

A CONTINUOUSLY
PROCESSED BUSINESS GAME
CONSTRUCTION FOR
BUSINESS PROCESS
TRAINING

Timo Lainema
Turku School of Economics and Business Admninistration,
Department of Information Systems Science,
Lemminkäisenkatu 14, FIN-20520 Turku, Finland

Turku Centre for Computer Science
TUCS Technical Report No 499
April 2003
ISBN 952-12-1101-6
ISSN 1239-1891

Abstract

This report represents some features of a computer-based learning tool
(REALGAME) constructed as a licentiate thesis for the Turku Centre for
Computer Science (TUCS) and Turku School of Economics and Business
Administration (TSEBA) during 1997-2000. In this document we will
concentrate on describing (a) the game development environment and game
structure, (b) the business processes in the game, and (c) the configurability
of the game. Game processes will be represented according to four principal
types of economic utility, which add value to a product. The main result of
this study is that continuous processing and the learning tool business
environment configuration are technically feasible possibilities, although
hardly at all applied in practice before this construction.

Keywords: Business games, Real-time processing, Continuous gaming,
Business process training, Configurable learning environments.

TUCS

1. Introduction

This research report is – as the name of the publication series suggests – mainly a
technical representation of a business decision-making learning environment. The
argumentation supporting the construction of the learning environment has been
documented elsewhere (e.g. Lainema, 1999a, 1999b; 2000, 2001, 2003b; Lainema and
Makkonen, 2003; Lainema and Nurmi, 2003) and we are not going to go through this
quite well documented discussion any more. However, it is worth mentioning the
research hypothesis underlying this report (based on the research hypothesis in the
author’s licentiate thesis; Lainema, 2000):

An interactive (real-time/continuously processed) business game describes the
interactive nature of the present business environment and sudden shifts in it, and
how processes unfold in a company’s internal and external environment. This
verisimilitude (real-world likeness) of the processing method of the learning tool
creates an authentic and meaningful environment enhancing participant business
perception through game playing.

In the new business game construction real-time/continuous processing has been the
major guiding principle. This continuous nature of the learning tool is a relatively novel
concept in the field of business gaming (see Lainema and Makkonen, 2003, for more
information). Another construction principle represented in this report is the
configurability of the learning tool. This is a property that is seldom effectively
implemented in business games. The argumentation for the configurability of a learning
environment and learning outcomes from it are presented in Lainema and Nurmi (2003).

What we are trying to achieve through the constructive research reported here is a
holistic business game construction describing the main processes of a manufacturing
company. Manufacturing in this context is not a central function in itself; we are only
drawing a distinction between manufacturing organizations and service-oriented
organizations.

As the changes in the business environment are extensive, it must mean some new
demands for business training, too. Obviously the demand to understand the overall
business process structure is becoming increasingly important. The workers in any
business face changes in the world around them at a growing speed. This means also
that the employees must be able to change their way of thinking and working more
often than before. The general knowledge of how a company works helps the worker to
adopt new behavior. Again, this is argued more deeply in the author’s forthcoming
doctoral dissertation and no more space will be used to argue this.

Lane (1992) states that it is hard for people to imagine the consequences of an action
after it has worked through a very complex system, but this process of understanding
can be helped with the use of models:

As humans create a world of increasingly complex systems, it becomes more
important that we be able to formulate views on their operation which are coherent
(and holistic). A tool which allows a client to grapple with some of his/her ideas can
lead, for example, to the discovery that goals which seemed reasonable when only

 1

part of the system was viewed are seen as inconsistent or impossible in the context of
the whole system. Another benefit comes when a model reveals how a high-level
result, opinion or consequence has been built up by small components. It is
particularly interesting and useful to take two opposing positions and look at their
component assumptions to isolate the exact point of disagreement. This is an
excellent process for beginning to resolve such conflicts of opinion.

In general, what Lane describes above is something that the construction of this
document is aiming at also. However, in this document the main emphasis is on the
description of the following:
(a) The game development environment and game structure,
(b) The business processes in the game, and
(c) Configurability of the game.

When describing the business processes of the construction we apply the four principal
types of economic utility, which add value to a product (or service). The classification
we are using is introduced in Coyle et al. (1996). The principal types of economic utility
are: form, time, place, and possession. Generally, manufacturing activities provide form
utility, logistics activities time and place utility, and marketing activities possession
utility.

Before proceeding, we will introduce the context of use of the gaming environment.
The essential idea of the game is to position the participants in a role where they have to
manage a manufacturing business. This is should be done in a profitable manner to keep
the company alive. The companies are in continuous information exchange with their
customers, suppliers, and indirectly with their competitors. The game company
represents a total enterprise model of a manufacturing company in which decisions from
one functional area interact with those made in other areas of the company. The game
can be both industry specific and generic, depending on whether the game model is
configured/tailored for the case organization.

The intended audience of the game varies. The game is suitable for participants from
middle management position to foremen of production, and to business students. As the
game clock speed and game complexity are variable, these parameters can be adjusted
according to the audience. The participants adopt roles of decision-makers. They have
to make decisions on production, supplies, sales, marketing, investments, transport, and
so on. This report includes screen copies which further clarify the managerial role of the
participants. The goals of the game can be varied, depending on the aims of the training.
These may include efficient production, profitability, optimizing inventories,
maintaining economical self-sufficiency, and so on.

As the game is complex, running a game training requires at least eight hours.
Preferably the game session should last one and a half or two days to obtain all the
benefits of the game. The required time depends of course on the selected complexity of
the game model and the speed of the game clock.
The participants, after having learned the rules of the game, are mostly free to manage their
companies. Thus, the facilitator intervenes only if the participants wish to have additional
guidance.

 2

2. WHAT IS CONTINUOUS SIMULATION?

We argue that for the present business environment to be described more realistically,
the influence and importance of time should be embedded in the business game to
reflect the cause-relationships in the business environment. Besides of this, the new
business game construction (REALGAME) described in this paper includes a holistic view
of business (all major business functions and stakeholders), and represents this for the
game participants. Furthermore, the construction includes the ability to configure the
business game according to different business environments.

