Evaluating the XP Customer M odel
and Design by Contract

Ralph-Johan Back
Pila Hirkman
L uka Milovanov

TUCS

Turku Centrefor Computer Science
TUCS Technical Reports
No 585, December 2003

Evaluating the XP Customer M odel
and Design by Contract

Ralph-Johan Back

Turku Centre for Computer Science,

Abo Akademi University, Department of Computer Science
Lemminkaisenkatu 14 A, FIN-20520 Turku, Finland
e-mail: backrj@abo.fi

Piia Hirkman

Turku Centre for Computer Science,
Abo Akademi University, IAMSR
e-mail: phirkman@abo.fi

Luka Milovanov

Turku Centre for Computer Science,

Abo Akademi University, Department of Computer Science
e-mail: Imilovan@abo.fi

= = Turku Centre for Computer Science
TUCS Technical Report No 585

- . . December 2003

=
™ ISBN 952-12-1290-X
TUCS ISSN 1239-1891

Abstract

In this paper we describe one of the series of experiments with Extreme Program-
ming, carried out as a summer project. The focus in this experiment was to try
out the XP customer model and Design by Contract. The experiment indicates
that the extreme programming emphasis on having an on-site customer available
during the project improves the communication between customers and the pro-
gramming team, and markedly decreases the number of false features and feature
misses. It also indicates that the systematic use of Design by Contract leads to a
low post-release defect rate for the software system built.

Keywords: Extreme Programming, Design by Contract, Stepwise Feature Intro-
duction, customer role, time estimation

TUCS Laboratory
Software Construction Laboratory
Data Mining and Knowledge Management Laboratory

1 Introduction

Software development projects tend to be very cumbersome; the process itself is
frustrating with constantly changing requirements, the resulting software does not
conform to expectations, and deadlines are often overrun. This motivates repeated
attempts at finding the perfect” method for software development. The larger the
software to be written is, the more serious is the problem. New methods are also
proposed, but it is not so easy to study their impact on software construction, and
it can be difficult to find the time and resources needed to improve these methods.
The Gaudi Software Factory is an effort to provide an environment where software
methods can be tried out, and at the same time to establish an environment where
academic and industrial needs and interests can meet.

Gaudi is an experimental software factory which aims at developing and test-
ing new software development methods in practice. The influence of new methods
on the time, cost, quality, and quantitative aspects of developing software is stud-
ied in a series of controlled experiments, one of which is presented in this report.
A characteristic of Gaudi is that the programmers are students. However, pro-
gramming in Gaudi is not a part of their studies, and the students get no credits
for participating in Gaudi — they are just employed in Gaudi throughout the ex-
periment. A typical experiment is the development of a new software product (or
a new release of an existing product).

The setting of this series of experiments follows a pattern. An experiment
has restricted resources (4-6 programmers), goals, and time (3-6 months). Prod-
uct development is the main activity, programmers are assisted by a coach, and
well-defined software practices are followed in the construction process. For the
moment, the basic software process that is followed in Gaudi is based on Extreme
Programming (XP). We choose this method because it is flexible and light-weight
and it can be taught rather quickly to the students. This does not preclude the
use of other software processes in Gaudi in the future, but until now, we have
been very satisfied with the experiences of using XP as the base for our software
experiments.

We started with a basic set of XP practices: pair programming, unit testing,
refactoring, short iteration cycles, and light documentation, to name a few. This
XP toolset has been extended with Stepwise Feature Introduction (SFI), an ex-
perimental programming methodology, and the use of various programming lan-
guages and GUIs.

The Gaudi software factory was started as a pilot in the summer of 2001 with
a group of six programmers working on a single product (an outlining editor).
The following summer introduced two other products and six more programmers.
The work continued as half-time employments during next fall and spring. In the
fourth cycle, in the summer of 2003, there were five parallel experiments with five

1

different products, each with a different focuses but with approximately the same
settings. Altogether, we have carried out 15 software construction experiments in
Gaudi to this day. This report portrays one of these experiments, the development
of a personal financial planner.

The report is structured as follows. Section 2 describes the goals of the exper-
iment: the why, what, when, who, and how. The two phases of the experiment
(training and development) are laid out in section 3. This section also includes de-
tails on the most important aspects of XP that were present in the experiment. The
following two sections present our results. The project delivered not only a piece
of software but also — and pre-eminently — metrics, impressions, and experiences,
described in section 6. In the final section, some conclusions are made together
with some proposals for future developments.

