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Abstract

We describe a case study on a liquid handling workstation, Fillwell, that has been
conducted within the EU-project MATISSE as a co-operation between academia
and industry. Since the workstation is a safety-critical system that need to operate
with very high precision, it need to be safe and very reliable. These aspects are
achieved by developing the system using formal methods where the safety analysis
goes hand in hand with the formal development. We use the B Action Systems
formalism for the development, where we can benefit from the properties of action
systems for designing distributed systems and on the tool support via the B
Method. The development is performed in a stepwise manner adding new features
to the system in each step. We use UML as a graphical interface to the formal
methods to achieve a better acceptance of the methodology by the industrial
partner. UML diagrams are created for all the refinement steps. Hence, UML
provides us with a documentation of the whole development process. The stepwise
development and the graphical interface of our method has shown to be a suitable
approach for applying formal methods on this industrial sized case study.

Keywords: formal methods, industrial application, B Method, Action Systems,
UML, stepwise refinement
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1. Introduction

In this paper we describe the healthcare case study within the EU-project MATISSE1

[MATISSE03].  This case study was conducted by Åbo Akademi University in co-
operation with Wallac, a division of Perkin Elmer Lifesciences. It deals with the
development of a safety-critical drug discovery system, Fillwell [PE01]. The Fillwell
system is a control system that should guarantee an extremely high precision and a
constant level of quality on the experiments to be performed. Even if the direct harm to
the humans using the system is quite moderate, the indirect harm caused by the results of
incorrectly performed experiments could be catastrophic. Hence, safety and reliability are
important issues for this system. These aspects can be enhanced by applying formal
methods. In the past few years regulatory requirements for drug discovery systems have
tightened. Due to this there is a need to introduce formal methods in the development
lifecycle to prepare for future regulations.

When developing the control system Fillwell, we first depict the informal requirements
with UML diagrams [BRJ99]. Since the initial specification should ensure safety and be
proved to be consistent, the UML specification is translated into B Action Systems
[BW98, WS98]. This translation can be done with the tool U2B [SB00]. The B Action
Systems is a formalism for supporting the development of complex distributed systems.
Since B Action Systems are Action Systems [BK83, BS96a] applied in the B Method
[Abr96], we can benefit from the useful formalism for reasoning about distributed
systems given by Action Systems and from the mechanised tool support of B
[ClearSy03]. Using superposition refinement [BK83] we stepwise add more functionality
to the specification and switch it into a more concrete and deterministic system. In each
step, safety properties of the system are preserved. All the refinement steps are proved
using the provers of Atelier B. We also give class and statechart diagrams for each
development step. By first modelling the control system as a single entity, we can state
safety properties of the entire system. At the end of the refinement process the system is
then split into control system modules. That way we end up with the controlling software,
controller, an environment that we want to control, plant, as well as their communication
means, actuators and sensors [Sek98].

The traditional development at Wallac does not involve formal methods. However, since
a few years the company uses UML [BRJ99] when designing systems. Hence, in order to
gently introduce formal methods to Wallac we use a combination of UML and B. This
combination is meant to facilitate the acceptance of the B method and formal methods in
general and to give evidence for the benefits of using formal methods at Wallac, as well
as to motivate the integration of formal methods into their regular development life cycle.

                                                  
1 EU-project MATISSE, IST-1999-11435, http://www.matisse.qinetiq.com
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We first describe the healthcare case study in more detail in Section 2. In Section 3 we
give an overview of the methodology used. We proceed with the description of the formal
development in Section 4 and conclude in Section 5.

2. The healthcare case study

PerkinElmer Life Sciences (in this paper referred to as Wallac) designs, manufactures,
develops, and markets analytical systems for use in drug discovery, mass population
screening and other bioresearch and clinical diagnostics areas. In this case study the
formal development is of a new Wallac’s product – a workstation for preparing samples,
Fillwell™ [PE01]. The workstation is shown in Figure 1. The system belongs to the class
of products for drug discovery and bioresearch. The Fillwell microplate liquid handling
workstation offers significantly advanced features in the line of the sample preparation
systems. The Fillwell base unit consists of a dispense head dispensing liquid into
microplates on a processing table. A gantry moves the dispense head with high precision
and speed from one plate to another.

Figure 1: The Fillwell microplate liquid handling workstation.

The Fillwell workstation is the first liquid handling system specifically designed for high-
density microplates. The system is modular and can be customised into a variety of
configurations. The dispense head can have up to 384 tips attached via which the
automated pipetting can be performed into plates with 96, 384 or 1536 wells. The head
provides a precise dispensing with volumes from 0.5 to 300 ml. The processing table may
contain up to 6 positions for plates, where three positions reside on an extension that is
easily removable. In Figure 1 this processing table extension has been removed and there
are only three plate positions. In order for the dispensing head to be able to reach all the
positions on the processing table it is mounted on a gantry that can move horizontally and
vertically. The precision of the gantry is very high with an accuracy of 100 mm. The main
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application of the Fillwell workstation is drug discovery. Within this application area the
system can be used for microplate replication, for dilution, transfer and addition of the
liquid in the plates, for reformatting of plates with different densities (number of wells),
as well as for rapid plate filling to homogenous and cell based systems. The system can
function as a standalone workstation or be integrated into a robot.

The substances handled in the system can be extremely expensive (valued up to a billion
EUR per kilogram).  Moreover, the system may serve as part of an expensive production
chain. The results of failures of such a system might lead to significant economical
losses. Hence, the Fillwell system is both safety and money critical.

The setting of the case study. The healthcare case study was organised using an industry-
as-laboratory approach. This means that the formal methods and B expertise is provided
by the researchers at the academia and the domain knowledge is brought into the team by
the experts at the R&D department of the industrial partner. Hence, while we in the team
at Aabo Akademi performed the formal development of the workstation using UML and
B, a team of software engineers at Wallac developed the workstation informally.

We met on a regular basis with the developers at Wallac during the development process.
At these meetings the requirements of the Fillwell workstation were discussed to guide us
in the formal development and the resulting documents of the formal development were
analysed. The implementation of the informal design was performed componentwise and
stepwise to learn about the behaviour of the instrument. This led to changes in the
requirements as well as in the design. These changes were reflected in the formal
development. However, the informal development was also affected by the formal
development in the sense that topics discussed to solve the formal solution gave some
new ideas for the informal development.

3. Overview of the methodology used

In the case study we use a methodology for the formal development that establishes an
interface between a UML-based development process and safety analysis together with
correctness proofs within B Action Systems [PTWBEJ01, PTW02].

3.1 Safety aspects of the development

The development process should ensure safety and reliability of the system under
construction. The required dependability of the system can be achieved, only if safety and
reliability attributes are considered from the early stages of the system development.

We conduct the software development hand-in-hand with the safety analysis. The safety
analysis starts by identifying hazards [Sto96, Tro00] that are potentially dangerous in the
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abstract specification and decide which methods are required to handle the hazards.
While designing software for safety-critical systems, it is necessary to ensure that the
suggested design does not introduce additional hazards. Moreover, we should ensure that
the controlling software reacts promptly on hazardous situations by trying to force the
system back to a safe state. The safety analysis proceeds by producing detailed
descriptions of the hazards and finding the means to cope with them while stepwise
refining the system.

3.2 UML-development incorporating safety aspects 

UML (the Unified Modeling Language) is a graphical language for specifying,
visualising, developing and documenting software-intensive systems [BRJ99]. Due to its
scalability, UML is suitable for producing the initial specification of a control system
[PS00]. The informal requirements of the system are depicted with UML diagrams. The
functional requirements are captured together with their relationships in use case
diagrams. Each use case expresses a service that the system will provide to a user. For
example, the functional requirements of the Fillwell are to aspirate from and dispense
liquid into plates, as well as to move the dispense head vertically and horizontally. The
reliability and safety issues of the system are given in the specification of the use cases as
structured English text.

The logically related use cases are identified and grouped together into control system
components in component diagrams. The component diagram is deduced from the use
case diagram in such a way that each use case is mapped to a component service. For
each component a class diagram is derived giving the attributes and methods of the
component. The methods consist of the main functionality, i.e., the services, of the
component as well as the abstract representation of errors and their possible fixes. The
dynamic behaviour of the component is then specified with statechart diagrams. The
informal specification of the system is given as a class diagram and a primitive statechart
diagram as in Figures 2 and 3. We merely model state transitions and events causing
these transitions at this level. We then gradually capture the details of the services in
refined and more complex statechart diagrams.
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Figure 2: A class diagram of a component.

The transition Service1 in the statechart diagram in Figure 3 models the execution of the
command serv1, while Service1_ok refer to its successful result. Already in the initial
specification we reserve a possibility for fault occurrence and system failure. The action
Service1_fail models the failing to start the execution of the command serv1, while
Service1_notok takes care of an unsuccesful execution of this command. There is also a
possibility of spontaneous fault occurrence even when a service is not requested, as
modelled by the action Service_notready. In all these failure transitions the system reacts
on fault occurrence by entering state Suspension. From that state the system tries to
execute a recovery procedure and continues functioning as specified by the transition
Remedy. When the fault tolerance limit has been reached and the system cannot carry out
its functions anymore we have a failure of the system and enter state Abort. We model
this with transition Failure.

Figure 3: A primitive statechart diagram for a component.
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3.3. B Action Systems in the development

In order to prove the consistency of the initial specification, we need a formal analysis
tool. A formal method that comes with such tools is the B Method [Abr96]. We rely here
on one of the tools supporting it, Atelier B [ClearSy03], during the development and the
proving. In order to be able to reason about distributed systems within the B Method we
use B Action Systems [WS98] which are based on the action systems formalism [BS96a]
and related to Event based B [ClearSy03].

The abstract specification.  The first task in our formal development is to create an
abstract B Action System from the class diagram in Figure 2 and the statechart diagram in
Figure 3. The tool U2B [SB00] supports this translation. The B Action System is
identified by a unique name, Component below. The attributes/variables of the system are
given in the VARIABLES-clause. In the basic statechart diagram the value of the attribute
cmd corresponds to the services of the component, Service1 or Service2. The attribute
state models the state of the component. The types and the invariant properties of the
local variables are given in the INVARIANT-clause and their initial values in the
INITIALISATION-clause. The operations/services on the variables are given in the
OPERATIONS-clause. Each transition in the statechart diagram corresponds to an
operation in this clause.

With B Action Systems we model parallel and distributed systems, where operations are
selected for execution in a non-deterministic manner. The operations are given in the
form Oper = SELECT P THEN S END, where P is a predicate on the variables (also called a

MACHINE  Component
VARIABLES
state, cmd
INVARIANT
state : {Idle,Service1,Service2,Suspension,Abort} /\
cmd : {serv1,serv2}
INITIALISATION
state := Idle || cmd :: {serv1,serv2}
OPERATIONS
…
Service1 = SELECT  cmd = serv1  /\  state = Idle  THEN  state := Service1  END;
Service1_fail = SELECT  cmd = serv1  /\  state = Idle  THEN  state := Suspension  END;
Service1_ok  = SELECT  state = Service1  THEN  state := Idle  END;
Service1_notok = SELECT  state = Service1  THEN  state := Suspension  END;
…
Service_notready = SELECT  state  = Idle  THEN  state := Suspension  END;
Remedy = SELECT  state = Suspension THEN state :: {Idle,Service1,Service2} END;
Failure = SELECT  state = Suspension  THEN  state := Abort  END
END
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guard) and S is a substitution statement. When P holds the operation Oper is said to be
enabled. Only enabled operations are considered for execution. When there are no
enabled operations the system terminates. The operations are considered to be atomic,
and hence, only their input-output behaviour is of interest.