The time argument means that the connection between players, supply market,
customers and capital market needs to be interactively processed. The role of time in
simulating time-bound business processes and decision-making is essential, as well as
the communication between the companies and different stakeholders. What is
suggested here is a real-time or continuously processed business game. Decision-
making, and results from the decisions made, should occur in an interactive on-line
mode, as they do in the real-world environment. In a continuously processed business
game different business events and processes take place continuously and concurrently,
and often at a varying frequency. The participants steering the company view all the
market events and internal processes on-line. Whatever happens can be seen without a
delay and action can take place instantly - providing the participants realize the need to
do so. Thus, the game emulates the real world processes of business environments with
the major exception that the internal simulation time is accelerated compared to the real
world. In managing this kind of environment, the participants’ ability to perceive
processes and causal dependencies is essential.

The on-line processed game (REALGAME) was developed at the Turku Centre for
Computer Science and Turku School of Economics and Business Administration
(TSEBA) during 1997-2000. When writing this document, the new game construction
has been used some 30 times on different teaching occasions, in company in-house
training session, on MBA courses and on courses for undergraduate university students.

In REALGAME there are 6-8 companies competing against each other, with the market
suppliers and funding organizations being common to all the companies (teams of
participants). This game has been programmed with a Rapid Application Development
(RAD) tool (Delphi) in Windows environment. Delphi enables the use of databases and
supports user-defined inherited objects. Both of these resources are seen as essential for
the creation of REALGAME. Databases are needed in order to record all the detailed
business transactions taking place during the game run. The transaction specific
representation mode of REALGAME is characteristic of it and this specificity can be seen
in all of the processes of the game. Like the use of databases, the object-oriented
development environment has been a major requirement for the work to be successful.
Without the object oriented development environment it would have been considerably
more difficult to construct a truly configurable business game. This document will later
give some examples of the game configurability possibilities.

According to the terms introduced by Thavikulwat (1996), REALGAME is scaled
flexibly (participants can select when to print reports), synchronized (all game
participants are bound to the same period lengths), and clock-driven (the game time
advances in concert with the computer’s internal clock). Furthermore, REALGAME is

 3

interactive in both the respects Chiesl (1990) mentions (first, continuous interaction
between the game and the players; secondly, players interact with other participants). In
continuous game processing the functions are executed in a continuous and iterative
manner. Different steps can be enacted simultaneously or separately. Different iterative
decision loops may occur at the same pace or at a different pace. It may be impossible
for the decision-maker to decide beforehand what actions to take at particular moments.
The process is never ending, with any easing off in decision-making resulting almost
certainly in trouble. Furthermore, the participants are part of the game processes. This
means that they see the changes in their environment evolve on-line. We feel that this is
a major difference if we compare continuous processing to batch-processing: the
participants are an organic part of the business processes and are able to witness and see
them, and – most of all - are able to interact continuously with this process. As
Huckfeldt et al. (1982) have noted, the models employed should not be judged on the
extent to which they replicate a social process, but rather on the extent to which they
help us understand a social process. Continuous processing makes the learning
environment business processes transparent and according to constructivist learning
principles (see e.g. Lainema, 2003a) this is useful from the learning point of view.

The impact of time in real-time and batch-processed business game decision-making
in some business operations and processes is described in table 1. The examples in the
table illustrate just some of the differences between batch-processed games and real-
time processed games.

Operation /
Process

Batch-processing Real-time processing

Reacting to
opportunities or
threats in the
market

The speed at which the participants react to
opportunities does not have a realistic
significance, because all the companies
deliver their decisions (or at least their
decisions are processed) at the same
moment. The fastest decision-maker does
not benefit from fast decision-making. E.g.
no company has any advantage of adapting
early to customer needs.

The true nature of decision
speed is represented,
because a faster decision
maker always responds first
to any external events. For
example, the company that
fastest adapts to changing
customer needs can gain
new market share.

Response to
misleading
production plans

A misleading production plan cannot be
straightened until the decisions for the next
season are being made.

A misleading production
plan can be straightened as
soon as it is discovered.

The advantage of
faster product
development

In some cases the speed of the product
development process does not have any
significance. E.g. consider two companies
(A and B) developing similar novel
products. Company A develops the new
product during the season in half of the
duration of the season. Company B
develops the new product during the
season but it takes the whole length of the
season. In this case company A has
minimal - or no - advantage of being faster
in the development process.

The company being faster in
development processes earns
all the benefit it deserves
from being faster. E.g. it can
benefit from being the only
provider of the novel
product by demanding
higher prices.

Table 1: Some examples of differences on how the participant decision-making may
be treated differently between real-time and batch-processed business
simulation games.

 4

Actually, REALGAME does not operate in true real-time processing. True real-time
processing would mean that each and every independent game object (e.g., a customer
or a supplier) would have its own internal Timer object, which would activate
independently of everything else in the game, and process all object specific tasks and
processes. Very early in the development of the game, this kind of true real-time
processing was tested but proved to be impossible to use. This was due to the Windows
operating system, which allows only a limited number of active Timer objects to be
used at a time. True real-time would have needed hundreds or even thousands of game
internal Timer objects and this is not at all realizable in a Windows environment, as the
operating system’s resources run out with no more than some tens of timer objects.
However, the processing is continuous in the sense that:
(a) the game time is clock-driven - the smallest increment of time being one hour,
(b) the participants are not tied to making decisions at specified points of time but can

make them whenever they choose,
(c) the decisions made at each point of time can be single decisions or several

decisions but no decision batches are required,
(d) the participants may choose to run reports at any point of time, and
(e) the participants see the internal and external business processes evolving, e.g.

hour by hour, depending on the game parameters (explained below).

The clock speed in REALGAME varies in three phases. The first phase is usually the slowest
one and the third phase the fastest, although the speed is not fixed in any of the phases. In
the beginning of the game the duration of one REALGAME hour might be, for example, 30
real world seconds. In the second phase, the game might proceed with the speed of 15 real
world seconds equaling one game hour, and in the third phase one real world second might
equal one REALGAME hour. These different processing speeds are parameters of the game,
and may vary between different game sessions.

 5

3. REALGAME CONSTRUCTION

3.1 Construction Development Environment

The rest of this document describes the new business game construction programmed as
the main contribution of the author’s licentiate thesis (Lainema, 2000). The
documentation of the game construction in this report is mainly descriptive. The
technical documentation is not included in this report. The main purpose of this
descriptive approach is to introduce the nature of real-time/continuous processing to the
reader.

