
Stepwise Development of
Peer-to-Peer Systems

Lu Yan
Turku Centre for Computer Science (TUCS) and
Department of Computer Science,Åbo Akademi University,
FIN-20520 Turku, Finland.

Kaisa Sere
Department of Computer Science,Åbo Akademi University and
Turku Centre for Computer Science (TUCS),
FIN-20520 Turku, Finland.

Turku Centre for Computer Science
TUCS Technical Report No 522
March 2003

ISBN 952-12-1153-9
ISSN 1239-1891

Abstract

Peer-to-peer systems like Napster, Gnutella and Kazaa have recently become pop-
ular for sharing information. In this paper, we show how to design peer-to-peer
systems within the action systems framework by combining UML diagrams. We
present our approach via a case study of stepwise development of a Gnutella-like
peer-to-peer system.

Keywords: Peer-to-peer, action systems, UML, specification, Gnutella.

TUCS Laboratory
Programming Methodology Research Group

1 Introduction

Peer-to-peer systems like Napster, Gnutella and Kazaa have recently become pop-
ular for sharing information. People find in peer-to-peer applications a convenient
solution to exchange resources via internet. Two factors have fostered the recent
explosive growth of such systems: first, the low cost and high availablity of large
numbers of computing and storage resource, and second, increased network con-
nectivity. As these trends continue, the peer-to-peer paradigm is bound to be more
popular[9].

Most current distributed systems like the Web follow the client-server paradigm
in which a single server stores information and distributes it to clients upon their
requests. Peer-to-peer systems, which consider that all nodes are equal for shar-
ing information, on the other hand, follow a paradigm in which each node can
store information of its own and establish direct connections with another node to
download information. In this way, the peer-to-peer systems offer attractive ad-
vantages like enhanced load balancing, dynamic information repositories, redun-
dancy and fault tolerance, content-based addressing and improved searching[11]
over the traditional client-server systems.

Because of the surprisingly rapid deployment of some peer-to-peer applica-
tions and the great advantages of the peer-to-peer paradigm, we are motivated
to conduct a study of peer-to-peer systems and achieve a way to develop such
systems. After using and analyzing various peer-to-peer clients on different plat-
forms, we identified two common problems of clients:reliability and robustness
(Most clients fail to provide satisfactory download service and some buggy ones
even bring down the system during our test) andextendability (Most clients are
implemented in a way that adding new services or functionalities results to lots
of modifications to the original specifications). An attractive strategy to solve
the first open problem is to use formal methods in designing peer-to-peer sys-
tems. Formal methods can help with reliability and robustness by minimizing
errors in designing peer-to-peer systems. To improve extendability, we introduce
a modular and object-oriented architecture for peer-to-peer systems. The benefit
of object-orientation can be used to design and implement peer-to-peer systems in
a reusable, composable and extendable way.

In this paper, we show how to design peer-to-peer systems within the action
systems framework by combining UML diagrams. We present our approach via
a case study of stepwise development of a Gnutella-like peer-to-peer system. We
start by briefly describing the action systems framework to the required extent in
Section 2. In Section 3 we give an initial specification of the Gnutella system.
An abstract action system specification is derived in Section 4. In Section 5 we
analyze and refine the system specification introduced in the previous section. We
end in Section 6 with concluding remarks.

1

2 Action systems

Action systems have proved to be very suitable for designing distributed systems[1,
2, 3, 6, 13]. The design and reasoning about action systems are carried out with
refinement calculus[12].

In this section we will introduce OO-action systems[4], an object-oriented
extension of action systems which we select as a foundation to work on. In this
way, we can address our two open problems in a unified framework with benefits
from both formal methods and object-orientation.

An OO-action system consists of a finite set of classes, each class specifying
the behaviour of objects that are dynamically created and executed in parallel.

2.1 Actions

We will consider a fixed setAttr of attributes (variables) and assume that each
attribute is associated with a nonempty set ofvalues. Also, we consider a setAct
of actions defined by the following grammar

� ��� ���������	�
 �� ��
 �� � ��� ����������� � �

Here
 is a list of attributes,� a list of values,� a nonempty set of values,� a
predicate over attributes. Intuitively,����� is the action which always deadlocks,
���	 is a stuttering action,
 �� � is a multiple assignment,
 �� � is a random
assignment,� � � is a guard of an action,��� is an assertion,����� is the se-
quential composition of the actions�� and��, and����� is the nondeterministic
choice between the action�� and��.

