= [=
I EE
E=E
TUCS

Fixed Point Approach to

Commutation of Languages™

Karel Culik 11

Department of Computer Science and Engineering
University of South Carolina

Columbia, 29008 S.C., USA

kculik@sc.rr.com

Juhani Karhumaki

Department of Mathematics and
Turku Centre for Computer Science
University of Turku

20014 Turku, FINLAND
karhumak@cs.utu.fi

Petri Salmela

Department of Mathematics and
Turku Centre for Computer Science
University of Turku

20014 Turku, FINLAND

pesasa@utu.fi

Turku Centre for Computer Science
TUCS Technical Report No 582
December 2003

ISBN 952-12-1286-1
ISSN 1239-1891

Abstract

We show that the maximal set commuting with a given regular set — its
centralizer — can be defined as the maximal fixed point of a certain language
operator. However, an infinite number of iterations might be needed even
in the case of finite languages.

Keywords: Commutation, language, fixed point, combinatorics of words

TUCS Laboratory
Discret Mathematics for Information Technology

*Supported by the Academy of Finland under grant 44087

1 Introduction

The commutation of two elements in an algebra is among the most natural
operations. In the case of free semigroups, i.e., words, it is easily and com-
pletely understood: two words commute if and only if they are powers of
a common word, see, e.g., [11]. For the monoid of languages, even for the
finite languages the situation changes drastically. Many natural problems
are poorly understood and are likely to be very difficult. For further details
we refer in general to [3], [9] or [6] and in connection to complexity issues
to [10] and [4].

Commutation of languages X and Y means that the equality XY =Y X
holds. It is an equality on sets, however, to verify it one typically has to go
to the level of words. More precisely, for each z € X and y € Y one has to
find z/ € X and 4/ € Y such that zy = 9'z’. In a very simple setting this
can lead to nontrivial considerations. An illustrative (and simple) example
is a proof that for a two-element set X = {z,y} with zy # yz, the maximal
set commuting with X is X, see [1].

One can also use the above setting to define a computation. Given
languages X and Y, for a word z € X define the rewriting rule

x =¢ z' if there exists 2’ € X,y,y' € Y such that zy = 3/’

Let =7 be the transitive and reflexive closure of =>¢. What can we say
about this relation? Very little seems to be known. Naturally unanswered
(according to our knowledge) questions are: when is the closure of a word
z € X, i.e., its orbit, finite or is it always recursive for given regular languages
X and Y?

We do not claim that the above operation is biologically motived. How-
ever, it seems to resemble some of the natural operations on DN A-sequences,
see [13]: the result is obtained by matching two words and then factorizing
the result differently. Consequently, it provides a further illustration of the
computational complexity of the operations based on matching of words.

Our goal is to consider a particular question on commutation of lan-
guages without any biological or other motivation. More precisely, we want
to introduce an algebraic approach, so-called fized point approach, to study
Conway’s Problem. The problem asks whether or not the maximal language
commuting with a given regular language X is regular as well. The maximal
such set is called the centralizer of X. An affirmative answer is known only
in very special cases, see, e.g., [15], [3], [14], [7] and [8]. In general, the
problem seems to be very poorly understood — it is not even known whether
the centralizer of a finite language X is recursive!

We show that the centralizer of any language is the largest fixed point of
a very natural language operator. Consequently, it is obtained as the limit
of simple recursion. When started from a regular set X all the intermediate
approximations are regular, as well. However, as we show by an example, an

infinite number of iterations might be needed and hence Conway’s Problem
remains unanswered.

One consequence of our results is that if Conway’s Problem has an af-
firmative answer, even nonconstructively, then the membership problem for
the centralizer of a regular language is actually decidable, i.e., the centralizer
is recursive.

2 Preliminaries

We shall need only very basic notations of words and languages; for words
see [12] or [2] and for languages [17] or [5].