The game applications were developed in the Windows environment. Selecting
Windows as the platform ensured that it would be possible to implement the game to
the computers of any company, thus allowing in-house business game training in
companies. In the beginning of the project the operating system in use was Windows
3.1 but very early in the project the 32 bit Windows environment had to be selected
because of resource demands. In future it is possible to transfer the game also to the
Linux environment with the Delphi Linux version (Kylix).

Both the company application and the market application of the game are Windows
based applications programmed with Delphi. Delphi was selected as the researcher had
previously carried out programming projects with Delphi. The programming task was
started with Delphi version 1. After that, the Delphi versions used were upgraded to
version 2 and 4. At the moment, as companies have upgraded their systems to Windows
2000 or XP, REALGAME has been upgraded to Delphi 6.

Afterwards it can be concluded that the selection of Delphi as the development tool
was successful because:
- Delphi allows rapid application development (RAD). This means that Delphi’s

programming environment and the language itself provide properties and tools
which significantly speed up the application development work compared to
traditional third generation programming languages.

- Delphi includes easy-to-use embedded support to the use of databases. Databases
are the only data storage method of the new business game construction.

- Delphi allows user defined objects. Furthermore, it was the only RAD tool at the
time of the start of the project to allow the user to develop their own objects
through inheritance from standard source objects.

- Delphi compiles true executable code (EXE code), which can be run from the
Windows operating system without the need of a code interpreter.

REALGAME is not client/server based. The main reason for this is the light installation
process of Delphi Standard in any computer class. Delphi C/S demands a much more
complicated installation process than Delphi Standard. The ease of the installation
process is an important aspect as the training is usually carried out on the premises of
the organization whose employees are to be trained. This advantage from the light
installation process has become very evident, as the game has now been installed in
more than 10 different computer classes in Southern Finland. Normally the game

 6

installation process takes less than one hour and no microcomputer expertise support is
needed.

By using simple file copying routines the network usage of the game has proven to
be relatively reliable: short or even longer network failures do not cause any errors in
the game execution. Simple file copying makes it also possible to run the game
applications in environments with fewer resources than would be needed with the use of
client/server technology.

3.2 Game General Structure

REALGAME as an Information System

Any information system can be thought of as comprising an infrastructure and the
systems which make use of that infrastructure (Land, 1992). In REALGAME the
infrastructure consists of the following artifacts (following Land’s classification):
- The organizational structure: game participants under the guidance of the game

supervisor.
- Communication channels: computer applications using network data

interchange.
- Facilities: TCP/IP computer network, market server computer, plus the technical

network components.
- Apparatus: the workstation computers running each of the participating company

decision-making applications.
- Software tools: both the company decision-making and the market server

application, the database engine supporting both of these applications, and the
Windows operating system.

- Training, advisory and help facilities provided to support the information
systems activities of the user community: the game supervisor operating the
market application, training/guiding the participants and conducting the briefing
and de-briefing of the game session.

Land (1992) states that most information systems have three major information sources:
(a) the real world itself, (b) the designed information system – an artifact, and (c) an
informal information system. REALGAME is not a typical information system in that
sense that it does not directly include the real world itself as a major information
source. The designed information system may be configured according to a real world
organization but during the game session the participants can access the real world only
through the informal information system, that is, through the knowledge of the other
participants about the real world. This situation refers to the factor of the range of
channels used for conveying messages or signals to the user (one of four generic factors
Land mentions).

As Land (1992) notes, in practice most information users operate as a part of one or
more groups. These groups may work in a cooperative manner, sharing information in
order to carry out tasks or solve problems. This is also the case with REALGAME.
However, REALGAME is not a group decision support system in that sense that it does
not have specific characteristics to support the work of a group. In other words, the
game can be used by a single user as well as by a group of users, although the

 7

educational situation is expected to be more fruitful for a group of decision-makers
discussing different decision alternatives.

Land (1992) argues that an information system is a social system, which has
information technology embedded in it. This can be also said about REALGAME. On the
other hand it could also be argued that REALGAME is firstly information technology and
then the social system has been gathered around it. However, the training session is
firstly and definitely a social system and it must also be borne in mind that learning
through gaming is partly or even strongly a social process. Land expresses that the
designers of the formal part of a system have to be aware of the contribution made by
the other half, and seek to provide links which enable the information user to make the
most effective use of all components of the information system.

Land (1992) furthermore notes that even the most rigidly defined systems will be
used by its users in ways which were neither planned for nor anticipated by its
designers. In the case of REALGAME the more ways the users find to exploit the game
system the better. The participants are encouraged to interpret and collect the extensive
available data in ways that best serve their decision-making needs. In fact, this kind of
process of creating one's own procedures to interpret game organization data to receive
a holistic picture of the organization and its environment is highly recommended.

REALGAME Technical Architecture

The game works in a TCP/IP network environment (figure 1). A critical area for the
cooperation of the game applications is the transfer of data between the market
application (MAP) and the company decision-making applications (CAP). As CAPs are
continuously in connection to the MAP (and visa versa) the local computer network has
to operate reliably.

Market server

TCP/IP Network

Companies 1..N

Figure 1: The game construction’s general network structure.

The amount of companies in the game is not restricted by the game application itself.
However, the maximum amount of simultaneously competing companies in the game
event depends on the resources of the hardware environment and the Windows
operating system in use. A standard Windows NT workstation allows a maximum of 10
workstations to be mapped simultaneously to it. Thus, using a Windows NT workstation

 8

as a market server computer, there can be the maximum of 10 competing companies in
one game. In practice we have allowed a maximum of 8 participating companies as
Windows file sharing has proven to be somewhat unpredictable.

In the present version of the game the most restricting component for the game
configuration is the speed of the MAP computer and its ability to handle the locking and
releasing of the Market database alias subdirectories (figure 2, subdirectories 1...X...N).
How well locking and releasing is handled depends on the Market server computer’s
processor clock speed and the type of Market server operating system. The network
usage of the game construction requires at least a Windows NT operating system for the
server, the clients can be Windows 97 workstations.

As client/server technology in data processing is not used, the different game
applications can not access the same computer directories simultaneously. Thus, data
processing has not been centralized but each application component of the game
processes its own data locally. Local processing demands continuous data transfer
between the MAP and CAPs. The data transfer from the market server computer to the
company computers goes as follows:
- the market application processes the market events and transactions of one

processing cycle and saves this data to the databases in the Market database alias
(directory)

- the MAP locks each company specific Market alias subdirectory to be used
exclusively, thus preventing CAPs from accessing the tables while it is accessing
the subdirectories

- the MAP copies the databases needed in CAPs from the Market database alias
directory to the company specific subdirectories

- the Market application releases the locks on the company specific Market alias
subdirectories, thus allowing CAPs to access these subdirectories

- CAPs access the company specific Market alias subdirectories and copy the
databases to their own Local database alias directories.

