# **On constrained OWA aggregations**

### **Christer Carlsson**

Institute for Advanced Management Systems Research, Åbo Akademi University, Lemminkäinengatan 14C, Åbo, Finland e-mail:christer.carlsson@abo.fi

### **Robert Fullér**

Department of Operations Research Eötvös Loránd University Pázmány Péter sétány 1C, H-1117 Budapest, Hungary e-mail: rfuller@cs.elte.hu and Institute for Advanced Management Systems Research Åbo Akademi University, Lemminkäinengatan 14C, Åbo, Finland e-mail: rfuller@mail.abo.fi

## Péter Majlender

Turku Centre for Computer Sceince Institute for Advanced Management Systems Research Åbo Akademi University, Lemminkäinengatan 14C, Åbo, Finland e-mail: peter.majlender@mail.abo.fi



Turku Centre for Computer Science TUCS Technical Report No 478 October 2002 ISBN 952-12-1055-9 ISSN 1239-1891

#### Abstract

Yager considered the problem of maximizing an OWA aggregation of a group of variables that are interrelated and constrained by a collection of linear inequalities and he showed how this problem can be modeled as an integer linear programming problem. In this short communication we show a simple algorithm for exact computation of optimal solutions to constrained OWA aggregation problems with a single constraint on the sum of all decision variables.

Keywords: OWA operators, Constrained optimization

#### **1** Constrained OWA aggregations

An Ordered Weighted Averaging (OWA) is a mapping  $F \colon \mathbb{R}^n \to \mathbb{R}$  that has an associated weighting vector  $w = (w_1, \ldots, w_n)^T$  of having the properties  $w_1 + \cdots + w_n = 1, 0 \le w_i \le 1, i = 1, \ldots, n$ , and such that

$$F(x_1,\ldots,x_n)=\sum_{i=1}^n w_i y_i,$$

where  $y_j$  is the *j*th largest element of the bag  $\{x_1, \ldots, x_n\}$ .

The constrained OWA aggregation problem [1] can be expressed as the following mathematical programming problem

max 
$$F(x_1,\ldots,x_n)$$
; subject to  $\{Ax \leq b, x \geq 0\}$ ,

where  $F(x_1, \ldots, x_n) = w^T y = w_1 y_1 + \cdots + w_n y_n$  and  $y_j$  denotes the *j*th largest element of the bag  $\{x_1, \ldots, x_n\}$ .

In this paper we shall show a simple algorithm for solving the following constrained OWA aggregation problem

$$\max w^T y; \text{ subject to } \{x_1 + \dots + x_n \le 1, x \ge 0\},$$
(1)

which is an *n*-dimensional extension of the 3-dimensional problem analyzed by Yager in [1].

First using the relations  $y_1 \ge y_2 \ge \cdots \ge y_n \ge 0$ , we rewrite (1) in the form

$$\max w^T y; \text{ subject to } \hat{G}y \le q, \tag{2}$$

where

$$\hat{G} = \left[ \begin{array}{c} e^T \\ G \end{array} \right],$$

and  $q = (1, 0, 0, ..., 0)^T \in \mathbb{R}^{n+1}$ ,  $e = (1, 1, ..., 1)^T \in \mathbb{R}^n$ , and  $G = (g_{ij})$  with  $g_{ij} = 1$  if i = j - 1,  $g_{ij} = -1$  if i = j, and  $g_{ij} = 0$  otherwise, for i, j = 1, ..., n.

We note here that the condition  $y \ge 0$  is implicitly included in problem (2). The dual problem of (2) can be formulated as

$$\min q^T \hat{z}; \text{ subject to } \{\hat{z}^T \hat{G} = w^T, \hat{z} \ge 0\},$$
(3)

where  $\hat{z} = [t, z_1, \dots, z_n]^T \in \mathbb{R}^{n+1}$  and  $t \in \mathbb{R}$  is a real number. It is easy to see that problem (3) can be written as

min t; subject to 
$$\{t - z_1 = w_1, t - z_2 + z_1 = w_2, \dots, t - z_n + z_{n-1} = w_n\},$$
(4)

where  $t \ge 0$  and  $z \ge 0$ . Summing up the first k conditions of (4) for k = 1, ..., n, we get  $kt - z_k = w_1 + \cdots + w_k$ , that is,

$$t = \frac{w_1 + \dots + w_k}{k} + \frac{z_k}{k}, \ k = 1, \dots, n.$$
 (5)

