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Turku Centre for Computer Science
TUCS Technical Report No 544
July 2003

ISBN 952-12-1203-9
ISSN 1239-1891



Abstract

We present an approach to compositional refinement of action systems and their in-
terfaces. Our approach is intended to provide a support for the component-oriented
development of action systems. We introduce a notion of context-sensitive simu-
lation that is related to the rely-guarantee methods for program verification. We
consider conditions under which context-sensitive simulation preserves component
matching and present the corresponding theorems. A small example is used to
illustrate our approach.
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1 Introduction

The development of concurrent systems is especially prone to errors, since such sys-
tems usually consist of a number of simultaneously running processes that interact
with each other via messages or shared variables. Component technology increases
the reliability of software systems and, therefore, can ease the correct development
of concurrent systems.

Component-based software engineering relies upon the existence of large libraries
of software components that store the abstract specifications of components in addi-
tion to their implementations. The idea is that the designer picks a component from
the library so that the provided specification of its behaviour matches (refines in our
terminology) the specification to be implemented. The ease of component match-
ing is crucial for the success of component technology. This suggests the necessity
of providing components with the abstract descriptions of their intended interac-
tion with the environment. On the other hand, abstract interfaces need not be
implementable. Thus, in general, components themselves may interact with their
environments via more concrete mechanisms which are derived in the refinement
process. Assuming that matching between such components has been checked on
the abstract level of specifications, the crucial question is whether the parallel com-
position of their refinements is valid. In general, the answer is negative, since the
refinements of component interfaces may interfere. Thus, the main aim of this paper
is to suggest an approach that guarantees the compositionality of such refinements.

We use the action system framework [2] which is a state-based formalism for
reasoning about concurrent systems similar to UNITY [12] and TLA [21]. Action
systems are developed in top-down manner. The initial specification (an abstract
action system) can be decomposed into a number of action systems. The decompo-
sition step introduces interface variables and a certain communication mechanism.
Separate refinements of component systems using existing approaches [6] is only
possible under the assumption that the system interfaces remain unchanged. Here,
by interface we mean both the variables used for communication with the envi-
ronment and the communication protocol itself. Until now the only way to refine
interfaces within the action system framework was to compose the involved parties
into one system and then refine the latter. Such an approach is infeasible for sev-
eral reasons. Firstly, it violates the essence of the top-down development strategy
and, thereby, increases the complexity of reasoning. Secondly, it is simply impossi-
ble when action systems are developed as reusable components, since, in this case,
there is no specific party to compose an action system with.

We extend the action system framework by providing means for developing ac-
tion systems in a component-oriented way. Namely, we consider an action system
together with the specification of the most general environment, called a context,
that is required by the system to work properly. When refining action systems,
we refine their contexts as well. This is captured by the notion of context-sensitive
simulation between action systems. The simulation relation guarantees that re-
finements are preserved in the parallel composition of action systems provided each
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refined system matches the context of the other. Next, we consider conditions under
which component matching on the abstract level is preserved by context-sensitive
simulation.

Compositional methods have been extensively studied within various frame-
works for the verification of concurrent systems. The excellent overview of the work
in this area is given by [27]. However, much less attention has been devoted to
compositional refinement techniques for developing such systems. Our approach to
refinement is related to the rely-guarantee (assumption-commitment) methods for
program verification. The main novelty is a possibility to refine the interfaces of
action systems in a compositional manner. We consider interface refinement in a
rather general setting. It may involve both (data) refinement of shared variables and
refinement of atomicity of interaction. The latter means that an atomic communica-
tion action may be replaced by several actions in the refined system. Furthermore,
some communication actions from the refined system may be delegated to its envi-
ronment.

As a mathematical basis we use the refinement calculus [5] which is a formali-
sation of the stepwise refinement approach to the derivation of sequential programs
introduced by Dijkstra [13] and Wirth [33]. The refinement calculus was extended
with the action system formalism [3, 4] to accommodate parallel and reactive pro-
grams . We follow their approach, thus, refinement of action systems rests upon the
notion of data refinement of predicate transformers.

The remainder of the paper is organised as follows. We start from an intro-
duction to the refinement calculus and action systems. In Section 3, the notions
of an action system context and context-sensitive simulation are formalised. We
also describe an example that is used to illustrate various concepts throughout the
paper. In Section 4, we show how context-sensitive simulation of action systems
entails refinement between the corresponding parallel compositions. Our approach
is generalised for action systems with stuttering in Sections 5 and 6. Finally, we
give a brief overview of the related work and some concluding remarks in Section 7.

2 Preliminaries

In this section, a brief introduction is given on how program statements are modelled
as predicate transformers. The material follows [5] and is based on a higher-order
logic. We write the application of function f to argument a as f.a.

2.1 Predicate transformers

The state space of program statements is modelled as a higher-order logic type Σ.
Then predicates are state functions of type Σ→Bool and state relations are binary
functions of type Γ→Σ→Bool. Conjunction ∩, disjunction ∪ and negation ¬ of
predicates and relations are defined by pointwise extension of the corresponding
boolean operations. The predicates false and true stand for universally false and
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true predicates. Ordering on predicates is defined using the boolean implication:

p ⊆ q =̂ (∀σ • p.σ⇒ q.σ)

We use the standard relational composition, written as P ; Q. Also, two relations
can be composed using a quotient operator defined below:

(P \Q).σ.σ′ =̂ (∀γ •P.σ.γ ⇒Q.γ.σ′)

The inverse of relation P is written as P−1.
Predicate transformers are functions of type (Γ→Bool)→(Σ→Bool). We as-

sume that program statements correspond to monotonic predicate transformers.
Program statements can be composed using sequential composition and two (de-
monic and angelic, respectively) choice operators:

(S; T ).q =̂ S.(T.q)
(S u T ).q =̂ S.q ∩ T.q

(S t T ).q =̂ S.q ∪ T.q

Thus, the demonic choice S u T establishes a postcondition q if both S and T do
so. The angelic choice S t T establishes q if one of S or T does.

Basic program statements are functional update and two relational updates :

<f>.q.σ =̂ q.(f.σ)
[R].q.σ =̂ (∀σ′ •R.σ.σ′⇒ q.σ′)
{R}.q.σ =̂ (∃σ′ •R.σ.σ′ ∧ q.σ′)

Both relational updates change the program state nondeterministically according
to the state relation R. If there is no σ′ such that R.σ.σ′ holds, [R] establishes
any postcondition, whereas {R} establishes no postcondition. Two special cases of
updates have to do with the universally false relation False. Thus, {False}, denoted
abort, always aborts, while [False], denoted magic always behaves miraculously, i.e.
it establishes any postcondition.

We have two lifting operations that form a relation from a predicate and a state
function, respectively:

|q |.σ.σ′ =̂ q.σ ∧ (σ′ = σ)
|f |.σ.σ′ =̂ σ′ = f.σ

Two additional special cases of updates are assertions and guards. The assertion
{q} stands for {|q |}, whereas the guard [q] denotes [|q |]. Finally, skip stands for
{true} (or [true]) and always leaves the state unchanged.

The refinement ordering on predicate transformers is the pointwise extension of
predicate ordering:

S v T =̂ (∀q •S.q ⊆ T.q)
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A predicate transformer is conjunctive if it distributes over arbitrary nonempty
intersections of predicates. Predicate transformer S is (always) terminating if
S.true = true.

For modelling action systems, iteration operator on program statements is im-
portant. Monotonic predicate transformers form a complete boolean lattice with u
as a meet, t as a join, abort as a bottom and magic as a top. Therefore, any mono-
tonic function on predicate transformers has unique least and greatest fixpoints.
These can be used to define two iteration operators — strong iteration and weak
iteration, respectively:

Sω =̂ (µX •S; X u skip)
S∗ =̂ (νX •S; X u skip)

Intuitively, both iteration operators allow arbitrary number of repetitions of S. The
choice to stop iteration is a prerogative of the demon. The difference between weak
and strong iteration is that S∗ is always finite, whereas Sω can be infinite (if the
demon makes such choice). In this case, strong iteration is equivalent to abort.

2.2 Program variables

We use the axiomatic model of program variables from [6, 5]. In this model, a pro-
gram variable x is a triple of projection functions add.x, del.x and val.x. Informally,
add.x.a.σ adds variable x with the value a to state σ, del.x.σ deletes x from σ, and
val.x.σ gives the value of x in σ. Formally, the three functions are defined by a col-
lection of axioms [6] which also ensure that the operations associated with distinct
variables are independent. The model implicitly assumes that all possible variables
are part of the program state. Thus, the function add.x.a can be thought of as
pushing a to the stack of values associated with the variable x instead of adding the
variable itself. In this paper, we usually deal with collections of program variables,
e.g. local variables, global variables, etc. Therefore, the projection functions are
associated with such collections instead of a single program variable.

Since various properties of action systems and their refinements are based on the
fact that the local variables of one system are hidden from other systems, a notion
of independence is essential. Thus, we say that state relation R is independent of
variables x, iff |add.x.a |; R = R; |add.x.a | for any a. Then predicate p is independent
of x, iff the relation |p | is such. While a predicate transformer S is independent of
x, iff <add.x.a>; S = S; <add.x.a> for any a.

We will deal with program statements that work with different program vari-
ables. Thus, transitions from a state with variables x to a state with variables y are
described using a state-replacing relation (+y − x | r) defined as follows:

(+y − x | r).σ.σ′ =̂
∃a •σ′ = add.y.a.(del.x.σ) ∧ r.a.(val.x.σ).(del.x.σ)

Here, r.y.x is a boolean expression which refer to the value of a program variable
val.z by its name z and omits references to the program state σ. Intuitively, the
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relation adds y with the value a to state σ while removing x so that r.a.(val.x.σ)
holds on the remaining state del.x.σ. For example, (+b − m | b ≡ m < n).σ.σ′

replaces variable b in σ by a new variable m in σ′ so that val.b.σ ≡ (val.m.σ′ <
val.n.σ) holds and the value of n remains unchanged in σ′.