We can also declare local and global procedures in B Action Systems. The procedures
are discussed in more detail elsewhere [SW00, Wal98].

Refining the system. An important feature provided by the B Action Systems formalism is
the possibility to stepwise refine specifications. The refinement is a process transforming
a specification A into a system C when A is abstract and non-deterministic and C is more
concrete, more deterministic and preserves the functionality of A . We use the
superposition refinement method [BK83, BS96b], where we add new functionality, i.e.,
new variables and substitutions on these, to a specification in a way that preserves the old
behavior. This stepwise introduction of implementation details is especially convenient
when dealing with complex control systems. In the refinement process we identify the
attributes suggested in the requirements specification. These attributes/variables are then
added gradually to the specification with their safety conditions and properties. We add
the computation concerning the new variable to the existing operations by strengthening
their guards and adding new substitutions on the variables. New operations that only
assign the new variables may also be introduced. For each refinement step we create class
diagrams and statechart diagrams as well as B refinement machines. The tool U2B assists
in the process of writing refinements in UML and translate them to B code [SW02,
STW03].

As the system development proceeds we obtain more elaborated information about faults
and conditions of failure occurrence. The refinement step introduces a distinction
between faults. The operation Service1_fail models fault resulting from an attempt to
provide a service from an incorrect initial state. This situation might be caused by faults
occurred previously or by a logical error in the calling command. For example, in the
Fillwell the dispense head might be too high up to dispense liquid in a safe manner. The
operation Service1_notok models fault occurrence during the execution of the action.
These kind of faults are caused by the physical failures of the system components
involved in the execution, e.g., the Fillwell dispense head does not reach its destination.
We also introduce a distinction between different repair procedures by adjusting the
Remedy operation for each fault accordingly.

Using Atelier B we can formally prove that the refinement is sound. A number of proof
obligations [BW98, WS98] can be generated automatically by Atelier B with the help of
the translator Evt2b [ClearSy03]. These proof obligations can be discharged using the
autoprover and the interprover in Atelier B. With the proof obligations that are generated
for a refinement it is checked that the initialisation of the refinement establishes the
invariant and that each operation and global procedure in the refinement preserves the
invariant. Furthermore, it is checked that the auxiliary operations should only change the
variables that are added in the refinement step. Using the translator Evt2b proof
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obligations on the non-divergence of the auxiliary operations can be generated. With the
help of the translator Evt2b we can also check that the more abstract system terminates, if
the refined system does. Moreover, if a global procedure is enabled in the more abstract
system, it should also be enabled in the refined system or the actions should enable it.
The error detection in the system should find at least the same erroneous situations in the
refinement as in the specification [Tro00].

3.4 Control systems development

When all the required features have been added to the components of the system, each
component is decomposed into control systems modules, a plant, a controller, sensors
and actuators [Sek98, PRTWJ01]. The plant describes autonomous behaviour of the
component, whereas the controller describes algorithms that guide the plant behaviour.
Thus, the role of the controller is to react to changes in the plant. To obtain such a
decomposition in B Action Systems, the operations in the machines to be decomposed
have to be split, and the variables are partitioned among the plant and the controller
machines. As for the splitting of operations, each operation of the form

Oper  = SELECT state=act1 /\ A THEN B; state :=act2 END

is replaced with the following operation in the plant

Oper’  = SELECT state=act1 /\ A THEN Act2 END,

where the procedure Act2 of the controller is

Act2  = PRE state=act1 /\ A THEN B; state:=act2 END.
Obviously, the effect of the new operation Oper' is the same as the effect of the old
operation Oper. Adding procedures and keeping the old functionality agrees with the
superposition refinement step.

In the last development step, we determine the sensors and the actuators for the
components from the controller and plant specifications. The sensors convert
measurements from the plant into readings for the controller. Correspondingly, the
actuators convert commands from the controller into control signals to the plant. In B
Action Systems, the actuators and sensors are global variables of the plant and the
controller, and these variables are put into separate machines. The sensor variables are set
by the plant and read by the controller, while the actuator variables are set by the
controller and read by the plant. Due to this, the plant INCLUDES the sensor variables and
SEES the actuator variables. Dually, the controller INCLUDES the actuator variables and
SEES the sensor variables. These refinement steps merely involve rewriting and
restructuring. Hence, the final control system is the result of a correct formal
development process.
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4. The formal Fillwell development

In this section we show the development of the Fillwell, the microplate liquid handling
workstation, using the methodology above. We first give the requirements of the system
and then proceed with the actual development. The complete development can be found
on the homepage of the formal Fillwell [FormFill03].

4.1 The requirements

The Fillwell workstation consists of three parts, a dispense head, a gantry and an
operating table. The dispense head is dispensing liquid into and aspirating liquid from
microplates on the operating table with high precision. The head is attached to a gantry
which moves it horizontally and vertically over the operating table. The precision of the
gantry should also be very high. The user performs experiments with the Fillwell by
loading a protocol to the system. The protocol is then interpreted and executed by the
Fillwell system. The protocol contains commands for the gantry to move the dispense
head vertically and horizontally, and for the dispense head to aspirate and dispense a
certain amount of liquid or air, as well as to wash the tips.

The operating table has three positions for plates. An additional part with three plate
positions can be added to the table. Each plate position may contain a plateholder, a
tipwasher unit or a constant level reservoir. A plateholder in turn may contain plates with
96, 384 or 1536 wells. The dispense head can have up to 384 tips attached. When the
head has 96 tips attached, it can operate on plates with 96 or 384 wells and with 384 tips
the head can operate on plates with 384 or 1536 wells. The tips are arranged in rows and
columns, 8 x 12 (96) or 16 x 24 (384). The dispense head may have only a row of tips
attached, i.e., 12 of 96 or 24 of 384, or a column of tips, i.e., 8 of 96 or 16 of 384. The
amount of liquid in the tips and in each well should be registered. If a tip contains both air
and liquid the air is always above the liquid. Hence, air cannot be aspirated into a tip, if
there is liquid in the tip. When dispensing air the head should preferably not be beneath
the liquid level.

In order for the dispensing head to be able to reach all the plate positions on the operating
table it is mounted on a gantry that can move it vertically and horizontally. The vertical
movement (movement along the z-axis) has three reference points: the height of the plate,
the liquid level and the bottom level of the plate. An offset value should state exactly
where the lower ends of the tips are positioned in relation to the given reference point.
The gantry moves the head horizontally over the table in x- and y-directions to a certain
plate. When the head is moving over the table it should be positioned high enough for the
tips not to touch the plates. The head can be placed above each of the plates on the
operating table. Since the head may have only a row or a column of tips attached, it is not
always placed above a plate so that the tip in the front left corner of the dispense head is
right above the well in the front left corner of the plate. Internal positions give the exact
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location of the dispense head above a plate. Initially, the dispense head is placed in a
home position above the table in its back left corner.

The Fillwell workstation has three lamps (green, yellow and red) indicating movement
and error situations. The green lamp indicates that power is on in the Fillwell
workstation. The yellow lamp indicates that the dispense head is allowed to move. When
an error has occurred the red lamp is switched on. The Fillwell also has a pause button
and an emergency button to enable the user to stop the system at any time during an
execution. When the pause button is pressed once, the execution of the system should
stop. When the button is pressed once again, the system should continue the execution
from the state it was stopped. When the emergency button is pressed, the execution
should terminate and the red lamp should be switched on.

The following safety requirements should hold for the Fillwell:
- When the dispense head is moving horizontally over the table it should be above

all accessories (plates, reservoirs, etc.) placed on the operating table.
- The yellow lamp must be switched on when the dispense head is moving.
- The dispense head is not allowed to dispense or aspirate when moving.
- The head must not move beyond its upper and lower end position.

4.2 The structure of the Fillwell development

The formal Fillwell specification is partitioned into three components: Dispenser, XYZ-
Driver and Protocol runner. The component Dispenser models the dispense head and
XYZ-Driver models the gantry moving the head. Protocol runner reads a protocol given
by the user and performs the commands defined in it. The components XYZ-Driver and
Dispenser share data about accessories. The shared data constitute a separate component
– Operating table. The overall structure of the formal Fillwell specification is given in
Figure 4. The same component partitioning has been used also in the informal
development.

Figure 4: The structure of the formal Fillwell development.

SEES

Protocol
runner

Dispenser XYZ-Driver

Operating
table

INCLUDES INCLUDES

INCLUDES



11

The component Dispenser is described in Section 4.3. It changes the amount of liquid in
the plates and, hence, the data of Operating table. The component XYZ-Driver, described
in Section 4.4, reads the heights of all the accessories from the component Operating
table in order to be able to move across the table without damaging the tips attached to
the dispensing head. The component Protocol runner, described in Section 4.5, co-
ordinates the execution of Dispenser and XYZ-Driver.

During the refinement of the system concrete information about the accessories is added
in a stepwise manner to Operating table. Even though Dispenser and XYZ-Driver are
developed independently of each other, their refinement steps are co-ordinated via the
refinements of the component Operating table.

4.3 The component Dispenser

We first describe the development of the comoponent Dispenser that aspirate and
dispense air and liquid. Dispenser changes the amount of liquid in the plates on the
operating table. Hence, the component Operating table is developed hand-in-hand with
the component Dispenser. When we refine Dispenser by stepwise adding new features to
it, we add the corresponding features to the component Operating table.

4.3.1The specification

We start the development by defining the services of Dispenser. According to the
requirements the services are:

- to aspirate liquid from an accessory,
- to dispense liquid into an accessory,
- to aspirate air, and
- to blow (or dispense) air.

Each service is initiated by a call from Protocol runner. The operations of Dispenser are
then executed until the service is completed or an error has occurred. For each service we
take into consideration the possible errors and the remedies that could fix the erroneous
situation.

In this report we describe the service aspirate liquid in more detail. The three other
services; aspirate air, dispense liquid and dispense air, can be specified in a similar way.
First we give the typical course of event for Dispenser aspirating liquid from an
accessory:

1. The protocol contains a command to aspirate amt units of liquid.
2. System checks that the accessory is either a plate or a tip washer; if wrong

accessory then AF1.
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3. System checks the position of the operating head; if not within the accessory then
AF2.

4. System checks that adding amt units of liquid to the tips does not exceed the tip
capacity, tip_capacity; if it does then AF3.

5. System checks amount of liquid in the accessory; if there is not enough liquid to
aspirate amt units of liquid then AF4.

6. Head aspirates amt units of liquid.
7. System checks for error message from dispensing head module; if head module

failed then AF5.
8. System reports success of execution of the aspiration to the calling protocol.

Error reports:
AF1. Wrong type of accessory under the dispense head. The accessory is not a plate

or a tip washer.
Remedy: User finds out the reason for the failure and resumes or aborts the

calling protocol. In case of resuming user manually changes the
accessory under the dispense head after moving up the head.

AF2. The dispense head, i.e., the head position sensor reading, is not within the
accessory.
Remedy: User finds out the reason for the failure situation and resumes or

aborts the calling protocol. In case of resuming user manually
invokes the procedure move to a position zpos that is within the
accessory, and resumes protocol execution.