The data transfer from the companies to the market application goes as described above
with the only exceptions that data is transferred to the opposite direction and the locking
is done by the company application.

Company X computer Market computer

Company application (CAP) Market application (MAP)

MARKET database aliasLOCAL database alias

1 X N... ...

Network

Figure 2: The game construction’s general data transfer structure.

 9

3.3 Description of the Game Processes

3.3.1 The Management of the Game Internal Time

The MAP controls the advancing of the game internal time. The MAP uses the time
specific configuration the game administrator has defined in the CLOCK database table.
The CLOCK table is also copied during each MAP processing cycle to CAPs to be used
to guide the time handling in CAPs and to ensure that CAPs advance in the same phase
as the MAP.

As described earlier the game does not operate in true real-time processing because
the Windows environment allows only a limited amount of active Timer objects to be
used at a time. The speed of the game time has three phases. The first phase is the
slowest one and the third phase is the fastest. In the beginning of the game the duration
of one game hour might be e.g. 30 seconds. This means that the MAP executes the
events of one game hour every 30 seconds.

The motivation to use different game speed phases in the game arises from the need
to train different kinds of business skills. The first (and slowest) game speed allows
rehearsing short-term game company internal operations. These concern mainly
operational decisions like raw material purchases, delivering, finding an optimal
production capacity for production cells, and so on. As the speed is relatively slow the
players have the possibility to see properly the material flows in the game but do not
need to search frequently for external funding, invest on marketing operations, and so
on. The first phase is also suitable for examining the dependencies between different
materials transactions, accounts payable and receivable, and cash flow.

In the second phase the aim is to rehearse more tactical – mid-range - decision-
making. Before turning on the second phase the players should have familiarized
themselves with the production function. The second phase involves more decision-
making concerning overall material chain management. In the first phase it might be
difficult to get a holistic view of the material processes, as the game speed is too slow
for that. This should be acquired in the second phase. Some first phase decisions are
automated in the second phase in order not to block the decision-making capacity of the
players. For example, the delivery process is automated in the second phase (an
alternative for this would be a decision by the participants to invest in an information
system producing automatic deliveries). As the second phase is usually considerably
faster than the first phase the participants should be able to see a more holistic view of
the dependencies between the functions taking part in the materials processes.

The third phase of the game is the long-term strategic decision-making level of the
game. The speed of the game should be as fast as the MAP computer allows. At the best
it has been possible to execute the game internal hours once in a real-world second but
the MAP is not tuned up to be as fast as possible yet. Thus, in the future it will be
possible to reduce the speed of the MAP third phase execution to fractions of a second
on average. As the speed of the game increases during the game – depending on the
computer capacity in use – the transaction processing of both the MAP and CAP will
become too heavy for the computers to handle within the given cycle time. This is why
the CAP can be set to process several hours during one cycle. For example, four game
hours can be processed during one CAP processing loop.

 10

To allow game speeds fast enough for game sessions where several game years can
be simulated during one day, the speed of the MAP must also be accelerated in the same
way (however this has not been done at the time of writing). For example, to be able to
simulate three game years in one day training the execution of one hours must not take
more than 0.833 seconds (the training time: 6 h x 60 min x 60 s, divided by the
simulated game hours: 3 years x 12 months x 30 days x 24 h). The speed of the MAP to
execute one game hour depends highly on the amount of participating companies and
customers on the markets. Even with a relatively limited game configuration (some 8
competing companies and three customer markets, each including less than 20
customers) and a Pentium II/366 MHz computer MAP game hour processing takes
some 1.5 seconds. Thus, to allow several years to be executed in a one-day training
event the processing method of CAPs must be applied in the MAP also.

3.3.2 The Company Application (CAP)

The CAP includes several processes managed by the game participants. These processes
are represented in the form of game computer screen copies in this chapter. Several of
the company internal processes are also automatic and triggered by the game internal
clock. The operation of the game clock is managed in the MAP but as the clock
proceeds the time is transferred to each CAP, too. Thus, if the game internal time has
proceeded, the CAPs will execute the company internal processes (like the production
of goods within the manufacturing process).

The separate tasks in the CAP are all defined and saved as their own windows
consisting of their own definitions and program code procedures. Altogether there are
32 independent window units plus one component (object) unit. The total amount of
program code in these units is some 17.000 rows. This code includes only pure data
processing procedures (plus, of course, comments within the code, and variable and
type definitions) as each window’s layout properties are saved in separate Delphi form
files. These separate form files can contain up to 650 rows of property definitions of
objects encapsulated in these windows.

The data of CAP transactions and operations is saved in database tables. First of all,
this is because Delphi offers easy to use functions to manipulate data in databases.
Secondly, relational databases offer a natural data structure to maintain transactional
data. In the game construction the transactional databases are analogical to any
enterprise software databases: the data is mainly structured according to the same
normalization rules. Thirdly, databases provide database table indexes, which in many
ways speed up the data processing and retrieval of the saved data compared to e.g.
binary file routines. The database used in the game construction is Paradox database
version 7.0, which comes with Delphi.

Figure 3 represents the REALGAME interface.

 11

Figure 3: REALGAME interface.

 12

The Clock window tells the player what time (game internal time) it is, what production shift is active, what day of the week it is, and what
date it is. The game internal time proceeds with the same pace as the market program is proceeding. Thus, the company clock proceeds
only when the market time proceeds first.

The On-line cash window tells the players the cash amount they have available in any moment. The cash amount is always in real-time
and is updated after every cash payment and cash income. The menu items of the company application are shown in figure 4.

Figure 4: The menu items of the company application.

 13

The User Operated Processes of CAP

When describing the user-operated processes of the CAP we apply the four principal
types of economic utility, which add value to a product or service. The classification
we are using is introduced in Coyle et al. (1996). The principal types of economic utility
are: form, time, place, and possession. Generally, manufacturing activities provide form
utility, logistics activities time and place utility, and marketing activities possession
utility.