Mainly to fix the terminology we specify the following. The free semi-
group generated by a finite alphabet A is denoted by A™. Elements of A* are
called words and subsets of AT are called languages. These are denoted by
lower case letters z,y,... and capital letters X,Y, ..., respectively. Besides
standard operations on words and languages we especially need the opera-
tions of the quotients. We say that a word v is a left quotient of a word w
if there exists a word u such that w = wv, and we write v = v~ 'w. Con-
sequently, the operation (u,v) — u v is a partial mapping. Similarly, we
define right quotients, and extend both of these to languages in a standard
way: XY ={z7lylze X,y €Y}

We say that two languages X and Y commute if they satisfy the equality
XY =YX. Given an X C A7 it is straightforward to see that there exists
the unique maximal set C€(X) commuting with X. Indeed, €(X) is the
union of all sets commuting with X. It is also easy to see that C(X) is a
subsemigroup of A*. Moreover, we have simple approximations, see [3]:

Lemma 1. For any X C A' we have
X1 C @(X) C Pref(X+) NSuf(X™).

Here Pref(X ™) (resp. Suf(X ™)) stands for all nonempty prefixes (resp.
suffixes) of X+.

Now we can state:
Conway’s Problem. Is the centralizer of a regular X regular as well?

Although the answer is believed to be affirmative, it is known only in
the very special cases, namely when X is a prefix set, binary or ternary,
see [15], [3] or [7], respectively. This fact together with the fact that we
do not know whether the centralizer of a finite set is even recursive, can
be viewed as an evidence of amazingly intriguing nature of the problem of
commutation of languages.

Example 1. (from [3]) Consider X = {a,ab,ba,bb}. Then, as can be readily
seen, the centralizer C(X) equals to X \ {b} = (X U {bab, bbb})™. Hence,
the centralizer is finitely generated but doesn’t equal either to X+ or {a,b}™.

Finally, we note that in the above the centralizers were defined with
respect to the semigroup A™. Similar theory can be developed over the free
monoid A*.

3 Fixed Point Approach

As discussed extensively in [14] and [8], there has been a number of different
approaches to solve the Conway’s Problem. Here we introduce one more,
namely so-called fixed point approach. It is mathematically quite elegant,
although at the moment it does not yield into breakthrough results. How-
ever, it can be seen as another evidence of the challenging nature of the
problem.

Let X C A" be an arbitrary language. We define recursively

Xy = Pref(XT) N Suf(X™T)
and
X1 = X3 \ [X (XX AX X) U (XX AX X)X, fori >0, (1)
where A denotes the symmetric difference of languages. Finally we set

Zy = Xi. (2)

i>0
We shall prove
Theorem 1. Zj is the centralizer of X, i.e., Zy = C(X).
Proof. The result follows directly from the following three facts:
(1) Xi41 C X, for all ¢ > 0,
(ii) €(X) C X, for all 4 > 0, and
(iii) ZoX = X Zj.

Indeed, (iii) implies that Zy C €(X), while (ii) together with (2) implies
that C(X) C Zp.

Claims (i)—(iii) are proved as follows. Claim (i) is obvious. Claim (ii)
is proved by induction on i. The case ¢ = 0 is clear, by Lemma 1. Let
z € C(X) and assume that C(X) C X;. Assume that z ¢ X;;1. Then

z€ X MXX;AX; X)U (X X;AX; X)X L

Consequently, there exists an x € X such that
zz or zr € (X X;AX; X).

This, however, is impossible since z € €(X) C X; and C(X)X = XC(X).
For example, zz is clearly in X X;, but also in X;X due to the identity
zz = 'z’ with 2/ € €(X), 2’ € X. So z must be in X;;1, and hence (ii) is
proved.

It remains to prove the condition (iii). If ZyX and X Z; were unequal,
then there would exist a word w € Zj, such that either wX ¢ XZ; or
Xw ¢ ZyX. By symmetry we may assume the previous case. By the
definition of Zp and (i) this would mean that beginning from some index k
we would have wX ¢ X X;, when i > k. However, w € Zy C X, for every
1 > 0, especially for k, and hence X; X # X Xj;. This would mean that
w € (XX AX; X)X ! and hence w ¢ X1, and consequently w ¢ Zg, a
contradiction. O

Theorem 1 deserves a few remarks.
First, we define the language operator ¢ by the formula

0: Y=Y\ [X HXYAYX)U (XYAY X)X 1],

where X is a fixed language. Then obviously all languages commuting with
X are fixed points of ¢, and the centralizer is the maximal one. Second, in
the construction of Theorem 1 it is not important to start from the chosen
Xy. Any superset of €(X) would work, in particular AT. Third, as can be
seen by analyzing the proof, in formula (1) we could drop one of the members
of the union. However, the presented symmetric variant looks more natural.
In the next section we give an example showing that for some languages
an infinite number of iterations are needed in order to get the centralizer.
In the final concluding section we draw some consequences of this result.