Theguard of an action is defined in a standard way using weakest preconditions[14]

���� � ��	��� false�

The action� is said to be enabled when the guard is true.

2.2 Classes and objects

Let CName be a fixed set of class names andOName a set of valid names for
objects. We will also consider a fixed set of object variablesOVar assumed to
be disjoint fromAttr. The only valid values for object variables are the names
for objects inOName. The set of object actionsOAct is defined by extending the
grammar of actions as follows

� ��� ��� �� ���������� �� ������

�	��
��self.m���	��
������� ��

2

Here� � ���, � is an object variable,� is either an object name or the constants
self or ��	�� (all three possibly resulting from the evaluation of an expression),
� is a class name,	 a procedure name, and� is a method name. Intuitively,
� �� � stores the object name� into the object variable�, ������ creates a new
object instance of the class�, � �� ������ assigns the name of the newly created
instance of the class� to the object variable�, 	 is a procedure call,�
� is a call
of the method� of the object the name of which is stored in the object variable
�, self.m is a call of the method� declared in the same object, and��	��
� is a
call of the method� declared in the object that created the calling object. Note
that method calls are always prefixed by an object variable or by the constantself
or ��	��.

We define the guard����� of an object action� to be the guard of the action
in ��� obtained by substituting every atomic object action of� with the action
���	, where an atomic object action is

�� � �� �� ������� � �� ������� 	� �
�� self.m� ��	��
�

The resulting statement is an action in��� and hence its guard is well defined.
A ����� is a pair� �� � �, where� � ����� is the���� of the class and�

is its ����, that is, a statement of the form

� � �� ���� �� �� ���
 ��
�
��� �

���� �� � ��� � � � ��� � ��

	��
 	� � ��� � � � � 	� � ��

�� � ��

��

A class body consists of an object action� and of four declaration sections. In
the attribute declaration theshared attributes in the list�, marked with an asterisk
�, describe the variables to be shared among all active objects. Therefore they can
be used by instances of the class� and also by object instances of other classes.
Initially they get values��. The local attributes in the list
 describe variables
that are local to an object instance of the class, meaning that they can only be used
by the instance itself. The variables are initialized to the value
�.

The list� of object variables describes a special kind of variables local to an
object instance of the class. They contain names of objects and are used for calling
methods of other objects. We assume that the lists
� � and� are pairwise disjoint.

A method �� � �� describes a procedure of an object instance of the class.
They can be called by actions of the objects themselves or by actions of another
object instance of possibly another class. A method consists of a method name�

and an object action� .

3

A procedure 	� � �� describes a procedure that is local to the object instances
of the class. It can be called only by actions of the object itself. Like a method, it
consists of a procedure name	 and an object action forming the body� .

Theclass body is a description of the actions to be executed repeatedly when
the object instance of the class is activated. It can refer to attributes which are
declared to be shared in another class, and to the object variables and the local
attributes declared within the class itself. It can contain procedure calls only to
procedures declared in the class and method calls of the form�
� or ��	��
� to
methods declared in other classes. Method callsself.m are allowed only if� is
a method declared in the same class. As for action systems, the execution of an
object action is atomic.

2.3 OO-action system

An OO-action system �� consists of a finite set of classes

�� � �� ��� �� �� � � � � � ��� �� ��

such that the shared attributes declared in each�� are distinct and actions in each
�� or bodies of methods and procedures declared in each�� do not contain���
statements referring to class names not used by classes in��. Local attributes,
object variables, methods, and procedures are not required to be distinct.

There are some classes in��, marked with an asterisk�. Execution starts
by the creation of one object instance of each of these classes. Each object, when
created, chooses enabled actions and executes them. Actions operating on disjoint
sets of local and shared attributes, and object variables can be executed in paral-
lel. They can also create other objects. Actions of different active objects can
be executed in parallel if they are operating on disjoint sets of shared attributes.
Objects interact by means of the shared attributes and by executing methods of
other objects.