Form utility refers to the value added to goods through a manufacturing, production,
or assembly process. E.g. this utility results when raw materials are combined to make
finished products. This utility represents a change in product form that adds value to the
product. Different material processing functions of the CAP together create the body of
the CAP. Other business functions are more or less constructed upon the materials
processing functions and support them. Following screen copies (figures 5-15) from the
CAP represent the form utility processes in REALGAME. The following screen copies are
from several different game sessions. Thus, the configuration (e.g. currency and
interface language) and internal time vary between different screen copies.

During the game the production function uses the raw materials in the company
inventory (Store) (figure 5). This inventory window includes finished goods, semi-
finished goods and raw materials. As seen in figure 5 the company has run out of
Electronics raw material.

Figure 5: The store window.

The materials process starts with Raw materials purchases (figure 6). In the third phase
of the game the raw material purchases will be done automatically by the CAP.
However, in the beginning of the game the participants themselves have to take care of
purchases. The Raw material purchases window includes two tables. From the table on
the left the player selects which raw material he/she wants to order. After selecting the
raw material the table on the right will show the different suppliers of the selected raw
material and their terms of delivery. Furthermore, each of these suppliers has a
restricted inventory of each raw material. As the suppliers are common to all competing
companies a certain raw material may become scarce. The raw material inventories of
the suppliers are renewed in time but in some occasions the demand of raw materials
may be greater than the renewal speed.

 14

Figure 6: The raw material purchases window.

When the player has decided from whom to order he/she selects the Buy button. What
follows is represented in figures 7 and 8.

Figure 7: Entering the amount

of raw materials to order
Figure 8: Confirming the order.

From this point forward only selected dialogs of the company application are presented
as screen copies. Figures 7 and 8 show the principle in which the interaction between
the game and the players is operated.

As the game describes time depended interactions within a manufacturing company
most events and operations take certain time to materialize. E.g. the raw material
ordered does not arrive at our inventory before the delivery time has passed. During this
time the delivery can however be seen in the Future capacity and material changes
window (figure 9).

Figure 9: The future capacity and material changes window.

At the point of ordering the raw material we also become debtors to the supplier. The
debt is entered to the Accounts payable and other debts table (figure 10). The debt will
be paid automatically by the CAP by the due to date and time. From figure 10 can also
be seen that the information included in the table is transaction specific information.

 15

Figure 10: The accounts payable and other debts window.

After the delivery time has passed the raw material appears in our inventory represented
earlier (figure 5).

The raw materials are consumed in the company manufacturing function (figure 11).
The production line of the company consists of a configurable amount of production
phases (maximum amount of phases is five, two in the example) and cells (maximum
nine per production phase, two in the first phase in the example). The flow of materials
proceeds from the inventory to the first phase production cells, then the semi-finished
products are transferred to the inventory, then the second phase cells take their materials
from the inventory, and so on. The inventory always functions as a transfer container
for the materials on their way through the production. Also the finished products end up
in the inventory before they are delivered to the customers.

In the production line example of figure 11 the first phase of production consists of
cells producing Scanners and Switches. In the second phase there is just one cell
producing Bio counters, which is the final product in this model.

Figure 11: The production window, the clock window and the store window.

 16

Each of the production cells consists of four pages of cell information representing
production cell specific information and capacity decisions. These pages are selected
from the buttons (yellow arrow, Cell, wheels, and worker buttons) in the cells. From the
production window the players can also turn the production cells on and off.

In figure 12 the player has selected the Workers button of Scanner cell. Now the
player may either choose to hire new workers or sack old workers. In both cases there
will be a delay before the workers quit or start working. Quite the same can also be
done with production machines. In figure 13 the player has selected the Machines
button of the Scanner cell. Again there will be a certain delay in getting the machines
bought for production.

Figure 12: Hiring or sacking workers. Figure 13: Buying and selling of machines.

Also the changes in worker and machine capacity and the delays these changes need to
materialize can be seen from the Future capacity and material changes window (figure
14).

Figure 14: The future capacity and material changes window.

Last decision concerning production deals with the working shifts used in each cell.
Figure 15 shows how the shifts can be turned on and off (the player has selected the
Working shift button from the Scanner cell).

Figure 15: Selecting shifts in a production cell.

 17

As the materials have flown through the production line the final products appear in the
inventory and are ready to be sold/delivered.

We have now introduced most of the form utility functions of REALGAME. The next
economic utility is possession utility (Coyle et al., 1996). Possession utility is primarily
created through the basic marketing activities related to the promotion of products (or
services). Coyle at al. define promotion as the effort - through direct and indirect
contact with the customer - to increase the desire to possess a good (or to benefit from a
service).

The customers in each market in any REALGAME configuration can be seen in the
Market area information window (figure 16). From the selection box above the table
the user can select any of the markets in the game. After the player selects an area the
larger table shows the customers in the selected market. By viewing the customers the
player can estimate the demand potential of the market. This information is calculated
also in the smaller table at the bottom of the window. The maximum demand per month
in the table tells the maximum demand per customer per product per one month. This is
not necessary the demand that will materialize in the game (e.g. offered products are not
good enough for the customers) but it will give the players an estimate of the size of
each market area. The cumulated purchases column informs the players the customer
specific materialized purchases accumulated from the beginning of the game.

The customers in the game are passive in that sense that they wait passively for
offers from the companies taking part in the game.

Figure 16: The market area information window

 18

The customer buying decision is based on several facts. The customer purchase decision
depends (at the moment) on the game company:
- product sales price
- the term of payment the company is offering
- the delivery time the company is promising
- the amount of marketing investments
- product quality

Sales offers (including sales prices, maximum amounts of products that are offered for
one customer per one transaction, term of payment, promised delivery time, and the
offer valid until date) are maintained in the Sales offers window (figure 17). The offers
are either market specific or common to all markets.

Figure 17: The sales offers window.

The rest of the factors affecting the sales potential of the company are determined in the
Marketing investments window (figure 18) and R&D window (figure 19). Marketing
investments are market specific. The monetary figures are amounts per month.

Figure 18: The marketing investments window.

 19

Product development takes place also as a monetary investment (figure 19). The
participants can select a Product quality report which tells the product qualities of all
companies (figure 20).

Figure 19: The product Development
window.

Figure 20: Part of the Product quality
window.