4 An Example

As an example of the case in which the fixed point approach leads to an
infinite iteration we discuss the language X = {a, bb, aba, bab, bbb}. First,
we prove that the centralizer of this language is X*. To do this we start
by proving the following two lemmata. We consider the prefiz order of A*,
and say that two words are incomparable if they are so with respect to this
order. Given language X, we say that v is an incomparable element of X if
v is incomparable with every other word in X.

Lemma 2. Let X be a rational language including a word v incomparable
in X. Ifw € C(X), then for some integer n € {0,1,2,...} there exist words
t € X" and u € Suf(X) such that w = ut and uX"X* C C(X).

Proof. If w € C(X) and v is an incomparable element in X, then equation
XC(X) = (X)X implies that vw € C(X)X and therefore vwv; ! € C(X)
for some element v; € X. Repeating the argument n times we obtain

" w(vy, - --vv1) "t € C(X), v; € X,

where t = vy, ---vov1 and w = ut. Then v"u € C(X) for some integer
n € {0,1,2,...} and word u € Suf(X) N Pref(w). Since v is incomparable,
we conclude that for every s € X™

v"us € C(X)X" = X"C(X),

and hence

us € C(X).
In other words, uX™ C €(X). Since C(X) is a semigroup, we have also the
inclusion uX"X* C C(X). O

For every proper suffix u; € Suf(X), including the empty word 1, there
either exists a minimal integer n;, for which u; X™ C €(X), or u; X™ Z C(X)
for every integer n > 0. Since Lemma 2 excludes the latter case, we can
associate with every word w € C(X) a word u; € Suf(X) and the minimal
n; such that w € u; X™ X*.

Lemma 3. If the finite language X contains an incomparable word, it has
a rational centralizer. Moreover, the centralizer is finitely generated.

Proof. If the language X is finite, then the set of proper suffixes of X is also
finite. With the above terminology we can write

e(x) = [Juwxmx:
i€l
= (Jwx™) x*
el
=G
= GX*,

where [is an index set defining suffixes u; above. Here the language G is
finite and X C G. Indeed, if ug = 1, then ng = 1, and hence uy X" =
1-X=XCAdG.

Since (X)) is a semigroup and X is included in G, we obtain

C(X)=CX)T =(GX")" =(X+G)" =G
O

Now we can prove that the centralizer of our language X = {a, bb, aba, bab,
bbb} is Xt. The word bab is incomparable. The set of proper suffixes of X
is {1,a, b, ab, ba,bb}. We will consider all of these words separately:

up=1:1-X CC(X) so that ng = 1.
up =a: a € X CC(X) so that n; = 0.

ug=>b:b-a"-a ¢ XC(X) = €(X)X and therefore b-a™ ¢ C(X) for all
n € N.
This means that the number ny does not exist.

ug =ab: a-ab- (bab)™ ¢ Suf(X™) implies aab(bab)™ ¢ C(X) so that
aab(bab)™ ¢ XC(X) and therefore ab(bab)™ ¢ C(X) for all n € N.
Hence the number n3 does not exist.

us =ba: ba-a"-a ¢ XC(X) and therefore ba - a™ ¢ C(X) for all n € N,
and hence the number n4 does not exist.

us =bb: bb € X C C(X) so that ny = 0.

As a conclusion I = {0,1,5}, and G = J;c;uiX™ =1-X +a +bb = X.
This gives us the centralizer

C(X)=GX"=XX"= X,
in other words we have established:
Fact 1. C({a, bb, aba,bab, bbb}) = {a, bb, aba, bab, bbb} .

Next we prove that the fixed point approach applied to the language
X leads to an infinite loop of iterations. We prove this by showing that
there exist words in C(X) \ X; for every X; of the iteration (1). To do
this we take a closer look on the language L = (bab)*ab(bab)*. Clearly,
L C Xy =Pref(XT)NSuf(X*) and LN Xt = (.