3 Initial specification of the Gnutella system

Gnutella is a decentralized peer-to-peer file-sharing model developed in 2000
by Nullsoft, AOL subsidiary and the company that created WinAMP [10]. The
Gnutella model enables file sharing without using servers.

Unlike a centralized server network, the Gnutella network does not use a cen-
tral server to keep track of all user files. To share files using the Gnutella model, a
user starts with a networked computer A with a Gnutellaservent, which works
both as a server and a client. Computer A will connect to another Gnutella-
networked computer B and then announce that it isalive to computer B. B will

4

Servent
 A

Servent
 F

Servent
 E

Servent
 D

Servent
 B

Servent
 C

 (includes Servent F info)
4. Search Response

3. Search Response
 (includes Servent F info)

1. Search Query

2. Search Query 2. Search Query

2. Search Query2. Search Query

5. File Download

Figure 1: Gnutella peer-to-peer model[10]

in turn announce to all its neighbours C, D, E, and F that A is alive. Those com-
puters will recursively continue this pattern and announce to their neighbours that
computer A is alive. Once computer A has announced that it is alive to the rest
of the members of the peer-to-peer network, it can then search the contents of the
shared directories of the peer-to-peer network.

Search requests are transmitted over the Gnutella network in a decentralized
manner. One computer sends a search request to its neighbours, which in turn
pass that request along to their neighbours, and so on. Figure 1 illustrates this
model. The search request from computer A will be transmitted to all members of
the peer-to-peer network, starting with computer B, then to C, D, E, F, which will
in turn send the request to their neighbours, and so forth. If one of the computers
in the peer-to-peer network, for example, computer F, has a match, it transmits
the file information (name, location, etc.) back through all the computers in the
pathway towards A (via computer B in this case). Computer A will then be able
to open a direct connection with computer F and will be able to download that file
directly from computer F.

4 Action system specification of the Gnutella system

When taking a step back, it is seen that the Gnutella system enables at least the
following functionalities:

1. Servent can easily join and leave the peer-to-peer network.

5

Connect

Download

Lookup User

Net

Servent

Figure 2: Use Case diagram of servent

Download
Service

Connect
Service

Lookup
Service

User Interface

Network

Figure 3: Structure diagram of servent

2. Servent can publish its content to the shared directories of the peer-to-peer
network.

3. Servent can search for and download files from the shared directories of the
peer-to-peer network using keywords.

Based on the simple descriptions above, we can identify that servent should
provide three basic services,connect service, lookup service anddownload ser-
vice, as shown in Fig.2. From this diagram we divide the system into components
and derive a component-based structure of servent in Fig.3.

The statechart diagram Fig.4 shows the joint behaviour of servent. Each state
is described by a set of attributes. We give unique preconditions for entering each
state. Table 1 shows preconditions and invariants for every state of the servent.

An interesting issue to notice is that downloads can be initiated in two ways,
i.e. either from a search result or by directly specifying target information. This
design is reasonable because we do not always need to search the peer-to-peer
network to get wanted files. In some cases, name and location information of files
is already available. For example, file exchanges between two friends, who have
already known each other’s IP and shared contents. Take this into consideration,
we provide two ways to initiate downloads.

6

Offline Online

Searching

Downloading

No Match

Match

Finish

Set Keyword

Set TargetConnect

Fail

Figure 4: Statechart diagram of servent

Table 1: Preconditions and invariants for states

State Precondition Invariant
Offline �connected	 keyword = keyword = 	 target =

	 target =
Online connected	 keyword = connected

	 target =
Searching connected	 keyword
� connected	 target =

	 target =
Downloading connected	 keyword = connected	 keyword =

	 target
�

7

Table 2: Initial specification of servent

!" � �� ���� ����������� ��������� �������� ����� �� Offline
��

����� � Offline 	 ����������
����� �� ������

� ����� � ������ 	 �������
� �
����� �� "����#���

� ����� � ������ 	 ������
� �
����� �� $����������

� ����� � "����#��� 	 ������ � �
������� �� � ����� �� ������

� ����� � "����#��� 	 ������
� �
������� �� � ����� �� $����������

� ����� � $���������� �
������ �� � ����� �� ������

��

��

The first version of action system specification of servent can be derived di-
rectly from Fig.4 and Table 1.

