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Abstract

We review the central concepts required from a project and configuration manage-
ment system for MOF-based models. The necessary features for a model repository
and MOF framework are given, as well as suggestions of several algorithms and
components.
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1 Introduction and Motivation

In this article we study how to store, manage and organize large models during
the lifetime of a software project. The first generation of UML editors used to
store a whole model as a single file. This approach is good enough in a waterfall-
like development process where one single software designer is the only person in
charge of model development. This approach assumes that once a model is ready,
it can be printed and distributed to the programmers as documentation since there
will not be major changes. Programmers use the model as a reference design or
blueprint for the code to be developed, but the model is not updated any longer.
In this scenario, software evolution and maintenance reverts over to the program
source code, not to the UML model.

However, this approach is not satisfactory if we plan to use UML models in-
stead of source code as the main and most important description of our software.
This requires that any model should be always up to date. In this context, there will
be different developers working simultaneously on the same UML models. There
will be different versions of the same model, targeted to different platforms or
customer requirements, and evolution and maintenance will be carried out over the
UML models. This implies that we need to use a proper configuration management
system to keep track of our software models.

Configuration management is a well-studied topic in the literature and there
are many tools available on the market. It involves several different subtopics such
as version control as well as change, build and release management. At the same
time, configuration management is a key element in the management of any soft-
ware development project. It is possible to construct a self-made system using a
combination of open-source tools such as CVS, autoconf, make and Tinderbox, or
to use complete commercial solutions such as IBM Rational ClearCase.

However, most of the existing tools are designed to manage either program
code or informal documents in natural language. The question now is if we can
use existing configuration management systems to keep track of evolving UML
models or if we need new tools and methods customized to the idiosyncrasies of
the Object Management Group (OMG) standards. The objective of this article is
to raise different issues that appear when we try to use inappropriate methods and
tools to manage UML models while discussing possible alternatives that comply
with the existing standards.

1.1 Modeling Languages and Metamodels

According to the OMG standards, the information stored in a UML model is or-
ganized internally according to a metamodel. A metamodel describes the abstract
syntax of a modeling language. Each class in a metamodel describes a model el-
ement, i.e., a concept or abstraction in our modeling language. Each class may
have a number of attributes. An association connecting two classes represents a
symmetric relation between these elements.
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We can illustrate these concepts in a small modeling language of our invention
that is much simpler than UML. Our example language is called FSM and is a lan-
guage for describing finite state machines. A state machine has a finite number of
states and transitions. Each transition connects two states and it can be triggered
by a token. The set of tokens in a state machine is called the alphabet. One or more
states may be marked as accepting states, while one of the states is marked as ini-
tial. These concepts are described as a class model in the left side of Figure 1. We
call this kind of diagram a metamodel. This diagram is similar to the metamodels
shown in the OMG UML standards.

In our example language, the fact that each state machine has an initial state is
represented by the association named initial. We use the generalization relationship
to define a model element as a specialization of other model elements. In our
metamodel, an accepting state is a specialization of state.

Figure 1 shows an example model in the FSM language. The model is repre-
sented using two different notations. The diagram at the right uses a syntax that
is specific for our language for finite state machines. Most designers would prefer
this notation since it is a fully visual language where each concept is described
using a different icon.

However, we can also represent the same model as an XMI document. XMI
is an OMG standard [9] for model interchange. It is based on XML and can be
used to represent any modeling language, i.e., it is not limited to UML. XMI is the
preferred notation to exchange models between programs since XMI documents
are portable and easy to parse.

There is a one-to-one mapping between a model described as a diagram and a
model described as an XMI document if and only if both representations conform
to the same metamodel. The UML metamodel is defined in a language called the
Meta Object Facility (MOF). MOF is also defined as an OMG standard, and it can
be use to define many different modeling languages, e.g. there is nothing specific to
UML in MOF. In this article, we assume that the models representing our software
are described as a MOF metamodel. In this sense, this article is not specific to
UML but to MOF. However, UML is the largest, most used and best known MOF
application, so we will use the UML to illustrate our findings.

