
Correctness and Refinement of
Dually Nondeterministic Programs

Orieta Celiku
Joakim von Wright

Turku Centre for Computer Science

TUCS Technical Reports

No 516, March 2003





Correctness and Refinement of
Dually Nondeterministic Programs

Orieta Celiku
Joakim von Wright

Turku Centre for Computer Science
TUCS Technical Report No 516
March 2003

ISBN 952-12-1139-3
ISSN 1239-1891



Abstract

In this paper we extend different reasoning methods from traditional (de-
monic) programs to programs with both demonic and angelic nondetermin-
ism. In particular, we discuss correctness proofs, and refinement of programs
while reducing angelic nondeterminism (into demonic nondeterminism or de-
terminism). As expected, reducing angelic nondeterminism is generally not
a refinement; however, when context is taken into consideration, it can result
in refinement. We also show how correctness proofs can be used to implement
a winning strategy for the angel (when such a strategy exists).

TUCS Laboratory
Learning and Reasoning Laboratory



1

1 Introduction

Nondeterminism in programs appears in two dual forms: demonic and an-
gelic. Intuitively, demonic nondeterminism is resolved so as to avoid estab-
lishing the postcondition, while angelic choices are made in such a way that
the postcondition is established, if possible.

Of these two forms, demonic nondeterminism has been studied and used
more in program reasoning. The main reason for this is that demonic nonde-
terminism models underspecification, which leaves implementation decisions
open and makes abstraction possible. Moreover, the move from more abstract
to more concrete specifications goes well with the notion of refinement, in
the sense that the less demonic nondeterminism is present in a specification,
the more refined and implementable the specification is. Refinement, in turn,
has been studied extensively in the refinement calculus [2, 5, 14].

Angelic nondeterminism, on the other hand, is more ”controversial”: in-
creasing angelic nondeterminism makes a specification more refined, but less
implementable. Another drawback of angelic nondeterminism is that the an-
gel is assumed always to know how to resolve the choices in the best possible
way. Nevertheless, angelic choice is important for more than its algebraic
role as join operation in the predicate transformer lattice.

Demonic and angelic nondeterminism in combination can model system-
user situations, with the demon modeling the system side and the angel the
user side. The two types of nondeterminism are also useful when modeling
interaction in game-like situations, where a number of agents try to achieve
(potentially conflicting) goals by taking turns in making choices [5, 6]. The
agent or coalition whose goal we are focusing on is modeled as the angel and
the associated nondeterminism is angelic; the remaining agents are collec-
tively considered as the demon.

Correctness of system-user specifications is analyzed with respect to whe-
ther the user can carry out his or her desired actions, and refinement makes
things better from the user’s point of view by potentially increasing the
user’s choices or decreasing the system’s arbitrariness. In the case of games,
however, it is more useful to transform the program so as to eliminate ”bad”
moves from angel’s choices. One reason is that the rules of the game are
usually laid down in advance, so increasing choices would be illegal. Another
reason is that in practice the role of the angel will be played by an imperfect
agent, so the existence of a winning strategy will generally not be enough –
what we need is an implementation of the winning strategy [5].

In this paper, we describe two methods for reducing angelic nondetermin-
ism (into demonic nondeterminism or determinism) systematically. One con-
sists of extracting a nonangelic program that implements a winning strategy



2 2 BACKGROUND

for the angel (when such a strategy exists) while proving program correct-
ness. We introduce a new correctness rule for angelic choice which makes
such extraction possible. The other method is a special form of refinement
in context, where the context consists of the precondition and postcondition
of the program and information is propagated via guards. We introduce
rules for propagating guards over angelic statements, and rules that struc-
turally change angelic constructs into demonic ones. Note that taking the
context into consideration is crucial since reducing angelic nondeterminism
is generally not a refinement.

We start with some background information in Sec. 2. Sec. 3 discusses
correctness proofs and introduces a correctness rule for angelic choice. We
discuss what refinement of programs with both angelic and demonic nonde-
terminism means in Sec. 4. We also recall what refinement in context is,
and extend the rules for guard propagation in order to be able to propagate
guards over angelic statements. In Sec. 5 we discuss two ways of reducing an-
gelic nondeterminism: one based on refinement in context, and the other on
proving correctness. We illustrate the methods with two examples in Sec. 6.
Related work and conclusions are discussed in Sec. 7. Proofs for some of the
results are shown in App. A.

2 Background

Our formal framework is that of the refinement calculus [5]. The underlying
logic is higher-order logic. The application of function f to argument x is
written as f.x. Proofs are generally written as structured derivations [5].

The program state is of polymorphic type Σ. State predicates are boolean
functions on states (Σ → Bool). State relations are binary state predi-
cates (Σ → Γ → Bool) relating (initial) states to (final) states. Pred-
icate transformers are functions from state predicates to state predicates
((Γ → Bool) → (Σ → Bool)).

The order relation ⊆, negation ¬, conjunction ∩, disjunction ∪, and im-
plication ⇒ on predicates, are defined by pointwise extension of the order
and corresponding operations on booleans. Similarly, the order �, and oper-
ations � and � on predicate transformers, are lifted from those on predicates
(⊆,∩,∪).

Predicate transformers map preconditions to postconditions, the intended
interpretation being that of a weakest precondition [8]. This means that if q
is a postcondition and σ a state, then S.q holds in σ if and only if execution
of a program statement modeled by S from initial state σ is guaranteed to
terminate in a final state where q holds.



3

skip.q = q (skip)
abort.q = false (abort)
magic.q = true (magic)

(x := e).q = q[x := e] (deterministic update)
{g}.q = g ∩ q (assertion)
[g].q = ¬g ∪ q (guard)

(S1; S2).q = S1.(S2.q) (sequence)
(if g then S1 else S2 fi).q = g ∩ S1.q ∪ ¬g ∩ S2.q (conditional)

(S1 � S2).q = S1.q ∪ S2.q (angelic choice)
(S1 � S2).q = S1.q ∩ S2.q (demonic choice)

{x := x′ | b}.q = (∃x′ • b ∧ q[x := x′]) (angelic update)
[x := x′ | b].q = (∀x′ • b ⇒ q[x := x′]) (demonic update)

Figure 1: Weakest Precondition for Basic Program Statements

Fig. 1 shows basic program statements modeled by predicate transform-
ers. Demonic choice is seen as the choice we have no control over, thus both
statements should establish the postcondition for the choice to do so. Angelic
choice is interpreted as the choice we can affect, hence, if any of the state-
ments establishes the postcondition, so does angelic choice. Demonic and
angelic updates, in which x := x′ | b describes a state relation that leaves
all variables except x unchanged, are interpreted similarly to the choices. A
mix of angelic and demonic nondeterminism can be interpreted as a game;
it establishes the postcondition q if the angel can make its choices in such a
way that q is reached, regardless of how the demon makes its choices.