By the definition of the fixed point approach, word w € X; is in X;4
if and only if Xw C X;X and wX C XX;. We will check this condition
for an arbitrary word (bab)*ab(bab)” € L with k,n > 1. The first condition
Xw C X; X leads to the cases:

S
S
o

Bl
Q
S
S
S
>

3
|

a - (bab)*ab(bab) (aba)(bb - a)k~1(bab)"t! € XTX C X;X,
bb - (bab)kab(bab)® = (bbb)a(bb - a)k~1(bab)"t! € XTX C X;X,
aba - (bab)kab(bab)” = a(bab)a(bb-a)*~1(bab)"t! € XTX C X;X,
bbb - (bab)kab(bab)® = (bb)%a(bb-a)k~'(bab)"T! € XX C X; X
3)
and
bab - (bab)*ab(bab)™ = (bab)**'ab(bab)" " - bab € X;X.
However, the last one holds if and only if
(bab)FLab(bab)" * € X;. (4)

Similarly, the second condition wX C X X; yields us:

(bab)*ab(bab)™ -a = bab(bab)*~!(a-bb)"aba € XX+ C X X;,
(bab)kab(bab)™ -bb = bab(bab)*!(a-bb)"a - bbb € XX T C X X,
(bab)kab(bab)™ - aba = bab(bab)*~!(a-bb)"a-a-bab-a € XXt C XX,
(bab)kab(bab)™ - bbb = bab(bab)*~!(a-bb)"a-a-bb-bb € XXt C X X;
(5)
and
(bab)*ab(bab)™ - bab = bab - (bab)* Lab(bab)"*! € X X;.
Here the last one holds if and only if
(bab)F~Lab(bab)" ! € X;. (6)

From (4) and (6) we obtain the equivalence

(bab)kab(bab)™ € X;y1 <= (bab)**lab(bab)" !, (bab)k~Lab(bab)"*! € X;
(7)
Now, the result follows by induction, when we cover the cases £ = 0 or
n=0.

In the case K = 0 and n > 0 we have that ab(bab)™ € Xy, but ab(bab)™ ¢
X1, since a - ab(bab)™ ¢ Xy X. The same applies also for (bab)™ba by sym-
metry.

In the case n = 0 and k > 1 we first note that X (bab)kab C XoX,
due to the equations in (3) and the fact that bab - (bab)¥ab = (bab)*ba -
bab € XoX. Similarly, (bab)*abX C XX, due to the equations in (5)
and the fact (bab)¥ab - bab = bab - (bab)*~'ab(bab) € X X,. These together
imply that (bab)¥ab € X;. On the other hand, since (bab)¥ba ¢ X, then
bab - (bab)kab ¢ X1 X, and hence (bab)*ab ¢ X,.

Over all we obtain the following result: if ¢ = min{k,n + 1}, then

(bab)*ab(bab)™ € X; but (bab)*ab(bab)™ ¢ X;,1.

The above can be illustrated as follows. If the language (bab)*ab(bab)*
is written in the form of a downwards infinite pyramid as shown in Fig-
ure 1, then Figure 2 shows how the fixed point approach deletes parts of
this language during the iterations. In the first step Xy — X; only the
words in ab(bab)* are deleted as drawn on the leftmost figure. The step
X7 — X, deletes words in (bab)ab(bab)* and (bab)*ab, and so on. On
the step X; — X;41 the operation always deletes the remaining words
in(bab)’ab(bab)* and (bab)*ab(bab)’~!, but it never manages to delete the
whole language (bab)*ab(bab)*. This leads to an infinite chain of steps as
shown in the following

Fact 2. XD X; D ---X; D---C(X).

ab
ab(bab) (bab)ab
ab(bab)® (bab)ab(bab) (bab)®ab
ab(bab)? (bab)ab(bab)® (bab)ab(bab) (bab)®ab

ab(bab)* (bab)ab(bab)® (bab)?ab(bab)* (bab)3ab(bab) (bab)*ab

Figure 1: Language (bab)*ab(bab)* written as a pyramid.

S Xo - Xp

Figure 2: Deleting words in (bab)*ab(bab)* from languages X; during the
iteration.

Figure 3: Finite automata recognizing languages X and X

When computing the approximations X; the computer and available

software packages are essential. We used Grail+, see [18]. For languages X
and X their minimal automata are shown in Figure 3.