2 Goalsfor the Experiment

We had essentially three main goals with the experiment: to test the XP customer
model, to test how Design by Contract worked in practice, and to test Stepwise
Feature Introduction with a statically typed object-oriented language. The result
for the last goal will be reported in a separate paper.

2.1 XP Customer Model and the Planning Game

Extreme Programming is a lightweight software methodology introduced by Beck
in 2000. It is characterized by short iteration cycles that combine the design and
implementation phases, continuous refactoring supported by extensive unit test-
ing, on-site customers, promoting team communication and pair programming.
We use extreme programming in Gaudi as the framework process for perform-
ing our practical experiments in software engineering. XP has turned out to be a
very good software process in the university environment. It is easy for students
to learn and follow the main ideas of the process and they say that they enjoy
working in the XP settings.

One of the reasons for the growing popularity of XP in the industry is its stress
on customer’s satisfaction. However, in our previous experiments we failed to
have an on-site customer for the product development. Trying out the XP cus-
tomer model was therefore one of the main objectives of this experiment. A
secondary objective was to see if we could make time estimations of the pro-
grammers’ work. XP has a notion of planning game, a part of which are time
estimations and release planing. However, this planning game requires an active
customer, so we have not been able to try out the planning game before.

2

2.2 Design by Contract and Eiffel

Design by Contract [10] is a systematic method for making software reliable (cor-
rect and robust). A system is structured as a collection of cooperating software
elements. The cooperation of the elements is restricted by contracts, explicit def-
initions of obligations and guarantees. The contracts are pre- and postconditions
of methods and class invariants. These conditions are written in the programming
language itself and can be checked at runtime, when the method is called. If a
method call does not satisfy the contract, an error is raised.

Design by Contract was the second objective of the experiment, so we choose
Eiffel as the programming language of the project, because it has very good built
in support for this technique [9]. Eiffel is an object-oriented language that also
includes a comprehensive approach to software construction: a method, and an
environment (EiffelStudio) [8]. It is a simple, yet powerful language that strictly
follows the principles of object-orientation. The language supports multiple in-
heritance, has no global variables and pointer arithmetics. Eiffel has a choice of
graphical libraries, including the portable EiffelVision library, used in our project.
Eiffel compilation technique uses C as an intermediate language. The run-time
efficiency of Eiffel’s executables is similar to C.

Eiffel’s documentation[9] claimed full portability of the language. We also
wanted to test how portable Eiffel really is, so we planned to release versions of
the software for both the Windows and the Linux platform. The development team
in our project was using ISE Eiffel Enterprise version 5.3 for Linux. We also had
one machine with the same version of Eiffel Enterprise for Windows for building
Windows executable.

Unfortunately, ISE Eiffel has no original unit testing framework. Unit testing
is an essential part of the extreme programming and could not be left outside our
project, in particular as we had a lot of positive experience with unit testing. Our
choice was to use the Gobo Eiffel Test tool [7]. Gobo Eiffel Test is distributed
freely under the terms and conditions of the Eiffel Forum License [14].

2.3 Stepwise Feature Introduction

Stepwise Feature Introduction (SFI) is a software development methodology in-
troduced by Back [2] based on the incremental extension of the object-oriented
software system one feature at a time. This methodology has much in common
with the original stepwise refinement method. The main difference to stepwise re-
finement is the bottom-up software construction approach and object orientation.
Stepwise Feature introduction is an experimental methodology and is currently
under development.

We are using this approach in our projects in order to get practical experience

3

with the method and suggestions for further improvements. Extreme Program-
ming does not say anything about the software architecture of the system. Step-
wise Feature Introduction provides a simple architecture that goes well with the
XP approach of constructing software in short iteration cycles. So far we have had
positive feedback from using SFI with a dynamically typed object-oriented lan-
guage like Python and we wanted to test SFI with a statically typed object-oriented
language like Eiffel. These results are reported in a separate paper.

2.4 TheProduct

As in the previous experiments, we wanted to keep the developers concentrated
on their work and not be disturbed by the experimental nature of the project and
product. To achieve this we decided to develop a piece of software which would
not seem too experimental to the programmers — in this case a personal financial
planner. The original idea was that the user would first create a desirable but
realistic version of her/his financial future. As time passed, financial transactions
were carried out. They would be recorded in the system, and the future financial
scenario would be updated based on the new information.

