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Abstract

In this paper we will introduce the expected value of functions of possihility dis-
tributions throughout their joint possibility distributions. We will show that the
expected value operator is linear and the covariance of weighted sums of possibil-
ity distributions can be computed in the same way as in probablity theory.

Keywords: Random variable; Joint probability distribution; Possibility distribu-
tion, Joint possibility distribution; Expected value; Covariance; Variance



1 Functionsof random variables

In probability theory, the dependency between two random variables can be char-
acterized through their joint probability density function. Namely, if X and Y are
two random variables with probability density functions fx (x) and fy (y), respec-
tively, then the density function, fx y (x,y), of their joint random variable (X, Y),
should satisfy the following properties

/ fxy(z,t)dt = fx(x), / fxy(t,y)dt = fy(y), 1
R R

for al x,y € R. Furthermore, fx(x) and fy (y) are caled the the marginal prob-
ability density functions of random variable (X,Y"). X and Y are said to be inde-
pendent if

fxy(z,y) = fx(@)fr(y),
holdsfor all x, y. The expected value of random variable X is defined as

E(X):/R:fo(ac)dw,

and if g isafunction of X then the expected value of ¢g(X') can be computed as
P(o(X)) = [ gfa)x (o)

Furthermore, if h isafunction of X and Y then the expected value of (X, Y") can
be computed as

BX.Y) = [ bla) oy )dady.
Especialy,
BOC+Y) = [ (o) oy (o)dady = [ o fy (o y)dady

i /R iy (s y)dady = /R x( /R fx,y(x7y>dy>dx
+/Ry(/RfX7y(a:,y)dx>dy—/Rﬂﬁfx(él?)dw

4 / ufy(w)dy = B(X) + E(Y),
R

that is, the the expected value of X and Y can be determined according to their
individua density functions (that are the marginal probability functions of random
variable (X,Y")). The key issue here is that the joint probability distribution van-
ishes (even if X and Y are not independent), because of the principle of 'falling
integrals (1).



Leta,b € R U {—o0,00} with a < b, then the probability that X takes its value
from [a, b] is computed by

b
P(X € [a,b]) :/ fx(x)dx.

The covariance between two random variables X and Y is defined as
Cov(X,Y) = E((X — E(X))(Y — E(Y))) = E(XY) — E(X)E(Y)

_ /R ey Sy, o)dady — /R ofx (w)da /R ufy ()dy,

andif X andY areindependent then Cov(X,Y) = 0,since E(XY) = E(X)E(Y).
The covariance operator isa symmetrical bilinear operator and it is easy to see that
Cov(A\, X)=0forany A € R.

The variance of random variable X is defined as the covariance between X and
itself, that is

Var(X) = E(X?) — (B(X))* = /Rwax(x)dx - </R w‘fx(x)dx>2-

For any random variables X and Y and real numbers A\, € R the following
relationship holds

Var(AX 4 pY) = AVar(X) 4 p*Var(Y) + 2AuCov(X,Y).

2 Joint possibility distributions

In this section we shall introduce possibilistic dependencies between possibility
distributions. A fuzzy set A in R is said to be a fuzzy number if it is normal,
fuzzy convex and has an upper semi-continuous membership function of bounded
support. The family of al fuzzy numbers will be denoted by F. A ~-level set of
afuzzy set AinR™ isdefined by [A]Y = {z € R™ : A(z) > v} if v > 0 and
[A]7 = cl{z € R™ : A(x) > ~} (the closure of the support of A) if v = 0.
If A € F isafuzzy number then [A]” is a convex and compact subset of R for
al v € [0,1]. Fuzzy numbers can be considered as possibility distributions. Let
a,b € RU {—o00,00} with a < b, then the possibility that A € F takes its value
from [a, b] is defined by [5]
Pos(A € [a,b]) = max A(x).
x€(a,b]
Definition 2.1. A fuzzy set B in R™ is said to be a joint possibility distribution of
fuzzy numbers A; € F,i=1,...,m, if it satisfies the relationship
max B(zy,...,xm) = Ai(x;), Ve, e Rii=1,...,m.
z;€ER, j#i
Furthermore, A; is called the i-th marginal possibility distribution of B, and the
projection of B onthei-thaxisis A; fori=1,...,m.



We emphasise here that the joint possibility distribution always uniquely defines
its marginal distributions (the shadow of B on the i-th axisis exactly A;), but not
vice versa. Let B denote a joint possibility distribution of A, A € F. Then B
should satisfy the relationships

max B(x1,y) = A1(x1), max B(y,z2) = As(x2), Vai,29 € R.
) Yy
The following theorem shows some important properties of joint possibility distri-
butions.