Let us consider the minimal automata we obtain in the iteration steps
of the procedure, and try to find some common patterns in those. The
automaton recognizing the starting language X is given in Figure 4.

The numbers of states, finals states and transitions for a few first steps
of the iteration are given in Table 1. From this table we can see that after
a few steps the growth becomes constant. Every step adds six more states,
three of those being final, and eleven transitions.

When we draw the automata corresponding to subsequent steps from X
to X;11, as in Figures 5 and 6, we see a clear pattern in the growth. See that
automata representing languages X5 and Xg are built from two sequence of
sets of three states. In the automaton of Xg both sequences have got an
additional set of three states. So there are totally six new states, including
three new final ones, and eleven new transitions. In every iteration step
the automata seem to use the same pattern to grow. When the number
of iteration steps goes to infinity, the lengths of both sequences go also to
infinity. Then the corresponding states can be merged together and the
result will be the automaton recognizing the language X*. This seems to
be a general phenomena in the cases where an infinite number of iterations
are needed. Intuitively that would solve the Conway’s Problem. However,
we do not know how to prove it.

Figure 4: Finite automaton recognizing the language X

final states states transitions
Xo 6 8 15
X 5 9 17
X 6 13 24
X3 9 19 35
X4 12 25 46
X5 15 31 57
X 18 37 68
X7 21 43 79
Xg 24 49 90
X 27 55 101
X1 30 61 112
X1 33 67 123
X9 36 73 134
X3 39 79 145
X1a 42 85 156
X5 45 91 167
X6 48 97 178
X7 51 103 189
Xig 54 109 200
X9 57 115 211
final states states transitions
Xoo 60 121 222
Xo1 63 127 233
Xoo 66 133 244
Xos 69 139 255
Xoy 72 145 266
Xos 75 151 277
Xog 78 157 288
Xo7 81 163 299
Xog 84 169 310
Xog 87 175 321
X3p 90 181 332
X3 93 187 343
X359 96 193 354
X33 99 199 365
X34 102 205 376
X35 105 211 387
X3¢ 108 217 398
Xs37 111 223 409
X3g 114 229 420
X39 117 235 431

Table 1: The numbers of states, final states and transitions of automata
corresponding to the iteration steps for the language X.

10

f18 S5 F12 S

. o o o B 4
RN I I T, T \ g
2 <

17 14 11 8

27 30

v e EeE)

Figure 5: The finite automaton recognizing X

J18 S S

<T A D

Figure 6: The finite automaton recognizing Xg

11

5 Conclusions

Our main theorem has a few consequences. As theoretical ones we state the
following two. These are based on the fact that formula (1) in the recursion
is very simple. Indeed, if X is regular so are all the approximations Xj.
Similarly, if X is recursive so are all these approximations. Of course, this
does not imply that also the limit, that is the centralizer, should be regular
or recursive.

What we can conclude is the following, much weaker result, first noticed
in [8]:

Theorem 2. If X is recursive, then C(X) is in co-RE, that is its complement
is recursively enumerable.

Proof. As we noticed above, all approximations X; are recursive, and more-
over effectively findable. Now the result follows from the identity

e - U~

i>0

where bar is used for the complementation. Indeed, a method to algorith-
mically list all the elements of C(X) is as follows: Enumerate all words
w1, Wo, W3, - .. and test for all ¢ and 7 whether w; € YJ Whenever a positive
answer is obtained output w;. O

For regular languages X we have the following result.

Theorem 3. Let X € AT be regular. If C(X) is regular, even noneffectively,
then C(X) is recursive.

Proof. We assume that X is regular, and effectively given, while C(X) is
regular however not necessarily constructively. We have to show how to
decide the membership problem for €(X). This is obtained as a combination
of two semialgorithms.

A semialgorithm for the question “X € €(X)?” is obtained, as in the
proof of Theorem 2. A semialgorithm for the complementary question is
as follows: Given z, enumerate all regular languages L1, Ls,... and test
whether or not

(1) LiX=XL,
and
(12) xz € L;.

Whenever the answers to both of the questions are affirmative output the
input z. The correctness of the procedure follows since C(X) is assumed to
be regular. Note also that the tests in (i) and (ii) can be done since L;’s and
X are effectively known regular languages. O

12

Theorem 3 is a bit amusing since it gives a meaningful example of the
case where the regularity implies the recursiveness. Note also that a weaker
assumption that C(X) is only context-free would not allow the proof, since
the question in (i) is undecidble for contex-free languages, see [4].