�� !�������"������� !" �� � � ��

where the class body in Table 2 consists of attribute declaration, initialisation and
a loop of actions which are chosen for execution in a non-deterministic fashion
when enabled. Each action is of the form� � " where� is the guard and" is a
statement to be executed when the guard evaluates to����. Hereconnected is a
boolean variable;keyword is the search criteria;target is the location information
of shared resources in formatfilename@IP.

The next step is to apply the design in Fig.3 to our initial specification, which
results in three more classesConnectService, LookupService andDownloadSer-
vice. Now the system consists of a set of classes� �� � � where� is the name of
the class and� is its body. On the top level, we have components of servent

�� !�������"������� !" ��� � �������"������� �� ��

� %����	"������� %� ��� $�������"�������$� �� � � ��

The class� !�������"������� !" �, marked with an asterisk�, is the root class.
At execution time one object of this class is initially created and this in turn creates
other objects by executing��� statements.

8

Table 3: Refined specification of servent

!" � �� ���� ��������� �� false� ������� �� � ������ ��

��� � � �������"������� � � %����	"�������
� � $�������"������

���� "��&��������� � ������� �� ��
"��'�������� � ������ �� �

�
�� � �� �����������"��������
� �� ����%����	"��������
� �� ����$�������"�������

��

����������� ��������� �� �
�������� �
� ��������� 	 �������
� �

������ �� �
"����#���������� ������� ��

� ��������� 	 ������
� �
�
$���������������� ������ ��

��

��

Let us look at the actions in Table 2. We can refine them according to service
groups. For example, action

����� � Offline 	 ���������� ����� �� ������

whereOffline andOnline are defined in Table 1, can be refined into action

����������� ��������� �� �
�������� �

In this paper, however, we skip refinement details here because we do not want to
go into details of semantics of action systems[15] nor refinement rules of refine-
ment calculus[12].

The body of the refined specification of servent is described in Table 3. It
models a servent that provides three basic services (ConnectService, LookupSer-
vice andDownloadService). When it connects itself to the peer-to-peer network,
users can search the network via"��&������ method and then download files
from the search result. Or alternatively, users can directly givetarget information
via "��'����� method to download files.

9

Download
Service

Connect
Service

Network

Lookup
Service

User Interface

File
RepositoryRouter

Figure 5: Schematic diagram of servent

5 Refining Gnutella servent

Ultimately, we need to derive an implementable specification for each service in
the Guntella servent. Hence, every service component should be refined. We
noticeConnectService andLookupService share a common functionality that en-
ables appropriate message routing. It is reasonable to introduce a new component
Router to the system as depicted in Fig. 5. This component will be in charge of
routing all the incoming and outgoing messages of the servent. ForDownload-
Service, we introduce a new componentFileRepository in Fig. 5. It will act as a
resource exchanger between servent and network.

5.1 Refining ConnectService

We start by consideringConnectService first. A Gnutella servent connects itself
to the peer-to-peer network by establishing a connection with another servent cur-
rently on the network, and this kind of connection is passed around recursively. In
order to model the communication between servents, we define a set of descriptors
and inter-servent descriptor exchange rules as follows[7]

Ping Used to actively discover hosts on the network. A servent receiving a Ping
descriptor is expected to respond with one or more Pong descriptors.

Pong The response to a Ping. Includes the address of a connected Gnutella ser-
vent and information regarding the amount of data it is making available to
the network.

Furthermore, we need to define the format of Ping descriptor and Pong de-
scriptor. We use the message format in Table 4, whereDescriptorID is a string

10

Table 4: Message format

��� � �� ���� ������	���($�''%� ��	�� info
���� '�������� � � ''% � � � ''% �� ''%� �
�
�� � � ������ ����� �

������ � �������	���($ �� ���)�� ($ �
''% �� ��
 ''% � ��	� �� �� info �� info �

��

1. Ping

3. Ping 2. Pong

3. Ping

3. Ping

Figure 6: Ping - Pong routing[7]

uniquely identifying the descriptors on the network. TTL stands forTime To Live,
which is the number of times the descriptor will be forwarded by servent before
it is removed from the network. The TTL is the only mechanism for expiring
descriptors on the network. Each servent will decrement the TTL before passing
it on to another servent. When the TTL reaches 0, the descriptor will no longer
be forwarded. The information carried by the message is encoded ininfo, whose
format depends on the variabletype.

