Symbolic Simulation of Hybrid
Systems

Ralph-Johan Back
Cristina Cerschi Seceleanu
Jan Westerholm

= = Turku Centre for Computer Science

EIEE | Tucs Technical Reports
=0

TUC S No 503, January 2003

Symbolic Simulation of Hybrid
Systems

Ralph-Johan Back
Cristina Cerschi Seceleanu
Jan Westerholm

email: {backrj, ccerschi, jawestp@abo.fi

Turku Centre for Computer Science
TUCS Technical Report No 503
January 2003

=
™ ISBN 952-12-1109-1
TUCS ISSN 1239-1891

Abstract

Continuous action system€AS) is a formalism intended for modeling hybrid
systems (systems that combine discrete control with continuous behavior), and
proving properties about the model within refinement calculus. In this paper we
use a symbolic manipulation program to build a tool for simulating CAS models
by calculating symbolically the time evolution of the discrete and continuous CAS
model functions, as explicit and exact expressions of a continuous time variable.
We may then study the time behavior and general properties of the model by plot-
ting these functions with respect to time. For certain models our tool eliminates
the need for introducing tolerances into the model structure. The tool is useful
for checking that the model behaves correctly, and we can sometimes study the
behavior of CAS models with in principle infinite precision.

TUCS Laboratory
Software Construction Laboratory

1 Introduction

Hybrid systemdall on the borderline between Computer Science and Control
Theory, requiring techniques from both areas. These systems can be quite hard
to build, due to the many different ways in which the continuous system behavior
needs to interact with the discrete controller. Modeling hybrid systems is therefore
of great help, allowing one to analyze the properties of the system to be built
beforehand, to find out potential trouble spots, and to convince oneself of the
correctness of the controller.

A formalapproach to modeling hybrid systems, especially safety-critical con-
trol systems has the advantage of providing a precise model of the system, on
which well-established formal verification methods may be applied to prove that
any behavior of the system satisfies the properties that are verified.

Discrete concurrent systems can be modeledai®n system$§t], where a
state (described by a collection of state variables) is manipulated by a collection
of actions.

Continuous Action Systenf€AS) are an extension of action systems to hy-
brid systems, being based on a new approach to describe the state of a system.
Essentially, the state variables will range over functions over time, rather than
just over values. The CAS formalism has been recently introduced by Back, Pe-
tre and Porres [5]. This model allows us to describe both control actions and
time advancing behavior actions with the same simple mechanism. Besides CAS,
there are several other hybrid formalisms developed to support the description and
analysis of hybrid systems. Among them, the most populatiered automata
hybrid automatand the more general frameworkigfbrid input/output automata
[2,11, 13].

Proving properties about action systems is done within the higher-order logic
framework of the refinement calculus developed by Back and von Wright [6].
Because continuous action systems are special cases of ordinary action systems,
we can use the proof and refinement techniques developed for ordinary action
systems for these as well. This allows us to verify safety and liveness properties
of hybrid systems (modeled as continuous action systems), as well as to prove
correctness of refinements of hybrid systems [5].

Prior to, or as an alternative to verification, the simulation of a hybrid model
brings many benefits to the modeler, increasing the confidence in an error free
abstraction. A lot of effort has been devoted to developing simulation tools for
hybrid systems, targeting various modeling languages. Such tools include the
Hybrid Chi simulator, Dymola, Shift, and Simulink [7, 9, 10, 14].

The contribution of this paper is to show how sonulatethe behavior of
hybrid systems that are modeled as continuous action systems. The simulation
technique that we use is symbolic, i.e., given the simulation parameters, we con-

1

struct the exact analytic functions that describe the behavior of the hybrid system
over time (rather than just numeric approximations of the behavior). For this pur-
pose, we use the computer algebra packitzghematicgd15]. Besides allowing

us to get symbolic solutions to the time varying behavior of the hybrid system,
Mathematica also provides good facilities for visualizing the system evolution as
graphs. The simulation method is based on calculating symbolically the next time
point when at least one action is enabled, using the minimization capabilities of
Mathematica. This means that our simulation method is not dependent on choos-
ing a fixed sampling interval, but that the simulation rather proceeds from one
interesting time point to the next. These interesting time points can be very dense
in times when the behavior changes rapidly, and be sparse at other times.