So problem (3) is equivalent to the problem

min t; subject to 
$$\left\{t = \frac{w_1 + \dots + w_k}{k} + \frac{z_k}{k}, k = 1, \dots, n\right\},$$
 (6)

where  $z_1, \ldots, z_n \ge 0$ . From  $z_k/k \ge 0$  it follows that any solution,  $t^*$ , to problem (6) should satisfy the inequality,

$$t^* \ge \max_{k=1,2,\dots,n} \frac{w_1 + \dots + w_k}{k}.$$

Introducing the notations

$$z_j^* = j \times \max_{k=1,2,\dots,n} \frac{w_1 + \dots + w_k}{k} - (w_1 + \dots + w_j), \ j = 1,\dots,n.$$

we find that  $z_j^* \ge 0$  for  $j = 1, \ldots, n$  and, furthermore,

$$t^{*} = \frac{w_{1} + \dots + w_{j}}{j} + \frac{z_{j}^{*}}{j} = \max_{k=1,2,\dots,n} \frac{w_{1} + \dots + w_{k}}{k} = \max\left\{w_{1}, \frac{w_{1} + w_{2}}{2}, \dots, \frac{w_{1} + \dots + w_{n}}{n}\right\}, \ j = 1, \dots, n.$$
(7)

Therefore,  $\hat{z}^* = [t^*, z_1^*, \dots, z_n^*]$  is an optimal solution to problem (3). Let us introduce the notations

$$y^{k} = (\overbrace{1/k}^{1-\text{st}}, \ldots, \overbrace{1/k}^{k-\text{th}}, 0, \ldots, 0)^{T} \in \mathbb{R}^{n}, \ k = 1, \ldots, n.$$
 (8)

It can easily be checked that each  $y^k$  satisfy all conditions of problem (2). Using the duality theorem we have

$$\max_{k=1,\dots,n} \frac{w_1 + \dots + w_k}{k} = \max_{k=1,\dots,n} w^T y^k \le \max\{w^T y | \hat{G}y \le q\} \le \min\{q^T \hat{z} | \hat{z}^T \hat{G} = w^T, \hat{z} \ge 0\} = \max_{k=1,\dots,n} \frac{w_1 + \dots + w_k}{k},$$

which means that any optimal solution to problem (2) should belong to the set  $\{y^1, \ldots, y^n\}$ .

**Summary 1.1.** *To find an optimal solution to (2) we should proceed as follows: select the maximal element of the set* 

$$\max\left\{w_1, \frac{w_1 + w_2}{2}, \dots, \frac{w_1 + \dots + w_n}{n}\right\},\$$

and then choose the corresponding element from (8).

#### 2 Illustration

As an example, consider the following 4-dimensional constrained OWA aggregation problem

$$\max F(x_1, x_2, x_3, x_4); \text{ subject to } \{x_1 + x_2 + x_3 + x_4 \le 1, x \ge 0\}.$$
(9)

Then the set of all conceivable optimal values is constructed as

$$H = \left\{ w_1, \frac{w_1 + w_2}{2}, \frac{w_1 + w_2 + w_3}{3}, \frac{w_1 + w_2 + w_3 + w_4}{4} \right\}$$

and, the correspending optimal solutions are

- 1. If max  $H = w_1$  then an optimal solution to problem (9) will be  $x_1^* = 1, x_2^* = x_3^* = x_4^* = 0$  with  $F(x^*) = w_1$ .
- 2. If  $\max H = (w_1 + w_2)/2$  an optimal solution to problem (9) will be  $x_1^* = x_2^* = 1/2, x_3^* = x_4^* = 0$  with  $F(x^*) = (w_1 + w_2)/2$ .
- 3. If max  $H = (w_1 + w_2 + w_3)/3$  an optimal solution to problem (9) will be  $x_1^* = x_2^* = x_3^* = 1/3, x_4^* = 0$  with  $F(x^*) = (w_1 + w_2 + w_3)/3$ .
- 4. If  $\max H = (w_1 + w_2 + w_3 + w_4)/4$  an optimal solution to problem (9) will be  $x_1^* = x_2^* = x_3^* = x_4^* = 1/4$  with  $F(x^*) = (w_1 + w_2 + w_3 + w_4)/4$ .

**Remark 2.1.** From the commutativity of OWA operators it follows that all permutations of the coordinates of an optimal solution are also optimal solutions to constrained OWA aggregation problems.

#### References

[1] R. R. Yager, Constrained OWA aggregation, *Fuzzy Sets and Systems*, 81(1996) 89-101.

Turku Centre for Computer Science Lemminkäisenkatu 14 FIN-20520 Turku Finland

http://www.tucs.fi



- University of Turku

  Department of Information Technology
  Department of Mathematics



- Åbo Akademi University
  Department of Computer Science
  Institute for Advanced Management Systems Research



Turku School of Economics and Business Administration • Institute of Information Systems Science