Predicates form a complete boolean lattice, and so do predicate trans-
formers. In the latter lattice, abort is bottom, magic top, demonic choice �
meet, angelic choice � join, and refinement � the order.

The loop construct is defined in the usual way, as the least fixpoint of the
unfolding function:

do g → S od = (µX • if g then S; X else skip fi) (1)

We will also need the notion of the dual of a predicate transformer:

S◦.q = ¬S.(¬q) (2)

Fig. 2 lists the dualities that hold between program statements modeled by
predicate transformers. The properties can also be read in reverse since
dualization is an involution ((S◦)◦ = S).

A program statement S is said to be monotonic if:

(p ⊆ q) ⇒ (S.p ⊆ S.q)



4 3 CORRECTNESS

skip◦ = skip (3)

magic◦ = abort (4)

(x := e)◦ = (x := e) (5)

(S1; S2)
◦ = S◦

1 ; S
◦
2 (6)

{p}◦ = [p] (7)

{x := x′ | b}◦ = [x := x′ | b] (8)

(S1 � S2)
◦ = S1 � S2 (9)

S1 � S2 ≡ S◦
2 � S◦

1 (10)

Figure 2: Duality Properties

Furthermore, S is conjunctive if, for an arbitrary nonempty collection of
predicates, we have :

S.(∩i | i ∈ I • qi) = (∩i | i ∈ I • S.qi)

Dually, S is disjunctive if:

S.(∪i | i ∈ I • qi) = (∪i | i ∈ I • S.qi)

All statements introduced above satisfy monotonicity. Statements that
do not contain angelic nondeterminism also satisfy conjunctivity, while state-
ments that do not contain demonic nondeterminism satisfy disjunctivity.

3 Correctness

In this section we recall facts about program correctness, with special focus
on correctness of angelic update and angelic choice. We also introduce a new
rule for proving correctness of angelic choice.

A program statement S is totally correct with respect to precondition p
and postcondition q if any execution of S from an initial state where p holds
terminates in a final state where q holds:

p {|S |} q ≡ p ⊆ S.q (11)

With S interpreted as a game, correctness means that the angel has a winning
strategy for goal q in any initial state that satisfies p [5].

Hoare-logic [11] style rules (Fig. 3) can be used to reason about program
correctness. For most statements, the rules follow directly from the defi-
nitions (Fig. 1). Loop correctness is proved by proving that invariant I is
established initially, preserved by each iteration, and is strong enough to es-
tablish the postcondition upon loop termination. Loop termination is proved
by proving that the variant t is decreased at each iteration.



5

p ⊆ q
p {| skip |} q

(12)

p ⊆ q[x := e]
p {| x := e |} q

(13)

p ⊆ g ∩ q
p {| {g} |} q

(14)

p ∩ g ⊆ q
p {| [g] |} q

(15)

p {|S1 |} r r {|S2 |} q
p {|S1; S2 |} q

(16)

g ∩ p {|S1 |} q ¬g ∩ p {|S2 |} q
p {| if g then S1 else S2 fi |} q

(17)

p {|S1 |} q p {|S2 |} q
p {|S1 � S2 |} q

(18)

p ⊆ (∀x′ • b ⇒ q[x := x′])
p {| [x := x′ | b] |} q

(19)

p ⊆ I g ∩ I ∩ (t = n) {|S |} I ∩ t < n ¬g ∩ I ⊆ q
p {| do g → S od |} q

(20)

Figure 3: Hoare Logic for Total Correctness

The rule for angelic assignment is also straightforward:

p ⊆ (∃x′ • b ∧ q[x := x′])
p {| {x := x′ | b} |} q

(21)

A witness for the existentially quantified condition describes a winning strat-
egy for the angel, since it describes one of the alternatives contained in b that
is going to lead to a win for the angel.

The two obvious correctness rules [5] for angelic choice are:

p {|S1 |} q
p {|S1 � S2 |} q

(22)
p {|S2 |} q

p {|S1 � S2 |} q
(23)

and their interpretation, as expected, is that if one of the statements is correct
with respect to the pre- and postcondition then the angelic choice statement
is also correct.

These rules are too strong and as such not always helpful. Consider the
following example:

(x = 0 ∨ x = 1) {| x := x + 1 � skip |} x = 1

In order to prove this assertion we need to prove one of the following asser-
tions:

(x = 0 ∨ x = 1) {| x := x + 1 |} x = 1 (x = 0 ∨ x = 1) {| skip |} x = 1

Neither of them is true although the initial correctness assertion is. We can
get further if we reason as follows: if initially x = 0 then the first assignment



6 4 REFINEMENT

establishes the postcondition, whereas if x = 1 the second assignment does
the job.

We introduce the following rule, which enables the above line of reasoning:

r ∩ p {|S1 |} q ¬r ∩ p {|S2 |} q
p {|S1 � S2 |} q

(24)

The predicate r describes a winning strategy for the angel by partitioning
the precondition into two parts depending on which of the choice statements
can establish the postcondition. Note that for r = true (r = false) we get as
special case Rule 22 (Rule 23).

The existence of a partitioning predicate is guaranteed when the angel
has a winning strategy:

p {|S1 � S2 |} q ≡ (∃r • (r ∩ p {|S1 |} q) ∧ (¬r ∩ p {|S2 |} q)) (25)

Discovering such a predicate can be reduced to calculating weakest precon-
ditions. More concretely, S1.q is always a valid partitioning predicate, since
the second statement need be correct only when the first one fails to.

In the example above, we use r = (x = 0); the proof obligations, which
are trivially true, are:

x = 0 {| x := x + 1 |} x = 1 x = 1 {| skip |} x = 1

Rule 24 is hinted at in [5], where the correctness rule given for (the arbi-
trary) angelic choice:

p {| (�i ∈ I • Si) |} q ≡ (∀σ • p.σ ⇒ (∃i ∈ I • {σ} {|Si |} q)) (26)

permits the chosen alternative Si to depend on the present state σ.

4 Refinement

We recall that a statement S is refined by S ′ if S ′ is correct with respect to
postcondition q whenever S is:

S � S ′ ≡ (∀q • S.q ⊆ S ′.q) (27)

If we refine only the demonic parts of a program (and do not introduce
angelic nondeterminism as a result), then traditional interpretations work:
the original specification leaves decisions open to be made during refinement
or implementation.