We also allow the state variable functions to be described by differential equa-
tions. The differential equation solver of Mathematica is then very useful, in
particular for the linear case where it is easy to find an exact solution. In cases
where we do not get an analytic solution, we can still get a numeric approxima-
tion of the time functions, and use these approximations in our simulation. The
approximation will introduce an uncertainty into the simulation, but still allows
us to carry out the simulation independently of a fixed sampling interval.

We have built a tool that allows us to simulate automatically continuous action
systems. This tool is essentially an interpreter with plotting facilities for contin-
uous action systems, written in the Mathematica programming language. Our
experiences with this tool have been very promising. It provides a good visu-
alization of the behavior of hybrid systems, and has been also quite efficient in
harnessing the power of Mathematica.

We have applied our simulation technique to a small collection of hybrid sys-
tems. In the paper, we will describe one application in more detail. It models
a heat producing nuclear reactor with two cooling rods. The simulation tool has
proved to be very useful in this and other cases that we have tried, sometimes
revealing quite surprising behavior, and confirming the a priori intuition about the
system behavior in other cases.

The rest of the paper is organized as follows. The continuous action system
model is briefly described in section 2. Section 3 presents the action system model
of a temperature control system (TCS) for a nuclear reactor tank. A particular ap-
plication of our tool is to simulate the behavior of the TCS model, in Mathematica,
which is shown in section 4. The simulation results can be found in section 5. Sec-
tion 6 offers a general description of the simulator, emphasizing the advantages
and disadvantages of our approach, and also the simulation algorithm behind it.
Conclusions are presented in section 7.

2

2 Continuous action systems

A continuous action syste[B] consists of a finite set of attributes that can range
over discrete or continuous valued time functions, forming the state of the system,
together with a finite set of actions that act upon the attributes. It is of the form

€ £ |(varz:Real, — T+ S;

1
dogi — Si| ... gm — Smod)| :y 1)

Herex = x4,...,x, are theattributesof the system,S, is the initialization
statement, whiled; = ¢; — S;, i = 1,...,m are theactionsof the system.

We call g; the guard of the actionA4;, and S; the bodyof the same action. The
attributesy = v, ..., y, are defined in the environment of the continuous action
system (we say that they airaported. Real, stands for the non-negative reals,
and is used as the time domain.

Intuitively, executing a continuous action system proceeds as follows. There
is an implicit variablenow, that shows the present time. Initiallyw = 0. The
guards of the actions may refer the valuerefv, as may also expressions in
the action bodies (but they can not changev). The initialization.S, assigns
initial time functions to the attributes,, ..., x,. These time functions describe
the default future behavior of the attributes. The system will then start evolving
according to these functions, with time (as measuredday) moving forward
continuously. However, as soon as one of the conditigns ., g, becomes true,
the system chooses one of theabledactions, say; — 5;, for execution. The
choice is nondeterministic if there is more than one such action. The $oofy
the action is then executed. It will usually change some attributes by changing
their future behavior. Attributes that are not changed will behave as before. After
the changes stipulated I8 have been done, the system will evolve to the next
time instance when one of the actions is enabled, and the process is repeated. The
next time instance when an action is enabled may well be the same as the previous,
I.e., time needs not to progress between the execution of two enabled actions. This
is usually the case when the system is doing some (discrete, logical) computation
to determine how to proceed next. Such computation does not take any time. It
is possible that after a certain time instance, none of the actions will be enabled
anymore. This just means that, after this time instance, the system will continue
to evolve for ever according to the functions last assigned to the attributes.

Note that in our approach actions are selected and executed asynchronously,
compared to the hybrid automata formalism [11] where transitions are fired syn-
chronously.

We write x : — e for an assignment rather than:= e, to emphasize that
only the future behavior of the attributeis changed to the function The past
behavior (before:ow) remains unchanged.

3

One of the main advantages of this model for hybrid computation is that both
discrete and continuous behavior are described in the same way. In particular,
if the attributes are only assigned constant functions, then we obtain a discrete
computation.