We will use the following special cases of the state-replacing relation:

(−y) = |del.y |
(+x).σ.σ′ ≡ (∃a •σ′ = add.x.a.σ)
(+x − y) = (+x); (−y)

Now, more independence properties can be stated for state relations and pred-
icate transformers. They are derived from the above independence definitions and
program variable axioms. Let R be a relation independent of x. Then the following
holds:

(−x) ; R = R ;(−x), (+x) ; R = R ;(+x) (1)

Furthermore, both relational updates [R] and {R} are also independent of x. If S
is a monotonic predicate transformer and R is a relation both independent of x, we
have:

{−x} ; S = S ; {−x} (2)
{+x} ; S v S ; {+x} (3)

{+x} ; {R} = {R} ; {+x} (4)

Finally, let e be a state expression. Then a predicate transformer S is said to
preserve e, iff {e = a} ; S = S ; {e = a} for any a, where a is a logical variable
(specification constant). When the preserved expression is program variables x, we
have that S reads-only x.

2.3 Data refinement

Data refinement is a generalisation of the refinement relation between predicate
transformers. It involves predicate transformers that work with different program
variables. Formally, let S and S′ be predicate transformers working with variables
a and c, respectively. Assume that D is a monotonic predicate transformer which
moves from a concrete state with variables c to an abstract state with variables a.
We say that D is an abstraction statement. Then, S is data-refined by S′ via D, iff

D ; S v S′ ; D.

In this paper, we deal with abstraction commands {R} which corresponds to forward
data refinement. In particular, we will use relations of the form (+a − c | r).

For monotonic predicate transformers, forward data refinement is equivalent to
{R} ; S ; [R−1] v S′. This shows that {R} ; S ; [R−1] is the least data refinement of
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S. We will use the least data refinement of [P ] that is also a universally conjunctive
(terminating and conjunctive) predicate transformer. Such a refinement, denoted
[P ] ↓ {R}, can be calculated from P as follows:

[P ] ↓ {R} = [R \P ;R−1] (5)

2.4 Action systems

Action systems is a shared-state model for concurrent programs [2]. Any nondeter-
minism in the model is resolved demonically, i.e. all choices are made by a computer
system. Informally, an action system is the iteration of atomic actions. These can
be executed in parallel under constraints that preserve their atomicity. In the inter-
leaving model, parallel execution of such iteration is equivalent to nondeterministic
sequential execution. Therefore, any collection of actions A1, . . . , An can be viewed
as the demonic choice between them: A1u. . .uAn. Since the latter is one composite
action, we will consider action systems with a single action.

Thus, an action system is the following construct:

A = var a | pa • Aω ; [hA]

where the initialisation pa and the exit condition hA are both state predicates and
the body A is a conjunctive predicate transformer, called the action. We assume
that the system works with global variables v, while a are its local variables. The
execution of A starts in a state from pa which corresponds to the initialisation of
its local variables. Then, the action A is repeatedly executed. However, if the exit
condition hA holds, the demon may terminate the iteration instead of executing
A. The system is blocked, if it reaches a state where A is disabled but hA does
not hold. A blocked system resumes execution, if its environment (another action
system) enables A.

Parallel composition Let A = var a | pa • Aω ; [hA] and B = var b | pb • Bω ; [hB]
be action systems with the disjoint local variables a and b. Then, the parallel
composition of A and B, written A‖B, is the following action system:

var a, b | pa ∩ pb • (A u B)ω ; [hA ∩ hB]

Thus, the parallel composition nondeterministically chooses between the actions A
and B in each iteration which corresponds to their interleaving. The composed
system may terminate only if the exit conditions of both systems hold. Note that
there are no restrictions concerning the global variables of both systems which means
that they can either overlap or be disjoint.

Hiding When some global variables of two action systems are used exclusively for
the interaction between them, we may want to hide them in the parallel composition
of the action systems. Let A and B be action systems as above. Assume that their
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global variables are ab, v. Then, variables ab are hidden in the following action
system by making them local and initialising so that some predicate pab holds:

var ab | pab •A‖B

Refinement The action system semantics is a set of traces [4]. Informally, a trace
is a sequence of values of the global variables produced by the execution of a system.
The trace semantics is a basis for defining a refinement relation between action
systems - that of trace refinement. However, since trace refinement is traditionally
proved using simulation methods [4], we do not consider it here. Instead, action
system refinement is directly defined as a forward simulation as shown below.

Let A = var a | pa • Aω ; [hA] and C = var c | pc • Cω ; [hC ] be action systems
with local variables a and c, respectively. Then, (+a − c | r) is called a simulation
relation. Now, (forward) action system simulation is defined as follows:

Definition 1 Assume that A and C are action systems as above. Let R be a sim-
ulation relation. Then A is simulated by C via R, written A ≤R C, iff

(a) pc ⊆ {R}.pa,

(b) {R} ; A v C ; {R},
(c) {R} ; [hA] v [hC ] ; {R}.

Thus, simulation is basically expressed in terms of data refinement. In Section 5 we
consider a more general concept – that of stuttering-insensitive simulation.

3 Context-sensitive simulation of action systems

A notion of context is first introduced for action systems to specify their potential
environments. Then, context-sensitive simulation is defined.

3.1 Environment of action systems

When an action system is developed in a component-oriented manner, its precise
environment is unknown. On the other hand, it is infeasible to expect and require
for a system under development to work in arbitrary environment. One way to
deal with such situation is to introduce rely conditions. The idea is that a rely
condition specifies interferences from potential environments that have been taken
into account by the developers of a system. We introduce a notion of a context to
describe the potential environments of an action system.

Definition 2 Assume that A is an action system with local variables a and global
variables ia, v. Let I be a monotonic predicate transformer, and hI be a predicate
both independent of a. Then we say that

I = λX · var ia | pia • (Iω; [hI ])‖X

7



is a parallel context of A.

Thus, we distinguish two kinds of global variables accessible to an action system.
Variables ia are called interface variables, while the remaining global variables v are
called observable variables. The latter are characterised by the fact that they remain
the same, during system development. In other words, an abstract specification
and all its refinements maintain the same observable variables. On the other hand,
interface variables are assumed to be used for describing how an action system
interacts with other components and are hidden when action systems are composed.
Their values are not considered as observable from outside. Furthermore, interface
variables can be replaced by new ones to refine the interaction between action
systems.

We refer to I as the rely action and hI as the external exit condition. Intuitively,
a rely action gives an abstract description of what transitions on the global state
are tolerated by the system. Since I has access to the interface variables of A, it
can also be refined together with the latter. Note, that I.A is an action system,
which execution interleaves actions from A with the rely action I taking in this way
into account possible interferences from the potential environment of A. Thus, I
specifies components that do not disrupt operation of A when composed with it.
An external exit condition specifies those global states when the system expects its
environment (other components) to be enabled. External exit conditions are used
for stuttering-insensitive simulations and are treated in more detail in Section 6.
Until then we consider contexts whose exit condition is always true (hI = true)
and omit the latter writing such context as (λX · var ia | pia • Iω‖X ). In the next
section we shall be more specific about how to match actual components and the
context of an action system.

Example 3 (sender-receiver interaction) To illustrate the introduced concepts,
a small example of interaction between two generic asynchronous systems is used
throughout the paper. One system, a sender, produces data and puts it on a com-
munication channel, while the other system, a receiver, reads it from there. First,
we give a very abstract specification of the channel and then refine it to a more con-
crete one. The abstract channel is modelled as a sequence, chan, of some values,
and a boolean variable, b, which is used to synchronize communication. We have
the following action system specification of an abstract sender:

Sender =̂ Sendω ; [hsend]

where the action Send and the predicate hsend are defined as:

Send =̂ [¬b ∧ a] ; [chan, b := chan′, b′ | b′ ∧ |chan′| > 0]
hsend =̂ ¬a

Note that a is a global variable, chan and b are interface variables; the system has no
local variables. When the previous interaction has been acknowledged by a receiver,
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i.e. b is false, the action Send produces a new data (a nonempty sequence of values),
puts it on chan and sets b to true. Finally, the exit predicate specifies that Sender
operates as long as a remains true.

Next, we specify the environment of Sender by giving an initialisation predicate
for the interface variables and a rely action:

pi =̂ ¬b

Isend =̂ [b, chan, a := b′, chan′, a′ • ¬b⇒(¬b′ ∧ chan′ = chan)]

The rely action states two things: (i) ¬b remains stable after the acknowledgment,
i.e. the environment is not allowed to set b to true, and (ii) the value of chan is
preserved unless the environment has acknowledged communication. Note that the
rely action is an unguarded statement.

3.2 Context-sensitive simulation

Now we define simulation between action systems so that their environments are
taken into account. It is derived from Definition 1 by additionally considering
refinement between rely actions:

Definition 4 Let A = var a | pa • Aω ; [hA] and C = var c | pc • Cω ; [hC ] be action
systems. Assume that pa and pc are independent of the interface variables ia and
ic, respectively. Let I = λX · var ia | pia • Iω‖X and K = λX · var ic | pic • Kω‖X
be the contexts of A and C. Let the simulation relation be R = (+a, ia − c, ic | r).
Then C is a context-sensitive simulation of A via R, written I[A] ≤R K[C], iff

(a) {R} ; I v K ; {R},
(b) var ia | pia • A ≤R var ic | pic • C.

Condition (b) shows that context-sensitive simulation permits the replacement of
interface variables. This means that the interaction between an action system and
its environment can be refined as well. Moreover, condition (a) stipulates data
refinement between the abstract and concrete rely actions. Intuitively, it guarantees
that, the potential environments of C does not interfere with its execution, provided
that the potential environments of A did not.

Example 5 (sender refinement) Now, we refine the abstract interaction between
the sender system and its environment by a more concrete one. Let us assume that
the concrete channel can transmit only single data element instead of the whole
sequence. Suppose also that concrete interactions are synchronised using a two-
phase handshake protocol. Thus, the concrete channel is modelled as a data variable,
val, and three boolean variables — req, ack and rdy. We have the following action
system for the refined sender:

Sender′ =̂ (Send′1 u Send′2 u Send′3)
ω ; [h′

send]
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where the sender actions and exit predicate h′
send are defined as:

Send′1 =̂ [(req ≡ ack) ∧ rdy ∧ a] ;
[d1, rdy := d′1, rdy′ | ¬rdy′ ∧ |d′1| > 0]

Send′2 =̂ [(req ≡ ack) ∧ |d1| > 0] ;
[d1, val, req := d′1, val′, req′ |

(val′ = hd.d1) ∧ (d′1 = tl.d1) ∧ (req′ 6≡ req)]
Send′3 =̂ [(req ≡ ack) ∧ ¬rdy ∧ (|d1| = 0)] ;

[req, rdy := req′, rdy′ | (req′ 6≡ req) ∧ rdy′]
h′

send =̂ rdy ∧ ¬a

Here, we use the following operations on sequences: |s| is the length of s; hd.s and
tl.s give, respectively, the first element in s and the rest of it. Note that val, req
and ack are interface variables at the concrete level. Furthermore, refinement also
introduces a variable, d1, that stores the data produced by the sender system and
not transmitted through the channel as yet. At the end, d1 is to be implemented as
a local variable of the sender system, however, to illustrate our approach and for
simplicity purposes, we treat d1 as an interface variable at this stage.