1.2 A Model-Based Configuration Management System

A configuration management (CM) system is based on a central repository that
contains all artifacts relevant to a software project. We define a model-based con-
figuration management system as a CM system where the project artifacts are struc-
tured logically as defined in a metamodel such as the UML modeling language. Be-
sides the repository, a CM system is composed of at least three other components:
a version control system, a change control system and a build system.

A version control system should store and keep track of different versions of
each artifact or document created in a project. A version of a model can represent
a different design solution or a different implementation of the same design in a
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in a Concrete Notation

<XMI xmi.version=’1.1’>
<XMI.header>

<XMI.metamodel xmi.name=’FSM’ xmi.version=’1’/>
</XMI.header>
<XMI.content>

<FSM:StateMachine xmi.id=’if564’ initial=’i5044’
name=’Example’>

<FSM:StateMachine.alphabet>
<FSM:Token xmi.id=’i8e5d’ name=’A’></FSM:Token>
<FSM:Token xmi.id=’i606b’ name=’B’></FSM:Token>

</FSM:StateMachine.alphabet>
<FSM:StateMachine.state>

<FSM:State xmi.id=’i5044’ name=’S1’
stateMachine=’if564’>

...
Example Model as an XMI Document

Figure 1: Example Model in the FSM Language
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given platform.
The second component is a change control mechanism that defines who can

introduce new artifacts and new versions of an existing artifact in the repository
and how these changes are reviewed and approved. In larger projects, it may be of
interest to restrict the modification of classes or components that are well designed,
implemented and/or tested. In safety-critical system, the models should not be
changed without a formal change procedure.

Finally, a build system creates and recreates executable programs based on
the artifacts in the repository. A common approach in many projects is to create
nightly builds or even continuous builds automatically. Also, a build system can
run a set of unit and integration tests automatically and generate status reports that
are distributed among the developers.

CM systems are usually distributed systems that allow different developers to
work simultaneously on the same project. In this case, the repository resides on (at
least) one server and the client computers read and update parts of the repository
as needed. We would like that the communication between the repository and the
client is based on open standards so we can seamlessly use tools from different
vendors. The OMG standards propose XMI [9] as the standard model interchange
format and we can expect that the repository server and the client will use XMI
as a common format. However, the server may store the models in the repository
using a different format or use auxiliary index files to find the information inside a
XMI file quickly.

In the rest of the article we will discuss which issues appear in a model-based
CM system. In order to implement a repository, version, access and build system
we need to be able to perform several basic tasks on the elements of a model. First
of all, we must be able to uniquely identify elements in a model, and find elements
according to a specific criteria. Then, we must be able to further query about the
data of the elements. Finally, we must be able to change that data. Together, these
operations can be used to calculate differences between elements, track element
evolution, merge element data and resolve merge conflicts, restrict read and write
access to specific parts of a model, transform elements and enforce a process upon
the development of the models.

2 Basic Model Management

The most fundamental requirement for a CM system is to be able to uniquely iden-
tify the elements stored in it. One of the most widely used mechanisms to identify
an element in a repository is to use a hierarchical naming schema. The file name
C:\My Documents\UML\evolution.tex or the Java class name java.util.Iterator are
examples of hierarchical names. In UML we can create similar names using two
colons as a separator. A class named Person inside the package Sales can be re-
ferred to as Sales::Person. Hierarchical names are intuitive and easy to use. How-
ever, there are two problems with using this mechanism to identify elements in a
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model.
First, if we rename an element in the model, we loose the linking between

the current and the previous version. As an example, if we rename the class Per-
son to Customer, there will be nothing in our repository that would tell us that
Sales::Customer is actually derived from Sales::Person. The solution would be to
somehow add this missing information to the repository. However, there is a an-
other problem: Not all the UML model elements have proper names. For example,
generalization relationships are never named. The same applies to transitions in a
statechart, links in a sequence diagram and many other minor but equally important
elements.