Let C be the continuous action system described by (1). We explain the mean-
ing of € by translating it into an ordinary action system. Its semantics is given by
the following (discrete) action systeth

€ £ |[varnow : Real,z : Real, — T+
now :=0;5y; N;

dogis — S1;N| ...] gm — Sm; N od

Iy

)

Here the attributeow is declared, initialized and updated explicitly. It models
the moments of time that are of interest for the system, i.e. the starting time and the
succeeding moments when some action is enabled. The vatugwok updated
by the statemenV,

N £ now:= next.gg.now

Above,gg = g1 V ... V g,, denotes the disjunction of all guards of the actions and
next is defined by

oot min{t’' >t | gg.t'}, ifexistst’ >t such thayg.t’
next. X =
99 t, otherwise

Thus, the functiomext gives a moment of time when at least one action is
enabled. Only at such a moment can the future behavior of attributes be modified.
If no action will be ever enabled, then the second branch of the definition will
be followed, and the attributeow will denote the moment of time when the last
discrete action was executed. In this case the system terminates with the last
assigned values for the attributes. This means in the continuous interpretation that
the system will evolve forever according to the functions assigned last. We assume
in this paper that the minimum in the definitionrait always exists when at least
one guard is enabled in the present or future. Continuous action systems that do
not satisfy this requirement are considered ill-defined.

We define thduture updater : — e by

zi—e & z:=ux/now/e

where

z/to)e = (Mt -if t <ty then 2.t else e.t fi)

4

Thus, only the future behavior afis changed by this assignment.

This means that a hybrid action system is essentially a collection of time func-
tionszy,...,x, over the non-negative reals, defined in a stepwise manner. The
steps form a sequence of intervd§si,, I, . . ., where each interval, is either a
left closed interval of the fornfy; .. .¢; 1) or a closed interval of the form;, ¢,],

I.e., a point. The action system determines a family of functigns. . , x,, which

are stepwise defined over this sequence of intervals and points. The extremes of
these intervals correspond to the control points of the system where a discrete
action is performed.

The behavior of a hybrid system is often described using a system of differ-
ential equations (DE). CAS allows for this kind of definitions, by introducing the
shorthand: : — f(z). This will assign tar a time function that satisfies the given
differential equation and which is such that the functiowill evolve continu-
ously.

As an example, iff = (At * ¢), wherec is a constant value, then we have that

ii—c £ z:— (M- znow+cx (t—now))

We can use clock variables or timers to measure the passage of time and to
correlate the execution of an action with the timeclack variableis a variable
that measures the time elapsed since it was set to zero. Assumeighatime
variable of typeReal. We then use the following definition for resetting the clock
c
reset(c) £ c¢:i— (At -t — now)

This definition is just a convenience for correlating the behavior of our system
with the passage of time.

Since a clock variable is just a regular variable, we can define as many clocks
as we need and reset them independently. It is also possible to do arithmetic
operations with clock variables, e.g., to use time intervals in guards. Hence, the
formalism is also well suited for modeling real-time systems.

3 Example: the temperature control system

We exemplify our approach on a case taken from [1]. The hybrid system is a
temperature control system (TCS) for a heat producing reactor, described by the
temperature as a function of timét). The reactor starts from the initial tempera-
tured, and heats up at a given rate Whenever it reaches the critical temperature
O, it is designed to be cooled down by inserting into the core either of two rods,
modeled by the variables, () andxz,(t), which are in fact clocks measuring the
time elapsed between two consecutive insertions of the same rod, respectively.

5

The cooling proceeds at the ratgor v, depending on which rod is being used,
and the cooling stops when the reactor reaches a given minimum tempéature

by releasing the respective inserted rod. The rod used for cooling is then unavail-
able for a prescribed timé&, after which it is again available for cooling. The
object of the modeling is to ascertain that the reactor never reaches the critical
temperaturd,,; without at least one of the rods available, otherwise a shutdown
will be initiated.

The translated action system model (where time is explicitly advanced) for
the TCS consists of a set of initializing statements and a collection of guards
and their corresponding action bodies (see Figure 2). We use the convention that
an assignment : — ¢ (wherec is a constant) stands far: — (Xt - ¢) (i.e., the
pointwise extended constant function, rather than the constant itself is assigned
to z). Observe in Figure 2 that the model contains the analytic solutions of the
linear DE that characterize the time evolution of the continuous variables (e.g., in
state0, the DE expressing the dynamics of the increasing temperature inside the
reactor core i¥ = v,, and its analytic solution i8(t) = 6,, + v, x t, as it starts
increasing from the minimal temperatutg).

The last action (action 5) hagort as its body, therefore expressing that the
shutdown state is not desired. For a more detailed description of the model, the
reader is referred to [3].