The peer-to-peer nature of the Gnutella network requires servents to route
network traffic appropriately. Intuitively, a servent will forward incoming Ping
descriptors to all its directly connected servents. Pong descriptors may only be
sent along the same path that carried the incoming Ping descriptor as shown in
Fig.6. This ensures that only servents that routed the Ping descriptors will see
the Pong descriptor in response. A servent that receives a Pong descriptor with
������	���($ � �, but has not seen a Ping descriptor with������	���($ � �

should remove the Pong descriptor from the network.
The above routing rules can be illustrated in the statechart diagram Fig. 7.

Using the same techniques as in the previous section, we can translate the diagram
into action system specification and further refine it into Table 5.

The specification of Ping - Pong router models a router that can route Ping
- Pong traffic appropriately. When the router is initiating, it connects itself to

11

Table 5: Specification of Ping - Pong router

*� � �� ���� ��������� �� false� ������	���$+ �� � 	���� ��

��� ����������� � ���������� � ���

���� *���������� � � ����������� �� �������� ������� �
"���� ���� � � ������� �� ���������������

�������� ������� �� ��������
"�������� � � ������� �� ���������������

������
info
(� �� �#�� (� �
�������� ������� �� ��������

ForwardMsg��� � ��
''% � � �
�
'�������� �� �������� ������� �� ��

�
�� "���� ���� �
��

�� 	����
� � ��������� �� ����

� ����������� "���� ���� � ��
�
�� �����

*���������� ��
if �����������
��	� � ���� �

������	���$+ �� ������	���$+�
�����������
������	���($�
"�������� ��
ForwardMsg�������������

� �����������
��	� � ���� �
	���� �� 	���� � �����������
info
(� �
�����������
������	���($ � ������	���$+ �

ForwardMsg�������������
fi

��
��

��

12

ReceivingInitiating

Updating DB Sending Pong Forwarding Ping

Forwarding PongAdding Peers Checking DB

Pong Expired

Received Ping

Ping − Pong Routing

Ping Expired

Received Pong

Fail

Figure 7: Statechart diagram of Ping - Pong routing rules

the peer-to-peer network by sending Ping descriptors to other peers. After ini-
tiation, it continues receivingincoming message and replying with apporiate
outgoing message . HeredescriptorDB is a set storingdescriptorID informa-

tion; peers is a set storing its directly and indirectly connected servents informa-
tion; and this IP is the IP address of the responding servent. The sequence of a
connect session is summarized in Fig. 8.

In order to reuse the specification in Table 3, we will specifyConnectService
without making any changes in its interface. The specification is shown in Table 6.
WhenConnectService is initiating, an instance ofRouter is created. Then it keeps
checking state variableconnected in the router and passing the status to servent.

User Interface Router File Repository NET

BroadcastPing()

Ping()

Pong(peer)

ConnectReply()

IncomingPing()

OutgoingPong(servent)

StartConnect()

Figure 8: Sequence diagram of a connect session

13

Table 6: Specification ofConnectService

�� � �� ���� ��������� �� false
��� � � *�����
���� �������� � � ���������� �� �
����������
�
�� � �� ����*������

��

Table 7: Refined message format

��� � �� ���� ������	���($�''%� ��	�� info
���� '�������� � � ''% � � � ''% �� ''%� �
�
�� � � ������ �����,�����,����-����

������ � �������	���($ �� ���)�� ($ �
''% �� ��
 ''% � ��	� �� �� info �� info �

��

5.2 Refining LookupService

When we think aboutLookupService, we follow almost the same paradigm as
ConnectService to specify this component. A Gnutella servent starts a search
request by broadcasting aQuery message through the peer-to-peer network. Upon
receiving a search request, the servent checks if any local stored files match the
query and sends aQueryHit message back. We use following descriptors and
routing rules to model the communication between servents[7]

Query The primary mechanism for searching the distributed network. A servent
receiving a Query descriptor will respond with a QueryHit if a match is
found against its local data set.