As the customers order from a company the company receives an order. The Handling
of the open orders window (figure 21) tells the players who has ordered, when the order
took place, what are the sales terms our company has promised to the customer, and
when the company has promised the delivery to be at the customer’s (according to the
offer). An essential feature in this window is that the information is transaction specific.
Transaction specific information is seldom explicit in batch-processed business games
because the algorithms in a batch-processed game are executed in a batch producing
aggregate information about the transactions. Continuous processing produces explicit
information about single transactions.

Figure 21: The handling of the open orders window.

The last two economic utilities (Coyle et al., 1996) are time utility and place utility.
Time utility can be created through proper inventory maintenance. Not only must
goods (and services) be available where customers need them, but they must also be at
that point when customers demand them, i.e. economic value to goods (or services) by
having them at demand point at a specific time. For example, having advertised
products available for customers at precisely the time promised in the offer can create
time utility. In REALGAME time utility is always present as all the transactions and
operations are bound to the flow of time (e.g. customers expecting the goods to be
delivered within the promised delivery time).

 20

Place utility is provided by moving goods from production to points where demand
exists. Extending physical boundaries adds economic value to the goods. In REALGAME
place utility is created through transportation. The next screen copies demonstrate
REALGAME functions that are related to time and place utilities.

REALGAME can proceed at three different speeds. We will now describe how the
handling of open orders will be done when the game proceeds at the slowest speed
(phase 1/3). In phases 2 and 3 the game handles open orders automatically, that is, the
game delivers the orders automatically and sends the invoice to the customer whenever
there are enough products in the inventory. However, in the slowest speed mode the
players themselves have to deliver the orders: first they click the order to be delivered
and then select the Deliver button. They will get the Confirm delivery window on the
screen (figure 22).

Figure 22: The confirm delivery window.

In the Confirm delivery window the players decide what is the amount of the product to
be delivered and with what mode of transport to deliver. The different transport modes
differ from each other by transport duration and cost. The delivery departs to the
customer when the players select the Deliver and invoice button.

If the game is in the second or third phase then the deliveries will be done
automatically by the CAP. However, the mode of transport selected by the CAP is still
based on a decision by the players. The players may choose between the possible
delivery modes in the Available terms of delivery window (figure 23). As the game
delivers automatically it selects the transport mode according to the user chosen auto-
delivery mode.

 21

Figure 23: The terms of delivery in use window.

We have now described the four principal types of economic utility in REALGAME,
which add value to a product or service. The rest of the game functions are support
functions, which do not create economic utility but are necessary for managing the
company towards the desired direction. These support functions are related to monetary
flows, accounting procedures, and creating decision support (reports) for managing
the company. We will briefly introduce some of these functions.

As the order is delivered to the customer the customer becomes our debtor. The
Accounts receivable window shows the players who their debtors are and how much the
debtors owe them (figure 24). Furthermore, the window tells when the debts are to be
paid to the companies. Once again, the participants see transaction specific information.

Figure 24: The accounts receivable window.

If the players do not succeed to deliver the orders in time the deliveries may be late at
the customer's. Customers will inform the companies about this with a message to the
Bulletin board (figure 25).

Figure 25: Customers informing company about late deliveries.

 22

As time passes the debts of the customers will automatically be paid to our cash (On-
line cash window) and to the Cash flow window (figure 26).

Figure 26: The cash flow window.

During the game processes the companies may face cash deficit. If the companies do
not collect the incomes fast enough from the sales they have to withdraw loans. Loan
withdrawals are made in the Funding window (figure 27).

Figure 27: The Funding window.

The CAP also updates the balance figures in real-time. Of course, this does not mean
those accounting entries which are dealt with when the accounts are closed.

 23

Figure 28: The balance sheet window.

The CAP also includes a possibility to calculate the profit on-line (figure 29). This
calculation can be selected from the menu and the CAP calculates the financial
statement according to the events materialized during the season.

Figure 29: The profit window.

 24

Besides of standard financial statement the game offers diverse reporting possibilities.
First, the reports describing our own company’s sales efficiency can be seen in figure
30. The different reports describing market events and positions can be seen in figure
31. These reports are produced on-line (they will report the situation with a delay of a
day or some days). Available reports of our company’s efficiency in the materials
functions can be seen in figure 32.

Figure 30: The sales reports window. Figure 31: The market reports selection

window.

Figure 32: The product and store reports window.

 25

3.3.3 The Market Application (MAP)

The MAP interface is shown in figure 33.

Figure 33: The user interface of MAP.

The execution of the MAP program code is straightforward. A Timer object in the MAP
triggers the procedure including all the market routines. This is done in a batch-
processed manner: the code is executed from the beginning to the end and then the
MAP waits for the Timer to activate anew. In all, the MAP includes some 3,000 rows of
Delphi programming code just to handle each game clock loop plus some 200 rows of
window object definitions in a separate form file. In short, the processes the MAP
executes in every game clock loop are the following:
- If the clock is on, increases the time with one hour.
- Reads all the decisions and other transactional information (offers, deliveries,

market investments, R&D investments) of the participating companies.
- Browses through customer in each market and reads their demands. For every

customer whose purchases are acute, browses through which company’s offering
(price, terms of payment and delivery, marketing investments, company image,
and product quality) is most suitable and makes an order.

- Copies updated market information tables (market messages, time, new orders,
general customer information, available delivery methods, company market
images, environmental variables) to each company.

For the game administrator, the use of the MAP is quite simple. After the MAP is
started the only thing the administrator has to do is either to stop or to start the
execution of the MAP clock (the Stop Clock/Start Clock button in figure 33). The clock
is stopped when the administrator needs the attention of the game participants to be
focused on something else than the game, e.g. when some educational aspects of
business decision-making are discussed together with all the participants.

If the administrator wants to change some environmental variables of the game this
can be done easily by starting the Database Desktop application and accessing the
needed database tables directly. This can only be done during the game if the MAP
clock is stopped.

 26

3.4 Configurability of the Game

The configurability of REALGAME concerns all the functions of the game. In this chapter
we will clarify the meaning of configuration and how it will affect the user interface.

The configuration information is always saved and maintained in database tables.
Maintaining the game configuration information is simple: the operator just opens the
table including the configuration information with the Database Desktop and edits the
information in the table.

3.4.1 Configuring the Supply Function

The configuration of the market raw material suppliers is done to a single Paradox table,
which is maintained in the market server. The table layout and some example data are
shown in figure 34. Besides of the fields in figure 34 the raw material renewal speed can
be configured for each supplier/raw-material.

Figure 34: The SUPSTORE database table.

