
Reasoning about Recursive
Procedures with Parameters

Ralph-Johan Back
Viorel Preoteasa

Turku Centre for Computer Science
TUCS Technical Report No 500
January 2003

ISBN 952-12-1104-0
ISSN 1239-1891

Abstract

In this paper we extend the model of program variables from the Refinement
Calculus [1] in order to be able to reason more algebraically about recursive
procedures with parameters and local variables. We extend the meaning of
variable substitution or freeness from the syntax to the semantics of pro-
gram expressions. We give a predicate transformer semantics to recursive
procedures with parameters and prove a refinement rule for introduction of
recursive procedure calls. We also prove a Hoare total correctness rule for
our recursive procedures. These rules have no side conditions and are easier
to apply to programs than the ones in the literature. The theory is built
having in mind mechanical verification support using theorem provers like
PVS [18] or HOL [10].

Keywords: Refinement, Recursive procedures, Semantics, Hoare rules

TUCS Laboratory
Software Construction Laboratory

1 Introduction

When giving a semantics for an imperative programming language, suitable
for mechanical verification, we should deal with the fact that program vari-
ables have different types. Many computational models [13, 20, 21, 16, 3, 9],
some used in mechanical verification, are based on states represented as tu-
ples, with one component for each program variable. When we access or up-
date a specific program variable we should access or update the corresponding
component in the tuple. The problem becomes even more complicated when
we have local variables. Then we should add or delete components to the
tuple. This extra calculus makes the reasoning about the correctness of a
program more complicated.

A more intuitive approach is given in [1], where the state is no longer given
as a tuple. Instead, two functions, val.x and set.x, are introduced for each
program variable x. The function val.x is defined from states to the type of x
and val.x.σ is the value of the program variable x in the state σ. The function
set.x.a is defined from states to states and sets the program variable x to a
in a given state. These functions should satisfy some behavioral axioms, for
example, one axiom says that changing the value of one program variable
leaves the rest of the program variables unchanged. All program constructs
that deal with program variables are defined using set and val. A drawback
of this approach is that, as in the case of tuples or frames, the introduction
of new program variables is done by changing the state space.

We propose a cleaner solution which handles the introduction of local
variables without changing the state space. We replace the way local variables
are introduced in [1]. Our main goal is to be able to reason about recursive
procedures so that at any recursive call the procedure parameters are saved
(in a stack) and the procedures work with these parameters as if they were
new. More generally, we want to be able to save any program variable x at
some point during the program execution, work with x as if it were new, and
then restore the old value of x. We want to do this as many times as we
need.

Last but not least we want to avoid explicitly dealing with stack-like
structures in our calculus. We also want to avoid any additional calculus
(for tuples or frames) except for the predicate transformers and program
expressions one. We only want to have program constructs that satisfy some
specific desired properties and give us enough power to reason about recursive
procedures with parameters and local variables, without using a stack or any
additional calculus.

The contribution of the paper is to extend the axiomatic model of pro-
gram variables from [1] with one additional program construct del.x.σ, which

1

deletes the program variable x from the state σ. We give a predicate trans-
former semantics [6, 7] for mutually recursive procedures with value and
value–result parameters and local variables. We also introduce a refinement
rule and a Hoare [14] total correctness rule for these procedures. These rules
have no side conditions and are much easier to apply than the ones in the
literature.

The overview of the paper is as follows. We discuss related work in
Section 2. Section 3 contains some basic definitions and facts about the
Refinement Calculus. In Section 4, we introduce the primitive functions that
we use to manipulate program variables. The behavior of these functions and
their interaction is given by a set of axioms. We show that the axioms are
consistent, by giving a model in which they are valid. In Section 5 we give a
semantic notion of program expressions. We define substitution and freeness
in the context of these program expressions. We also prove some facts relating
substitution and freeness. Using the primitive functions defined in Section 4
we define in Section 6 some program statements and prove some properties
about them. In Section 7 we give a least fix point semantics for recursive
procedures with parameters and local variables. We give an example of a
correctness proof for a recursive procedure. Section 8 presents a refinement
rule for introduction of recursive procedure calls. Based on this rule we
prove, in Section 9, a Hoare total correctness rule for recursive procedure
calls. Section 10 contains concluding remarks.

2 Related work

Back and von Wright [1] represent a program variable x as a pair of functions
(f, g) – f for getting the value of x in a state, and g for setting x to some
value in some state. The sentence var x1, . . . , xn indicates that the program
variables x1, . . . , xn satisfy certain assumptions. A program refinement using
x1, . . . , xn is done under the assumptions var x1, . . . , xn. As a consequence,
one should know a priori what program variables are needed in order to
include them in the assumptions. A solution to this problem would be to
start with an infinite set of program variables and then use as many as
needed. However, because any program variable has at least one assumption
associated with it, we would need to state an infinite number of assumptions,
which is impossible in a mechanical verification setting.

In [1], there are some restrictions on the formal and actual parameters
of a recursive procedure. If a formal value parameter of a procedure has
the same name as an actual reference parameter, then the formal parameter
should be renamed. The problem becomes even more complicated when

2

recursive calls are unfolded. In this case some variables should be renamed,
and for this purpose, new program variable names are needed. Moreover, a
procedure call first changes the state space (adds local variables), does some
computation, and then restores the state space. If there is a recursive call,
then this call is made in the new (extended) state space, and the semantics
should accommodate this fact.

In [2], Back and von Wright give an improved version of their program
variable model [1]. They do not need to change the state space any more when
adding or deleting local variables. Their approach is similar to ours, but they
use a different set of primitive functions, and their focus is on refining parallel
composition of action systems, while our focus is on recursive procedures with
parameters.

Staples [19, 20, 21] models the state space as a cartesian product over
a set of variables V of the dependent types τ(v), v ∈ V . When entering
local blocks or calling procedures, the set V changes. In order to give a
predicate transformer semantics the author needs to define the statements
over all possible state spaces. Because the state space changes, the semantics
and refinement rules of (recursive) procedures are complicated. Another
limitation is that procedures cannot access global variables.

Hesselink [13] gives a predicate transformer semantics for parameterless
recursive procedures with local variables and access to global variables. Based
on this semantics, a Hoare total correctness rule is proven. Hesselink, sim-
ilarly to Staples, uses a set (frame) F of program variables, and the state
space is the product over F of the types of the program variables. A rich logic
that connects (changing of) frames to predicate transformers, is developed
in order to give proper semantics to recursive procedures.

Kleymann [15] gives an operational semantics for an imperative deter-
ministic language with recursive procedures. He gives a complete set of
Hoare total correctness rules with respect to the operational semantics. His
approach is simple, but it is limited to handling procedures without param-
eters and local variables. Based on the operational semantics the author
also gives a predicate transformer semantics. The latter is obtained easily
since the state space does not change (there are no local variables), and the
language is deterministic.

In [23] von Oheimb also gives an operational semantics for an imperative
deterministic language with recursive procedures, but his procedures can have
value and result parameters and local variables. He gives then a (relatively)
complete set of Hoare partial correctness rules with respect to the operational
semantics. The state space has two components, one for global and one for
local variables. When procedure calls occur the state space changes. The
correctness rule for recursive procedures is very simple and intuitive, but the

3

rules for procedure parameters and local variables are not. Changing the
state space does not add the usual complication that we meet in a predicate
transformer semantics [19, 20, 21, 13]. However, in his approach all program
variables have the same type, which is an unrealistic assumption.