4.1 Context Information 7

If we refine angelic parts, then we can introduce new capabilities. This
may make completely new behaviors possible, but since they are under the
control of the angel, they need not appear in an execution. Refinement may
introduce chaotic changes, for example, adding a new “menu alternative”
containing arbitrary computations into an angelic choice. This kind of re-
finement is applicable in client-programmer situations: system functionality
can be added in a stepwise manner and presented as a collection of choices to
the user. Increasing angelic nondeterminism is a well understood refinement.

On the other hand, we could require that no new angelic nondeterminism
be added, and that the angelic parts of the program may only be changed
under equivalence (into more deterministic constructs). This would apply to
game-like situations where the rules of the game are laid down in advance,
and players are not permitted any new moves. Refinement then aims at
transforming the angelic parts so that no angelic constructs remain, that is,
no clairvoyance is required.

This means that we are looking for transformations of the form {x :=
x′ | b} � {x := x′ | b′} where b′ ⊆ b (i.e., b′ has less alternatives than b),
or {x := x′ | b} � [x := x′ | b′′] (where again b′′ ⊆ b), which are generally
not valid. These problems are also described in [5] and solved in an ad
hoc way (for games where the angelic nondeterminism appears in certain
locations). Here we give methods that do not depend on where the angelic
nondeterminism is located.

4.1 Context Information

As hinted above, in many situations, requiring that a statement S be refined
by a statement S ′ is too restrictive. If S occurs in a statement C (written as
C[S]) we may be interested only in replacing S by S ′ so that C[S] � C[S ′].
In fact, if S � S ′ then C[S] � C[S ′] since all statements are monotonic.
However, the latter refinement can be true even if S � S ′ does not hold. For
example:

{x = 1}; x := x + 1 � {x = 1}; x := 2

even though x := 2 is not a refinement of x := x + 1.
The refinement of S by S ′ while taking context C into consideration is

known as refinement in context [3, 5, 14]. There are two general methods for
performing such refinements systematically.

The assertion method: introduce information which can safely be as-
sumed (from preconditions and forward propagation) to get {p}; S, then use
information p to refine S, and finally remove the assertion (using the rule
{p} � skip).



8 4 REFINEMENT

The guard method: introduce information which is assumed to be true
(using the rule skip � [p]) to get [p]; S, then use information p to refine S,
and finally remove the guard by backward propagation.

4.2 Guard Propagation

We will be adapting the guard method with the purpose of getting a method
for reducing angelic nondeterminism (Sec. 5), so here we concentrate on how
guards are propagated. Fig. 4 shows the rules for guard propagation for
demonic programs [12] extended with rules for handling angelic statements.

skip; [q] = [q]; skip (28)

[p]; [q] = [p ∩ q] (29)

{p}; [q] = [¬p ∪ q]; {p} (30)

(x := e); [q] = [q[x := e]]; (x := e) (31)

if g then S1 else S2 fi; [q] = if g then S1; [q] else S2; [q] fi (32)

if g then [p]; S1 else [q]; S2 fi � [g ∩ p ∪ ¬g ∩ q];

if g then S1 else S2 fi (33)

[x := x′ | b]; [q] � [∀x′ • b ⇒ q[x := x′]];

[x := x′ | b] (34)

[p]; S1 � [q]; S2 � [p ∪ q]; (S1 � S2) (35)

(S1 � S2); [q] = S1; [q] � S2; [q] (36)

{x := x′ | b}; [q] = [∀x′ • b ⇒ q[x := x′]];

{x := x′ | b} (37)

[p]; S1 � [q]; S2 = [p ∩ q]; (S1 � S2) (38)

(S1 � S2); [q] = S1; [q] � S2; [q] (39)

Figure 4: Rules for Guard Propagation

A good part of the rules for angelic and deterministic statements are
instances of the following more general rule:

disjunctive S � S; [q] = [S◦.q]; S (40)

This rule can be further generalized as follows:

S◦.q ⊆ p � S; [q] = [p]; S; [q] (41)



9

Note that S need not be disjunctive; monotonicity is sufficient. The cost of
this generalization is that the generated guard p no longer carries the max-
imum possible amount of information – we cannot discard the “postguard”
[q]. For this reason, it might seem like applying the rule repeatedly to pull a
guard over a sequence of statements will lead to the introduction of a trace
of guards. That is, a situation like:

S1; S2; [q] = S1; [p
′]; S2; [q] = [p]; S1; [p

′]; S2; [q]

However, by using (S1; S2)
◦.q as p or using Rule 41 from right to left, we can

avoid extra intermediate guards.
A corollary of Rule 41 is:

S◦.q ⊆ p � [p]; S � S; [q] (42)

Rule 41 can also be used to pull guards over loops. The idea is that
S◦.q ⊆ p is the same as ¬p ⊆ S.(¬q). So when S is a loop, we compute some
p′ such that p′ ⊆ S.(¬q) and then set p to ¬p′. Although the usefulness of
such a propagation might seem doubtful, we will show in Sec. 5.2 that it is
not.

5 Implementing Angelic Nondeterminism

By ”implementation” we will mean reducing angelic nondeterminism into de-
monic nondeterminism or determinism. This kind of transformation can be
thought of as implementation in the following sense: angelic specifications
abstract away from the details of how the winning strategy is to be im-
plemented by assuming that the angel knows how to make the right moves;
demonic and deterministic specifications that achieve the same goal are more
concrete because they contain only right moves.

As already noted, implementing angelic nondeterminism is usually not a
refinement, but can be so with respect to certain contexts. The most natural
context to consider is the precondition and postcondition of a program. After
all, we are interested in those choices that will guarantee that the postcondi-
tion is established, starting from an initial state satisfying the precondition.

We will use this fact, which characterizes correctness on the statement
level:

p {|S |} q ≡ [p]; S; [¬q] = magic (43)

The intention is to start from p {|S |} q and find a more deterministic S ′

such that p {|S |} q = p {|S ′ |} q (we call this the correctness-based method);
alternatively, we can start from [p]; S; [¬q] and transform S into S ′ so that
[p]; S; [¬q] = [p]; S ′; [¬q] (the refinement-based method).