AF3. Adding amt units of liquid to the tips exceeds the tip capacity.
Remedy: User finds out the reason for the failure situation and resumes or

aborts the calling protocol. In case of resuming user manually
changes parameter amt and resumes calling protocol execution.

AF4. Accessory contains less liquid than needed to aspirate, amt units.
Remedy: User finds out the reason for the situation and resumes or aborts

the calling protocol. In case of resuming user manually gives
command to add liquid and resumes protocol.

AF5. Error message from dispense head module detected.
Remedy: User initiates a maintenance procedure to fix the dispense head

error. After maintenance user resumes or aborts protocol.

The statechart diagram of the abstract specification of the service aspirate liquid in
Dispenser is shown in Figure 5. Each transition in Figure 5 corrsponds to an operation in
B. When the state of Dispenser is idle, didle, and the command from Protocol runner is
aspirate liquid (NewAspirateLiqCommand) the state is changed to dprep, to mark that
Dispenser is preparing to execute the command. The command of Dispenser is assigned
aspl, aspirate liquid. The parameter of the command, p_amt, states how much liquid is to
be aspirated. In case there is something wrong with the operating table, the tips or the
operating head, ServiceNotReady changes the state of Dispenser to suspended,
didle_susp. When Dispenser is in state dprep and the command is aspl to aspirate liquid,
it proceeds with the operation AspirateLiq that changes the state to daspl to indicate that
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Dispenser has aspirated liquid. If something is wrong, e.g., the setting of the instrument is
not correct, the operation AspirateLiqFail changes the state to suspended,  dsusp. When
Dispenser is in state daspl, the command is aspl and the aspiration has been performed
correctly, operation AspirateLiqOk is enabled and completes the aspirate liquid service
changing the state back to didle. If something went wrong when aspirating liquid,
operation AspirateLiqNotOk suspends the service, i.e. changes the state to dsusp. A
possible recovery from the suspended states is via the operations R e m e d y,
AspirateLiqPrepRemedy and AspirateLiqRemedy, respectively. If there is no operation
that can fix the erroneous situation, the operation Failure changes the state to dabort and
aborts the service.

 

didle dprep 

dsusp 

dabort didle_susp 

DEmergency is an  
operation from every  
state to dabort 

daspl AspirateLiq[ dcmd=aspl ] 

AspirateLiqFail[ dcmd=aspl ] 

Failure 

Remedy 

ServiceNotReady 

NewAspirateLiqCommand( p_amt ) / dcmd:=aspl  

AspirateLiqOk[ dcmd=aspl ] 

AspirateLiqNotOk[ dcmd=aspl ]  

Failure 

AspirateLiqPrepRemedy[ dcmd=aspl ] 
AspirateLiqRemedy[ dcmd=aspl ] 

Figure 5: Abstract statechart diagram of the operation aspirate liquid.

4.3.2Feature 1: General liquid and accessory information

As a first feature we add information about the accessories on the operating table and the
liquid to be analysed. First we only state whether there is an accessory or not at a specific
position on the operating table with the variable AccessoryPresent. We model the lowest
possible height at which the dispense head may move over the table with the variable
zmid. Furthermore, we are interested in how deep the dispense head may go into an
accessory. We state this with the variable zminAllowed. The position of the dispense head
is modeled with the variable ZCoord. The presence of liquid in the accessories is modeled
with a Boolean variable for each accessory position, Accessory_LiquidPresent. The tips
attached to the dispense head may also contain liquid and/or air. This is modeled using
the two Boolean variables Tips_LiquidPresent and Tips_AirPresent.

In this step the state dsusp is partitioned into a number of new states, one for each service,
in order to be able to create more accurate remedy operations. Due to the new suspension
states we rename the state variable dstate1 and give its relation to dstate in the refinement
invariant.
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In the invariant we state the relationship between the new variables.
Accessory_LiquidPresent(extpos) = TRUE fi AccessoryPresent(extpos) = TRUE
/\ dstate1=daspl1 fi Tips_Liquid_Present = TRUE
/\ dstate1=daspa1 fi Tips_Air_Present = TRUE
/\ dstate1=ddispl1 fi Accessory_LiquidPresent(extpos) = TRUE

Intuitively, this invariant states that if there is liquid present in an accessory at a position
extpos, then there has to be an accessory at that position. Additionally, if Dispenser has
aspirated liquid (dstate1 = daspl1), then there has to be liquid in the tips.
Correspondingly, if Dispenser has aspirated air (dstate1 = daspa1), then there has to be
air in the tips. If on the other hand Dispenser has dispensed liquid (dstate1 = ddispl1),
then there has to be liquid in the accessory. The complete invariant can be found in the B
machine of the first refinement of Dispenser on the homepage of the formal Fillwell
[FormFill03].

Let us now take a closer look at the refined service aspirate liquid. Liquid can be
aspirated when there is an accessory containing liquid under the dispense head, i.e., at the
position extpos, and the head is within the allowed range, which is stated by the guard:
AccessoryPresent(extpos) = TRUE  /\  Accessory_LiquidPresent(extpos) = TRUE
/\  ZCoord Œ zminAllowed(extpos)..zmid.

In Appendix A.1 the statechart diagram of the refined service AspirateLiq is given. The
decision symbols in the diagram are used to split up the guards of the operations. Hence,
a guard of an operation is the conjunction of all the guards on the transitions from one
state to another via the decision symbols. In this way the failure operations can be
conveniently modeled as exceptions to the service.

For the other services, aspirate air, dispense liquid and dispense air, the guards are
similar to the guard of the operation aspirate liquid. We can aspirate air if there is no
liquid in the tips and the operating head is high enough above the accessory
Tips_LiquidPresent = FALSE  /\  ZCoord > zminAllowed(extpos).

We can dispense liquid, if there is an accessory under the dispense head, the tips contain
liquid and the head is inside the accessory
AccessoryPresent(extpos) = TRUE  /\  Tips_LiquidPresent = TRUE
/\  ZCoord Œ zminAllowed(extpos)..zmid.

We can dispense air if there is air, and only air in the tips, and the head is high enough
above the accessory
Tips_LiquidPresent = FALSE  /\  Tips_AirPresent  = TRUE  /\ ZCoord > zminAllowed(extpos).

The statechart diagrams of the services aspirate air, dispense liquid and dispense air are
given on the homepage of the formal Fillwell [FormFill03].
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4.3.3Feature 2: Detailed liquid information

In the second refinement step of Dispenser we introduce the types of the accessories on
the operating table. An accessory may be of different types, e.g., a plate holder, a plate, a
tip washer or a constant level reservoir (represented as a plate with one well), which is
represented by the variable AccessoryType. The relationship between AccessoryType and
AccessoryPresent is stated in the invariant as:
AccessoryType(extpos) ≠  empty fi AccessoryPresent(extpos) = TRUE
/\ AccessoryType(extpos) = empty fi AccessoryPresent(extpos) = FALSE

Intuitively, this means that if the type of the accessory at position extpos is a plate, a tip
washer or a plate holder, i.e. it is not empty, then there is an accessory at the position
extpos. If the type of accessory at position extpos is empty, then there is no accessory
present at the position extpos.

When we introduce more detailed information about the liquid in the tips of Dispenser,
we have to introduce corresponding features to the component Operating table. A plate
should always be placed on a plate holder on the operating table. Hence, we introduce the
variable Plateholder as a function from the position on the operating table to a record of
two fields stating whether a plate is present on the plate holder, plate_present, and giving
the height of the plate holder, height.
Plateholder Œ 1..max_extpos +-> struct(plate_present Œ BOOL, height Œ NAT)

Correspondingly, the plate is represented as a function from the plate positions to a record
of five fields; plate id, height, liquid amount, minimum height and maximum volume.
Plate_1 Œ 1..max_extpos +->

struct(pid Œ PID, height Œ NAT, liquid_amt Œ NAT, minheight Œ NAT, maxVol Œ NAT)

Every plate has a unique identifier, pid. The variable height gives the height of the plate
and the minimum height, minheight, is the distance from the bottom of the well of the
plate to the surface of the operating table. The variable liquid_amt represents the amount
of liquid on the plate and the maximum volume, maxVol, represents the maximum
amount of liquid the plate can hold. The invariant of the plate machine states that the
liquid amount always should be less or equal to the maximum volume.
"xx.(xx Œ 1..max_extpos /\ xx Œ dom(Plate_1) fi (Plate_1(xx))’liquid_amt £ (Plate_1(xx))’maxVol)

If there is a plate present on the plate holder at any position of the operating table the
accessory type of that position has to be a plate.
"xx.(xx Œ1..max_extpos /\ (Plateholder(xx))’plate_present = TRUE /\ xx Œ dom(Plateholder)

fi xx Œ dom(Plate_1) /\ AccessoryType(xx) = plate)

Also the tipwasher is represented as a function from the positions on the operating table
to a record of five fields; plate id, height, minimum height, liquid amount and maximum
volume.
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Tipwasher Œ 1..max_extpos +->
struct(wid Œ WID, height Œ NAT, minheight Œ NAT, liquid_amt Œ NAT, maxVol Œ NAT)

Every tip washer has a unique id, wid. The variable height gives the height of the tip
washer and the minimum height, minheight, is the distance from the bottom of the tip
washer to the surface of the operating table. The liquid amount, liquid_amt, represents the
amount of liquid in the tip washer and the maximum volume, maxVol, represents the
maximum amount of liquid the tip washer can hold. The invariant states that the liquid
amount should always be less or equal to the maximum volume.
"xx.(xx Œ1..max_extpos /\ xx Œ dom(Tipwasher)

fi (Tipwasher(xx))’liquid_amt £ (Tipwasher(xx))’maxVol)

In this refinement step the amount of liquid in an accessory (plate or tip washer) is stated
with the variable AccessoryLiquidAmt. In the invariant we state that if the accessory at
position extpos is a plate then AccessoryLiquidAmt is equal to the amount of liquid in the
plate at that position. On the other hand, if the accessory is a tip washer then
AccessoryLiquidAmt is equal to the amount of liquid in the tip washer.
AccessoryType(extpos)=plate fi AccessoryLiquidAmt(extpos) = (Plate_1(extpos))’liquid_amt
/\ AccessoryType(extpos)=tipwasherfiAccessoryLiquidAmt(extpos)=(Tipwasher(extpos))’liquid_amt

The invariant also states that if the amount of liquid in the accessory at position extpos is
0, then there is no liquid in that accessory. If the amount is greater than 0, then there is
liquid in the accessory.
AccessoryLiquidAmt(extpos) = 0  fi Accessory_LiquidPresent(extpos) = FALSE
/\ AccessoryLiquidAmt(extpos)> 0  fi Accessory_LiquidPresent(extpos) = TRUE

Moreover, the exact amount of liquid and air in the tips is of interest at this step. This is
represented with the variables Tips_Liquid_Amt and Tips_Air_Amt. The capacity of the
tips is represented by a variable tip_cap. The total amount of liquid and air in the tips
may not exceed the capacity of the tips.
(Tips_Liquid_Amt + Tips_Air_Amt) Œ 0..tip_cap

The height of each accessory, AccessoryHeight, and how deep the dispense head may go
into the accessory, AccessoryMinheight, are also considered in this step. The minimum
accessory height of a position is always less or equal to the height of the accessory at that
position.
"xx.(xx Œ 1..max_extpos  fi  AccessoryMinheight(xx) £ AccessoryHeight(xx))

The lowest height at which the dispense head is allowed to move across the operating
table is indicated in the system using a variable xymoveOk. This variable is equal to the
maximum height of all the accessories on the operating table.
max(ran(AccessoryHeight)) = xymoveOk
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The operations are refined taking into account these new variables. The guard of the
operation to aspirate liquid is shown below:
AccessoryType(extpos) Œ {plate, tipwasher}
/\ ZCoord Œ AccessoryMinheight(extpos)..AccessoryHeight(extpos)
/\ Tips_Liquid_Amt+Tips_Air_Amt+amt1 £ tip_cap
/\ AccessoryLiquidAmt(extpos) ≥ amt1

There has to be a plate or a tip washer under the dispense head in order to aspirate liquid.
The head also has to be within the accessory. Furthermore, the tip capacity is not allowed
to be exceeded with the amount of air and liquid in the tips and the amount, amt1, of
liquid to be aspirated. Finally, there has to be enough liquid in the accessory to aspirate
amt1 units of liquid. When the operation to aspirate liquid is enabled, the liquid amount
in the accessory is decreased by amt1 units of liquid and the liquid amount in the tips is
increased correspondingly. The refined statechart diagram of the service can be found in
Appendix A.2.