Gries and Levin [11] give Hoare proof rules for multiple assignments and
procedures. The language has one-dimensional arrays and records. Pro-
cedures have reference and value parameters and access to global program
variables. The rule for procedures is given only for the case when there is no
aliasing among the global program variables and reference arguments. The
rule is also adapted to result parameters instead of reference parameters.
This is possible mainly because of the no-aliasing assumption. Finally, they
treat a very special case of aliasing. The paper does not treat recursive pro-
cedures. The authors give an axiomatic semantics, so there is no need to talk
about the state representation.

Harel, Kozen, and Tiuryn [12] model recursivity by using a program vari-
able of type finite stack. The values can be stored in the last-in-first-out
manner. When proving correctness for recursive procedures one needs to
reason directly about the stack.

3 Preliminaries

We use higher–order logic [4] as the underlying logic. In this section we recall
some facts about the Refinement Calculus hierarchy [1]. We also use some
basic facts about complete lattices and fixpoints [5].

3.1 States, functions, predicates, relations

A state space is a type Σ of higher–order logic. We call an element σ ∈ Σ a
program state or simply a state. A state transformer is a function f : Σ→ Σ
that maps states to states. We denote by Func.Σ all state transformers.
We use the notation f.σ for function application, f ; g for forward func-
tional composition, i.e. (f ; g).σ = g.(f.σ) and lambda notation for functions
(λx •x + 3). We denote the identity function on Σ with id. We have that
〈Func.Σ, ; , id〉 is a monoid.

We denote by bool the boolean algebra with two elements. For a type
X, Pred.X are the predicates on X, i.e. the functions from X to bool. We
extend pointwise all operations on bool to operations on Pred.X. For example
∪ is defined on p, q ∈ Pred.X by (p ∪ q).x = p.x ∪ q.x. We have that
〈Pred.X, ∪, ∩, ¬, false, true〉 is a boolean algebra.

4

A state relation is a binary relation on Σ, i.e. a function of type Σ →
Σ→ bool (Σ→ Pred.Σ). We denote by Rel.Σ all binary relations on Σ. We
think of a relation R as a non-deterministic state transformer, transforming
a state σ to some state σ′ such that R.σ.σ′ holds. We again extend point-
wise the operations from Pred.Σ to operations on Rel.Σ. We also have that
〈Rel.Σ, ∪, ∩, ¬, false, true〉 is a boolean algebra. We denote by R ; R′ the
composition of the relations R and R′, i.e. (R ; R′).σ.σ′ is true iff there exists
σ′′ such that R.σ.σ′′ and R′.σ′′.σ′ are true. The structure 〈Rel.Σ, ; , Id〉 is a
monoid, where Id is the identity relation.

We can map predicates and functions to relations. If p ∈ Pred.Σ then we
define |p| ∈ Rel.Σ by

|p|.σ.σ′ = (p.σ) ∩ (σ = σ′).

The function (λx • |x|) is a lattice homomorphism (preserves ∪ and ∩, false),
but is not a boolean algebra homomorphism. It does not commute with ¬
and true. We also have

|true| = Id and |p ∩ q| = |p| ∩ |q| = |p| ; |q|.
If f ∈ Func.Σ then we define |f | ∈ Rel.Σ by:

|f |.σ.σ′ = (f.σ = σ′)

(λx • |x|) is a monoid homomorphism from 〈Func.Σ, ; , id〉 to 〈Rel.Σ, ; , Id〉.

3.2 Predicate transformers, refinement, monotonicity

A predicate transformer is a function that maps predicates over Σ to pred-
icates over Σ. We denote by PTran.Σ the type of predicate transformers
Pred.Σ → Pred.Σ. The intuition is that S ∈ PTran.Σ maps postconditions
over Σ to preconditions over Σ. The predicate transformers have a weak-
est precondition interpretation, i.e. S.q is a predicate that characterizes all
states from which the execution of S is guaranteed to terminate in a final
state where postcondition q holds.

Programs are modeled by monotonic predicate transformers. We denote
by MTran.Σ the monotonic predicate transformers on Σ. As in the cases of
predicates and relations we extend pointwise the operators from Pred.Σ to
MTran.Σ. We have that 〈MTran.Σ, v, t, u〉 is a complete lattice because
the monotonic predicate transformers are closed under arbitrary meets and
joins.

We call a predicate transformer S conjunctive if for all predicates p and
q, we have S.(p ∧ q) = S.p ∧ S.q

5

We denote by S ; T the functional composition of predicate transform-
ers. 〈MTran.Σ, ; , skip〉 is a monoid where skip is the identity predicate trans-
former (the identity function on Pred.Σ).

All the above operations defined on predicate transformers are interpreted
as operations on programs.

S v T – the refinement relation.

ui∈ISi – the demonic choice.

ti∈ISi – the angelic choice.

S ; T – the sequential composition.

skip – the program that does nothing.

In addition to these program constructs, we give the definition of some others:

{p}.q = p ∩ q (assertion)

[p].q = ¬p ∪ q (assumption or guard)

{R}.q = (λσ • (∃σ′ •R.σ.σ′ ∧ q.σ′)) (angelic update)

[R].q = (λσ • (∀σ′ •R.σ.σ′ ⇒ q.σ′)) (demonic update)

[f].q = [|f |] = {|f |} (functional update)

where p, q are predicates, R is a state relation, and f is a state function.

Lemma 1 If p, q are predicates, f is a function, R, Q are relations and
Si, T are predicate transformers then

{p ∧ q} = {p} ; {q} [p ∧ q] = [p] ; [q]

{R ; Q} = {R} ; {Q} [R ; Q] = [R] ; [Q]

(ui∈ISi) ; T =ui∈I(Si ; T) (ti∈ISi) ; T =ti∈I(Si ; T)

[R].(p ∩ q) = [R].p ∩ [R].q {R}.(p ∪ q) = {R}.p ∪ {R}.q
{p} = {|p|} [p] = [|p|]
{|f |} = [|f |] [Id] = skip

The conditional program construct is defined as follows:

if p then S else T fi = {p} ; S t {¬p} ; T

3.3 Least fixpoints

In this subsection we recall some properties about fixpoints in complete lat-
tices.

6

Theorem 2 (Knaster–Tarski [22]) Assume that L is a complete lattice
and f : L→ L is a monotonic function, then f has a least fixpoint (denoted
µf).

If S is a monotonic predicate transformer and b is a predicate then the
function F : MTran.Σ→ MTran.Σ defined by

F (X) = if b then S ; X else skip fi

is monotonic. We define the while statement by

while b do S od = µF

µF is an element of MTran.Σ, so the while construct introduces only mono-
tonic predicate transformers.

The following fixpoint properties will be used when we give the semantics
of recursive procedures.

Lemma 3 Assume that L is a complete lattice and the functions f, g : L→
L are monotonic such that f ≤ g (pointwise). Then µf ≤ µg.

Corollary 4 Assume that L is a complete lattice and the function f : L →
L→ L is monotonic in both arguments. Then (λx •µ(f.x)) is monotonic.

3.4 Notations

We denote predicates by p, q, functions by f, g, predicate transformers by
S, T , and states by σ, σ′. We will use Func, Pred, Rel, PTran and MTran
instead of Func.Σ, Pred.Σ, Rel.Σ, PTran.Σ and MTran.Σ, since Σ is fixed.

4 Program variables axioms

We denote by Var the type of program variables. For any program variable
x ∈ Var, Γ.x is its type. Var and Γ.x are nonempty types in higher order
logic. For a given program variable x, SameType.x is a predicate on program
variables that is true on all variables that have the same type as x.