QueryHit The response to a Query. This descriptor provides the recipient with
enough information to acquire the data matching the corresponding Query.

The message format in Table 4 has to be revised to adopt the new descriptors.
The messagetype now includesPing, Pong, Query and QueryHit, so a minor
change is made in Table 7.

The routing rules for Query - QueryHit traffic are similar to the rules for Ping
- Pong traffic. A servent will forward incoming Query descriptors to all its di-
rectly connected servents. QueryHit descriptors may only be sent along the same

14

1. Query

2. Query

3. Query4. Hit

5. Hit

6. Hit

Figure 9: Query - QueryHit routing[7]

path that carried the incoming Query descriptor as shown in Fig. 9. This en-
sures that only those servents that routed the query descriptors will see the Query-
Hit descriptor in response. A servent that receives a QueryHit descriptor with
������	���($ � �, but has not seen a Query descriptor with������	���($ � �

should remove the QueryHit descriptor from the network.
Like the previous section, we first draw a statechart diagram for the Query -

QueryHit routing rules. Then we translate it into action system specification and
further refine it.

In Table 8 we have the body of Query - QueryHit router specification, which
models a router that is in charge of routing Query - QueryHit traffic appropriately.
Like a Ping - Pong router, it keeps receivingincoming message and replying
with apporiate outgoing message . HeredescriptorDB is a set storingdescrip-
torID information; myKeyword is a string storing search criteria;cKeyword is
a string storing comparison criteria;filename is a string storing destination file-
name;target is the shared resource location information in formatfilename@IP;
andf is an object of classFileRepository which enables local file search service
via Has andFind methods. Details of classFileRepository will be elaborated in
the next section.

The Query - QueryHit router provides searching function via methodSetKey-
word. Once a keyword is set, a Query descriptor carrying search criteria is gen-
erated and broadcasted in the peer-to-peer network via methodSendQuery. In the
mean time, the router keeps receiving Query and QueryHit descriptors. For an
incoming Query descriptor, a query request is passed toFileRepository. Accord-
ing to the search result, a QueryHit descriptor is sent back in response via method
SendQueryHit if a match is found, otherwise the Query descriptor is further for-
warded via methodForwardMsg. Upon receiving a QueryHit descriptor, it checks
its keyword field, and then setstarget information to complete the search session.
We summarize the sequence of a search session in Fig. 10.

Now we specifyLookupService with emphasis on specification reuse. The
result is shown in Table 9. WhenLookupService is initiated, an instance ofRouter
is created. It providesSearch method via callingSetKeyword method in the router,

15

Table 8: Specification of Query - QueryHit router

*� � �� ���� ������	���$+ �� ���&������ �� �
�&������ �� � filename �� � ������ ��

��� ����������� � ���������� � ���� . � FileRepository
���� "��&��������� � ��&������ �� ��

*���������� � � ����������� �� �������� ������� �
"���,����� � � ������� �� ��������,�������

������
info
������� �� ��&�������
�&������ �� ��&������� ������ �� �
�������� ������� �� ��������

"���,����-��� � � ������� �� ��������,����-�����
������
info
������� �� �����������
info
��������
������
info.filename �� filename�
������
info
(� �� �#�� (� �
�������� ������� �� ��������

ForwardMsg��� � ��
''% � � �
�
'�������� �� �������� ������� �� ��

��

�� ��&������
� � "���,����� ����&������ � ��
�
�� �����

*���������� ��
if �����������
��	� � ,���� �

������	���$+ �� ������	���$+�
�����������
������	���($�
if .
-��������������
info
�������� �

filename �� .
/ ���������������
info
���������
"���,����-��� �

� �.
-��������������
info
�������� �
ForwardMsg�������������

fi
� �����������
��	� � ,����-���

if �����������
info
������� � �&�������
������ �� �����������
info.filename	
�����������
info
(� � �&������ ��

� �����������
info
�������
� �&������	
�����������
������	���($ � ������	���$+ �

ForwardMsg�������������
fi

fi
��

��

��

16

User Interface Router File Repository NET

Query(message)