The features required of this product type include tracking of actual events
(manually or automatically), planning (such as budgeting and creating scenarios),
and showing future scenarios. The system should also provide advice and warn-
ings, and support multiple user profiles. These features should exist for different
categories of financial data, including basic transactions (income and expendi-
ture), investments, and loans. The system should provide ways for data input,
calculation, presentation (numerical and graphical), customization, accessibility,
and persistency.

One important planned characteristic of the product was the ability to retrieve
data from bank statements through Internet banking. Another essential area was
the actual planner: it should be able to adjust the plan as time passed by and
actual transactions were recorded. The user could set goals (for example, to buy
a house), and the planner would make suggestions and give advice about the best
ways to attain that goal. A plan could also be made for the user for how to attain
his goal. The system should react to how the user follows that plan as transaction
data is obtained.

Based on priorities provided by the customer, the most important (and basic)
features were selected as the ones to be implemented during the first three-month-
period. This limited the functionality of the product into manually recording basic
transactions, providing graphical presentations, and creating a budget/scenario.
Naturally, saving data and printing were also included in the requirements.

4

3 Setup of the Experiment

The experiment was set up as a typical Gaudi development project. We describe
below the central parts of this: the product development team, the resources avail-
able, and environment for the experiment.

3.1 TheTeam

The composition of the team was somewhat different from earlier experiments in
Gaudi [4]. This time, the team included two professors, one in Computer Science
(Ralph Back) and the other in Accounting Information Systems (Barbro Back),
that acted as managers, one Ph.D. student acting as both coach and project man-
ager (Milovanov), and four undergraduate students, employed as programmers.
Additionally, another Ph.D. student with a background in Accounting Informa-
tion Systems played the role of the customer (Hirkman). As stated earlier, the
separation of the ”business representative” from the other roles was the biggest
change in the standard Gaudi team composition. This allowed us to implement
the XP recommendation for having an on-site customer [6].

One of the two professors and the coach had been engaged in previous ex-
periment as well, but the other “manager” and the ”customer” were new to this
approach for developing software. The customer was also new to the role as
a customer. Her experiences from earlier involvement in software development
were strictly from a developer’s point of view.

The programmers were third-fourth year computer science students. Two of
them had previous experience of such a project (from a previous Gaudi experi-
ment), but the other two were unfamiliar with this software process. On other
issues their experience level varied. There was only one who had not developed
software in a team before, and one admitted having previous experience in both
unit testing and Design by Contract.

3.2 The Schedule

The schedule for the project was defined by two factors. First and foremost, the
students were employed for the summer only. Additionally, the experiment was
to be comparable with the other Gaudi projects running at the same time. That is,
we set ourselves a strict three-month deadline: the product was to be released by
August 31 at latest.

We decided not to split the project into three stages, training, programming
and debugging, as we did before. Instead, we held tutorials on the Gaudi process
for the programmers for two weeks before they started working, and they then
programmed from the beginning to the last day of the project.

5

Tutorial Numbers | Total hours
Eiffel and DBC 2 4
CVS 1 2
Extreme Programming 1 2
SFI 1 2
Unit testing 1 2
All tutorials together 6 12

Table 1: Tutorials

3.3 Environment

As during the previous Gaudi experiments, all programmers were sitting in the
same room, arranged according to the advice given by Beck [6]. The four pro-
grammers sat by a big table in the middle of the room. Four computers were
placed so that the work stations formed a clover-like square. Since the team con-
sisted of only two pairs, there was no special machine for integration. There
were no separators which could impede communication. There was a bookshelf,
a white-board and a noticeboard in the room. Outside this room was a recreation
area with a coffee maker etc. that was shared with four other groups of program-
mers. We also decided to use the same platform as in the previous projects —
Linux. The most used software tools were EiffelStudio [13] (see section 2.2),
XEmacs editor, CVS and a CVS front-end — Cervisia. All the software was open
source except for the EiffelStudio and Windows 2000.

4 Runningthe project

As mentioned earlier, the project was preceded by a short training period for the
programmers. The actual development work followed quite closely an XP style
project flow: the iterations were short, planning games were played, and so forth.
The following sections provide some details on the actual project phases and elab-
orate more on the newer XP elements present in the experiment.