We denote by nat the type of natural numbers and by NatVar the program
variables of type nat. We assume that NatVar have enough elements for our
examples.

For any program variable x we introduce the following functions:

val.x : Σ→ Γ.x (the value of x)

set.x : Γ.x→ Σ→ Σ (the update of x)

del.x : Σ→ Σ (the delete of local x)

7

The types of the functions val and set are dependent on the first argument.
We could implement them in PVS, for example, using the dependent type
mechanism.

If x ∈ Var, σ ∈ Σ, and a ∈ Γ.x, then val.x.σ is the current value of
program variable x in state σ, and set.x.a.σ is the state obtained from σ by
setting variable x to value a in state σ.

To be able to explain del.x we need to describe informally the state space
Σ. All elements σ ∈ Σ are tuples with one component for each program
variable x. The component corresponding to x in σ is an infinite list with
elements from Γ.x. Now del.x.σ is the state σ′ in which we have removed the
head of the list corresponding to x.

The functions val.x and set.x are the same as the ones defined in [1]. We
assume that val, set and del satisfy the following axioms:

(a) val.x.(set.x.a.σ) = a

(b) x 6= y ⇒ val.y.(set.x.a.σ) = val.y.σ

(c) set.x.a ; set.x.b = set.x.b

(d) x 6= y ⇒ set.x.a ; set.y.b = set.y.b ; set.x.a

(e) set.x.(val.x.σ).σ = σ

(f) del.x is surjective

(g) x 6= y ⇒ del.x ; val.y = val.y

(h) set.x.a ; del.x = del.x

(i) x 6= y ⇒ set.x.a ; del.y = del.y ; set.x.a

The axioms (a) – (e) are the same as the ones in [1].
Axiom (f) says that any state can be reached by deleting the program

variable x from some state. Axiom (g) states that if x and y are distinct
program variables, then the value of y remains unchanged after deleting x.
Axiom (h) states that deleting x after setting it to some value is the same
as deleting x directly. Finally axiom (i) says that it is not important in
which order we set x to some value and delete y if x and y distinct program
variables.

4.1 A model

In order to show that the axioms are consistent, we will give a model in which
they are satisfied. This model is also useful for a better understanding of the
meaning of val, set and del. Let

∏ {x ∈ Var | (Γ.x)ω}

8

Any component s ∈ (Γ.x)ω of a state σ ∈ Σ acts as a stack in which the
program variable x is stored. The first (top) element of s is the current value
of x, the value returned by val.x.σ. The function set.x.a changes the top
value of s to a and del.x removes the top element of s.

If σ ∈ Σ, then we write it as (axi)i∈ω, x∈Var or just (axi)i, x, a
x
i ∈ Γ.x

Formally we define val, set and del as:

val.y.σ = ay0

del.y.σ = (bxi)i, x, where (∀i • byi = ayi+1) and (∀i, x •x 6= y ⇒ bxi = axi)

set.y.a.σ = (bxi)i, x, where by0 = a and (∀i, x • i 6= 0 ∨ x 6= y ⇒ bxi = axi)

With these definitions it is easy to prove that all axioms (a) – (i) are satisfied.

4.2 List of program variables

We often need to have multiple assignments in programs. Procedures can also
have more than one parameter. In order to define such program constructs
we need to introduce lists of program variables.

We denote by VarList the set Var∗, of all finite lists with elements from
Var. We use the same notation x, y, z, . . . to denotes both program variables
and lists of program variables. For x, y ∈ VarList we denote by x · y the con-
catenation of the two lists and by ε the empty list. We consider Var ⊆ VarList,
and we denote by (x, y, z, . . .) the list with the elements x, y, z, . . . ∈ Var.

If 〈A∗, ·〉 is monoid of lists over A with · the concatenation of lists then we
extend the concatenation to subsets B, C of A by B·C = {b·c | b ∈ B∧c ∈ C}

For x ∈ VarList we define Γ.x ⊆ (
⊕ {y ∈ Var | Γ.y})∗ the type of the

list of program variables x by induction on x, where
⊕

denotes the disjoint
union. If y ∈ Var and z ∈ VarList, then

Γ.ε = {ε}
Γ.(y · z) = Γ.y · Γ.z

We also extend the functions val, set and del to lists of program variables.

val.ε.σ = ε, val.(y · z).σ = val.y.σ · val.z.σ

del.ε = id, del.(y · z) = del.y ; del.z

set.ε.ε = id, set.(y · z).(a · b) = set.y.a ; set.z.b

Lemma 5 If x, y ∈ VarList, a ∈ Γ.x, and b ∈ Γ.y then

(i) del.(x · y) = del.x ; del.y

(ii) set.(x · y).(a · b) = set.x.a ; set.y.b

(iii) val.(x · y).s = val.x.s · val.y.s

9

We usually need lists of program variables in which each program variable
occurs at most once. The predicate var.x is true if and only if all variables
from x are distinct. We denote by x ∩ y the set of program variables that
occur in both x and y

Lemma 6 If var.(x · y) then var.x, var.y, and x ∩ y = ∅.

The axioms of the program variables can be easily generalized to proper-
ties about lists of program variables.

Lemma 7 If x, y ∈ VarList, σ ∈ Σ and a, b are of appropriate types, then

(a) var.x⇒ val.x.(set.x.a.σ) = a

(b) x ∩ y = ∅ ⇒ val.y.(set.x.a.σ) = val.y.σ

(c) set.x.a ; set.x.b = set.x.b

(d) x ∩ y = ∅ ⇒ set.x.a ; set.y.b = set.y.b ; set.x.a

(e) set.x.(val.x.σ).σ = σ

(f) del.x is surjective

(g) x ∩ y = ∅ ⇒ del.x ; val.y = val.y

(h) set.x.a ; del.x = del.x

(i) x ∩ y = ∅ ⇒ set.x.a ; del.y = del.y ; set.x.a

Proof. The proof can be done by induction on x and y and is based on the
fact that val, del, set commute for distinct program variables.

Unless specified, we will use x, y, z to denote lists of program variables.

5 Program expressions

A syntactic program expression is made of program variables and constants
using some operators. So if x and y are program variables then x+ 2 · y is a
syntactic program expression.

The value of a program expression e in a state σ, denoted val.e.σ, is
defined by structural induction on e:

• if e is a variable x then val.e.σ = val.x.σ

• if e is a constant c then val.e.σ = c

• if e is op(e1, . . . , en) for some operator op and some expressions ei then
val.e.σ = op(val.e1.σ, . . . , val.en)

10

The semantics of a program expression of type A is a function from Σ
to A. In general, we will consider a program expression of some type A as
being any function from Σ to A. An expression of type bool is called boolean
program expression. The boolean expressions coincide with the predicates
on Σ. We denote by NatExp the type of natural program expressions, i.e.
Σ→ nat.

If e1, e2, . . . , en are program expressions of types A1, A2, . . . , An, re-
spectively, then we denote by (e1, e2, . . . , en) the program expression

(λσ • (e1.σ, e2.σ, . . . , en.σ))

of type A1 · A2 · . . . · An.

Lemma 8 If S, T ∈ MTran and e : Σ → A is a program expression where
A 6= ∅ then

(i) ta∈A{e = a} = skip

(ii) (∀a ∈ A • {e = a} ; S v {e = a} ; T)⇔ S v T

(iii) (∀a ∈ A • {e = a} ; S v T)⇔ S v T

Proof. We prove (i). Let q ∈ Pred and σ ∈ Σ, then

(ta∈A{e = a}).q.σ
= {Definitions}

∨
a∈A({e = a}.q.σ)

= {Definition of assume}
∨
a∈A(e.σ = a ∧ q.σ)

= {Distributivity}
q.σ ∧ ∨a∈A(e.σ = a)

= {A 6= ∅}
q.σ

Therefore ta∈A{e = a} = skip

The relations (ii) and (iii) can be proved using the first one and the fact
that the sequential composition of programs distributes over any arbitrary
nonempty join at left (Lemma 1).