We can aspirate air if there is no liquid in the tips, the operating head is high enough
above the accessory and the tip capacity is not exceeded.
Tips_Liquid_Amt = 0 /\ ZCoord > AccessoryMinheight(extpos) /\ Tips_Air_Amt+amt1 £ tip_cap

When the operation is enabled, amt1 units of air are added to the amount of air in the tips.

We can dispense liquid, if there is a plate or a tip washer under the dispense head, the tips
contain enough liquid to dispense amt1 units, the head is within the accessory and the
accessory capacity is not exceeded.
AccessoryType(extpos) Œ {plate, tipwasher}  /\  Tips_Liquid_Amt ≥ amt1
/\ ZCoord Œ AccessoryMinheight(extpos)..AccessoryHeight(extpos)
/\ ((AccessoryType(extpos)=plate /\ (Plate_1(extpos))’liquid_amt+amt1 £ (Plate_1(extpos))’maxVol)
    \/ (AccessoryType(extpos)=tipwasher

/\ (Tipwasher(extpos))’liquid_amt+amt1 £ (Tipwasher(extpos))’maxVol)).

When the operation is enabled, the liquid amount in the accessory is increased by amt1
units of liquid and the amount of liquid in the tips are decreased correspondingly.

Finally, we can dispense air, if there is enough air in the tips in order to dispense amt1
units, there is no liquid in the tips and the dispense head is above the bottom of the
accessory.
Tips_Air_Amt ≥ amt1 /\ Tips_Liquid_Amt =0 /\ ZCoord > AccesoryMinheight(extpos)

When the operation is enabled amt1 units of air is blown out from the tips. The statechart
diagrams for the services aspirate air, dispense liquid and dispense air are similar to the
one for service aspirate liquid [FormFill03].
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4.3.4 Feature 3: Detailed plate and tips information

In the third refinement step we add features concerning the types of plates on the
operating table. The number of wells the plate contains gives the type of a plate. A plate
may contain 1, 96 (12 columns x 8 rows), 384 (24 columns x 16 rows) or 1536 (48
columns x 32 rows) wells. The wells on a plate are numbered from 1 to the number of
wells on the plate as in Figure 6. The first row of a 96-well plate has the wells numbered
1 to 12, the second row is numbered 13 to 24 and so on.

Figure 6: A dispense head with 24 tips in internal position 1 over a 96-well plate.

Since we consider the number of wells on the plate in this refinement step, the number of
tips attached to the dispense head also becomes essential. The dispense head can have a
block of 96 or 384 tips attached. However, all the tips of the block do not have to be
attached. There could be only a single tip or alternatively a column of tips (8/96, 16/384)
or a row of tips (12/96, 24/384). If we have a block of 96 tips over a plate with 384 wells
the tips go into every second well of every second row of the plate. The same holds for a
block of 384 tips over a plate with 1536 wells. Since the number of tips is not always the
same as the number of wells, we need to register which of the wells in a plate that will be
affected from dispensing and aspirating. The variable wellset keeps track of this.

If the number of wells differs from the number of tips, the dispense head can be
positioned in a number of internal positions, intpos, of the plate. For example, if we have
8 tips and a 96-well plate, then the tips can be positioned in 12 different internal
positions. The possible values of the internal position intpos are given in Table 1 below.

.

. 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42  43 44 45 46 47 48
 . . .

85 86 87 88 89 90 91 92 93 94 95 96
    85
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\ noOfTips
noOfWells\

1 8 12 16 24 96 384

1 1 1 1 1 1 1 1

96 1..96 1..12 1..8 - - 1 -

384 1..384 - - 1..24 1..16 1..4 1

1536 - - - - - - 1..4

Table 1: The internal positions for all possible plates.

The variable wellset can easiest be illustrated with Figure 6. In order to easier be able to
show the set of wells graphically we have chosen the fictive combination of 96 wells and
24 tips with 4 internal positions. Note that 24 tips above 96 wells is not possible in
Fillwell. For internal position 1 the tips are above wells 1, 3, 5, 7, 9, 11, 25, 27, 29, … ,
83. For position 2 the tips are above wells 2, 4, 6, 8, 10, 12, 26, 28, 30, … , 84 and so on.
The wellset for internal position 1 are the dark coloured wells in Figure 6. These are the
wells affected by an aspirate or a dispense command.

The amount of liquid per well becomes of interest in this refinement step. This is stated
with the variable liquid_amt2. The relationship between the old variable liquid_amt and
the new liquid_amt2 states that the sum of the amount of liquid in all the wells of a plate
(Plate_2) is the same as the liquid amount on the plate (Plate_1).
(Plate_1(extpos))’liquid_amt =

S (yy).(yy Œ 1..(Plate_2(extpos))’noOfWells | ((Plate_2(extpos))’liquid_amt2)(yy))

Since we here consider the amount of liquid per well, we also have to introduce the
maximum volume of each well, instead of the maximum volume of the whole plate.
(Plate_1(extpos))’maxVol = (Plate_2(extpos))’noOfWells * (Plate_2(extpos))’maxVol.

Correspondingly we consider the liquid amount in each tip, Tips_Liquid_Amt2. Even if
not all the wells need to contain the same amount of liquid, the amount of air and liquid
in the tips is the same for all the tips. The sum of the amount of liquid in each tip,
Tips_Liquid_Amt2, is the same as the amount of liquid in all the tips, Tips_Liquid_Amt.
Tips_Liquid_Amt = Tips_Liquid_Amt2 * tips1’numberOfTips

The amount of air in the tips is represented in a similar way. Due to this fact, the capacity
of the tips is redefined to correspond to the capacity of a single tip and represented by a
variable tip_capacity. The capacity of all the tips together is the same as the value of the
old tip capacity tip_cap.
tips1’tip_capacity * tips1’numberOfTips = tip_cap

The new features are reflected in the operations. The operation AspirateLiq of the service
aspirate liquid is enabled when the accessory is a plate or a tipwasher that contains
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enough liquid for each tip to aspirate amt2 units of liquid. The tips of the dispense head
also have to be within the well and the capacity of the tips should not be exceeded.
AccessoryType(extpos)Œ {plate,tipwasher}
/\ ((AccessoryType(extpos) = plate

/\ "yy.(yy Œ (wellset(extpos))(intpos) fi ((Plate_2(extpos))’liquid_amt2)(yy) ≥ amt2))
     \/ (AccessoryType(extpos)=tipwasher

/\ (Tipwasher(extpos))’liquid_amt ≥ amt2 * tips1’numberOfTips))
/\ ZCoord Œ AccessoryMinheight(extpos)..AccessoryHeight(extpos)
/\ Tips_Liquid_Amt2 + Tips_Air_Amt2+amt2 £ tips1’tip_capacity

When the operation is enabled the amount of liquid is decreased with amt2 units from the
wells beneath the tips and the amount of liquid in the tips is increased correspondingly.
The refined statechart diagram of the service can be found in Appendix A.3.

For the operation aspirate air to be enabled, the amount of liquid in every tip has to be 0
and the capacity cannot be exceeded. The tips should either be inside or above the wells.
Tips_Liquid_Amt2 = 0 /\ Tips_Liquid_Amt2 + Tips_Air_Amt2 + amt2 £ tips1’tip_capacity
/\ ZCoord > AccessoryMinheight(extpos)

The operation dispense liquid is enabled when each well in the plate or the tipwasher has
enough capacity to receive the dispensed liquid. We also have to make sure that the head
with the tips is within the wells or the tipwasher.
AccessoryType(extpos) Œ {plate, tipwasher}
/\ ((AccessoryType(extpos) = plate

/\  "yy.(yy Œ (wellset(extpos))(intpos) fi
((Plate_2(extpos))’liquid_amt2)(yy) + amt2 £ (Plate_2(extpos))’maxVol))

\/ (AccessoryType(extpos) = tipwasher
/\ (Tipwasher(extpos))’liquid_amt + tips1’numberOfTips * amt2 £ (Tipwasher(extpos))’maxVol))

/\ ZCoord Œ AccessoryMinheight(extpos)..AccessoryHeight(extpos)

When the operation is enabled the amount of liquid in the tips is decreased with amt2
units and the liquid amount of the wells under the tips is increased correspondingly.

The operation dispense air is enabled when there is enough air in the tips, but no liquid.
The tips of the dispense head could be in the wells or above them.
ZCoord > AccessoryMinheight(extpos) /\ Tips_Liquid_Amt2 = 0 /\ Tips_Air_Amt2 ≥ amt2

When the operation is enabled, amt2 units of air is blown out from the tips.

4.3.5Control system development

The component Dispenser is rewritten as a plant and a controller. All the variables of
Dispenser and Operating table are considered to be actuators of Dispenser. This step is
straight forward and therefore not shown here. The B machines of the plant and controller
for Dispenser can be found on the Formal Fillwell homepage [FormFill03].
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4.3.6  Proving correctness

The consistency of the specification as well as the correctness of each refinement step is
proved with the tool Atelier B. The proof obligations generated for each step are of the
form described in subsection 2.4.3. In Table 2 we give the number of obvious and
generated proof obligations at each refinement step, as well as the number of B machines
and the number of lines of code for each step. The B machines for the component
Operating table are included in Table 2.

Dispenser Machines Lines Obvious
p.o.

Generated
p.o

Autoproved Percent

spec 2 430 262 202 202 100 %
ref. step 1 7 940 659 1 600 1 599 100 %
ref. step 2 11 1 610 3 523 812 742 91 %
ref. step 3 11 2 150 4401 255 212 91 %

Table 2: Quantitative information on the development of Dispenser.

We can note that refinement step 2 introduce the most new B machines and new lines of
code. The obvious proof obligations are generated by the tool and are discharged
immediately. The user needs to prove the generated proof obligations with the proof tool.
Preferably as many of the generated proof obligations as possible should be discharged
automatically. For the first refinement step we have a good result of 100%. The second
and third refinement steps introduce many quantified expressions in the invariant, which
in turn leads to proof obligations that are difficult for the tool to discharge automatically.
These proof obligations have, however, been discharged interactively.

4.4 The component XYZ-Driver

Let us now consider the development of the component XYZ-Driver. It moves the
dispense head vertically and horizontally over the operating table. In order to be able to
perform the moving, XYZ-Driver needs to be able to read the variables of the component
Operating table.