10 5 IMPLEMENTING ANGELIC NONDETERMINISM

5.1 Correctness-Based Method

The crux of this method is describing a winning strategy while proving cor-
rectness for a program S that contains angelic nondeterminism. In a sepa-
rate step we construct a nonangelic program S ′ that implements the winning
strategy.

rr ⇐ · · · ⇐ rr′ ⇐ · · · ⇐ T
⇓ ⇓

p {|S |} q p {|S ′ |} q

So, while trying to reduce p {|S |} q to true, we prove facts rr′, which can
also imply that S ′ is correct with respect to p and q.

Example

(x = 0 ∨ x = 1) {| x := x + 1 � skip |} x = 1

⇐ {angelic choice, Rule 24, r = (x = 0)}
(x = 0 {| x := x + 1 |} x = 1) ∧ (x = 1 {| skip |} x = 1)

⇐ {assignment, Rule 13; skip, Rule 12}
T

Think of the framed assertion as rr′ above. Now we proceed as follows:

T

⇒ {first derivation}
(x = 0 {| x := x + 1 |} x = 1) ∧ (x = 1 {| skip |} x = 1)

⇒ {conditional, Rule 17, g = (x = 0)}
(x = 0 ∨ x = 1) {| if x = 0 then x := x + 1 else skip fi |} x = 1

We have transformed the angelic choice into a conditional statement showing

when each of the choices is to be executed. Note how the intermediate
predicate r became the guard of the conditional. This result is not all that
surprising, since the correctness rules for angelic choice and the conditional
(Rule 24 and Rule 17) are similar:

r ∩ p {|S1 |} q ¬r ∩ p {|S2 |} q
p {|S1 � S2 |} q

g ∩ p {|S1 |} q ¬g ∩ p {|S2 |} q
p {| if g then S1 else S2 fi |} q

Once we have found a working r we have also found how to implement angelic
choice.



5.2 Refinement-Based Method 11

Example

x = 0 {| {x := x′ | x′ > x} |} x < 3

⇐ {angelic update, Rule 21}
(x = 0) ⇒ (∃x′ • x′ > x ∧ x′ < 3)

⇐ {eliminate existential quantifier, witness x′ = x + 1}
(x = 0) ⇒ (x + 1 < 3)

= {one-point rule, arithmetic}
T

The witness for the existential quantifier gives rise to an assignment:

T

= {above derivation}
(x = 0) ⇒ (x + 1 < 3)

⇒ {assignment, Rule 13, (x + 1 < 3) = ((x < 3)[x := x + 1])}
x = 0 {| x := x + 1 |} x < 3

In fact, the witness for the existential quantifier always translates into an

assignment that implements angelic update.

5.2 Refinement-Based Method

This method consists of using guard propagation and some structural rules
to transform a statement S (of form S1; · · · ; Si; · · · ; Sn, where Si is angelic)
into S ′ in which there is no angelic nondeterminism.

[p]; S1; · · · ; Si; · · · ; Sn; [¬q]

= {guard propagation, use equality rules}
[p]; S1; · · · ; Si; [¬q′]; · · · ; Sn; [¬q]

� {introduce a suitable p′ (for example Si.q
′)}

[p]; S1; · · · ; [p′]; Si; [¬q′]; · · · ; Sn; [¬q]

� {apply structural rules}
[p]; S1; · · · ; [p′]; S ′

i; [¬q′]; · · · ; Sn; [¬q]

= {reverse guard propagation}
[p]; S1; · · · ; [p′]; S ′

i; · · · ; Sn; [¬q]

� {backward propagation of p′ should make it disappear}
[p]; S1; · · · ; S ′

i; · · · ; Sn; [¬q]



12 5 IMPLEMENTING ANGELIC NONDETERMINISM

As a result, we should get [p]; S; [¬q] � [p]; S ′; [¬q] and if, indeed, the angel
has a winning strategy in S ([p]; S; [¬q] = magic, Theorem 43), then it does
in S ′ too ([p]; S ′; [¬q] = magic since magic is top element).

5.2.1 Loops

Two additional concerns arise when dealing with loops: propagating guards
meaningfully over them, and considering what context should be used when
implementing angelic nondeterminism in their bodies.

The first concern was already discussed in Sec. 4.2: when faced with
S; [q] where S is a loop, we try to find a predicate p such that p ⊆ S.(¬q).
From Rule 41, we get: S; [q] = [¬p]; S; [q]. However, finding the (weakest)
precondition of loop S with respect to the potentially strange predicate ¬q
can at best prove difficult.

But we now have more information: the guard to be propagated will,
in fact, be the negation of some intermediate predicate that should be es-
tablished once the loop terminates (since we start with the propagation of
the negation of the postcondition). This means that the predicate p we are
looking for could as well be the loop invariant (since the loop invariant is a
loop precondition, although not necessarily the weakest).

Regarding the second concern, when implementing the angelic parts of a
loop do g → S od it is sufficient to refine:

[g ∩ I ∩ (t = n)]; S; [¬(I ∩ t < n)]

where I is loop invariant and t termination function. Intuitively, the reason
is that the loop effect, expressed by the invariant, remains the same, so if the
initial loop is good enough for our purposes then the refined one will also do.
This derivation schema explains things more formally:

p {|S1; do g → S od; S2 |} q

⇐ {sequential composition, Rule 16, r1 and r2 intermediate assertions}
(p {|S1 |} r1) ∧ (r1 {| do g → S od |} r2) ∧ (r2 {|S2 |} q)

⇐ {focus on second conjunct}
• r1 {| do g → S od |} r2

⇐ {loop, Rule 20, invariant I, variant t}
(r1 ⊆ I) ∧ (g ∩ I ∩ (t = n) {|S |} I ∩ t < n) ∧ (¬g ∩ I ⊆ r2)

Now it is clearer that the transformation of the loop body S into S ′ while
keeping the same invariant and variant, ultimately affects only the framed
assertion. So if the initial program is proved correct, and:

[g ∩ I ∩ (t = n)]; S; [¬(I ∩ t < n)] = [g ∩ I ∩ (t = n)]; S ′; [¬(I ∩ t < n)]



5.2 Refinement-Based Method 13

then we can substitute S ′ for S in the loop body.

5.2.2 Structural Rules

We are aiming at rules that change angelic constructs into demonic (or de-
terministic) ones. The operational idea is that we are happy with any of the
alternatives (from the angelic ones) that establish the postcondition, so if
there are several such we can decide later which one to implement; we can
let the demon resolve the acceptable part of angelic nondeterminism.