3.4.2 Configuring the Production Structure of Companies

The possibilities to configure the production line structure of the companies are:
- to determine the number of successive production cell phases and the number of

parallel cells in each production phase
- to determine the internal structure of each production cell
- to determine which cells form a ‘metacell’: a group of cells in which only one cell

at a time can be the active cell. This structure means that the metacell includes
several parallel production recipes of which one at a time can be in use.

Configuring the Overall Production Line Cell Structure

The game company production line can include from 1 to 5 successive production
phases. Each of these phases can consist from 1 to 9 parallel production cells. Figures
35 to 37 show some examples of the configuration of the manufacturing function. The
first one is the game generic version (generic version used mainly to teach university
students) model, the second one is a model configured for a glass manufacturer, and the
third one is a production model for a high-tech instruments manufacturer.

 27

Figure 35: The Production line window in the game generic version.

Figure 36: The Production line window of a glass manufacturer configuration.

 28

Figure 37: The Production line window of a configuration for a manufacturer of high-

tech analysis systems.

The simplest possible configuration of the production line consists of a single
production cell and the most complex one of 45 cells (5 phases times 9 cells). However,
the present computer clock speeds limit the maximum amount of cells. The amount of
production cells is one of the most significant factors affecting the processing time of
one company application processing cycle.

Configuring the Internal Structure of Each Production Cell

The properties and functioning of a production cell is defined in a programmer defined
Delphi object type. This object is inherited from Delphi standard objects. This object is
the only significant programmer defined object in the game construction (though some
database table rows, like customers in a market table, are often manipulated like
objects). Other objects in the game applications are standard Delphi objects. The cell
object consists of some 2,500 rows of program code. Each of the production cells in the
production line window has its own table file. For example all the numerical
information in figure 38 for the Scanner cell is saved in the cell’s configuration database
table.

 29

Figure 38: Four different views to a production cell. All the numerical cell info is saved

as parameters in a database table.

Configuring a Production Metacell

In some production line cases the production cells need to have several alternative
production recipes. Figure 39 represents a production metacell actually consisting of
three separate production cells belonging to the same production cell group. Each of
these three recipes can be turned on and at the same time as the recipe that has been on
so far is turned off.

Figure 39: A production metacell consisting of three separate production cells.

 30

3.4.3 Configuring the Customer Markets

The market structure of the game can be configured in two levels. First, the
administrator can decide how many markets to be included in a game. This is done by
entering the possible markets to the MARKETS database in figure 40.

Figure 40: The MARKETS database table.

Column MarketOn specifies whether the customers in the market area are active or not.
During the game it is possible to activate new market areas (by changing the value of
MarketOn from False to True) or even to create totally new market areas by appending
new records to the table. The amount of market areas is in practice limited only by
computer processing capacity.

Secondly, the market area customers are defined in market specific customer tables
(MARKET1, MARKET2, MARKET3,... MARKETN). Figure 41 describes the
customer structure of market area 3, North America. The table rows are customer and
product specific.

 31

Figure 41: The MARKET3 database table.

The amount of customers in each market area is theoretically only limited by computer
database storage capacity. However, the processing of customer purchases is clearly the
most time consuming calculation task of the MAP. This means that increasing the
amount of customers will slow down MAP execution fast and thus slow down the game
internal time.

 32

3.4.4 Configuring the Game Environmental Parameters

The game environment is configured in the ENVIRONM database table. As an example
of what parameters there are, the fields of ENVIRONM are described in table 2.

Field Type Description
Language A3 The language used in the game interface. At the moment the

possibilities are Finnish and English.
Currency A3 The abbreviation of the currency used in the game.
LineOfBusiness A40 The line of business in the game.
ProdLine1 L Not in use
ProdWorkerFeePerHour I The basic hourly salary of a production worker.
ProdWorkerHiringDelay I How many hours a production worker works after the hiring decision.
ProdWorkerSackingDelay I The delay (hours) from production worker sacking decision to the point

the worker leaves.
ProdMachineBuyingDelay I How many hours it takes for the new production machine to start

producing after the machine purchase decision has been made.
ProdMachineResaleValue% I The yearly depreciation (%) of production machine.
SalaryPayPeriodDays I The length (days) of salary pay period.
PenaltyLateDeliveryPerDay N How much the company customer specific image decreases (penalty

per day) if the delivery is late.
PrizeForBetimesDelivery N How much the company customer specific image increases if the

delivery arrives in time at the customer’s.
MaxPenaltyShortDelivery N The maximum penalty of short deliveries (affecting the company

customer specific image). The penalty is calculated: ((Ordered amount
– Delivered amount) / Ordered amount) * MaxPenaltyShortDelivery

NrOfMarketsUsed I Number of markets in use in the game (the amount of active markets in
MARKETS database).

CompaniesGaming I How many companies are taking part in the game event in question.
Shift1Name A20 The name of the working shift from midnight to 8:00 AM.
Shift2Name A20 The name of the working shift from 8:00 AM to 4:00 PM.
Shift3Name A20 The name of the working shift from 4:00 PM to midnight.
AdvertisingInUse L Whether this marketing investment is in use and considered in the sales

competition.
DirectMarketingInUse L As the previous.
SalesPromotionInUse L As the previous.
PublicRelationshipsInUse L As the previous.
RepresentativesInUse L As the previous.
ProductionUnit A5 The abbreviation of the production material unit used in the game (unit,

liter, kg,...).
RepoPricePerMarketProduct N Not in use.
HowManyGetsInToCustomer I How many companies can theoretically sell to one customer at a time.
NegCashOneTimeCost N How much the companies will pay (one time cost) if the cash balance

becomes negative.
NegCashInterestPMonth N If the cash balance is negative how much interest (per month) will be

charged for this negative cash balance.
FixedAdmExpenses N Fixed administrative expenses per month
AdmCostPerMachine N Administrative costs per production machine per month
CostOfCancellingOrder N Per cent costs (from the order total value) of cancelling an order
OrderLotSizesInUse L Whether supplier order lot sizes are in use in the game
BaseInterest N Base interest (rate) for loans
RnDinUse L Is R&D in use in the game
QualityErosion%PerDay N How much product quality will diminish per day
QualityInBeginning I Product quality value at the beginning of the game
RnDDecreaseAfter N The minimum amount that has to be invested in R&D per month in

order to prevent the quality from deteriorating
MaxQualityRaiseInDay N How much product quality can maximally increase per day
InstallationCost N For immaterial products: how much a product’s installation will cost

for the company

Table 2: The fields of ENVIRONM database table.