Theorem 2.1. Let A; € F, i = 1,...,m, and let B be their joint possibility
distribution. Then,

B(z1,. ., om) < min{Ay(21),..., An(rm)} and [B]Y C [A1]7 x - x [An]7,
hold for all z1,...,z, € Rand~y € [0, 1].

If m = 2 then Theorem 2.1 states that any ~-level set of [B]” should be contained
by the rectangle determined by the Cartesian product the ~v-level sets of marginal
distributions [A1]7 x [A2]”, and it should reach each side of that rectangle.

In the following the biggest (in the sense of subsethood of fuzzy sets) joint possi-
bility distribution will play a specia role among joint possibility distributions: it
defines the concept of independence of fuzzy numbers.

Definition 2.2. Fuzzy numbers A; € F,i = 1,...,m, are said to be independent
if their joint possibility distribution, B, is given by

B(xyi,...,zm) =min{Ai(z1),..., An(Tm)},

or, equivalently,
[B]Y = [A1]” x -+ x [An]7,

forall zy,...,z, € Rand~ € [0, 1].

It can easily be seen that constants are always independent from any fuzzy number.
In particular, they are independent from each other.

Remark 2.1. Marginal probability distributions are determined fromthe joint one
by the principle of 'falling integrals' and marginal possibility distributions are de-
termined fromthejoint possibility distribution by the principle of ' falling shadows'.

3 Expected value of functions of possibility distributions

Definition 3.1. Let A € F be a fuzzy number with [A]Y = [a1(7), a2(7)]. If [A]”
is non-degenerate, i.e. a1 (y) # az2(7y) then the central value of [A]” is defined by

1
center([A]7) = / zdz.
([4]") T @ Juap



The central value of [A]” is computed by

center([A]7) =

1 /“2(”’) a1(y) + az(7)

_— rdx = ,
az(y) — a1(v) Jai(y) 2

which remains valid in the limit case a2 () — a1(y) = 0 for some .
That is, the central value of a ~y level set [a1(7), az2(7y)] is Simple the arithmetic
mean of a1 () and az(7).

Definition 3.2. [2] A function f: [0,1] — R is said to be a weighting function
if f isnon-negative, monoton increasing and satisfies the following normalization
condition

1
/ f(y)dy=1.
0

Different weighting functions can give different (case-dependent) importances to
~-levels sets of fuzzy numbers.

Definition 3.3. The expected value of A with respect to a weighting function f is
defined as

1 1 1
By) = [ eemen(ar) syt = [ [ st

That is,

La a
Ef(A):/O 1(7)—; Q(V)f(y)d%

It should be noted that if f(v) = 2v, v € [0,1] then

Yai(v) + az(v) ! .
Bi(4) = [ BT i = [ () + aa()] v = M (4).
which isthe possibilistic mean value of A introduced by Fullér and Carlssonin[3].
Andif f(y) =1,~ € [0, 1] then we get

Ey(A) =

Lai(y) + az(v)
/0 ——dn.

2

which is the generative expectation of fuzzy numbers introduced by Chanas and
M. Nowakowski in ([1], page 47).

Definition 3.4. Let Ay, ..., A, € F befuzzy numbers, and let g: R™ — R bea
continuous function. Then g(A;, ..., A,,) isdefined by the extension principle [4]
asfollows

g(A1, ..., An)(y) = sup  min{A;(x1),..., An(zm)}-

9(@1,mm )=y



Definition 3.5. The central value of the y-level set of g( Ay, ..., A,,) isdefined by

1
center(lg(As,... An)]") = —— | gla)da,
Jigp dz Jipp

where B isthejoint distribution of A, ..., A, and g(z) = g(z1,...,Zm).

Definitions 3.4 and 3.5 are crucial for our theory. We aways use the 'min’ op-
erator in the definition of the extension principle, but we define the central value
of g(A44,...,Ay) throughout their joint possibility distribution, which is usualy
given implicitly.

Now we define the expected value of g( A, ..., A,,) asfollows.

Definition 3.6. The expected value of g(A4, ..., A,,) with respect to a weighting
function f is defined by

1
Ef(g(Ar,..., An) = /0 center([g(Ar, .., Am)]")F(7)dby

1 1
_ /0 Y /[BM g(@)da f(7)d.