4.1 Training

Before the project officially started, the students were given several tutorials to
learn the tools and techniques which were to be used in the project. The tutorials
were held before the official start of the project and included selected bibliogra-
phy for the students to read. Table 1 shows the number of the tutorial sessions
organized for each topic and the total number of hours spent on these issues.

6

[idle

B in team

[l writing stories
testing

92

Figure 1: Customer involvement (%)

The two first weeks of the project time were provided for training as well.
During that time the developers were exploring the tools and technology they
were going to use during the project. They were reading technical books, manuals
and various documentation given by the coach. They were also writing small
programs in Eiffel, practicing CVS and SourceForge, learning to write unit tests
etc.

4.2 Development

At project kick-off, the managers, the coach, and the customer had a meeting
where the software to be developed was discussed in general. Based on this
discussion, the customer created a more detailed idea of the product. Since the
development team had already been trained,the planning games could begin im-
mediately. The main interactions took place in the development team itself, with
the coach, and with the customer, all following XP practices. The development
work itself proceeded in XP style short iterations.

4.3 Customer Involvement

The customer worked basically as an on-site customer. The customer was avail-
able for questions or discussions whenever the development team felt this was
necessary. However, the customer did not work in the same premises as the de-
velopment team. This was originally recommended by XP practices [5], but it
was considered to be unnecessary because the customer’s office situated in the
same building with the development team’s premises —this was considered to be
sharing enough”.

Communication between the customer and the development team took place
both through instructions given on paper and during face-to-face meetings. There
was no complete requirement specification of the product to be built. The most
comprehensive written instructions were formulated as customer stories which
followed the guidelines given by the XP practice: the stories were about three
sentences of text in the customers terminology without techno-syntax [1]. The
customer wrote 15 stories, which were divided into six different releases as a joint
effort between the customer and the coach.

The customer stories were written in the form given by Beck [6] providing
information about the title, date, status and a short description of what the user
should be able to do after the story was finished. The division of the product’s
features into the stories was made by the customer based on an intuitive idea
about what meaningful chunks the system could be divided into.

Since the customer stories did not provide very detailed guidelines for the
desired features, the development team and the customer had a meeting at the
beginning of every iteration, during which the requirements were further specified.
These meetings usually took about an hour. During the meetings, some of the
time was used to make sure the team understood the application logic correctly,
but mostly the discussions concerned aspects on the user interface. The scantiness
of time spent on logic issues could stem from the fact that business logic in the
system was not very complicated; no experts are required to know how day-to-day
personal finances should work.

Figure 1 shows how the customer’s time was spent on project issues. Appar-
ently, being an on-site customer does not increase the customer’s work load very
much. One might even wonder whether an on-site presence is really necessary
based on these figures. However, the feedback from the development team shows
that an on-site customer is very helpful even though the customer’s input was
needed rather seldom.

4.4 Planning Game

This Gaudi project was the first where an actual planning game and release esti-
mation took place. Because the duration and setting of the experiment were fixed,
the planning concentrated on the functionality to be delivered. The goal of the
planning game was to choose the stories to be implemented, rather than taking
all of them and negotiating about a release date and resources to be used (that is,
planning by time [6]).

The initial release planning was made without the programmers, because the
coach had more experience in making estimates at that point of time. The coach
and the customer discussed the schedule and priorities of the 15 stories written by
the customer. The coach doubted if the project’s schedule (10 weeks after training)

8

would allow programmers to implement all of these stories. Consequently, it was
decided that the story with the lowest priority (loans) was left to the last release
and would be implemented only if there was enough time. The other stories were
divided into five different releases of equal lengths based on the priorities given
by the customer and the time estimates provided by the coach. Each release was
defined to take two weeks and included different amounts of stories depending on
how complex they were.

CUSTOMER STORY

No. 02 11.06.03 New

Input income

The user should be able to input his income (salary). This transaction
contains the following pieces of information: date, amount, type/name
(=salary). comment

/ f

Estimate:”v\‘ h Actual: (2 h

StatUs:

Figure 2: Customer story example

Since the time frames of the releases were very short, the stories chosen for
a release were actually the same that were chosen for an iteration. As we men-
tioned above, the development team and the customer met in the beginning of
each iteration and discussed the features to be implemented. The team estimated
whether there was a need for reconsidering the temporal cost of the iteration in
the presence of the customer, after which the developers proceeded to break down
the iteration into tasks among themselves.