Angelic choice. One of the results that follow from Theorem 43 is:

p ⊆ (S1 � S2).q

� [p]; (S1 � S2); [¬q] = [p]; if S1.q → S1 [] S2.q → S2 fi; [¬q] (44)

where Dijkstra’s guarded conditional is defined as:

if g1 → S1 [] g2 → S2 fi = {g1 ∪ g2}; ([g1]; S1 � [g2]; S2) (45)

When both guards are true, either of the conditional branches can be ex-
ecuted. This means that in the states where both choice statements are
correct with respect to the postcondition we can let the demon choose which
one to execute.

Angelic update. The rule for implementing angelic update is:

p ⊆ {x := x′ | b}.q
� [p]; {x := x′ | b}; [¬q] = [p]; [x := x′ | b ∧ q[x := x′]]; [¬q] (46)

The demon is given choices according to b but only among those satisfying q.
It is simple to see that the right-hand side is always magic, but the assumption
that the angel has a winning strategy makes the left-hand side magic too.

Example Let us transform {x := x′ | x′ > x} for precondition x = 0 and
postcondition 0 ≤ x ≤ 2.

[x = 0]; {x := x′ | x′ > x}; [¬(0 ≤ x ≤ 2)]

= {Rule 46}
• (x = 0) ⇒ (∃x′ • (x′ > x) ∧ (0 ≤ x′ ≤ 2))
⇐ {one point rule, witness 1}

T

· · · [x = 0]; [x := x′ | (x′ > x) ∧ (0 ≤ x′ ≤ 2)]; [¬(0 ≤ x ≤ 2)]



14 6 EXAMPLES

� {use context assumption}
[x = 0]; [x := x′ | (x′ > 0) ∧ (0 ≤ x′ ≤ 2)]; [¬(0 ≤ x ≤ 2)]

= {simplification}
[x = 0]; (x := 1 � x := 2); [¬(0 ≤ x ≤ 2)]

The result shows that setting x to either 1 or 2 is valid and that in fact these

are the only valid options.

6 Examples

Sec. 6.1 describes a two-player game, and shows an implementation of the
winning strategy for the first player. Nim is taken from Back and von
Wright [5]. Sec. 6.2 describes the synthesis of a discrete controller, an exam-
ple taken from Asarin et al [1].

6.1 Nim

In Nim two players take turns in removing one or two matches from a pile
(of x matches). The player to remove the last match loses the game. We side
with the first player, hence the first player is interpreted as the angel and the
other player as the demon.

The angel can win the game, provided that initially x mod 3 �= 1, by
making sure that x mod 3 = 1 after its turn. We have proved this assertion:

var x : num.

¬(x mod 3 = 1) {|
do /* invariant ¬(x mod 3 = 1) variant x */

T → [0 < x]; (x := x − 1 � x := x − 2);

{0 < x}; (x := x − 1 � x := x − 2)

od

|} T

The guard [0 < x] is interpreted as: check if there are matches before the
angel takes the turn and if not the game is over and the angel has won.
Similarly, the demon wins if the assertion {0 < x} fails.

Now we implement the angelic part of the loop body:

[¬(x mod 3 = 1) ∧ (x = n)];

[0 < x]; (x := x − 1 � x := x − 2);



6.1 Nim 15

{0 < x}; (x := x − 1 � x := x − 2);

[(x mod 3 = 1) ∨ x ≥ n]

= {merge guards}
[¬(x mod 3 = 1) ∧ (x = n) ∧ 0 < x];

(x := x − 1 � x := x − 2); {0 < x};
(x := x − 1 � x := x − 2);

[(x mod 3 = 1) ∨ x ≥ n]

= {pull guard over demonic choice, Rule 41, ((S1 � S2)
◦ = S1 � S2)}

[¬(x mod 3 = 1) ∧ (x = n) ∧ 0 < x];

(x := x − 1 � x := x − 2); {0 < x};
[((x − 1) mod 3 = 1) ∨ (x − 1 ≥ n) ∨
((x − 2) mod 3 = 2) ∨ (x − 2 ≥ n)];

(x := x − 1 � x := x − 2);

[(x mod 3 = 1) ∨ x ≥ n]

= {pull guard over assertion, Rule 30}
[¬(x mod 3 = 1) ∧ 0 < x];

(x := x − 1 � x := x − 2);

[(x = 0) ∨ ((x − 1) mod 3 = 1) ∨ (x − 1 ≥ n) ∨
((x − 2) mod 3 = 2) ∨ (x − 2 ≥ n)];

{0 < x}; (x := x − 1 � x := x − 2);

[(x mod 3 = 1) ∨ x ≥ n]

= {focus}
• [¬(x mod 3 = 1) ∧ 0 < x]

(x := x − 1 � x := x − 2);
[(x = 0) ∨ ((x − 1) mod 3 = 1) ∨ (x − 1 ≥ n)∨
((x − 2) mod 3 = 2) ∨ (x − 2 ≥ n)]

= {replace angelic choice by conditional, Rule 44}



16 6 EXAMPLES

• (¬(x mod 3 = 1) ∧ (x = n) ∧ 0 < x) {|
x := x − 1 � x := x − 2
|} (0 < x ∧ ¬((x − 1) mod 3 = 1) ∧ (x − 1 < n)∧

¬((x − 2) mod 3 = 1) ∧ (x − 2 < n))
= {simplify postcondition}

(¬(x mod 3 = 1) ∧ (x = n) ∧ 0 < x) {|
x := x − 1 � x := x − 2
|} ((x mod 3 = 1) ∧ (x − 1 < n))

⇐ {correctness reasoning}
T

· · · [¬(x mod 3 = 1) ∧ (x = n) ∧ 0 < x];
if (x := x − 1).((x mod 3 = 1) ∧ (x − 1 < n)) → x := x − 1
[] (x := x − 2).((x mod 3 = 1) ∧ (x − 1 < n)) → x := x − 2 fi;
[(x = 0) ∨ ((x − 1) mod 3 = 1) ∨ (x − 1 ≥ n)∨
((x − 2) mod 3 = 2) ∨ (x − 2 ≥ n)]

= {simplify conditional guards}
[¬(x mod 3 = 1) ∧ (x = n) ∧ 0 < x];
if (x mod 3 = 2) → x := x − 1
[] (x mod 3 = 0) → x := x − 2 fi;
[(x = 0) ∨ ((x − 1) mod 3 = 1) ∨ (x − 1 ≥ n)∨
((x − 2) mod 3 = 2) ∨ (x − 2 ≥ n)]

· · · [¬(x mod 3 = 1) ∧ (x = n) ∧ 0 < x];

if (x mod 3 = 2) → x := x − 1

[] (x mod 3 = 0) → x := x − 2 fi;

[(x = 0) ∨ ((x − 1) mod 3 = 1) ∨ (x − 1 ≥ n) ∨
((x − 2) mod 3 = 2) ∨ (x − 2 ≥ n)];

{0 < x}; (x := x − 1 � x := x − 2);

[(x mod 3 = 1) ∨ (x ≥ n)]

= {split guards, push guards backwards (reverse initial steps)}
[¬(x mod 3 = 1) ∧ (x = n)]; [0 < x];

if (x mod 3 = 2) → x := x − 1

[] (x mod 3 = 0) → x := x − 2 fi;

{0 < x}; (x := x − 1 � x := x − 2);

[(x mod 3 = 1) ∨ (x ≥ n)]

When simplifying the guards we used the fact that x was assumed positive
before the conditional, and also that x = n. Note also that we use monus
when subtracting natural numbers: (x < y) ⇒ (x − y = 0).