Let A6 = 0,, — 0,,. Obviously, the time that the coolant needs to increase its
temperature from,, to 0, is 7. = Af#/v,, and the refrigeration times usimgd1
androd2 arer; = Af /v, andr, = A6 /vy, respectively.

The sequence of heating and refrigeration times is shown in Figure 1.

Om

t

T1 T T2 T T1

Figure 1: The heating and refrigeration times

Clearly, if . > T (the temperature rises at a rate slower than the time of
recovery of the rods), then trehutdownstate is not reachable. However, this
can be a too strong condition for not running into the undesired state. Inspecting

6

TCS =
|(var x1,x9,c:Realy — Realy;
0 : Realy — Real;
state : Realy — {0,1,2,3};
start,now : Real, *
now : = 0;
state :— (At-0);c:— (At -t — now);
x1:— (M -Ty+ct) sz :— (At - Th + c.t);
0:— (Mt -0y + v % c.t);
start : = now ; now : = min{t’ > now | gg.t'}
do {actionl : cool with rodl}
state.now = 0 A 8.now = Oy A x1.now > T —
c:— (At -t —now);
0:— (At -0y — vy (t — now));
state :— (At - 1);
start : = now ; now : = min{t’ > now | gg.t'}
| {action2 : release rodl}
state.now = 1 A 8.now = 6,,, —
c:— (At -t —now);
x1:— (M-t — now);
0 :— (At Oy, + vy % (t — now));
state :— (At - 0);
start : = now ; now : = min{t’ > now | gg.t'}
| {action3 : cool with rod2}
state.now = 0 A 8.now = Oy A x1.now > T —
c:— (At -t —now);
0:— (At -0y — v x (t — now));
state :— (At - 2);
start : =now ; now : = min{t’ > now | gg.t'}
| {action4 : release rod2}
state.now = 2 A 8.now = 6,,, —
c:— (At -t —now);
xg:— (M-t — now);
0 :— (At - Oy, + vy % (t — now));
state :— (At - 0);
start : = now ; now : = min{t’ > now | gg.t'}
| {action5 : shutdown}
state.now = 0 A 8.now = Oy A x1.now < T N x9.now <T —
abort
od)| : 90, Qm, HM, Vp, V1, V2, Tl, TQ, T

Figure 2: The TCS action system model

Figure 1 we find a weaker condition:
27’T+7'12T/\2TT+TQZT (3)

i.e., if the time between two insertions of the same rod is greater than or equal to
the time needed for the rod to recover, the shutdown state will never be reached.

To get a first assurance that condition (3) is indeed sufficient, we proceed with
the simulation of the TCS model for two sets of parameters: the first set chosen
to satisfy condition (3), the second set chosen not to satisfy the same condition.
The simulation results should either confirm or deny our assertion. In the second
case, at some point in time, the simulation should run attort by executing the
action 5 in the TCS action system model.

4 Simulating the behavior of the TCS in Mathemat-
ica

The starting point for the formulation of the simulation is to take the initializing
expressions and the expressions for the guards and the action bodies from the TCS
action system model as such, with as few numerical or logical manipulations as
possible. This confirms with our basic strategy of simulating the model as given,
thus exposing any possible modeling errors like in the spelling of the model or in
the logic of the guarded actions. In the case of TCS the initializing expressions in
the language of the symbolic manipulation program are given by

now =0

clt_] =t — now

T [t_] = T1 +c [t]

) [t_] = TQ +c [t]
01t_] =0y + v, x C[t]
state[t_] =0

In Mathematicat_ signifies that is the variable in the function that is being
defined. We assume that we startstiatc0, with the rods 1 and 2 both available
for cooling, hence the clocks, andx, are initialized to the (constant) valugs
andT7; (time units), respectively.

The guards are typically boolean conditions which we test for the value of
true. In the TCS model, the first guard has the form

8

guardlsolution = InequalitySolve|
state [t] == 0 &&
0t] == 0y &&
t >=now,t

]

Here we are using the Mathematica built-in functiorequalitySolve to de-
termine the next moment or moments in time at or after, when all the con-
ditions of guard 1 become true, that is, the system is in state O, it has reached the
critical temperature and rod1l is available. As a result of solving the simultaneous
inequalities we obtain a list callegdiardlsolution, which contains the empty set,
or a collection of discrete times and/or finite or infinite ranges of times for which
the conditions are true. This list is passed to a subroutine which picks out the
earliest time at which guard 1 becomes true.

