
Games-based Controller Synthesis
for Discrete Systems

Ralph-Johan Back
Cristina Cerschi Seceleanu

Turku Centre for Computer Science

TUCS Technical Reports

No 594, October 2004

Games-based Controller Synthesis
for Discrete Systems

Ralph-Johan Back
Cristina Cerschi Seceleanu

e-mail:{backrj, ccerschi}@abo.fi

Turku Centre for Computer Science
TUCS Technical Report No 594
October 2004

ISBN 952-12-1313-2
ISSN 1239-1891

Abstract

This study proposes a method for constructing reliable controllers for arbi-
trarily large discrete systems. The controller is synthesized by finding a winning
strategy for specific games defined by contracts. The discrete system model is an
action system, and the requirement is a temporal property. We use the extended
action system notation that allows both angelic and demonic nondeterminism,
such that the game reduces to a competition between the angel, that is, the con-
troller, and the demon, that is, the plant, which try to prevent each other from
achieving their respective goals. If the synthesis is possible, i.e., if the angel has
a way to enforce the required property, the process ends with the extraction of the
angelic winning strategy, by propagating certain assertions into the contract that
models the controllable actions. The technique leads to a correct-by-construction
program. We illustrate our method on a producer-consumer application.

TUCS Laboratory
Software Construction Laboratory

1 Introduction

Controller synthesis amounts to developing a framework for designing controllers
that meet the requirements. Although there are several solutions to solve this
task for discrete systems, most of them employ algorithmic techniques [1, 10].
Model-checking, as an exhaustive verification method, has proved efficient for
small systems, but rather difficult to apply for large systems, as it is expensive in
machine resources.

In general,verificationrequires a complete system model, often deterministic,
which is verified toward satisfying a set of properties. In contrast,synthesisstarts
with an open model of the system, possibly nondeterministic. This model acts as
the high-level system description, useful when the designer deals with complex
requirements.

Our contribution stays mainly in constructing a method for designing reliable
discrete control software for arbitrary systems, starting from a nondeterministic
model.

We address the synthesis of the controller by representing the system as a
game between two players, the controller, calledthe angel, and the plant, called
the demon. Each of the players tries to achieve some specific goal at the end of
the game, and at the same time tries to prevent the other from establishing its
respective goal. Hence, controller synthesis reduces to finding a strategy for the
angel to carry out control events, such that its goal is guaranteed in spite of the
nondeterministic demonic moves. The high-level model is anaction system[2]
that allows each player to take turns and sequentially make choices that determine
the next state of the system. The choices are regulated by acontract [3]. Back
and von Wright defined temporal properties in the extended predicate transformer
framework [6]. We adapt their result and capture the requirement, or the goal of
the angel, as a safety property, modeled by an “always” (2) temporal property.
We show that the property holds, by proving an invariant. In principle, the safety
property does not hold for every possible execution of the system, but it should be
enforceable by the angel. This is the first step of the synthesis, that is, checking
whether the angel is able to play such that it enforces the required behavior. In
fact, this leads to the synthesis of controllers for invariance (that have to keep the
system inside a safe set of states). Controllers for reachability (that have to lead
the system to a set of desired states) can also be synthesized within our framework.
We introduce a proof rule that supports this claim.

If we pass the first step described above, we aim further to extract and imple-
ment the respective solution. We show that moving toward an implementation of
the angel, with respect to the enforced property, reduces to decreasing, or some-
times even eliminating its nondeterminism, with regard to that property. Pursuing
our goal, we rewrite the angelic contract by propagating backwards, the computed

1

weakest precondition of the demon, with respect to the proved invariant. In this
way, we remove the angelic choices that, if taken, would violate the invariant.
Thus, we force the angel to choose only from the possibilities given by the propa-
gated information. Hence, we derive a control strategy, or, in some cases, a wrap-
per of all possible control strategies, which guarantees a win for the angel with
regard to the property that we have considered, no matter what moves it makes
during the game. All this time, the behavior of the demon remains unchanged.
We work in the framework of therefinement calculus[4, 12], hence, on the way,
we apply specific rules that guarantee the correctness of the extracted strategy.

