesian product the γ-level sets of marginal
distributions [A1]γ × [A2]γ , and it should reach each side of that rectangle.
In the following the biggest (in the sense of subsethood of fuzzy sets) joint possi-
bility distribution will play a special role among joint possibility distributions: it
defines the concept of independence of fuzzy numbers.

Definition 2.2. Fuzzy numbers Ai ∈ F , i = 1, . . . ,m, are said to be independent
if their joint possibility distribution, B, is given by

B(x1, . . . , xm) = min{A1(x1), . . . , Am(xm)},

or, equivalently,
[B]γ = [A1]γ × · · · × [Am]γ ,

for all x1, . . . , xm ∈ R and γ ∈ [0, 1].

It can easily be seen that constants are always independent from any fuzzy number.
In particular, they are independent from each other.

Remark 2.1. Marginal probability distributions are determined from the joint one
by the principle of ’falling integrals’ and marginal possibility distributions are de-
termined from the joint possibility distribution by the principle of ’falling shadows’.

3 Expected value of functions of possibility distributions

Definition 3.1. Let A ∈ F be a fuzzy number with [A]γ = [a1(γ), a2(γ)]. If [A]γ

is non-degenerate, i.e. a1(γ) �= a2(γ) then the central value of [A]γ is defined by

center([A]γ) =
1∫

[A]γ dx

∫
[A]γ

xdx.
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The central value of [A]γ is computed by

center([A]γ) =
1

a2(γ)− a1(γ)

∫ a2(γ)

a1(γ)
xdx =

a1(γ) + a2(γ)
2

,

which remains valid in the limit case a2(γ)− a1(γ) = 0 for some γ.
That is, the central value of a γ level set [a1(γ), a2(γ)] is simple the arithmetic
mean of a1(γ) and a2(γ).

Definition 3.2. [2] A function f : [0, 1] → R is said to be a weighting function
if f is non-negative, monoton increasing and satisfies the following normalization
condition ∫ 1

0
f(γ)dγ = 1.

Different weighting functions can give different (case-dependent) importances to
γ-levels sets of fuzzy numbers.

Definition 3.3. The expected value of A with respect to a weighting function f is
defined as

Ef (A) =
∫ 1

0
center([A]γ)f(γ)dγ =

∫ 1

0

1∫
[A]γ dx

∫
[A]γ

xdxf(γ)dγ,

That is,

Ef (A) =
∫ 1

0

a1(γ) + a2(γ)
2

f(γ)dγ.

It should be noted that if f(γ) = 2γ, γ ∈ [0, 1] then

Ef (A) =
∫ 1

0

a1(γ) + a2(γ)
2

2γdγ =
∫ 1

0
[a1(γ) + a2(γ)] γdγ = M̄(A).

which is the possibilistic mean value ofA introduced by Fullér and Carlsson in [3].
And if f(γ) = 1, γ ∈ [0, 1] then we get

Ef (A) =
∫ 1

0

a1(γ) + a2(γ)
2

dγ.

which is the generative expectation of fuzzy numbers introduced by Chanas and
M. Nowakowski in ([1], page 47).

Definition 3.4. Let A1, . . . , Am ∈ F be fuzzy numbers, and let g : Rm → R be a
continuous function. Then g(A1, . . . , Am) is defined by the extension principle [4]
as follows

g(A1, . . . , Am)(y) = sup
g(x1,...,xm)=y

min{A1(x1), . . . , Am(xm)}.
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Definition 3.5. The central value of the γ-level set of g(A1, . . . , Am) is defined by

center([g(A1, . . . , Am)]γ) =
1∫

[B]γ dx

∫
[B]γ

g(x)dx,

where B is the joint distribution of A1, . . . , Am and g(x) = g(x1, . . . , xm).

Definitions 3.4 and 3.5 are crucial for our theory. We always use the ’min’ op-
erator in the definition of the extension principle, but we define the central value
of g(A1, . . . , Am) throughout their joint possibility distribution, which is usually
given implicitly.
Now we define the expected value of g(A1, . . . , Am) as follows.

Definition 3.6. The expected value of g(A1, . . . , Am) with respect to a weighting
function f is defined by

Ef (g(A1, . . . , Am)) =
∫ 1

0
center([g(A1, . . . , Am)]γ)f(γ)dγ

=
∫ 1

0

1∫
[B]γ dx

∫
[B]γ

g(x)dxf(γ)dγ.

If g is single-variable function then Definitons 3.5 and 3.6 read

Definition 3.7. Let g : R→ R and let A ∈ F be a fuzzy number. Then the central
value of the γ-level set of g(A) is defined as

center([g(A)]γ) =
1∫

[A]γ dx

∫
[A]γ

g(x)dx,

and the expected value of g(A) with respect to a weighting function f is defined as

Ef (g(A)) =
∫ 1

0
center([g(A)]γ)f(γ)dγ =

∫ 1

0

1∫
[A]γ dx

∫
[A]γ

g(x)dxf(γ)dγ,

where g(A) is defined by the sup–min extension principle.