4.4.1 The specification

The component XYZ-Driver provides two services; to move the dispense head
horizontally (in x- and y-directions) and vertically (in z-direction) over the operating
table. The component XYZ-Driver performs the moving with the help of three
components X-Driver, Y-Driver and Z-Driver. X-, Y- and Z-Driver each handles the low-
level aspects of the moving in the direction indicated by the name of the component. The
XYZ-Driver co-ordinates these drivers in such a way that Z-Driver must be idle when X-
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and Y-Driver are active and vice versa. An overview of the XYZ-Driver component is
given in Figure 7.

Figure 7: Component diagram for XYZ-Driver

We first study the X-Driver specification. The possible failure situations are taken into
consideration, as well as the remedies that could fix the errors. The typical course of
events for moving in the x-direction is given below. Moving in y- and z-directions are
dealt with in a similar manner.

1. The operation XMove of X-Driver is called by XYZ-Driver.
2. System reads the input parameter pos, the desired position of the dispense head after

the move, and xspeed, the speed to move with.
3. System checks that the yellow lamp is switched on; if it is not, then XF1.
4. The component X-Driver moves to x-position pos with speed xspeed.
5. System checks if the current position is pos; if not, then XF2.

Failure reports:
   XF1. Yellow lamp is not switched on.

Remedy: User repairs the lamp and resumes or aborts the calling protocol.
   XF2. X-Driver has not reached position pos.

Remedy: User calibrates the position sensors and resumes or aborts the calling
protocol execution.

The service for moving in the x-direction is given as an abstract statechart diagram in
Figure 8. The moving is modeled with the operation XMove that changes the state of the
X-Driver from idle to xmove. If the move was successful, the operation XMoveOk is
enabled and takes X-Driver back to state idle. On the other hand if the move was not
successful, the X-Driver enters the state xsuspended. A remedy operation is enabled, if it
is possible to recover from the failure. It will change the state of X-Driver back to the
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state it was in before the suspension. If there are no possible remedies, X-Driver will
abort execution with the operation XFailure. The statechart diagrams for the components
Y- and Z-Driver are similar and are not shown here. They can be found together with the
B-specification of the component on the Formal Fillwell homepage [FormFill03].

Figure 8: Abstract statechart diagram of X-Driver.

Let us now study the component XYZ-Driver that coordinates the moving performed by
X-, Y- and Z-Driver. As for the component Dispenser the services of XYZ-Driver are
initiated by a command from Protocol runner. When the XYZ-Driver receives the
command to move horizontally, it first moves the dispense head vertically to a height at
which it can freely move over the table. The yellow lamp should be switched on when the
dispense head is moving. The typical course of events description for the horizontal
moving, xymove, is as follows.

1. The component XYZ-Driver receives command xymove from Protocol runner to
move with a certain speed to position (extpos, intpos), the accessory position on the
operating table and the internal position within that accessory.

2. System checks if extpos and intpos are valid positions; if not, then XYF1
3. System checks if it is possible to move over the highest accessory; if not, then

XYF2
4. If the dispense head is already at the external position extpos, then the operation

ZMove is called to move the head to the top of the current accessory leaving a
safety margin between the head and the accessory.
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5. If the dispense head is not at the external position extpos and it is not safely above
the accessories on the table, the operation ZMove is called to move the head to the
height of the highest accessory with a safety margin.

6. System calculates parameters for XMove and YMove from the parameters extpos
and intpos

7. System moves to the desired position by calling the operations XMove and YMove.
8. The system signals success of moving.

Failure reports:
   XYF1. Input parameters extpos and intpos do not represent a valid position.

Remedy: User changes parameters extpos and intpos, identifies the cause
and resumes or aborts the calling protocol execution.

   XYF2.   Accessory is too high.
             Remedy: User removes the accessory or aborts the calling protocol

execution.

The typical course of events for the vertical movement is similar and can be found on the
Formal Fillwell homepage [FormFill03].

The abstract specification of the horizontal movement of the component XYZ-Driver is
given in the statechart diagram in Appendix B.1. In order to move horizontally XYZ-
Driver must first move high enough not to collide with the accessories on the operating
table. XYZ-Driver receives the command to move modelled with the XYMoveCommand
operation. The parameter p_extpos is the position of the plate to move to, p_intpos is the
internal position in that plate and the other three parameters are the speeds to move with
in the different directions. Upon this command XYZ-Driver enters state prep_xyzmove to
indicate that it is ready to move. If all parameters are valid and the yellow lamp is on, the
operation XYMove is enabled and the moving in the vertical direction is performed by
calling the operation ZMove in Z-Driver. If the z-movement was successful the operation
ZMoveOk is enabled and performs the horizontal moving by calling XMove and YMove in
parallel. The operation XYMoveOk  is enabled if also the horizontal moving was
successful and returns the XYZ-Driver to state idle. If anything goes wrong while
moving, a failure operation will be enabled instead that take XYZ-Driver to a suspended
state.

The vertical movement is shown as a statechart diagram in Figure 9. First XYZ-Driver
receives a command to move with ZZMoveCommand operation, were the parameter
p_zrefpoint is the reference point, p_offs is the offset from that reference point and
p_zspeed is the speed to move with. The component XYZ-Driver then enters the state
prep_xyzmove to indicate that it is ready to move. The operation ZZMove is enabled, if
the yellow lamp is on and the parameters are valid. It moves by calling operation ZMove.
The operation ZZMoveOk is then enabled when the move was successful and returns
XYZ-Driver to state idle. If something goes wrong while moving, XYZ-Driver enters
state xyz_msuspended. From the suspended state there is either a remedy operation taking
XYZ-Driver back to its previous state or an operation aborting the execution.
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Figure 9: Statechart diagram for the vertical movement of XYZ-Driver.

4.4.2Feature 1: Coarse grained positioning

In the first refinement step we introduce the positions of the plates on the operating table,
extpos. For the actual movement of the dispense head over the table this external position
is transformed to x- and y-coordinates, XCoord and YCoord, which give the exact
position in micrometers. The variables XDest_Coord and YDest_Coord are introduced to
store the desired position to move to. The vertical positioning of the dispense head is
given with a coarse granularity in this step, z_refpoint. The three reference points for the
head are: (1) the height of the plate, (2) the liquid level, and (3) the bottom level of the
plate. The reference point is transformed to a z-coordinate, ZCoord, for the vertical
movement. XYZ-Driver reads the heights and depths of the accessories on the operating
table.

The z-coordinate should always be above the highest accessory of the operating table
when, moving from one plate to another:
xyz_state1 Œ {xyz_zmove1,xyz_xymove1} /\ mcmd=xymove_cmd /\ ¬(extpos=old_extpos)

fi zmid+s_margin £ ZDest_Coord

If the head is only moving within one external position on the table, the head only has to
be above the plate in that particular position. Furthermore, the tips should never hit the
bottom of the plate.
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ZCoord Œ zminAllowed(old_extpos)..zmax

The operations in the components are refined to take into account the new features. For
example, the operations in the component X-Driver take into account the variables
XCoord and XDest_Coord as shown in Figure 10. When the operation XMove is invoked
the yellow lamp should be on. The operation XMoveOk is enabled if the current position
XCoord of the dispense head is the desired position XDest_Coord. The suspended state
xsuspended has been divided into two states xsuspended1 and x_msuspended1 to keep
track of where an error has occurred. If the moving fails, the state of X-Driver will be
x_msuspended1. Other failures will take X-Driver to state xsuspended1. The statechart
diagrams for Y- and Z-Driver are similar and are not shown here.

Figure 10: Statechart diagram of the refined X-Driver.

In XYZ-Driver the guard of the operation XYMove is strengthened in such a way that the
operation is enabled if the desired position is not the current position and the dispense
head is not high enough, i.e., above the highest accessory on the operating table, but it is
possible to move it high enough.
¬(extpos=old_extpos) /\ zmid+s_margin>ZCoord /\ zmid+s_margin<zmax
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Furthermore, the operation is enabled if the dispense head is already in the desired
position and it is possible to move the dispense head above the accessory in that position.
extpos=old_extpos /\ zmid+s_margin<zmax

If the dispense head is already above the highest accessory, there is no need to move
vertically.

When the dispense head is high enough to be moved horizontally, the operation
XYMoveZOk is enabled and moves the head to the desired x- and y-coordinates. Finally,
if the correct position was reached, the operation XYMoveOk is enabled. Should any of
these moving operations fail, the component XYZ-Driver becomes suspended. In this
refinement step the suspended state for XYZ-Driver has been divided into three states,
xyz_msuspended1, xyz_zsuspended1 and xyz_xysuspended1, to correspond to the
respective originating states, prep_xyzmove (XYZ-Driver prepares to move), xyz_zmove
(XYZ-Driver has moved vertically) and xyz_xymove (XYZ-Driver has also moved
horizontally).

The statechart diagram for the horizontal movement of XYZ-Driver is fiven in Appendix
B.2. The complete specification of the first refinement step can be found on the Formal
Fillwell homepage [FormFill03].

4.4.3Feature 2: Detailed vertical positioning

In the second refinement step we introduce an offset variable, offs. The offset indicates
how much higher or lower than the given reference point the dispense head should be
moved. The reference point and the offset together give the exact z-coordinate to move
to.

Since the actual height of accessories on the operating table is introduced, the invariant
guarantees that XYZ-Driver is high enough when moving horizontally within a plate.
xyz_state1 Œ {xyz_zmove1,xyz_xymove1} /\ mcmd=xymove_cmd /\ extpos=old_extpos

fi AccessoryHeight(old_extpos)+s_margin £ ZDest_Coord

The components X-, Y- and Z-Driver are not changed in this refinement step. The service
XYMove to move horizontally is also the same as in the previous step. However, the
service ZZMove to move vertically is refined to take into account the exact z-coordinate
ZCoord. The move can fail if the z-coordinate is not within range. The specification of
this refinement step can be found on the Formal Fillwell homepage [FormFill03].

4.4.4Feature 3: Detailed horizontal positioning

Finally, we add internal positions, intpos, within a plate, as well as the speed for moving
in the three directions, xspeed, yspeed and zspeed. The internal positions of a plate
depends on the number of wells in the plate, as well as on the number of tips attached to
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the dispense head as explained in subsection 4.3.4. The exact x- and y-coordinates to
move to are calculated from the given external and internal position.

In this refinement step the speed is taken into account in the components X-, Y- and Z-
Driver. The operations in component XYZ-Driver are refined to take into account the
internal positions of the plates. The internal positions should be in range concerning the
number of wells in the current plate and the number of tips in the dispense head as
described in Table 1.  The statechart diagram of service XYMove is given in Appendix
B.3.

4.4.5Control system development

As a final step the component XYZ-Driver is partitioned into plant and controller. The
variables modelling the x-, y- and z-coordinates are the sensors of XYZ-Driver and the
rest of the variables are considered to be actuators.

4.4.6  Proving correctness

The proof obligations described in subsection 2.4.3 are generated for each step. In Table
3 we show the number of B machines, lines of code and proof obligations for the
development of XYZ-Driver.

XYZ-Driver Machines Lines Obvious
p.o.

Generated
p.o

Autoproved Percent

spec 7 790 241 440 415 94 %
ref. step 1 10 1 300 1 433 2 164 2 085 96 %
ref. step 2 14 1 670 1 027 160 151 94 %
ref. step 3 14 2 240 3 214 802 769 96 %

Table 3: Quantitative information of the XYZ-Driver development.