The action Send′1 produces new data d1 and sets rdy to false to indicate that
data transmission is not completed. Then the action Send′2 transmits data items
via the concrete channel one by one. It indicates a request by updating req so that
req 6≡ ack holds. Similarly, a state such that req ≡ ack signals that a receiver
has read the data item in chan. Finally, when all the data has been transmitted,
the action Send′3 indicates this by setting rdy to true and sending the final request
(req′ 6≡ req). Note that rdy in the exit condition h′

send ensures that Sender′ can
exit only when data transmission is completed.

The described refinement of interaction between the sender and its environment
can be encoded as a simulation relation R1 = IR ∧ Rsend, where IR and Rsend are
defined as follows:

IR =̂ ¬b ≡ (rdy ∧ (req ≡ ack))
∧ b ⇒ (chan = d2

_ (req ≡ ack → d1 | val :: d1))
Rsend =̂ rdy ⇒ |d1| = 0

Here, the operator _ concatenates two sequences, while the operator :: is used to add
an element both to the beginning and to the end of a sequence. We write (p → e1 | e2)
to denote the conditional expression which evaluates to e1, if p is true, and to e2,
otherwise.

The relation IR specifies essentially two things. First, the abstract acknowledg-
ment ¬b of the completed interaction is equivalent to a concrete state such that (i)
the sender has transfered all the data items via the concrete channel, i.e. rdy is true,
and (ii) a receiver has acknowledged the last interaction, i,e. req ≡ ack must hold.
Second, assuming that the abstract interaction has not been completed, i.e. b is true,
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the abstract data stored in chan corresponds to the concatenation of two concrete
sequences: data items that had already been read by a receiver (and stored in d2),
and data items to be transmitted as yet (d1, if a receiver has acknowledged trans-
mission, otherwise val :: d1). Here, the variable d2 is expected to be implemented
as a local variable of a receiver system (note that all the actions and predicates of
Sender′ are independent of d2). For simplicity, we treat it as an interface variable
similarly as in the case of d1. For reasons explained in Section 4, we assume that IR
is a part of a simulation relation that proves the corresponding interface refinement
of a receiver system as well. Finally, Rsend is simply an invariant of the concrete
sender.

Using R1, the simulation conditions for initialisation and exit predicates of Def-
inition 4 are established:

pi′ ⊆ {R1}.pi

{R1} ; [hsend] v [h′
send] ; {R1}

Here, pi′ =̂ ¬rdy∧(req ≡ ack)∧|d1| = 0 is assumed to be the initialisation predicate
of the context of Sender′. Also, data refinement via R1 between the actions Send
and Send′1 holds:

{R1} ; Send v Send′1 ; {R1}

To establish simulation between the action systems Sender and Sender′, however,
stuttering of the concrete action Send′2 ought to be taken into account as shown in
Section 6. Note that refinement of the abstract rely action Isend is considered in the
next section.

4 Composing context-sensitive simulations

In this section, we show how context-sensitive simulations of component systems
lead to the simulation between the corresponding parallel compositions. For sim-
plicity, interface variables are assumed to be the same in both components. In
practise, a component system may have several interfaces, each one associated with
distinct variables. In Section 7, we briefly discuss how our approach can be gen-
eralised to handle compositions of such systems. Here, we consider the following
setting.

Assume that action systems A and B share interface variables ab. Let I and
J be their contexts with an initialisation predicate pab. Assume also that context-
sensitive simulations

I[A] ≤R1 K[C], J [B] ≤R2 L[D]

are established for some relations Rj , concrete systems C, D and contexts K, L.
Let cd and pcd be concrete interface variables and their initialisation predicate,
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respectively. We show that, under certain compatibility assumptions, the following
simulation holds between the corresponding parallel compositions:

var ab | pab • A‖B ≤R var cd | pcd • C‖D
Here, R is an appropriate combination of relations Rj .

4.1 Compatibility

In the parallel composition A‖B, the actual environment of A is the action system
B. On the other hand, context-sensitive simulation of A refers to some context I.
Clearly, when dealing with simulations of action systems and their parallel compo-
sition, one must guarantee that the actual environment of a component ‘matches’
its context (potential environment). Intuitively, this means that B must refine I.
Formally, we introduce a notion of compatibility between an action system and a
context. For this, we first define the demonic extension of predicate transformer S
with respect to variables x as follows:

⊥x×S =̂ {−x} ; S ; [+x] (6)

Intuitively, ⊥x×S arbitrary updates variables x otherwise behaving as S. For mono-
tonic S, ⊥x×S can be expressed in terms of the product of predicate transformers.
Hence, we use the notation ⊥x×S.

Definition 6 Let B, J be an action system and its context, respectively. Then B
within the context J is compatible via q with a context I, iff

J [⊥b×I] ≤q J [B]

where ⊥b×I =̂ var b • (⊥b×I)ω, and q is a predicate.

Intuitively, the definition says that the system B is compatible with the context
I, provided:

(a) the predicate q holds in initial states of var ab | pab •B and is also preserved
by the rely action J , and

(b) the body of B refines I under invariant q.

Note that I is independent of the local variables of B. Therefore, when thought of
as an abstract constraint on B, I admits arbitrary changes to the local variables of
the latter. This is precisely the effect specified by ⊥b×I, thus, we have the demonic
extension ⊥b×I in the above definition.

Formally, these observations can expressed as the following lemma:

Lemma 7 Let B = var b | pb • Bω ; [hB] and J be an action system and its context,
respectively. Assume that ab are interface variables initialised according to pab. Let
I be another context. Let q be a predicate. Then B within the context J is compatible
via q with I, iff:
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(a) pab ∩ pb ⊆ q, {q} ; J v J ; {q},
(b) {q} ; ⊥b×I v B ; {q}.

PROOF. Using the definitions of compatibility and action system simulation. 2

Example 8 (compatibility) To illustrate the compatibility notion, we specify an
abstract receiver Receiver = Recvω ; [hrecv] with a rely action Irecv:

Recv =̂ [b] ; [b, chan := b′, chan′ | ¬b′ ∧ consume.chan]
hrecv =̂ ¬b

Irecv =̂ [b, chan, a := b′, chan′, a′ | b ⇒ (b′ ∧ chan′ = chan)]

How the received data is processed is not important for our example, thus, the pred-
icate consume.chan simply denotes the fact that it has been consumed in some way.
Also, we assume that the same initialisation predicate pi is used in the context of
Receiver. Now, it is easy to see that the refinement Isend v Recv holds for Isend

defined in Example 3. Note that the invariant is simply the predicate true and,
therefore, the remaining conditions from Lemma 7(a) hold trivially. This estab-
lishes compatibility between the context of Sender and the receiver system. Simi-
larly, compatibility between the context of Receiver and the sender can be shown.

We will consider two cases depending on when compatibility of an action system
with the corresponding context is checked. The first one postpones the compatibil-
ity check to the concrete system (implementation) level. In the second one, com-
patibility is established for abstract systems and is preserved by context-sensitive
simulations of action systems provided certain constraints on concrete contexts are
satisfied.

4.2 Composing simulations

Now, we move to composition theorems for action system simulations. First, we
discuss how two simulation relations are composed so that their composition is a
simulation relation for the parallel compositions of the corresponding action systems.

Let A and B be abstract action systems sharing interface variables ab. The
interface variables model some interaction between the two systems. Refining this
interaction normally requires replacement of the old interface variables by new ones.
Let these be cd. Assume that the replacement rules are encoded as a simulation
relation Ri = (+ab−cd | ri). Clearly, the same replacement rules are to be adhered
when refining both component systems. Therefore, we may assume that Ri is a
part of both simulation relations, say R1 and R2. Additionally, refinements may
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also replace the local variables of an action system. We permit such a replacement to
depend on new interface variables as well. Thus, Rr1 = (+a−c | rr1), where rr1 may
refer to cd, is the simulation relation for the local variables of the first component.
Then the combined simulation relation for A is defined as R1 =̂ Rr1 ; Ri. Similarly,
for the second component: Rr2 = (+b−d | rr2) and R2 =̂ Rr2 ; Ri. We show below
that the following composition of R1 and R2 can be used to establish simulation
between the parallel compositions of abstract and concrete action systems:

(Rr1 ∩ Rr2) ; Ri = Rr2 ; R1 = Rr1 ;R2 (7)

Now we are ready to formulate composition theorems for simulations of action
systems. We start from a more general one which postpones the compatibility check
to the level of concrete systems.

Theorem 9 Let A, B be abstract action systems sharing interface variables ab, and
let I, J be their corresponding contexts such that I and J are terminating. Assume
that the following context-sensitive simulations hold:

I[A] ≤R1 K[C]
J [B] ≤R2 L[D]

Here C, D are concrete action systems sharing interface variables cd, and K, L
are their contexts, while Rj are simulation relations as discussed above. Assume
that the concrete systems are compatible with the corresponding contexts via some
invariants qj. Let R = |q1 ∩ q2 | ;(Rr1 ∩ Rr2) ; Ri. Then

var ab | pab • A‖B ≤R var cd | pcd • C‖D

PROOF. First, we show how to establish data refinement between the actions A
and C. From the theorem assumptions and Definitions 4, 6, we get:

{R1} ; A v C ; {R1} (8)
{q2} ; L v L ; {q2} (9)
{R2} ; J v L ; {R2} (10)
{q1} ; {−c} ; L ; [+c] v C ; {q1} (11)

Finally, note that b0 is a specification constant that records the values of the local
variables of B in the derivations below.