Viewing a reactive system as a two-player game is not a new idea, it can be
traced back to Ramadge and Wonham [14], and Pnueli and Rosner [13]. They
developed synthesis algorithms for finite-state discrete systems, and showed that
finding a winning strategy for the game was equivalent to synthesizing a controller
that satisfied the requirements.

Recently, on-the-fly algorithms have been proposed to solve the issue of con-
troller synthesis for discrete and dense-time systems, method restricted to finite-
state systems [15]. The algorithms are fully on-the-fly, that is, a strategy is re-
turned as soon as it is found, thus the state space does not necessarily have to be
entirely generated. In comparison, our general method can be applied as such, to
both infinite and finite systems. In both cases, the synthesis relies on the same
proof theory.

Asarin et al. also apply game techniques to construct discrete controllers, and
the system is modeled by a timed automaton with trivial continuous dynamics [1].
The authors develop fixpoint algorithms in order to compute the maximal strategy.
The method uses a “predecessor” operator that might imply a resource-consuming
implementation, and also the exploration of possibly unreachable states. Similar
algorithms suited for model-checking are proposed by Maler, Pnueli and Sifakis,
who give a simple solution to the problem, without generating lengthy automata
trees [11].

In the rest of the paper, we introduce our method for solving the synthesis task,
and we illustrate it on a producer-consumer system.

2 Example: A Producer - Consumer Application

Let us assume that we are given the task of designing a controller for aFirst-In-
First-Out (FIFO) memory buffer (or stack) to which a specificproducerprocess
adds data, while a particularconsumertakes away data from the buffer, yet re-
specting some predefined constraints. This kind of pipelined controller could be
useful, for instance, in the design of certain hardware devices.

Our goal is to ensure that the producer can always provide at least one new

2

input to the buffer, that is, the buffer is never full after the consumer has finished
its round. We choose to show our proposed methodology on aparameterized
model, where the parameter is the capacity of the buffer.

In the example that we present, we suppose that the producer places items at
one end of the buffer, and the consumer removes items at the other end (Figure 1
a)). However, this is just a modeling point of view, since the methodology applies
also if they operate at the same end of the buffer (Figure 1 b)).

Producer

Consumer

Producer Consumer

a) b)

Figure 1: The producer-consumer example: a) FIFO, b) Stack (LIFO)

The first step is to model the system. We start by imagining a game between
the controller, represented by the controllable variables, and the plant, modeled
by the uncontrollable ones. The players take turns and make moves with respect
to given rules. For instance, each time the system executes, the controller has to
change the input, by adding at most two items at a time, into the virtual buffer.
Hence, as a first constraint, we impose the fact that, at each round, the controller
is compelled to throw “data” into the buffer (that is, add one or two items), thus
it can not skip. Similarly, the disturbance, or the plant, may choose to remove at
most two items at a time, or leave the system state unchanged. Another constraint,
this time for the plant, is the fact that the latter is not allowed to skip unless it has
removed one item from the buffer, in the immediate previous step. Also, if the
plant did not remove any item in the current round, it has to remove two items, next
round. Similarly, after the consumer has removed two items, it is mandatory that
it removes only one item next time. Last but not least, if the consumer removes
one item in the current round, it can nondeterministically choose to remove one or
two items from the buffer, or leave it unchanged. The players move sequentially,
and the observer sees the start of each round and the end of it, without noticing

3

the intermediate states.
The rules of the game are those described above, and the goal of the controller

is to find a way to keep some required property true, during the execution of the
system. In section 4 we model the mentioned behavior, formally.

The variables that describe the state of the system are as follows:
• C : Nat - models the content of the buffer as updated by the consumer, at

the end of each round of the game; it represents the value that is apparent to the
external observer;
• r : {0,1,2} - represents the quantity removed by the consumer, from the

buffer;
• cap : Nat- models the capacity of the buffer, yet not less than 4 locations

(cap ≥ 4), for the buffer to be sufficiently large.
The goal of the producer (controller) is a postcondition formalized as an “al-

ways” temporal property:

2Q = 2(0 ≤ C < cap),

that is, the controller loses the game if the consumer manages to leave the buffer
full, after its respective update. By enforcing2Q, we ensure that there is a con-
tinuous activity at the producer end of the buffer.