The implementation shows that the angel needs to establish x mod 3 = 1



6.2 A Discrete Scheduler 17

after its turn. The guarded conditional statement can be replaced by a
standard conditional statement since the guards cannot be true at the same
time, and the context assumption ¬(x mod 3) = 1 limits the (normally three)
options (x mod 3 is 0 or 1 or 2) to the two mentioned in the guards.

6.2 A Discrete Scheduler

This section describes the synthesis of a discrete controller. The example is a
simplified version of the discrete scheduler taken from Asarin et al. [1]. Their
system, which is defined as an automaton, is synthesized algorithmically by
searching the state space and pruning out bad states. We, on the other hand,
start with an angelic scheduler, prove its correctness with respect to the
desired behavior, and then implement the angelic nondeterminism according
to this behavior.

Suppose we have two identical processes that can be either waiting (wi)
or idle (¬wi). The processes can be idle as long as they wish, and they can
also generate a request (move to waiting). They can move from waiting to
idle whenever the scheduler gives them permission by flagging the variable
gi. We want the scheduler to behave so that no process will wait more than
two time units, and that mutual exclusion is satisfied, that is, either g1 or g2

is disabled.
Since we are interested in the behavior of the scheduler, its choices are

modeled as angelic. We start with the most liberal scheduler:

Schedule = g1, g2 := T, T � g1, g2 := T, F �
g1, g2 := F, T � g1, g2 := F, F

To model the waiting time we use a variable ci for each of the processes.
ci ranges over natural numbers.

Processi = if ¬wi then skip � wi := T ; ci := 0 else

if gi then wi := F else ci := ci + 1 fi fi

The system is described by the following specification:

do T → Schedule; Process1 ; Process2 od

Note that although the processes run in parallel, they can be modeled as
running sequentially since they do not share any variables.

The desired behavior for the scheduler is an invariance property – it should
be preserved by each loop iteration. The property is formalized as:

inv = (w1 ⇒ c1 < 2) ∧ (w2 ⇒ c2 < 2) ∧
(w1 ∧ w2 ⇒ ¬(c1 = 1 ∧ c2 = 1)) ∧ ¬(g1 ∧ g2)



18 6 EXAMPLES

The requirement that inv should be preserved is captured by this correct-
ness assertion, which should be proved true:

inv {| Schedule; Process1 ; Process2 |} inv (47)

The intermediate assertion (the precondition of Process1; Process2 with
respect to the postcondition), is easily calculated:

inter = g1 ∧ ¬g2 ∧ (w2 ∧ c2 = 0 ∨ ¬w2) ∨ ¬g1 ∧ g2 ∧ (w1 ∧ c1 = 0 ∨ ¬w1) ∨
¬g1 ∧ ¬g2 ∧ (w1 ∧ ¬w2 ∧ c1 = 0 ∨ ¬w1 ∧ w2 ∧ c2 = 0 ∨ ¬w1 ∧ ¬w2)

We now prove (47).

inv {| Schedule; Process1 ; Process2 |} inv

⇐ {sequential composition, Rule 16}
(inv {| Schedule |} inter) ∧ (inter {|Process1 ; Process2 |} inv)

⇐ {focus on second conjunct}
• inter {|Process1 ; Process2 |} inv

≡ {inter is weakest precondition with respect to inv}
T

· · · inv {| Schedule |} inter

≡ {expand Schedule}
inv {| g1, g2 := T, T �

g1, g2 := T, F � g1, g2 := F, T � g1, g2 := F, F |} inter

⇐ {angelic choice, Rule 23 (none of the inter clauses has g1 ∧ g2)}
inv {| g1, g2 := T, F � g1, g2 := F, T � g1, g2 := F, F |} inter

⇐ {angelic choice, Rule 24, r = (w2 ∧ c2 = 0 ∨ ¬w2)}
(inv ∧ (w2 ∧ c2 = 0 ∨ ¬w2) {| g1, g2 := T, F |} inter) ∧
(inv ∧ ¬(w2 ∧ c2 = 0 ∨ ¬w2) {| g1, g2 := F, T � g1, g2 := F, F |} inter)

⇐ {focus on first conjunct}
• inv ∧ (w2 ∧ c2 = 0 ∨ ¬w2) {| g1, g2 := T, F |} inter

⇐ {assignment, Rule 13}
(inv ∧ (w2 ∧ c2 = 0 ∨ ¬w2)) ⇒ (w2 ∧ c2 = 0 ∨ ¬w2)

≡ {logic}
T

· · · inv ∧ ¬(w2 ∧ c2 = 0 ∨ ¬w2) {| g1, g2 := F, T � g1, g2 := F, F |} inter

⇐ {angelic choice, Rule 23}
inv ∧ ¬(w2 ∧ c2 = 0 ∨ ¬w2) {| g1, g2 := F, T |} inter



6.2 A Discrete Scheduler 19

≡ {expand inv, logic simplification, assignment, Rule 13}
((¬w1 ∨ w1 ∧ c1 = 0) ∧ w2 ∧ (c2 = 1) ∧ ¬(g1 ∧ g2)) ⇒
(w1 ∧ c1 = 0 ∨ ¬w1)

≡ {logic}
T

We have proved that, if cooperative, the scheduler has the required behavior.
However, the scheduler cannot realistically be expected to be cooperative,
so we would also like to implement the angelic part with a deterministic
statement. While proving correctness, we have extracted (the framed) facts
that will be used in the implementation.

