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Abstract

The Model Driven Approach (MDA) as supported by the Object Manage-
ment Group (OMG) describes the structural requirements of an engineering
discipline where models, instead of source code, comprise the primary arti-
fact. Model Driven Engineering (MDE), as outlined by Stuart Kent, brings
forth the dynamic aspects of engineering, where process adherence and rig-
orous commitment to analysis are equally important. As such, MDE has
a broader scope than MDA. We discuss our position on MDE and its re-
quirements on tools and technology, especially considering the dynamics of a
model-based software development method. We demonstrate our approach
with an example of the specification of an IPv6 router targeted to a cus-
tomized processing architecture.
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1 Introduction

Model Driven Engineering (MDE) tackles the elusive problem of system de-
velopment by promoting the usage of models as the primary artifact to be
constructed and maintained. The term was first proposed by Kent in [11]
and is probably derived from the OMG’s Model Driven Architecture (MDA)
initiative [18]. OMG’s MDA is based on the idea of platform independent
models (PIM) and platform description models (PDM) that can be realized
using a variety of middleware and programming languages into platform spe-
cific models (PSM). We understand MDE as a broader term that includes
all models and modeling tasks needed to carry out a software project from
beginning to end.

We consider that OMG’s vision of MDA, although valid, is just one of
the possible scenarios in an MDE process. A PIM to PSM transformation
may be a necessary task in an MDE context, but also PIM to PIM trans-
formations, e.g. how a PIM representing some customer requirements can
be transformed into another PIM that realizes those requirements. In our
understanding, the main key concept behind MDE is that all artifacts gen-
erated during software development are represented using common modeling
languages. As a consequence, software development can be seen as the pro-
cess of transforming a model into another until it can be executed outside
its development environment. If we only study PIM to PSM transformations
as described in the MDA approach instead of a more general framework, we
may miss important issues and be unable to provide a general solution to a
broader problem. This scenario occurs if we consider the OMG standards as
an authoritative description of the way that we build software instead of as
an authoritative description of the way that we represent our software.

The current OMG standards present a static and structural view of mod-
els. They define several standard modeling languages, e.g. what is a valid
model in a given language using OCL constraints and how to store a model in
a file using XMI [15]. However, they do not discuss how models are created or
how models evolve. This may be explained by reviewing the origins of UML:
it was developed as a method-independent notation to document software
artifacts. UML can be used in combination with practically any software
development method and, as a consequence, the OMG standards do not con-
tain any reference or support for software development. We believe that the
OMG standards should also consider the dynamic aspects of model develop-
ment. This ranges from the basics of model evolution using algorithms for
model transformation to more sophisticated reasoning about why a model
transformation meets new requirements. We may consider that the Software
Process Engineering Metamodel standard (SPEM) [16] addresses this issue.
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However, SPEM tells us how to document a process, while “planning and
executing a project using a process described with SPEM is not in the scope
[of the standard]”.

In this paper we investigate a possible approach to defining a Model
Driven Engineering method by analyzing the collection of concepts, methods
and tools needed to support such methods. We also try to classify and
evaluate what are the requirements for the tools supporting the approach.
Moreover we propose as an example a design methodology applicable to the
specification and design of embedded systems, and especially for protocol
processing applications. The methodology was used in a larger case study,
where an IPv6 router was specified and designed. To verify the validity
of our approach, the router was targeted (implemented) both on a software
platform, using the Java programming language, and on a hardware platform,
using the TACO [25] protocol processing architecture.

We proceed as follows. We describe in Section 2 the basic concept of an
MDE method and what the main layers or components in the definition of
an MDE method are. Sections 3, 4 and 5 describe these layers in more detail,
including examples from the IPv6 router case study. The paper ends with
our conclusions on MDE where we discuss advantages and disadvantages of
using it as well as the future work that we consider necessary in defining a
rigorous MDE approach.

2 Model-Driven Software Development Meth-

ods

We define a model-driven software development method as a software con-
struction method where all the relevant information in the project is stored
in some kind of abstract model. Model development is then carried out as a
sequence of model transformations.

Model driven engineering is the result of the recent development on com-
puter languages, awareness of the need of software development methodolo-
gies and the constant need to tackle larger and more complex development
projects. These forces are not new. Indeed, we could use the same naming
pattern to create terms such as punched card driven development, to describe
the development methods used when compiler time was a luxury, or source
code driven development, to describe the methods used in Extreme Program-
ming and many open source projects, where source code is the key artifact.
However, we believe that MDE opens a window for new development meth-
ods and tools that are not available or are too expensive to implement in
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other approaches such as source code driven development. These tools and
methods can take profit of the fact that the artifacts describing our software
are stored in a standardized way and are, to a certain extend, independent
of the implementation technology.

The description of a model driven engineering method should contain all
the elements that are usually present in any software development method. It
should describe which final deliverables and intermediate milestones should
be produced, which language should be used to create the previous artifacts
and which tasks we should perform, and in which sequence, so that we can
effectively create the required artifacts. However, we consider that there
exists two main differences in a model driven engineering method with respect
to a traditional development method. First, all artifacts are represented
using a well-defined modeling language. Secondly, and as a consequence, we
can create tools that process and transform all the artifacts in our projects.
Therefore, we will require that all tasks in a model driven engineering method
should be performed with the assistance of specialized tools. In this context,
a clear understanding of model dynamics is a prerequisite to define any MDE
method.