In spite of the partly nondeterministic moves of the consumer (disturbance),
the producer should be able to enforce2Q. Having a way to keep it true during
the entire execution of the system is equivalent to synthesizing a controller for
invariance.

In this paper, we focus on synthesizing such a controller, within the mentioned
setup.

3 Background

In this section, we give an overview of contracts, and introduce action systems
as a special kind of contract. The notation and the main concepts are taken from
previous work of Back and von Wright [4, 5, 6, 7].

Our reasoning framework,refinement calculus, uses higher-order logic as the
underlying logic. We model program statements by contracts. AcontractS is
built according to the syntax below:

〈f〉 |{p} | [p] | S1 ; S2 | {x : = x′ | b} | [x : = x′ | b]

Here, p ranges overstate predicates(Σ → Bool), f over state transformers
(Σ → Γ), andx : = x′|b is a state relation(Σ → Σ → Bool), whereΣ is the
polymorphic type of the program state. We writef.x for functionf applied tox.

4

Thefunctional update, 〈f〉 changes the state according to the state transformer
f (for example,〈x : = e〉 is a special kind of update where the state transformer is
expressed as an assignment). We use the nameskip for the identity update. The
assertion{p} leaves the state unchanged ifp holds and aborts otherwise, whereas
theassumption[p] also leaves the state unchanged ifp holds, but terminates mirac-
ulously otherwise. In thesequential compositionS1 ;S2, contractS1 is first carried
out, followed byS2.

Theangelic nondeterministic assignmentor angelic update, {x : = x′ | b}, lets
the angel choose the final state, among those that satisfy the boolean condition
b, whereas in thedemonic nondeterministic assignment(demonic update), [x : =

x′ | b], the choice is demonic. If no such state exists, then the angelic update is
aborting (i.e., it establishes no postcondition, not eventrue), while the demonic
update is miraculous (i.e, it establishes any postcondition, evenfalse). A sequence
of an angelic and a demonic update is interpreted as agamewith the angel and
the demon as players.

A predicate transformeris a function that maps predicates to predicates. We
want the predicate transformerS to map postconditionq to the set of all initial
statesσ from whichS is guaranteed to end in a state ofq. Thus,S.q is theweak-
est preconditionof S to establish postconditionq. The intuitive description of
contract statements can be used to justify the following definition of the weakest
precondition semantics:

(S1 ; S2).q = S1.(S2.q) (1)

{x : = x′ | b}.q = (∃x′ • b ∧ q[x : = x′]) (2)

[x : = x′ | b].q = (∀x′ • b⇒ q[x : = x′]) (3)

These definitions are consistent with Dijkstra’s original semantics for the lan-
guage of guarded commands [9], and with later extensions to it. We say that the
angel has astrategyto win an angel-demon game, if and only if the angel has
a way of making its choices insideS such that the predicateq holds in the final
state, regardless of how the demon makes its choices.

Our language also permitsrecursive statements, in form of (µX • S) or
(ν X • S), depending on whether contractX can be invoked a finite number
of times, or infinitely, respectively. An important particular case of recursion
is the do − od loop, which is defined in the usual way:do g → S1 od

∧
=

(µX • if g then S1 ;X else skip fi).
In this paper, we consider the special case of anaction system, as a contract of

the form

Sys(y)
∧
= begin var x • S0 ; do g → S1 od end (4)

Here, Sys contains aninitialization statementS0 and the action statementS,
which has a guarded form,S = g → S1, whereg is a boolean condition called the

5

guard, andS1 is thebodyof S. The initialization statement typically introduces
some local variables,x, for the action system, and initializes these. Variablesy
are global to the action system, and they are also assigned initial values byS0.
The actionS is enabled, thus the action bodyS1 is executed, when the guardg
holds. Termination is normal if the exit condition¬g holds.

The predicate transformer semantics is based on total correctness. In conse-
quence,p {|S|} q ≡ p ⊆ S.q denotes the total correctness of statement S with
respect to preconditionp and postconditionq.