If g(x) = x then center([g(A)]γ) = center([A]γ) and Ef (g(A)) = Ef (A). In
particular, ifA = a is a real number then we have center([g(A)]γ) = Ef (g(A)) =
g(a), for all weighting function f .
In the following we prove that the central value operator is linear.

Theorem 3.1. Let A and B be fuzzy numbers. Then

center([A+B]γ) = center([A]γ) + center([B]γ),

holds for all γ ∈ [0, 1], where all central values are defined by the joint possibility
distribution ofA andB. IfA andB are independent then the central values of [A]γ

and [B]γ can be computed using the individual distributionsA andB, respectively.
Moreover, if A and B are independent we have

center([AB]γ) = center([A]γ) · center([B]γ),∀γ ∈ [0, 1].
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As a special case of this theorem we get that ifA ∈ F and λ ∈ R then center([λA]γ) =
λ× center([A]γ) holds for all γ ∈ [0, 1].
Now we are in the position to state the theorem about the linearity of the expected
value operator.

Theorem 3.2. The expected value operator is linear, that is

Ef (A+B) = Ef (A) + Ef (B) (2)

and
Ef (λA) = λEf (A)

hold for all fuzzy numbers A and B and real number λ. Moreover, if A and B
are independent then on the right-hand side of (2) the expected value operator is
defined by the marginal distributions A and B, respectively.

4 A measure of possibilistic dependency

In this Section we shall introduce a measure of possibilistic dependency through
joint possibility distributions.

Definition 4.1. Let A,B ∈ F be fuzzy numbers. Then we will introduce the fol-
lowing (dependency) relation between their γ-level sets

Rγ(A,B) = center([(A− center([A]γ))(B − center([B]γ))]γ), γ ∈ [0, 1].

Definition 4.2. The covariance of A and B with respect to weighting function f is
defined by

Covf (A,B) =
∫ 1

0
Rγ(A,B)f(γ)dγ. (3)

That is,

Covf (A,B) =
∫ 1

0
center([(A− center([A]γ))(B − center([B]γ))]γ)f(γ)dγ.

It can easily be seen that, Rγ(A,B) (as a function of their joint possibility distri-
bution C) can be written in the form

Rγ(A,B) =
1∫

[C]γ dxdy

∫
[C]γ

xydxdy −
1∫

[C]γ dx

∫
[C]γ

xdx×
1∫

[C]γ dy

∫
[C]γ

ydy.

(4)
Furthermore, the covariance of A and B can be computed as

Covf (A,B) =
∫ 1

0

[
center([AB]γ)− center([A]γ) · center([B]γ)

]
f(γ)dγ.

So, if A and B are independent then

Rγ(A,B) = center([AB]γ)− center([A]γ) · center([B]γ) = 0

for all γ ∈ [0, 1], which directly implies the following theorem:

Theorem 4.1. If A,B ∈ F are independent then Covf (A,B) = 0.
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5 Variance of possibility distributions

We introduce now the variance of fuzzy numbers using a similar reasoning as in
probablity theory.

Definition 5.1. LetA be a fuzzy number. Then, the self-relation between its γ-level
set is defined as

Rγ(A,A) = center([(A− center([A]γ))(A− center([A]γ))]γ), (5)

for all γ ∈ [0, 1].

Definition 5.2. The variance of A with respect to weighting function f is defined
as

Varf (A) =
∫ 1

0
Rγ(A,A)f(γ)dγ.

That is, Varf (A) = Covf (A,A), where, of course, the covariance defined through
the one-dimensional possibility distribution A.

It can easily be seen that,

Rγ(A,A) =
1∫

[A]γ dx

∫
[A]γ

x2dx−
(

1∫
[A]γ dx

∫
[A]γ

xdx

)2

. (6)

That is,

Rγ(A,A) =
1

a2(γ)− a1(γ)

∫ a2(γ)

a1(γ)
x2dx−

(
1

a2(γ)− a1(γ)

∫ a2(γ)

a1(γ)
xdx

)2

=
(a2(γ)− a1(γ))2

12
.

Summarizing these findings we get

Varf (A) =
∫ 1

0

(a2(γ)− a1(γ))2

12
f(γ)dγ.

We can see that Rγ(A,A) ≥ 0 holds for all γ ∈ [0, 1], therefore we can state the
following theorem.

Theorem 5.1. If A ∈ F then Varf (A) ≥ 0. Moreover, if f is strictly increasing
then Varf (A) = 0 implies that A is constant.

Remark 5.1. Let σA be the possibilistic variance of A introduced in [3] as

σA =
1
2

∫ 1

0
[a2(γ)− a1(γ)]2γdγ.

If f(γ) = 2γ, then we find

Varf (A) =
1
6

∫ 1

0
[a2(γ)− a1(γ)]2γdγ =

σA

3
.
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Considering expressions (4) and (6) and using the linearity of central and expected
value we have the following theorems.

Theorem 5.2. The relation operator is a symmetrical bilinear operator, that is,
the equations Rγ(A,B) = Rγ(B,A), Rγ(λA,B) = λRγ(A,B) and Rγ(A +
B,C) = Rγ(A,C) + Rγ(B,C) hold for all fuzzy numbers A, B, C and constant
λ ∈ R.