The first derivation essentially lifts data refinement via R1 to the extended
program states by permitting arbitrary state replacements (+b−d) on the extended
parts:

{R} ; {b = b0} ; A

v { def. of R, {q} v skip, (7), A independent of b }
{Rr2 ;R1} ; A ; {b = b0}
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v { Rr2 ⊆ (+b − d) ; R1, monotonicity }
{(+b − d) ; R1} ; A ; {b = b0}

v { split, data refinement (8) }
{+b − d} ; C ; {;R1} ; {b = b0}

v { C independent of b and d, merge }
C ; {(+b − d) ; R1} ; {b = b0}

The next derivation shows that C does not interfere with R2:

{R} ; {b = b0} ; A

v { property C v magic }
{R} ; {b = b0} ; magic

= { property ⊥a×J terminating ⇒ (magic = ⊥a×J ; magic) }
{R} ; {b = b0} ; ⊥a×J ; magic

v { ⊥a×J independent of b }
{R} ; ⊥a×J ; {b = b0} ; magic

v { {R}v{q1 ∩ q2} ;{−c} ;{+a} ;{R2}, def. of extension }
{q1 ∩ q2} ; {−c} ; {+a} ; {R2} ; {−a} ; J ; [+a] ; {b = b0} ; magic

v { independence, {+a} ; {−a} = skip, (10) }
{q1 ∩ q2} ; {−c} ; L ; {R2} ; [+a] ; {b = b0} ; magic

v { derivation below }
C ; {q1 ∩ q2} ; {−c} ; {R2} ; [+a] ; {b = b0} ; magic

v { [+a] v {+a}, independence, merge }
C ; {q1 ∩ q2} ; {(+a − c) ;R2} ; {b = b0} ; magic

Now we combine both derivations:

{R} ; {b = b0} ; A

v { above derivations, lattice property }
(C ; {(+b − d) ; R1} ; {b = b0}) u (C ; {q1 ∩ q2} ; {(+a − c) ; R2} ; {b = b0} ; magic)

= { C conjunctive, property S1 u ({q} ; S2) = {q} ; (S1 u S2) }
C ; {q1 ∩ q2} ; ({(+b − d) ; R1} ; {b = b0} u {(+a − c) ;R2} ; {b = b0} ; magic)

v { merge, see comment below }
C ; {q1 ∩ q2} ; {(Rr1 ∩ Rr2) ; Ri}

Finally, the following proof rule for removing specification constants

{R} ; {a = a0} ; S v {R} ; T

{R} ; S v {R} ; T
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and the last derivation yield the required condition:

{R} ; A v C ; {R}

Note that the following property was used to justify one step in the second
derivation:

{q1 ∩ q2} ; {−c} ; L

= { split assertion, q2 independent of c }
{q1} ; {−c} ; {q2} ; L

v { assumption (9) }
{q1} ; {−c} ; L ; {q2}

v { assumption (11) with shunting S ; [+a] v S′ ⇒ S v S′ ; {−a} }
C ; {q1} ; {−c} ; {q2}

= { q2 independent of c, merge assertions }
C ; {q1 ∩ q2} ; {−c}

Also, note that the merge property

{(+b − d) ; R1} ; {b = b0} u {(+a − c) ; R2} ; {b = b0} ; magic v {(Rr1 ∩ Rr2) ; Ri}

relies upon the fact that magic makes any postcondition irrelevant, thus, the angelic
update {(+a − c) ; R2} is free to choose any b as long as the relation Rr2 holds.
Furthermore, the assertion {b = b0} in both alternatives of the demonic choice
guarantees that the same b is chosen in any case. Formally, the property can be
checked by expanding definitions.

Since the initialisation and exit conditions are rather obvious, we omit their
proofs. 2

Next, we look more closely at data refinement of rely actions via simulation
relations of the form used in Theorem 9. We show that the refinement condition
can be expressed in terms of two simpler ones — that of data refinement with
respect to the interface variables and a noninterference condition.

Lemma 10 Assume that rely action I is terminating and K conjunctive,
both independent of a and c. Let R = Rr ; Ri be a simulation relation such that
Rr = (+a − c | rr) and Ri as before. Assume that {Ri} ; I v K ; {Ri}. Then

{R} ; I v K ; {R} ≡ (∀a, c • {rr.a.c ∩ {Ri}.true} ; K v K ; {rr.a.c})

PROOF. First, note that the following property is valid for R = (+a − c | r) and
monotonic predicate transformers S, T that are independent of a and c:

{R} ; S v T ; {R} ≡ (∀a, c • {r.a.c} ; S v T ; {r.a.c}) (12)
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Its proof is heavily based on various program variables properties; since this topic
is out of the scope of our paper, we omit it here.

Then, in the forward direction, we have:

{R} ; I v K ; {R}
≡ { def. of R, split, shunting }

{Rr} ; {Ri} ; I ; [Ri−1] v K ; {Rr}
≡ { property (12) }

∀a, c • {rr.a.c} ; {Ri} ; I ; [Ri−1] v K ; {rr.a.c}
⇒ { definitions, specialise q := true, I terminating }

∀a, c • rr.a.c ∩ {Ri}.true ⊆ K.(rr.a.c)
⇒ { K conjunctive, correctness as refinement }

∀a, c • {rr.a.c ∩ {Ri}.true} ; K v K ; {rr.a.c}

For the backward direction, let us assume

∀a, c • {rr.a.c ∩ {Ri}.true} ; K v K ; {rr.a.c}

Then:

{rr.a.c} ; {Ri} ; I ; [Ri−1]
v { {Ri} = {{Ri}.true} ; {Ri}, data refinement assumption }

{rr.a.c ∩ {Ri}.true} ; K

v { above assumption }
K ; {rr.a.c}

Finally, using the last result, we get:

∀a, c • {rr.a.c} ; {Ri} ; I ; [Ri−1] v K ; {rr.a.c}
≡ { property (12) }

{Rr} ; {Ri} ; I ; [Ri−1] v K ; {Rr}
≡ { shunting, merge, def. of R }

{R} ; I v K ; {R}

2

The lemma provides an intuitive interpretation for rely action refinements via
relations R = Rr ; Ri: if I is data refined via Ri to K, then the latter must not
interfere with Rr for the refinement {R} ; I v K ; {R} to be valid.

Note that data refinement of rely actions allows us to strengthen environment
assumptions. This might be needed for refinement of abstract interaction in the
case when the simulation relation does/can not record some translation details.
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Therefore, compatibility conditions are expressed in terms of the concrete systems
in Theorem 9. This means that establishing them might require a lot of implemen-
tation related details. One way to deal with this problem is to introduce a notion
symmetric to rely actions — that of a guarantee action. Such an action would be
the abstract characterisation of an action system as regards its interaction with
the environment. Compatibility can then be expressed in more abstract terms of
rely/guarantee actions.

Instead, in this paper, we concentrate on a more component-oriented approach.
Intuitively, the idea is to use the ‘least’ refinement of an abstract rely action as a
concrete one. Then under certain conditions compatibility between abstract action
systems is preserved at the concrete level.

4.3 Preserving compatibility

As mentioned earlier, the least data refinement of S is determined by the simulation
relation. Thus, the simulation relation Ri, introduced earlier, is used to calculate
a concrete rely action. Furthermore, refining shared-variable interaction between
systems usually means that the concrete systems have more restricted access to the
interface variables. In our example, the abstract sender and receiver both update
the boolean variable b. However, their refinements read-only, respectively, variable
ack and variables req, rdy. More generally, we consider systems that assume that
their environment preserves some expression e. Accordingly, concrete rely actions
are not simply the least data refinements via the simulation relation Ri but they
also preserve some expression e.

More precisely, let us assume that an abstract rely action J is a universally
conjunctive predicate transformer J = [J ]. For simplicity, the same name here de-
notes a rely action and the corresponding state relation. Suppose that the concrete
environment is expected to preserve a state expression e. Then, the concrete rely
action L can defined to be the least universally conjunctive data refinement of J via
Ri that also preserves the expression e, written J ↓e {Ri}. Note that, for any state
relation P and state expression e, [P ] preserves e, iff P = P ∩Id.e. Here the relation
Id.e is simply an identity with respect to the expression e: Id.e.σ.γ =̂ (e.γ = e.σ).
Then, we have the following property:

J ↓e {Ri} = [(Ri \ J ; Ri−1) ∩ Id.e] (13)

Example 11 (refining rely actions) Let Ksend =̂ Isend ↓e1 {IR}, where e1 =
(req, rdy, d1). Thus, Ksend reads-only the interface variables req, rdy and d1. We
use Lemma 10 to demonstrate that data refinement between Isend and Ksend via R1

is indeed valid.
By definition, Ksend is data refinement of Isend via IR. By Lemma 10, we only

need to establish that Ksend does not interfere with Rsend. Since the variables rdy
and d1 are read-only by the rely action, noninterference is obvious.

Now we are ready to formulate a theorem that shows how compatibility on the
abstract level induces that on the concrete level:
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Theorem 12 Let A, I and K be as in Theorem 9. Assume that the context-
sensitive simulation

I[A] ≤R K[C]

holds for conjunctive K and simulation relation R = Rr ; Ri such that
Rr = (+a − c | r) and Ri as before. Suppose also that the abstract compatibility is
valid:

I[⊥a×J ] ≤q I[A]

Here, ⊥a×J = var a • (⊥a×J)ω, and q = qq ∩ qi is such that predicate qi is a part
of Ri while qq is independent of the interface variables ab. Finally, assume that C
preserves a state expression e. Then the concrete action system C within the context
K is compatible via {R}.q with the context L:

K[⊥c×L] ≤{R}.q K[C]

where L =̂ J ↓e {Ri} and ⊥c×L =̂ var c • (⊥c×L)ω.

PROOF. See Appendix A. 2

Intuitively, the theorem states that once compatibility between an action system
and a context has been established, it is preserved by context-sensitive simulations,
provided that the concrete rely action is the least universally conjunctive data re-
finement of the abstract one.

Now, the second composition theorem shows when context-sensitive simulations
and compatibility between abstract action systems are sufficient to deduce simu-
lation between abstract and concrete parallel compositions. We assume that rely
actions are universally conjunctive.

Theorem 13 Let A, B, I, J and Ri, Rrj be as in Theorem 9. Assume that A
and B are compatible with the corresponding contexts via invariants qj = qqj ∩ qi.
Assume also that concrete action systems C, D preserve expressions e2 and e1,
respectively. Let concrete rely actions be K =̂ I ↓e1 {Ri} and L =̂ J ↓e2 {Ri}.
Suppose the following context-sensitive simulations hold:

I[A] ≤R1 K[C]
J [B] ≤R2 L[D]

where Rj = Rrj ;Ri. Let R = |{R1}.q1 ∩ {R2}.q2 | ;(Rr1 ∩ Rr2) ; Ri. Then

var ab | pab • A‖B ≤R var cd | pcd • C‖D

PROOF. From Theorem 12 we have that C is compatible with the context L via
invariant {R1}.q1:

K[⊥c×L] ≤{R1}.q1
K[C]

Similar condition holds for D and K as well. Then the required conclusion follows
from Theorem 9. 2
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5 Context-sensitive simulation and stuttering

So far, we have been considering simulations where each state change specified by
a concrete action has its counterpart on the abstract level. In this section, our
approach is extended to handle stuttering-insensitive simulations of action systems.
Composition theorems for context-sensitive simulations of action systems with stut-
tering are presented.