We have identified a four-layer approach to model dynamics. Each layer
depends on the functions provided by the layers beneath it. Every layer
empowers the modeling environment with new dynamic aspects, which would
not be possible by the lower layers alone:

• In our approach, layer 0 defines the basic model management possibil-
ities. This consists of creation and deletion of model elements, modifi-
cation of the various associations between elements, and the evaluation
of model constraints. In essence, the power at this first layer is the
power given by the Meta Object Facility (MOF) [14].

• Layer 1 acknowledges model evolution as a continuous temporal pro-
cess. Here, versioning is the key element, whereby tools can sup-
port undo/redo facilities, displaying and calculating differences between
models, merging of models from multiple collaborative sources and, fi-
nally, providing full revision control of the development process.

• Layer 2 implements the desired behavior using interoperable tools with
editors, and transformation rules. This requires a complete set of mod-
eling standards for the various activities that developers can rely on.

• Layer 3 includes intent in model development. It studies why changes
are made in a model, and when the method in use allows us to make
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the change. Far too long has intent and process adherence been con-
sidered a second-class citizen in software engineering. We regard MDE
as a possible savior, by enabling us to describe process methodologies,
problem analysis, estimations, and testing frameworks together with
an evolving platform description model, and with the consistent ways
to describe models, metamodels, transformations and constraints in
MDA.

Although the last layer in the hierarchy is perhaps the most complex one,
we start the description of our MDE approach with Layer 3 in order to set
the stage for where and how an MDE approach is used.

3 Layer 3 — A Design Methodology For Pro-

tocol Processing Applications

As mentioned earlier we see MDE as an integration of languages, models,
tools, methods, processes and frameworks that allow us to specify and analyze
systems in a consistent manner, starting from the requirement specification
and down to the physical implementation. In order to provide a system-
atic approach to system design, a methodology that guides the designer and
provides the necessary tool support has to be defined. Our design method-
ology (Figure 1) starts with the functional specification of the application,
and when the necessary level of detail is reached, we map the specification
onto the target platform. We make use of domain information to narrow the
gap between the functional specification and the platform, and to provide
support for reuse of components.

Although in the spirit of MDA, where the application specification is sep-
arated from the platform implementation into two different models, PIM and
PSM, respectively, our approach allows targeting the application onto target
architectural configurations not known at design time. Consequently, the
methodology gives us the possibility to configure a target (hardware) plat-
form while performing the application specification, in contrast with tradi-
tional approaches where the application has to be mapped onto a fixed given
platform. Following we briefly present the phases of the design methodology.

3.1 Functional Specification of the Application

In the area of embedded systems there are mainly two categories of ap-
proaches promoting concepts and artifacts that can be viewed as common
modeling languages. First category is based on the use of the object-oriented
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Figure 1: Design Methodology for Protocol Processing Applications

paradigm, which has been the starting point of the Unified Modeling Lan-
guage. The second one is based on the data flow paradigm that promoted
the data flow diagrams (DFDs) as its main modeling language. Both models
offer important views of the system at hand, but each of them focuses on
certain aspects of the system under consideration. Sometimes it is useful to
be able to transform one model into another, allowing the designer to focus
on a particular view of the system. We extract the functional requirements of
the application into an initial specification and we specify it in a domain in-
dependent and platform independent manner. At this point no details about
the target domain and platform are being taken into consideration. Dur-
ing the functional specification we integrate and combine the object-oriented
and data flow views for the analysis and design of embedded systems. The
approach consists of specifying the system following a functional decomposi-
tion and representing it using the benefits of both object-oriented and DFD
views. The argumentation for the necessity of integrating both views was
given in [6].

The design-flow (Figure 2) is composed of a number of steps that represent
different views of the system.

a. Extract the application requirements

b. Extract functionality of the system into a Use Case Diagram

c. Specify the textual description for each use case
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Figure 2: The main steps of the UML-DFD functional specification

d. From the Use Case Diagram we obtain the Initial Object Dia-
gram of the system. Based on the use cases textual description,
the Initial Object Diagram is refactored by grouping, splitting or
discarding of the objects

e. Transform the Initial Object Diagram into a Data Flow Diagram

f. While refining the communication (DataFlows) inside the DFD,
we build the Data Dictionary of the system

g. Specify the internal behavior of the DataTransformations using
Activity Diagrams

h. Transform the Data Flow Diagram into a Class Diagram

i. Transform the Data Flow Diagram into a DFD-like Object Dia-
gram
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Between steps, the designer changes several times the view of the system
and consequently, the modeling paradigm. Between the views we have imple-
mented model transformations that allow us to go from one step to another
in an automated way. We show later in this paper how we have implemented
and used these transformations. A more detailed view of the design flow and
how we automated these transformations between different views of the sys-
tem can be found in [24]. In the current document we only intend to analyze
the methods used in the approach, and based on this analysis, to identify the
general characteristics of a Model Driven Engineering process.