 33

3.4.5 Configuring the Market Specific Delivery Ways

The market area specific delivery methods and their costs are defined in the
DELIWAYS database table (figure 42).

Figure 42: The DELIWAYS database table.

 34

4. CONCLUSIONS

Our original research hypothesis is stated:

An interactive (real-time/continuously processed) business game describes the
interactive nature of the present business environment and sudden shifts in it, and
how processes unfold in a company’s internal and external environment. This
verisimilitude (real-world likeness) of the processing method of the learning tool
creates an authentic and meaningful environment enhancing participant business
perception through game playing.

We have described some features of a new business game model. The practical
construction building problems stemming from the hypothesis can be stated as:
a) The business model should work in an interactive, real-time/continuously

processed connection with the different markets.
b) The business model should demonstrate the total business concept of a general

manufacturing organization and its most significant stakeholders.
c) It should be possible to configure the business model and the market model

according to the requirements of the training event.

As the game model is now successfully constructed and some evidence exists about the
successful use of the construction in training sessions (Lainema and Nurmi, 2002;
Lainema, 2003b), we would like to say that the main research problem has been solved.
Naylor (1971) has stated about the development of business games:

Those readers who elect to develop their own game will find the experience an
extremely rewarding one, since one cannot possibly write a computer program for a
business game without a clear understanding of the complex interactions involved in
the operation of a business firm. Such an experience is highly recommended for
students in business administration and economics who want to test their real
knowledge of the behaviour of business firms in a dynamic world.

We, as the developers of the new construction, feel that these words of Naylor are very
true. During the construction process we have learned a lot about business processes
and the mechanisms in the business environment. But what is even more important for
us is whether this construction works as a successful learning tool.

Isaacs and Senge (1992) mention five directions of computer-based learning
environment (CBLE) research, to enable CBLEs to be used both to discover more
completely the nature of the manager’s theories-in-use concerning complex situations,
and as tools to produce changes in these theories-in-use:
- To examine what people take away from CBLEs and attempt to put into practice

in their working environments.
- To study the extent and nature of changes in theories-in-use altered in work

settings.
- What is the range and type of errors in learning behavior of which people are

aware before and after the CBLE?
- What new behaviors are CBLEs able to produce?

We have studied these other research issues in our other works.

 35

REFERENCES

Chiesl, Newell E. (1990). Interactive Real Time Simulation. In Gentry (ed.) Guide to

Business Gaming and Experiential Learning. ABSEL.
Coyle, John J., Bardi, Edward J., and Langley, C. John (1996). The Management of

Business Logistics. 6th edition, West Publishing Company.
Huckfeldt, Robert R., Kohfeld, C. W., and Likens, Thomas W. (1982). Dynamic

Modeling, An Introduction. Sage Publications, Inc.
Isaacs, William and Senge, Peter (1992). Overcoming limits to learning in computer-

based learning environments. European Journal of Operational Research, Vol. 59,
No. 1, pp. 183-196.

Lainema, Timo (1999a). Planning Guidelines for Next Generation Business Simulation.
In Peter Juliff, Tsurayuki Kado, Ben-Zion Barta, editor, Educating Professionals for
Network-Centric Organisations, Kluwer Academic Publishers, pp. 19-25.

Lainema, Timo (1999b). What’s Wrong with Business Games? Is Budget Based
Decision-Making up to Date? In the proceedings of the Twenty Second IRIS
Conference (Information Systems Research Seminar In Scandinavia), Enterprise
Architectures for Virtual Organisations, Keuruu, Finland.

Lainema, Timo (2000). Constructing a Real-Time Processed Business Game for
Business Process Training. Turku School of Economics and Business
Administration. An unpublished licentiate thesis.

Lainema, Timo (2001). Enhancing Participant Business Process Perception through
Business Gaming. Proceedings of the 34th Annual Hawaii International Conference
on System Sciences (HICSS), IEEE.

Lainema, Timo (2003a). Implications of Constructivism for Computer-Based Learning.
Proceedings of 11th European Conference on Information Systems (ECIS), New
Paradigms in Organizations, Markets and Society. Naples, Italy.

Lainema, Timo (2003b). Reinforcing Information Systems Students’ Perception on
Business Processes. A working paper.

Lainema, Timo, and Makkonen, Pekka (2003). Applying Constructivist Approach to
Educational Business Games: Case REALGAME. Simulation & Gaming: An
Interdisciplinary Journal of Theory, Practice and Research, Vol. 34, No. 1, pp. 131-
149.

Lainema, Timo, and Nurmi, Sami (2003). Applying an authentic, dynamic learning
environment in real world business. A working paper.

Lane, David C. (1992). Modelling as Learning: A consultancy methodology for
enhancing learning in management teams. European Journal of Operations Research,
Vol. 59, No. 1, pp. 64-84.

Naylor, Thomas H. (1971). Computer Simulation Experiments with Models of
Economic Systems. John Wiley & Sons, Inc.

Thavikulwat, Precha (1996). Activity-Driven Time in Computerized Gaming
Simulations. Simulation & Gaming, Vol. 27, Issue 1, pp. 110-122.

 36

Turku Centre for Computer Science
Lemminkäisenkatu 14
FIN-20520 Turku
Finland

http://www.tucs.fi/

 University of Turku
 • Department of Information Technology
 • Department of Mathematics

 Åbo Akademi University
 • Department of Computer Science
 • Institute for Advanced Management Systems Research

 Turku School of Economics and Business Administration
 • Institute of Information Systems Science

	1. Introduction
	2.WHAT IS CONTINUOUS SIMULATION?
	3.REALGAME CONSTRUCTION
	3.1Construction Development Environment
	Game General Structure
	Description of the Game Processes
	The Management of the Game Internal Time
	The Company Application (CAP)
	The User Operated Processes of CAP

	The Market Application (MAP)

	Configurability of the Game
	Configuring the Supply Function
	Configuring the Production Structure of Companies
	Configuring the Overall Production Line Cell Structure
	Configuring the Internal Structure of Each Production Cell
	Configuring a Production Metacell

	Configuring the Customer Markets
	Configuring the Game Environmental Parameters
	Configuring the Market Specific Delivery Ways

	4.CONCLUSIONS