The solution is provided by the XMI standard itself. The standard states that
each element in a model may have a Universally Unique Identifier (UUID) (pp.
1-3 of [9]). An example UUID is the string:

DCE:2fac1234-31f8-11b4-a222-08002b34c003

UUIDs are assigned the first time that an element is exported to an XMI document.
Later, any standard-compliant open tool that imports the XMI document should not
change or remove the assigned UUIDs.

UUID strings [4] are assumed to be globally unique. They are based on a
128-bit pseudorandom number generated from the physical address of the network
interface in the host running the tool and the tenths of microseconds elapsed since
the Gregorian reform (15 Oct. 1582). The UUID strings are long and too complex
to be generated by hand but this is not an issue for the user since the UML tools
should take care of this aspect. Unfortunately, many of the existing UML tools do
not generate or even preserve UUID strings. To check this we can perform a simple
test. Use your favorite CASE tool to generate a small model (it can be empty) and
save the model in an XMI file. Edit the XMI file with a text editor and add a UUID
identifier to the Model element. For example:

<UML:Model xmi.id = ’122’
xmi.uuid = ’DCE:2fac1234-31f8-11b4-a222-08002b34c003’
name = ’Example Model’ isSpecification = ’false’
isRoot = ’false’ isLeaf = ’false’
isAbstract = ’false’>

Then save and close the file in your text editor and load it in the CASE tool.
The modified XMI file should be imported without problems. Export the model
again to the XMI format and open the XMI file with your text editor. Examine
the line defining the Model element. The UUID should be there, unaltered. If the
CASE tool has modified the UUID string or has removed it completely then it does
not comply with the XMI standard for open tools.

UUID strings allow us to differentiate between two instances of the same ele-
ment and two elements that are similar. We consider that two model elements of
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Figure 2: Unique Identification of Elements using UUID

the same type and with similar properties are still two different model elements
if their UUID strings are different. An example of this is illustrated in Figure 2.
This figure contains two classes that have the same name and properties but that
represent two different abstractions from two different problem domains.

This distinction is fundamental to implement model management operations
like comparing two models, merging two models into one or duplicating (parts of)
a model. If we merge the two models represented in Fig. 2 into one, we want
to keep two different classes named Window, since they represent two different
things.

In other cases, model elements with the same name do actually represent the
same abstraction. One typical example are the standard classes predefined in a
programming language such as Integer or java.util.Iterator. The two models from
Figure 2 implicitly contain two classes named Integer, that probably are the same
concept. We can solve this problem by assigning a predefined identifier to standard
elements such as the libraries of programming languages. In fact, the Java Object
Serialization Specification states that each (serializable) Java class has a unique
64-bit integer used to uniquely identify the class in a stream. We could derive the
128-bit UUID from the 64-bit Java identifier. However, the XMI standard does
not describe how to do this. Also, other programming languages like C++ do
not have assigned identifiers for their library elements. A possibility would be
to identify such elements by name, for example c++.std.iostream.cout, but this is
exactly what we are trying to avoid by using UUID strings! The solution may be
to standardize a method to create UUID strings based on the name and signature
of these classes. This way it could be possible to generate automatically UUID
strings for the standard library of languages such as C++.

The next question is what happens when we have two instances of a model el-
ement, with the same UUID but different properties. Since we assume that UUIDs
are unique, we have two versions of the same element. In this case, we want to be
able to detect that the element has been changed and to calculate what actually has
been changed.
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file1.xml:
<UML:Model xmi.id = ’122’ name = ’Example Model’/>

file2.xml:
<UML:Model name = ’Example Model’ xmi.id = ’122’/>

Figure 3: The same model in XMI as two different ASCII files

2.1 Difference Between Models

Computing the differences between two different models or two versions of the
same model is a fundamental operation in a CM system. This basic operation
allow us to define the evolution of a model as the sequence of differences between
two consecutive versions of the model.