5.1 Context-sensitive simulation with stuttering

5.1.1 Stuttering-insensitive simulations

Informally, stuttering is an event occuring in a system that is invisible to the observer
of that system. Thus, any state change that does not affect the observable variables
of an action system is an internal event invisible from outside. We say that an action
A is a stuttering action, iff it is terminating and independent of the observable
variables of an action system.

The reason why stuttering actions are distinguished is their special treatment
when refining action systems. In particular, refinement can introduce state changes
that are invisible from outside and are matched by skip transitions on the abstract
level. However, simulations that we have been considering so far treat all actions
uniformly. Before considering more general notions of simulation, we first note that
any action A can be written as a demonic choice, A = Ã u Ā, where Ā is the
stuttering action, and Ã is some action which we will call the change action. Since
magic is a stuttering action, a trivial case of such decomposition would be Ã = A
and Ā = magic.

Now, let A and C be actions and R be a simulation relation. Instead of data
refinement {R} ; A v C ; {R}, we consider separate refinements between the change
and stuttering parts of A and C. Thus, let {R} ; Ã v C̃ ; {R} be valid as before.
However, for stuttering actions, two additional conditions are required:

{R} ; (Ā u skip) v C̄ ; {R} (14)
{R}.µ.Ā ⊆ µ.C̄ (15)

They reflect the special treatment of stuttering actions. Namely, a concrete stut-
tering action can refine an abstract stuttering one in some states and a skip action
in other states according to (14). Most frequently, the corresponding condition is of
the form {R} v C̄ ; {R} which is a special case of (14) with Ā = magic. The main
advantage of (14) is that the simulation relation with such refinement condition for
stuttering actions is transitive which is necessary for stepwise refinement of action
systems. Finally, to guarantee that the effect of stuttering actions is indeed invis-
ible, one must ensure that their iteration (stuttering iteration) can not continue
forever. Thus, the condition (15) states that the stuttering iteration in concrete
systems terminates, unless the corresponding iteration was already nonterminating
at the abstract level. We refer to (15) as a weak stuttering termination condition.
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5.1.2 Stuttering and communication

Since we consider the interaction between system parts via interface variables as
an invisible event, the involved actions can be viewed as stuttering ones provided
they do not change observable variables. Thus, stuttering actions can modify local
and interface variables. Since interface variables are shared by action systems, their
replacement makes it possible to refine interaction between system components. In
particular, atomicity of such interaction can be refined by decomposing an atomic
action into several actions. In this way, state changes are introduced at the concrete
level that are matched by skip transitions on the abstract one. Since it makes no
difference which system part performs such state change, a newly introduced action
may be delegated from the component specified by an abstract action system to
another component, the potential environment of a concrete system. An external
exit condition as a part of the context is used to keep track of the states associated
with such a delegation. Its meaning is explained below.

5.1.3 Simulation

Now, we are ready to define the notion of context-sensitive simulation for action sys-
tems with stuttering. We start by introducing a weaker notion — that of context-
sensitive pre-simulation. Let an abstract and concrete action system be, respec-
tively, A = var a | pa • Aω ; [hA] and C = var c | pc • Cω ; [hC ]. Let the interface
variables of A and C be ia and ic. Assume that pa and pc are independent of ia
and ic.

Definition 14 Let the contexts I and K be, respectively:

λX • var ia | pia • (Iω; [hI ])‖X
λX • var ic | pic • (Kω; [hK ])‖X

Let the simulation relation be R = (+a, ia− c, ic | r). Then C is a context-sensitive
pre-simulation of A via R, written I[A] ¹\

R K[C], iff

{R} ; Ĩ v K̃ ; {R}
pic ∩ pc ⊆ {R}.(pia ∩ pa)
{R} ; Ã v C̃ ; {R}
{R} ; [hA ∩ hI ] v [hC ∩ hK ] ; {R} (16)
{R} ; (Ī u skip) v K̄ ; {R} (17)
{R} ; (Ā u skip) v C̄ ; {R} (18)

The first three conditions correspond to the similar ones in Definition 4. Con-
dition (16) generalises the corresponding condition from the same definition by
adding external exit predicates. To explain its meaning, we first assume that
hI = true. Now, suppose that ¬hK is such that the exit condition from Defi-
nition 4, {R} ; [hA] v [hC ] ;{R}, does not hold. Intuitively this means that, for some
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states in ¬hA, there exist no related states in ¬hC with respect to R. In other
words, termination at the concrete level is possible when that at the abstract level
is not. To prevent this, (16) makes use of hK ; the environment of C is required to
continue when hK does not hold. In practise, external exit predicates are needed
when the concrete stuttering actions associated with one abstract action are dis-
tributed into several component systems. Since C may be refined further, condition
(16) permits arbitrary exit predicates in the abstract context. Finally, conditions
(17) and (18) are needed for refinement of the stuttering parts of I and A.

Example 15 (external exit conditions) Now, let us consider a concrete receiver,
Receiver′ =̂ (Recv′1 u Recv′2)

ω ; [h′
recv], which consists of the following:

Recv′1 =̂ [(req 6≡ ack) ∧ ¬rdy] ;
[d2, ack := d′2, ack′ | (d′2 = d2 :: val) ∧ (ack′ 6≡ ack)]

Recv′2 =̂ [(req 6≡ ack) ∧ rdy] ;
[d2, ack := d′2, ack′ | consume.d2 ∧ (ack′ = ¬ack) ∧ (|d′2| = 0)]

h′
recv =̂ req = ack

It has a variable, sequence d2, that accumulates the transmitted data until the whole
data package has been read. As far as Receiver′ concerned, the exit condition
h′

recv allows it to terminate, provided there is no request from the environment, i.e.
req = ack. On the other hand, the abstract receiver could not exit unless the whole
data package has been transmitted. To match this constraint at the concrete level,
an external exit condition is used as a part of the receiver context:

h′
L =̂ rdy

Thus, the environment of Receiver′ is required to continue when rdy is false, i.e.
it must be enabled in such states.

Finally, we extend Definition 14 by adding a condition that relates the stuttering
iteration in the abstract and concrete systems. In fact, we will use two conditions
which lead to two notions of context-sensitive simulations for the action systems
with stuttering. Actually, this is the main reason why an intermediate notion of
pre-simulation has been introduced in the first place.

Definition 16 Let A, C and I, K be as before. Assume that I[A] ¹\
R K[C] is valid.

Then we say that C is a weak context-sensitive simulation of A via R, written
I[A] ≤\

R K[C], iff condition (15) holds. We say that C is a strong context-sensitive
simulation of A via R, written I[A] .\

R K[C], iff

{R}.µ.Ā ⊆ µ.(K̄∗; C̄) (19)

We refer to (19) as a strong stuttering termination condition. Since (15) in no
way takes into account possible environment interferences, weak context-sensitive
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simulation is non-compositional. Intuitively, the reasons for this are as follows: (a)
a concrete stuttering action may be a refinement of the skip action, and (b) stut-
tering actions are allowed to update interface variables that are shared between the
composed systems. This makes it possible for the stuttering action of one compo-
nent to interfere with the termination of stuttering in the other component. As a
remedy for this, (19) stipulates that stuttering in a concrete system is to terminate
in spite of any finite environment stuttering K̄∗ that may proceed each execution
of C̄. Such requirement ensures that strong context-sensitive simulation of action
systems is compositional. Further justifications for (19) are given in Section 6.2. In
the next section, we also show that (19) does not have to be symmetric in the sense
that stuttering-insensitive simulation is retained between the parallel compositions
even in the case when only weak context-sensitive simulation holds for one of the
component systems.

Finally, the following lemma shows that strong context-sensitive simulation en-
tails the weak one.

Lemma 17 Let R be a simulation relation such that I[A] .\
R K[C]. Then

I[A] ≤\
R K[C]

PROOF. Follows from the fact that (19) implies (15). 2

Example 18 (stuttering in the concrete sender) Now, we consider the sim-
ulation conditions related to the stuttering actions of Sender′. Since there are no
stuttering actions in the abstract sender, the following refinements are to be estab-
lished:

{R1} ; skip v Send′2 ; {R1}
{R1} ; skip v Send′3 ; {R1}

Also, we get the following stuttering termination condition:

{R1}.true ⊆ µ.(K∗
send; (Send′2 u Send′3))

In fixpoint theory, such conditions are usually proved by using variant functions. In
this case, let |d1| + (¬rdy → 1 | 0) be a variant function. It is obviously decreased
by both stuttering actions. Indeed, Send′2 removes an element from d1, while Send′3
sets rdy to false. Moreover, d1 and rdy are read-only by the rely action Ksend

which, therefore, preserves the value of the variant function. Note that Ksend is
also a stuttering action. Hence, we make no distinction between its change and
stuttering parts.

Finally, there is no need to introduce an external exit predicate for the concrete
sender, since we have already checked the simpler exit condition from Definition 4.
Thus, strong context-sensitive simulation between the sender systems holds:

Isend[Sender] .\
R1

Ksend[Sender′]
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6 Composing stuttering-insensitive simulations

Here, we generalise the results of Section 4 for the action systems with stuttering.

6.1 Composition theorems

First, one has to adapt the notion of compatibility to take into account stuttering
actions.

Definition 19 Let B, J be an action system and its context, respectively. Assume
that B is compatible via q with a context I. Then, the action system B within the
context J is stuttering-compatible via q with the context I, iff

(a) {q} ; Ĩ v B̃ ; {q},
(b) {q} ; Ī v B̄ ; {q}

Note that the simple compatibility already ensures the refinement {q} ; I v B ; {q}.
However, to make use of the strong stuttering termination condition (19), one needs
refinement between the stuttering parts of I and B. Thus, the new definition has
two separate conditions for the change and stuttering actions. We also have a
stuttering-compatibility lemma similar to Lemma 7:

Lemma 20 Let B = var b | pb • Bω ; [hB] and J be an action system and its
context, respectively. Assume that ab are interface variables initialised according to
pab. Let I be another context. Let q be a predicate. Then B within the context J is
stuttering-compatible via q with I, iff:

(a) pab ∩ pb ⊆ q, and {q} ; J v J ; {q},
(b) {q} ; ⊥b×Ĩ v B̃ ; {q} and {q} ; ⊥b×Ī v B̄ ; {q},
(c) {q} ; [hI ] v [hB] ; {q}.