The planning game then continued with task planning. The programmers split
the customer stories into task cards. One story normally produced 3-4 tasks (fig-
ures 2 and 3 show examples). When the tasks were written, they were estimated.
The developers were writing on each card how many hours it will take for one
programmer to implement the task. Based on these task estimations, the customer
stories and the whole release were estimated as well. Then we added 50% to
the time estimation for refactoring and debugging. This gave us estimation in
human-hours. The actual time for estimating the date of the release was calcu-

9

Figure 3: Task card example

release date release date
0.1pre | June 26 0.1 June 30
0.2pre July 8 0.2 July 10
0.3pre July 22 0.3 July 28
0.4pre | August 6 0.4 | August 14
0.5pre | August 21 0.5 | August 22

Table 2: Release frequency

lated following the Nosek’s [11] principle: two programmers will implement two
tasks in pair 60 percent slower then two programmers implementing the same task
separately with solo programming.

45 |Iteration Cycles

Our project consisted of five two-week long iteration cycles. Each cycle was
finished with a small pre-release of the software. The pre-release was published
on the project’s web page and given to the customer for testing. It took an average
of tree working days (see table 2) to fix the pre-release according to the customer
comments and release a ”customer approved” package.

Table 3 shows the difference between the developers’ estimations and the ac-
tual time it took them to implement stories.

Obviously, it was easier to estimate the smaller stories. In some cases the big
estimation errors were caused by issues in the Eiffel programming language and

10

story N | estimated hours | actual hours | estimation error h. | estimation error %
1 17 12 5 30%
2 14 12 2 14%
3 12 6.5 5.5 46%
4 20.5 17 3.5 17%
5 7 5 2 29%
7 19 21 -2 11%
8 6 5 1 17%
9 14 2 12 86%
6 48 54 -6 12%
10 69 49 20 29%
11 29 31 -2 7%
13 53 64 -11 21%

Table 3: Customer stories estimations

release | estimated hours | actual hours | estimation error h. | estimation error %
0.1 70.5 52.5 18 25%
0.2 39 28 11 28%
0.3 48 54 -6 12%
0.4 98 80 18 18%
0.5 53 64 -11 21%
1.0 308.5 278.5 30 10%

Table 4: Release estimations

by the developers inexperience. For example, the story asking to print some data
was underestimated: printing in Eiffel turned out to be rather complicated. On the
other hand, sorting tasks were overestimated because the developers did not know
about sort routines in the Eiffel libraries.

Figures 4 and 5 show the story and release estimation errors respectively.

Figure 6 shows the percentage of time distribution for the different activities
of the development team. The second value shows the percentage of this activity
performed in pair (pair programming, pair refactoring, etc).

There seldom was a need for great changes after testing. This had mostly to
do with the fact that the logic of the product was rather simple.

5 Ddiverables

In this section we compare the final release of the software to the initial specifi-
cation and show some basic metrics of the project. Additionally, we display the

11

‘IS

Figure 4: Story estimation error (%)

30

28

25
20 18
15

10|

5

0|

-5

-10 A
-15
-20| 21

-25

Figure 5: Release estimation error (%)

Debugging

wm

Figure 6: Activities distribution (%)

12

N\

//

[Asolo
[pair

27

programming refactoring debugging

Figure 7: Pair vs Solo (%)

developers’ overall impressions.

5.1 The Software Product

The delivered product includes the very basic features of a tool for planning per-
sonal finances. It enables creating a financial history (noting income and expendi-
ture as one-time or repetitive transactions), drawing pre-defined graphs, and bud-
geting. However, budgeting (or creating scenarios) is less automated than orig-
inally planned — creating rules about how the financial future will be formed is
a question that has been puzzling economists, financial planners, and investment
experts for a long time. Nevertheless, as personal finances tend to be slightly
more regular than the finances of companies’, some degree of automation should
be possible to reach.

Thus, the system includes most of the functionality specified in the restricted
requirements which excluded automated data input, loans, and investments. In the
realized functionality, there are issues that require “re-engineering” and further
development. For example, the GUI is considered to be somewhat old-fashioned
and needs streamlining. Also, the product has only reached the stage where real
value-adding functionality can be created. The basis is there, but further iterations
are needed to reach a fully functional — and useful — version.

Figure 8 shows a screenshot of the application. FiPla is an experimental tool
and as such is not intended for general use. However, it is freely available under
the GNU General Public License to all interested in it.