3.2 Using Domain Information

We combine the functional specification of the application with the domain-
based knowledge to provide component reuse and fast identification of re-
quired computational resources. During this phase we transform the func-
tional specification of the application into a domain dependent but still, plat-
form independent specification. Analyzing and modeling the domain knowl-
edge, a set of generic reusable components can be extracted by identifying
general abstractions and similarities of a set of applications. For the given
range of applications, i.e. protocol processing, we claim that there is a com-
mon set of basic domain operations that have to be supported/implemented
by a system. We use domain operations as a bridge between the functional
specification and the target platform. Basically, on one side we express the
functional specification of the application using domain operations related
to a given application domain, on the other side we identify how the domain
operations map onto the platform resources.

The end result of the process is a functional specification of the application
expressed with domain operations that are directly mappable onto the target
resources.

3.3 Platform Implementation

One of our aims is to keep our design methodology applicable to a wider
range of embedded systems. Once the functional specification of the appli-
cation has been performed, different target architectures can be chosen for
implementation. Each domain operation is implemented by certain resources
of the given target platform(s), thus allowing us to identify the required re-
sources needed to implement the application. For a given target platform
we identify what domain operations a target platform is able to implement,
and then we map the domain-dependent functional specification onto that
platform. The approach can be used to implement the application both onto
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fixed-configuration platforms, and as well as onto configurable ones. Keeping
the application specification independent of the target platform allows de-
signers to take implementation specific decisions later in the design flow, thus
addressing an important issue of the hardware/software co-design domain.
In addition, one can implement the same application specification on various
target platforms based on performance needs and physical constraints.

To verify the validity of the methodology, we have applied the approach
to specify and design an IPv6 Router, using the Java programming language
[1], and into hardware using our TACO protocol processing platform [12]
as target implementation platforms. We have used this design methodology
for designing protocol processing applications implemented on our TACO
processor. TACO provides an integrated framework for fast configuration,
simulation, evaluation and implementation of different TACO processor con-
figurations. The TACO processors are simulated using the SystemC language
[20], their physical characteristics are estimated using a Matlab model and a
VHDL model is used for the hardware synthesis.

4 Layers 0 and 1 — Models, Tools and Model

Evolution

Amodel-based development method consists of several supporting paradigms.
When discussing a method in concrete terms, the surrounding environment
must be taken into consideration. In modeling, that environment consists
of the interoperable tools and the facilities that they provide, available lan-
guages and rules of how, when and why to manipulate models. Model ma-
nipulation, aside from that provided by the editing tools themselves, is given
as scripts in our framework. They are used to provide three different kinds of
model manipulation, that of querying, model-to-model manipulation and ar-
tifact generation. Similar functionality can no doubt be found or be expected
by other manipulation systems such as QVT [13].

4.1 Models and Modeling Languages

From our point of view, the two main advantages of using models versus
source code to describe our software is that we can store all the relevant
information needed in a software project in the model and that all the infor-
mation in a model is stored in a standardized and uniform way that can be
processed and transformed easily.

The idea that we can use the same modeling language to describe the
analysis, design and implementation of a system has been always one of the
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most repeated features of UML. Actually, UML lacks in certain areas such as
describing non-functional requirements and real-time domains, but successive
extensions to the standard could alleviate these problems. However, there is
a clear danger in believing in the silver bullet. A more realistic scenario is
that we have to be able to experiment with new methodologies and languages,
without giving up on what we already possess.

In light of this stepwise incorporation of novel technologies, the need for
new metamodels comes forward. There is a strong need to explore new mod-
eling languages and concepts, without trying to incorporate everything into
UML. Metamodeling is the field of describing, evolving, maintaining and ex-
tending metamodels providing mathematical rigor where possible in the form
of (possibly heuristic) verification, and practical statistics of the models in
question. A sound practice is to try to map between our various metamodels
and the UML, which has become the de facto standard. Transparent map-
ping of models to other domains provides us with the required integrity and
seamless interoperability.

Many developers see UML as a graphical representation of the source
code in the system. This view prevents us to include other artifacts such
as a spreadsheet or a Mathematica document in our model, even when the
contents of those documents can be relevant to our software. We prefer to
consider a modeling language as a taxonomy of the most important concepts
that can occur in an abstract description of a design.

Another important feature of modeling languages such as UML is that
while the models may be represented diagrammatically using icons, they are
stored using an object graph similar to the abstract syntax tree of a pro-
gramming language. In the case of UML, the abstract syntax is defined by
the UML metamodel. The metamodel representation is akin to a directed
graph. Each node of the graph represents a metamodel element and each arc
a relationship between two metamodel elements. Some arcs represent com-
positions, i.e. whole-part relationships. In the case of UML, if we consider
only the composition arcs, the resulting graph is also a tree. The advan-
tage of storing a software project as an object graph is that we can traverse
the project, collect, add and remove information from it in a way that is
independent of the target programming language. This task is simplified
by languages such as OCL that have specific constructs to navigate models.
Using OCL or a similar query language is not restricted to UML, but to the
language of metamodels, which in MDA is the Meta Object Facility.
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4.2 MDE Tools

CASE tools have a huge role in the MDA and MDE initiatives due to the
graphic nature of models, the way models are stored, and the fact that many
of the benefits of these approaches only arise through automation. Our vision
is that a typical MDE project will be carried out using not one but several
development tools. There are many different variables in a project such
as translation to the target platform, knowledge of the application domain,
analysis, estimation (e.g. the TACO framework), and we cannot expect that
one single tool will be able to cover the whole development process for all
the necessary variables. Thereby ease of communication between these tools
is of essence.