We say thatcontract S is refined by contract S’(written S v S ′), if S ′ pre-
serves all the correctness properties ofS, which is equivalent toS v S ′ ≡
(∀q • S. q ⊆ S ′. q).

A refinement rule is an inference rule that allows us to deduce that a certain
refinementS v S ′ is valid. Adding choices to an angelic update and remov-
ing choices from a demonic update are both valid refinements. Equality “=” of
contracts can be used as refinement.

We will use the rule ofpropagating an assertion backwards, into an angelic
nondeterministic assignment, which is given below:

{x : = x′ | b} ; {q} = {x : = x′ |b ∧ q[x : = x′]} (5)

4 The Producer-Consumer Model as an Action Sys-
tem

The process of controller synthesis is gradual, since it starts with a nondetermin-
istic model of the system, which has to be further adjusted correctly, in order to
be brought closer to the implementable level. This justifies our decision to specify
the actions of the producer, as an angelic nondeterministic assignment. Thus, the
controller behavior is described as follows:

Prod = {C : = C ′ |C < C ′ ≤ C + 2} (6)

The boolean condition of the assignment ensures that the producer adds one
or two items to the buffer. Should we not require this condition to hold, the basic
angelic behavior is not enforced.

As the consumer is partly uncontrollable, it behaves demonically. In conse-

6

quence, it is modeled by a demonic nondeterministic assignment:

Cons = [r, C : = r′, C ′ |(r = 0⇒ r′ = 2) ∧
(r = 1⇒ r′ ∈ {0, 1, 2}) ∧
(r = 2⇒ r′ = 1) ∧
C ′ = C − r′]

= [r : = r′ |(r = 0⇒ r′ = 2) ∧
(r = 1⇒ r′ ∈ {0, 1, 2}) ∧
(r = 2⇒ r′ = 1)] ;

C : = C − r (7)

The contractCons regulates the moves of the consumer, as mentioned in sec-
tion 2.

The producer is responsible to enforce the safety property2Q, formalized
previously, that is, at each turn, it should choose an appropriate number of items
to add to the buffer, such that the latter can never be left fully occupied, by the
consumer. The property should be guaranteed, regardless of the demonic nonde-
terministic moves.

Further, we model the producer and the consumer, together, as the action sys-
tem below, where we substitute relation (6) forProd, and (7) forCons. The
system terminates upon the completion of the process. This is decided by an ex-
ternal device, modeled by contractDev. However, we choose here to model a
non-terminating loop. At will, the guardtrue can be replaced by a non-trivial
one.

Buffer(r, C, cap : Nat) =
begin
r := 1 ; C := 4 ; cap := 8;

do true → Prod ; Cons ;Dev od
end

(8)

The discrete controller (that is, the producer) of the buffer will result out of
certain transformations of the nondeterministic behavior of the angel, given by
(6), into a more deterministic one, such that the safety property2Q is enforced.
During the process, the demonic behavior stays unchanged.

5 Synthesis of Logic Controllers for Discrete Sys-
tems

As already mentioned, the process of controller synthesis can be seen as a game
between two players, the controller and some disturbance. We assume that the be-

7

havior of the disturbance is hostile, thus we would like the controller to guarantee
the requirements despite the action of the disturbance. Therefore, the controller is
the angel, and the disturbance or plant isthe demon. During the game, the goal
of the angel is to force the system to remain inside a certain “good” subset of the
state space, whereas the demon’s goal is to force the system to leave this same
subset.

In our approach, thediscrete systemis modeled by an action system given by
(4). We define the action of the loop, asS

∧
= g → A;D. Here,A contains angelic

choices andD demonic ones. The values of the variables are chosen either by the
controller or by the plant. The contractA that models thecontroller is, in our case,
an angelic nondeterministic assignment of the form{x : = x′ | cd}, which should
be further transformed into an implementable construct. Theplant is modeled by
statementD, which describes the demonic behavior. Therequirementis encoded
as a safety property, expressed as a subset of the state space.

The goal of the controller is to continually observe the plant, and force control
events at appropriate times, such that the plant always remains within the safe set
of states.