The implementation of this operation may seem trivial. Since XMI files are
basically text files, we could try to use a tool designed to compute differences
for line-based text files such as source code to analyze our models. The UNIX
programs diff and patch are two fine examples of these tools. The problem is that
line-based tools will detect false changes in a model. For example, file1.xml and
file2.xml as shown in Figure 3 represent the same UML model, probably generated
by two different UML editors. However, a line-based tool such as diff considers
these files different.

The next possibility is to use an XML-based tool. Such a tool should be aware
that the previous example represents the same document. Still, an XML-based tool
is not aware of special features of a metamodel such as whether some elements
in a model are ordered or not. For example, the order in which the classes in a
package are defined is not relevant in a UML model. Considering this, file3.xml and
file4.xml as shown in Figure 4 represent the same UML model, although they are
two different documents at the XML level. In other cases, such as the definition of
the parameters in a method of a class, the actual order of the parameters is relevant.
So, using an XML-based tool that simply ignores the order in which elements
are defined is not a solution to this problem either. The ordering information of
metamodel associations is only available in the metamodel and will be ignored by
a generic XML tool.

As a consequence of the previous discussion, we can only compute differences
between two models by using a tool specifically designed to handle XMI models
and only when the tool has access to the metamodel used in the model. We have
presented the basic algorithms for such a tool in [2].
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file3.xml:
<UML:Model xmi.id = ’122’ name = ’Example Model’>

<UML:Namespace.ownedElement>
<UML:Class xmi.id = ’123’ name = ’Customer’>
<UML:Class xmi.id = ’124’ name = ’Product’>
...

file4.xml:
<UML:Model xmi.id = ’122’ name = ’Example Model’>

<UML:Namespace.ownedElement>
<UML:Class xmi.id = ’124’ name = ’Product’>
<UML:Class xmi.id = ’123’ name = ’Customer’>
...

Figure 4: The same model in XMI as two different XML documents

3 A Model Repository

The task of a model repository is to store successive versions of a model and re-
tain old versions. A simple model repository can store each version of a model
as a different file containing the model as an XMI document. In such a system,
the file name can be used to identify each version of a model in the CM system.
Access control to the repository is managed by the access control mechanism of
the filesystem.

This simple repository is too coarse-grained for most practical uses. We may
want to use the CM system to keep a history of the evolution of a model through the
whole development cycle. In this case, it is important that we are able to identify,
version and retrieve each individual element such as a package or a class in a model.
While a filesystem still could be used for all this, it is not efficient and we can
quickly run into problems with respect to e.g. atomicity and concurrency. Although
it can be noted that filesystem design has recently begun to evolve in a direction
involving frameworks to solve these problems, a more flexible and robust method
is desired.

Storing models into a database provides a solution. A database can set arbitrary
rules for access, modification and retrieval, also accomplishing it in a safe manner
due to the ACID properties: atomicity, consistency, isolation and durability. Ad-
ditionally, it is very easy to support even arbitrary metadata of the models. There
are, naturally, different ways to accomplish this, even though most designs revolve
around a structure similar to the one shown in Figure 5 [1].

As an example, a relational database could separately store each individual
version of every element. Then, a version of a model is a collection of versioned
elements. How well-suited a relational database is to store hierarchically structured
information, which models are, remains to be seen. The upside is that relational
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databases have been researched very thoroughly and industry has greatly invested
in creating highly scalable and efficient products. The downside might be that
model information is inherently object-oriented and perhaps does not map naturally
into a relational domain.