A true common file format for model interchange would allow a market
for new specific tools for model transformation and code generators. Some
of these tools could be specialized in application domains such as real-time
systems. In many cases the selection of tools such as a model editor would
be just a matter of personal preferences as it is now with text editors. This
scenario is described in [23] and it requires two components: a standard
interchange file format, and tools that comply with it. Unfortunately, in the
case of UML, this is still not a reality, as different tools implement the XMI
standard differently. Furthermore, by providing multiple ways to serialize the
same model parts, the standard has only made it more complex for multiple
implementations to co-exist. Also, XMI is designed for the abstract model
and does not contain any information about graphical parts. The XMI-DI
standard for diagrammatic interchange [19] is not yet so widespread, but we
hope that this situation will change in a near future.

We will assume tool support in the form of diagram editors, transforma-
tion frameworks and similar frameworks as an issue of quality of implemen-
tation, and concentrate on the facilities that they must provide.

4.3 Versioning

Model versioning encompasses the idea of continuous model evolution. Mod-
els change, either by small changes made by the designer, or by bigger changes
by automated transformation tools. Nevertheless, the need to distinguish be-
tween different versions of a model is required. Here we can draw experience
from our collective know-how of how ordinary file-based versioning is accom-
plished, its benefits and problems, and apply that to the world of models.

The base operation of a model versioning system is to be able to retain old
revisions of the models. A part of realizing this is the ability to calculate the
difference between two arbitrary models [?]. A development environment can
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use the same facility to provide transactional support for the changes that
the modeler does, i.e., supporting undo/redo mechanisms. At the moment,
there is no practical standard for exchanging differences; the XMI.Difference
element, as defined in the XMI standard, is too coarse-grained and there is
to our knowledge no tool which supports it.

A configuration management and versioning system is not a mere lack-
luster scheme where only changes are recorded. In the long run, we hope
that intent is reflected more clearly in the changes to a model. This could be
realized with connections to a project management-specific or process model,
where tasks, errors, assumptions and estimations are recorded and managed.
These systems together are a part of the development process; they guide
the developers and enforce the project’s process upon their development.

5 Layer 2 — MDE Scripts

A MDE script is a small application that processes a software model in order
to extract information from it, transform it or create a derived artifact such as
source code. At the time of writing this text, there is an ongoing effort in the
OMG to standardize on a language suitable for querying and transforming
models based on MOF, such as the UML. In our case, we have decided to
use the scripting language provided by the SMW tool [3]. SMW is a toolset
based on the Python programming language, an object-oriented interpreted
scripting language. Python is easy to learn and features a simple, yet elegant
syntax.

SMW is organized in four main layers: the SMW kernel, a generic editor
layer, the language specific editors and the method specific scripts. The
SMW kernel is in charge of representing models in memory. Each element in
a modeling language is represented as a Python class and each element in a
model is represented as an instance of the corresponding class. The kernel
ensures that the models are well-formed. It also provides support for XMI,
the standard file interchange format between UML tools, OCL-like idioms
for model query and navigation, and user-defined modeling languages. A
SMW modeling language is defined in a metamodel file. In the case of the
UML language, it is generated automatically from the official OMG files.
We have used the basic facilities provided by the kernel to create a generic
diagram editor. The generic editor provides functionality such as printing
or a clipboard that is implemented independently of the actual modeling
language used in a given model. The generic editor can be customized into
a language-specific editor such as the UML editor, an extension to standard
UML and even other modeling languages, such as the SMW extension to
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model data flow diagrams (the SA/RT profile [10]) that we use in our design
flow.

The actual method engineering support is provided by customized scripts.
We have identified three script types that are required to be supported by
an MDE process. They operate over model elements as well as over entire
models.

1. Queries are applied on a model expressed in one language and returns
a set of elements of the same model expressed in the same language.

2. Model Transformations are applied on a model expressed in a given lan-
guage and either modifies the model in place, or creates a model, pos-
sibly expressed in a different language. The upcoming QVT standard
from OMG addresses this problem. Model transformations conceive
a plethora of new interesting questions and topics, such as transfor-
mation taxonomy, correctness-preserving transformations, consistency
checking and/or verification.

3. Code Generation, although a form of transformation, is sufficiently
different from a model-to-model transformation to merit its own clas-
sification. The goal is to produce suitable input to a second-stage
compilation or analysis tool. The target language is not a metamodel.

The main difference between queries and transformations is that the
queries are free of side-effects, meaning that when applied on a model they
do not change the model in any way.

5.1 Queries: Constraints, Metrics and Guidelines

The simplest MDE script is a query. A query gathers information from a
model but it does not update it. OCL [17] is probably the most standard and
known language for UML queries. Usually a query gathers information from
a model in the form of collection of elements. In addition, we consider that
there are yet three other specific uses of queries: defining software metrics,
model constraints and design guidelines.

The main purpose of a query is to extract, from a model, parts of or all
model elements corresponding with the query condition. An example of such
a query is obtaining a list of all objects that are instances of a given class.
In order to perform the query we use the method getAllParts that returns all
the elements transitively owned by the object. If we invoke this method with
the root element of the model we obtain a collection that contains all other
elements in the model.
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1 instances=model.getAllParts().select(lambda c:

2 c.oclIsKindOf(Instance)

3 and c.classifier=someClass).name

A query can represent a design guideline when it is used to verify that
all elements in the model have been created and are consistent with the
development method. In our example we have followed the design flow with
a functional decomposition of the system where each class in the specification
should still correspond to the initial use cases. In the following example, the
lines 1–3 collect all stereotype names (ucStereotypes) present in the use
case diagram of the system. Consequently, lines 4–8 create a collection of
classes (unRelated) whose stereotype names are not present in the use case
diagram.