Given the action system (4), and assuming that at each round of the game,
sequential angelic and demonic choices determine the next state of the game, we
can intuitively split the synthesis problem into two subproblems:

(a) Enforcing the safety (or liveness) property, equivalent to calculating the
largest set of initial states from which the angel can always win with respect to
that property;

(b) In case this set exists, constructing a controller that renders it, equivalent
to extracting a winning strategy, or a set of winning strategies, for the angel.

5.1 Enforcing the Required Property

Designing a controller for invariance implies that we specify some safety property
that should be enforceable by the angel during system execution. Here, we express
this property as an “always” (2) temporal property.

In the following, we show how we can compute the precondition for the angel
to enforce the property2q in the action systemSys, given by (4), where the
contractS is of the formS = g → A ; D. Applying the result proved in [6], to
our case, we get the following:

p {|do g → A ;D od|} 2q
≡ p ⊆ (νX • {q} ; [g] ; A ;D ;X).false

(9)

where¬g is the exit condition, which is tested before entering the loop.
Formula (9) shows that we can reduce the question of whether a temporal

property can be enforced for an action system, to the question of whether a certain

8

goal can be achieved. In this case, the goalfalsecannot really be established, so
success can only be achieved by miraculous termination, or by non-termination
caused by the demon.

If we want to synthesize controllers for reachability, the angel has to guaran-
tee liveness properties, modeled as “eventually” (♦) properties. Here, we only
present the correctness rule for guaranteeing a special liveness property, of the
form 2(p ⇒ ♦q), p, q predicates. This property is calledweak livenessor weak
response. The property holds if, for any state in the set of reachable statesp, the
angel has a way to lead the system into a state ofq, or if the angel is at least able to
keep the system into a state of¬p, forever. Thus, we define the contractWLiv.p.q:

WLiv.p.q
∧
= (νX • [¬p] ; [g] ; A ;D ;X u [p] ; (µY • [¬q] ; {g} ; A ;D ; Y);

[g] ; A ;D ;X)

Since∀σ • σ {|do g → A ;D od|} 2(p⇒ ♦q) ≡ (WLiv.p.q).false.σ, we have
further that

p0 {|do g → A ;D od|} 2(p⇒ ♦q)
≡ p0 ⊆ (νX • [¬p] ; [g] ; A ;D ;X u [p] ; (µY • [¬q] ; {g} ; A ;D ; Y);

[g] ; A ;D ;X).false

Assuming the action system in a recursive form, Back and von Wright show,
in [6], how to prove enforcement of temporal properties by using usual invariant-
based methods, rather than the more costly fixpoint computation algorithms. Thus,
in order to make the proof of a safety property practical, we adapt their result to
our case. Moreover, we introduce a new inference rule, useful for enforcing weak
response properties. Both rules are shown in Lemma 1.

Lemma 1 Assume the following action system:

Sys(y) = begin var x • S0 ; do g → A ;D od end

Then:

(a) Always-properties can be proved using invariants:

p ⊆ I g ∩ I {|A ;D |} I I ⊆ q
p {| do g → A ;D od |} 2 q

wherep, q are predicates.

(b) Weak liveness-properties can be proved using invariants and termination ar-
guments, as follows:

p0 ⊆ I ∪ r g ∩ r {|A ;D |} I ∪ r p ∩ r ⊆ q ∪ I pre {|A ;D|} post
p0 {| do g → A ;D od |} 2(p⇒ ♦q)

9

wherep, r are predicates,pre
∧
= ¬q ∩ g ∩ I ∩ t = w, post

∧
= (q ∩ (I ∪ r)) ∪

(I ∩ t < w), and the state functiont ranges over some well-founded set.2

The first rule states that proving thealwaysproperty for the loop of the action
systemSys, with the precondition of the loop established by the initialization, is in
fact equivalent to showing that a predicateI ⊆ q is an invariant ofSys. Therefore,
proving the safety propertyq by proving an invariance property subsumes the
following obligations:

1. Invent a predicateI, such thatI ⊆ q holds.
2. Prove thatI is established by the initializationS0, that is,p ⊆ I, wherep is

the predicate that holds afterS0.
3. Prove thatI is preserved by the actiong → A ;D, that is,g ∩ I ⊆ A.(D.I).
It then follows that, if the above conditions hold, the angel has a winning

strategy,A, thus a controller for invariance can be synthesized.
The second rule of Lemma 1 shows the proof obligations that we have when

carrying out controller synthesis for weak liveness. The predicater includes the
states ofp that have already been followed by a state ofq. Therefore, the angel is
considered to have a winning strategy if it can find a way to keep the system inI,
trying to decreaset, or wander withinr.