Next we define the fact that a variable does not occur free in an expression
and the substitution of an expression e′ for a variable x in an expression e.

11

5.1 Substitution

Let e : Σ→ A, x ∈ VarList, and e′ : Σ→ Γ.x. We define e[x := e′] : Σ→ A,
the substitution of e′ for x in e as:

e[x := e′].σ = e.(set.x.(e′.σ).σ)

Lemma 9 If If x, y ∈ VarList then

(i) var.x⇒ (val.x)[x := e] = e

(ii) op(e1, e2)[x := e] = op(e1[x := e], e2[x := e])

(iii) x ∩ y = ∅ ⇒ (val.y)[x := e] = val.y

5.2 Freeness

Next we introduce the notion of x-freeness for an expression e : Σ → A,
as the semantic corespondent of the syntactic condition that the program
variables x do not occur free in e.

Definition 10 Let e : Σ → A be an expression, x ∈ VarList and f : Σ → Σ
be a function. We say that e is f -free if e = f ; e. We say that e is x-free if

(∀f : Σ→ Σ • (∀y ∈ Var • y ∩ x = ∅ ⇒ val.y = f ; val.y)⇒ e is f -free).

We say that e is set.x-free if e is set.x.a-free for all a ∈ Γ.x.

The idea behind the definition of x-free is that if a function f : Σ → Σ
does not change any program variable y (except possibly x), then f does not
change the value of e either.

Lemma 11 If e is x-free then e is del.x-free and set.x-free.

Lemma 12 If e is a syntactic program expression that does not contains x
free then val.e is x-free.

Proof. Assume that e does not contains x free. We prove that val.e is x-free
by structural induction on e. Let f : Σ → Σ such that (∀y •x ∩ y = ∅ ⇒
f ; val.y = val.y).

If e is a constant a ∈ A, then val.e.σ = a = val.e.(f.σ) = (f ; val.e).σ.
If e is a variable y such that y ∩ x = ∅ then

val.e.σ = val.y.σ = (f ; val.y).σ = (f ; val.e).σ.

If e is op(e1, e2) and val.e1, val.e2 are x-free then

val.e.σ = op(val.e1.σ, val.e2.σ) = op((f ; val.e1).σ, (f ; val.e2).σ) =

= op(val.e1 ; val.e2).(f.σ) = val.e.(f.σ) = (f ; val.e).σ.

12

Lemma 13 If e is set.x-free then e = e[x := e′]

Lemma 14 If e′ is x-free (del.x-free, set.x-free), then e[x := e′] is x-free
(del.x-free, set.x-free).

5.3 A state equivalence

The way program expressions are defined so far allow them to depend not
only on the current values of the program variables but also on their values
from the stack. We define a subclass of program expressions that dependent
only on the current values of program variables.

Two states σ and σ′ are val-equivalent, denoted by σ ∼ σ′, if for all
program variables x, (val.x.σ = val.x.σ′). We call a program expression e,
val-determined if for all σ and σ′ we have σ ∼ σ′ ⇒ e.σ = e.σ′.

The following lemma will be used to prove an assignment like rule for a
new program construct we will define in the next section.

Lemma 15 If e is a val-determined program expression, then

e.σ = e.(set.x.(val.x.σ).(del.x.σ))

Lemma 16 If e is a syntactic program expression, then the program expres-
sion val.e is val-determined.

Lemma 17 If e is val–determined and set.x–free then e is x-free.

Proof. Let f be such that for all y ∈ Var, y ∩ x = ∅ ⇒ val.y = f ; val.y. We
have to prove that e = f ; e.

(f ; e).σ

= {forward functional composition}
e.(f.σ)

= {e is set.x–free}
e.(set.x.(val.x.σ).(f.σ))

= {e is val–determined and set.x.(val.x.σ).(f.σ) ∼ σ}
e.σ

13

6 Program statements

In this section we introduce some program constructs and prove some prop-
erties about them and their compositions.

The program constructs we introduce in this section are monotonic pred-
icate transformers based on functions or demonic updates. We prove the
results about these constructs at the lowest possible level. For example if we
prove an equality between programs based on functions and demonic updates,
we prove it at the level of relations. Then we use the fact that the demonic
update is a monoid homomorphism from relations to monotonic predicate
transformers to lift the properties to monotonic predicate transformers.

Let x ∈ VarList and e be a program expression of type Γ.x. Then we
recall the definition of x := e : Σ → Σ (the multiple assignment) and (x :=
x′ | b) : Σ→ Σ→ bool (the relational assignment) from [1].

(x := e).σ = set.x.(e.σ).σ

(x := x′ | b).σ.σ′ = (∃a ∈ Γ.x • b[x′ := a] ∧ set.x.a.σ = σ′)

All properties from [1] regarding the assignment statement are true in our
framework also.

Definition 18 If x ∈ VarList and e : Σ→ Γ.x, then we define:

add.x.σ.σ′ = (σ = del.x.σ′) (add local variables)

add.x.e.σ.σ′ = (σ = del.x.σ′) ∧ (val.x.σ′ = e.σ) (add & initialize local
variables)

To be able to work with procedures that have result parameters we need
to introduce a new delete function that deletes a list of variables from the
stack and saves its value into another list of variables:

del.x.y.σ = set.y.(val.x.σ).(del.x.σ) (save & delete local variables)

where x and y are lists of program variables of the same type.
Next, when there is no confusion, we use the same notation add.x for both

the relation and the demonic update [add.x]. The same is true for add.x.e,
del.x, del.x.y and x := e.

Lemma 19 If var.x, then the relations add.x and add.x.e are total, i.e. for
each σ ∈ Σ, there exists σ′ ∈ Σ such that σ and σ′ are related by add.x
(respectively add.x.e).

14

Proof. For add.x this is trivial because add.x is the inverse of del.x, and del.x
is a surjective function. For add.x.e we have to prove for all σ that there
exists σ0 such that add.x.e.σ.σ0 is true.

∃σ0 • add.x.e.σ.σ0

= {definition of add.x.e}
(∃σ0 •σ = del.x.σ0 ∧ val.x.σ0 = e.σ)

= {del.x–surjective}
(∃σ1, σ0 •σ = del.x.σ1 ∧ σ = del.x.σ0 ∧ val.x.σ0 = e.σ)

⇐ {introduction of ∃}
(∃σ1 •σ = del.x.σ1 ∧ σ = del.x.(set.x.(e.σ).σ1) ∧

val.x.(set.x.(e.σ).σ1) = e.σ)

= {Lemma 7 (a) and (h)}
(∃σ1 •σ = del.x.σ1)

= {del.x–surjective}
true

Lemma 20 If x ∈ VarList then

(i) add.x ; del.x = skip

(ii) var.x⇒ add.x.e ; del.x = skip

Proof. Using Lemma 19.

Lemma 21 If x, x′ ∈ VarList have the same type, e is program expression of
type Γ.x, and b is a boolean expression such that (∀σ∃a • b[x′ := a].σ), then

(i) x := e ; del.x = del.x

(ii) (x := x′ | b) ; del.x = del.x

Proof. We prove only (i). It is enough to prove it at the function level.