1 ucStereotypes=model.ownedElement.select(lambda uc:

2 uc.oclIsKindOf(UseCase)).stereotype.select(lambda st:

3 st.oclIsKindOf(Stereotype)).name

4 unRelated = model.ownedElement.select(lambda cl:

5 cl.oclIsKindOf(Class) and

6 cl.stereotype.select(lambda st:

7 st.oclIsKindOf(Stereotype) and

8 st.name not in ucStereotypes))

Of course, more complexity can be added to the previous verification in
order to gather more details on the relation between each class and different
use cases. One should note that one class can belong to several use cases
or the reverse, one use case can be contained by one class, even though this
situation occurs less frequently.

Finally, a query can be used to ensure that a design can be implemented
in a given target platform. In our example, we check that the design is
still implementable onto the target platform after a refactoring has been
performed. In practice, this means that all the class methods should still
have at least one implementation solution provided by the target platform.

1 implementable = model.getAllParts().forAll(lambda actDiag:

2 actDiag.oclIsKindOf(ActivityGraph) and

3 actDiag.ownedElement.forAll(lambda tran:

4 tran.oclIsKindOf(Transition) and

5 tran.source.oclIsKindOf(ActivityState) and

6 belongsTo(tran.source.name, platformOperations)))

The example interrogates all activity diagrams inside a model, and checks
that each state is expressed using a platform operation provided in the
platformOperations list (line 6).
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5.1.1 Software Metrics

Software metrics are an application of model queries. We can extract design
and implementation metrics from a software model by applying an aggrega-
tion operator over a set of queries of a model. Let us take as an example the
total number of classes in a model. This simple metric may give us a rough
estimation of the effort needed to implement the model. Here, we begin by
selecting all the classes in the model, and use the size operator to count the
number of classes.

1 NOC=model.getAllParts().select(lambda c:

2 c.oclIsKindOf(Class)).size()

Another interesting metric is the number of operations per class. The
following query creates a collection that contains an integer with the number
of operations for each class.

1 MpC = model.getAllParts().select(

2 lambda c: c.oclIsKindOf(Class)).collect(

3 lambda c: c.feature.select(lambda f:

4 f.oclIsKindOf(Operation)).size())

In this query we first find all classes in the model. Then we use the
collect operator to calculate the number of operations in each class. Once we
have created the final collection we can calculate the average and maximum
number of methods per class in the model. We can also use the stats Python
module to print a histogram of the metric.

AverageNumberOfMethods = MpC.sum() / MpC.size()

MaximumMethodsPerClass = max(MpC)

import stats

print stats.histogram(MpC)

The histogram may reveal that some classes are too large. Probably these
classes represent several abstractions and can be refactored into two or more
simpler classes. The following query returns the names of the classes in the
model that have the most number of operations.

1 model.getAllParts().select(lambda c:

2 c.oclIsKindOf(Class) and c.feature.select(lambda f:

3 f.oclIsKindOf(Operation)).size() >= max(MpC) * 0.9).name

5.1.2 Target Platform Constraints

Another important type of query is to check if a model fulfills a given con-
straint of the target platform. These constraints can be dictated either by
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the implementation programming language, the target operating system or,
in our case, by the hardware platform.

For instance, in our design flow one would like to avoid using the multiple
implementation inheritance (especially if we are talking about mapping the
specification into hardware). For this we have to identify (see the script
below) the presence of the classes that use multiple inheritance in our design.

1 model.getAllParts().select( lambda c:

2 c.oclIsKindOf(Class) and

3 not c.isAbstract and

4 c.generalization.size()>1

5 ).name

In this script we select from all classes in the model (lines 1–2) those
representing a concrete class to be implemented (l. 3) and have more than
one superclass (l. 4). Then we collect the names of the selected classes (l. 5)

5.1.3 Design Guidelines

Another application for queries is to check whether or not a model follows
some design guidelines. Some tools such as Together Control Center from
TogetherSoft provide an auditing feature that reveals common design and
programming mistakes. ArgoUML [22] provides a similar mechanism with
its critics system. Argo critics give advice in real-time, while the designer
manipulates the model diagrams.

As an example, the following method returns true if a class has an invari-
ant. The invariant may be defined in the given class (line 2) or in any of its
superclasses (l. 4).

1 def hasInvariant(c):

2 if c.constraint.exists(lambda e: e.name=="invariant"):

3 return true

4 else:

5 return c.generalization.exists(lambda g:

6 hasInvariant(g.parent))

Given the function hasInvariant the next query returns the name of the
classes that do not have an invariant defined:

1 model.getAllParts().select(lambda c: c.oclIsKindOf(Class)

2 and not hasInvariant(c)).name

5.2 Model Transformations

Model transformations can be categorized based on the scope of their effect
on a given model. They can be applied to modify internal parts (elements) of
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a model (update transformation) or to create a new model expressed in the
same language or in a different language (mapping transformation). Usually,
a model transformation requires a script with a higher complexity than a
query. In fact, a transformation is composed of one or many queries that
select from the model the required elements, satisfying a given condition
or being in a certain relation, and then one or many create, edit or delete
operations performed over the target model elements.