Similarly, the body of the action 1, should we decide to take that action, is
given by the following expressions:

clt_] =t — now

0t_] =0y — 11 % clt]
state[t_] =1

start = now

The main task of the simulation is to go through the guards one by one and de-
termine whether they will become true at some point in time in the future. In case
there are several solutions to a guard, the minimum of these times is selected, be
it a discrete value or the starting value for a closed range. After this, the minimum
times for all guards are compared, and the smallest of these with the correspond-
ing action (or actions) body is chosen. In case the next action is one particular
action, we will take that action, update the valuexofv and solve the guards over
again. In case several guards become true at the next instance of time, all corre-
sponding action bodies are of course possible, and the user is asked to supply the
choice of action to be taken. In addition, a random mode was programmed, in
which case a choice between multiple possible actions is made by the simulator.

5 Simulation results

The essential information gained by the above procedure is a list of time moments
at which some action has been taken in the model, a corresponding list of actions,
and lists with symbolic values for the discrete and continuous functions of the TCS
hybrid model: the system state, the temperature of the re@gtoas a continuous

9

theta

14
12
10

N A O

20 40 60 80 100

Figure 3: The temperature behavior in time (parameter set 1)

action
4

3
2

1

20 40 60 80 100

Figure 4: The actions taken at transition time moments (parameter set 1)

x1

10

N A O

20 40 60 80 100

Figure 5: The clock:; as a function of time (parameter set 1)

x2

12
10

N A O ©

20 40 60 80 100

Figure 6: The clock:, as a function of time (parameter set 1)

10

Figure 7: The state as a function of time (parameter set 1)

piecewise linear function, and similar functions for the clock&) andz,(t). An
artificial upper time limitt,,,,., = 100 was supplied in case the simulation would
go on forever.

Given the parameter valuds = 6,7, = 2,T = 6,v; = 4,15 = 3,0, =
6,00 = 0,0,, = 3 andf,, = 15, which satisfy condition (3), two of the lists
mentioned above are the following:

now = {0,5/2,11/2,15/2,23/2,27/2,33/2,37/2,
45/2,49/2,55/2,59/2,67/2,71/2,77/2,
81/2,89/2,93/2,99/2,103/2,111/2,115/2,
121/2,125/2,133/2,137/2,143/2, 147/2,
155/2,159/2,165/2,169/2,177/2,181/2,
187/2,191/2,199/2}

theta(t) : 61,25 — 4t, —30 + 6t,75/2 — 3t, —66 + 6t,
69 — 4t, —96 + 6t, 141/2 — 3t, —132 + 6t,
113 — 4¢, —162 + 6¢,207/2 — 3t, —198 + 6t
157 — At, —228 + 6¢,273/2 — 3t, —264 + 6t,
201 — 4¢, —294 + 6t,339/2 — 3t, —330 + 6t,
245 — 4t, —360 + 6t,405/2 — 3¢, —396 + 6t,
280 — 4t, —426 + 6t,471/2 — 3t, —462 + 6t,
333 — 4t, —492 + 6t,537/2 — 3t, —528 + 6t
377 — 4t, —558 + 6t,603/2 — 3t, —594 + 6t}

Using the first parameter set, the graphical results of the simulation are the
plots in Figures 3 to 7. The vertical lines in the graph&on(t) andstate(t) are
purposely drawn to guide the reader’s eye.

In this first case, the simulation did not reveal any unexpected behavior, instead
it showed a regular time behavior of the state variables.

For a different set of values that violate the condition (3), e.g. the same set
as above exceft = 8, the simulation shows that the reactor will reach the shut-
down state, i.e., action 5 is enabled, since neither of the rods is available at time

11

theta

14
12
10

N A O

t
2.5 5 7.5 10 12.5 15 17.5

Figure 8: The temperature behavior in time (parameter set 2)

action

Figure 9: The actions taken at transition time moments (parameter set 2)

x1

10

N A O

t
2.5 5 7.5 10 12.5 15 17.5

Figure 10: The clock as a function of time (parameter set 2)

x2

12
10

N A O ©

t
2.5 5 7.5 10 12.5 15 17.5

Figure 11: The clock, as a function of time (parameter set 2)

12

t
2.5 5 7.5 10 12.5 15 17.5

Figure 12: The state as a function of time (parameter set 2)

t = 37/2 (see Figure 9). Similar to the first case, here we also get the graphical
representation with respect to time, of all the model variables, as seen in Figures
8to 12.