T

⇒ {from the above derivation}
(inv ∧ (w2 ∧ c2 = 0 ∨ ¬w2) {| g1, g2 := T, F |} inter) ∧
(inv ∧ ¬(w2 ∧ c2 = 0 ∨ ¬w2) {| g1, g2 := F, T |} inter) ∧
(inter {|Process1 ; Process2 |} inv)

⇒ {focus on the first two conjuncts}
• (inv ∧ (w2 ∧ c2 = 0 ∨ ¬w2) {| g1, g2 := T, F |} inter)∧

(inv ∧ ¬(w2 ∧ c2 = 0 ∨ ¬w2) {| g1, g2 := F, T |} inter)∧
⇒ {conditional, Rule 17}

inv {| if (w2 ∧ c2 = 0 ∨ ¬w2) then g1, g2 := T, F
else g1, g2 := F, T fi |} inter

· · · (inv {| if (w2 ∧ c2 = 0 ∨ ¬w2) then g1, g2 := T, F

else g1, g2 := F, T fi |} inter) ∧
(inter {|Process1 ; Process2 |} inv)

⇒ {sequential composition, Rule 16}
inv {|
if (w2 ∧ c2 = 0 ∨ ¬w2) then g1, g2 := T, F else g1, g2 := F, T fi;

Process1; Process2

|} inv

Now the scheduler is implemented so that the first process is enabled for
as long as the second one has not generated a request or waited more than
one time unit. This strategy might cause the first process to be enabled
unnecessarily – when it has not asked to; however this does not violate the
behavior we asked from the scheduler. If we expect such concerns to arise,
we should try to avoid eliminating moves that could in some cases conform to



20 7 RELATED WORK AND CONCLUSIONS

the behavior (unlike we did when eliminating g1, g2 := F, F from the moves).
For example, since we have proved inv {| Schedule |} inter, we can use Rule 44
(generalized for more than two choices) and get the winning strategy for the
scheduler implemented as:

if (w2 ∧ c2 = 0 ∨ ¬w2) → g1, g2 := T, F

[] (w1 ∧ c1 = 0 ∨ ¬w1) → g1, g2 := F, T

[] (w1 ∧ ¬w2 ∧ c1 = 0 ∨ ¬w1 ∧ w2 ∧ c2 = 0 ∨ ¬w1 ∧ ¬w2) → g1, g2 := F, F

fi

Obviously g1, g2 := T, T does not feature here since its weakest precondition
with respect to inter is false – the guard for that branch is false. Also note that
when both processes are idle, all the guards of the conditional are enabled,
so the scheduler is free to choose which of the branches to execute. This
implementation corresponds more closely to the algorithmically synthesized
version of the scheduler [1], since it leaves all the valid states in the picture.

7 Related Work and Conclusions

The notion of angelic nondeterminism goes back to the theory of nondeter-
ministic automata and Floyd’s nondeterministic programs [9]. Floyd talks
about nondeterministic programs that have free will rather than being ran-
dom, and are ”in part governed ... by final causes ... for the sake of which
their effects are carried out”; moreover, these programs are seen as aiming at
”achievement of success and avoidance of failure” [9]. Floyd expresses back-
tracking algorithms with constructs that do not refer to the details needed
for implementing backtracking. Floyd-like constructs can be described using
guarded conditionals and miracles [13, 15], but also angelic nondeterminism
[20], the subtle difference in the result being that an angelic specification can
”look ahead” and avoid nontermination [19].

In a weakest precondition predicate transformer setting, angelic choice
was independently introduced by Gardiner and Morgan [10] (as a ”conjunc-
tion operator”), and Back and von Wright [4]. The algebraic appeal is that
angelic nondeterminism is dual to the demonic, and the specification lan-
guage is complete with both types of nondeterminism in it: every construct
in the language is a weakest precondition, and every weakest precondition
corresponds to a construct in the language. A direct application of the al-
gebraic properties of angelic constructs is in program inversion, as shown
in [17]. Another benefit of having both types of angelic nondeterminism is
that the data refinement relation, which is often a different relation from the



21

normal refinement relation, can be defined in terms of the normal refinement
[18].

However, as described in the introduction, it is when modeling interaction
that angelic nondeterminism becomes indispensable. Back and von Wright
[5] also describe how to extract a winning strategy in the form of a nonangelic
program for certain games. These games are loops each iteration of which
starts with an angelic statement (a move from our favorite player), and then
contains only demonic statements. The given refinement rules then make
sure that a nonempty subset of choices that lead to a win become demonic.

Ward [19] has used ideas from the classical refinement calculus to develop
a refinement calculus for a functional (”expression”) specification language
with both angelic and demonic nondeterminism. As in [20], it is shown that
angelic constructs from this language can be used to model Floyd-like con-
structs for backtracking purposes. Ward also talks about restricting angelic
choices using information from the context or, in his own words, making the
choices more educated. For this purpose he gives a refinement rule, which in
our setting would correspond to merging an angelic update with an assertion.

In an Object-Z and CSP context (where system components are specified
as Object-Z classes and combined with CSP operators), Smith and Derrick
[16] use angelic nondeterminism (”an angelic model of outputs”) to model
cooperative communication between components. They also show how struc-
tural refinements can be used to move from this more abstract view to a more
implementation-oriented view, in which the actual agreement mechanism is
made explicit.

The common denominator of these works and ours is the realization that
angelic nondeterminism abstracts away from the details of how clairvoyance,
cooperation, or winning strategy is implemented. Demonic nondeterminism,
on the other hand, has no pretensions of cooperation or will to establish
postconditions, so it can be seen as standing between angelic nondeterminism
and determinism in the abstractness scale.

We have used and extended correctness and refinement techniques from
[5] in order to give two systematic methods for transforming programs with
angelic nondeterminism into programs with nonangelic constructs. These
transformations preserve correctness only with respect to specific postcon-
ditions – they are special cases of refinement in context. The main idea
behind the structural changes themselves is that choices that establish the
postcondition are virtually indistinguishable, so we could as well let the de-
mon resolve the successful part of angelic nondeterminism (or pick one of the
choices ourselves).

One of the methods relies on guard propagation for propagating informa-
tion from the postcondition to the angelic statements to be implemented; the



22 REFERENCES

other on extracting a winning strategy while proving correctness. However,
whether it is guard propagation or figuring out an intermediate assertion
while proving correctness, it all comes down to calculating weakest precon-
ditions. This suggests that the two approaches not only produce similar
results but also require similar efforts. At the same time, this means that
precondition calculators (based on theorem provers) such as [7] can be used
to automate this kind of refinement. In future work we intend to tailor [7]
to perform implementations of angelic nondeterminism automatically.