(x := e ; del.x).σ

= {forward functional composition}
del.x.((x := e).σ)

= {assignment definition}
del.x.(set.x.(e.σ).σ)

= {Lemma 7 (h)}
del.x.σ

15

Lemma 22 If x∩y = ∅ and e is del.x-free then y := e ; del.x = del.x ; y := e

Proof. We prove it at the functional level.

(y := e ; del.x).σ

= {forward functional composition}
del.x.((y := e).σ)

= {assignment definition}
del.x.(set.y.(e.σ).σ)

= {Lemma 7 (i)}
set.y.(e.σ).(del.x.σ)

= {e is del.x-free}
set.y.(e.(del.x.σ)).(del.x.σ)

= {assignment definition}
(y := e).(del.x.σ)

= {forward functional composition}
(del.x ; y := e).σ

Lemma 23 If x, q, and e are of appropriate types then

(i) q is del.x–free⇒ [add.x].q = q

(ii) var.x and q is del.x–free⇒ [add.x.e].q = q

(iii) var.x and q is val–determined⇒ [add.x.e].q = q[x := e]

Proof. We prove only (iii). The others are similar. For (iii) we have to show
for all σ ∈ Σ that

q[x := e].σ ⇔ (∀σ′ • add.x.e.σ.σ′ ⇒ q.σ′) (1)

We prove 1 by proving the two implications separately.
First assume q[x := e].σ and add.x.e.σ.σ′ for some σ′ ∈ Σ. Using ate add

definition we obtain σ = del.σ′ and val.x.σ′ = e.σ. We show that q.σ′ is true.

q.σ′

= {Lemma 15}
q.(set.x.(val.x.σ′).(del.x.σ′))

= {assumptions}

16

q.(set.x.(e.σ).σ)

= {substitution definition}
q[x := e].σ

= {assumptions}
true

Assume now that (∀σ′ • add.x.e.σ.σ′ ⇒ q.σ′). We have by Lemma 19 that
exists σ0 such that add.x.e.σ.σ0. Using a similar argument as before we can
prove that q[x := e].σ is true.

Lemma 24 If var.x and p is a val-determined boolean expression then

{p[x := e]} ; add.x.e = add.x.e ; {p}
Proof. Let q ∈ Pred.

({p[x := e]} ; add.x.e).q

= {definition of sequential composition}
{p[x := e]}.([add.x.e].q)

= {assertion definition}
p[x := e] ∩ [add.x.e].q

= {Lemma 23}
[add.x.e].p ∩ [add.x.e].q

= {Lemma 1}
[add.x.e].(p ∩ q)

= {assertion definition}
[add.x.e].({p}.q)

= {definition of sequential composition}
(add.x.e ; {p}).q

Lemma 25 If p is a predicate then

(i) {del.x; p} ; del.x = del.x ; {p}
(ii) {p} ; add.x = add.x ; {del.x; p}
(iii) {p} ; add.x.e = add.x.e ; {del.x; p}
Next lemma, about del.x.y, will be used to get the values of a procedure

actual result parameters.

17

Lemma 26 If x, y ∈ VarList such that var.x, e is a del.x-free expression, and
y has the same type as x, then

x := e ; del.x.y = del.x ; y := e.

Proof. We have:

(x := e ; del.x.y).σ

= {forward functional composition}
(del.x.y).(set.x.(e.σ).σ)

= {definition of del.x.y}
set.y.(val.x.(set.x.(e.σ).σ)).(del.x.(set.x.(e.σ).σ))

= {Lemma 7 (a) and (h)}
set.y.(e.σ).(del.x.σ)

= {e is del.x-free}
set.y.(e.(del.x.σ)).(del.x.σ)

= {assignment definition}
(y := e).(del.x.σ)

= {forward functional composition}
(del.x ; y := e).σ

Example 27 If k, n, c, x, y ∈ NatVar such that var.(k, n, c, x, y) and e, f , g,
h are program natural expressions such that h is del.(k, n, c, x, y)–free, then
we have the following derivation for all u ∈ NatVar

add.(k, n, c).e ; add.(x, y) ;
x := f ; y := g ; c := h ;
del.(x, y) ; del.(k, n) ; del.c.u

= {Lemma 22}
add.(k, n, c).e ; add.(x, y) ;
x := f ; y := g ;
del.(x, y) ; del.(k, n) ;
c := h ; del.c.u

= {Lemma 21, Lemma 5 and Lemma 20}
add.(k, n, c).e ; del.(k, n)
c := h ; del.c.u

= {Lemma 26, Lemma 5 and Lemma 20}
u := h

18

7 Procedures

In this section we show how recursive procedures can be modeled using the
program construct add and del. We define procedures that have value and/or
result parameters. These procedures could also have local variables.

Definition 28 We call a procedure with parameters from A or simply a
procedure over A an element from A → MTran. We denote by Proc.A the
type of all procedures over A.

The set A is the range of the procedure’s actual parameters. For example, a
procedure with a value parameter x and a result parameter y, both of type
nat, has A = NatExp × NatVar. A call to a procedure P ∈ Proc.A with the
actual parameter a ∈ A is the program P.a.

We again extend pointwise all operations on programs to procedures over
A. We have that the structure (Proc.A, v,t, u) is a complete lattice and
(Proc.A, ; , λa • skip) is a monoid such that ; commutes over arbitrary meets
and joins at right. We call v the procedure refinement relation, u the de-
monic choice, t the angelic choice, and ; the sequential composition of pro-
cedures.

Next we show how we model the call by value and call by result in this
setting. We also give semantics for recursive procedures.

7.1 Nonrecursive procedures

A general nonrecursive procedure declaration is:

procedure name(val x; res y) :
body

(2)

where body is a program that does not contain any recursive call. The mean-
ing of this procedure declaration is that name is a procedure that has the
list x as value parameters and the list y as result parameters. When a call is
made to name the caller should provide a program expression e of type Γ.x
and a list of program variable z with Γ.z = Γ.y as actual parameters. The
intuition of the call is that the formal parameters of the procedure get the
values given by e and val.z, it executes body and then saves the values of the
formal parameters y to z.

The procedure declaration (2) is an abbreviation for the following formal
definition:

name = (λe, z • add.(x · y).(e · val.z) ; body ; del.x ; del.y.z)

19

The variables e and z are chosen such that they do not occur free in x, y and
body.

Using this approach we can have local variables as well. We can have any
number of local variables added in the body of the procedure. If w are the
local variables, then body is add.w ; body0 ; del.w.

7.2 Recursive procedures

The semantics of a recursive procedure over A is the least fixpoint of some
monotonic function on Proc.A given by the procedure declaration.

If body : Proc.A → Proc.A is a monotonic function then we define the
recursive procedure given by body as µ body.

We can also give semantics for mutually recursive procedures. It is suffi-
cient to show this for two procedures. If we have two recursive procedures,
over A and B respectively, then the bodies of the two procedures have these
types:

body1 : (Proc.A)× (Proc.B)→ (Proc.A)

and
body2 : (Proc.A)× (Proc.B)→ (Proc.B)

Where body1 and body2 are monotonic in both arguments. We define the
procedures (p1, p2) = µ body ∈ (Proc.A)× (Proc.B), where

body = (body1, body2) : Proc.A× Proc.B → Proc.A× Proc.B.

If we use only the program constructs defined in this paper to built the
body of a procedure then, using Corollary 4, body is a monotonic function on
Proc.A.

7.3 An example

Next we will show an example of how this definition works in practice. We
give a recursive procedure that computes the binomial coefficient

(
n
k

)
=

n!

k! · (n− k)!

using the recursive formula
(
n
k

)
=

(
n− 1
k − 1

)
+

(
n− 1
k

)

when 0 < k < n.