The advent of XML has started research in databases particularly suited for
storing XML documents. XML repositories are very similar to object-oriented
databases (OODBs), and share their benefits and ills. Among the benefits are much
more flexible arrangements of data, ways to manipulate that data and more com-
plicated queries. However, current technology does not scale as well as relational
databases; especially query optimization is not as well-known as in the relational
database field. Using an XML database itself could be a great advantage, but until
technology catches up, it cannot be deployed for large-scale projects.

In any storage mechanism, the quality of implementation of the repository dic-
tates further characteristics. Where the repository fails in its goals, supporting an
extensible architecture using client-side or server-side scripting comes into mind.

3.1 Finding Elements in a Repository

Most of the times a client will not be interested in all the elements in a model but
only in a subset of them. The problem is that a client might not know the name or
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the UUID of a certain model element in which it is interested. There are two main
solutions to this problem: one is to let a client seek elements in the model and the
other is to implement a query language.

In the first solution the server should provide two simple interfaces: one ser-
vice, named getRoot, returns the root element in a model, while the second service,
seek, accepts a UUID as a parameter and returns the model element associated to
it. The former is for cases where the client wants to traverse the model as it wishes,
and the latter is for cases where the client knows which UUID it wants. In this
solution, deciding which elements are required is a responsibility of the client.

Another solution is to use a query language, something akin to the SQL in
the world of relational databases. In this case, the client will send a query as a
text string to the repository that will evaluate the query against all elements in the
model and return those who satisfy it.

We can use different alternatives as a query language. OCL [14] is used in the
UML metamodel to define additional constraints over valid UML model elements,
but it can also be used as a query language. As an example, the following query
will return all the subclasses of a class named Customer:

self.oclIsKindOf(Class) and
self.generalization.exists(g: g.parent.name="Customer")

Unfortunately, most UML practitioners are not familiar with OCL. Also, the
current OCL parsers are not as optimized as the existing database engines. This is
due to the fact that we still do not know which are the most common queries that
should be optimized. Finally, we would need to extend the current OCL standard
with queries to retrieve version information so we can perform queries against the
version history of the repository such as

self.name="Customer" and self.lastEdited<"1 Oct".

An alternative to OCL is to use a query language based on XML, such as
XQuery [13]. However, the syntax of XQuery and other XML-based languages
is too cumbersome. Currently, parsing and compiling technology is so advanced
and desktop computers so powerful that there is no reason to obfuscate the syntax
of a computer language to make it easy to parse by a computer. Also, this approach
does not solve the need to know how the model information is arranged in the UML
metamodel in order to create a complex query.

3.2 Communication Protocol

XMI as such does not define a protocol for transferring models over a network,
only the encoding of a model. In the interest of software compatibility, com-
mon standards ought to be defined. Special interest groups, separate from OMG,
are advancing the state of the art of distributed authoring, and are creating offi-
cial Internet standards to fill this void. Good examples are the IETF WebDAV
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and Delta-V working groups, which have defined e.g. "HTTP Extensions for Dis-
tributed Authoring – WEBDAV" (RFC 2518) and "Versioning Extensions to Web-
DAV" (RFC 3253) to ease communication in a distributed development environ-
ment [6, 5]. These or similar standards can be used to define standard protocols
between a model repository and the client tools, such as a UML editor.

4 Version Control

A version control systemkeeps track of what has changed in different versions
of a configuration item. It also can combine different changes into a new item.
In the context of a model-based CM system, version control is provided by the
possibility to calculate the difference between several versions of a model and to
combine a difference between models into another model. As an example, lets
assume that the original model shown at the top of Figure 6 is edited simultaneously
by two developers. One developer has focused his work on the classes A and B and
decided that the subclass B is no longer necessary in the model. Simultaneously,
the other developer has decided that class C should have a subclass D. The problem
is to combine the work of both developers into a single model. This is the model
shown at the bottom of Fig. 6.

