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Abstract

This paper is a report that describes a feedforward neural network
architecture and an application of retraining algorithm in order to forecast
relevant process variables representative for glass manufacturing, provided
by EUNITE Competition 2003. The main purpose is to establish an
optimum feedforward neural architecture and a well suited delay vector for
data forecasting. The artificial neural networks (ANNs) ability to extract
significant information provides valuable framework for the representation
of relationships present in the structure of the data. The evaluation of the
output error after the retraining of an ANN shows us that this procedure can
substantially improve the achieved results.
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1. Introduction

Artificial Neural Networks (ANNs) are modelling tools having the ability to adapt to
and learn complex topologies of inter-correlated multidimensional data. Constructing
reliable time series models for data forecasting is challenging due to nonstationarities
and nonlinear effects [7]. In this report, we present our feedforward ANN model which
is useful in the case where there is a huge amount of data that imply the presence of
correlations across time.

The goal of our research was to find a mathematical model describing the
relationship between 29 input and 5 output variables of a glass manufacturing system
(Fig. 1), depicted in the EUNITE Competition 2003 specifications [2].

Fig. 1. Multi-input-multi-output system for glass quality

All inputs and outputs vary dynamically, and there might occur large time-delays.
Changing an input variable may result in an output change starting only a couple of
hours later and going on for up to several days [2].

The raw data consists of 9408 rows (time steps) ’ one data set every 15 minutes
during 14 weeks. For the first 12 weeks (8064 rows) both input and output data were
given and used during training process. During the last 2 weeks (1344 rows) only input
data were provided and, finally we predicted the corresponding 1344 rows of outputs.

The structure of this paper is as follows. Section 2 presents the problem concerning
model structure and data preprocessing. In next section we introduce the retraining
technique and explain our approach. The main features of our experimental results are
given in Section 4, where we discuss specific aspects. Section 5 presents the
competition outcome and some remarks concerning the submitted model. Our
conclusions are formulated in the final section of the report.

2. Model structure and data preprocessing

A good choice of the training data set is not a trivial task when one wants to make a
good prediction. Data preprocessing and data selection remain essential steps in the
knowledge discovery process for real world applications and greatly improve the
network•s ability to capture valuable information when correctly carried out [6] [7].

In Fig. 2 we present our idea in training a feedfoward ANN to be a predictor.
Delayed rows of the input data are used to construct representations of the current
states. For learning purposes, the network inputs consist of many blocks with delayed
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values of the glass manufacturing system inputs and one block with delayed system
outputs. The ANN target outputs consist of the current values of the glass
manufacturing system outputs. Therefore, the network tries to match the current values
by adjusting a function of their past values.

Fig. 2. Training a feedfoward ANN to be a predictor

At moment t, one output output_i(t) is affected by the inputs from different past
time steps. For example at moment t the output output_i(t) is affected by all inputs
(input_1, � , input_29) at different past time steps: t-v1, t-v2, t-v3, etc. We denote by
delay vector, Vect_In, a vector that includes the delays taken into account for the
model:

[ ]nInVect v,...,v,v_ 21=

We used different delay vectors with n = 7, 8 or 9 elements, whose values belong
to intervals that can cover one to three days. The distribution of the elements was
approximately similar to Gamma distribution. The elements of each vector were
ascendingly ordered. Consequently the maximum value of any vector is vn.

Beside the inputs from different past time steps, the outputs at moment t are
affected, in our model, by the outputs from the previous time step t-1.

We designed a feedforward ANN with one hidden layer. The ANN model depicted
in Fig. 1 restricts the total possible set of training (for model adaptation) to 8064-vn
input-output pairs.

Once we have decided all the influences on the output at moment t, we have
applied Principal Component Analysis (PCA) [4] [9] to reduce the dimensionality of the
input space and to un-correlate the inputs. Before applying PCA we have preprocessed
the inputs and outputs using normalization. We have applied the reverse process of
normalization in order to denormalize the simulated outputs.
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3. Training Procedure

As basic training algorithm we have used the Scale Conjugate Gradient (SCG)
algorithm [5] [9]. In order to avoid the over-fitting phenomenon we have applied the
early stopping method (validation stop) during the training process [9].