References

[1] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for
discrete and timed systems. In P. Antsaklis, W. Kohn, and S. Sastry,
editors, Hybrid Systems II, volume 999 of Lecture Notes in Computer
Science. Springer, 1995.

[2] R.-J. Back. Correctness Preserving Program Refinements: Proof Theory
and Applications, volume 131 of Mathematical Centre Tracts. Mathe-
matical Centre, Amsterdam, 1980.

[3] R.-J. Back. A calculus of refinements for program derivations. Acta
Informatica, 25:593–624, 1988.

[4] R.-J. Back and J. von Wright. Duality in specification languages: A
lattice theoretical approach. Acta Informatica, 27(7):583–625, 1990.

[5] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic In-
troduction. Springer-Verlag, 1998.

[6] R.-J. Back and J. von Wright. Contracts, games, and refinement. In-
formation and Computation, 157:25–45, 2000.

[7] O. Celiku and J. von Wright. Theorem prover support for precondition
and correctness calculation. In 4th International Conference on For-
mal Engineering Methods, volume 2495 of Lecture Notes in Computer
Science, pages 299–310. Springer-Verlag, Oct. 2002.

[8] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[9] R. W. Floyd. Nondeterministic algorithms. Journal of the ACM,
14(4):636–644, Oct. 1967.



23

[10] P. H. Gardiner and C. C. Morgan. Data refinement of predicate trans-
formers. Theoretical Computer Science, 87(1):143–162, 1991.

[11] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–583, 1969.

[12] L. Laibinis and J. von Wright. Context handling in the refinement
calculus framework. Technical Report 118, Turku Centre for Computer
Science, Aug. 1997.

[13] C. C. Morgan. The specification statement. ACM Transactions on
Programming Languages and Systems, 10(3):403–419, July 1988.

[14] C. C. Morgan. Programming from Specifications. Prentice-Hall, 1990.

[15] G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions
on Programming Languages and Systems, 11(4):517–561, 1989.

[16] G. Smith and J. Derrick. Abstract specification in Object-Z and CSP. In
4th International Conference on Formal Engineering Methods, volume
2495 of Lecture Notes in Computer Science, pages 109–119. Springer-
Verlag, Oct. 2002.

[17] J. von Wright. Program inversion in the refinement calculus. Informa-
tion Processing Letters, 37(2):95–100, 1991.

[18] J. von Wright. The lattice of data refinement. Acta Informatica,
31(2):105–135, 1994.

[19] N. Ward. A Refinement Calculus for Nondeterministic Expressions. PhD
thesis, University of Queensland, 1994.

[20] N. Ward and I. J. Hayes. Applications of angelic nondeterminism. In
P. A. C. Bailes, editor, Proc. 6th Australian Software Engineering Con-
ference, pages 391–404. Sydney, Australia, 1991.

A Appendix

Proof (25)

(r ∩ p) ⊆ S1.q, (¬r ∩ p) ⊆ S2.q

� p

= {r ∪ ¬r = true}



24 A APPENDIX

(r ∪ ¬r) ∩ p

= {distributivity}
r ∩ p ∪ ¬r ∩ p

⊆ {assumptions}
S1.q ∪ S2.q

The implication in the other direction follows directly by choosing r = S1.q.

Proof (40)

disjunctive S

� S; [q] = [S◦.q]; S

≡ {definition of dual}
S; [q] = [¬S.(¬q)]; S

≡ {equality on predicate transformers}
∀r • (S; [q]).r = ([¬S.(¬q)]; S).r

≡ {definitions}
∀r • S.(¬q ∪ r) = S.(¬q) ∪ S.r

≡ {disjunctivity assumption}
T

Proof (41)

monotonic S, S◦.q ⊆ p

� [p]; S; [q] � S; [q]

≡ {refinement definition}
∀r • ([p]; S; [q]).r ⊆ (S; [q]).r

≡ {focus}
• ([p]; S; [q]).r
= {definitions}

¬p ∪ S.(¬q ∪ r)
⊆ {assumption S.q ⊆ p}

¬S◦.q ∪ S.(¬q ∪ r)
= {definition of dual}

S.(¬q) ∪ S.(¬q ∪ r)



25

= {monotonicity assumption}
S.(¬q ∪ r)

= {definitions}
(S; [q]).r

· · · T

The other direction is trivial from skip � [p]

Proof (43)

monotonic S

� p {|S |} q ≡ ([p]; S; [¬q] = magic)

≡ {correctness definition, equality on predicate transformers}
(p ⊆ S.q) ≡ (∀r • ([p]; S; [¬q]).r = true)

≡ {definitions}
(p ⊆ S.q) ≡ (∀r • ¬p ∪ S.(q ∪ r) = true)

≡ {definitions, logic}
(p ⊆ S.q) ≡ (∀r • p ⊆ S.(q ∪ r))

≡ {implication antisymmetric}
• (p ⊆ S.q) ⇒ (∀r • p ⊆ S.(q ∪ r))
≡ {focus on antecedant}

• p ⊆ S.q
≡ {add facts from monotonicity, using ∀r • q ⊆ q ∪ r}

(p ⊆ S.q) ∧ (∀r • S.q ⊆ S.(q ∪ r))
≡ {r not free in first conjunct}

∀r • (p ⊆ S.q) ∧ (S.q ⊆ S.(q ∪ r))
⇒ {order on predicates transitive}

∀r • p ⊆ S.(q ∪ r)
· · · T
• (∀r • p ⊆ S.(q ∪ r)) ⇒ (p ⊆ S.q)
≡ {focus on antecedant}

• ∀r • p ⊆ S.(q ∪ r)
⇒ {specialize for q}

p ⊆ S.q
· · · T

· · · T



26 A APPENDIX

Proof (44)
From Theorem 43, the left-hand side is equal to magic; we show the right
hand side is magic by proving correctness of the guarded conditional.

p ⊆ (S1 � S2).q

� p ⊆ (if S1.q → S1 [] S2.q → S2 fi).q

= {guarded conditional definition 45}
p ⊆ ({S1.q ∪ S2.q}; ([S1.q]; S1 � [S2.q]; S2)).q

= {definitions}
p ⊆ ((S1.q ∪ S2.q) ∩ (¬S1.q ∪ S1.q) ∩ (¬S2.q ∪ S2.q))

= {simplification, definition of angelic choice}
p ⊆ (S1 � S2).q

= {assumption}
T





Turku Centre for Computer Science
Lemminkäisenkatu 14
FIN-20520 Turku
Finland

http://www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Science