A large number of proof obligations are generated for the first refinement step where the
coarse grained positions are introduced. Most of these proof obligations are, though,
automatically discharged. We can note that the rate of the automatically discharged proof
obligations is at a satisfactory level for all the refinement steps with 94% as the lowest
rate. The proofs that were not discharged automatically have been proved interactively.
No new user defined rules had to be added during the interactive proof. Merely proof
tactics were needed for the interactively discharged proof obligations. Since both
Dispenser and XYZ-Driver use the component Operating table, the information about the
machines Operating table is included in the figures presented here in Table 3, as well as
in Table 2.
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4.5 The component Protocol runner

In order to perform sample testing with the Fillwell workstation the user provides
commands to the workstation via a protocol. The component Protocol runner loads the
user protocol, reads the commands in the protocol and coordinates the components XYZ-
Driver and Dispenser according to these commands.

4.5.1The specification

The component Protocol runner provides five services to the user; LoadProtocol for
loading a new protocol into the Fillwell, ReadProtocol for reading and executing a
protocol, Pause for pausing the execution of the protocol, Continue for continuing after
the pause, and Emergency for terminating execution of any activity of Protocol runner.
The protocol consists of three sections; the first section introduces the constants, the
second verifies the configuration of the accessories on the plate, and the third contains the
actual protocol commands. The protocol commands concern moving the dispense head,
setting the speed of the movement, as well as aspirating and dispensing liquid and air.
Additionally, there is a command for washing the tips of the dispense head. The protocol
sections and their commands are given in Appendix C.1.

When Protocol runner reads and executes the commands in the protocol it uses the
services of the components Dispenser and XYZ-Driver. Dispenser and XYZ-Driver in
turn use Operating table for data accessing. In order to perform the washing of tips we
introduce a component Tipwasher that contains the two pumps of the tip washer
accessory. One of the pumps fills the tip washer accessory with washing liquid, while the
other pump empties it. Tipwasher provides the services to set on and off the two pumps.
The component diagram that describes the relations between all these components is
shown in Figure 11.

Each service of the component Protocol runner is initiated by the user. When the service
ReadProtocol is requested, Protocol runner reads the protocol line by line and executes
the command on the current line. If an error occurs in the protocol, an error report is
given, the execution of the protocol aborts and a new protocol should be loaded. The
typical course of events for the service ReadProtocol is given in Appendix C.2.



30

Figure 11: Component diagram for the Fillwell system.

The Fillwell workstation has to fulfill certain safety requirements. When the commands
of the protocol are executed, Protocol runner coordinates the components Dispenser and
XYZ-Driver in such a way that these conditions are satisfied. Hence, the invariant of
Protocol runner states that the gantry is not allowed to move the dispense head while it
aspirates or dispenses. Moreover, dispense head is not allowed to aspirate or dispense (it
has to be idle or suspended), when the gantry is moving the head.
 ¬ (dstate Œ {didle, didle_susp, dabort}) fi xyz_state Œ {xyzidle, xyzsuspended, xyzabort}

The workstation has a yellow lamp, yellow_lamp, indicating when the dispense head is
allowed to move. The yellow lamp should always be switched on when Protocol runner is
executing a command to move (p_state=pworking), has read an erroneous parameter of a
command (p_state=param_susp) or has been requested to pause (p_state=ppause) and
has not yet halted (pause_state≠ pause_home_all).
(p_state = pworking fi yellow_lamp = on) /\  (p_state = param_susp fi yellow_lamp = on)
/\  (p_state = ppause /\ ¬ (pause_state = pause_home_all) fi yellow_lamp = on)

The component XYZ-Driver is not allowed to move, nor is Dispenser allowed to dispense
or aspirate, when Protocol runner is waiting for a new protocol (p_state=pinit) or pausing
(pause_state=pause_home_all). Additionally, the yellow lamp should be off when
Protocol runner is paused.
(p_state = pinit fi

xyz_state Œ {xyzidle,xyzsuspended, xyzabort} /\ dstate Œ {didle, didle_susp, dabort})
/\ (p_state = ppause /\ pause_state = pause_home_all fi



31

xyz_state Œ {xyzidle,xyzsuspended,xyzabort} /\ dstate Œ {didle,didle_susp,dabort}
/\ yellow_lamp = off)

The behavior of the component Protocol runner is described with statechart diagrams.
The statechart diagrams for Protocol runner in Appendix C are simplified to become
more readable and do not have a one to one correspondence to the B machines in the
Formal Fillwell development [FormFill03].

The statechart diagram in Appendix C.4 describes how external events affect Protocol
runner. The operation LoadProtocol loads a new protocol and changes the state of
Protocol runner to pworking. This state indicates that Protocol runner is decoding and
executing the protocol. The operation EndProtocol is enabled when the command End of
protocol has been read and it changes the state of Protocol runner back to idle.

Let us take a closer look at the state pworking for decoding and executing the protocol.
The statechart diagram describing this state is given in Appendix C.5. The initial state of
the diagram is cmd_not_ready indicating that the command has not been dealt with yet.
The operation ReadCommand reads the command on the current protocol line. The
operation LineReady is enabled when the end of the current protocol line is reached and
then changes the working state to line_ready. When Protocol runner is in state line_ready
it means that the reading of a protocol line has been completed and the command read
from the protocol can be decoded and executed.

The command read from the protocol determines which operation is enabled. Command
VerifyConfig for verifying configuration enables operation PverifyConfig, commands XX,
YY, ZZ and none for adding constants enable AddConstant, command Loop for starting a
loop enables LoopInProtocol, Begin for beginning a new section in the protocol and End
for ending a section or a loop in the protocol enable ControlProtocol and commands
SetXSpeed, SetYSpeed as well as Se tZSpeed  for setting the speed enable
DecodeCommand2. The operations change the state of Protocol runner to cmd_not_ready
indicating that it is ready to read a new command and Protocol runner becomes ready to
read the next protocol line. The non-administrative commands enable the operation
DecodeCommand1 and the state of Protocol runner is changed to cmd_ready indicating
that the protocol command is ready to be executed.

When Protocol runner has read a non-administrative command it is ready for co-
operation with XYZ-Driver and Dispenser. If the protocol command is
GotoAccessoryPosition or ZGotoAccessory for moving horizontally and vertically, then
MoveCommand is enabled. The commands Aspirate or AspiratePrimaryAir for aspirating
liquid or air enable AspirateCommand while Dispense or BlowPrimaryAir for dispensing
liquid or air, enable operation DispenseCommand. If the number of parameters and their
types are valid the command and the parameters are passed on to XYZ-Driver or
Dispenser. The state of Protocol runner is then changed to cmd_not_ready and Protocol
runner becomes ready to read the next line in the protocol. Note that the operations above
only start the execution of the command. The operations of XYZ-Driver and Dispenser
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are executed in parallel with the operations of Protocol runner to complete the execution
of the command.

When running a protocol the workstation has to dispense and aspirate different kinds of
liquid. In order to keep the samples clean, the workstation also has to wash the tips. If the
command is WashTips then the operation WashTipsCommand is enabled and the state of
Protocol runner becomes wash, starting the washing of the tips. When the washing is
finished the operation FinishWashing  changes the state of Protocol runner to
cmd_not_ready and a new protocol line may be read. The typical course of events for the
washing procedure including possible failures is given in Appendix C.3.

When an error occurs during the protocol reading, Protocol runner is suspended. Protocol
runner has two suspended states, param_susp and psuspended. The state param_susp
means that an error in the parameters of the protocol has been detected. The state
psuspended indicates that a serious error has occurred when executing the protocol or that
one of the components XYZ-Driver or Dispenser is malfunctioning. A remedy operation
in Protocol runner takes it to the state init. This models that the execution of the protocol
is stopped if an error occurs in the protocol. When the components XYZ-Driver or
Dispenser are malfunctioning, they enter the state abort. This error situation is detected
by Protocol runner.

The Fillwell workstation has a pause button and an emergency button that the user can
press when he/she wants to stop the execution of the system. When Protocol runner is in
state pworking it can be paused. The operation PauseCommand changes the state of
Protocol runner to ppause. This command enables a number of operations that moves the
dispense head up and then to its home position. When the home position is reached the
yellow lamp is switched off. When the pause button is pressed once, the Fillwell
workstation is paused and the dispense head is moved to its home position. By pressing
this pause-button once again the user allows the system to continue with the protocol
from where it was interrupted. The operation ContinueCommand switches on the yellow
lamp and calls XYZ-Driver to move the dispense head horizontally to the old accessory.
If the last command before the pause command was a vertical move Protocol runner calls
XYZ-Driver to move the dispense head to the height it was at before the pause command
was issued. Finally, the state of Protocol runner is changed to the state it was in when it
was paused.

In case of an emergency the user can press the emergency button on the Fillwell
workstation and the system is stopped immediately. A red lamp indicates that the
emergency button has been pressed. The operation EmergencyCommand changes the
state of Protocol runner to pabort. Furthermore, it calls the emergency operations in the
components Dispenser and XYZ-Driver to stop them as well and change their states to
abort.
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4.5.2Feature 1: More detailed data

In the first refinement step we introduce the variable param_list. It contains parameters
from the current protocol line. The parameters are of type integer values. A variable
param_no is introduced for keeping track of the number of parameters read from the
protocol. For example when the command in the protocol is GotoAccessoryPosition the
variable param_list contains the value of the external position to move to, extpos, at
index 0 and the value of the internal position, intpos, at index 1. For command
GotoAccessoryPostition the variable param_no has the value 2.

In this step we also introduce more features for the washing procedure. The amount of
liquid and air to aspirate and dispense during the washing, as well as the number of times
that the tips should be washed are explicitly given for the command WashTips.

When the Protocol runner has read a command from the protocol, it calls the requested
operations in XYZ-Driver or Dispenser to initiate the execution of the command. In order
to model that the component might not always be ready to commit immediately we
introduce the variables xyz_waited and d_waited. When the requested component XYZ-
Driver or Dispenser is busy xyz_waited or d_waited, respectively, is set to TRUE to
model that Protocol runner waits for a while for the component to become idle. The
variable is set to FALSE when the component becomes ready to commit or after time out
for waiting.

The statechart diagram for the refined Protocol runner is given in Appendix C.6. In this
step the operations XYZWait and DispWait and more accurate failure operations are
introduced. Protocol runner can wait for the components XYZ-Driver and Dispenser to
become ready when it is in state pworking or ppause, i.e., it is executing the protocol or
pausing. The operations XYZWait and DispWait set the boolean variables xyz_waited or
d_waited to TRUE when XYZ-Driver or Dispenser are busy. If XYZ-Driver or Dispenser
is not ready after the waiting period the operations DispWaitFail or XYZWaitFail change
the state of Protocol runner to psuspended.

In this refinement step the reading of the commands is extended with a more detailed
treatment of the parameters. The parameters can be constant names, array constants or
ordinary integer values. The new operations ConstantFound, ArrayConstantFound and
ReadParameter are enabled when the parameter is a constant name, a constant array or an
integer value, respectively. The operations translate the parameters to ordinary integers
and add the parameters to the variable param_list. The statechart diagram of the protocol
reading and decoding is given on the Formal Fillwell homepage [FormFill03].