5.2 Extracting the Control Strategy

After having established that the angel can enforce a certain behavior, the next
step is to extract its respective winning strategy.

In the following, we show how to reduce the angelic nondeterminism, with
respect to the enforced property. This is achieved by finding a statementA′ that
contains fewer angelic choices thanA.

Given the fact thatI is an invariant of the action systemSys, as defined in
Lemma 1, we know that the contract

S = {I} ; A ; {D.I} ;D ; {I}

can replaceA ; D inside the body of the loop, sinceS preserves the invariant,
trivially. In consequence, we can rewriteA by using the information supplied by
{D.I}, such that we force the angel to restrict its choices only to the ones that
establishI.

In our case,A = {x : = x′ | cd}, thus, we can assertD.I afterA, such that
we get the contractA ; {D.I}. Next, we use this assertion to further refine the
new contract, by propagating{D.I} backwards. In this way, we strengthen the
boolean condition inside the angelic nondeterministic assignment. As a result, the

10

angelic choices are restricted according to the propagated information. We apply
the refinement rule (5), as follows:

{x : = x′ | cd} ; {D.I}
= (10)

{x : = x′ |cd ∧D.I[x : = x′]}
In principle, this is a transformation that does not actually favor our agent, it

rather makes the demon happy, since it decreases the set of final states that the
angel can choose from. The demon can still achieve its goals, while the angel’s
choice possibilities are being removed. However, the refinement in the specified
context makes the behavior of the angel more predictable. Moreover, the transfor-
mation given by (10) preserves the invariantI proved by means of Lemma 1.

Further, we might need to refineA′ = {x : = x′ |cd ∧ D.I[x : = x′]} into a
program. For this, we apply suitable refinement rules [4], which guarantee that
the implementation preserves the correctness of the model.

6 Applying the Synthesis Method

We return to our case-study, and start the controller synthesis by checking whether
the safety property2Q, given in section 2, as2(0 ≤ C < cap), can be enforced
by the producer. In case this is possible, we move along the line established above,
to extract the control strategy.

Given the system model as the action systemBuffer defined by (8), the steps
that we take are as follows:
• A1) Firstly, we find a predicateI ⊆ Q. Thus, we chooseI as follows:

I = (r = 0 ∧ 0 ≤ C < cap) ∨
(r 6= 0 ∧ 0 ≤ C ≤ cap− 2)

Proving thatI ⊆ Q is straightforward.
• A2) Next,I has to be an invariant of the action systemBuffer. Note that the

contractDev preserves the invariant (I{|Dev|}I holds), since it does not interfere
with the variables mentioned inI. The invariant is trivially established by the
initialization statement:

p

=

r = 1 ∧ C = 4 ∧ cap = 8

⊆
I

11

Prod.(Cons.I)
≡ {substitute contract Cons}

Prod.([r : = r′ |
(r = 0 ⇒ r′ = 2)∧
(r = 1 ⇒ r′ ∈ {0, 1, 2})∧
(r = 2 ⇒ r′ = 1)] ; C = C − r).I

≡ {rules (1), (3)}
Prod.(∀r′ •

((r = 0 ⇒ r′ = 2)∧
(r = 1 ⇒ r′ ∈ {0, 1, 2})∧
(r = 2 ⇒ r′ = 1))

⇒ (I[C : = C − r])[r : = r′]
≡ {substitute contract Prod, simplify}

{C : = C′ |C < C′ ≤ C + 2}.
((r = 0 ⇒ 2 ≤ C ≤ cap)∧
(r = 1 ⇒ 2 ≤ C ≤ cap − 1)∧
(r = 2 ⇒ 1 ≤ C ≤ cap − 1))

≡ {rule (2)}
(∃ C′

• C < C′ ≤ C + 2∧
((r = 0 ⇒ 2 ≤ C′ ≤ cap)∧
(r = 1 ⇒ 2 ≤ C′ ≤ cap − 1)∧
(r = 2 ⇒ 1 ≤ C′ ≤ cap − 1)))

⊇
((r = 0 ∧ 0 ≤ C < cap)∨
(r 6= 0 ∧ 0 ≤ C ≤ cap − 2))

Figure 2: Proof of the invariant

Then, we prove thatI is preserved by the action of the loop, that is,

I ⊆ Prod.(Cons.(Dev.I))⇐ I ⊆ Prod.(Cons.I).