A mapping transformation translates each element from a source model
into zero, one or more elements of a target model. The source and target
models may be described in the same or in different modeling languages.
In a mapping transformation, the original model is not altered. There are
many articles in the literature describing mapping transformations, including
a survey in [9]. Recently, Akehurst and Kent proposed to use relations to
define these mappings [2]. Also, the OMG has a request for proposals for a
MOF-based transformation language. At the time of writing this text, there
are eight different submissions. We consider that mapping transformations
are more suited to describe transformations where a whole model is translated
from one language to another. An example of a mapping transformation is
our work on converting a DFD element into a UML Class.

In contrast, an update transformation modifies a model in place: it adds,
deletes and updates elements in one model. The source and target models are
the same and the effects of the transformation are visible while performing
the transformation. There can be two kinds of update transformations: to
modify an already existing element or to create a new element of the same
type followed by the deletion of the initial element. The update transforma-
tion is obviously a more efficient approach when only a small subset of the
source model will be changed by the transformation. A trivial example is the
addition of a new UML Class to a Package. This involves the creation of a
new model element, and modifying the bidirectional association between the
Class and the Package.

5.2.1 Model Refinement and Refactoring

Model refinement and refactoring is a new area of research. We have ex-
perience in source code refactorings and refinements, but in modeling it is
quite a new concept—probably because a de facto standard for expressing
transformations has not been developed yet. Different definitions for refac-
toring have been given in the literature. Fowler says that ”The process of
changing a software system in such a way that it does not alter the external
behavior of the code, yet improves its internal structure” [7], while Beck con-
siders that a refactoring is ”a change to the system that leaves its behavior

16



Person

+name : String
+age : Integer =⇒

Person

-name : String
-age : Integer

getName() : String
setName(newValue : String)
getAge() : Integer
setAge(newValue : Integer)

Figure 3: Attribute Encapsulation

unchanged, but enhances some non-functional quality—simplicity, flexibility,
understandability, . . . ” [4].

We consider that model refactoring is a more complex case of model trans-
formation where the update transformation is applied on the entire model.
We define a refactoring as a behavior-preserving transformation in a model
with the objective to improve the design described in it. In our work, we
have used a rule-based approach [21] provided by the SMW tool. It allows us
to mix OCL-style queries and preconditions with imperative statements that
modify the model. Parts of a script for a standard example, encapsulating
an attribute of a class, is shown below. The script modifies a public attribute
to become private, and adds a suitable getX() method instead. The effects
of the refactoring is presented in Figure 3.

1 transformation EncapsulateAttribute:

2 rule AddGetter(a: Attribute):

3 when: a.visibility==VisibilityKind.vk_public and

4 not a.owner.feature.select(lambda f:

5 f.name=="get"+string.capitalize(a.name))

6 do: a.owner.feature.insert(

7 Operation(

8 name="get"+string.capitalize(a.name),

9 visibility=VisibilityKind.vk_public,

10 parameter=[

11 Parameter(name="result",type=a.type,

12 kind=ParameterDirectionKind.pdk_return) ],

13 specification="return "+a.name)

14 )

15 rule Privatize(a: Attribute):

16 when: a.visibility==VisibilityKind.vk_public and

17 not AddGetter.guard([a]) and not AddSetter.guard([a])

18 do: a.visibility=VisibilityKind.vk_private

5.2.2 Model Mapping

Model mapping is the process of transforming a source model into a target
model that either belongs to the same formalism/language or to a new one.
The transformation is done without modifying the initial model. An exam-
ple of model mapping between similar formalisms is transforming a UML
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Class Diagrams into a new UML Class Diagram. In contrast, transforming
a UML Class Diagram into a Data Flow Diagram is an example of mapping
between different formalisms. Usually, a model mapping process involves a
combination of MDE scripts (queries and transformations) on different model
elements. The basic pattern is that first we “extract” those elements of the
model that meet a given condition (query) and on the obtained set we apply
a series of transformations.

In the functional specification of the application presented in Section 2,
we apply a number of model mappings. One example is the transformation
(step d. of Figure 2) of a UML Use Case Diagram (Figure 4 - top) into a UML
Object Diagram (Figure 4 - bottom), remaining within the UML formalism.
Basically, the algorithm consists of transforming each actor element in the
first model into an actor element in the second model,

1 ucActors=umlModel1.ownedElement.select(lambda x: x.oclIsKindOf(Actor))

2 for act in ucActors:

3 p=umlModel2.ownedElement.insert(UML14.Actor(name=act.name))

then based on the approach described in [5] each use case is split into three
different objects (interface, control, data) and the corresponding classes are
created:

4 useCases=umlModel1.ownedElement.select(lambda x: x.oclIsKindOf(UseCase))

5 for el in useCases:

6 classInterface=umlModel2.ownedElement.insert(UML14.Class(name=el.name,

7 stereotype.append(Stereotype(name="interface"))))

8 classControl=umlModel2.ownedElement.insert(UML14.Class(name=el.name,

9 stereotype.append(Stereotype(name="control"))))

10 classData=umlModel2.ownedElement.insert(UML14.Class(name=el.name,

11 stereotype.append(Stereotype(name="data"))))

In this transformation we use an approach where interface objects are
the only objects communicating with the external environment, while the
communication among interface and data objects is always done through
control objects. Thus, we draw by default associations between interface and
control objects, and also between control and data objects.