If g issingle-variable function then Definitons 3.5 and 3.6 read

Definition 3.7. Let g: R — R and let A € F be a fuzzy number. Then the central
value of the y-level set of g(A) isdefined as

1
center(g(A)) = - [ gla)da,
Jiap v Jyap
and the expected value of g(A) with respect to a weighting function f is defined as
1 1 1
By(o()) = [ centen(lg(a sy = [ o [ gl@dofay
0 0 f[A]w T JA]

where g(A) is defined by the sup—min extension principle.

If g(xz) = a then center([g(A)]”) = center([A]") and E¢(g(A)) = E¢(A). In
particular, if A = a isareal number then we have center([g(A)]") = E;(g(A)) =
g(a), for al weighting function f.

In the following we prove that the central value operator islinear.

Theorem 3.1. Let A and B be fuzzy numbers. Then
center([A + B]7) = center([A]”) + center([B]7),

holdsfor all v € [0, 1], where all central values are defined by the joint possibility
distribution of A and B. If A and B are independent then the central values of [A]”
and [B]” can be computed using theindividual distributions A and B, respectively.
Moreover, if A and B are independent we have

center([AB]") = center([A]”) - center([B]),Vy € [0, 1].



Asaspecial caseof thistheoremweget that if A € Fand A € R thencenter([AA]Y) =
A x center([A]7) holdsfor al ~ € [0, 1].

Now we are in the position to state the theorem about the linearity of the expected
value operator.

Theorem 3.2. The expected value operator islinear, that is
Ef(A+ B) = Ef(A) + E;(B) 2

and

Er(AA) = AEf(A)
hold for all fuzzy numbers A and B and real number \. Moreover, if A and B
are independent then on the right-hand side of (2) the expected value operator is
defined by the marginal distributions A and B, respectively.

4 A measure of possibilistic dependency
In this Section we shall introduce a measure of possibilistic dependency through
joint possibility distributions.

Definition 4.1. Let A, B € F be fuzzy numbers. Then we will introduce the fol-
lowing (dependency) relation between their v-level sets

R, (A, B) = center([(A — center([A]7))(B — center([B]"))]7), v € [0,1].

Definition 4.2. The covariance of A and B with respect to weighting function f is
defined by

1
Covy(4.5) = [ R (A.B)1 () ®
That is,
1
Covs(A,B) = /0 center([(A — center([A]"))(B — center([B]7))]") f(v)d~.

It can easily be seen that, R (A, B) (as afunction of their joint possibility distri-
bution C') can be written in the form

1 1 1
R.,(A,B) = —/ rydxrdy — 4/ xdr X —/ ydy.
4

Furthermore, the covariance of A and B can be computed as
1
Covs(A,B) = / [center([AB]") — center([A]”) - center([B]")] f (v)d~.
0
So, if A and B are independent then
R, (A, B) = center([AB]") — center([A]”) - center([B]”) =0

foral v € [0, 1], which directly implies the following theorem:
Theorem 4.1. If A, B € F areindependent then Cov (A, B) = 0.



5 Varianceof possibility distributions

We introduce now the variance of fuzzy numbers using a similar reasoning as in
probablity theory.

Definition 5.1. Let A beafuzzy number. Then, the self-relation between its ~-level
set is defined as

R,(A, A) = center([(A — center([A]"))(A — center([A]7))]7), (5)
for all v € [0, 1].

Definition 5.2. The variance of A with respect to weighting function f is defined
as

1
Varf(A):/O R,(A,A)f(v)dy.

That is, Vary(A) = Cov(A, A), where, of course, the covariance defined through
the one-dimensional possibility distribution A.

It can easily be seen that,

1 1 2
R,(AA) = —/ z2de — <7/ xdw) . (6)
! Jiap 4z Jiap Jap 4z Jiap
Thatis,

R (A A) 1 /(12(7) 2d < 1 /az(’Y) p >2
, = — X €T — _— raxr
K az(y) — a1(v) Jai(y) az(y) — a1(v) Ja, (v

~(a2(y) —a1())?
= B .
Summarizing these findings we get

1(q —a 2
Varf(A):/O (a2(v) _ 1(7) ).

We can see that R (A, A) > 0 holdsfor all v € [0, 1], therefore we can state the
following theorem.

Theorem 5.1. If A € F then Var;(A) > 0. Moreover, if f isstrictly increasing
then Var(A) = 0 impliesthat A is constant.

Remark 5.1. Let o4 bethe possibilistic variance of A introduced in [3] as

1
oA = % /0 [a2(y) — a1(7)]*vdyy.
If f(v) = 27, then wefind
1 o
Vary(4) = ¢ [ laan) - ()P = 5



Considering expressions (4) and (6) and using the linearity of central and expected
value we have the following theorems.