PROOF. Using the definitions of stuttering-compatibility and action system sim-
ulation. 2

Intuitively, condition (c) requires B to continue execution unless the correspond-
ing context I permits termination.

Now, we follow the same path as in Section 4 and present two composition
theorems for the action systems with stuttering. We start from the case where
stuttering-compatibility is established at the concrete level.

Theorem 21 Let action systems A, B share interface variables ab, and let C, D
share interface variables cd. Let

I = (λX • var ab | pab • Iω‖X )
J = (λX • var ab | pab • Jω‖X )
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be the contexts of A and B such that I and J are terminating. Assume that the
concrete contexts K and L are, respectively:

λX • var cd | pcd • (Kω; [hK ])‖X
λX • var cd | pcd • (Lω; [hL])‖X

Suppose that the following context-sensitive simulations hold:

I[A] .\
R1

K[C]

J [A] ≤\
R2

L[D]

where Rj are simulation relations as before. Assume also that C and D are stuttering-
compatible with the corresponding contexts via some invariants qj. Then

var ab | pab • A‖B ≤\
R var cd | pcd • C‖D

where R = |q1 ∩ q2 | ;(Rr1 ∩ Rr2) ; Ri.

Note, that the abstract contexts do not include exit conditions. As explained
earlier, external exit predicates are needed when concrete stuttering actions are
delegated from a concrete system to its potential environment. Since, in this theo-
rem, we view the abstract systems as initial specifications, and not as refinements
of even more abstract action systems, the external exit predicates are assumed to
be true. Note also that strong context-sensitive simulation is required only for one
component; for the other one, the weak context-sensitive simulation is sufficient.

PROOF. Five conditions arising from Definition 14 and Definition 16 are to be
established. The initialisation condition and the refinement condition for the change
action are proved in the same way as in Theorem 9. For the exit condition we first
note the following property of data refinement between guards:

({R} ; [p] v [p′] ; {R}) ≡ ({R}.(¬ p) ⊆ ¬ p′) (20)

Then applying it to the exit conditions of the parallel compositions we get

{R} ; [hA ∩ hB] v [hC ∩ hD] ; {R}
= { above property }

{R}.¬(hA ∩ hB) ⊆ ¬(hC ∩ hD)
= { distributivity, lattice prop. }

({R}.(¬hA) ⊆ ¬hC ∪ ¬hD) ∧ ({R}.(¬hB) ⊆ ¬hC ∪ ¬hD)

We show how the first part of the last condition is established. The second part is
proved in the same way:
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{R}.(¬hA)
⊆ { def. of R, monotonicity, split update }

{q2}.({R1}.(¬hA))
⊆ { exit condition for simulation between A and C, (20) }

{q2}.(¬hC ∪ ¬hK)
⊆ { distributivity, compatiblity between K and D, Lemma 20, (20) }

{q2}.(¬hC) ∪ ¬hD

⊆ { def. of assertion, lattice prop. }
¬hC ∪ ¬hD

The fourth condition is the refinement condition (14) for the stuttering actions:

{R} ; ((Ā u B̄) u skip) v (C̄ u D̄) ; {R}
Again, the derivations for the action A in the proof of Theorem 9 can be used by
choosing A =̂ Ā u skip. Finally, the stuttering termination (15) is formulated and
proved as Lemma 27 in the following section. 2

As in the case of context-sensitive simulation without stuttering, compatibility at
the abstract level induces that at the concrete level. However, Theorem 21 assumes
that stuttering-compatibility holds at the concrete level. Since the latter involves
the exit predicates of concrete contexts and these do not have counterparts at the
abstract level, context-sensitive simulations do not automatically entail stuttering-
compatibility between the refined systems. Thus, additional conditions for the exit
predicates of concrete contexts are required. In fact, the required condition is the
last one from Lemma 20. More formally, let J be such that J̃ = [J1], J̄ = [J2].

Theorem 22 Let A, I and K be as in Theorem 21. Assume that the context-
sensitive simulation

I[A] ≤R K[C]

holds for conjunctive K, R = Rr ; Ri, Rr = (+a− c | r), and Ri as before. Suppose
also that the abstract compatibility is valid:

I[⊥a×J ] ≤q I[A]

Here, ⊥a×J = var a • (⊥a×J)ω, and q = qq ∩ qi is such that predicate qi is a
part of Ri, while qq is independent of the interface variables ab. Assume that C
preserves a state expression e. Finally, assume that the exit predicate of K satisfies
the following condition:

{{R}.q} ; [hL] v [hC ] ; {{R}.q}
Then the concrete action system C within the context K is stuttering-compatible via
{R}.q with the context L such that L̃ =̂ J̃ ↓e {Ri}, L̄ =̂ (J̄ u skip) ↓e {Ri}, and
⊥c×L =̂ var c • (⊥c×L)ω.
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PROOF. The proof is essentially the same as for Theorem 12. By Lemma 20 we
have to establish the following conditions:

{{R}.q} ; K v K ; {{R}.q}
{{R}.q} ; ⊥a×L̃ v C̃ ; {{R}.q}, {{R}.q} ; ⊥a×L̄ v C̄ ; {{R}.q}
{{R}.q} ; [hL] v [hC ] ; {{R}.q}

For the first condition, substitute Ĩ u Ī u skip for I in the corresponding deriva-
tion. Refinement between the change actions is derived in exactly the same way as
in Theorem 12. For the stuttering actions substitute J̄ u skip and Ā u skip for J ,
A, respectively, and note that the property [P ] u skip = [P ∪ Id.v] holds for any
relation P . Here Id.v is an identity relation on the global variables v. The last
condition is one of the theorem assumptions. 2

The second composition theorem shows when context-sensitive simulations and
compatibility between abstract action systems are sufficient to deduce stuttering-
insensitive simulation between the abstract and concrete parallel compositions.

Theorem 23 Let A, B, I, J and Ri, Rrj be as in Theorem 21. Assume that A
and B are stuttering-compatible with the corresponding contexts via the invariants
qj = qqj∩qi. Assume also that concrete action systems C, D preserve expressions e2

and e1, respectively. Let concrete rely actions K and L be such that K̃ = Ĩ ↓e1 {Ri},
K̄ = (Ī u skip) ↓e1 {Ri}, and L̃ = J̃ ↓e2 {Ri}, L̄ = (J̄ u skip) ↓e2 {Ri}. Suppose
that the following context-sensitive simulations hold:

I[A] .\
R1

K[C]

J [B] ≤\
R2

L[D]

Here Rj = Rrj ; Ri, and the concrete contexts K and L are, respectively:

λX • var cd | pcd • (Kω; [hK ])‖X
λX • var cd | pcd • (Lω; [hL])‖X

Assume also that the exit conditions of K and L are refined by those of the action
systems:

{{R1}.q1} ; [hL] v [hC ] ; {{R1}.q1}
{{R2}.q2} ; [hK ] v [hD] ; {{R2}.q2}

Let R = |{R1}.q1 ∩ {R2}.q2 | ;(Rr1 ∩ Rr2) ; Ri. Then

var ab | pab • A‖B ≤\
R var cd | pcd • C‖D

PROOF. Using Lemma 20 and Theorem 21. 2

We note that strong context-sensitive simulations can be used for both com-
ponent systems in the assumptions of Theorems 21 and 23. This follows from
Lemma 17.
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Example 24 (composing simulations) Now, we use Theorem 23 to establish
simulation between the sender-receiver systems. Summarising Examples 8, 18, we
have:

Isend[Jrecv] ≤true Isend[Sender]
Jrecv[Isend] ≤true Jrecv[Receiver]

Isend[Sender] .\
R1

Ksend[Sender′]

Next, simulation between the receiver systems is established. We use IR as a
simulation relation and consider Recv′1 as a stuttering action. Then, the following
refinements are valid for the abstract and concrete receivers:

{IR} ; skip v Recv′1 ; {IR}
{IR} ; Recv v Recv′2 ; {IR}
{IR} ; [hrecv] v [h′

recv ∩ h′
L] ; {IR}

Since weak context-sensitive simulation is sufficient for the composition theorem, we
get the following stuttering termination condition:

{IR}.true ⊆ µ.(Recv′1)

It obviously holds, since Recv′1 disables itself. Then, we get Receiver ≤\
IR Receiver′.

Also, assuming that Lrecv = Krecv ↓e2 {IR}, refinement between the abstract and
concrete rely actions holds by definition. Thus, weak context-sensitive simulation is
valid for the receiver systems:

Krecv[Receiver] ≤\
IR Lrecv[Receiver′]

Finally, recall that h′
send = rdy ∧ a, while h′

L = rdy. According to (20), the
theorem assumption about exit conditions is satisfied:

{{IR}.true} ; [h′
L] v [h′

send] ; {{IR}.true}

Since Sender′ does not have an external exit predicate, the corresponding condition
is trivial.

Summarising, we derive from Theorem 23 the following simulation between our
sender-receiver systems:

var ia | pi • Sender‖Receiver ≤\
R1

var ic | pi′ • Sender′‖Receiver′

where ia = (b, chan) and ic = (req, ack, rdy, val, d1, d2).
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6.2 Termination of stuttering

In this section, we consider in more detail conditions that allow to deduce termina-
tion of the stuttering iteration of a composite system from the stuttering termination
conditions of individual systems. In other words, we are dealing with the composi-
tionality property for stuttering termination conditions. Such consideration ought
to justify the notions of the weak and strong stuttering termination introduced in
the previous section.

We start from a simple example which reveals the problem under consideration.
Let B1 =̂ [b]; b:=F and B2 =̂ [¬b]; b:=T be stuttering actions in two concrete ac-
tion systems. We assume that b is an interface variable shared by both systems.
Suppose that the corresponding abstract systems did not have stuttering actions
which is an equivalent way of saying that both abstract stuttering actions were
magic. Let {Ri} be the corresponding abstraction statements. Then both weak
stuttering termination conditions {Ri}.true ⊆ µ.Bi hold, since each action Bi can
be executed only once, and the execution of Bi simply falsifies its guard. However,
the stuttering action in the composite system is B1 u B2. It is easy to see that the
latter may be executed forever, since B1 enables B2 and vice versa. Formally, this
means that

µ.(B1 u B2) = false

which implies that the weak stuttering termination condition for the composite
system does not hold.