The proof is shown in Figure 2. We have also proved the invariant in thePro-
totype Verification System (PVS)[8]. In consequence, irrespective of the chosen
value ofr, the producer has a way of enforcing2Q, hence to keep the buffer not
fully filled, at the end of each round of the game.
• B) In the following, we apply rule (10), to refine the contractProd, given

by (6), by propagating backwards the assertion

{Cons.I}
=

{(r = 0⇒ 2 ≤ C ≤ cap) ∧
(r = 1⇒ 2 ≤ C ≤ cap− 1) ∧
(r = 2⇒ 1 ≤ C ≤ cap− 1)},

such that all the possible choices, except for the ones that establishI, are removed.
Below, we show the derivation that leads to the control strategy of the pro-

ducer, where any of its choices satisfiesI:

12

{C : = C ′ | C < C ′ ≤ C + 2} ; {Cons.I}
= {rule (10)}
{C : = C ′ |C < C ′ ≤ C + 2 ∧

(r = 0⇒ 2 ≤ C ′ ≤ cap) ∧
(r = 1⇒ 2 ≤ C ′ ≤ cap− 1) ∧ (11)

(r = 2⇒ 1 ≤ C ′ ≤ cap− 1)}
=

Prodf

The contractProdf , given by (11), represents the winning strategy of the
producer to always keepQ ≡ true, during execution. Concretely, if one replaces
C ′ with C + 1, orC + 2, he/she knows exactly how to move next, that is, to add
one or two items to the buffer, depending on the value ofC, previously updated
by the consumer. The strategy ensures a win for the angel, for whatever choices
selected by the demon.

Thus, by strengthening the boolean condition of the angelic nondeterminis-
tic assignmentProd, given by (6), through the information that we have got by
propagating backwards the weakest precondition of contractCons with respect to
postconditionI, we have eliminated the angelic choices that would not establish
I, such that, in its new form, the producer can blindly select its moves, yet satis-
fying 2Q, which has been our design target. Now, we can safely replaceProd by
Prodf in the action systemBuffer.

An interesting extension of the analyzed example is to try to keep the content
of the buffer within certain specified limits. In this case, additional information,
which describes the conditions at the other end of the buffer, should be also for-
malized and propagated. Extending the ideas introduced here to a more general
producer-consumer problem would, indeed, lead to the construction of a correct
and reliable template for such a class of systems, where not only the capacity, but
also the number of inputs and outputs, that is, the choices of the producer and
the consumer, respectively, are parameterized. Both issues are subjects of further
studies.

7 Conclusions

In this paper, we have tackled the problem of discrete controller synthesis, by
modeling the system as an action system, and the synthesis process as atwo-
playergame. The players are the controller, called theangel, and the plant, called

13

thedemon, which make moves sequentially, according to some contract statement.
The goal of the angel is a safety temporal property. The angel-demon game for-
malization in theweakest preconditionframework was introduced by Back and
von Wright [3].

In general, relationships between agents may involve both cooperation and
competition. To make the synthesis possible, in our case, the angel competes with
the demon.

We have started with an angelic nondeterministic assignment as the model of
the controller, and a demonic update for the behavior of the plant. The synthe-
sis subsumes two main steps. Firstly, we check whether the angel can enforce
the required behavior (A1, A2 of section 6 show how the first step is applied in
practice). We use a certain inference rule that reduces proving safety properties to
invariance proofs. If this first step holds, we move toward extracting the safe set
of strategies, or, sometimes, toward implementing a specific control strategy (step
B in section 6).