In consequence, the TCS simulation confirmed our guess for the particular
values chosen, that in case the parameters do not satisfy condition (3), the system
will eventually reach the undesired shutdown state.

6 The generic simulator

In this section we try to describe the simulator in a more generic setting, inde-
pendent of the programming language used, of course with its usability certainly
benefitting from having as powerful language as possible.

The symbolic simulation of a CAS given by (2) consists of three major steps,
as follows:

e The first step is to solve each guard separately and find a list of times in the
future when the guard will evaluate to true.

e The second task is to extract the least of the times in the list for each guard.

e The third step is to collect the results from step one and two, from all guards,
and determine a globally minimal next time. Having found it, we have simultane-
ously determined whether we have one or several guards satisfied at the respective
time moment. If only one guard is satisfied, the corresponding action body is ex-
ecuted, thus changing some of the program attributes. If there are several guards
simultaneously evaluating to true, then the user is asked to supply the choice of
action to be taken. It is also possible that the simulator makes a random choice
between the possible actions.

13

In the first step, obviously the determination of the solution list for the guards
can be made arbitrarily complicated depending on the structure of the guards. The
guard may involve the solution of higher order algebraic equations or nonlinear
differential equations or both, in which case analytic solutions to the guards are
probably impossible to obtain. In this case we have to resort to a numerical so-
lution of the guards, e.g. integrate differential equations forward in time using
some appropriate numerical scheme. Here we can still obtain an approximated
continuous solution by interpolating the numerical solution with linear functions
between the numerically obtained values.

In case the list of minimum values for the guard from step one is a collection
of finite analytic expressions, we will be able to proceed to step two without loss
of accuracy. The identification of the minimum value in step two, that is, sorting
the list of solutions to a guard, may be numerically cumbersome. The expressions
in the list can easily have the tendency of becoming increasingly complicated as
time goes on, and in the end we have to resort to evaluating the minimum values
numerically. This immediately makes the comparison of values very close to each
other prone to mistakes. The third step is in principle as hard as step two, only
now we are comparing the minimum values from each guard with each other.

The usability of the symbolic simulator is thus largely dependent on whether
we are able to pass through step one to three using symbolic expressions.

An advantage of the symbolic approach is that as far as possible we tried not
to apply any transformations to the guards or the action bodies, when translating
them into Mathematica. Instead we have expressed them almost in the same way
as they are in the CAS model. This guarantees that the simulated model is indeed
as consistent and reliable as the original model. The number of guards and respec-
tive action bodies is given as a parameter, hence one can simulate large models
that consist of many guarded actions.

However, what we consider to be the most valuable contribution made by this
tool for simulating CAS models is the integration of the modeling, simulation
and verification of hybrid systems, into the same framework that uses CAS as
the modeling language and the refinement calculus as the reasoning environment.
This calculus has been already implemented in several theorem provers [8, 12].
The advantage of having a unified design environment might turn continuous ac-
tion systems into a more attractive modeling language for hybrid systems.

7 Conclusions
In this paper we have presented a simulation tool for hybrid systems modeled as

continuous action systems. We have built the tool using Mathematica, a commer-
cial symbolic manipulation program [15]. The tool takes a description of any CAS

14

as input, and provides automatically a symbolic simulation of the system, up to a
given maximum time. The restrictions on the simulation are essentially those of
Mathematica.

Our approach relies on the fact that symbolic manipulation is an efficient way
of simulating a model execution. Plotting the discrete and also continuous model
variables as functions of time, with infinite precision, makes the simulation avail-
able even without knowing the sampling period to be used for the actual imple-
mentation, thus in many cases our tool eliminates the need of introducing tol-
erances in the model. This is true especially when the physical phenomena of
the hybrid system is described by linear differential equations. In case the hy-
brid model is non-linear, Mathematica solves the respective non-linear DE either
symbolically or numerically. It then follows that, in case we get a numerical so-
lution, we need to introduce tolerances in our action system model and rely on an
approximation of the behavior of the variables.