The opertion TipWashing is also refined in this step. The statechart diagram in Appendix
C.7 gives a graphical view of the washing process. When the command WashTips is
executed the dispense head is first moved above the tipwasher accessory. The starting
point in the statechart diagram in Appendix C.7 is the state xymoved where the dispense
head is already above the tipwasher. The operation WashTipsZMove is enabled if there is
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old liquid in the tips and prepares to remove the liquid. The actual washing starts from
state asp_air. The tips are washed in cycle_count number of washes. The pumps fill and
empty the tipwasher accessory in each cycle. If all cycles are not finished
(cycle_count>0), operation WashTipsFinishCycle starts a new cycle, else it finishes the
washing. The tips are then washed by aspirating and dispensing washing liquid
w a s h _ c o u n t  number of times via the operations WashTipsAspirate a n d
WashTipsDispense. If the tips should be further washed (cycle_count>0), the state is
changed to asp_air again. On the other hand, if the washing is ready (cycle_count=0),
Protocol runner dispenses primary air with operation WashTipsDispense and moves up
above the tipwasher with operation WashTipsZMove changing the state to finish.

The component Protocol runner fills the tipwasher accessory with washing liquid and
empties it by calling SetInPumpOn and SetOutPumpOn, respectively, in component
Tipwasher. Tipwasher notifies Protocol runner when it is done by setting the variables
in_pumps_done and out_pumps_done to TRUE, respectively.

4.5.3Feature 2: Protocol Lines

In the second refinement step we introduce a protocol and protocol lines. The variable
protocol models the protocol with numbered lines. A variable constant_table for storing
constant names is also introduced. The protocol consists of a constants-section where
constants are defined, a configure-section where it is verified that the configuration of
accessories expected by the protocol is indeed the same as the actual configuration, and a
protocol command-section which contains the actual commands for moving, dispensing
and aspirating. The protocol is read, decoded and executed one line at a time. An item in
a protocol line is either an integer, a constant name or a loop counter variable (an index
variable).

The first item of a line is the command, which is of type constant name. The command is
followed by a number of parameters as shown in Figure 12. A protocol line is read one
item at a time until end of line is encountered. Integer parameters are read and added to a
parameter list which will be used when the command is executed. When parameters in
the form of constants occur, their values are looked up in the constant table and added to
the parameter list. All the constants in the configuration- and protocol command-section
must be defined in the constants-section of the protocol.

Line
number

0
(Command)

1
(Param. 1)

2
(Param. 2)

3
(Param. 3)

....

100 Dispense 200
101 GotoAccessoryPosition extpos intpos
.... .... .... .... ....

Figure 12: The variable protocol.
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There are two variables for keeping track of the current position in the protocol, line_no
and protocol_str_no. The variable line_no is the current line number and protocol_str_no
is the current string to read from that line. Let us look at the protocol in Figure 12. On
line number 100 the command to be executed is Dispense and the liquid amount to
dispense is 200. On line 101 the command is GotoAccessoryPosition, the external
position is given as constant extpos and the internal position as constant intpos. Since
extpos and intpos are constants, their values have to be looked up in the constant table
constant_table shown in Figure 13, where constant extpos has value 5 and intpos has
value 12. Hence, the command says that the dispense head should be moved to internal
position 12 in accessory 5.

Figure 13: The variable constant_table.

The operations of Protocol runner are refined to deal with the detailed protocol. It is
mainly the operations that take care of reading and executing the protocol that are
changed in this step. They are depicted in three statechart diagrams of which two are
given in Appendix C.8 (for parsing a line) and C.9 (for decoding the command and the
parameters) and one (for executing commands) is given merely on the Formal Fillwell
homepage [FormFill03]. For readability these diagrams are slightly simplified versions of
the corresponding B specifications.

The statechart diagram in Appendix C.8 describing line parsing starts in state
cmd_not_ready and ends in state line_ready. Operation ReadCommand is enabled when
the length of a protocol line is greater than zero and the type of the first element on the
protocol line is a command. It then reads the command from the protocol. Operation
ReadParameter is enabled when the end of protocol line has not yet been reached and the
protocol line is not too long. Furthermore, the parameter should not be a constant name,
but an integer value:
protocol_str_no < size(protocol(line_no)) /\ protocol_str_no < max_line_length
/\ param_no < max_line_length /\ ¬ (cmd Œ {XX,YY,ZZ,PP,Loop,none} /\ param_no = 0)
/\ (protocol(line_no)(protocol_str_no)) Œ {vv}*MSTRING.

The operation ReadParameter then adds the parameter to the parameter list. On the other
hand, if the parameter is a constant from the constant table and the next item is not a loop
counter variable (an index variable) the operation ConstantFound is enabled:
protocol_str_no < size(protocol(line_no)) /\ protocol_str_no < max_line_length
/\ param_no < max_line_length /\ ¬ (cmd Œ {XX,YY,ZZ,PP,Loop,none} /\ param_no = 0)
/\ (protocol(line_no)(protocol_str_no)) Œ dom(constant_table)
/\ (protocol(line_no)(protocol_str_no)) Œ {cc}*MSTRING
/\ ¬ ((protocol(line_no)(protocol_str_no+1)) Œ {cl}*MSTRING).

Constant name Value
extpos 5
intpos 12
... ...
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It looks up the constant name in the constant table and adds the corresponding parameter
value to the parameter list. The operation ArrayConstantFound is enabled when the
parameter is a constant from the constant table followed by an index variable and it also
adds the parameter to the parameter list. If a new constant name, which is not in the
constant table, is encountered and the command is XX, YY, ZZ, PP or none, the operation
ConstantNameFound is enabled and adds the constant name to the temporal variable
t_constantname. The operation LineReady is enabled when the end of line has been
reached and the protocol is not too long.

When the complete protocol line has been read, Protocol runner decodes the line. The
statechart diagram for decoding the protocol line is given in Appendix C.9. A variable
control_state is introduced to keep track of whether Protocol runner is currently reading
constants, checking configuration or executing protocol commands. The operation
ControlProtocol changes the variable control_state to keep track of the clauses in the
protocol upon the commands Begin and End. The operation AddConstant adds constants
to the constant table when the command is XX, YY, ZZ, PP or none in the constants-
section of the protocol, the constant name is of correct type and the parameter list
contains the constant value:
cmd Œ {XX,YY,ZZ,none} /\ control_state = p_const_start
/\  t_constname Œ {cc}*MSTRING /\  0 Œ dom(param_list).

The operation PVerifyConfig verifies the configuration of the accessories, when the
configuration-section of the protocol is being read. The operation StartLoopInProtocol
starts a new loop upon command Loop within the protocol-section. The operation
EndProtocol is enabled when there are no open loops and the command is End. All these
commands for controlling the execution of the protocol changes the state of Protocol
runner to cmd_not_ready  indicating that Protocol runner is ready to read a new
command.

Upon the commands operating the workstation by moving, aspirating, dispensing and
setting the speed within the protocol command-section, the operations DecodeCommand1
and DecodeCommand2 are enabled. They prepare the execution of the command by
changing the state of Protocol runner to cmd_ready. The actual execution of the
commands in the protocol command-section is performed via the components Dispenser,
XYZ-Driver and Tipwasher. Depending on the command an operation is enabled calling
the corresponding operation in one of the components.

4.5.4Feature 3: Control structures

In the third refinement step nested loops and array constants are introduced. For the
nested loops we keep track of the return address and the loop counters with the help of
stacks. The variable stack_loop_ret_addr is a stack that contains return addresses for the
loops, stack_loop_counter contains names of the loop counters and stack_loop_ntimes
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contains the number of times to loop. The variable stack_pointer is a pointer to the top
element of the stacks. The top element of all three stacks always refer to the same loop.

Array constants are constants that contain a list of values that can be indexed by a loop
counter. The constant intpos in Figure 14 is an array constant that has three values: 1, 2
and 3. When reading an array constant in the protocol command-section the next item on
the line must be a loop counter. The name of this loop counter need to be in the stack
stack_loop_counter, i.e., the loop counter has to be in use. The value of the loop counter
is looked up in the constant table to get an index value. The value of the array constant at
that index is then added to the parameter list. For example, if the value of the loop
counter is 2, the value added to the parameter list for intpos is 3 in Figure 14. 

Constant name 0
(index 0)

1
(index 1)

2
(index 2)

....

intpos 1 2 3
extpos 5
.... .... ... .... ....

Figure 14: The variable constant_table1 variable.

The variable constant_table is refined by the variable constant_table1 in this step to take
into account also array constants. The values at index 0 in constant_table1 corresponds to
the values in the old variable constant_table.
("xx.(xx Œ dom(constant_table) fi constant_table(xx) = constant_table1(xx |->0)))

This is shown in Figure 14 where constant extpos is an single value constant with value 5
at index 0.

The process of adding an array constant to the constant table is depicted in Figure 15. In
the example in Figure 15 the current line is 10 in the protocol (1). The line contains a
command none to add a constant with the array constant name intpos and its values 1 and
2. The constant name is stored in the variable t_constname (2) while its values are stored
in the parameter list (3). The constant name is then added to the constant table
constant_table1 (4). Finally, the whole list of values from the parameter list is added to
the constant table for that constant (5). This stepwise addition of an array constant to the
constant table is due to the fact that the feature of reading a parameter of type constant is
superposed on the general parameter reading.
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(1)

(5)
(4)

(3)(2)

Figure 15: The process of adding an array constant to the constant table.

The refined statechart diagram describing the decoding is given in Appendix C.10. The
operation StartLoopInProtocol is enabled when the command is Loop, the protocol-
section in the protocol is being read and the parameter giving the number of times to loop
is greater or equal to zero. Furthermore, the loop counter should be of type index variable
and there should not be a counter with the same name in use:
cmd = Loop /\ control_state = p_protocol_start /\ 0 £ param_list(0)
/\ t_constname Œ {cl}*MSTRING /\  ¬ (t_constname Œ dom(dom(constant_table1))).

If the Loop command is encountered inside another loop, i.e., stack_pointer is greater
than zero, then the operation StartLoopInProtocol also requires that there are not too
many loops, that the previous return address is smaller than the new return address
line_no+1 and that the loop variable is not already in use:
0 < stack_pointer < sp_max /\ stack_loop_ret_addr(stack_pointer) £ line_no
/\ ¬ (t_constname Œ stack_loop_counter[1..stack_pointer]).

In this way StartLoopInProtocol guarantees that the loops are properly nested when it
starts a new loop.

The operation LoopInProtocol is enabled when the command is End and Protocol runner
is inside a loop and the value of the loop counter is less than the number of times to loop.
The action will then change the current line line_no to the line number stored on top of
the return address stack and increase the value of the loop counter in the constant table
constant_table1. The operation EndLoopInProtocol is enabled when Protocol runner is
executing a loop and the value of the loop counter is equal to the number of times to loop.
The operation ends the loop by decreasing the value of stack_pointer. The operation

protocol

index command param1 param2 param3
10 none intpos 1 2
11 ... ... ... ...
...

line_no
10

constant _table1

name 0 1
intpos 1 2
.... ...

t_constname
intpos

param_list
index value
  0 1
  1 2
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EndProtocol  is enabled when the command is End  and the stacks are empty
(stack_pointer=0), i.e., when Protocol runner is not executing a loop. This operation ends
the execution of the protocol by switching the yellow lamp off and taking Protocol runner
to its initial state pinit.

4.5.5  Proving correctness

The component Protocol runner has been developed and proved using Atelier B in the
same way as Dispenser and XYZ-Driver. The lines of code for each development step as
well as the number of proof obligations generated and proved are given in Table 4. In the
table we only refer to the machines that are not included in the components XYZ-Driver
or Dispenser.