The accuracy of the result was improved applying in a special way the retraining
technique [6] [8], which is a practical information extracting mechanism directly from
the weights of a reference ANN which was already trained and is perfectly functional at
the present time. Briefly, the retraining procedure reduces the reference network
weights by a scaling factor γ,  0<γ <1. These reduced weights are used as initial weights
for a new training sequence, with the expectation for a better error as we can see in the
following:

… Training an Artificial Neural Network in a natural way with validation stop
starting with the weights initialized to small uniformly distributed values

… Reduction of the first network weights with a scaling factor γ  (0 < γ < 1)
… Retraining the network with the new initial weights
… Compare the validation error (or training error) in both cases

The data that we used for our model consist of 8064-vn input-output pairs. As
splitting criterion we have randomly chosen approximately 85% of the data for training
set and the remaining for validation.

Next we describe the three steps performed to refine our model:

1. First step was performed in order to decide the proper number of hidden neurons
(Nh). Each of the trainings started with the weights initialized to small uniformly
distributed values [3] [6]. We chose the best model according to the smallest
error between the desired and simulated outputs. This error was calculated for
8064-vn data that include both training and validation sets. We have tested
several ANN architecture with Nh around the geometric mean [1] of input
neuron number (Ni) and output neuron number (No):

5*5* +≤≤− oihoi NNNNN

2. Secondly, we have applied the retraining technique using the ANN architecture
(with its associate training and validation sets) obtained in the previous step. We
have applied this technique for each value of γ  (γ  = 0.3, 0.4, Å , 0.9), keeping
the neural networks that performed the minimum error as the reference network.
We repeated this step three times.

3. In this step we have also applied the retraining technique, the only difference
from the previous step being that we randomly reconstructed the training and
validation sets before each retraining sequence.

The rule used to choose the best model during each step was the mean square error
of the differences between real and simulated outputs of 8064-vn data that include both
training and validation sets.
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At each of these 3 steps we obtained a new model. Consequently for one single
delay vector we had 3 models. We have applied iteratively the 3 steps above for
different delay vectors. In total we have used 12 different delay vectors obtaining 36
models.

We have discovered that for the 4-th output (Fig. 3) there are three anomalous
extreme values (during timesteps 5490, 5491 and 5492) that could negatively influence
the training process.

Fig. 3. The provided data for the 4-th output

Consequently, for half of our models we have decided to level these values by
having them decreased from output_4(5489) to output_4(5493), in order to improve the
forecast precision (see Tab. 1).

Initial values Level values
output_4(5489) 1471.94130808653 1471.94130808653
output_4(5490) 1754.4285996792 1467.8
output_4(5491) 1754.4285996792 1463.7
output_4(5492) 1754.4285996792 1459.6
output_4(5493) 1455.63110951847 1455.63110951847

Tab. 1. Changing abnormal initial values with level values

The criterion to choose one of these 36 models was the minimum value of ERR
(according to the formula provided in the Eunite-Competition 2003 specifications [2];
see next section), but used for five intervals in which we had the real values of the
outputs.
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4. Forecasting Model

In our model the outputs at moment t are affected by the outputs from the previous time
step t-1. During the training phases we always used the real data at the input.

In the last part we tried to predict the 1344 values of outputs in a sequential mode.
Therefore (see Fig. 4), in order to produce the outputs at the timestep (t) the neural
network used as input, beside the real inputs of the glass manufacturing system from
different past time steps, the estimated outputs (t-1), which was calculated at the
previous step (t-1) using the outputs (t-2), and so on. Applying this iterative process, a
forecast may be extended as many steps as required, but in this case, each step may
increase the forecasting error.

Fig. 4. Output forecasting

In order to choose the best model among the 36, we have split the output data
corresponding to timestep (vn+1) till 8064 in five distinct intervals. The testing intervals
are as follows: 400 - 1800; 1850 ’ 3250; 3300 ’ 4700; 4750 - 6150 and 6200 - 7600.