13

vl i
Fie Yiew Help

OR e

IHCOME EXPEHDITURE
Date [Type Amount ||| Date Type Amount [~
15/10/2003 Salary 220000 || 2012/2003 Clothing 150.00
15/08j2003 Salary 220000 ||04f11/2003 Rent 430,00
15/08j2003 Salary 220000 || 03]10/z003 Rent 430,00
15107j2003 Salary 220000 || 03/10/2003 Groceries 500.00
13(08j2003 Salary 220000 || 04fosfzona Rent 430,00
1510542003 Salary 22on00 || 04fosfzona Grocerles 500.00
15/04j2003 Salary 220000 || 04foafzong Rent 430,00
14/03j2003 Salary 220000 || 04foafzong Groceries 500.00
14/0242003 Salary 2zon00 || 04fozfzong Rent 430.00

15/01j2003 Salary |E8 Graphs for Casper [3|

13f12j2002 Salary -

15/1142002 Salary Line chatt | Histogram ~ Fie chart]
15/10/2002 Salary E

13/03j2002 Salary

Select fime period ta view

(backwards fiom today]
Year hd

Sum: 3080000
Incomes: Erpentures:
) Graceriee 48 83%
Show time period, ol Clothing 2.28%
dormsds 1 150%
Add income: Show all typ

Casper [nol saved)

Figure 8: FiPla’s screenshot

5.2 Project Metrics

Collecting all possible kinds of metrics is an essential part of a software engineer-
ing experiment. Table 5 shows some basic metrics collected after the final release
of the product. Some values in the tables are rounded up to the integers for the
better readability. By total work effort in the table we mean the number of actual
hours needed to implement all of the stories of a release from table 5 multiplied
by four — the number of developers.

The developers stopped writing tests for GUI after the first release. This ex-
plains the decrease in the number of tests for the second release (table 5).

Structuring the software system into the layers was done according to he re-
lease plan. Each new release was introducing a new layer into the software system.
The five releases of the product formed the following five SFI-layers:

Layer 1. (Basic): Manually recording one-time transactions (incoming and out-
going), display, save for multiple users.

Layer 2. (Calc): Calculating sums both according to the type of transaction and
time periods.

Layer 3. (Repetitive): Manually recording repetitive transactions.

14

01 |02 (03 |04 |05 Total
LOC 1694 | 3441 | 5517 | 7100 | 8572
Test LOC 571 | 983 | 2174 | 2347 | 2548
Total LOC 2265 | 4424 | 7691 | 9447 | 11120
Classes 11 23 37 52 59
Test classes 9 10 20 23 25
Methods 71 122 | 171 | 256 | 331
Test methods 50 68 157 | 167 | 177
LOC/Class 154 | 150 | 149 | 137 | 145
LOC/test class 63 98 109 | 102 | 102
Methods/class 7 5 5 5 6
Test methods/class 6 7 8 7 7
Post-release defects 2 1 2 1 0 6
Post-release defects/KLOC | 1.18 | 0.57 | 0.96 | 0.63 |0 0.70
Total work effort (h) 210 | 112 | 216 | 320 | 256 1114
Productivity (LOC/h) 8 16 10 5 6 8
Test productivity 3 4 6 1 1 2
Total productivity 11 20 16 6 7 10

Table 5: Collected data for all releases

Layer 4. (Graph): Displaying three types of graphs.

Layer 5. (Prognosis): Creating a financial plan.

Table 6 shows some measures related to the Stepwise Feature Introduction. We
do not include any GUI classes since the GUI was not written in the SFI-fashion.

5.3 Revealing Comments

During the project, verbal data was gathered in addition to basic metrics. In the
beginning of the project we asked the developers to keep a form of a shared di-

Layer New classes | Extended classes
Basic 10 0
Calc 0 6
Repetitive 5 10
Graph 0 3
Prognosis 1 1

Table 6: SFI metrics

15

ary where they could write short comments and thoughts on any aspects of their
work. The diary was divided into different sections: extreme programming, the
SE environment, Stepwise Feature Introduction, Design by Contract, the product
itself, and as always, other issues. Overall, the comments highlight especially
well the aspects of the methods which need improvement. They shed light over
the retrieved basic metrics and the impressions of other project participants.