The example demonstrates that weak stuttering termination is not preserved
by the parallel composition of action systems. The reason being that termination
condition (15) of one system does not take into account possible interference of the
stuttering action from the other system. The problem is remedied by strengthening
the termination condition to (19). Intuitively, the latter is satisfied only if the
iteration of a stuttering action terminates when interleaved with the finite sequences
of a rely action that stands for the stuttering action of another component. Formally,
the strong termination condition is justified by the following two theorems.

Theorem 25 Let S and T be conjunctive and monotonic predicate transformers,
respectively. Then

(a) µ.(S u T ) = µ.(Sω; T ),

(b) µ.(S u T ) = µ.(S∗; T ) ∩ (S u T )∗.µ.S.

The first part of the theorem shows how the demonic choice operator can be removed
from the fixpoint operator by replacing it with sequential composition and iteration.
The following proofs rely on various properties of iteration constructs [5].

PROOF. First, we note that the following holds for the strong iteration of a mono-
tonic predicate transformer U :

Uω.q = (µx •U.x ∩ q), Uω.true = µ.U (21)
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Then (a) is derived as follows:

µ.(S u T )
= { (21) }

(S u T )ω.true

= { decomposition (S u T )ω = (Sω; T )ω; Sω }
((Sω; T )ω; Sω).true

= { def. of composition, (21) }
(µx •(Sω; T ).x ∩ Sω.true)

= { def. of composition, Sω conjunctive }
(µx •Sω.(T.x ∩ true))

= { lattice prop., def. of composition, η conversion }
µ.(Sω; T )

For the second part we first make use of the infinite iteration statement defined as
U∞ =̂ (µX •U ; X):

µ.(S u T )
= { (a) }

µ.(Sω; T )
= { Uω = U∗ u U∞ for conjunctive U , distributivity }

µ.(S∗; T u S∞; T )
= { S∞; T = S∞ for any T , above derivation (S∗; T conjunctive) }

µ.((S∗; T )ω; S∞)
= { second then first part of (21) }

(µx •((S∗; T )ω; S∞).x ∩ true)
= { def. of composition, (21) }

(µx • (S∗; T )ω.(µ.S))
= { fixpoint of constant function }

(S∗; T )ω.(µ.S)

Finally, the following derivation gives (b):

(S∗; T )ω.(µ.S)
= { (21), def. of composition }

((S∗; T )ω; Sω).true

= { Uω = {µ.U}; U∗ and Uω = U∗; {µ.U} for conjunctive U }
({µ.(S∗; T )}; (S∗; T )∗ ; S∗; {µ.S}).true

= { decomposition (S u T )∗ = (S∗; T )∗; S∗ }
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({µ.(S∗; T )}; (S u T )∗; {µ.S}).true

= { def. of composition and assertion, lattice prop. }
µ.(S∗; T ) ∩ (S u T )∗.(µ.S)

2

The following corollary of the theorem explains our choice of weak and strong
stuttering termination conditions.

Corollary 26 Assume that predicate transformer S is conjunctive and T mono-
tonic. Suppose that the following conditions are satisfied:

(a) p ⊆ (S u T ).p,

(b) p ⊆ µ.S,

(c) p ⊆ µ.(S∗; T )

where p is a predicate. Then p ⊆ µ.(S u T ).

PROOF. We have

p ⊆ µ.(S u T )
= { Theorem 25(b) }

p ⊆ µ.(S∗; T ) ∩ (S u T )∗.(µ.S)
= { lattice prop., assumption (c) }

p ⊆ (S u T )∗.(µ.S)
⇐ { transitivity }

(p ⊆ (S u T )∗.p) ∧ ((S u T )∗.p ⊆ (S u T )∗.(µ.S))
= { (S u T )∗ monotonic, assumption (b) }

(p ⊆ (S u T )∗.p)
⇐ { correctness of weak iteration }

(p ⊆ (S u T ).p)
= { assumption (a) }

T

2

The corollary also illustratesthe basic idea why strong termination requirement
for one component is sufficient to derive the stuttering termination condition of a
composite system as stated by Theorem 21. Using rely actions, the same idea is
restated in a compositional manner by the lemma below which is used in the proof
of Theorem 21.
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Lemma 27 Assume that the action systems A, B, C, D with the contexts I, J , K,
L, and the simulation relations Rj, R are as in Theorem 21. Suppose also that the
following conditions hold:

(a) {R} ; ((Ā u B̄) u skip) v (C̄ u D̄) ; {R},

(b) {q1} ; ⊥c×L̄ v C̄ ; {q1} and {q2} ; L̄ v L̄ ; {q2},

(c) {q2} ; ⊥d×K̄ v D̄ ; {q2} and {q1} ; K̄ v K̄ ; {q1},

(d) {R1}.(µ.Ā) ⊆ µ.C̄,

(e) {R2}.(µ.B̄) ⊆ µ.(L̄∗; D̄).

Then {R}.(µ.(Ā u B̄)) ⊆ µ.(C̄ u D̄).

PROOF. See Appendix 27. 2

7 Conclusions and related work

7.1 Discussion

We have presented an approach to component-oriented development of action sys-
tems. Compositionality of refinements is achieved by considering action systems
together with their context. A rely action can be viewed as an abstract charac-
terisation of the environment as regards its interaction with the system. Several
relations of context-sensitive simulation have been introduced for action systems.
They are defined in a way that supports compositional reasoning — simulation
between the parallel compositions of abstract and concrete action systems is valid
provided context-sensitive simulations for both components have been established.

Our approach is geared to support refinement of interaction between systems
that communicate through shared variables. It handles very general refinements of
such interfaces — abstract interface variables can be replaced by concrete ones, and
abstract communication protocols can be refined by more realistic ones. Further-
more, interface refinement may introduce new actions and/or refine atomicity of
interaction between systems. In these cases, context-sensitive simulation of action
systems with stuttering guarantees a liveness property — no infinite stuttering may
occur in the concrete parallel composition.

We have not considered more advanced liveness properties of interaction between
a system and its environment. To encode such properties, temporal predicate trans-
formers [22, 24] can be used as rely actions, however, this is a future work. When
formulating composition theorems, we have also assumed that both component sys-
tems have exactly the same interface variables. In reality, however, it is natural to
expect only partly overlapping component interfaces. Our results are easily gener-
alised to handle such situations. The basic idea is to partition interface variables
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while associating a rely action with each group of variables. Then compatibility be-
tween a system and a context can be checked in the same way as described in this
paper by considering only the common interface variables (and the corresponding
rely action).

The ideas presented here has originated while considering the design of asyn-
chronous circuits using the action system framework [25, 26]. Such circuits are
usually built from library components that communicate with each other via a stan-
dard protocol (four-phase handshake in our case). It turns out that context-sensitive
simulation of action systems suites well for the development of asynchronous circuit
components. We think that similar approaches are also applicable when developing
other kinds of reusable concurrent components whose interaction is based on estab-
lished communication protocols. However, more case studies are needed to identify
weak and strong points of our approach.

Our emphasis was on stepwise refinement of interaction between action systems.
Note that each refinement of the initial specification can in turn be viewed as a
more concrete specification of the same component. As argued in [11], supplying a
component with specifications at various levels of abstraction facilitates its reuse.
The designer who puts components together can choose the most convenient one
so that the process of matching it with the required specification is as simple as
possible, perhaps even automatic.

We have considered action systems and their context-sensitive simulation within
the refinement calculus. The latter identifies actions with conjunctive predicate
transformers, while action systems are endowed trace semantics. The refinement
calculus is a conservative extension of higher-order logic and, consequently, preserves
its soundness. Moreover, since there is no distinction between syntax and semantics
of actions in the refinement calculus, it does not require a separate proof theory.
The presented formalism is intended to serve as a basis for developing a tool based
on a theorem prover. In fact, we have already used the Refinement Calculator [9, 28]
to mechanise our approach and to verify the example used in this paper.

7.2 Related work

Our approach is related to several areas of research. The first one is rely-guarantee
based reasoning for shared-variable concurrency introduced in [16, 19] and later
developed, for example, in [30, 31, 18]. Their work is based on Hoare-style proof
systems, adapted to the concurrent setting and oriented to top-down development
of programs with respect to open system specifications. Rely-guarantee paradigm
and refinement of transition based specifications were combined in [17]. All these
approaches concentrate on stepwise decomposition of specifications and, therefore,
do not really deal with refinement of interaction as such. The interaction between
systems is essentially fixed when a specification is decomposed into several compo-
nent specifications. As a consequence, refinement relations reflect an open system
view of specifications: refinement means weakening assumptions about the environ-
ment of a system. On the other hand, interaction involves at least two cooperating
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systems. Thus, in general, refinement of interaction entails strengthening obliga-
tions of both parts. This relates to an essentially closed view of specifications which
is reflected in our definition of context-sensitive simulation. The latter resembles
the context-sensitive refinement relation, which incorporates rely/guarantee reason-
ing, introduced by Dingel [14, 15]. Dingel’s approach is more general and supports
both shared-variable and message-passing concurrency. Furthermore, he develops a
refinement calculus for a wide-spectrum specification language based on a compo-
sitional trace semantics. On the other hand, Dingel’s refinement relation presumes
that the environment of a specification is fixed. As a result, his approach does not
deal with refinement of interaction.

Our context-sensitive simulation is related to the notions of conditional imple-
mentation [1] and conditional refinement[32, 8]. The latter is a generalisation of in-
terface refinement which has been thoroughly investigated in the setting of streams
and asynchronous message passing [7]. The basic idea of conditional refinement is
similar, however: environment constraints can be strengthened by refinement. Be-
sides that we work in a shared-variable setting, the main difference in our approach
is as follows. Context-sensitive simulation involves two (abstract and concrete) rely
actions that are related via the simulation relation. Whereas, in conditional re-
finement, additional assumptions about the environment are recorded as a separate
condition either at the abstract [8] or the concrete [32] level.

Our approach is also reminiscent of lazy composition [29]. Since Shankar uses the
latter for compositional verification, an abstract characterisation of the environment
is verified to preserve component properties. Whereas, in our case, context-sensitive
simulation ensures that a rely action does not interfere with component refinement.