During the rest of this article, we will denote ∆ as describing a difference be-
tween two models, and ∆(M) as applying a difference to a model M, returning a
new model. The example described earlier can be decomposed into three tasks.
Calculate the difference ∆1 between the model from Designer 1 and the original
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model (Bottom of Fig. 7), calculate the difference ∆2 between the model from De-
signer 2 and the original model (Top of Fig. 7) and finally, merging the original
model with the two differences (Fig. 8). The result of a difference is not always
a model, in a similar way that the difference between two natural numbers is not
a natural number but a negative one. An example of this is shown in the bottom
part of Fig. 7. In this case, the difference of the models contains negative model
elements, i.e., elements that should be removed from a model.

The way the difference calculation can be done is shown in Figure 9; either
of the ∆i is modified according to the other, and then applied after the other has
been applied. Unfortunately this leads—akin to ordinary line-based repositories—
to conflict situations, which will be discussed next.

As a conclusion, the best solution to implement a version control system for
models is to be aware of the features of the metamodel in question, and bring inter-
operability between tools with XMI. It is of essence that the version control system
understands its contents, since this allows additional operations to be performed
on the stored models, such as searching of model elements, difference and merge
calculation of models.

4.1 Conflict Resolution in a Merge

There are several cases where merge conflicts are a fact and manual resolution is
required. Modifying the same attribute or the same ordered slot easily creates such
situations. For association slots, the opposite slot must also be kept in synchro-
nization. The extreme case of deleting an element even though another difference
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merely modifies it slightly leads to a complex question; which difference should
be prioritized? Further work in this area is clearly required as automatic conflict
resolution can be considered important in a modeling framework.

A pure XMI-based approach is not as thorough as one with knowledge of the
metamodel. This is due to the fact that XMI considers all properties to be or-
dered, even though some of them are not. A great number of seemingly conflicting
cases can be resolved automatically if the property under modification is actually
unordered.

As such, conflict resolution has three distinct steps [2]: 1) A metamodel-
independent resolution step, 2) a metamodel-dependent step where the conflict
resolution algorithm takes the metamodel of the elements and their well-formed
rules into consideration, thus providing automatic resolution where possible, and
3) a step for manual resolution by the developer. Naturally, the work to be done
should become smaller for each step for this to be a viable mechanism.

The second step in the conflict resolution mechanism can also include specific
heuristics for conflicts depending on the metamodel. A prime example is diagram-
matic information, as the diagram elements themselves do not have any semantic
meaning, so the features of the diagram elements are not nearly as correctness-
critical as the underlying model. For example, conflicting diagram element coordi-
nates on the diagram canvas can more or less be completely ignored by modifying
∆2 suitably. Clearly, there is a strong need for metamodel-specific resolvers.

The schema in Figure 10 summarizes a merge system for models. The differ-
ence under modification, ∆2, passes through several filters which modify it to better
fit ∆1(Mbase). Obviously, all possible mechanic resolution mechanisms should be
tried before manual resolution is used.

The algorithm in this section can be further extended. Given a base model
Mbase and n differences ∆1,∆2, . . . ,∆n, we notice that the amount of differences can
be reduced by taking the union M = ∆′

2(∆1(Mbase)), and calculating a difference
∆1′ = M−Mbase. Now we have the same base model Mbase and n− 1 differences
∆1′,∆3,∆4, . . . ,∆n. Iterating through this algorithm we have the final model M∪.
This is important in a repository of a version control system for models, where
several developers base their work on some common base model, and later commit
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Figure 10: A complete merge system with three distinct resolution steps.

it back to the repository, merging their changes with the work of others.
It remains to be investigated if the above mechanism is feasible, or if a merg-

ing algorithm which would consider more than two differences in parallel is re-
quired [7] [10].