12 assoc1=umlModel2.addAssociation(classInterface, classControl)

13 assoc2=umlModel2.addAssociation(classControl, classData)

Finally, for each association actor-use case in the initial model, an asso-
ciation is drawn between the corresponding actor and the interface object
corresponding to the initial use case.

14 ucAssocs=ucd.ownedElement.select(lambda x: x.oclIsKindOf(UML14.Association))

15 ucAssocs.select(lambda assoc: ucd.ownedElement.select(lambda el1:

16 (el1.oclIsKindOf(Actor) or el1.oclIsKindOf(UseCase)) and

17 assoc.connection[0] in el1.association and

18 ucd.ownedElement.select(lambda el2:

19 (el2.oclIsKindOf(Actor) or el2.oclIsKindOf(UseCase)) and

20 assoc.connection[1] in el2.association and

21 model.addAssociation(el1,el2,assoc.name))))
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Figure 4: Transformation of a Use Case Diagram into an Object Diagram

One should note that although the OCL is specified to be a declarative
language, the Python lambda functions allow us to use it also as an imper-
ative language. This enables us to mix queries with model manipulations,
making the scripts shorter and more effective.

We mention that the object diagram obtained in Figure 4-bottom does not
represent the exact output of the transformation. As mentioned in the step d.
of our functional specification design flow, a refactoring process is performed
on the object diagram resulting from the transformation. The refactoring is
done manually (and based on designer’s experience) and consists of giving a
direction to the associations between objects and also deciding which objects
are grouped and/or discarded. For instance in Figure 4-bottom, data objects
{2.d}, {3.d}, {4.d}, {5.d} and {6.d} represent the same functionality of the
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system, so they can be grouped into one single object {5.d}, and the others
are discarded.

A second example of mapping between two different models, this time
also changing the formalism/language, is the transformation that supports
the creation of an object diagram in the UML model, starting from a data-
flow diagram in the DFD model (Figure 2, step i.). The transformation
is applied onto a data-flow diagram presented in Figure 5-top. The four
modeling concepts that are present in a DFD are: data flows (movement of
data in the system), data stores (repositories for data that is not moving),
processes (transformation of incoming data flows into outgoing data flows),
and external entities (sources or destinations outside the specified system
boundary). The end product of the transformation is the diagram in Figure 5-
bottom. The diagram proved to be suited for prototyping purposes and
functional testing of the specification. Additionally, it is already a good
candidate for being mapped onto a hardware-based platform, because its
granularity is at a relatively low level of detail, similar with the one provided
by the TACO processor. The model transformation starts by gathering model
information using a number of basic queries.

1 dataFlows=dfdModel.ownedElement.select(lambda x:

2 x.oclIsKindOf(DataFlow) and not x.oclIsKindOf(DataStore))

3 externalEntities=topDfd.ownedElement.select(lambda x:

4 x.oclIsKindOf(ExternalEntity))

5 dataStores=topDfd.ownedElement.select(lambda x:

6 x.oclIsKindOf(DataStore))

7 dataTransformations=topDfd.ownedElement.select(lambda x:

8 x.oclIsKindOf(DataTransformation))

Next we transform each Data Transformation and each DataStore in the
DFD model into a class diagram in the UML model.

9 dfdModel.ownedElement.select(lambda ts:

10 (ts.oclIsKindOf(DataTransformation) or

11 ts.oclIsKindOf(DataStore)) and

12 classDiag.addClass(name=ts.name))

Then we add associations among classes. An association among two
classes is obtained from the data flow among the two Data Transformations
or Data Stores corresponding to those classes.

13 dfdModel.ownedElement.select(lambda f:

14 f.oclIsKindOf(DataFlow) and

15 dfdModel.ownedElement.select(lambda src:

16 src.oclIsKindOf(DataTransformation) and

17 f.connection[0] in src.association and

18 dfdModel.ownedElement.select(lambda dst:

19 dst.oclIsKindOf(DataTransformation) and

20 f.connection[1] in dst.association and

21 addAssoc(src,dst,"send"+string.split(f.name,’+’)[0]))))
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The definition of the function addAssoc() is given below. Its functionality
is to add an association with a given name corresponding to a source and a
destination element in the source model. To do this, the function queries the
target model to select corresponding elements and adds the new association
to the target model.

1 def addAssoc(source,destination,theName):

2 umlModel.ownedElement.select(lambda src:

3 src.oclIsKindOf(Class) and

4 src.name==source.name and

5 umlModel.ownedElement.select(lambda dest:

6 dest.oclIsKindOf(Class) and

7 dest.name==destination.name and

8 classDiag.addAssociation(src, dest, name=theName+"()")))

9 return 1

A third example, that we only mention for the sake of example without
getting into details, is mapping of the functional specification of the appli-
cation onto a target implementation platform. As mentioned in the very
beginning of this paper, we have applied the approach introduced in section
3 to the specification and design of an IPv6 router. There, the target im-
plementation platform was represented by our configurable TACO protocol
processor [25]. The components of the processor (functional units and buses)
are implemented and simulated using the SystemC language, which is an
extension of C++ used for hardware specification. We used the SystemC
class diagram of the TACO components [25] as a model in the SMW tool.
By using a similar approach as in the transformations presented above, this
allowed us to implement transformations that map the functional specifica-
tion of the application (i.e. the IPv6 Router) onto the TACO platform. In
addition, during the mapping process we were able to create configurations
of the processor in a automated manner by selecting those resources needed
by the application.