In order to restrict the angelic choices to the ones that establish the safety
property, we have propagated backwards the assertion of the weakest precondi-
tion of the demon, to establish the invariant, through the angelic nondeterministic
assignment. This method provides us with means of rewriting the angelic nonde-
terministic assignment, by using the information that we obtain from the fact that
the required safety property is enforced on the initial model. Hence, we replace
the initial angelic update by a new contract that refines the former, in this context.
The end-result is a correct-by-construction controller, tailored to the required be-
havior.

We believe that our method is particularly useful when the discrete system is
as much constrained as it is nondeterministic. Moreover, the technique proved
well suited for the situations when the game lasts more than one round, that is,
neither the demon nor the angel have a one move strategy to win the game.

An illustrative case-study has shown the application of the proposed approach,
in practice. Due to Lemma 1 and the method described in section 5.2, we have
synthesized an invariance controller for aproducer - consumer- like system.

Distinctly from the fixpoint symbolic synthesis algorithms proposed in [1,
10, 11], our games-based method is fit for interactive theorem proving (PVS [8],
HOL etc.). To support this claim, we have proved the invariance property of the
producer-consumer system, in PVS. Thus, our approach works for models with
unbounded variables, too.

Future research targets the development of games-based synthesis techniques
for real-time control systems, within the action systems framework.
Acknowledgments. The authors thank Viorel Preoteasa and Tiberiu Seceleanu
for their comments on this paper.

14

References

[1] R. Asarin, O. Maler, and A. Pnueli. “Symbolic controller synthesis for dis-
crete and timed systems”. In P. Antsaklis, W.Kohn, A. Nerode, and S. Sastry,
editors,Hybrid Systems II, volume 999,Lecture Notes in Computer Science,
Springer-Verlag, 1995.

[2] R. J. R. Back and K. Sere. “Stepwise refinement of action systems”.Struc-
tured Programming, 12:17-30, 1991.

[3] R. J. R. Back and J. von Wright. “Games and winning strategies”.Informa-
tion Processing Letters, 53(3):165-172, 1995.

[4] R. J. R. Back and J. von Wright.Refinement Calculus: A Systematic Intro-
duction. Springer-Verlag, 1998.

[5] R. J. R. Back and J. von Wright. “Contracts, games and refinement”.Infor-
mation and Computation, 156:25-45, 2000.

[6] R. J. R. Back and J. von Wright. “Enforcing behavior with contracts”.Tech-
nical Reportnr. 373, TUCS, 2000.

[7] R. J. R. Back and J. von Wright. “Verification and refinement of action
contracts”.Technical Reportnr. 374, TUCS, 2000.

[8] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. “A tutorial in-
troduction to PVS”. InWIFT’95 Workshop on Industrial-Strength Formal
Specification Techniques, April 1995.

[9] E. W. Dijkstra. A discipline of programming.Prentice-Hall International,
1976.

[10] G. Hoffmann and H. Wong-Toi. “Symbolic synthesis of supervisory con-
trollers”. In Proceedings of the American Control Conference, Chicago, IL,
pages 2789-2793, June 1992.

[11] O. Maler, A. Pnueli, and J. Sifakis. “On the synthesis of discrete con-
trollers for timed systems”. InProceedings of STACS’95, E. W. Mayr and C.
Puech (Eds.), volume 900 ofLecture Notes in Computer Science, 229-242,
Springer-Verlag, 1995.

[12] C. Morgan. Programming from Specifications. Prentice-Hall International,
1998.

15

[13] A. Pnueli and R. Rosner. “On the synthesis of a reactive module”. InPro-
ceedings of the 16th ACM Symposium on Principles of Programming Lan-
guages. 179-190, 1989.

[14] P.J. Ramadge and W.M. Wonham. “Supervisory control of a class of discrete
event processes”.SIAM Journal of Control and Optimization 25206-230,
1987.

[15] S. Tripakis and K. Altisen. “On-the-fly controller synthesis for discrete and
dense-time systems”. InWorld Congress on Formal Methods, FM’99, 1999.

16

Turku Centre for Computer Science
Lemminkäisenkatu 14
FIN-20520 Turku
Finland

http://www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Science