20

If k, n, c, x, y are program variables of type nat such that var.(k, n, c, x, y)
then let comb be the procedure defined by:

procedure comb (val k, n; res c):
local x, y
if k = 0 ∨ k = n then

c := 1
else

comb(k − 1, n− 1, x) ;
comb(k, n− 1, y) ;
c := x+ y

fi
We take A = NatExp× NatExp× NatVar and define

body.S.(e, f, u)

=

add.(k, n, c).(e, f, val.u) ; add.(x, y) ;
if k = 0 ∨ k = n then

c := 1
else

S.(k − 1, n− 1, x) ; S.(k, n− 1, y) ; c := x+ y
fi ;
del.(x, y) ; del.(k, n) ; del.c.u

(3)

Then body is a monotonic function from Proc.A to Proc.A.
If comb = µ body, then we can prove for all u ∈ NatVar and e, f ∈ NatExp

that

{e ≤ f} ; u :=

(
f
e

)
= {e ≤ f} ; comb(e, f, u). (4)

To prove (4) it is enough (by Lemma 8) to show

{a ≤ b ∧ e = a ∧ f = b} ; u :=

(
f
e

)

=
{a ≤ b ∧ e = a ∧ f = b} ; comb(e, f, u)

(5)

for all a, b ∈ nat, u ∈ NatVar and f, g : Σ→ nat. We split the proof of (5) in
two cases: (i)− a > b and (ii)− a ≤ b

The case (i) is trivial because {false} ; S = {false}.
We prove (ii) by induction on b. We have the case b = 0 and the case

b > 0 with (5) true for b− 1. We split again the case b > 0 in a = 0 ∨ a = b
and 0 < a < b. The cases b = 0 and a = 0 ∨ a = b are similar. We prove the

21

case 0 < a < b assuming that (5) is true for b− 1 and all a ∈ nat, u ∈ NatVar
and f, g : Σ→ nat. We have

{a ≤ b ∧ e = a ∧ f = b} ; comb(e, f, u)

= {Assumptions}
{0 < a < b ∧ e = a ∧ f = b} ; comb(e, f, u)

= {comb = µ body}
{0 < a < b ∧ e = a ∧ f = b} ;
add.(k, n, c).(e, f, val.u) ; add.(x, y) ;
if k = 0 ∨ k = n then

c := 1
else

comb(k − 1, n− 1, x) ; comb(k, n− 1, y) ; c := x+ y
fi ;
del.(x, y) ; del.(k, n) ; del.c.u

= {Lemma 24}
{0 < a < b ∧ e = a ∧ f = b}
add.(k, n, c).(e, f, val.u) ; add.(x, y) ;
{0 < a < b ∧ k = a ∧ n = b} ;
if k = 0 ∨ k = n then

c := 1
else

comb(k − 1, n− 1, x) ; comb(k, n− 1, y) ; c := x+ y
fi ;
del.(x, y) ; del.(k, n) ; del.c.u

= {by induction hypothesis using refinement [1]}
{0 < a < b ∧ e = a ∧ f = b}
add.(k, n, c).(e, f, val.u) ; add.(x, y) ;

x :=

(
b− 1
a− 1

)
; y :=

(
b− 1
a

)
; c :=

(
b
a

)
;

del.(x, y) ; del.(k, n) ; del.c.u

= {Example 27}

{0 < a < b ∧ e = a ∧ f = b} ; u :=

(
b
a

)

= {Refinement [1]}
{0 < a < b ∧ e = a ∧ f = b} ; u :=

(
f
e

)

This concludes the proof of (4).

22

8 Refinement rule for introduction of recur-

sive procedure calls

So far we have defined the refinement of procedures and we gave semantics
for recursive procedures. In order to express properties about procedures
over A, we now need to lift the predicates to predicates that depends on A.

We call the type A → Pred the parametric predicate type over A. The
order relation (meet, join) on parametric predicates is the pointwise extension
of the order relation (meet, join) on predicates. For p : A → Pred we define
assert p (denoted {p}) as the procedure

{p} = (λa • {p.a})

In the same way we can define parametric relations and we can lift all opera-
tions over predicates, relations, and programs to operations over parametric
predicates, parametric relations and procedures. All properties are trivially
preserved.

We recall some facts about recursion from [1], page 334, but we use proce-
dures and parametric predicates instead of monotonic predicate transformers
and predicates.

Let P = {pw |w ∈ W} be a collection of parametric predicates (over A)
that are indexed by the well-founded set W such that v ≤ w ⇒ pv ⊆ pw. We
refer to this collection as a collection of ranked parametric predicates. We
define

p = (
⋃

w∈W
pw) and p<w = (

⋃
v<w

pv)

Now we are able to give the theorem for recursion introduction.

Theorem 29 If body : Proc.A→ Proc.A is a monotonic function on proce-
dures over A, {pw |w ∈ W} is a collection of ranked parametric predicates,
and P is a procedure over A, then

(∀w ∈ W • {pw} ; P v body.({p<w} ; P))⇒ {p} ; P v µ body

Proof. The proof is by well-founded induction on W and is essentially the
same as the proof of Theorem 20.1 in [1] because the parametric predicates
and procedures over A satisfy the properties of predicates and predicate
transformers used in the proof.

We will show how this theorem can be applied to obtain by refinement
the recursive procedure defined in the previous section. We take

• W = nat,

23

• pw = (λ(e, f, u) • e ≤ f ∧ f ≤ w),

• P =

(
λ(e, f, u) •u :=

(
f
e

))
, and

• body given by (3)

To prove that

{e ≤ f} ; u :=

(
f
e

)
v comb(e, f, u) (6)

we have to show for all w ∈ nat that

{pw} ; P v body.({p<w} ; P)).

This is true if, by Lemma 8, for all e, f ∈ NatExp, u ∈ NatVar, and a, b ∈ nat

{e = a ∧ f = b ∧ e ≤ f ≤ w} ; u :=

(
f
e

)

v
add.(k, n, c).(e, f, val.u) ; add.(x, y) ;
if k = 0 ∨ k = n then

c := 1
else

{k − 1 ≤ n− 1 < w} ; x :=

(
n− 1
k − 1

)
;

{k ≤ n− 1 < w} ; y :=

(
n− 1
k

)
;

c := x+ y
fi ;
del.(x, y) ; del.(k, n) ; del.c.u

(7)

We prove this using refinement and equality rules proved in this paper for
the program constructs we have introduced.