StartSearch(criteria)

BroadcastQuery(message)

QueryHit(replymessage)

SearchReply()

IncomingQuery(keyword)

Lookup(keyword)

LookupReply(filename)

OutgoingQueryHit(target)

Figure 10: Sequence diagram of a search session

Table 9: Specification ofLookupService

%� � �� ���� ������ ��

��� � � *�����
���� "����#��� � ��
"��&���������� ������ �� �
�������
�
�� � �� ����*������

��

and then returning the search result to servent.
Until now we have two action systems,Rc modeling Ping - Pong routing rules

andRl modeling Query - QueryHit routing rules. We notice the two action systems
actually model different aspects of a full router. Furthermore, we can compose the
two action systems together usingprioritising composition[5] to derive the action
system specification of a full router

* � �� *� �*� ��

where on the higher level, we have components of the router

�� *������ * ��� ��������*������ *� ��� ,����*������ *� ��

5.3 Refining DownloadService

DownloadService is relatively simple compared toConnectService andLookupSer-
vice. The primary function of this component is to enable a servent to download

17

Table 10: Specification of file repository

/ � �� ���� fileDB �� fileDB � filename �� � ������ ��

���� "��'�������� � ������� �� ���
-������� � ������ � ����fileDB���
/�������� � �filename �� file 	 �file� � ���������� fileDB��

��

������
� �
-''� ���������
������ �� �
Refresh�fileDB�

��

��

files from other servents. Once a servent receives a QueryHit descriptor, it may
initiate the direct download of one of the files described by the descriptor’s result
set. Or alternatively, users can initiate the download directly by giving complete
target information. Files are downloaded out-of-network, i.e. a direct connection
between the source and target servent is established in order to perform the data
transfer. File data is never transferred over the peer-to-peer network.

Additionally, this component provides the local file query function for other
servents. It should be in charge of a local file database which provides data ser-
vices like add, delete, update, query and refresh etc. Moreover, it should take
full control of local files. Hence we introduce a new componentFileRepository in
Table 10, which will satisfy the above requirements forDownloadService. First
of all, we provideSetTarget method to enable file downloads. To make things
simple, we assume thatfileDB is simply a set of relations����� � �file�. We use
relation notations[16]dom andran for domain and range operations, and� as a
domain restriction operator, defined by" � � � �
� ��

� � � � 	
 � "�. For
incoming Query descriptors,Has andFind methods are provided to enable local
file searches.

Given target information, download action is enabled and servent initiates a
download. A download request is sent to the target servent, and then a file is
downloaded via HTTP protocol. Afterwards,fileDB is refreshed in order to reflect
the change of adding new files to the repository. The sequence of a download
session is summarized in Fig. 11.

The last step is to specifyDownloadService. From the result in Table 11, we
can see that whenDownloadService is initiating, an instance ofFileRepository is
created. It enablesDownload by callingSetTarget method inFileRepository.

18

User Interface Router File Repository NET

StartDownload(target)

DownloadRequest(target)

DownloadReply()

DownloadResponse(file)

IncomingDownload(target)

OutgoingDownloadReply(file)

Figure 11: Sequence diagram of a download session

Table 11: Specification ofDownloadService

$� � �� ��� . � FileRepository
���� $���������� � .
"��&���������
�
�� . �� ����FileRepository�

��

At this stage of the design, we finally have a complete set of classes which are
refinement results from the initial specification of servent as follows

�� !�������"������� !" ��� � �������"������� �� ��

� %����	"������� %� ��� $�������"�������$� ��

� ��������*������ *� ��� ,����*������ *� ��

� *������ * ��� FileRepository� / ��� ����������� ��

6 Concluding remarks

We identified two open problems of existing peer-to-peer systems:reliability and
robustness and extendability, and proposed strategies that can be used to solve
them. The main contribution of this paper is an approach to stepwise develop-
ment of peer-to-peer systems within the action systems framework by combining
UML diagrams. We have presented our approach via a case study of stepwise
development of a Gnutella-like peer-to-peer system.