4.2 Representing Differences

Once we know how to calculate the differences between two models, we should
consider how to store them in a repository. The XMI standard describes a system
to represent differences in a model inside an XMI document (pp. 1-32 of [9]).
According to the standard, a difference entity can be used to add, delete or replace
an element in a model. Although this approach is valid, it is too coarse-grained. If
we just want to represent that a class has changed its name, we need to replace the
complete class in the model. We consider that the replace option in a difference
entity should be specialized into basic operations that work at the property level
instead of the element level.

We can represent these differences as follows. We assume that a difference
represents a change of a property f of an element e with UUID u. Where necessary,
there is another element et with UUID ut . Depending on the type of the property,
this might mean one of the following modifications:

• set(e, f ,vo,vn) : Set the value of e. f from vo to vn, for an attribute of primitive
type.

• insert(e, f ,et ) : Add a link from e. f to et , for an unordered property.
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• remove(e, f ,et ) : Remove a link from e. f to et , for an unordered property.

• insertAt(e, f ,et , i) : Add a link from e. f to et , at index i, for an ordered prop-
erty.

• removeAt(e, f ,et , i) : Remove a link from e. f to et , which is at index i, for
an ordered property.

These five difference operations at the property level should be complemented
with two difference operations at the element level:

• add(e, t) : Create a new element of type t with the UUID of e. By default, a
new element has all its properties set to their default values.

• del(e, t) : Delete an element of type t with the UUID of e. An element may
only be deleted if all its properties are set to their default values.

By using finely-grained differences we reduce the disk space needed for the
repository as well as increase its overall performance, since we’ve actually re-
duced the total amount of difference information. Also, in a distributed setting,
network communication will be substantially faster as model differences are often
significantly smaller than complete models.

Once we know that a model has changed, we need to know why it has changed.
For this, additional metadata is required. While an informal description of the
change goes a long way, formal, traceable reasons for the change are a boon to
bring software engineering toward a robust scientific discipline. We would also
like to keep the history of the model, and review several old versions of it.

4.3 Evolution of Elements

Quite often a new version of an element represents just an improvement from the
previous version. But in many other cases, a new version of an element is derived
from one or more other elements, possibly of a different type. This is the case
when we e.g. create a new class that realizes the functionality described in a use
case or create a statechart as a refinement of another statechart. A version control
system keep tracks of edited elements but not of derived elements, nor the reason
why they have been created.

Previous versions of the UML provided a model element named Flow to model
evolution relationships. However, it seems that this element has been removed
from UML 2.0. It was not supported by the main UML tools and in any case it was
not useful to create traces between elements that resided in two different models or
in models that were described in different modeling languages.

The long-term solution seems to be in yet another standard. The OMG has a
request for proposals for a query, view and transformation language for MOF 2.0
(QVT) [8]. One of the operational requirements for the proposals is the ability to
trace the execution of transformations. This can be achieved by defining a tuple
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(S,T,r), where S and T represents sets of model elements and r a transformation
rule such that r(S) = T . This can also be generalized to allow free-form editing of
a model as a possible transformation.

Another requirement for the proposals is that they should provide a MOF-based
metamodel for the proposed language. The actual metamodel varies from one pro-
posal to another, but the important implication is that the MOF standard describes
how to generate XMI documents from any MOF model. Once the standard is ac-
cepted, we will be able to represent the evolution history of a model as a sequence
of transformation traces and we will be able to store the evolution history as a
standard XMI document.

5 Access Control

Access control defines the mechanisms by which read or write access to parts of
the model are defined and modified. For some types of projects, limiting access of
developers to only some parts of the model is important, or even mandatory. As
an example of limiting read access, security-related information is to be disclosed
only to a specific set of developers. A more common scenario is limiting write
access, such that a group of developers may work on a part of a model, and another
group on another part.

It might feel intuitive to set the granularity of access at the element level,
whereby read or write access is determined based on the elements that a developers
wants to read or change. However, this may be impossible due to fact that associ-
ations in the metamodel are relations. Each metamodel association is represented
as one property in each participating class. Modifying an association implies the
modification of the two associated properties.