6 Project Experiencesand Impressions

As in the earlier projects [4], we got valuable feedback on the subjects for the
experiment. There was both positive and negative feedback. When we get positive
feedback on a method, especially in a series of experiments, that normally means
that we will have a definite benefit from its further use and that the method is a
candidate for incorporation into the standard Gaudi process. On the other hand,
negative feedback usually provides good guidelines for improving the method.
Below we present the most important findings and impressions of the project.

6.1 Customer Model

One problem with the customer model was revealed by the fact that among the
activities of the programmers (Figure 6), the second largest category was mis-
cellaneous”. According to the team, the reason for that was the following work
order.

After a pre-release was sent to the customer, the team was trying to find bugs in
it, while waiting for the customer’s response. Since the acceptance testing was not
characterized as the developers’ task in this project, this time was marked as "mis-
cellaneous” hours. While the team was correcting bugs found by the customer in
a pre-release, the amount of work was not enough to keep all the developers busy,
that again caused the ”miscellaneous™ hours. The developers did not start working
on the next release before fixing the previous one. This was due to an unfortunate
misunderstanding. This was required in one iteration since the customer could not
make a decision straight away, but the rule was not supposed to be generalized to
all iterations.

The developers gave some suggestions for decreasing those ”miscellaneous”
hours and for decreasing the risk of false features implementation by increasing
the communication with the customer and having the customer more involved in
the team work. The first suggestion was to plan the next release and to perform
the planning game together with the customer. When all the stories are imple-
mented, the customer should briefly go through the functionality of the system
together with the team. After that, if no feature misses of false feature were found

16

(otherwise the team fixes it), the team together with the customer plans the next
release. Finally, the customer performs the acceptance tests, while the team starts
implementing the new set of stories.

The developers’ suggestion about involving the customer more in the team’s
work could also be implemented by seating the customer in the same room with
the programmers. Even though the customer was available throughout this exper-
iment, she was physically only "rather close by” (that is, in the same building).
Consequently, the overall impression was that there could have been more spon-
taneous questions and comments between the developers and the customer if she
had been in the same room.

6.2 Eiffel and Design by Contract

We got a lot of positive feedback about using Eiffel. First of all, according to all
developers, Eiffel was easy to learn. However, not all of them agreed with the
suggestion to teach Eiffel in an introductory programming course. They also said
that writing good pre- and postconditions and class invariants is not an easy task.
Another feature of Eiffel they really appreciated was its readability. Eiffel code
written according to the Eiffel standard [12] was very easy to read. Eiffel code
seems easier to read than Python code.” — commented two of the developers that
had participated in our earlier Python project.

All of the Eiffel code in our project was written using Eiffel Studio, which is
a very convenient IDE. According to the developers, most of all they appreciated
the debugger in Eiffel Studio. However, there was a sense of incompleteness in
Eiffel, as one of the developers wrote in the diary: ’The developers of Eiffel seem
to spend more time bragging about how good their incomplete language is than
actually trying to make it any better™.

Design by Contract worked well in our project and its use was one of the
reasons for the low defect rate. Al the tests written (to a complete code) always
pass and the tests that don’t pass have a bug in the test itself”” — commented the
developers in the middle of the project. Most of the bugs were caught with the
help of preconditions, when a routine with a bug was called during unit testing.

Most of the unit tests were written before the actual code, but the contracts
were specified after it. In the beginning of the project we left out automatic GUI
testing and left it to the customer. It was also difficult to come up with non-trivial
pre- and postconditions during the graphical user interface development.

6.3 Stepwise Feature Introduction

This project was very fruitful for the evaluation of Stepwise Feature Introduc-
tion. As we mentioned above, this was for the first controlled time when SFI

17

was applied with a statically typed programming language. Using SFI with Eiffel
showed us aspects of the methodology that we could not see when applying SFI
with Python. These discoveries allows us to improve this experimental methodol-
ogy and make its practical application more systematic. However, the explanation
of these findings require a more thorough explanation of SFI than what is moti-
vated in this paper, so we decided to discuss this in a separate paper [3].

6.4 Planning Gameand Time Estimation

Having all customer stories written allowed us to make time estimations. Time es-
timation turned out to be rather easy in this case. The accuracy of the estimations
depends, of course, on the experience of the developer. Experience of the partic-
ular programming language seems also to be more important than experience in
estimation.

In our project the developers did not sign up for the tasks during the planning
game. A task was estimated by all of them and a pair was signing up for the con-
crete task during the short iterations. Having individuals signing up for the tasks
during the planning game and being responsible for them during implementation
would probably have decreased the errors in the time estimates.