Theorem 5.3. The self-relation operator satifies the equations Rγ(A + B,A +
B) = Rγ(A,A) + Rγ(B,B) + 2Rγ(A,B) and Rγ(λA, λA) = λ2Rγ(A,A) for
all fuzzy numbers A, B and constant λ ∈ R.

Now we are in the position to derive the following theorems about the covariance
(and variance) of the weighted sum of possibility distributions. The following two
theorems show that the ’principle of central values’ leads us to the same relation-
ships in possibilitic environment as in probabilitic one. It is why we claim that the
principle of ’central values’ should play an important role in defining possibilistic
dependencies.

Theorem 5.4. Let A, B and C be fuzzy numbers, and let λ, µ ∈ R. Then

Covf (λA+ µB,C) = λCovf (A,C) + µCovf (B,C),

where all terms in this equation are defined through joint possibility distributions.

Theorem 5.5. Let A and B be fuzzy numbers, and let λ, µ ∈ R. Then

Varf (λA+ µB) = λ2Varf (A) + µ2Varf (B) + 2λµCovf (A,B).

and if A and B are independent then Var(A + B) = Var(A) + Var(B). That is
Var(A + B) can be computed using the marginal possibility distributions A and
B.

6 Illustrations

Let us consider fuzzy numbers A,B ∈ F with [A]γ = [a1(γ), a2(γ)] and [B]γ =
[b1(γ), b2(γ)]. We have learned that the ’maximal’ joint possibility distribution,
which can be defined by A and B is distinguished from the other ones, and in this
case A and B are independent from each other (see Figure 1).
Now, let A and B be fuzzy numbers, and let us consider their joint possibility
distribution C, defined by (see Figure 2)

[C]γ = {t(a1(γ), b1(γ)) + (1− t)(a2(γ), b2(γ)) : t ∈ [0, 1]}
First, we compute the covariance ofA andB with respect to C. Let γ be arbitrarily
fixed, and let a1 = a1(γ), a2 = a2(γ), b1 = b1(γ), b2 = b2(γ). Then the γ-level
set of C can be calculated as {c(y)|b1 ≤ y ≤ b2} where

c(y) =
b2 − y
b2 − b1

a1 +
y − b1
b2 − b1

a2 =
a2 − a1

b2 − b1
y +

a1b2 − a2b1

b2 − b1
.
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Figure 1: Independent possibility distributions.

Since all γ-level sets of C are degenerated, i.e. their integrals vanish, the following
formal calculations can be done

∫
[C]γ

dxdy =
∫ b2

b1

[x]c(y)c(y)dy

and ∫
[C]γ

xydxdy =
∫ b2

b1

y

[
x2

2

]c(y)
c(y)

dy,

which turns into

center([AB]γ) =
1∫

[C]γ dxdy

∫
[C]γ

xydxdy

=
1

b2 − b1

∫ b2

b1

yc(y)dy

=
(a2 − a1)(b2 − b1)

3
+
a1b2 + a2b1

2
.
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Figure 2: The joint possibility distribution C.

Hence, we have

Rγ(A,B) = center([AB]γ)− center([A]γ)center([B]γ)

=
(a2 − a1)(b2 − b1)

3
+
a1b2 + a2b1

2
−

(a1 + a2)(b1 + b2)
4

=
(a2 − a1)(b2 − b1)

12
, (7)

and, finally, the covariance of A and B with respect to their joint possibility distri-
bution C is

Covf (A,B) =
1
12

∫ 1

0
[a2(γ)− a1(γ)][b2(γ)− b1(γ)]f(γ)dγ.

Remark 6.1. Let Cov(A,B) denote the possibilistic covariance of A and B intro-
duced in [3] as

Cov(A,B) =
1
2

∫ 1

0
[a2(γ)− a1(γ)][b2(γ)− b1(γ)]γdγ.

If f(γ) = 2γ, then we find

Covf (A,B) =
1
6

∫ 1

0
[a2(γ)− a1(γ)][b2(γ)− b1(γ)]γdγ,
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and we have

Covf (A,B) =
Cov(A,B)

3
.

Now, let us consider a joint distribution D given by (see Figure 3)

Figure 3: The joint possibility distribution D.

[D]γ = {t(a1(γ), b2(γ)) + (1− t)(a2(γ), b1(γ)) : t ∈ [0, 1]}.
After similar calculations we get

center([AB]γ) = −
(a2 − a1)(b2 − b1)

3
+
a1b1 + a2b2

2
,

which implies that

Rγ(A,B) = center([AB]γ)−center([A]γ)center([B]γ) = −
(a2 − a1)(b2 − b1)

12
,

and we find

Covf (A,B) = −
1
12

∫ 1

0
[a2(γ)− a1(γ)][b2(γ)− b1(γ)]f(γ)dγ.

If f(γ) = 2γ, then we find

Covf (A,B) = −
Cov(A,B)

3
.
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This example clearly shows that the covariance between two possibility distribu-
tions can be negative, zero, or positive depending on the definition of their joint
possibility distribution.
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