{e = a ∧ f = b ∧ e ≤ f ≤ w} ; u :=

(
f
e

)

= {Refinement}

{e = a ∧ f = b ∧ e ≤ f ≤ w} ; u :=

(
b
a

)

= {Lemma 20 and Lemma 21}

24

{e = a ∧ f = b ∧ e ≤ f ≤ w} ;
add.(k, n, c).(e, f, val.u) ; add.(x, y) ;
[x := x0 | true] ; [y := y0 | true] ;
del.(x, y) ; del.(k, n) ; del.c ;

u :=

(
b
a

)

= {Lemma 22}
{e = a ∧ f = b ∧ e ≤ f ≤ w} ;
add.(k, n, c).(e, f, val.u) ; add.(x, y) ;

[x := x0 | true] ; [y := y0 | true] ; c :=

(
b
a

)
;

del.(x, y) ; del.(k, n) ; del.c.u

= {Lemma 24}
add.(k, n, c).(e, f, val.u) ; add.(x, y) ;
{k = a ∧ n = b ∧ k ≤ n ≤ w} ;

[x := x0 | true] ; [y := y0 | true] ; c :=

(
b
a

)
;

del.(x, y) ; del.(k, n) ; del.c.u

= {Refinement}
add.(k, n, c).(e, f, val.u) ; add.(x, y) ;
if k = 0 ∨ k = n then
{(k = 0 ∨ k = n) ∧ k = a ∧ n = b ∧ k ≤ n ≤ w} ;

[x := x0 | true] ; [y := y0 | true] ; c :=

(
b
a

)
;

else
{k 6= 0 ∧ k 6= n ∧ k = a ∧ n = b ∧ k ≤ n ≤ w} ;

[x := x0 | true] ; [y := y0 | true] ; c :=

(
b
a

)
;

fi ;
del.(x, y) ; del.(k, n) ; del.c.u

v {Refinement}

25

add.(k, n, c).(e, f, val.u) ; add.(x, y) ;
if k = 0 ∨ k = n then

c := 1
else
{k 6= 0 ∧ k 6= n ∧ k = a ∧ n = b ∧ k ≤ n ≤ w} ;

x :=

(
b− 1
a− 1

)
; y :=

(
b− 1
a

)
;

c :=

(
b− 1
a− 1

)
+

(
b− 1
a

)

fi ;
del.(x, y) ; del.(k, n) ; del.c.u

v {Refinement}
add.(k, n, c).(e, f, val.u) ; add.(x, y) ;
if k = 0 ∨ k = n then

c := 1
else

{k − 1 ≤ n− 1 < w} ; x :=

(
n− 1
k − 1

)
;

{k ≤ n− 1 < w} ; y :=

(
n− 1
k

)
;

c := x+ y
fi ;
del.(x, y) ; del.(k, n) ; del.c.u

The proof of (6) using Theorem 29 is simpler than the proof of (4). We
don not need induction anymore as the recursion introduction theorem has
the induction built in. The refinement relation (6) is weaker than (4) but it
is strong enough in practice.

9 Hoare total correctness rule for recursive

procedures with parameters

In this section we will give a Hoare rule for proving the correctness of recursive
procedures based on the refinement rule given by Theorem 29. To be able
to do so we need to define a Hoare triple in general and for procedures in
particular. If p and q are predicates and S is a program, then a Hoare triple
is denoted p {|S|} q and is true if and only if p ⊆ S.q. For a predicate q we
will also need the notation q̂ for the relation (λσ • q)

Lemma 30 p {|S|} q is true if and only if {p} ; [q̂] v S.

26

Proof. See Lemma 17.4 from [1].
We extend the Hoare triple notion to procedures. If p, q are parametric

predicates over A and P is a procedure over A then a parametric Hoare
triple is denoted p {|P |} q and is true if and only if for all a ∈ A the Hoare
triple p.a {|P.a|} q.a is true. In this case we also lift the predicate q to
the parametric relation over A, q̂ = (λa σ • b.a). Lemma 30 can be trivially
extended to parametric Hoare triples.

Lemma 31 p {|P |} q is true if and only if {p} ; [q̂] v P .

Theorem 32 If {pw |w ∈ W} is a collection of ranked parametric predicates,
q is a parametric predicate over the set A and body : Proc.A→ Proc.A, then
the following parametric Hoare rule is true

(∀w, P • p<w {|P |} q ⇒ pw {|body.P |} q)
p {|µ body|} q

Proof.
p {|µ body|} q

= {Lemma 31}
{p} ; [q̂] v µ body

⇐ {Theorem 29}
(∀w • {pw} ; [q̂] v body.({p<w} ; [q̂])

= {Lattice properties}
(∀w, P • {p<w} ; [q̂] v P ⇒ {pw} ; [q̂] v body.P

= {Lemma 31}
(∀w, P • p<w {|P |} q ⇒ pw {|body.P |} q)

Similarly we can also derive correctness rules for add and del based on
lemmas we have proved about them.

For two lists x, y of program variables, we denote by x−y the list x from
which we delete the variables occurring in y.

Lemma 33 If x, y are lists of program variables, p is a predicate, and e is a
program expression then

(i) (del.x; p) {|del.x|} p
(ii) p is del.x–free⇒ (del.x; p) {|del.x.y|} p
(iii) p is val–determined and set.(x− y)–free ⇒ p[y := x] {|del.x.y|} p
(iv) p {|add.x|} (del.x; p)

(v) p {|add.x.e|} (del.x; p)

(vi) p is val–determined and var.x⇒ p[x := e] {|add.x.e|} p

27

Proof. The proofs of (i), (ii), (iv), and (v) are strait forward consequences
of the fact that add.x, add.x.e, del.x, and del.x.y are total relations. The
relation (vi) is a direct consequence of Lemma 23.

We prove (iii) by proving p[y := x] = [del.x.y].p . We assume that p is
val–determined and set.(x− y)–free, then

[del.x.y].p.σ

= {functional update definition}
p.(del.x.y.σ)

= {del.x.y definition}
p.(set.y.(val.x.σ).(del.x.σ))

= {p is set.(x− y)–free}
p.(set.(x− y).(val.(x− y).σ).(set.y.(val.x.σ).(del.x.σ)))

= {p is val–determined and
(set.(x− y).(val.(x− y).σ).(set.y.(val.x.σ).(del.x.σ)))
∼

set.y.(val.x.σ).σ}
p.(set.y.(val.x.σ).σ)

= {substitution definition}
p[y := x]

Lemma 34 If S ∈ MTran, e is a program expression of type A, and p, q ∈
Pred, then

(∀a ∈ A • (e = a) ∧ p {|S|} q)⇔ p {|S|} q

Lemma 35 If S a conjunctive predicate transformer, and p, q, p′, q′ are pred-
icates then

p {|S|} q ∧ p′ {|S|} q′ ⇒ (p ∧ p′) {|S|} (q ∧ q′)

Lemma 36 If e, f are program expressions of appropiate types then

(i) e is del.x–free ⇒ del.x; e = e

(ii) (del.x; e)[x := f] = del.x; e

(iii) x ∩ y = ∅ ⇒ (del.x; e)[y := f] = del.x; (e[y := f])

Using these rules we prove the correctness of the procedure for computing
the binomial coefficient using the same arguments we used, but reformulated
in the context of Hoare proof rules.

28

We assume for all q ∈ Pred, and a, b, d ∈ nat that

(λe, f, u • q ∧ u = d ∧ e = a ∧ f = b ∧ e ≤ f < w)

{|P |}
(
λe, f, u • q[u := d] = a ∧ u =

(
b
a

)) (8)

The predicate q in (8) specify that a procedure call to comb does not change
any program variable except u. We need this fact when we prove the correct-
ness of this procedure. We have to show that the recursive call comb.(k −
1, n− 1, x) does not change k and n.