6.5 Software Quality

Comparing this project to our previous experimental projects, which were carried
out in a very similar setting but using Python instead of Eiffel and without the on-
site customer, the software produced in this project had a much lower defect rate.
According to the development team, where two programmers had participated in
previous projects, the main reasons for the low defect rate were:

DBC: The Design by Contract method and especially preconditions helped to
catch many bugs during the development.

Eiffel: Such features of the Eiffel programming language as lack of public vari-
ables and static typing prevented introducing many bugs into the software
system.

Poor documentation!: Programmers found the Eiffel’s documentation very poor.
This also held for the SFI method, which is still experimental and has al-
most no practical documentation for programmers. This forced them to do
a lot of spikes, testing and trying before writing the actual code. According
to the developers, this caused the resulting code to be more bug-free.

18

Nature of tasks: The tasks given to the programmers were relatively easy in their
opinion. The system they were developing was easy to understand due to
the nature of the application.

Insufficient acceptance testing: The implementation of a new pre-release never
started before releasing the software in the ”customer approved” package.
While the customer was testing the pre-release alone, four programmers
were also testing the same system. This meant that some minor bugs were
fixed without documenting them as bugs and without the customer mention-
ing them.

7 Conclusonsand Future Work

The objectives of the project were met both on the product and the research level.
The product reached the functional level that was set at the end of the overall
planning period for the project. As stated, it still requires further development,
but this was known from the beginning.

Experiences on a clearer customer model and customer stories were altogether
very positive, but they also gave directions for considering a few aspects, particu-
larly the physical location of the customer and the programmers.

The use of a formal method, Design by Contract in our case, dramatically
decreased the post-release defect rate of the software system.

The project also showed ways to improve SFI. There were improvements to
be made when using the method with a statically typed language.

Experimenting with these issues should be continued, giving room for the
experiences gained during this project. Software development may never become
an art of perfection, but it may well be worth to strive for it.

8 Acknowledgments

We would like to thank professor Barbro Back and our students Ville Henriksson,
Fredrik Holmberg, Henry Lockmer and Sami Nevalainen for their participation in
the project.

References

[1] Extreme Programming: A gentle introduction website. Online at:
http://www.extremeprogramming.org/.

19

[2] Ralph-Johan Back. Software Construction by Stepwise Feature Introduction.
In Proceedings of the ZB2001 - Second International Z and B Conference.
Springer Verlag LNCS Series, 2002.

[3] Ralph-Johan Back and Luka Milovanov. An experiment on Stepwise Feature
Introduction and Design by Contract, work in progress. Technical report,
TUCS, 2004.

[4] Ralph-Johan Back, Luka Milovanov, Ivan Porres, and Viorel Preoteasa. XP
as a Framework for Practical Software Engineering Experiments. In Pro-
ceedings of the Third International Conference on eXtreme Programming
and Agile Processes in Software Engineering - XP2002, May 2002.

[5] Kent Beck. Embracing Change with Extreme Programming. Computer,
32(10):70-73, October 1999.

[6] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1999.

[7] Eric Bezault. Gobo Eiffel Test. http://www.gobosoft.com/eiffel/gobo/getest/.

[8] Eiffel Software Inc. Eiffel in a Nutshel. Online at:
http://archive.eiffel.com/eiffel/nutshell.html, 2003.

[9] Bertrand Meyer. Eiffel: The Language. Prentice Hall, second edition edition,
1992.

[10] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
second edition edition, 1997.

[11] J.T. Nosek. The Case for Collaborative Programming. Communications of
the ACM, 41(3):105-108, 1998.

[12] Interactive Software Engineering. An Eiffel Tutorial. Online at:
http://docs.eiffel.com/general/guided_tour/language/tutorial-00.html, 2001.

[13] Interactive Software Engineering. EiffelStudio: A Guided Tour. Online at:
http://docs.eiffel.com/general/guided_tour/environment/, 2001.

[14] Open Source Initiative. Eiffel Forum Licence. Version 2. Online at:
http://opensource.org/licenses/ver2_eiffel.php.

20

Turku Centre for Computer Science
Lemminkdisenkatu 14

FIN-20520 Turku

Finland

http://www.tucs.fi

University of Turku
e Department of Information Technology
e Department of Mathematics

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Science