Our experience shows that it is beneficial to combine informal methods like
UML and formal methods like action systems together in the development of peer-
to-peer systems. In the early stage, we try to catch the characteristic of the system

19

using use case diagrams and statechart diagrams. Then formal specification in
action systems framework is derived by further studying and elaborating details
of these diagrams. In the later stage, sequence diagrams are used to graphically
clarify the structure of the refined action system specification.

Moreover, we find OO-action systems very suitable for designing such kind
of systems. The formal nature of OO-action systems makes it a good tool to built
reliable and robust systems. Meanwhile, the object-oriented aspect of OO-action
systems helps to built systems in an extendable way, which will generally ease
and accelerate the design and implementation of new services or functionalities.
Furthermore, the final set of classes in the OO-action system specification is easy
to be implemented in popular OO-languages like Java, C++ or C#.

Peer-to-peer systems have been evolving very quickly. Besides Gnutella, an-
other promising choice is JXTA[8] from Sun, which has been generating lots of
attention. In the future work, we plan to further investigate this new standard.
Moreover, we plan to stepwise implement our action system specification and de-
velop it into a real peer-to-peer system.

References

[1] R.J.R. Back and K. Sere:From Action Systems to Modular Systems. Soft-
ware - Concepts and Tools. (1996) 17: 26–39.

[2] R.J.R. Back, A.J. Martin and K.Sere:Specifying the Caltech asynchronous
microprocessor. Science of Computer Programming. (1996) 26: 79–97.

[3] L. Petre, M. Qvist and K. Sere:Distributed Object-Based Control Systems.
TUCS Technical Reports, No 241, February 1999.

[4] M. Bonsangue, J.N. Kok and K. Sere:An approach to object-orientation
in action systems. Proceedings of Mathematics of Program Construction
(MPC’98), Marstrand, Sweden, June 1998. Lecture Notes in Computer Sci-
ence 1422. Springer Verlag.

[5] E. Sekerinski and K. Sere:A Theory of Prioritising Composition. TUCS
Technical Reports, No 5, May 1996.

[6] M. Butler, E. Sekerinski and K. Sere:An Action System Approach to the
Steam Boiler Problem. In Jean-Raymond Abrial, Egon Borger and Hans
Langmaack, editors, Formal Methods for Industrial Applications: Specify-
ing and Programming the Steam Boiler Control. Lecture notes in Computer
Science Vol. 1165. Springer-Verlag, 1996.

20

[7] Clip2 DSS:Gnutella Protocol Specification v0.4.
Online. http://www.clip2.com/GnutellaProtocol04.pdf.

[8] L. Gong: JXTA: A network programming environment. IEEE Internet Com-
puting, 5(3): 88–95, May/June 2001.

[9] M. Ripeanu:Peer-to-peer architecture case study: Gnutella network. Tech-
nical Report TR-2001-26, University of Chicago, Department of Computer
Science, July 2001.

[10] I. Ivkovic: Improving Gnutella Protocol: Protocol Analysis and Research
Proposals. Technical report, LimeWire LLC, 2001.

[11] M. Parameswaran, A. Susarla and A.B. Whinston:P2P networking: An
information-sharing alternative. IEEE Computer, 34(7): 31–38, July 2001.

[12] R.J. Back and J. Wright:Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science, Springer-Verlag, 1998.

[13] L. Petre and K. Sere:Coordination Among Mobile Objects. Proceeding
of IFIP TC6/WG6 Third International Conference on Formal Methods for
Open Object-Based Distributed Systems (FMOODS’99), Florence, Italy,
February 1999.

[14] E.W. Dijkstra: A Discipline of Programming. Prentice-Hall International,
1976.

[15] K. Sere:Stepwise derivation of parallel algorithms. Academic dissertation
of Åbo Akademi Department of Computer Science, 1990.

[16] E. Sekerinski and K. Sere (Eds):Program Development by Refinement: Case
Studies Using the B Method. Springer-Verlag, 1999.

21

Turku Centre for Computer Science
Lemminkäisenkatu 14
FIN-20520 Turku
Finland

http://www.tucs.fi

University of Turku
� Department of Information Technology
� Department of Mathematics

Åbo Akademi University
� Department of Computer Science
� Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
� Institute of Information Systems Science