Theorem 5.2. The relation operator is a symmetrical bilinear operator, that is,
the equations R (A, B) = Ry(B,A), R,(AA,B) = AR,(A,B) and R, (A +
B,C) = R,(A,C)+ R,(B,C) hold for all fuzzy numbers A, B, C and constant
AeR.

Theorem 5.3. The self-relation operator satifies the equations R (A + B, A +
B) = R,(A,A) + R,(B,B) + 2R,(A, B) and R, (A, A) = A\2R, (A, A) for
all fuzzy numbers A, B and constant A € R.

Now we are in the position to derive the following theorems about the covariance
(and variance) of the weighted sum of possibility distributions. The following two
theorems show that the 'principle of central values' leads us to the same relation-
shipsin possihilitic environment asin probabilitic one. It iswhy we claim that the
principle of *central values' should play an important role in defining possibilistic
dependencies.

Theorem 5.4. Let A, B and C' be fuzzy numbers, and let A, 1 € R. Then
Covf(AA+ uB,C) = ACov(A,C) + uCovys(B,C),
where all termsin this equation are defined through joint possibility distributions.
Theorem 5.5. Let A and B be fuzzy numbers, and let A\, » € R. Then
Var p(AA + uB) = A\*Var;(A) + p*Var(B) + 2AuCov (A, B).

and if A and B are independent then Var(A + B) = Var(A) + Var(B). That is
Var(A + B) can be computed using the marginal possibility distributions A and
B.

6 Illustrations

Let us consider fuzzy numbers A, B € F with [A]” = [a;1(7), az2()] and [B]? =
[b1(7), b2(7y)]. We have learned that the 'maximal’ joint possibility distribution,
which can be defined by A and B is distinguished from the other ones, and in this
case A and B are independent from each other (see Figure 1).

Now, let A and B be fuzzy numbers, and let us consider their joint possibility
distribution C, defined by (see Figure 2)

[C] = {t(a1(7),b1(7)) + (1 = t)(az(7),b2(7)) : ¢ € [0, 1]}
First, we compute the covariance of A and B with respect to C'. Let v be arbitrarily
fixed, and let a; = a1(y), a2 = a2(7),b1 = bi(y),ba = ba(7y). Then the y-level
set of C' can be calculated as {c(y)|b1 < y < ba} where
_ba—y y—b ag — a1 aiby —asbh

() = b2_bla1+b2_b1a2_ b2—b1y+ by — by

8



Figure 1: Independent possibility distributions.

Sinceall v-level setsof C' are degenerated, i.e. their integrals vanish, the following
formal calculations can be done

b
dxdy = / )W) dy
/[C]“Y b1 [ ]C(y)

and

bo $2 c(y)
/ rydrdy = / Y= dy,
[c) by 2

which turnsinto

1
center([AB]") = m/[c]v xydzxdy
[cp

1 b2
= c(y)d
b2_b1/bl ye(y)dy

(ag —a1)(ba —b1) arby + azby
3 + 2 ’




Figure 2: Thejoint possibility distribution C.

Hence, we have

R,(A,B) = center([AB]7) — center([A]”)center([B]7)
(ag —a1)(bay — b1) n arba +a2br (a1 + a2)(b1 + b2)

3 2 4
(az —a1) (b2 — b1)

- 2 ™

and, finally, the covariance of A and B with respect to their joint possibility distri-
bution C'is

1

1
Covy(4.B) = 15 [ [a2() =1 ()]oa2) — ()} ().

Remark 6.1. Let Cov(A, B) denote the possibilistic covariance of A and B intro-
ducedin[3] as

1 1
Cov(d, B) = 5 [ aa2) = an()a(a) ~ ()

If () = 2, then we find

1 1
Covs(4,8) = 5 [ laa() — s (lbar) = (et

10



and we have
Cov(A, B)
Covs(A,B) = —

Now, let us consider ajoint distribution D given by (see Figure 3)

Figure 3: Thejoint possibility distribution D.

(DI = {t(a1(7), b2(7)) + (1 = £)(a2(v), b1 (7)) : t € 0,1]}.
After similar calculations we get

(ag —a1)(by — by) n a1by + azbo

center([AB]7) = — 3 5 ,

which implies that

R, (A, B) = center([AB]"”)—center([A]”)center([B]”) = —

and wefind

1
Cors(4.B) = ~5 [ a(2) — a(0)tar) ~ )l

If f(v) = 2y, thenwefind

Cov(A, B
Cov;(A, B) = —%.

11



This example clearly shows that the covariance between two possibility distribu-
tions can be negative, zero, or positive depending on the definition of their joint
possibility distribution.
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