Xu suggested using rely/guarantee conditions within the action system frame-
work [34]. However, his approach was essentially geared to action system decom-
position through refinement. He also has not considered stuttering-insensitive re-
finement. Compositionality of action system refinement has been investigated by
Back and Wright [6]. They assume that an explicit environment system is given
with its guarantee condition and invariant. The idea is similar, since a guaran-
tee condition together with an invariant can be translated to a rely action in our
approach. However, their assumption of the explicit environment does not permit
a component-oriented approach to action system development. Furthermore, data
refinement is restricted to the local variables of an action system; as a consequence,
system interfaces can not be refined.

Also using weakest precondition predicate transformers, [23] considered interface
refinement for sequential object-oriented programs. They handle it by establishing
simulation between the corresponding abstract and concrete methods and using for
this additional simulation relations for method parameters. Thus, their approach
is essentially restricted to data refinement of method parameters. In the spirit
of rely/guarantee approaches, [10] uses access roles to achieve compositionality in
specifications of sequential systems with shared components. They do not consider
refinement of roles, however.

In a different approach to action systems, Kurki-Suonio has dealt with compo-
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sitional refinement within a closed system setting [20]. The main difference is that
the refinement relation investigated there rests on superposition refinement. This
means that new variables and actions modifying these can be introduced in refine-
ment but already existing ones can not be removed from a system. Due to this,
compositionality conditions become simpler.
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Appendices

A Proof of Theorem 12

Expanding definitions and applying Lemma 7, we get the following from the as-
sumptions of the theorem:

{R} ; I v K ; {R} (22)
{R} ; A v C ; {R} (23)
{q} ; I v I ; {q} (24)
{q} ; ⊥a×J v A ; {q} (25)

Again, by Lemma 7, we have to establishes the following two conditions to prove
the theorem:

{{R}.q} ; K v K ; {{R}.q}
{{R}.q} ; ⊥a×L v C ; {{R}.q}

For the first condition, we have:

{q} ; I v I ; {q}
⇒ { I is terminating }

q ⊆ I.q

⇒ { monotonicity }
{R}.q ⊆ {R}.(I.q)

⇒ { refinement (22) }
{R}.q ⊆ K.({R}.q)

⇒ { K is conjunctive }
{{R}.q} ; K v K ; {{R}.q}
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The second condition can be split into two parts:

{{R}.q} ; C v C ; {{R}.q}
{{R}.q} ; ⊥a×L v C

The first part follows from a derivation similar to the above one. For the second
part, we note that actions are conjunctive predicate transformers, thus, C can be
written as {p′} ; [P ′] for some predicate p′ and relation P ′. Then the refinement
condition to be established is equivalent to the following one:

{R}.q ⊆ p′ ∧ |{R}.q | ;P ′ ;(−c) ⊆ (−c) ;((Ri \ J ; Ri−1) ∩ Id.e) (26)

To prove this, we rewrite assumptions of the theorem. For (23) we have:

{R} ; A v C ; {R}
⇒ { monotonicity }

{R} ; {q} ; A v C

≡ { data refinement of conjunctive pred. transformers }
({R}.(q ∩ p) ⊆ p′) ∧ (P ′ ⊆ R ; |q | \ |p | ; P ;R−1) (27)

Similarly, for (25):

{q} ; ⊥a×J v A ; {q}
⇒ { monotonicity }

{q} ; ⊥a×J v A

≡ { refinement of conjunctive pred. transformers }
(q ⊆ p) ∧ (|q | ; P ⊆ (−a) ; J ;(+a)) (28)

Now, the first conjunct ({R}.q ⊆ p′) from (26) easily follows from (27) and (28).
For the remaining one, we have:

P ′ ;(−c)
⊆ { (27), monotonicity }

(R ; |q | \ |p | ; P ; R−1) ;(−c)
= { property: q ⊆ p ⇒ (R ; |q | \ |p | ; S = R ; |q | \ |q | ;S) }

(R ; |q | \ |q | ; P ; R−1) ;(−c)
⊆ { (28), monotonicity }

(R ; |q | \(−a) ;J ;(+a) ; R−1) ;(−c)
= { (−c) deterministic }

R ; |q | \(−a) ; J ;(+a) ; R−1 ;(−c)
= { R−1 = Ri−1 ; Rr−1, independence }

R ; |q | \(−a) ; J ; Ri−1 ;(+a) ; Rr−1 ;(−c)
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⊆ { Rr−1 ⊆ (−a) ;(+c), monotonicity }
R ; |q | \(−a) ; J ; Ri−1 ;(+a) ;(−a) ;(+c) ;(−c)

= { (+x) ;(−x) is an identity relation }
R ; |q | \(−a) ; J ; Ri−1

= { (−a) deterministic }
R ; |q | ;(−a) \ J ; Ri−1

= { R = Rr ;Ri, q = |qq | ; |qi |, independence }
Rr ; |qq | ;(−a) ; Ri ; |qi | \J ;Ri−1

= { Ri = Ri ; |qi |, property Q ; R \S = Q \R \S }
Rr ; |qq | ;(−a) \Ri \ J ; Ri−1

= { property Rr ; |qq | ;(−a) = |{Rr}.qq | ;(−c), }
|{Rr}.qq | ;(−c) \Ri \ J ; Ri−1

Finally, the following derivation gives (26), thus finishing the proof:

|{R}.q | ; P ′ ;(−c)
= { C preserves e, distributivity }

|{R}.q | ; P ′ ;(−c) ∩ |{R}.q | ; Id.e ;(−c)
⊆ { above derivation, P ′ independent of c }

|{R}.q | ;(|{Rr}.qq | ;(−c) \Ri \ J ; Ri−1) ∩ |{R}.q | ;(−c) ; Id.e

= { {R}.q ⊆ {Rr}.qq, property q ⊆ p ⇒ (|q | \ |p | ; S = |q | \S) }
|{R}.q | ;((−c) \Ri \ J ;Ri−1) ∩ |{R}.q | ;(−c) ; Id.e

⊆ { |{R}.q | ⊆ Id, monotonicity }
(−c) \Ri \ J ;Ri−1 ∩ (−c) ; Id.e

= { (−c) deterministic ⇒ (−c) \R = (−c) ; R }
(−c) ;(Ri \ J ;Ri−1) ∩ (−c) ; Id.e

= { distributivity }
(−c) ;((Ri \ J ; Ri−1) ∩ Id.e)

2

B Proof of Lemma 27

To prove the lemma, Corollary 26 can be used by choosing p := {R}.(µ.(Ā u B̄)).
For this we have to establish three conditions. For the first one, we have:

T

= { assumption (a) }
{R} ; ((Ā u B̄) u skip) v (C̄ u D̄) ; {R}
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⇒ { def. of refinement, specialise with p }
({R} ; ((Ā u B̄) u skip)).p ⊆ ((C̄ u D̄) ; {R}).p

= { choice of p, definitions }
p ⊆ (C̄ u D̄).p

The second condition is derived as follows:

p ⊆ µ.C̄

= { substitute p }
{R}.(µ.(Ā u B̄)) ⊆ µ.C̄

⇐ { assumption (d), transitivity of ⊆ }
{R}.(µ.(Ā u B̄)) ⊆ {R1}.(µ.Ā)

⇐ { {R} and µ are monotonic, Ā u B̄ v Ā, transitivity of ⊆ }
{R}.(µ.Ā) ⊆ {R1}.(µ.Ā)

⇐ { {R} v {R1} specialised with µ.Ā, transitivity of ⊆ }
T

Finally, the last condition p ⊆ µ.(C̄∗; D̄) can be split into two parts. For the first
one, we have:

p ⊆ q1 ∩ q2 ∩ µ.(L̄∗; D̄) ◦ del.c

= { {R}.q ⊆ q1 ∩ q2 for any q, lattice prop. }
p ⊆ µ.(L̄∗; D̄) ◦ del.c

⇐ { substitute p, see previous derivation, transitivity of ⊆ }
{R2}.(µ.B̄) ⊆ µ.(L̄∗; D̄) ◦ del.c

= { q independent of c ⇒ q ◦ del.c = q for any q }
{R2}.(µ.B̄) ⊆ µ.(L̄∗; D̄)

⇐ { assumption (e) }
T

The second part is derived as follows:

q1 ∩ q2 ∩ µ.(L̄∗; D̄) ◦ del.c ⊆ µ.(C̄∗; D̄)
= { see derivation below }

q1 ∩ q2 ∩ µ.(⊥c×(L̄∗; D̄)) ⊆ µ.(C̄∗; D̄)
⇐ { property {q}; S v T ; {q}⇒ q ∩ µ.S ⊆ µ.T }

{q1 ∩ q2} ; (⊥c×(L̄∗; D̄)) v C̄∗ ; D̄ ; {q1 ∩ q2}
= { extension distributes into composition and iteration }

{q1 ∩ q2} ; (⊥c×L̄)∗ ; ⊥c×D̄ v C̄∗ ; D̄ ; {q1 ∩ q2}
⇐ { (data) refinement of composition }
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({q1 ∩ q2} ; (⊥c×L̄)∗ v C̄∗ ; {q1 ∩ q2}) ∧ ({q1 ∩ q2} ; ⊥c×D̄ v D̄ ; {q1 ∩ q2})
⇐ { (data) refinement of iteration }

({q1 ∩ q2} ; (⊥c×L̄) v C̄ ; {q1 ∩ q2}) ∧ ({q1 ∩ q2} ; ⊥c×D̄ v D̄ ; {q1 ∩ q2})
= { see the last derivation in Theorem 9 }

({q1 ∩ q2} ; ⊥c×D̄ v D̄ ; {q1 ∩ q2})
⇐ { demonic extension refined by skip on c }

({q1 ∩ q2} ; D̄ v D̄ ; {q1 ∩ q2})
⇐ { ⊥d×K̄ terminating, D̄ conjunctive }

({q1 ∩ q2} ; ⊥d×K̄ v D̄ ; {q1 ∩ q2})
⇐ { as above for ⊥c×D̄ and C̄ }

T

This proves the lemma. Note that the first step in previous derivation is justified
by the following property:

µ.S ◦ del.x = µ.(⊥x×.S)
= { definition of extension }

µ.S ◦ del.x = µ.({−x}; S; [+x])
= { rolling rule µ.(S; T ) = S.(µ.(T ; S)) for monotonic S and T }

µ.S ◦ del.x = {−x}.(µ.(S; [+x]; {−x}))
= { property [+x]; {−x} = skip then def. of {−x} }

T

2
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