We conclude with more practical comments. Although we have not been
able to use our fixed point approach to answer Conway’s Problem even in
some new special cases, we can use it for concrete examples. Indeed, as
shown by experiments, in most cases the iteration terminates in a finite
number of steps. Typically in these cases the centralizer is of one of the
following forms:

(i) A%,
(i) X, or
(iii) {w e AT |wX, Xw C XX}.

However, in some cases, as shown in Section 4, an infinite number of itera-
tions are needed — and consequently some ad hoc methods are required to
compute the centralizer.

The four element set of example 1 is an instance where the centralizer is
not of any of the forms (i)-(iii). This as well as some other such examples,
can be verified by the fixed point approach using a computer, see [16].

Concluding remark: The fixed point approach was independently noticed
by M. Hirvensalo and Z. Esik.

References

[1] Berstel, J., Karhumaéki, J.: Combinatorics on words — A tutorial, Bull.
EATCS 79 (2003), 178-229.

[2] Choffrut, C., Karhuméki, J.: Combinatorics of Words. In Rozen-
berg, G., Salomaa, A. (eds.), Handbook of Formal Languages, Vol. 1,
Springer-Verlag (1997) 329-438.

[3] Choffrut, C., Karhumaki, J., Ollinger, N.: The commutation of finite
sets: a challenging problem, Theoret. Comput. Sci., 273 (1-2) (2002)
69-79.

[4] Harju, T., Ibarra, O., Karhumaki, J., Salomaa, A., Decision questions
concerning semilinearity, morphisms and commutation of languages, J.

Comput. System Sci. 65 (2002) 278-294.

[5] Hopcroft, J., Ullman, J., Introduction to Automata Theory, Languages
and Computation, Addison-Wesley (1979).

13

[6]

[7]

(8]

[9]

[17]
[18]

Karhumaki, J.: Challenges of commutation: an advertisement, in Proc
of FCT 2001, LNCS 2138, Springer (2001) 15-23

Karhumaki, J., Latteux, M., Petre, I.: The commutation with codes
and ternary sets of words, in Proc. of STACS 2003, LNCS 2607,
Springer (2003), 74-84; final version to appear.

Karhumaiki, J. and Petre, I.: Conway’s problem for three-word sets,
Theoret. Comput. Sci., 289/1 (2002) 705-725.

Karhumaéki, J. and Petre, 1., Two problems on commutation of lan-
guages, in: G. Piun, G. Rozenberg and A. Salomaa (eds.), Current
Trends in Theoretical Computer Science, World Scientific, to appear.

Karhumaiki, J., Plandowski, W., Rytter, W.: On the complexity of
decidable cases of the commutation problem of languages, LNCS 2138,
Springer (2001) 193-203; final version to appear.

Lothaire, M.: Combinatorics on Words (Addison-Wesley, Reading,
MA.), (1983).

Lothaire, M.: Algebraic Combinatorics on Words (Cambridge Univer-
sity Press), (2002).

Paun, G., Rozenberg, G. and Salomaa, A., DNA Computing. New Com-
puting Paradigms, Texts in Theoretical Computer Science. An EATCS
series. Springer (1998)

Petre, I.: Commutation Problems on Sets of Words and Formal Power
Series, PhD Thesis, University of Turku (2002)

Ratoandromanana, B.: Codes et motifs, RAIRO Inform. Theor., 23(4)
(1989) 425-444.

Salmela, P., Rationaalisen kielen sentralisaattorista ja sen
maarittamisesta kiintopistemetodilla, Master’s theses, University
of Turku (2002)

Salomaa, A., Formal Languages, Academic Press (1973).

Grail+ 3.0 - software package, Department of Com-
puter Science, University of Western Ontario, Canada,
http://www.csd.uwo.ca/research/grail/ grail.html.

14

Turku Centre for Computer Science
Lemminkaisenkatu 14

FIN-20520 Turku

Finland

http://www.tucs.fi

University of Turku
e Department of Information Technology
e Department of Mathematics

Abo Akademi University
e Department of Computer Science
o Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
o Institute of Information Systems Science