For example, consider a class which has write restrictions for some reason,
perhaps due to being thoroughly tested. It would be impossible to create a new class
as a subclass of this write-restricted class, since subclassing implies modifying the
specialization property of that class—which the developer is not allowed to modify!

However, most developers would consider these changes as harmless to the
original class. This is because while some properties carry semantic meaning for
an element, other properties only act as a navigational aid or as the opposite end of
a bidirectional meta-association.

Clearly, the level of detail in access control must be based on the properties of
elements, not on the elements themselves. In some cases, the developer ought to
be able to use a class, subclass it but not add new operations or change existing
attributes. The distinction cannot be made by allowing or disallowing write access
to the class element itself, but the properties of the class.

Finally, access control could also be coupled with intent. Project management
might decide that every change to a model must include a reference to the task that
it furthers, or a reference to a bug report that the change fixes. Part of access control
could also imply verifying that the change actually does fix the bug, by building

16



the executable and running a previously defined unittest for it. Further examples
where policy dictates access control abound; as an example, several open-source
projects have an informal policy of discussing a program change and voting for
or against before committing the change. The information relating these changes,
review comments and votes could be stored in the repository as well.

6 Project Management Information

Software project management involves the definition, application and constant im-
provement of procedures and methods used in the development of a software prod-
uct. A logical advancement in project management tools is to use metamodeling
techniques to define, represent and manage the artifacts needed in project manage-
ment.

From previous experience with source code, we know there are several kinds
of project management data in which the designers are interested, and certainly this
same data will be interesting for models as well.

Issue trackers manage the different kinds of errors that are found in a model.
Furthermore they can keep track of items that need to be implemented. An in-
teresting consequence of using models here is that generating unittests for errors
might partially be automated. Also, scripts for issue tracking could connect with
estimation models which could take more information into account from the issue
tracker. Estimates can include time as well as other resources such as available
personnel, money, hardware, production facilities or logistics.

Testing frameworks take care of running unittests, calculating test coverage
in the model, and running acceptance tests. Again, quality assurance teams will
benefit from using models, since it lowers the barrier between the tests and the issue
tracker; modeling unifies the namespace by standardizing query and management
of data.

Finally, workflow definitions define how the process of developing is to be car-
ried out. Everything from loosely specified guidelines where anything is allowed
to meticulously strict development processes can be modeled. Using models might
imply that there is little need to create separate parsers for all kinds of data, and
thus managing and querying the existing or generated data can be made possible in
the first place, perhaps even automated. Synchronization with all the other facili-
ties of the project management system is as casual as any other modeling activity,
and workflow can easily be enforced by a complete project management system
consisting solely of models.

7 Conclusions

In this article we have reviewed the basic requirements for a model-based con-
figuration system. A true model-based repository is an essential element in any
software development project where models are created and updated constantly. It
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is also a key element in an MDA-based project [3], where multiple versions of the
same model are created simultaneously in order to separate the problem space from
the implementation concerns.

The construction of such a system may not seem an issue. There exists already
many similar systems to manage source code and XML documents. XMI, the
standard model interchange format, is based on XML so it may seem that we can
simply use any of the existing systems. However, in this article we have seen that
XML tools may be too generic and that there are many open issues not addressed
by the standards.

In one way, XMI is a large step forward to ensure basic interoperability be-
tween UML tools. It also allows the development of simple tools to extract infor-
mation and transform UML models easily [12, 11]. However, the standard should
be improved. XMI needs a better mechanism to identify global model elements, in-
cluding elements from the standard libraries of programming languages. Also, the
XMI difference entities are far from optimal and should be refined into individual
updates of properties. In the meanwhile, OMG standards have so far concentrated
heavily on the structural aspects of modeling and metamodeling. Dynamic aspects
such as transformation, access control, policy management, element versioning
and evolution, model transportation and seamless language evolution are still not
defined in the context of UML and MDA.
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