5.3 Artifact Generation: Specification, Code and Doc-
umentation Generation

Code generation is the translation of a model into a new textual artifact. This
artifact can be a program in a language such as Java or C++, documentation
in PDF or in HTML format, or a specification for another tool, such as
proof obligations for a theorem prover, a specification for a model checker
or hints for a test driver. There are three properties that we can consider in
a code generation tool: compliance with the syntax of the target language,
compliance with the semantics of the modeling language, and traceability and
reverse engineering. The two first points are very important for the proper
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functioning of an artifact generator, while the final one empowers us to follow
how elements have mapped to the artifact, and can aid us in mapping parts
of the artifact back to the modeling realm.

The issue of syntactic compliance entails how we can ensure that all arti-
facts generated by the translation tool are syntactically correct. While imple-
mentation might not be trivial, verification usually is since artifact languages
tend to have e.g. BNF grammars that completely automate the process of de-
termining syntactic correctness. As such we do not believe syntactical issues
to be much of a burden.

Language correctness questions how we can ensure that the transforma-
tion is semantically equivalent in both the modeling language as well as the
target artifact language. Even though theory might doom this question to be
undecidable, in practice we have a lot of experience in compiler technology,
and there is little reason to believe that artifact generation from models is
distinctively different from compilation. Indeed there are many similarities,
and we can be reassured in the viability of this task by taking a glance at
the accomplishments of compiler technology. Compilers are gradually getting
better, even for complex languages, and there is no reason to believe that
similarly good products could not be created for the modeling industry as
well in the long run.

Traceability implies knowledge of the origin of the parts of the artifact.
Especially for debugging, understanding which elements provided a certain
effect to the generated artifact is an understandable gain. This can be accom-
plished by annotating the actual artifact with suitable fields for comments
(Figure 4), or by generating a stream of trace messages. In both cases, a
tool could combine artifact information with trace information to pinpoint
which parts of the model that participated in a specific part of an artifact.
Reverse engineering tries to map the generated artifact back to a model,
possibly without any origin model with which to compare. When compared
with traceability, even though it looks at the map between the model and the
artifact from a slightly different point of view, the problem is still similar.

6 Conclusions

In this article we have presented our understanding of the Model Driven
Architecture and extended it with ideas proposed in [11]. The MDA initia-
tive describes one very significant part of model evolution, that of platform
independent and platform description models conceiving a platform specific
model. Although MDA is a valid systematic way to describe structural prop-
erties of software, the dynamics of the software process are missing. To aid
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in this, process methodologies must be defined and adhered to, not only on
the corporate plane but on the actual modeling and development plane. In
our example of a hardware/software co-design problem, there is no platform
description model, as it is developed with the rest of the program. This kind
of synergy between the underlying platform and the software running on it
is missing from MDA. We hope that MDE encompasses a broader field by
taking an evolving platform into account.

Applying engineering concepts in MDA is still in its infancy. However,
the need is clearly evident, and related work in this field is present. The
Generative Model Transformer (GMT) [8] is an open source initiative that
wants to fulfill the promise of MDA, and encourage exploration and research
related to MDA. GMT sounds very promising, as a joint tool effort could be
the missing link between everyday modeling and the software development
community.

Involving project policy in modeling as a primary aspect of the available
languages and tools empowers software engineering to be a discipline, rather
than an ever-changing ad hoc mesh of ill-mannered procedures. It requires
standards for all activities in modeling, ranging from standards to encode,
decode and transform models, following and modifying process methodolo-
gies, communication between the tools, or graphical communication between
the tools and the user, to standard libraries of any aforementioned activities.

Furthermore, we have shown what we consider is the best benefit we can
achieve from the MDE: we were able to script and automate our develop-
ment process in the context of a case study of an IPv6 router using our
TACO protocol processing architecture. The idea does not come without
dangers; most problems can in fact be said to still exist even in the modeling
world. Examples abound, mostly regarding the culture of the development
group: measuring e.g. model evolution by the amount of elements or trans-
formation scripts is as good or bad a metric as KLOC/month. As mentioned
earlier, standard libraries for modeling will pop up, but they might fall to
similar problems as our current plethora of different, mutually incompatible
library versions. Even worse, unmaintained transformation scripts, models,
processes or libraries will succumb to “bit rot” and become as obsolete and
difficult to maintain, review and update as any other legacy program.

There are still many reasons to encourage the use of models and the
concept of everything is a model . Models are described at the right level
of abstraction and precision. Source code is too concrete, natural language
is too ambiguous. New languages can easily be explored because of the
common structure inherent in all models and metamodels, as given by a
common meta-metamodel. This implies that it is simpler to construct a tool
to extract semantic information about a design from a model of any language.
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Although our case study represents a specific application, this is exactly
where we think that an MDE approach is more valuable. The more specific
our application domain, the more difficult it is to find trained developers that
are familiar with the application domain and therefore, the higher profit can
be obtained from using a well-defined process and advanced tools to guide
and help the developers.
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Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Science