The experiences with this tool have been very promising. It provides a good
visualization of the behavior of hybrid systems, and has been also quite efficient in
harnessing the power of Mathematica. We have applied our simulation technique
to a small collection of hybrid systems. Here, we have exemplified the tool on
the temperature control system inside a nuclear reactor core, which uses two in-
dependent rods for cooling. Given a certain set of parameters, the objective of the
simulation was to make sure that the reactor never reaches a critical temperature
without at least one of the cooling rods being available, to avoid a shutdown of
the reactor. The simulation results helped in correlating the model with the actual
system behavior.

One of the main advantages of using continuous action systems for modeling
hybrid systems is that we now have both a solid proof technique for proving prop-
erties of the systems, as well as a powerful simulation technique that we can use
to analyze and explore the systems. Simulation can either be used as a precursor
to more comprehensive proofs, to iron out bugs in the model, or as an alternative
to a complete correctness proof.

Future work includes simulating more complex hybrid systems, e.g. non-
linear, modeled as continuous action systems, and also the design of some graph-
ical user interface to the simulator.

References

[1] R. Alur, C. Courcourbetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X.
Nicollin, A. Olivero, J. Sifakis, S. Yovine, “The Algorithmic Analysis of
Hybrid Systems”Theoretical Computer SciencE995, vol. 138, pp. 3-34.

15

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

R. Alur, D.L. Dill, “A Theory of Timed Automata”, Theoretical Computer
ScienceApril 1994, vol. 126(2), pp. 183-235.

R.J.R. Back, C. Cerschi, “Modeling and Verifying a Temperature Control
System using Continuous Action Systems”, In proceedings of the 5th Inter-
national ERCIM Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS’2000), GMD Report 9ERCIM and GMD April 2000, pp.
265-286.

R.J.R. Back and R. Kurki-Suonio, “Decentralization of Process Nets with
Centralized Control”, In the 2nd Symposium on Principles of Distributed
Computing, Lecture Notes in Computer Science, vol. 8¥GM SIGACT-
SIGOPS$1983, pp. 131-142.

R.J. Back, L. Petre, and I. Porres-Paltor, “Continuous Action Systems as a
Model for Hybrid Systems”Nordic Journal of Computing2001, vol. 8, pp.
2-21.

Back R.J.R. and J. von WrighRefinement Calculus, A Systematic Introduc-
tion, Springer Verlag, 1998.

D.A. van Beek, J.E. Rooda, “Languages and Applications in Hybrid Mod-
elling and Simulation: Positioning of Chi'Control Engineering Practice
2000, vol. 8, nr. 1, pp. 81-91.

M.J. Butler, J. Grundy, T. &ngbacka, R. Ruienas, and J. von Wright, “The
refinement calculator: Proof support for program refinement”, In Proceed-
ings FMP’97 - Formal Methods Pacific, Discrete Mathematics and Theo-
retical Computer Science, Wellington, New ZealaSgringer-Verlag July
1997.

H. Elmgvist, “Object-Oriented Modeling and Automatic Formula Manipu-
lation in Dymola”, SIMS’93,Scandinavian Simulation Socie®993.

A. Gollu, M. Kourjanski, P. Varaiya, “The SHIFT Simulation Framework:
Language, Model and Implementation (Extended Abstract)”, In proceedings
of the 5th International Hybrid Systems Workshop, Notre Dame, Indiana,
Sept. 1997.

T.A. Henzinger, “The Theory of Hybrid Automata”, In proceedings of the

11th Annual Symposium on Logic in Computer Science (LICS), IEEE Com-
puter Society Press, 1996, pp. 278-292.

16

[12] J. Knappmann, ‘A PVS based Tool for Developing Pro-
grams in the Refinement Calculus”, http://www.informatik.uni-
kiel.de/inf/deRoever/DiplJKm.htp@ctober 1996.

[13] N. Lynch, R. Segala, F. Vaandrager, “Hybrid /0 Automata Revisited”, In
proceedings of the 4th Hybrid Systems Computation and Control (HSCC
2001), Rome, ltaly, Lecture Notes in Computer Science, vol. 2034, pp. 403-
417.

[14] “The MathWorks: Developers of MATLAB and Simulink for Technical
Computing”,http://www.mathworks.com/

[15] Wolfram S., The Mathematica BogkFourth Edition, Wolfram Me-
dia/Cambridge University Press, 1999.

17

Turku Centre for Computer Science
Lemminkaisenkatu 14

FIN-20520 Turku

Finland

http://mww.tucs.fi

University of Turku

e Department of Information Technology
e Department of Mathematics

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Science