We have computed for each interval the error ERR (the error provided in the
competition specification [2]):
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As a measure of model quality we calculated ERR_M as the mean of 5 ERR errors.
Then for each of the 36 models we have one ERR_M value. All the 36 models were
tested against each other in terms of ERR_M. We have chosen the model with the
smallest ERR_M.

Finally, the parameters of the model reported to EUNITE and derived from step 2
were:

• Vect_In = [10 20 35 55 80 120 185 290]
• Number of hidden neurons = 35
• ERR_M = 0.3602

We noticed that the previous model was among the ones that did not use the level
values between output_4(5489) and output_4(5493). Even if the fact was a little bit
surprising we decided to adopt this model.

Applying an iterative process (Fig. 4), starting with time step 8065, we finally
obtained the desired outputs that correspond to time steps 8065-9408.

The outputs of the model submitted to the EUNITE Competition 2003 are
presented in the following figures:

Fig. 5. Process outputs. Real data (thin lines that correspond to time steps 1-8064) and
neural network values (thick lines that correspond to timesteps 291-8064) after

training process. Thick lines cover very well the thin lines
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Fig. 6. Real outputs (solid lines) provided at the end of the competition and
predicted outputs (dotted lines) that correspond to timesteps 8065-9408

5. Competition Outcome

After the evaluation of 20 solutions [2] we have obtained the third position according to
the defined error criteria (Fig. 7).

Fig. 7. Total error of all 20 solutions using the defined error criteria
(provided by EUNITE [2])
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There is a small difference among the first three winners. But, on the other hand, our
solution is by far the best one in conformity with the variance of all five output errors
(see Fig. 8).

Fig. 8. Error of all five outputs for the 20 solutions. You find for each solution
(No 1 till 20) five markers indicating the error of the five outputs

(provided by EUNITE [2])

At the end of the competition, the real outputs (for timesteps 8065-9408) allowed
us to estimate ERR for all 36 models. We discovered that there were three models better
than the one that we submitted (see Tab. 2). All of them used during the training process
the level values between output_4(5489) and output_4(5493).

Models
3_PCA_II 5_cuPCA_II 5_cuPCA_III

Number of
hidden
neurons

39 42 42

Vect_In [10 20 30 45 65 95 145 210 330] [12 22 31 39 47 55 66 79 98] [12 22 31 39 47 55 66 79 98]
Result of Step 2 Step 2 Step 3
ERR 0.3629 0.3707 0.3788
err_1 0.4159 0.4361 0.4586
err_2 0.2593 0.2994 0.3059
err_3 0.4294 0.3729 0.4991
err_4 0.3902 0.2904 0.2639
err_5 0.3196 0.4549 0.3663
Standard
deviation of
all five
output errors

0.0718 0.0757 0.0994

Tab. 2. Parameters of the better (unsubmitted) models
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This means that our idea to choose the best model in terms of ERR_M was not
perfect. More than five distinct intervals used to compute ERR should improve the
criterion of the selection.

6. Conclusions

In this paper, we have designed a neural network tool for data prediction. Our method
exploits the input-output dependence across time using a delay vector. We employed the
PCA procedure in order to reduce the dimensionality of the input space and to un-
correlate the inputs. The learning process was refined applying the retraining procedure.

It is important to study the shapes of the graphs before training in order to level
some unnatural values. The decision to submit a model without level values between
output_4(5489) and output_4(5493) was not the best. Choosing the best model is not an
easy task. It should be improved using more data that cover all potential situations as
much as possible.

We were limited by the memory and speed of our computer (512 Mb of RAM and
Pentium 4 CPU 1.7 GHz). We are definitely convinced that using vectors with more
than 9 elements we can increase the performance of our tool. At the same time there are
other efficient algorithms like Levenberg-Marquardt or Bayesian regularization that also
necessitate a powerful machine to solve the problem. It is very easy to change in our
tool the SCG algorithm with one of these because at the basic level the architecture and
the retraining procedure are independent of the training algorithm.

We noticed that the retraining technique significantly improved the achieved result.
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