Table 4: Quantitative information on Protocol runner development.

The percentage of the automatically proved proof obligations is high for the two first
refinement steps (≥ 93%), but low for the third one (81%). The low percentage is due to
the use of quantified expressions, as well as complex function definitions for the array
constants in the invariant. The proof obligations that were not automatically discharged
by Atelier B were, however, discharged with the interprover. Even if up to 19% of the
proof obligations were proven interactively no new user defined rules needed to be
introduced during these interactive proofs. The prover only required help with tactics to
discharge these proof obligations.

5. Conclusions

The healthcare case study presented in this paper deals with the development of a drug
discovery system, Fillwell. It has been carried out in co-operation with Wallac within the
MATISSE-project [MATISSE03] using an industry-as-laboratory approach. The goal of
the case study was to make the industrial partner Wallac aware of the benefits of using
formal methods. We have developed the Fillwell system formally at Åbo Akademi
University, guided by the experts at Wallac on the system requirements. An informal
development of the system has simultaneously been performed at Wallac.

Protocol
runner

Machines Lines Obvious
p.o.

Generated
p.o

Autoproved Percent

spec 4 710 1 418 617 572 93 %
ref. step 1 4 880 9 654 289 289 100 %
ref. step 2 4 1 120 9 262 293 280 96 %
ref. step 3 4 1 200 12 457 243 198 81 %



40

In the healthcare case study the formal development was split up in the same components
as the informal one: Dispenser, XYZ-Driver and Protocol runner. The component
Protocol runner coordinating the execution of Dispenser and XYZ-Driver. The
methodology used in the case study is a combination of methods, UML, Action Systems,
the B Method and safety analysis. This methodology has been developed during many
years at Åbo Akademi University. The components of the Fillwell system were formally
expressed as B Action Systems via UML-diagrams. The system was developed in a
stepwise manner adding new features in each step and proving their correctness. The
documentation was created stepwise via the UML-diagrams during the development.

Due to the complexity of the system, the proof effort was tedious in the formal
development. More than half the time required for the developmet was spent on proving
the correctness of the refinement steps. During the proving process most of the generated
proof obligations were discharged by the automatic prover of Atelier B. However, many
proof obligations still needed to be proved with the interactive prover. By minimizing the
number and complexity of the proof obligations generated for each refinement step using
suitable data structures and expressions the interactive proving effort can be reduced.
During the development the automatic prover should be used to discharge the proof
obligations, while the interactive prover should be used to inspect the proof obligations
that were not proved automatically [MATISSE03]. Only at the end of the development
the interactive prover should be used to discharge these proof obligations. When
developing safety critical systems it is also important to remember that we can only prove
that a system is correct according to its specification. If the specification is wrong, the
system will not work correctly. Errors discovered late in the development process often
cause wide-ranging changes. Hence, one should be very careful when creating the
specification from the requirements of the system.

The case study was qualitatively validated by the development teams at Wallac and Åbo
Akademi University. As a conclusion of this validation we can state that formal methods
help in the inspection of the code when applied with a graphical interface. Since the
formal development was performed at the university no physical product resulted from
that development. Hence, we cannot directly state whether formal methods have a
positive effect on the final product. We can, however, state that the formal methods as a
combination of UML and B had a positive effect on the design process. The typical
course of events (use cases) treated the error situations in a very exact way, which was
found to be very useful for the development. The B Method forces the developers to
specify the system in an unambiguous way and, hence, to think carefully about the
precondition of each service and which postconditions these services should establish. In
this way the formal development also indirectly had a small positive effect on the
informally developed product. The stepwise introduction of features into the system
provides a structured way of managing the complexity of the system. In its turn, it
facilitates better understanding of the system and, hence, leads to better design decisions.

Finally, we can state that it was a positive experience to apply the methodology
integrating UML, action systems, B and safety analysis on a large industrial example as
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in this case study with such a positive result. The case study provided inspiration for
further development of the methodology.
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Appendix A

A.1. First refinement step of the operation aspirate liquid in Dispenser.
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A.2. Second refinement step of the operation aspirate liquid in Dispenser
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A.3. Third refinement step of the operation aspirate liquid in Dispenser
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Appendix B

B.1. Specification of the horisontal movement in XYZ-Driver
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B.2. First refinement step of the horisontal movement in XYZ-Driver
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B.3. Third refinement step of the horisontal movement in XYZ-Driver
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Appendix C

C.1. Protocol specification
A protocol consists of three sections: Constants, Configuration and Protocol commands.
The language is a subset of the Fillwell command language used at Wallac.

Commands in the constants section:

Begin Start of section.
XX constname, value XX is the constant domain, here the x-axis.

constname is name of constant and value is
the integer value of the constant

YY constname, value Same as XX, but the domain is y-axis
ZZ constname, value Same as XX, but the domain is z-axis
PP constname, value PP means configuration editable constant.

Parameters are the same as for XX.
none constname, list_of_values Array constant. constname is the name of the

constant. list_of_values is a list of values
separated by commas.

End End of section

Array constants are accessed by writing constname:index, where constname is the name
of the constant and index is the name of the loop counter variable.

Configuration verification section:

Begin Start of section
VerifyConfig pos, AccessoryType pos is the external position of the accessory

given as a constant or a value. AccessoryType
is the type of accessory.

End End of section.

Protocol commands section:

Begin Start of section
Protocol commands Available protocol commands. (See list

below).
Loop IndexName, nn Starts a loop that loops nn times. IndexName,

name of loop counter. This variable can be
accessed like a single element constant.
Loops can be nested.

End End of loop or end of section.
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Protocol commands:

Command Parameters Description
GotoAccessoryPosition extpos, intpos Move the dispense head to the

plate extpos  and the internal
position intpos within that plate.

ZGotoAccessory zrefpoint, offs Move the dispense head
vertically to the position given
by the reference point zrefpoint
and its offset offs.

SetXSpeed speed Set the speed for moving in x-
direction

SetYSpeed speed Set the speed for moving in y-
direction

SetZSpeed speed Set the speed for moving in z-
direction.

Aspirate amount Aspirate amount of liquid from
the current plate

Dispense amount Dispense amount of liquid into
the current plate.

AspiratePrimaryAir amount Aspirate amount of primary air.
BlowPrimaryAir amount Dispense amount of primary air.
WashTips extpos, volume, airVol,

repeats, cycle_count,
wash_time

Wash the tips in the tip washer.
extpos is the position of the tip
washer, volume is the amount of
washing liquid to aspirate,
airVol is the air volume in the
tips and repeats is the number of
dispense-aspirate cycles to go
through. cycle_count  is the
number of repeats of cycles to
go through including emptying
and refilling of the tip washer.
wash_time is the time the pump-
motors should be switched on
when filling and emptying the
tipwasher.
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C.2. Typical course of events for service ReadProtocol

1 The command is read from the line in the protocol pointed on by line_no.  If line
number is too high, then RPF1.

2 Read the first parameter. If the parameter should be a constant name and it is not,
then RPF2. If the name should be present in the constant table and it is not, then
RPF3.

3 Read the rest of the parameters one by one. If line is too long, then RPF4.
4 Decode and execute the command. Protocol runner checks that it is in the correct

state. If it is not, then RPF5.
4.1. If the command is XX , YY, ZZ, PP or none, then Protocol runner adds the

constants. If the parameters are not valid, then RPF6.
4.2. If the command is Begin, Protocol runner starts to read constants, to check the

configuration of accessories state or to read protocol commands depending on
the current protocol section (see Appendix C.1).

4.3. If command is VerifyConfig, then Protocol runner verifies the accessory
configuration. The accessory configuration expected in the protocol should be
the same as the actual configuration. If it is not the same, then RPF7

4.4. If the command is Loop, then Protocol runner can initiate a loop. If not correct
number of parameters, then RPF8.

4.5. If the command is GotoAccessory or ZGotoAccessory, XYZ-Driver checks
parameters and moves. If the number of parameters is not correct, then RPF8. If
Dispenser and XYZ-Driver are not idle, then RPF9.

4.6. If the command is Dispense, BlowPrimaryAir, AspiratePrimaryAir or Aspirate,
the dispense or aspirate function is invoked. If the correct number of parameters
was not read from the protocol, then RPF8. If Dispenser and XYZ-Driver are not
idle, then RPF9.

4.7. If the command is WashTips, the TipWashing routine (see Appendix C.3) is
started.

4.8. If the command is End, Protocol runner ends a loop, a section or a protocol.
4.8.1. If the loop counter is less than the number of times to loop, then jump

back to beginning of loop else end the loop.
4.8.2. If the current line is in the protocol command section but not within a

loop, then the command is end of protocol.
5 If the command is not end of protocol, continue from step 1.

Error reports:
RPF1: Too long protocol.
RPF2: Not a valid constant name.
RPF3: No such constant in protocol.
RPF4: Protocol line too long.
RPF5: Wrong protocol state.
RPF6: Invalid parameters for adding constants.
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RPF7: Wrong configuration of accessories
RPF8: Wrong number of parameters for command.
RPF9: Dispenser or XYZ-Driver does not become idle in time.

Remedy for all error reports: Abort execution of protocol and load new protocol.

C.3. Typical course of events for service TipWashing

1 Protocol runner checks the parameters. If the parameters are not ok, then TWF1.
2 XYZ-Driver moves the gantry to the position where the tip washer is.
3 If there is liquid in the tips;

3.1. XYZ-Driver moves down the dispense head into the tip washer and the in-
pumps are switched on.

3.2. Dispenser dispenses the liquid and when the tip washer is full, the in-pumps are
switched off. If the pumps are malfunctioning, then TWF2.

3.3. XYZ-Driver moves up the dispense head above the tip washer and the out-
pumps are switched on.

3.4. When the tip washer is empty, out-pumps are switched off. If the pumps are
malfunctioning, then TWF2.

4 Dispenser aspirates primary air.
5 If cycle_count>0;

5.1. The in-pumps are switched on and the variable cycle_count is decremented.
5.2. When the tip washer is full the in-pumps are switched off. If the pumps are

malfunctioning, then TWF2.
5.3. XYZ-Driver moves down the dispense head into the tip washer.
5.4. Dispenser aspirates and dispenses washing liquid t_wash_count number of times
5.5. If cycle_count>0;

5.5.1. The out-pumps are switched on and XYZ-Driver moves up the dispense
head above the tip washer.

5.5.2. The out-pumps are switched off when the tip washer is empty. If the
pumps are malfunctioning, then TWF2.

5.5.3. Repeat from step 5.
6. Dispenser dispenses primary air and the out-pumps are switched on (cycle_count=0).
7. XYZ-Driver moves up the dispense head above the tip washer and when the tip

washer is empty the out-pumps are switched off. If the pumps are malfunctioning,
then TWF2.

8. Signal that washing is finished.

Error reports:
TWF1: Illegal parameters.
TWF2: The pumps are too slow or has stopped working.

Remedy for these errors: Abort execution of protocol and load new protocol.
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C.4. Specification of the external events in Protocol runner
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C.5. Specification of the protocol functionality in Protocol runner
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C.6. First refinement step of the external events in Protocol runner
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C.7. First refinement step of Tipwasher
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C.8. Second refinement step of line parsing in Protocol runner
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C.9. Second refinement step of decoding commands in Protocol runner



59

C.10. Third refinement step of decoding commands in Protocol runner
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