We prove for all q, a, b, d, e, f , and u that

q ∧ val.u = d ∧ e = a ∧ f = b ∧ e ≤ f ≤ w

{|
add.(k, n, c).(e, f, val.u) ; add.(x, y) ;
if k = 0 ∨ k = n then

c := 1
else

P.(k − 1, n− 1, x) ; P.(k, n− 1, y) ; c := x+ y
fi ;
del.(x, y) ; del.(k, n) ; del.c.u

|}

q[u := d] ∧ val.u =

(
b
a

)

⇐ {Lemma 33 and Lemma 35}
del.(k, n, c); q ∧ del.(k, n, c); val.u = d ∧
k = a ∧ n = b ∧ k ≤ n ≤ w

{|
add.(x, y) ;
if k = 0 ∨ k = n then

c := 1
else

P.(k − 1, n− 1, x) ; P.(k, n− 1, y) ; c := x+ y
fi ;
del.(x, y) ; del.(k, n)

|}

del.c; (q[u := d]) ∧ val.c =

(
b
a

)

⇐ {Lemma 33 and v = (x, y, k, n, c)}

29

del.v; q ∧ del.v; val.u = d ∧ k = a ∧ n = b ∧ k ≤ n ≤ w

{|
if k = 0 ∨ k = n then

c := 1
else

P.(k − 1, n− 1, x) ; P.(k, n− 1, y) ; c := x+ y
fi ;

|}

del.v; (q[u := d]) ∧ val.v =

(
b
a

)

⇐ {if statement corectness: case k 6= 0 ∧ k 6= n}
del.v; q ∧ del.v; val.u = d ∧ k = a ∧ n = b ∧ 0 < k < n ≤ w

{| P.(k − 1, n− 1, x) ; P.(k, n− 1, y) ; c := x+ y |}

del.v; (q[u := d]) ∧ val.v =

(
b
a

)

⇐ {Lemma 34, for all d′ ∈ Γ.x}
(del.v; q ∧ del.v; val.u = d ∧ k = a ∧ n = b ∧ 0 < k < n ≤ w) ∧
val.x = d′ ∧ k − 1 = a− 1 ∧ n− 1 = b− 1 ∧ k − 1 ≤ n− 1 < w

{| P.(k − 1, n− 1, x) ; P.(k, n− 1, y) |}

del.v; (q[u := d]) ∧ val.x+ val.y =

(
b
a

)

⇐ {Lemma 36 and Assumption (8)}
(del.v; q ∧ del.v; val.u = d ∧ k = a ∧ n = b ∧ 0 < k < n ≤ w)[x := d′] ∧
val.x =

(
b− 1
a− 1

)

{| P.(k, n− 1, y) |}

del.v; (q[u := d]) ∧ val.x+ val.y =

(
b
a

)

⇐ {Assumption (8) and weakening the precondition}
del.v; q ∧ del.v; val.u = d ∧ 0 < a < b ∧
val.x =

(
b− 1
a− 1

)
∧ val.y =

(
b− 1
a

)

⇒

del.v; (q[u := d]) ∧ val.x+ val.y =

(
b
a

)

= {logic}
true

30

Using Theorem 32 we obtain for all a, b, d ∈ nat, e, f ∈ NatExp, u ∈ NatVar,
and q ∈ Pred that

(q ∧ u = d ∧ e = a ∧ f = b ∧ e ≤ f) {|comb(e, f, u)|}
(
q[u := d] ∧ u =

(
b
a

))

10 Conclusions

We have introduced new program constructs for adding and deleting program
variables and have used them to give a predicate transformer semantics for
recursive procedures with parameters and local variables. We proved some
properties of these constructs and showed how one can prove the correctness
of a recursive procedure using this semantics. We have also given a refinement
rule for introduction of recursive procedure calls and, based on this, we proved
a Hoare correctness rule for recursive procedures with parameters and local
variables. We do not need to change the state space in our approach to
accommodate local variables or procedure parameters. Because of this our
calculus is simpler and more algebraic than the ones in the literature.

Having only value and value-result parameters does not seem to be a
major drawback. According to [8], in the absence of aliasing, call by reference
is equivalent to call by value result.

Many procedure proof rules in the literature are mixing the procedure
call with the procedure parameters. We have separated these concerns [17],
and obtained as a result much simpler rules. We have rules for recursive
procedures in which the parameters are not involved at all. We have different
rules that deal with parameters (local variables) and they are almost as simple
as the assignment rules.

References

[1] R.J. Back and J. von Wright. Refinement Calculus. A systematic Intro-
duction. Springer, 1998.

[2] R.J. Back and J. von Wright. Compositional action system refinement.
In J. Derrick, E. Boiten, J. Woodcock, and J. von Wright, editors, Elec-
tronic Notes in Theoretical Computer Science, volume 70. Elsevier Sci-
ence Publishers, 2002.

[3] O. Celiku and J. von Wright. Theorem prover support for precondition
and correctness calculation. In 4th International Conference on For-

31

mal Engineering Methods, volume 2495 of Lecture Notes in Computer
Science, pages 299–310. Springer-Verlag, October 2002.

[4] A. Church. A formulation of the simple theory of types. J. Symbolic
logic, 5:56–68, 1940.

[5] B.A. Davey and H.A. Priestley. Introduction to lattices and order. Cam-
bridge University Press, New York, second edition, 2002.

[6] E.W. Dijkstra. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Comm. ACM, 18(8):453–457, 1975.

[7] E.W. Dijkstra. A discipline of programming. Prentice-Hall Inc., Engle-
wood Cliffs, N.J., 1976. With a foreword by C. A. R. Hoare, Prentice-
Hall Series in Automatic Computation.

[8] J.E. Donahue. Complementary definitions of programming language se-
mantics. Springer-Verlag, Berlin, 1976. Lecture Notes in Computer
Science, Vol. 42.

[9] M.J.C. Gordon. Mechanizing programming logics in higher-order logic.
In Birtwistle, G.M. and Subrahmanyam, P.A., editors, Current Trends
in Hardware Verification and Automatic Theorem Proving (Proceed-
ings of the Workshop on Hardware Verification), pages 387–439, Banff,
Canada, 1988. Springer-Verlag, Berlin.

[10] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL. Cam-
bridge University Press, Cambridge, 1993. A theorem proving environ-
ment for higher order logic, Appendix B by R. J. Boulton.

[11] D. Gries and G. Levin. Assignment and procedure call proof rules. ACM
Transactions on Programming Languages and Systems (TOPLAS),
2(4):564–579, 1980.

[12] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. MIT Press, Cam-
bridge, MA, 2000.

[13] W.M. Hesselink. Predicate transformers for recursive procedures with
local variables. Formal Aspect of Computing, 11:616–336, 1999.

[14] C.A.R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969.

[15] T. Kleymann. Hoare logic and auxiliary variables. Formal Aspect of
Computing, 11:541–566, 1999.

32

[16] L. Laibinis. Mechanised Formal Reasoning About Modular Programs.
PhD dissertation, Turku Centre for Computer Science, April 2000.

[17] C. Morgan. Procedures, parameters, and abstraction: separate concerns.
Sci. Comput. Programming, 11(1):17–27, 1988.

[18] S. Owre, N. Shankar, J.M. Rushby, and D.W.J. Stringer-Clavert. PVS
Language Reference, 1999.

[19] M. Staples. A Mechanised Theory of Refinement. PhD dissertation,
Computer Laboratory, University of Cambridge, November 1998.

[20] M. Staples. Representing WP semantics in Isabelle/ZF. In Theorem
proving in higher order logics (Nice, 1999), volume 1690 of Lecture Notes
in Comput. Sci., pages 239–254. Springer, Berlin, 1999.

[21] M. Staples. Interfaces for refining recursion and procedures. Formal
Aspect of Computing, 12:372–391, 2000.

[22] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific J. Math., 5:285–309, 1955.

[23] D. von Oheimb. Hoare logic for mutual recursion and local variables. In
C. Pandu Rangan, V. Raman, and R. Ramanujam, editors, Foundations
of Software Technology and Theoretical Computer Science, volume 1738
of LNCS, pages 168–180. Springer, 1999.

33

Turku Centre for Computer Science
Lemminkäisenkatu 14
FIN-20520 Turku
Finland

http://www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Science

